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ABSTRACT

The problem of inferring the Earth conductivity as a function of
depth from surface measurements of the magnetic field is considered. Two
versions of a method analogous to that of Bailey (1970) are presented. The

main feature of the method consists in the fact that the conductivity is
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given explicitly in terms to two auxiliary sequences of functions which

are found by integrating a set of first order nonlinear differential
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1. Introduction s

e R, &: ol TBIRE I

The inverse geomagnetic problem has come to refer to the problem of
L retrieving the Earth conductivity from temporal measurements of the magnetic
: field at the Earth surface. For the case in which the conductivity can be
? assumed to’ be solely a function of depth, Bailey (1970) and WQ;dplt (1972)

. have proyided explicit solutions of the governing mathematical problem. Their

results are remarkable in view of the fact that this inverse problem is non-

linear.

TR SR LR

The mathematical formulation of the inverse geomagnetic problem leads
to an inverse Stv -Liouville problem: consequently, any advance on one front
can be carried over to the other. As a matter of fact, the paper of Weidelt E
(1972) is an ingenious adaptation of a method proposed by Gelfand § Levitan E
(1956) for solving the canonical Sturm-Liouville problem. The present paper E
falls in the same category, and is concerned with the adaptation of a method |
for solving the Sturm-Liouville which I have proposed (Barcilon 1982).

The method of solution which I shall present, has some features in ]

common with that of Bailey (1972). In particular, it provides an explicit,

closed form expression for the conductivity. Also, its implementation requires f

the integration of a set of first order nonlinear equations. Finally, it

;! requires some a-priori assumptions on the smoothness of the conductivity.

.
[
B

2. The Geomagnetic Induction Problem

We shall review the induction problem very succinctly and refer the

1T ATy AT 1) e i Pa T vt e

readers to, for example, Le Mou€l's (1976) article for an extensive discussion

of the topic.

In a nutshell the situaticn is a~ follows: time varying magnetic

fields of external origin, induce electric fields, and hence electric currents,




inside the Earth. These electric currents, which are also time varying, in

turn generate magnetic fields of internal origin. Surface measurements of
magnetic fields can be processed in such a way as to distinguish between the
externally and the internally generated parts. The ratios of these fields

contain information about the conductivity of regions through which the currents

. [ . kel o o Al vl - sl G
ettt di ek el s

have flowed.
The following simplified version of Maxwell's equations describes the _;
situation: %
3
By +WxE=0, (1) 3
L Vx B = oE - 2) 3"
u - -’ 3
o 3
VeB =0 (3 .{
In view of the characteristic time scale of the phenomenon, we have made the ?
quasi-static approximation in (2) and neglected the displacement current. g
Also in (2), the electric current is written via Ohm's law, o being the con- §
ductivity which is solely a function of radius r. The magnetic permeability :
% has also been assumed to be a constant My the free space permeability.
3 Because of the solenoidal nature of the magnetic field g" it is well ;
é‘ known thatz{see e.g. Stern 1976) %
g~ B=-VxWxp - Vx q r (4)

where p (r,9,¢,t) and q(r,6,¢,t) are the poloidal and toroidal scalar

. potentials. Only the poloidal potential enters into the induction problem,

B

i
).
3

Substituting the above expression for g'in terms of p only in (1) and (2)

and eliminating 'l.':‘., we get:




Lk

, V2p = U9 P, for r <a, (5)

a being the Earth radius, whereas in the non-conducting exterior:

Vzp =0, for r>a. (6)

At the Barth surface, the three components of 2 must be continuous because

of our assumption about the permeability. As a result
[B,] = [B) = (B,] =0, @)

where [ ] stands for "jump across r=a'", and the subscript r,8,¢ refer to

the spherical coordinates. Since 0 depends solely on r, we write the

poloidal scalar as a series of spherical harmonics {YT(9,¢)} and as a

Fourier transform integrai over frequency, namely

+o

T, L L
r & I e~ 1t 4o Z ) fm(r,u)) Ym(9,¢) , r<a,
2n g=1 me-g % L

P’{ (8)

