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Theoretical study of the structural phase transition in RbCaF3 

L. L. Boyer 
Naval Research Laboratory, Washington, D. C. 20375 

J .  R. Hardy 
Department of Physics, UniversitJ: of Nebraska, Lincoln, Nebraska 68588 

(Received 18 May 1981) 

W e  have made a first-principles study of the structural phase transition at  T, = 193 K in 
RbCaF3, using interionic potentials derived by the Gordon-Kim approach, and a new extension 
of the quasiharmonic approximation for the free energy. The transition is caused by instability 
of a triply degenerate R-point vibration which leads to a coordinated rotation of the CaF, oc- 

tahedra. We find that, as the lattice contracts, the quasiharmonic frequency of the R-point vi- 
brations becomes imaginary at approximately 1280 K: Below this temperature the static lattice 
energy, as a function of CaF6 rotation, has a double minimum. However, the quasiharmonic 
free energy has no minimum for finite rotations until T 5 125 K. Thus the present theory 
predicts that T, = 125 K (cf T, = 193 K. experimental). In the region between 125 and about 

1280 IC "nests" of modes about the zone edges have imaginary quasiharmonic frequencies. By 
a simple extension of the quasiharmonic theory their contribution to the free energy has also 
been included. We also predict that the melting temperature is approximately 1350 K,  which 
agrees very well with the measured value of 1382 K. However, the predicted thermal expansion 
of the perovskite phase at room temperature is -17%) lower than the observed value. This leads 
us to argue that the good agreement between theoretical and experimental melting temperatures 
is, in part, due  to a cancellation between neglected anharmonic effects and certain deficiencies in 
the interionic potentials. We also find that, for the tetragonal phase, the calculated c / a  ratio and 
rotation angle for the CaF, octahedra which minimize the static energy are in good agreement 
with measured values at low temperature. We also discuss certain more general implications of 
the present work. Specifically, we suggest that our results indicate that it may be more natural 
to regard the structural phase transition as arising from the "unfreezing" of the distortion asso- 
ciated with the lower-symmetry phase. Our results also provide a natural explanation for the ap- 
parently universal tendency of transition temperatures for zone-boundary instabilities to be 
raised by hydrostatic stress. 

I. INTRODUCTION 

One of the most extensively studied structural 
phase transitions is that which occurs in strontium ti- 
tanate (SrTi03) at 110 K, produced by the instability 
of a triply degenerate vibration at the zone corner or 
R point. However, none of the theoretical work has 
attempted to address seriously what appear to us to 
be, in many respects, the two most fundamental 
questions: Why does this transition occur, and why 
does it occur at 110 K? A serious answer to both 
these (interrelated) questions can only be provided 
by a theory which involves no disposable parameters. 
It cannot be provided by phenomenological ap- 
proaches involving models whose parameters are 
determined by fitting experimental data: e.g., 
lattice-dynamical models whose parameters are deter- 
mined by fitting the measured dispersion curves. 

The ideal answer to these questions would be pro- 
vided by a calculation which derives the free energy 

from a first-principles quantum-mechanical calcula- 
tion and predicts that the distorted structure has a 
lower free energy below 110 K. Such a formidable 
undertaking has not been attempted for two main 
reasons: (a) The difficulty of allowing for anharmon- 
ic effects in the free energy, and (b) the inability to 
derive from first principles a reliable potential energy 
function for the lattice. At present, the second prob- 
lem presents major difficulties for SrTi03. However, 
relatively recent experimental studies1-, have re- 
vealed that the fluoperovskite, rubidium calcium tri- 
fluoride (RbCaF,), shows the same type of lattice 
instability at 193 K. Also, very recently, it has been 
found that another isomorph, potassium calcium tri- 
fluoride (KCaF3), shows two structural instabilities, 
one of 560 K and the other at 551 K,' both intimate- 
ly related to zone-boundary lattice instabilities. For 
these systems calculations are possible, and the pur- 
pose of this paper is to present first principles calcula- 
tions of the equation of state for RbCaF3, which is 
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the simpler of the two in its behavior. 
The present work represents a major extension to 

more complex systems and instabilities of an ap- 
proach that was previously used to explain melting of 
sodium-chloride-structure alkali halides8j9 and subse- 
quently extended to explain the onset of superionic 
conductivity in fluorite (CaF2).10 This approach has 
two essential elements: the construction of 
parameter-free interionic potentials using the 
Gordon-Kim" technique, and the treatment of 
anharmonic effects using the quasiharmonic approxi- 
mation. In order to employ the Gordon-Kim ap- 
proach it is necessary to have accurate knowledge of 
the free-ion wave functions. This is available for 
ions such as Rb+, Ca2+, and F-, but not for 02-, 
which is unstable in the free state. Given this 
knowledge, one assumes that the crystalline charge 
density is given by a superposition of the constituent 
free-ion charge densities. The effective interionic po- 
tential is then computed from the resultant charge 
density by treating it as though it is (locally) a free 
electron gas. In the present work we assume that it 
is adequate to consider only pairwise overlap: Thus 
we assume that regions in which three, or more, ions 
overlap significantly are either negligibly small or 
nonexistent. We thus obtain a lattice energy that is 
the sum of pairwise interactions: long-range 
monopole-monopole interactions, that represent ex- 
actly the interaction of the spherical free-ion charge 
distributions, and short-range interactions between 
close neighbors that include all the corrections due to 
ionic overlap. This energy expression is valid for any 
lattice configuration if we maintain the basic 
Gordon-Kim premise that the ionic charge distribu- 
tions are unaffected by their incorporation into a 
solid. It thus follows that not merely the static lattice 
energy, but also the free energy is completely deter- 
mined. This is the case because the dependence of 
the lattice energy on  all degrees of freedom is known 
exactly, hence all allowed eigenstates of the lattice 
Hamiltonian are determined, and the system's free 
energy is, in principle, known exactly. In practice the 
actual determination of this quantity presents major 
theoretical problems and approximations are neces- 
sary. The simplest, which was employed previous- 
~ Y , ~ - ' O  is the quasiharmonic approximation. In this 
approximation the free energy is written as 

where h and k are the Planck and Boltzmann con- 
stants, respectively, and x represents a set of struc- 
tural parameters (e.g., volume) on which the static , 

lattice energy, U, and the frequencies, v, ,  depend. 

These frequencies are those of small amplitude oscil- 
lations about the lattice configuration specified by the 
parameters x. The equilibrium values of these 
parameters at any given temperature are those which 
minimize the free energy. Within this quasiharmonic 
approximation the dependence of F on x is treated 
exactly. Moreover, as we shall see later, it is possible 
to go beyond the quasiharmonic approximation when 
the quasiharmonic frequencies become imaginary. 

