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RESUME

P ——————

Dens ce rapport, on développe certains fondements théoriques
d'algorithmes congus pour permettire 2 une ou plusieurs unités movbiles de
recherche de poursuivre une source de bruit qui se déplace en ligne

: droite. Les unités de recherche mesurent le gisement et la fréquence
¢ apparente afin d'estimer 1la distance, la fréquence réelle et les
On présume que les mesures de

E ‘ composantes de la vitesse de la source.
: gisement et de fréquence sont sujettes 3 des erreurs al€atoires. (nc)

SN ABSTRACT
gome of the analytical  support for !

: > algorithms designed to permit one or more mobile searchers to track a
‘ sound source moving in a straight line. The gearchers measure bearing
and received freguency O infer range, the true frequency and velocity
components. The measurements of bearing and frequency are subject 1o

b random errors. (U) :
o N !
3
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1.0 INTRODUCTION

This report presents a basi¢c numerical treatment of the
two-dimensional problem posed by the passive trackine of a sound source
by one or more searchers that measure the bearine and freouency of the
source. Tk > question is: can.ﬁhe.DOSition, the course, the speed, and
the frequency of the source be determined with usable accuracy when the
observations about its bearings and its frequency are made over 8 period

of time and in the presence of error noise?

Constant source velocity; i.e. constant speed and direction, is
the only case eonsidebed“ in this report. Further, the measurement
errors of both bearing and freouency are assumed to be normally
distributed, with specifiea means and standard deviations and to be

independent from measurement to measurement.

Clearly, complete trackine cannot always te accomplished on the
basis of freauency observations alone, because a source moving alone a
tangent to & c¢ircle around a single searcher will always exhibit the
same Doppler effect, no matter which taneent this source foilows. of
course, the use of multiple searchers or chankes in searcher velocity
during measurement may yield additional information, but the alzorithms
discussed in this report are based on a sinele fundamental freguency

relation, which uses both bearing and freouency information.

There seems to be some confusion about the exact form of the
Doppler equation, so I first related the usual approximation for Doppler
frequency to a correct relation for observed freouencv when both the

source and the searcher are movine relative to the propacation medium; I

stk ki i
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then numericaily explored the accuracy of the approximation. This is

reported in Section 2.0.

In Section 3.0, the acceptable approximation relation iound in

Section 2.0 is used to develop a fundamental system of linear ecquations

between the source parameters and the measured data. Each measurement

provides one equation, and it 1is assumed that the total number of

measurements, N, exceeds three, which is the number of parameters to be

determined. The solution of the resultinaz system of equations, in least

squares sense, for f, XT' YT, iz discussed and the effects of

constraints on the remion of acceptable solutions are considered in
Section 3.0. Since the 1linear equations of Section 3.0 do not

explicitly contain range, their solution produces no information about

this parameter.

Several ways to introduce range as a parameter in the 1linear

system are discussed in Sec. 4.0. The most informative one seems to be

the straightforwa~d grid search for a least squares minimum deviation

between predicted and observed freguency-only data. However, the grid

search, which uses an internal iteration, is very time consuming, and
can be taken only as indicative of possible infcrmation in the data.
This information might then be better extracted by some other procedure,
In Section 5.0 comments are offered on sample calculations made with the
algorithms developed earlier. The actual results of those calculations

are not given. I. is worth commenting that the prcblem has a unique

solution even on the basis of only three measurements, provided these

measurements are free of errors. Of ~curse, there are time-honored

methods for passive tracking using bearings only, but they require more

observations, multiple observers, or maneuvers by the observera. The
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proof that the joint bearing-frequency problem has a uniaque solution for

three observations is ziven in Aopendix B.

In Appendix A the APL implementations of the glgorithms outlined
Much improved implementations could be
What is

in the text are detailed.
produced, but those given are adequate to test the algorithms,

really needed is a good algorithm for determininz ranse when this

parameter is not available as a primary variable,

The text also includes some comments on the effect of provicdine

estimates of one or more parameter values to decrease the breadth of the

search.

This work was performed at DREV in the first half of 1980, under

PCN 32D37, Tactical Towed Array Study.
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2.0 IHE FREQUENCY SHIFT REGLATION AND ITS APPROXIMAZTON

When both the source of a sound and the receiver are in motion
with respect to the propagation medium, a ocomponent of the resultant
frequency shift arises from each of the two motions. In the following
analysis, the absolute freqguency of the source is represented by the
accompanying absolute time between wave crests, or pulses, denoted by 4.

Frequency is the reciprocal of A. Thus, absolute percentaze errors in 4

and in frequency are the same, since

f=1/A
Df = -DA/A2

Df/f = -DA/A

In Fig. 1, T and T' are the positions of the source, a time A
apart, and S and S' those of the receiver when the pulses emitted at T
and T' are received. The time interval between the reception of the two

pulses is denoted Aa. The rest of the notation used in the diagram is

defined as follows:

the vector velocity of the source with respect to the medium

the speed of the source, or magnitude of-V}

the speed of sound in the medium

be = —f’

= the vector velocity of the receiver with respect to the

b

medium
= the speed of the receiver, or masnitude of'ﬁs

R, = the vector from S to T, 1.e. the reverse of the propamation

path for the first pulse
= the distance from S to T

e

o et s e s b et et oot 1 L
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Figure 1 - Geometry of bearing end frequency measurements

-l
R the vector from S' to T!, i.e. the reverse propacation path

for the second pulse
R2 = the distance from S' to T

A and B are angles measured clockwiae from the heading vectors to the

propagation paths, as illustrated.

To compare the time interval between the reception of the pulses,

with that between their emission, A, we write an equation stating

Aa,
s'.

that time along path T + T' + S' must equal time alone path T + S +

A+R/C=b + R,/C (1]

If we introduce ocoordinates <XT‘ YT> and <xs, YS) to describe
vositions of the points T and S, and let

YooY, ~Y (2]

X=Xy - Xq $
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then, of course,

R, = (X% + v3)} (3]

and

. . 2 [ . 2 a
Ry = ((X + 8X; = 8,X)S + (¥ + AYp, - 8,¥5)%) 4]

where the dots indicate time derivatives, or velocity cumobonents. A

direct substitution of [3] and [4] into [1] yields:

* ‘ A = A+ %-(R2 - R

8 l)

= A+ %-(((x + AiT-Aais)2+(Y + AQT-Aais)e);-(X2+Y2)i) (5]

Equation [5] is an implicit relationship for the unknown, Aa' in terma

of the other quantities, all of which are known. This equation cannot

e et e g g

be easily solved directly for Aa' but that step is unnecessary since [5]
can be used as an iteration equation vhich converses very rapidly to the

' value of Aa’ startine from Aa = A,

- The APL proeram DEXACT (Appendix A) is an iteration which =serves

E to calculate &, to accuracy 10°19,

i The iteration based upon [5] converses to the true value of Ly
i but it is not in the usual form of the Doppler equation, and a
i closed-form approximation which provides sufficient 2ncuracy would be
more useful. To derive the best linear approximation to (5], one
regards the quantity in brackets, R2 - R’, for fixed & and Agr BS A

function of the six variables X.Y,XT.YT,XS,YS. As such, it can be
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expanded in a six-dimensional Taylor expansion about point ¥,Y,0,0,0,0.
If this is done, and if only the first-order (linear) terms are
retained, the approximated equality [6] results:

= 1
Aa =4 + c

o
[~
< .

Xon v Lns X4 s
(FAOX, + g8 g =8, X5 - g4, ¥Yg) (6]

Noting that X/R and Y/R are the componente cf the unit
- -l
vector ry 2 R1/R1, the dot or scaler product of two vectors can be used

to wrive [6] a more symmetric form.

1l -
Aa. l+crl VT
" . 'V (7]
1+ 6 rl .

The Doppler shift is usually represente¢ by [7].

The dot products in [7] can be written in terms of angles A and B:

- -
ry - VT s vT cos (v = A) = =V cos A
-l = 3
ry - VS = VS cos (2% - BR) = vS cos B

and [7] then becomes

>

l- V. cos A [8)

T

VS cos B

-}
o—
A 1+

arlaj-

— N e e =y T e | g T e o =
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: A better approximation to eouation {£] can be obtained with the E
b b
expression aenerally used for Doppler shift, particularly in the case of i

s

one-dimensional motion:

[9)

o) >
|
d
[
+
Qjx -

i

where R is the time derivative of the distance between the receiver and

3
' . the source. From Fig. 1, it can be seen that

R = VT cos (r - A) ~ VS cos (- B)

L -VT cos A - VS cos B

T S 1 e v

3 and hence, {9] can be written

é .
Aa 1 (91] |
X—-l-E(VTcosAi-VscoaB) 9 i

But [{9'] also results from [8] because (VS/C)cos B is small with respect _

to 1; hence,

TP —
L4

T R e g 1117

(1+G Vg cos B)™ =1 -2 v, cos B )

If the term involvine 1/C° is discarded in —;
3

] approximately.
2 (121, cos 4) (1% V. cos B) [10]
A Tc¢T c 's i

-~ ~ ...
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. \" Tt e TR e S —— e -

TR i sk B Y bl
B T S
N " R - i Lo




TR T ey

> T

g L

vy,

e R

a3

m—te

UNCLASSIFIED
9

when the right side is expanded, then (9] can be seen as an

approximation to {8].

The errors inherent in these approximations were sampled by the
APL funetion DAPPROX (see Appendix A) for two sienal freguencies nearly
two octaves apart. The results were not much different for the two
frequencies. The errors of approximation of [5] by [8] and [9] were of

the order of 10-5 percent and 10-3 percent, respectively.

It should be stressed that thess errors arise from an
approximation formula and are therefore not only small, but also
systematic. They are not random errors. For frequency tracking, where
the true frequency 1is unknown, systematic errors do not influence the
accuracy so long as they do not change siznificantly while tracking data
are gathered. Further numerical Investigation of the errors involved in
using [7] to compute the Doppler shift reveals thac they are systematic

and slowly varying. Thus, it is concluded that eguation [71:

1l -
e& ~ 1+ C rl VT
= T
h) a— .
A 1+Er t Vg

is an acceptable approximation for use in the frequency trackiue

problenm.

