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RESUME

Dans ce rapport, oi dfveloppe certains fondemelnts thgoriqves

d'algorithmes congus pour permettre a une ou plusieurs unites mobile$ de

recherehe de poursuivre une source de bruit qui se d4place en ligne

droite. Les unit~s de recherche mesurent le gisement et la fr~quence

apparente afin d'estimer Isa disLance, la fr~quence r~elle et les

composantes de la vitesse de la source. On presume que les mesures de

gisement et de fr~quence sont sujettes ' des erreurs aliatoires. (NC)

AESTRACT

This report develops some of the analytical support for

algorithms designed to permit one or more mobile searchers to track a

sound source moving in a straight line. The searchers measure bearing

•1 and received frequency to infer range, the true frequency and velocity

components. The measurements of bearing and frequency are subject to

random errors. (U)

-t................~i........... 
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1.0 INTRODUCTION

This report presents a basic numerical treatment of the

two-dimensional problem posed by the passive tracking of a sound source!I
by one or more searchers that measure the bearinq and freauencv of the

source. Tl. Question is: can the position, the course, the speed, and

the frequency of the source be determined with usable accuracy when the
observations about its bearings and its frequency are made over a period

of time and in the presence of error noise?

Constant source velocity, i.e. constant speed and direction, is

the only case considered' in this report. Further, the measurement

errors of both bearing and frequency are assumed to be normally

distributed, with specified means and standard deviations and to be

independent from measurement to measurement.

Clearly, complete tracking cannot always te accomplished on the

basis of frequency observations alone, because a source moving alone a

tangent to a circle around a single searcher will always exhibit the

same Doppler effect, no matter which tangent this source foilows. Of

course, the use of multiple searchers or changes in searcher velocity

during measurement may yield additional information, but the algorithms

discussed in this report are based on a single fundamental freouency

relation, which uses both bearing and frecuency information.

There seems to be some confusion about the exact form of the

Doppler equation, so I first related the usual approximation for Doppler

frequency to a correct relation for observed freouencv when both the

source and the searcher are movinq relative to the prooaeation medium; I

1% --- - - - - - - - - -- -" -- *..... .. ... --- .......... . ... . . - Ii
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then numerically explored the accuracy of the approximation. This isL

reported in Section 2,0.

In Section 3.0, the acceptable epproximation relation found in

Section 2.0 is used to develop a fundamental system of linear eauations

between the source parameters and the measured data. Each measurement

provides one equation, and it is assumed that the total number of
measurements, N, exceeds three, which is the number of parameters to be

determined. The solution of the resultina system of equations, in least

squares sense, for f, XT, YT' is discussed and the effects of
constraints on the region of acceptable solutions are considered in

Section 3.0. Since the linear equations of Section 3.0 do not

explicitly contain range, their solution produces no information about

"this parameter.

Several ways to introduce range as a parameter in the linear

system are discussed in Sec. 4.0. The most informative one seems to be

the straightforwa.d grid search for a least squares minimum deviation

between predicted and observed freauency-only data. However, the grid

search, which uses an internal iteration, is very time consuming, and

can be taken only as indicative of possible information in the data.

This informrtion might then be better extracted by some other procedure.

In Section 5.0 comments are offered on sample calculations made with the

algorithms developed earlier. The actual results of those calculations

are not given. I,, is worth commentinR that the problem has a unique

solution even on the basis of only three measurements, provided these

measurements are free of errors. Of course, there are time-honored

methods for passive tracking using bearings only, but they require more

observations, multiple observers, or maneuvers byttie observers. The

't !
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proof that the joint bearing-freauency problem has a uniaue solution for

F three observations is given in Aopendix B.

[ In Appendix A the APL implementations of the elgorithms outlined

in the text are detailed. Much improved imDlementations could be

produced, but those given are adequate to test the algorithms. What is

really needed is a good algorithm for determining range when this

parameter is not a&,ailable as a orimary variable.

The text also includes some comments on the effect of providine

estimates of one or more Parameter values to decrease the breadth of the

search.

I This work was performed at DREV in the first half of 1980, under

PCN 32D37, Tactical Towed Array Study.

- ,,
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2.0 THE FREOUENCY SHIFT RELATION AND ITS APPROXIMAZTUR J
When both the source of a sound and the receiver are in motion

with respeot to the propagation medium, a component of the resultant

frequency shift arises from each of the two motions. In the followink

analysis, the absolute frequency of the source is represented by the

accopanying absolute time between wave crests, or pulses, denoted by A.

Frequency is the reciprocal of A. Thus, absolute percentage errors in a

and in frequency are the same, since

f 1/iI

Df - -DA/A2

Df/f -DA/A

In Fig. 1, T and T' are the positions of the source, a time A

apart, and S and S' those of the receiver when the pulses emitted at T

and T' are received. The time interval between the reception of the two

pulses is denoted A The rest of the notation used in the diagram isa
defined as follows:

r

VT z the vector velocity of the source with respect to the medium

VT a the speed of the source, or macnitude of VT

C = the speed of sotmd in the medium

VS = the vector velocity of the receiver with respect to the

medium

VS = the speed of the receiver, or magnitude of VS

R -- the vector from S to T, i.e. the reverse of the propagation

path for the first pulse

R1 the distance from S to T
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-VS

' s T

0

Figure I Geometry of bearing and frequency weasurements

R the vector from S' to T', iLe. the reverse propagation path

for the second pulse

R2 the distance trom S' to T'

A and B are angles measured clockwise from the heading vectors to the

propagation paths, as illustrated.

To compare the time interval between the reception of the pulses,

ba, with that between their emission, A, we write an equation statine

that time along path T * T' S 8' must equal time alone oath T * S * S'.

a + +a /C

It we introduce coordinates <XT• YT> and <Xs, Y > to describe

9ositions of the points T and S, and let

X 'Z -XS. Y Y" -a (21
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then, of course,

*R (x2 + y23

I and

2
S2 (X + AxT a Xs) + (Y AYT a S) [4)

where the dots indicate time derivatives, or velocity cumoonenta. A

direct substitution of 13) and [4] into [1] yields%

C 2-

. • ÷ 1 (((x + •-•as) +(y , •_aS )2)i(x2÷y2)+Y [5]

Equation [5) is an implicit relationship for the unknown, •a' in terms

of the other quantities, all of which are known. This equation cannot

be easily solved directly for A., but that step is unnecessary since [S]

can be used as an iteration equation which converRes very rapidly to the

value of Aa, startinR from •a A.

The APL proaram DEXACT (Appendix A) is an iteration which serves

-10to calculate 6a to accuracy 10

The iteration based upon (5) converees to the true value of Aa,

but it is not in the usual form of the Doppler equation, and a

closed-form approximation which provides sufficient 'acuracy would be

more useful. To derive the best linear approximation to (5], one

regards the quantity in brackets, R2 - R1, for fixed 6 end Aal a" a

function of the six variables X,¥,XTYTXsYS. As such, it can be

XIY"TcTPXS -
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expanded in a six-dimensional Taylor expansion about point X,Y,O,O,O,O.

If this is done, and if only the first-order (linear) terms are

retained, the approximated equality (6) results:

A A+ A- [6]
a C R XT RAYT RaS R aS

Noting that X/R and Y/R are the components of the unit

vectorr R•I /R1, the dot or scaler product of two vectors can be used

to wive [6] a more symmetric form.

a- l+ri V T[7

ra 1 1 rV

The Doppler shift is usually represented by [7).

The dot products in [7) can be written in terms of angles A and B:

T VT cos (w - A) --VT cos A

r . VS V cos (2w B) V cos B

and [7] then becomes

A 1 - CVT cosA A8]
A 1T[8

1 V cos B
C s
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A better approximation to eountion [ c] can be obtained with the

expression generally used for Doppler shift, partioularly in the case of

one-dimensional motion:

SAa [9)
S~- - - .L + -

A C

where R is the time derivative of the distance between the receiver and

the source. From Fig. 1, it can be seen that

R- VT co ( - A) - V•, cos (a,- B)

=-VT cos A-• cos B

and hence, (9] can be written

a (V cos A + V cor B) [9']
C(Tc

But (9'] also results from (8] because (V /C)cos B is small with respect

to 1; hence,

(I + VS coo B)"l I- V cos B

approximately. If the term involvine 1/C2 is discarded in

a V cos A) (1 -- V cor B) [lO]A T C S

,!I
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when the right side is expanded, then [9] can be seen as an

approximation to [8].

The errors inherent in thege approximations were sampled by the

APL function DAPPROX (see Appendix A) for two signal frequencies nearly

two octaves apart. The results were not much different for the two

frequencies. The errors of approximation of [5] by [8] and [9] were of

the order of 10-5 percent and 10-3 percent, respectively.

