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, SUMMARY
~/ The Earth's gravitational potential is usually expressed as an infin-
ite series of tesseral harmonics, and it is possible to evaluate 'lumped
harmonics' of a particular order m by analyses of resonant satellite
orbitSJf{orbits with tracks over the Earth that repeat after m revolu-
tions. n this paper we review 1results on 30th-order harmonics from
analyses of 15th~order resonance, and results on 29th- and 31st-order har-
monics from 29:2 and 31:2 resonance.

The values available for 30th~order lumped harmonics of even degree
are numerous enough to allow a solution for individual coefficients of
degree up to 40. Th best-determined coefficients are those of degree 30,
namely

9

9-
10 -1.2 = 1.1 10 S3O,30

C30,39

;”The standard deviations here are eguivalent to 1 cm in geoid height.

-For the 29th- and 3l1st-order harmonics, and for the 30th-order har-
monics of odd degree, there are not enough values to determine individual
coefficients, but the lumped values from particular satellites can be used
for 'resonance testing' of gravity field models, particularly the Goddard
Earth Model 10B (up to degree 36) and 10C (for .degree greater than 36).
The results of applying these tests are mixed.&JGEM 10B/C emerges well for
order 30, with sd about 3 x 10~9; for order 31,/ the GEM 10B values are
probably good but the GEM 10C values are probally not; for order 29, the
test is indecisive.
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! INTRODUCTION

A satellite orbit experiences B:a resonance if the satellite completes B revolu-
tions about the Earth while the Earth spins o times relative to the satellite's orbital
plane, The satellite's track over the Earth then repeats after B revolutions in approx-
imately o days. In such a resonance the orbital perturbations caused by harmonics of
order B in the geopotential have the same effect on each revolution, so that they build
up and can be analysed to depermine accurate values of 'lumped harmonics' of order B8 .
The lumped harmonics are linear sums of individual harmonic coefficients, and these
individual coefficients can theref.re be determined if values of lumped harmonics can be

obtained from a number of satellites at different inclinations to the equator.

The 15:1 resonance, or l5th-order resonance, when the track repeats after 15 revolu-
tions in one day, has proved the most useful in practice, because the height (500-600 km)
is such that air drag brings the orbit thrnugh resonance quite slowly = but not so slowly
that a 50~year wait is needed. An orbit that stays near resonance for about a year is
ideal, and analysis of such orbits has given values of 15th-order lumped harmonics accurate
to 142 at best,’z. Recently, 23 satellites which experienced I15th-order resonance were
u.sed3 to determine individual harmonics of order !5 and degree 15, 16, 17, ..., 35. Also
values of individual l4th-order coefficients have been obtained from analysis of 11

resonant orbitsé.

The 2-day resonances, such as 29:2 and 31:2, are muvch weaker than the 14:1 or 15:!
resonances, but the effects are often detectable. The first such analysis, of 29:2
resonance by Walker5 in 1976, has been followed by several studies of 29:2 and 31:2

resonance’—g, though the accuracies achieved have not been better than about 15%.

Any 15th-order resonant orbit which stays near resonance for a year or more is also
appreciably affected by harmonics of order 30, and the analysis of the variations yields
values of 30th-order lumped harmonics as a by-product. Again their accuracy has not
usually been better than about 20%, except for one satellite, where 7% was achieved.

The aim of this paper is to gather together existing results on lumped harmonics of
order 29, 30 and 31 and to see whether it is possible to produce tentative solutions for
individual coefficients. The 30th—order harmonics prove to be the most satisfactory and
are discussed first in section 3, after a brief résumé of the theory in section 2.

Sections 4 and 5 are devoted to the 29th and 3lst-order coefficients.

2 THEORY

The longitude-dependent part’ of the geopotential at an exterior point (r,8,)A) can

be written in normalized formlo as

- : R L m = -
Z Z (—;) Pz(coa e){cm cos mA + SZm sin mA}Nm , ()

=2 m=]

njc

where r is the distance from the Earth's centre, 6 1is co-latitude, A is longitude

(positive to the east), u 1is the gravitational constant for the Earth (398600 km3/sz)




—
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and R is the Earth's equatorial radius (6378.1 km), The P:(cos 6) are the associated

Legendre functions of order m and degree £ , and Ezm and §2m are the normalized
tesseral harmonic coefficients. The normalizing factor sz is given by'o
2 o222+ D) =ml
Nom T+ m! : (2)

A satellite experiences B:a resonance when $ « 0, where ¢ is the resonance
angle defined by
2 = a(w+M) +B8(Q-V .

Here w is the argument of perigee, M the mean anomaly, & the right ascension of the

node, and Vv the sidereal angle.

Near resonance the main changes in inclination i due to the relevant Elm and

§2m take the form of terms in the sine and cosine of ¢, 24, ..., if the orbital eccen-
tricity e 1is smallll. The multiplying coefficients of these terms, which we seek to
eva}uate by analysis of the resonance, are the lumped harmonics, written as Em’ and

k

§m' » which are linear sums of individual coefficients Elm and gzm having values
of & that increasc i steps of 2 with 2 3 m and (L -k) even., The index k 1is equal

to ya where y =1, 2, 3, ..., and the terms with y =1 are usually dominant.

The variation in eccentricity e is controlled mainly by terms in the sine and

cosine of (& -quw) , the terms with q = *1 being dominant. Analysis of the variations

=0,k -
in eccentricity yields values of lumped harmonics C:' and S:’ s where k = ya-q:
these lumped harmonics are also linear sums of individual coefficients € and §,_ .