4+

mn m

_. » 4 EN(w) L 1MW) 2+1

J e " du 21 I [ (E) - 2 (%) ] Yp(8,0), ™a .
L=l m=-2

Ea

In the above formula, ¢ is the frequency, E?(N) and I?(N) are for the time

being coefficients entering in the most general solution of Laplace's equation

(6). In order for p to satisfy (5) we must require that

)
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d 1,2

df;
e -a% - 2(2+1)f€ + iuomrch: =0, forrc<a. (9)

By means of this representation for p, we can get expressions for

the magnetic field outside the Earth, viz.

e % 2-1 g+2
B - j et ] I [EW (é) - (e+1) 10() (%) 1Yy T 1
2 el mm-g (10) i
m
[
v @w(E) T e [ayt A |
L a 2 r 39 .. singds . '’ b
and inside the Earth
+%
-jwte a ! m °
£= - j e do § {2(2+1) T f': (r,w) Yga
-t ,m
(11)
a ay™ ;
a d ) 1 L ¢ 3
R RAUDEE RS e P ;
where i, é and é'are unit vectors in the r, 8 and ¢ directions. §
The continuity of'z across the Earth surface implies that :Z
"(ae1) £ (a,w) 7 REp(w) - (+1) I9(a)
(12)

(O @,w) = Ejw) + )

By measuring the magnetic field at r=a, we can deduce E?(w) and

IT(w): we shall look upon these quantities as the data for the inverse

induction problem.
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3. Properties of the Poloidal Field.

The solution of (9) has some properties which will play a c¢rucial
role in the reconstruction of o(r). These properties are associated with
the dependence of f:(r.w) on the frequency w. In the process of deriving
these properties we shall keep the angular numbers % and m fixed. In fact,
from now on we shall focus our attention on a single pair (&,m) and drop all
superscripts or superscripts referring to it.

We shall assume that the conductivity ¢ is a differentiable function
of r. One might be able to relax this assumption at the cost of complicating
our presentation. For the sake of simpliéity, we shall adopt this smoothness
requirement. We should note at this stage that this assumption is weaker
than the analyticity assumed by Bailey. Incidentally, in view of this

assumption it follows that o(r) is bounded, i.e.
o(r) <M, for 0<rc<a.

It also follows that the differential equation (9) has a regular singular
point at r=0 and hence it has one solution which is analytic in that
neighborhood (Coddington § Levinson, 1955, }J. It is this analytic
solution which we shall denote by f(r,w). More specifically, f(r,w) is

that solution of (9) such that

f(r,w) ~ Ar2 , r=+0

where A is a constant.

We shall need a better representation of f in the neighborhood of

the origin. It is obtained by replacing o(r) in (9) by its value at

r=0, viz.,

(13)

(14)
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f(r,w) ~ 1.3....(28+1)A jz [q 4 ug wk ak(O)r] , T=+0 (15)

where jz( ) is the spherical Bessel function of order & [Abramowitz §
Stegun 1972, p. 437].
We next turn to the dependence of f on w and consider first the

asymptotic behavior for large w's. We resort to the WKBJ method (Olver

1974) and look for f£(r,w) in the following form:

iﬂ/4 TR r by . ai(r)
f(r,w) -~ exp[tie wiw I ¢g*dr] {(a’(r) + ENE T (16)
) ) ) wg

Substituting (16) in (9) and sorting terms according to powers of wk

we deduce that+

TUse of the differentiability of ¢ is made at this stage.

* const
a (r) = - - (17)
° ra (r)

The asymptotic representation (16) is suitable for both solutions of (19).
Therefore, we must select the constants entering in (17) in such a way
as to pick out that solution which we are calling f(r,w). To do so we must
match the asymptotic representation for large w with the representation (15)
for small r.

We proceed as follows: first we note that (16) is only valid for
r in the interval (uo'ko‘%(o)w'k,a). This suggests that we replace r in

(13) by (uoo(o)w)'&a and consider a>>1. Making use of standard results

for Bessel functions (Abramowitz § Stegun 1972, p. 364) we deduce that

3
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- -in/g4 in/
E([uoo(o)u] ha,u) ~ 1.3...(28+1)A e o 1 cos(e 4 a-(i+1) ;-] . (18)

This implies that

i e b e Bt o Eha st s

+i(a+l) =
& - 2 . (19)