It should be stressed that tbes, errors arise from an

approximation formula and are therefore not only small, but also

systematic. They are not random errors. For frequency tracking, where

the true frequency is unknown, systematic errors do not influence the

accuracy so long as they do not change sinificantly while tracking data

are gathered. Further numerical Investilation of the errors involved in

using [7] to compute the Doppler shifr reveals thac they are systematic

and slowly varying. Thus, it is concluded that equation [7]:

A +-r V

a C 1 T

+A + lr V
C S

is an acceptable approximation for use in the frequency trackinig

problem.

j7
L1 77i
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3.0 THE FUNDAMENTAL LINEAR SYSTEM

The basic equation for tracking a sound-emittinm source by

measuring its bearing and frequency continuously, or at several discrete

points in time is:

f C4r V
f r VT

as derived in the preceding section, where:

f=apparent frequency to the listener

C speed of sound in the medium

r a unit vector pointing alonR the reverse of the

pulse propagation path, from searcher to source

V velocity vector of the searcher, relative to the medium
S
V velocity vector of the source, relative to the medium.
T

It should be noted that, because rPis a unit vector, the rance

from searcher to source does not explicitly appear in [111. Because of

this, range is a secondary parameter in the search problem, and is

difficult to determine since the measured quantities of frequency and

bearing are not sensitive to range variation. In the search algorithms

proposed here, range is not initially determined, but it is left to be

determined by a follow-up algorithm.
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If B is the value of the bearing angle, measured clockwise from

the north, then the unit vector r has components

< cos B, sin B > [12]

nrhIn this treatment the positive X-axis is oriented toward the

north and the positive Y-axis toward the east. Using the angular

representation [12] for r, [11] may easily be written as:

X cos B + Y sin B f -C [131
T T f a

By so writing [11], we see that each measurement of B and fa' together

with the known values of C and VS, determines a set of coefficients

cos B, sin B, - £ ,
a

"for a linear eouation in the three unknowns XT, YT' f

Thus, taking bearing and freouency measurements simultaneously at

N different moments results in a system of N simultaneous linear

equations in the three unknowns.

Three such eouations would generally suffice to determine values

for XT, YT' f, and the remaininr N-3 equations would either comDlement

the solution with redundant information, or else be inconsistent. Note

that in seeking fixed solutions XT, YT and f, we implicitly assume that

T T
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durinR the measurement period, the source changes neither velocity nor

frequency.

wil The usual situation, measurements with error components (noise),

will normally give rise to an overdetermined or inconsistent system of

equations of the form (13]. It is possible, in this case to use the

i generalized inverse of the matrix M, below, to obtain the least sqoiares

solution to the system:

XT co1B +Y= -
!i T i T

X cos B + YT sin B f ciXT 2 T 1fIa

) %cos BN + YT sin B -- C
Ta

[2

or

-C
-c

Mx Y [1•']

-c

where (14') is the matrix equation counterpart of the system [14).

:: I
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The theory of the generalized inverse can be found in Ref. 1.

For example, in the APL languare used for the promrams listed in this

report, the operation Rh.i always yields the generalized inverse of M,

unless M has fewer than 3 (in this case) independent columns. Thus,

where @ is used, the generalized inverse always results; it is identical

with the true inverse where one exists.

Solvint the system [14] through the generalized inverse as in the

first part of the APL function DOPPVEC2 (Appendix A) yields an

unconstrained least squares solution for source velocity and frequency.

However, the search problem is seldom unconstrained. Several types of

constrained problems and their solutions are discussed in the next

section.

3.1 Constraint

The first tyrne of constraint provided by additional (outside)

information is ensily disposed of. If frequency is known, velocity

components are foumd by solving system [14], as we discussed above, and

this operation is simplified because there are only two unknowns left,

instead of three. The known freouency constraint is not described

further.

The second type of constraint, that of known direction of source

movement, without considering speed, is also easy to handle. When the

direction is known, YT becomes a constant multiple of XT, and can be

replaced in system [14), leading again to a system to be solved for two

unknowns. If direction is known to lie within a certain anvular sector,

the constrained solution is easily obtained from the unconstrained

~1ff~~z2~ __ 7i
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solution as discussed under the next case.

The third type of constraint, that of known or bounded soutice

speed, will be carefully treated for its solution contains the methods

for handling the other constraints mentioned above.

3.2 Constrained Speed

The fundamental linear system [14], which can usually be

satisfied only approximately in least sauares sense, can be thought of

in the following way. Consider the left side of each equation as

defining a coordinate function, Zi, of XT, YT' f, as follows:

D(X YTf)= cos B + sin B-f i[15i T' T'f XT Bi T i \ f'a }

If there are N measurements, i varies from 1 to N, and [15]

yields N coordinate functions, which define a mapoina of the

three-dimensional parameter space X T f, into an N-dimensional

space. The least squares solution of system [14] can be considered from

a geometrical point of view.

0 y0  f0The least squares solution vector, <X, f > (or point in the

0 0 0
three-dimensional space), determines a vector <Z1 , z 2 ,..., ZN> which is

as close as possible to the constant vector <-C, -C, ... , -C>, of N
0

coordinates. If' the minimum achievable value of distance between <Z1 9
., ZN> and <-C, ... , -C> is denoted S0 , i.e. the least sauares

NI
If1 I
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0 0Z issrae adifference is So, then the point <Z 0 >i on the of01 "eN

N-aimensional. sphere with its center at <-C, .,., -C>.

Point QZ, .0., ZN>, at distance S from <-C, ,.,, -C> miaht not

be attained because of constraints on one or more of XTI ¥T' f. The

point at distance S. is the unconstrained minimum; if it is

unattainable, the algorithm should seek a solution in the constraint

region of the three-dimensional space of the parameters XT, YT' f which

yields a value <Zl, ... , Z > as close as possible to <-C, ... , -,C>, i.e.

a constrained minimum. Thus, the aleorithm must seek a parameter Doint

<XTI YT' f > for which the associated <Z Z2 , ... ZN> lies on the

surface of some other sphere about <-C, ... , -C>, of radius SISO. The

equation of the sphere of radiua SI is:

N 2
z (Zi - (-C)) S1

i=1

or

N . 2 2

E (XT os Bi + YT sin B. -P f + 2 s 2[163

where
i'C +

C+r. VSi
= "i

i ,i' ' ,a
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Squaring the left side of (16) yields

2 -2 A32' 2A3f
A .X*2 A + 2 22A X f
1 A2 2 YT + 1+ 2 I 2 XTYT 13 T [17]

+ 2CAXT - 2A23YTf + 2CA2Y - 2CA3f + E 0

where

N N N
A 11 Z cos2Bi, A2 2  E sin2Bi, A3 3 = E B.

11 l i-i i 2

A - cos B. sin Bit A Bit A = Pi sin B,

12 Bi, 1 3  Z Pi cos 23 ~
AI = E cos Bi, A2 = Z sin Bi, A3 = Pi

2 2
E =NC - S

Equation (17] represents a family of ellipsoids centered on the

point <XOT'yT'f The family parameter S1 determines the size of each
ellipsoid. For S = S there is the point ellipsoid at <XT YT 0

1 0 T' T'~>

Figure 2 shows the geometry described above.

In the three-dimensional space of XTI YT' f, a constraint of

constant speed, V, is described by the surface of a cylinder

X2 + 2 V

T T

and a constraint of bounded speed by the surface and interior of this

cylinder,

2 2 <v2

7ý+Y



I ~UNCL.AW$FIRD

17

Lillipsoid determined by

N-sphere of radius S1

<kt. Yt,'

Constraint cylinder I
.2 .2 2 IXt + Yt V
*tYtvI

Circle -

.2 .2 2Xt + Yt v

<it, it>
/ i /

Projection ellipse

(discriminant f 0)

Figure 2 - Geometry of speed constraint

". i
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For those constraints, the constrained minimum is obtained when

the solution ellipsoids are expanded, by increasing S1 , until tangency

is achieved with the constraint cylinder. Of course, if the constraint

region consists of the cylinder and its interior, and the unconstrained

minimum X, , lies in the cylinder, then S, = SO.

The mathematical problem of finding the point of tangency between

ellipsoid and cylinder can be reduced to two dimensions, for this

tangency occurs exactly when tanKency occurs in the XT-T plane between

the circle XT and the ellipse which is the ellipsoid's -
T Tu

projection (shadow) in that plane.

The projention of the ellipsoid is describable as the set of

points XT, YT above which exactly one point on the ellipsoid can be

found. Equivalently, If (17] is regarded as ar equation to be solved
F 4

for f, given XT, YT' the projection points are those for which the two

quadratic solutions for f Qoincide. In other words, they are just the

points XT, V % for which the discriminant of (17], recarded as a

Sqtuadratic in f, vanishes. Settin. thtt discriminant equal to zero
F •gives:

* 2
kA 3XT A2 3Y

A (All * T + "2CAY +B) O
A3 3  + A22YT +2A 2XTY 2 CAIXT 2AT

or

2 2B 11Xr + B 2 YT + 2B 12XTYT + 2B X, + 2B 2 YT +FP 0 [18]

96.
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where

2 -2 -
11 A13  A11 A3 3, B22  2A3  22 33

B C (A3A - A3 3A1), 2 233 - A33A)

B B12. (AA 2, -A A2 ), F C2 2A - A

Equation (18] is the ellipse eauation to be solved for tangency

with the circle equation XT + *2 Finally, to ensure tangenoy,

another equation can be added by differentiating the circle equation and

[18), and then equating slopes at the solution point. If this is done,

the following system of equations in three unknowns must be solved.

