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Abstract*
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The problem of selecting a subset containing all populations

better than a control under an ordering prior is considered. Three

new selection procedures which satisfy a desirable basic requirement

C

on the probability of a correct selection are proposed and studied.

Two of the three procedures use the isotonic regression over the

e ot et

+e———
' - P

sample means of the k-treatments with respect to the given ordering

e

e o g

prior. Tables of constants which are nccessary to carry out the

e Sy 7 e
T e L T | T AT T v -

selection procedures with isotonic approach for the selection of

C
' unknown means of normal populations are given. The results including

Monte Carlo studies indicate that, in general, the stepwise procedure

e

61 based on isotonic estimators is the best.

T v e
[ 4

*This paper will be presented by Professor Shanti S. Gupta at the
Golden Jubilee Conference of the Indian Statistical Institute,
Calcutta, December 15-20, 1981.

**Research supported by the Office of Naval Research Contract
N00G14-75-C-0455 at Purdue University.
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3 1. Iniroduction \
: In this paper, three new selection procedures are given for the §
f‘ _ problem of selecting a subset which contains all populations better
! j than a standard or control under simple or partial ordering prior.
Here by simple or partial ordering prior we mean that there exist

known simple or partial order relationships (defined more specifically
i
s : later in Section 2) among unknown parameters. The procedures described

do meet the usual requirement that the probability of a correct

: selection is greater than or equal to a predetermined number P*, the
E | so-called P*-condition. {
E ' Many authors have considered the problem of comparing populations |
with 2 control under different types of formulations (see Gupta and
Parichapakesan (1979)). Dunnett (1955) considered the problem of sepa-
rating those treatments which are better than the control from those
that are worse. Gupta and Sobel (1958), Gupta (1965), Naik (1975),

Brostrom (1977) studied the problem of selecting a subset containing

all populations better than the control. Lehmann (1961) discussed i

similar problems with emphasis on the derivation of a restricted minimax

procedure. Gupta and Kim (1980), Gupta and Hsiao (1980) studied the provlem of

_ *This research was supported by the Office of Naval Research contract
; . N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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selecting populatioﬁs close to a control. In all these papers it is

é assumed that all populations are independent and that there is no in-

' formation about the ordering of unkriown parameters. However, in many sit-
uatidns. we may know something about the unknown parameters. What we
know is always not the prior distributiors but some partial or incom-

plete prior information, such as the simple or partial order relation-

ship among the unknown parameters. This type of information about the

ordering prior may come from the past experiences; or it may arise in

il Lh W i o ks aza

the experiments where, for example, higher dose level of a drug

always has larger effect on the patients, ‘

In Section 2 definitions and notations used in this paper are

B T T

introduced. In Section 3 we consider the problem for location param-

We propose three types of selection procedures for the cases

f > eters.
when the control parameter is known or not known (the scale parameter

may or may not be assumed known}. Some equivalent forms of the pro- :

cedures are given, and their properties are discussed. In Section 3

simple ordering priors are assumed and some theorems in the theory
of random walks are used. A selection procedure for the problem of

: - selecting all populations better than the control under partial ordering

i
1 prior is given in Section 4. Section 5 deals with the use of Monte Carlo

techniques to make comparisons among the selection procedures proposed

in Section 3 and those in Section 4, respectively.
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2. Notations and Definitions

Suppose we have k + 1 populations Tgs Tyoee T The population
treatment =, is called the control or standard population. Assume

that the random variable X,.ic associated with F(+;8,) and X;y,...,X:
ij i il in,

i=1,...,k, are independent samples from TaseeesTy Assume that we have an
ordering prior of e]p..,ok. First we assume that the ordering prior
is the simple order, so that without loss of generality, we may assume
that, By <eer 26 In Section 4 we will consider the partial order-
ing prior case. Note that the values of ei's are unknown.

Suppose our goal is toselect a non-trivial (small) subset which con-
tains all populations with parameterslarger (smaller) than the control
N (known or unknown) with probability not less than a given value P*,

The action space G is the class of all subsets of the set {1,2,...,k}.
An action A is the selection of some subset of the k populations. i €A
means that =. is included in the selected subset.

Let o = (00, e],...,ek). Then the parameter space is denoted by @,

k+1, N .
| 80 289 < vvu 26,3 = ® < 8y <=} is a subset of

vhere @ = {8 €R

k + 1 dimensional Euclidean space Rkﬂ.

The sample space is denoted by X where

+

M
XZ={x€R

".+nk
| _X_ = (xl],-u-X]n.I,ooo’xk],.--xknk)}-
(Here 8y s assumed to be known).

Definition 2.1. A (non-randomized) selection procedure (rule) §(x)

is a mapping from X to G.

— e — —— -
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4 : A population m (1 = 1,...,k) is called a good population if
: 6y > 6p. A correct selection (CS) is the selection of a subset which
contains all good populations. A selection procedure § satisfies the

pP*~condition if

: inf Pe(CS|6) > P*, (2.1)
! < -

Let & = {Gligf Po(CS|8) > P*} be the collection of all selection
peq 2
procedures satisfying the P*-condition.

In the sequel we will use the isotonic estimators (see Barlow,

I e

Bartholomew, Bremner and Brunk (1972)). Hence we give the following def-

e ke e s e et

T e ey,

initions and theorems.
Z Definition 2.2. Let the set J be a finite set. A binary relation g
"<" on J is called a simple order if it is j
(1) vreflexive: x < x for X€J :
(2) transitive: x, y, 2€J and x <y, y <z imply x <z i
(3) antisymmetric: x, y€J and X <y, y < x imply x =y ;
. (4) every two elements are comparable: x, y€J imply either 3

} X<yory<x

Definition 2.3. A partial order onJ is a binary relation "<" on J, such that

it is (1) reflexive, (2) transitive, and (3) antisymmetric. Thus every :
simple order is a partial order. We use poset (J,<) to denote the set

J that has a partial order binary relation "<" on it. | i

X .
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Definition 2.4. A real-valued function f is called isotonic on poset

(F,¢) if and only if (1) f is defined on J, (2) if x, y€J, x < y imply

f(x) < fly).

Definition 2.5. Let g be a real-valued function on J and let W be a

given positive function on J. A function g* on J is called an isotonic

regression of g with weights W if and only if:

(1) g* is an isotonic function on poset (J,<)

(2) T [g(x) - g*()J%(x) = min T [o(x) - £(x)1%W(x),
X€J fed xeJ

where F is the class of all isotonic functions on poset (J,<).

e T ——

From Barlow, et. al. (1972), (see their Thearems 1.3, 1.6 and the

corollary there), we have the following theorems.

e Theorem 2.1. There exists one and only one isotonic regression g*

of g with weight W on poset (J,<).

There are some knowr algorithms, such as the "pool-adjacent-violators"
algorithm (see page 13 of Barlow, et. al. (1972)) or Aver, Brunk, Ewing,

Reid and Silverman (1955) or the "up-and-down blocks" algorithm, Kruskal

8 e e

- . (1964), which show how to calculate the isotonic reyression under simple

order.

