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THEME

; A distributed processing system has been characterized as having a multiplicity of

physically distributed resources interacting through a communication network; high-level
operating system software unifies, controls, and integrates the components and provides
transparency to services rendered.

R The distributed system architecture offers cooperative autonomy in overall operation D]
to achieve efficient use of avionic resources and to provide high system integrity, cost-effective f
maintenance, expandability, and improved performance. The physical distribution of resources ) ;

comprising a system works to insure immunity to battle damage and accidents. Also, in some i
instances systems for distributed computation may take the form of air-to-satcllite, air-to-surface,

or air-to-air. The advent of small, inexpensive, low-power computing revolutionized complex :

systems design, and raises serious questions regarding the future of centralized, hardwired '

3 ' avionics coraputer systems,

' . Distributed processing, having been made possible by the price performance revolution
in micro-electronics, now challenges us to correctly apply the concept to alleviite cost, schedule,
reliability, operational, and maintenance probiems in avionic systems.
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TACTICAL AIRBORNE DISTRIBUTED
COMPUTING AND NETWORKS

TECHNICAL EVALUATION REPORT

+ Billy L. Dove \
Technical Program Chairman

EXECUTIVE SUMMARY - i

CONCLUSIONS

0 Benefits credited to distributed data processing are not capable of being vealized within the
current state-of-the-art. i

FTL ™ e et o o

o Preparation of military standards for airborne distributed data processing is inappropriate at
this time. However, a mechanism to promote uniformity {in technical definitions between workers

in this area would be useful.

L I,

o The state-of-the-art is not adequate to support the design and validaticn of airborne distributed
data processing systems for critical military missions,

o The economic leverage of the military {s no longer a factor with microelectronic manufacturers,
therefore, system designers must cons:der technology independence in their designs.

o Software is of considerable importance t¢ this area.

RECOMHENDAT IONS
0 AGARD follow up on this subject area with a future meeting.
o AGARD support specialist meeting on Methodology and Design Techniques for Distributed Systems.

GENERAL -
The symposium was three and a half days in lungth being held June 22 to 25, 1981, in Roros, Norway.

Approximately 130 people were registered. Attendarice at all sessions was unusually high. !

Thirty-eight papers were scheduled for presentation as of June 22, 1981, and only two papers were !
not presented at the mesting.

Few of the papers were invited ones. Even so, the material gathered for the program proved to be
of interest overall.

A large number of questions were asked whose answers are contained in the proceedings.

A major objective of this meeting was to seek a delineation of the state-cf-the-art in airborne
distributed computing. Fortunately, this symposium attracted a large number of people representing
a broad range of interests and included academics, institutes, and avionic and airframe manufacturers.

This was as intended by the program committee.

TECHNICAL SESSIONS -

The potential benefits from distributed computing system concepts such as improved reliability/

availabiiity, ease of system growth, shared resources, etc., offer attractive alternatives to today's

problems, however, the technical capability to realize these benefits has been brought into question. |
Thus, the purpose af tha meeting was established— to assess the state-of-the art capability in air-

borne distributed data processing.

The meeting was organized in such a way as to encourage a diverse response from the call for papers.
Seven sessions were defined, as follows:

Session I State-of-the-Art

Session 11 Architectures

Session ITI Design Approaches

Session IV Software

Session V Fault Tolerance and Reliability
Sessfon VI Buusing and Networking

Session VII Applications

viii
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Session I: State-of-the-Art in Distributed Processing. This was a tutorial session. The first
paper was invited and given extra time. It focused on the definition of distributed computing
svstems. The matter of definition is important as it relates a name to a level of potential benefits.
This proved to be a very interesting and much needed paper as judged by the reaction of the audience.
A continuing n.2d for the refinement of technical definitions was established. A major point from
this session was that the state-of-the-art is far from being able to provide the benefits claimed by
airborne distributing systems enthustasts,

The introductory paper (1) written by Dr. Philip Enslow, USA, "Distributed Data Processing--
{ What Is It?" was presented by Dr. John Livesey. The paper focused on definitions which set
the scene for the entire symposium.

Mr. Martin's paper (3), "Tre Effect of Increasingly More Complex A{rcraft and Avionics on
the Method of System Design," presented a historical treatnent of aircraft and their systems.

‘ , - His point being that 1ittie change was required in the design methodology for systems of the
L past, but that a revolutionary change in methods is required in order to design distributed
) systems, ]

Mr. Zempolich's paper (4), "A Tutorial on Distributed Processing in Aircraft/Avionics Applica- ‘
tions," dealt with systems architectural concepts from the analog te digital and beyond to the ! J
hierarchical. Emphasis was placed upon the need for top-down design and tke synergism achieve-

able from & team approach.

L ' Following the three tutorial papers of the first session, the authors and Dr. Von Issendorff
b participated in a free-exchange question and answer period. Arising from the many questions
oo and comments during this period was the subject of military standards and academic definitions. ),

E Session IT: Distributed Airborne System Architecture. The papers oF this session revealed a tendency
to exploit the advances made in microcomputer technology by partitioning both hardware and software

into functional modules. The drivers for this are: a possible positive influence on reliability and

damage tolerence; use of identical hardware; cost of software; and better visibility into the system

for better maintainability. It was abundantly clear that system architects are at work putting new

technology to use in new ways. It is also clear that the resulting architectures are in general

following the same trend., i.e., distributed microprocessors, bus connected, and with some form of

3 - dynamic redistribution of resources or functions, It seems logical and can be so argued that these

1 architectures offer benefits in cost and relfability. It was not established from this session that

: a body of data exist which quantifies design factors and substantiates the claims made for the various

category of architectures presented.

The paper by Dr. Shin (6), "Performance Study of a Distributed Microprocessor Architecture
for Use Aboard Military Aircraft," proposed a concept based upon the decompositior of a
mission into "atom functions" to be implemerted by microelectronic technology. A central
controller communicates with the "atom functions," and the pilot interfaces with the certral
controller. A hypothetical system was studied and some performance data generated.

Mr. Wright's paper (7)., “The Develupment of Asynchronous Multiprocessor Concepts for Flight
Control System Applications," describes a concept for the use of multiple microprocessors, .
functionally dedicated, and running asynchronously. The concept will be implemented and
flown on a Hunter aircraft as a fly-by-wire system.

Mr. Brammer's paper (8), "Functional Versus Communicatfon Structures in Modern Avionic
Systems," presented results from investigations into the amount of interconnections in
several avionic system concepts. The bus concept and the layered star appear to offer :
less interconnections from this analysis. \

- Lt. Maher's paper {9), "Cortinuous Reconfiguration in a Multi-Microprocessor Flight Control
System," offered another concept of microcomputers interconnected with busses and an algcrithm
to dynamically redistribute system functions. Three advantages of this architecture were
offered: expandability, reduction of software cost, and reduction of unscheduled maintenance.

1
{
Dr. Von lssendorff's paper (10), "Experierces with the FFM-MCS," presented the design of a !
test-bed for research on distributed data processing. Research tasks undertaken include 1
decomposition of data processing tasks into sets of functions, message construction, and ;
transfer protocol. !

Session III: Distributed System Design Approaches.

Dr. Callaway's paper (11), "SAVANT - A Database Manipulation Technique for " sstem Architecture
Design Verification and Analysis," described an interactive tool capable of representing the
various facets of a digital system design. SAVANT traces errors, identifies inconsistencies
in designs, and provides data for trade-off between different configurations.

Dr. Whitehouse's pzper (12), "Signal Processing with Systolic Arrays," presented a specialized 3
hardware approach for fast matrix computation. .

Mr. Zempolich's paper (13), "Economic Considerations for Real-Time Naval Aircraft/Avionic
Distributed Computer Control Systems," emphasized the economic aspects to be considered
. during system design. Lack of economic leverage over microelectronic manufacturers has
resulted in questions about the viability of standardization and commonality.

|
i
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Mr. Martin's paper (14), "Functional Documentation - A Practical Aid to the Orderly
Solution of the System Design Problem," discussed sn organized approach to the
decomposition of system requirements from specification to functional detail, This
technique promotes communication between persons of different disciplines, and results

in a well-documented design.

Session IV: Distributed System Software. Considering the criticality of software to the realization
and success of distribued systems, it was surprising that this session received the least support in
papers. The individual papers were of sufficieni guzlity; however, the scope and number were {nade-
quate, A final conclusion cannot be drawn regacding the state-of-the-art ot software for distributed

systems.

v Mr. Ward's paper (15), "A Consistent Approach to the Development of System Requirements
: ‘ and Software Desigr," reported on the SAFRA (Semi-Automatic Functional Requirements

| Analysis) project. Many of the ingredients of a careful analysis of requirements and

} their mechanization were discussed. No comparison of SAFRA to other approaches was

; mentioned. A limited experience base exists with SAFRA,

[ Dr. Livesey's naper (17}, "Distributed and Decentralized Control in Fully Distributed
Systems," reinforced the definition of fully distributed systems through the discussion
of decentralized contioi. An important aspect of the paper was the task graph concept.
Information stored in task graphs could be useful to implementing the dynamics of

reconf‘quration.

b
i
g N Or. Svobodova's paper (18), "Recovery in Distributed Processing," discussed techniques
for analycsing task handling, confinement of failure effects, preservation of status,
f and recovery in digital systems, /)

L Dr. Wolf's paper (19), "Generalized Polling Algorithms for Distributed Systems," compared
| two polling algorithms with the objective uf eliminating the inefficiency of round-robin
polling. This theoretical paper offered no example to i1lustrate the amount of improvement 1

made.
Session V: Fault Tolerance and Reliability in Designs. Three papers in this session demonstrated

‘ great breadth in the consideration being given reliability assessment and validation. Emphasis on
ultrareliability and the validation problems for such systems is being worked in the civil R&D sector.

Mr. Stearn's paper (20}, “State-State Reliability Analysis Technique," presented an

\ improved method for reliability analysis for redundant systems. The state-state technique
is less difficult to use and simpler, thus not as many errors will be caused by having such

a large number of combinations in the analysis. Sources of unreliability become readily

apparent using this technique.

Mr. Moses' paper (21), "Methodnlogy for Measurement of Fault Latency in a Digital Avionic
Multiprocessor," discussed the use of an emulator to conduct fault injection experiments.
The results from this work brings into question the fault/failurc detection capability of
sel1f-test programs in avionic systems, and the accuracy of relifability analysis program

results,
Dr. Schwart:'s paper (22), "Hierarchical Specification of S'FT Fault Tolerant Flight
Control System," offered for consideration a formal mathematical proof of ultrareliable

computer functional and reliability requirements. This approach establishing a mathe-
mati-ally provable relationship between the specification and the programs of the actual

systems is an intriguing and novel approach,

Mr. Szlachta's paper (23), "Reconfiguration: A Method to Improve Systems Reliability," Do
discussed the improvement of reliability by use of hardware reconfiguration. Lo

Mr. Meraud's paper (24), "Reseau d'Echange Reconfigurable pour Controle de Processus
Reparti," discussed a means for dynamic distributed (decentralized) control of reconfigu-~
ration. This technique is directed to systems of high reliability although no reliability

1

i

analysis results were given, . LI
3 1

Session VI: Interconnection - Bussing and Networking.

Mr. Hvinden's paper (26), "Protocol Level Modules— For Cost-Effective Standard Computer
Coimunications," describes a "host independent" implementation of computer communication
nrotocols. This is realized by the development of hardware and software modules. Work-

load on the host is reduced.

Mr. Juanole's paper (27), "Les Stratégies de Retransmission pour le Contr8le d'Erreur dans
les Protocoles de Transfert de Données," presented the functions of a protocol for data
transfer. Error control is included in an error detection and data retransmission Scheme.

This strateqgy was analyzed and the logic of the process explained.

Mr. Duke's paper {28), "Practical Aspects Which Apply to MIL-STD-15538 Data Networks,"
distussed the ramifications of trying to satisfy two different standards--one relating
to data transmission and the other to standard interfacing electronics. This situation .
is created when bus redundancy, multibus architecture, and some intelligence is required ]

in a stores management and weapons aiming system.
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Mr. Heger's paper (29), "The Traffic Flow Measured in a Distributed Real Time Computing
System {RDC) With a Fiber Optic Ring Bus System," presented results from anilysis and
nmeasurements taken from a feult tolerant microprocessor system's fiber optic ring bus.
This is a very good example from which to compare the results of an analytical method
vs.hpgact1ca1 data gathering, Many more examples will be required to validate either
method,

Mr. Megna's paper (30), "Dispersed Sensor Processing Mesh Project," presented the
mechanization of a 1imited port netwo. communication structure. Although detailed

in implementation, neither the general analytical methods nor the general study results
were presen‘ed which compared performance to the existing F-8,

Mr. McCuen's paper (31), "Next General Military Aircrait Wi11 Require Hierarchical/Multi-

Level Information Transfer Systems," was concerned with a discussion of a future high-

' speed data bus standard and architectural approaches to it. Information was requested
to assist the task grouhr in the formulation of a high order transfer-type system.

Session VII: Application ~! Distributed System Designs to Avionics Systems.

!

: Mr. Moses' paper (32), “SIFT - An Ultra-Reliable Avionic Computing System," noted that

[ in recent years automatic flight control systems (FCS) in aircraft, which previously

! provided mainly stability augmentation and other pilot-relief functions, have more

recently taken on flight-critical tasks. These flight-critical tasks are those whose

successful accomplishment is vital to the safety of the aircraft (a.g., automatic

landing, fly-by-wire control system, control-figured vehicle methods?. An FCS which

takes on these critical safety-related tasks must be ultrareliable. SIFT implements

software-implemented fault-toleranc? technigues utilizing hardware redundancy. Achieve-

ment of failure probabilities of 10 0 per hour were quoted. Using multiprocessor "star

] connection" techniques, the computing is carried out by high-speed 10-bit Bendix 950

& processors {each with a throughput of 800 KOPS with an appropriate FCS instruction mix
and with 32K memory). Software algorithms are used for failure detection. After fault
detection and isolation, the software provides reconfiguration to accommodite the fault.
The paper described the SIFT architecture and its hardware implementation. As an
efficient approach to the design of ultrareliable avionics, the author noted that it

- should pave the way for acceptance of fly-by-wire and other advanced FCS techniques.

Mr. Nelson's paper (33), "State-of-the-Art Computer Monitoring Equipment," described the
results of a significant software support effort at the NAVWPNCEN that has resulted in

the availability and practical use of an airborne-computer hardware monitor. This device,
called SOVAC (Software Validation And Control) provides a high capacity, real-time and
user-selective "window" that gives high visibility into the internal operation of the
tactical computer. SOVAC is a computer monitor that can conceptionally be thought of in
terms of its basic components, These are: (1) Tactical Computer Interface. This section
provides real-time control of the tactical computer and provides the capability to capture
information available on the tactical computer's bus and control lines. (2) SOVAC
Controller, This high-speed, microprogrammed controller coordinates the operation of the
various subsystems, It has the capability to recognize various types of events or complex
combinations of events and set a breakpoint. It has a very fiexible data selection and
logging capability. The functions of the controller are under the control of the user.
(3) User Interface. This part of the SOVAC is the part that the operator actually uses. |
Its primary components are: a minicomputer, a terminal, an interface to the SOVAC con- i
troller and the SOVAC software. The paper noted that SOVAC is a powerful tool for use i
by anyone who has a need to know what is happening inside a tactical computer. ;

Mr. Wilcock's paper (34), "Centralized Management of Mechanical Systems for Future Combat
Adrcraft," described a computer oriented approach to the management of aircraft mechanical
systems (fuel management, engine control,etc.). The approach described was a micro-
processor-based management system distributed throughout the airframe. It is planned

that these Systems Management Processors will operate independently as separate computing
centers and will be interconnected via a data bus (MIL-STD-1553B or a derivative). Some
of these microprocessors will act as remote terminals forwarding raw data via the bus

to designat.d processing points. The paper described the various mechanical systems to

be controlled, detailed the system architecture, described the mechanical system interf¥ace
with the microprocessor and speculated on the cockpit displays and pilot interface. The
system approach was seen to not only utilize current technology, but can take advantage

of future technoloc. .7d can be adapted at a reasonable cost and schedule to meet changing
system requirements.

