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SUMMARY

. The Earth's gravitational potential is usually expressed as an infin-
ite series of tesseral harmonics, and it is possible to evaluate 'lumped
harmonics' of a particular order m by analyses of resonant satellite
orbits.-;orbits with tracks over the Earth that repeat after m revolu-
tions.• 4n this paper we review i'esults on 30th-order harmonics from
analyses of 15th-order resonance, and results on 29th- and 31st-order har-
monics from 29:2 and 31:2 resonance.

The values available for 30th-order lumped harmonics of even degree
are numerous enough to allow a solution for individual coefficients of
degree up to 40. Th, best-determined coefficients are those of degree 30,
namely

10= -1.2 ± 1.1 1093030= 9.6 1.3

The standard deviations here are eguivalent to 1 cm in geoid height.
-For the 29th- and 31st-order harmonics, and for the 30th-order har-

monics of odd degree, there are not enough values to determine individual
coefficients, but the lumped values from particular satellites can be used
for 'resonance testing' of gravity field models, particularly the Goddard
Earth Model 10B (up to degree 36) and 10C (for degree greater than 36).
The results of applying these tests are mixed. GEM 1OB/C emerges well for
order 30, with sd about 3 x 10- 9 ; for order 31,/ the GEM 10B values are
probably good but the GEM 10C values are proba ly not; for order 29, the
test is indecisive. /
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S....I INTRODUCTION
A satellite orbit experiences B:a resonance if the satellite completes 0 revolu-

tions about the Earth while the Earth spins a times relative to the satellite's orbital

plane. The satellite's track over the Earth then repeats after 8 revolutions in approx-

imately a days. In such a resonance the orbital perturbations caused by harmonics of

order 8 in the geopotential have the same effect on each revolution, so that they build

up and can be analysed to determine accurate values of 'lumped harmonics' of order •

The lumped harmonics are linear sums of individual harmonic coefficients, and these

individual coefficients can therefýre be determined if values of lumped harmonics can be
obtained from a number of satellites at different incl>-ations to the equator.

The 15:1 resonance, or 15th-order resonance, when the track repeats after 15 ravolu-

tions in one day, has proved the most useful in practice, because the height (500-600 km)

is such that air drag brings the orbit thrnugh resonance quite slowly - but not so slowly
that a 50-year wait is needed. An orbit that stays near resonance for about a year is

ideal, and analysis of such orbits has given values of 15th-order lumped harmonics accurate

to IJ2 at best 1' 2. Recently, 23 satellites which experienced 15th-order resonance were
used to determine individual harmonics of order 15 and degree 15, 16, 17, ... , 35. Also

values of individual 14th-order coefficients have been obtained from analysis of 11
4resonant orbits

The 2-day resonances, such as 29:2 and 31:2, are much weaker than the 14:1 or 15:1

resonances, but the effects are often detectable. The first such analysis, of 29:2

resonance by Walker5 in 1976, has been followed by several studies of 29:2 and 31:2
5-9resonance , though the accuracies achieved have not been better than about 15%.

Any 15th-order resonant orbit which stays near resonance for a year or more is also

appreciably affected by harmonics of order 30, and the analysis of the variations yields
values of 30th-order lumped harmonics as a by-product. Again their accuracy has not

usually been better than about 20%, except for one satellite, where 7% was achieved.

The aim of this paper is to gather together existing results on lumped harmonics of

order 29, 30 and 31 and to see whether it ip possible to produce tentative solutions for

individual coefficients. The 30th-order harmonics prove to be the most satisfactory and

are discussed first in section 3, after a brief rdsum4 of the theory in section 2.

Sections 4 and 5 are devoted to the 29th and 31st-order coefficients.

2 THEORY

The longitude-dependent pare of the geopotential at an exterior point (r,e,X) can

be written in normalized form I1 0 as

+- Z )P (cos e) cos mX + Sm sin m4 NIZ Z r)Zkr9 t

Xu2 m-I

where r is the distance from the Earth's centre, 0 is co-latitude, X is longitude
S3 32

(positive to the east), v is the gravitational constant for the Earth (398600 km /sa
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and R is the Earth's equatorial radius (6378.1 km). The P (cos e) are the associated

Legendre functions of order m and degree I , and C and S are the normalized
tin 10

tesseral harmonic coefficients. The normalizing factor N m is given by

N2 *2(21 + 1)(L - m)!
tin (t + m)I (2)

A satellite experiences B:a resonance when 4 0 , where 0 is the resonance
angle defined by

a ( +(w+M) + a(W-V)

Here w is the argument of perigee, M the mean anomaly, n the right ascension of the

node, and v the sidereal angle. I
Near resonance the main changes in inclination i due to the relevant C m and

S take the form of terms in the sine and cosine of 0, 20, ... , if the orbital eccen-

tricity e is sm4llI. The multiplying coefficients of these terms, which we seek to
_O,k

evaluate by analysis of the resonance, are the lumped harmonics, written as C and
O,k im

which are linear sums of individual coefficients C and S having values

of Z that increase i steps of 2 with k , m and (9 -k) even. The index k is equal

to ya where y - 1, 2, 3, ... , and the terms with y - I are usually dominant.