-in/ -
al(r) = 1.3...(2+1)A o 4 by )

g o ot

Indeed, the asymptotic representation

SR RRPE PWE SOt RPN AW SIS

1 'i“/4 in r : %
f(r,w) -~ ééé"(zzil)AAg cisfe 4 uokwk J dk(p)dp - (2+]) g-] ,»  (20) :
u,o (0)ro*(r)u

agrees with (18), and hence (15), for small r's. We shall also need the E f
asymptotic form of é% (rf) which is obtained by differentiation: % !
s T Do
-3, in/ :
L (1) - -1.3...200A 07%(0) 0¥(x) sinfe o tu® J dldr - (s L1 . (2D)
%
We next turn out attention to another aspect of the same question we j

have been investigating, namely the dependence of f(r,w) on the frequency.

We state that f is an entire function of w, i.e. an analytic functicn of w
over the entire complex w-plane. The proof follows a classical procedure

(see e.g. Titchmarsh 1962, p. 6). We write f as a Taylor series in u:

£(r,w) = [ £.(r) " (22)
(o]

Sou i -

where
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and

2 L{o+l
] - -
fn' *T fn'

" fn - -iuoafn_l; (n>1)

also

£im -4
>0 T fn(r) a A 6°n .

Clearly

and

It is a simple matter to show that

un Mn rl+2n A
0
Ifn(r)l 1700 ¢ (2R (28 .. (e

and hence that the Taylor series converges everywhere in the complex u-

plane.

function of w of order k*.

r
T ;;:1~) ole)f, () dp .

Actually, we can go further and state that f(r,w) is an entire

*See (Boas 1954, p. 8) for a definition of "order".
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This can be seen from our pravious discussion of the asymptotic behavior

of f(r,w). The same can Le said about %? (rf), i.e. it is also an entire
function of ordexr ls.
The above results have an impurtant consequence. They enable us to

write f(r,«) and %; (rf) as infinite products (Boas 1954, p. 22} of very

specific form, namely

fir,w) = f(r,o)-[T- (1« IXET?T° , (26)
n=l n N
w(rfw) £ %; (rf) = ¢(T,°)-TT. 1+ ;ﬁﬁz;jﬂ . (27)
n=1

for a fixed value of r, say rep, {-iAn(o)}I and {-iun(o}m1 are the zeros of
f aud ¢ viewed a: functions of w. In other words, {An(o)}: and {un(p)};

are the eigenvalues of the following (wo eigenvalue problems:
2 L(R+1
u!' + ;-uﬁ - _L;f-l'“n + uoxncun =0, re(o,p)
u finiteat r =0 , (28a)
us=7_0 atr=p ,
and

T n 2

2 L(o+1)
nwoa by .
vn + -V - Vn + uovncvn =0, re(0,p)

v finite at r = 0 ,

(rv)' = 0 atr=p




"' "The re&gbﬂ-For making this connection with eigenvalue problems lies in the

.fé@f ;hatzbééaa and (28b) enable us to show that

An(p) > 0 » for n.]-.z’ooo (29)

vn(p) >0, for n=1,2,...

Finally, we can easily find the functions £(r,o) and y(r,o0) appearing in (26)
and (27). Thus, regardless of the conductivity profile o(r), we can say that

the radial poloidal field has the following form:

£(r,w) = Arl-ﬁ—(l . Tx_:'(‘r')’) | (26)

n=1

where {An(r)}; is an increasing sequence of positive numbers. Similarly

v(r,w) = (2+1) A o .ﬂ—(l + R;%F)') . (27"

n=1

4, An Explicit Formula for the Conuuctivity
There are several ways of obtaining formulas expressing o(r) in

terms of {An(r)}: and {vn(r)}T. We shall present two formulas.

Let us consider the following contour integral:

%
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2 | -
J(x) = whr f—f-_,_—ﬂﬂl dw | (30)
T UE (r,w) :

where I' is a circle in the w-plane of infinite rcdius. Using the calculus

of residues, we can deduce that

® Zf(r,-ivn)f(r,-ivn)

- . P T AT S e Y
. st g S T e BRI e s S et gt i s s Al
AR G ot 0 e SR 5 o R i AP b (i RS altia

