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A RESUME OF STOCHASTIC, TIME-VARYING, LINEAR SYSTEM THEORY

WITH APPLICATION TO ACTIVE-SONAR SIGNAL- PR3CESSING PROBLEMS

by

Lewis Meier

ABSTRACT

This report summarizes linear time-varying systems theory and its
application to active sonar signal processing when certain of the para-
meters are random variables. To keep the analysis within reasonable bounds
the random parameters are described by their first- and second-order
moments only. The report starts by outlining the theory and follows by
describing two possible applications: one for the derivation of the
scattering function of a moving, turning line target; the other in the use
of pulse trains to measure scattering functions.
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INTRODUCTION

This report is the sequel to an elier report <1> on linear, time-varying
systems theory and its application o active-sonar signal processing. The
major concern in that report was with deterministic systems, while the main
concern in this report is with stochastic systems. The main results of the
earlier report may be summarized as follows: a linear, time-varying system
may be viewed as spreading a signal in time and either frequency or time
stretch (doppler); therefore it is convenient to represent such systems by
a function of time shift T and frequency shift v or time stretch a

known as the spreading function S or SD and to represent signals by
another function of T and v or a known as the cross-ambiguity

function 0 or 0D. The cross-ambiguity function of the output of such a
system is a modified double convolution in T and v or a between its
spreading function and the cross-ambiguity function of the input; further-
more the spreading function of the concatenation of two such systems is the
same modified double convolution of their spreading functions.

In this report we are concerned with linear, time-varying systems for which
DS(T ,M) or S (T,c) are random variables; such systems are then des-

cribed by their statistical properties. The general range of statistical
behaviour possible is far too vast for this brief report; therefore we
must narrow our concern by the use of 'assumptions that vastly simplify the
analysis while only marginally restricting its application. It is quite
reasonable to assume that the systems in which we are interested are sta-
tistically independent of one another and their inputs. With this assump-
tion it is also quite reasonable to assume that the means E[S(T,v)) or

E[S (T,a)] are zero (where EC ] signifies expected value of) since the
effect of non-zero means may be analyzed separately with the deterministic
theory of <1>. Since we are dealing with linear systems, it is also
reasonable to restrict our concern to second order statistics -- the

0variance of S(Tv) and S (T,a). Finally we assume the values of S(TN)
0or S (T,a) are uncorrelated for differing x and v or a ; hence the

Dsecond-order statistics of S of S can be represented by the functions
D$(T,v) or $ (r,a) , known as the scattering function, which is the

analogue of the power density of a white-noise process:

E[S (',v') S(T,V)] = T,)6(t'-T) 8(V'-v )

D* $

E[S Of' S(T,a)]= O(T ,a) 6(C'-T) 6(a'-a) , (Eq. 1)

(where * represents complex conjugate and 6( ) is the Dirac delta
function).

3 ffiE=ZDJW PAGE B1.ABAIPLNOT fILUEPL:a
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The transmitted signal is assumed to be deterministic; hence its ambiguity
function is real. On the other hand, once the signal has passed through a
stochastic system of the type discussed in the last paragraph it becomes
stochastic with zero mean; therefore in our stochastic theory signals will

be represented by power cross-ambi.guity functions E[ I1I2] or E[I1DI ]

The fundamental result of import is that the power cross-ambiguity function
of the output of a system describable by a scattering function is a
modified convolution in Y and v or a between its scattering function
and the input power cross-ambiguity function; furthermore the scattering
function of the concatenation of two systems describable by scattering
functions is the same modified convolution in t and v or u between
their scattering functions. In fact, the required modified double convolu-
tion in - and v is just a double convolution, while the required
modified double convolution in t and a is the same modified double
convolution required by the deterministic theory and discussed in detail in
<1>. These results are illustrated in Fiqs. I and 2; the frequency shift
version of the results is well known <2>, but the time stretch (doppler)
version is believed to be novel.

