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SUMMARY

\iThe stability of numerical schemes for solving algebraic finite-difference

equations resulting from finite-difference approximations to differential equa-

tions is discussed. It is suggested that the von Neumann method together with

its stability criterion provides a reasonably simple way of determining stability.

However, there 4re limitations in its applicability, some of which are indicated.
The method is tested in two examples and an indication is given of how best to
treat first- and mixed-derivative terms occurring in differential equations.__
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I INTRODUCTION

The mathematical modelling of practical problems often involves the use of

differential equations. Very few of these equations can be solved analytically, and hence

it is of great importance to develop satisfactory schemes for solving them numerically.

One requirement of any satisfactory numerical scheme is that it should be stable. How-

ever there are several definitions of stability in the literature, all leading to differ-

ent stability criteria. The purpose of this Report is to discuss some of these defini-

tions and criteria, with the aid of examples. The examples will also suggest how best to

treat first-and mixed-derlvative terms when they arise in differential equations.

There are two basic step& in the usual finite-difference methods of obtaining[ approximate numerical solutions to differential equations. First a finite-difference

approximation to the differential equation must be chosen, the result of this being a

set of equations, termed the finite-difference equations. The second step is to solve

these equations, thus obtaining an approximation to the solution of the original

differential equation.

Associated with these two steps are four concepts: consistency, convergence,

convergence of an iterative scheme, and stability. These will be explained:

Consistency If the finite-difference formulation is equal to the original differential

equation plus terms which tend to zero as the grid size tends to zero, then the finite-

difference approximation is consistent.

Convergence When the finite-difference approximation is convergent, the difference

bitween the discrete approximation (the solution of the finite-difference equations) and

the true solution (the solution of the differential equation) can be made as small as

desired, by choosing a sufficiently small grid.

Convergence of an iterative scheme If the finite-difference equations are solved by an

iterative scheme, this scheme is convergent if and only if the sequence of approximations

(the (ni + I)th of which is obtained from the nth by the iterative scheme) converges to

the solution of the finite-difference equations. The zeroth approximation, or initial

guess, must be supplied.

Stability There seems to be much disagreement over the definition of this term. Some

authors merely require that all errors should eventually be damped out . Others appear

to relate stability to the growth of rounding errors 2 ' 3 .

For initial-value problems Richtmyer and Morton give several definitions of

stability. These do not mention errors, as they are given in terms of the operators by

which the solution at time t + At may be obtained from the solution at time t , where

'time' is the coordinate in the marching direction, and At the ,time step taken. These
'operator' definitions can be extender to iterative schemes for solving sets of equations

arising from fEaite-difference approximations to elliptic partial differential eqvations,

if the time-dependent analogy of Jameson (see for instance, Ref 4) is used. In this
An

o0 analogy an artificial time coordinate, t , with step length At , in introduced, and .

the approximation to the solution after the nth step, is regarded as the solution at time

t - nAt

'-4 ''- . ..... . •
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The last two ideas depend only on the finite-difference equations and the manner in

which they are solved, no reference being made to the original differential equation.

They ensure that the solution of the finite-difference equations can be obtained.

There are many theorems which show that convergence (and convergence of the

iterative scheme if appropriate) will be obtained for various classes of differential

equations with fairly general initial and boundary conditions, if the finite-difference

equations are consistent and the scheme adopted for their solution is stable in a s,.table

sense (see, for instance, Ref 1). However, for nonlinear second-order partial differen-

tial equations there are no such results except in a few special cases. Nevertheless

for such equations it is widely accepted (and will be assumed here from now on) that

stability (in some suitable sense) and consistency do imply convergence (and convergence

of the iterative scheme if appropriate).

It is usually straightforward to show consistency - in practice this is done in the

formulation of the finite-difference approximation. In section 2 the discussion on

* stability will be continued and it is suggested that the von Neumann 'Criterion is a

reasonably simple one which is adequate in many cases. Attention is also drawn to some

of its limitations. In section 3 some of the ideas introduced in section 2 will be

* illustrated with spi~cific examples, and it is shown how first-and mixed-derivative

terms might best bt treated.

2 STABILITY OF ITERATIVE SCHEMES

For many types of differential equations (for example, wnen the coefficients of

the highest derivative terms are functions of the solution) there are no rigorous theories

concerning the stability of numzerical schemes for their solution. The usual approach is

to do a local stability analysis, and to hope that if the scheme is everywhere locally

stable it will be globally stable. Although this is not always true, practical experience

* suggests the correspondence is close, probably because instabilities usually arise

locally

There are two methods commnonly used for examining the notion of stability of a -

finite-difference scheme 3. The first one, termed the von Neumann method, will be

examined in section 2.1. The second one, termed the matrix method, will be discussed in

section 2.4

*2.) The von Neumann stability method

The differential equation is taken to have constant coefficients, and the problem

is assumed to be an initial value one, the only permitted boundary conditions being ones

which can be replaced by periodicity conditions. The 'amplification factors', X

can then be determined as follows:

(i) Substitute, into the finite-difference equations use3d to solve the differential
0

equation, O

Un() * xn exp(ik. x)

- - ~ O



where k is a real vector choseu to satisfy the periodicity conditions, and
un(I) is the vector of unknowns at position x after the nth step.

(ii) Determine the amplification factors from the condition for the existence of

a non-zero solution for mo .

von Neumann's criterion states that a necessary condition for stability (as defined in

Richtmyer and Morton , Chapter 3) is that all the amplification factors, X , must

satisfy

1)1 < I + O(h) for 0 <h < T

where T is some upper bound on h , and h is the step length in the marching

direction. This stability criterion can be extended to uhe iterative methods for

solving elliptic partial differential equations with periodic boundary conditions, by

use of Jameson's time-dependent analogy (see, for instance, Ref 4). It then becomeslxi '~
The application of the von Neumann criterion will be illustrated by the following

example , in which the boundary conditions are periodic:

3t 22
solve a- = on 0 < x < I and 0 < t

with o a constant, u(0,t) - u(I,t) - 0 and u(x,O) - F(x) . Let u0 be the finite-
.3

difference solution at x - jAx and t nAt , take a central-difference approximation
22 n+1Sfor , and use an explicit scheme (that is one in whi .h one unknown u. is

expressed in terms of the known uns). The finite-difference equations may then be

written

n+l n
U. -- I.