Recall that F is a variable since it contains the radius S1 which must

be increased to produce tangency. S1 appears nowhere else.

B 2 *2
Bll+B 2 2  + 2 B 2 XTYT + 2BIXT + 2B T+ F 0

'2 '2 V 2  a 0 [19]"XT+ YT

12 - 12  (T2 2 - B11 ) XTT+ A - 1"T o0

The system [19] is solved by a Newton-Raphson iteration in the

APL function DOPPVEC2. When the XT, , T S1 coordinates of the ooint of

tangency are found, the value of f is recalculated usinx the ellipsoid

(17]. The result of the calculation is stored in an APL vector called

STV, which consists of fT1 X1 i 1
T' Ts' T'

-.... -
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Point of tangency

Figureo~t it f oemer >fdrcincntan

4NI)

it 
I

Figure 3 -Geometry of direction constraint
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This completes the description for a cylindrical sipeed

constraint.

3.3 Constrained Direction

To solve the constrained directiorn problem discussed earlier, we

must only reconsider the geometry of the constrained minimum problem, as

in Fig. 3. In those terms, a direction constraint region consists of a

(double) wedge with interior, parallel to the f-axis. The boundary

planes of the constraint region are defined by limitina direction lines.

0 '0 0

Again, if the unconstrained minimum solution <X T' YT' > lies

within the constraint wedge, the constrained problem is solved. If not,

the situation is identical to the one discussed above, and S1  must be

increased until an ellipsoid becomes tangent to the constraint wedge.

However, it is not necessary to repeat the process used for the cylinder

constraint region. It will be noted that the desired point of tangency

is obtained when an ellipsoid of the family is tangent to one of the

wedge boundaries. Thus the constrained solution is one of the two for

which

T Tr T [2 T [203

It was noted earlier that when a precise relation, like [20), is

obtained between YT and XT, the fundamental system D41] reverts to a

system of equations in only two unknowns, and the least souares solution

can be obtained using a simplified generalized inverse.
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Thus in the case of (wedge) direction constraint, the fundamental

system (14] can be solved twice, once with YT m K1 XT' and once again

with YT K2 XT; the best of the two solutions (least squares sense) is

the solution of the constrained direction minimization problem. Of

course, if the direction constraint wedge in a riane, only one such

solution results.

3.4 Constrained Dirgetion and Velooity

The most realistic constraint case is perhaps one in which the

source direction is known to lie between two intersectine half-lines and

the source speed between two values V1  < V2 , In this case, the

constraint region is a cylinder parallel to the f-axis, as in Figs. 2

and 3, but having for its base, in the XT-YT plane, a figure oounded by

four arcs which are the intersections of an annular rinf with an angular

sector, measured from the center of the ring.

Again, if the unconstrained solution lies within the constraint

region, the problem is solved. If it does not, the best constrained

solution will then lie on the boundary of the constraint region, at the

point where the smallest ellipsoid described by eouation (17] becomes

tangent to the constraint region, by increasing S1.

Althou: h finding the point(s) of tancency in this case recuires

more care than it did in the simple circular case of speed constraint,

it is not difficult to develop an algorithm which will do so. The fact

that the ellipsoids of the family described by [17] never chance their

center or their principal axes as SI is increased helps.

i.-- ~ -
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4.0 FSTIMATIOC•, OF HP-GE

4.1 Houch Range Estimation

f '_The first method discessed depends upon certain approximations to

the range vector in the fundamental equation for apparent freouencv

[ (c+- ) =f (c+-.v) [21]
a T

The anproximations will be better for short tracking intervals and long

ranges. The principal limitation of the rouqh range estimate is error

in frequency estimation, f. With an external innut of frequency, the

method could be auite accurate but, itf frequency is badly determined,

the rough range estimate will be useless. Further, as discussed below,

the rough range estimate is unreliable when both source and searcher

travel along or near the line which joins them.

Eouation [21] can be rewritten as

f-f f _fa - • VT
08 r (V--v

f SfT

and fa/f may, quite acceptably, be approximated by 1, leadinp to:

f -f
't a

B ~ . V ~T) £22)

I:

:• I ..~~I . '~... . . . -•I 1IJ 1 .IIII_,__
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To simplify the discussion, we will assume that VS. is constant over the

measurement period or, eouivalently, that a subset of the measurements

taken when VS is constant is used for the estimate. A slightly more
A_..

elaborate procedure can be developed in which VS can vary and all

observations can be used.

Summing [22] over the N usable observations yields

N a. Nf
3. - -Jý -31.

C E (VSVT) . ri [23] r
!i:I i=I A•

This summation reduces the importance of independent random errors in

the measurements of the fa, but an examination of the effect of the

initial range, RI, on the right side of r23] reveals the sensitivity of

this equation to determination of the freauency f.

If R1 is large and the time interval between measurements is

relatively small, there will be little chanie in the unit direction

vectors ri ,and we can write

N ri N N r [24]

i=1

where rI is the initial unit direction vector. On the other hand, if RI

is close to 0, the sum of the unit vectors is

-if -Am V VS
Sri 1 + (N- 1) S [253

,-'

TI
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for the first measurement is taken in the direction r of the source,

but all subsequent ones are in the direction of the relative velocity

S-V (Fi(More complex expressions are clearly needed here, and below, if

V is allowed to vary). The expressions [24] and [25] can be used to

bound values on the right side of [23], as follows:

r1  (VS VT) -(N- 1) 11V - VT11  (VS VT). Z ri
i:I (26]

SN 'r. -S VT)

.a -- -=

where 11V S VIT is the magnitude, oP ltLiLL, ýf the vector V - VT' Prd

is positive. It is clear that the lower bound in [26] is alwaysI inferior to the upper one, although both may be negative. The upper

bound is negative only when the (signed) projection of the vector V s-VT

onto the direction r1 is negative, or when the (sivned) projection of

VT - onto is positive, or when the source is movinq away from the

searcher.

Since [23] can be used to replace the middle expression in the

inequality [26], the followinR ineauality results:

f -f

r ( VT) - (N - 1) SIV VT11 • C ii:I f[271

SN r (V- VT)
1

It is in the form [27] that the sensitivity of the rough ranae
estimate (still to be described) is most evident. If, for example V -V

T S

lies close to the line of action of r, then r, (VS .VT) is negative,

S'1
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and close in value to IVyS -VT I. In this case the two bounds in [27)

differ by little. Then, if the estimate of VT is trustworthy, [27]

might be used to provide a worthwhile estimate of f; however, unless f

is well known, [27] will not be useful in finding the value of R1 .

If the bounds in [27] are spaced far enough apart, and if a

reliable estimate of f is available, a method for rough range

determination results from closer examination of the quantity

N
(Vs . VT) T ri Q(R1) [28]

S~i:I

The inequality [26] shows the maximum possible variation of Q(RI) as R

varies from 0 to w and, if the measured values f satisfy the

inequality [27], a value of R, can be found to make [23] true. Such a

value of RI would be the rough range estimate.

To examine the behavior of O(R1 ) as R is varied, two other

approximations are made to the unit vectors r If TTi represents the

time at which measurement i iE made after the first measurement, i.e.

TT1  0, then

R + TT (V - V
1 14. TT T S) [29)

r. =

JJRI + Ti (VT - Vs[

It should be noted here that the time TTi is not modified to obtain the

position of the source at the moment of the emission of vulse i rather

than at the time of its reception. Such corrections are made later in

-~ 7 -. ~ - ''~- -- ,--- --
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this section as well as in computer programs to allow for the source

movement during transit time of the pulse. Here, however, all times are

measured from the time of reception of the first pulse so that only a

minimal correction would be needed for the small change of range between

the first measurement and measurement i.

Further, approximating the denominator in [29) by

RI + TTi r 1 - VS)

which represents the value of R corrected by the chanw in range

produced by the projection of relative velocity in the r1  direction,

results in an approximation to [29]:

R, + TTi (VT - VS)
1 i T'[30]

i RI +TTir,(T - S)

Now, if [30] is substituted into [28] and if the result is

differentiated with respect to R1 , the following derivative is obtained:

N TTd.R ( IV S-V TI 1 (l. (Vs-VTI)2 E31
(Ri (+TT i.rl(V--T-Vs)

and the auantity is always positive.

Finally, when the inequality [27] Js satisfied by the estimated f

and the measured f ai, the ouantity O(R ) rises steadily with increasina

R1 , one unambiguous value of R, can be found for which [23] is

satisfied. This value is the rouvh range estimate. The easi~est way to

L- ---------
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find it is to apply the method of Newton-Raphson to [31]. The estimatts

are found with the APL function RRNG of Appendix A.

