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ABSTRACT

6 --,%Cost analysts and DOD contractors frequently use regression analysis
to develop Cost Estimating Relationships, production relationships, and
various forecasting equations. Invariably, those regression equations
are presented in the text of the final report along with the statistical
properties -- i.e. the R-Square, the Standard Error of the Estimate,
the Durbin-Watson Statistic, etc. These statistics are often presented
as evidence of the validity and accuracy of the resulting equation. The
higher the R-square the bolder the print and the more prominently
displayed.

Unfortunately, high R-square's, favorable Durbin-Watson statistics, 4
etc.-can be artificially or inadvertently inflated to appear more
favorable. In reality, the equation with good statistical properties

may not reflect a valid causal relationship to explain variations in
the dependent variable. In many cases the regression equations prove
to b e of little value in forecasting or explaining the relationships
with-new data.

This paper discusses techniques for artifially raising the R-square
and related statistical properties of regression equations. These
techniques are presented for the benefit of analysts who are trying
to improve the statistical properties of their equations and for
the benefit of managers ,no must approve payment for such analysis.
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LEGITIMATE TECHNIQUES FOR IMPROVING THE R-SQUARE

AND RELATED STATISTICS OF A MULTIPLE REGRESSION MODEL

INTRODUCTION

There are a number of factors which contribute to the reliability

and validity of a regression equation -- the underlying theoretical

structure, the relevance and accuracy of the variables used, the

validity of the statistical procedure used, and the achievement of

clean residuals that reflect pure white noise. Each of these factors

are essential to the development of good analysis.

f Unfortunately, when it comes time to develop or evaluate regression

equations, the statistics generated by the estimation procedure seem

to get all the attention. Statistics are presented in the text of the

report along with tie actual equations estimated, but no mention

is made of how the model was specified or how the residuals look.

Instead, one of the first questions asked by analysts and reviewers

is "How high is the R-square?"

Because of it apparent importance in the estimation process, this

paper focuses on the R-square statistic--what it is, how it can be

interpreted, and how it can be used or abused. The purpose is to

discuss the sensitivity of the R-square statistic to variations in the

data, different functional forms, and incorrect procedures which may

inadvertently be used in the estimation process.
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In the process of discussing the sensitivity of .the R-square

to changes in data, functional form, etc., the paper covers techniques

that can be used to raise the R-square without contributing to the

validity of the model.

Hopefully, this paper will point out the shortcomings of over-

reliance on the R-square in developing and evaluating regression

equations. It is also hoped that the discussion will. stimulate an

interest in looking at other statistical properties and trying

to identify sensitivities of those tests to particular types of

data, functional forms, or implied transformations.
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What the R-Square Really Means and When it Should be Used for Comparing

Different Regression Equations j
It should be noted that there is some disagreement among statisticians

over the appropriate formula to use in calculating the R-square. (See

Belsley et al, p. 86) But there is no disagreement over the meaning

Aor implication of the term. In the traditional sense the term R-square

describes the percentage of variation about the dependent variable

that is explained by the independent variables included in the model.

The implication is that an equation with a higher P-square explains

a greater percentage of the variability in the dependent variable

and that the equation with a higher R-square is somehow better than

another equation with a lower R-square. Obviously, one would like

to find some mechanical procedure for developing an equation with

the highest R-square value.

The step-wise regression approach does just that. In a merely

r mechanical way, the step-wise regression package takes a series of

independent variables and adds or drops variables in successive

calculations so as to obtain the one relationship among the alternatives

which has the highest R-square. Many amazing discoveries have been 4
made on the basis of results from a step-wise regression program.

Unfortunately, many errors have been made using the Step-wise

approach because of its reliance on the Rz-square statistic which

it seeks to maximize.
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Pitfalls to Avoid in Using R-square as a Criterion for Selecting

the Best Regression Model

In the first place, analysts should be aware that the formula

for R-square does not have the traditional meaning unless the following

conditions are satisfied. Furthermore, the formula can also produce values

that lie outside the 0-1 interval unless these conditions are satisfied.

(1) The OLS estimation procedure is used.

(2) The relationship being estimated is linearc

(3) The linear relationship being estimated includes a

constant term. (See Aigner (1971) for a more complete

discussion of the zero intercept case and an alternative

formula for R-square to use in these situations.)

The above conditions are significant for the analyst who wants to

compare equations where one of the terms was estimated without a

constant term. Similarly, the analyst should be aware that comparing

the R-square developed for the non-linear transformation does not

have the same meaning as the R-square developed for the original

linear relationship. As a result the R-square for a log transformation

of the data is not really meaninful relative to the R-square for

the equation estimated from the original data.
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Other Factors that can Effect the Value of R-Square

Extreme caution should be used when using R-square to evaluate

alternative regression equations where the above conditions are

satisfied. The following factors create higher (or lower) R-square

values without significantly enhancing the validity of the model.

1. Range of Variation on the Dependent Variable

The formula for R-square is sensitive to the range of variation

in the dependent variable. Two examples are worth noting and a

Monte Carlo simulation is being developed to show the significance

' o of greater variation in the dependent variable.

