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a ABSTRACT

The problem of inferring the Earth conductivity as a function of

depth from surface measurements of the magnetic field is considered. Two

rversions of a method analogous to that of Bailey (1970) are presented. TheI
main feature of the method consists in the fact that the conductivity is

given explicitly in terms to two auxiliary sequences of functions which I
are found by integrating a set of first order nonlinear differential

equations.
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1. Introduction

The inverse geomagnetic problem has come to refer to the problem of

retrieving the Earth conductivity from temporal measurements of the magnetic

field at the Earth surface. For the case in which the conductivity can be

assumed to' be solely a function of depth, Bailey (1970) and Weidelt (1972)

have provided explicit solutions of the governing mathematical problem. Their

results are remarkable in view of the fact that this inverse problem is non-

linear.

The mathematical formulation of the inverse geomagnetic problem leads

to an inverse Stt i-Liouville problem: consequently, any advance on one front

can be carried over to the other. As a matter of fact, the paper of Weidelt

(1972) is an ingenious adaptation of a method proposed by Gelfand $ Levitan

(1956) for solving the canonical Sturm-Liouville problem. The present paper

falls in the same category, and is concerned with the adaptation of a method

for solving the Sturm-Liouville which I have proposed (Barcilon 1982).

ruhe method of solution which I shall present, has some features in

common with that of Bailey (1972). In particular, it provides an explicit,

closed form expression for the conductivity. Also, its implementation requires

the integration of a set of first order nonlinear equations. Finally, it

requires some a-priori assumptions on the smoothness of the conductivity.

2. The Geomagnetic Induction Problem

We shall review the induction problem very succinctly and refer the

readers to, for example, Le Mou~l's (1976) article for an extensive discussion

of the topic.

In a nutshell the situation is a- follows: time varying magnetic

fields of external origin, induce electric fields, and hence electric currents,

-I•.
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inside the Earth. These electric currents, which are also time varying, in j
turn generate magnetic fields of internal origin. Surface measurements of

magnetic fields can be processed in such a way as to distinguish between the

externally and the internally generated parts. The ratios of these fields

contain information about the conductivity of regions through which the currents

have flowed. -

The following simplified version of Maxwell's equations describes the .-A

situation:

B Vx Eu 0, 1

Vx B. aE ,(2)

0

V0 B 0 (3)

In view of the characteristic time scale of the phenomenon, we have made the

quasi-static approximation in (2) and neglected the displacement current.

Also in (2), the electric current is written via Ohm's law, a being the con-

ductivity which is solely a function of radius r. The magnetic permeability

has also been assumed to be a constant uo, the free space permeability.

IA Because of the solenoidal nature of the magnetic field B, it is well

known that .(see e.g. Stern 1976)

B. - Vx 7x p r- Vx q r (4)

where p (r,6,0,t) and q(r,e,0,t) are the poloidal and toroidal scalar

potentials. Only the poloidal potential enters into the induction problem.

Substituting the above expression for 8 in terms of p only in (1) and (2)

and eliminating E, we get:
•::..-
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p:= a Pt , for rca, (S)

a being the Earth radius, whereas in the non-conducting exterior:

[ . 2p
S.o, for r > a . (6)

At the Earth surface, the three components of B must be continuous because

of our assumption about the permeability. As a result

.[B] (Be] = (B*] o0 (7)

where I ] stands for "jump across r-a", and the subscript r,e,* refer to

the spherical coordinates. Since a depends solely on r, we write the

poloidal scalar as a series of spherical harmonics (Ym•6,,)) and as a

Fourier transform integral over frequency, namely'17

4W7 f..~w Y9., )2-; almu9 d• r,' 9 Co,,) , r < a ,
2.f e- ml ma-z

Cp (8)

'e tdw 1 XEm(w)

m" M

In the above formula, Q is the frequency, E,(uC) and I (wJ are for the time

being coefficients ertering in the most general solution of Laplace's equation

Kl (6). In order for p to satisfy (5) we must require that

gWE

.T.- I ali
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d 2dftm  2d r - t(L+l)f i* o wr c • o0 for r•< .2

By means of this representation for p, we can get expressions for

the magnetic field outside the Earth, viz.

+Go Z /\ 1 X \+2

B - i~ dw Z£ { (Z£+l ) W. -' (1+1) 1n r W

r a*Z r

(10)

SI'

and inside the.Earth

mm

+- (fl (,)

r- dr 9ae sne a " i'

where r, l and o are unit vectors in the r, 8 and fdirections. er

The continuiti of B across the Earth surface implies that

P-1f' aw E() (tl m(,,) ,i

(12)

mm

By measuring the magnetic field at r-a, we can deduce ECM) and

I (w): we shall look upon these quantities as the data for the inv'erse

induction problem.
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3. Properties of the Poloidal Field.