One further look at the form of the derivative, in [313, reveals

again the sensitivity of this estimate to the direction of rI, and the

relative velocity VT - S' Since the derivative contains the factor

2 2
(11VS - T11 (r- 1 (V3 - VT)))

it may be very small when V V lies in the line of action of-AI. The

VT - lisiVh ieo cino 1

range estimate then becomes ouite unreliable, and the Newton-Raphsot.

root-findinR technioue may have to be abandoned for another technicue

which is described below.

4.2 Best Linear Range Match

The second method for possible range determination also uses the

least squares solution

STV = <f, X, YT [32)

of the linear system:

C + rI V
1. S

XT cos B1 + T sin Bc1 f f -C

a,

[33)

C + rN VS
X T cos BN + YT sin BN - f -C

a.

I "

1Tt
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In findinv the least souares solution STV, the actual measured

values of bearing B1, .. , N were used to evaluate the coefficients of

system 133]. Once values of f, X V T are available, one can

a) assume a value of range at initial measurement, RI;

b) use the measured initial bearing, the estimated velocity XT,

Y T' together with the assumed value of R, to generate a set

of bearings B2 , B3.., BN at the later measurement times;

c) calculate the left sides of the equations in [33] and compute

the summed, squared, differences between left and right sides

in [33], using the results of b) and the other known and

measured quantities C, VS fa.
1 1

The result obtained in c), called DELTASO in the APL functions of

Appendix A, can be considered-a measure of merit of the assumed range

R1, subject tc the accuracy of the estimate STV. If there is a minimum

value of DELTASO over the interval of possible assumed ranges, R1, the

value of RI corresponding to the minimum could be chosen as the best

linear range match.

The above computational procedure is easily implemented. The

calcuilation is performed with the APL function RNSEL of Appendix A.

4.3 Least Squares Iteration

The third method for range estimation is the classical least

squares iteration that permits to find the point in parameter soace,

<f' XT' Y T' R>, which minimizes a souared-summed error function.

I

'i I
I

S. . . .. .
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.06

.04 EXPECTED SIGMASQ = .004

.02

.01

S S.006

.004

.002

.001
SOURCE RANGE

Figure 4 - Example of range estimation for two searchers

Like the best linear range method or second method previously

explained, the third method uses values of the parameters to generate a

set of bearings, so that its comparison with measured data involves onlv

frequency measurements.

In the second method, only the range parameter can be varied. In

the third method, the minimum is sought by evaluating the zero points of

partial derivatives (of the souared-summed error function). It is thus

possible to vary Any of the parametArs. I
......

- -.: - - --• ------ : j j .
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.6
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0 0
.2-.

.06 a a

S.04

- EXPECTED SIGMASQ = .004

.02 __ ___ _ _ _ _ _ _ _ _[

.01 ,__. I
SOURCE RANGE

Figure 5 - Example of range estimation for one searcher

Unfortunately, in the presence of measurement noise, the

squared-summed error surface for freouencies seems to possess many

distinct relative minima. Computation reveals that these are not always

located near the true values of the parameters but, in the search for

the zeros of partial derivatives, incorrect minima often arise. Fieure

4 shows the result of a typical calculation in which a search was

performed on a range Prid, and the alaorithm was allowed to seek the

best values of f, XT, V IT to minimize SIGMASO in the APL function

KITERATE. In this case, two searchers are used and the range is not
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F• excessive; so it is a favorable case. The figure shows that, without a

good initial range estimation, an algorithm searchina in range as well

I as in the other parameters might yield several different values. The

behavior pictured is not exceptional.

SThe case presented in Fie. 5 was calculated for one searcher.

Although the single searcher was allowed to change course, and the same

total number of observations was used as in the two-searcher case of

Fig. 4, it is apparent that many more local minima exist. Countine end

point minima, there are at least five in Fig. 5, and an iteration might

converge to any one.

I Despite the complexity of the function to be minimized, the least

squares algorithm is useful in many cases and it often yields a deepest

minimum not far from the true value of the rnaie parameter. The basic

equations for the method are presented next.

Using [21), solved for the apoarent frecuency, fa' the

squared-summed differences for the frenuency observations can be

expressed as

N . V 2

SIGMASQ E (f c+i • fV [34

Ii -& -" a - __

iml C+ r i V T



SIOHSQ is to be minimized by fixin. a ranqe, then seekin; points where

the partial derivatives below vanish.

Qc÷, iv hi c+*÷I* -s

-"2 z (f I. ). - i .'
Bf i=i C + 'r VT C + r

• afa [35
-- 2 Z(

axT irnilX

N af
,--.2 E(
Yi~ imlia

where the fa' on the right, is the function of XT and YT obtained by

solving [21) for fa. However, these formulas must be interpreted

carefully. For each i, 14 i e N, f is a different functiona T9 T~ sadfeetfnto
and, hence, each equation of 135) is a scaler product between data

vectors, of length N. It is useful to recognize this fact in notation,

by using a scaler product notation between data vectors of lenrth N,

and by emphasizing such vectors by the notation Am.. Then, if the error

vector whose components appear in the parenthesis on the right sides in

[35) is denoted EV, [351 can be rewritten in compact form as follows:

a2V + ri . VS

C +ri • VT

. E. T35']Bx T ax T

a A.& af
--;2 EV•)-•

8Y a~
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Then, A._ is an N-vector whose ith component is:
F axT

F , ri _ -i
f 71 +J (csB+ [361

(O,((+rj: T)V i'S .)-(c4Ss )(c B±,~

and there is a similar expression for the ith component of .4a
aYT

Thus, the evaluation of the needed partial derivatives cannot be

completed without evaluating the expressions

naYd
I|ari and T-

It must now be recalled that ri is the unit vector pointing from the

position of the searcher at time i, TTl, toward the position of the

source at a time TTRi at which the ith pulse was emitted. In other

words, the source position times must be corrected for transmission

time. This correction is performed with the APL function NUVECT, for

use in the iteration function KITERATE.

In terms of TTi and TTRi, ri can be written as:

ri a <R cos B + X TTR - x TTi,SR . 2.R 1 T i SS• . [371
R sin B + Y TTR - TT .

1t f T i S <.

where R. is the mawnitude of the vector in corners 0>.
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Next, (37) is differentiated with respect to XT and YT' to yield

the two needed derivatives. Note that no approximation has been made in

obtaininq these derivatives:
Br± TTRi

r TTRi 22"<- -- -RXxRY, RR - RRY>
aXT RRN3

where

ayRRN +
R.RX -RI cos BI + TTRi X XT - TTi x XS

RRY =RI sin BI + TTRi x YT - TTi x YSL]

and these ouantities represent the X and Y coordinates of the source as

well as distance in a corrected searcher relative space in which the

source position at the time of emission of pulse i is related to the

searcher position at the time of reception of pulse i.

The expressions [38) substituted into [361], substituted into

[35'] yield formulas for the needed partial derivatives. It is

pointless to write out these complete formulas here. The reauired

quantities are computed in the APL function FCN.

Finally, the search for the zero ooints of the derivatives of

[35'] is carried out by a Newton-Raphson procedure for which the

required derivative is calculated numerically with the APL function

JACOB, and the actual iteration to the convergence criterion is

performed with KITERATE. The search is managed by a control function

named SSSTM.
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5.0 USE OF ALO0RITS

Computer programs are available for only two of the alaorithms

analyzed above. DOPPVEC2 estimates f, XT and YT with speed constraint.

SSSTM estimates target range by least scuares iteration from the

DOPPVEC2 results and then makes a new estimation of f, XT and YT' These

computer programs are listed in Apprendix A.

If the reader uses these programs, he may notice a few

peculiarities of behavior which might usefully be pointed out here:

1) If bearing and freouency measurements are totally free of

error, DOPPVEC2 will yield an exact estimation of f, XT, YT SSSTM,

j however, will yield estimates with small errors because the search in

range is carried out at discret( alues which may not correspond to true

range.

2) The variable SIGMASQ does not always pass through minima; it

may decrease indefinitely as range increaves in the interval searched by

SSSTM. In such cases, the estimated value of range is always near the

high end of the interval and may bear no resemblance at all to the true

value.

3) In principli, SSSTM improves the estimate of f, XT, nnd Y

made by DOPPVEC2. In reality, the new estimate may be worse than the

original.

J4) Both algorithms favor speed estimates close to the speed

constraint rather than to the real speed. In most cases, the

constrained solution is a boundinR solution in the constraint region.

'I
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6.0 CONCLUSION

The operational effectiveness of the algorithms discussed above

is unknown. It can be estimated by simulation studies in which searcher

tactics are taken into account. Such z~ttvdies have now been undertaken

for the two algorithms already programmed. The other algorithms

[ analyzed above should be easy to program whenever needed.
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APPENDIX A

THE APL FUNCTIONS

The following APL functions are presented, and briefly described.

1) MEASGEN: Accepts the basic descriptions of source and

searcher(s), and generates bearing and freauency inputs, with
random errors, for use by the processing algorithms.

