
August 1981 Report. No. STAN-CS-8-871

° ~LEVEL

Good Layouts for Pattern Recognizers

by

1Howard W. Trickey

C>..)

LLJ
I4

I.. Research sponsored by

=IU= National Science Foundation

__ and
Defense Advanced Research Projects Agency

II

Department of Computer Science

Stanford University
Stanford, CA 94305 DTIC

•'I

D

QqtI2~

S,82 01 04 071

S.: '••: :+•+ •' :" "= l i"" " . . . I

lA

Good Layouts for Pattern Recognizers

ir•.
by

Howard W. Trickeyt

Computer Science Department •

Stanford University I
I

'fT".LýVl) FOR PU!~JCRLI (T 11A

Abstract A
j A system to lay out custom circuits that recognize regular languages

can be a useful VLSI design automation tool. This paper describes the
algorithms used in an implementation of a regular expression compiler.'
Layouts that use a network of programmable logic arrays (PLA's) have
smaller areas than those of some other methods, but there are the prob-
lems of partitioning the circuit and then placing the individual PLA's.
Regular expressions have a structure which allows a novel solution to
these problems: dynamic programming can be used to find layouts which -4

are in some sense optimal. Various search pruning heuristics have been
used to increase the speed of the compiler, and the experience with these
is reported in the conclusions.-

Index Terms: VLSI layout, silicon compilers, string pattern recognition, control logic
design, regular expressions, dynamic programming, programmable

-- c,.1CLoS. F-r logic arrays, partitioning.

I)TIC M3~

D 1:-.; % e•.r•,., t
ELECTEu~I'A •a•

t WaD T

...........
DL 0 ', /'

C-0107.

3%-.-~ .

2. R•gular Exrrcslons Ms Patterns_1

§1 Int.roduction

r The design of Vl,8s circuits is currently a very time-consuming operation. Some or the]
recent work to help alleviate.this pr~blcni has taken its lead from prograiinting language
compiler technology, where great strides have been made by using programs to convert

-. high level descriptions into lower level programs. The idea or a silicon compiler to convert
high level descriptions of circuits into layouts has arisen [1,4,5,10,11,121.

A problem ~ith silicon compilers is the definition of a suitable circuit description
-laguage. Some languages are basically descriptions of the upper levels of a hierarchical
design. These hccome "high level" descriptions when the lower levels of the hierarchy can
be derived from libraries and/or a familiarity with the class of circuits being described.
The "Bristle Blocks" [5] system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU's, etc., built around a data bus).

A second approach is to use a notation which gives the external behavior required. -- I
SOne method of doing this is to give a sort of program which runs on a machine specified

-at the register transfer level [10,12]. This technique is meant to be used for designing -i

computer-like chips. Another notation, which can be used for specifying the controlling
logic portion of any.chip, is that of regular expressions. A regular expression can be used
to describe a pattern: a sequence of states ir which certain inputs must be seen. One can
require that various outputs be given whenever certain patterns have been seen. Some
or the many uses of pattern detectors can be found in [7]. This paper discusses a silicon
comPiler whose input is a regular expression and whose output is a layout for the pattern
recognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area
will be described, It is fairly easy to give a programmable logic array (PLA) to implement
a pattern recognizer, but a single PLA can be rather large. At the other extreme, one can
have logic to recognize each basic symbol of the pattern, joining them up with other logic.
Such a method can be proved to yield a layout with an area which is linear in the length of
the expression [2], but in practice the resulting layouts have been found to be large. The
regular expression compiler uses a network of PLA's, and it gives layouts better than either
of the extremes.

The next section will explain how regular expressions represent patterns. Then
the implementation of recognizers using networks of PLA's will be described. Numerous
networks are possible, so a big part of finding a good layout involves searching for a the
best (or at least, near-best) division of the expression. The 'ourth section will discuss
-ihow dynamic programming and some judicious heuristics can be used to e'ýct this search.
Finally, the last section will give some conclusions, based on experience, about what the

:. various search heuristics can accomplish and how much they cost.

