
L• E-V

I A

, LEVE v

Io

I *.1 ,

I

Virginia Polytechnic Institute
and State University

Computer Science

i Industrial Engineering and Operations Research
BLACKSBURG, VIRGINIA 24061

82 O01 04 026



CSIE-81-4 October 1981

A TWO-DIMENSIONAL CORE GRAPHICS

SYSTEM FOR RESEARCH IN

HUMAN-COMPUTER INTERFACES

Roger W. Ehrich

TECHNICAL REPORT

Prepared for
Engineering Psychology Programs, Office of Naval Research

ONR Contract Number N00014-81-K-0143
Work Unit Number NRSRO-101

Approved for Public Release; Distribution Unlimited

Reproduction in whole or in part is permitted
for any purpose of the United States Government



- - - - - - - - - - - - - - - - - - - - - --------- - -- ---

SECURITY CLASSIFICATION OF THIS PAGE '"O7~n Date Entered)

REPORT DOCUMENTATION PAGE _____________________

1. REPORT NUMB E "O 2 ACCESSION NO. S. ARCIPIENT'S CATALOG NUMBER
CSIE-81-4
4. TITLE (and Subtitle) I. Type or REPORT & PERIOD COVERED

A TWO-DIMENSIONAL CORE GRAPHICS SYSTEM FOR TcnclRprRESEARCH IN HUMAN-COMPUTER INTERFACES T.EchRMNica ORGREPORT Uef

7. AUTHOR(*) S. CONTRACT OR GRANT NUM1191R(s)

Roger W. Ebrich

N00014-81-K-0143
9. PERFORMING ORGANIZATION NAME AND ADDRESS AR. PROGRAM ELMN.POJT AS
Computer ScienceARA WOKUINUSS
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061 NRSRO-101

11, CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

Office of Naval Research, Code 455 October 1981

Arlington, VA 22217 57
14. MONITORING AGENCY NAME A ADORESS(I1 different from controiiinm Office) IS. SECURITY CLASS. (of this report)

Ia, 0D95435 AUPIC ATI ON/ DOWN GRAO1ING
SCM EDLE

1S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

IT. DISTRIBUTION STATEMENT (at the abotract ontored in block 20, If difforent from Report)

L IS. SUPPLEMENTARY NOTES

IS. KEYf WORDS (Continue on reverse, side it necessar aid Identify by block n~umber)

graphics, standard, CORE, human factors

20. AjT R ACT (Continue on reversesaide it nocoesau, and identify by block number)

.- Graphics is an important requirement for human-computer communication,
and in order to construct good interfaces and conduct behavioral experinkents,
a flexible and reliable graphics package is required. Such a package must be
extensible, and because of the dynamic nature of facilities, it must be quickly
adaptable to new device types. This report describes a limited Implementation
of the ACM/SIGGRAPH Core System that will be the vehicle for the graphics
aspects of the research program at Virginia Tech in human factors in
computation...

DO I F'ADI. 147 'EDITION OF I NOV SUIS8 OBSOLETE 1.. J ' -/
S/N 0 102. LF- 014A- 6601 SECURITY CLASSIFICATION OP T IS PAGE (Mans Data Mns/d



ACKNOWLEDGEMENTS

I This research was supported in part by the Office of

i Naval Research and ONR Contract Number N00014-81-0143, and

Work Unit Number NRSRO-101. The effort was supported by the

SEngineering Psychology Programs, Office of Naval Research,

under the technical direction of Dr. John J. O'Hare.

L. II

/

|ii -



II
TABLE OF CONTENTS

INTRODUCTION............................................. 1

FUNCTIONAL DESCRIPTIONS OF USER CALLABLE ROUTINES ..... 5

2.1 Output Primitives ............................ 7
2.1.1 Move abs 2 .............................. 8
2.1.2 Move rel 2 .............................. 9
2.1.3 Inquirecurrent position_2 .............. 9
2.1.4 Line abs 2 .............................. 9
2.1.5 Line rel 2 .............................. 9
2.1.6 Polyline-abs_2 ......................... 10
2.1.7 Polylinerel_2 ......................... 10
2.1.8 Text.... ...... 11
2.1.9 Inquire textextent .................... 12
2.1.10 Marker abs............................. 12
2.1.11 Marker rel 2 ........................... 13
2.1.12 Polymarker abs 2 ....................... 13
2.1.13 Polymarkerrel 2 ....................... 13

2.2 Output Primitive Attributes ...................... 14

2.2.1 Set color .............................. 14
t 2.2.2 Set-intensity .......................... 15

2.2.3 Set linestyle .......................... 15
2.2.4 Set linewidth .......................... 16
2.2.5 Set_pen ................................ 16
2.2.6 Set font ............................... 17
2.2.7 Set charsize ........................... 17
2.2.8 Setcharup ............................. 17
2.2.9 Set charpath ........................... 18
2.2.10 Set-charspace .......................... 18
2.2.11 Setcharjust........................... 19
2.2.12 Set charprecision ...................... 20
2.2.13 Set marker_symbol ...................... 21

2.3 Picture Segmentation ............................. 22

2.3 .1 Create temporary segment ............... 22
2.3.2 Closetemporary segment ................ 23
2.3.3 Inquire open temporary segment ......... 24
2.3.4 Create retained segment ................ 24
2.3.5 Close retainedsegment ................. 24
2.3.6 Inquireopenretainedsegment .......... 25
2.3.7 Inquireretained_segment names ......... 25
2.3.8 Deleteretainedsegment ................ 25
2.3.9 Delete all retainedsegments ........... 26
2.3.10 Rename-retained_segment ................ 26
2.3.11 Save retained segment ..................26
2.3.12 Retrieveretained_segment .............. 26

iii

Sd.



2.4 Segment Attributes ............................... 28

2.4.1 Set-visibility ......................... 28
2.4.2 Setsegment_visibility ................. 29
2.4.3 Set visibilities ....................... 29

2.5 Viewing Controls ................................. 30

2.5.1 Set ndc space_2 ........................ 31
2.5.2 Setviewup ............................ 32
2.5.3 Setwindow ............................. 33
2.5.4 Set viewport ........................... 33
2.5.5 Setwindow clipping .................... 33
2.5.6 Set world coordinate matrix 2 .......... 34
2.5.7 Map-world-to ndc_2..................... 34
2.5.8 Mapndc 2 to world ..................... 34

2.6 Control .......................................... 36

2.6.1 Initialize core ........................ 36
2.6.2 Terminate core ......................... 37
2.6.3 Set immediate visibility ............... 37
2.6.4 Makepicturecurrent ................... 37
2.6.5 Begin batch ofupdates ................. 37
2.6.6 End batch o f updates ................... 38
2.6.6 Inquiredbatch of_updates ............... 38
2.6.8 New frame .............................. 38
2.6.9 Report most recenterror ............... 38
2.6.10 Error handler .......................... 39
2.6.11 Log_error .............................. 39
2.6.12 Geterrormessage ...................... 40

2.7 Special features ................................. 41

2.7.1 Bufadd ................................. 41
2.7.2 Inquire last character ................. 41
2.7.3 Inquire_devicetype .................... 42

USING THE CORE GRAPHICS SYSTEM ........................ 3

3.1 A Static Application -- Data Plotting ............ 43

3.2 A Dynamic Application -- Rotating Wheel .......... 46

3.3 Using the Core System in the VAX Environment.....49

APPENDIX ............................................. 52

iv



INTRODUCTION

Graphics is an important mechanism for implementing

human-computer interfaces, and in order to conduct a

significant research program that deals primarily with such

interfaces, a quality graphics package is essential. While

commercial packages are available, these are not easily

modified and extended to support the particular needs of the

research we are undertaking. Since the new ACM/SIGGRAPH

standard is the only true standard, and since work has been

under way for some time on an implementation of part of that

standard, it was the obvious choice.

1



The CORE Graphics System was proposed by the Graphics

Standards Planning Committee (GSPC) of ACM SIGGRAPH (Special

Interest Group for Graphics). The CORE system is presently

under investigation for possible acceptance as a standard

graphics package by ANSI (American National Standards

Institute), and by ISO (International Standards

Organization).

Discussions of this implementation of the CORE graphics

package began in January 1979, and implementation began a

year later when the first VAX. was purchased. The initial

goals of this implementation were to provide a flexible

graphics package for VAX users, while at the same time

investigating the implementationk problems and solutions for

a subset of the CORE system. The full CORE System has not

implemented; instead, the twio-dimensional, no input,

buffered output level has been developed. The retained

segment capability of the buffered level has been extended

to allow saving of segments as permanent files for later

retrieval and reuse.