Mr. Vandecastelle's paper (35), "Architecture Du System D'armes Mirage 2000," stated that
the architecture of the armament system of the Mirage 2000 represents an advanced generation
of digital systems. It was described from the points of view of digital equipment, assign-
ment of software to the equipment, digital links, and monitoring the system in flight. The
paper discussed architectural principles that embraced hardware, software, the distribution
of tasks, and corresponding interfaces. It is flexible enough to allow for the development
of a family of systems of different sizes and different operational needs. It was noted
that the architecture can be grossly characterized hy the use uf digital multiplex Tinks
of the "Digibus" type, a standard for French military aeronautics since 1974. In outline,

g the paper gave a general view of the Mirage 2000 system, including (1) a discussion of the

' : principal sensors (navigation, radar, EO, active and passive countermeasures); (2) display
and controls, all linked together by the standard Digibus technique; (3) the philosophy for
the distribution of the computive tasks; (4) discussion of integrated and centralized functions;

Xi
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(5) architectures for the central computers and the Digibus; and (6) the development
methodology for the software.

Mr. Bross' paper (36), "Computer System of the Tornado," described the Tornado,

while not representative of a modern distributed computer system, nevertheless,
' ) as a system with physically and functionally distributed computing power operating
: through a dense digital network. The end result is therefore a highly integrated
. system. The paper described the computing system and its architecture, iewing
especially the functio ..1 autonomy of various subsystems. The provision of system
integrity and fault = lerance incorporating redundancy and monitcring capabiiity was
highlighted. The Tornado's computer system was seen to be of a hierarchical distributed
system type instead of an equally distributed mechanization. The (inner) lower part,
! serves for aircraft stability purposes, comprises the leasi intelligence but is highly
redundant; the middle part provides for basic autopilot functions, is less redundant;
the upper part serves for mission functions/modes and is simplex only. However, these
highest mission functions are divided into two master functions, one 2s master for the
horizontal {steering) and one for the vertical plane (terrain following). The paper
concluded with "lessons-learned" and remarked on improvements to be considered for a

next generatior, avionic system.

Mr. McTigue's paper (37), "F/A-18 Tactical Airborne Computer and subsystem," presented
a description of the Tactical Airborne Computational Subsystem used in the U.S. Navy/
McDnnnell Dougias F/A-18A Hornet Fighter/Attack Weapons System. The F/A-18A Hornet
tactical computer subsystem consists of two central amission corputers and a number 3
of distributed processors embedded in various sensors and dispiay subsystems. This )
distributed processing system is interconnected by and communicates over a MIL-STD-
1553A serial 1-MHz command/re:cponse multiplex network. The distributed processing
system architecture was discussed and the rationale was presented for the partitioning
of the computational tasks between the central mission computers and the distributed :
processors embedded in the sensor subsystems. The salient features of th2 central
mission computer ard the distributed processors were discussed along with a description
of the functional operation of the interconnecting MIL-STD-1553A multiplex communications

- system. Finally, the development process for the Operational Flight Program (OFP) for
the central mission computers was described, including a discussion of the support
facilities, which were used for the software integration and validation.

- Yy e e i
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Mr. O'Neill's paper (38), "F/A-18 Weapon System Support Facilities," described the
support facility tools being developed by the Navy. The U.S. Mavy is currently
acceptance-testing the McDonnell Douglas F/A-18 aircraft, which is an all-weather,
fighter/attack aircraft with more than 30 on-board computers containing more than

700K words of programs. Since the F/A-18 is so much more complex than any aircraft
currently deployed, suphisticated tools will be required by the system engineers to
support the avionics., According to his paper, the F/A-18 Weapons System Support
Fa~ility (WSSF) at the NAVWPNCEN, Chira Lake, CA will contain all of the support tools
(both hardware and software) necessary to test, modify, generate, and validate all of
the avionics softwar~, hardware, and firmware. The WSSF uses several minicomputers
tied together in a distributed network to provide a realistic simulation of the air- ‘
craft flight characteristics. Using this approach, the avionics computers can be i
integrated into the simulation and tested in the WSSF before flight testing starts.
The WSSF appears to be well under way in development and should ease the Navy's task (

of supporting the F/A-18 aircraft.
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; ' DISTRIBUTED DATA PROCESSING --- WHAT IS IT?

PHILIP H. EnsLow JRr.
GEORGIA INSTITUTE oF TECHNOLOGY
ScHooL oF INFORMATION AND COMPUTER SCIENCE

' * ATLANTA, GEORGIA 30332

0 SUMMARY

Distributed processing has been presented as the means to obtain improvements in a number of areas of system performance. Utilizing
a list of these desired improvements as the motivational factors, this paper presents the key design characteristics of systems tiiat will
deliver a major proportion of these improvements. Because of the wide use of the term “distributed processing,” the systems described

here are identified as “fully distributed.”

_ 1 BACKGRODND
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1.1 Goala of Computer Syatam Development
Although the state of the art in digital computers has certainly been advancing faster than any '
other technological area in history, it is somewhat remarkahle that the goals motivating most compiter
system development projects have remained basically unchanged since the earliest days, Perhaps the most
important of these long sought-after improvements are the Tollowing:

R .

1. Increased system productivity
- Greater capacity
~ Shorter response time
- Increased throughput
mproved reliability and availability
) 3. Eage of system expansinn and enhancement
4. Gradeful growth and degradation
5. Improwed ability to share system resourcea

e values" for these various goals cannot te expressed in absolute numbers, so it 1is }
not surprising that y continue to apply even though phenomenal advances have been made in many of them
such as speed, capac , and reliability. Wha’ is perhaps more noteworthy and important to the discus-
sion being presented heré is how little progress has been made in areas such as easy modular growth,

avallabilily, adaptability; etc.

The “final or ulti

It seeas that each n;\ujor systeams concept or development (e.g., multiprogramming, multiproces-
sing, networking, etc.) has been presented as "the answer® to achieving all of the goals listed above A
plus wany others, "Distributed processing” is no exception to this rule. In fact, many salesmsn have

dusted off their gld lists of benefits and are marketing todav's distributed systems as the wmeans to
achieve all of them. Table 1 lists some of the benefits currentiy being claimed for distributed proces-

3
sing systems in gurrent sales literature. Although some forms of distributed processing appear to offer

great promise as 3 possible means Lo make asignificapt advanges in many of the areas listed, the state-of-
the-art, particularly in system control software, is far from being able to deliver even a significant

proportion cf these benefits today.

1.2 Anproaghes Lo Improving System

Efforts to improve the performance of digital computer systems can address or be focused on a num-
ber of major levels or design issues within the overall computer structure. These levels are:

I LTS T —

1. Materials - the basic materials used in the construction of operating devices such as
transistora, integrated circuits, or other switching devices,

2. Devices - operating devices such as tranaistors, integrated circuits, junctions, etc.

3. Switching oircuits - design of circuits that provide fast and reliable logic operations.
4. Regioter-transfer - aasemblies duch as registers, buses, shift registers, adders, etc.

Se Systea architeoturs - algorithms for executing the basic funoctions such as arithmetic and
logic operationz, interrupt mechanisams, control of processor and memory states, etc.

6. Systea organization - the interconnection of major functional units such aa control, !
memory, 1/0, arithmetic/logic units, etc., and the rules governing the flow of data and 1
control sigials between these units. This level alsc oconsiders the implementation of mul- !

tiple, parallel paths for simultaneous operations and transfers.

7. Network organization - the nuwber, characteristics, and topclogy of the interconnection of
“oomplete® sasystems and the rules governing ths control and utilization of the resources

those ayatems provide.

8. System software - oontrol and support softwars for the effective management and utiliza-
tion of the hardware capabilities provided.
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From the very beginning of the computer era there has been activity at all of these levels and such work
continues today. (To place it into proper perspective, it should be noted that the research work carried
Sn under this project is focused primarily at the three highest 1levels, system organisation, network
organizaticn, and system software, with some work at level 5, systom archiiecture.)

1.3 Parallal

An important theme of computer systeam development work at levels 5-8, "asystem architeoturs,®
"asystem organization,® "network organization,® and "asystem software," has been parallel oroosasing.
Parallel processing has been implemented utilizing approaches focused primarily on the systea hardware or
the software as well as integrated systeme design.

Since the early days of ccmputing, a direction of research that has offervd high promise and
attracted much attention is "parallel computing.® Work in this area dates row the late 1950's which saw
the development of the PILOT system [LeinS8] at the National Bureau of Standards. The FILOT systea
consisted of "three independently operating computers that could work in cooperation "[Ensl7A]. (From
the information available, it appears that PILOT would be classified as a "loosely-coupled system"
todny.) It 1s interesting to note that the evolution of parallel "hardwarc® systems lead primarily to
the development of tightly-couplad systems such as the Burroughs B-825 and B-5000, the earliest examples
of the classical multiprocessor. Other development paths saw the introduction of specialized hardware
systeas such as SOLOMON and the ILLIAC 1V, examples of other forms of tightly-cuupled processors.

1.3.1 Systea Coupling

System coupling refers to the means by which twc or more computer systcms exchange information., It
refera to ooth the physical tranafer of such data as well &3 the manner in vhich the recipient of ths
data responds to its contents. These two aspects of system interoconnection are called "physical
coup! ing” and ®logical coupling,® and they are present in all multipie component systems whether the com-
ponents of interest are complete computers or some smmller ascembly.

The terms, "tight" and "loose"™ have been utilized tc describe the mode of operation of sach type of
coupling. (Some authors have utilized a third category "medium coupling® and related it to a range of
data transfer speeds; however, history has clearly shown that basing any characterizations of digital
computers on speed, size, or even cost is an incorrect approach.) The interconnection and interaction of
two computer systems can then be described by specifying the nature of its physical voupling and the
nature of its logical coupling. It is important to point out ths’ all four combinations of these charac-
teriatics are possible and that they all have been obsarved in iaplemented systems,

1.3.1.1 Iightly-Coupled Compuker Syatema

Durang tha 1960's and 1970's, activities in the development of parallel computing, specifically
multiple computer systems, were focused primarily on the development of tightly-coupled aystess. These
tightiy-coupled systems took the form of classical multijprocessors (i.e., shared main memory) as well as
specialized computation systems such as vector and array processors. This tight physical coupling resul-
ted in a sharing of the directly executable address space ccamon to both processora. There was no means
by which the recipient of the data or information being transferred cculd -~efuse to physically accept it
--- it was already there in his address apace.

These early systems also usually implemented tight 1logical coupling. In thiz form of aystea
interaction, the recipient of a message is required to perform whatever service is specified therein.
With tight logical coupling, there is no indepsndence of decision allowed regarding the performancs of
the service or activity "requested.®™ The relationship between the sender and recipient is basically that
of mester-slave,

Although the concept of tightly-coupled multiprocessor systems appears to be a viable approach for
achieving almost unlimited improvements in performance (i.e,, increases in system throughput) with the
addition of more processors, such has not been the resulta obtained with inplesented systems. It is the
very nature of tight-coupling that results in limitations on the improvements achievable. Some of the
ways that these limitations have manifested Lhemsslves ars listed below.

1. The direct sharing of resources (memory and input/output primarily) often results in
access conflicts and delays in obtaining use of the shared resource.

2. User programming languages that support the effective utilization of tightly-coupled
systems have not been adequately developed. The programmer must still be directly
involved in job and task partitioning and the assignment of resources.

3. The development of "optimal®™ schedules for the utilization of the proceasora is very
difficult except in trivial or static situations. Also, the inability to maintain perfect
synchronication between all processors often invalidates an “optimal® schedule socon after
it has been prepared.

4, Any inefficiencies present in the operating system appear to be greatly exaggerated in a
tightly-coupled aystom.

There was also aignificant activity during these earlier periovda in the developmert
of nultiple computer systems characterized as "attached support procesaors (ASP).* These
systems were physically locsely-coupled; but, logically, they were tightly-coupled. The
earliest examples of this type of system organization were the use of attached processors
dedicated to input/output operations in large-scale batch processing systems. In the lat-
ter part of the 1970's, specialized vector and array processors as well as other special-
purpose units such aa fast Fourier transform units were being connscted to general ocow-
putational aystems and utilized as attached support processors. In any event, the
spacialized nature of the services provided by the attached processor sxcludes them from




consideration as possible approaches to providing general-purpose computational support
such as trat available from tightly-coupled general-purpose processors functioning as sul-
tiprocessors.

Tightly-coupled systems certainly do have a role to play in the total spectrum of
computer systems organization; however, their limitations should certainly be considersd.
It was the recognition of these limitations and the amall amount of prugress made in over-
coming them despite the expenditure of very large research efforts that contributed to the
decision to focus our current research program on loosely-coupled systems.

1.3.1.2 Lo .8ely-Coupled Systems

Lo- sely~coupied systems are multiple computer systems in which the individual processors both com-
municate physically and interact logically with one another at the "input/output level,® There is no
direct sharing of primary memory, although, there may be sharing of an on-line storage device such ar a
disk in the interconnecting input/output communicaticn path, The important characteristic of this Lype
of system organization gnd operation is that all data tranafer operations bLetween the two component
systems are performed as input/output operations. Tha unit of data transferred is whatever is permis-
sible on the partiocular input/output path being utilized; and, in order to complete a transfer, ‘he
active cooperation cf both processors is required (i.e., one might execute a READ operation in order td
accommodate or accept another's WRITE).

Probably the most important characteristic of loose logical coupling is that one processor does not
have the capability or authority to "force® anothar processor to do something. One processor can
"deliver® data to another; however, even if that data is a raquest (or a "demand®™) for & service to be
performed, the receiving proceasor, theoretically, has the full and autonomous rights to refuse to
execute that request. The reaction of processors to such requests for service is established by the
operating system rules of the receiving processor, not by the transmitter. This allows the recipient of
a request to take into consideration "local® conditions in waking the decision as tc what actions to
take. It is important to note that it is poasible for a system to be physically loosely-coupled but
logically tightly-coupled due to the rules embodied in the component operating systams, e.g., a permanent
master/slave relationship i1s defined. The other reverse condition, tight physical and loose logical
coupling, is also possible.

1.3.2 Computer Networks

A computer network can be characterized as a physically loosely-coupled, multiple-computer sjstem
in which the interconnecticn patha have been extended by the inclusion of data communicationa links,
Fundamentally there are no differences between the basic characteristiocs of nomputer network systems and
other loosely-coupled systems oiher than the data transfer rates normally provided. The transfer of data
between two nodas in the network still requires the active cooperation of both parties involved, but
there 18 no inherently required cooperation between the operation of the processors other than that which
they wish to provide.

1.3.3 Distributed Syscems

Although there is a large amount of confusion, and often controversy, over exactly what 1is a
®distributed sy stes,® it is generally accepted that a distributed system is a multiple computer network
designad with some unity of purpose in mind. The processors, databases, terminals, operatirg aysteas,
and other hardware and so’tware components included in the system have been interconnected for the accos-
plishment of an identifiadle, common goal. That goal may be the supplying of general-purpose computing
support, a collection of integrated applications such as corporate management, or eabedded computer sup~
port such as a real-time pirocess control systea,

This research program 1is concerned with a very specific subclass of all of the systems currently
being designated "diatributed.” The environment of interest here has been given the title "Fully
Distributed Proceasing System®™ or FDPS. Section 2 discusses the general characteristics of FDPS's.