Lm Lm

The full theory has been given previously and will not be repeated here. Explicit

forms for the variations in i and e at 29:2 and 31:2 resonance can be found in Refs 12

and 6. Explicit forms for the 30th-order terms at 15th-order resonance appear in Ref 2.

3 HARMONTCS OF ORDER 30

3.1 Form of the even-degree lumped harmonics

The variation of inclination at 15th-order resonance depends primarily on the 15th-

order harmonics (the terms with y = 1 as defined in section 2), but there is also a
contribution from 30th-order terms (y = 2), and the main 30th-order term in di/dt isz
I
on (r\30 _ 0,2 0,2
2 (3) 5 - cos DFy5 30,14)C30 8in 20y = S5 cos 20, (3)
where n (= M) is the mean motion, a is the semi major axis, °|5 = w+M+15(Q=-v) is
the 15th~order resonance angle, and 530 30.14 is Allan's normalized inclination
* A}
functionll. The lumped coefficients are given by
0,2
= .= 0,2 = 0,2 =
€30 Ci0,30 * B2 C32,30 * %4 C34,30 * e (%)
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with the same equation for § on replacing C by S throughout. The Q-factors are
products of inclination functions F and powers of (R/a), the rth Q-factor in equation

(4) being given by
r

Q2 (B F F (s
30+2r Z) Fa0s2r,30, 1404/ F30,30,06 )

In each analysis of a 15th-order resonant satellite there is a possibility of
extracting determinate values for these even-degree lumped 30th-order coefficients, though
in practice only the best resonances yield such values. If values of lumped coefficients
can be obtained at enough different inclinations, it should be possible to solve equations

(4) for the individual harmonics 02’30 and Sz 30 (2 even).

3.2 Observational values of even-degree lumped harmonics

In practice we have found only seven analyses of 15th-order resonance giving values
of 30th-order coefficients that we regard as reliable. They are listed in Table 1 and

briefly described below.

The results for 1974-344, Intercosmos 11, are from the analysis of 129 weekly US
Navy orbits at dates between June 1975 and November 1977 (Ref 2). The analysis yielded
excellent values of 15th-order harmonics, but the two 30th-order coefficients are small
and scarcely greater than their standard deviation. As the expression (3) shows, however,
the effect of the harmonics is best indicated by multiplying by F30 30,14 ° which varies
greatly with inclination. Table | also shows the values after such multlplxcation and,
judged in this light, the sd for 1974~34A emerges as the second best among the seven

satellites; the values are of the same order as the sd only because the values happen to
be small.

The results for 1963~24B, Tiros 7 rocket, are from analysis of 112 weekly US Navy
orbits ac dates between November 1975 and December 1977 (Ref 2). Again the values of the
i5th-order coefficients were excellent, but the value for 5262 happens to be small, as

is seen from the entry in Table 1 for F30,30,|4030 .

The third and fourch satellites, 1970-1114 and 1971-13B, were in almost identical

13,14 because

orbits but exhibited variations in inclination of quite different form
resonance occugred at different values cf 015 . The excellent agreement between the
values of C30 and 630 obtained for the two satellites gives confidence in their
reliability.

The fifth eatellite is 1967-424, Ariel 3, which has served as the standard satellite
in Gooding's development of the computer programs THROE and SIMRES used in resonance
analysis. The values in Table | are from a SIMRES fitting of inclination and eccentricity

on 281 orbits at dates between May 1967 and August 1969, with ten coeff1c1entsls.

The sixth satellite is 1971-544, for which 269 weekly US Navy orbits over five years
vere analyaed‘. The results were excellent and give the most accurate values of lumped

30th-order coefficieats yet obtaimed.
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The final orbit, that of 196¢-523, Nimbus | rocket, was determined by Hiner|6 at
25 epochs between March and September 1970, from 2000 observations including many Hewitt
camera plates., Although the individual orbits are more accurate than those of the other
six satellites, only 41 orbits were used in the resonance analysis, sc the reliability
of the values of the lumped coefficients cannot be guaranteed.

Table |

Values of even-degree lumped harmonics (§,§)g62 for the seven satellites

, N 9:0r2 . 9= 02| o 0,2
No.| satellite | o0 | 1107 108 | Fag,30,14 | 19 F30,30,14%30 | 0 Fa0,30, 14530
1| 1974-34a | s0.64 | 597 2 558 | 679 2651 0.000952 0.87 t 0.53 0.65 & 0.62
2| 1963-248 |58.20 | 46 % 106 | 253 88 0.01176 0.54 £ 1,25 2.98 ¢ 1.03
3| 1970-111A ] 74.00 | 19.2 2 4.9 | 4.1 % 4.6 0.2579 4.95 £ 1.26 1,06 + 1,13
4§ 1971-138 | 74.05 | 27.1 ¢ 5.5 | 6.0t 3.3 0.2594 7.03 £ 1.43 1,56 & 0.86
5] 1967-424 180,17 | -9.1 ¢ 4.6 | 5.0 £ 5.5% | 0.4340 -3.95 ¢ 2,00 =217 £ 2.39%
6 | 1971-56a [90.21 | -8.2 £ 0.6 | 1.1 ¢ 0.8 0.4755 -3.90 + 0.29 5.28 ¢ 0.38
7 | 1964-528 |98.68 | 22.8 + 7.9 | 38.0 ¢ 10.3% | 0.2502 5.70 ¢ 1.98 9.51 ¢ 2.58

* These standard deviations were doubled in the solutions

3.3 The equations to be solved

We have seven equations of the form (4) for C , and seven for S . The values of
the Q coefficients for the seven satellites, evaluated with Gocding's computer program
PROF, are given in Table 2 on page 7.