In this document, the CORE graphics system is described[from a user's viewpoint by providing functional definitions
of the CORE routines and examples showing use of the system.

The reference document for the CORE Graphics Standard

2



Graphics Standards Planning Committee,
"Status Report of the Graphics Standards Planning
Committee, Part II: General Methodology and the

Proposed Standard," Computer Graphics Quarterlyf Report of Siggraph-ACM, Vol. 13, No. 3, August
1979.
This report can be purchased for $12.00 (ACM Members)

or $16.00 (ACM nonmembers) from:

ASSOCIATION FOR COMPUTING MACHINERY
1133 Avenue of the Americas
New York, New York 10036

The CORE System is not an applications package but a

flexible control environment for the construction of

graphics systems. Most important is the philosophy that any

image producible on one display surface ought to be

reproducible identically on any other, up to the limits of

hardware capability. Ia part because of the richness of the

capabilities of the devices the CORE System is intenided to

support, it i-3 relatively sophisticated in concept and

implementation. At this time of writing it consists of 211

modules and 8600 lines of code.

The CORE System discourages mixing user graphics with

CORE graphics (for example, writing to a display without

using the text primitive) because doing so eliminates

portability and device independ(:nce of application code and

because internal device states may be altered without the

knowledge of the system. However, since there are clearly

situations where special device features need to be utilized

to obtain special goals, such as high speed operation, a

3



discussion is given of the problem of interacting with the

CORE System.

The implementation described here does not support

graphic input or the region fill algorithms available on

raster graphics devices. Furthermore, the current package

does not support dynamic graphics for real-time motion.

Extensions will be added to the package to support these

features as need arises and as suitable hardware becomesI

available. The effort required to interface new devices to

the package varies with device complexity, and for a simple

vector graphics terminal, a man-week would be sufficient.

The implementation described here is, in part, from the

Masters Project of Alan D. Carwile in the Department of

Computer Science at Virginia Tech. It was supervised by R.

W. Ehrich who is continuing its development.

41



FUNCTIONAL DESCRIPTIONS OF USER CALLABLE ROUTINES

To simplify use of the package from languages other

than FORTRAN, only standard datatypes of FORTRAN 1977 were

used throughout the implemen-cation. These data types are

easily matched in moot major languages, including PL/I and

FASCAL. Three basic data types were used -- INTEGER, REAL,

and CHARACTER. In the subroutine summarias that follow, the

correct data type is indicated by the first letter of the

argument according to accepted conventions. That is, if the

first letter is between I-N inclusive, the argument is of

INTEGER type. All other arguments are of REAL data type

unless the summary contains an explicit reference to an

argument being of type CHARACTER. Only four of the user

callable subroutines contain arguments of type CHARACTER.

These are Text, Inquire_text extent, Saveretained segment,

and Retrieve retained segment. Any argument which is an
array is indicated by appending the string 'array' to the

argument name.

The subroutines are presented in sections according to

function. These sections are:
Output Primitives -- These subroutines are used to

create graphical entities for display.

Output Primitive Attributes -- These subroutines are
used to alter the graphical entities (hereafter
called 'primitives') by affecting such attributes as
color, intensity, character size, and marker symbol.

Picture Segmentation -- A segment is a set of output
primitives manipulated as a unit. These subroutines
are used to create and delete segments.

5 j



Segment Attributes -- The picture may be modified by
altering the visibility of retained segments.

Viewing Controls -- These subroutines are used to
alter the placement and orientation of segments in
the picture.

Control -- These subroutines are used to initialize or
terminate use of the graphics package. Clipping,
batching of updates, and immediate visibility are
also controlled by routines in this section.

Special features -- These are internal CORE system
subroutines and additions to the core system that
are designed to facilitate interactions with the
system.

The following syntax is used to describe each subroutine:

Subroutine name (argumentone, argumenttwo)

Note that the subroutine name need not be capitalized in the

fashion shown. All compilers on the VAX ignore case except

in character literals.

6

I -

-~---~ ~



J2.1 OUTPUT PRIMITIVES

The output primitives are the basic building blocks of

thle CORE Graphics System. There are three basic types of

output primitives -- lines, text, and markers. Each output

primitive has a set of attributes which affect the precisej

form the output primitive takes. These attributes are

listed in this section but are explained in Section 2.2.

The locations specified in calls to output primitive

functions are given in world coordinates. The world

coordinate system i~s any arbitrary coordinate system which

the user selects. For example, for a mapping application

the world coordinate system might be measured in miles or

kilometers. For a physics application the world coordinate

system could be in angstroms or millimeters. The world

coordinate system is mapped to the display area of the

terminal through a series of transformations described ir,

the Viewing Controls section.

In order to use the output primitives, one must be

P- familiar with the concept of current position. The current

position is a location in world coordinates which is

maintained by the pack.gge and which is altered after the

display of output primitives. The display of a primitive is

dependEnit on the current position for line and text output,

while the display of marker output is independent of this

position. The current position is updated to the last

position of the output primitive after the subroutine is

7



S•J-•-- •.o.•r-•'• < • :• -"• E • , :• • ¸•,¸" ¸•'• • 7 " ....... - • - -• - -" o -" .....--- •-- .......... ....-

I
called for line and marker primitives. Current position

after a text primitive is the same as before the text

primitive was called. The current position is maintained so

that an application program may easily concatenate output

primitives.

The output primitives come in several varieties. The

user may generate individual lines with the Line

subroutines, or sets of connected lines with the Polyline

subroutines. One can generate individual markers or sets of

markers in the same fashion with the Marker and Polymarker

subroutines. Character output may be generated with the

Text subroutine.

Absolute and relative positioning of primitives is
provided. Each subroutine has an absolute and a relative

counterpart. Relative positions are converted internally to

absolute positions for eventual display. Thus a re.lative

position (dx,dy) of (3,5) when the current position (CP) is

F .at (20,25) would be translated by the package to an absolute

position in world coordinates of (23,30).

2.1.1 Move abs 2 (x, y)

"The current position (CPx, CPy) is updated to the

position (x, y) in world coordinates. No visible picture

change occurs due to this primitive. Its purpose is to

alter the position of future output primitives.

8



2.1.2 Move rel 2 (dx, dy)

The current position (CPx, CPy) is updated to the

position (CPx+dx, CPy+dy) in world coordinates.

2.1.3 Inquire current position 2 (x, D)

The current position is copied to the variables x and

Y.

2.1.4 Line abs 2 Qx, y)

A line is drawn from (CPx, CPy) to the position (x, y)
Fj

in world coordinates. The line's appearance is affected by

k the color, intensity, linestyle, linewidth, and pen

attributes. If the position (x, y) is the same as the

[ current position, a point is made at that location. After

this primitive is executed, the current position is updated

to the point (x, y).

2.1.5 Line rel 2 (dx, dy)

A line is drawn from (CPx, CPy) to the position

(CPx+dx, CPy+dy) in world coordinates. The line's

appearance is affected by the color, intensity, linestyle,

linewidth, and pen attributes. If 'the offset (dx,dy) is

(0,0), a point is made at the current position. After this

primitive is executed, the current position is updated to

the point (CPx+dx, CPy+dy).

9

- 1 .. . ......... ....



2.1.6 Polyline abs 2 (xarra, yarray, n)

A connected series of lines is generated from the

current position to (xarray(1), yarray(1)) to (xarray(2),

yarray(2)) to ... (xarray(n), yarray(n)), where these points

are defined in world coordinates. The connected lines are

subject to the color, intensity, linestyle, linewidth, and

pen attributes. If all of the points are coincident with

(CPx, CPy), then a point is drawn at that location. The

current position is updated to (xarray(n), yarray(n)) after

this function. The number of points one may give in the x

and y arrays is unbounded.

S2.1.7 Polyline rel 2 (dxarra, dyarray n)

21A series of connected lines is generated beginning at

Sthe current position and proceeding through the indicated

points. The first point drawn to is (CPx + dxarray(1), CPy

+ dyarray(1)). The next point is (CPx + dxarray(1) +

dxarray(2), CPy + dyarray(1) + dyarray(2)). This pattern

continues through the n-th position. The series of lines is

subject to the current attributes of color, intensity,

linestyle, linewidth, and pen. If all the offsets in

dxarray and dyarray are zero, then a point is generated at

the current position. After this function the current

position is updated to the last point. The number of points

one may give in the dx and dy arrays is unbounded.