2 INTRODOCTION IQ FULLI RISTRIBNTED PROCESSING SINYENS

2.1 Motivation of the FRPS Conoept
A large nuabsr ci claims have been made as to the benefits that will be achieved with distributed

processing systems. As pointed out above, this list is very similar to the lists of “benefits to be
schieved® with several eariier computer technologies, However, ecach of thoae earlier solutions failed to
deliver its promises for varicus reasons. It was an examination of the "weaknesses" in the earlier
concepts and the development of a set of principles to overocome these obstacles that led to the concept
of "Fully Distributed Procesaing Systems® or as it ia commonly referred to "FDPS.*

The principle of para.lel (i.e., simultaneous and/or concurren:) operation of a multiplicity of
resources continues to be perhaps the most important goal. The unique feature of FDPS‘s is the means or
environment in which this is atteapted. A distributed system ahouvld exhibit a continual increase in per-
formance as additionel processing components are added. The users should observe ahorter response times
as well as an increase in total system throughput. 1Ia addition, the utilization of system resources
should be higher as a result of the system's ability to perform automatic load balancing, servicing a
large quantity and variety of user work requests. A distributed systen should also permit the sharing of
dats between cooperating users and the making available of specialized resources found only on certain
processors, In genernl, a distributed system should provide more facilities and a wider variety of ser-
vices than those that can be offered by any system composed of a single proceasor [Hopp79]. Another
important and highly desiradle feature of such a system is extensibility. Extensibility might be
realized in several different ways. The systeam might surport modular and inoremental growth permitting
flexibility in its configuration, or it wight suppori expansion in capacity, adding new functions, cr
both. Finally, it might provide for incremsntal replacement and/or upgrading of systes components,
either hardware or software., The executive control of the system is obviously the key to attaining thess
goals, and it is in the area of executive control that soxe of the moat significant deficiencies of ear-

lier systems have been found,
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Toe major weaknesses in the executive uontrol of earlier forms of parallel systess appear to result
from an excesaive degree of centralizatior of control functions reflscted in centrsliszed decision making
or ocentralized wmintenance of systes status information or both of these. The net affect of these
aspects of control wvas to produce a rather tightly-coupled environment in which rescuraes ofter were idle
waiting for work assignoents and the failure of one major component oftem resulted in ocatastiophic and
total system failure. The solution to this problem is to force a condition of very loose coupling on
both the logical/oontrol decision-making process as well as the physicai linkages of ooaponenta, This
property of “Tuniversal® looss ocoupling results in an environment in which the various compcaents are
required to operate in an autonomous sanpe:.

If a single design principle nust be 1dentified as the wost important or central thems of FDPS
design, it ia component autonomy or "cooperative autonomy” as desoribed delow. All of the other feaiures
of the definition of Fully Distributed Processing Systems given below have resulted from determining what
is required to support and utilize the autonomous operation of the very loosely-coupled physical and
logical resources.

2.2 Ins Datinition of an Fups
Pully Distributed Processing Systems (FDPS) were first definsd by Enslow in 1976 [Ensl78] although

the deaignation ®fully® was not added until 1978 when it became necessary to clearly diatinguish thia
class of distributed procesaing from the many others being presented. An FDPS is distinguished by the
following characteristics:

1. Multinlicity of resguroas: an FDPS ia composed of a multiplicity of general-purpose
resourcea (e.g., hardware and software processors that can be freely assigned on a short-
ters basis to various system tasks as requirad; shared data bases, etc.).

2. Componsnt Antaroopnaction: the active componenic in the FDPS are physically interconnec-
ted by a communications network(s) that utilizes two-party, cooperative protocols to
control the physical transfer of data (i.e., loose physical coupling).

3. Uniky of conkrol: the executive control of an FDPS must define and support a unified set
of polinies (i.e., rules) governing tha operation and utilization or control of all
physical and logical resources.

4. Syatem LCADSOArRncY: users must be able to request services by generic names, not being
aware of their physical location or even the fact that there may be muitiple copies of thu
regources vresent. (System transparency is designed to aid rather than 1inhibit and,
therefore, can be overridden. A user who is concerned about the performance of a
particular application can provide system specific information in order to aid 4in the
formulation of managexent control deciaions.)

5. Compopant AULODOMY: both the logical and phyasical components of an FDPS should interact
in a manner described as “"cooperative avionomy™ [Clar80, Ensl78]). This weans that the
corporents operate in an autonomous fashion requiring cooperation among processes for the
exchauge of information as well as for the provision of services. In a cooperatively
autonomous control environment, the components are afforded the ability to refuse requests
for servigs, whether they be execution of a process or the use of a file. This could
result in anarchy except for the fact that all components adhere tv a common set of system
utilization and management policies expressed by the philosophy of the executive control.

2.2.1 Discussion of the Definitional Criteria
In order for a system to qualify as being fully distributed it must possess all five of the
oriteria presented in this definition.

2.2.1.1 Multiple Reagurces and Iheir

The requirement for resource multiplicity concerns .ns assignable resourcea that a aystem providea.
Therefcre, the type of resources requiring replication depends on the purpose of a system. For exsmple,
& distributed system designed to perform real-time computing for air traffic control requires a mul-
tiplicity of special-purposs air traffic control processors and display terminals. It is not required
that replicated resources be exactly homogenous, however, they must be capable of providing the same ser-
vices.

In addition to this multiplicity, 1t ia also required that the aystem resourcea be dynamically
reconfigurable to respond to a component failure(s). This reconfiguration muat occur within a "short®
period of time sc #8 to maintain the functional capabilities of the overall system without affecting the
operation of components not directly involved, Under normal operation the system must te able to
dynamically assign its tasks to components distributed throughout the systea.

The extent to which resources are replicated can vary from those systeas where none are replicated
(pot a fully distributed system) to systems where all assignable resources are replicated., In addition,
the number of copies of a partiocular resource can very deponding on the system and type of rasource, in
general, the greater the degree of replication, particularly of resources in high demand, the greater the
potentlal for attaining benefits such as increased performance (response time and throughput),
availability, reliability, and flexibility [Ens178].
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X 2.2.1.2 Compopent Intsrgonnsotion and Commnnication
The extent of physical distribution of resources in distributed systeas can vary from the length of

connecticn between ccmponents on a aingle integrated ohip to the distance between two cuvmputors connected
through an international network. In addition, interconnection organizations can vary from a single bus
to a complex mesh network. Since a component in a distributed system communicates with other components
through its own logioal process, all physical and logical resources can be thought of as processes, and
interactions between resources can be referred to as interprocess communication [Davi79]. For examp_e,
an application program interacting with processors and data files is acoomplished through ocommunication
between logical processes.

Both the physical and logical ocoupling of the systex components are characterized as "extremely
loose." "Gated™ or "master-slave® control of physical transfer i1s not allowed. Communication, i.e., the
physical transfer of messages, is accomplished by the active cooperation of btoth the sender and addres-
3ees. The primary requirement of the intercommunication subr. stex 1is that it support a two-party

. cooparative protocol., This is essential to enable the system's resources to exist 1in cooperative
autonomy at the physical level,

The advantsges of using a measage-based (loosely-coupled) communication system with a two-party
cooperative protocol include reliability, availability, and extensibility. The disadvantage is the k
additional overhead of message procesaing incurred to support this method of communication. There are a
variety of interconnection organizations and communication techniques that can be wused to support a
message-based system with a two-party cooperative protccol.

In a fully distributed data processing system, individual processors will each have thair own local
operating systems, which may or may not be uaique, that cont»u} local resources, As a result, control is
distribtuted throughout the system to comporents that operate autonomously. However, to gain the benefits
of distributed procesaing it is required that the autonomous components of the system cooperate with each
other to achieve the overall objectives of the system. To insur~ thias, the concept of a high-level
operating system was created to integrate and unify, at least conceptually, the decentralized control of
the system.

- 2,2.1.3 Unitv of Control )

A high-level operating system is essential to successfully implementing a distribui.d prccessing
aystes. This operating system is not a centralized block of code with atrong hierarchical contrel over
the system, but rather it is a well-defined set of pulicies governing *the integrated operation of the
system as a whcle. To insure reliable e.id flexible operation of the syatem, these policies should be
implemented with minimal binding to any of the system's components [Ensal78].

What policies are required aad how they should be implemeuted dcpends greatly on the syster. For
example, if it iz a general-purpose system supporting interactive users, then a command interpreter and a
user control language will be required to make the system's components compatible and transparent to the t
user, :

2,2.1.5% Irapaparency of Svatem Control

The high-level operating asystem also provides the user with his interface to the dist) ibuted
system. As a result, the user is accessing the system as a vhole rather than just a host computer in the
network. ©oa

In order to increase the effectiveness of the distributed system, the actual system is» made
transparent, and the user is presented with a virtual machine and a simplified command language to access
it. The user uses this language to request services by name and does not have to specify the specific
server to be used. Clearly, the same request might be assigned a different server dejending on the state
of the total system when the request is made. However, to make the system truly effsctive for all users, H

- knowledgeable individuals must be able to interact with the system more intimately, requesting specific
. servers or developing service routines to increase the efficiency or effectivanesa of the systea
] (Ens178].
] 2.2.1.5 Cooparative Autopnomy |
). Cooperative sutonomy has already been described at the physical interconnection level. It is also §
required *hat all resources be autonomous at the logical control level. That is, a resource must have . ’
1

full ocontrol of itself in determining which requests it will service and what future operations it will
perform, However, a resource must also cooperate with other resources by operating accnrding to the
policies of the high~level operating system. Cooperative autonomy is an essential prerequisite for
. systems to have fault tolerance ond high degrees of extensibility [Ensl78]. It ia perhaps th most
1 important as well as the most distinguishing characteristio of a rully distributed processing ayste..

2:2.2 Bffects on System Organization

Although the detailed design of the hardware and software required to implement an FDPS is atill in :
progress, it has been pcassible for some time to identify certain characteristics that these components k
nust have, One areu in which certain criteria already appear reasonably well defined is the nature of
the organization of the following system components:

= Hardware
- Systea control software
= Data bases

ne skt i i

It should be noted that a number of definitions and descriptions of distributed systems in gesparal are
based on the principle that one or mora of these components is phyaioally diatributed. (Some such
discussions add to this list a fourth component ——- "processing or function;®™ however, oonsidering the
diatribution of processing independent from the diatribution hardware is quite improper., Why distribute
the hardware if it will not have some function to perform; asimilarly, how ocan the processing be
distributed without a corresponding distribution of the hardware? That would be processing on a truly
"virtual machine.®)
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An important characteristic of an FOPS is that, in order to mest the definitional oriteria given
above while alac attempting t> provide as many as possible of the benefits listed in Table 1, all of the
three components listad above muat he phvaically diatributed and the degrea of distribution muat in ea>h
case exassd a reasonably well-defined threahold. A diagram illuatrating this requirement is shown in

‘Figure 1. %The various organisations of each component, identiriad anJ positioned along each axis, is not

meant to be an exhaustive list. These points are listed to better identify the relative location of the
three thresholds defining the volume of space ocoupied by FDPS's. (It might also be noted that it seeams
quite proper to chsracterize any system that 1s not in the "origin cube®™ us being "distributed® to aome
degree. )

2.2.3 Sows BExoluded Systems

Considerable work has been done on new system designs to achieve schsets of these benefits, but
very few systems have made asubatantial progress toward meeting all of the criteri-. Perhens the most
widely known of thesc is Arpanet; however, only the cosmunicution subsystem of that network qualifies in
this respect. Many other systems, some 0° which are discussed elsewhere in this magazine, have made sub-
stantial improvements in subsets of the areas of asystes performance; examples are the Honewsll
Experimental Distributed Processor, the Cm® system at Carnegie-Mellon University, Mininet at the Univeer-
sity of Waterloo and ICOPS at Brcun Univeraity. However, the number of systeams mislabeled as distributed
data processing systems far exceeds these.

Moat of the ocriteria ocontained within fthe definition are met by crossing a threshold on a
particular dimension. The definition is not a set of binary criteria, and better understanding of these
criteria and their thresholds can be obtained by considering some aystems that are excluded by the
definition.

It excludes, for exumple, distribution within a single mainframo. One writer has characterized the
architecture of sevaral of the modern processor systems that include independent 1/0 ochannels as
"incorporating distributed processors since (it) contains separate I/0 processors, arithmetio logic
processors and possibly diagnoatic processors."[Gild76]. Such a categorization has little utility and
has not found very wide acceptance. Obviously, there is a permanent binding of tasks to the various com~
ponents in this type of system organization.

A front-end processor that controls communication with a mainframe definitely does not consititute
the type of distributed system defined here. Although it may meet some of our criteria, it also 1isa
dedicated to one function and is not freely assignable.

Many instances of a master/slave relationship occur in both hardware and software ocontrol. The key
point is that the recipient of the inforration transferred, be it data or a conirol signal, cannot decide
whether or not to accept the tranafer and act upon it. When this concept is implemented in hardware, it
is often refarred to as gated transfer. In software control systems the master/slave relationship 1a
quite commonly encountered in multiple computer and basic multiprocessor operating systemas.

The continued decline in the price of hardware has made more and more attractive new multiple-
processor system organizations incorporating specialized functional units, such as vector multiplier, a
floating-point arithematic unit, or a fast Fourier transform unit. In the general concept of operation,
such dedicated function processing is only slightly different from a master/slave relationship. The
major difference is that the master/slave control relationship also excludes many hardware systeoms
containing multiple general-purpose processing units from our definition, What causes some of the
terminology confusion with these configurations is that these specialized services are often provided by
a general-purpose unit, such as a programsable microprogcessor. The functional unit may be "specialized®
by a microprogram, or it may be completely general but utilized in a dedicated funotional role, such as a
minicomputer to control input/output in a larger system. The distinguishing characteristic of this class
of excluded systems is the dedication of Lhe reagurce to a aingle or a fixed ast of funotigoa. It
operates in a master/slave mode, as far as the oontrol over its own activities is concerned. The
eriteria of both free asaignment and autonomy are violated.

There is wide agreemer* (ex.3pt perhaps among marketing and advertising people) that a single host
processor with a collection of remote terminals that simply collect and transmit data does not Jualify as
a distributed data processing system, even if the terminals are intelligent and do some editing and
formatting.

Even the presence of multiple hosts in a complex netwark interoonnection structure does not neces-
sarily make the system distributed. It may be distributed from the point of view of switching; dbut from
the point of view of overall operations and control, it usually ia centraligzed, Systems such as these do
not have the capability for dynamic reallocation or reassignment of taaks in the event of hardware
failure,

Intelligent terminals systems are most often presented as distributed processing systems in
advertising copy. However, the operation of a system with intelligent terminals or looal processors has
to be atudied carefully to determine to what extent the processing 1is actually distributed. Such a
system (several are commerciaily available) conaists of seversl terminals connected to a local prooeasor
that has secondary storage capabilities, such as disks or oaxcettes. It offers intelligent data-entry or
field-editing and similar functions executed in the local proceasor through the execution of a prograa
astored there. It has shared file access, but only to local files. It communicates with a asain proces-
sor, but to do so, the local processor must emulate a "C.mb" terminal in order to use normal protocols,
Finally, it is ocapable of rumote job entry. There is no indication of any distribution of the comtrol
function, for the distribution of work is fixed and a looal terminal cannot affect it.

T _ i adinraibinn ;M
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A terminal with a resident text editor, whether it is provided by hardware or software, is not an
example of a distributed data processing system., In order to meet the definition, their terminal must be
"smart® enough, first, to do some real work, and second, to recognize when it cannot acoomplich its
assigned work and to pass it on to another appropriate service unit. The simple off-loading of work to a
higher level when this level ia fully utilized 41s Just the beginning of the transition to fully
distributed processing. If the terminal coordinates several concurrent and simultaneous rezote jobs,
giving each a different type of' service at a different location, without human intervention, then it more
closely resembles a distributed system. The threshold is reoached when the lonal conirol system oan
decide whether work should be done locally or pessed on to the rest of the system, basing its decision on
an analysis of local workloads and capabilities. Distributed processing is definitely not equated with

merely “moving equipment to the periphery of a business system to capture and proceas data at the
source, "

Perhaps the intelligent terminal does have a role to play in the devulopment of distributed proces-
sing systema. It may facilitate a painless transition to more decentralized organizaticns for hardware
and data storage as well as control. This 1s accomplished by adding features to the local aystem and
making other modifications that ircrease the local functions, prior to establishing higher-level systea
connections 2nd a complete build-up of glcbal functions,

2.3 Hogh~ Qoerating Svatema
The high-level operating system is a key ingredient in the distributed data processing system. Ita
deaign must take into account several characteristics and problams.

The classical cesign for operating systems, as it has developed, assumes the availabilicy of a
large amount of system information, Although the completeness and validity of information about the work
being presented by the user is questionable, the operating systea is usually ussumed to have access to
complete and accurate information about the environment in which it is functioning, This is not the case
in a distributed data processing system; complete information about the system will never Le available.
The resources provide a survice, but they may ejther intentionally or unintentionally, shield information
from outside inspection.