2) DOPPVEC2: Performs the least-souares solution of the

fundamental system of linear equations, subject to a speed

constraint.

3) NUVECT: Uses the measurement times and the first measured

bearing to convert an estimate, STV, of f, XT? YT' and an

estimate of range, RN, into predicted source coordinates and

frequencies, for comparison with the measurements generated

by MEASGEN.

L4) RMNL: Chooses a vector of N random numbers from a Gaussian

distribution of mean P[11 and standard deviation P[21. The

choices are independent.

5) SIGM: Computes the summed-squared deviation for f,-eauency

I data, SIGMASQ.
L

6) FCN: Computes the values of the partial derivatives of

SIGMASQ, with respect to the parameters f, XT, ¥T'

_ _ .!
- -- -It~- '1
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7) JACOB: Performs a numerical calculation of the mstrix of

second partial derivatives of SIGMASO, for use in the

iteration KITERATE.

8) KITERATE: Does the Newton-Raphson iteration to find a

zero-point for the partial derivatives of SIGMASQ.

9) RRNG: Computes the rough range estimate.

10) RNSEL: Chooses the best linear range estimate for the

solution of the fundamental linear system.

11) SSSTM: Performs a grid search, using KITERATE, for a range

at which the smallest value of SIGMASQ can be obtained, by

simultaneously varying the other parameters.

12) DAPPROX, DEXACT, SHIFT and SHIFTY: Solve the exact and

approximate formulas for the Doppler shift, as presented in

Section 2.0.

Further comments accompany certain of the individual APL functions.

Function 1: MEASGEN

INPUTS: TAR is a 1 x 8 vector which consists of the following:

TAR[1] Source initial X

TAR[21 Source initial Y

TAR[3] Source X velocity

TAR[4] Source Y velocity
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TAR[5] Maximum possible source speed

TAR[6] Default estimate of source range (to be used if all

efforts to find range fail)

TAR[7] Source emission frequency

TAR[8] Speed of sound in the medium

Since only one speed vector is given for it, the source moves on

a straight line, at least throurhout the measurement interval.

SRCH1 is a 1 x 7 vector which consists of

SRCH1[1 Searcher initial X

SRCH1[2] Searcher initial YSRCH1[3] Searcher initial X velocity

SRCH1[4] Searcher initial Y velocity

SRCH1[5] Searcher turn time

SRCH1[6] Searcher final X velocity

SRCH1[7] Searcher final Y velocity

SRCH2 is a 1 x 7 vector with the same components as SRCH1,

describing a second searcher. Although only two searchers are provided

for and only a simple dogleg path is Riven for each one there are no

limits in the algorithms which would prevent reprogramming for

additional searchers, and more complicated search paths. Searchers can

be prevented from maneuvering by setting SRCH1 [5] and SRCH2 [5] lonver

then the last measurement time in TIMEM, and the present programs can be

used for either 1 or 2 searchers, as controlled by the input TIMEM,

detailed below.

!I

Ii
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MEASM is a 2 x 5 matrix of measurement parameters, as follows:

MEASM[1;1] I

MEASM[2;1] 2

MEASM[1;2] The mean of the bearing error distribution

MEASM[I;3] The standard deviation of bearing error

MEASM[1;4] The mean of the frenuency error distribution

MEASM[1;5] The standard deviation of frequency error

MEASM[2;2]-[2;5] Same as MEASM [1;2] - [1;5J for the second

searcher; these parameters can, of course,

be given different values for each searcher.

TIMEM is an N x 2 matrix which specifies the times of

measurements. The first column specifies the number of the searcher

that makes the measurement, and the seconid one gives the times. While

the present algorithms do not consider loss of contact, this factor

could be introduced by producing a random generator for contact times

and searcher numbers, or by accepting TIMEM as an output from a search

algorithm.

To use MEASGEN for a single searcher, the first column can be set

entirely to 1 (or to 2), or else vectors SRCH1 and SRCH2 can be made

identical.

FUNCTION: Lines [1] through [11] set the measurement times,

together with the searcher coordinates and velocities at those times.

True measurement times are used. Lines [12]-[151 find source relative

coordinates in searcher relative space(s) at measurement times. Lines

[16]-[251 perform corrections to obtain the source positions at the time

of pulse emissions, relative to searcher positions at times of

//iII
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reception. The remainine lines calculate true bearines and frecuenciesfI
and lines (35), (36) apply normally distributed independent errors.

OUTPUT: The output of MEASGEN is an N x 12 matrix called DATAM.

Each line stores the information aporopriate to a measurement, with

components as follows:

DATAM[I;1] Line number I

DATAM[I;21 Searcher number for line I

DATAM[I;3] Measurement time

DATAM(I;4] Bearina

DATAM[I;5] Freauency

DATAM[I;6] Searcher X coordinate at measurement time

DATAM[I;7] Searcher Y coordinate at measurement time

DATAM[I;8] Searcher X velocity, this time

DATAM[I;9] Searcher Y velocity, this time

DATAM[I;1O] Range from searcher 1 to source, this time

DATAM[I;11] Range from searcher 2 to source, this time

DATAM[I;12] Turn time of the searcher on this line

Function 2: DOPPVEC2

INPUT: DATAM, from MEASGEN

FUNCTION: Lines [I] - [10] compute the matrix, M, of the

fundamental linear system and obtain the least souares solution, usina

the Moore-Penrose inverse FR nroqrammed into APL. Line 116] and [f1]

check that the speed constraint spe~i1M;:,d in TAR [8] is met. If not,

ii
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lines (18) through [32] set the geometrical parameters of the ellipses

described in the text, and the remainder of the function uses

Newton-Raphson to solve for the smallest value of DELTASO which

satisfies the speed constraint.
F

OUTPUT: STV is the least squares solution of the linear system,

subject to the speed constraint.

Function 3: NUVECT

INPUTS: DATAM, from MEASGEN

STV, from DOPPVEC2, or from KITERATE when used

for iteration

j RN, from SSTM, whicli controls the Rrid search

for range.

FUNCTION: Lines [1 through [12) use the searcher information

!eom each line in DATAM to generate relative source coordinates and

distance, in searcher relative space, at the time of reception of a

pulse. Lines [13] and [14] correct the source position to the emission

time of the pulse. After position correction, the remainine lines

compute the angular and frequency data to be expected. The entire

operation is performed simultaneously for the whole of the matrix DATAM.

OUTPUT: The relative position and distance vectors (RRX, RRY,

RRN), the bearing data (COSV, SINV), and the components of the Doppler

formula S 'S, CRVT) are all used in other functions. Vectors NUAV, the

predict* observed frequencies, and TTVR, the corrected emission times,

are perhaps the principal outputs of NUVECT.
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SFunction 6: FCN

INPUTS: DATAM plus the position and frecuency predictions

of NUVECT.

FUNCTION: Lines [3], (7), 18) compute the three partial

derivatives of SIGMASQ, with respect to f, XT, YT' respectively.

OUTPUT: FV is a 3 x 1 matrix of the values of the partial|4 derivatives.

Function 7: JACOB

INPUTS: FV, or FCN STV, from FCN

FUNCTION: Computes numerical approximations for the nine second

partial derivatives of the three first partials in FV, with respect to

each of the three parameters f, XT, YT Instead of a true derivative, a

difference ouotient is computed for an increment in f of 10 and

increments in XT, •T of 10-6

OUTPUT: The 3 x 3 matrix JA, or JACOB STV.

Function 8: KITERATE

INPUTS: DATAM, TAR, FCN STV, JACOB STY, REPIT,

outputs of NUVECT.

• .I



FUNCTION: Lines [4) and [5] compute lower and upper frequenoy

bounds (LNUB, UNUB) for the frequency parameter, based upon the observed

frec2uencies and the speed constraint.

KITERATE attempts to move from point STy, in a direction

indicated by JACOB STV, to find another parameter vector, STVA, which

satisfies the speed and frequency constraints, and results in a

decreased value of SIGM STV. The base values are referred to as SIGMB,

FCNB, STVB. If the new value STVA of line [11) does not satisfy the

restrictions in (13), other values of STVA are tried by progressive

halving of the parameter vector displacement, [131, until one is found

that satisfies the restrictions; if it is impossible, ttý-n we revert to

the previous estimate, line [17].

If improved values of STV are found, this process continues until

the difference of summed squared deviations, SIGM STV, stabilizes to

within ±1o0 until a predetermined number of repetitions, REPIT, is

reached.

OUTPUTS: STV, STVA, both names for the same parameter vector.

Function 11: SSSTM.

INPUTS: STV, from DOPPVEC2.

FUNCTION: Lines [1] through [7] calculate KITERATE STV for the

initial input STV, .ith values of RN from 10 to 120. The results are

stored in a matrix SSTM, as indicated in line [5]. Lines [8] throumh

[15] construct a vector, AV, of ones and zeroes with a one in each

..I •'~ ... .L 7 _ . . . . .. . .- ","• - - ..
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position where the corresponding row of SSTM exhibits a relative minimum

ialue of SIGMA.