10



2.1.8 Text (char string)

A series of text elements is generated with this

function. The manifestation of the characters is subject to

the current attribute settings for color, intensity, pen,

character s 4.ze, character spacing, character justification,

character precision, character path, character rotation

(charup), and character font. These attributes combine to

affect the way the text is positioned relative to the

current position. The current position after a Text

function call is the same as it was prior to the call. If

it is necessary to append other primitives to the end of the

string, use the Inruire_textextent_2 function below. The

string may be of any length. Note that the argument is a

CHARACTER*(*) variable on the VAX system.

Conceptually, consider every upper case character to be

enclosed by a square box called the character box. The

location of each character box is computed in world

coordinates, clipped, and transformed to the screen system,

together with all the character graphics within the box.

Descenders and a few special characters may extend above or

below the character box, but no characters are wider than

the character box. The locations of the character boxes are

affected by the charsize, charpath, charspace, and charjust

attributes.

A I1



2.1.9 Inquire text extent 2 (char string, dýx, )

tet i ucsie cls h ucin tksThis function is provided to allow concatenation ofI

CHARACTER*(*) variable as its argument and computes an

offset in world coordinates. The offset indicates the

distance from the present OP to a new CP'. By moving to the

new CP' and then writing more text, the user can cause

concatenation to text which was output at the old CP. ThisI

function takes into account the settings for character size,j

spacing, etc. The argument char_string may be of any lengthj

[ and is a CHARACTER*(*) variable.

F 2.1.10 Marker abs 2 (2S, y)

This function generates a marker at the specified

location in world coordinates. The current position is

updated to (x, y) after this function. A marker is

generated at the proper location, but is not scaled,

rotated, or translated by the viewing transformation or any

other transformation in the CORE system. Markers are

designed to be always of the same size and orientation.

That is, they are unrotated and of the smallest size

feasible for the display device. Markers are not restricted

to the symbols in the set of recognizable text strings.[ However, since most display devices do not possess special

symbols other than text characters, the markers available

will normally be standard characters. (See the marker

symbol attribute in the following section.)

12J



2.1.11 Marker rel 2 (dx, dy)

A marker is generated at the offset specified from the

current position, and then the current position is updated

to that position (CPx + dx, CPy + dy). The marker symbol

attribute determines which marker will be generated.

2.1.12 Polymarker abs 2 (xarray, yarray, n)

A series of markers is generated at the indicated

locations in world coordinates. The current position is

then updated to the last position in the x and y arrays.

The number of points allowed is unbounded. The marker

S.,ibol attribute determines the symbol used for all

locations.

2.1.13 Polymarker rel 2 (dxarray, dyarray, n)

A series of markers is generated at the indicated

points. Note that each offset specified in the dx and dy

arrays is relative to the preceding point, not to the

original current position (following the fashion of

Polyline_rel_2). Current position is then updated to the

last point. Any number of markers may be generated in a

single call.

13

[I

S. ... I:



2.2 OUTPUT PRIMITIVE ATTRIBUTES

The output primitives of the CORE system allow the

generation of lizies, text, anid markers. The output i
primitives are very flexible due to the provision of output

primitive attributes. Each output primitive is affected by

a set, of attributes. Lines are affected by the current

settings for color, intensity, linestyle, linewidth, and

pen. Markers are affected by the settings of marker symbol,

color, intensity, and pen. Text is affected by color,

intensity, pen, font, character size, character up

(rotation), character precisi~on, character justification,

character path, and character spacing.

With such a large set of attributes, it is essential

that each be easily controlled by the user. The CORE system

therefore provides SET and INQUIRE functions for each of

these attributes. In the subsections which follow, only the

SET functions are listed. In every case, a corresponding

INQUIRE function also exists.

2.2.1 Set color (icolor)
Inq~uire color (icolor)

The color attribute is changed to the specified value

for all subsequently created output primitives. Color must

be a positive integer. The color attribute affects all

types of output primitives. The actual color indicated by a

particular value is not set in this implementation. The

mechanism for setting up a color lookup table is described

14



in the CORE System Raster Extensions Report. The

subroutines described therein are not implemented at the

current time. As devices supporting color are added, these

functions will be provided. The default color is 1.

2.2.2 Set intensity (rintensity)
Inquire intensity (rintensity)

The intensity attribute is a real number between 0.0

and 1.0 inclusive. The value of 0.0 represents minimum

possible intensity, while the value of 1.0 denotes maximum

possible intensity. The default value is 0.5. The

intensity attribute affects all classes of output primitives

subsequently generated. As with the color attribute,

intensity is defined in the CORE System Raster Extensions

Report. Therein, the intensity attribute is described as

interacting with the color attribute to define a particular

graphic result. The way in which interaction occurs is not

defined nor implemented at this time. As further experience

with raster type devices is gained, the interaction should

be analyzed and functions to work w..th intensity should be

added.

2.2.3 Set linestyle (ilinestyle)
Inquire linestyle (ilinestyle)

The linestyle attribute is defined as a positive

integer. This implementation supports the definition of

linestyles 1-5 as solid, coarse dashed, medium dashed,

dotted, and alternating dashed. This attribute affects line

4

15



output primitives only. At the present time, only the

TEK4012 device drivers do not differentiate between the five

linestyles.

2.2.4 Set linewidth (rlinewidth)

Inquire line,ýPidth (rlinewidth)

The linewidth attribute is defined as a real number

between 0.0 and 1.0 inclusive. The value indicates a

percentage of the ndc-space extent (see Section 2.5). Thus

a value of 0.3 would imply a line whose width is three-

tenths the current ndc-space extent. (If x-extent and y-

extent are not equal, the minimum is used.) The linewidth

attribute affects all subsequently created line output

primitives. The default linewidth attribute is 0.0 which

indicates the minimum width line possible as opposed to a

line of no width.

2.2.5 Set pin (ipen)

Inquire an (iPen)

The pen P..tribute is defined as a non-negative integer.

If its value is 0, it has no effect on any output primitive.

If its value is greater than zero, the current display

device usea this pen rium1-er when displaying all classes of

output primitives. In this situation, color, intensity,

linestyle, and linewidth are ignored, and default values are

used. The default pen value is zero. The pen attribute is

most often used for plotters, and 4 positive pen values are

defined for the HP7221.

16



2.2.6 Set font (ifont)
Inquire font (ifont)

The CORE system allows the definition and use of

multiple fonts. The font attribute is defined as a positive

integer whose default value is 1. Only one software font is

currently available for stroke precision text. This

implementation is setup to handle only mono-spaced fonts.

Proportional spacing is not provided. Font number 1 results

in use of the standard ASCII character set for string and

character precision.

2.2.7 Set charsize (rwidth, rheight)
Inquire charsize (rwidth, rbeight)

Character size is defined with two components, width

and. height. Both must be positive real numbers and are

defined in world coordinates. The default character size

has a width of 0.01 and a height of 0.01, allowing 100

characters in each direction with the default window and

viewport.

2.2.8 Set charup 2 (xpart, ypart)
Inquire charup 2 (xpart, ypart)

The charixp attribute defines the rotation of each

character in a text primitive. It is specified as a vector

having x and y components. When the user sets a rotation

with, say an x component of 3.0 and a y component of 4.0,

these values are normalized. The normalized values are

maintained by te, system, such that a call to

Inquire charup_2 (xpart, ypart) would find xpart equal to

17



0.6 and ypart equal to 0.8. When setting the components of

the charup vector, use any real values, but be sure that at

least one is non-zero.

The vector so defined represents the upward direction

of each character created by subsequent text output

primitives. To see what rotation a given charup value will

give, draw the vector out from an arbitrary point. Then

position a box corresponding to the current charsize values

around the vector, with the height component along the

direction of the vector. Then position a character in this

character box.

2.2.9 Set charpath (ivalue)

Inquire charpath (ivalue)

The character path defines the direction in which text

proceeds if more than one character is output. The possible

values are: 1 - towards the right (default), 2 - towards

the left, 3 - upward, and 4 - downward.

2.2.10 Set charspace (rspace)
Inquire charspace (rspace)

The character spacing attribute controls the amount of

space to be added between characters in a text output

primitive. This attribute may be any real number --

positive, negative, or zero. Its default value is 0.0 which

indicates no additional spacing. The font designer must

allow a "reasonable" amount of space for inter-character

gaps, so that a value of zero for charspace gives a

18



i2
reasonable looking result. Values greater than zero add in

space, while negative values take away space and eventually

cause text to overlap or even to proceed backwards. The

value of charspace indicates the fraction of charsize (width

if charpath is 1 or 2, height if charpath is 3 or 4) to be

added in. Thus, a value of 0.5 indicates that additional

space corresponding to half a character in size should be

added to spread out the characters.