In distributed systems, there will always be a time delay in the collection of information about
the status of the system components. The ramifications of these time delays are axtremely important. In
a conventional centralized processor, the operating system can request astatus informatioa, being aasured
that the interrogated component will not change state while awaiting a decision based on that statuo
information, since only the single operating systew asking the question may give o mmands. In a
distributed data processing system, the time lags that occur can become significant; as a rasult, inac-
curate (badly out-of-date) information can be tranamitted because the autonomous component ,.oceeds along
its owa path. If you have ever worked with input/output device handlers, you surely have wondered
whether or not the information that has been obtained is sccurate, For distributed data processing
systems, it will be essential to rzise the degree of puranoia of the system designer to a much higher
level than for oentralized systems. The aystem must be designed to work even with srronecus or inac-
curate status information.

A further complication with regard to system information available ia the possibility of variations
in the information presented to different system controllers. Theae variationa may be a result both of
time delays and of differences in the shielding of information from different controllers. As LelLann has
observed, “This ahsence of wuniqueness, both in time and in space, has very important
consequences. "[LeLa77].

2.0 ganaral Contral Problems

High-level operating systems as described here are highly nonhierarchical --~ that is, they are
single-level axd have no internal master/slave relationships. This characteristic, nombined with com-
ponent autonomy, greatly exacerbates the control problems. Even if autonomous multiple components are
cooperating, the probability of siaultaneous oconflicting actions is much higher than in hierarchiocal
systems. Also, synchronizing the actions of the various controllers in the system is much more
diffioult, because of the presence of appreciable time-lags. Finally, the p.oblam of deadlocks or
infinite cycles within the system 1s quite different from that associated with other systema. Some
proposals call for an umpire (an outside third party) to solve this problem; however, such an umpire

would have to be tranaient, since the presence of a permanent umpire would denote an unacceptable degree
of hierarchical control.

From the operatinz characteristics of the distributed processing system, someé conclusions can be
drawn about the nature of system comsmunication. The second criterion of our definition requires a
message~type protocol for all transfers, both physical ani logical, both in interprocess communications
and interprocessor communications, There must be no global variables and thers must be no tunneling

across system components. All paramete.s muat be passed across well-defined and rigidly enforced inter-
faces,

Much of the work done on communication in uniprocessor and multiprocessor enviionments is
applicable, but extensions to the solutions found there are definitely rejquired to cope with the
autonomous nature of the system components in the distributed system.

The user must communicate with the asystem by directive containing service names only. Our
criterion of system transparency makes unnecessary and perhaps imposaible to the user designation of the
system component offering a desired service. However, this requirement introduces new problems of system
failure und user error detection, since no one processor can eatablish whether the service requested san
be provided anywhere in the system, or even whether it is legal.

Toas .




Resource management in a diatributed processing aystea is a rultidimensional job. Thus far, very
! little work has been done on the aspeata of resource management the: apply specifically to distributed
procesaing systems. However, low-level funotiona are quite similar to those parformyd on uniprocessors;
they include physical resource allocation, and management of those facilities required by a procesa after
it has been scheduled on a particular system component, Before that can be done, however, the required
resources may have to be assemb.ed at one location, or linkage mechanisms established so that they can de
used remotely. The problems that have to be addressed {n that process are locating the resources,
! determining which components are suitable, and determining the beat way to move the resources to the
selected location. At an even higher ievel is the scheduling prob)ea, determining wvhen a functicn should
be initiated or terminated.

Any asystem exhibitinc wmunolithic, autcnomous control presents completely new problems in system
scheduling. A request for service in a nonhierarchical system might well vesult in an inj*‘al denial of
that service by all physical resources, In tkat instance, the requesting entity wmight initiate an
evaluation of relalive priorities between the new request and currently executing tasks, followed nerhwps
by bidding (priority adjustments) and preemption. The efficient execution of this procedure is one of
the most important functions of the high-leval operating syatem.

} When all of these problems and thelr posaible solutions are compared to similas problema and

; solutions encountered in uniprocessor systems, the major f{actor exacerbating the diatributed systea

control problem is seen as communication within the distributed data proocessing system, which is asynch-

L ronous with reapeact to the detailed sxeoution of the funotions, and which exhibits time-lags in addition

. to the communication processing time itself. Uniproceasors cope with many of the probleas with

: ' semaphores, flags, lockout gates, or timeouts. Tu attempt to do this in a reasonably complex distributed

system requires too much time, in Lhe sense that such praciices greatly reduce the throughput rate of the

system., BPBear in mind that transit tiaze for signals transmitting the semaphores is .n the order of 100 )
milliseconds. In addition to the lowering of performance, the reliabdility and the robustnesa of wost of _,
the uniprocessor solutions are in doubt, since a system operation such «s TEST-and-SET cannot be

replicated as a single indivisidle mechine-level instruction that can be executed immediately ou the next

machine cyole,

The problem of time is furthe:r complicated by the fact that most of the procedures, such sa voting
and scftware synchroniration, which have been presented as solutions to the difficulties introduced Ly
b transit time, require even more processing by avery component in the aystem.

Diatributed Syatemd

Four aspects of distributed processing aystema have a significant impact on the goals of a language

design effcrt. Firat, data ia stored throughout the system in a distribution which is in some sense

‘ natural (for example, data may be stored where it is generated or i% may be stored where it 1s easily
acceasible to those who use it most frequently). Second, it may be infeasible to move data from node to

node for procesaing. Third, a single application may need to access data that is stored or a number of

different nodes, Fourih, a prograzmer should not need knowledge of where data is stored in order to -

access it.

' 2.5 Erograming Languagea for

It should be noted that fully distributed processing does not necessarily require new programming !
languages, much less new models oa which to base programming languages. Any program can conceivably be
run on a distributed system; however, when a program -neds to aciess data on multiple nodus, a »single
thread of execution is ualikely to be executed efficiently. Furtheruore, even languages with parallel
execution features are not adequate in a fully distributed environment. The key 1asue is that moat i
programming languages hive not been designed to allow a programmer to provide information about the
nature of program execution or to describe the apprupriate structural units of the program needed by ar
operating system in order to make effective allocation and scheduling decisions in zuch an environment.
Thus, a major goal is to cesign languagc features that will elicit information anc prozide struotural

- units which will simplify allocation and scheduling decisiuna, Our other major goal ia that in doing ao, ?
the languare should present a aataral and helpful framework for the description of a large claas of K
programs,

The moat important azpect of our initial des:.ign work is the wodel of oomputation on which our
language wiil be bused. In order to explain the mativations for our computatinnal model, we need to take
a closer look at Tully diutributed zystems. Conoceptually, & fully distributed systea consists o a num-
ber of indevendent machines (where a 'machine' oay denots one or more processors) with communication
links between them. Each machine haz a procossing capadbility, a stocage capability and a message handl-
ing capability. Furthermore, erck machine functions with a large degree of autonomy (the ayatem as a
whole may make requesta of the individual machines but has no control over how these requests are oarried
out) and there is no meaory shared between the machines.
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In order to achievn our deaign goals, our ccmputational model mimics the logical structure of a
fully distributed syates. ln this model, a prograx jonsists of a numbet of exeoution modules (whioh oan
can even be thought of as irdividusl programs) and a network degcription. In other words, a prograsm is a
netwvork of execution modules. The execution modules are independent and contain local variable 5
declarations (there is no shared memory), port declaiations and executable code. (Porta are used to com= }
nunicate with other execution modules and parmenent stcrage facilities.) Port to port oconnecticns, port j
to permanent atorage connectiona and the execution of the excoution modulus are controlled by the network 1
description. Thus, the execution modules (bLecause they resemble the maohines of a fully diatributed
system) are structural units which will siaplify allocation and scheduling decisions. On the other hand, :
the network desoription contetins inforuatiion which will enable an effactive allocation and scheduliag of }
these units. )

Two aspects of our nmodel should be helpful in the writing, debugging and reading of programs.
Flist, because exscution modul.es are independent (sharing only coumunication links and a ocommon network
deacription), they may be developed, tested and urderstnod separately. Second, because xll of the
control and network communication specifications are contained within it, the network description




provides a meaningful abstract view of the program as a whois, This control and communication abatrac-
tion should contribute significantly to the understandability of distributed programs and perhaps even to
programs ‘ritten for existing yystem organizatiuns (not maeting our ariteria for 'fully' diatributed).

2.5.1 Research lssues in 'Distrlbuted' Language Design

Communication primitives in languages for distributed computing are one of the moat important
issuea that should be addresjed by the participants at the workshcp. The most obvious alternatives
includo message-based communication and call-based communication (for example, the rendezvous 1in Ada).
However, the potential for the notwork desaription presented above to be an active program un'‘t ovena up
new possibilities, It could function as a communication controller for its execution modules, providing
any hybrid ocommunication primitives deaired by & “rogrammer. The utility of such an approach requires
further cxamination. Due tc sur interest in very loosely coupled systems, messages are the most 1likely
candidate for our language currently being developed. However, for systems where loose coupling is not a
dominant oonaideration, use of communication primitives implemented by a network controller might prove
quite useful.

Another important issue raisnd by the model of programs presented above is how distributed progiams
are to be desaribed and controlled. A program might quite reasonably be composed of execution modulesa
compiled and stored at different nodes in a netwok, conceivably composed ¢f heterogeneous proocessors, end
perhaps even written in different languages. These questions lead into a number of subproblems: ocon-
ventions for naming files throughout a distributed system, interactions botween programming languages and
command languages (note that our network desoriptions fall somewhere between the traditional roles for
theae two languages), and primitives needed by a programmer for the control and coordination of mul- 4
tiprocess execution.

3 CONCLUSIONS

The concepts of distributed data processing ¢learly hold a great deal of pronmise for solving many 3
of the problems an.i limitations currently faced by system designers. It is important, however, to make a
oritical analysis of the operaticnul characteristics of any system that is addressing those issues. This
papsr has reported on st effort --- The Georgia Inatitute of Technology Research Prugram in Fully
Distrilbuted Procearing Systenms.
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! ) THE_EFFRCT OF INCREASINGLY MORE COMPLIX AIRCRAFT AND AVIONICS
ON THE METHOD OF SYSTEM DESION
J.T. MARTIN

) FERRANTI COMPUTER SYSTEMS LIMITED
- - Western Rcad, Brackmnell, Berkshire, England.

SUMMARY

This paper describes the evolution of Airoraft and their asacoiated *Avionica', The evolutionary progress
. is considered as starting from a simple low speed Alrcraft with rudimentary flight instruments and sighting
! system, through the intaroconnection of some of thesc aystems and progreasing to the recent Avionic Systems
with Centraliszed Digital Computing.

The paper shows how the changes in aircraft systems, from the simple analog ‘onnection of a few ayatems,
through the analog asensor - interface box -~ centralized digital system, to the sensor producing digital
outputs - interface box - centralized digital system, have produced comparatively small changes in the
methodology used for the deaign of thess systems.

T e g wer s

The move to systems ocontaining distributed procdsaing interconneocted by digital highways 1s shown to be
revolutinsnary rather than evolutionary and to require a new approach to the Systeam Design problem so as to
reap the maximum udvantage trom the avajilable computing ocapability,

—m— -

1. INTRODUCTIWN

The firat airoraft used in war were seen not as fighting vehiclea but as information gatherers, eapecially
for the artillery, indeed the ability of the airoraft to fight was sncrned by the Generals who controlled
them and, in the beginning, ignored by those who designed them. The main pre-ooccupation being the
production of as stadble z platform as posaible.

Asrial warfarc atarted in two ways. For air to air attack the standard service revolver was used and for
sir to surfuce attack standard arsy grenades were simply thrown from the cockpit. No attack avionias were
involved, the sighting systems being the barrel of the hand held revolver or the pilot's impresalon of his
positicn over the target. It is from these rudimentary beginnings, less than 70 years ago, that today's
highly sophisticated fighting airoraft have evolved., Today we have aircraft specifically designed for
elther air to air or air to surface attack, aircraft where the cost of the attack avionica approaches that
of the airframe itself and on which the attack avionics seesks to integrate information from most of the
available airoraft asystoms and sensors.

The following aecticns of this paper will deacribe this evolution in slightly more detail and show how the
System Design process has, up to now, been modified only slightly in order to cope with the increased
complexity.

2. THR EVOLUTION OF AIR TO AIR ATTACK

It is hardly surprising that pilots engaging in air to air combat utilising aervice revolvers or rifles
rarely succeeded in shonting down their targets. The frustration engendered Ly this failure of thair air to
air weapon system together with a sudden realization by thoae in charge that .f aircraft were useful to
them in an observation role then they must be equally as useful to the opposition, and shnuld perhapa Us
deterred, led to the requirement. for a more effective weapon system,

The more effective weapon system become machine guns either lcosely mountad on the aircrai” and aimad by an
observer using a sight fixed to the gun or a machine gun rigldly mountsd on the aircraft and aimed oy the
pllot aiming the whole aircraft, and hence the gun, utilizing a simple ring and bead aight mountes on the
aircraft,

Y S

Although a spectacular increass in success rate was achieved by these methods it was clear that further
improvements could be made. However, this was how the 1914-9918 air war wus ©: aducced,

The simple ring and bead sight suffered form two main disadvantagas, tirstly the parallax et.'ort inherent in
attempting to track a target with a mechaniocal sight some inches from the eyes oreated large errors,
secondly firing at a moving target, the opposing airoraft, memna that the S :llets aust be fired not at the
target but at the position that the target will be at when the bullet: a-"i 3,

These sources of error were reduced by the use of the gratical sight which both removed the source of
parallex error and allowed some degree of 'aiming off' although the accur oy of this latter proceas depended
tc a high degree on the quality of the pilot's estimation of the speed and attitude of the target in
relationship to his own aircraft,

The firat real sign of avionics in gunsights did not appear until the experimentsl Gyroscopic Lead Computing
Optiocal Gunsight appeared in 1940, entering aervice as the GGS Mk. 2 in 1942, This sight used a gyrosocopio
sensing unit and enabled an automatic computation of the required lead angle based on a meusure o the rate
of turn of the sight line (measured by the gyroscope), the range (estimated from the pilot's appreciation of
the target size and the velocity of the bullet or shell (fed into the gunsight as a design parameter).
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The ‘avionics' assocolated with the above gunsight waa in fact amasingly simple, consisting of a gyroscope to
snable the computation of lead angle and non-linear variable resistors to allow the pilet to enter range and
thus the gravity fall to be expected to be experienced by the bullets or shells during their trajectory.
However, for the first (ine an airoraft ssnsor, albeit one specially added into the gunsight, was baing us<d
in the air to air weapon system.

Rangs of target was still being entered 1ato the system from a subjective appreciation supplisd by the
pilot. In 1949 this requirement 5n the pilot to provide such information was removed by the advent of radar
ranging systess whereby a target range supplied by radar returns oould be inserted directly into the
gunsight.,

From this point systems quiokly emarged wheredby, as the target was held and tracked on the radar and the
necessary adjustmenta for lead angel compensation and relative position of target and attaocking aircraft
were oarried out by eleotronio ocomputation, the pilot nc longer had to be able to ses his target in order to
engage it.

At this stage the air to air attaok system could be oonaidarad to have been produced. Aircraft sensors
supplying inforsation regarding the motion of the attacking airoraft ooupled with the sensor information
(from the redar) on the target, produce for a pilot, who may not even be able to see his intended target, the
necessary ouss to enable his attack to be promulgated.

3. The Evolution of Air to Surface Attack

In the same way that the hand held revolver proved fairly ineffective for air to air attack, the hand thrown
bomb also proved to be somewhat less than perfect. Thers were two main reasons for this lack of
effectivensas, firstly it was somewnat unlikely that the pilot or observer would acourately hit the
intended target, having nothing better to calculate a release point with than his judgement of the track of
the aircraft and an imprez:ion of the drop characteristic of the weapon. Secondly the fact that a bomd that
is capable of being picked up and thrown from the cockpit ia somewhat limited in size and thus effectivenesa
upon reaching the ground.

The second of these problems was comparatively easy to solve - larger bomba attached to the aircraft which
fall off upon the applioation of some form of release comwand,

The first problem, that of producing the release pulse at the correct time i{s not quite so simple, The path
followed by the bomb as it falla will basically depend on the flight characteristic of the weapon, the
velooity of the aircraft (and hence initial velooity of the weapon) at the point cf release and the distanoe
that the weapon must fall (the height of the aircraft at release). Thus ocours the same type of progression
as for gunsights, we move from the simple mechanical sights of early aircraft to the complex releass point
oalculating computers whish are supplied with target position (froam radar or laser seeker), alrcraft height
(from altimeter), ground speed, air speed and airoraft track and heading (from air data computers).