The following max-min formulas were given by Ayer et. al. (1955).

E Theorem 2.2.  (max-min formulas)
f | Assume that we have poset (J,<) where J = {e]....,ek}, By <Oy
and that function g: 7 + R, then the isotonic regression g* of g with

weight W has the following formulas:

At
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g*(oi) max min Av(s,t)
s<i t>i

= max min Av(s,t)
s<i t>s

min max Av(s,t)
t>1 s<i

= min max Av(s,t)
t>1 s<t

where
E (6 W(e )
g(e ]
Av(s,t) = r:s M
} W(e,.)
r=s

Corollary 2.1. (g + c)* = g* + ¢, (ag)* = ag*, ifa> 0, c€ R,

Corollary 2.2. [o(g*)g + 9(g*)]* = o(g*) + ¢(g*), where p is a

nonnegative function and ¢ is an arbitrary function.

3. Proposed Selection Procedures for the Normal Means Problem

We are interested in the (subset) selection problem of the unknown
means of k normal populations in comparison with a standard or control
normal with its mean known or unknown. Thus observations are taken on
Xij which are independently distributed normal random variables
N(ui,cz), J=1,...,n55 1= 1,00k The values of Hpshgaes ool are
unknown, but their ordering, say, My S Up Seen Wy is kiown. Note that

in this case we replace 6 in the parameter space @ by y, all other

quantities remaining the same.
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Let us define the subspace q, = {u€nl Mo € Mg £ Mgaqa) fOr
f=1,...,k-1, the subspace q, = {p € a| Mg < uy}s and the subspace

k
o * {n€q)| M < g} s then we have q = 120n1. Note that the control

Mo could be known or unknown. If ) is unknown, we assume that the
distribution of population o is N(uo, 02) and we take independent

observations XO]' from "0 and the sample space X becomes

'Xono

| l= (XO‘lsO-.:xOno’ X”,...,X]n_l.-..,Xk]....,ank)}. USing

Nat.. .40
{XeR ° k

the partition {no,...,ﬂk} of parameter space 2, we have

inf P (CS|6) inf {inf P (CS|6)},
uea £ i<k pe€e, B

for any selection procedure § €8. Hence the P*-condition is equivalent

to

inf P (CS|6) > P* for 1= 1,...,k.

Note that inf P (CS|8) = 1 for any selection procedure § since there
neaQ
0

exists no gocd population in this case.

Let xi = X be the observed sample mean from population LI

i=1,...,k. Let 7 denote the set {uys “2""'“k} where uy < ... < ups

-2

and let N(“i) = N0 o=, g(“i) = X,, 1 =1,...,k. Then by the max-

1’
min formulas, the isotonic regression of g is g*, where

t
L X3
g*(ug) = max  min £ 4=,k
1<s<i s<t<k Z Ww.

j=s 3

The isotonic estimator of My is denoted by xi:k’ i=1,...,k where

L
S S U S AN - . AR :J
o~ R i aa e = et e s e i il el =2 M ik i il i s i
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t
) X¥;
x,,k = max min xS ° o
' 1<s<i s<t<k J w
jus 3
= max (X ., ) (3.1
lesef 3K )
where
xsws+xs+]w5*] xsws+...+kak} (3.2)

&
Ak T MG R T TR

It is known that the isotonic estimators xi:k’ i=1,...,k are also the
maximum Tikelihood estimators of uy, i=21,..0,k
3.1, Proposed Selection Procedure 5]

2

Case I. Mg known, common variance o- known, and common sample size n.

Definition 3.1. We define the procedure &, as follows:

Step 1. Select Tis i=1,...,k and stop, if

; 1) o
Xy., > 1 -d(_ -
1:k 0 1:k A

otherwise reject N and go to Step 2.

Step 2. Select i i=2,...,k and stop, if

1) o

(1) o
d2:k Vﬁ‘

Xk 2 ¥p =

otherwise reject =, and go to Step 3.

Step k-1. Select i i = k-1, k and stop, if
; 1) o

x v Z_u = d( . »

k-1:k 0 k-1:k /n

otherwise reject m,_, and go to Step k.

Step K. Select T and stop, if

Xeik 2 g = d

(V) o
k:k /I’T’
otherwise reject s
Here d&!l's are the smallest values such that 8y € 8, that is 8y sat-

isfies ihe p*-condition.

RNl s ki

.
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3.2. On the Evaluation of inf P (CS|6 ) and the Values of the
]J_Eni
(1) (1)
Constants d1:k"“’dk:k
For any p€ay, 1 <1 <k, let 7,'sbe 1.1.d. N(0,1) and let Z_,, = i
A +Z 742 ...
r+l r Tr+l k-
min{Z,., ———7?- yeres ol 1. Then i
E ; k-1i+1
b ‘ S 1) o
‘ AR -l o
f . | P_( J { j T > llo J:k /ﬁ})
f k=141 § =
! 5 1) o
=P ( U U{X - d{1) 2y
, B j=1 r= k=M " Gk n J
] k-i+1 J 2 o
; sPLU U 2, + 2 - allly
| =te=y TN o/ 1
% which is increasing in Wps T = Ty, ,k=141, i
Hence
| ‘ 12; ?_(Cs|5 ) 2 P(Zk f41:k 27 Geder): §
-
On the other hand, j
: inf P (cs|sy) g
! u€q; *
|
[ k-i#1 ]
P - S ]) [} i
<P U X ug - 4410 23)
; u* =1 9 k 0 NELE 1
: A i
(1) i
= Py iy 27 Geedan k)
Whenever R* = (]JO, - Oy vy = @, ‘-lo’o . :Uo) e 61’ ,:
Thus, we have ! é
£ P (CSl8y) = P(Z -all) oy, ;
inf P (CSI6y k-i+1:k 2 7 Gk-ianik

. N~ . e s - - . . N B
. N / - N e e el S =t = g =
T R T v T fooa s 9 - a P P -
A CiA A e VP § X . o . =
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Since Z, ;,q.c has the same distributions as Z;

letting f
5 :

1

1

?

we have i
- ] (1) . |

;‘Jggfz Pk(csls]) - P(V,i 1 - dk_i+]:k)g 1 - 1,.-!Qk- (3\4) 4;

It is clear from the above that d£13+1-k = d%?g for all %

]

t=1, 2,...,k, and d%?z is increasing in 1. j
Theorem 3.1. In case I, (“0 known, common known 02 and common sample ?
size n), if d£12+1:k is the solution of equation §
PV, > - x) = P (3.5) i

where %
;

1] . 1

V; = min o Yy Z. and Z; are i.i.d. N(0,1), i

lered T 3=1 ;

i=171,...,k then 61 satisfies the P*-condition, 5
Proof. For any i, 1 <1 < k, ‘§

- i} (1) )

by P (CSI8)) = PUVy 2 - difyqyd = PX !