2.2.11 Set charJust (ijustx, ijusty)

Inquire charjust (ijustx, ijusty)

The positioning of a text string relative to the

current position is critical in some applications. For this

reason the character justification attribute is proviied.

It consists of two parts -- a horizontal justification

(ijustx) and a vertical justification (ijusty). Each may

have a value of 0, 1, 2, or 3. Values 1, 2, and 3 represent

left, center, and right justification in the horizontal

direction, and bottom, center, and top justification in the

vertical direction, respectively.

As an example, if this subroutine is called with

arguments (1,1), subsequent. text will be positioned so that

the lower left corner of the string is at the current

position. The justification values indicate the point in

the strin_ extent (not just the first character) which is

placed at the current position. Thus an entire string can

be Qentered in the x direction by specifying a horizontal

justification value of two.

19



The default values of (0,0) allow the text to be

located relative to CP in a fashion dependent on the current

character path. For charpath of 1 (rightwards), the string

baseline (bottoms of upper case characters) passes through

the CP, and the string will grow out from the CP towards the

right. For charpath of 2 (leftwards), the string baseline

again passes through the CP, but the string extends this

time to the left. For charpath of 3 (upwards), there is

horizontal centering and upward growth, and for charpath of

4 (downwards), there is horizontal centering and downward

growth.

2.2.12 Set charprecision (ivalue)

Inquire charprecision (ivalue)

Due to the complexity of the text output primitive, it

is sometimes too expensive to generate text with all of the

attributes previously mentioned. Therefore, one may specify

a precision with which the attributes are to >e followed.

Character precision may take the values 1, 2, and 3. With
- -character precision equal to 3 (stroke precision) the text

is displayed as connected lines drawn according to all text

attributes.

A value of 1 (string precision) means that the

hardware character generator must be used to output the

string. In string precision, CORE determines where the

stroke precision text string would be positioned and then

centers the text string produced by the hardware in the

20



I
center of this text field. The hardware character size is

-matched as closely as possible to the value of the charsize

attribute.

An intermediate level with value 2 (character

precision) is also provided. With this precision, each

character is positioned individdally and then generated by

the hardware character generator. In this case, CORE

determines where each character of stroke precision text

would be positioned and then centers each text character

produced by the hardware in the center of that field.

Again, the hardware character size is matched as closely as

possible by the charsize attribute. The default characteir

precision is 1 -- string precision.

2.2.13 Set marker symbol (ivalve)
Inquire marker symbol (ivalue)

The marker symbol attribute determines the particular

marker to be output for marker output primitives. Its value

may be any integer from one to ten, inclusive. These are

defined as follows:

1 - period
2 - plus
3 - asterisk
4 - capital 0
5 - capital X
6 - capital A
7 - capital B
8 - capital C
9 - capital D
10 - capital E

4

21

-~|



2.3 Picture Segmentation

The CORE System provides a segmented data structure for

grouping of primitives. A segment is a logical graphical

entity consisting of output primitives and attribute

modifications. One or more segments define the current

1 picture." There is no capability for defining a segment in

terms of other segments.

There are two types of segments in the CORE System --

temporary and retained. Retained segments provide a

capability for selectively modifying the picture by deleting

segments and/or making them temporarily invisible. This

[ capability does not exist for temporary segments. Temporary

[ segments can be deleted only by calling New frame to clear

the display surface.

This implementation provides both temporary and

retained segments, as well as an extension which allows a

retained segment to be saved as a permanent file or to be

retrieved from a permanent file. However, it does not

provide the full range of segment attributes as discussed in

the GSPC CORE report. This implementation only provides the

visibility segment attribute. It does not provide the

highlighting, detectability, or image transformation type

attributes of segments.

2.3.1 Create temporary segment

A temporary segment is begun by a call to this function

and ended with a call to Close temporary segment. Output

22

.1 o.**.*i.



II
5 primitives are in error unless within the scope of an open

segment, either temporary or retained. A call to this

function freezes the viewing parameters (window, viewport,

clipping, etc.) so that all output primitives in this

segment will be generated according to the same view. While

the segment is open, calls to set output primitive

attributes and to actually generate output primitives are

most common. However, INQUIRE subroutines may be used to

check any CORE attribute or control variable.

When the output primitives are called they may or may

not become visible immediately, depending on several

controls. These are described more completely in the

Control section, but are outlined here. The temporary

segment may or may not be visible depending on the system-

wide visibility attribute. If the current value is 0

(meaning invisible), calls to the output primitives have no

visible effect. If the value is 1 (visible), the output

primitives will be shown. If the immediate visibility

attribute is set on (1), each primitive is made visible

immeCiately. Otherwise, the system buffers up the display

code for generating primitives until either the buffer is

full or the Makepicturecurrent function is invoked.

2.3.2 Close temporary segment

The currently open temporary segment becomes closed,

thus preventing calls to the output primitives until another

call to Create temporary segment or Create retained segment.

23

................-



Since temporary segments do not possess a segment attribute

of visibility, their view cannot be manipulated except by

deletion. A New-frame action causes the deletion of all

temporary segments.

2.3.3 I1uire en temporary segment (iopen)

The argument 'iopen' is set to 1 if there is a

temporary segment currently open. Otherwise, it is set to

0.

2.3.4 Create retained segment (name)

This function opens a retained segment, allowing output

primitives to be generated. The current viewing parameters

t (window, viewport, clipping, etc.) are frozen until a

subsequent Close retained segment operation. A retained

segment is similar to a temporary segment in that the

segment takes it.s own initial visibility from the current

system-wide visibility attribute. However, each retained

segment's visibility flag can be altered after creation. As

each output primitive in an open retained segment is called,

the picture on the display surface will be updated depending

on the immediate visibility attribute in the same fashion as

for temporary segments. A retained segment's name must be

an integer between 1 and 32767, inclusive.

2.3.5 Close retained segment The currently open retained

segment is closed making further calls to output primitives

invalid, unless another segment is first created. The just

24 '



closed retained segment can only be manipulated in one way

after it is closed. Its segment visibility attribute may be

altered.

2.3.6 Inquire open retained segment (name)

The argument name is set to the name of the currently

open retained segment. If no retained segment is open, name

is set to zero.

2.3.7 Inquire retained segment names (isize, namearray,

nsegments)

This function is used to get a list of the names of all

retained segments. The list is copied into namearray in

ascending order by segment name and the number of segments

currently defined is copied into nsegments. Isize indicates

the number of cells in namearray. If isize is less than the

nunber of segments currently defined, only isize of them are

copied, but the actual number of segments is copied to

nsegments.

2.3.8 Delete retained segment (name)

After a retained segment is created, defined, and

closed, it does not go away. Retained segments exist until

either explicitly deleted or until Terminatecore is called.

The argument is used to tell which retained segment should

be deleted. The deletion will occur immediately unless a

batch of updates is in progress. If a batch is in progress,

the name is not available for reuse until an invocation of

Endbatchofupdates.

25



2.3.9 Delete all retained segments

This function is available so that the user can delete

all retained segments at one time without knowing each

segment's name. The deletions will occur immediately unless

a batch of updates is in progress. If a batch is in

progress, the names are not available for reuse until an

invocation of End batch of updates.

2.3.10 Rename retained segment (name, newname)

The existing retained segment is renamed from name to

newname. The old name is immediately available for reuse.

2.3.11 Save retained segment (name, filename) ]
The existing retained segment called name is preserved

in a permanent file called filename. If that file already

exists, it will be overwritten. Otherwise it will be

created. The content of the created file is readable ascii

code which represents the image of the output primitives in

the segment. No visible picture changes occur as the result

of this function. The filename argument is a CHARACTER*(*)

- variable.

2.3.12 Retrieve retained segment (name, filename)

This function fetches the permanent file called

filename and retrieves the definition of the retained

segment described in it, thus creating a new retained

segment for use in the current program. The specified

261 I



segment name is assigned to the new segment. The visibility

of the retrieved segment is taken from the current

visibility of the CORE system just as occurs for the

Createretained-segment function. Retrieve-retained._segment

may not be invoked while a segment is already open. A

visible picture change will occur if the segment is visible.

The filename argument is a CHARACTER*(*) variable.

I

>1

FI i f

S27J



2.4 Segment Attributes

A segment attribute is a characteristic of the segment

which can be modified after the segment has been created,

defined, and closed. In this implementation only one

segment attribute is defined. Highlighting, detectability,

and image transformation type are not provided. Visibility

is provided. Each time a segment is created, its visibility

is copied from the current setting for the system-wide

visibility attribute. For temporary segments, visibility is

fixed and unmodifiable after creation. However, SET and

INQUIRE functions exist to manipulace the visibility of

previously defined retained segments.