4. OTHER SYSTEMS

So far only the oomparatively simple problem of gunsights and bombaights have been considered and, although
these ars undeniadbly important parts of any aircraft weapon aystems, it is evidently appurent that there is
no point in having these systems if the airoraft cannot be positicned in the right place at the right time
30 as to be able to use them. It is thus worthwhile to consider some of the other major system components
required.

§,1 Navigation System

Early airoraft had very limited ranges and speeds. In the oase of the artillery observation airoraft {t
oould often see its own trenchea and navigated by flying from one visual landmark to another, landing in a
oconvenient fleld if it did lose its way.

With increasing range, apeed and landing weight it became necessary to be able to navigate to a target or
area and baock to a somewhat more prepared landing strip than the nearest convenisnt field. Initially it was
possible to achieve this objective by oontinuing to use the visual landmark with perhaps a good idea of in
whioch direction the sun should bte. Two factors spoilt this happy state of affaira. PFirstly the improved
performance and gunsights of the fighter aircraft deoreed that the bomber should fly at night and ascondly
somebody decided that flying should not be solely a fair weather ocoupation.

Thus began ths two main methoda of airoraft navigation - radio aids and airoraft pnaition dead reckoning.

Radio aida for navigation have progressed from the simple bearing from a controller enabling a returning
fighter to be vectored back to its base, through the redioc highways produced for bombers by such systems ac
Knickebein, Wotan and Oboe to the sophisticated position fixes supplied dy asystema using Omega and
eventually Navstar. Amongat these radic aids can also be counted the ground mapping redars introduced in
the 1939-45 war and progressively improved sver 3since.

The dead reckoning aids include such aystems as integrating air data computers and of course Inertial
¥avigation systems whoas accuracies inorease almost yearly.

4.2 Communication Systeas

Communicationa both between airoraft and the ground and between aircraft have progressed somevhat in the
last 65 or sc years. We have moved from the artillery aircraft's different coloured Very lights and the
pilot's arm indiocating a potential target to another pilot, through the radio with channels A to B, to the
complex array of VHF, UH and HF channels availabel to a modern pilot and his crew.




wm-u-__—.w s - — e e

'
'

!
f

It is now possible for the pilot or orew of one airoraft to aeleot a target for attack and for that target to
be automatioally indicated to the pilot or orew of another aircraft via a digital data link completely
automatioally and without a word having been spoken. (As en aside it is also interesting to note that with
the advent of JTIDS we have reverted to the line of sight range of the original Very signal, but at least the
information reate has been inoreased).

4.3 Piiot's Alds

From the above very brief summary of the advances made in airoraft weapon aud supporting aystems it ocan
easilv be seen that the work load of the pilot or crew of the wodern airaraft has inoreased enormously over
that enjoyed by his historioal counterpart. If we add to thia list such systems as ESM, ECM, ECCM, the fact
that the airoraft is now flying faster, that the airoraft is probably the target of attacking missiles, that
it is firing missiles, that air engagements between airoraft may bo measured in periods of ssconds we ocan
very quiokly ses that the pilot or orew can do with any help that they can get.

Avionics can, if used intelligently, solve some of these problems which, to a certain extent, it hus helped
to create. Computers can be used to select that information which the pilot needs to know, cathode ray
tubes oan be used to display connected information together, or display the most important advisory notices
always in the same place anC not spread around the cockpit, multifunction keyboards can replace banka of
swi.tches (some of which always inevitably seemed to end up in argonically bad positions) and zlso provide
prompts as to the information or actions required from the pilot cr orew., It is at thias stage that System
Design should commence.

5. THE AVIONIC SYSTEM AND ITS DESIGN

As can be sean from the above descriptions of the evolution of avionics on aircraft the early sub-systems
gunsights, bombsights, navigation eto. did not form an overall system nor were they designed to do so. For
instance, in section 2 above, we saw how when rate of turm was required to be supplied to the QGS Mk. 2
gunsight the aircraft sensor, the gyroscope, was added to the gunsight producing a self contained unit.

The next step was for one sub-system to supply to another some partioular piece of information required by
the recipient sub-system, range from the radar being supplied to the gunsight, for instance.

Certainly up to this point System Design was concerned with snsuring that the various sub-systems on an
aircoraft worked satisfactorily but the total Avionics was still a very loosely ocoupled collection of
separate sub-systems rather than being designed as a total system. The interconnection of sub-systems was
tenuous to say the least and agreement about particular interfaces between two sub.systems could be, and
was, made without consideration being taken, or, to be fair, needing to be taken, of the other aircraft sub-
systems. As long as the synchro outputs from one sub-system matched the orientation of the inputs to the
other and the voltages produced and read al the ends of the conneation were agreed as to their meaning then
that was generally the end of the System Daaign task.

Thus wera produced systems such as that shown in extremely simplified form if figure 1. Information is
passed from one sub-system to another as required and as agread by the sending and receiving parties, If
transiormation of the date in terms of, for instance, units was required then it was generally carried out
as required for each sub-g: stem anrd many different transformetion of units might be oarried out for one
par.icular piece of data dependi.gi upon whioh sub-system it was being sent to or received by ~ the
tran: “crmation beilng ocwrried out .y *he svh-system least unable to cope with the additional work.

Turing the 1960s aiazital ocmputers became avajilable to oarry out some .f the computations necessary within
the respective sub-systemns, however, due to their size and cost thay ocould not effectively be added to any
sub-system that required to ocarry out a calouiation. This led to the concept of a small number of
centralized (from the system v:int of view) computers receiving data from sensora or sub-systems, carrying
out the n .:ssary ocalculaciuvns, and then feeding the results to the sub-systems that required the results.
Unfortunately as the interfaces to the ssnsors and sub-systems still tended to be analog In nature and as
the units used by one sub-system were unlikely to match those required by another a large part of the
centralized computer task was taken up by performing analog to digital and digital to esnalog conversions
and in performing digitally tha necessary furlongs per fortnight to knots unit conversions.

Figure 2 shows an, again extremely simplified, example of such a system. Unfortuiately the aystem deslgn
techniqueu used for the loosely coupled system described above still tended to be used for the piroduction of
this type of system. Sensors and sub-systems produced those parameters which were demanded of them and
demanded those parameters which they needed. Both sets of parameters being produced or demanded in the
format and units most easily handled by the sub-system, #ith the resultant interconnection tangle being
left to be sorted out by the centralized computer and its assooiated interface adapters. Thus the computer
ended up as being the go batween for any two potentially conneoting systems rether than the producer of a
unified total system.

The next stage in the evolution of avionics produced some sub-system or sensors containing digital inputas or
outputs instead of the older analog interfaces. This allowed some of the analog to digital and digital to
analog adaptors to be replaced by digital to digital adaptors, a not very encouraging step. The problea, of
course, was one of standardization. Every manufacturer or project had its own pet digital interface and
somehow it was always the incompatible ones that were trying to get together.

6. TOWARDS THE 'PERFECT' SYSTEM

During the 1970s two very important things happened. The digital computer became both small and affordable
and Mil. Std. 1553 was created and won a large measure of acceptability.
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Givin a digital interface enjoying widespread acceptance the interface adaptors could be put aside. More
importantly, given a digital bus, all sub-systems are automatically connected to all other sub-asystems
requiring intsrcommuniocation without having to worry about the complexity or cost of producing a apecial
link for an information path which although desirable is on the face of it not positively essential,

In the same way, given that most sub-systems and sensors can now be, and are now being, supplied with their
own digital computational facilities it is possible for these sub-systems to supply the information that io

required, in the format that is required, to the sub-systems that require it.

Suddenly information can be supplied, in the correct format, as and when required. Many of the old syatem
design oonstraints have been removed, reversion ocan be supplied not by the ¢ld back up sub-system approach
but by re-configuring the aystem data flow. The processiong power limitation of the old centralized
computer can be forgotten, but how do we design the system. It is no longer possible for two sub-system
designers to come to a gentleman's agresment about the data to be passed between them in terms of format and
repetition rate. Now every piece of data produced by one sub~system is potential information for every

other sub-system,

With a sytem of the type as shown in figure 3 the main limitation is the ability of the System Design
Methodology to cope with the design of the system not of the individual sub-systems to ocpe with their

tasks.

7.  CONCLUSION

It is now possible, perhaps for the first time ever, to fully integrate an Avionic system and to provide a
means whersby all the necesasary, rather than essential, information paths can be provided,

We saw, in the example of the gunsight, for instance, how in the past sub-systems have been oconnected
together 30 as to provide only the essential information required within the sub-asystem but in isolation to
the remainder of the total system. ZXEven with the advent of the centralised computer, whether connected to
the remainder of the system by analog converters or discrete digital links, the total system has tended to
be made up of a number of aub-systems with the computer acting as the interface device between sub-systems
and serving the needs of connected sub-systems rather than providing an overall integrated syatem,

Throughout this period the task of system design has been that of producing compatibl: interfacea between
one sub-system and another and attempting to produce, with these ocollections of sub-systesms, a final
product that approximates to the original requirements of the customer and intentions of the designer.
Given the facts of both distributed computing and sub-system interconnected by a common highway, this
rather simplistic (although often far from simple) approach to system design can no longer cope with the

problam to be handled.

To reap the advantages that can be gained from a system built using todays available technology requires
that the system design task must be commenced from the viewpoint of the customer's requirement and then
broken down into the aub-systems required to produce the end result. It is no longer possible to arbitrarily
assign tasks to sub-systems without having considered the effect of the assigmment on the total system. The
methods used for system design must be able to oope with the task of designing the total system as a unit
rather than a collection of sub-systems, It is only in this way that full advantage ocan be taken of the
computing power that is notentially available in the modern avionics system.
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A TUTORIAL ON DISTRIBUTED PROCESSING
IN AIRCRAFT/AVIONICS APPLICATIONS

BERNARD A. ZEMPOLICH
DEPUTY TECHNOLOGY ADMINISTRATOR FOR COMMAND, CONTROL AND GUIDANCE
RESEARCH AND TECHNOLOGY GROUP
NAVAL AIR SYSTZMS COMMAND, WASHINGTON, D. C. 20361

SUMMARY

The purpose of this tutorial is to present an overview of the state-of-the-art in real-time distributed
processing as applied to aircraft/avionics. Definitions and concepts are presented starting with the

total ajrcraft as a real-time distributed computer-controlled system. The relationship of aircraft

mission and avionic system architectures is discussed. Overall system architectural considerations are
identificd and their impact upon a Real-Time Distributed Computer-Controlled System is detailed. A top-
down hierarchical, architectural structure is presented. This top-down structuring is described in terms
of the lugical functional decomposition of the system as follows: total aircraft/avionic system partition-
ing of aircraft/avionic subsystems, interconnect bus structure (network), system-wide processing architec-
ture, subsystems definition, and computer systems,

1.0 INTRODUCTION

By the early 1960s, operational needs in combination with the need for on-board equipment flexibility lead
to the introduction of general purpose, programmable digital computers into a variety of aircraft/avionic
systems, The programmability of these machines permitted rapid operational and technical changes to be
made through software modifications rather than through hardware changes. The advent of the integrated
circuit also hastened the introduction of general-purpose digital computers because of the weight and
volume savings that these electron devices had over other competing technologies. These "first generation
airborne computers” were termed "centralized"; that is, all Operational Flight Programs were cortained in
the memory of a single machine. Unfortunately, while computer hardware made great strides forward in the
state-of-the-art during this period in time, the associated software tools did not. Thus, while the uce
of digital computers allowed the introduction of many new operational capabilities, management also had

to 1ive with costly, highly complex, and in many instances, inefficient use of the computer as an opera-
tional resource due to the (then) lack of quality software development and support tools.

As the solid-state electronics technology matured, and its products applied to militarized computers, the
physical characteristics of the on-board computers decreased in value, which, in turn, led to the avail-
ability of a number of light-weight, lower cost computers. The availability of these computers led to
their incorporation (physically) into various on-board subsystems. Thus, the term "embedded computers"
came about. And eventually, these machines were connected together in what was subsequently termed a
"federation" of computer resources.

As time progressed, the introduction of general-purpose, programmable digital computers continued to
bring about quantum improvements in operational capabilities to military aircraft. Unfortunately, due
to the (then) lack of computer hardware standards, these machines were individually unique from both
hardvare and software support considerations. Furthermore, this situation was exacerbated by the fact
that the solid-state electronics industry continued to introduce microelectronic circuits with greater
densities, higher speed performance, and myriad circuit types which made obsolete almost overnight,
technology advancements which had not yet been fully operationally utilized in a military environment.

The continuation of proliferatior of hardware, the absence of suitable standards, and the ever-increasing
speed at which new solid-state electron devices were being invented and/or created and subsequently
manufactured, 1ed to the establishment by the late 1970s of standards for computer hardware and related
higher order languages. As a generalization, it can be stated that this is the technical management
situation which exists today in 1981.

As we entered the decade of the 1980s, there were many gquestions yet to be answered relative to computer
architecture and language standards. Specifically, it was postulated that the decade of the 1980s and
1990s would see the introduction of Real-Time Computer-Controlled, Aircraft/Avionic Distiributed Systems
containing several hundred microprocessors interconnected by various digital bus schemes. These micro-
processors would be embedded throughout the aircraft as computer resources which control the operation of
a highly fault-tolerant, reconfigurable, hierarchically structured 1ircraft/avionic system.

A major technical management challenge facing the avionics community today is how to transition from the
current inventory of analog "black boxes" to one in which by the 1990s the inventory will be approxi-
mately 90% digital in nature. The main reason why this is a major challenge to the avionics community

is that throughout this transition period, it is imperative to maintain hardware interchangeability and
not upset, nor negate, established hardware and software standards. Table 1 identifies the key technical
characteristics in aircraft/avionic equipments by time frames. The time period 1980 to 1990 itemizes
characteristics expected to be the foundation for future Aircraft/Avionic Real-Time, Distributed Computer-
Controlled Systems.
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TABLE 1
»
1940 -~ 60 1960 - 80 1980 - 2000
ANALOG CENTRAL DIGITAL DISTRIBUTED DIGITAL
o Mired programs ¢ Stored computer program ¢ Distributed hierarchizal
stored program
¢ Dedicated analog e Central processor(s)
processors ¢ Redundant central
, s Communication through processor(s)
: o Integration through I/0 integration and
i ! pilot displays central processor/stored o Distributed, dedicated
i program fur.tional processors
E e No redundancy
P ¢ Some degree of redundancy o Communication through a

o Limited fault tolerance bus network
o Some degree of fault-

: e No dynamic tolerance ¢ larg: scale use of multi-
reconfiguration path redundancy
capability e No dynamic reconfiguration
o Fault-tolerance and dynamic

capability
reconfiguration

e g 1

N o Discrete hardware
¢ o Use of MSI & LSI hardware
o VHSIC hardware

2.0 SYSTEM ARCHITECTURAL STRUCTURES

As the avionics community entered the decade of the 1980s, there was an absence of a generally accepted
system architectural approach to the design and development of on-board aircraft/avionics equipments and
systems. In the absence of a formal system architectural definition, a "Pseudo-Hierarchical Architectural
Structuring® is proposed (see Table 2), This concept is designated as "pseudo" solely because of the
current lack of “reduction to practice” (implementation) of such an approach. It should be noted,
however, that the top-down decomposition of the system architectural structure is real from an engineering
design viewpoint and does indeed lend itself to a logical, natural methodology for decomposition of a

l system into its constituent parts.