; :

!

i

SO 5] satisfies the P*-condition.

Therefore, the problem of finding the dg!&'s reduces to finding the

distributions of V],...,Vk. This is achieved by using some results

in the theory of random walk.
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3.3. Some Theorems in the Theory of Random Walk

Suppose Y], Y2"" are independent random variables with a common

distribution H not concentrated on a half-axis, i.e. 0 < P(Y] < 0),

P(Y] > 0) < 1. The induced random walk is the sequence of random

it . L e

variables !
= = = é‘
SO-O, Sn Y-‘ + +Yn, n ], 2,-.- . ;i
3 ! Let é
; Z | Ty = P(S] £0,...,8,1 20,5, > 0) (3.6) :
and ,
t(s) = } rns", 0<s <1 (3.7) 3

n=1
) Then we have the following theorem which was u.s.uvered by Andersen :
f (1953). Feller (1971) gave an elegant short proof. j

Theorem 3.2. (Feller {1971))

% Let i

| pn= P(S]>0,...,Sn > 0), }

] then 3

- |

- - Vst = 3.8 :

é o p(s) nZ1p“s T=(s)’ (3.8) |

t i

] hence \

- , @ N

. : log p(s) = § 2> P(S_ > 0). (3.9)

' n=1 " n

]

} E

: 1
E
]
)
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By symmetry, the probabilities
qy = P(Sy < 05unusSp 2 0) (3.10)
have the generating function q given by '
o Sn
? , log q(s) = § = P(S_=<0). (3.11)
E | n=} n n
E
‘ | Note: The above theorem remains valid if the signs > and < are
E replaced by > and <, respectively.
i Theorem 3.3. The generating function p(s) of P(Vj_g X}y J = 1,2,...
: ITheorem ~--
i is o i
E © PR » a1y R
§ o) PV, 2x) = exp (J o P,z 00 (3.12) o
- e J n=1 _ : - , or
: . j=1 : i
; ‘ .
i ; o
E : where 3
! S, = ) (z; - x). n=1,2 y
E ' . I‘{:‘]
4 -
" - ' _ .,‘1.3
% Proof. Since the distribution of random variable Y, = Z; - x is not §
_ - : {
: ' v 1
E concentrated on a half-axis, and Y,'s are i.i.d. let S = I (2 - x), i
: i=1
3 r=1,...,k. Then
4 {(V;> x}= {min S >0} ={S; >0,...,5; > 0%
J Ver<j rr 1 J
By Feller’'s Theorem 3.2 , we complete the proof. s
N

i
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13 :
Now let , 1
' A-(X) E AJ = P(Sj _>_0)= "b(‘XV/:]:), J = ],2,..., E
® _n . '
= S_
a(s) = n__Z.1 — B>

A j then we have
S p(s) = Z J P(V; 2.X) = exp (a(s)). ]
/ . j=1 3
3 n . s :
b Lemma__3.1. ‘p("+])(s) = ) (g) p(J)(s) a*1-3)(5),  for all nz 1. ]

proof. Since p'(s) = p(s) - a'(s), the result can be proved by induc-

‘ ' tion on n.

Under the assumption of Theorem 3.3

]

{

4

4

i

1
11m d" 1Q§ ) | S L ' ﬁ
-
!

]

]

Theorem 3.4.

. Pl (ﬁ+1§ 50" ds"t ;

| ' | Iy | (313

- m jzo P(ij/?" X)A""j+]’ n = 0, 1, 2’... (3, )

13? v E : where i
§ f ' ' : P(V0 >x) =1, for all x. 4
b \ Proof. By Lemma 3.1, we have E
%” (n+1) Y ‘E
4 P(V /x 11m (s) ‘
: (Vpy 2%) = rrr Py !
;i ' : o "
3 | ! (3) )
: 0 i
r 2 WW pt37(0) [(n=3)! Bpyq.s] H
a1 e

T ot jZO IR b3 )
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Let ﬁq(x) = P(Vn > x) and 1-G_(x) denote the limiting distribution

: function as n + = of Vr. Suppose the distribution of random variable

R ¢ asiaS

Y] = Z1 -~ X is not concentrated on a half axis, then we have from

Andersen-Feller Theorem

6,(x) =exp (- ] LP(s <O, ;
3 ; r=1
3 ! ;
: | Now, let

6.(- d{1)) = p. (3.14)

F Now we can use the recurrerce formula of Theorem 3.4 to
5‘ solve the equations P(V, > - d£1%+]'k) = P*, 1= 1,...,k. ;
i| . . j
P - X . (1) i) (4= K) ;
; Remark 3.1 From Section 3.2 we know that dy iy, = dy.5 (i = 1,...0k). _
; The values of dg!i. for k = 1 (1) 6, 10, = and P* = .99, .975, .95, !
E .925, .90 are t> ulated in Table I. k
' Definition 3.2. We define a selection procedure §i,by replacing }
b { , the inequality in the ith step of procedure &, by the inequality %
3 ' . : ’ ]
i " ' _g- - ’
.: , ) Xi:k : ”0 - di:k /ﬁ; 1 ]’-o.,k g
;' . where di, ,...,d,,, are the smallest values such that 81 satisfies .
: the P*-condition. ;
; 3
. . Then it can easily be shown that the selection procedure 6] and si =§
1 (]) = ) = ]

are identical and di:k’ di-k’ i=1,2,....k.
3.4, Some Other Proposed Selection Procedures 8y 675 64
- In Case [, we propose some other selection procedures:
i

Y

. R - B T A L iy 8 -
) X N - : - e ——— e ——— o
ittt h tha 5 W i s i ™ A AL " ek, s ¢ ‘1-.\-1 Y bl . :

PR IER Al el babal o s Bl 1 s Rt e 1 e et 2 ke PR b A L LY i - - amdi kL itk TN A Bkl
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Definition 3.3.

We define a selection procedure 8, by

8,0 Select ny if and only if X,., > wq - d-i; i= 1,000,k

where d is the smallest value such that 62 satisfies the P*-condition.

Note that under assumptions of Case I, and selection procedure

855 if we select population e then we will select populations T

for all j > 4, since Xy, < X;..

Evaluation of the d-Values of 62

For any i, 1 < i < k, we have from a similar argument as for &, that

inf Pu(Csléz)

inf P (X, 11y > un - d L)
yeo, B k-i+1:k = Y e

B
gEQi

= P(Vi > - d). :

We need the constant d such that P(V,

A d) > P* holds for all i,

1 <1 <k. By Theorem 3.1we have d = d§!z. It also follows that
if 51 and S2 are the selected subsets associated with selection proce-

dures 84 and DY respectively, then S]§§ 52. Thus 8, is better than §,.