(A) 2u. +ui¶
At (Ax) 2U(j+1 j -JA

giving the equations, for the amplification factors, X

(X-)a ikAx +-ikAx

At ~(Ax)2 [ e J

where k - 27n , with n any integer, to satisfy the periodicity condition. Hence

UA tX =1 ot2[I1 cos kAx]

(Ax) 2

and the von Neumann criterion gives

asrt ad(2-1)

as a necessary condition for stability.J



Under some circumstances the von Neumann condition is sufficient as well as neces-

sary for stability. In particular, for two-level schemes (that is schemes in which the

finite-difference equations relate values of the dependent variables at thu (n + I)th

step to values at the nth step, values of the dependent variables at earlier steps not

occurring in the equations) with one dependent variable and any number of independent

variables, the von Neumann criterion is sufficient as well as necessary for stability.

For L.e example given above equation (2-1) is thus a necessary and sufficient condition

to ensure stability.

In cases where the von Neumann criterion is necessary but not sufficient for

stability, further criteria which ensure stability can often be founds.

Although it might appear here that the von Neumann method has limited applicability,

particularly because of the restriction to periodic boundary conditions, in fact it has

much wider practical application. In section 2.4.2 the Godunov-Ryabenkii criterion is

described. This in effect provides an extension to the von Neumann treatment to cover

consideration of arbitrary boundary conditions, although in practice the extension is

often difficult to apply.

2.2 Matrix formulation of the finite-difference problem

The problem of finding the solution, * , of a set of finite-difference equations

approximating a differential equation (ordiaary or partial) can be expressed in the
form:.

find 0 satisfying Aý - B (2-2)

where B is independent of * , but A may depend on * . As an example consider

the numerical solution of

aO + 2bO + CO a f

xx xy yy

on a unit square, with 4x - Ay - ]/N , a, b, c, f constants and values of P given on

the boundary. Let the subscripts, i and j , refer to the coordinate directions, x

and y , respectively. Take the usual central-difference representations of x and

0 and assume that if 0 were known, y would be approximated by
yy xy

$xy(iAx.jAy) * 4&xAy (•i+lj+I - D- - - (2-3)

where 0.. ' D(iAxsjAy)
ii

The equation (2-2) takes the form

E B (2-4) 0

•FT I.

?,T
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where each 1. is a vector of length (N - 1). The ith component of the vector ,. is

+ (Q - 1)(N - 1)] and is the estimate which is obtained for 0,, from the finite-

difference approximation. B is a vector of length (N - 1) with elements equal to A
f/N2  plus (possibly) some contribution from the boundary. E and F are matrices of

order (N - 1) x (N - 1) with

E - -2a -2c a

a

-2a-2e a0J

a -2a -2c

and (2-5)

F= c b/2

-b/2 c

0 c b/2

-b/2

TTF denotes the transpose of F that is FT. = F... The particular form of the'a .1'

matrix, A w(.hich is of order (N - 1)2 x (N - 1)2) is determined by the finite-

. difference approximations used.

The matrix, A , has several features of interest. It is sparse, which means that

most of its entries are zero - there is no precise definitron of sparse, but a good

guide seems to be that a matrix is sparse if more than 90% of its entries are zero. It

is block tri-diagonal, and each non-zero block is tri-diagonal. Features of this nature

are generally observed with finite-difference equations obtained from partial differential

equations.

2.3 Methods of solution

Consider equation (2-2) again. For any given A this set of equations can be

solved directly by Gaussian elimination. Frequently some form of reordering of A before

carrying out the elimination will give a much faster scheme. This sort of scheme will

be mist suitable when A is independent of 0 (as will occur if the differential

equation is linear), or if A is triangular (either upper or lower) with all elements

0 on the leading diagonal independent of 0 (as might occur if the differential equation

is hyperbolic or parabolic).

However, the equations can also be solved iteratively by writing A in the form

A - C-C
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and solving

n B + Cwn (2-6)

0where w is given, G is some easily invertible matrix and any *i appearing in G
and C is replaced by the estimate w. of " If the scheme is stable in the
sense of all errors decaying suitably then wn will tend to * as n ÷ ® . An itera-
tive scheme of this sort will obviously be most suitable when A is dependent on *
and equation (2-2) cannot be solved directly, as might occur if the differential equation
is elliptic and 'quasi-linear'. A quasi-linear differential equation is one in which the
highest derivatives appear linearly, but the coefficients of the highest derivatives are
functions of the dependent variable and lower-order derivatives of it.

It is of interest to note that approximating some second-order parabolic and
first-order hyperbolic quasi-linear partial differential equations by certain 'marching'

finite-difference schemes can also give rise to equations of the form (2-'ý, where wn

is now the approximation to the solution at the nth step in the marching direction.
This is illustrated in the example described in subsection 2.4.2. Equdtion (2-2) now

takes the form

-c G w -

-C w

-"C G w

2.4 Matrix method of determinin& stability

2.4.1 Preliminaries

It was indicated at the beginning of this section, that there are very few
theories concerning stability, when the matrix, A , of equation (2-2) depends on the
solution of the finite-difference equations. A local stability analysis is usually
carried out in such cases. Hence, from now on, the matrices A of equation (2-2), and
G and C of equation (2-6) will be assumed to be independent of the solution, * , of

the finite difference equations.

If the 'error', en , is now defined by

n n

it can easily be seen that
Gen+l " Cen (2-7) 00

and that wn will tend to * if and only if en tends to zero, as n tends to
infinity. Thus, it might be expected that, in principle at least, stability could be
discussed in terms if the properties of the matrix Gc C

- -.- -~ -<X$4;~-.-s4 +«
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Before discussing some possible stability criteria it is necessary to define a few

terms and some notation:

n 2
-XI = s where x is a vector of length n , and * denotes c~mplex conjugate.

Hermitian A square matrix, A , is hermitian if A, A.

Diagonally dominant An n x n complex matrix, A , is diagonally dominant if

n

1Aii Aij for all i

I oi
Negative definite An hermitian n x n matrix, A , is negative definite if, for all

vectors x not identically zero, and of length n

n n

0AX < 04

Eigenvalue and corresponding eigenvector X is said to be an eigenvalue (also termed

latent root or characteristic root) of an n x n matrix A , if there exists a non-zero

vector e of length n such that

Ae = e

The vector e , which is determined to at most an arbitrary multiplicative constant, is

termed the eigenvector corresponding to the eigenvalue, X)

Orthogonal Two vectors, x and j , each of length n are orthogonal if

S~i=!