In the descriptions which follow, only the SET

functions are discussed. However for each SET function a

corresponding INQUIRE function exists, with comparable

syntax.

2.4.] Set visibility (ivalue)

Inquire visibility (ivalue)

This function sets the system-wide visibility for

segments which will be subsequently created. Ivalue must be

either one or zero, with zero meaning invisible and one

meaning visible. Existing segments, including the open

segment are not affected by this call.

28



2.4.2 Set segment visibility (name, ivalue)

Inquire seqment visibility (name, ivalue)

The current visibility for the named retained segment

is set to ivalue, where ivalue must be zero or one, as

above. The visibility change will show up right away on the

display surface unless a batch of updates is in progress.

If a batch of updates is in progress, the change will not be

noticeable until a call to End batch of updates.

2.4.3 Set visibilities (namearray, ivaluearray, n)

Inquire visibilities (namearray, iva luearray, n)

This function is provided so that several named

segments can have their visibility attributes changed as a

group. The altering of segment visibilities proceeds from

the.first to the n-th, with no check for duplicates in the

namearray. Thus, if duplicates occur, the occurrence latest

in the arrays will be in effect after this call. Visibility

changes will show up right away on the display surface

unless a batch of updates is in progress. If a batch of

updates is in progress, the changes won't be noticeable

until a call to End batchof updates.

4I
29

.!



2.5 Viewing Controls

The coordinates used by the user in calls to the output

primitives are defined in an arbitrary system called world

coordinates. In order to generate a display, it is

necessary that the coordinates be converted to screen units

in a device-independent fashion. This section describes the

subroutines which affect the transformation of world units

to screen units.

The first transformation is the world transformation.

This transf"ýo rmat ion is available to facilitate the building

of a modelling system on top of the CORE system in which

objects can be defined in arbitrary coordinate systems and

then moved into the world system. It defaults to an

identity transformation. The second transformation is the

viewup transformation. This transformation allows the user

to cause a rotatiorn of the world coordinates about the

origin of the world coordinate system.

Next comes the windowing transformation. The user

specifies a window in world coordinates which determines the

portion of his coordinate space which he wants to make

visible on the display device. He also specifies a viewport

in normalized device coordinates which determines the region

of the display surface onto which the window is mapped. At

this point, the image of the segment may (under user option)

be clipped to the viewport region.

30



If the segment is a retained segment, its image is then

stored to allow redisplay if visibility is changed later.

The last two steps are the image and screen transformations.

Image transformations are not provided in this

implementation. The screen transformation maps the

normalized device coordinates to screen coordinates.

The series of operations outlined above takes the

coordinates used in the output primitive invocations and

maps them to screen coordinates after clipping and storing.

The screen coordinates are then used by the device specific

drivers to generate the appropriate pictures. The user need

not concern himself with the screen transformation since

this is taken care of by the system automatically. However,

the following functions allow one to alter the other

operations to suit the application. Note that the SET

functions below each have a comparable INQUIRE functiorn.

2.5.1 Set ndc space 2 (width, height)

Inquire ndc space 2 (width, height)

This function may be used at most once per call to

Initialize-core. If used, it must precede all calls to any

of the following:

Create temporary segment

Createretained segment

Set viewport_2

Inquireviewport_2

31



This call specifies the range of normalized device

coordinates that can be made visible on the display. Both

values must be positive real numbers not greater than 1.0,

but at least one must actually be 1.0. Invoking this

function causes an implicit setting of the viewport to the

range of (0.0, width, 0.0, height). The default range of

ndc-space is (0.0, 1.0, 0.0, 1.0). With the default

setting, the entire addressable area on the display is

available. Changing the extents of ndc-space is useful for

devices whose visible display areas are not square.

2.5.2 Set view up 2 (xpart, yprt)

Inquire view up 2 (xpart, ypart)

This function specifies the world coordinate up

direction, and it should not be called while a segment is

open. The vector derived from the x and y components

supplied as arguments defines a rotaktion of the world

coordinates under user control. The positive y-axis of the

world system is rotated about the origin to coincide with

the specified view up vector. The components may be any

real numbers, but at least one must be non-zero. The values

for xpart and ypart are normalized such that using the

INQUIRE function may return a different value from that

originally specified in this function. The default view up

vector is (0.0, 1.0), giving no rotation.

32



2.5.3 Set window (Kmin, xmax, ymin, ymax)
Inquire window (xmin, xmax, ymin, ymax)

The arguments to Set window define a rectangle in world

coordinates. The subroutine should not be called while a

segment is open. The rectangle is mapped to the viewport

rectangle defining the windowing transformation mentioned

above. Thus, the area within the rectangle is the area

which will be made visible on the display surface. The

arguments may be any real numbers, provided that xmin is

strictly less than xmax and ymin is strictly less than ymax.

The default window is (0.0, 1.0, 0.0, 1.0).

2.5.4 Set viewport 2 (xmin, xmax, ymin, ymax)
Inquire viewport 2 (xmin, xmax, ymin, ymax)

This function is used to define the region oj

normalized device coordinates to which the window will be

mapped, and it should not be called while a segment is open.

The arguments are real numbers between 0.0 and 1.0,

inclusive. An added restriction is that the viewport must

fit witnin the ranges of ndc-space as defined in a call, if

one has occurred, to Set ndc_ space 2. The default viewport

is (0.0, xsizendc, 0.0, ysi .ndc).

2.5.5 Se widwcipin - onoff)

In__quire window clippi 7ig (ionoff)

This function controls whether the output primitives in

subsequently created segments will be clipped to the window

(or viewport equivalently), and it should not be called

while a segment is open. The argument must be either 0 or

33

Ak A . ... •... •: . •



SI

1, with 1 enabling clipping and 0 disabling clipping.

Clipping is enabled by default.

2.5.6 Set world coordinate matrix 2 (realmatrix)Inquire world coordinate matrix (realmatrix)

This subroutine accepts a 3x3 array and copies its

values in as the new world transforma-tion. The 3x3 matrix

must have (0.0, 0.0, 1.0) as its last column and must be

invertible, or an error will be flagged. The INQUIRE

subroutine for this function has a name longer than 31

characters. Due to the VAX's limitation of names to 31

characters, the corresponding inquiry function is

Inquire world coordinatematrix (realmatrix). The default

world transformation is the identity transformation. Note:

If calling from other than FORTRAN, some languages (e.g.

PL/I) store two-dimensional arrays row by row, while FORTRAN

stores them column by colum'i.

2.5.7 Map world to ndc 2 (xworld, y•orld, xndc, yndc)

This function accepts as input a location in the world

coordinate system. It maps that location to ndc

coordinates. If the point is out of the viewport and

clipping is enabled, an error will be flagged. All

arguments are real.

2.5.8 Map ndc to world 2 (xnidc, ynyS, ?Sworld, yworl)

This function maps a location in ndc coordinates to the

corresponding location in world coordinates. If the point

34

L -- ........



•! I is outside the viewport, an error will be flagged. All

•, arguments are real.

AI"

f~I
LI
vI

35



2.6 Control

These subroutines are used to control the general

operation of the CORE system. Since this implementation

supports only one device at any given time, the number of

subroutines of this type is greatly reduced from the number

described in the CORE System Report. These subroutines fall

into three classes:

Initialization /Termination

Picture Change Control
Error HIandling

2.6.1 Initialize core (levýe, otut, levlipt

level-dim)

This subroutine must be called before any other CORE

function, so that transformations and attributes can be set

to their default values. The three parameters are compared

to pre-set values to see if the current version of the CORE 4

system supports those levels. If not, an error is

generated. This version supports level 2, or 'buffered',

output which allows retained segments as well as temporary

segments. Level 1 is supported for input, meaning no input

functions. Level 1 is supported for dimension which

indicates a two-dimensional (as opposed to a three-

dimensional) implementation. This subroutine also checks

what display device is in use and assures that its device

driver is also initialized.

36



* f 2.6.2 Terminate core

This subroutine cleans up any left over data structures

and files and sets a flag to indicate that CORE is not

initialized. A further call to Initialize core is required

before invoking any other CORE function. I

S2.6.3 Set immediate visibility (ionoff)
• ~1 .[~Ir"._3.Mme~diate visibility (iono~ff) i

This function is used to turn immediate visibility on

(1) or off (0). When immediate visibility is on, each

subroutine which generates graphic output automatically

dumps the buffer before returning to the application

r program. When off, the system may delay the graphics result

by buffering up the display code until the buffer either

fills or until the user calls Makepicture.current orA

Set immediate visibility again to set it on. A

corresponding Inquire immediate visibility function is -A

provided. By default, immediate visibility is on.

