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Al:stract

\j A system to lay out customn circuits that recognize regular languages
" can be a useful VLSI design automation tool. This paper describes the

algorithms used in an implementation of a regular ezpression compiler.”
Layouts that use a network of programimable logic arrays (PLA’s) have
‘smaller areas than those of some other methods, but there are the prob-
lems of partitioning the circuit and then placing the individual PLA's,
Regular expressions have a structure which allows a novel solution to
these problems: dynamic programming can be used to find layouts which
arc in some sense optimal. Various search pruning heuristics have been
uscd to increase the speed of the compiler, and the experience with these

is reported in the conclusi‘ons.r\

Index Terms: VLSI layout, silicon compilers, string pattern recognition, control logic
design, regular expressions, dynamic programming, programmable

logic arrays, partitioning,
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. Regular Expressions as Patterns

=1

§1 Introduction

’l‘he design of V18I circuits is currently a very timé-consuming operation. Some of the
. recent work to help alleviate this problém has taken its lead from programming language
" compiler technology, where great sirides have been made by using programs to convert
high level descriptions into lower level programs. The idea of a silicon compiler to éonvert
high level descriptions of circuits into layouts has arisen |[1,4,5,10,11,12}.

A problem with silicon compilers is the definition of a suitable circuit description
language. Somc languages are basically descriptions of the upper levels of a hierarchical
design. These become- “high-level” descriptions when_the lower levels of the hierarchy can
be derived from libraries and/or a familiarity with the class of circuits being described.
The “Bristle Blocks” [5) system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU’s, ete., built around a data bus).

A s"cond approach is to use a notation which gives the external behavior required.
One methed of doing this is to give a sort of program which runs on a machine specificd
at the register transfer level [10,12). This technique is meant to be used for designing
computer-like c¢hips. Another notation, which can be used for specifying the controlling
logic portion of any chip, is'that of regular expressions. A regular expression can be used
Lo describe a patlern: a sequence of states ir which certain inputs must be seen. One can
require that various oulputs be given whencver certain patterns have been scen. Some
of the many uses of patiern delectors can be found in {7). This paper discusses a silicon
compiler whose input is a regular expression and whose output is a layout for the pattern
recognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area
will be described. 1L is [airly casy to give a programmable logic array (PLA) to implement
a pattern recognizer, but a single PLA can be rather large. At the other extreme, one can
have logic to recognize cach basic syinbol of the pattern, joining them up with other logic.
Such a method can be proved Lo yield a layout with an area which is lincar in the length of

. the expression (2], but in practice the resulting layouts have been found to be large. The
regular expression compiler uses a network of PLA’s, and it gives layouts better than cither
of the extremes.

The next scction will explain how regular expressions represent patterns. Then
the implementation of recognizers using networks of PLA’s will be described. Numerous
networks are possible, so a big part of finding a good layout involves searching for a the
best (or at least, near-best) division of the expression. The fourth scction will discuss
how dynamic programming and some judicious heuristics can be used to c™acl Lhis search.
Finally, the last scction will give some conclusions, based on expericnee, about what the
various scarch heuristics can accomplish and how much they cost.

g2 chu]ar Exprcssions as Patterns

A regular expression is a notation for representing a sct of sbrings of symbols. It is
defined recursively as follows:
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2 . 2. Regular Bxpressions as Patterns

¢ The symbol is the most basic kind of regular expression, In the application Lo circuits,
the occurrence of a symbol means that the input wires must be scro or one, according
to the symbol delinition, within the “current state”.

o Il I and F arc rcgular cxpressions, then the union /2 + F ls a regular expression which
means: either £ or F,

o Il £ and I arc regular expressions, then the concatenation E - I (or simply EF)ls a
regular expression which means: E (ollowed by I,

1 1] L] 1] 1] L]
o I[ IV is a rcgular expression, then the closure £ is a regular expression which means:
ZCTO OF IMOTC OCCUrrences. ol‘ E.

o Il [ is a regular cxpression, then the positive closure E'H‘ is a regular expression which
Means: one o more occurrences of E.

o If I7 is a regular expression, then the optional occurrence It is a rngular cxpresswn which

means: zero or one occurrence-of I,

o If I is a regular expression, then (F) is a regular expression (used for grouping). Unless
parcinitheses are used, the unary operators have precedence over the binary operators,
and concatenation has precederice over union.