The variation in eccentricity e is controlled mainly by terms in the sine and

cosine of (0 -qu) , the term•i with q - ±1 being dominant. Analysis of the variations

in eccentricity yields values of lumped harmonics C, and S , where k - ya -qmm

these lumped harmonics are also linear sums of individual coefficients C m and S m

The full theory has been given previously and will not be repeated here. Explicit

forms for the variations in i and e at 29:2 and 31:2 resonance can be found in Refs 12

and 6. Explicit forms for the 30th-order terms at 15th-order resonance appear in Ref 2.

3 HARMONTCS OF ORDER 30

3.1 Form of the even-degree lumped harmonics

The variation of inclination at 15th-order resonance depends primarily on the 15th-

order harmonics (the terms with y - I as defined in section 2), but there is also a 2!
contribution from 30th-order terms (y - 2), and the main 30th-order term in di/dt is 2

2 R 3 0  )F 0  0,4C0  sn2 $ 0,2
2n,

. Rn ( (15- cos i)F0, sin 20 - Cos 20 (3)

where n (- M) is the mean motion, a is the semi major axis, 1P W +M+15(o -v) is
the 15th-order resonance angle, and F3030•4 is Allan's normalized inclination

function1 1 . The lumped coefficients are given by

_0,2 - +0,2 + Q0,2 -

30 30,30 32 32,30 34 34,30 + (4)
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with the same equation for S on replacing C by S throughout. The Q-factors are

products of inclination functions F and powers of (R/a), the rth Q-factor in equation

(4) being given by

_0,2 2 
s

Q30+2r FO+2r,30,14+ 30,30,14

In each analysis of a 15th-order resonant satellite there is a possibility of

extracting determinate values for these even-degree lumped 30th-order coefficients, though

in practice only the best resonances yield such values. If values of lumped coefficients

can be obtained at enough different inclinations, it should be possible to solve equations

(4) for the individual harmonics C and St, 3 0  (Z even).
X,30 ,04

3.2 Observational values of even-degree lumped harmonics

In practice we have found only seven analyses of 15th-order resonance giving values

of 30th-order coefficients that we regard as reliable. They are listed in Table 1 and

briefly described below.

The results for 1974-34A, Intercosmos 11, are from the analysis of 129 weekly US

Navy orbits at dates between June 1975 and November 1977 (Ref 2). The analysis yielded

excellent values of 15th-order harmonics, but the two 30th-order coefficients are small

and scarcely greater than their standard deviation. As the expression (3) shows, however,

the effect of the harmonics is best indicated by multiplying by F3 0 , 3 0 , 14  which varies

greatly with inclination. Table I also shows the values after such multiplication and,

judged in this light, the sd for 1974-34A emerges as the second best among the seven

satellites; the values are of the same order as the ad only because the values happen to

be small.

The results for 1963-24B, Tiros 7 rocket, are from analysis of 112 weekly US Navy

orbits a. dates between November 1975 and December 1977 (Ref 2). Again the values of the
.0,2

15th-order coefficients were excellent, but the value for C3 0  happens to be small, as-0,2

is seen from the entry in Table I for F 30,30,14C230

The third and fourth satellites, 1970-111A and 1971-13B, were in almost identical

orbits but exhibited variations in inclination of quite different form1 3 ' because

resonance occurred at different values cf 15 The excellent agreement between the
_0,2 0,215

values of 30 and S30  obtained for the two satellites gives confidence in their

reliability.

The fifth satellite is 1967-42A, Ariel 3, which has served as the standard satellite

in Gooding's development of the computer programs THROE and SIMRES used in resonance

analysis. The values in Table I are from a SIMRES fitting of inclination and eccentricity
15

on 281 orbits at dates between May 1967 and August 1969, with ten coefficients

The sixth satellite is 1971-54A, for which 269 weekly US Navy orbits over five years

were analysed The results were excellent and give the most accurate values of lumped

30th-order coefficients yet obtained.
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The final orbit, that of 1964-52B, Nimbus I rocket, was determined by Hiller 1 6 at
25 epochs between March and September 1970, from 2000 observations including many Hewitt

camera plates. Although the individual orbits are more accurate than those of the other

six satellites, only 41 orbits were used in the resonance analysis, se the reliability
of the values of the lumped coefficients cannot be guaranteed.

Table I

Values of even-degree lumped harmonics (,S) 0 ,2  for the
30 seven satellites

920,2 .0,2 '- 0, 2 0,2

No. Satellite 90 02 8 00,2 1(deg) 10 C30  30 30,30,14 30,30,14 30 109F30,30,14S30

I 1974-34A 50.64 597 ± 558 679 ±,651 0.000952 0.57 ± 0.53 0.65 ± 0.62
2 1963-24B 58.20 46 t 106 253 1 88 0.01176 0.54 ± 1.25 2.98 ± 1.03
3 1970-111A 74.00 19.2 ± 4.9 4.1 t 4.4 0.2579 4.95 ± 1.26 1.06 ± 1.13
4 1971-13B 74.05 27.1 1 5.5 6.0 ± 3.3 0.2594 7.03 ± 1.43 1.56 ± 0.86