The fact that in the frequency-shift version of the theory an ordinary
double convolution is involved should not be a big surprise. The assump-
tion that Eq. 1 holds for S(Tv) implies that E[h(t', ') h(t,T)] is
non-zero only for T' =- and depends only on t'-t ; that is, that the
time-varying impulse response h(t,T) consists of a statistically wide
sense stationary set of uncorrelated scatterers. Often this assumption is
abbreviated WSSUS for wide sense stationary uncorrelated scatterers. The
implication of this result is that, unlike the deterministic case and the
time-stretch version of the stochastic case, the order in which systems are
concatenated is unimportant. These results are exactly analogous to the
results of time-invariant linear system theory in which ordinary convolu-
tions are used and the order of concatenation is unimportant. Unfortunate-
ly, while the frequency-shift scattering function is a good model of the
medium, to correctly represent a thin, rigid, moving, turning target (such
as a submarine) the time-stretch scattering function is required (and even
this is an approximation). For unity BT signals such as CW signals, such a
target may be represented approximately by a frequency-shift scattering
function derived in an obvious way from the time stretch scattering
function, but for high BT signals such as linear FM signals the time-
stretch version must be used.

In many cases it is desirable to try to measure scattering functions. For
example, knowing the scattering function of a medium tells us the statis-
tics of how it spreads in time and frequency a signal transmitted through
it, and knowing the scattering function of a target allows us to measure
interesting target properties <3>. Thus the design of a suitable signal
for measuring srattering functions is of considerable interest and has been
the subject of considerable studies, for example by Rihaczek <4>. The rub
is that the volume under the power ambiguity function 1 112 is constrained
to a given vaiue, so that it is impossible tu determine the scattering
function exactly. Costa and Hug <5> suggested the use of pulse trains to
measure the under-spread scattering functions (those whose extent in time
and frequency has a product less than unity). A pulse train has a sharp
spike at the origin, with the remainder of its volume spead outside a
region whose area is unity. For an evenly spaced train of identical pulses
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this volume consists of respective spikes in both the time and frequency
shift directions, but these may be modified by any number of tricks such as
are given in <4>. In their work Hug and Costa make implicit use o. an
approximate method of realizing the bank of matched filters required to
determine the ordinary output power cross-ambiguity function that can most

• simply be described as the temporal analogue of narrowband (phase-shift)
beamforming. In this report a similar technique is described for realizing

the bank of matched filters required to determine the time-stretch output
power cross-ambiguity function that is the temporal analogue of broadband
(time-shift) beamforming.

This report is divided into two parts covering theory and applications
respectively. The theoretical part (Ch. 1) is largely a detailed presenta-
tion of the basic relationship given in Figs. I and 2, while the part on
application (Ch. 2) derives the time-shift scattering function of a moving,
turning, line target and investigates the use of coherent pulse trains in
measuring target scattering functions. Detailed derivations are relegated
to the appendices.

I®
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FIG. I BASIC INPUT-OUTPUT RELATIONSHIP
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FIG. 2 BASIC CONCATENATION RELATIONSHIPS
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1 THEORY

This chapter consists of two parts: discussion on scattering functions
(Sect. 1.1) and discussion of the fundamental relationships (Sect. 1.2).

1.1 Scattering functions

The scattering function of a stochastic, linear, time-varying system was
given in Eq. 1 in terms of the spreading function of such a system, where
the spreading function is defined in detail in <1>. Not all stochastic,
linear, time-varying systems have scatter 4ng functions, of course, since a
number of assumptions, which were enumerated in the introduction, have to
be satisfied; furthermore, if a system has e frequency-shift scattering
function it will not have a time-stretch scattering function and vice-
versa. Nevertheless, many important systems come close enough to obeying
the required assumptions that they can be represented by scattering
functions and in some situations a system with a time-stretch scattering
function may be represented by a frequency-shift scattering function.

Recall from <1> that the impulse response of a linear, time-varying system
is related to its spreading function via

h(t,r) = f e2njV(tt) S(r,v) dv ; (Eq. 2)

therefore if the system has a scattering function

E[h*(t',T')h(t,t)]= f f e2nJIv(t-T)'V(t"'T)]E[S*(I ,v')S(T,v))dv dv'

= j e2njv(t-t') $(T,v)dv 6(T'-c) (Eq. 3)

Thus h(t,T) consists of uncorrelated scatters whose statistics are time
invariant. Note the presence in Eq. 3 of the inverse Fourier transform of
the scattering function. Just as. in <1> there was no simple relationship

between SD(.u,v) and h(t,T) , there is no simple relationship between the
Dstatistics of h(t, T) and $ (T,U) for systems having a time-stretch

scattering function.