Sl e S
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3.0 IHE FUNDAMENTAL LINEAR SYSTEM

The basic equation for tracking a sound-emittinaz source by
measuring its bearing and frequency continuously, or at several discrete

points in time is:

&5 : [11]
£

RSy 1wt e AT

as derived in the preceding section, where:

fa = apparent freauency to the listener
f = true frequency %
C = speed of sound in the medium f
T = a unit vector pointing along the reverse of the

pulse propagation path, from searcher to source
'Vs = velocity vector of the searcher, relative to the medium
'7} = velocity vector of the source, relative to the medium.

It should be noted that, because'? i= a unit vector, the rance
from searcher to source does not explicitly appear in [11]). Because of
this, range is a secondary parameter in the search problem, and is
difficult to determine since the measured quantities of freouency and
bearing are not sensitive to range variation. In the search algorithma
proposed here, range is not initially determined, but it is left to be
determined by a follow-up algorithm.

» . - [P
- a:
| N s - — - ¢ - e e g e i e v o e, - e oot —r—— -
] : / - - g iy s - . 1 n d 0 Y
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If B 1is the value ¢f the bearing anele, measured clockwise from

the north, then the unit vector r has components

< cos B, sin B » [12]

In this treatment the positive X-axis 1is oriented toward the
north and the positive Y-axis toward the east. Usine the ansular

representation [12] for r, [11] may easily be written as:

. . C +'?fvg\
XT cos B + YT sin B -7 —F ~C [13]
= )
tomether

By so writine [11], we see that each measurement of B and fa,

with the known values of C and VS’ determines a set of coefficients

_.*
r .V

C + q
cos B, sin B, =~ —-;r-——-4=, o
a

for a linear eauation in the three unknowns XT’ YT, f.

Thus, takine bearine and freauency measurements simultaneously at

N different moments results in a system

equations in the three unknowns.

Three such eocuations would generally suffice to determine valves

for XT,
the solution with redundant information, or else be inconsistent.

that 1in seeking fixed solutions XT’ YT

e A - ) ;
s - - e ot e e
e . iy e e —
o .a:-:...aﬁ{....-m...__-.._ o Fomaa - T— ~ —— e T

of N simultaneous linear

YT, f, and the remainine N-3 equations would either comolement
Note

and f, we implicitly assume that

NP NI IR

el b e et e
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| N
E during the measurement period, the source chanses neither velocity nor
g frequency. | -
f
E ' The usual situation, measurements with error components (noise),
? will normally give rise to an overdetermined or inconsistent system of
o equations of the form ([13]. It is possible, in this case to use the
] f generalized inverse of the matrix M, below, to obtain the least sanares
E . solution to the system: j
Lo
E f |
4 . + 1r . )7
E' ‘ . 3 1 <§
g ' + - = - =
{ | XT cos Bl YT sin Bl T c g
[
i 3
: : . . '
E, : XT cos 32 + Y‘I’ sin B2 - = -C [14]
i ;
F ' ' -
F |
C + r . V 1
é : XT cos B + Y sin B é
o
' or r':
: !
E *
ot 5
g xT -C !
E v | = ' 1]
: Mx | oY, {
3 T
-C
where [14'] is the matrix equation counterpart of the system [14].
§

”

.\ - ——e
* . g —— -y . . X . .
T ,h__‘_/_“_h e e
e - - T e e gy
o Y T o =
e Sk vk P N sere g boiiresia

R T RN, s scdasdaied g ee aa L, & B
SRR LRIRCINEIC TO TIPS AP RYRNRELINE Zrqpee -
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The theory of the zeneralized inverse can be found in Ref. 1.
For example, in the APL languare used for the prosrams listed in this
report, the operation liti alweys yields the generalized inverse of M,
unless M has fewer than 3 (in this case) independent columns. Thus,
where [J is used, the eeneralized inverse always results; it is identical

with the true inverse where one exists.

Solvine the system [14] through the eeneralized inverse as in the
first part of the APL function DOPPVEC2 (Appendix A) vyields an
unconstrained least =squares solution for source velocity and freguency.
However, the search problem is seldom unconstrained. Several types of
constrained problems and their solutions are discussed in the next

section.

3.1 Constraints

The first tyne of constraint provided by additional (outside)
information 1s easily disposed of. If frequency is known, velocity
components are found by solving system [14], as we discussed above, and
this operation is simplified because there are only two unknowns left,
instead of three. The known frequency constraint is not described

further.

The second type of constraint, that of known direction of source
movement, without considerine speed, is also easy to handle. When the
direction is known, iT becomes a constant multiple of iT' and c¢ain be
replaced in system [14], leading again to a system to be solved for two
unknowns. If direction is known to lie within a certain ancular sector,

the constrained solution is easily obtained from the unconstrained

kit bt i L

PO T

ekttt ol ld1, e
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solution as discussed under the next case.

The third type of constraint, that of known or bounded s=ource

speed, will be carefully treated for its solution contains the methods

for handling the other constraints mentioned above.

3.2 Constrained Speed

The fundamental 1linear system [14], which can usuvally be
satisfied only approximately in least sauares sense, can be thouzht of

in the followine way. Consider the left side of each equation as

defining a coordinate function, Zi’ of X, Y

T Ypo f, as follows:

+‘?.'\78
. . L] L] . i _
D, (xT, Yoo f) = X, cos B, + Y, sin B -f 7 =2, [15]
i

If there are N measurements, i varies from 1 to N, and [15]

vields N coordinate functions, which define a mavbpine of the

three-dimensional parameter space XT, YT, f, into an N-dimensional

space. The least squares solution of system [14] can be considered from
a geometrical point of view.

The least squares solution vector, <ig, ig, fo) (or point in the
three-dimensional space), determines a vector <Z?, Zg,..., Zg> which is
as close as possible to the constant vector <-C, -C, ..., =C>, of N
coordinates. If the minimum achievable value of distance between <z°,

1
Ceay zﬁ) and <-C, ..., =C> 1is denoted SO' i.e. the 1least squares

e

Al e 1

! mdabndst s nts s e

otttk bt bk

ke Mt 2
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. 0 0
dirference is SO’ then the point <Zl, ey ZN> lies on the surface of an
N-aimensional sphere with its center at <-C, ..., =C>,

Point (Zg, ey Zﬁ), at distance SO from <=C, ..., =C> misht not

be attained because of constraints on one or more of XT. YT' f. The
point at distance S0 is the wmconstrained minimum; if it
unattainable, the almorithm should seek a solution in the constraint
region of the three-dimensional space of the parameters *T’ iT' f whienh
vields a value <Zl, oy ZN> as close as possible to <-C, ..., «C>, i.e.

a constrained minimum. Thuz, the aleorithm must seek a parameter point

<X%, Y;, f1> for which the associated <Zi, Z;, ce ey Zh) lies on the
surface of some other sphere about <-C, ..., -C>, of radius Sf>so. The
equation of the sphere of radius S1 is:
N
ro(z - (-c)? = 5,2
i=1
or
N 1] . 2 2
121 (X, cos B, + Y, sin B, = P, £ +C)" =57 [16]
where
c+T .V
S
P, = 1
i fa
i

-t - e =
- nd . ey e ———— e —— - -

M T
[RSPNS i fait a st kX% i s aama ey -l
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Squaring the left side of [16] yields

2 oA y
' 11x'r * Aaa"'r * At zA12"T"'r 24y 3%pf (171
- b - =
+ 2CA1XT 2A23YT + 2CA2YT 2CA3f +E=0
; [ where
o N N N
; 2 2 2
) A, =1 cosB,, A.,= I sin B f B,
E 11 =1 i* Te2 =1 33 4=1 1
:
4 = ! = P
A12 L cos B sin B 13 =1 Pi ccs Bi’ A23 Tt i
:F = - =
5 Al L cos Bi’ A2 Z sin Bi’ A3 T Pi
: 2 2
? E = NC - Sl
g Equation [17] represents a family of ellipsoids centered on the
5 point <XT.Yg,f° The family parameter Sl determines the size of each

ellipsoid. For S1 = S0 there is the point ellipsoid at <x°,!T,

Figure 2 shows the ceometry described above.

ofO

[ In the three-dimensional space of XT’ YT’ f, a constraint of

% - constant speed, V, 1is described by the surface of a cylinder
i

.2 l2 - 2

XT + YT v

] cylinder,

2 2 & e
xT + YT >V,

o

and a constraint of bounded speed by the surface and interior

of this

3 .
k.w L z - ) ! - T T T T e T e
- NS s et e bt b sl e .+ s il < vt ks, e s e s Mtn s e e A, sindinalhs i

i
3
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E ‘ Ellipsoid determined by {
i /”’—‘~\\"'\ N-sphere of radius S, %
i ! i
E Lt i
b i
¢ 20 0 3
<K, ¥y, € |
[ . .j
~ !
\..\\\ l i

E I |

§ Constraint cylinder |

2 .2 2 l

Xy + Yp = V |

: ' !
X | Circle : i
f V.2 2 .2 ]

. /-‘~< xt * Yt =V :
+ — ¥
: .0 .0 | '
: {X¢, Yt> i
4
- | |
r :
| |
; Projection ellipse i

. (discriminant = 0)

] ]
4 ]
]

Figure 2 - Geometry of speed constraint
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For those oonstraints, the constrained minimum is obtained when

the solution ellipsoids are expanded, by increasing 81. until tangency

is achieved with the constraint cylinder. Of courae, i{f the constraint

region consists of the cylinder and its interior, and the unconstrained

minimum Xg, Yi, fo lies in the cylinder, then S1 = So.

The mathematical problem of finding the point of tangency between

ellipsoid and cylinder can be reduced to two dimensions, for this

tangency occurs exactly when tgngency occurs in the iT'YT plane between ;;f; -ér,

-

the circle X; . wig s Vz-hand the ellipse which is the ellipsoid's =

projection (shadow) in that plane.