Definition 3.4. The procedure 84 is defined as follows: Let ij=max(X]....,Xj)-

L+ s el

Step 1. Select Tys i > 1 and stop, if

]/YT’

otherwise reject m, and go to Step 2,

Step 2. Select LT i > 2 and stop, if




AT Ty

flte L R

e L e T

ilu"dg"v
2 1] 2/’?

otherwise reject Ta and go to Step 3,

Step k-1. Select i i >k -1 and stop, if
y g
-1 29 - Gy o
otherwise reject el and go to Stepk
Step k. Select T and stop, if
9.
K /o

otherwise reject L

Here di's are the smallest values such that &, satisfies the P*-condition.

Evaluation of di's

For any i, 1 < i <k,
k-i+1

inf P (CS|6,) = inf P (U {X; >uy-d; =)
uea, £ 3 weo, L el =" g
(k-i+1 - 2))
=P U (X, > ug-ds 2
LJ* j:] J 0 J /ﬁ

PG g 27 i)

whenever p* = (”0"m"“”m’“0"“'”0) € ﬁi'
S,

i
Since Z, is N(0,1), it implies deip1 © d for all i, and
d = 0”1 (p¥).

Hence, we have the following theorem:

- S L7 BTt vy . St - AR SR T
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Theorem 3.5. Selection procedure &, satisfies the P*-condition with
d1 =d,i=1,...,k, which do not depend on i. Hence the procedure is
not changed if the statistics ii are replaced by Xi’ the sample mean of

population m for i = 1,...,k.

The following procedure §, was given by Gupta and Sobel (1958),

without assuming any ordering prior:

Definition 3.5. The selection procedure 64 is defined as follows:

0,0 Select v, if and only if X, > uq = d = i=1,...,k
4 1 1 0 /n

where d is the smallest constant such that 64 satisfies the P*-condition.
It was shown that the value d is determined by the equation

] 1
o(-d) =1 - P*E.i.e. d = ¢"(P*k).

3.5. Some Proposed Selection Procedures ng), i=1,2, 3,4

When i is Unknown

Case II. Mo unknown, comion o2 known, common sample size n.

Definition 3.6. We define a selection procedure 6#2) by replacing

the inequalities

in procedure 5 (Definition 3.1) with

y 2) o .
X.., > X4 - dg, =y 1 =1,...,k, respectively.
j:k =70 ik '/ﬁ

n
Here X0 ) XOi/"’ dg?&, i=1,...,k are the smallest ~onstants such

i=1

that the selection procedure 6%2) satisfies the P*-condition.

Similar to the Case I, we have the following theorem:

- . -~ e - - Y R IR —oe iy Sid re i ——— e e

T i g T )
: e e e wama - . o avhe el s i st . Waore et s kbl bt ke e bl

AR
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]
Theorem 3.6. For any i, 1 <1 <k, d£33+1-k is determined by the
equation
% . !m PV, 2t - d£§3+1:k)d¢(t) = P, (3.15)
!
It is easy to see that d§?3+1-k = d%?i and it is increasing in i. The fol-
lowing theorem gives us an identical form of the selection procedure 6%2).

Theorem 3.7. The selection procedure 6{2) is not changed if

ES

the statistics xi-k’ i=1,...,k, are replaced by ii-k’ i=1,...,k,

respectively.

T T AT e -

Proof. The proof is straightforward and hence it is omitted.

e g e

The values d§?3, i=1,...,k are tabulated in Table II for
k=1(1)6, 8, 10, = and P* = .99, .975, .95, .925, .90 .

PO —

Similar to the Case I, we propose a selection procedure Géz) as

1 : follows:

Definition 3.7. We define a selection procedure séz) by i

842),

271 Select my if and only 1 X, > X, - d

T TR TR ey

where d is the smallest value such that Géz) satisfies the P*-condition.

Then, similar to procedure 62 we have d = df?e.

Next, we define a selection orocedure 6§2) which is similar to 63.

‘ T Ty
| D c—— -, -~ R I S e
e s _zdamcaas .1: it i s . TS AN v Mt Atk Vo YT
S U S . B i S, i cain i UG, FRETEAN YE LTONNTY g i Cuuac i
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Definition 3.8, The selection procedure ng) is defined by replacing

T T = e e s e

v g v g _ 1
- d, — in 84 (Definition 3.4) by Xy 2 X0 - d% ;% , 1= 1,0,k

Xy 2 v - 4y o
]
where di,...,dk are the smallest values such that égZ) satisfies the

pP*-condition,

Similar to Theorem 3.5 we have:

Theorem 3.8. The selection procedure 5§2) satisfies the P*-condition

with di = d, i=1,...,k where d is determined by the equation

jm o(dr-t)dsb(t) = Pk, (3.16)

And 6&2) is not changed if the statistics ii is replaced by Xi’

the sample mean of population s for 1 = 1,...,k.

The following selection procedure 652) was proposed by Gupta and

Sobel (1958):

D=finition 3.9. The selection procedure ng) is defined by

&5?): Select ry 1€ and only if X; > Xq - d

where d is determined by the followirig equation.

o k
J 1 [efu /6E£ + d)Je(u)du = P*, (3.17)
i/ Ty

Ll il A aniins
itk L L e i\ e e .,

L L
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For the special case ny=n (i =0, 1,...,k)

i Lcin - AcF

f oK (t+d) o(t)dt = P, (3.18)

Under the normal distribution N(0,1), the tables of d-values sat-

isfying the Equation (3.18) for several values of P* are given in

Bechnofer (1954) for k = 1 (1) 10 and in Gupta (1956) for k = 1 (1) 50.

3.6.  Some Proposed Selection Procedures 6$3). i=1, 2,3, 4for the Norma)

Means Problem When Common Variance 02 is Unknown

Case III. Mo known, common variance 02 unknown, ny=n> 1.

e ] bl k] o he

Definition _3.10. We define the selection procedure 6%3) by replacing

the inequalities

S bttt

X (1) .
xitkluo‘di:k 1‘]’--o.k

3 la

Lidien Lo i e ad it

in procedure 8y (Definition 3.1) by

st st 2o

i

X d§§z 1,...,k, respectively,

j:k 2 ¥

3 e

i sl e L

where d(3)'s are the smallest values such that 6%3) satisfies the

P*~-condition ; 52 denotes the poolied estimator of 02 based on i
v = k(n~1), that is i
k n ?

2 2 :

S¢ = Z Z(x,. - Yerv, (3.19) i

=1 4= W i
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Note that > has the chi-square distribution X, with v degrees of
g

freedom. The following theorem then follows: b
i Theorem 3,9, The equation which determines the constant dl((fi)ﬂ ‘k
1 is
: (3) .

PV > = gy 5) = P* (3.20)

or
@ 3 '
5 IO PV, > - dk(,i),,] . Yo (y)dy = P* (3.21) j
5 where g (y) is the density of g .
We can rewrite Formula (3.21) as
: G ]
f ' I P(V1 = dk i1k )dX (t) p* q

or
. ¥ i
- (3) £ t° et 22
1 - % W S = p* . ]
: ]o POV 2 = d i/ ) ) dt = P% (3.22) j
; 3
E .
i ]
3 1
E 1
!
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Remark__3.2. The values of d£§z+1°k’ i=1,...,k depend on v = k(n-1); also

(3 3
dk-g+1:k 7 d§:3'

By using Rabinowitz and Weiss table (1959) (with N=24 and n of their table -

equal to 0) we have evaluated and tabulated the values of d£?3+]-k’ i=1,...,k,

in Table III, for k = 2 (1) 6, P* = .99, ,975, .95, ,925, .90,
with common sample size n = 3, 5, 9, and 21.