Spectral radius, p(A) The spectral :adius of an n x n complex matrix is P(A) where

P(A) - max I
1 n

and {Xi} is the set of eigenvalues of A

Spectral norm, IIAll The spectral norm of an n X n complex matrix is UAII

where ARlI = max J x

all xo

and x is a vector of length n
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2.4.2 Stability criteria

Three possible criteria will 1 described in this section and a discussion of them

follows in section 2.4.3,

Clearly, if, in equation (2-7) lan1 * 0 as n -

p(G -C) <I . (2-8)

In equation (2-6) this will ensure that errors eventually decay, so stability is achieved

in one of the senses of section 1. For the rest of this Report condition (2-8) will be

termed the first otability criterion. This criterion seems to be widely used - see,

for instance, Refs 5 and 6.

The most obvious shcrtcoming of this criterion is that for parabolic and hyperbolic

equations it will excludc the possibility of solutions which are growing exponentially

in the marching direction. To include these, the stability criterion should be relaxed
to .

P(G' C) < I + 0(h)

where h is the step length in the marching direction. However, stability, in any of

the senses given in section 1, is no longer necessarily achieved.
ExamplesI6, show further unsatisfactory features of the stability criterion

example(2-8). This will be illustrated here with the exml

au au
solve - + a - 0 on 0 X < I and 0 t

wth a a positive constant, u(O,t) =0 and u(x,O) * F(x) The true solution

is u - F(x - at) when x > at , and zero everywhere else. Take Ax - I/N , represent

au/ax by a backward difference, and use an explicit scheme. This gives

n+1
u . uL 1 0 u

At Ax (j J- 1)

nwhere u. is the calculated value of u at x - jAx and t - nt . Let r Ata/Ax

then
n+I nu 0 (- r)u + ru (2-9)uj-

giving the matrix G as the identity and C as the N x N matrix

I r

r l-r C

r

0

r Ir

S .... ... ...........• • -= -_ _. . j•-.,, :,.• • :.•..,-• ••:Ti• •-•• ,• .-., .. .. • :.Li'



rp( C) an o '2 2 fa
If r /2 I nd o condition (2-8) is satisfied. However, f an

error' initially has the form

Sa c it is found that e C.0 C,, U (I

0 2(4)(-j

2 A
00 ()

* .

and in general
-,

-.a.=0 i>q4 I

a > q +
•,C . _.-i-)_-|c- i q +•

For fixed i it can be shown that le l has a maximum at q 2i -2 and that this

maximum is an increasing function of i . Hence

max elIN - 2

which is asymptotic to, for large N

N-1

(irN)T

by Stirling's formula. This shows that stability is not achieved in the sense of the
effect of a rounding error being bounded as N increases, nor is it achieved in the

sense of any of the definitions given in Richtmyer and MortonI. In numerical work the

scheme will become less and less satisfactory as Ax - I/N becomes smaller and smaller,

while r is kept fixed. However, for small enough N , it may appear satisfactory

because max leiql/e will not be very large, and errors increasing only slightly before
i,q

decaying may be acceptable.

Mathematically, the difficulties of errors becoming arbitrarily large before they

decay away, as the grid size decreases, seem to arise either through there being fewer

essentially distinct eigenvectors than eigenvalues of G-C (as in the example just
6,7discussed), or through the eigenvectors being nowhere near orthogonal

STo prevent components of any introduced error becoming arbitrarily large as the

grid size is decreased, one might, as suggested in Richtmyer and Morton , impose

-, - .. .. ...- i- - --.... .
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I(G-Ic)VII ) some constant, K (2-10)

independent of the integer, v , and.the grid size for all sufficiently small grid sizes.

"v is any integer satisfying 0 < hv < H , where H is some given constant, and h is

the step length in the marching direction, which satisfies 0 < h < T , T being some

suitable upper bound. This condition car. be extended to iterative methods for solving

elliptic partial differential equations, by use of Jameson's time-dependent analogy (see,

for instance, Ref 4). It is the same as that given in equation (2-10), except that A

v is now any positi,. integer.

Satisfying this constraint, which will be termed the second stability criterion

for the rest of this Report, seems to ensure stability in all the senses given in , I
section 1. However, for this constraint to be satisfactory in practice, the constant,

K, must not be too large, and the grid size must not be too small.

In the example discussed earlier in this section this stability criterion gives

0 < r < I , which is the well-known Courant-Friedrichs-Lewy criterion for the stability

of the iterative scheme. -A
If there is only one space-like independent variable it can be shown that, if the

second stability criterion is to be satisfied, it is necessary that the Godunov-Ryabenkii

criterion be satisfied. A statement of the Godunov-Ryabenkii criterion and a proof of

its necessity can be found in Richtmyer and Morton . It is in two parts, one part

being a condition that looks very like a von Neumann criterion. Amplification factors,

X , (local ones if necessary) are found by exactly the same procedure as described in- -

section 2.1. These must satisfy A

lim XIl I A:i
h-*O -E

where h is the step length in the marching direction.

This bound on the sizes of the amplification factors is very similar to, but weaker II
than, the bound imposed on thpm in section 2.i. By use of the time-dependent analogy

(see, for instance, Ref 4) this 'I iomes

for iterative methods used in solving elliptic partial differential equations. This

bound on the sizes of the amplification factors is the same as that imposed on them in

section 2.1. K

In the example discussed earlier, equation (2-9) can be used to show that the

amplification factors, X , have the form

S(I r) +re-ikAx 
I

L ... 4
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! •Hence, if the Godunov-Ryabenkii criterion is to be satisfied

.
0 < r .

The second part of the Godunov-Ryabenkii criterion is concerned with the boundary

conditions, each boundary condition being treated in turn. The implementation of this

part of the criterion for the general case is discussed in Richtmyer and Morton1  How-
Z ever the discussion can be much simplified if the following restrictions are imposed:

Si) The differential equation has constant coefficients.

F (ii) The differential equation has a scalar dependent variable.

(iii) The highest space derivative is at most second order.