2.6.4 Make picture current

This subroutine is useful when immediate visibility is

off for efficiency reasons, but the picture must be made up

to date. It causes the buffer to be sent but does not imply

that batching of updates will be ended.

2.6.5 Begin batch of updates

When a user wishes to make many consecutive changes to

the picture by deleting segments or making visible segmentsf
37

LL- A



F!.
invisible, one can surround the changes in a batch of

updates. Depending on the class of display device, this can

prevent disruption by numerous clears and redraws of visible

segments. With a batch of updates in progress, deletions

and visibility changes are deferred until an

Endbatchof updates.

2.6.6 End batch of updates

This function causes the picture to be made consistent

with any segment deletions or visibility changes. However,

it does not automatically send the buffer unless immediate

visibility is on. If immediate visibility is off, follow a

call to End batchof updates with a call to

Makepicture current to assure the buffer is sent.

2.6.7 Inquire batch of updates (ionoff)

If a batch of updates is in progress, ionoff is set to

one. Otherwise, it is set to zero.

2.6.8 New frame

This subroutine clears the screen of all non-retained

segments and redraws all visible retained se-wents.

2.6.9 Report most recent error (idnumber, iseverity)

This function inquires the current values of two

globals in the system and makes their values available to

the application program. Idnumber indicates the number of

the last error encountered. Iseverity indicates its

38



severity. If no error has occurred since the last call to

this function, zeros are returned. For a list of errors,

consult the Appendix.

2.6.10 Error handler (idnumber, iseverity)

This function is not called by the user. When an error

is recognized in the CORE system, this function is called

from within the package. This function then passes the same

arguments to the Logerror subroutine below. However, by

compiling one's own Error handler subroutine and linking it

in with one's program, a user can override the default

handler. For example, if a user wished to decide whether to

continue execution or not, an Error-handler like that below

could be written:

SUBROUTINE ERROR HANDLER (IERR, ISEV)
CALL LOG ERROR (IERR, ISEV)
PAUSE 'Core error'
RETURN
END

This subroutine would first use the Logerror subroutine to

write a message to the CORE error unit, 24. Then the PAUSE

statement in VAX FORTRAN would let the user have control.

The PAUSE statement allows one to stop execution using the

STOP command, continue execution using tie CONTINUE command,

or enter the symbolic debugger using the DEBUG command.

2.6.11 Log error (idnumber, iseverity)

This subroutine looks up the idnumber in a table of

error messages and writes a message to unit 24. A check is

39

L-4-



made to ensure that the severity code matches the value

associated with the idnumber. Consult the Appendix for a

list of error messages by idnumber. This subroutine should

be invoked only within an Error handler.

2.6.12 Get error' messa[e (idnumber, iseverity, string)

This subroutine looks up the error message indicated by

idnumber, returns the severity code, and copies the text of

the message into string. Char string should be set up as a

CHARACTER*80 variable. This subroutine should only be

invoked within an Error handler.
I

iS

L!

I

40I



2.7 §peial _features

Users who need to insert their own display

instructions into the graphics stream, though discouraged

from doing so, may use the following CORE internal

subroutine.

2.7.1 Bufadd (iartay, n)

Bufadd inserts characters stored in an INTEGER*4 array

L: into the graphics buffer and supervises the.Lr transmission

to the display device. To ensure immediate transmission, if

required, the user may use the Makepicture current

subroutine.r!

The present implementation does not provide for

interactive inpvt. Since terminals like the HP2648 require

ENQ/ACK handshake protocols, there is in general no way to j
I

obtain terminal input while graphics is in progress to a

non-slave device. In order that graphics in progress may be

interrupted, the following subroutine is provided. i

2.7.2 Inquire last character (ivalue)

When the display surface is not a slave surface, the

most recent keyboard character received while graphics is in

progress is saved, except for handshake return characters.

The last character is cleared to null (0) by Initialize core

and by a call to Inquirelast character.

41



Since display device identification is handled

internally by the CORE system, a subroutine is provided t.

return the device type to the user.

2.7.3 Inquire device (itye)

This subroutine returns the identification code of the

current display device. At present the following values are

defined:

1I TEK4012/13

2 -HP2648

3 -HP7221 (slave) 
-

421



S.. .. . . . . . .. . ... . . • . . .. .... . .-.

USING THE CORE GRAPHICS SYSTEM

This chapter presents several sample applications to

indicate some of the ways the CORE system may be used. Only

facilities implemented in this project are used in the

examples. Two examples will be given. The first

application deals with data plotting. This application is a

static application, so retained segment options are

unneeded. In the second application, a wheel is created in

several 2-D views, giving the impression that the wheel is

rotating about its axis. Finally, at the end of the

chapter, the details for using the CORE system on the VAX

are discussed in full.

3.1 A Static Application -- Data PlottinA

For a beginner, the CORE system can be used very

simply. There is no need to be concerned with batching of

updates, segment visibility, or modelling transformations.

For example, if the user wishes to plot a set of data as a

graph, the CORE system defaults make the job easier:

C
C MAIN PROGRAM AND SUBROUTINES
C FOR THE SAMPLE PLOT

C
DIMENSION X(100), Y(100)
DO 50 I=1,100

X(I)=I
50 Y(I)=I*I/100.0

CALL INITIALIZECORE (1,1,1)
CALL SET WINDOW(-20.,120.,-20.,120.)
CALL CREATE TEMPORARY SEGMENT

CALL SET CHARPRECISION(3)
CALL SETCHARSIZE(2.5,2.5)

C X-AXIS LINE
CALL MOVEABS_2(0.,O.)

43



CALL LINE ABS 2(100.,0.)
C Y-AXIS LINE

CALL MOVE ABS 2(0.,0.)
CALL LINE ABS 2(0.,100.)

C X-AXIS TIC MARKS WITH LABELS ON THEM
CALL XTIC( 0., 0., '0')
CALL XTIC( 20., 0., '20')
CALL XTIC( 40., 0., '40')
CALL XTIC( 60., 0., '60')
CALL XTIC( 80., 0., '80')
CALL XTIC(100., 0.,'100')

C Y-AXIS TIC MARKS WITH LABELS ON THEM
CALL YTIC( 0., 0., '0')
CALL YTIC( 0., 20., '20')
CALL YTIC( 0., 40., '40')
CALL YTIC( 0., 60., '60')
CALL YTIC( 0., 80., '80')
CALL YTIC( 0.,100.,'100')

C X-AXIS LABEL
CALL MOVEABS 2(50.,-10.)
CALL SET CHARJUST(2,2)
CALL SETCHARSIZE(4.,4.)
CALL TEXT('X-Values')

C Y-AXIS LABEL
CALL MOVE_ABS 2(-10.,50.)
CALL SETCHARPATH(3)
CALL SET CHARUP 2(-1.,0.)
CALL TEXT('Y-Values')

C HEADING FOR THE COMPLETE PLOT
CALL MOVEABS 2(50.,110.)
CALL SET CHARPATH(1)

CALL SETCHARUP_2(0.,l.)
CALL SETCHARSIZE(5.,5.)
CALL TEXT('Sample Plot')

C ACTUALLY PLOT THE DATA ''
CALL MOVEABS_2(0.,O.)
CALL POLYLINE ABS 2(X,Y,100)

CALL CLOSE TEMPORARY SEGMENT
CALL TERMINATECORE
STOP
ENDC

C SUBROUTINE TO PLOT X-AXIS TIC MARKS
C

SUBROUTINE XTIC(XCENTER,YCENTER,CSTRING)
CHARACTER*(*) CSTRING

C VERTICAL TIC MARK
CALL MOVE ABS_2(XCENTER,YCENTER+I.)
CALL LINE REL_2(0.,-2.)

C HANG LABEL BELOW CP; CENTER HORIZONTALLY
CALL SET CHARJUST(2,3)
CALL TEXT(CSTRING)
RETURN

44I



END
C
C SUBROUTINE TO PLOT Y-AXIS TIC MARKS
C

SUBROUTINE YTIC(XCENTER, YCENTER, CSTRING)
CHARACTER* ( *) CSTRING

C HORIZONTAL TTC MARK
CALL MOVE ABS 2 (XCENTER+I., YCENTER)
CALL LINE-REL-2(-2.,O.)