§2 Regular Expressions as Patterns

A regular expression is a notation for representing a set of strings of symbols. It is
:: z defined recursively as follows:

B92l 1 ~l

2. Regular E1xpressions as Patterns

* The symbol is the most basic kind or regular expression. In the application to circuits,
thle occurrence of a symbol ineatis that the input wires must be zero or one, according -
to the symbol definition, within the "current state". A

* If ' and F are.regular expressions, then the union E + F Is a regular expression which
means: either E or F. A

* Ir E and F are regular expressions, then the concatenation E. F (or simply EF) Is a
rogular expression which means: E followed by F.

* If E is a regular expression, then the closure E" is a regular expression which means: I
zero or more occurrences of E. -

* If E is a regular expression, then the pocitive closure E++ is a regular expression which __

means: one or more occurrences or E.

* If Ip is a regular expression, then Lhe optional occurrence E? is a regular expression which -

means: zero or one occurrence of B.

If E is a regular expression, then (E) is a regular expression (used for grouping). Unless
parentheses are used, the unary operators have precedence over the binary operators, - -

and concatenation has precedefice over union.

The use of regular expressions to describe pattern recognizers is perhaps best seen .

b. means of an example. The ro!lowing is the complete input file required by the regular
vxprcss;on compiler for a.small example:

line data[2]
symbol zero(data[iJ,-data[2)), one(-datatl] ,data[2]), anyO) A

any (one any* zero + zero any* one) +
(one any* zero + zero any* one) any

The line declaration glves the wires that are input to the circuit. A line name can be I
subscripted (with [.]), as data is, to represent more than one wire. One can declare any
number of lines. The symbol declaration gives the names of the symbols that will occur in
the regular expression, with the values of the input wires which identify a symbol given in
parentheses after its name. Hlere there are three symbols: zero, recognized when data(l]
is a logical "1" and data[2J is a logical "0" (indicated by the "-" in front of data[2J);
one, recognized when the data wires are reversed; and any, which doesn't specify either
"(" or "0" for the data wires, so it is a "don't care." Note that any will be recognized
at (lhe saine time as zero or one: there is no requirement that the wire combinations for
different symbols be disjoint.

The regular expression itself follows the declaration. This one gives all strings of
symbols where either (a) the first symbol difters from the second last symbol, or (b) the
second symbol differs from the last symbol. This expression will be referred to as PR2.

The pattern recognizer is a synchronous machine. The successive symbols or a string
must appear in successive clock cycles (states) Ior the pattern to be recognized. Whenever
the symbols seen in the preceding states rorm one of' the complete strings specified by an

qi

3. Layoiut of Regular tEx•rcelon ItoeOgidi w n

-M

(a) (b)

Figure 1. (a) Expression Tree (b) Compressed Expression Tree

expression, an output signal is given.

rThe notion or an ezpression tree for a regular expression wvill be useful later on. Theexpression tree has symbols as leaves and regular expression operators as internal nodes. It

is forined in the same recursive manner that expressions are: the tree for E + F.is a node
containing "+" witih the expression trees for E and F as children; similarly for the other
operators. Figure 1(a) gives the expression tree for ((a + b)++)".c . (d?)*.

Li A unary oprrator can be combined with the symbol or operator node beneath it. A
"c'ascade or unary operators can be reduced to a single one using obvious rules. This yields
a. compreasd expression tree, such as the one shown in Figure 1(b) for ((a + b)++) .c . (d?).

,An NFA (nondeterministic finite automaton) can easily be given to implement a
regular expression recognizer. In Figure 2, an NFA to recognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of active states. In
each successive clock cycle, any active states with transitions marked by a symbol seen in
that cyclewill make the successors or those transitions active. States only remain active
for one cycle unless explicitly reactivated. Whenever the final state is active, an output 4
signal is given. II' desired, the machine can keep operating so that it can detect overlapping
occurrences or patterns.

The derivation of an NFA to recognize a pattern is straightforward. For details, see
V (2].