(iv) A two-level difference scheme (this term is defined in section 2.1) is

adopted.

(v) There is at most one boundary condition at each boundary.

Attention here will thus be confined to this class of problem.

There must be two boundary conditions for a problem in which the highest space

derivative is of order two and one for a problem in which the highest space derivative

is of order one- itis taken that this is true. Fcr clarity it will be further assumed

that the problem has been formulated in terms of the equation satisfied by the errors

and the boundary conditions on them. Errors must satisfy homogeneous boundary conditions

(ie errors do not contribute anything to the boundary conditions), because the Godunov-

Ryabenkii criterion is only applicable to problems with linear boundary conditions.

If a particular boundary condition on the 4-nendent variable is homogeneous, errors

also satisfy this boundary condition.

If, when carrying out a von Neumann stability analysis on the equation describing

the behaviour of the errors, exp(ikAx) is replaced by P , an equation relating A and

1- results. (To carry out the von Neumann stability analysis this equation must now be

solved with P = exp(iktx) , for all possible values of kAx.) If the substitutions

fn
ne (jAx) = Xni3e 0  (2-11)

II
where e is the error at the nth step after it is introduced and e0  is a non-zero

constant, are now made into the finite-difference equation modelling the boundary

condition on the error, at the boundary under consideration, another equation for X and

4 results. These two equations can be solved simultaneously for X and p ; IpI need

not necessarily equal unity.

If the value of u , the dependent variable, is specified at the boundary, the error

Smust always be zero at the boundary, and so u must be zero, because e0  cannot be zero.
0 This is always stable. In cases when v is non-zero, e , given in equation (2-11) is

only acceptable (physically) if it decays away from the boundary under consideration,

into the interior of the space Hence at a lower boundary only solutions for X and u

A.
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with 7I4 < I are acceptable, while at an upper boundary only solutioi.3 with II > I

are acceptable. The boundary condition under consideration is said to be stable if

corresponding to an acceptable P , satisfies

lira hX '

h-+O

for marching problems, with h the step length in the marching direction, and

for elliptic problems. The second part of the Godunov-Ryabenkii criterion is satisfied

if all boundary conditions are stable.

It is often rather more difficult to ascertain whether this part of the Godunov-

Ryabenkii criterion is satisfied, than it is to ascertain whether the 'von Neumann-like'

part of the criterion is satisfied. However, in the example earlier in this section,

the boundary condition at x 0 cannot lead to any instabilities, because the dependent

Variable is zero there.

As has already been commented the second stability criterion might not be

sufficiently strong. To avoid the possibility that the constant, K , of equation (2-10)

might be too large in practice, one might impose what will, for the rest of this Renort,

be termed the third stability criterion,

IIG-c11 < I + 0(h) (2-12)

where h is the step length in the marching direct-on (which is to be regarded as zero

when there is no marching direction). This, however, seems over-restrictive, because

it very rarely matters if an error does grow slightly before decaying.

2.4.3 Discussion of criteria

It should be noted that, if the third stability criterion (2-12) is satisfied, I
then the other two are necessnrily satisfied because (2-12) * (2-10) * (2-8). On the

other hand, if the eigenvectors of G-C are mutually orthogonal and there are as many I
eigenvectors as there are rows of G C , then, if the first stability criterion (2-8)

is satisfied, the other two are necessarily satisfied. This is shown by proving

(2-8) (2-10) (2-12)

under such circumstances.

For practical purposes what is desired is a necessary ard sufficient condition for

stability (in some suitable sense) which is easily applied to any numerical scheme.

For most problems it is very difficult to find P(G-IC) or II(G-IC)!I for all permissible
;ntegers, v . For many problems with one space dimension it is also difficult to apply

the part of the Godunov-Ryabenkii criterion involving the boundary conditions. (The

Godunov-Ryabenkii criterion is only applicable to problems with one space-like independent
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variable.) Only an analysis of the form described in section 2.1, leading to a

'von Neumann-like' stability criterion is usually fairly straightforwcrd. It has so

far only been indicated that 'von Neumann-like' criteria are applicable under rather

restrictive conditions (see sections 2.1 and 2.4.2). However, it is widely accepted

that criteria of this form are applicable to many problems not iacluded in the categories "A

described in sections 2.1 and 2.4.2. intuitively this 'f~els right' because, away from

the boundaries, such criteria give necessary conditions for local stability, and the

correspondence between local stability and global stability is usually closeI. However,

as the Godunov-Ryabenkii criterion indicates, even if, in a von Neumann-like analysis

the amplification factors all have moduli less than unity, the scheme may still be

unsatisfactory in practice, because of the boundary conditions. This will be illustrated

in section 3.2. In contrast, in some cases where the amplification factors do not obey

a von Neumann-like criterion the numerical scheme may appear to be satisfactory. This

will arise if the grid is sufficiently coarse and p(G C) < I . An example of this

will be given in section 3.1. In these circumstances the scheme will become less and

less satisfactory as the grid is refined.

As the only useful criterion that has been suggested (e a von Neumann-like

criterion) is a necessary condition for stability, it might be of value to see if useful

criteria which are sufficient for stability can be found. As mentioned in section 2.1,

conditions which, with the von Neumann criterion, are sufficient for stability for

schemes approximating pure initial value problems can be found in Richtmyer and Morton

For problems involving boundary conditions and variable coefficients the most useful

method for finding sufficient conditions for stability, and incidentally for indicating

suitable numerical schemes, is probably the so-called 'energy method' However the

* application of the method usually seems to require much algebra, and often leads to

very complicated conditions which are far from necessary.

A suitable practical approach to obtaining stability might thus be to ensure that

the von Neumann-like criterion of section 2.4.2 is satisfied locally everywhLre.

3 EXAMPLES

Here the ideas of section 2 will be illustrated with two examples. In section 3.1

the representation of a mixed second derivative in a second-order elliptic differential

equation will be discussed. In section 3.2 a second-order ordinary differential equation,

in which occur terms involving the first derivative, will be considered. Suitable

iterative schemes for solving the finite-difference equations will be suggested.

