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I. INTRODUCTION

In studies of atmospheric turbulence, the positive x direction is
usually defined as the direction of the mean horizontal wind, and the com-
ponent of the wind in the x direction is the u component. The time average of
u is denoted by u, and u' = u - 3. The other horizontal coordinate is y, and
the compunent of the wind in the y direction is v. By definition the time
average of v, V¥, is zero, and v' = v. The vertical coordinate is z, and the
xyz system is a right-handed rectangular coordinate system. The vertical com=
ponent of the wind is w. The quantities u' and v' are often referred to as
the longitudinal and the lateral fluctuations of velocity, respectively. The

corresponding standa:d deviaticns are o, and oy, where oy = [(u')gjté and oy =
[(v'sz]ub. The longitudinal intensity of turbulence is defined as i, = oy /U,
and the lateral intensity is i, = oy/u.

In approximately the lowest 50m the horizontal wind stresses are
nearly constant with height, and the wind direction is also nearly constant
[Hess, 1959]. Then the following equation can be derived: -

= Uy (1)
k2 !

oo
1 5]

where u, is called the friction velocity and k is the von Karman constant.
[busch, 1973] discusses some different estimates of the von Karman constant,
but it is now most commonly taken to be 0.4, [Panofsky, 1973] shows that

the friction velccity at 100m is typically only about 10 per cent less than
the surtface valne in mid-latitudes.

Integration of Equation (1) yields u = (u,/k)2nz plus a constant,

but the lugarithm of zerv is undefined. Therefore, a roughness parumeter, 3z,
is introduced to obtain

o

- z
u "%’(ﬁ-ﬂ’z—"w) ’ (2)
vhere { is a stability paraneter. This wind law does not apply below z = z,.

Tables of roughness parameter appear in {Hess, 1959] and [Froat et
al., 1978]. Over ice 8, may be less than O.Otem. 1In high grass or wheat
8o is typically a few centimeters. In a forest the roughness parameter is a

fraction of a meter to one meter. In a city the roughness parameter is nor-
mally 1-4m.

Y i8 gero under conditions of neutral stability and the simple
logarithmic wind law, W = (uy/k) 2n (z/s,) is obtaired. Neutral stability
exists when the lapse rate of temperature iz equal to the adiabatic lapse

rate. Under this condition a parcel of air displaced vertically experiences -
no buoyant acceleration. E
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When the temperature decreases wiin altitude more rapidly than the
adiabatic lapse rate,_the atmosphere is unstable and Y is positive.

Eblackadar et al, 1974] contains information for estimating y, which may be

greater than 1.7 for a very unstable atmosphere.

In a stable atmosphere y is negative and can be expected to have a
magnitude less than 1.0.

[Pasquill, 1961] devised a classification ascheme for estimating
atmospheric stability from surface (10m) wind speeds and amount of heating or
cooling. Pasquill stability classes range from A through F, vwhere A is very
unstable, D is neutral, and F is the most stable clasa. According to
Pasquill's classification, as wind apeeds increase the atmosphere approaches
neutral stability. When speeds are greater than 6m/sec, conditions are
neutral unless there is stirong insolation, in which case the atmoaphere may be
slightly unstable. At night, cloud cover less than 50 percent permits enough
cooling of the surface that the atmesphere is in the most stable F Pasquill
category for wind speeds of %m/sec or less. Whenever there is a heavy over=-
cast of clouds, the atmosphere is neutral regardless of wind speed or time of
day or night. During the day the amcunt of insolation depends upon sun angle
and cloud amount and type. [Luna and Church, 1972] outline details of a pro-
cedure for determining insolation from standard meteorological observations.

This report contains an extensive discussion of variations of inten=-
sity of turbulence with atmospheric conditions, surface roughness, and alti-
tude. There is also a discusaion of the autocorrelation function. Finally,
other conditions affecting turbulence are diascussed.

II. INTENSITY OF TURBULENCE

This section presents a discussion of some measurements of intensity
of turbulence made at Redstone Arsenal, Alabama, and a survey of the litera-
ture deacribing results obtained by others.