The solution of (9) has some properties which will play a crucial

role in the reconstruction of o(r). These properties are associated with

•! the dependence of fm-(r,w) on the frequency w. In the process of deriving

these properties we shall keep the angular numbers Z and m fixed. In fact,

from now on we shall focus our attention on a single pair (i,m) and drop all

superscripts or superscripts referring to it.
We shall assume that the conductivity a is a differentiable function A

of r. One might be able to relax this assumption at the cost of complicating

our presentation. For the sake of simplicity, we shall adopt this smoothness
A

requirement. We should note at this stage that this assumption is weaker

than the analyticity assumed by Bailey. Incidentally, in view of this

assumption it follows that a(r) is bounded, i.e.

o(r) < M , for 0 < r < a . (13)

It also follows that the differential equation (9) has a regular singular

point at r=O and hence it has one solution which is analytic in that

neighborhood (Coddington & Levinson, 1955, ). It is this analytic

solution which wc shall denote by f(r,w). More specifically, f(r,w) is

that solution of (9) such that

f(r,w) Ar , r 0 (14)

where A is a constant.

We shall need a better representation of f in the neighborhood of

the origin. It is obtained by replacing a(r) in (9) by its value at

"j r=0, viz.,

,.________.• I . . ... ::- ,.•.
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iW/4 ••tol(~]i

f(r,w) - 1.3.... (2Zl)A jt ie I½ W a , r÷O (10)

where j ) is the spherical Bessel function of order t (Abramowitz 4

Stegun 1972, p. 437].

We next turn to the dependence of f on w and consider first the

asymptotic behavior for large w's. We resort to the WKBJ method (Olver

1974) and look for f(r,w) in the following form:

ii/4 a1(r)
f(rw) exp(ie U iW a dr] (a (r) + - ., } (16)

0

Substituting (16) in (9) and sorting terms according to powers of w

we deduce thatt

t Use of the differentiability of a is made at this stage.

+ consta-(r)- const (17)
ra (r)

The asymptotic representation (16) is suitable for both solutions of (19).

Therefore, we must select the constants entering in (17) in such a way

as to pick out that solution which we are calling f(r,w). To do so we must

match the asymptotic representation for large w with the representation (15)

for small r.

We proceed as follows: first we note that (16) is only valid for

r in the interval (0i a (o)w-4,a). This suggests that we replace r in

(13) by (Po a(o)i-)h and consider a>>1. Making use of standard results

for Bessel functions (Abramowitz 6 Stegun 1972, p. 364) we deduce that
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E((uf a 1o°) OW) - ... (2+l1)A C cos e Ca-(l) 7 I . (18)

This implies that .

"4• 4 " '-k [o A 2•÷a (r) - 1.3...(21+1)A e u 0 a (o) (

r
1.3...(21+1)A a.

fnrwh a otic~(r~ a's (o rep (resenatio

agrees with (18), and hence (15), for small r's. We shall also need the

dasymptotic form of d- (rf) which is obtained by differentiation:

rr

d (rf) - -1.3...(2X÷+)A a 14(o) a (r) sin[e U'W2 adr - (L.l) - ] . (21)Sdr 0'
0

We next turn out attention to another aspect of the same question we

have been investigating, namely the dependence of f(r,w) on the frequency.

We state that f is an entire function of w, i.e. an analytic functicn of w

over the entire complex w-plane. The proof follows a classical procedure

(see e.g. Titchmarsh 1962, p. 6). We write f as a Taylor series in w:

f(r,W) u [ fnr) n (22)
0

where :1

"f r 0 2 f, 0 (23a)

'• : " . ::.- • A -- ., ~ 'v " : -' -- : :/ - - -- ...



and

fn~ r~ fn ~&j2. n u i i 0 afn- (ntl) .(23b)

also

lim z fraA 024

Clearly

f Ar2

0I
and

iu r t+2
o p rf -*~ (j- --~ ) a(P)f ~(p) dp .(5

0

It is a simple matter to show that H nA

tn~r !-~2.4...(2n) -(21+3)(2k+S) ... (21-2-n+71

and hence that the Taylor series converges everywhere in the complex cw-

plane. Actually, we can go further and state that f(r,w) is an entire

function of w of order Is.

t See (Boas 1954, p. 8) for a definition of "order".
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This can be seen from our previous discussion of the asymptotic behavior

d
of f(r,w). The same can Le said about g (rf), i.e. it is also an entire

function of order I.