The projection of the ellipsoid is describable as the set of

points X., Y, above which exactly one point on the ellipsoid can be
T T

found. Equivalently, if [(17] is regarded as ar equation to be solved
for f, pgiven iT’ YT’ the projection points are those for which the two

quadratic solutions for f coincide. In other words, they are just the

YT for which tne discriminant of ([17], reaarded as a

points XT,
Setting that discriminant equal to zero

quadratic in £, vanishes.

gives:
(A . ALY, + CA )2—
1357 * o3l 3 .
2 2 4+ oA XY X+ 2C +E) =0
(Alle *AYn 4 2A XX 2CA X, + 2CA Y, )
or

02 02 L] - . .
ByyXp + By, Yoot 2B, X ¥y + 2B X, + 2B, Y + F = 0 (18]

™ e, ke

e stthianddl

e M et b e, e .

&‘ l‘wm..;...AiM .Am_. — ) ’ : -~ e
R R R e s UG
————————e s L N A T ————— e
e e ek T - i st
O IR PP S NPT




L — -
" B T e TP,

e

i

—r
¢

TR e 8 e

/o - - . - - -
TN Tt et e e ey

. e e mem e o L L . N . L R . A, 2 e
. #

UNCLASSIFIED
19
where
B.. = A2, = AL, A B.. = A2, - A A
1 = Ay = Ay Agg 22 = A3 = Ay, Ay

2,2
Bra = (Mighog = Agghyp)y B CThg = AgeR

Equation (18] is the ellipse eaquation to be solved for tanzency

with the circle equation x: * Y% z Vz.

another equation can be added by differentiating the circle equation and

Finally, to ensure tangency,

(18], and then equating slopes at the solution point. If this is done,
the following system of equations in three unknowns must be solved.

Recall that F is a variable since it contains the radjus S1 which must

be increased to produce tangency. S1 appears novhere else.

.2 02 . L] . *
Blle + B22YT + ZBIQXTYT + 2leT + 2B2YT +F =0

i% + ig -V =0 [19)
.g .2 - L] . » _ L ]
B)o¥p - Byg¥y + (Byp = Byy) Xpty + ByXy - BiYy = 0

The system [19]) is solved by a Newton-Raphson iteration in the
APL function DOPPVEC2. When the X;, Y%, S1 coordinates of the point of

tangency are found, the value of f is recalculated using the ellipsoid

(17]. The result of the calculation is stored in an APL vector ocalled

1l :
STV, which consists of fT' X%, Y%.
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Figure 3 - Geometry of direction constraint
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This completes the description for a cylindrical apeed

constraint.

3.3 Constrained Direction

To solve the constrained direction problem discussed earlier, we 3

must only reconsider the geometry of the constrained minimum problem, as

in Fig. 3. In those terms, a direction consvraint region consists of a g

(double) wedge with interior, parallel to the f-axis, The boundary

i
3
'
i
P
P
b
13

planes of the constraint rezion are defined by limitine direction lines.

£ ‘ : 0
P Agein, if the wunconstrained minimum solution <Xg, Yg, f > lies

within the constraint wedre, the constrained problem is solved. If not,

the situation is identical to the one discussed above, and S1 must be

E increased until an ellipsoid becomes tangent to the constraint wedee.
; However, it i1s not necessary to repeat the process used for the cylinder
é constraint region. It will be noted that the desired point of taneency
is obtained when an ellipsoid of the family is tancent to one of the
wedge boundaries. Thus the constrained solution is one of the two for

f which

or !T = KZXT [20]

< .
"
o
¢ -

It was noted earlier that when a precise relation, like [20], is
obtained between YT and XT’ the fundamental system [14] reverts to a

system of equations in only two unknowns, and the least souares solution

o

can be obtained using a simplified generalized inverse.
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Thus in the case of (wedge) direction constraint, the fundamental
system [14] can be solved twice, once with YT = K1 XT, and once amain

with ¥, = K iT; the best of the two solutions (least squares sense) is

2
the solution of the constrained direction minimization problem. Of
course, if the direction constraint wedge is a rplane, only one such

solution results.
3.4 Constrained Direction and Velocisy

The most re2xlistic constraint case is perhaps one in which the
source direction is known to lie between two intersectine half-lines and
the source speed between two values V1 < Va. In this case, the

constraint region is a cylinder parallel to the f-axis, as in Figs. 2

and 3, but having for its base, in the xT-YT plane, a figure oounded by
four ares which are the intersections of an annular rine with an angular

sector, measured from the center of the ring.

Again, if the unccnstrained solution lies within the constraint
region, the problem is solved. If it does not, the beat constrained
solution will then lie on the boundary of the constraint resion, at the
point where the smallest ellipsoid described by eauation [17] becomes

tangent to the constraint region, by increasine S1.

Although finding the point(s) of tanzency in this case requires
more care than it did in the simple circular case of speed constraint,
it is not difficult to develop an algorithm which will do so. The fact
that the ellipsoids of the family described by [17] never chanze their

center or their principal axes as S1 is increased helps.
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4,0 FESTIMATION OF KAMGE

4.1 Rouzh Range Estimation

The first method discussed depends upon certain approximations to

the ranee vector in the fundamental eocuation for apparent freouency

— - e
fa(C+r.VT)-f(C+r.VS) [21]

The approximations will be better for short trackine intervals and lone
ranges. The principal limitation of tbe roush ranre estimate is error
in freaquency estimation, f. With an externsl input of freauencv, the
method could be aquite accurate but, if freaquency is badly determined,
the roush range estimate will be useless. Further, as discussed below,
the roueh range estimate is unreliable when both source and =searcher

travel alone or near the line which joins them.

Bouation [21] can be rewritten as

L]

f - f
a - - _E_:.
="r (VS - F VT)

C f L]

and fa/f may, quite acceptablyv, be approximated bv 1, leadine to:

f - ¢

J

i
=r

[22]
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-—
To simplify the discussion, we will assume that Vs_is constant over the

measurement period or, ecuivalently, that a subset of the measurements

«lie
taken when Vg is constant is used for the estimate. A slirhtly more
e )
elaborate procedure can be developed in which Vs can vary and all

observations can be used.

Summing [22] over the N usable observations yields

This summation reduces the importance of independent random errors in

the measurements of the fa , but an examination of the effect of the
i

initial range, R1, on the rieht side of [23] reveals the sensitivity of

this equation to determination of the freaouency f.

Ir R1 is large and the time interval between measurements is

relatively small, there will be 1little chanre in the unit direction

~vectors ry o and we can write

=z

T =NT (24]

i=1 i 1

-l
where r i= the initial unit direction vector. On the other hand, if R4

is close to 0, the sum of the unit vectors is

G L i S

o ootttz

N onlin = T: - -V;
T ri = ".‘l + (N - l) _:I. — [25]
1=1 Vg = g1
~ . - "/l
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for the first messuremert is taken in the direction'?1 of the source,
but all subseauent ones are in the direction of the relative velocity
V}JV;. (More complex expressions are clearly needed here, and below, if
V. 1is allowed to vary). The exoressions [24] and [25] can be used to

S
bound values on the right side of [23], as follows:

b

- e -ty = P - N
ry . (VS - VT) - (N ~1) ||VS - VT|| < (Vs - VT). §1 ri
= (26]

s ol -t e
where ||vs - VTII is the maenitude, or leuxil of the vector Vg - VT’ and
is positive. It is clear that the lower bound in [26] 4is always

inferior to the upper one, although both may be nerative. The upper
— gl

bound is negative only when the (signed) projection of the vector Vq-VT

onto the direction'?1 is negative, or when the (siened) oprojection of

-he -ty .
V. - Voonto r_ is positive, or when the source is movine away from the

T S 1
searcher.

Since [23) can be used to replace the middle expression in the

inequality [26], the following inequality results:

£ -f
r, . (Vs - VT) - (N - 1) IIVS VTII < C ‘2 £
i=1 {27]
. - 2
r

It is in the form [27] that the sensitivity of the roueh range
v

wlin
estimate (still to be described) is most evident. If, for example VT

i e i
lies close to the line of action of £y then r, . (VS - vT) ia necative,

- Y
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and close in value to |rV; --V}||. In this case the two bounds in [27]

alne
differ by little. Then, if the estimate of V., is trustworthy, [27]
might be used to provide a worthwhile estimate of f; however, unless f

=
: _ is well known, [27] will not be useful in finding the value of R,.

, If the bounds in [27] ere spaced far enoush apart, and if a
l reliable estimate of f is available, a method for rourh ranee

determination results from closer examination ¢f the quantity

el

(VS - VT) .

B e T Ten———

T, = (28] 3

The inequality [26] shows the maximum possible variat.on of Q(R1) as R1

varies from O to « and, if the measured values fa satisfy the

T e AT vy

inequality [27], a value of R, can be found to make [23ﬁ true. Such a

£

value of R1 would be the rough range estimate.

' To examine the behavior of 0(R1) as R1 is varied, two other

approximations are made to the unit vectors'?,- If TTi represents the

5 time at which measurement i i: made after the first measurement, 1{.e. i
: ! 1
E - L TT1 = 0, then %
:
-ﬁ e - ) :
3 i -~ o~
[[Ry + mr, (Vp = V)]

Wl s ke ettt s A e

It should be noted here that the time TTi is not modified to obtain the

]

position of the source at the moment of the emission of pulse i rather

than at the time of ita reception. Such corrections are made later in
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this section as well as in computer prosrams to allow for the source
movement during transit time of the pulse. Here, however, all times are
measured from the time of reception of the first pulse so that onlv a
minimal correction would be needed for the small change of range between

the first measurement and measurement i.