Table I contains U and the longitudiral and lateral intensities of
turbulence measured in August 1973 under unstable atmospheric conditiona. The
site was the Army Gas Dynamics Laser Range. It consiated of a grass-covered
plot, 61m wide and 655m long, with trees lining each side. Five towers were
located 137m apart, and a sixth was 9.1m from the middle tower on a line per=-
pendicular to the line of the other five towers. More information can be

found in [Stewart, 1975].

Both longitudinal and lateral intensities of turbulence vary with
height. At 10m, i, varies from 0.25 to 0.98 and has a mean of 0.56, while
iy has a much larger variation from 0.16 to 1.41 and a mean of 0.5%. If a mean
is taken of the individual ratios i,/i,, 0.94 is obtained at 10m. At 6m
iy/iy has a mean of 1.04. The mean iy of 0.61 is also greater than the mean
iy, which is 0.59. At 2m the mean of the ratics i,/i, is 1.10. At 2m
iy varies from 0.21 to 3.33 and has & mean of 0.85. At 2m i, also has a wide
variation from 0.27 to 2.09, and the mean is 0.77. Note that i,/iy = ay/oy.
It follows that under the conditione of these measurements the atandard
deviation of the lateral componsnt of the wind is the same order of magnitude
as the standard deviation of the longitudinal component.
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There is no agreement among diverse seta of observations c¢n the
magnitude of oy/oy. This probably representa real changes in atmospheric con-
ditions. For example, [Swaneon and Cramsr's, 1965] Table 6 contains mean
values of ¢,/c, at lm, and the magnitude of this ratio varies from 0.44 to
1,03, [Mayer's, 1981] Table 3 summarises 4 sets of measurements made in a
spruce forest, and here the :«tioc oy/c, varies from 0.65 %o 0.86.

There is evidence that the patio oy/o, depends upon stability. For
example, [Wyngaard and Clifford, 1977) include in their Table 1 mean values of
(0,/@)2 and (0,/W)2 for 5.Tm over a flat uniform Kansas plain. For very
unstable coaditiona the mean oy divided by the mean o, is 1.32. For moder-
ately unstable conditions this ratio_is 0.95, but when the atmosphere is astable
the ratio is 0.74. From Table 2 of (Panofsky et al., 1978] one obtains )

_ _ magnitudes of the raiio oy/oy of 0.72_to 1.18 for unatable conditions at a

: "~ height of 2m. [Champagne et al., 1977] give oy, and o, for 4m above flat farm
land during unstable conditions. For all of the 4 sets of data in their Table 1
the ratio oy/o, ias greater than 1.0 and in one test run oy vas more than

50 percent greater then o,. On ths wther hand, [Ariel and Nadeshina, 1976] eun-

mariged field measurements for neutral stratification, and oy/o, varied from -

“0.T4 to 0.89. [Skibin. 1972] obtained oy/o, of 0.48 in an experiment where
stability was conaidered neutral according to its Faaquill category, and
oy/oy Was 0.26 for slightly unstable conditions. For more unstable conditions
Skibin obtained oy/g, from 0.27 to 0.37. The problem of making these data
consistent with other investigations may be the inexactnesa of the Pasquill
methud [Luna and Church, 1972]. ' S -

vt i 1 b i

The relative magnitudes of oy and o, also depend upon height.
[Frost et al., 1978] consider a neutrally stable atmosphers, and from their
equation 4.26, vhich applies at a height of 10m, oy/o, = 0.64 is obtained.
They then proceed to give a typical example where this ratio increases to 1.00
at 600m, above which oy = oy. According to [Dickson and Angell's, 1968]
Figure 5 oy = oy at 2km, but oy is from 0.7 oy to 0.9 oy, at O.Skm. |[Bowne and
..y Ball, 1970] list means of oy/u, and oy/u, taken from different stavilities for
' two levels in a rural location and two levels in an urban location. Outside
the city the mean o, divided by the mean o, is 0.76 at 12.2m and 0.97 at 6im.
Ineide the city the ratio is 0.76 at 15.3m and 0.60 at 53.3m. [Bradley's, 1980]
Table 3 describes measurements at the crest of a 170-m hill; these data do not
show a consistent change with height. oy/o, ranges from 0.65 to 0.74 at 9m
and from O0.77 to 0.82 at 16m. At 25m the ratios vary from 1.09 to 1.17;
however, at 87m the magnitudes of oy/c, are lower than at 25m and range from
0.71 to 1.02.