7 yraDJJO PAWE BLAWL44O! 1
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1.2 The fundamental relationships

Consider the two operators (g) and (g' defined by

b ® a(TV) =f f a(T-T',V-V' ) b(T',v') dv' di' (Eq. 4a)
T,V

bD ( aD(!,a) =ff a [' (I-V'), I, bD(V',o') d' dT' (Eq. 4b)

The former is nothing more than the well-known double convolution operator,
which is both communicative and associative. The latter is the modified
double-convolution operator studied in detail in <1>, where it was shown to
be associative but not communicative. Use of these definitions, those of
Eq. 1 and the fundamental input-output and concatenation relationships for
spreading and cross-ambiguity function given in <1> readily yields the
fundamental relationships described in Figs. 1 and 2 - details are
contained in Appendix A.

8
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2 APPLICATIONS

Two applications of the theory of Ch. 1 are presented here: derivation of
the scattering function of a moving,. turning, line target, and the use of
pulse trains to measure scattering functions. Discussion of the latter
topic is broken in turn into two parts: derivation of its power ambiguity
function, and presentation of an approximate method of simply realizing the
matched filter bank when a pulse train is used.

2.1 The doppler scattering function of a moving, turning, line target

From Eq. 22 of <1> the doppler spreading function of a moving, turning
target is

S"cT+O')'le rT)6 1 -I /c-T--a ( .a•_ -I rT)]sD ,(x( • • c f ---1

(l-a)S (1-a) lo - a .

(Eq. 5)

where f(o) is the reflectivity of the point along the target located at
distance a from the centre. The remaining quantities in Eq. 5 are
defined in <1> and since they are not of direct concern their definition is
not repeated here. Now we make the assumption that

Elf (a')f(a)) = Rf(a) 8(o'-o) (Eq. 6)

For our theory to be valid it is not necessary that Eq. 6 hold exactly, but
only that the reflectivity of points on the target be uncorrelated at 9
distances greater than the distance resolution of the transmitted signal --
a condition that is usually met in practice.

Now from Eqs. 5 and 6 we have

r[SD ( ) ( _. -CT+k - Ill rT) [' c'I . )
.D*-"•'D ) Rfr l "+' -

- La- +~
E8

• -• - -• -•

c /'~CT+R---ýjI rT • • __( - •

C R T X ct-l +i + r
=T-aT6 Rf (l-a)6+ -- a ca

* '(T'-T) 6 (L' -at)

(Eq. 7)

"•• .9
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making use of identities implied by the delta function. Obviously from
Eq. I and this result, the doppler scattering function is:

D- 1 PI + 6 - -
11 aD _ c RT c c a c

(Eq. 8)

which has the same form as that of the spreading function as given in
Eq. 5.

2.2 The power ambiguity function for a pulse train

In this and the following section we are concerned with an evenly spaced
train of identical pulses:

1 n n+1
xpT F(t) Y- x•x[t - (i --- )AT] (Eq. 9)

where the pulse XM(t) is assumed to be normalized to have unity total

energy (i.e. the integral of IxpI2 over t is unity).p
Rihaczek <4> has already determined the ordinary ambiguity function

yPT(TV) for such a signal to be

n-i
T(,,)= i(-iAT,V) ,(Eq. 10)

i=-n+l

where

)= einjVAT sin[nv(n- lil AT]
1 n sin(7v AT) Yp(TV) (Eq. 11)

and y (T,v) is the ordinary ambiguity function of Xp(t).
p p

If we assume - as is typically the case - that the spread of y in T

is small compared with At , the ordinary power ambiguity function
ypT(T,v) 1 for the pulse train is

n-l

IYPT(Tlv)•2= • y(TV) 21 (Eq. 12)

4 i=-n+i

.... --- --- -.. ... ... .. .. 0.
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where

.i )2= sin[nv(n- lil )AT] 2
Iyi(T n sin(nvAT) Ijp

Except for li= n, the first factor on the right side of Eq. 13 is a
function of v that is a series of spikes that are (n- ji 1)/n tall,
roughly 1/[(n- i )AT] wide, and separated by 1/AT Since the width
of ly 2 is small compared with AT, 1 pT1 2 is thus a pattern of spikes

in (x,v) space. This pattern is discussed and iIlustrated in detail in
<4>.