Further, approximating the denominator in [29] by

.V =V

T-&
R + T r T S

1 i1

which represents the value of R1 corrected by the chanse in rance

produced by the projection of relative velocity in the 1% direction,

results in an approximation to [29]:

-l P~ sl

- _R1+TT1 (VT-VS)

r; == — - [30]
R, + TT, 7. (V, - VS)

Now, if [30] is substituted into [28) and if the result is
differentiated with respect to R,, the following derivative is obtained:

N

49 _ i w2 = 2 TT

ar, ~ VgVl 1™ = Gy VgV )Y T ———  [31]
i=1 mleirl.(vT-vs))

and the quantity iz always positive.

Finally, when the inequalitv [27] is satisfied bv the estimated f

and the measured fa y the ouantity 0(R1) rises steadily with increasine
i
R1, one unambiguous value of R1 can be found for which [23] i=s

satisfied. This value is the rourh ranse estimate. The easiest wav to
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i find it is to apply the method of Newton-Raphson to [31]. The estimates ;
are found with the APL function RRNG of Appendix A.
One further look at the form of the derivative, in [31), reveals i
again the sensitivity of this estimate to the direction of'?}, and the ]
3 : relative velocity'V} -'Vé. Since the derivative contains the factor :
3 ‘
: (Hvs"vTH - (rl . (VS-VT)) ) %‘
)
: it may be very small when VT - VS lies in the line of action of rye The i
: range estimate then becomes quite unreliable, and the Newton-Rapnsou E
? root-finding technigue may have to be abandoned for another techniaue
; which is described below.
; The second method for possible ranze determination also uses the L
L least squares solution iﬁ
v ‘:
STV = <f, Xp, Yoo [32]
% . of the linear system: i
3 = —t
C+r .,V
: . . 1 Sl
. X cos B + Yy sin B, - f F = -C i
3 8 3
-3 . * . . k
" [33]
C+T, .V,
. L] N SN
XT cos BN + YT 8in BN - f 7 = ~C
%N

el o e - T LTI e
e o e e
) [
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In findine the least souares solution STV, the actual measured

values of bearing B1, Cey TN were used to evaluste the coefficiente of

system [33]. Once values of f, Xp» Iy are available, one can

a) assume a value of ranse at initial measurement, Ry

b) use the measured initial bearine, the estimated velocity Xpo
QT’ torether with the assumed value of R, to generate a set
of bearings BZ’ Bs,... BN at the later measurement times;

¢) calculate the left sides of the eauations in [33] and compute

the summed, squared, differences between left and risht sides

in ([33], usinz the results of b) and the other known and

measured quantities C, Vs . fa .
i i

The result obtained in ¢), called DELTASO in the APL functions of

Appendix A, can be considered a measure of merit of the assumed ranee

R1, subject tc the accuracy of the estimate STV. If there is a minimum

value of DELTASQ over the interval of possible assumed rances, R1, the

value of R1 corresponding to the minimum could be chosen as the best

linear range match.

The above computational procedure 1is easily implemented. The

calculation is performed with the APL function RNSEL of Appendix A.

4.3 Least Squares Iteration

The ¢third method for range estimation is the classical least

squares iteration that permits to find the point in parameter space,

<f, XT, YT’ R1>, which minimizes a sausred-summed error function.

il
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.04 |— EXPECTED SIGMASQ = .004 |
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SIGMASQ
e
|
l

®
e
° L ]
L [48]
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002 }— 'Y — ?
o ® a

001 | i l Ll
SOURCE RANGE

Figure 4 - Example of range estimation for two searchers

Like the best linear ranze method or second method previously

e

explained, the third method uses values of the parameters to ezenerate a

set of bearinss, so that its comparison with measured data involves only |

frequency measurements.

In the second method, only the range parameter can be varied. In
the third method, the minimum is sought by evaluating the zero points of
partial derivatives (of the souared~summed error function). It is thus !

possible to vary any of the parameters.
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Figure 5 - Example of range estimation for one searcher

Unfortunately, in the nresence of measurement nolise, the

[ squared-summed error surface for freauencies seems {0 bpossess many i

F distinct relative minima. Computation reveals that these are not slways
located near the true values of the parameters but, in the search for

the zeros of partial derivatives, incorrect minima often arise. Ficure

4 shows the result of a typical calculation in which a8 search was

performed on a range prid, and the algorithm was allowed to seek the

] h best values of f, XT’ YT’ to minimize SIGMASQ in tha APL function

KITERATE. 1In this case, two searchers are used and the range is not

/ - B - - ~— B e e SN R - g — oy i — g -
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excessive; so it is a favorable case. The figure shows that, without a

good 1initial rance estimation, an aleorithm searchine in range as well
as in the other parameters might yield several different values. The

behavior plictured is not exceptional.

The case presented in Fier. 5 was calculated for one searcher.
Althourh the single searcher was allowed to change course, and the same
total number of observations was used as in the two-searcher case of
Fig. U4, it is apparent that many more local minima exist. Counting end

point minima, there are at least five in Fig. 5, and an iteration might

converge to any one,

Despite the complexity of the function to be minimized, the least
squares algorithm is useful in many cases and it often yields a deepest

minimum not far from the true value of the rausze parameter., The basic

equations for the method are presented next.

Using [21], solved for the apparent freaquencey, fa’ the
équared-summed differences for the freaquency observaticons can be
expressed as

N C+T, '\'f"s .
SIGMASQ = I (f — -1, ) [34]
i= C+ ri + Vo i
/ - -.4, . - = T T e e T ey e s e

e e ST TSN S-C LS. T N .
[ T N . U

e e g S i
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4
[
4 SIGMASQ is to be minimized by fixine a ranse, then seekine points where
, the partial derivatives below vanish. ;
N c+d LV c+T .V ]
] i S b 5]
-—n2 & (f - _,_-f‘) =
of i=) C+ Ty« Vp i1 C+ r, . VT 3
-
f B N or é
i : aﬁ—"2z( __._a [35]

BXT l=) BXT

N a8 :

? ? 8
‘ 3 S—=2 I -
3YT =] aYT
? ' where the r., on the risght, is the function of XT and YT obtained by ‘

! ' solving [21] for r.. However, these formulas must be interpreted

carefully. For each 1, 1€ 1 ¢ N, ra(iT, iT) is a different function ;

% ' and, hence, each equation of [35)] is a scaler product between data

It is useful to recosnize this fact in notation,

é | vectors, of length N.
? » by using a scaler product notation between data vectors of lensth N, §
: - 5
and by emphasizing such vectors by the notation am. Then, if the error :
] vector whose components appear in the parenthesis on the right =ides in
] s
1 [35) is denoted EV, [35] can be rewritten in compact form as follows:
C+T, .V
j a2y ( i8S
3 ot cC+r, .V ;
» i . T ;
D g ]
? ) at [ '] i
=2 WO 2 3 j
E axT axT :
af
o
. 2O =2
i Y BYT
3 {
— T T T e
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A
af
Then, —2 is an Neveoctor whose ith component is:
i
e ol
- ar -~ or
— L (e T, =) (0F, T, Y (cos BV =) [36]
(o )2 1S, 18y R
Ty *p X
of
and there is a similar expression for the ith component of 2 .
Y,
T

Thus, the evaluation of the needed partial derivatives cannot be

completed without evaluvating the expressions

or, T
— and —Tl .

EXT SYT

It must now be recalled that ?; is the unit vector pointing from the
toward the nposition of the

position of the searcher at time i, TTi’
In other

source at a time TTRi at vwhich the ith pulse was emitted.
words, the source position times must be corrected for transmission

time. This correction is performed with the APL function NUVECT, for

use in the iteration function KITERATE.

In terms of TTi and TTRi,TFi can be written as:

- y v
r, = <Rl cos Bl + XT TTRi - XS TTi’

Wb
1]
wIH

. . [37]
Ry sin By + ¥ TTR, - Y TT,>

where Ri is the magnitude of the vector in corners <.

b iy
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Next, [37] is differentiated with respect to X, and Yq, to vield
the two needed derivatives. Note that no approximation haa been made in

obtaining these derivatives:

or TTR
—L = —2 o - RRXZ, - RRX x RRY>
9%, RRN

[38]

or TTR
‘Ti = ; <-RRX x RRY, RRN2 - RRY2>
Y RRN

where

RRX = Rl cos Bl + T'I‘Ri X XT - T'I‘i x XS

XYT-TT xY L_>9]

RRY = Rl sin Bl + TTR i S

i
RRN = (RRX® + RRYZ)?
and these quantities represent the X and Y coordinates of the source as
well as distance in a corrected searcher relative space in which the
source position at the time of emission of pulse i 1is related to the

searcher position at the time of reception of pulse {i.

The expressions [38] substituted into [36], substituted into
{35'] vyield formulas for the needed partial derivatives. It is
pointless to write out these complete formulas here. The reauired

quantities are computed in the APL function FCN.

Finally, the search for the zero points of the derivatives of
[35'] is carried out by a Newton-Raphson procedure for which the
required derivative is calculated numerically with the APL function
JACOB, and the actual iteration to the convercence criterion 1is
performed with KITERATE. The search is manaced by‘ a control function
named SSSTM.
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5.0 USE OF ALGORITHMS

Computer proerams are available for only two of the aleorithms
analyzed above. DOPPVECZ2 estimates f, iT and iT with speed constraint.
SSSTM estimates targzet range by least sauares iteration from the
DOPPVEC2 results and then makes a new estimation of f, iT and iT‘ These

computer programs are listed in Apprendix A.

If the reader uses {hese programs, he may notice a few

peculiarities of behavior which might usefully be pointed out here:

1) 1If bearing and frequency measurements are totally free of
error, DOPPVECZ2 will yield an exact estimation of f, XT, YT‘ SSSTM,
howsver, will yield estimates with small errors because the search |in

range is carried out at discretc -alues which may not correspond to true

range.

2) The variable SIGMASQ does not always pass througzh minima; it
may decrease indefinitely as range increases in the interval searched by
SSSTM. 1In such cases, the estimated value of range is always near the

high end of the interval and mav bear no resemblance at all to the true

value.

3) In principle, SSSTM improves the estimate of f, Xps and Yo
made by DOPPVEC2. In reality, the new estimate may be worse than the

original.