In addition, following the procedure that has proved successful in the past, we add

‘construint equations of the form

1072742

O
[ ]
[=]
+

(6)
1073722

my
[ ]

o
I+

where £ = 30, 32, 34, ... These equations express the expectationlo that the order of
magnitude of the individual coefficients of degree £ 1is 10—5/22 for 30 ¢ 2 ¢ 50,
as is confirmed in a general way by the Goddard Earth Model 10C (Ref 17),

Thus we solve 7 + N equations by least squares for N harmonirs, the optimum
value of N being selected empirically. As in our recent solution for 15th-order
harmonicsa, we are prepared to consider a relaxation of some standard deviations, if

necessary.

3.4 The solutions for individual coefficients of even degree

When the equations were solved, there were no problems with the C-values, but two
of the S-values, for 1967-42A and 1964-52B, had large weignted residuals, for all values
of N wup to 6. The standard deviations for these two satellites were therefore doubled,
as indicated in Table 1.
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Table 2
Values of Qgéff ngz, ooy Qgiz for the seven satellites

. 0,2 0,2 0,2 0,2 0,2 0,2
Sazellite 1 Qg Q4 Q6 Q38 %o U2
1974=34A -11.9 52.9 -131.8 200.3 =171.5 34.5
1963~24B =-7.61 19.01 =20.11 2.7 11.18 -2.92
1970=111A -1.121 -0.806 -0.128 0.319 0.433 0.314
1971-13B =-1.107 -0.807 =0.140 0.308 0.429 0.317
1967-42A 0.155 -0.161 =-0.281 -0.295 =0.252 ~0.184
1971-54A 0.430 0.213 0.100 0.036 =0.000 =0.020
1964-52B -1.113 -0.847 -(. 231 0.127 - 0,313 0.333

When the 7 + N coefficients, for 2 ¢ N g 6 , the

values of the measure of fit ¢

equations were solved for N
were as follows:

N 3 4 5 6
C equations 1.08 . 1.05 1.04 0.92 0.89
S equations 1.50 0.96 0.95 0.94 0.92

As usual, 82 is the sum of squares of the weighted residuals, divided by the number of
degrees of freedom; and the weighted residual is the residual for each lumped coefficient

divided by the standard deviation for that coefficient, as given in Table 1.

Thus it appears that any value of N between 3 and 6 wil. give a 'satisfactory'
However, Table 2 shows that 1974-34A, the second most accurate
of the satellites, has its largest Q £ =38 and & = 40 . So the
6~coefficient solution (& = 30, 32, ..., 40) is required to ensure that 1974-34A plays its

solution with ¢ near 1.
coefficients for

proper role.

Table 3 gives the 6~ and 4-coefficient solutions, together with the values from the
Goddard Earth Model 10B (Ref 18), which only goes to degree 36 and so should be compared
with the 4-coefficient solution, and also values for £ = 38 and £ = 40 from GEM 10C

(in brackets)

Table 3
Z:lues of 52’30 and 51130 givan by our_g: and 4-coefficient
solutions _and by GEM I0B (and GEM 10C)
| 109G 109§
| %,30 2,30
L
- - - C s GEM 10B | _ o _ ;s GEM 10B
6~coefficient | 4~coefficient (GEM 10C) 6-coefficient | 4-coefficient (GEM 10C)
30 -1.2 ¢ 1.1 -0.4 + 1.0 -5.2 9.6 + 1.3 10.1 + 0.9 111
32| -14.5 + 4.3 -16.2 + 4.1 -0.6 0.1 + 4.4 -1.4 + 3.6 -0.2
34 =4.7 t 4.4 -3.6 ¢+ 4.8 -11.9 7.2 + 4.6 7.9 + 4.4 1.2
36 0.7 £ 4.4 -1.4 £ 4,2 -3.9 -2.4 + 5,1 -2.3 + 4.3 -0.9
38 5.7 £ 3.6 (0.6) 2.0 + 4.5 (2.6)
40 2.5 ¢ 3.7 (1.5) 2.4 2 4.t (=3.0)
R - . . B o A
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Table 3 shows that the solutions are stable: going from the 4~ to the 6-coafficient
solution does not change any value by as much as its sd. This is largely because
1974=34A dominates for % = 38 and 40, and, since it has small lumped coefficients,
1974-34A tends to produce small 38th- and 40th-degree coefficients.

The 15th-order coefficients in GEM 10B were judged3 to be probably accurate to about
I x 10-9. If the same figure is used for the 30th-order coefficients of GEM 10B, Table 3
shows that the mean difference between a GEM 10B value and the corresponding value in our
4=coefficient solution is 0.8 x {the sum of the ad). Since the GEM 10B values and ours
are believed to be completely independent, this agreement suggests that a standard devia-
tion near 3 x 10~ may be appropriate for the 30th-order GEM 10B coefficients. The four
GEM 10C values given in Table 3 are also consistent with an assumed accuracy of 3 x IO-g.
though a comparison of only 4 out of 32000 coefficients can scarcely be regarded as a

useful test.