The use of regular expressions to describe pattern recognizers is perhaps best seen
by means of an example. The following is the complete input file required by the regular
oxpression cornpiler for a small examples

line datal[2]

symbol zero(data(1i],-datal2]), one(-data[1l],datal[2]), any()
any (one any* zero * zero any* one) +

(one any* zero + zero any* ocne) any

The line declaration gives the wires Lhat are input to the circuit. A line name can be
subscripted (with [..] ), as data is, to represent more than one wire. One can declare any
number of lines. The symbol declaration gives the names of the symbols that will occur in
the regular expression, with the values of the input wires which identify a symbol given in
parcntheses after its name. Here there are three symbols: zero, recognized when data(1]
is a logical “1” and data[2] is a logical “0” (indicated by the “-” in front of data[2]);
one, rccognized when the data wires are reversed; and any, which docsn’t specily either
“1" or “0” for the data wires, so it is a “don’t care.” Nole that any will be recognized
al (he same Litme as zero or one: there is no requirement that the wire combinations for
dilferent symbols be disjoint.

The regular expression itscll lellows the declaration. This one gives all strings of
symbols where cither (a) the first symbol differs from the sccond last symbol, or (b) the
sccond symbol diflers from the last symbol. This expression will be referred to as PR2.

The pattern recognizer is a synchronous machine. The successive symbols of a string
must appear in successive clock cycles (states) Tor the pattern Lo be recognized. Whenever
the symbols seen in the preceding states form one of the complete strings specified by an
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Figure 1. (a) IXxpression Tree (b) Compressed Iixpression Tree

expression, an output signal is given,

The notion of an ezpression tree for a regular expression will be uselul later on. The
expression tree has symbols as leaves and regular expression operators as inlernal nodes. It
is formed in the same recursive manner that expressions are: the tree for I7 + F.is a node
containing “+" with the expression trces for £ and F as children; similarly for the other

operators. Tigure 1(a) gives the expression tree for ((a + b)"“")‘-c <(d?).

A unary oprrator can be combined with the symbol or operator node beneath it. A
cascade of unary operators can be reduced to a single one using obvious rules. This yields

a compressed ezpression tree, such as the one shown in Figure 1(b) for ((a + b)++)‘-c-(d?)'.

An NFA (nondeterministic finite automaton) can casily be given lo implement a
regular cxpression recognizer. In Figure 2, an NFA to rccognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of aclive states, In
each successive clock cycle, any active states with transitions marked by a symbol seen in
that cycle will make the successors of those transitions active. States only remain active
for one cycle unless explicitly reactivated. Whenever the final state is active, an output
signal is given. If desired, the machine can keep operating so that it can delect overlapping
occurrences of patterns.

The derivalion of an NFA to recognize a pattern is straightforward. For details, sece

[2].

83 Layout. of Regular Exprcss;on Rccognizcrs

An casy way to implement a regular expression recognizer is to use a PLA Lo simulate
the NFA corresponding Lo it. Iiach stale ean be represcented by a dynamic register whose
vilue is caleulated by the PLA using the inputs and the current state values (which are fed
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4 : ' 3. Layosut of Regulnr Expression Recognisers

- Figure 2. NFA to recognize PR2

back from the registers). Details of this method are given in [2].

The problem’is that the arca used by such a layout will tend to grow quadratically
with expression size. A mecthod that leads to a linear growth of the required arca is to
implement cach symbol as a dynamic register, together with logic which tests whether or
not the symbol is on the input wires. The “symbol modules” have an enable input and
a recognized output. By using appropriatc connecting logic, it can be arranged that the
symbol modules act like the states of the NFA, where a state’is aclivated by asserling its
enable input. (Actually, the circuit is not exactly like the NFA, because the state memory
is distributed over the transition edges.) It was shown in [2] that as long as the expressions
are compressed by combining cascades of unary operalors, this method can yicld a linear
layout. A divide and conquer technique is used to decide where to place the symbol modules
and connecling logic. A similar layout would be oblained using the systolic recognizers of

13].