B Lt e

nuggs o

Table II summarizes some of the literature deascribing measurements
of i, and oy/u,. The magnitude of i, varios from less than O.! to more than
1.0, but the moat typical values are between O.1 and 0.4. The values of
oy,/u, are commonly between 1.5 and 3.5.

The intensity of turbulence nurmally Gecreases as stability
increases. This is illustrated in the work of [Swaneon and Cramer, 1965] who
made measurements at White Sands Missile Range. Their tower stood on a smooth
plot surrounded by ground containing amall, uniformly distributed sand dunes.
They measured temperature, wind speed, and wind direction at nine levels from
4.6 to 62.0m. Only observation pericda with regular temperature profiles and
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"4.6-m wind speeds of at least 4 mi/hr(1.8m/sec) were included in the data
base. They used the rather unusual definition that conditions were neutral if
the magnitude of the temperature difference between 4.6m and 62.0m was not
greater than 0.56°C. On the basis of 824 observation periods Swanson and ; ]
Cramer found that when the atmosphere was less stable than neutral, the inten- : a 1
sity of turbulence was greater than when the atmosphere was stable. :

. Intensities were intermediate during neutral stability at each of the nine
levels. For example, at 62.0m for wind speeds from 1.8 to 3.1 m/sec, i, = L
© 0.30 for unstable conditions, i,; = 0.16 for neutral conditions, and i, = 0.13 - re ]

. for stable conditions. At 4.6m the corresponding intensities are 0.42, 0.27, F )

"and 0.25, respectively. At higher wind speeds turbulence intensities are

“smaller. For wind speeds greater than 4.46m/sec under unstable conditions the

. longitudinal intensities of turbulence are 0.22 and 0.17 at 4.6 and 62.0m, ‘
- respectively. Under stable conditions the corresponding magnitudes of i, are
© 019 and 0.10. ' . ' e

e o

[Skibin, 1972] inclndes a table of five experimental sets of obser-
vations made in connection with an atmospheric dispersion study. One of these ,
was under Pasquill stability category D, or neutral, and had a value of 0.356 S
for oy/U. In a slightly unstable case o,/Q was 0.414. TFor more unstable ' )
cases, longitudinal turbulence intensities were 0.309, 0.403%, and 0.852.

[Wyngaard and Clifford, 1977) summarize earlier work in their Table 1
- in which they list the mean values of ouz/u over a flat, uniform Kansas C
plain. Their data show that for very unstable conditions oy/T is8 0.22 and is

0.20 for moderately unstable condxt;ons. In a moderately stable atmosphere
"rou/u is only O.16. o
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In [BlnkowskJ s, 197(] Figure 4 many cases of oy/u, are plotted v
graphically as a function of stability. Near neutral conditions the values of
oy/iiy are mostly near 2.5, and under stable conditions the mean is nearer 2.2.
For an unstable atmosphere the mean oy/u, becomes larger as the atmosphere: ‘
becomes less stable, and is near 4.0 for a very unstable atmosphere.

[6rimm, 1971] examined 15 cases which were either neutral or
"slightly stable, where 2z, = 1.1cm, and obtained a mean cu/u* of 2.36 for
heights from 8 to 32m. In 44 unstable cases, where z, = 2.6cm, the mean oy/u,
was 3.31. ' ' '

3

The intensity of turbulence depends upon the roughnesas of the J.
underlying surface, as well as upon the stability. Usually the intensity 3
increases as_stability decreases or as the roughness of the underlying surface
inereases. [Hanna, 1981] points out that an exception to this rule may occur
in very stahle, light wind conditions.