C HANG LABEL TO LEFT OF CP; CENTER VER'TICALLY
CALL SETCHARJUST(3,2)
CALL TEXT(CSTRING)
RETURN
END

pr]

45

"I

45

L • _ . . . 4,-.,r_ J-,.L, ,•,, Jp iu



3.2 A Dynamic Application Ro.ta.ting Wheel

Suppose one wishes to show the motion of a rotating

wheel in a series of snapshots. This can be done through

the use of retained segments and with application of the

view-up vector. First, one can construct a subroutine which

defines the wheel as a combination of short line segments.

To assist in showing the rotation, a patch is placed on the

wheel.

The next task is to construct eight different views of

-the wheel, one at each of these rotations: 0, 45, 90, ....

270, and 315 degrees. The program will generate the eight

views of the wheel using the view-up attribute to vary the

view. Each view is initially made invisible. (Note the

correspondence between a view and a retained segment.)

Later, using the Setsegment visibility routine, each view

is made visible and then invisible. The program actually

only displays one view at a time, centering each on the

display:

C
C MAIN PROGRAM AND SCBROUTINE TO GENERATE
C MULTIPLE VIEWS OF A ROTATING WHEEL
C COMMON /VIEWS/ XIN,YIN,XOUT,YOUT,XPATCH,YPATCH,

• NIN,NOUTNPATCH i
DIMENSION XIN(37),YIN(37),XOUT(37),YOUT(37),

• XPATCH(13),YPATCH(13)
C
C .... CALCULATE XIN,YIN VALUES FOR INNER CIRCLE
C .... CALCULATE XOUT,YOUT FOR OUTER CIRCLE
C .... SETUP XPATCH,YPATCH FOR THE PATCH
C .... SET NIN, NOUT, NPATCH ACCORDINGLY
C

10N=1
IOFF=O
CALL INITIALIZECORE(2,1,1)

46



CALL SET VISIBILITY(IOFF)
CALL SET WINDOW(-20.,20.,-20.,20.)
CALL SET VIEW UP 2( 0., 1.)
CALL CREATERETAINED SEGMENT(l)

CALL WHEEL
CALL CLOSERETAINEDSEGMENT
CALL SET VIEW UP 2( -1., 1. )
CALL CREATE RETAINEDSEGMENT(2)

CALL WHEEL
CALL CLOSE RETA NED SEGMENT
CALL SET VIEW UP 2(-1., 0.)
CALL CREATE RETAINED SEGMENT(3)

CALL WHEEL
CALL CLOSE RETAINED SEGMENT
CALL SET VIEW UP 2(-l.,-1.)
CALL CREATE RETAINEDSEGMENT(4)

CALL WHEEL
CALL CLOSE RETAINED SEGMENT
CALL SET VIEWUP_2( O.,-1.)
CALL CREATE RETAINEDSEGMENT(5)

CALL WHEEL
CALL CLOSE RETAINED SEGMENT
CALL SET VIEW UP_2( 1.,-l.)
CALL CREATE RETAINED SEGMENT(6)

CALL WHEEL
CALL CLOSE RETAINEDSEGMENTCALL SETVIEW UP 2(I.,O.)

CALL CREATERETAINEDSEGMENT(7)
CALL WHEEL

CALL CLOSE RETAINED SEGMENT
r CALL SET VIEW UP_2( 1., 1.)

CALL CREATE RETAINEDSEGMENT(8)
CALL WHEEL

CALL CLOSERETAINED SEGMENT
r C SWAP AROUND VISIBILITIES GOING THROUGH

C THE 8 VIEWS THREE TIMES
DO 50 1=1,3

DO 40 NAME=1,8
CALL SETSEGMENT VISIBILITY(NAME,ION)
CALL SETSEGMENTVISIBILITY(NAME,IOFF)
CIY0 CONTINUE

50 CONTINUE

CALL TERMINATE CORE
STOP

END•.- C
SC DRAW THE WHEEL
C

SUBROUTINE WHEEL
COMMON /VIEWS/ XIN,YIN,XOUT,YOUT, XPATCH,YPATCH,

S* NIN,NOUT,NPATCH

.z: 47



DIMENSION XIN(37),YIN(37),XOUT(37),YOUT(37),
* XPATCH(13),YPATCH(13)

C DRAW THE INNER CIRCLE
CALL MOVE ABS_2(XIN(1),YIN(1))
CALL POELYLINE_.ABS._2(XIN,YIN,NIN)

C DRAW THE OUTER CIRCLE
CALL MOVEABS_2(XOUT(1),YOUT(1))
CALL POLYLINE ABS 2(XOUT,YOUT,NOUT)

C DRAW THE PATCH ON THE WHEEL

CALL MOVE ABS_2(XPATCH(1),YPATCH(1))

CALL POLYLINE_ABS_2 (XPATC3, YPATCH, NPATCH)I
RETURN
END

48I



3.3 Usin the CORE System in the VAX Environment

The CORE system has been implemented as a set of

subroutines in a single library. All required subroutines

are contained in this library of object modules. The

library is available to all users of VAXl, VAX2, and VAX3.

These libraries are located in different places on the three

machines. At the time of writing, these files are

VAXI SYS$LIBRARY:CORE
VAX2 SYS$LIBRARY:CORE
VAX3 [EHRICHRW.CORE]CORE

To use the CORE system, first construct a sample

program in a file whose suffix is '.FOR'. Then compile the

program with the FORTRAN command. Next you must link the

CORE library in with the object form of your program. To

tell the VAX LINK command to search this library you have

two options. The first method is best for people who seldom

use the CORE routines. The second is best for those who use

them frequently since it will cause the library to be

available on every LINK command. The second option requires

that you insert the line in your LOGIN.COM. For VAXl and

VAX2,

(1) LINK MYPROGRAM, SYS$LIBRARY:CORE/LIB

(2) DEFINE LNK$LIBRARY SYS$LIBRARY:CORE.OLB

and for VAX3,

(1) LINK MYPROGRAM,[EHRICHRW.CORE]CORE/LIB
(2) DEFINE LNK$LIBRARY [EHRICHRW.CORE]CORE.OLB

The package makes use of I/O units 21, 22, 23, and 24.

Units 21, 22, and 23 should not be referenced by the user.

49



i~ ....... .. . . .. - • -- "- -• - "

Unit 24 is used for error messages (see Appendix) written by

the Logerror subroutine. It may be desirable to associate

this I/O unit with the terminal or a specific file. In the

VAX environment this is done with the ASSIGN command. The

first example below will cause error messages to be written

to the user's terminal. The second example directs messages

to the file 'CORE.ERR'. Without an ASSIGN for unit 24,,

messages will be written to the file 'FOR024.DAT'. I
(1) ASSIGN SYS$OUTPUT FOR024
(2) ASSIGN CORE.ERR FOR024

Finally, you may execute the program using the RUN

command. You will be prompted for the terminal type you are

using. After the prompt, enter the desired information,

[ clear the screen if desired, and press the return key. The

command completion algorithm used for the device

identification makes it possible to identify the device type

with a minimal number of strokes. The graphics portion of

the program will then execute.

If you are developing a program on one specific device,

such as the TEK4012 for example, you may bypass the

interactive request for device type by assigning the device

type to the logical name, STARTCORE:

• ASSIGN TEK4012 START CORE
If you do this, though, remember the consequences if you

should later try to run your program on another device

without changing the assignment!

'5

•,, 50



Users of the CORE System will soon notice that

numerical values need to be converted to character strings

before they can be displayed. In FORTRAN, the easiest way

to do this is to use the ENCODE statement.

ENCODE (nchars, format, stringname) list

L converts numerical values specified by list to nchars

characters in the string, stringname, according to a

specified format statement. For example, if k=15 and string

was declared type CHARACTER*3,

ENCODE (3,100,string) k
100 FORMAT (13.3)

TEXT (string)

would produce the output, 015.

When writing a program in CORE graphics, remember a few

helpful hints.

1) Always call Initialize core before calling any
other CORE subroutines, and call Terminate core
when graphics are complete.

2) Set window, viewport, and viewup direction before
opening a segment, if the defaults are not used.

3) Open a segment before calling graphics primitives,
and close the segment as soon as the segment has
been defined.

4) If you should get a VAX runtime access violation
message, check that all the commas have been
included in the subroutine argument lists.

L%



I
APPENDIX

REFERENCE LIST OF ERROR MESSAGES

Below is a list of errors which are detected by the CORE

system. The majority follow very closely to those detailed

in the CORE report, while others are due to the particular

environment of this implementation. The meanings of the

severity values are as follows:

4-- Indicates that the function could not be
performed because its level (output, input,
or dimension) is not in effect.

5 -- indicates that invalid parameter value(s)
have been given.