For k > 6 and n > 21, 1.e. v > 120 we can reasonably well approximate

().

3
a(3) (n

koj+:k DY d

Definition 3. 1. We define the selection procedure 6§3) by
6§3): Select Ty if and only if ii:k 2 U - d(3) S i=1,...5k

where S is defined as in procedure 643), and d(3) is the smallest
constant such that 6£3) satisfies the P*-condition.
As before, it can be shown that d(3) = d%?z.

(3)

Remark _3.3. In Case III the selection procedure &, ° will not be
changed if we replace the isotonic statistics ii:k by ii:k’ respectively.

But this is not necessarily true for selection procedure 6&3).

Definition 3.12. The selection procedure 6§3) is defined to have the

same form as procedure 6§2) except that the inequality defined in the

ith step of procedure 652) is replaced by

xiin-d—s‘ fori=]’-o-,k-

/n

Lilire Sl




3.7. Some Proposed Selection Procedures & i=1, 2,3, 4 for the Normal

(4)
i

t 23
E : The proof of the following theorem uses the same arguments
? as that in Case I, hence it is omitted.
E
1
- Theorem 3.10. The equation which determines the constant d of 3

selection procedure 6&3) is i
1 1

| J’O o(yd)q (y)dy = P*, (3.23)
. i
g . Gupta and Sobel (1958) gave a selection procedure 653) in this
' case. It is as follows:
6(3)' Select =, if and only if X, > -D S i=1 k

: 4 ¢ i Y iZVo "
; i i
g and the equation which determines D is €
; [ (yDa (y)dy = P*, (3.24)
k
| where v = ] (n;-1). i
= |

Means Problem When Both Control g and Common Variance o? are Unknown

Case 1V, Mo unknown, common variance o2 unknown and common sample
size n,
Here we replace Hg in each selection procedure 6§3) by Xo, 1<j <4,
r _ and get procedures 5§4), 1 <Jj <4, respectively. The constants d£f2+]:k, 1
] ) !

i=1,...,k, of procedure 6$4 are determined by




B atiiae o e by LR SR

(-] o 2
fo [ P zu- Gtk ./‘—\%)dd’(u)dx\,(t) = pr. (3.2
The constant d of procedure 6é4) is

4
d = d%:Z'

The constants d of procedures 6§4) and 624) are determined by

.
e s a3 i,

[ 1 o e ardetwad(e) = px (3.26)
0 -

7 Sl Bt

with r = 1 and k, respectively, and their values for selected values

i

of F*, k and v are given in Gupta and Sobel (1957) and Dunnett (1955).

3.8. Properties of the Selection Procedures

[N T VPR

Under simple ordering prior, it is natural to require that an ideal

selection procedure is isotonic as defined below:

Definition 3.13. A selection procedure § is isotonic i1 it :

i
Procedure § is weak isotonic or monotone if

selects m with parameter u,, and if My < My then it also selects "y

P(m; is selected|s) < P(nj is selected|s) whenever My < uye i

It is easy to see that any isotonic selection procedure

is weak isotonic, but the converse is not true.

i st b s s

Now, let 51(” =55, 1=1,2,3, 4

TSRS+

Theorem 3.11. The selection procedures 6%1), séi) and 5§i) are

isotonic and procedure 631) is monotone, for i =1, 2, 3, 4,

D e T e Y ey ..».,g.ﬁ.*‘-{;ig
DT P U Y% S S PO SR EI SUREAE T SR LIV WRTEIR ISR Y V. VEE |
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Proof. The proof follows immediately from the definitions of the pro-

cedures.

% b Given observations X = x = (xo,...,xk) where X3 is the sample mean

of population =, i = 1,...,k, an&_x0 = g if uo.is known, otherwise

Xo is the sample mean of population o Let

] ‘ v;(x, 8) = P(n; included in the selected subset|X = x, &)

; for i =1,...,k.

Definition  3.14. A selection procedure & is called transiation-

b Y v o

invariant if for any 5612“‘, ceER

wi(x0 LI I PP §) = wi(XO""‘yL* 8), 1 =1,...,k.

e S g L

Theorem 3.12. The selection procedures égi), Ggi), Ggi) and Ggi)

are translation-invariant for i = 1, 2, 3, 4.

Al

Proof. Proof is straightforward and hence omitted.

S ——
c———

Expected Number (Size)of Bad Populations in the Selected Subset

Suppose the conirol ) is known and we have common sample size n

and common known variance oz; without loss of generality, we assume ' 3

that 1y = 0 and o//h = 1. Let E(S'|s) denote the expected number of

bad populations in the selected subset in using the selection procedure
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E 8§, then for any j, 0 < j < k, A ;
! ' , sup E (S"31)

3 uéy g b

8 k-'j

F

r 2 )
sup § P (U {xl Gz d(”})
ey r=l Ea= | -

R

r=l1 %

R ) UL (a27)
2,52 dz:‘k}) . _ (3.27)

[ == 1

1

On the other hand, for procedure 5,

sup 5(5'152) = ‘%' P( U {Z > -‘d§!a}) . {3.28)

S ' o o o uEe -] orel e"l | :
;{{ . . R R ' . i . .: ’ 3
b From (3.28) we see that the supremum for 52 is increasing in j and ¥
v : is greater than or equal to the supremum for 8y given in (3.27), since 5
1 M. g) g | |
dik = Nitegn < 91g- .

- Therefore, we have the fbl]owing theorem (see also the remark just before _f
, | Def. 3.4). | -
? o » Theorem _3.13. For any i, 0 < i <k 3
? sup E(S' |6 ) > sup E(S'|61), j
‘ ot E_EQ }_J_GQ]. 7
] d
i sup E(S'|52) sup E(S' ]6 ). ;
HeQ uGQG - K
& o
3 4

;o Theorem 3.14. In Section 3.1, Case I, for any 3, 02 <k
sp E(S'[sp) = 4 - q-adype (329)
.E.eﬂk_j ‘
where q = 1 - P*, :%
: ‘
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Proof.

sup E(S'l53)

H
1724
[~

©

i _ C .
g Rg(select "1153) N

L L dcriidaint

"
[ J s SN

sup

P ( max X > - d)
H'enk-j i I

1 B 'l<r'<1

PR i s

S

s
i

% (1 - ; ‘E(-d))ff v

.i=1; r=1

=,

-

L]
[ %
]

e

Hn
()
H
£0
-
—
]
L
L N
a
~
O
*

where q = (1-P*), ‘ ? - ‘ i

\

W e WIS AT T T T e AR T

Theorem 3.15. sup E(S'I63) is increasing in j, hence

y_EQk_.J. ' . : ]