4) Both algorithms favor speed estimates close to the speed
constraint rather than to the real speed. In most cases, the

constrained solution is a boundinz solution in the constraint reaion.

- . . . L.

A i ot o
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3 6.0 CONCLUSION :
3 The operational effectiveness of the algorithms discussed above ;
i o is unknown. It can be estimated by simulation studies in which searcher :
i ; tactics are taken into account. Such studies have now been undertaken

i % for the two algorithms already programmed . The other algorithms 5
: % analyzed above should be easy to program whenever needed. i
1
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APFENDIX A

THE APL FUNCTIONS

The followinz APL functions are presented, and briefly described.

1

2)

3)

4)

5)

6)

MEASGEN: Accepts the basic descriptions of source and
searcher(s), and generates bearing and frequency inputs, with

random errors, for use by the processing aleorithms.

DOPPVEC2: Performs th: least-squares solution of the

fundamental system of linear equations, subject to a speed

constraint.

NUVECT: Uses the measurement times and the first measured

bearing to convert an estimate, STV, of f, XT, YT, and an
estimate of range, RN, into predicted source coordinates and

frequencies, for comparison with the measurements gzenerated
by MEASGEN.

RMNL: Chooses a vector of N random numbers from a Gaussian

distribution of mean P[1]) and standard deviation P[2]. The

choices are independent.

SIGM: Computes the summed-squared deviation for fieauencyv
data, SIGMASQ.

FCN: Computes the values of the partial derivatives of
SIGMASQ, with respect to the parameters f, XT, YT.
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7) JACOB: Performs a numerical calculation of the matrix of

second partial derivatives of SIGMASQ, for use in the

UNCLASSIFIED
4o

iteration KITERATE.

8) KITERATE: Does the Newton-Raphson iteration to find a

zero-point for the partial derivatives of SIGMASQ.

9) RRNG: Computes the rouesh rance estimate.

10) RNSEL: Chooses the best linear rance estimate for the

solution of the fundamental linear system.

11) SSSTM: Performs a grid search, using KITERATE, for a ranee
at which the smallest value of SIGMASQ can be obtained, by

simultaneously varying the other parameters.

12) DAPPROX, DEXACT, SHIFT and SHIFTY: Solve the exact and

approximate formulas for the Doppler shift, as

Section 2.0.

Further comments accompany certain of the individual APL functions.

Funcotion t: MEASGEN

INPUTS:
TAR[1]
TAR[2]
TAR[3]
TAR[4]

TAR is a 1 x 8 vector which consists of the followins:
Source initial X
Source initial Y
Source X velocity

Source Y velocity

presented in

. — C e e = - — . —
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TAR[5] Maximum possible source speed

TAR[6]) Default estimate of source range (to be used if all
efforts to find range fail)

TAR[7] Source emission frequency

TAR[8] Speed of sound in the medium

Since only one speed vector is given for it, the source moves on ;

e i

a straight line, at least throurhout the measurement interval.

ey

SRCH1 is a 1 x 7 vector which consists of :

SRCH1[1] Searcher initial X

3 SRCH1[2] Searcher initial Y
SRCH1[3] Searcher initial X velccity

SRCH1{4] Searcher initial Y velocity
SRCH1[5]) Searcher turn time

H
i
{
E
F

SRCH1[6] Searcher final X velocity
SRCH1[7] Searcher final Y velocity

SRCH2 is a 1 x 7 vector with the same components as SRCH1,
A describing a second searcher. Although only two searchers are provided i

for and only a simple dogleg path is given for each one there are no

Al R e

limits in the algorithms which would prevent reprogramming for g

additional searchers, and more complicated search paths. Searchers can

B

be prevented from maneuvering by setting SRCH1 [5] and SRCH2 [5] loneger
i than the last measurement time in TIMEM, and the present programs can be

used for either 1 or 2 searchers, as controlled by the input TIMEM,

iaticd it

detailed below.

- - % - — — -
- ——————
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U T P PATT T

MEASM is a 2 x 5 matrix of measurement parameters, as follows:

s MEASM[131] 1

- MEASM[2; 1] e ﬂ
MEASM[1;2]) The mean of the bearing error distribution j
MEASM[1:3] The standard deviation of bearing error ;
MEASM[1:4] The mean of the freauency error distribution é

] . | MEASM[1;5] The standard deviation of frequency error ;

MEASM[2;2])-[2;5] Same as MEASM [1;2] - [1;5] for the second

‘ searcher; these parameters can, of course,

ad
o

be given different values for each searcher.

s IR LSRR

TIMEM is an N x 2 matrix which specifies the times of

measurements. The first column specifies the number of the searcher

v

; that makes the measurement, and the second one gives the times. While

é ' the present algorithms do not consider 1loss of contact, this factor

7 could be introduced by producing a random menerator for contact times ]
and searcher numbers, or by acceptine TIMEM as an output from a search

algorithm.

To use MEASGEN for a single searcher, the first column can be set

entirely to 1 (or to 2), or else vectors SRCH1 and SkCH2 can be made

identical.

e T T USRS

FUNCTION: Lines (1] through [11] set the measurement times,

} together with the searcher coordinates and velocities at those times.

L e ot b bl et e+ s b

] True measurement times are used. Lines [12]-[15]) find source relative
coordinates in searcher relative space{(s) at measurement times. Lines
| (16]-[25] perform corrections to obtain the source positions at the time

of pulse emissions, relative to searcher positions at times of i
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T

reception. The remainine lines calculate true bearines and freouencies

and lines [35]), [36] apply normally distributed independent errors.

OUTPUT: The output of MEASGEN is an N x 12 matrix called DATAM.
Each line stores the information aporopriate to a measurement, with

components as follows:

T T

DATAM[I;1] Line number 1

DATAM[I;2] Searcher number for line I

DATAM[I;3] Measurement time

o ——ry

DATAM{I;4] Bearine

TR

DATAM([I;:5] Freouency

k

DATAM[I;6] Searcher X coordinate at measurement time

; DATAM[I;7] Searcher Y coordinate at measurement time
b | DATAM[I1;8) Searcher X velocity, this time
DATAM[I;9] Searcher Y velocity, this time

DATAM[I;10] Ranze from searcher 1 to source, this time

DATAM{I;11] Ranze from searcher 2 to source, this time

DATAM[I;12] Turn time of the searcher on this line

4 Function 2: DOPPVEC2

INPUT: DATAM, from MEASGEN

FUNCTION: Lines [1] - [10] compute the matrix, M, of the

fundamental linear system and obtain the least sauares solution, usinre

T T

L s

the Moore-Penrose inverse B nrorrammed intc APL. Line [16]) and [17]

check that the speed constraint spesific-d in TAR [8] is met. If not,




UNCLASSIFIED
Uy

lines [18]) through [32] set the geometrical parameters of the ellipses

described in the text, and the remainder of the function uses
smallest value of DELTASQ which ;

3
. Newton-Raphson to solve for the

1 ' satisfies the spéed constraint. :

e

il

OUTPUT: STV is the least squares solution of the linear system,

subject to the speed constraint.

T

Function 3: NUVECT

INPUTS: DATAM, from MEASGEN
STV, from DQPPVECZ2, or from KITERATE when used

for iteration

L T RE PP p—.

RN, from SSTM, which controls the grid search

for range.

FUNCTION: Lines [1] through [12] use the searcher information

irom each 1line in DATAM to generate relative source coordinates and

distance, in searcher relative space, at the time of reception of a

] pulse. Lines [13] and [14] correct the source position to the emission i

time of the pulse. After position correction, the remaining 1lines |

compute the angular and frequency data to be expected. The entire

operation is performed simultaneously for the whole of the matrix DATAM.

i i e e

OUTPUT: The relative position and distance vectors (RRX, RRY,

-
] RRN), the bearing data (COSV, SINV), and the components of the Doppler

formula ~ '3, CRVT) are all used in other functions. Vectors NUAV, the
4
predictiu observed frequencies, and TTVR, the corrected emission times,

are perhaps the principal outputs of NUVECT.

|
E

-
-
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Funetion 6: FCN

INPUTS: DATAM plus the position and fregquency predictions

Losikh,

of NUVECT.

' FUNCTION: Lines (3], (7], [8) compute the three partial
! derivatives of SIGMASQ, with respect to f, XT’ YT, respectively.

T

QUTPUT: FV is a 3 x 1 matrix of the values of the partial

el

derivatives.

e

Function 7: JACOB

INPUTS: FV, or FCN STV, from FCN

FUNCTION: Computes numerical approximations for the nine second

-
B 7 N T

. partial derivatives of the three first partials in FV, with respect to
‘ ' each of the three parameters f, xT, YT. Instead of a true derivative, a
difference quotient is computed for an increment in f of 10~ and

increments in xT, YT of 10-6.

OUTPUT: The 3 x 3 matrix JA, or JACOB STV,

T

Function 8: KITERATE

INPUTS: DATAM, TAR, FCN STV, JACOB STV, REPIT,
outputs of NUVECT.

M

R
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FUNCTION: Lines [4] and [5] compute lower and upper freauency

hounds (LNUB, UNUB) for the frequency parameter, based upon the observed

i el

frec:encies and the speed constraint.

g T
o

KITERATE attempts to move from point STV, in a direction i
indicated by JACOB STV, to find another parameter vector, STVA, which

i satisfies the speed and frequency constraints, and results in a

A St ol el e

T T T

decreased value of SIGM STV. The base values are referred to as SIGMB, :
FCNB, STVB. If the new value STVA of line [11] does not satisfy the /)

1 . restrictions in [13], other values of STVA are tried by progressive

+ hmated | itk ] ik

halving of the parameter vector displacement, [13], until one is found

that satisfies the restrictions; if it is impossible, tr-n we revert +to

the previous estimate, line [17].

If improved values of STV are found, this process continues until

o e 1

P . the difference of summed squared deviations, SIGM STV, stabilizes to
within £10™° until a predetermined number of repetitions, REPIT, is

reached.