5 1967-42A 80:17 -9.1 ± 4.6 -5.0 ± 5.5* 0.4340 -3.95 t 2.00 -2.17 ± 2.39*
6 1971-54A 90.21 -8.2 ± 0.6 II.1 ± 0.8 0.4755 -3.90 ± 0.29 5.28 ± 0.38
7 1964-52B 98.68 22.8 ± 7.9 38.0 ± 10.3* 0.2502 5.70 ± 1.98 9.51 1 2.58*

* These standard deviations were doubled in the solutions

3.3 The equations to be solved

We have seven equations of the form (4) for C , and seven for S . The values of

the Q coefficients for the seven satellites, evaluated with Gooding's computer program

PROF, are given in Table 2 on page 7.

In addition, following the procedure that has proved successful in the past, we add

constraint equations of the form

Ct, 30  o5  2

(6)

St,30  - 0±10 5 / 2 A

10
where X - 30, 32, 34, ... These equations express the expectation that the order of

magnitude of the individual coefficients of degree X is 10- 5 / 2  for 30 4 k 4 50

as is confirmed in a general way by the Goddard Earth Model IOC (Ref 17).

Thus we solve 7 + N equations by least squares for N harmonics, the optimum

value of N being selected empirically. As in our recent solution for 15th-order
3harmonics , we are prepared to consider a relaxation of some standard deviations, if

necessary.

3.4 The solutions for individual coefficients of even degree

When the equations were solved, there were no problems with the C-values, but two

of the S-values, for 1967-42A and 1964-52B, had large weighted residuals, for all values

of N up to 6. The standard deviations for these two satellites were therefore doubled,

as indicated in Table 1.
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2.. , Table 2

Values of Q302  Q 032 0 0 2 for the seven satellites

0 022 _0,2 0,2 _0,2 _0,2 _0,2
Satellite 23 Q Q36 Q38 Q40 Q 2

3234 340

1974-34A -11.9 52.9 -131.8 200.3 -171.5 34.5

1963-24B -7.61 19.01 -20.11 2.71 11.18 -2.92

1970-1I1A -1.121 -0.806 -0.128 0.319 0.433 0.314

1971-13B -1.107 -0.807 -0.140 0.308 0.429 0.317

1967-42A 0.155 -0.161 -0.281 -0.295 -0.252 -0.184

1971-54A 0.430 0.213 0.100 0.036 -0.000 -0.020

1964-52B -1.113 -0.847 -G.231 0.127 0.313 0.333

When the 7 + N equations were solved for N coefficients, for 2 < N 4 6 , the

values of the measure of fit c were as followst

N 2 3 4 5 6

C equations 1.08 1.05 1.04 0.92 0.89
S equations 1.50 0.96 0.95 0.94 0.92

As usual, c2 is the sum of squares of the weighted residuals, divided by the number of

degrees of frPedom; and the weighted residual is the residual for each lumped coefficient

divided by the standard deviation for that coefficient, as given in Table 1.

Thus it appears that any value of N between 3 and 6 wil.. give a 'satisfactory'

solution with e near 1. However, Table 2 shows that 1974-34A, the second most accurate

of the satellites, has its largest Q coefficients for £ - 38 and I - 40 . So the

6-coefficient solution (I - 30, 32, ... , 40) is required to ensure that 1974-34A plays its

proper role.

Table 3 gives the 6- and 4-coefficient solutions, together with the values frcm the

Goddard Earth Model lOB (Ref 18), which only goes to degree 36 and so should be conpared

with the 4-coefficient solution, and also values for £ - 38 and £ - 40 from GEM IOC

(in brackets)
Table 3

Values of C£, 3 0  and S£ 30  givnn by our 6- and 4-coefficient

solutions and by GEM 1OB (and GEM IOC)

9- 9

3109 3 0  ,30

6-coefficient 4-coefficient GEM lOB 6-coefficient 4-coefficient GEM lOB
(GEM IOC) (GEM IOC)

30 -1.2 ± 1.1 -0.4 ± 1.0 -5.2 9.6 ± 1.3 10.1 ± 0.9 11.1

32 -14.5 ± 4.3 -16.2 ± 4.1 -0.6 0.1 ± 4.4 -1.4 ± 3.6 -0.2

34 -4.7 ± 4.4 -3.6 ± 4.8 -11.9 7.2 ± 4.6 7.9 ± 4.4 1.2

36 0.7 ± 4.4 -1.4 ± 4.2 -3.9 -2.4 ± 5.1 -2.3 ± 4.3 -0.9

38 5.7 ± 3.6 (0.6) 2.0 ± 4.5 (2.6)

40 2.5 ± 3.7 (1.5) 2.4 ± 4.1 (-3.0)
- -• -.... ~~~~~Žl.



Table 3 shows that the solutions are stabler going from the 4- to the 6-coefficient

solution does not change any value by as much as its ad. This is largely because

1974-34A dominates for I u 38 and 40, and, since it has @mall lumped coefficients,

1974-34A tends to produce small 38th- and 40th-degree coefficients.