If there are no relative minima in column 5 of SSTM, line [17]

prints a row of zeroes, as row [131 of SSTM, and terminates.

Line [19] selects the relative minimum rows of SSTM and places

them in a matrix called RNS. Lines [20] through [32] expand the search

about the relative minima of SSTM in increments of -5, 0, +5 about each

relative minimum.

These calculations use the values of STV found by KITERATE at the

relative minimum ranges, not the orivinal STV from DOPPVEC2. The

results of the expanded calculations are recorded as new rows in the

matrix SSTM.

Line [33] selects the absolute minimum in column 5 of the

expanded matrix SSTM. Finally, lines [34] through [45] further refine

the search in increments of -2.5, U, +2.5 about the ranae value found by

[33], and records the output MIN.

OUTPUT: MIN.

Function 12: DAPPROX, DEXACT, SHIFT, SHIFTY.

DAPPROX computes the DOPPLER approximation of formula [7],

Section 2.0, as DAA, line [2]. Line [3] computes formula [9'], as DAA2.

DEXACT solves the exact relation [5] for Ya, by a Newton-RaDhson

iteration, to accuracy 10" 10 . The functions SHIFT and SHIFTY simplya
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permit the values of exact and approximate solutions to be computed and

displayed for a number of different frequencies, and for a number of

different velocities of source and searcher.

The vector input IV consists of:

Source X, Source Y, Searcher X, Searcher Y

N is the desired number of repetitions

D is the interpulse interval, D = 11f.

SHIFT makes N random choices of the relative coordinates X and Y, while

SHIFTY demands initial X and Y, as IV[5], IV[6], and moves the source

along a straight line until N positions have been achieved.

b

I
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1s) SIYP...((SRCHI(234SRCN1[14JETV)X(TVSRCH1ES)))+( (SRCNI[12]:
,SRCff1£I4)SRCH1£53)+(TV-SRCH1E5])xSRCfl1E73))(TV>SRCH1(
5))

[6) S2XP4-((SRCH2£1)+SRCH2[3]xTV)'C(TVsSRCH2E5J))+((SRCN2£1)
,SRCH2[3]xSRCH2[5))+(TV-SRCH2£5))XSRC'H2E6J)x(TV>SRCH2[
5))

[7) S2YP4-((SRCH2[2J+SRCH2£14JXTV)x(TVSRCH2[5]))4((SRCH2E2J
+SRCH2£4)XSRCH2E5J ),(TV-SRCH2E5))XSRCII2[7))x (TV>SRCH2(
5))

[8) S1XV.-(SRCH1E3)x(TVSSRCH1£51)))+SRCH1[6Jx(TV>SRClI1E5J)
£9) S1YV4-(SRCH1[41)x(TVSSRCH1£ 5)) )SRCH1£7)x(i'V>SRCNJ.£5J)
£10) S2XV.-(SRCH2£3]x(TVsSRCH2£5)) ))4SRCH2[6JX(TV>SRCH2[5J)
[11) S2YVe-(SRCH2£I4)X(TVSSRCH2 53)) )SRCH2£7)x',TV>SRCHf2[5J)
[12) RSLXi-'TPX-S1XP
£133 RELY14-TPY-SlYP
[114) RELX2.-TPZ-S2XP
[15) RELY24-TPY-S2YP
£16) RV140-((RSLX1*2)+RNLYI*2)*.5
£17) RV24-((RELX2*2)+RSLY2*2)*.5
£18] TPXl4-TPX-TAR[3]xRV1*TAR[BJ
(19) TPX2.-TPX-TAR[33xRV2tTAR[8)
(20) TPY1.+TPY-TARE4)xRV1*TAR[8)
[21) TPY2..TPY-TAR£14JXRV2#TAR~eS
[22) RELX14-TPXI1-S1XP
[23) RELY14-TPYI-SlYP
[214) RSLX24hTPX2 -S2XP
£ 25) RELY24-TP2M-S2P
[26) BEAR14-(( 3ORgLY1,RELX1)x(R5ELX1>0)X(RELYlk0))+C(((30REL

Y1.RELX1)+O1)x(RNLXJ<0))+((( 3ORELY1*RELX1)+O2)x(RELX1
>0 )x (RELY <0))

£27) BEAR1i-BEAR1+(Co1.5)x(RA7LX1=O)X(RELY1C0))+(.5)x(RELX10O
)x(RELY1>0)

[28) BEAR24-((-3ORELY2*RELX2)x(RELX2>0)x(RELY2k0))+(((-3OREL
Y2.RELX2)+Ol)x(RELX2.cO))+((( 3oRELY2,RELX2)+02)x(RELX2

> O)x(RELY2<0))
[29) BEAR2s-BKAR2+((ol.5)x(RELX2=0)x(RELY2<0))+(.5)x(RELX2=0

)x(RSLY2>0)
£30) RV14.((RELX1*2)+RELY1*2)*.5

[31) RV24-((RELX2*2)+REL.Y2*2)*.5
[32) FREQ14-TAR[7]x( (RV1xTAREB))+(REL"XlxS1XV)+RELY1xS1YV)*(R

VixTAREB) )+(RELX1xTARE31))RELY1xTAR[4)
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[33) FREQ2*TAR[7Jx( (RV2xTAR[8))+(RSLX2xS2XV)+RffLY2xS2YV)#(R
V2xTAREt8))'(RELX2xTARE31) )RNLY2xTAR(4)

[34) L4-(PTINSMEPE[
[35) B8AR.-(2,L)p(BRAR1+L RNNL 1+(-2+0IASNE1;J)),BHAR2.L RNN

L(1+( 2+NEASMt 2;)))J
[36) FR5'Q*(2,L)p(FRSQ1'eL RNNL(3+PIEASPN1;3))).FREQ2+L RNNL(34

MRASN 20))
[37) SSRX*-(2,L)P,S1XP,S2XP
[38) S8RY4-(2,L)P,SlYP,S2YP
[39] RELVX4-(2,L)p.SlXV.S2XV
[40) RELVYe-(2,L)P.SIYV.S2YV
[41) DATAPE4-1 12p0
[42) N*-
[43) S4-2' T [A 1
[44) DATAN[l;hl-,S,TINEN[1;-2).BEAR[S;1).FREQ[S;1).SERX[S;1)

*SSRY[S-,I],RNLVXES-.1).RSLVY[S.-I],RVIC1).RV2[13.((S=l)xt
SRCH1[5))+(S=2)XSRCH2[5)

[4~5] N4-N+ 1
[46) *(N>L)/o
[47] S'#TISNENN; I)
(48] DATAM4-DATAMf.(1)N.S.TINEMf[N;2).BEAR(S;N).FREQ[S;N].SLSRX

[S;.N) SERYES;.N),RRLVX[S;N) .RSLVY[S;-NJ,RV1[N) ,RV2[NJ.((

S~i.)XSRCH1[53))(S=2 )xSRCH2t 5]

[41 4
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VDOPPVNC2(O)V
VD OPPVRC 2; NJ1;M2 M3 ;R; M gDOPPV; VAX; VA Y; NUD;V.-TAM;TBN; FAM
;FBN;-.TDNUBM; TDNUAM; PSI -,PSID;,A1I1I;A22;A33-. ;AA2;A3;A12 o;A
13;A23;B11;B22;B1;B2;Bl2;PRKP

[2) N14-2ODATAM[ ;4)
[3) M24-10DATAME ;41.
(4)3 M3-4-(*DATAME;5]I)xTAR[B)+(M1xDATAM(-8J)+M2xDATANEU9J
[5) R'-(pDA1TAM)l1)

(6) M.-(R.3)PO

(8) M[;2}4-N2j
[9) ME;3)4-M3
(10) DOPPV4--TAR[S)x(MM)+.x( (R,1)pl)
[11) DE~LTASQ.+/.((M+.xDOPPV)+TAR[BJ)*2
[12] VAX*4DOPPV E1 ;11
[13) VAY.DOPPV[2;13
[14) NUD.DOPPVE 3;oI
(15) STV-NUD.VAX,VAY

[ [16) W+-(DOPPV[ 1;1)*2)+DOPPVE2;1]*2
[17] -(Wi5TAR[5)*2)/C1
[18) A1I.+/M1*2
[19) A22..+/M2*2

[25) A33+-+/M3*2

[23A23-+/M2xM

[26) A3.+/-M3
127) B114*-(A 13*2 )-A11xA33
[28] B22-(A23*2 )-A22xA33
[29) Bi-TAR[8)x (A13xA3)-A33xAl
[30] B2..TAR [ 1x (A 23 xA3)- A3 3xA 2

[31B124-(A 13xA23 )-A12xA33
132] F4-(A33xDELTASQ)+(TAR[8 ]*2)x (A3*2)-RxA33
133] PS14-3 ipO
134] PS:PSI[1 ;1]+(B11xVAX*2)+(B22xVAY*2)+( 2xB12xVAXxVAY)+(2x