. ey

TABLE 2

1 SYSTEM PSEUDO-HIERARCHIAL
ARCHITECTURAL STRUCTURING

o Total aircraft/avionics system )
& Partitioning of ajrcraft/avionics subsystems
o Inter-connect bus structure

o System-wide processing architecture

# Subsystems definition

o Computer systems

The total aircraft/avionics system is presented as being at the top of the Pseudo-Hierarchial Architectural
Structuring as shown in Table 2. It is presented as the equivalent of the system mission for the aircraft.
The system mission is presented for definition purposes as being the operational functions performed by

the aircraft such as: fighter, attack, Anti-Submarine Warfare ?ASH), Airborne Early Warning (AEW), cargo
and/or passenger, or Electronic Warfare (EW)., It is the system mission which determines the types, capabil-
ities, functions, and performance of the various aircraft/avionic electrical and electronic equipment

on-board the aircraft.
2.1 PARTITIONING OF AIRCRAFT/AVIONICS SUBSYSTEMS

The on-board subsystems required for any given aircraft system mission can be partitioned into & number of
groups of equipments which perform a general functional purpose. For example, the Vehicle Greup of sub-
systems would contain such equipmants as the flight controls, pilets' displays, and the electrical
generators. The Core Avionics Group would contain the communications, navigation, and the computational :

resources. The Mission/Sensors Group would contain the specific radars, acoustic sensors, or the
is of course self-expianatory as t¢ its

electronic warfare hardware equipments. The Weapons Grou
contents. It should be noted that these four magor partitions or groups of subsystems are "glued"
together by the System Architecture, Integration, and Common Hardware considerations.

on ol s e
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For the foreseeable future, it would appear that the interconnect bus structure will continue to be based
upon the requirements of MIL-STD-1553. However, this statement is not meant to imply that the technology
of implementation will necessarily remain the same. It is logical to expect that as a minimum, a fiber-

optics bus will be fully implemented and operational by 1990. :

2.2 SYSTEM-WIDE PROCESSING ARCHITECTURAL ALTERNATIVES

Figure 1 is a "road map" of the various System-Wide Processing Architectural Alternatives available to
designers and developers of future aircraft/avionic systems. It would seem reasonable to assume that
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more and more the Distributed or Federated Control approaches will be used in future aircraft designs,

' while the Centralized Control approach would more 1ikely continue to appear in technology updates of

» current aircraft systems. For definitional purposes, System-Wide Processing Architectures are defined

by this author as consisting of all of the on-board embedded computer resources: hardware, software, and

firmware,
5 stated previously, there is an absence of formalized industry and government approaches to aircraft/

avionic system architectural considerations. Thus, the following definitions of various processing
architectures are provided as working definitions only. That is, they are possibly subject to .efinement

f and/or modification. The definitions of Centralized, Distributed, Federated, and Hierarchial System-Wide
: Processing Architectures are presented in Table 3 in terms of their key hardware and software
) ) characteristics.
! TABLE 3
t
f : SYSTEM-WIDE PROCESSING ARCHITECTURES CHARACTERISTICS
; : CENTRALIZED
f Hardware Characteristics Software Characteristics
: | o Powerful central computer (may use e Single complex executive resident in
{ multiprocessor or redundant computer) central unit ;
B 1
‘ o All communication through ceniral unit e Application programs cover all ;
b avionics system functions J
! o Other computers look like peripherals
b o Central unit provides all systems
£ control
! DISTRIBUTED 3
¢ High speed computer/computer bus e Low complexity local executives in
{ each computer i
: o Reconfiguration not difficult if: ]
; : Applications programs limited to local :
1. A1l computers have same i :
archi tecture functions in any other computer : %
2. Multipath comnunication with o No single source for system control o1
peripherals (system control distributed throughout Co
local executives) i
i
FEDERATED i
Hardware tailored to function Single executive resident in one unit {
Low data bus rate communication Application programs limited to local
bus treated 1ike peripheral functions in any one computer ]
) Reconfiguration difficult One unit provides general system
3 ] control :
- ‘ o Computers may have different architectures i
HIERARCHICAL f
o High speed computer/computer global bus o Global bus system looks distributed i
e Low speed local bus for control o Local bus systems look federated with j
3

global bus interface computer acting

o Computers heve same architecture but as executive
tailored capability :

® Reconfiguration not difficult :

Figures 2, 3, 4, and 5 provide diagrammatic representations of the four major System-Wide Processing
Architectures previously identified in Table 3. Based on the working definitions given in Tabie 3, .
architectural options available for consideration by military aircraft/avionic system designers are {
listed in Table 4 and are diagrammed in Figures 6 through 11. These options offer the aircraft/avionic i
system designers the latitude to maximize those characteristics which are of major importance to the

particular aircraft/avionic system application. 4

TABLE 4
SYSTEM ARCHITECTURAL OPTIONS APPLIED TO MILITARY NEEDS

Option 1: Full Functional Redundancy (Figure 6) '
| Option 2: Full Functional Redundancy Plus Dedicated Subsystems (Figure 7) 5
. Option 3: Maximum Physical Redundancy (Figure 8) ¥

Option 4: Full Functional Redundancy Within Local Group of Subsystems (Figure 3)

Option 5: Centralized (Figure 10)

Option 6: Multiprocessor %F1gure 1)
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2.3 STANDARDIZATION - ARCHITECTURE INTERACTION

»
Figure 12 is an attempt to visually demonstrate the inter-relationships between computer software and
hardware resources and the System Architecture, Integration, and Common Hardware requivements. It is
hoped that the need for simultaneous consideration of all of these factors by system designers can be

explicitly visualized from the structure of the matrix.

In Figure 12, the FOUNDATION for the entire system is shown as the horizontal bar ~ntitled “System
Architectures”. Being that it is a foundation, it cuts across each of the vertical bars which are meant
to convey the idea that the "Missions" are independent, separable, and unique to each operational mission
, need. Contained within this concept of the System Architecture as the foundation upon which all the
operational systems are built, is the premise that any item identified within the block has general

applicability to all military aircraft systems (when required).

The horizontal bars listed under "Common Functions" are used to indicate equipments or software which cut

: across various Missions, but are uniquely tailored to the particular operational application. For

! example, signal processors and their associated software programs are used in many Naval aircraft;

: . however, it is only for the Anti-Submarine Warfare {ASW) Mission that the processor and its associated

; software are tailored for the acoustic processing role. 1In like fashion, the aircraft displays may have

: some identical hardware and software used across all aircraft, but again, any one particular combination
of controls and displays is unique to each Mission application.

2.4 DISTRIBUTED EMBEDDED COMPUTATIONAL RESOURCES //)

A key indicator of the degree of distribution of embedded computational resources within an aircraft/
avionic system architecture is the total number of microprocessors used within the on-board equipments.
Shown in Table 5 are projected number counts for "futuristic" Airborne Early Warning (AEW) and an Aati-
Submarine Warfare (ASW) aircraft. The information contained ir this chart was prepared by a major
supplier of navy aircraft, and as such represents, in the author's opinion, a fairly realistic projection
of the quantities of microprocessors that will be used as on-board embedded computer resources with the
next generation of naval aircraft, Worthy of particular note is the fact that the count difference
between the two aircraft operational applications lies in the area of Mission Avionics rather than in the

Core or Vehicle Systems areas.

L e
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TABLE 5
TOTAL SYSTEM MICROPROCESSOR COUNT

AEW APPLICATION ASW
(137 Microprocessors) (141 Microprocessors) -

Mission Avionics - 24 Mission Avionics - 28

Core Aircraft Systems - 16 Core Aircraft Systems - 16

1 i Core Avionics - 97 Core Avionics - 97

§ Table 6 itemizes the number of reprogrammable and fixed program microprocessors projected for certain
[ types of functional avionic equipments. This chart was prepared by a firm currently engaged in providing
similar equipment for operational use. And again, as with the statement made relative to the information
contained in TaMMe 5, it reflects more than a reasonable degree c7 engineering certainty as to the i

.- validity of the estimates shown. ;
TACLE 6 ?
SELECTED AVIONICS SUBSYSTEMS MICROPROCESSOR COUNT

Number of Reprogrammable Number of Fixed Program ‘ j
Function Microprocessors Microprocessors Total ) i
Data System and Displays ; g
(Core Mission) 25 64 89 { ;
Core Sensors & Conditioning 16 26 a2 % g
Acoustic Signal Processing 8 12 20 ?
Radar Signal Processing 6 6 12 § §

Other ASW Sensors & Conditioning 9 26 35 i

TOTAL 64 ;;;— ;;g—

|

3.0 FUTURE TECHNOLOGY CONSIDERATIONS !
|

There are a number of considerations which must be taken into account relative to the transfer and

insertion of new technologies into future Real-Time Aircrart/Avionic Distributed Computer Control Systems.

First of all, the Real-Time, Computer-Controlled, Distributed System of the future will require that the %
system conceptual and definition phase of each future aircraft program consider the inter-relationships j
of factors such as: support/tools software, applications software, firmware, computer-aided design, :
test and manufacturing software, processing system architecture software, and simulation, test and

diagnostics sofiware.
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fecond}y. system designers and developers must take into consideration the technology directions listed
n Table 7.
TABLE 7
TECHNOLOGY DIRECTIONS

¢ Software function taken-over by firmware in near-term

® VHSIC chips take over software functions in the long-term

o Emergence of hardware macros as basic building blocks

o Signal processing as doninant thrust

e More "Modular" software

® New systems will be fault-tolerant, redundent, reconfigurable

o Emergence of the "Smart", reconfigurable memory system

e Greater thrust for extracting data from aircraft/avionic systems.
Lastly, the systems designers and developers must consider the items listed in Table 8. These items
represent the author's bect judgment as to the challenges to be faced by the management and engineering
staffs both in government and in industry involved in the system conception, definition, design, develop-
ment, test and evaluation, and subsequent logistic support of future Real-Time, Computer-Controliled
Distributed Systems for aircraft/avionic applications.

TABLE 8

CHALLENGES TO BE FACED

o Amount of embedding into the system architecture

e Systems engineers not computer specialist/engineers performing the design function

® Primary failures will be at the system level not at the component level

o Lack of economic leverage

o Rapidity of change in the microprocessor state-of-the-art

e Fixed function vs. programmable microprocessors

o Lack of precise definitions throughout the field.
4.0 CONCLUSION
If th.re is any one conclusion which can be reached in trying to understand the att-ibutes of Real-Time
Afrcroit/Avionic Distributed Computer Control Systems it would have to he, in the opinion of this author,
that system designers and developers can no longer build such systems from the "boitom-up", black box
approach. A partnership between the technical managers, the system designers, and the various technolo-
gists is required if future systems are to be developed ‘'ith minimum proliferation of the embedded

computer resources, minimum logistics for both the avionics hardware and the software, and maximum
availability in the operational environment.
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DISCUSSIONS
SESSION 1
REFERENCE NO. OF PAPER: I-1
DISCUSSOR'S NAME: Dr. von Issendorff
AUTHOR'S NAME: Enslow (Livesey, presenter)
COMMENT: You mentioned that there are no suitable programming languages for distributed systems so

far. Among others there are CSP and PLITS from Feldman or ADA. Could you please comment on why these
languages are not sufficient?

AUTHOR'S REPLY: Sufficient for what? These languages do, of course, allow us to write distributed or
concurrent programs, but this is only 10 percent of the problem. We need active programming
environments including program specification, design, verification and debug tools for distributed
systems (test tools, too). These problems are especially difficult in a distributed system. (This is
the opinion of the presenter, and not necessarily that of the author.)

e R

] _ REFERENCE NO. OF PAPER: I-1
' DISCUSSOR'S NAME: Erwin C. Gangl, WPAFB, Ohio
AUTHOR'S NAME: Enslow (Livesey) 1

COMMENT: In the application of distributed systems, flight safety concerns are reliability of hardware
and software performance and quaranteed real-time response. This can be obtained by maturing the
software through extensive use and correcting the bugs. We cannot use this approach in flight safety
systems since we have to have reliable software prior to first flight. Therefore, we have to
accomplish this through exhaustive testing. How can we get reliable software by testing since in
distributed systems it is impossible to predict an® exercise all possible states of the system?

G s

AUTHOR'S REPLY: This is also true for centralized systems and is not a special problem of fully
distributed processing systems. 1 do not know of any "magic" solutions, but rather see the continued
use of top-down design, verification, automatically generated test cases, extensive simulation and
perhaps new tools such as IPC control languaces. {This is the opinion of the presenter and not
necessarily tnat of the author.)

REFERENCE NO. OF PAPER: I-1
DISCUSSOR'S NAME: B, A. Zempolich

AUTHOR'S NAME: Enslow (Livesey)

1
COMMENT: Do you distinguish between ADA as a programming language and software development tools, such
as Hardware Description Languages? ]

AUTHOR'S REPLY: I'm not an ADA expeirt. However, the direction I see ADA going is that users of ADA
will subset it and that subset will look a lot like PASCAL. Another group of programmers will be
trained primarily in the use of tasking facilities. Other programmers will spend most of their time on
developing more advanced debugqing, testing, and specification tools to fit around ADA--the so-called
ADA znvironment. 1 expect the most exciting work to be done in the environment rather than language
development itself. We have enough programming languages. What is needed are the tools to enable
people to use them.

REFERENCE NO. OF PAPER: 1-1
DISCUSSOR'S NAME: Dr. van Keuk
AUTHOR'S NAME: Enslow (Livesey)

COMMENT: Would you say that it will remain to be sensible to think about distributed processing with-
out addressing a precise, 1imited, and well-analyzed case of application being in mind? The software
4 and hardware structure will often be dictated by the particular kind of application to a high degree.

AUTHOR'S REPLY: I think that both jobs are needed: (1) Basic research into abstract distribution
systems without the constraints of a particular application, and (2) applied research into the
performance and other special constraints of particular problems. Either will be much less useful
without the other. (This is the opinion of the presenter, not necessarily that of the author.)
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REFERENCE NO. OF PAPER: 1-3

DISCUSSOR'S NAME: G. Scotti, SELENIA

AUTHOR'S NAME: J, T. Martin

COMMENT: 1 feel that there are several other reasons to explain why the U.K, wrote the DS0018. Can
you please state the differences between 15538 and the 0018 Standard?

AUTHOR'S REPLY: The U.K. decided to produce Defence Standard 00-18 (Part 2) because 15538 was seen to
be 2f such great use in so many applications that it was felt that it should be possible to specify the
. bus using a U.K., standard rather than by keep referring to a U.S. standard. The U.K. Defence Standard
) 00-18 (Part 2) 1s absolutely technically {dentical to MIL-STD-15538. The differences in format and
language used in Def., Stan. 0U0-I0 (Part 27 come about purely and simply because the U.K. Authority for
Defence Standards has certain rules which apply to the format and language used in a U.K. Defence
Standard.

R ——

Just to reinforce and confirm:

Def, Stan. 00-18 (Part 2) {s technically {dentical to MIL-STD-1553B. Units buflt to efther
A | standard will be Just as compatible with units built to the other standard as if they had all been
2 built to the same standard.

L2

It may, however, be interesting to note that there are more things in MIL-STD-15538, and hence in 3
NDef. Stan. 00-18 (Part 2), that are not completely specified. For instance, although some responses //)

A

are defined as legal and some responses are defined as i1legal there zre still some responses which
fall between the two definitions and the action to he undertaken in the event of receiving such a
response 1s therefore not clearly defined.

In an attempt to promote as much standardization as possible the U.K. has, therefore, produced

1 . defined actions to be followed in the event that such a response is received. These U.K. preferred
; responses are documented in the guide to Def. Stan. 00-18 (Part 2). This guide has the reference Def. 4
Stan. 00-18 (Part 1). The important difference is that whereas the requirements of Def, Stan. 00-18 3
{Part 2) are mandatory, the further information in Def. Stan. 00-18 (Part 1) is only advisory. i

REFERENCE NO. OF PAPER: 1-3
DISCUSSOR'S NAME: H. Whitehouse, USN
] AUTHOR'S NAME: J. T. Martin

COMMENT: Would you comment on the properties of an avionics bus which are not provided by standard
commercial buses such as the HP1B or its IEEE counterpart.

AUTHOR'S REPLY: MIL-STD-1553B has come about not just in order to redesign the wheel but because none

of the commercial buses available at the time were satisfactory for the application. The requirements

for a commercial interface include: high-speed capability (therefore, fast logic edyges or paralilel ¢
interface) and cost-effectiveness, bearing in mind the environment that the interface is to operate

in. The requirements for an avioni¢ bus include: EMC compatability (therefore, controlled logic

edges}, Tow wiring density (to reduce weight and volume) and reliability and availability leading

usually to dual bus configuration (making the use of sertfal transmission techniques even more

f - important).

The above is a very brief summary of the reasons for MIL-STD-15538. For a full account see MIL-
$TD-15538 Handbook or/and Defence Standard 00-18 (Part 1), the handbook and explanation for Defence
Standard 00-18 (Part 2).