The 15th-order coefficients in GEM 1OB were judged' to be probably accurate to about

-93 x 10 * If the same figure is used for the 30th-order coefficients of GEM OB, Table 3

shows that the mean difference between a GEM IOB value and the corresponding value in our

4-coefficient solution is 0.8 x (the sum of the ad). Since the GEM IOB values and ours

are believed to be completely independent, this agreement suggests that a standard devia-
-9tion near 3 x 10 may be appropriate for the 30th-order GEM 1OB coefficients. The four

GEM IOC values given in Table 3 are also consistent with an assumed accuracy of 3 x 10-9

though a comparison of only 4 out of 32000 coefficients can scarcely be regarded as a

useful test.

However, the main conclusion from Table 3 must be that the values in our sc ution

are poorly determined, except for X - 30 . This poor accuracy is to be axpected when

using only seven satellites, of which three (1970-111A, 1971-13B and 1964-52B) have very

similar values for their Q-factors (see Table 2).

The weighted residuals in the 6-coefficient sol.ution, for the seven satellite
equations and the six constraint aquations, are givun in Table 4. It will be seen that
the largest weighted residual is 1.60.

Table 4

Weighted residuals in the 13 equations used in the 6-coefficient solution

Satellite equations Constraint equations

_0,2 _0,2
Satellite C30 30 Degree I C S30 3 ,30 Z.30

1974-34A 0.10 0.03 30 0.11 -0.87

1963-24B -0.02 0.30 32 1.48 -0.01

1970-IIIA -0.50 -0.36 34 0.54 -0.83

1971-13B 1.04 0.09 36 -0.10 0.31

1967-42A -0.84 -1.18 33 -0.83 -0.28

1971-54A 0.03 0.13 40 -0.AO -0.40

1964-52B 0.33 1.60

3.5 The variation of even-degree lumped harmonics with inclination

Our basic data are the seven values of lumped harmonics, and the most useful compari-

sons can be made by considering their variation with inclination after multiplication by

F30,30,14 . Fig I shows the values of the lumped harmonics with their sd, together with

the variations given by the 6-coefficient solution (unbroken line), the 4-coefficienl
_0,2

(dot-dash line) and GEM lOB (broken line). The values of 930 for 1967-42A and 1964-52B
30

are shown in Fig I with their standard deviations doubled, and it is clear that the 0

relaxation was justified.
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It is worth noting that the curves of Fig I are nearly symmetrical about i a 860

Sso that the 980 satellite (1964-52B) competes with the two at 740, while the 80° satellite

(1967-42A) competes with that at 900.

Fig I shows that our 6-coefficient solution is only slightly better than thu 4- .

coefficient solution, and, if this were the only criterion, the latter would be

recommended. However, as already explained, six coefficients are required to take account

of 1974-34A, and, since they do not cause instability, the 6-coefficient solution is to be

preferred.

Another notable feature of Fig I is the good performance of GEM lOB: although there

are some discrepancies, GEM 10B generally gives a variation that can fairly be called

[quite realistic.
3.6 Review of values of C and S

30,30 30,30

Comparisons with previous evaluations of individual coefficients are not likely to

be very illuminating, because of the general inaccuracy. But comparisons are worthwhile

for C3 0 , 30  and S30 , 3 0 ' which are well determined here.

Table 5 lists values of these coefficients from various sources. The first, from the

European Gravity Field Model GRIM 2 (Ref 19), would not be expected to be accurate, because

it is the final coefficient in a 30 x30 array and is likely to carry a burden of error

from the undetermined coefficients of higher order and degree. The second entry is from

Rapp's analysis of 5°0 X50 terrestrial gravi . measurements 20 , which goes to order and

degree 52 and should therefore avoid this source of error. The same applies to the next

entry, GEM IOB, which is complete to order and degree 36. (GEM IOC is not listed because
22it is the same as GEM 1OB to order and degree 36. The gravity field derived by

Gaposchkin (1980) goes to degree and order 30, but has no (30,30) coefficient.) All these

values are independent of ours.

The values obtained by Kosteleckj and Klokonik 21, however, utilize some of our*

resonances and are therefore not independent of our values. Kosteleckj and Klokoln'k

took pairs of lumped coefficients from ten satellites, of which eight pairs were obtained

by us. Of these eight, there are three for which we no longer regard the 30th-order

harmonics as being reliably separated from the 15th-order, as explained in Ref 3. These

three are Saturn SA5, 1964-OSA (i = 310), which was omitted even from our 15th-order

analysis; Ariel I, 1962-15A (i - 53.80), and Cosmos 72, 1965-53B (i - 56.00). Of the other

five satellites, we use three here with the same values as Kosteleck9 and Kloko~nik; and

we use two, 1967-42A and 1971-54A, with new values. Kostelecký and Klokotnik also took

two values from their own analyses. We have not used these because they are both at

inclinations where we have more accurate values (50.60 and 74.00). To summarize,

Kosteleck9 and Kloko~nik use the same values as we do for three satellites, together with

three of our values we have now discarded, two of our values we have now revised, and two

of their own.