§3 Layout of Regular Express;on Recognizers

An easy way to implement a regular expression recognizer is to ,se a PLA to simulate
the NVA corresponding to it. Each state can be represented by a dynamic register whose

k'altue is calculated by I-he PLA using the inputs and the current state values (which Lrc fed

ELI

4 . 3. Lun'ul, or Regular Rxprestion Riecognivers

any

one zero

START zero FINALany any

onne

zero any an

L one

Figure 2. NPA to recognize PR2

back rrom the registers).. Details of this method are given in [2[.

* The problem. is that the area used by such a layout will tend to grow qu ad rat!ically -

with expression size. A method that leads to a linear growth or the required area is Wd
implrue eah smbolasc dynamut w regstetgte.ihlgcwihtsswehro

not ieymbo cOmbnting cascadwies. ohe unsymoperamoruls" this veto can yenaldnu a lnea

andcgie upt B sn prpit connecting logic, At simln lou wordrcabtaneedin thet thso rcgi erso

Usingo modules act loie t or saeacr he ymbo givesrea soabk layotste byt axpertieng with

isa ditimplem oenta lrastion oedgthismethodwas shown i 2 that aor smallstil expressionsteLAmho

is better. This is perhaps to be expected, since the regularity of PLA's allows one to packF? small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the
idea of' using a combination rf thle two miethods arose. The current implementation of
thle regular expression compiler uses PI.A's for low level subexpressions, connected together
with logic to takec care of' the operators near thle root of' the expression tree.

Suppose that one has laid out modules to recognize expressions E and, F. It is assumed
that these mnodules are rectangles, and that they have enable wircs comning in at thle left and
recognized wires leaving at the right. Any input wires required to recognize the symbols in
thle module's expression must also enter at the left. Then thle expressions E + F and E -F
can he laid out as shown in Figures 3(a) and 3(b), repectively. Operators which have been
co mbne~ md with tinary operators can be i mmplemenmited si milarly, as illu strated in the layout
for (E FI)++ in Vigure 3(c). This type of layout is called an operator split. Note that no
imiatter what operator is involved, the two subparts can be laid out either side by side (a

3. Lakyout or Rlegular HNIxreLvlon Iteeodais5r4

enable reognae ed

F F

(a) (b)

E ýF

WI

hoiotlslt roeo o rteohr (a) Ietclslt,

Figure S. Operator splitst (a) EP + F (b) Bo sF (c) (E b Fr A

enable recognized

Figure 4. Substitution split

horizontal split) or one on top or the other (a vertical split).

The use of opeorator splits might be enough to accomplish a layout, but there is the
problem that the lan'outs fro the t~wo operandl expressions mnight have very different sizes.
This would lend to a lot 9C whfite space when) a rectanglc surrounding the whole layout is
(lelitned. TPhe soluition to this is to dto a suibstitution split. In a substitution split for an

F expression E, somic nodle D deep in the expression tree for E is replaced by a dumimy node.
'Piton the expression tooted at D is laid wut (the dummy tree), as well as the now smaller 1

expression E (the father tree). E will have an enable dummy output wire and a dummy
recognized input wire. The former is attached to the enable input of D, and the latter is _
fed by the recognized wire or D, as shown in Figure 4.

The inel(hod for laying out a regular expression, given a compressed expres.4ion tree is
to either (i) use a single PLA, or (ii) do ;in operator split or substitution split at the root%

1111(l recursively lay out the subparts. This accomplishes the goal of using logic to form a

... •WO -. . .. =

. .-
.

6 3, L.nyuut or RIteglutn 1,Npressinik Itecottnimers

iictwork of' 'tLA's for recognizing the regular' expression. What remains Is to specify how
to choose among the various layout strategies. At each stage or the recurslo,, the following
ehoices must be made:

CI, Should i nor lo PLA, an operator split, or a sAstutin split be used?