3.1 Example I - mixed second derivative

Consider the equation

a$ + 2bl + c$ ++ &D 0
xx xy yy x

on a unit square with 0 zero everywhere on the boundary and ac > b' (ie the equation

0 is elliptic). Without loss of generality take a to be positive. The only solution of

the equation is 0 identically zero everywhere. Let the subscripts, i and j , refer

to the coordinate directions, x and y , respectively, and let Ax - Ay * I/N . Take
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the usual central difference representations of 0 xx' 0 and 0 One possible

yy x
representation of the cross-derivative was given in equation (2-3). This representation

has a truncation error of

[6&x)20xy. + (AY)21xyyy] + higher order terms.

3Mitchell suggests

• (iAx,jAy) 2 0 0 +02AxY i~~÷ i,j+l -0+lj +0,

+ i- +0. &.1 if b> 0 (3-1a)

with 0 0. =(iAx,jAy), which has a truncation error
13

2~ +x (AY)2
(Ax)2 + Ax4A0 + 0 + higher order terms6 xxxy xxyy 6 xyyy

and

0 (iAx,jAy) . + 0
XY 2AxAy L i,j+l i-I,j+1 •ij i-l,j

+i+,0 - i - + 0i-] if b < 0 (3-1b)

with a similar truncation error. Mitchell 3 suggests this scheme so that the coefficients

of all the unknowns in the resulting finite-difference equations will be positive. He

therefore requires Ibi < min(a,c) , in the case of zero d . While this sort of condi-
3,8tion is necessary for some of the matrix theories of stability that have been developed

it is not usually a necessary condition for stability and is of no use in the situation

b > min(a,c) . It is thus worthwhile exploring alternative representations of the

cross-derivative.

The third and last representation of the cross-derivative to be considered here

will be termed the 'inverse Mitchell' scheme, because it is the same as Mitchell's

scheme (given above in equations (3-1)), except that the condition on b is inverted.

It is

I (iAx~JAY) -2 - [0x~ - -. .0 .*xy) 2AxAy L i,j+l i-l,j+l i,j +i-,j

+i. -0 -0 +i,.- if b >0 (3-2a)

1,, 1
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and

(iAxyjAY) A l -O,j+l - i+Ij i,j

+** -, -+ - if b>O (3-2b)
i~j 'i-Ij ' i.j- -I~~

These three possible representations for the cross-derivative all lead to finite-

difference equations of the form

0 -o (3-3)

where, as in section 2.2, *[i + (J - 1)(N - I)1 is the estimate of 0 at x = ix

y - jAy which is obtained from solving the finite difference equations and A has the[ • form given in equation (2-4). With the cross-derivative given by equation (2-1) E is

an (N- 1) x (N - 1) matrix with

-aa - d/2NE~~~~- = da /2N -d2

-a + d/2N 2a + 2c

and F is given in equation (2-5). With the cross-derivative as given in equations

(3-1)

E - 2a 2b + 2c -a + b -d/2N

and

F - -c +b -b

-c + b"

.;r • c + b

-4c

- - .i a'a
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when b> 0 and with the cross-derivatives as given in equations (3-2)

E - 2a + 2b + 2c -a- b -d/2N

-a b + d/2N 0

and

c b

00
b

when b >0 . The corresponding matrices when b < 0 can easily be derived.

Equation (3-3) will be solved iteratively by a successive line over-relaxation

(SLOR) scheme, in which all values of * on a line y - constant are updated at

the same time. At points before and on the line where * is currently being updated

there is a choice as to whether to use the values of * from the current iteration, or

values of * found during the previous iteration. The first derivative, * , will be

calculated using values of * found during the previous iteration, while the second

derivatives, 0 and 0 , will be estimated using values of $ from the current

iteration, whenever possible. For the mixed second derivative, t , values of
XY

from the current iteration will be used on the line previous to the current one, while

on the current line various schemes, depending on the representation of 0 , will be
xy

* investigated. These schemes are as follows:

Scheme I $ is given in equation (2-3). No values of * on the current line arexy
used.

Scheme II f is given in equations (3-I). The values of * currently being calcu-xy
lated are used everywhere on the current line.

Scheme I11 0 is given in equations (3-2). The values of qp current'.y being calcu-xy
lated are used everywhere on the current line.

Scheme IV $ is given in equations (3-I). The value of * currently being calculated
XY

is used at the point at which the derivative is centred. Elsewhere on the current line

values of * from the previous iteration are used. o

Scheme V 0 is given in equations (3-2). The value of currently being

calculated is used at the point at which the derivative is centred. Elsewhere on the

current line values of * from the previous iteration are used.

- - ~ -- * ~ .----- - ----------
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Seheme VI f is given in equations (3-1). Values of * from the previous iteration
XY

are used to approximate the third and fourth terms. Values of * currently being

calculated are used in the fifth and sixth terms.

If d - 0 and the matrix, E , is determined from equation (2-4) and any one

of equations (2-3), (3-1) and (3-2) it is easily seen that A is bermitian and E is

negative definLte. Then, if any of schemes I, II and III is employed it can be shown

that the scheme will be stable, in the sense of all errors eventually decaying, if the

relaxation factor, w , satisfies 0 < w <2 and the corresponding matrix, A , is

negative defnite. This, however, seems cf little use, as this definition of stability

has already been shown to be of limited value (see section 2.4.2). Also d will often

not be zero.

A von Neumann type analysis can, however, be used to give some indications of

stability in the sense of all the definitions given in section 1. The amplification

factors, A , are as follows, where 0 = 2nk/N and 4' 2r9/N , k and X being

integers satisfying I k, k N I

Scheme I
i* d '

2(w - I)a(I - cos 0) + 2c(w - 1)- ce - - iw sin 0 - bwe ,i sin 6

2a(I - cos e) + 2c - wcei* + bseioi sin 0

Scheme II (b > 0)

2(w - M)(a - b)(1 - cos 6) + 2c(w - 1) - Wce _ iw sin 8 - bwe 4(eie - I)
- . N

2(a - b)(1 - cos 6) + 2c - wce - bwe Ce - I)

Scheme III (b > 0)
Sd * ei6 4

2(w- 1)(a+b)(1 - cos 0) + 2c(w - 1) - wce - i . sin 6 - b •ei 0x - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ N e )o
2(a + b)(l - cos e) + 2c - wce'ý + bwe- e -( )

Scheme IV (b > 0)

iiJ dii + be i P ioI2(w - )a(l-cos 0) +2(c-b)(w - I) -wce 1 sin0 + 2bN cos - - ( )
k•a

2a(O - cos 6) + 2(c - b) - wce- bwe Ce - I)

Scheme V (b > 0)

iýd2(w - O)aCl - cog o) +2c(w - l) - wce -- iw sin 3-2bw cos O - bwe 4 (l -

2a(I - cos 0) + 2(c + b) - ce-i* + bwe-4 C(e i - I)

Scheme VI (b > 0)

2( )al - cos 6) + 2c(w- 0)- wce I i sin - ( w - ei )-b i(e=- 1W sie )P e-i)e -

2aCI - cos 0) + 2c - wce -b(I - e + bwe -4'(I -
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Case (i) a and c of same order of magnitude

The stability criterion I, I gives

d 2 4(2 2 (&)•.c b b2)
-•) 2 Schemes 1, II and III

N

22
d2 4[e(2 -w•) -2b]-2Lac -b2)
2< .. and [C2 •--w 2b] > 0 .