However, the main conclusion from Table 3 must be that the values in our sciation
are poorly determined, except for & = 30 . This poor accuracy is to be 2xpected when
using only seven satellites, of which three (1970-111A, 1971-13B and 1964-52B) have very

similar values for their Q-factors (see Table 2).

The weighted residuals in the 6-coefficient solution, for the seven satellite
equations and the six constraint 2quations, are givun in Table 4. It will be seen that
the largest weighted residual is 1.60.

Table 4

Weighted residuals in the 13 equations used in the 6-coefficient solution

Satellite equations Constraint equations
0,2 _0,2 - -
Satellite Cap 830 Degree & 02’30 .82’30
1974-34A 0.10 0.01 30 0.11 -0.87
1963~24B -0.02 0.30 32 1.48 ~0.01
1970-111A -0.50 -0.36 34 0.54 ~0.83
1971-13B 1.04 0.09 36 -0.10 0.31
1967-42A =0.84 -1,18 32 -0.83 -0.28
1971-54A 0.03 0.13 40 -0.40 -0.40
1964=52B 0.33 1.60

3.5 The vsriatiou of even-degree lumped harmonics with inclination

Our basic data are the seven values of lumped harmonics, and the most useful compari-
sons can be made by considering their variation with inclination after multiplication by
§30,30,14 . Fig | shows the values of the lumped harmonics with their sd, together with
the variations given by the 6-coefficient solution (unbroken line), the 4-coefficianc
(dot-dash line) and GEM 10B (broken line). The values of 5362 for 1967-42A and 1964-52B
are shown in Fig | with their standard deviations doubled, and it is clear that the

relaxation was justified.
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It is worth noting that the curves of Fig | are nearly symmetrical about { = 86° s
so that the 98° satellite (1964-52B) competes with the two at 74°, while the 80° satellite
(1967-42A) competes with that at 90°.

Fig | shows that our 6-coefficient solution is only slightly better than the 4-
coefficient gsolution, and, if this were the only criterion, the latter would be

recommended. However, as already explained, six coefficients are required to take account
of 1974-34A, and, since they do not cause instability, the 6-coefficient solution is to be

preferred.
Another notable feature of Fig | is the good performance of GEM 10B: although there
are some discrepancies, GEM 10B generally gives a variation that can fairly be called

quite realistic.

3.6 Review of values of 030.30 and 830'30

E - Comparisons with previous evaluatirns of individual coefficients are not likely to

; be very illuminating, because of the general inaccuracy. But comparisons are worthwhile :
; - = . . :
- for 030’30 and $30’30 » which are well determined here. i
E Table 5 lisus values of these coefficients from various sources. The first, from the

: European Gravity Field Model GRIM 2 (Ref 19), would not be expected to be accurate, because

it is the final coefficient in a 30 x30 array and is likely to carry a burden of error

from the undetermined coefficients of higher order and degree, The second entry is from
Rapp's analysis of 5° x 5° terrestrial gravi | measurementszo, which goes to order and
degree 52 and should therefore avoid this source of error. The same applies to the next

1 entry, GEM 10B, which is complete to order and degree 36, (GEM 10C is not listed because

it is the same as GEM 10B to order and degree 36. The gravity field derived22 by
Gaposchkin (1980) goes to degree and order 30, but has no (30,30) coefficient.) All these

values are independent of ours.

The values obtained by Kostelecky and Klokoénikzl. however, utilize some of our
resonances and are therefore not independent of our values. Kosteleck§y and KlokoZnik

took pairs of lumped coefficients from ten satellites, of which eight pairs were obtained

. Py S
o mozinidn e L bl b D e s

by us. Of these eight, there are three for which we no longer regard the 30th-order
harmonics as being reliably separated from the 15th-order, as explained in Ref 3. These
three are Saturn SAS, 1964-05A (i = 3l°). which was omitted even from our 15th-order

analysis; Ariel 1, 1962~15A (i = 53.8%), and Cosmos 72, 1965-53B (i = 56.0°). Of the other

five satellites, we use three here with the same values as Kosteleck§ and Klokolnik; and ii
we use two, 1967-42A and 1971-54A, with new values. Kosteleck$ and Kloko&nik also took

two values from their own analyses. We have not used these because they are both at |
inclinations where we have more accurate values (50.60 and 74.00). To summarize, i-
Kosteleck$ and Kloko&nik use the same values as we do for three satellites, together with

three of our values we have now discarded, two of our values we have now revised, and two

b st Bt v

of their own.
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Table 5
Values of Cao.;o and 830.30

9= 9s

Date Source, and type of data 10 C30.30 10 830.30
1976 GRIM 2 (Ref 19), comprehensive 14,2 5.8
1977 Rapp (Ref 20), terrestrial gravity 1.4 £ 5.2 12,6 £ 4.9
1978 GEM 10B (Ref 18), comprehensive =-5.2 & 37 11.1 £ 37
1079 {Koatelecky { fRef 21 solution 5 -6.0 * 0.9 11.0% 1.8

: and Kloko&nik} resonance § |solution 7 -8.2 5,7 8.4 5.8
1981 Our solution, resonance, {g:gg:igigizst :?'g i :'? lg‘é i ?'g

How do the values in Table 5 stand up to comparison? The anawer is "surprisingly
well", when the earliest (GRIM 2) ias ignored, If the values from our solutions are
accepted as correct, averaged, and given a ‘'safety factor' of 2 on the ad, we can say that
the C and § values are -] + 2 and 10 t 2 respectively. These are consistent with
nearly all the previous values and there is remarkable unanimity on the value of

109§ 0° all six values being between 8.4 and 12.6.