[Bowne and Ball, 1970] obtained observations of turbulent wind fluc- | : |
tuations on a tower in downtown Fort Wayne, Indiana, and on another tower in a
nearby rural setting. The roughness was larger in the city, and the urban
heat island reduced atmospheric stability, especially at lower levels.
Turbulence wus more intense in the rougher and 1ess stable urban environment. 2 ' ]
The lower levels on the urban and rural towers were 15.3 and 12.2m,
respactively. In 16 of 19 tests au/ﬁ at the lower level was greater on the
urban than on the rural tower, and in many of these 16 tests the differencs
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measured outside the clty.

... ocean is approximately the same as that over land. When flow is along the
" shore, turbulence intengity over the ocean is about half that over land when

- For onshore winds, the intens:ity of turbulence over land and water is about
~ ‘the same when the wind speed over land is greater than 1Zm/sec, and there is-a
" minimum ratio of oceanic-to-land turbulence of 0.5 near 10m,/3ec. Below ‘

bNew York, in a pilantation of Japanese larch which had a mean height of 10.40m.

 7.25m. Variation of intensity was irregular down te 1.15m where it -was 0.51.

- fields, and forests. Just ahbove the differeat types of canopiess the intensity

i
was quite large. The upper levels on the urban and rural towers were 53.% and 4
61.0m, resnectively. The longitudinal intensity of turbulence in the urban . % .
location was greater in 14 of 18 tests. On the other hand when one conaidera *TA§ o
oy/u, one finds that at the uppe:r level thu mean of 2.48 in the urban location : % .

is only slighily larger than the 2.42 for the rural setting. At the lower
lavel in the city the mean cu/u* of 4 16 was much larger than the 2 47

(SethuRaman and Raynor, 1980] compared longitudinal intensities of
turbulence at a height of 8m over the Atlantic Ocean, “km from Long Island,
New York, with simultaneous measurements at 8m above the beach. As with pre-
viously discussed studies over land, intensit~ of turbulence over the ocean.
decreases as stability increases. An overall average oy/U over the ocean is ‘
near 0.09, with a variation from approximately 0.02 to 0.19. The behavior of
the ratio of longitudinal intensity of turbulence over the ocean. to that over -
the beach depends upon whether the flow is basically onshore, offshore, or B
along the shore. When flow is offshore the intensity of turbulence over the . -

the land wind speed is greater than 6ém/sec; but ffor wind speeds less than
3m/sec turbulence intensity over the ocean is greater than that over land.

33 i

10m/sec¢ the ratic of intensity over the ocean to that over land increases to ]
almost 2 as wind speed decreases for onshore flow. SRS L -

Cillen's ’966] Table 4 summarizes mnasurements made near Itchaca,

At this height intensity of turbulence was 0.47, and it increased to 0.57 at

[7ionco, 1972] discusses canopies such as rice.paddiés, wheat

of turbulence varies from Q.28 10 0.47,

but within canopies intensities range
from 0.32 to 0.84. ‘ ' :

AT e sl ol 4 'fi%iw s o

[tayer, 1981] found that the longitudinal intensity of turbulence at
the top of a spruce forest varied from 0.59 to 1.3C.

In the previous discussions of variation of intensity of turbulence
with surface roughness and with atmospheric stability, the reader may have
noticed that there also appeared to be varimtions with altitude. In general,

“u/T ecAn be expected to decrease as altxtude increases. There is also evi-
dence that o, decreases with altitude.

[?1cht1 and MecVehil, 1970] considered a large amount of data to
develop their Table 2 in which the ratio ou/(Buhu*OW is equal to 2,227 under

neitral conditions and 1.897 under unstable conditions, where u,, 1s the sur-

face friction velocity. Fichtl and McVehil's Table 1 gives B, as a function
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"of & in metera. For neutral conditions, B, = (z/18)'°°63, and for unstable
conditions, B, = (2/18)<0-14. Thus, one obtains oy/uye = 2.227
. (5/18)‘0 *J15 for neutral conditions and ou/u,o = 1.897(2/18)=0+07 ynder
N unstabla conditions.