J(r) = — (31)
n=1 'J’ (r:‘i\’ )
n
there a dot stands for differentiation with respect to w. On the other
hand, since the path of integration is an infinitely large circle, we can )
replace f and y by their asymptotic representations as given in (20) and é
;
(21), i.e. 3
-in/2 4 :
J(r) = 2—1- < + cot [e]'"/‘tu;’m;5 f cr;idp ;
“1 o i
] e HoT o(r)w o !
- (2+1) T 1 du
f Clearly %
E Ir) = —— . (32) |
B u ro(r) :
L
%} Equating these two evaluations of J(r) we conclude that
3
1} “n (r) 1 ‘n (r)
! [o- 2w ! o ] 0 2 :;
3 1 2 Y 2, k L R AT k ]
T = T ) ve (2) . (33) ;
° n=1 v (x) 2 1
W - chr))
k¥n 3




A second formula for o(r) can be derived in terms of {kn(f)}z and a third
auxiliary spectrum {Kn(r)};. To that effect, it is conveniesnt to introduce

two different combinations of f and ¢:
-2
F(r,w) = v  f(r,uw) (34)

and

or,w) = - y(r,w) - (1) E(r,0) (35)

It follows from these definitions that F and © are also entire

functions of w of order ). Their product representations which are

F(r,u) = A (1 + ﬁ%i_—)—) .36)
n
1.
and
o(r,w) = ~iu A S(r) w || (1 + ;;f%;ja , (37
1 n
where
r
s(r) = I 02 * Vg 0ydo (38)
(o)

are obtained partly from the definitions (34) and (35), partly from censidering

the equations
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F' = r-2(2+1)e ,
(39)
Q' = ~iu°wr2(2+1)oF .
and partly from the eigenvaiue problem:
2 L(%+1)
" & [ =
1 * ¥ 7 v uoKn(p)Gwn 0,
w finite at r = 0 ,
W' - w=0atrvr =,
The next step consists in the discretization of (39). This is accomplished
by replacing o(r) in (39) by an expression involving sums of delta functions:
N
o(r) = § s, 8(r-r)) . (40)
21 3 j
J
In other words, we consider model Earths made up of N conducting spherical
shells located at Ty r2, ... (Parker 1980). It is convenient to define
r°=0 and Tye178: Denoting by Fj(w) and Oj(m) tha values of F(r,w) and
O(r,w) at r=rj+0 and substituting (40) in (39) we deduce that
1 1 1
Fa*H*rarlamr - !9 (41a)
T, T
J i+l
, 2(2+1)
®j+1 2 ej - 1u0(w) rj+1 sj+1 Fj+1 . (41b)

goal once again is to obtain a formula for the conductivity at the

i
3
]
3
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Earth surface. We shall accomplish our goal by considering the limit of

the

the

expression for SN/a-rN as N tends to infinity, i.e. as we approach

continuum limit.

In analogy with the continuous case, we set

Then, it follows from (41) that FN-I and eN are polynomials in w

with the following structures:

N

Fyep (@) = AfTT- (1

c =)
kel n]E ) (a)

N-1

N
. 2(2+1) w
0, (w) = -iu A{ Z T, s. }u l‘ (1 + ) .
N ° sap J 17 ka1 in]ENS(a)

(We have used notations which are reminiscent of those for the continuous

case; e.g. {-ixﬁN)(a)}T are the zeros of FN+1 and as N+», these zeros will

coinc’de with thosa of F(w,a)). Substituting (42a), (42b) in (41a) and

performing a long division in w, we deduce that

In the process, we can also find FN(w) which has a form similar to that

of FN+1(w), namely

N-1
II Kk(N)(as
“i_’—'%,“* 20+1 . 1
2%+1 28+1 N _2(2+1) N )
T a n T S. N)
N o 17 j Th @
i K

(42a)

(42b)

(43)
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K N-1 w
Flw) = A ] (1 + - ) . (44)
; N kel ik£ﬁ Is(rN)
E Substituting (42b) and (44) in (41b) and performing another division in
_i w, we get
DRI E
e Ir s (N-1) 3
= i i A (ry)
s, = k N (45) 3
0 N 20+l I x(ﬂ)(a) ‘ .
Es N 1 k 3
? The desired formula for the conductivity is therefore E
s
2im N
o(a) = N+=  g-r
N
N N-1
2(e+1)
(I r s.) (N-1)
_%im 1 I . *x (1)
" Noreo 2(2+1) N,
(a-rN)rN 1 Ky (a)
But, as N+= we can show that rN#a. Therefore we can approximate (43)
as follows
N-1 !
22+1 H K (N) (a)
a k 14
r, * afl - ] |3
" u § T 2(’“1)5 i ™) ¥
o &7 '3 H A (@) 3
1 :
P and consequently :