30,3

" 3.7 Another look at the two rejected satellites

We rejected Ariel | and Cosmos 72 in our analysis, because we preferred3 a fitting
of the 15th-order resonance which had no 30th-order terms. In other words, we judged
that the 30th-order terms did not contribute usefully to the fitting. However, this does
not necessarily mean that they are wrong, and it is of interest to see how they fit.

9

Ariel | gives?> 10°FC = -4.0 + 3.4 and 10°F5 = 2.2 ¢ 3.8 at i = 53.8° , where

the values from the unbroken curve of Fig | are 0.8 and 1.6 respectively. The 'residuals'
are therefore -1.40 and 0.20 respectively. Cosmos 72 giveszA 109§5 w =4,1 % 2,1 aad
109§§ = -1,7 £ 2,2 at i = 56.0° , where the values from the unbroken curve of Fig | are

0.7 and 2.2 respectively. The 'residuals' are therefore -2.30 and -1.80 respectively.

Thus our decision to exclude these twn satellites seems reasonable, even with the
benefit of hindsight. It would be possible to strengthen the S-solutions by including
the value from Ariel 1; but this would be capricious, since we had previously3 rejected

the solution in which it ocrurs.

3.8 Lumped harmonics of odd degree

So far we have only discussed the coefficients of even degree (30, 32, 34, ...),

obtained from analysis of inclination. Lumped coefficients of odd degree (31, 33, 5., ...)

can in principle be obtained from analysis of eccentricity at 15th-order reso.ance
(explicit forms are given in Table 4 of Ref 2). But in practice the effects of these
30th-order harmonics are small, anrd only one satellite, 1971-54A, has yielded determinate

values of lumped coefficients of odd degreel.
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Fig 2 shows the values of the lumped coefficients (5.§);6' and (5.5)35’3 deter =
mined from 1971=-54A and also the variations of these coafficients with inclination piven
by GEM 10B and GEM 10C. Since cosfficients of degree higher than 36 contribute signif-
icantly to the lumped couffici;ntl a: most inclinations, and GEM 10B does not go bayond
degrea 36, there are considerable differences between the GEM 10B and GEM 10C curves.
Both curves agree fairly well with the S=coefficiants from 1971=54A, but the C=coefficients

of GEM appear to be tno small.

4 HARMONICS OF ORDER 29

4.1 Form of the even-degree lumped harmonics

At the 29:2 resonance the variation of i is given byl2
. 30 0,2 0,2
di n R Py =" . =
it " SIn 1 (.) (29 = 2 cos D)F ; 59 14)529 810 &pg * Cyg cO8 8,4
. 2
+ terms in e, e, ..., ¢))
where 029 n 2w +M) + 29(Q ~V) _ (8)
and the lumped coefficients are given hy
0,2 F 2 F 4
- = 32,29,15 [(R\ = 34,29,16 (R =
- - 2pedy D (R ELTY YAy
Ca9 %30,29 7 3 (a) 32,20 * 3 (a) 34,20 % **» 9
30,29,14 30,29,14

with the same equation for S on replacing C by § throughout. Equation (9) shows

that the variation of inclination depends on the harmonics of even degree.

4.2 (QObservational values of even-degree lumped harmonics

There are four satellites for which the orbital inclination has been analysed

during passage through 29:2 resonance. These are discussed in turn below, in order of

increasing inclination.
The phenomenon of 29:2 resonance was first recognised and analysed for Ariel 1,

1962-154, by Walker®. The analysis showed the reality of the phenomenon, and the possi-

bility of evaluating lumped harmonics; but the data were not of high accuracy and the
values of lumped coefficients obtained, given in Table 6, were inevitably rather

inaccurate.

The second satellite is 1976-62FE, Cosmos 837 rocket, recently analysed by Hillerg.

This is the best example of 29:2 resonance so far studied, But it is still not ideal

terms in equation (7) should

be-ause the eccentricity was appreciable (0.04) and the e
This was not practicable because the inclination was close
tw) ,

strictly have been included.
cos

to 63.4° vhere © = 0 , and consequently the e terms, which depend on sin ¢29
were strongly correlated with the main terms, in :g: ®g -+
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The third and fourth satellites in Table 6, 1971-106A and 1971-18B, were both of
high drag. The changea in inclination at resonance were therefore very small and the

values obtained for the lumped coefficients have large standard dev1at1on312’23.

If the early tenss were dominant in equation (9), it might be possible to use the
values of the lumped coefficients from these four satellites to solve for two or three
individual coefficients; but at inclinations between 50° and 65° the higher—-degree terms
are  important, and often dominate, so a solution is not practicable., The best that can

be done is to compare th: values with those from GEM 10C.