OUTPUTS: STV, STVA, both names for the same parameter vector.

e e L s s ke ot 0, e s Ler o oo Laiatd et dat e

b Function 11: SSSTM.

P

INPUTS: STV, from DOPPVEC2.

Rl ol it

PRI

ik

FUNCTION: Lines [1] through [7] calculate KITERATE STV for the

T
m

initial input STV, ."ith values of RN from 10 to 120. The results are
; stored in a matrix SSTM, as indicated in line [5]. Lines [8] throush

3
1 . [15] construct a vector, AV, of ones and 2zeroes with a one in each ) ﬂ

Ll i A LS

-
e
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position where the corresponding row of SSTM exhibits a relative minimum

rsalue of SIGMA.

If there are no relative minima in column 5 of SSTM, line [17]

prints a row of zeroes, as row [13] of SSTM, and terminates.

Line [19] selects the relative minimum rows of SSTM and places
them in a matrix called RNS. Lines [20] through [32) expand the search
about the relative minima of SSTM in increments of =5, 0, +5 about each

relative minimum.

These calculations use the values of STV found by KITERATE at the
relative minimum ranges, not the orieinal STV from DOPPVEC2. The
results of the expanded calculations are recorded as new rows in the

matrix SSTM.

Line [33] selects the absolute wminimum in column &5 of the
expanded matrix SSTM. Finally, lines [34]) through [45) further refine
the search in increments of -2.5, U, +2.5 about the range value found by

[33], and records the output MIN.

CUTPUT: MIN.
Function 12: DAPPROX, DEXACT, SHIFT, SBIFTY.

DAPPROX computes the DOPPLER approximation of formula [7],
Section 2.0, as DAA, line [2]. Line [3] computes formula [9'], as DAA2.

DEXACT solves the exact relation [5] for LY by a Newton-Raphson

iteration, to accuracy 10_10Aa. The functions SHIFT and SHIFTY simply

#
o . e e — - .. . - e et v g oy e e g ~ . 1 —
all . .. .:.&u«;.-_‘[—._;-.m,. ’ %

TN & " c bty oas o s - [T VI g
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s ‘ permit the values of exact and approximate solutions to be computed and

displayed for a number of different fregquencies, and for a number of

different velocities of source and searcher.

The vector input IV consists of:

E ! Source X, Source Y, Searcher X, Searcher Y
N is the desired number of repetitions

D is the interpulse intervsl, D = 1/f.

,,
'
i
;
!
%
b

SHIFT makes N random choices of the relative coordinates X and Y, while

SHIFTY demands initial X and Y, as IV[5], IV[6], end moves the source

;
: : along a straight line until N positions have been achieved.

. ke Smeavimataaid o
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YNEASGEN[O]V

UNEASGEN3; TV L3 S1XV3S1YV S2XV 3 S2YV i RELX1 ;RELY1 ;RELX2RE
LY23}BEAR2RV13RV2 1 FREQ2:N; S

TV-QTINEN[ 2]

TPY+TARU1]+TAR(3]IxTV

TPY«TAR[21+TARCN4 Ix TV
S1XP+((SRCHAL1)+SRCHIL3IxTV) x(TVSSRCH1[S]) )+ ((SRCH1[1]
+SRCHI[3IxSRCHILS))+(TV-SRCH1[S))xSRCH1[61)x (TV>SRCH1(
5))
S1YP+((SRCHAL2)1+SRCHILuIxTV)x (TVSSRCH1[5]) )+ ((SRCH1[ 2]
+SRCHITMIxSRCHALS))+(TV-SRCHILS))xSRCH1[ 7)) % (TV>SRCHA(
1)

S2XP+( (SRCH2L1)+SRCH2[3)xTV)x(TVsSSRCH2(5]) )+ ((SRCH2(1]
+SRCH2L 3% SRCH2L5))+(TV-SRCH2L5))xSRCH2[6]))x(TV>SRCH2(
1)

S2YP+( (SRCH2[2)+SRCH2LuIxTV)x (TVSSRCH2(5)) )+ ((SRCH2[ 2]
+SRCH2[4IxSRCH2[5))+(TV-SRCH2L5))xSRCH2[7))x(TV>SRCH2(
5])
S1XV+(SRCH1L3)x(TVSSRCH1[(5]))+SRCH1[61x(TV>SRCH1[5])
S1YV+(SRCH1L4Ix(TVSSRCH1[S5)))+SRCH1[ 7 Ix(ITV>SRCHL[5])
52XV~ (SRCH2[L3)»(TVSSRCH2(51))+SRCH2[61Ix(TV>SRCH2(5])
S2YV«(SRCH2LuIx(TVSSRCH2[S])))+SRCH2L7Ix{TV>SRCH2(5])
RELX1+~TPX-S1XP

RELY1+TPY-S1YP

RELX2+TPX-S2XP

RELY2+«TPY-S2YP

RVi+«((RELX1*2)+RELY1*2)*,5

RV2+«((RELX2*2)+RELY2%2)* .5

TPX1+TPX-TAR(31xRV1:+TAR(8]

TPX2+TPX-TAR[3)xRV2+TAR[8]

TPY1+TPY-TAR[4]1xRV1+TAR(8]

TPY2+TPY-TAR[4])xRV2+TAR[8]

RELX1+TPX1-S1XP

RELY1+TPY1-S1YP

RELX2+TPX2-S2XP

RELY2+TPYZ2-852YP

BEAR1+( (" 30RELY1+RELX1)x(RELX1>0)x(RELY120))+((( 30REL
Y1+RELX1)+01)x(RELX1<0))+((( " 30RELY1+RELX1)+02)x(RELX1
>) ) (RELY1<0))
BEAR1+BEAR1+((01.5)x(RELX1=0)x(RELY1<0))+(.5)x(RELX1=0
Yx(RELY1>0)

BEAR2+( (T 30RELY2+RELX2)x(RELX2>0)x(RELY220))+((( 30REL
Y2+RELX2)+01)x(RELX2<0))+((( T 30RELY2+RELX2)+02)x(RELX?2
>0)x(RELY2<0))

BEAR2+BEAR2+((01,5)x (RELX2=0)x(RELY2<0))+(.5)x(RELX2=0
)x(RELY?2>0)

RV1«((RELX1%*2)+RELY1%2)*%,5

RV2+( (RELX2%*2)+RELY2*2)*,5
FREQ1+TAR[7Ix((RVixTAR[8))+(RELX1xS1XV)+RELY1x51YV)+ (R
V.xTAR[8))+(RELX1xTAR[3))+RELY1xTAR[ 4]
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FREQ2+TAR[7Ix((RV2xTAR[8]1)+ (RELX2xS2XV)+RELY2xS2YV)+(R
V2xTAR(B8))+(RELX2xTAR[3))+RELY2xTAR[ 4]

L~(pTIMEN)[1]

BEAR+(2,L)p(BEAR1+L RNNL 1+( 2+MEASN[13])),BEAR2+L RNN
L(1+("2¢NEASNL23]))

FREQ+(2,L)p(FREQi1+L RMNL(3+MEASN(1:))),FREQ2+L RMNL(3+
MEASN[2:])

SERX+(2,L)p,51XP ,52XP

SBRY+(2,L)p,S1YP,52YP

RELVX+(2,L)p,S1XV ,S2XV

RELVY+(2,L)p,S1YV,S2YV

DATAN+1 12p0

N+1

S«TINENC1;31)
DATAM[1;)+1,5,TINEN(U1;2]) ,BEARLS;1) ,FREQLS;:1]),SERX[S;11]
+SBRY[S:1),RELVX(S:1),.RELVY[S:1]),RV1[1],RV2[1]),((S=1)x
SRCH1(51)+(S=2)xSRCR2(5)

NeN+1

-(N>L)/0

S«TIMENIN;:1)

DATAM«DATAM ,(1]IN,S5,PTINMENCN;:;2]) .,BEARCS;N] ,FREQ[S:N] ,SERX
(S;N),SERY[S3N) ,RELVX(S;N) ,RELVY[S;N] .,RVA[N] .RV2IN], ((
S=1)xSRCH1[S5]))+(5=2)xSRCH2(5]

+45
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voopPVEC2(0D]V

VDOPPVEC?2 s M1 3M2 ;M3 s R3 My DOPPV ; VAX 3 VAY 3 NUD 3 173 TAM ; TBN FAM
s FBM 3 TDNUBM ; TDNUAM 3 PSI s PSID3; A113A22;A333A13/423433A41234
133A233;B113B223B1;B2;B12;F;REP

LOOP+1

M1+20DATAMI 34 ]

M2+10DATAMI 34

M3+-(+DATAM[ ;51)xTAR[81+(M1xDATAML ;81)+M2xDATAN( ;9]
R+(pDATAM)[1]

M+~(R,3)p0

M[:1]eM1

M[ ;2 1«M2

M[:31+M3

DOPPV«-TAR[8)x(BM)+.x((R,1)p1)
DELTASQ++/ ,((M+,xDOPPV)+TAR[8])*2
VAX+<DOPPVY[1:1]

VAY+<DOPPV[2;1]

NUD+DOPPV(3:1]

STV+NUD ,VAX ,VAY
We(DOPPV[13:11%2)+D0PPV[231]%2
+(WsTAR[5]*2)/C1

Alie+ /M1%2

A22+4+ /M2%2

A33¢+ /M3%2

A12«+ /M1 xM2

Al13«+ /M1 x-M3

A23«+ /M2 x-M3

Al++ /M1

A2++ /M2

A3++/-M3

B11+(A13%2)-411xA33

B22+(A23%2)-A422%xA33
B1+TAR[81x(A413xA43)-A33x%xA1
B2+«TAR[81x(A23xA3)-A33xA2
B12+(A413xA423)-412x433
F«(A33xDELTASQ)+(TAR[81%2)x(A3%2)-RxA33
PSI+3 1p0