! [Swanson and Cramer, 1965] analyzed both the longitudinal and

. ‘lateral intensities of turbulence on a 62-m meteorological tower over a two-

. year period at White Sands Missile Range. Both iniensities decreased with
height in all thermal stratifications. Swanson snd Cramer found that the
decrease could be expressed as z to a power which varied from -0.1 to =0.3.

! The magnitude of the exponent is larger for more stable conditions. They also
! v found that turbulent intensities at all heights and in all thermal stra*ifica-
"' tiona tended to be inversely proportional to the mean wind speed. o

) [DeLarrinaga, 1972] tested the power law proposed by [Swanson and
Cramer, 1965] on wind measurements from two urban sites in Liverpool. A cap~-

. lower anemometer was varied. These urban measurements verified that o,/0
" decreased as z increased. Delarrinaga fitted the dats to the power law
described by Swanson and Cramer and obtained exponents from =0.14 to -0.36.

[Bowne and Ball, 1970] made simultanecus measurements at a rural
and urban site. At the rural site wind measurements were at 12.2m and 61.0m.
At the urban site instruments were at 15.3m and 5%.3m. At the urban locations
there were 18 sets of data where both upper and lower values of au/ﬁ were
available; in all 18 cases the intensity of the lower level turbulence was
greater than the intensity of the upper level tvurbulence. In 14 of 17 sets of
measurements from the rural site the intensity of turbulence was greater at
the lower level than at the upper level.

[Petit et al., 1976] show a plot of o,/@ within and above a forest
in their Figure 5. Tnere is some irregularity within the forest to approxi-
mately 2m above tree top and then a. decreaae ‘With altitude.

[Bradley, 1980] made wind measuraments ‘on a tower placed on top of a
170-m hill during atmospheric conditioas associated with neutral stability.
In the three sample cases in Bradley's Figure 3, o,/ at 9m is approximtely 3
times o,/0 at 8Tm. 1In the text, they: define an intensity of turbulence &s

[(1/3) (;mé Ve e 5;] /a and consider means of this intensity for all data:

0.326 for 9m; 0.168 for 25m; and 0.120 for 87""_.;,,

[Dickson and Angell, 1968) ‘contain figures of oy and oy/U as func-
tions of height to 2km, and bhoth quantities decrease with increasing altitude
during the one summer of data plotted; however, &, only decreases slightly,
and oy increases slightly with increasing altitude. On the other hand, oy/R
decreases from 0.4% at 0.5km to 0.22 at 2km and cv/ﬁ decreases from 0.33 to
0.21.

14

o .? tive balloon was used, and the upper anemometer was at 305m. The height of a e
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[Duchéne-Marullaz, 1975] found that longitudinal intensities of tur-
bulence in a suburban area near Nantea, France, decreased from 0.30 at 10m to
0+20 at 60m for SSW and SW winds. The decrease was from 0.28 at 10m to O0.17

at 60m for westerly winds.

I11. AUTOCORRELATIONS

In this section, a detailed discussion of autocorrelation functions
is prefaced by an explanation .uf their importance. Hquations are derived for
the variance of the difference between u(t+t) and u(t) and for the variance of
a random component of turbulenze which is uncorrelated with the turbulent
fluctustion either at that time or at another time. F®ach of these equations
contains an autocorrelation function R(t) which is the correlation between the
values of u at two times aeparated by the time interval 7.

Let Au be defined by twhe equation ‘
‘ e T T e () mu®) e o (%)

where t is time. If W is assumed to be constant throughout the time period ,
being studied, Equation (3a) can be rewritten as - - o oo oo

L . - : M = U,'(t"“t) - 1 (t)‘ - A (Bb)

ERILHEIN - e OISR 5 el Mty 4 R i, Wbl
{
|
i

Both sides of Kquation (3b) may be pquared and averaged to obtain

T L (N O Y (Y EO) K I C7es P O P (T

Bach of the first two terms on the right hand side of Equation (4a) is equal
to oug, and the third term equals 2agy, (ﬁ(t)). Thus ig obtained .