il

S

il

ana

O
\

e el I A 1 - i A A MR el s emTPeTTNERY i NS SR S Y TR SN

16
N 2 N-1
2(+1) '
r s.) (N) (N-1)
oqay = Hm Ko ! 7y NP [ ‘ked @h 7 (my)
N+ (er) 2842 ‘1 \ & N 2 (a)
1.0,
(a)A, (a)
s2 S"(a) _ Meer (BIA :
(@) = v, 4(:+1) (@) H = Ty (48)
K

A similar formula can be written for an arbitrary radius:

2 = AL, (T2, (1)
S”(x) ’l k+l k
g(r) = Mo r4(9'*'1) Xl(r) ; 2(1-) . (47)
1 k

S. Solution of the Inverse Geomagnetic Problem.

So far we have derived results which hold for general conductivity
profiles. We would like to exploit these results to retrieve o(r).

Since the auxiliary spectra {An} and {vn} on the one hand or
{An} and {nn} on the other, enter so prominently in the formulas for 0,

we express the data (12) in terms of these spectra:

E)- (D) Iw) = ALGeD) ot [ (1 —iknu()_a) )

n=1

E(w)+I(w) = A(R+1) a"—ﬂ— (1 + R—“—’(;T) (48)
n

n=1

_(zz"_z_l)E(w) + (2,24-22#2)1(0)) = -iuoa-(£+1)AS(a)N-IT(1 + ik:(g) )
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or better still

2
| 2E (w) = (241) T (w) | = A222(2+1)2a2”ﬂ-(1 - -,
1 A (@)

v, (a)

- 2
|E@)+1(w)|? = Az(z*l)za“‘ﬂ-u - =),
1

|- (82+8-1)E(u)+(28%+2242) 1 (w) |2 = uoa'z(‘*l)Azszca)wz-TT-(1 .
1

0l
) .

Xy (@)

In practicé. approximations to the first few values of xn(a), vn(a) and

Kn(m) could be obtained by approximating the left hand sides of (49) by

polynomials in mz with real, positive zeros. Note a1s0 that we can extract

the value S(a) of the moment of o.

In order to generate {kn(r)}, {vn(r) } and {Kn(r)} for arbitrary

values of r, we note that

£(r,-ir (¥)) = 0,
v(r,-iv (1)) = 0,
e(r,'iKn(r)) = 0 ’

(4%

Differentiating with respect to r and making use of the product representatioms

(26'), (27') and (36) we infer that

di, e ‘l:l:[l_(l- A, (2) /vy ()

o * -(erl) = = )
H (1= A (7)/ 2 (1))
k#n

i
3
8]
:L}
i
B
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it . 2o il ¥ 3

L]
d\,n vn(r) L(1e1) I(I‘Vn(r)/)\k(r))
T o e = Ugy, (F)ra(r)} =3 ’ (51)
T o279, (1))
and f
(e (/2 () :
dn  2(a+1) ol(r) kel 0 Tk ;
T T Sy Kn(r) . (52) ;
[ Qe 1)/ (20) 3
k#én
Incidentally, by starting from the identity %
F(r,-1A_(r)) = 0, ]
n i
1
we could deduce similarly that !
2 Iifl-k (r)/x, (1)) 4
dx u AT (D) n k 4
n___on S(r) k=] . (53) E
dr r212+1§ ® :
ll(l-xn(r)/xkcr)) :
k#n
Two routes are available to solve the inverse induction problem. The :
first consists in integrating the first order differential equations (50) f
and (51) for {An(r)}: and {vn(r)}; subject to the initial conditions ?
{A,(a)}] and {v (a)}] deduced from the data. The conductivity, which p
incidentally enters in (51), is given by (33). i

The second approach consists in integrating (52) and (53) and of

relying upon (47) for an explicit calculation of o(r).

The fact
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that S(r) enters in (52) and (53) is handled by writing

%%__ r2(1+1)°(r) (54)

and recalling that S(a) can be inferred from the data.
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