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FOR COMPARISON OF TREATMENTS WITH A CONTROL*

by

Deng-Yuan Huang and S. Panchapakesan
Academia Sinica, Taipei Southern Illinois University

1. Indroduction. Let nl""..k be independent populations represent-

ing k experimental treatments and let m0 be the control treatment. Let

f(x,oi) denote the density of iri' i=O,l,...,k. Any population ir. is said

to be superior to the control if ei > 6O, and inferior otherwise. While

0 is not known, we have, based on past experience, a fair idea of it so as

to assume that e0 <_ e, a known quantity. Following the earlier setup of

Gupta, Huang and Nagel [1] and Huang and Panchapakesan [3], who have stud-

ied locally optimal rules based on ranks for selecting the best population,

we assume that the functional form of f(x,e) is known but for the value of

the parameter. We seek a procedure based on ranks in view of the usual

considerations of robustness against possible deviations from the model.

We are interested in selecting a subset (possibly empty) of the k experi-

mental treatments consisting of those that are superior to the control.

Let Xij, j=l,...,n, be independent observations from Tri, i=Ol,...,k.

Let Rij denote the rank of Xi in the pooled sample of N = (k+l)n obser-

vations. The smallest observation has rank 1 and the largest rank N. Let

x 2 < ... < xN denote the ordered observations. A rank configuration

is an N-tuple A = (Al,..,AN), Ai E{l,2,...,k), where Ai j means that the

*This research was supported by the Office of Naval Research contract No.
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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ith smallest observation in the pooled sample comes from iTj. Let c {A)

denote the set of all rank configurations for fixed k and n. For fixed A,

let = {XE IAx= A}, where Z; = {x: x=(xl,...,xN)} and Ax denotes the

rank configuration of x (xl,...,xN). A decision rule 6 based on the ob-

served rank configuration A is a k-tuple defined by =- 6(A)

({6 (A),... ,6k(A)}, where 6i(A) is the (conditional) probability that 7i

is selected as a superior population.

Let a = (00,01,... ok) and sý = {ole <0*}. Define

0= {ojoi=OO<_oi1,...,k} and Or {-O j*<e•<ij•i}, i=l,...,k.
iO j 01 0

We are interested in the class of rules 6 satisfying

(1.1) P {i is selectedJeEo 0 } <_y fnr i=1l...,k.

In this class, we seek a locally optimal rule in the sense that it maximizes

k(1.2)• Po[TVi i s sel ectedo 12 EQ(1.2) Pi ir i

i=l -0 -1

Let P (A) denote the probability of realizing the rank configuration A.

Then (1.1) can be written as

(1.3) 6 Si(A)P. 0 (A) < y for i=l,... ,k,
C

where e0 = (e 0 ,...,16) ER0 and the expression (1.2) is equal to

k
(1.4) i()P (A) where o(i) denotes(1.4)i!1 Di CiA)o )

1 0

a point in sit" The condition (1.3) corresponds to controlling error prob-

abilities and the optimality condition in (1.4) reflects the sensitivity of

the rule when all but one population are not distinctly superior (e =O*jhi)
JO

and the remaining one is in a neighborhood of the others but distinctly

superior (oi > e0).

A 0
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2. Derivation of a locally optimal rule. We assume that the density

f(x,e) satisfies the following set of regularity conditions: (i) f(xe) is
A absolutely continuous in e for almost every x, (ii) f(x,e) is continuously

differentiable with respect to e for almost every x, and (iii) t(x,e)

= ! f(x,e) is integrable.
Now, the probability P (A) of realizing the rank configuration A under

- x
G(Efl is by

XN x2  N
(2.1) P0 (A) =f f ... f fi= A )dxl*.dxN

-00- -00 1=

We note that P (A) is independent of the common value e0 of the parameters
-0

and is equal to 1/N!. Thus, the condition (1.3) becomes

(2.2) NT 6i(A) <_y for i=l,...,k.

For e .- iO, it can be easily seen that

(2.3) P (i)

- XN X21 f +xxo~)
i 0i

3
f f .... f "- f (xeeo*), f(xi,e 0 dX ... dXN

ODxN 2. N
0 -a� 0 .. . i=l

ii

A1 (A,e*), say.

Thus we wait to derive a rule 6 which satisfies (2.2) and which, among all

rules that satisfy (2.2), maximizes

............................. .... ........... "-.. -.. -,' '"• 5,•..••
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k
(2.4)k (A)Ai(A,*).

The following theorem provides such a rule.

Theorem 2.1. Under all the assumptions stated previously, a rule

06 (A) which satisfies (1.1) [or equivalently (2.2)] and which, among all

rules satisfying (1.1), maximizes (1.2) [or equivalently (2.4)] is given oy

(2.5) -(A) Ai(Ao*) = ci/N!

where 0 < p < l and c. are determined such that

1 0(2.6) YT 6 6(A)

Proof. Let 6(A) be any rule other than 60(A) satisfying (2.2). Then

ý 6i(A)-6 (A)}{Ai(A,O*)- 0
Si=l c -

Now, using (2.2) and (2.6), we get

k k6 i(A)Ai(a,o*) 6 (A)A i (AO)
i=l i=l C0

This proves the theorem.

We note that this locally optimal rule is based on weighted rank sums

using the scores
Accession F~or

7N! l N-i N. .S G.A..
(2.7) Bi : (il)(-i• i-'u) ý(ujfo*)du, 1)-I " ,CAr4'

where J•;.It ,.'' :

(U o* ,o ) ....
0 0-

(2.3•)(U f o f(F(UO),O) = "'

2 0
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which in general depends on o*. However, it is independent of 68 if it

is a location or scale parameter.

3. A special case. One can specialize the rule 60 given by (2.5)

to specific densities f(x,e). An important special case arises when f(x,e)

is the logistic density f(x,e) = e(-O)/[l+e(X'6)]2 -w < x<

-- < o < - In this case, *(u,f,e) = 2u - I which leads to equally spac-

ed scores and Bi is of the form B. = a + ib, where b > 0. Consequently,
ii

the rule 6 is given by

1 >
n

(3.1) 6(e) -Ri = c/N!

0

where 0 < p < I and c are determined by

n n

(3.2) P0*{ R > c/N! + PP8,, R ~cN!' =Y

The values of p and c can be obtained from tables for Wilcoxon two-sample

rank-sum statistic.

4. Some remarks. Nagel [4) defined just rules for selecting the best

pcpulation. This concept can be applied also to the problem of selecting
populations that are better than control. In our setup, it means that the
probability of selecting 1iT is nondecreasing if all the observations from

,i are increased and the observations from all other populations are decreas-

10
ed. The rule 6 defined by (2.5) is just if Bi is nondecreasing in i. In

the case of location parameters, this monotonicity of Bi is equivalent to

saying that f(x) is strongly unimodel, i.e., - log f(x) is convex (see [2],

p.20). In the special case of logistic densities, the rule 6 given by

(3.1) is just.

S. ... . . . ... . . . . .. . . .. . . • . . .. .. . +,+• .++ • - . : • "'+• - • • ++ ' v' --• '"i+ L L " "'e l"+rl .. . • : ""- - :• ? +
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Though 00 is not known, we have assumed that an upper bound 0o is

known. If 60 is known, then in stating the optimality requirement, 0B

is replaced by 0O.
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