B = 2 a20-R(x)).  (4n)

NS S: AN DA

——
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When t© = 0, R(t) = 1, and (Au)2 is zerv as expected. When t is very large,
the autocorrelation is zero, and the variance of Au is twice the variance of T
ue :

It is sometimes convenient t0 assume a linear relationship between
u'(t+1) and u'(t) and to write

w'(t+t) = w (LR(x) + u"(t) ': (5a)

where u" is independent of u'. [Hanna, 1979] recommends such a relationship
when the coordinate system isa following an air parcei, but it can alsc be used

f tu describe behavior at a point which is stationary relative to the earth.
H One can rewrite Equation (5a) as
% u"(¢) = u'(t+g)=u'(t)R(7). (5b)
15
% .
N y
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If squares and averages are rade of both sides of FEquation (5b) the following
is obtained: )

oy * 0y'2R2(1) + 0,1 2-2R(%)u(E)u' (t+7). (6a)
Since u'{t)u' (t+t) is equal to R(<)oy'2, Fquation (6a) can be rewritten as

o2 = oy 2(1-R2(7)). | (6b)

. I+ is obvious that for very large valunq of 1 the variance of u" is equal to
the variance of u'. . S - o

Information can be obtained about spa‘’ial correlations by applying
Taylor's hypothesis which relates spatial correlations to time lag correla-
tions. This frogen field or frogen turbulence approximation makes the substi-

_ tution 1 = Ax/U, where Ax is the spatial lag in the direction of U. It is
- ~apsumed that the turbulence is homogeneous in the x direction and atationary

in time [Lumley and Panofsky, 1964] or [Webster and Burling, 198%. =

In order to test the relationship between space and time correlation

functions, [bramer, 195@] carefully selected aix experiments from Project
" Prairie Grass. In each one, the observed wind airection was within 25 degrees

of the longitudinal axis of the instrument array. In Cramer's Figure 11 for
daytime and Figure 12 for nightiime experiments, both spatial and temporal
correlations of u are plotted. The abacissa is t for the autocorrelation data

~--and Ax/U for the spatial data. The ordinate is (1-R). Cramer's data show

close agreement between spatial correlations and temporal autocorrelations
during both day and night for the 60 seconds of data which were plotted. This
shows that Taylor's hypothesis is useful in the atmosphere as wcil as in the
laboratory.

Figures 5.20 and 5.21 of [Lumley and Panofsky, 1964] depiot the
autocorrelation functions of both u and v lagged in both space and time for a
time period of 20 seconds. For the daytime observations agreement is extremoly
close, but time autocorrelations tend to be slightly larger than space
autocorrelations. During a typical night period space and time autocorrela-
tiona of v are also close, but time autocorrelationas of u are consistently
much larger than space autocorrelations. -

[Elderkin and Powelil, 197ﬂ also tested the space-time relationahipe
in atmoapheric turbulence. Their Table 1 contains R(t) and R(Ax) for u', v',
and w'. According to Taylor's hypothesis, R(t) = R(Ax) if © = Ax/U. Their
table goes to 252m, which corresponds to almost 40 seconds for the applicabdle
T of 6.4m/sec. For u' the correlations R(Ax) and R(t) are nearly identical to
48m (7.5 sec), but beyond this point some of the R's differ oy 20 percent or
more. For v' and w' the R's diverge considerably afier 4 sec. Beyond a few
seconds all three apatial correlations are higher than the corresponding time
correlations. Therefore, one must use some caution when applying Taylor's
widely used hypothesis.
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[Tennekes and Lumley, 1972], in their Figure 8.2, illustrate
idealized behavior of R on a spatial scale. The spatial correlation of the u
component decrerses smoothly from unity at sero separation to sero at large
separations. The autocorrelatvion of the v component decreases smoothly to
gero and beacomes slightly negative before leveling off at sero for large
distances.