Iable 6

Values of lumped harmonics (E,§)g;2 from the four satellites

. ; 5,052 6.0:2 | _ 5 0,2f o 0.2
Satellite | (4 oy | 107Cyg - 108 S50 | F30,29,14 [0 F10,29,14C20 |19 F30,29, 1452
1962-154 | 53.8 { -1000 + 500 | 1100 + 500 | 0.01526 | -i5.3 + 7.6 16.8 + 7.6
1976-62E | 62.7 | -10+ 15 | -76 + 12 | 0.1286 -1.3 % 1.9 -9.8 % 1.5
1971-106a | 65.7 | =90 & 74 |-127 + 39 | 0.2089 -18.8 * 15.5 -26.5 & 8.1
1971-188 | 69.9 50+ 20 | -160 £ 70 | 0.3372 16.9 * 6.7 -54.0 £ 23.6

4.3 The variation of even-degree lumped harmonics with inclination

Fig 3 shows the four pairs of values of 530,29’|4(5,§)g§2 from Table 6, and the
curve of variation with inclination as given by GEM 10C, with coefficients up to degree 44
included. The comparison is inconclusive. It could be argued that most of the observed
values are numerically too large. On the other hand, it may be that the coefficients of
order 29 in GEM 10C are much less accurate than those of order 30: certainly the S-
coefficients in GEM 10C appear to be too small, and GEM 10C fails to fit the well deter-
mined FS value of -9.8 + 1.5 at inclination 62.7°. Also Rapp's S-value520 are much

larger and give a variation quite different from the GEM 10C curve.
Further observational resul.s are needed before any conclusions can be drawn.

4.4 Lumped harmonics of odd degree

Lumped coefficients of odd degree can, in principle, be determined from the varia-
tions in eccentricity at 29:2 resonance, but in practice the effects are small, and the
values so far obtained, from 1962-15A and 1976~62E, cannot be regarded as well-established.
It is not worth attempting any comparisons until better observational values are available:
it is hoped that analysis of the orbit of 1968-40B, which is currently passing through

29:2 resonance, will provide good values,
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5 HARMONICS OF ORDER 31
S5.! Form of the lumped harmonics
At the 31:2 resonance the variation of i is giyen by
, : 32 0,2 0,2
gl - n (5) - IVF 5 3 c’
dc " sinT \a) (31 " Z2cos D)Fg, 5y 15)53) 8in 85y + Cyp cos 0y
: 2
+ terms in e, e, ..., (10) E
g . where 0y = 20+ + 3@ =-V) (1 'i
g:é' and the lumped coefficients are given by - f
e T 0,2 F 2 F 4
L = = 34,31,16 (R) = 36,31,17 (R) = E
£ = - - 2 - - 4
E - G % Cum T N Cwm vz \a) Cae,m T (2) 3
2 32,31,15 32,31,15 3
; - with the same equation for § on replacing C by § throughout. Equation (12) shows é
3 that changes in inclination again yield values of harmonics of even degree. g
3 However it has also been possible to analyse the variation of eccentricity at 31:2 ' §
; resonance for three satellites, to obtain values of lumped harmonics of odd degree. The 1
- variation of e 1is given by7 3
. E
g de ncgf‘ - 17F El’l sin(¢,, - w) - §l’l cos(®,. - w) é
i dt a 31,31,15)7°3 31 31 31 i
_ 1,3 1,3
+ ]3F3|,31,14;C31 91n(@3] + w) - 531 cos(¢31 + w) , .;
. 2 i 3
+ terms in e, €, ..., . (13) 3
The lumped harmonic coefficients here are given by §
! F 2 19F 4 D ?i
A _ 18F33.31,16 (e . PF35,31,17 (8)z ) 8
31 31,31 17F a/ 733,31 17F - \a/ 735,31 °°° H
31,31,15 31,31,15
> (14)
=3 s _ 14F33,31,15 (5)25 , PF3s,31,16 (3)”5 N
31 31,3 13F a 33,31 13F a 35,31 tet
31,31,14 31,31,14 J :
and similarly for S on replacing C by 8§ throughout. %
v 5.2 Observational values g
% o So far, four orbits have been analysed at 31:2 resonance, They are discussed é
§ 2 overleaf in order of increasing inclination, :
¥ ®
Iy
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The variations in inclination and eccentricity for Skylab | rocket, 1973-27B, at
31:2 resonance were analysed by King-He1e7, and quite well-determined values were obtained

for all six of the lumped coefficients. These values are given in Tables 7 and 8.

The orbit of Proton 4, 1968-103A, was analysed by Hiller and King-He1e6. Since the
orbit was appreciably eccentric, it was found necessary to include the e terms in
equation (12), and the 'main' coefficients (Eg;z and §g;2) turned out to be very small
(they are given in square brackets in Table 7). A simultaneous analysis of inclination

and eccentricity gave the values for the other four coefficients listed in Table 8.

The third satellite, China 2 rocket, 1371-18B, suffered high drag and the values
obtained from analysis of inclination are barely determinatezs. They are included in

Table 7.

The fourth and best analyeis'is of Samos 2, 1961 al, by Walkera. A simultaneous
fitting of inclination and eccentricity was successful in giving well-defined values of

all six lumped coefficients, as recorded in Tables 7 and 8,

It is not possible to solve for individual coefficients, because the numerical
factors multiplying the high-degree terms are extremely large for 1973-27B and 1968~103A.
For examp1e7, with 1973-27B, C;;l has a maximum numerical factor of 979.6 for EAI 31 *

1]

and C57 31
?
degree 57, and this is impossible with only six equations.

has a factor 363.1, so that coefficients would need to be evaluated up to

5.3 The variation of the lumped harmonics with inclination, and implications for
GEM 10B/C

Fig 4 shows the four pairs of values of §32,31,l5(a’§)g;2 from Table 7 and also
the variation of these lumped harmonics with inclination as given by GEM 10C up to
degree 46.