C2. If A split is used, should it be a horizontal or a vertical splith

C3. i" a substitution split is used, which descendant expression should become the cursionmy
tree?

one option or the regular expression compiler I:s to mna~ke the above choices guided by
S... :......the- priniples that PLA"s--should be neithle-r t:oo small nor too large, mild that when splits

are used the subparts should be approximately equal in size. In this method, splits are
performed by looking for a split which yields subparts closest in size, and tile recursion

continues until the expressions are under some prespecilied size. The "size" in terms of
area is approximated by the weight - tlenumber or liaves In- the expression tree.

This heuristic method produces fairly good layouts quite quickly (inl approximately 7
seconds on a VAX/780 for a 150-leaf expression), However, iR usually requires some playing
around with the parameters oF the method to find the best layout possible with this scheme.
EBven then, a better layout is usually possible. There are several reasons why the heuristic
method can be improved upon:

The idea that two subparts should have the same area isn't strictly correct, What really
is wanted is for the heights or widths to be about the same. Now, the PLA's generated
from regular expressions all tend to have similar aspect ratios (height/width), so that
if' the subparts are simple PLA's then the "equal area" principle should hold. It seems
plausible that if the subparts are themselves split, then there are some approximately
square layouts for them, and so again the equal area principle should yield a reasonable
layout. hlowever, an unequal-area layout could be even better, and in practice there are

many cases where one is better.

* The weight of an expression is only a rough indication of tha area needed to lay it cut.
If the layout involves splits then the shape of the expression tree affects the economy of
the layout.

* The area oF a layout depends somewhat on the number of input wires needed. Thus,
even if tv., iubparts have equal weights, the layout for one subpart might be taller if it
uses more inputs.
F Finally, some optiimi.zat.ions are performed when laying out a PIA (having an effect similar

to factoring the expression). This is another reason why the weight of an expression only Z!

roughly predicts the area of the resulting layout.

To overcome some of these problems, the regular expression compiler has another
option: search systematically through a specified collection of layout strategies, looking for
the best one.

-§4 Find ,g Op tinil Layouts

An exhaustlive search can find the best layout for an expression, given that one In
using the general scheme of operator and subsLltUition splits with PI1,A's at the lowest level,

All possible combinations or choices CIC2, and C3 can be tried, using all possible layouts
for the subparts in the case 6f splits.

Clearly, such an exhaustive search would be very time consuming, even for for quite
small expressions. One way to avoid a lot of the work is to note that the dimensions
of a layout for an expression rmmain about the same when the layout is made part of a
layout for a containing expression. There is often some height increase when a module Is

4 .. .incorporated as a subpart in a split, because the input wires to the other subpart may have
t.o run throuigh the module. This offedt can be calculated, however, so the conclusion Is
that the strategies for laying out a given subexpression need be calculated only once. The
significance of this is that a sort of dynamic programming can be used to effect the search.

bDynamic programming can be used to find optimum strategies for problems that can
be 4roken up as follows: starting out at afirst "stage", some choices are made leading
to a collection of smaller, similar problems - the second stage; this continues until some
final stage is reached where there are no more choices to be made. If the problem is such
that a knowledge of all the optimal solutions at stage i is sullicient to find all the optimil.
strategies for stage i - 1, then dynamic programming can be used, The layout scheme
satisfies this condition (approximately), where the problems of stage i are finding the best
layouts for subexpressions whose roots are at depth i in the expression tree.

One problem in applying dynamic programming to layout is that one needs more
than just the minimum area layowts for the subexpressions: a slighitiy larger layout may be
better to use as a subpart in a split if its height (or width) is closer to tha-t of the other
subpart. What is really needed is the best area for all possible heights and widths. In
practice this would probably mean keeping all layouts tried, which would eliminate most
of the savings that are entailed by the use of dynamic programming.

Tile solution to !hi.- problem is to use ant approximation: divide up the continuumor possible aspect ratios into a small number of intervals, and for each subexpression keep

only the smallest-area layout in each aspect ratio interval.