Actual autocorrelationas may have gquite irregular variations with
time. This is illustrated in Figures 1 and 2 of [Stewart, 1975]. The figures
contain a representative sample of autocorrelations which were computed for
{~sec intervals from lag zero through lag 120 for u, v, and v at {Om« In some
sets of msasurements analysed by Stewart, the autocorrelation function crossed

‘zerc several times. On the other hand, in some instances the autocorrslations

of u and v did not reach gero during the entire 120 sec for which the com-
putations were done. The autocorrelation of the w component usually reached
gero in 20 seconds or less. ’

[Hackey and Ko, 1975) show the autocorrelation functions up to 150
sec for the longitudinal fluctuations at 13, 28, 43, and 61m in a typhoon.
These curves decrease rapidly for approximately 25 sec and then fluctuate
irregularly about a mean value. The 61-m autocorrelation levels off to fluc-
tuate about a mean near 0.3, and the 13-m autocorrelation levels off to fluc-
tuate about 0.15. The 28-m and 48-m autocorrelations fall between the cnea
for 6im and 13m. - '

In spite of the irregularities in many sutocorrelation functions
which are obtained from measurements, many investigators have attempted %o
develop simple analytical approximations. One of the simplest and most widely
used approximations for the u component is

R(s) = exp (-./T) (7
where

T = f‘: R(T)dT . - (8)

is an integral time scale. [Hanna, 1979] averaged R(t) for the u component
over several unstable runs made above flat farm land in Minnesota. This auto=-
correlation function was plotted versus t for 60 sec and compared with the
curve obtained by fitting observations to Equation (7). This approximation
appeared good to within 20 percent for the averaged unstavle runs.

[Fichtl and McVehil, 1970] considered an exponential equation simi-
lar to Equation (7) and applied it to space-lagged autccorrelations. They
examined a large amyunt of data from unstable and neutral ctmospheres and
established a dimensionless length scale. For unstable conditions this scale
was within 20 percent, but for neutral conditiona the error was nearly 45 per-
cent. Because high winds are most frequently associated with a neutral
atmosphere, this resulty would suggest caution in using an exponential approxi-
mation for many practical atudies.
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[Mackey and Ko, 1975] fit their typhoon data which laveled off
instead of going to sero with the more complicated expression
R(z) = 8,® M + ay cos(me). (9)

They claimed that the addition of the cosine term 8ave a good representation
to their data.

[Cramer, 1959] tried to fit autocorrelations of the u oomponent by
the equation
1-R(3) = c42/3 ' ' - (10)

vhere the constant ¢ is selected to fit the data. Cramsr discovered that such
a law fit some daytime experiments where the level of turbulence waas high.

For other cases, Equation (10) ¥:8 not even approximately valid beyond a few . . C e

seconds.

[Frost et al., 1978] suggest an even more complicated function for N
the longitudinal correlation function

2/3 ax /3 A
e = T () s ) 00

where K is the modiried Bess3l function of the second kind and is the
longitudinal isotropic turbulence integral scale. Equation (11) is referred
to as the von {urman longitudinal correlation function, and a simple exporen-
tial model as the Dryden longitudinal correlation function. The Dryden func-
tion is more commonly used because there is no compelling evidence that the
von Karmen model is better, and the Dryden function is much simpler.

Iv. THR EKMAN LAYER

Most of the previcus discussion has been concerned with the loweat
tens of meters of the cim.aphere, where the horizontal wind stresses are
assumed to be nearly constant and the wind does not turn significantly with
height. This layer is sometimes called the surface boundary layer, constant
stress laye=, or constant flux layer.

The planetary boundary layer, which is also called the friction
layer or the atmospheric boundary layer, extends from the surface of the earth
to the geostrophic wind level [Huschke, 1959]. The planetary boundary
layer includes the surface boundary layer and the Fkman layer. Above the
geostrophic wind level is the free atmoaphers.