The equilibrium values of x are determined from 
the equation of state 

where P, is the thermodynamic "force" conjugate to 
the variable x e.g., if x is the volume, then Px is the 
external pressure. However, in the present paper, 
where we are concerned with the zone-corner insta- 
bility in RbCaF3, we shall be using Eq. (2) in a more 
general form. Specifically, we have to allow for the 
dependence of F on three parameters in the low- 
temperature phase: the volume, the tetragonal dis- 
tortion, and the amplitude of the "frozen-in" zone- 
corner distortion. The forces conjugate to the first 
two of these present no conceptual problems: That 
conjugate to the third is a little more difficult to con- 
ceive. It is, in fact, a "staggered" force which alter- 
nates in sign for different atomic sites. The reason 
for this is that the R-point instability corresponds to 
correlated small rotations of all the CaF6 octahedra, 
and, to produce such rotations, there must be a 
torque about the appropriate axis for each oc- 
tahedron. Experimentally such a "force" would be 
difficult, if not impossible, to apply but it is a perfect- 
ly valid thermodynamic concept and closely analo- 
gous to the corresponding "field" in the theory of 
antiferromagnetism. Under normal conditions P, will 
be zero and the equation of state, and thus the 
equilibrium values of x, xo, will be determined by the 
requirements that ( a F l a x  1 T,x-xo = O  for all x. 

In the remainder of this paper we will be describing 
our theoretical studies in detail. However, before 
commencing this account, it is appropriate to outline 
the main qualitative features of our results which we 
regard as extremely important. 

What we find is that above -125 K the cubic 
(perovskite) structure is the thermodynamically 
stable phase. However, below -1280 K the 
quasiharmonic frequencies at the R point become im- 
aginary due to the thermal contraction of the latt~ce. We 
shall elucidate this further later, but the crucial point 
is that, below a critical volume, the CaF6 octahedra 
are in metastable equilibrium at the perovskite sites 
and can, by coordinated rotation, move to one or 
other of two adjacent lower minima in the potential 
energy surface. However, it is not until the tempera- 
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ture drops below -125 K that the quasiharmonic 
free energy has a minimum for a finite statrc value of 
the amplitude of this coordinated rotation. It is this 
lower temperature that is the transition temperature: 
Between 1280 and 125 K the system is executing 
highly anharmonic motion between the two wells. 
For the degrees of freedom involved in this motion, 
special treatment, which we shall describe in due 
course, is necessary. 

Below 125 K the tetragonal structure is not abso- 
lutely stable. This is because the soft R-point vibra- 
tion of the cubic phase is triply degenerate and the 
distortion stabilizes only one of these three modes: 
that corresponding to rotations about one specific 
axis of the CaF6 octahedron. Statically the lattice 
would prefer to distort further by some combination 
of rotations about the other two axes (as appears to 
happen in KCaF3). However, this lower symmetry 
phase may not be thermodynamically stable, at least 
within the quasiharmonic approximation. This belief 
is based on the wide temperature difference between 
the point at which the cubic phase becomes mechanl- 
cally unstable and the point where the tetragonal 
phase becomes thermodynarn~cally stable. More 
specifically, in the limit T - + O ,  the "phonon pres- 
sure," due to the zero-point motion, may be suffi- 
cient to disrupt the lower symmetry structure. Ex- 
perimental  result^^^^*'*,'^ do reveal the existence of a 
further transition at -44 K, but the structure of the 
resultant low-temperature phase seems to be unclear 
at present: It may be that the phonon pressure due 
to zero point motion leads to the structure of this 
phase being other than that which minimizes the stat- 
ic lattice energy. The most definitive work6 indicates 
that the 44 K transition involves equal rotations 
about all three axes of the CaF6 octahedra. However, 
it is a markedly first-order transition with large ther- 
mal hysteresis. This appears to indicate the presence 
of a significant barrier in the free-energy surface 
between the tetragonal phase and this lower sym- 
metry phase. 

Finally, it is of interest to observe that the more 
complex behavior of KCaF3 involves simultaneous 
rotations of the CaF6 octahedron about two principle 
axes at the upper transition and all three axes at the 
lower transition. Whether it would be possible to ex- 
plain this behavior using our present approach is an 
open question. It would certainly present a much 
more complicated problem, since one would need to 
include additional x parameters and the calculations 
would be correspondingly more complex. It seems to 
us likely, indeed probable, that the present theory 
would predict at least one transition to a lower sym- 
metry structure. However, what this structure would 
be is unclear. Moreover, whether two successive 
transitions would be predicted is much less certain. 

We shall now proceed to a detailed discussion of 
the various stages of our calculations. 

11. STATIC LATTICE ENERGY 

In order to study the relative static stability of the 
low-temperature tetragonal phase versus that of the 
ideal perovskite structure, it is necessary to compute 
the static energy of the lower symmetry phase as a 
function of both volume and the parameters that 
specify the distortion from the higher symmetry 
structure. These variables together constitute rhe x 
parameters. This study is necessary in order to 
understand the interplay between all these parame- 
ters, and the physical origins of the lattice distortion. 
Once we have such an understanding it is then possi- 
ble to proceed to a study of the free energy and its 
minimization with respect to the x parameters. While 
it would, in principle, be possible to proceed directly 
to this minimization, in practice such computations 
are very time consuming, and one thus wishes to 
reduce the number of variables to be considered as 
much as possible. A definitive knowledge of the po- 
tential surfaces in the hyperspace of x parameters is a 
great help in this respect, and can be obtained rela- 
tively rapidly. 

In Fig. 1 we show four unit cells of the perovskite 
structure, which together define the primitive unit cell 
of the low-temperature phase. The open circles 
denote Rb+ ions and the four octahedra, with large 
solid circles at their centers and small solid circles at 
their corners, give the positions of the Ca2+ and F- 
ions, respectively. The arrows indicate the low- 

FIG. 1. Four unit cells of the perovskite structure with 
arrows at corners of the CaF6 octahedra indicating the dis- 
tortion produced by the transition to the low-temperature 
phase. 
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temperature distortion. In Table I we list the coordi- 
nates of the 20 ions in the unit cell of the low- 
temperature structure. The components in the x and 
y directions are in units of d a ,  where a  is the cube 
cell side of the perovskite structure. Along the z 
direction the components are in units of 2c, where 
c = a  in the perovskite structure. 

For the x parameters which specify the low- 
temperature structure it is convenient to take 

1 b = ( a 2 c ) ' I 3 ,  f = c / a ,  and 6=u- , .  If f = l  and 
6  = 0  then we have the perovskite structure with 
a  = b = c. The distortion from the perovskite struc- 
ture when 6  f 0  corresponds approximately to a 
cooperative rotation of the CaF6 octahedra through 
angles of +4S. 