Fig 5 shows the values of-the four lumped harmonics (E,§);;l and (E,g);:’S R
multiplied by the appropriate F , for each of the three satellites of Table 8, and also
their variation with inclination as given by GEM 10C. Since the multiplying factors in
equation (14) remain large up to a higher degree than those in equation (12), terms up to
degree 53 in GEM 10C are included.

Table 7

Values of even-degree lumped harmonics (6,5)2;2 ‘from four satellites

. i 9=0:2 9-0s2 |. 9= 0,2 o _0,2
Satellite [ 4oy [ 107Cy, 10°83y | Faz,31,15 |10 Faz,31,15% | 197F3;, 31,1553
1973-27B | 50.0 | 860 + 320 |[=-1210 + 200 0.002649 2.3 0.8 =3.2 £ 0.5
1968-103A | 51.5 | [100 + 18001 (30 + 800)| 0.004634 0.5 ¢ 8.3 0.1 *+ 3.7
1971-18B | 69.8 24 + 18 30 £ 23 | 0.3139 7.5 + 5.7 9.4 £ 7.2
1961 al 97.2 | =2.9 = 1,2 9.0 + 2.2|-0.4323 1.3 + 0.5 -3.9 ¢ 1.0
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Lumped GEM 10C Lumped GEM 10C
coefficient for i =97.24° Samos 2 coefficient for i =97.24° Samos 2
0,2 0,2
9="" -4,5 6 - 9z -1.7%+ 6
10 C31 (~4.4 % 6) 2.9 + 1.2 10 S3I (-1.7 * 6) 9.0 ¢ 2.2
109" 18 & 8 47 % 7 0%, =4t 8 -9t 4
: 3l (-18  8) * 31 (=3 ¢ 8) t
3
2 ~-1,3 -1,3
= 9. ! =25 *+ 12 9z ° -11 ¢ 12
® 10°C,, (=23 £ 12) 64 t 15 10°5,, 11 & 12) 42 £ 15
........ " e e Sidz i A ey = “ =

Table 8

Values of odd-degree lumped harmonics (E.g);;l and (6’5);:33

from three satellites

Satellite
i (deg)

1,1
Qe »
10 Cqy

9151

10 S31

10°F

10°F

10 C3]

10 S3l

10°F

10°F

Fi1,31,
Fa1,31,15%31

Fal,

9=""»
9=~
Fay,31,
F11,

Fal,

15
1,1

1,1
31,15°31
3

3

14
1,3

31,14%31
1,3

31,1453)

1973-27B
50.0

20800 + 10100

24700 + 11400

0.0002811

5.8+ 2.8

6.9 £ 3.2

36100 + 4300

17800 + 2800
0.001139

41.1 ¢+ 4.9

20.3 £ 3.2

1968-103A
51.5

=49000 * 14000

11000 + 7000
0.0005269

=25.8 £ 7.4

5.8 £ 3.7

10000 + 3000

2000 * 3000

0.001995

19.95 + 6.0

i+

4,0 £ 6.0

1961 al
97.2

-47.3 £ 7.2

-8.7 ¢ 4,2

0.3430

-16.2 + 2.5

=3.0 £ 1.4

63.9 + 15.3

42.0 £ 15.2

0.2349

15.0 £ 3.6

9.9 £ 3.6

It is not possible to make an immediate judgment on the accuracy of GEM 10C from

Figs 4 and 5: an indication of the range of error on the GEM curves is required.

In Tables

9 and 10, therefore, the values of the lumped coefficients from the two best satellites,

Samos 2 and 1973-27B, are compared with the values given by GEM 10C at the appropriate

inclination (97.240 or 50.040), on the assumption that the individual coefficients in

GEM 10C have sd of 5 x 10 ~.

9

Table 9

Comparison of lumped harmonics from Samos 2 and GEM 10C

[
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The numbers in brackets in Table 9 are the values that would be obtained by using
coefficients of dcgree up to that recommended in Ref 8, namely 44, 55 and 61, rather .than
the maximum degree used here, namely 46, 53 and 53 respectively. The comparison with
GEM 10C made in Ref 8 utilized a preliminary set of GEM 10C coefficients, now superseded:
so the values in brackets provide a revised versiun of the table in Ref 8 - and also show

that altering the maximum degree does not have much effect,

. 0,2 _0,2
In Table 9 the GEM 10C values of C3l and S3| differ from the rather accurate

observational values obtained from Samos 2 by 0.3 and 1.8 times the GEM sd. This suggests
that the chosen sd for GEM is ncarly correct. For the odd (€,S) coefficients, however,
the quoted standard deviations from the two sources are nearly equal and their sum is a
better yardstick: the differences betweew the GFEM 10C values of 63; , §;;I, E;I, * and
§3|’ and the corresponding Samos 2 values are 1.9, 0.4, 3.3 and 2.0 x {the sum of the
sd). This suggests a larger sd for GEM 10C. In the odd~degree lumped harmonics, the

higher-degree terms are much more important: so the indication is that, although GEM 10B

(degree ‘36% gay be accurate to 3 ; l0-9, GEM 10C is probably not. For Samos 2, GEM 1UB
gives 10953; = -3,2 and 109§3; = -0,3 , and these are both closer than GEM 10C to

the observed values.
Table 10
Comparison of lumped harmonics from 1973~27B and GEM 10C

Lumped GEM 10C _ Lumped GEM 10C -
coefficient | for i =50.04° | 19737278 N efficient | for i =50.04° 1973278