REFERENCE NO. OF PAPER: 1I-3
DISCUSSOR'S NAME: CODR J. A. Strada, ONR, London

AUTHOR'S NAME. J, T. Martin

COMMENT: How do you see the role of distributed processing in reducing crew workload and dealing with
the multisensor environment {n an ASW afrcraft 1ike the P3C or Nimrod?

AUTHOR'S RFPLY: Distributed processing does not really effect crew workload as such. The crew should
be unaware of what the design of the system that they are using is. The main item to effect crew 3
workload is the design of the man-machine interface, this includes, of course, the keyboards, the 1
displays and the processing which allows these keyboards and displays to function. i

1

LAl

4 P:- ° ~ said that it 1is true that a distributed processing system whereby the various subsystems of
the sy.. are connected together by, for instance, a 15538 bus does lend itself to the combining of
information into one place and the control of a number of systems from one place. Although the same r
effect, as far as the crew is concerned, could be achieved without such a distributed system, I be’{eve !
that you would have to pay a high hardware overhead, for instance many extra 1/0 control channels from
the centralized system, to produce the same degree of centralization of controis and displayr.
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REFERENCE NO. OF PAPER: I-3
DISCUSSOR'S NAME: DOr, A. A. Cai away, RAE
AUTHOR'S NAME: J. T. Martin

COMMENT: Mr. Martin has talked about the opportunities for using distributed processing in modern
systems. There are many constraints which can be applied in distributing processing - such as minfmum
data flow, retaining comparable processing sizes, etc. In practice, however, because of the way
systems are procured, and the accountability of manufacturers, does the author, as a representative of
an industrial systems company, sec us ever achieving anything other than functional distribution as a
practical criterion?

AUTHOR'S REPLY: The problem is to fully specify the requirements to be placed on the supplier and to
be able to specify the tests necessary to prove that the supplied item exhibits the attributes which
are demanded. Very few man:facturers actually manufacture all items of the subsystems or system that
they supply (for instance a sensor head may be purchased by a system supplier to be added into his
total system or subsystem by way of a subcontract or another supplier). For these items of subcontract
to be procured and accepted it must be possible to specify them and test them to that specification.

If it is possible for one main or prime supplier of a system to specify such a subcontracted item, then
it must be possible for some other supplier or procurement agency to also produce the necessary
specification. We could therefore imagine the case where a system design is carried out by one firfm to
the level necessary for the equipment and subsystems specifications to be produced using as a criteria
for the division of the work any split required as long as it leads to the required specifications and
test specifications.

Summarizing - technically any split is possible and already achieved. Managerially, especially in the
case of the procurement agencies, it may be necessary to reconsider our present working practices.

REFERENCE NO. OF PAPER: 1-4

DISCUSSOR'S NAME: CDR J. A, Strada, USN, ONR-London

AUTHOR'S NAME: B, A. Zempolich

COMMENT: Reference the pc:ition of "Systems Architect" in NAVAIR. For whom would such an individual
work during afrcraft development? Would he stay with the aircraft as it moves into an operation
status? For whom would he work then?

AUTHOR'S REP.Y: (1) The PMA and his administrative division.

(2) Yes, he/she would stay with the a'‘rcraft.
(3) Continue to work for the PMA,
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PERFORMANCE STUDY OF A DISTRYBUTED MICROPROCESSOR ARCHITECIURE
FOR USE ABOARD MILITARY AIRCRAFT

Kang G. Shin and C. M. Krishna
Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

An analysis of the performance of the Distributed Microprocessor Airborne Computing System (DMACS) developed
at Rensselaer Polytechnic Institute is presented. The DMACS consists of a number of quasi-independent com=-
puter subsystems loosely coupled in a highly decentralized structure that yet exhibits high cogency as a

system. Some important parameters in the system such as job scheduling and starting delays, bus access delay
and system reliability are studiad.

In order to highlight the implications of the design options chosen, the structure of the DMACS and that of
the Draper Laboratory's Fault-Tolerant Multiprocessor (FTMP) system are compared and the impact of structure
on performance is discussed qualitatively.

1. INTRODUCTION

The increasing sophistication of fighter aircraft has raised the need for intelligent control equipment.
All too often at present, this equipment has been added in an ad-hoc fashion. The result has been a
variety of independent systems for such functions as fire control, flight control, navigation, etc. This
leads to wasteful redundancy, to relatively low system reliability and a high workload upon the pilot (who
is the coordinating agency). This i{s the main motivation for a new concept called Integrated Control
(Robinson, A.C., and Hitt, E. F., December 1978; Shin, K.G., December 1979). Integrated Control (IC) is
the use of control equipment as part of an organized and cogent system. Integrated Control treats the
entire aircraft (the pilot included) as an organic whole. Considerable benefits follow. For one thing,
equipment redundancy translates more efficiently to fault-tolerance. For another, the pilot -- while still
the coordinating agency -- is no longer involved in stap-by-step and detailed low level control. Instead,
he is largely the decider of policy, choosing from a aumber of options open to him and letting the system do
the rest.

Needless to say, Integrated Control requires a sophisticated computer system that is highly reliable and is
capable of absorbing with equanimity the large surges of throughput demand that are characteristic of the
application at hand.

A mmber of attempts have been made to design highly reliable systems. These include the Software Imple-
mented Fault Tolerance (SIFT) machine of SRI International (Wensley, J.H., et al., October 1978), The Multi-

Microprocessor Flight Control System (HZFCS) program of the Air Force Flight Dynamics Laboratory (AFFDL) and
Honeywell (White, J.A., et al., October 1979) and the Fault Tolerant Multiprocessor (FTMP) of the Charles
Stark Draper Laboratory (Hopkins, A.L., et al., October 1978). The last of these is an especially interesting
design and is the result of certain well-defined design choices.

In a project recently initiated by the authors at Rensselaer Polytechnic Institute, an attempt has been made
to design a high-reliability and high-throughput machine with extensive decentralization of contral (Shin, K.G.,
and Krishna, C.M., December 1980). It has been sought to use the extended capabilities of recently developed
microprocessors such as the Motorola $8000 and tne AMD 2903. Delegation of control has been maximized. The
system ip entirely asynchronous and highly modular. Use has been made here of the essential characteristlics
of the apglication. In the first place, the aircraft mission can be rather neatly divided into nearly in-
dependent portions. This decomposition of the mission into its component parts is formalized in the concept
of atom functions. Again, the nature of the application suggests a system dichotomy. This translated into
the way the architecture is composed: we have a central area and a peripheral area, each with its own dis-
tinctive characteristica. The peripheral area is dedicated to particular tasks such as data-taking and
actuator-driving, whercas the central area is in a symmetric formation and 1is therefore not dedicated to any
particular task. This has obvious implications for reliability —— both the actual system reliability and

the ease with which theoretical predictions concerning reliability may be made.

Also, the present architecture has been explicitly based on the concept of Integrated Control. This implies
that it has been attempted to uttack the aircraft control problem holistically and from a systems point of
view. This is a departure from other distributed systems in that these have generally tended to consider only
the computing equipment without much consideration being given to the operating environment,

This paper 1s organized as follows. Section 2 consiste of an overview of the system architecture. This is
abridged from an earlier publication (Shin, K.G., & Krishna, C.M., December 1987} and is presented here for
campleteness. Section 3 focuses on the central controller. The nature of the controller’s functions has a
decisive impact on system performance. Section &4 deals with the performance evaluation of the system. A com-
parison with the Draper Laboratory's FIMP is provided in Section 5 and the paper concludes with Section 6.

2, REVIEW OF DMACS ARCHITECTURE

The DMACS architecture is based on both mission decomposition and system dirhetomy. The architecture has
been described in some detail .in (Shin, K.G., and Krishna, C.M., December 1980), but for convenience, the
major aapects are brieflv described below.
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2.1 Mission Decomposition

The ordered set of tasks to be performed by an airborne computer system is termed a mission. A mission con-
sists of mission segments such as takeoff, cruise, target tracking, landing,etc. Each mission segment 1is
then divided into basic mission components called atom functions. An atom functicn may be considered a unit
program performing a basic unit of the mission such as Kalman filtering, control law calculation, etc.

Each atom function receives raw data from its source set (of sensors, pilot-activated systems, and ground
conmunication systems) and feeds a sink set (actuators and the cockpit display) with processed data., 1In
view of the ever-increasing computation power of microprocessors it is not unreascnable to assume thut any
atom function can be handled by a single advanced microprocessor (e.g. M68000, LSI-11/23, AMD 2900 series)
within the imposed time limit. This assumption together with the mission decompositica offers system mod-
ularity in both hardware and software, thereby enabling an atom function to be a hardware and software build-
ing block in the DMACS.

2.2 System Architecture

The input to the system is derived from sensors, ground communications and pilot-gemerated inputs. The
rate of data flow is small -~ only a few Hertz. The outputs of the system are to mechanical actuators and
to the cockpit display. These, again, are at low data rates. In contrast, the computations themselves arc
generally involved and are required to be carried out at high speed.

Clearly, the processors handling the dat: formatting tasks from the individual sensors have to be dedicated.
The processors carrying out the bulkx of the processing do not have to be so dedicated.

By means of arguments similar to the above, it is possible to show that the application calls for a.system
dichotamy. Such a dichotomy is indeed built into the system and represented by the peripheral and central
areas (Figure 1). The peripheral area consists of the sensors, actuators and associated (dedicated) pro-
cessing equipment. This equipment is relatively low-capability hardware. The central area consists ot

high performance Processing Modules (PM's). Each PM consists of a main processor with its own private mem-
ory and two bus controllers to interface with the data and control serial bus sets. These are the only buses
in the system and are triply redundant. The basic system architecture is depicted in Figure 2 and the pe-
ripheral area 18 shown in some detail in Figure 3.

3. MORE ON THE DMACS ARCHITECTURE

The Central Controller (CC) is the top coordinating agency after the pilot and has a decisive impact on sys-
tem performance. Prior to performance analysis, therefore, it ie in order to discuss the CC along with
architectural implications.

3.1 Central Controller

The CC is at the heart of the DMACS and operates in two different modes; the normal and abnormal modes. The
extent to which the architecture has been decentralized results in a light controller loading under normal
conditions. The system can be thought of as being a set of quasi-independent computer subsystems, each mem-
ber of the set being formally complete within itself under most normal conditions of operation. WHowever,

the system may behave like a centralized computer under abnormal conditions (e.g. change of mission profile).

A. Normal Mode of Operation

The central controller has, under normal operating conditions, to carry out periodic error checks and to
control the allocation of the major common resource in the system -- the data bus. Data bus grant is re-
quested and granted asynchronously according to a quasi-handshake format, The main processor within the
processing module places the data word tc be broadcast in the data bus contrnller. Bus grant request3 are
entirely within the domain of the two bus controllers -~ insofar as the main processor in the processing
module 18 concerned, the bus controllers represent its only contact with the outside world.

The data bus controller signals the control bus controller (CBC) that a data word is available for broadcast.
The CBC responds by setting the data bus grant request bit in its transactions register. The transactions
register is periodically polled by the central controller and bus grant is achieved on a first-come first-
served basis.

B. Abnormal Mode of Operation
Central controller intervention on a large scale is called for when abnormal events occur. These may call
for a redistribution und/or redefinition of system resources. The following are the most commonly encoun-
tered abnormal occurrences:
o Malfunctions in PM's
e Misgsior profile changes
e Test requests from the peripheral area.
To handle these occurrences, the CC needs precise, accurate and timely information on the status and duty

of each processor in the system. The priacipal table of information held within the central controller is
the Central Cluster Status Table (CCST). The CCST has the following format:
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ATOM ACTIVE/ ROCESSORG [~ PROCESSOR |
FUNCTION PASSIVE ASSIGNED STATUS

The atom functions are ordered according to their importance. Processors not assigned to any atom functions
(1.e. free PM's) are listed as being assigned to atom function O (i.e. the lowest priority atom funct ~ ).
Processor Modules that are malfunctioning are assigned an atom function number one higher than the most criti-
cal function of all -- the control function.

The active/passive column indicates whether or not the concerned atom function is active within the current
mission profiie., (Note that all atom functions possible are listed: not just those that are currently active.
This does not cause a time penalty for table-search during reallocation due to the way the table is structured.)
Inactive functions generally do not have any PM's assigned to th-m.

When a PM malfunction is reported, the centrul controller scans the CCST from the bottom., If -- as is
generally the case -- there 1s a free PM available, that PM is brought into the deplated triad.

In the event that there is no free PM available, the least critical atom function is retired and the PM's
assigned to it are used as spaves.

The process of triad reconfiguration is as follows:

1. Delink the injured processor.
2. Find a replacement PM,
3. Load status,

4. Check status and incduct into the system.

Of these steps, steps 1, 2 and 4 are controller-intensive, i.e. they require extensive controller involvement
Step 3 on the other hand is handled without much reference to the controller. Transfer of software is carried
out by DMA.

A slightly more complicated process is involved when triad reconfiguration is called for. The loading upon
the controller is far greater than in the case of a random processor knockout (i.e. the random demise of a PM).
Also, the volume of software to btz transferred is far greater. The latter reason is the more straightforward
to handle: the time required on a bus for software transfer is very nearly proportional to the volume of soft-
ware, while the controller loading is mure difficult to quantify precisely.

The effect of controller loading upon the system is minimized by carrying out the reconfiguration in stages,
configuring the most important triads first so that vhe more critical new functions are activated as soon as
possible. Note that functions such as flight control are active throughout and are not affected by recon-
figuration except to handle malfunctions.

3.2 Implications of the Architecture

There are some particular aspects of the application we are concerned with and some points in the architec-
ture here presented that are worth further discussion.

The most important point to consider in aircraft control is that the atom functions into which the mission
divides are essentially decoupled. Flight control, fire control and navigation (to name just a few atom
functions) affect different actuators., The application at hand is characterized by the fact that while
different atom functions might be triggered by common sensor inputs, the sink sets of the individual atom
functions are genevally distinct. It should be noted here that the pilot 1s still the overall coordinating
agency —- albeit at a much higher level than in the conventional method.

From this fact follows the present architecture which is not so much a true multlprocessor architecture
(Enslow, P.H., March 1977) as it is8 a collection of cooperatively coupled computer systems that require
controller intervention at a low level for most of the time.

A seccad point worth considering is the existence =¢ two distinct bus sets -~ the data bus set and the control

bus get. The control bua simplifies the executive software considerably and reduces the need for tight
synchronization in the system. )

Linked with the idea of a control bus permanently captured by the central controller are the bus controllers
and the architecture of each PM. The PM admits of considerable internal derentralization. The two bus
controllers -~ which are actually dedicated processors with their own buffers -- handle transactions with the
outside world. The Control Bus Controller (CbC) ls the "local arm" of the central controller. The CBC is
activated by central controller comwand and is thus entirely under cenivral control; but it has sufficient
intelligence to reduce controller loading. (An analogy may here be drawn between the above and the channel
and device controllers in a commercial computer system. With a modestly intelligent device controller, the
chennel controller simply needs to initiate device action and let the device do the rest until a device end
is encountered. Examples of device controllers are disk controllers, card-reader controllers, etc.) The
control hierarchy in DMACS 1is as follows:
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4, SYSTEM PERFORMANCE

b : 4.1 Job Starting and Job Scheduling Delays

" ' Job scheduling delay is defined as the duration between a job request and the ailocation of the system re-
sources for the execution of the job. Job starting delay is the time delay between the job request and the
actual execution of the job,

Due to the quasi-static scheduling policy followed, job scheduling and job starting delay are relevant only
when jobs need to be scheduled; i.e. at moments of change in mission profile or during PM replacements.

T

Changes in mission profile are brought about when there is a demand for a new set of atom functions. The
varying nature of mission requirements suggests two choices: either allot a separate PM triad for every atom
function (whether required in the current mission profile or not) or allot PH triads only on demand. The
second approach is the more practical and is adopted here. There are certain flight functions such as flight
control and navigation that must remain operational throughout the mission lifetime, Others such as those
used for landing and takeoff are available on demand. It is the scheduling delay for thesc jobs that we are
primarily concerned with: job scheduling delays do not ordinarily affect the "perennial" atom functions such
as those cited above.