The distinct bonds that we found necessary to con- 

TABLE I. Positions of the 20 ions in one unit cell of the 
low-temperature phase of RbCaF3. The x and y coordinates 
are in units of d? a and z coordinates in units of 2c: When 

I 
c = a  and u = 7 the structure is perovskite with lattice con- 
stant a. 

Coordinates 

sider for accurate computation of the short-range 
component of the energy in the low-temperature 
phase are listed below. In each case the bond length 
r, is given together with the number of bonds n, hav- 
ing that length: 

Nearest-neighbor Ca-F 

r l = ( & + 6 2 ) 1 1 2 2 a ,  n 1 = 1 6  , (2a) 

Nearest-neighbor F-F 

Ion x v z Second neighbor F-F 

Third neighbor F-F 

The component of the static lattice energy due to 
the long-range Coulomb interaction can be written as 
a(  6,f ) / b ,  where a (  6, f )  is an effective Madelung 
constant, explicitly dependent on both 6  and J For 
values of 6  and f within the range of interest to our 
studies, ( 181 < 0.04,0.99 < f < 1 . O l  ) cu is given to 
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TABLE 11. Values obtained for c and P by fitting the exponential form, re-@', to calculated 
values of the short-range Coulomb (SRC), kinetic (KE), exchange (ex), and correlation (corr) 
contributions to the indicated pair potentials in the range ri to r,. Results are in atomic units with 
energy in hartree. 

Ion 
pair c, p SRC KE ex corr r1 'u 

CaF c -34.937 0 98.648 8 -10.271 4 -0.224 891 3.8 4.6 
CaF P 1.91088 1.780 84 1.479 84 1.111 59 3.8 4.6 
RbF c -45.683 3 96.569 3 -10.221 4 -0.288 258 5.6 6.0 
RbF P 1.707 20 1.597 77 1.305 91 1.005 48 5.6 6.0 
FF c -17.738 7 25.105 5 -2.98054 -0.117815 5.4 6.4 
FF P. 1.556 12 1.403 05 1.10756 0.846702 5.4 6.4 

seven-place accuracy by determined for several values of r within the range of 
interest using Green and Gordon's program 

a ( 6 , f )  =-49.509872+111.21862+1326.3864 POTLSURF. '~ Each contribution to a given potential 
-617.89s2(1 - f )  +549064(1 - f )  [electrostatic (SRC), kinetic (KE), exchange (ex), 

-13.65(1 - f12-462s2(1  - f 1 2  and correlation (corr)] varies approximately exponen- 
tially with rover  this range and it was thus possible 

-6000064(1 - f l 2  . (7)  to "best-fit" exponentials to each separate contribu- 
tion. The value of c and P in the exponential form 

On combining both parts (Coulomb and short- 
ce-@', determined by fitting to results from program 

range) of the static lattice energy one obtains the en- 
PoTLsURP at several values in the range of separa- 

ergy per unit cell of the low-temperature phase: tions of interest here (r,  to r,) are shown in Table 11. . - 
These values differ somewhat from those published 

U ( b,6,f) = ------ +@c'F + @ R ~ F + @ F '  ' ('a) earlier8,10 due to the use of different ranges of b 
where 

and the $(r) 's represent the short-range parts of the 
various potentials. For each interaction these were 

separations in the fitting procedure. Within the range 
r, to ru the fitted potentials agree with the true ones 
to better than 0.2%. Slight modifications of this pro- 
cedure were tested to be sure they produced only 
minor quantitative changes in our results. The values 
in Table I1 are given to six decimals to ,enable the 
reader to make a precise comparison with our results. 

Using these fitted potentials it was then possible to 
find the values of b, f, and 6 (bo,fo, So) which 
minimize the total static energy. The results are 
shown in Table I11 for several models which 

TABLE 111. Comparison of the structure parameters (bo, fb, and So), which minimize the static energy (U) of the low- 
temperature phase of RbCaF3 and the double-well depth [ U ( bo, 1,O) - U (bo,,fo, So) 1 for various models which differ in the 
number of neighboring ions included in the sum over the short-range interactions. 

Structure parameters that 
Model Number of shellsa minimize U Energy (hartree) 
number CaF RbF FF bo (bohr) f o  80 L1(bo,jo,So) U(bo, l ,O)-  U(b,,fo,h) 

aA shell is defined in the perovskite structure (f = 1, S=O). b ~ a m e  as 3 but with CaF6 rotations in phase along the z direction. 
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FIG. 2. Potential energy surface as a function of band  6 
with f = 1. 

differ in the numbers of shells for which the short- 
range forces are included: "Shell," in this context 
refers to a shell of neighbors in the perovskite struc- 
ture. Also shown in Table 111 are the absolute 
minimum static energy U ( b o ,  f o r  S o ) ,  obtained by 
solving a U l a b  = a U l a f  = a U l a S  = 0 ,  and the differ- 
ence between U (  bo, 1,O) and U  ( b o , f o ,  So)  which 
measures the depths of the two minima correspond- 
ing to +So.  It can be seen that the results of model 3 
and those which include more distant neighbors are 
very close, demonstrating that the summations in 
model 3 are essentially converged. Thus model 3 was 
used in all subsequent calculations and it is this 
model to which Eqs. (2)-(8) refer. Models 1 and 2 
can be obtained by eliminating terms from the short- 
range part of U models 4-6 involve adding addi- 

6 
FIG. 3. Potent~al energy surface as a function of 6 and f 

with b  =8.23 bohr. 

tional terms whose explicit form is not worth repro- 
ducing as we make no further use of them. Short- 
range interactions between cations are completely 
negligible. 

The values obtained for bo, f o ,  and the rotation an- 
gle Oo = 480, are close to the experimental values at 
low temperature (see below). However, direct com- 
parisons should be treated with caution since the ex- 
perimental results are strictly only comparable with 
results obtained by minimizing the free energy. What 
is much more important, at this stage, is an explora- 
tion of the potential energy hypersurface. To this 
end we show the following: (a) in Figs. 2 and 3, 
three-dimension plots of U  vs b and S  and f  and 6 ,  
respectively; (b) in Fig. 4, U  vs S  is plotted for a se- 
quence of b values with f  = 1; and (c) in Fig. 5 U  vs 

6 6 
FIG. 4. (a) Potential energy as a function of 6 for selected b's ( b  > 8.23 bohr) with f = 1. (b) Potential energy as a 

function of S for selected b's ( b  < 8.23 bohr) with f = 1. 
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6 
FIG. 5. Potential energy as a function of 8 for various 

selected values of b and J 

6 is plotted for a sequence of f values with b = 8.234 
and 8.4. Finally, in Fig. 6, we show the various indi- 
vidual contributions to U: the Coulomb part, and the 
short-range components; shown separately for first- 
neighbor calcium-fluorine interactions, first-neighbor 
rubidium-fluorine interactions, and for all the 
fluorine-fluorine interactions considered in model 3. 
The plots in Fig. 6 show the four terms in Eq. (8a) as 
a function of 6 for selected b's, using equal energy 
scales for each plot to facilitate the comparison of 
their relative strengths. 