Nwc [ct w - 4b]
Scheme IV (b 0) 0)

d2 2 2d2  4[c(2 - w) + 2b] (ac - ba b 0 Scheme
N- w[c€(4 - w) + 4b] '

d22 2

d 4db(2 -w) . 4(2-w) 2 (ac - b2 )
N2  N(4 - )(4 - w) b >-0 Scheme VI .

The lack of symmetry in scheme VI seems to arise from the lack of symmetry in the

representation of the cross-derivative, for example through using an old value for

while using the current value of ýi-I,j in equation (3-1a). Scheme V is less restric-

tive than Schemes i, II and III, but Scheme IV is more restrictive than all these schemes.
All the schemes were tested numerically. * was initially set to 100.0 everywhere,

and the scheme was said to have converged at the nth iteration, where n is the smallest

integer satisfying

max n n-1 < 0

k k
k

where *n is the vector giving the estimates of * after the nth iteration. The results

obtained when a - c - I are shown in Table I

For the case b - 0.9 and d - 0 there seems ':o be little to choose between

Schemes I, II and I1, but the other schemes are noticep.bly worse. For Scheme IV the

condition c(2 - w) >2b is violated and so the iterative scheme is divergent. When

b is 0.45 it is predicted that Scheme IV will be stable if and only if w <1.1 . In

fact when N is 10 and w - 1.11 the scheme is convergent, although when N is

increased to 50, with w still 1.11 the scheme is divergent. This illustrates the point

that schemes which may appear satisfactory for large step lengths become less and less

satisfactory as the step length decreases.

Attention was then turned to d non-zero. The above analysis suggests that when

b - 0.9, a = c - I and w - 1.5

Id/NI < 0.225 Scheme I

Id/NI < 0.439 Scheme V

for stability. Although, as expected, Scheme V permits larger values of Id/NI than

Scheme I the results given in the table are clearly in need of some explanat.onl
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To try to do so the case a w q I w * i and b = 0 , with N S 5U was investigated.

The above analysis suggests

1d/NI < 1.15

is a necessary condition for stability in all the senses of section 1. If, however,

stability is defined as occurring if all errors eventually decay, then stability will

occur if

max Yl < I
st

where y satisfies

2 d2
2 - 2 cos e - cos * , 0

4 42

with 0 - ws/N and w - vt/N s and t being positive integers satisfying

1 s,t N - I . As N + ® this gives

fd/Nf < 1.82

For d/N just greater than 1.15 the iterative scheme works well, but as d/N approaches

1.82 the initial ri-e in max i0k -k I is so large that it becomes unacceptable, and
k

also causes a large increase in the number of iterations required. Just where the

..terative scheme becomes unacceptable is not easy to define, but it is clearly here

being ultra-cautious to require Id/NI < 1.15 , as the intermediate results are not of

interest, although allowing it to get too near ).82 is unacceptable.

Case (ii) An eAample when a and c are not of the same order of magnitude,
a2  2 ~a eas

It will be assumed that a8 c (a ** b because b ac)

b • (d/N)I<

c • (dO/N)

and tb:t there is an upper limiL on the size of N . This situation can arise in the

soluti n of the full potential equations of fluid motion round very highly swept

wings using a non-orthogonal grid, in some regions of which the angles between cocrdinate

lines of different families are small.

A von Neumann-type analysis gives approximately,

Id! 20, tan - 1  Schemes I, II, III and VI (3-4)

Id! <' aa tann (2dwaN tan L+"Scheme V (3-5)I a tan2 if (2 w )

for stability, in all the senses of section 1. No stability criterion is possible for

Scheme IV for the following reasun. The SLOR method requires the solution of equations
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of the form
Tx k (3-6)

where T is the (N I) x (N - I) matrix of form

bI ci

£2 b2  c 2

Cn-

a, b
n n

rN

with a. c. - -a and bi - 2(1 - JbI + c).

This is done by setting

cI c1 1
F1= 1' 1i bi.- ai~i

(3-7)

k k. - aig_

gb' b aii-1_4

the solution being obtained from

- •-I ' 1 1 1-i+l. (3-8)

As a > JbI > c > 0 , there is nothing to prevent twil becoming very large occasionally.

If Iwil is very large effect of rounding errors will not be negligible and the
scheme will be unstable. A sufficient condition to prevent any SLOR scheme being unstable
in this way is to require the matrix, T , to be diagonally dominant, for this ensures

1w.l < 1 for all i

4 IThe results obtained when a - 10. , b - 90 and c - I are shown in Table 2.

Scheme IV appears satisfactory when N - 10 and d - 0 , but was found to be divergent

when N - 50 and d - 0 . There is little to choose between Schemes I, II, III and VI

but Scheme V is definitely slightly slower (though not so markedly as in the case

a c 1, b - 0.9 and d w 0).

The symmetrical nature of Schemes I, II and III and the unsymmetrical nature of

Scheme VI, with respect to the sign of d , are illustrated, Idi arbitrarily being

chosen as 5.5 x 10 . The criteria (3-4) and (3-5) suggest that, for stability,

whet'. Idi 5.5 x I0, in all the senses of section 1,

w 4, 1.13 Schemes I, II, III and VI
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b

a tan
N SchemaeV

1+ 22td 2

4a N tn

This implies that all values of w are permissible with Scheme V -the numerical results

support this. However, the restriction on the relaxation factor, w does not seem to

k: be quite correct for the other schemes.