Using individual logic for each symbol gives reasonable: layouts, but experience with
an implementation of this method has shown that for small expressions, the PLA mcthod
is better. This is perhaps to be expected, since the regularity of PLA's allows one to pack
small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the
idea of using a combination ef the two methods arose. The current implementation of
the regular expression compiler uses PLA's for low level subexpressions, connected together
with logic Lo Lake care of the operators near the root ol Lhe expression tree.

Suppose that one has laid out modules to recognize expressions £ and F. It is assumed
that these modules are rectangles, and that they have enable wires coming in at the lelt and
recognized wires leaving at the right. Any input wires required to recognize the symbols in
the module'’s expression must also enter at the left. Then the expressions E+ F and E - F
can be laid out as shown in Figures 3(a) and 3(bj, repectively. Operators which have been
cotmbined with unary operators can be iinplemented similarly, as illustrated in the layout
for (/- F")** in t*igure 3(c). This type of layoul is called an operator split. Note that no
matter what operator is involved, the two subparts can be laid out cither side by side (a
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Figure 4. Substitution split

horizontal split) or onc on top of the other (a vertical split).

The usc of operator splits might be enough to accomplish a layout, but there is the
problem that the layouls for the two operand expressions might have very different sizes.
This would lead to a lot of white space when a reclangle surrounding the whole layout is
defined. The solution Lo this is Lo do a substitution split. In a substitution split for an
expression I7, some node D deep in the expression tree for [ is replaced by a dummmy node.
Then the expression rooted al D is laid vut (the dummy tree), as well as the now smaller
expression £ (Lthe father tree). I will have an enable dummy output wire and a dummy
recognized input wire. The former is attached to the enable input of D, and the latter is

fed by the recognized wire of D, as shown in Figure 4.

The method for laying out a regular expression, given a compressed expression Lree is
to cither (i) use a single PLA, or  (ii) do an operator split or substitution split. at the root
and recursively lay out Lhe subparts. This accomplishes the goal of using logic to form a
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" option: scarch systematically through a specified collection of layout strategics, looking for
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3. Layout of Regulur Expression Recognizers

network of PLA's for recognizing the regular expression. What remains s to specily how
to choose among the various luyoul strategies, At each stage of the recursior, the following
- choices must be made:

Cl. Should a gingle PLA, an operator split, ot a substitution split be uscd?
C2. If a split is used, should it be a horizontal or a vertical split?

C3. If a substitution split is used, which descendant expression should become the dummy
" tree?

Onc option of the regular cxpression compiler is to tnake the above choices guided by
* the principles Lthat PLA’s should be neither too small nor too large, and that when splits

are used the subparts should be approximately equal in size. In this method, splits are
performed by looking lor a split which yields subparts closest in size, and the recursion
continues uutil the expressions are under some prespecilied size. The “size” in terms of
arca is approximated by the wetght — the number of leaves in the expression tree.

This heuristic method produces fairly good layouts quite quickly (in approximately 7
scconds on a VAX/780 for a 150-lcaf expression). However, it usually requires some playing
around with the parameters of the method to find the best layout possible with this scheme.
[Bven then, a better layout is usually possible. There are several reasons why the heuristic
method can bLe improved upon:

¢ The idea that two subparts should have the same arca isn't strictly correct. What really
s wanted is for the heights or widths to be about the saine. Now, the PLA’s gencrated
from regular expressions all tend to have similar aspect ratios (height/width), so that
if the subparts are simple PLA's then the “equal area” principle should hold. It scems
plausible that if the subparts are themselves split, then there are some approximately
square layouts for them, and so again the cqual area principle should yicld a reasonable
layout. [lowever, an uncqual-area layout could be cven better, and in practice there are
many cascs where one is better, -

¢ The weight of an expressicn is only a rough indication of tha arca needed Lo lay it cut.
If the layout involves splits Lhen the shape of the expression tree affects the economy of
the layout.

e The area of a layout depends somewhat on the number of input wires needed. Thus,
even il tw¢ subparts have cqual weights, the layout for one subpart might be taller if it
uses more inputs,

¢ Finally, some optimizations are performed when laying out a PLA (having an elfect similar
to facloring the expression). This is another reason why the weight of an expression only
roughly predicts the arca of tiie resulting layout,

To overcome some of these problems, the regular expression compiler has another

the best one.
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1. Finding Optiminl Layouts. -

§1 Finding Optimal Layouts

An exhaustive search can find the beat layout for an expression, given that one is

‘using the general scheme of uperator and substitution splits with PLA's at the lowest level,

All possible combinntions of choices C1,'C2, and C3 can be tried, using all possible layouts
for the subparts in the case of splits.