Now consider the doppler power ambiguity function of the pulse train. In
Appendix B it is shown, by substitution of Eq. 9 into the definition of the
doppler ambiguity function given in <1>, that

n-I(Ta) = Y yD(T-i- AT, a) (Eq. 14)

PT i=-n+l i

where

. n-Ji) I*y I a -1 n+1 - +i- Eqi5- n p + of 2 2 AT, (Eq. 15)

D,
and y(TZ ,)_ is the doppler ambiguity function xp(t) • The analogy between

Eqs. 10 and 14 is immediate; Eqs. 11 and 15 are best compared through

Fourier transforms, which are obvious for y and derived in Appendix B

for 4

Fi~~v): -inj,)AT (sin[nvKn-1il)A1]1
r n(f A sin( l) r (fV) (Eq. 16)

.1J sfATsin [r (f)(n-(i.)AT17(fa) e f')(Eq.17
\ns~in ff a-I f AT -

Dwhere p and p are the Fourier transforms with respect to i of
p p•

and respectively.
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"Again we assume that the spread of D in r is small compared with AT
In this case, the doppler power ambiguity function IYPT(ta)i 2 for the

pulse train is

n-1 D
.IYPT(T'v )1 2  =i:-n'l (t'v)j 2 (Eq. 18)

--n+l i

for ia-I I /e < 1/n This constraint, which follows direct from Eq. 15
and is derived in Appendix B, insures that the D do not overlap significant-
ly. The analogue of Eq. 13 is not given since the magnitude squared of
Eq. 15 does not take a simple form.
Instead we determine the total energy in y (T,a) for a given a by integra-

D
ting JyD (1,U) over i or equivalently from Parseval's relationship by
integrating j (f,u)l over f . If a similar procedure is carried out for

Eq. 16 the result is (sin[7itv(n-JiJ)AT]/[n sin(nvAT)]) 2 multiplied by the
energy in y pE,v) for a given v For a bandpass pulse, F D(f,a) will be

p p
centred more or less around f = f0, the carrier frequency; therefore
the result of integrating I r•(f,a)I is

{sinfn i fo(n-I il )At]/fn sin(Ti 1 f.AT)]} 2

smoothed over a , multiplied by the energy in y (t,c) for a given a .
pi• D 2

Thus lPTI is a pattern of spikes in (t,v) -space analogous to the pattern

of spikes in (tv) space of 12pTI2  ; however, since the smoothing effect

just mentioned increases linearly with a , the spikes become lower and
broader with increasing a

To illustrate the ideas of the previous paragraph, an example will be
presented. Let Xp(t) be an FM pulse with centre frequency fo and

bandwidth B . From <1>

I r(f'a) 1[ -f fý, ; (B -I 1-lI f 0 )/2] , (Eq. 19)

where

(11 I tl T
-F-(t ;T) = otherwise

"12
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therefore

(B-la-I 0fo)/2

-o J sin[7r a'(f 0 f'd O)(n-iI•T) 2 Af-_IC (,Ol df n Sin[r a-' (f c-+fo)A df

-(B-Ia-I Jfo)/2
(Eq. 20)

1 sin [ITr x+2ý)(n-i)] x

: • •nsin [Trý (x+•)]
-( -Icl-11 )/2 +1]

where

ct-i B
- f o AT P B

The integral of Eq. 20 is readily performed since the integrand can be
written as a sum of cosine fL'nctions. On the other hand for the ordinary
power ambiguity function we have

B-v I sin[r•v(, li)AT]2
f Irif,v)12 df 1 n sin( ffvAT)

2

(1- /nn[ n- il)] (Eq. 21)

where • •vT and p is as before. Graphs of these two functions versus
are given in Fig. 3 for p= 0.06, 1a-11, and v/f, < <p , i = 0

and n = 2, 3 and 5. These graphs bear out the conclusions of the previous
paragraph.