The above results have an important consequence. They enable us to

write f(r,W) and (rf) as infinite products (Boas 1954, p. 22) of very

.. •..specific form, namely

f(r,w f(ro) I ( + (26)H ~~iX~r
nn:

:hved rw) ((rflu=(r,o)T (1 + o (27)

F~or a fixed value of r, say r'p, (-ix (p)) and f-i~u (pO aetezrso

i ~n- n~:

f aad viewe a--functbios of w. In other words, {X 1(p) ad{u1~

are the eigenvalues of the following two eigenvalue problems:

•.,•"••::•n"n 71 2u'n "•L•- un U°XnaUn 0 rE(o,p) •i!

u finite at r 0, (28a)

ur-O at r p

and

11 V, - V Vav , 0 re(o,p)n r n r2 n onn

v finite at r 0 (28b)

(rv)' -0 at r p
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The reason -or making this connection with eigenvalue problems lies in the

fact that (.8a) and (28b) enable us to show that

n (P) > 0 , for nml,2,... (29)

and

v'"(P) > 0 , for n=l,2,...

Finally, we can easily find the functions f(r,o) and *(r,o) appearing in (26)

and (27). Thus, regardless of the conductivity profile a(r), we can say that

the radial poloidal field has the following form:

p f(r,w) = A (1 + (27)
IT ni (r)

n1

?•'.4. An Explicit Formula for the Coiiuuctivity
wii There are several ways of obtaining formulas expressing m(r) in

ter1s on (r)}i and n) We shall present two formulas
4. A Let us consider the followingcontour integral:

:•. J

!I i
Thr r eea as fotiigfruasepesn ~)i



J ar W) d ~ .d (30)
T"r 2

where r is a circle in the w-plane of infinite radius. Using the calculus

of residues, we can deduce that

J~r) 2f(r,-iv n fr, n) (1J~rl ) (31)

n=l 2 (r,-i )n

ihere a dot stands for differentiation with respect to w. On the other

hand, since the path of integration is an infinitely large circle, we can

replace f and * by their asymptotic representations as given in (20) and

(21), i.e.

1 ( ilT/2 ilt/4½½J(r) 2 ~ cot [e --a w a½dp

-(L.l) •] dw

d1y

Clearly 4

J~r) =(32)

Jor2a (r)

0<

Equating these two evaluations of J(r) we conclude that A

-4fl - ,r) 1 )(r)

1~r 2~ 21  =.2Uor2  (33))k Xkr A() Fl kr

nr) 0 n 1r)2 2(3
k~~ni

k.nk
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* -s n of (') } and athird '
A second formula for a(r) can be derived in terms ofa

A auxiliary spectrum {K n (r)17. To that effect; it is convenient to introduce

two different coabinations of f and 4:

F(r,w) = r f(r,w) (34)

and

G(rw) , r {,(r,w) - (++1)f(r,w)} (35)

[1 It follows from these definitions that F and e are also entire

functions of w of order I. Their product representations which are

F(r,w) A 1 + r W 56)

11

and

e(r,W) -iX• A S(r) (I + :ik , (37)

where
r

S(r" ( P2 ( 1 ~a(p)dp , (38)

0

are obtained partly from the definitions (34) and (35), partly from ccnsidering

the equations
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K (39)

(3' 3 ii z r' 2 (t+l)F ,

and partly from the eigenvaiue problem:

w .+ W w i U W (p) aw *0

n r n r2  o n n
1Er

w finite at r o0,

rw' - 1w - 0 at r p.

The next step consists in the discretization of (39). This is accomplished

by replacing a(r) in (39) by an expression involving sums of delta functions:

N
a(r) = S s(r-r.) . (40)

j=l

In other words, we consider model Earths made up of N conducting spherical

shells located at rI, r 2 , ... (Parker 1980). It is convenient to define

ro=O and rN-l'a. Denoting by F (w) and 0 (w) th'e values of F(r,w) and

O(r,w) at r=r.+0 and substituting (40) in (39) we deduce that

F p 1 ...... E)e (41a)
j+l j 2+l 2Z-l -T-+ 21+1l+: jr. rj +

u goal = -" (w) r +I F (41b)

Our goal once again is to obtain a formula for the conductivity at the

S • -- • ..... -.•,. .. (.-.( •-i-•.• ---• -• :.,: €.•:¥ -= -, -.. . .... . • .. .. .-
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Earth surface. We shall accomplish our goal by considering the limit of j
the expression for sN/a-rN as N tends to infinity, i.e. as we approach

-I the continuum limit.