Clearly, such an exhaustive search would be very time consuming, even lor lor quite
small expressions. One way to avoid a lot of the work is to note that the dimensions
of a layout for an expression remain about the same when the layout is mnade part of a
layout for a containing exptression. There is often some height increase when e module is

‘incorporated as a subpéxrt in a split, because the input wires to the other subpart may have

to run through the module. This cffect can be calculated, however, so the conclusion is
that the strategics for laying out a given subexpression need be calculated only once. The
significance of this is that a sort of dynamic programming can be used to cflect the search.

Dynamic programming can be used to find optimum strategies for problemns that can
be broken up as follows: starting out at a first “stage”, some choices are made leading
to a collection of smaller, similar problems — the sccond stage; this conlinues until soine
final stage is rcached where there are no more choices to be inade. If the problem is such
that a knowledge ol all the optimal solutions at stage ¢ is sullicient to find all the optimel
strategies for stage ¢ — 1, then dynamic programming can be used. The layout scheme
salisfics this condition {approximately), where the problems of stage ¢ are finding the best

‘layouts for subexpressions whose roots arc at depth ¢ in the expression tree.

One problem in applying dynamic programming to layoutl is that one needs more
than just the minimum arca layonts for the subexpressions: a slightiy larger layout may be
better to use as a subpart in a split il its height (or width) is closer to that of the other
subpart. What is real'y needed is the best area for all possible heights and widths, In
practice this would probably mean kecping all layouts tried, which would climinate most
of the savings that are cutailed by the use of dynamic programming.

The solution to this problem is to usc an approximation: divide up the continuum
of possible aspect ratios into a small number of intervals, and for each subexpression keep
only the smallest-area layout in cach aspect ratio interval.

If the only splits allowed were operator splits, then the scarch for a layout could
follow the standard dynamic programming procedure: start at the last stage (the lowest
leaves) and find layout strategies there; then move up the expression tree, trying single
PLA's and operator splits. Trying an operator split is a relatively quick operation, where
the dimensions of the children are added to the logic dimensions to give the resulting layout
dimensions. (There is also an adjustment for input wires, as mentioned above.)

It is the substitution splil which greatly increases the work required to find an optimal
layout. After a descendant expression is replaced by a dummmy node, optimal layouts have
to be found for the lather tree. Only some of the layouts found so far can be used: those
for subexpressions not involving the dummy tree. Thus, a somewhat independent layout
problem must be solved for cach possible father tree, and cacl of those will involve still
more ather tree layout problems. The work required inereases dramatically as the root is
approached because there are many more possible futher trees (one for each descendant,




3 : : _ A linding Optimal Linyouts

not includieg the subproblem [ather trees).

In fact, by the time all the subproblems hiave been solved for an expression, Inyouts
will have been Tound Tor all possible prefiz trees. A prefix tree is what is lefl attached to
the root alter any combination of descendants have been replaced by dutnmy nodes,

To get some idea of how many prefix irees there can be, cinzider 7y, the eomplete
binary tree of n levels, Let Sy be the set of prefix trees of T, and Ny be the number of
trees in Sw. Any binary tree with € n levels is a prefix tree of Ty, A binary trecof € n
levels can only be formed by having a root with a member of 8,y or the emply tree as
left. child, and a member of §4_y or the cinpty tree as right child. Thevcfore,

Na = (Naop +1)2 € 287

Tw has m = 2™ — 1 nodces, so N,, € 2™/3 This calculation shows that just enumerating
tl.e possible father trees for a balanced expression of 30 leaves (i.e., about 60 nodes) is out
of the question.