To try to explain this, it should first be observed that the criterion ensuring

that all errors eventually decay is also given, approximately, by equation (3-4) for

= Schemes 1. 11, 111 and VI. This suggests that as the relaxation factor, w , approaches

L its theoretical upper bound the constant, K., of the second stability criterion,

equation (2-10), becomes too large. This permits an unacceptably large initial growthA

of errors, although, for fixed w , no error can become arbitrarilyr large. Thus the
4

results when Idi - 5.5 x 10 illustrate the possibly unsatisfactory nature of the

second stability criterion. Once again, just where the iterative scheme becomes

unsatisfactory is difficult to define.

For a larger value of d - a value of I X 10~ was taken -with Scheme V, the

criterion (3-5) implies, approximately ~I

for stability in all the senses of section 1. However, if it is merely required, for

stability, that all errors should eventually decay, the stability criterion may be

relaxed to, approximately

8aa ai 7

d / N2

indicating that all values of the relaxation factor, w will be permissible. In theI
numerical work it was found that values of w somewhat greater than 1.21 were
acceptable, but as w increased the initial rise in

maxI*
k k

is so large that the scheme becomes unacceptable. Just where the itErative scheme

becomes unsatisfactory is difficult to define. However, as the intermediate results are

not of interest, it is clearly too cautious to require w 1.21 ,although allowing it

to get too large is unsatisfactory.

Discussion

The results of this se..tion have illustrated many of the points made in section 2,

concerning possible stability criteria. A von Neumann-type stability analysis has been

& shown to be of considerable use - although it has shortcomings, some of which have been
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illustrated. In most of the seactior. the von Neumann criterion has been seen to be

unnecessarily stringent, although in one case it was not quite stringent enough.

The results also suggest vays in which mixed partial derivatives should be handled

in second-order elliptic partial differential equations when SLOR is being used to

sole the finite-difference equations. Concerning the number of iterations required, and

regions of stability, there is little to choose between Schemes I, II and I1. However,

the calculations for Scheme I will take slightly less time than those for Schemes II and

III. Schemes V and VI require more iterations than Scheme I, but Scheme V is stable in

circumstances where Schemes I, II and III are unstable. The region of stability of

Scheme IV is very much less than the region of stability of Schemes I, II and III, so

Scheme IV is of relatively little use. The region of stability of Scheme VI is about

the same as the regions of stability of Schemes I, It and III, so Scheme VI is worse

than Scheme I. Thus it is recommended that Scheme I should be used whenever possible,

but if Scheme I is unstable Scheme V should be tried.

3.2 Example 2 - first derivative

In this example the manner in which instabilities can arise from a boundary

condition will be considered. A suitable method for handling some of the first

derivative terms which arise in a second-order differential equation will also be

indicated.

In the solution of a second-order partial dif erential equation there may be

regions in which the equation reduces to, essentis. ly,

0 -0 (3-9)

with homogeneous boundary conditions. This will arise through either the coefficients

of the other derivatives being small, or through derivatives in directions other than

the x direction being small - as can happen in the solution of the full potential

equations of fluid motion round very highly swept wings when using a non-orthogonal

grid. In such a situation, the manner in which the boundary conditions can cause

instabilities is illustrated by the following examplea solve (3-9) on [0,1] with

1 * 0 at x=0, 0 - p$ at x , p>1 > . (3-10)x

Take the usual central difference representations of *x and t • Let 4x - I/N

and let the subscript i refer to the coordinate direction, x * The finite difference

equations may be written in the form:

A - 2 -1 - 0 (3-11)

0 0

-2 -1

-2-122 Ný N

where is the estimated value of 4(i/N)
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Several schemes will be considered to solve this equation. They are all of the

forms.

find vn~1  from Hvn~ - Gvn (3-12)

where H - G - A , and apply over-"elaxation.

Scheme I Here the second derivative will be estimated from the values of * currently

being calculated. Hence H is the same as A of equation (3-11) and G - 0

Scheme II Even when equation (3-9) is a good approximation to the full equation, the full

equation itself may be much more complex. In such circumstances it is quite likely that

some of the first derivative term will be evaluated using values of * currently being

calculated while the rest of the first derivative will be estimated using values of *
from the previous iteration. This is best understood by writing equation (3-9) as

€ + g - g4x

xx OX g x

where Ig/2N1 is not necessarily small,

Terms on the left-hand side are to be escimated using the values of € currently being

"calculated, while the term on the right-hand side is to be found using values of *
from the previous iteration. H is now

2-l g/2N

S•.-I + g/N

-: .:-. -I + g/21N 2 - i" g/2N.•

-2 2- (0 + g/2N) 2p/NI

and G is

0 -gg/2

• g/

0 2NN

_. ;

0 The method of matrix inversion given in equations (3-6), (3-7) and (3-8) will be

used to find y in equation (3-12). To ensure that this is stable, IgI < 2N -this

ensures that, with the possible exception of the last row, H is diagonally dominant.



26

Scheme III If Igj > 2N Scheme II will not be satisfactory. However, now write

equation (3-9) in the form

4 + gtx - N(g - 2N)t * gx - N(g - 2N)*
xx x

and evalua-. terms on the left-hand side using the values of 4 currently being calcu-

lated, but terms on the right-hand side using the values of * found during the previous

iteration. Then

H - g/N
I.. + g -2N/N

I + N I

"•- 2 g/N- (I + g/2N) 2piN

!"and G " g/N -2 -g/2N

g/2NN

0I

-12 gI2N 2 I - -g/2N

20 giN - 2 - g/2N 2p/N

ignored . g-

The stability of the three schemes will now be considered. A von-Neumnann analysisA

gives the following equations for the a.._Tlification factors, X

Scheme I •

2( I

g/22

(X 1 + W- 1) =0 (3-13)

Scheme II AM
e i e (3-6, () (3-14) -O

Schee I

+ + 1)
(ii- 1 +2N
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Scheme III

2
- )W (3-15)

(2 + N ()2 - 2i - 1)

where Vl 1

In none of these schemes can I1X be greater than unity for any permitted value of 11

so the von-Neumann stability criterion is satisfied.