From the foregoing it is apparent that evenly spaced trains of identical
pulses have ambiguity functions with a central spike surrounded by an
essentially clear region of unity area; hence by appropriate choice c'
signal parameters it is possible to estimate a scattering function known to
be contained in region of unity area.

13
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The cost of such c;apability is ambiguity about the absolute position of the
scattering function. In many cases - for example determination of medium
scattering functions - this ambiguity is unimportant since it may be
resolved by other information. It is possible, as Rihaczek <4> discusses
at length, to modify an evenly spaced train of pulses in such a manner that
the non-central spikes of the ambiguity function are lowered and spread
out. Without going into details, tne possibilities are as follows: By
shifting the phase of the individual pulses 0 or, better yet, making the
spacing between pulses non-uniform yi or yi may be lowered and spread

in x - thus alleviating the ambiguity in x By, in addition,making the I
pulses non-identical - for example stepping them in frequency - it is
possible to generate a signal with a "thumb tack" ambiguity function (i.e.
a central spik.e surrounded by a more or less uniform plateau). The cost of
the latter s,;ep is that the simplified processing for pulse trains of
identical pulses to be described next cannot be used.

2.3 An approximation to the matched filter bank for a pulse train

For ease of presentation a uniformly spaced train of identical pulses is
assumed; however, the same analysis applies in an obvious manner if the
pulses are ;hifted in time or phase. Furthermore, it is assumed that the
individual pulses are FM pulses; however, the same analysis again applies
in an oL iioLs manner to any wide band pulses.

Let y(t) 'e the signal to be passed through the bank of filters matched
to XPT(t) and frequency-shifted versions of XPT(t). From Eq. 9 and the

approximate identity

27! -2nj k -

e.(t) e k (Eq. 22)
FM FM

where f. is the centre f requency and k the frequency slope of xMt

it is shown in Appendix C by substitution that the output of the bank ofI matched filters is

( = A f 2nVtT t-x) y(t) dt .

f PT

2¶e n -2rjv(i n 1E.
/h i e WFM - + (i- )AT, o

--n iFl_ v + 7

g,1
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where

•00

f( XFM(t-T) y(t) dt (Eq. 24)

Now consider a bank of filters matched to XPT(t) and doppler-shifted I
versions of XpT(t). From Eq. 9 and the approximate identity

-2nj (c-1)f0
2i k

EXFM(at) e XFM[t + (a-i) f,/k] (Eq. 25)

it is shown in Appendix C by substitution that the output of the bank of
V. matched filters is

OPT(Ia f X* [U(t-T)]y(t) dt
-• PT

(ct-1 )f. 2

2nj k n
(a -1) f n+l

IT 0M- o + (i ) AT, o]77i =1 FM.ir

(Eq. 26)

The quantity *FM(T,o) is nothing more than the output for a filter

matched to the FM pulse XFM(t); therefore the first step in the approx-

imate realization of either the frequency-shift or doppler-shift bank of
matched filters is to pass the signal through a filter matched to the
transmitted pulse. For a given T , Eq. 23 for the frequency-shift bank of
matched filters takes - except for a time and phase shift -the form of a
discrete Fourier transform of the sequence

- n+1
- ) AT, o] , i = 1, ... , n

of cucputs from the initial matched filter. Similarly for a given T
Eq. 26 for the doppler-shift bank of matched filters takes - except for a
time and phase shift - a form similar to the discrete Fourier transform of

YFM except that time stretch by 1/a replaces frequency shift by -v (as might

16
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SACLANTCEN SR-50 II
be expected). In fact if IVFM t-(1 -n-• 2)AT, o! is identified as the

matched filter output for a hydrophone located at point (i - 9-1) &x along
2

a linear ar-ay, Eqs. 23 and 26, with At replaced by Ax, take the form of I
a narrow-band beam former and a broadband beamformer respectively.
From this correspondence it is clear that Fig. 3 gives narrow-band andbroadband beam patterns for 2, 3 and 5 element arrays where the abscissa is
the cosine of the bearing angle relative to the antenna suitably
normalized.