. An obvious partial solution to this is tr Yave some minimum expression size — say 6
leaves — below which an expression will not be considered as a subpart of a split. This has
the effect of chopping off some number, !, of the most populous levels from consideration

as dummy tree roots. This changes the above caleulation so that now N, < gm/2'*
With this improvetnent, one could perhaps handle expressions of 30--50 leaves, but it might
take a long time, considering that at the very least a PLA has to be considered out for each
father tree tried.

To be able to handle expressions with up to, say, 300 leaves, the scarch needs further
pruning. The “cqual arca” principle mentioned above suggests that splits where one subpart
is much bigger than the other are likely Lo waste space. The regular expression compiler
has a split-ratio parameter, §. Splits will only be considered when the weight ratio of one
subpart to the other is in the range {1/S5,S]. 1t has bheen found that in practice § = 2
viclds layouts as good as § == oo,

bk

When all splits arc not considered, there turn out to be a large number of subexpres-
sions whose layouts couldn't possibly be used in the layout for the whole expression. This
means that the dynamic programming paradigm of working on the expression tree bottom-
up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts
whenever required.

b pidii g

To retain the advantages of dynamic programming, a dictionary of layouts is kept
so that layouus need never be found twice for the same subexpression. The dictionary can
cotitain layouts for cach of the possible prefix trees of each subexpression., This is allowed
by having the dictionary indexed by (e, {), where e is an expression node and { is an excisicn
list: nodes that have been replaced by dummies. 3

Here is the final algorithm for finding layout strategies. There are three tuning
« parameters, to allow trading ofl scarch thoroughness for exccution time: S, the split-ralio;
L, the lowest weight allowed for a PLA; and 1], the highest weight allowed for a PLA. .

FindStrategios(x:BxpressionTree, 1lixcisionList):
{ ‘Find strategies for layout of the ezpression z,




5. Performance of the Regular Expression Compiler ' ]

where the ezpression nodes on | have been replaced by dummies }
if LookupStrategies(x,l) # INIT then return
{ already found strategies for (z,) }
it xavelght e [L.11) then
TeyPLA(x,1)
if x.child.weight/x.rchild.weight ¢ [1/S S] then begin
FindStrategics(x.lehild,l)
FindStrategics(x.rehild,l)
TryOperatorSplit(x,l)
end
for all descendants.y of x such that— . -

(x.welght—y. welght+1)/x.weight e [I/S S] do b'\gin
ExciseDummy(x,y) { replace y by DUMMY in z }
FindStrategics(x,Append(lyy))

I'indStrategies(y,l)
* - - TrySubstitutionSplit(x,l,y)
end
end FindStratcgies
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TryPLA, TryOperatorSplit, TrySubstitutionSplit:

{ These procedures calculate the dimensions of the layoutls
tmplied by thetr arqguments. For the splits, all possible iayouts
resulting from combinations of sircicgies for the subparts are tried.
The best strategies in vartous aspect raiio ranges are eniered
into the dictionary. }

b

o214

vl b

A ek

LookupStrategy(e,l):

{ This function looks up in the dictionary the layout strategies
for ezpression e with ezcisions lst | Any members of | which are rot
descendants of ¢, or are descendants of other members of |, are ignored.
INIT 1s returnec if no strategies have yet beer sought for (¢,l). }

ot bkl

85 Performance of the Regular x pression Compilcr

The regular expression compiler has been implemented in C on a VAX/780. It can 3
produce layouts using cither the heuristic method or the dynamic programming method. ;
By appropriately setting the parameters for the heuristic method, one can also find the ¢
layout. as a single PLA or as a network of logic connecting individual symbol recognizers.
I'his section will report how the compiler performs on some sample expressions.

The first series of expressions is the PR series. The PR2 expression was given in
Scetion 2. The others in the series have the same line and symbol declarations, and the
(ollowing definitions (any™ is used as shorvhand for n occurrences of any):




o Derfortnunce of the Regular Bxpression Compller

dyn. prog. 7 25 20 | 319 1482.5

Table 1. Data for PR expressions

PR4 = any?(PR2) + PR2 any?