Go
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Table 5
Values of C and S30,30

Date Source, and type of data 103030 10to30,30

1976 GRIM 2 (Ref 19), comprehensive 14.2 5.8

1977 Rapp (Ref 20), terrestrial gravity 1.4 ± 5.2 12.6 1 4.9

1978 GEM 10B (Ref 18), comprehensive -5.2 ± 3? 11.1 ± 3?
7 osteleck9 Ref 21 1 solution 5 -6.0 10.9 .0 ± 1.8

land Klokodnik (resonance( Isolution 7 -8.2 ± 5.7 8.4 ± 5.8
/4-coefficient -0.4 1 1.0 lO.1 ± 0.91981 Our solution, resonance, (6-coefficient -1.2 ± 1.1 9.6 ± 1.3

How do the values in Table 5 stand up to comparison? The answer is "surprisingly

well", when the earliest (GRIM 2) is ignored. If the values from our solutions are

accepted as correct, averaged, and given a 'safety factor' of 2 on the sd, we can say that

the C and S values are -1 ± 2 and 10 ± 2 respectively. These are consistent with

nearly all the previous values and there is remarkable unanimity on the value of

1i 30,30 all six values being between 8.4 and 12.6.

3.7 Another look at the two rejected satellites

We rejected Ariel I and Cosmos 72 in our analysis, because we preferred a fitting
of the 15th-order resonance which had no 30th-order terms. In other words, we judged

that the 30th-order terms did not contribute usefully to the fitting. However, this does

not necessarily mean that they are wrong, and it is of interest to see how they fit.

Ariel I gives23 9FC - -4.0 ± 3.4 and 109S - 2.2 ± 3.8 at i m 53.80 , where

the values from the unbroken curve of Fig I are 0.8 and 1.6 respectively. The 'residuals'

are therefore -1.4o and 0.2a respectively. Cosmos 72 gives24 109FC u -4.1 ± 2.1 and

109FS - -1.7 ± 2.2 at i = 56.00 , where the values from the unbroken curve of Fig I are

0.7 and 2.2 respectively. The 'residuals' are therefore -2.3a and -1.8o respectively.

Thus our decision to exclude these two satellites seems reasonable, even with the

benefit of hindsight. It would be possible to strengthen the S-solutions by including
3the value from Ariel 1; but this would be capricious, since we had previously rejected

the solution in which it occurs.

3.8 Lumped harmonics of odd degree

So far we have only discussed the coefficients of even degree (30, 32, 34, ... ),

obtained from analysis of inclination. Lumped coefficients of odd degree (31, 33, i.,

can in principle be obtained from analysis of eccentricity at 15th-order reso.lance

(explicit forms are given in Table 4 of Ref 2). But in practice the effects of these

30th-order harmonics are small, and only one satellite, 1971-54A, has yielded determinate

values of lumped coefficients of odd degree .



Fig 2 shows the values of the lumped coefficients (,)' ad ( )I3 dete4-
30 ad ('S)30'

mined from 1971-54A and also the. variations of these coefficients with inclination eivenk

by GEM 101 and GEM IOC. Since coefficients of degree higher than 36 contribute signif-

icantly to the lumped coefficients at most inclinations, and GEM 101 do*@ not go beyond

degree 36, there are considerable differences between the GEM 101 and GEM IOC curves.

Both curves agree fairly well with the S-coefficients from 1971-54A. but the C-coefficients

of GEM appear to be too small.
A5

4 HABMNICS OF ORDER 29

At the 29t2 resonance the variation of i is given byt

-~ 30 ( 2 -2)F. 29 2 2929
di n -020, 2

dt9 2i co ia), S 29291 sin 4 2 + C 29 cos 9

+ terms in ale, .2 . (7

where * 2(w+M) + 29C(Q-v) (8)
29

and the lumped coefficients are given, by

0,2 - '22, R 2  F 4+ .(9

C29  * 30,29  Fa3 ,2 F4,91 *~42
30,29,14 30,29,14

with the same equation for S on replacing C by S throughout. Equation (9) show.

that the variation of inclination depends on the harmonica of even degree.

4.2 Observational values of even-degree lumey amnc

There are four satellites for which the orbital incliuation has been analysed

during passage through 29:2 resonance. These are discussed in turn below, in order of

increasing inclination.

The phenomenon of 29t2 resonance was first recognised and analysed for Ariel 1,

bility of evaluating lumped harmonics; but the data were not of high accuracy and the

values of lumped coefficients obtained, given in Table 6, were inevitably rather

inaccurate.

The second satellite is 1976-62E, Cosmos 837 rocket, recently analysed by Hiiller.

This is the best example of 29:2 resonance so far studied. But it is still not ideal

bp'.ause the eccentricity was appreciable (0.04) and the e terms in equation (7) should

strictly have been included. This was not practicable because the inclination was close

to 63.4 0 where *0 , and consequently the e terms, which depend on sin(429 w)

were strongly correlated with the main terms, in sin 0 si

4..si 29.