B1 xVAX)
135] PS1I[1 ;1].PSII1;1 )+(2xB2xVAY)+F
[36] PSI[2 ;1 ]4-(VAX*2)+(VAY*2)-TAR[5]*2

137] PSI13;1]+(B12xVAX*2Y.( (B22-B11)xVAXxVAY)+(B2xVAX)-CB1K

VAY)+B12xVAYA2
138] PSID4-3 3PO
[39] PSID[1 ;1].(2xB11xVAX)+(2xB12xVAY)+2xB1
[40] PSID[11;2]4-(2xB22xVAY)+(?xB12xVAX)+2xB2

142] PSID[2;3h-PSID[3;3]-0
1431] PSID[2;1Th2xVAX

[41PSID[2;2]4-2xVAY

Lffi''=
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£L463 PSID[3;23-( (B22-B11)x'VAX) -( 2xBi2xVAY)+Bl

£473 4.(LOOP>I)/R2
£48) REP'-( lp(VAX,VAY.DELTASQ))-(IPsID)4.xlSI
£493 -~R3
£50) R2 :REP 14REP- (EjPSID)+ . XPSI

£513 ,P((+I,1REPJ-REP)<.O3)/QS
[52) REP4-REP1
£53) R3:VAX4-RgPE81)
£54) VAY+-REP[2-13
£55) Fl+dA33xREP£3;.13)+(TAR[8)*2)x(A3*2)-RxA

3 3

[56) LOOP+4LOOP+1
E£57)3 -oPS
(58) QS: VAX4-REPIE I; 13

f [SS3 VAY'*-REPI[2-11
£603 NUD4 ..((Al3xVAX)+(A23XA)TRB~A)

3

[61) C :S`TV*-NLfD,VAX,VAY

VRMNL[O)V
'VZ+4N RMNL P;AA;Y

£13 Y4((?Np100000)#
0 0 0 0 1 )+.0000001

E£3)3 AA-.(AA-(((Y*iS+. 185)-1)*1#4.874))+.323968
£4) Z4-P[1J+AAxP[2)

VSIGM[O lV
VSIGP4ASQ'-SIGM' STV

Ell NUVECT STV
C £23 SIGMASQ*+/(NUAV-DATAM£;5])*2

-7-
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VNUVECT£OJV
VNUVECT STV;TB;.BB;TTV;PTXV;,PTYV

El) GCV&-DATAM[E;3)CDATAM[ ;12)
(2) CVA4-DATAM[ ;31kDATAM[ ;12)

[3) TB-DATAM[1;3)I [41 BB+-DATAM[1;LI]
[5) TTV-DATAP4£;3)-TB
£6) PTXV4-((DATAM[;2>=1)xSRCH1[3))+(DATAM[ ;23=2)xSRCH2[3)
£7) PTYV4-((DATAME;2)=1)xSRCH1[4))+(DATAMd£;2]=2)xSRCII2[43
£8) RRX4-((TTVxSTV[23-DATAM[;8))xCVB)+(((DATAPE£;12)-TB)xSTV

[2)-PTXV)+(TTV+TB-DATAME;12))xSTV[2]-DATAME;BJ)xCVA
93 RRX4-RRX+((DATAM[;23=1)x(RNx2OBB))+(DATAME;23=2)x(RNx2O

BB)+(SRCH1[1J+TBxSRCHI[3))-(SRCH2[1)+TBxSRCII2[43))-
[10) RRY4-((TTVxSTV[3J-DAT.4M£;9))xCVB)+(((DATAM[;12)-TB)xSTVL £3)-PTYV)+(TTV+TB-DATAME;123))STV[3)-DATAME;91)xCVA
[III RRY4-RRY+((DATAM[;2)=1)x(RNx1OBB))+(DATAME;23=2)x(RNxlo

BB)+(SRCH1£2J+TBxSRCH1£4) )-(SRCH2[2)+TBxSRCII2£14)
[12) RRV-((RRX*2)+RRY*2)*.5
[13) RRX4-RRX-(RRV-RRV£1))xSTV£2)*TAR[8)
[141J RRY4-RRY-(RRV-RRV[11))xSTV[ 3)*TAR[8J
[15) RRN-((RRX*2)+RRY*2)*.5
[16) COSV~-RRX*RRN
[171 SIN V-RRY+RRN
[18) CRVS-TAR£8)+((CCOSVxDATAM£;8))+SINVxDATAME;9))xCVB)+((

£1)COSVxDATAM[ ;8J)+SINVxDATAME;9))xCVA
[11CRVT-TAR[8)+(COSVxSTV[2))+SINVxSTV[3)

(20) NUAV4-STV£1)xCRVS+CRVT
[21) TTVR4-TTV-RRN*TARC8)

LV

V FC N(£0)V
VFV4-FCN STV;EV;F1;F2;F3;PRXTDI;PRXTD2;PRYTD1;PRYTD2

r Ell NUVECT STY
[2) EV-NUAV-DATAM[ ;5)
[3) F1-2x+/A'VxCRVS.CRVT
[41) PRXTD1.-(TTVR*RRN*3)x(RRN*2)-RRX*2
£5) PRYTD1.PRXTD24-(TTVRRRN*3)x-RRXxRRY
6)3 PRYTD24-(TTVRRRN*3)x(RRN*2)-RRY*2

£7) F24-2x+/EVx(STV£1]#CRVT*2)xCCRVTx(DATAM[,*S~xPRXTDI)+DAT
AM[ ;93xPRXTD2)-CRVSxCOSV+(STV[23xPRXTDI )+STV[3]xPRXTD2

£93 F34-2x+/EVx(STV[13+CRVT*2)x(C.RVTx(DATAM[;8)xPRYTD1)+DAT
AM£ ;9)xPRYTD2)-CRVSxSINV+(STV[2)xPRYTD1 )+STV[3JxPRYTD2

[9) FV~-3 lp(Fl.F2,F3)
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VKITERATE(0 )V
VKITERATE STV;II;CHIS;LNUB;UNUB;tVP4;PCNB;,STVB;.CYC;SIGM
B

(2)3 NUVECT STV

£3) CHIS.-(pDATAM)E1)xMEASME1;*5J*2
£ (4) LNYUB4-(DATAP4(;5)x(TAR£B)-TAR[5))*CRVS)E(kSDATAM(;*5)x(TAR

£8)-TAR(5))*CRVS)£ 1))

15) UNUB4-(DATAM£;5)lx(TAR(B)+TAR[5))*CRVS)C(($DATAp.g;5)x(TAR

£6) SET:CYC~-0j
[7) SIGMB-SIGM STV
[8) IVM-IE(JACOB STy)j
£9) FCNB4-FCN STVr £10) STVB4-STV
[ill STVA-STV-3p((3 1rJSTV)-1'VP+.xFCNB)
£12) TEST:R24-(STV[2)*2)4STV£3)*2
£13) -(((STVE13LNUB)+(STV£13>UNUB)+(R2>TAR[5J*2)+((sIGN ST

L V)kSIGM STVB))<1)/CON
£14) CYC4-CYC+1
(15) STVA4-STV4-3p((3 1PSTVB)-(2*-CYC)xIVP4+.xFCNB)
£16) -*(CYCf-8)TEST1' 173 STV4-STVA-STVB
£18) CON: NUVECT STV
£19) 114-I1+1
£20] SIGMA4-SIGN STV
£21) -o((lISIGMA-SIG.AB)<c1o*s5)/
(22) *(II<REPIT)/SET

VJACOB(I])V
VJA4-JACOB STV;CI;DEL;JA;FJ1;FJ2;DEM

113 CI_ 1
[2) DEL4-(0,0.10*-6)
£3) JA4-3 OpO
£4) FJ1I-FCPJ STV
£5)3 JI:DEL4- 14DEL
[ 6) DEM4.DELx(loo 1 1)
[7) FJ2-FCN(STV+DEPI)
£8) JA-JA.(FJ2-FJi.)x+DEP4CI)

[ 10] -.(32CI)/Ji
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VSSSTM STV;J;-RN;,K;AV;-RNS;,N;STVW;.FP
113 J-0-
£2) SSTI'1-32 6p0
S3)3 SRN:RN4-1 oxJ

(41) KITERATE STV
£5) SSTN£Jr;)-RN.STVA.SIGMA,J
£6) J.*-J+i
[7) -(Js12)/SRN
ES) AV4-12p0
£9) AV[ 1J.SSTME1 ;53cSSTME 2-,5)
£10) AV£121.-SSTPI£12 ;5 )SSTM£1 ;5)
Ell) K*-2
£12) VEC:AVEK]4-(SST~d£K;5JcSSTM£K-1;51)
(13) AV£K3-AVEK)xSSTM[K;53<SSTPE£K+1;5)