PR8 = any'(PR4) + (PR4)any*
PR16 = any®(’1r8) + (PR8)any?®
PR3? == any'(PR16) + (PR16)any'®

PRn is recognized whancver the last n inputs fail to mnatch the Rrst n. The results of
running the regular expression compiler on the PR scries is given in Table 1. The times
given in the last column are CPU scconds on the VAX. Arcas arc in A% X 10%, where A
is the minimum feature size. The “heuristic” resuils were the best that could be found
by varying the parameters (there is another paramecter, not shown, which indicates the
desired shape of the final layout). It can be seen that both the heuristic method and
the dynamic programming method are quite a bit better than the single-PLA or all-logie
mcthods. Dynamic programming beats the heuristic method by an amount which increases
with the expression size. Scveral dynamic programming resulls are shown Lo give some idea
of the tradeofl between search thoroughness and exccution time that occurs, Skclches of
the layouts found by the compiler for PR16 are shown in Figures 5(a)(heuristic) and 5(b)
“(dynamic programming). The boxes are the individual PLA’s.

The next scries of expressions to be tried were the SEQ expressions, where SEQn has
the form: '

line 1(n] ‘
symbol a1 (1(1]), b1(-1[1]), a2(1[2)), b2(-1(2]), ..., an(1[n]), bn(-1[n])
symbol any ()

ixpression  Weight Depth Tayout . ~ H S Aren| Time|
C Name Method 7 (MAY)]  (sccs)]
RS 72 14 single PLA 07 28 | :
all logie ) . o | Tl
_ heuristle 4 17 .68 2.8
dyn. prog. 6 60 1.6 .56 14,0
dyn. prog. 6 G0 2.0 55 24.0
, | dyn,prog. 6 30 30 .68 - 887 |
all logle - 298 15.3
heuristic 4 17 1.69 6.9
dyn. prog. 6 40 15 | 147 | M4 |
.. ... .. { dyn.prog. 6 300 2.0 | ‘123 | 1898 | -
PR32 352 40 single PLA ) [ 2100 | 1303
' all logic 8.88 35.9
_heuristic 4 17 3.87 17.3
dyn. prog. 6 40 1.7 3.65 267.1°
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5. Derformance of the Regular Bxpression Compiler

(a)

(b)
Figure 5. Layout sketches for PR16: (a) heuristic (b) dynamic programming

bl + any* (al b2 +a2 b3 + .., + an any++) 1

These expressions signal il the input wires are not turned on in sequence. The S1EQ

expressions are different from the PR ones in that they have a large number of input wires, L

so that the heuristic strategy (which doesn’t pay atiention Lo how many inputs a module 3
nceds) might be expecled to do poorly. Another fact about these expressions is that the 1
expression trees are Lall and sparse. The 'R expressions had rather bushy trees. Table 2 b

sives Lthe resulls of using the regular expression compiler on the SEQ expressions.




8 Performanee of the Regular Expression Compile_r

lixpression “Weight Depth |~ Layout . L I § Arcal  Time]- - G
- _ . | Name .. . . |. “Method-- - - R (MX3)| (secs) | |
. SBOIG - =310 single-PlA- L o 30 15 &
e e | lllogie- s e e L e 0 T
- heuristic 411 o8 2.1 L 3
: dyn. prog. 6 17 17 | .54 5.0
SEQ32 66 35 single PLA .97 3.5
' - alllogic - 1.23 9.3 _ B
heuristic 4 28 | &4 | 34 |
L oo dynopreg . 600 1 | e 75
- SEQG4 130 67 _single PLA 3.18 9.2
: ' all logic - - 3.33 20.7 ‘ B
i | hedristie Tl g8 g g | e
e o [Tdynipreg. U6 300 -1 | 162 186.0. o
BSEQL6 32 5 single PLA | 27 1.4 f
all logic .34 3.2 E
heuristic 4 20 23 1.6 ‘
dyn. prog. 6 40 1.7 23 | 2q
BSEQ32 64 8 single PLA _ .92 3.0
) ' all logic 74 6.8 R 3
heuristic - 4 25 59| 3.6
dyn. prog. 6 65 1.7 .59 ,8.9_ , 3
BSEQG4 128 7 single PLA 3.39 9.8
all logic 2.28 18.4
heuristic 4 35 1.91 7.6
dyn. prog. 6 30 1.7 1.53 - 15.9
Table 2. Data for SEQ and BSEQ expressions f
- The final group of cxpressions is a slight modification of the stQ group. To sce what :
cflect the depth of the trec has on the exceution time, the BSEQ expressions were formed:
they are just copics of the SEQ expressions without the bi+any++ at the beginning, factored !
so thatl they formn completely balanced binary trees. Tor example, BSEQA is:
((al b2 + a2 b3) + (a3 b4 + a4 any++))
The results of compiling these expressions are also given in Table 2. It can be seen that o
the compiler works faster on the bushy BSEQ expressions than it did on the corresponding ,
81:Q expressions. This is because there are a smaller number of possible dumimy nodes i
which satisfy the split-ratio requirement in the bushy trees.