If the only splits allowed were operator splits, then the search for a layout could
follow the standard dynamic programming procedure: start at the last stage (the lowest
leaves) and find layout strategies there; then move up the expression tree, trying single
'lA's and operator splits. Trying an operator split is a relatively quick operation, where

the dimensions of the children are added to the logic dimensions to give the resulting layout
dimensions. (Thhrre is also an adjustment for input wires, as mentioned above.)

It is the substitution split which greatly increases the work required to find an optimal
layout. After a descendant expression is replaced by a dummy node, optimal layouts have
to be found for the father tree. Only some of the layouts found so far can be used: those
for subexpressions not involving the dummy tree. Thus, a somewhat independeit layout
problem must be solved for each possible father tree, and eacl, of those witl involve still
more father tree layout problems. The work required increases dramatically as the root is
approached because there are many more possible father trees (one for each descendant,

]-~E~

* 44, Fladlidng Optinuml LnyoutL

not ineludiv:g the subproblem rather trees).

In Nto, by the time all the wubprohlems have been solved for an expression, layouts
Nill have been round for all possible prefix trees, A preflx tree is what Is left attached to
the root after any combination or descendants have been replaced by d(umrny nodet,

To get some idea of how many preoix trees there can be, onshider T', the complete
binar) tree or n levels, Let S,, be the set of prefix trees of 7'", and N,• be the number of
trees in t. Aqy binary tree with < rn levels Is a prefix tree of 7,,. A binary tree of • n
levels can only be formed by having a root with a member or S,,_ or the empty tree as
left child, and a member of S,,-, or the empty tree as right child. T'he'efore,

N., -- (N,_ 1 + 1)2 _< 2'=

T, has m -- " - 1 nodes, so N,. < 2"l/, This calculation shows that just enumerating
tle possible father trees ror a balanced expression or 30 leaves (i.e., about 60 nodes) is out
or the question.

An obvious partial solution to this is tvo have some minimum expression size say 6
leaves - below which an expression will not be considered as a subpart or a split. This has
the effect ol' chopping off some number, 1, of the most populous levels from consideration
as dummy tree roots. This changes the above calculation so that now N,,- < 2'+

With this improvement, one could perhaps handle expressions of 30-50 leaves, but it might
take a long time, considering that at the very least a PILA has to be considered out for each
father tree tried.

To be able to handle expressions with up to, say, 300 leaves, the search needs further
pruning. The "equal area" principle mentioned above stiggests that splits where one subpart
is much bigger than the other are likely to waste 81)aeo. The regular expression compiler
has a split-ratio parameter, S. Splits will only be considered when the weight ratio or one
subpart to the other is in the range [l/S, S). It has been round that in practice S s 2
jields layout.s as good as S = oo.

When all splits are not considered, there turn out to be a large number of subexpres-
sions whose layouts couldn't possibly be used in the layout for the whole expression. This
means that the dynamic programming paradigm of working on the expression tree bottom-
up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts
whenever required.

To retain the advantages of dynamic programming, a dictionary of layouts is kept
so that layot.s need never be 'ound twice for the same subexpression. The dictionary can
contain lywyouts lor each of the possible prefix trees of each subexpression. This is allowed
by having the dictionary indexed by (e, I), where e is an expression node and I is an excision
list: nodes that have been replaced by dummies.

Here is the final algorithm frr finding layout strategies. There are three tuning
parameters, to allow trading off search thoroughness for execution time: S, th6 split-ratio;
L, the lowest weight allowed for a IPLA; and 11, the highest weight allowed for a PILA.]