6 -- indicates that the function could not be
executed with the CORE system in its current
state. An example is where Line abs 2 is
called while there is no open segment.

8 -- indicates that the storage limits of some
function have been reached. For example, the
limit on the number of retained segments has
been reached.

[i

rJ

52

------------------------- -------------



Error Error Message

002 5 N is less than or equal to zero.
006 6 A segment is currently open.

101 8 Too many retained segments at one time.

201 6 There is no open segment.
208 5 The string contains one or more undefined

characters.

301 6 There is an open segment already.
302 5 There already exists a retained segment with this

name.
304 6 There is no open retained segment.
305 6 There exists no retained segment with this name.
306 5 The new name is already assigned to an existing

retained segment.
307 5 Segment names must be integers between 1 and 32767,

inclusive.

401 5 Invalid attribute value.

501 5 XMIN is not less than XMAX, or YMIN is not less
than YMAX.

502 5 XPART and YPART are both 0.0; at least one must
be non-zero.

504 6 Invocation of Set ndc space_2 is too late.
Default range has been set.

505 5 A parameter is not in the range 0.0 to 1.0.
506 5 Neither width nor height is 1.0.
508 5 Viewport is not within range of ndc-space.

I;I

II

53



Error Error Message (continued)

510 5 The ndc position is outside the current viewport.
511 6 World transformation is not invertible,
512 5 World coordinate position is outside window, and

clipping is enabled.
525 6 World transformation does not have (0,0,1) as its

last column.

702 4 The requested output level is not supported.
703 4 The requested input level is not supported.
704 4 The requested dimension level is not supported.
712 5 Value for immediate visibility must be 0 (off) or

1 (on).
713 6 There has been no End batch of updates since last

C Beginbatchof updates.
714 6 There has been no corresponding

Beginbatch of updates.
715 5 One or more named segments do not exist.
716 5 One or more visibility values is invalid.
717 6 The CORE system has not been initialized. Call

F Initialize core first.
721 6 Wrong output level for this function.

901 6 World-viewup-window transformation is not
invertible.

902 6 Image-screen transformation is not invertible.
903 6 World-to-screen transformation is not invertible.
904 6 Saving the open segment is not allowed.

54

• . •



- I

442:MAT:716:maf
81u442-390

OFFICE OF NAVAL RESEARCH

Code 442 _

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy j
CDR Paul R. Chatelier Commanding Officer
Office of the Deputy Under Secretary ONR Eastern/Central Regional Office

of Defense ATTN: Dr. J. Lester
OUSDRE (E&LS) Building 114, Section D
Pentagon, Room 3D129 666 Summer Street
Washington, D.C. 20301 Boston, MA 02210

Department of the Navy Commanding Officer
ONR Branch Office

Leader ATTN: Dr. C. Davis
Engineering Psychology Programs 1030 East Green Street
Code 442 Pasadena, CA 91106
Office of Naval Research
800 North Quincy Street Commanding Officer
Arlington, VA 22217 (5 cys) ONR Western Regional Office

ATTN: Dr. E. Gloye
Leader 1030 East Green Street
Communication & Computer Technology Pasadena, CA 91106
Code 240
Office of Naval Research Office of Naval Research
800 North Quincy Street Scientific Liaiion Group
Arlington, VA 22217 American Embassy, Room A-407

APO San Francisco, CA 96503
Leader
Manpower, Personnel and Training Director
Code 270 Naval Research Laboratory
Office of Naval Research Technical Information Division
800 North Quincy Street Code 2627
Arlington, VA 22217 Washington, D.C. 20375 (6 cys)

Dr. A. Meyrowitz Dr. L. Chmura
Information Systems Program Code 7503
Code 411-IS Naval Research Laboratory
Office of Naval Research Washington, D.C. 20375
800 North Quincy Street
Arlington, VA 22217 Dr. Michael Melich

Communications Sciences Division
Department of the Navy Code 7500

Naval Research Laboratory
Special Assistant for Marine Washington, D.C. 20375

Corps Matters
Code lOM Dr. Robert G. Smith
Office of Naval Research Office of the Chief of Naval
800 North Quincy Street Operations, OP987H
Arlington, VA 22217 Personnel Logistics Plans

Washington, D.C. 20350



442:MAT:716:maf
81u442-390

Department of the Navy Department of the Navy

Dr. Jerry C. Lamb HQS, U.S. Marine Corps.
Combat Control Systems ATTN: CCA40 (MAJOR Pennell)
Naval Underwater Systems Center Washington, D.C. 20380
Newport, RI 02840

Commanding OfficerNaval Training Equipment Center MCTSSA

ATTN: Technical Library Marine Corps. Base
Orlando, FL. 32813 Camp Pendleton, CA 92055

3Human Factors Department Chief, C Division
Code N215 Development Center
Naval Training Equipment Center MCDEC
Orlando, FL 32813 Quantico, VA 22134

Dr. Alfred F. Smode Commander
Training Analysis and Evaluation Naval Air Systems Command

Group Human Factors Programs
Naval Training Equipment Center NAVAIR 340F
Code N-OOT Washington, D.C. 20361
Orlando, FL 32813

Commander
Dr. R. Neetz Naval Air Systems CommandCode 1226 Crew Station Design,

Naval Missile Test Center NAVAIR 5313
Pt. Mugu, CA 93042 Washington, D.C. 20361

Dr. Albert Colella Commander
Combat Control Systems Naval Electronics Systems Command
Naval Underwater Systems Center Human Factors Engineering Branch
Newport, RI 02840 Code 4701

Washington, D.C. 20360
Dr. Gary Poock
Operations Research Department CAPT Darrell D. Dempster, SC, USN (Ret)
Naval Postgraduate School System Management American Corporation
Monterey, CA 93940 1745 Jefferson Davis Highway

Arlington, VA 22202
Dean of Research Administration
Naval Postgraduate School Dr. Mel C. Moy
Monterey, CA 93940 Code 302

NI'RDC
Dr. A. L. Slafkosky Sat. Diego, CA 92152
Scientific Advisor
Commandant of the Marine Corps. Mr. Ramon L. Hershman
Code RD-l Code 302
Washington, D.C. 20380 NPRDC

San Diego, CA 92152
Dr. Thomas McAndrew
Code 32 Navy Personnel Research and
NUSC-New London Development Center
New London, CT 06320 Planning & Appraisal

Code 04
San Diego, CA 92152

Li



442:MAT:716:maf
81u442-390

Department of the Navy Department of the Air Force

Navy Personnel Research and Air University Library
Development Center Maxwell Air Force Base, AL 36112

Management Systems, Code 303
San Diego, CA 92152 Foreign Addressees

Navy Personnel Research and North East London Polytechnic
Development Center The Charles Myers Library

Performance Measurement & Livingstone Road
Enhancement Stratford

Code 309 London E15 2LJ
San Diego, CA 92152 ENGLAND

LCDR Stephen D. Harris Dr. Kenneth Gardner
Code 6021 Applied Psychology Unit
Naval Air Development Center Admiralty Marine Technology
Warminster, PA 18974 Establishment

Teddington, Middlesex TWIl OLN -_
Dr. Julie Hopson ENGLAND
Human Factors Engineering Division
Naval Air Development Center Director, Human Factors Wing
Warminster, PA 18974 Defence & Civil Institute of J49

Environmental Medicine +1
Dean of the Academic Departments Post Office Box 2000
U.S. Naval Academy Downsview, Ontario M3M 3B9
Annapolis, MD 21402 CANADA

Mr. John Impagliazzo Dr. A. D. Baddeley
Code 101 Director, Applied Psychology Unit
NUSC - Newport Medical Research Council
Newport, RI 02840 15 Chaucer Road

Cambridge, CB2 2EF
Walter P. Warner ENGLAND
Code K02
Strategic Systems Dept. Professor B. Shackel
Naval Surface Weapons Center Department of Human Sciences
Dahlgren, VA 22448 University of Technology

Loughborough, LEICS. LE11 3TU
Dr. Thomas Fitzgerald ENGLAND
Code 101
NUSC - Newport Other Government Agencies
Newport, RI 02840

Defense Technical Information Center
Departmeti of the Air Force Cameron Station, Bldg. 5

Alexandria, VA 22314 (12 cys)
Chief, Systems Engineering Branch
Human Engineering Division Dr. Craig Fields
USAF AMRL/HES Director, Cybernetics Technology
Wright-Patterson AFB, OH 45433 Office

Defense Advanced Research Projects
Agency

1400 Wilson Blvd.
Arlington, VA 22209

~ aj~~±4t,±. . --.-