PS:PSI[1311«(B11xVAX%*2)+(B22xVAY*2)+(2xB12xVAXxVAY)+(2x

B1xVAX)
PSI[1:1]+«PSI[1311+(2xB2xVAY)+F
PSIT231)+(VAX*2)+(VAY*2)-TAR[5]*2

" PSI[3:;1]«(B12xVAX*2)+((B22-B11)xVAXxVAY)+(B2xVAX)-(B1x

VAY)+B12xVAY+2

PSID+3 3p0
PSID[1;1]«(2xB11xVAX)+(2xB12xVAY)+2xB1
PSID[1;2])«(2xB22xVAY)+(2xB12xVAX)+2xB2
PSID[1;3]+A33

PSID[2;3]+«PSID[3;3]+«0

PSID[2;31]«2xVAX

PSID[2;2]+2xVAY

PRSP
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(us5] Psrnﬁa;1]«(2xB12xVAX)+((Bzz-axl)xVAx)+82 .
(6] Psrn[3;2]+((322-811)xVAx>~(2x812xVAY)+B1 3
] (7] +(LOOP>1)/R2
(48] REP+(3 1p(VAX.VAY.DELTASQ))-(ﬂPSID)+.xPSI
' {49] +R3
: [50] R2:REP1+REP-(BPSID)+.xPSI
{511 +((+/,|REP1-REP)<.03)/4Q5
' [52) REP+REP1
1 ' (53] R3:VAX+REP[1;1)
3 j {ss] VAY«REP[2:1] ;
. ! {551 F*(ASS!REP[S:l])+(TAR[8]*2)x(A3*2)-RxA33 1
2 i (561 LOOP+«LOOP+1 3
: {573 =PS ]

(58] QS:VAX+REP1[1;1]
{591 VAY+REP1[2;1]

v

¥

i,

¥ £601 NUD«((A13xVAX)+(A23xVAY)+TAR[8]x43)+433

1 : [611 C1:STV+NUD,VAX ,VAY

3 | v

Fo

o

l ﬂ VRMNLLDIV :
. a VZ+«N RMNL P;AA;Y ;
i i (1]  Y+((?Np100000)+100001)+.0000001 !
E - 2} AAe((((1-Y)*-146.158)-1)%1#4.87k)

- ' £3] AAe(Ad- (((Y*-146.185)-1)%1#4.874))+.323968

i ; {u] Z+P[11+A44xPL[2]) f
L - ‘| v 1
g— ]
E |
4 !
5 vSIGMLOIV %
: VSIGMASQ+SIGM STV ;
; [11 NUVECT STV ]
b . [21 SIGMASQ«+/(NUAV-DATAML$51)*2 ]
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VNUVECTLO]V
YNUVECT STV :TB;BB; TTV; PTXV; PTYV ]
{11 CVB«DATAM[ :3)<DATAM[ ;121 ]
2] CVA«DATAM( ;312DATAM[ ;12) 3
(3] TB+DATAM[1;3]
4] BB+«DATAM(1:4]
£s] TTV+DATAM{ ;31-TB 3
(6] PTXV+((DATAM[ 32)=1)xSRCH1[(3])+(DATAM[ ;2]=2)xSRCH?2([3] 3
[7] PTYV+( (DATAM[ 323=1)xSRCH1[4]))+(DATAM[ 321=2)xSRCH2( 4] ;
(s8] RRX+((TTVxSTV({2])-DATAM( ;81)xCVB)+(((DATAM[ ;12]-TB) xSTV
[2)-PTXV)+(TTV+TB-DATAML 3121 )xSTV(2]-DATAM( 38]1)%CVA
[s] RRX+RRX+((DATAM[ ;2)=1)x(RNx20BB) )+(DATAM[ 32])=2)x(RNx20
BB)+(SRCH1[11+TBxSRCH1(3])-(SRCH2(11+TBxSRCH?2[4]) ;
[10] RRY+((PTVxSTVL31-DATAM[ 39]))xCVB)+(((DATAM[ 312)-TB)xSTV ]
[3)-PTYV)+(TTV+TB-DATAM[ 312])xSTV[ 3)-DATAM[ ;9]1)xCVA
[11) RRY+RRY+((DATAM[ ;2]1=1)x(RNx10BB))+(DATAM[;2])=2)x(RNx10 s
BB)+(SRCH1[2]+TBxSRCH1[4])-(SRCH2[2])+TBxSRCH2{u])
[12] RRV+«((RRX*2)+RRY*2)*,5
[13] RRX+RRX-(RRV-RRV[1))xSTV(2)+TAR[8]
[14] RRY«RRY-(RRV-RRV[1]1)xSTV[3]+TAR[8]
[15]) RRN«((RRKX*x2)+RRY*2)*,5
(16]) COSV+RRX+RRN
(17) SINV+RRY+RRN
(18] CRVS+TAR[8]+(((COSVxDATAM[ :8))+SINVxDATAM[ ;91)xCVB)+((
COSYxDATAM( ;81)+SINVxDATAM[ ;9])xCVA
[19) CRVT+TAR(8)+(COSVxSTV[2])+SINVxSTV[3] ]
{201 NUAV«STVI11xCRVS+CRVT
(21] TTVR«TTV-RRN+TAR(8)
v

VFCNIO]vV

VFV+«FCN STV :EV3;F1;F2:F3;PRXTD1sPRXTD2 ;PRYTD13;PRYTD?2
(1) NUVECT STV ;
[2] EV«NUAV-DATAN[ ;5] j
[31] Fl1+2x+ /EVXCRVS4+CRV T i
4] PRXTD1+(TTVR4RRN*3)x (RRN *2) - RRX %2 ;
(5] PRYTD1+PRXTD2+(TTVR+RRN*3)x -RRXxRRY ]
(6] PRYTD2+(TTVR+RRN*3)x(RRN*2)-RRY*2 :
[7)  F242x+/EVx(STV[114CRVT*2)x (CRVTx(DATAM[ 38 1x PRXTD1)+DAT i

AM[ 39)xPRXTD2)-CRVSxCOSV+(STV(21xPRXTD1)+STVI3]1xPRXTD?2
(8] F3«2x+ /EVx(STV[114CRVT*2)x(CRVTx(DATAM[ ;8 Ix PRYTD1)+DAT
AML ;9)xPRYTD2)-CRVSxSINV+(STV[2]1xPRYTD1)+STV[3)xPRYTD?2 !
(2] FV«3 1p(F1,F2,F3)
v
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VKITERATE(DO]V
VKITERATE STV{II;CHIS;LNUB3;UNUB;IVM;FCNB;STVB;CYC; SIGM
B E
II+} ]
NUVECT STV

CHIS+(pDATAM)[11xMEASM[1;5]%2 i
LNUB+(DATAM[ ;5 Ix(TAR(81-TAR[5))+CRVS)L(MDATAML :51x(TAR §
[8)-TAR[5]1)+CRVS)(1]]

UNUB«(CATAML 35 Ix (TAR(81+TAR(S))+CRVS) L (YDATAML ;5% (TAR
[8)+TAR[5])#+CRVS)[1])
SET:CYC+0

SIGMB+SIGM STV

IVM«B(JACOB STV)

FCNB«FCN STV

STV B+ STV

STV A+«STV+3p((3 1pSTV)-IVM+ . xFCNB)
TEST: R2+(STV[2]1*2)+S5STV[31*2
+(((STVL1)<LNUB)+(STVI1)>UNUB)+(R2>TAR[5]1*2)+((SIGM ST

V)2SIGM STVB))<1)/CON

CYC+CYC+1

STV A« STV+3p((3 1pSTVB)-(2*-CYC)xIVM+ ,xFCNB)

+(CYCs8)/TEST

STV+STV A+STVB
CON:NUVECT STV

II«II+1

SIGMA+~SIGM STV {
+((|SIGMA-SIGMB)<10%"5)/0
+(II<REPIT)/SET

v

vJACOBLNV ;
VJA+JACOB STV3;CI3DEL;JA:FJ1:FJ23DEM :
CI+1
DEL+(0,0,10%-6)
JA+3 0p0

FJ1+FCN STV
JI:DEL+ 10DEL
DEM«DELx(100 1 1)

FJ2+FCN(STV+DEM) J
JAvJA,(FJ2-FJ1)x+DEMLCI) j
CI+CI+1 9
+(320I)/JI §
v !
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i,

vS8SSTMIN ]V b
VSSSTM STV:J3; RN K;AV;RNS;N; STVW FM
(1] J+1
' (2] SSTM+32 6p0
(3] SRN:RN+10xJ
[u) KITERATE STV
(s] SSTM[J;)«RN ,STVA,SIGMA ,J 3
(6] JeJ+1 i
71 +(J<12)/SRN ;

3 * (8] AV«12p0
E [9]  AV[1)+SSTM[1;51<SSTML2;5] :
(10] AV[12]+SSTM[12:51<SSTM[11;5] ]
(11] K2
. (12] VEC:AVLK)+(SSTMIK;51<SSTMLK-1:51])
P ‘ (13) AVIKI«AVIK)xSSTM[K;53<SSTM[K+135]
£ [14] K+ K+1 ]
: , [15]) -+(K<12)/VEC 3
t (16] ~+((+/AV)21)/SUP ;
3 [17) SSTM[13;]+6p0 :
3 (18] =0
i (19) SUP:RNS«AV/12+,S5TM[ ;6]
: [20] WN+1

[21) STT:RN+«SSTM[{RNS[N];1]-5

[22) STVW+«SSTM[RNS[N];2 3 4]

[23]) KITERATE STVW

[24] SSTM[12+(3xN)-23]1«RN,STVA,SIGMA,12+(3xN)-2

[25) RN+«SSTMURNSI[N];1]

(26]) KITERATE STVW

[27] SSTM[12+(3xN)-1;)«RN,STVA,SIGMA,12+(3xN)-1

. (28] RN+«SSTMCRNS[N]1:;1])+5

3 ; (29] KITERATE STVW

; [(30] SSTM[12+3xN;)+RN,STVA,SIGMA,12+3xN

5 . [31] NeN+1 ;

g ' [32] +(NspRNS)/STT ;