{ Find strategies for layout of the expression z,

• -P

5, Perform'!tfla Lice or he onper

where the ezpreseion node,- on I have been replaced by dummies .
if 1,ookupStrategles(x,l) A INIT then return

{ already found strategies for (ll) .
If x.welght C (L.ilH. then

TryPlA(x,l)
if x.lehild,weighlt/x.rchild.welght e 1I/S .,, 81 then begin I

FndStrategksx .hl,l)

Fi ndStrategies(x. rchlld,I)
TryOperatorSpllt(xl) 31
end

for all descendants.y of x such-that-
(x.mwelght-y.welght+I)/x.welght e [1/S ... S) do b-gin

ExciseDumrniy(xy) { replace y by DUMMY in z }
FlndStrategles(x,Append(ly)) I
FlndStrategies(yI)
TrySu batitutlonSpllt(x,l~y)
end A

end FlndStrategles A

TryPLA, TryOperatorSpilt, TrySubstitutlonSpllt:
{ These procedures calculate the dimensions of the layouts

implied by their arguments. For the splits, all possible iayouts
resulting from combinations of strcaegies for the subparts are tried.
The best strategies in various aspect ratio ranges are entered
into the dictionary. }

LookupStrategy(e,l):
{ This function looks up in the dictionary the layout strategies

for ezpression e with ezcisions list 1. Any members of I which are rot
descendants of e, or are descendants of other members of 1, are ignored.
INIT is returnee if no strategiec have yet beer, sought for (e,). }

§5 Performance or the Regular Express;on Compiler

The regular expression compiler has been implemented in C on a VAX/780. It can
produce layouts using either the heuristic method or the dynamic programming method.
Bly appropriately setting the parameters for the heuristic method, one can also find the
layout, as a single PLA or as a network of logic connecting individual symbol recognizers.

This section will report how the compiler perrorms on some sample expressions.

The first series or expressions is the Pit series. The Pit2 expression was given in
Section 2. The others in the series have the same line and symbol declarations, and the
following deflinitions (any' is used as shorhand for n occurrences of any):

* ~[USIJ'Ofl'S'~,.4. t~t rr'

10 .i Perrorinalee, or ltIte 'lhr tpre'M3on Cwonl rIot

1xpiession Weight Depth Layout I, S Art-c Tine .
Name Method (N40) (sece)

1,118 72 14 single PLA ,07 2.8
all logic .85 6,7 -.

hourisatle 4 17 .58 218-
dyn. prog. 6 60 1.5 .56 14.0
dyn. prog. 6 G0 2.0 155 24,0
dyn. prog. 6 30 3.0 .55 55.7

PRI16 160 23 - single _PLA--443 _ 1.- .

all logic 2.28 15.3
heurlitle 4 17 1,69 ,.0

dyn. prog. 6 40 1.5 1.47 34,4

dyn. prog. 6 30 20 1.23 150-6-
Pm32 352 40 single PILA 21.00 130.3

all logic 8.88 35.9 .

heuristic 4 17 3.87 17.3
dyn. prog. 6 40 1.7 3.55 267,1_
dyn. prog. 7 25 2.0 3.19 1,182.5 J

Table 1. Data for PR expressions

PR4 = any'(PR2) + PR2 any2

P =8 = any4 (PR4) + (PR4)any'

PR16 - any8(PR8) + (PRS)an y8

P02 = any' 5 (PRl'S) + (rlto)any1 6

PRn is recognized whmomver the last n inputs rail to match the first n. The results of -A

running the regular expression compiler on the PR series is given in Table 1. The times -

given in the last column are CPU seconds on the VAX. Areas are in X2 X 106, where X -7

is the minimum feature size. The "heuristic" results were the best that could be found
by varying the parameters (there is another parameter, not shown, which indicates the
desired shape of the final layout). It can be seen that both the heuristic method and
the dynamic programming method are quite a bit better than the single-PLA or all-logic
methods. Dynamic programming beats the heuristic method by aiT amount which increases
with the expression size. Several dynamic programming results are shown to give some idea .

o' the tradeoff between search thoroughness and execution time that occurs, Sketches of -

the layouts found by the compiler for PRI6 are shown in Figures 5(a)(heuristic) and 5(b)
(dynamic programming). The boxes are the individual PLA's.