I-
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CONCLUSIONS

Under appropriate conditions random linear time-varying systems may be
represented by a function of time shift and frequency shift or time stretch
known as the scattering function and the ouptut of such systems by a second
function of the same variables known as the power cross-ambiguity function.
The input-output and concatenation relationships for such systems are
double convolutions in the frequency-shift version and modified double
convolutions in the time-stretch (doppler) version. A moving, turning line
target has a doppler scattering function that is non-zero only along a line
in time-shift, time-stretch space. A very useful signal to estimate
scattering functions such as those of a medium or a target is the pulse
train, because its ambiguity function has a spike at the origin surrounded
by a clear region of unit area. The matched filter bank for such a signal
when the individual pulses are identical and wide band consists of a filter
matched to the individual pulse followed by the temporal analogue of a
narrow-band or broadband beam former.

19•.'4
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APPENDIX A

DERIVATION OF THE FUNDAMEITAL RELATIONSHIPS

From <A~l>

¶ ,V

= f.re2~V ' 41 ('r-T',V-V') SI0Qr',V') dv' dT'

therefore, if Eq. 1 of the main text holds forS

I0I

E E[S 0 (T" IV" SI0Qr' v')] dv" dT" dv' dT'
II

E -T E- )2 $10('r',v') dv' dT'
-.00 -cc[00r¶,-v)2

=$ ® E[JI(¶~v)1] 2

T ,V

Similarly from <A.l>

~D Drct
0 1

= o 00 D [ (T-¶'), OLr S D (T',ct') dct' dT'

0 10
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therefore if Eq. 1 of the main text holds for SD

E[1p0,(T,V)j2] 'f f I E{OD* [arI(T-rI), ODj [C [ (T-T's r
-00 0

00 00

f f E I pýDczi

T ,ct

Thus the fundamental relationships of Fig. 1 of the main text are valid.

Also from <A.l> -

SAC(Tv) =B SAB()V

e e2¶Trjv(T-T' SArT'vv) SB(T',v') dv' dT' ;
-CO -*D

t.herefore, if Eq. I of the main text holds for SA and S

E [S*C(T,V) SCT V) e
-00 -00 -00 -.0

I.* dv' dT"d-v"dT"

= -~~ $A(TT V) $B V") dv" dT" cS(T-T')6(V-V')

= BC .~$AB(T~v6T)(v
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and Eq. 1 of the main text holds for •AC" Similarly from <A.I>

S DC(T,1)--S DC 0' SDBTa
D B AB (T ,c*0

= f S [ (T-T), C-,') dct dT'
-< 0

therefore if Eq. 1 of the main text holds for SDB and SBC

ELDA(T,v) S C(¶',v = f f f E SD['"(T'-T'"),r S (TT"),
-•0- 0 0

*'*[E (T 90 Thus t' da' dT dctl dTrl

Go00A

-0 D

$D~C T~ $DBT~ 6(T-T')6(C1-a1')

and Eq. 1 of the main text holds for AC Thus the fundamental relation-
ships of Fig. 2 of the main text are valid.

REFERENCE

A.1 MEIER, L. A r~sumt of deterministic time-varying linear system theory
wi'h application to active sonar signal processing problems, SACLANTCEN
SR-44. La Spezia, Italy, SACLANT ASW Research Centre, 1981.
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APPENDIX B

DERIVATION OF THE DOPPLER AMBIGUITY FUNCTION OF A UNIFORM TRAIN OF

IDENTICAL PULSES AND SOME OF ITS PROPERTIES

By definition (<B.1>, Eq. Ib):