From these plots we can draw a number of specific 
conclusions. 

(a) Figures 2-5 reveal that the dependence of U 
on f is relatively insignificant compared to its depen- 
dence on b and 6. 

(b) Figures 2 and 4 show clearly that, as the lattice 
contracts, a double minimum develops in U as a 
function of 6 when b C 8.555 (bohr). This signifies 
that certain of the quasiharmonic normal-mode fre- 
quencies for the perovskite structure become ima- 
ginary when the crystal volull~e shrinks below 
(8.55513 ( b ~ h r ) . ~  However, as we shall see later, this 
does not signify an immediate transition to the low- 
temperature structure. 

(c) Figure 6 demonstrates that the basic cause of 
the static instability of the perovskite structure is a 
competition between the short-range part of the Ca-F 
interactions and that of the Rb-F interactions. Both 
the total Coulomb potential and Rb-F short-range in- 
teractions tend to maintain the perovskite structure, 
but the short-range Ca-F interactions are always re- 
duced by a finite value of 6. Thus, as b is reduced, 
there comes a point when the Ca-F interactions dom- 
inate and produce the CaF6 rotations. However, this 

causes r~ for the Rb-F bonds to decrease and the ro- 
tation is stabilized at some finite value of 6. On the 
other hand, Fig. 6(d) indicates that the F-F interac- 
tions are nearly independent of 6: However, they do 
have quantitative effects on the magnitude of the ro- 
tation and the depth of the double well, as can be 
seen from the results in Table 111. This results from 
the fact that QFF is negative, which lowers the equili- 
brium value of b, causing the double well to deepen. 
However, from Fig. 7, we see that the double-well 
structure in the potential surface is still present, even 
when the F-F short-range interactions are completely 
omitted. 

The present calculation is for one specific material, 
but it appears highly plausible to argue that the pres- 
ence or absence of a zone-boundary instability of the 
present type in any A M X 3  system is likely to be deter- 
mined by the type of balance between M-X and A-X 
short-range forces that we have found in RbCaF3. 
Thus, as the "size" of the A ions increases relative 
to that of the M ions, the perovskite phase will be 
stabilized. This concept is very close to the semiem- 
pirical approach of Rousseau et a/. * based on the idea 
of close packing of hard spherical ions showing 
characteristic radii. The difference is that our general 
prediction stems from a first principles calculation of 
the potential for a given AMX3 structure. This calcu- 
lation is, to the best of our knowledge, the first of its 
kind for such a system. 

At this point a note of caution should be intro- 
duced regarding predictions as to the low-temperature 
structure. We have studied the static lattice energy 
of a particular low-temperature phase in which the 
CaF6 octahedra are allowed to rotate about the one 
axis only. However, like the perovskite structure, 
this too is statically metastable since the unstable R- 
point vibrations of the perovskite phase are triply de- 
generate and only one of these vibrations is stabilized 
by rotations about a single axis: the other two 
remain unstable. Thus the absolute minimum of U 
presumably corresponds to some superposition of ro- 
tations about all three axes. This will presumably 
hold true for any AMX,  system for which the 
perovskite structure is metastable. However, there is 
little point in searching for this absolute minimum, at 
least for RbCaF3, since the actual structure is that 
which minimizes the free energy. Thus, once the 
first instability has developed, as the structure is 
cooled, its subsequent transitions (if any) will result 
from a change in the balance between competing con- 
tributions to its free energy. Here we have made the 
implicit assumption that, for RbCaF3, the primary en- 
ergy decrease is due the CaF6 octahedra rotations 
about the single preferred axis: The other two possi- 
ble rotations are assumed to have only secondary ef- 
fects. If this is the case, the free energy surface will 
follow the potential surface at the first transition. 
Subsequently this may well not be the case. In other 
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FIG. 6 .  Separate contributions to the 6 dependence of the potential energy for selected values of b, from (a) the long-range 
Coulomb interaction, (b) the short-range Ca-F interaction, (c) the short-range Rb-F interaction, and (dl the short-range F-F in- 
teraction, plotted on a single-energy scale to facilitate comparison of their relative strengths. 

systems, e.g., KCaF,, the effects of the remaining 
two rotations may be of primary importance leading 
to very significant changes in the static energy. In 
these circumstances we would expect more complex 
transition behavior and the free-energy surface may 
not follow the potential-energy surface even at the 
first transition. Examples of this general type of 
behavior are provided by "quantum ferroelectrics," 
which are systems where the distorted ferroelectric 
phase, although of lower static energy, is never 
achieved, since it is destabilized by zero-point motion 

111. LATTICE DYNAMICS OF RbCaF3 

FIG. 7. Potential energy surface for f = l with the short- Before we proceed to an examination of the free 
range part of the F-F interactions excluded. energy of RbCaF3 and to predictions of its behavior 
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UODES/meV UNIT CELL 

FIG. 8. Quasiharmonic frequency dispersion curves and frequency spectrum for RbCaF3 in the perovskite structure a t  the 
critical volume ( b  = 8.555 bohr) below which the R z 5  frequency is imaginary. 

using the quasiharmonic approximation, it is impor- 
tant to examine the quasiharmonic frequencies ob- 
tained from the dynamical matrix generated from the 
second derivatives of our potential. It is also impor- 
tant to stress that these "frequencies" are not neces- 
sarily comparable with those measured by experimen- 
tal probes. They are the product of a variational fit 
to the free energy involving a limited number of 
parameters; namely, those that define the crystal 
structure. At this, the simplest level which can pro- 
vide meaningful results, the frequencies themselves 
are not variational parameters. 

In Fig. 8 we show plots of the dispersion curves 
and the associated density of states for RbCaF3. 
These plots have a common energy axis (we chose to 
plot hv rather than v for reasons of convenience) 

and have been made for b = 8.555 (bohr) which is 
the critical b below which the double well in U versus 
6 appears. It can be seen that the energy of the triply 
degenerate Rz5  modes is essentially zero, signifying 
that these modes are about to become unstable. The 
symmetry designations for the various branches were 
made by comparing their eigenvectors with those 
published by CowleyI5; however, the labels have been 
changed to follow the convention set by Bouckaert 
et a1.l6 Differences exist for the Z, S, M, and X sym- 
metries and these are listed in Table IV. 