The next series of expressions to be tried were the SnQ expressions, where SEQn has
the form:

line I (n]
symbol al(1[1]), bl(-l(1]), a2(1 [23, b2(-l[2) an(l(n]), bn(-l(n])
symbol any 0

r). i,('troinUauc(of the R~egulatr Rxpr('~ioitl Complier 1

fl A

A

(b)

Figure 5. Layout sketches for PRiG: (a) heuristic (b) dynamic programming

bi + Any* (at b2 +' a2 b3 +..+ an aniy++)

A
These expressions signal if the input wires are not turned on in sequence. The SnEQA
expressions arc different from the PR ones in that they have a la~rge. number of input wires, I
so that the heuristic strategy (whilch doesn't pay attention to how miany in~puts a module
needs) might be expected to do poorly. Another fact about these expressions is that the
expression trees are tall and sparse The i'it expressions had rather bushy trees. Tfable 2
gives the results or using the regular expression compiler on the SE'Q expressions.

10S. Perrorniunce or the [legular iExp~re.4sion Comrpiler
to"\ ss~ion Wel-ghL Dbph La~ou - H...7-S rer'ime

Name .Method (M4X 2) (scs)
SQ6 3' 4-.- .9- iger-A-. -- ~ .30 1.5

.--- --- --- alllogc-.~- -----. ... 51' 4.0

E heuristic 4 1-7 .28 2.1
__ __ __ __ __ __ __ __ _ dyn. prog. -6 17 1.7 .45.0

S E Q32 66 35 Single PLA .07 3.5
al-oi-1.23 9.3heuri'stic 4 28. .64 3.4

>dW. ..p~og 6 70, 1.7 .61 27.5
SEQ64 130 67 single P.LA 3.48 9.2

all lo'gic 3.33 20.7
-heuristic --- 4 .-- 365 1.76 7.9

.. . Ayn. prog.. 6 ý30 1 47 1.62 186.0.BS1EQ1 6 32 5 single PLA .. 27 1.4

all logic .34 3.2
heuristic 4 20 1.6j

IISE-Q32 6.1 6 single PLA 793.

huitc 4 25 .59 3.6
dy.po. 6 65 1.7 .59 8.9

heur-stic 4 35 19 .
____________ 6 30.. 1.7 1.53 15.9

Table2. Dta fo'SEQand SS Q expressions

Thefinl rou o exresios i aslihtmodification of the SEýQ group. To see what
effct he ept ofthetre hs o th excutontime, the BSEQ expressions were formed:the arjus coiesof he EQ xprssins ithutthe, bi+any++ at the beginning, factoredso tat heyforn cmpleelybalnce biarytrees. For example, IASEQ4 is:

((al b2 + a2 b)+(a3 b4 + a4 any++))

The results of compiling these expressions areq.1so given in Table 2. It can be seen thatthe compiler works laister oni the bushy llsIý,O expressions than it did on the correspondingS EQ exprvssions. This is because there are a sinialler number of possible dumnmy nodeswhich satisfy the split-ratio requirement in the bushy trees.

-- v0. Evalua otit and Conci usions "___ .Is

S' Evaluation and Condlus;ons

It has been shown that regular expressions have a sl,ructure-vwhich makes thOern quite
":tnINablc to a "di vide-and-conquqr" part,itioningrand placementprocedure Which runs fairly
quTikly. Clearly, the network-or-PLA's approach is superior to the single PIA or all-logic
methods.

'I The program could certainly run a lot faster if substitution splits weren't tried, but it
- has been found that these are definitely required. Perhaps the expression. could be parsed -

in such a way that the children would always be about the same wdight: there is some _ -I

frecdom allowed beca~use- concatenation and union are-associat~ive operatos owever, the
closure operators form harriers to Arbitrary rparsing, so in general one cannot balance ithe
children. A

The search over a range of possible dummy tree roots islanother aspect which slows the
compiler. if one tries only that node -wihich yields the best weight ratio between,the father
and dummy trees, the resu:lting areas aresomewhere between those found by the heuristic

method and dynamic programming. For example, this modification led to the same layout
as full dynamic programming for SEQ16, but for Sr&Q32 it only did as well as the heuristic
method. It was round that- one had to try the five best dummy t;ee roots before the full
dynamic programming layout would be found for SEQ32. The execution times using the
best-dummy-only modification were quite close to those of the heuristic method, so perhaps
this is the mnost useful method of all, for small to medium sized expressions.