The Ekman layer lies betwaen the aurface boundary layer and the free

atiuosphere. An idealized mathematical description of the wind distribution in
this layer is called the Ekman spiral [Huachke, 1959]. This Ekman spiral is
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| ; derived by assuming that within the planetary boundary layer the eddy viscos-
| ; ity, K, and density, p, are constant. The motion is assumed to be horisontal
and steady, the isobars are straight and parallel, and the geostrophic wind is
constant with height. The geostrouphic wind is represented by the equation 1

e bt 4kl 3 bl s

L)

o U = - or B (12)

Q

;‘.u..u.‘..,.«;u...,uu s e
RS [T

: ' where U is the speed of the geostrophic wind, f is the Coriolis parameter,

} : p is pressura. and n is horizontal distance perpendicular to the flow. The n

: { . axis increases to the left of the flow in the northern hemisphers. If the x

| § direction is now taken as parallel tc the isobars and positive in the direc-~
: ~~ tion of the geostrophic wind, one oan derive the equations [Hess, 1959]

it s

u = Ug (1-¢72% cos az) | | o 77(13:)

‘ x — e e o e e

and =

3
i
{1
H

rew

v = U, e"8% sin a=x o (13b)

where a = 1f72K. At £ = O the wind speed ia zero. The limiting value of the
angle of the wind with the isobars as the surface is approached from above is
45 degrees, and the wind points toward lower pressures. The wind vector turns
clockwise with altitude in the Northern Hemisphere and becomes parallel t¢ the
: isocbars at the geostropic wind lsvel. At this level, which is near 1 km. the i
z wind speed is slightly greater than the geostropic value. 4

A B B . e e gl § ik

Another approach is sometimes used by inveatigators who are
interested in levels above the loweat 20 to 40m if they do not wish to go much
above 150m. [Panofsky, 1973] shows that

N ' 7 Vu. = Uy =62 (14)

to a very good approximation. The symbol u,, repressnts the surface friction
velocity. Under neutral conditions and homogeneous terrain the following can
be written: - - '

T - 3§9 tn (Eﬁ) + 1448 . (15)

Becauae high winds are usually associated with neutral stability, Equation
(15) may be quite useful for some investigationa.

An empirical power law is also frequently used to represent low
level winds [dess, 195¢]. This may be written

i = Uy (%)m (16)
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where Uy is the mean wind speed at a reference level zy. The exponent m has
been found empirically to deciease with increasing lapee rate. [Zhang, 1981]
compared the power law with the simple logarithmic wind law which applies %o
neutral conditions. Wind data from a 164-m tower were examined for one year
in Nanjing, China. For the height range from 16m to 164m, the power law
represented the actual wind speed distribution better than the logarithmic
law. . L

v. SUMMARY

Wind variation with height in the surface boundary layer can be
approximated by a logarithmic wind law. This law is particularly uscful in
many applicationa because it is quite good when atmoapheric stability is
neutral, and high wind speeds are typically associated with neutral
atmospheric stability. When stability is not neutral, better accuracy can be
obtained by using an equation which contains a small stability term in addi-

~tion to the logarithmic term. If measurcments are inadequate to compute the
astability, one can estimate it by Pasquill's method which _depends upon iime of

day, cloud cover, and mean wind speed.

The intensity of turbulence, o,/U, varies in space and time. It is
usur.ly greater c¢ver land than over water, and the intensity is greater over
rough land surfaces than over smooth terrain. Intenaity of turbulences typi-
cally decreases rather rapidly in the loweat 20m and decreases slowly with
altitude above this level. Intensity of turbulence normally is greater under
unstable conditions than under stable conditions.

Scme investigators prefer to measure intenaity of turbulence by o,/G
instead of oy/W. Near the surface oy/oy is less than unity in slightly
unstable, neutral, and stable conditiona. In moderately unatable conditions
the ratio is near unity. As the atmosphere becomes very unatadble, oy/oy
becomes greater than one. At higher altitudes oy/o, is typically near unity.

The asutocorrelation function of u is often irregular in individual
cases, but is somewhat smoother when a mean over a large amount of data is
taken. A simple exponential function is sometimes used to approximate the
decay of the autocorrelation with time or distance, but there is evidence that
thia can lead 1o errours of 20 to 45 percent.

Above the surface boundary layer ia the Ekman layer where the wind
approximately follows an Ekman spiral. The planetary boundary layer consists
of this Ekman layer and the surface boundary layer. In the free atmosphere
atuve the planetary boundary layer surface friction with the earth has a
negligihle influence.
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