-l

REae i

| sup  E(S'|83) = sup E(S'[85) = k - ato-gf)/Px,  (3.30)
. uey ag - | ;

. ‘Proof. Since

[ . () - Z Q' - J'-g q') =

-—
Fal
Ca
+
—
(]
Lzt il

In Case I, Gupta (1965) showed that

1

sup E(S' |6 = kP*K,

uen

(3.31)

e

-
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. (] (M
Let us define the event A, = {Z,., > - dj. )y

1,...,k; then

we have

J J
Lemma 3.2. P(y A;NA. . )>P(y A;)P* forall j, 1 <j<k-1,
R S B A =1 1 =TS
k > 2,

Proof: P( u A, 0 Aj+])
i=]
P e s - d )AL
AR R di. k) J+l

= P d 2,2 - dly P(Agy)

v

J

P( U A ) P*,
j=1

The above inequality is a result of the fact

Ai<: {ii,. > = d(])} for all i = 1,...,35 J = 1,...,k=1.

Theorem 3.16. For all k > 2, sup E(S']s;) < sup E(S'|s,).
§
0 %
Proof: To prove the theorem it is sufficient to. show that for all

J s
given k > 2, P(y_Ay) <1 - (1-P*)J for all j and strictly inequality
i=1 |

holds for some j, 1 < j < k.

u

J .
It holds for j = 1, since P(A;) = P*. Suppose P(y_A.) < 1-(1-P*)]
- i=1

is true for some j, 1 < j < k-1, then

i o At e

el e s R LY e

D et T L ST,




3
] 29
: P(jHA) P(jA) pr P(jAnA )
U =P(y +P*-Ply
AR B M
. j \
1 <Ply Ai) +P* - P(U Ai)P*
i=1 i=1
< P* o+ (1-p)(1-(1-P¥)T) |
=1 - (1-pr)3tT,
1 i
Hence by induction principle, the proof is finished. ?
This theorem teils us that procedure 8, is better than 63 in

the sense that in 29 it tends to select smaller number of bad populations,

however, procedure 8y is not uniformly better than 83. In some cases

(see Section 5), 84 is slightly better than 07
When the ordering prior among the unknown parameters is unknown,

Ty e 1+ e

: ‘ we can use the selection procedure of Gupta and Sobel (1958) or use i
é the ordering of the sample means as the ordering of unknown parameters 1
iy | and apply the selection procedure which is originally used under ordering prior.
| In the normal case with the latter approach, the substitution implies that the

isotonic regression of the sample means turns to the usual ordered ]
i

' sample means, and that the selection procedures 6§i), i=1,2,3, 4,

\ 4
are of the same type as 6£1, (i = 1,2,3,4), respectively, and the selection :
|

procedures 6§i), j=1,3, 1 =1,2,3,4 are of the same form as 6g1), i=1,2,3,4, j

respectively, which are equivalent to the procedures proposed by Naik

B T

e ae o

TR

(1975) and Brostrom (1977), independently (see also Holm (1979)).

[5
4, Selection Rules for the Location Parameter Under Pariial

Ordering Prior Assumption

Assume that we have only a partial ordering prior of k unknown

.-
location parameters, that is the parameter space

. -
i, uiu;d‘l“ﬂ{m’_" i -~ I
= T T ey e L
C gt
M - ~ T N e e
_—— 7

R I B e e e caimd el e .
e
. * == ke
i .
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Q'= {6|6 €R" and there is a partial order relation "<" among ei's)

Our approach is to partition the set {e,,...,e@»into several sub-

[}
| sets, say BO""’Bz’ so that B1 n Bj =g, iIfi¢#3], jE1BJ = {e],...,ek}

s
1 and for each Bj (3 = 1,...,2) there is a simple order on it and there 3
E . ' is no order relation among the elements of subset BO' ;
L. ]
E Let b, = IBil, the number of elements contained in B, i = 0,...,2, 3
| 1
: so we have ]
) 3
; ) by = k.
i=0
If we denote the new induced partial order by "<'", then we have
a parameter space 2" > 0. We use an example to illustrate how to find
an induced partial order. =
Example. Suppose k = 8, and we have a partial ordering prior 8y < 65>
81 < 0gs 8y <8y < 83508y, and 6, < 6 < 8,. We use a "tree" to
represent this partial ordering as in Figure 1.
. %] ’
s 0. 4 0
3 7
0 i
]
5
F \/ 68
]
1

Figure 1. Original partial ordering

) ) .
Arrad T 77 T h T T T T T e T N T T LT T I Dy TN ;
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Then we have an induced partial ordering 6, < 8, < 84 < 85, 65 < 6y

as in Figure 2.

64 p 3
0, b 4 . 8g.
3 95 8
8
62 4 6 1
E
6] y

Figure 2. Induced partial ordering.

And

o = {6gs 8l ;
Bz = {06! e7}o

It is clear that the induced partial order is not unique, for .

example, we can partition {e],...,ea} into three other subsets

Bb. B., Bé where

oot el L L b A S 0

86 = {95, 98}
By = 187, 8y, 85, 8y}
Bé = {93, 94}.

For the location parameter case, a selection procedure sP can be

defined as follows:

Definition 4.1. We define a selection procedure P as follows:

Suppose Bo,...,Bg are induced subsets and that for each subset

Bj, j=1,...,0 there is a simpie order on it. We choose a proper

-

- TN - - - . —— - — ——— ~—— ——— T
o - —_——— L ey e -
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] selection procedure § for each subset BJ. such that the corresponding

3 b’
e probability of a correct selection is not less than P} = P*k . For
by

subset BO we may use selection procedure 84 OF 55 with P6 = P*1r.
t ‘ Theorem 4.1. The selection procedure sP satisfies the P*-condition.

Proof.
; : P

inf P_(CS{s%)
E oea" &
i > inf P (cS|s")
Z Q_EQ" o
- ?
> 1 inf P(cs|sP)
' i=1 ag !
i

i i
. (§ 5’1) :
: Lok :
- ~ P*i_o = p* g

where Qé is the parameter space associated with the subset Bi'
i

5. Comparisons of the Performance of Basic Rules for the Normal Means Problem

Po.
: : In this section we describe results of a Monte Carlo study to compare

b
i the performance of selection procedures S1s 8o 63, and 64u Suppose we

have k independent populations, each population with distribution N(“i' 02),
with common known variance 02 and common sample size n. Assume that
the mean u, of the control is known; without loss of generality we

assume that Mg = 0 and o/vn = 1.

v v
bl A it M Ut it en e

~ — - . ~ s v
: — ~ - e o . e oo -
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In the simulation study, we used Rubin and Hinkle's RVP-Random Varijable

. Package, Purdue University Computing Center, to generate random

numbers, For each k, we generated one random number (variable) for

each population, then applied each selection procedure separately
and repeated it ten thousand times; we used the relative frequencies

as an approximation of the exact values of the associated performance

characteristics for each procedure. In Table IV we use the following

notations:

M= (“1""’“k)’ My is the parameter of population My

P(CS)
P(correctly rejecting ail bad populations)

PS
PI

PC
where the correct classification means that we select all good

P(correct classification of all popuiaviun)

populations and reject all bad populations.