.Go.~. . .. .
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The third and fourth satellites in Table 6, 1971-106A and 1971-18B, were both of

high drag. The changes in inclination at resonance were therefore very small and the
12,23

values obtained for the lumped coefficients have large standard deviations

If the early terms were dominant in equation (9), it miight be possible to use the

values of the lumped coefficients from these four satellites to solve for two or three

individual coefficients; but at inclinations between 50 0 ~'nd 65 0 the higher-degree terms
are important, and often dominate, so a solution is not practicable. The best that can

be done is to compare thc2 values with those from GEM IOC.

Table 6

__________~~~~~~~ 2__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _[Values of lumped harmonics (C, 29 from the four satellites

904 20,2 0,2 0,2

Satellite (deg) 10 C29  10 ~29 F30,29,14 10F30,29,14 C29 t0 F6291 S2

1962-15A 53.8 -1000 ± 500 1100 ± 500 0.01526 -15.3 ± 7.6 16.8 ± 7.6

1976-62E 62.7 -10 ± 15 -76 ± 12 0.1286 -1.3 ± 1.9 -9.8 ± 1.5[1971-106A 65.7 -90 ± 74 -127 ± 39 0.2089 -18.8 ± 15.5 -26.5 ± 8.1

197 1-I8B 69.9 50 ± 20 -160 ± 70 0.3372 16.9 ± 6.7 -54.0 ± 23.6
Fj

4.3 The variation of even-degree lumped harmonics with inclination

curv 3 hw h four pairs of values of F 1 (CI S)0' from Table 6, and the

L cure ofvaritionwith inclination as given by GEM IOC, with coefficients up to degree 44

included. The comparison is inconclusive. It could be argued that most of the observed

values are numerically too large. On the other hand, it may be that the coefficients of

order 29 in GEM IOC are much less accurate than those of order 30: certainly the S-

coefficients in GEM IOC appear to be too small, and GEM IOC fails to fit the well deter-

mind F vlueof-9.8 ± 1.5 at inclinatio 6.0 Aloap'S-values2  are much

larger and give a variation quite different from the GEM 10C curve.

Further observational resul..q are needed before any conclusions can be drawn.

4.4 Lumped harmonics of odd degree

Lumped coefficients of odd degree can, in principle, be determined from the varia-

tions in eccentricity at 29:2 resonance, but in practice the effects are small, and the

*values so far obtained, from 1962-I5A and 1976-62E, cannot be regarded as well-established.

It is not worth attempting any comparisons until better observational values are available;

it is hoped that analysis of the orbit of 1968-40B, w~hich is currently passing through

29:2 resonance, will provide good values. -

7i
LO
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f5 HAMONICS OF ORDER 31

5.1 .'orm, of the lumped harmonics

At the 31:2 resonance the variation of i is given by7

di n (R}32 ( I_,2 _0, 2  1
1 sin ( -2 cos i + C3 Cos 31

• 2
+ terms in e, e, (10) A

where i3t 2 2(w+M) + 31 (-) (-1)

and the lumped coefficients are given byj

-0,2 F ,2 F 4J
34,31,16 36,31,17C31 C32,31 - - c 34 ,31 + - " C3 6 , 3 1 - (12)

3123 F 3 2 , 3 1 ,15 F 32 , 3 1 , 1 5

with the same equation for S on replacing C by S throughout. Equation (12) shows

that changes in inclination again yield values of harmonics of even degree.

However it has also been possible to analyse the variation of eccentricity at 31:2

resonance for three satellites, to obtain values of lumped harmonics of odd degree. TheI7variation of e is given by 7

-3
n= 17' 3 1 , 3 1 ,15 3 1  - 31 + S)

+ 13F3C sin(03 1 + ) - S cos( 3 1 + )

+ terms in e, e ,(.. 13)

The lumped harmonic coefficients here are given by

R2 19F 4, C3, 31,1,,, (.E ,• C . .35,31,-17.
31 3 1,3 1 - 3317P 6 a) ~33,31 +7 Ga)7F,3

37F 3 1 , 3 1 , 15  31,31,15

(14)

CC33,31,15 2 1~3,31,16 331-(4

-3,3 1,3 (D ) ,330,31 + ,31
1 3F 3 1 , 3 1 ,14 13931,31,14

and similarly for S on replacing C by S throughout.

5.2 Observational values

So far, four orbits have been analysed at 31:2 resonance. They are discussed

Sooverleaf in order of increasing inclination.

S i .•• . . .. • •-- '-'-- .
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The variations in inclination and eccentricity for Skylab I rocket, 1973-27B, at

31:2 resonance were analysed by King~-Hele I and quite well-determined values were obtained

for all six of the lumped coefficients. These values are given in Tables 7 and 8.

6The orbit of Proton 4. 1968-103A, was analysed by Hiller and King-Hele Since the

orbit was appreciably eccentric, it was found necessary to. include the e terms in

equation (12), and the 'main' coefficients (9 and -02 turned out to be very small31 3
(they are given in square brackets in Table 7). A simuultaneous analysis of inclination

and eccentricity gave the values for the other four coefficients listed in Table 8.

The third satellite, China 2 rocket, 1971-18B, suffered high drag and the values

V_ obtained from analysis of inclination are barely determinate . They are included in

TbeThe fourth and best analysis is of Samos 2, 1961 al, by Walker.A simultaneous

fitting of inclination and eccentricity was successful in giving well-defined values of

all six lumped coefficients, as recorded in Tables 7 and 8.