The dynamic programming method requires keeping a number of "best" layo.its for
expressions, in each of a number of different aspect ratio ranges. Varying the number of
these ranges has some effect on the ability of the compiler to find good layouts. Originally, -

three ranges were used. This seemed to work, but when the compiler was changed to A
keep layouts for six ranges, the results were quite a lot better - at least for the larger

expressions.

To sum up, each of the capabilities of the regular expression compiler adds incremen-
tally to the quality of the layout, at a cost of extra execution time. However, even the most
expensive dynamic programming searches are still quite fast compared to other aspects of
VLSI design - such as check plotting - so it is .iot unreasonable to use dynamic program-
ming always.

The work described in this paper has some resemnblence to previous work on graph
theoretic approaches to partitioning [[], but the problem is somewhat more tractable when
trees are involved. Also, the idea of doing the placement by recursively splitting the plane
into halves has been used before 16]. Not much has been done on automnatically choosing
a network of PLA's to implement a seque'tial circuit, though there has been some work

S-done on optimizing single PLA's [8). A circuit realization using a network of PLA's is given
in [1], but the user must specify the splits with a hierarchical circuit definition.

The regular expression compiler is still undergoing impovements. Currently, the
ability to have numerous "output signals" embedded in the expression is being incorporated.
Also, more IPLA optimizations arc going to be done. In particular, non-overlapping NPA
states will be detected arnd a group of such states can be assigned binary-encoded state

2. identifiers. This should reduce the current tendency for the PLA's to be fairly sparse.

F .

14*

Ther'c are plans to usc the compiler to generate much of the conttrol logic for a VLSI chip I
being designed,

AcLknowledgCITMents

The regular b'xpressioti compiler Was originally designed and implemented by Jeff
Ullman at Standrord'UnIversity. The author has added the dynamic programming feature
and made various other improvements.

A
A

,References Cn.Poedns p 1-2,Jn 99

1] R. Ayres. "Silicon Compilation -A Hierarchical Use of PLAs." 6 th Design.

[2] -R.W. F oyd, and J.D.. Ullman. "The Compilation of Regular Expeessions ir.6o
1Inegratedl Circuits." Tech. Rep. STAN-CS-80-798, Stanford Computer Science
Dept., April 1980.

(3] M.J. Foster, and I-.T. Kung. "PRIA. Programmable Building Blocks for Recognizing -

(4) *J.. Cay."Inrodctin t Siico Copiltio." b~hDesign Automation Co.nf.

Transactiongs, on. Coptes5C o306p.34-9, June 1979.

[5 D.. Jotha . "Prograled Blogcks Ara Siionoptiietio." Desig TAnsoactioson
Com.Putersings, po ,p. 3 1043173 , J ebuar 1978.

Li (9] DU. Scuhwkr,13W er ngn. "A MnCtPac n PrgoprModel for thene Partitioningsofblectrasc
oCi rapis. Rersnhato. Design Automation Worksho Proceedings,. pp. 5-,Jue1972.

71 Apprl~opac h y to o utr Adaed Degoign." AfoPS FaNon eint Comnputer Conf ErEnE,
Trol. ton 45, 1976.rC2, o , p 8-33 un 99

[ii] J.D. Wiliam.' "STogCmmS Loi ArGraphca COmptiiaie ornig.evl" 1E rnscions o

Namptional Compute Con. 2,proceedn17s, pp.br8uary~ 1078.

[19] C.. Scimmlerm ,BW lenan. "Cos Perp odlformac Anhysi andOptmi itionoinghl Porallel 4c

EF C~intrcuits.onal SDmpsigi rutmaton C omputer PardoaeDesinrsption Lang2ageseOctober

E- 1

[1] .PSiwirkM..Babac. Th MURTCD yse -AnInoatv