El = Expected number (size) of bad populations contained in

the selected subset.

E0= 7§ (ui - 110)2 p ("‘i is selected)
u1<u0
ES = Expected size of the selected subset.

Table IV,1 consists of four parts, namely, the four values of

k =2,3,4,5, for each value of k we assume that we have two bad populations.

In this case based on the performance characteristics PI, PC, EI or EJ, we
found the performance ordering as follows:

where 61 - 62 means that 6] is better than 62.

N e el
- o .
e e o omween L B T SU U
e e R - YT et
ek em baadce S e R o o s T N e
e N P

s o, e

e e

el i
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In Table IV.2 we assume that we have three bad populations for k = 3,

and that both populations are bad for k = 2, this table indicates the same

lauand e

trend as Table IV.1, i.e. 81> 85> 83> §&,. If k is increased by adding

strictly good (parameter strictly larger than control) populations, then
EI(Gi), i = 1,2 does not increase. This is because Xick > Xyupay @S

1<1 <k,

i . ‘ In Table IV.3 we assume that for each k, k = 2,3,4,5 that every population
is bad. Based on the quantities PI, PC, EI and EJ, we find that the perfor-

mance is as follows:

[ 81> 8y 83> 8,
g This is the same result as before.

: Table IV.4 has the same structure as before, but for each value of k,
k = 2,3,4,5, we assume that the first population is the one and only one
bad population with parameter -1 which is less than the control ug = 0.

A glance at the table indicates that the performance, based on the charac-

* teristics PI, PC, EI and ES, can roughly be ordered as follows:
F 63‘> [62, 6]]> 64.

. i.e. procedure 6, is the best and is slightly better than &, and &,, §
3 2 1* "2

T e e

and §, are very ciose and both are better than 64. As the number of
populations k increases from two to five and the three additional populations

4 ' are good populations with parameter 1, 2, and 3, respectively, we find

R >y

that EI(si, k =5) - EI(si, k =2), 1=1,2,3,4, is 0.0124, 0.0124, 0.0031,
0.121, respectively. This means that when k increases and the additional
populations are good, then procedure 64 is the most sensitive procedure with
k and thus not good in terms of EI. 6y seems to perform better in terms of

EI while a] and 62 are abcut the same.
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In Table IV.5 we assume that the ordering prior of unknown parameter
is incorrect; i.e. the true configuration (-2, -1,0,1,2) is replaced by
(-1,-2,1,0,2). The simulation results indicate that, based on PI, PC,

El and EJ we have performance 81 = 85 > [63,64]. Thus here again 8, is
the best. If we compare Table IV.5 with Table IV.1, we see that 64 does
not change (the small differences are because of random fluctuations),
EI(63) and EJ(63) increase quite appreciably.

From these five tables, it appears that, in general, the overall
performance of these procedures is 61> 85> 83> 64, if the ordering
prior is correct. If there is no information regarding the orior ordering,

then §4 OF 65 seem to be an appropriate procedure to use,
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TABLE 1
Table of d(}?P values (satisfying (3.5) and (3.14)) necessary to

carry out the procedure 8 for the normal means problem under the simple

ordering prior.

TABLE 11

| N a
é ' k .99 .975 .95 .925 .90
§ 1 2.3264 | 1.9600 | 1.6449 | 1.4395 | 1.2816
E 2 2.3337 | 1.9775 | 1.6780 | 1.4872 | 1.3430
? 3 2.3339 | 1.9787 | 1.6817 | 1.4942 | 1.3538
| 4 2.3339 | 1.9787 | 1.6823 | 1.4956 | 1.3563 |
? 5 2.3339 | 1.9787 | 1.6824 | 1.49%60 | 1.357 |
6 2.3339 | 1.9787 | 1.6824 | 1.4960 | 1.3573 §
- 2.3340 | 1.9787 | 1.6824 | 1.4960 | 1.3574 ;
i
]

Table of d(f?k values (satisfying (3.15)) necessary to carry out the

procedure c(f) for the normal means problem under simple ordering prior.

§ T & P j
; K .99 975 .95 925 | .90 |
| 3.2886 | 2.7711 | 2.3258 | 2.0355 | 1.8122 |
5 2 3.3849 | 2.8494 | 2.4267 | 2.1530 | 1.9434 i
3 3 3.3605 | 2.8730 | 2.4589 | 2.3917 | 1.9874 |
4 3.3673 | 2.8840 | 2.4723 | 2.2105 | 2.0091 :
5 3.371 | 2.8901 | 2.4832 | 2.2215 | 2.0219
6 3.3734 | 2.8941 | 2.4890 | 2.2286 | 2.0303
E | 8 3.3761 | 2.8988 | 2.4960 | 2.2375 | 2.0406 :
: 10 3.3776 | 2.9014 | 2.5000 | 2.2426 | 2.0440
5 - 3.3787 | 2.9032 | 2.5021 | 2.2448 | 2.0487
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TABLE IV.1

k = 2, Y= ('Za'])

6] 62 63 64
1.0000 1.0000 .0000 .0000

.3420 . 3252 .3001 1719

. 3420 .3252 .3001 L1719

.8673 .8841 .9389 1.0950
1.4952 1.5120 .6559 L1831

.8673 .8841 .9389 .0950

u = ('2"_150)

G.I 62 63 64
.9535 .9573 . 9696 .9632
.3437 . 3407 300, .1233
.2972 .2980 .2703 L1175
. 8585 .8615 .9350 1.2126

1.4651 1.4681 .6421 2.4996
1.8120 1.8188 .9046 2.1758
n= ("’29"]s0) o o

6] 62 63 64
. 9596 . 9606 9715 .9747
.3269 .3254 .2936 .0874
.2865 .2860 . 2651 .0851
. 8802 .8817 .9431 1.3062

1.5015 1.5030 1.6532 2.7378
2.8387 2.8412 .9142 3.2808
b= ('29']’09 )

G.I 62 63 64
.9562 . 9564 .9690 9765
.3333 .3331 .2984 .0746
.2895 . 2895 .2674 .0725
.8835 .8837 . 9480 1.3712

1.5339 1.534] 1.6872 2.9450
3.8386 3.8390 .9167 4,3477
|
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Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
under simple ordering prior.
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F TABLE 1V.2 ;