[14) K~-K+l

[171 SSTAI£13;)m-6p0
£18) -0
£19) SUP:RNS4-AV/12+.SSTAI£;6)
£201 N-1

[21) 3TT:RNJ-SSTM£RNS£N3;1)-5
£22) STVW4-SSTAI£RNS[N);2 3 4)
£231 KITERATE STVW
£24) SSTN£12+(3xN)-2;)+-RN.STVA.SIGMA.12+(3xN)-2
£25) RPJ-SSTP4£RNS£N);1)
£26) KITERATE STVW
£27) SSTN£12+(3xN)-1;).RN.STVA.SIGMA.A12+(3xN)-1
[28) RN4-SSTM£RNS£N);1)+5
£29) KITERATE STVW
£30) SSTM£12+3xN;)4-RN.STVA,SIGPA.A12+3xN
£31) N-N+1
£32) -(N~pRNS)/STT
£331 R-4-U(12+3xpRNS)+,SSTM£ ;5J)E11
[34)3 RN-SSTME R .11)-2. 5
£35) STVWI-SSTMCR;2 3 4)
£36) KITERATE STVW
£37) FM-3 SPO
£38) F.if£1;]4-RN.STVA.SIGP4A
£ 39)3 RNi-SSTP4£R;1)
£40) KITERAT" STVW
[41) FM[2;J'-RN.STVA,.SIGMA
£42) RN-SSTM4£R;11)+2. 5
[ 43) KITERATE STVW
£44) FP4£3,)4-RN.STVA.SIGMAA

£45) MIN*-FP4£(t, F14 E ;5))1)C;J
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VRRNG(OJY
FVRRNG STV;-NUA;,TUA;BB;RVV;ErVV;-RIM;RIMD;.RCN;.DRCN;.RNA;-DN;

DPD.; LB; FV -U B
[1) NUA-(14(DATANM(;2)=)x(DATAM[;3)&SRCH1(5])))/iDATAN(;5)
(2) TUA-(('4(DATAN(;*2J1)x(DATAN(;3]SSRCH1(5])))/.IDATAM(;31))

L ~-DATAN 1 ;3 J
[3) BB-DATAN( 1; 4)
(4) RVV'-STV[2 3)-SRCH1(3 4)
(5) EVV-NVA-STVC1)
(6) DPD-((208B)xRVV[1J)e(1oBB)xRVV(2)

(7) O0.-LB--( (( (RVV(1)*2)eRVV(2)*2)*.5)x(pNUA)-l)+DPD

(9) 04-UB+-(pNUA) x-DPD
(10) -((LBsFV)x(FVsUB)=1)/CONT
[11) -(FV<LB)/LBL
(12) -..(UB< FV) /UBL
[13) LBL:RN4-1o
(14) UBL:RN4-120
(15S] NO INITIAL RANGE SOLUTION POSSIBLE, RN =';RN;' ASSU

PIED
(16) -0
(17) CONT:RIM.-(2,(pNUA))pO
(18) RN.50
(19) CALC: RIMD4-RN+ TUA xDPD
(20) RIM(1;)e( (RNx2oBB)+TUAxRVV(1J)*RIMD
(21) RIM(2;J.((RNx1OBB)+TUAxRVV(2))*RIM4D
(22) RCN-((TAR(8)*STV(1))x+/EVV)+(RVV~llx+/R1P4(1;))+RVV(2Jx

+I/RIM[(2;)

(23) DRCN4--(((RVV(1)*2)+RVV(2)*2)-(DPD*2))x+/TUA.RIMD*2
(24) RNA-RN-RCN#DRCN
(25) DN.IRNA-RN
(26) RN4-RNA
(27) -(DN>1O*4)/CALC
(28) 'NEWTON-RAPHSON SOLN FOR RN ';RN

VRNSEL[J)V
VRNSEL STV;C

(I] RNMTO-23 2p0
(2) C.+.1
(3) RN6: RN4- 10+ 5 x(C -1
(4) RNMT(C;h-RN,SIGM STV

'U 5) C4-c+ 1

[6) *(Cf-23)/RNS

[7 NV M[tRNT-2)1-1
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YSNIFT(OJYV
VSHIPT

(13 'SET XTV,ITVXSV.YSV'
(2) 1V4-,O0
[3) XTV4-ZCIV(I
[43 YTV*IV[2)
[6) YSV*-IV E 3J
(5) XSV4-IV43)
[7) 'SET N = NO. REPIT.'
[a] N4-,O
(9) 'SET D = INTER PULSE TIME'
[10) D*-.O

(12) CHS:X4-?150

[184) 'WHEN X z';X;' AND Y ';

[11DEXACT(O)

[16) DAPPDO

(2)3 DA14-D(CX( ((DA~ PERCENSV)DxTV)*2)+(Y-o(DAAYV-DAYT)#A

[13) .IDA-DA1)clo*AA210 PRET)RO/010(AA-A)

DA

VDEAPPOXO)

[1) VDAPPRO
(2 AID(Cx((-DxS)DXV*)(-DxS)DYV

*2*5-V*2+*).

(37(IAD1<0-01
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VSHIFTY£O)v
VSHIFTY
Ii SET XTV.YTVIXSV.YSV.X.Y'

[ 2) IV*- ,O
[ 3) XTV4-IVC 1)I'(4) YTV*-IV[2)
£5) XSV4-IV[3)
£6) YSV*-IV£'4)
[7) X4-IV 5)3
[8) Y.IXV[6J]I:[9) 'SET N = NO. REPIT.'
[10) N*-.,O
[ill 'SET D = INTER PULSE TIME'
[12) D-.0,
[13) K4-0
[14) CHS:X*-X+.1xXTV-XSV
[15) Y*-Y+.lxYTV-YSV
£16) 'WHEN X ';X;' AND Y =;
£17) DEXACT
[18) DAPPROX
£19) 'DEXACT ';DA1
£20) 'DAPPROX =';DAA;' PERCENT ERROR = ;100x(DAA-DA1)*DA1
[21) 'DAPPROX2 = ';DAA2;' PERCENT ERROR ';lO0x(DAA2-DA1)4

DA1
£22) K4-K+1
[23) -(K sN)/CHS

==
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i
APPENDIX B

THE UNIOUENESS PROBLEM FOR PERFECT INFORMATION J
If there were no errors in the measurements of bearing or j

frequency, the fundamental system [B-21, which derives from several

measurements of (B-i], would possess a unicue solution for all

parameters, provided at least three different bearings were included.

a(C+ r v) Tf (C+r .VS) B-

(C + rI" I f f cos BXT f sin B1 Y =f C

T [B-21

(C + r V )f- f cosB X - f sin B Y =f C
N N N T aN N T

To prove the assertion of a unioue solution for the range

parameter, it suffices to establish that the system [B-2] has a unicue

solution for the three parameters f, XT, 1T Indeed, Peometrical

considerations make it clear that any two distinct bearings, Bi and B

obtained at times TT and TT (without error), together with the known

values XT, 1 T will, to all practical purposes, uniouely determine range,

the very small indeterminacy introduced by the change of transmission

time of the two pulses being negligible.

To prove that b-2 possesses a unioue solution, we only have to

consider N=3 with BI, 1 2  and B3  all different. Under these

circumstances there will be a unioue solution so lona as the determinant

I

.' Z
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SAb
C+r V -f cosB - f sln B

l S 1 11

D= +r2 S2 - f2 coo B2 - f2 sin B2

C+r 3 + V - f 3 cos B3  - f5 sin B3
3

does not vanish.

Equation [B-i1 makes it possible to replace the elements of the

first column of [B-3] by expressions of the form:

I " I

fl(C + ri V8)

f T

Then the determinant can be cleared of the f by multiplying each one of

its rows by the appropriate non-zero factor f/f The followina

simplified determinant D' thus results. D' 0 if, and only if, D 0.

C + cos BI XT + sin BI YT -fcosB -fsi B1

D' = C + cos B2  + sin B T - f Cos B2  - f sin B2 [B-I]

C + cos B3 XT + sinB 3  T - f cos B3  -f sin B3

The determinant D' can vanish only if there are constants "a" and

"b", so that the third row is the linear sum of "a" times the first row

and "b" times the second. Then, the three equations in [B-5] would be

satisfied:

L i,. " .• " . ., . . . . . . .. . .. . . . ... ... . .-,.•+• ".. .• . .. ' .T "
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sin B a sin B + b sin B

cos B3 a cos B1 + b cos B2

cos B + sin B (a + b) [B-5]

C*+ (a cos BI + b cos B 2) XT

+ (a sin B1 + b sin B2)Y

However, substituting the first two equations into the last yields

C -- (a+b)C or a+b 1 [B-61

Simultaneously, the first two equations of [B-5] state that the unit

veto . is the linear combinationvector a ÷ br However, vectors of the

form eI +br 2 , with a + b = 1, stretch fro,, the origin in

two-dimensional space to points on the line joining the termini of the

two unit vectors and However, it can be seen geometrically that

no other vector to that line has length one, except r1  and r 2

theiiselves. Thus ,inc( no two of rI, r., r' can coincide, the
3

determinant D cannot vanish, and the expressions in [B-3] yield unioue

solutions for f, XT, YT' as assert-
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