w.s-s;ughua L pseena mad TR sk C

6, Evaluation and Conclusions

§6 Lvaluation and Conclusions

It has been shown that regulnr expressions havc a stiucture'which makes themn qmte .
amenable to a “dividé-and-conquer” partitioning and placemeit procedure which runs lairly

quickly. Clearly, the network- ol‘-l’LA s npproach is superior to the single PLA or all-logic- -
% mcbhods.

sl S ik

i

The program could certainly run a lot faster il subslitution splits weren't tried, but it
has been found that these are definitely required. Perhaps the expressions could be parsed
- in such a way that the children would aiways be about the same wcight: there is some -
S freedom allowed because concatenation and-union are-associative operators. However, the -
= " “¢losure operators form barriers to arblbr.lry reparsing, so in general one cannot balance the
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The §‘c_arch over a rangc of poss:blc dummy tree- rooLa is ‘mothcr napoct whlch slows the - e

and dummy trees, the rcsultmg areas aré qomewhcrc bctwoen Lhosc found by thc heurislic
method and dynamic programming. For example, this modification led to the same layout
as {ull dynamic programming for SEQLS, but fer SEQ32 it only did as well as the heuristic
method. It was found that one had to try the five best dummy tice roots before the full
dynamic programmming layout would be found for SEQ32. The execulion times using the
best-dummy-only modification were quite close to those of the heuristic method
this is the 1nost useful method of all, for small to medium sized expressions.

, 50 perhaps

The dynamic programming method requires keeping a number of “best” layo.ts for
* expressions, in each of a number of different aspeet ratio ranges. Varying the number of
these ranges has some effcet on the ability of the compiler to find good layouts. Originally,
three ranges were used. This scemed to work, but when the compiler was changed to

keep layouts for six ranges, the resulls were quite a lol better — at least for the larger
cxpressions.
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To sum up, cach of the capabililies of the regular expression compiler adds incremen-
tally to the quality of the layout, at a cost of extra exccution time. IHowever, even the most
. expensive dynamic programming searches are still quite fast compared to other aspects of

VLSI design — such as check plotting — so it is .10t unrcasonable to usc dynamic program-
ming always.
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The work described in this paper has some resemblence to previous work on graph
theoretic approaches to partitioning [8], but the problem is somewhat more tractable when
trees are involved. Also, the idea of doing the placement by recursively splitting the plane
into halves has been used before [6]. Not much has been done on automatically choosing

. a network of PLA's to implement a sequeatial cireuit, though there has been some work
B done on optimizing single PLA’s [8]. A circuit realization using a nctwork of PLA's is given
‘ in [1], but the user must specify the splits with a hicrarchical circuit definition.
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The regular expression compiler is still undergoing improvements. Currently, the
ability to have numerous “output signals” embedded in the expression is being incorporated.
Also, more PLA optimizations arc going Lo be done. In particular, non-overlapping NFA
states will be detected and a group of such states can be assigned binary-encoded state
3% [T identifiers. This should reduce the current tendency for the PLA's to be fairly sparse.
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There are plans to use the compiler to generate much of the control logie for a VLSI chip
being designed.

l\cl\'rnp\v]_pdg‘f;rr}(:";‘i“ts o

UNman at Standford University. The author has added the dynamic programming leature
and made various other improvements.
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The regular ‘éxpreséion compiler was originally designed and implemented by Jeff =
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