] Simulation results for the comparative performance of various selection
. procedures for the normal means problem (notation explained in Section
1 ' 5) under simple ordering prior.
f )
3 P = .900
L k=2, y=(-3,72)
- PS 1.0000 1.0000 1.0000 1.0000 ’ :
PI .7551 .7380 .7342 .5912 1
PC . 7551 .7380 .7342 5912 , i
El .2632 .2803 .3035 .4395 3
EJ 1.1443 1.2127 1.4025 2.1590 E
1 ES .2632 .2803 . 3035 .4395 1
F k = 3, u = ('3a‘2-"])
| % %2 %3 i :
PS 1.9000 1.0000 1.0000 1.0000 ?
PI .3362 .3156 .2837 .1090 §
PC .3362 .3156 . 2837 .1090 :
; EI .8937 .9166 . 1.0275 1.3290 3
E : EJ 1.6654 1.6952 2.1746 3.5318 !
; ES .8937 .9166 1.0275 1.3290 )
k=4, u=(-3,-2,-1,0)
§ PS .9579 .9616 .9737 .9731 ]
: ‘ PI .3257 . 3225 .2801 .0759 i
5 ! PC .2836 .2841 .2538 .0736 :
Lo EI .9118 .9160 1.0419 1.4675 :
! ' EJ 1.7093 1.7165 2.2324 4.1380 .
1 ES 1.8697 1.8776 2.0156 2.4406 3
A | k=5, p=(-3,-2,-1,0,1) :
: 8 5, 53 84
PS .9582 .9590 9714 L9796 !
] PI .3292 .3281 .2877 .0602 , g
3 PC .2874 .2871 .2591 .0582 :
: EI .8962 .8976 1.0172 1.5283
i EJ 1.6554 1.6577 2.1429 4.3912
ES 2.8536 2.8559 2.9884 3.5078
! i
3 |
L J
3 , )
‘ z y
! i
tf 1
] !

. 1
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TABLE 1IV.3 .
E .
3 Simuiation results for the comparative performance of various selection .
procedures for the normal means problem (notation explained in Section ;
5) under simple ordering prior. }
L ‘ * %
E P = .900 'a
k=2, u-= (-4,-3) -
" _f § 52 83 8 i
‘ PS 1.0000 1.0000 1.0000 1.0000 ]
\ PI .9613 .9560 . 9585 .9130
PC .9613 . 9560 .9585 .9130
e cl .0392 .0445 .0448 . 0876
i EJ .3563 .4040 .4263 .8493
ES .0392 .0445 .0448 .0876 ;
k=3, w=(4,-3,-2) }
‘ 5 8, 85 8, |
1 PS 1.0000 1.0000 1.0070 1.0000
: ‘ PI .7587 .7359 .7300 .4997
. . PC .7587 . 7359 .7300 .4997
t EI .2599 .2835 . 3201 .5574
L A EJ 1.1340 1.2324 1.5547 2.9908
% : : ES .2599 .2835 .320 .5574
¢ k =4, = ('49‘3a"2)‘]) 3
& 8 83 8
" PS 1.0000 1.0000 1.0000 1.0000
. , PI . 3348 L3114 .2814 . 0747
g PC . 3348 L3114 .2814 .0747 y
4 EI .9003 .9282 1.0440 1.4745 4
: ; EJ- 1.7013 1.7437 2.2947 4. 3666 ;
. ES .9003 . 9282 1.0440 1.4745
. ' k=5, u=(-4,-3,-2,-1,-0.5)
1
4 5 5, 53 8,
{ PS 1.0000 1.0000 1.0000 1.0000 |
PI 1117 . 1045 .0615 .0036 g
s PC J17 .1045 .0615 . 0036 |
! El 1.7460 1.7600 1.9734 2.4985 i
; EJ 1.8147 1.8275 2.4965 5.0978 ;
1 ES 1.7460 1.7600 1.9734 2.4985 4
3
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Simulation results for the comparat:ve performance of various selection
procedures for the normal means problem (notation explained in Section

5)

¢ e IR e Eo TR

TABLE IV.4

T T R U B T T 1Ty rm =

under simple ordering prior.
p* = .900
k=2,u=(-1,0)
6] 62 63 64
PS .9453 . 9490 .9579 .9470 ]
PI . 3854 . 3854 .3937 .2676 _
" PC .3307 .3344 .3516 .2530 N
EI .6146 .6146 .6063 .7324 )
EJ .6146 .6146 .6063 .7324 3
ES 1.5599 1.5636 1.5642 .6794 |
k=3, u= (-1,0,1) i
6] 62 63 64 |
PS .9531 . 9535 .9638 .9616 3
PI .3741 374 .3826 .2044 i
PC .3272 .3276 .3464 .1970 i
EI .6259 .6259 .6174 .7956 :
EJ .6259 .6259 .6174 .7956 ;
ES 2.571 2.5777 2.5803 .7574 ]
E
k=4, u=(-1,0,1,2) §
6] 62 53 64 ?
PS .9580 .9582 . 9640 .9765 f
PI .3664 . 3664 .3834 .1683 i
PC .3244 . 3246 .3474 .1640 ;
El .5336 6336 .6166 .8317 {
EJ .6336 .6336 .6166 .8317 i
ES 3.5902 3.5904 3.5801 .8081 ;
k = 5, E' (-]’0’152’3)
PS 9554 . 9554 .9623 .9794 i
PI 3730 .3730 . 3906 . 1465 ;
PC 3284 .3284 .3529 .1431 S
El 6270 .6270 .6094 .8535 |
EJ .6270 .6270 .6094 .8535 i
ES 4.5812 4,5812 4.5714 .8329 !

R
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TABLE 1IV.5

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section

;7 : 5)  under simple ordering prior.
- "
P = .900
i k=2, w=(-1,-2)
6] 62 63 64
PS 1.0000 1.0000 1.6000 | 1.0000
; PI .5405 .5349 .2437 1722
pr .5405 .5349 .2937 1722
el .8331 .8387 1.3151 1.0904
: Ed 2.2116 2.2340 3.4232 2.1578
d ES .8331 .8387 1.3151 1.0904
i k=3, u=(-1,-2,1)
§ 5 | 5 53 8
Fo PS .9932 .9943 L0077 .9976
; PI .5365 .5349 . 2987 .1190
= PC .5297 .5292 .2944 .1189
El .8347 .8363 1.3116 1.2154
£ 2.2252 2.2316 3.4155 2.4919
ES 1.8279 1.8306 2.3073 2.2130
: k =4, u = ("']f'za]so)
! 5 8o 83 Sy
- PS .9921 .9923 .9973 .9746
: PI .527 .5269 .2894 .0873
f PC .5192 .5192 .2867 .0849
! El .8498 .8500 1.3235 1.3077
Lo B 2.2685 2.2693 3.4553 2.7474
' - ES 2.8390 2.8395 3.3207 3.2822
t K=5, u=(1,-2,1.0,2)
@ 5 %2 8 8
: . PS .9906 .9906 .9958 .9795
; PI .5317 .5316 .2937 L0711 |
3 PC .5223 .5222 . 2895 .0693 1
; El . 8461 .8462 1.3217 1.3593 *
L £ 2.2510 2.2514 3.4406 2.8830
: ES 3.8341 3.8342 4.3173 4.3388
]
o e S DTy e L e
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