The classic example used to demonstrate the sensitivity of R-square

to the range of variation of the dependent variable involves the

estimation of the savings and consumptions functions. Since savings

is defined as the difference between income and consumption, the

"regression equation for savings as a function of income should be

equally as good as the regression equation for consumption as a

function of income. That is C=Y-S, or S=Y-C. In reality, the sum

of squared residuals (or the unexplained variation) will be exactly

the same for each case. But in percentage terms the unexplained

variation will be greater for the savings function than for the

consumption equation. As a result, the R-square for the savings

5
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function will be lower than the R-square for the consumption equation.

(See Barrett (1974)). 1
I

This implies that simple substitutions of equivalent terms can

significantly drive up the R-square without contributing to the

validity of the relationship.

In another case, the regression equation to explain earnings of -J
all employees has a greater R-square than does the same equation for

earnings of a subset of all employees, because the total population

has greater variability than the subset of the total. This implies

that regressions on a subset of data could have a smaller R-square

than regressions on a larger set of data.

Preliminary results from Monte Carlo simulations show that the

R-square is higher for a larger population with greater variability

in the data than it is for a subset of data with less variability

in the dependent variables taken from the same population.

2. Use of Dummy Variables or Time Trends

As a means of improving the explanatory value (and also the R-square)

of a regression equation, statisticians will frequently introduce

*i dummy variables or time trend data. The dummy variables are designed

to capture the influence of events (strikes, wars, etc.) that cannot

6
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be quantified. The time variable captures trends in the data that

may be time related and not explained by other variables in the model.

In both cases, the analyst must be sure that the dummy

variable and the time trend are causal relationships and not just

highly correlated.

3. Transformations in both data and functional form that

increase the R-square Statistics

.nalysts frequently have an option of expreesing data in constant

dollar terms or in current dollars. Frequentlj, the choice will be

motivated by which form of data will produce the greatest R-square.

A common mirtake is to expresp data in current dollars and then use

S transformations to get a higher R-square. With the high

rates of inflation that occurred in the late 70's this tends to

produce •If function4lrelationships like the following. Of course,

the absurdity of this expression is demonstrated when projections

are extended into the future and the forecast of the dependent

-,ariable increases at an astronomical rate.
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4. Dropping the Outliers

There may well be a valid reason for dropping a lone data point

that is far removed from the rest of the points. If the ommission

can be justified by a good, logical reason, the analyst can legitimately

increase the R-square of the regression equation by selectively

ommitting data.

However, this technique can also be uqed for not-so-legitimately

raising the R-square. Unfortunately, when the analyst drops data,

he does not include the explanation for doing so. When an explanation

is included, it is frequently buried in a footnote and not highlighted

as well as the R-square and related statistics.

Alternatives to the R-square for Evaluating Regression Models

This paper is not intended to be an indictment of R-square or

those who use the R-square for evaluating regression models. Rather,

the purpose of this paper is to point out some of the pitfalls that

may result from over-reliance on the R-square in developing regression

equations.

Analysts should also be encouraged to look at the following alternatives

which can supplement the more traditional statistics used.

1) The Mean Square Error

In the above example of regressing earning3 data on the total

population and the subset of engineers, it was noted that the R-square

for the equation on the total population exceeded the R-square for the
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earnings of engineers. This would imply that the equation for the

total population should be usc-d instead of the equation for engineers.

However, the mean square error for the data on engineers was greater

that the means square error for the regression using data for the

total population.

In this case, the regression equation for engineersq with the lower `

mean square error would have greater predictive value than the equation

with the higher R-square.

2) Splitting the Data Base to Validate Estimates of CoefficientsI

I Another technique for validating estimates is to randomly split the
sample into two groups and run the regression for both groups. if the

estimated coefficients are not significantly different, one can assume

that the equation accurately identifies the relationship among variables.

3) Back-casting and ForecastingA

It is frequently helpful in evaluating the merits of a regression

model to estimate the dependent variable using data from a previous

period of time and/or for future periods to see if the results of the

equation are reasonable.
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4) Tests for Specification Error

There are numerous tests available for detecting specification

errors. The Durbin-Watson test for autocorrelation can be a good

indication that a significant explanatory variable has been ommitted.

Ramsey (1974) has developed a rather interesting test for detecting

specification errors using estimates of the dependent variable in

subsequent regressions.

5) T-Statistics

of course, regression equations which have low t-statistics for

the explanatory variables should be re-estimated or dropped in favor

of equations where all the explanataory variables have statistically

significant variables.

6) Does the Estimate Make Sense?

There must be some plausible causality between the dependent variable

and each of the independent variables. This criterion eliminates the

possibility of inducing variables with spurious correlation (i.e. sunspots,

weather, etc.) This appeal to common sense also eliminates models

where the coefficients take on the opposite sign from that which one

would expect.

• 11
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CONCLUSION

Some caution must be taken to insure that the statistics generated

by the estimation procedure are meaningful arnd valid. In this

case the R-square has been shown to be misleading unless reasonable

"care is taken in selecting the varibles to include in the model,

the type of data to use, and the functional form to use.

Because of these shortcomings behind the R-square statistic, I

it becomes even more important to develop a strong theoretical structure

behind the model and to correctly specify the equation before any

attempt is made to select an estimation procedure.

Finally, it is extremely important to look beyond the R-square

for other statistics and techniques that can support the model

estimated.
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