It is not possible to solve for individual coefficients, because the numerical

factors multiplying the high-degree terms are extremely large for 1973-27B and 1968-103A.
Forexmpe wth1973-27B, has a maximum numerical factor of 979.6 for C41 3

*and C5,1has a factor 363.1, so that coefficients would need to be evaluated up to

degree 57, and this is impossible with only six equations.I

5.3 Tevariation of the lumped harmonics with inclination, and implications for
GE OB/C

Fig 4 shows the~ fo'ur pairs of values of F 2 31 1 (CIS) I from Table 7 and also

the variation of these lumped harmonics with inclination as given by GEM IOC up to

degree 46.

Fig 5 shows the values of the four lumped harmonics (C and3' ( -133
and (C '31

multiplied by the appropriate Ffor each of the three satellites of Table 8, and also

their variation with inclination as given by GEM 10C. Since the multiplying factors in

equation (14) remain large up to a higher degree than those in equation (32), terms up to'
degree 53 in GEM IOC are included.

Table 7

Values of even-degree lumped harmonics (CIS)0'2  fcom, four satellites

Saelie 0,2 0,~2 0,2 0,2Satelit 30 C 1  10 S31  1 0 FC 10 F213 31(deg) 31 31 32,31,15 3F 32,3 1,15C3 1 23,53

1973-27B 50.0 860 ± 320 -1210 ± 200 0.002649 2.3 ± 0.8 -3.2 ± 0.5
1968-103A 51.5 [100 ± 18001 [30 ± 8001 0.004634 0.5 ± 8.3 0.1 ± 3.7 i
1971-l8B 69.8 24 ± 18 30 ± 23 0.3139 7.5 ± 5.7 9.4 ± 7.2 C
1961 aul 97.2 -2.9 ± 1.2 9.0 ± 2.2 -0.4323 1.3 ± 0.5 -3.9 ± 1.0
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Table 8

Values of odd-degree lumped harmonics (C,S)1)1 and (C,S) ]i3 from three satellites
313

Satellite 1973-27B 1968-103A 1961 aI

i (deg) 50.0 51.5 97.2

10 C3 1  20800 1 10100 -49000 ± 14000 -47.3 + 7.2

10 1 24700 ± 11400 11000 ± 7000 -8.7 ± 4.2

1031

F F31,31,15 0.0002811 0.0005269 0.3430
_1,1

109F C 5.8 + 2.8 -25.8 ± 7.4 -16.2 ± 2.5
31,31,15 31

10 F 5S 6.9 ± 3.2 5.8 + 3.7 -3.0 ± 1.4
31,31,15 31

10 9 3 36100 + 4300 10000 ± 3000 63.9 ± 15.3

9-1,310 17800 2800 2000 3000 42.0 15.2

F31 .1F3 , ,4 0.001139 0.001995 0.2349

0931,31,140C 31 41.1 ± 4.9 19.95 ± 6.0 15.0 ± 3.6

-1,3
10 F 31,31,14S31 20,3 ± 3.2 4.0 ± 6.0 9.9 ± 3.6

It is not possible to make an immediate judgment on the accuracy of GEM IOC from

Figs 4 and 5: an indication of the range of error on the GEM curves is required. In Tables

9 and 10, therefore, the values of the lumped coefficients from the two best satellites,

Samos 2 and 1973-27B, are compared with the values given by GEM IOC at the appropriate
0inclination (97.240 or 50.04 ), on the assumption that the individual coefficients in

GEM IOC have sd of 5 x 10-9

Table 9

Comparison of lumped harmonics from Samoa 2 and GEM IOC

Lumped GEM IOC Samos 2 Lumped GEM IOC S 2
coefficient for i -97.24 coefficient for i 97.24amo

9ZO,9 0,2-4.5 ± 6 9-02 -1.7 ± 6

10 C3 1  (-4.4 ± 6) -. (-1.7 ± 6) 9.0 ± 2.2

0.1 -18 ± 8 -47 -4 S± 8 4
1C 3 1  (-18 ± 8) 31 (-3 ± 8)

- 9-1,3 -25 ± 12 9-1,3 -1 ± 12
CO 10 b31 64 15 I0 S31 (-I ± 12) 42 15• : •( -2 3 + 1 ) - -I I . . . .. .1 2 )4 2 1 ._ _ J
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The numbers in brackets in Table 9 are the values that would be obtained by using

coefficients of degree up to that recommended in Ref 8, namely 44, 55 and 61, rather ,than

the maximum degree used here, namely 46, 53 and 53 respectively. The comparison with

GEM IOC made in Ref 8 utilized a preliminary met of GEM IOC coefficients, now superseded:

so the values in brackets provide a revised versiun of the table in Ref 8 - and also show

that altering the maximum degree does not have much effect.
_0,2 _0,2

In Table 9 the GEM IOC values of C and S differ from the rather accurate
31 31

observational values obtained from Samos 2 by 0.3 and 1.8 times the GEM sd. This suggests

that the chosen sd for GEM is nearly correct. For the odd (C,§) coefficients, however,

the quoted standard deviations from the two sources are nearly equal and their sum is a

better yardstick: the differences betweeý'che GFM IOC values of , S C and-1,3 31 " $31 ' C31