The phonon dispersion curves were plotted using 
symmetrized Fourier (SF) interpolation" from an 
L = 8 mesh of eact values ( L  12 is the number of 
partitions of a given symmetry line). The density of 
states was computed by applying the tetrahedron 

TABLE IV. Relation between the symmetry notation used by Cowley (Ref. 15) and that originally established in Ref. 16 
(BSW). Differences exist for Z, S,  M, and X symmetries. 

S and S I M and X 

Cowley 1 2 3 2 3 4 1' 2' 3 ' 4' 5 5 ' 
BSW 1 2 4 2 3 1' 4' 2' 3 ' 5 5 ' 
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method'' to an L = 16 mesh of values obtained by SF 
interpolation from the L = 8 mesh. Occasionally, 
when there is a sharp kink in the dispersion curves, 
such as that produced when two branches of like 
symmetry nearly cross, a ripple effect can be seen in 
the SF interpolated values unless a sufficiently fine 
mesh is used. This is the case for the two lowest T5 
branches, whose near crossing at about $ of the dis- 
tance from R to M produces the slight wiggle seen in 
the upper of these two branches as M is approached. 
The third T5 branch appears to have a similar wiggle, 
but in this case it is a genuine effect: It does in fact 
cross the lowest Ti branch in two places. 

The nonzero eigenvector components of the R25 
modes are given by15 

e,(Fl) = - ~ , ( F I I ) ,  mode 1 , (9) 

ex( F I )  = -e,( FIII) ,  mode 2 , (10) 

where the FI, Fll,  and Flll ions are at a ( + , + ,  O), 
1 1  a ( $ , ~ , f ) ,  and a (O,T,T) ,  respectively. The third 

eigenvector [Eq. (1 111 corresponds to CaF6 rotations 
about the z axis (see Fig. 1) in the same sense as 
those associated with a nonzero value of 6. The first 
and second eigenvector are equivalent, except that 
they describe rotations about the x and y axes. 

It should also be noted that the entire T2 branch 
(from R25 to M2) is soft. Moreover, the eigenvec- 
tors for the M 2  modes at q =  (0,  n-/a, n-/a ), 
( n-/a, 0, a / a  1, and ( r / a ,  ria, 0 )  are identical with 
those for the R25( l )  [Eq. (911, R2,(2)  [Eq. (1011, 
and R25(3) [Eq. (1 111 modes, respectively. Each of 
these identities extends also to all modes connecting 
R25 to M 2 ,  namely the T2 branches, T2( 11, T2(2) ,  
and T3(3). Physically this means that the only 
difference between the displacement patterns of the 
various modes along, and at the ends of, a given T2 
branch is in the relative phase of the CaF6 octahedra 
rotations in adjacent planes. For example, the 
R25(3) mode produces a displacement pattern that 
reproduces the low-temperature structure (Table I) 
with f = 1. In this mode the octahedral rotations are 
n- out of phase in adjacent units parallel to the z axis. 
On the other hand, the M 2  mode at a =  ( a l a ,  n/a,  0 )  
[to which R25(3) is connected by the T2 branch 
parallel to the z axis of reciprocal space] gives almost 
the same structure, except that the corresponding ro- 
tations about the z axis are all in phase. Between the 
two extremes the relative phases of these rotations 
are determined by q,. Interestingly, if one of these 
modes were the first to become unstable, the low- 
temperature phase would have an incommensurate 
structure. However, this is unlikely for the perfect 
crystal, since the coupling between rotations about 
the z axis for octahedra in different planes (perpen- 
dicular to that axis) is likely to be dominated by 

first-neighbor interactions. If this is the case a 
monotonic variation of frequency with q, is to be ex- 
pected. 

For a clear insight into the situation in the low- 
temperature phase it is important to examine the 
behavior of the three soft T2 branches of the 
perovskite phase in the low-temperature structure. 
In the Brillouin zone of the latter structure the T2(3)  
branch starts and ends at the zone center, since it is 
folded back at a =  (0,0,  a /2c  1. T2(1)  and T2(2)  be- 
come equivalent in the low-temperature phase 
translating into branches that originate at the zone 
center (the new location of their R2, origin) and 
end at ti = ( n - I d a ,  n - I d a ,  0 )  and $ = (-r /&a,  
a l J Z a ,  0 ) .  

In Fig. 9 we show the behavior of these three 
branches as a function of 6 for b = 8.234 084 (bohr) 
(the value which minimizes the static energy) and 
f = 1. It can be seen that the T2(3)  branch hardens 
rapidly as 6 is increased: This is not the case for the 
T2( 1 ) and T2(2) branches. Specifically, a calculation 
of the M2(1 ,  2 )  frequency, for b, f, and 8 all set at 
the values which minimize the static energy, gives 
( h  vI2  = -0.65 (meV)2 for this frequency. Thus a 
static distortion having the displacement pattern of 
either mode would further lower the potential energy. 
However, it may not lower the free energy and may 
thus not occur. The basic origin of this residual in- 
stability is that the tendency of the CaF6 octahedra to 
rotate about both x and y axes, in addition to the z 
axis, is still present in the low-temperature structure. 
However, it would appear from Fig. 9 that it is signi- 

0.00 0.01 0.02 0.03 0.04 0.05 

6 
FIG. 9. Plot of the square the "frequencies" of the low- 

lying R25 and M2 modes as a function of the low- 
temperature distortion parameter, 8, with b = bo and f = 1. 
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ficantly inhibited by the built-in rotations about the z 
axis associated with finite 6. 

The  principal result of these quasiharmonic lattice- 
dynamical studies is the demonstration of the ex- 
istence of groups of imaginary frequencies in both 
the high-temperature phase for b < 8.555 (bohr) and 
in the low-temperature phase. This presents a prob- 
lem which has to be addressed during the free-energy 
studies which are the subject of the next section. 

IV. FREE-ENERGY CALCULATIONS A N D  
PREDICTION OF THE TRANSITION 

TEMPERATURE 

We are now in a position to examine the oc- 
currence of the phase transition in RbCaF3. We 
thus, in principle, have to carry out a minimization of 
the quasiharmonic free energy F, defined by Eq. (11, 
with respect to all three x parameters (b, f ,  and 
u =0.25 - 6)  at a sequence of temperatures. Howev- 
er, the low-temperature structure will only be stable 
if there exists a minimum in F for u 2 0.25. Other- 
wise the only minimum in F occurs when u =0.25 
and f = 1, and we have the perovskite structure as 
the stable phase: In this phase the only variational 
parameter is b = a  the lattice constant. Since we had 
already established that the static energy is most 
strongly dependent on 6 we have only made a de- 
tailed study of the dependence of F on this parameter 
and then checked that the predicted transition tem- 
perature was relatively insensitive to variations in b 
and f. In this way we were able to avoid the much 
more computationally expensive triple minimization. 