; i (33] R+«(bM(12+3xpRNS)+,58TM[;51)(11] :

! [34] RN+SSTM[R;11-2.5

‘ (35) STVW~SSTM[R;2 3 4]

(361 KITERATE STVW

(37])] FM+3 5p0

(38) FM{1;1+RN,STVA,SIGMA

[39] RN+SSTM[R:;1]

{40] KITERATE STVW

(u1) FM{2;]1+RN,STVA,SIGMA

(42] FRN+«SSTM[R;13)+2.5

(43) KITERATE STVW

(uu]l] FM[33]«RN,STVA,SIGMA

: Cu5] MIN+FMC (M, PMT351)0113)
v

E .

o A el b L e £ e aenn

Ty

TR o T T

o e,




N

TP i
NEON O ) ) e o d —

W s b D DO F W

RN B

(o N N N Kam Ko | (o N N Nan N Nan ¥ pe | (an X Nan Nan Non Kan e Non Nan Nau Ran Nan N o | m~mr
N, OOOIO

NN

ONOnNnFW
ot et e e S et b e e ) b et et e ) )

G

UNCLASSIFIED
56

YRRNG[O]IV

VRRNG STV;NUA3;TUA;BB;RVV;EVV;RIM; RIMD;RCN;DRCN; RNA; DN;
DPD:LB; FV3UB

NUA+~(Q(DATANL 32)=3)x(DATAM[ ;31<SRCH1[S5]))/QDATAM( ;51
TUA+((Q(DATANL ;21=1)x(DATAM( :3)sSRCH1[S5]))/QDATAM( ;31])
-DATAM[1:3]

BB+DATANM[1:4]

RVV«STVI2 3)-SRCH1[3 4]

EVV<NUA-STV(1]

DPD+((20BB)xRVVL[1])+(10BB)xRVV[?2]
D«LB+-((((RVVL[1]%x2)+RVV[2]*2)% . 5)x(pNUA)-1)+DPD
O«FV«(TAR(8)+STVL1]))x+/EVV

O«UB+«(pNUA)x-DPD

+((LBSFV)x(FVSUB)=1)/CONT

+(FV<LB)/LBL

+(UB<FV)/UBL
LBL:RN+10
UBL: RN+120

' NO INITIAL RANGE® SOLUTION POSSIBLE, RN = ':RN;' ASSU
MED !

+0
CONT:RIM«(2,(pNUA))pO

RN+50
CALC : RIMD+RN+TUAxDPD
RIM[1;)+«((RNx20BB)+TUAxRVV[1])+#RIMD
RIN(23)«((RNx10BB)+TUAxRVV[2])+RIMD
RCN«((TAR[81+STV(1))x+/EVV)+(RVV[11x+/RIM[1;])+RVV[2]x
+/RINM[2;]
DRCN+-(((RVVL[1)%2)+RVVI2]*2)-(DPD%2))x+/TUA+RIMD*2
RNA+«RN-RCN+DRCN

DN+ |RNA-RN

RN<RNA

+(DN>10*"4)/CALC

*NEWTON-RAPHSON SOLN FOR RN = ';RN

v

VRNSEL(L]v

YRNSEL STV;C

RENMT+«23 2p0

C+1
RNS: RN+1045x(C-1)
RNMT[C; J«RN ,SIGM STV

CeC+1

+(C<23)/RNS
RN+RNMTL(M,RNMT(321)(1];1]
v
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4 ‘ VSHIFTLOIV
VSHIFT
(1] 'SET XTV,YTV ,XSV,YSV!
(2] Ive,0
, (3] xTVveIV[1]
3 [u] YTverIvi2]
4 (5] xSv«IvV(3)
] (6] YSV«IVI4]
i (7] 'SET N = NO. REPIT.'
(s8] Ne, 0]
(9] 'SET D = INTER PULSE TIME® ]
3 (10) D-,0 }
- [11] KXe0O :
; [(12) CHS:X+?150
Q [13] Y2150
; [14) 'WHEN X = ';X3" AND Y = 'Y
: [15] DEXACT E
4 (16) DAPPROX :
g [17) ‘'DEXACT = ';:DA1 g
1 (18] ‘'DAPPROX = ';DAA;' PERCENT FRROR = '3;100x(DAA-DA1)+DA1
| [19) 'DAPPROX2 = ' DAA2;' PERCENT ERROR = '3;100x(DAA2-DA1)+

DA1

[20] KeK+1

[21])] -~+(X<N)/CHS
v

vDEXACT{O]IV

VDEXACT

DA+D
DAL«D+(+C)x((((X-(DAXXSV)-DxXTV)*2)+(Y-(DAxYSV)-DxYTV)
*2) %, 5)=((X*2)+Y*2)*.§5

+((|DA-DA1)<10%*"10)/0

DA+DA1 3
+2 1
v _

[ X an} =
N Ew N =
) ) —d )

vDAPPROX(O]V
i VDAPPROX :
] (1] Re((X%2)+Y%2)x,5 ;
i (2] DAA«DXx (C+(XTVXX¥R)+YTVxY4R)4+C+(XSVxX+R)+YSVxY+R
[3] DAA2+Dx1+(4C)Yx(XTVxX+R)+(YTVxY+R)-((XSVXX+R)+YSVxYtR)
v
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] VSHIFTY[OIV

] VSHIFTY

3 (1] '*SET XTV , YTV , XSV ,YSV ,X.Y!

f (2] Iv«,D

(3] XTVeIv(1]
(4] YTv«Ivi2]
(s] XSV+Iv(3])
(6] YSv+Iviu)
(7] X«Iv(s)

1 _ (8] Y«IV(6]
: : (9] '‘SET N = NO. REPIT.'
‘ [10) Ne.D
i [11]) *'SET D = INTER PULSE TINE'
(12] D<,O0
[13] K«0

[14] CHS: XeX+ 1xXTV-XSV

E

4 [15] YeY+,1xYTV-YSV

% [(16) ‘'WHEN X = ';X;' AND Y = ;Y

; [17) DEXACT

g (18] DAPPROX

g [19) ‘'DEXACT = ';DA1

: [20] ‘'DAPPROX = ';DAA;' PERCENT ERROR = '3;100x(DAA-DA1)#+DA1
g l [21) ‘'DAPPROX2 = ';DAA2;' PERCENT ERROR = ';100x(DAA2-DA1)+
3 DAl

§ [22] KeK+1

i (23] +(KsN)/CHS

4 v
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APPENDIX B

IHE UNIQUENESS PROBLEM FOR PERFECT INFORMATION

If there were no errors in the measurements of
system [B-2], which derives from several

bearine or

frequency, the fundamental

measurements of (B-1], would possess a uniaue solution for all

parameters, provided at least three different bearings were included.

iy
£, (C+T .'\7T) =f(C+T . V) [B-1)

T . T) £ B.X -f sinB Y. =f C
(¢ + ) . Vg f - o, ©°8 By XT - f, sin B Y, o
1 1 1 1 [8-2)

(C+7. .V.)f-f cosB.X -f ssinB Y =f C
N SN aN N°T aN N'T aN

To prove the assertion of a unique s=olution for the range
parameter, it suffices to establish that the system [B-2] has a unioue
Indeed, reometrical

and B,,

solution for the three parameters £, XT, YT‘
considerations make it clear that any two distinct bearinss, Bi

obtained at times TTi and T’I‘J (without error), tosether with the known

values xT, YT will, to all practical purposes, uniquely determine range,

the very small indeterminacy introduced by the change of transmission

time of the two pulses being neslirible.

that B-2 possesses a unioue solution, we only have to

consider N=3 with B1. E2 and B3 all different. Under these

circumstances there will be a unique solution =0 long as the determinant

To prove
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1 C+ rl . Vsl - fl cos Bl - fl sln Bl ;
: - - i .
D= C+7, . VS2 - f, cos B, £, sin B, [B-3]

) C +'?3 . -\73 - f3 cos 33 - f3 sin B3

i 3

{

T
e al

does not vanish.

3
E
g Equation [B-1] makes it possible to replace the elements of the
% first column of [B=-3] by expressions of the form:
1 ]
{
% f
? | - S
: . (C+7r . VT) f
= {
i
Then the determinant can be cleared of the fi by multiplying each one of :
i
its rows by the appropriate non-zero factor f/fi. The followina :
: simplified determinant D' thus results. D' = 0 if, and only if, D = 0.
;
l - V " v - -fsinB 4
é . C + cos Bl XT + sin Bl YT f cos Bl 1 f
F . 'y H
' - - - fsin B B-L]
E . D' = [C+ cos B, Xp * sin B, Yo f cos B, f sin B, [
; ¥ y - - f sin B
C + cos B3 XT + sin B3 YT f cos B3 3

The determinant D' can vanish only if there are constants "a" and
wp" so that the third row is the linear sum of "a" times the first row

and "b" times the second. Then, the three eguations in [B-5] would be

ki el e i b

] satisfied:

ol a1+

sl
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sin 33 = g s8in Bl + b sin B2

cos B3 = g CO8 Bl + b cos 32

. . . B-
C + cos B3 XT + sin 33 YT (a + 1) . [B-5]
C + (& cos Bl + b cos Ba) XT

+ (a sin B, + b sin 32) Yo

However, substituting the first two equations into the last yields
C = (a+b)C or ©ash = 1 {B=6]

Simultaneously, the first two equations of [B-5] state that the unit
vector T, 18 the linear combination é?} + 6?;. However, vectors of the

3

form 5?1 + br,, with a + b = 1, stretch from the origin in

two-dimensional space to points on the line joining the termini of the

two unit vectors’?1 and'?é. However, it can be seen geometrically that

no other vector to that line has 1length one, except '?1 and '?é

: -l -ln -l
theiselves. Thus since ano two of Fyy Toy r3 can aoincide, the

determinant. D cannot vanish, and the expressions in [B-3] yield uniaue

solutions for f, XT, YT’ as assert '’
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