6.0:2 60s2

1052, -0.7 + 0.7 | 0.86 * 0.32 10°5,, 0.1+0.7 -1.21 + 0.20
oo 6=l

1052, -7+ 8 21 + 10 1083 -8+8 25 + 11

31
6_-].3 =113
-1 % -36 + 3 -2 4
10°C,, It 2 36t 4 1085, 242 18 = 3
0,2 0,2

A similar comparison for Table 10 shows that, for C31 and 33] » the GEM 10C
values differ from 1973-27B by 2.2 and 1.9 standard deviations. (The inclusion of terms
up to degree 60 in GEM 10C gives no significant improvement: 1066212 changes to -0.4
and 10653; to 0.6.) For (E.§);;I the differences are 1.6 and 1.7 x (the sum of the
sd); and for (E,g)-l’3

31
only be called serious disagreement: however, since a1l the lumped harmonics involve high-

the differences are 5.8 and 4.0 x (the sum of the sd). This can

degree coefficients, the previous conclusion about GEM 10B (degree ¢3¢) remains unaffected.

Thus, although there remains room for doubt, our provisional conclusion for 3lst-
order coefficients is that GEM 10C cannot be recommended, but the GEM 10B coefficients

(degree £36) are probably within the 5 x 10-9 accuracy.
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6 SUMMARY OF RESULTS

6.1 Harmonics of order 30

The values of even-degree 30th-order lumped harmonice obtained from analyses of
15th~order resonance are numerous enough to allow a solution for individual coefficients

(Table 3). The best-determined coefficients are those of degree 30, namely:

9 9=

10 C30.30 = = 1,2 % 1.1 10 830’30 = 9.6 1.3 .

k

These standard deviations correspond to an accuracy of about | em in geoid height.

|
il

The variation of the even-degree lumped harmoniss with inclination given by the

Goddard Earth Model 10B is generally similar to the variation given by the resonance
9

o

L o il

solution (see Fig 1), and it appears that a standard deviation as low as 3 x 10 ° may be
appropriate for the 30th-order coefiicients in GEM 10B. For the (30,30) coefficients,
the values from GEM 10B (with sd 3 x 10-9), and from Rapp's 1977 solution (8d 5 x 10-9),

are consistent with those quoted above.

)

i SR T A L S R

i

At the single inclination where a test is possible, the odd-degree 30th-order
S-coefficients from GEM agree well but the C-coefficients seem to be too small (see Fig 2).

i R i i

All in all, progress in evaluating 30th-order coefficients is encouraging, though
more analyses nf long-enduring I5th-order resonances are required.

6.2 Harmonics of orders 29 an? 31

sttt s oot S b AL L

The picture is different for these harmonics. There are not enough analyses of

29:2 or 31:2 resonances to allow the determination of individual coefficients, and all

that can be done is to compute the variation of lumped harmonics wich inclination as given
by GEM 10C (GEM 10B only goes to degree 36, and higher coefficients are usually needed),
and to compare lumped harmonics from GEM 10C with the small number of accurate values

i LAt s b

found from resonance analyses. Figs 3 to 5 show that there is no consistent agreement.

For 31st order, there is an indication that the GEM 10B values (degree 31 to 36) may be
9 ]

accurate to 5 x 10 , but the GEM 10C values (degree >36) disagree. Since GEM 10C was
derived as a model of the ocean surface to degree and order 180, the use of a small group
of its coefficients, of degree 37 to 50, say, may be inappropriate. For 29th order, the

resonance results are fewer and less accurate, so the disagreement is inconclusive.

Further analyses of 29:2 and 31:2 resonance, particularly the former, are needed if

future comprehensive models of the gri...y field are to be tested by the resonance method. i'

6.3 Conclusions }é

Resonancc-testing of comprehensive gravitational field models has previously been
applied (eg Refs 3 and 26) for various orders up to 15. Here the test is made for orders
29, 30 and 31, wich mixed .esults: GEM 10B/C emerges well for order 30; for order 31, the
GEM 10B values (degree £36) are probably good, but the GEM 10C values (degree >36) are
probably not; for order 29 the test is indecisive.
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Fig 1
[ LB 1 ] \ 1
6 - coefficient solution
10 —— 4 = cOfficient solution -
------ GEM 108

o :
3
= -002 g
107F 30,350,130 i
E -S|t ] |
| i
L 15 |- "
10| S S
4 9= -02
10"Fy0,30,14530
St .
o} -
I4
s} . ‘
[] 1 [ [ ) 1
50 60 70 80 90 100
Inclination degrees I

Fig1  Values of 30th-order lumped harmonics of even degres from Table 1 and the
curves given by the 4- and 8-cosfficient solutions and GEM 108
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Fig6 Valuss of 31st-order lumped harmonics of odd degres from Table 8 and
the curves given by GEM 10C
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The values available for 30th-order lumped harmonics of even degree are
numerous enough to allow a solution for individual coefficients of degree up to 40.
The best-determined coeffiecients are those of degree 30, namely
9

030’30 = =-1.,2% 1.1 10

The standard deviations here are equivalent to | cm in geoid height.

10 9.6 £+ 1.3 .

For the 29th- and 3lst-order harmonics, and for the 30th-order harmonics of odd
degree, there are not enough values to determine individual cvefficients, but the
lumped values from particular satellites can be used for 'resonance testing' of
gravity field models, particularly the Goddard Earth Model 10B.
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