D 0A * [0(t-T)]X(t) dt
-co

I n n_ t_ -i•* tp

n i E Z f X [C(t-T)-(k--7-)AT X t-(i- AT] dt'
n=1 i k=l -o p

1 (p n k -+ - k n+lATn F *( - -+E-]A Xp(t) dt

i=l - k=i - ( c

SE yp T- i-k- -. . .. ) AT ot
n i-l k=lc

n-iW i
=n+ 1 D Yp T[i-- (n~l k)]AT, ()
i=-n+l ( kn -•Z- -p- -

E E Y p T-[ i .- 1 k + AT ) )
i =-n+l (nk=l P

Substitution of Eq. 15 of the main text into this result yields Eq. 14 of
the main text.
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The Fourier transform of Eq. 15 of the main text is by definition

D

1 n'hi y Dp Fa-1(n+ITlL) ]

E- 1 yD T +al -(n~l k + AT,n k=l,

_n-n--iI -2TrJ a-I f(" -k + 2. L)AT Dkf )= ~c e r(f,•

-i~r LfAT1 n-jiI ei rj Vf(n - iI1+1 -2k)ATpDf)e - E e CLrD(f,a)

But

sin[T(n-ij)aj_ eTrj(n- iI)a - e-Tri (n-ia

sin [7ra] e~ja - e-Tiaa

bn-li b-n+jiu

b - b-I i

bn-'il-I + bn-ii-3 + "'" + bn-nlil+3 + b-n+lil+l

- eTa(n-IiI-l)a + eTJ(n-Ii 13)a + ... + erj(-n+lii+3)a

+ e•Tj-n+l+l)a

Note that this is obviously a sum of cosines; furthermore, comparison of

this identity with the above equation for Oifa) yields Eq. 17 of the

main text if a = ''fAT

Now consider conditions that will ensure that the y9 will overlap by only

A negligible amount in the ambiguity function. Conside- first i > 0 and

a > 1. When the spread of yU in T is small compared with AT
YD [T-(i-I)ATa] will not overlap yy(T-iAT,a) it

1-1+ c-l (n+l t,)< i + 2-1 (n _ k)

a 78 a-
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for all k Use of the smallest k on the left side of this inequality
and the largest on the right side implies that the condition for non-overlap
is

or
ilL • < 1

On the other hand, for i > 0 and a <1 , the largest k must be used on
the left side and the smallest on the right side; hence the condition is

1 n- 1 1 < -I
-1 <a CL

or

These two conditions can be combined to yield the condition
lc-I I/c < 1/(n-l). For i • 0 the same analysis leads to the constraint

: -lI/ct < 1/n. Since the latter constraint is more stringent than the
former, it is the applicable constraint.

REFERENCE

B.l MEIER, L. A r6sum6 of deterministic time-varying linear system theory
with application to active sonar signal processing problems, SACLANTCEN
SR-44. La Spezia, Italy, SACLANT ASW Research Centre, 1981.
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APPENDIX C

DERIVATION OF THE APPROXIMATE MATCHED FILTER BANKS

From Eq. 9 of the main text for Xp(t) = XFM(t)

PFMt) XFM•-

pTT ) 1 X n X I+ 1

Sn • ,

(TV) E I i f e [(j(t-e X [t-T-(i-+--)AT] y(t) dt.
PT' 1 -i~-co 2A

But

XFM(t) 1. (t;T/2) e+2 r~o+ 0 t

Sn - 2Tj~ i AT - -- _-
SPT(Tv) _ [te F4t( -lýok-T-(i-- )AT/] y(t) dt.

FM A

/-n i =l -•

Substitution of the definition Eq. 24 of the main text of ýFM(To) into

this result yields Eq. 23 of the main text.

Also from Eq. 9 of the main text for t)XxMt

0TTa f Xp [ct(t-T) (--/)nlAT1 y(t) dt
~P(,~)~Fji=l -~2

But the definition of xF~) given above implies Eq. 25 of the main text;
hence XF~) 2

-~ n 00 +2'rrj---- n0 d
"~PT'"' fi i~l- ~ XM[t+(at1)f /k T~- 2 )AT/ct]y(t) d

Substitution of the definition Eq. 24 of the main text of PF(T,o) into

this result yields Eq. 26 of the main text.
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