In Fig. 10 we show the free energy of the low- 
temperature phase as a function of u, for b = bo and 
f = 1, at a sequence of temperatures between 0 

.------ 1 SOK I 
FIG. 10. Free energy of the low-temperature phase as a 

function of 6 at selected temperatures with b = bo and f '= 1. 

and 150 K. The problem of the unstable modes asso- 
ciated with the T2( 1) and T2(2)  branches was dealt 
with by excluding from the sum over modes in F all 
those unstable for the smallest finite value of 
S(u =0.23) considered [for u 2 0 . 2 3  the T2(3)  
branch is unstable in the quasiharmonic approxima- 
tion]. The justification for this procedure will be 
given later in our discussion of the perovskite phase. 
It can be seen that these curves have broad minima 
away from u =0.25 for T < 125 K: Above this tem- 
perature the only minimum is at u =0.25. Thus the 
present quasiharmonic theory predicts that the transi- 
tion temperature is between 125 and 150 K. As the 
T2(3) branch is unstable for u 20.23,  we expect the 
transition to be mildly first order. The predicted 
transition temperature is much below the temperature 
(-1280 K) where our studies of the perovskite 
phase show that the R-point vibrations become un- 
stable, signifying the onset of a double minimum in 
the static energy. 

The use of a larger b, to account for thermal ex- 
pansion, tends to lower the transition temperature by 
10-20 K, while the use o f f  = f o  raises the transition 
temperature by a similar amount. Thus the transition 
temperature is not very sensitive to reasonable 
changes in band f .  The crucial point is that the 
quasiharmonic theory predicts that thermodynamic sta- 
bility of the low-temperature phase does not occur 
until the temperature has been reduced by an order 
of magnitude below the value at which mechanical 
instability develops in the high-temperature structure. 
Why this should be is best explained by examining 
the origin of the instability of the low-temperature 
phase. The key factor here is that the frequency of 
the R 2 5 ( 3 )  mode in this phase is strongly dependent 
on 8. As the temperature is raised, thermal excur- 
sions about the static value of 8 increase; this tends 
to decrease 6; the R25(3)  frequency is thus reduced, 
favoring larger thermal fluctuations, and the low- 
temperature structure thus "bootstraps" itself into 
instability by reducing 6 below the critical value 
necessary for the frequency of R 25(3)  to be real. 
Further, we would argue that the stability of any 
lower symmetry phase would be determined by simi- 
lar considerations. In this regard we note that zero- 
point motion alone may be sufficient to destabilize 
any further lower symmetry phases, in spite of their 
potential to lower the static energy. 

In the high-temperature perovskite phase, since 
there is only one variational parameter to be ex- 
plored, it is relatively inexpensive to obtain the 
theoretical equation of state and thus to compute the 
variation of lattice constant with temperature. The  
only problem is that presented by the unstable 
quasiharmonic frequencies. We dealt with this in 
three ways. 

(a) We simply omitted from the sum over modes 
in Fal l  modes for which the frequencies are ima- 
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ginary at the smallest volume considered ( a  = 8.2 
bohr). 

(b) We did the same thing but "renormalized" the 
free energy, i.e., we multiplied the vibrational contri- 
bution by N / ( N  - n ) ,  where N is the total number 
of modes per unit volume and n is the number which 
have imaginary frequencies at a = 8.2 bohr. 

(c) We made a classical approximation to the free- 
energy contribution of the excluded degrees of free- 
dom which goes beyond the quasiharmonic approxi- 
mation. 

The first two approximations are self-explanatory: 
The third requires elaboration. First we examined 
the manner in which the static energy U varies with 
the finite amplitude distortion associated with the M- 
point instability: This exactly paralleled the static- 
energy studies of the R-point instability described in 
Sec. I1 of the present paper. We found, not too 
surprisingly, that the two were very similar (see Table 
111). We thus argued that the dependence on ampli- 
tude is the same for all the harmonically unstable de- 
grees of freedom. This is based on the fact (see Sec. 
111) that all these degrees of freedom are basically 
composed of rotations of the CaF6 octahedra about 
the z axis: The only difference between them is in 
the relative phases of these rotations in adjacent 
planes. Since the R- and M-point motions, which 
represent the two extremes in these relative phases, 
have very similar static energy versus amplitude 
curves, the same should be true for all the unstable 
modes. Thus we added to the free energy a term 

This corresponds to the classical contribution to the 
potential-energy part of F from these degrees of free- 
dom if we assume that 8 now represents the ampli- 
tude of any of the unstable motions and make the ap- 
proximation of treating these modes as independent 
anharmonic oscillators. The factor of $ in the ex- 
ponential normalizes U to the perovskite unit cell. 
Since the classical kinetic-energy contribution to F 
does not depend on volume, it does not influence the 
lattice constant and we did not include it. 

In Fig. 11 we show curves of the negative of the 
vibrational pressure and the static pressure versus lat- 
tice constant for the perovskite phase of RbCaF3, cal- 
culated for a sequence of temperatures: Approxima- 
tion (3) was used for the unstable modes. The tem- 
perature dependence of the lattice constant is given 
by the intersections of the family of vibrational pres- 
sure curves with the static pressure. Thermal expan- 
sion data for RbCaF, show the lattice constant in- 
creasing by 0.18% from 200 to 300 K while the 
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FIG. 11. Vibrational pressure, P, ,  at selected ternpera- 
tures and the static pressure, RP, as a function of lattice 
constant, for RbCaF, in the perovskite structure. 

theoretical result is 0.15%. 
From Fig. 11 two things are apparent: (a) Above 

-13.50 K the phonon and static pressure curves have 
no intersection; this i r n p l i e ~ ~ - ~ ~  that 1350 K is the 
melting temperature. (b) The lattice parameter does 
not exceed the value for which the double well in U- 
versus-8 curves disappears until T 2 1280 K. 

For comparison, the measured melting tempera- 
turei9 is 1383 K. Such good agreement between the 
measured and calculated melting temperatures is 
partly accidental, due to the neglect of anharmonic 
corrections. If the potential were perfectly accurate, 
then the thermal expansion would be accurately 
predicted at low temperature and the neglect of 
anharmonic corrections at high temperature would 
produce a too low theoretical melting temperature by 
(from an analogy with trends in the alkali-halide 
results8) about 20%. As it happens, however, the 
present theory for RbCaF3 gives a too low value for 
thermal expansion at low temperatures (by -17%) 
and consequently the predicted melting temperature 
is only 2% too low. 