In analogy with the continuous case, we set

Fo A,

00

Then, it follows from (41) that FN-1 and GN are polynomials in w

with the following structures:

N_

F M AT (1 )(42a)FN+lt)= ( N (.) ),•
Nkl i k (a)

N N-I id0 W l {Ir. lsj },,7 (i1+ (42b)

jul k- 1l (N)

(We have used notations which are reminiscent of those for the continuous i
cas; ~g.{i(N) N

case; e.g. -iX N(a)) are the zeros of FN+ and as N-,-, these zeros will

coinc'de with thobo of F(,.,a)). Substituting (42a), (42b) in (41a) and

performing a long division in w, we deduce that

N-1 i

7 (N) (a
1 k (a

___ _2t,+1 __ __.__ _

"1)' = 2-t+ N ((4+1) N (N) 43)
rN a Uo • r sj -- Xk (a)

1 1

In the process, we can also find FN(w) which has a form similar to thatI .• of FN+ (w), namely

.-...

I__________2T=- ; ._- - -...--.-. • - ----..=: ..• "='-L.;. .. ..... .. ..



N-1

kal. ixk (N

Substituting (42b) and (44) in (41b) and performing another division in

Wi, we get

N N-I

M 2( 41) (NrN2 i k

The desired formula for the conductivity is therefore

• -N~1.

"N N-1

But, as N.- we can show that rN~*a. Therefore we can approximate (43)

• ~as fol lows

r j s CN-i )rN

2(t+l F N
a ''K (a)

-rN aa - N 1 NBut, la N re an h)Sj tThN -(a)
*N-1 2Z,+1 (N

•' and consequently

U.

r .. .. .
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~* r 2 (%41) Sj) 2 ;(N))x1 aNl, ( ?N- )N (~) 2 N-1

Lim) 0I 1o ( ,N)(a k+l' k •rN)
S(a)(rNa) 2L.2 ( Ick (N) 7a)

1

i.e.

S2_a) -l-a) Xk+l Ca)A k(a)
a (a) aU° a4S (a) X " 1  2(a) (46)

1 k (a)

A similar formula can be written for an arbitrary radius:

K c(r) - Uo r4 •9'~ 1 (r) T xk+l k (47)ar(r14(+l) l 2(r)
Ir

J

S. Solution of the Inverse Geomagnetic Problem.

So far we have derived results which hold for general conductivity

profiles. We would like to exploit these results to retrieve a(r).

Since the auxiliary spectra {Xn and {v I on the one hand orn n
{An} and ({n} on the other, enter so prominently in the formulas for a,
n n

we express the data (12) in terms of these spectra:

LE(w)-(•+1)I(w) = A(+l) a47 (1+ w
n-l 1Xn(a)

E(w)+I(w) = A(C+l) a] (1 + W (48) (
n-l nl

2 2 - tl)F
-(t +eL-)E(w) + (. e21+2)I(w) 0 - 1oa AS(a)w (1 +A )

ok'a

It
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or better still

_ m2r ILECw.C(+l)i~w) I2 . A2t2(Le1)2a2&j C1 - -) ,

-" E(W)-(+lI(W) " 1 A t4o -Z a ( X (a)

IE(w)+I~w)i2 *A 2 ('+1) 2 a 21T (l W (419)

LI1 V n (a)

F' I-(, 2 +X-l)E(w)+(.L 2+21+2)I(w)12 0 a'2Cg"l)A2S2Calw2 (1 - 2

In practice, approximations to the first few values of Xn(a), Vn (a) and

nK (w) could be obtained by approximating the left hand sides of (49) by
n2

polynomials in with real, positive zeros. Note aso that we can extract

the value S(a) of the moment of a.

In order to generate {Xn(r)}, {v (r)) and (Kn (r)} for arbitrary

values of r, we note that

_I

f(r,-iXn (r)) = 0

*(r,-iv (r))

e(r,-ic nCr)) -0

Differentiating with respect to r and making use of the product representations

(26'), (27') and (36) we infer that

(r) - l (r)/v (r))

--X -n + n () kul n k

r = (SO).(+) r W A 50

.T' (' Xn(r)/Ak(r)) 4
k~n



d-a -{r . -)

k' 1-n C n (r)/ k (r) )

On

and

dn 7 r2(' r)/X k(r))

ft n 2(1+1) ___ __ __ __ __ __ __

d (rS(r) n (S2)
- ((1-Kn(r)/k (r))

rkOn

Incidentally, by starting from the identity

) (r,-iXn(r)) 0

kn

we could deduce similarly that

2 T( 7 l-•nlr)/ k(r))nX Xkr)n-= ( S+l r ) (s3)

dk 1T X (r)/X (r))

Two routes are available to solve the inverse induction problem. The

first consists in integrating the first order differential equations (50)

and (S1) for (Xn(r))' and ( (r))1 subject to the initial conditions

{X (a)10 and (v (a)}) deduced from the data. The conductivity, which

incidentally enters in (51), is given by (33).

The second approach consists in integrating (52) and (53) and of

relying upon (47) for an explicit calculation of aCr). The fact
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that S(r) enters in (52) and (53) is handled by writing

dS 2(11l) (54)

and recalling that S(a) can be inferred from the data.
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