The boundary condition at x = 0 trivially satisfies the Godunov-Ryabenkii

criterion. As the boundary condition at x - I is being imposed implicitly the finite-

difference equation modelling this boundary condition is independent of X . It is'

2
N

For modes which decay away from the boundary l I > I , hence the only solution it is

necessary to consider is

N 2 +
+ N

which is real and greater than unity. Substituting this value of j into equation (3-13)

it is found that X - 1 - w and so JXJ < I . Thus the first scheme satisfies the

Godunov-Ryabenkii criterion. As i > 1 and 0 w 2

Gi - O)W2

(-) + 2N (i + 1)

and so, from equation (3-14), Scheme II also satisfies the Godunov-Ryabenkii criterion.

However, in equation (3-15), 1X1 will exceed unity if

2 2-N (ý2 2ý - 1) + 2(12 + 1) < w(g1 - 1)2

which, for large g/2N ,gives, approximately i < I + V2 which implies that p/N < I.

The problem given in equations (3-9) and (3-10) was solved numerically in the

case N = 50 , with a relaxation factor of 1.6. In Scheme II g was taken to be 100 and

in Scheme III 5000. The results are showni in Table 3, convergence being defined as in

section 3.1. They are in good agreement with the above theory.

Discussion

C). • The results of this section have illustrated some of the points made in section 2,

about possible stability criteria. As the von Neumann criterion totally ignores the

boundary conditions it is possible that even if the von Neumann criterion is satisfied

-Jo.
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the scheme may still be unstable as a result of the particular boundary conditions

used.

The results also suggest ways in which first derivatives should be handled in

second order partial differential equations. It seems safest always to use values of

the dependent variable from the previous iteration. If this is not done, too much of

the first derivative may be evaluated using the current values of 0 (Scheme II is

unsatisfactory if IgI > 2N). If this is avoided (as in Scheme III) the boundary

conditions may introduce instabilities.

4 CONCLUSIONS

The question of the stability of iterative schemes has been discussed with the

aid of numerical examples. It has been shown that there is in general no satisfactory

theoretical definition of stability. This necessarily means that in general there can

be no satisfactory criterion for stability.

In many schemes linear equations of the form T x -k must be solved. The first

requirement for stability is that the method employed to solve these equations must be 7

stable. The usual method, if T is tridias;onal, of solving these equations, is given in

equations (3-6), (3-7) and (3-8). This method is stable if T is diagonally dominant.

However, the results of section 3.2 show that T being diagonally dominant is not

always necessary.

If a stable method of solving equations of the form Tx =k is used, a possible

fairly simple criterion for stability, is that of von Neumann. The examples illustrate

that this criterion can be unnecessarily severe for some problems, and not sufficiently

severe for others.

The first example, concerned with the representation of a mixed second derivative

(section 3.0), shows that if, in practice, there is a lower bound on the size of the

step length taken then the criterion may be too severe. However, in this example, it

was only the precise borderlines between practical stability and ins'Lability that were
incorrectly predicted, all relative trends within and between schemes being correctly

The second example, concerned with a first derivative (section 3.2), shows that

instabilities may arise through the boundary conditions, so that the criterion (which

ignores the boundary conditions) may not be severe enough. Thus the criterion indicates

that stability may be obtained if the boundary conditions are suitable.- As it ignores
* the boundary conditions it cannot tell which boundary conditions will give stability, and

which not.4

Thus, while the von-Neumann criterion may be of considerable help in choosing a

suitable numerical scheme, it must be applied with great care and its shortcomings kept

in mind.

The examples of section 3 suggest how mixed and first detivatives should be handled

in SLOR (successive line over-relaxation) schemes. If the mixed derivative is required
it at the point x -i~x jv - then the values of the variable at the points
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x = (i ± I)Ax , y = (j ± 1)Ay should be used if possible. However, if stability

cannot be obtained with this scheme, a more complex one (Scheme V of section 3.1) may

give stability. When evaluation of a first derivative is required, care should be taken

if some first derivative terms, on the line currently being updated, are evaluated using

values of * currently being calculated, while others are evaluated using values of*

from the previous iteration. Stability iE more likely to be obtained if first derivatives

are always estimated using values of * from the previous iterations.

W6 .

A:

;j -.

!.I

2" I

kI

JV

I:
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Table I

Number of iterations required to solve f + 2b + 0 + dx 0

N b d Scheme Relaxaý!,on factor, Number i,,
1 iterations

10 0.9 0 1 1.45 (optimum) 31 -i
1" II 1.46 (optimum) I

"III 1.45 (optimum) 30

"" IV 1.46 D

" ""V 1.54 (optimum) 158
"F " " "1.45 175

"" VI 1.45 <w o 1.60 70-73

" 0.45 " IV 1.10 157

"1.11 I182

"I "1.20 D

50 " " 1.11 1

10 0.9 6.0 I 1.5 218

7 .5 D

HV 91

50 0 55.0 1.0 130 1
"' " 60.0 o 145 I
'" "~ 70.0 . " 203

I. H 80.0 ,, 363 V
" I 85.0 I' 617

"90.0 2355
"I " 95.0 "D

Key: D denotes divergence

- -.. .... .- . ~. --- . ... . -- =-- .. .. ... . . i - ••
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Table 2

4
Number of iterations required to solve 10 4¢ + 900 + 0 + do 0

+ 9xy yy +

Ndc eRelaxation factor, Number ofN Sceheme
w iterations

10 0 I 1.00 (optimum) 6

It it IV It 15

50 it to to D

10 " V 1.08 (optimum) 10

VI 1.00 7

50 +5.5 x 104 1 1.05 C

"1 .06 D

"II 1.05 C

1.06 D

"" 1.07 D
"o of VI 1 .12 C

"o it of 1.13 D"

"V 1 1.95 C
of 4 to

"-5.5 x 10 I 1.05 "

itI t 1.06 D

" " II 1.05 C

"1" " 1.06 D
"I II, C I
"".07 D I

" " VI 0.98 C

it to it 0.99 D

" " V I < 1 1.95 C 14

""I x 105 " 1.71 of

" " 1.72 D

Key: D denotes divergence

C denotes convergence, but case not run to full convergence
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A

Table 3

Number of iterations required to solve t - 0

with 0 -0 at x -0 and t - pO at x- Ix

Number ofp Schene iterations

25V7 43

IIID45 II

51 IIC

IIIC

Key: D denotes divergence

C denotes convergence, but case
not run to full convergence

0
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