$31 and the corresponding Samos 2 values are 1.9, 0.4, 3.3 and 2.0 x (the sum of the

sd). This suggests a larger sd for GEM IOC. In the odd-degree lumped harmonics, the

higher-degree terms are much more important: so the indication is that, although GEM OB A

(degree 436) may be accurate to 5 x 10-9, GEM IOC is probably not. For Samos 2, GEM lOB 49-, 9-§,
gives 10 -=3.2 and 10 $3 = -- 0.3 , and these are both closer than GEM IOC to

the observed values.

Table 10

Comparison of lumped harmonics from 1973-27B and GEM IOC

Lumped GEM IOC Lumped GEM IOC 1973-27B
coefficient for i -50.04 0  coefficient for i =50.04°

60,2 _,2
10 6Z2 -0.7 ± 0.7 0.86 ± 0.32 10 $31 0.1 ± 0.7 -1.21 ± 0.20
0C3 1  S31

6 ,I 6 1 , I
10 C3 1  -7 ±8 21 ± 10 l0OS 3 1  -8 ±8 25 ± I

IOC1-I ± 2 -36 ± 4. 10 $3 -2 ± 2 18 ± 331 31

_0,2 _0,2
A similar comparison for Table 10 shows that, for C3 1  and S31  , the GEM IOC

values differ from 1973-27B by 2.2 and 1.9 standard deviations. (The inclusion of terms

up to degree 60 in GEM IOC gives no significant improvement: 10 631 changes to -0.4
60 2 31

and 1O 931 to 0.6.) For (C,S)1'I the differences are 1.6 and 1.7 x (the sum of the
11 33

sd); and for (CS)3 1 ' 3  the differences are 5.8 and 4.0 x (the sum of the sd). This can

only be called serious disagreement: however, since 311 the lumped lkrmonics involve high-

degree coefficients, the previous conclusion about GEM lOB (degree 43C) remains unaffected.

Thus, although there remains room for doubt, our provisional conclusion for 31st-

order coefficients is that GEM IOC cannot be recommended, but the GEM lOB coefficients

(degree 436) are probably within the 5 x 10- accuracy.

0
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6 SUMMARY OF RESULTS

6.1 Harmonics of order 30

The values of even-degree 30th-order lumped harmonics obtained from analyses of

15th-order resonance are numerous enough to allow a solution for individunl coefficients

(Table 3). The best-determined coefficients are those of degree 30, namely:

30C 3 0 3 0  - -1. 1.1 109S 3 0 3 0  * 9.6 ± 1.3

r These standard deviations correspond to an accuracy of about I cm in geoid height.

The variation of the even-degree lumped harmonics with inclination given by the

Goddard Earth Model lOB is generally similar to the variation given by the resonance

V solution (see Fig 1), and it appears that a standard deviation as low as 3 x 10. may be

appropriate for the 30th-order coefiicients in GEM lOB. For the (30,30) coefficients,
the values from GEM lOB (with sd 3 x 10 -9), and from Rapp's 1977 solution (ad 5 x 10-9

are consistent with those quoted above.

At the single inclination where a test is possible, the odd-degree 30th-order

S-coefficients from GEM agree well but the C-coefficients seem to be too small (see Fig 2).

All in all, progress in evaluating 30th-order coefficients is encouraging, though

more analyses nf long-enduring 15th-order resonances are required.

6.2 Harmonics of orders 29 anA 31

The picture is different for these harmonici. There are not enough analyses of

29:2 or 31:2 resonances to allow the determination of individual coefficients, and all

that can be done is to compute the variation of lumped harmonics wich inclination as given

by GEM IOC (GEM 10B only goes to degree 36, and higher coefficients are usually needed),

and to compare lumped harmonics from GEM IOC with the small number of accurate values

found from resonance analyses. Figs 3 to 5 show that there is no consistent agreement.

For 31st order, there is an indication that the GEM lOB values (degree 31 to 36) may be

accurate to 5 x 10-, but the GEM 1OC values (degree >36) disagree. Since GEM IOC was

derived as a model of the ocean surface to degree and order 180, the use of a small group

of its coefficients, of degree 37 to 50, say, may be inappropriate. For 29th order, the

resonance results are fewer and less accurate, so the disagreement is inconclusive.

Further analyses of 29:2 and 31:2 resonance, particularly the former, are needed if

future comprehensive models of the grL..,Ly field are to be tested by the resonance method.

6.3 Conclusions

Resonance-testing of comprehensive gravitational field models has previously been

applied (eg Refs 3 and 26) for various orders up to 15. Here the test is made for orders

29, 30 and 31, wi.h mixed .esults: GEM lOB/C emerges well for order 30; for order 31, the

GEM 1OB values (degree 036) are probably good, but the GEM IOC values (degree >36) are

probably not; for order 29 the test is indecisive.
; ,0
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