Similar calculations made using approximations (1) 
and (2) for the unstable modes show very little 
difference in the results. For example, values for the 
room-teomperature lattice constant are 4.3927 and 
4.3945 A, respectively, for approximations (2) and 
(3). The results for thermal expansion and melting 
temperature using the three approximations are also 
nearly identical. This neither proves nor disproves 
the assumptions of approximation (3) :  What it does 
show, is that the difference between making a plausi- 
ble allowance for the unstable modes, and simply dis- 
carding them is negligible; principally because they 
constitute only 2.7% of the total. This would appear 
to validate discarding the unstable T 2  modes in our 
studies of the thermodynamic stability of the low- 
temperature phase. 
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V. CONCLUSIONS 

We have presented a first-principles study of the 
equation of state and stability of the fluoperovskite, 
RbCaF3, using the Gordon-Kim approach to derive 
the interionic potentials and an extended quasihar- 
monic treatment of the free energy. Our results ex- 
plain why the measured displacive phase transition in 
this material occurs. The explanation does not in- 
volve any subtle anharmonic or polarization effects: 
The phenomenon is predicted, a b  initlo, within the 
rigid-ion pair-potential approximation. The reason the 
system prefers the lower symmetry structure at low 
temperatures is simply that it allows a more efficient 
packing of the ions, given the particular pair poten- 
tials involved. This aspect of our work (Sec. 11) in- 
volved relatively simple static energy calculations. 
With regard to dynamic effects, our most important 
finding is the demonstration that the mechanical in- 
stability of the perovskite phase occurs at a tempera- 
ture an order of magnitude greater than the tempera- 
ture below which the distorted low-temperature phase 
becomes stable. We have thus provided rigorous 
proof of the hypothesis advanced by a number of au- 
t h o r ~ ~ ~ - ~ ~  that, over a range of temperature, in the 
perovskite phase the "ideal" locations of the CaF6 
octahedra are, in fact, metastable. What is surprising 
about our results is the extent of this temperature 
range (-1000 K). Our calculations, made in the 
context of approximation (3) for the free energy, also 
demonstrate that interplanar correlations between the 
rotations of Cap6 octahedra in planes perpendicular to 
the preferred axis are significantly weaker than intra- 
planar correlations. This again provides quantitative 
confirmation of a qualitative hypothesis made by ear- 
lier  worker^.^^.^^. 

One particular aspect of our approach which should 
be stressed is that it is the reverse of that usually 
adopted when discussing structural phase transitions. 
In the conventional approaches, which derive from 
the C ~ c h r a n ~ ~  "soft-mode" theory and Landau's 
phenomenological free-energy expansion,24 such tran- 
sitions are regarded as arising from the "condensa- 
tion," or "freezing-in," of some symmetry-breaking 
distortion associated with a soft mode in the high- 
temperature higher-symmetry phase. In our approach 
the transition can clearly be seen to be dictated by the 
"unfreezing" of the distortion which produces the 
lower-symmetry low-temperature phase. The struc- 
ture then transforms to a state which, on average, 
has the cubic perovskite structure. However, it 
would appear that there must be some dynamical dis- 
order, involving correlated thermally activated rota- 
tions, between the double minima in the lattice po- 
tential. Our studies would appear to support the 
idea2' that these will be strongly correlated within 
planes and weakly correlated between planes. 

As the temperature is raised the mean fluorine po- 

sitions move ever closer to their "ideal" locations 
and their thermal motion will be described more and 
more accurately by anharmonic vibrations about 
those locations. As this happens an external probe 
(e.g., neutron scattering) will see damped plane wave 
normal modes; i.e., phonons with definite wave vec- 
tor but finite lifetime. This situation will be achieved 
much below 1280 K:  Specifically, at 300 K the well 
depth is -f k~ and one should probably expect a 
damped osdllator response in such circumstances. 
However, it should be stressed that there is no sharp 
demarcation temperature between "damped- 
oscillator" and "double-well hopping" responses. 
Above 1280 K, there are no unstable harmonic fre- 
quencies; but, we predict shortly thereafter ( -  1350 
K), the crystal melts as the "vibrational pressure" 
overwhelms the static attraction. 

As the temperature is lowered from 1280 K the 
basic origin of the transition to the low-temperature 
structure is the lattice contraction, which in fact pro- 
duces the double well in the potential-energy surface. 
Further, lowering the temperature simultaneously (a) 
deepens the double well, through volume contrac- 
tion, and (b) reduces the mean kinetic energy, thus 
producing a stronger tendency for the system to lock 
in to one or the other of the double-well minima. 
Both of these factors have a critical influence on the 
transition temperature. 

In the low-temperature phase the present theory 
does appear to predict that soft-mode behavior 
should be observed. However, one should remember 
that intrinsic anharmonicity (intermode coupling) 
must be present and will produce both finite phonon 
lifetimes and some effect on the transition tempera- 
ture. Interestingly, for those alkali halides for which 
the present approach best describes the static energy, 
the quasiharmonic melting temperature is too low 
(see discussion above). A similar effect in the 
present case would improve the agreement between 
theory and experiment. 

These various features of the present approach can 
be summarized by saying that there is a natural 
"asymmetry" of the transition, depending on wheth- 
er it is approached from above or below. We believe 
that this is a genuine effect, inherent in the form of 
the static energy, and not an artifact of the quasihar- 
monic approximation. It is tempting to speculate as 
to whether or not similar effects may be present for 
other structural transformations. 

A much less speculative conclusion can be drawn: 
The present work provides an obvious explanation . 
for the observation by Samara et al. 25 that the transi- 
tion temperatures of almost all known zone-boundary 
instabilities are raised by hydrostatic stress. That this 
should be the case for RbCaF3 is obvious from the 
plots of U versus 6 for different b values in Fig. 4. 
One can see that reducing b (i.e., applying hydrostatic 
stress) increases the depth of the double well. It im- 
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mediately follows that application of the present 
theory to the compressed lattice would yield a higher 
transition temperature. However, this qualitative 
behavior is likely to be present for the rotations asso- 
ciated with any zone boundary instability in any 
perovskite structure. Thus all such instabilities 
should have their transition temperatures raised by 
hydrostatic stress. This conclusion thus applies to the 
large majority of all known zone-boundary instabili- 
ties. Moreover, in other systems, such instabilities 
generally involve rotations of molecular units (oc- 
tahedra, tetrahedra, etc.): If their situation is qualita- 
tively similar to that of the perovskite octahedra, as 
seems very possible, then the same conclusions may 
be drawn regarding transition-temperature depen- 
dence on hydrostatic stress. 

The quantitative results of the present investigation 
are principally confined to predicting the transition 
temperature, the melting temperature, and the value 
and temperature variation of the lattice constant in 
the perovskite phase (see Table V ) .  We could, in 
principle, make further quantitative predictions of the 
temperature variation o f f  and 6 in the low- 
temperature phase, but these would involve the 
much more computationally expensive triple minimi- 
zation of F. However, if one compares fo and 6,3, the 
values that minimize the static energy. with the 
lowest-temperature experimental values, it can be 
seen (Table V) that there is very satisfactory agree- 
ment: A fact which is further evidence for the relia- 
bility of the potentials we used. 

The dispersion curves and density of states are also 
meaningful, if interpreted with caution. Specifically, 
it should not be expected that the former will provide 
a fit to the measured dispersion curves comparable 
with that obtained by other workersz6 who have used 
rigid-ion models, with ionic charges and short-range 
forces adjusted to fit the experimental results. In so 
doing they have absorbed at least some intrinsic 
anharmonicity into their "harmonic" force constants. 
Also, one cannot expect a very good fit to the fre- 
quencies of polar vibrations. For these, the effects of 
charge distortion (polarization) must be significant. 
However, based on experience with the alkali 
 halide^,^ we would argue that frequencies that experi- 

TABLE V. Comparison of various properties of RbCaF3 
predicted by the calculation with experimental results. 

Property Expt. Calc. 

Low-temperature 2b 8.85 A 8.71 Aa 
structure parameters f 1.0085 1 .0090a 

8 0.037 0.034a 

Room-temperature 
lattice constant 4.45 A 4.39 f\ 

Change in lattice constant 0.18%) 0.1 5O/o 
from 200 to 300 K 

Displacive transition 193 K -125 K 

Melting temperature 1383 K 1350 K 

aObtained by minimization of the static lattice energy 

ence strong polarization effects have a relatively weak 
volume dependence and therefore do not play a signi- 
ficant role in the determination of the equation of 
state. 

In conclusion, we point out that the application of 
pair potentials calculated by the Gordon-Kim 
prescription to equation-of-state calculations for alkali 
 halide^,^,^ alkaline-earth halides,'' and now, fluo- 
perovskites, has provided a unified picture for the 
causes of, respectively, melting, superionicity, and 
displacive-type transitions in these materials. The 
fact that a single, parameter-free, theory can account 
for these very different types of phase transitions 
lends credence to the separate account for each 
phenomenon. In all cases the phase transition is re- 
lated to an instability in the lower-temperature phase. 

ACKNOWLEDGMENTS 

We wish to thank Dr. B. M.  Klein, Dr. D.  A .  
Papaconstantopoulos, and Dr. W. E. Pickett for help- 
ful comments on the manuscript. Work at the 
University of Nebraska was supported by the U.S. 
Army Research Office under Contract No. 
DAAG29-80-(2-0034. 

IF. A. Modine, E. Sonder, W. P. Unruh,  C .  B. Finch, and 
R. D. Westbrood, Phys. Rev. B lo, 1623 (1974). 

ZM. Rousseau, J. Y. Gesland, J.  Julliard, J. Nouet, J .  Zarem- 
bowitch, and A .  Zarembowitch, Phps. Rev. B l2, 1579 
(1975). 

3C. Ridou, M. Rousseau, and A .  Freund, J.  Phys. (Paris) 
Lett. 38, L359 (1977). 

4C. R ~ d o u ,  M. Rousseau, J. Y. Gesland, J.  Nouet, and A .  
Zarembowitch, Ferroelectrics l2, 199 (1976). 

SH. Jex, J. Maetz, and M. Mullner, Phys. Rev. B 21, 1209 
(1980). 

6A. Bulou, C.  Ridou, M. Rousseau, J. Nouet, and A .  W .  
Hewat, J .  Phys. (Paris) 9, 87 (1980). 

'A .  Bulou, J.  Nouet, A .  W .  Hewat, and F .  J .  Schafer, Fer- 
roelectrics 2, 375 (1980). 

sL. L.  Boyer, Phys. Rev. Lett. 42, 584 (1979); and Phys. 
Rev. B 23, 3673 (1981). 

9L. L. Boyer, in Proceedings of the 7th International Thermal 
Expansion Symposium, November 1979 (Plenum, New 
York, in press). 

1°L. L. Boyer, Phys. Rev. Lett. 45, 1858 (1980); 46, 1172 
(1981). 



24 THEORETICAL STUDY O F  THE STRUCTURAL P H A S E .  . . 2591 

l lR .  G .  Gordon and Y. S. Kim, J .  Chem.  Phys. 56, 3122 
(1972). 

12J. B. Bates, R. W. Major, and F. A.  Modine, Solid State 
Commun.  17, 1347 (1975). 

'3W. A, Kamitakahara and C .  A Rotter, Solid State Com- 
mun.  l7, 1350 (1975). 

14S. Green and R. G .  Gordon (unpublished). 
I5R. A. Cowley, Phys. Rev. l34, A981 (1964). 
I6L. P, Bouckaert, R. Smoluchowski, and E. Wigner, Phys. 

Rev. 5 0 ,  58 (1936). 
I7L. L. Boyer, Phys. Rev. B l9, 2824 (1979). 
18G. Lehmann and M. Taut, Phys. Status Solidi 54, 469 (1972) 
'9The measured melting temperature is quoted in Ref. 1 cit- 

ing Oak Ridge National Laboratory Report NO. 2548 

(unpublished). 
20M. Rousseau, J.  Phys. (Paris) Lett. 40, L439 (1979); and 

Ph.D. thesis (Le Mans University, 1977) (unpublished). 
2 'M. Rousseau, A .  Bulou, C .  Ridou, and A.  W. Hewat, Fer. 

roelectrics 25, 447 (1980). 
D. Bruce, K. A .  Miiller, and W. Berlinger, Phys. Rev. 

Lett. 42, 185 (1979). 
2 3 ~ .  Cochran. Adv. Phys. 9. 387 (1960); l0, 401 (1961). 
24L. D ,  Landau and E. M .  Lifshitz, Staristical Phys~cs (Per- 

gamon, London, 1958). 
2 S ~ .  A,  Samara, T. Sakudo, and K. Yoshimitsu, Phys. Rev. 

Lett. 3 5 ,  1767 (1975). 
2 6 ~ .  Rousseau, J .  Nouet, and R. Almirac, J .  Phys. (Paris) 
z, 1423 (1977). 