Job starting and scheduling delays are expressed as follows:
Job starting delay = tl + t, + ty + t,

Job scheduling delay = ty + ty

where

F . t - time taken by the controller to take action upon the request for that particular atom function.

t, = processor allotment time
ty = sof tware transfer time !
t, = Processor check time 1
Of these times tl and t, are highly variable; t, and ta are not so inconstaat. '
Time invested by the central controller in reconfiguring the atam function is the sum of ty and ths which ‘

is relatively small and constsnt. The rate determining step in job starting delay is either tl or t, de-
pending on central controller loading. Except under the most difficult conditioms, t1<< t3 which indicates
t, as the rate determining step. ty is the ratio of the volume of software transferred to bus handwidth.

be attempted as follows.
Processor allotment consists of two stages: 1) Find a PM that i{s available
2) Update the CBC Table and the CCST.

As estimation of the values of these variables iz not easy. However, an order-of-magnitude calculation may l

Step 1 involves (a) accessing of a record from the CCST, (b) checking its suitability, and (c) deciding
whether or not to terminate the search.

For a moderately fast system, accessing a record should take much less than 1 usec, Checking its suitability

involves computing a Boolean function that, again, should take somewhat less than 5 usec ( we aasume a clock
rate of 10 MHz). The step (c) is easentiaily an ;ppenduge of (b). ¢ - eree

It follows therefore that the total time (in usec) taken in locating a suitable PM 1is less than six times
the number of accesses (typically 1). It is usually less than 12 isec even under poor conditions.

Once a PM has been located, updating the tables entails entering sowe four variable values in the CCST #nd
the atom function number in the CBC transactions regiater. This should involves less than 10 clock cycles
per entry making 50 clock periods in all, or about 5 usec.
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Each applications program has a bootstrap portion that loads into the £BC tuable the variables of interest.
These are the variables the bus controllers are to recognize as beiag relevant to the particular atom
function in hand. This does not usually take more than 100 usec, Hence t, < 100 usec, and t, or the statue

check time 18 very small and constant, The PM in question runs a test program aud sende the results to the
controller. The controller has only to match the answers with the right ones (held in its private memory)
to determine processor status.

It follows then that the total central controller time invested per FM reconfiguration approximates 100 usec.
Hence t1 18 now estimable by:

t = housekeeping time for normal activities + t, *n

' where

n = ff of PM's configured after request was received from the concerned PM.

The allotment of PM's proceeds on a priority basis. The controller scans the atom functions that are to be
represented by the PM'as and chooses the most important or critical atom function Zrom amongst these for
implementation. This procedure ensures swift implementation of the more important atom functions.

The job scheduling and starting delay for reconfiguring individual PM's ideally have identical profiles =--
only the constants involved are aiffereut.

One possible outcome of the PM induction procedure is that under extreme circumstances it may so happen that
the least important atom function will never get assigned. This could be forestalled by automatically up-
dating priority as a monotonically increasing function of waiting time. We choose, however, not to do so

| since the more critical functions must never be impaired for more than the mininum possible duration. In any
case, as we shall see, this problem is more academic than real.

Figure 4 depicts the job scheduling delay as a function of the precedence in th.: job request queue. The

precedence in the job request queue is easy to determine. We have two distinct conditicns under which )
allocation is carried out. The mission profile may change or processors could suffer random knockouts.

The former case involves an entirely new set of atom functions simultaneously being required. The preced-

ence in the waiting queue 1s then simply the relative impostance of the function in relation to the others ,
in the new set. |

e

A more complicated case (theoretically speaking) arises in random knockouts. As was mentioned earlier, it
is entirely possible that the random knockout of processors should occur at su:h a pace and in such a se~
quence as tc effectively ki1ll a lowly atom function., This can, however, occur only when more than one
failure occurs more or less simultaneously. This is highly improbable. The probability of failure of a P¥

is around 10‘-4 per hour. Reconfiguration takes less than 100 usec for the controller to achieve. Prob-

ability of a processor failing in that time is approximately 10-11. For any atom function to be kept waiting
for central controller attention for time T, the number of more critical PM's that must fail is T/170 since
100 usec is approximately the time required by the central controller to recomstitute the injured triad.

e s skt e

. 4,2 Bus Access Delay

The system consists of a set of processors communicating by means of two sets of buses —- a data bus and a
control bus; both triply redundant for adequate fault tolerance, The control bue is permanently captured

by the central cluster controller and employed in such activities as test initiation, bus grant and rebroad-
cast command as well as the DISCONNECT commant issued by the central controller to a failed proceasor, The
data bus is allocated to whichever processor needs it on a First Come First Served basis. The average access
! - ’ delay and maximum access delay as a function of the bus demand profile are studied.

The actual procedure for determining delay is very simple. Bus grant requests are put into a time indexed 1
array (a list) in the order in which they arrive. The central controller steps through the items in the

list granting access to the oldest item still outstanding. The time at which this bus grant is achieved is
noted and the delay is computed by subtracting the request arrival time from the bus grant time. Using these
figures, it is poseible to arrive at values for the maximum wait time for bus grant and for the averasge wait
time. Both parameters are of interest in evaluating the system; they have an important role to play in the
validation process.

The specific case we have described here is for 20 central cluster requests per 'request cycle". The figure
of 20 may appear somewhat arbitrary, but in fact represents a system of typical complexity. Again, we're
looking more for the shape of the response profile than for actual numerical values.

The input arrival rate profiles studied are as in Figure 5. They therefore range from the uniform (1 request
per interval) to the very bursty (20 requests in the first frame; 0 elsewhere). The average and maximum
delay velues that results are graphed in Figure 5.

4.3 System Reliability* i

Reliability is a measure of the pcobability of failure. In a system as complicated as. ours, there are clearly
| many classes of failure. These are listed below.

w Type 1 failure: A type 1 failure is said to have occurred when the capacity of the system to compute a

| . particular atom function hae been permanently removed. (By 'permanently' we mean of course till the system
is manually serviced). Since there are many atom functions, more than one type 1 failure can have occured
in the system at any one time.

L '
This portion is drawn from (Shin, K.G., and Krishna, C.M., December 1%980).
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Type 2 failure: A type 2 failure i{s said to have occurred when the capacity of the system to compute a
particular atom function has beaen temporarily removed. We subdivide thic class into two subclasses.

: A type 2a failure occurs when the impairment of system function has occurred for the time nexded
to switch from active to backup units. This time is relatively smalil.

J¥pe 2b: A type 2b failure occurs when the impairment lasts for as long ar it takes to reallocate functions
among the central cluster processors.

Generally, a type 2b failure takes much longer to recover from than does a type 2a failure.

Probabilities of failure can be deduced as follows:

Let
L = number of output actuator triads forming the sink set ol atom functiom {.

n, = corresponding number for senscr trisds in source set of atom function i,

P = probability of a sensor fallure.

Pact probability of an actuator failure.

Pyus probability of a bus failure.

Pproc = probatility of processor failure.

It bears pointing out at this stage that the above probabilities are very small; we note that a typical
range is 1074 to 1077 per hour, With these values in miud;

Probability of a type 1 failure

3 3 3 3
Py~ § (0P gen + B4P pce * (‘1+“1)pproc] 2Py
Probability of a type 2a failure,
Pyg v 1
2a i ["ipact + (n1+“i)pproc] + Pproc +2pbug

Probability of a type 2b failure,
2
Pop » 3upproc

vhere a = number of atom functions in the mission. To obtain a feeling for the actual figures involved, we
enploy the following prubability estimates:

Poroe = 107 me, o, = 100me, p = 100/me, p, = 1073 mr.

proc act sens

A v simp? thut all atom functions are identical with respect to hardware requirements and

ng > 2 for all 1, L 1 for all §, a = 15.

In such a case,

Py 5 0.5x w1 per hour, p, & 0.5 x 1073 per hour, ©p,, = 1078 per hovr.

Note here that a - . failure is the only true failure in the system sense; type 2a and 2b failures regylt
in system recoufi; . ition with some lcss of throughput, but no system impairment of more than a temporary
nature.

S. COMPARISON WITH FTMP

We turn now to comparing two similar architectures: the DMACS and the C. S. Draper Laboratory's Fault-Tolerant
Multiprocessor (FIMP). It is not our intsntion in this section to seek to make definitive judgments upon

the relative worth of the systems -- only to describe the implications of a set of design options taken in
each case.

The FIMP is, in hardware terms, superficizlly similar to our architecture. For instance, it is a bus-oriented
nachine, with triple redundancy being used throughout for the detection and correction of errors.

The Draper Laboratory has essentially chcsen a different get of options from ourselves. A study of the
differences together with a brief overview of the implications is worthwhile since it brings out in sharp
relief the tradeoff cptions avallable to the systems architect.
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The major points of difference are:

o The processors in A triad operate in tight synchronism in the
FIMP while operation i{s completely asynchronous in the DMACS
architecture.

o FTMP is essentially the central portion of amn aircraft computer
control facility: data acquisition and delivery are not considered
in much detail. The DMACS architecture explicitly incorporates
sensors, actuators and associated processing equipment inta the
system.

v e Job acheduling in FIMP is completely dynamic; the system controller
is, for all practical purpuses, a job scheduler. The DMACS aystem
involves quasi-static job scheduling.

¢ The bus structures are different. FTMP has a "Mass Memory Bus",
an "Internal I/0 Bus" and ar "External I/0 Bus" while the DMACS
makes do with just two sets of buses: a data bus set and a control
bus set.

o The basic processing module is far simpler in FTMP than in the 4
DMACS.

7 4 e e o e -

E We provide below a more detailed expositior of the consequences of the differences noted above. 1In the

FTMP, all elements of the multiprocessor operate using a common time veference. Four mutually phase-locked
clock generator modules operating together provide a fault-tolerant time reference (Lala, J.H., & Smith, C.J.,
1979). The effect of chis tight synchroniam 18 to make data transfer between processors and memory and pro-
cessoras and processocs simpler and therefore faster. A commen clock obviates the need for a pseudo~handshake
«8 1s used in the DMACG architecture. However, for this benefit in lowered intercommunication complexity, we
E have tc pay in terms of reduced reliability. The disabling of the clock will be disastrous to the system;
and while the existence of four clock modules phase-locked to each other assures considerable fault-tolerance,
the synchronism nonetheless intrcduces an additional potential source of catastrophic failure. An additional
consequence of this is seen in th2 consideration of the third point in the above to which we shall come.

FIMP has an External I/0 bus and an External I/0 port that handle data input and output. No restrictiom is
therefore placed on the hardware acquiring and using data: the configuration of the sensors and actuators
is undefined. This makes for easier adaptability to existing systems. The FTMP can therefore be "added on",

so to speak.

On the other hand, the DMAC architecture imposes a certain structure upon the actuators and sensors. The
reason is that we felt that characterizations of the system would be invalid if they did not include the -
communication with the environment as part of the systems - - and this, is after all, the very reason for

the existence of the computer system in the first place.

Job scheduling in the FTMP is entirely dynamic. This is justified by the Draper Laboratory after considera-
tion of the alternative which is the synchronous job scheduler. 1In synchronous job acheduling, periodic jobs
are completely prescheduled with each job occupying a certain predefired time slot in the schi:dule. The main ‘
sdvantage is low central control overhead. It is claimed by the Draper Laboratory that the major disadvantage
of this kind of algorithm is the lack of flexibility and the complexity of preassigning jobs to processors in
& three-unit wultiprocessor. Again, failure of one of the processors in a triad or changes in job varsmeters i
such as iteration rates, may require a totally new schedule. The synchronous scheduler is therefore not

adopted in FTMP (Lala, J.H., and Smith, C. J., 1979). Instead, an entire scheduling ia carried out whenever

hd an atom function has to be executed.

The problems pointed out in the remarks above are very real; bit we believe they follow partly from the

tight synchronism the FTMP is forced to operate in. In an asynchronous and highly decentralized system --
such as ours -- all the advantages of on-time job execution with practically no delays and a high load factor
are available {as we have seen in the performance characteristics) without the disadvantages mentioned abuve.

Again, when the mission profile changes, requiring a large-scale reallocation, the applications software for
the new atom functions thereby introduced are luaded (in the DMACS) using DMA end a conceptually simple pro-
cedure. Reconfiguration time in such cases i8 very low.

Our bus system is conceptually simple. All data (whatever its origin) is treated in the same way and broad-
cast on the data bus according to the same format. This simplifies malfunction detection and handling and
makes the systems software less complex. A control bus is used in addition to the data bus to simplify
central controller intervention in the system. The bus structure of FTMP is ruch more complex. While it
does not necessarily follow that a reduced reliability is the resilt of such increased complexity, it is,

in our opinion, to be avoided wherever possible.

et

All differences in structure and performance between the FTMP and DMACS can be held to issue from one basic
difference in design philosophy: FTMP IS LESS DECENTRALIZED THAN OUR SYSTEM. The. central controller has a
major role to play in finding a processor every time an atom function is to be executed; no matter whether
the atom function i1s periodically required or not. The central contro'ler -~ which as has becen pointed

out is basically a job scheduler ~- is thus involved in scheduling even continuously periodic functions.
The result is a continuous high loading upon the controller and a relatively high overhead in the form

of applications software transfer. This may result in needleasly slowing down the system.

i e it

The DMACS architecture, on the other hand, follows a consciously laid down policy of maximum decentralization.
The central controller is involved ir regular activitiec mainly in arbitrating access to the data bus.
Regular housekeeping chores are therefore not time-consuming. This has the merit that when an abnormal
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event takes place the co 'roller response is faster than it would otherwise be. The controller delegatas
many of the routine chores to the contrcl bus controllers in the various processing modules.

It 1is worth pointing out that the FIMP system is far older than our own. Consequently, it has undergone
more detailed analysis than the IMACS. For one thing, a prototypical version ¢f FTMP has been constructed
while our system is as vet in the design stage. All our remarks should therefore be read in this context.

6. CONCLUSICNS AND DISCUSSION

This pape: has sought to describe a distributed processor structure for the effective control of military
aircraft. The goal has been to configure, out of components of military-grade reliadility and easy avail-
ability, a computer system that is at the same time easy to expand, service, program and that ie reliable
and flexible eaough to accept a considerable number of alterations without requiring a major revision of

' the basic structure.

This project was motivated by a desire to employ the concept of Integrated Control in fighter aircraft.
Ad-hoc addition of components to aircraft results in wasteful redundancy that does not necessarily tranalate
into increased veal redundancy from the performance point of view. Again, there ia the very real possibility
of one element in the system affecting the performance of another; thus degrading the overall system per-
formance. This ia clearly an unsatisfactory state of affairs but one that occurs frequently in extremely
. complex aystems. The conception and design of the system as a whole generate certain problems. Howevar,
: the holistic deaign of complex systems provides one with an opportunity to carry out optimigation with
respect to the whole asystem and not just with respect to one isolated component portion of it. By pooling
- all resources into one large system it is posaible always to provide incressed reliability to the more
critical functions. Fighter aircraft today are designed to fly to the edge of instability and designars
push the inherent properties of the basic mechanical structure of the aircraft to the maximum possible
. extent. In such a dynamic -- and not alwaye friendly -- environment, it is essential that the reliability
! of the basic critical flight functions be extremely high. The hign reliability required of any system used
: aboard a manned aircraft has to be achieved by using componenta that by themselves are far less reliasble than

that. Commonly used figures for the reliahility of rrocessors peg the reliabilicy at around 10'5 failures
per hour. Mechanical devices such as actuatcrs do ot show a very great improvement upon this figure., It
; is therefore contingent upon tlie structure or the configuration of the compute 3ystem to create, out cf
: components that are by themselves not very reliable, a super-reliable svystem.

The requirement of high throughput is no less important than that of reliability. The fighter aircraft
operates in a highly dynamic environment and much of tiie daia from the sensors has to be processed in real-
h time. The environment is characterized by rapid surges in demand upon the services of the computer system.
| The system wust therefcre be robust enough to absorb such surges without a lowering of reliability.

e i kb 4t ot oaim ok,

A third requirement is ease of programming and system flexibility. A system that is not easy to program is
potentially very expensive to operate and is prune to errors. System flexibility and modularity are required
for ease of servicing and maintenance.

The present system is based upon the three basic requirements liited above. Reliability is provided through
the use of triple-modular redundancy with voting and a conceptually simple structure.

A high throughput (or low bus-accecs delay whichis equivalent to high throughput in our case) is achieved
by means of using two sets of buses instead of just on2, The control bus triad serves essentially two pur-
poses: first, it lowera the demand upon the data bus and second, it provides the central controller with a
simple means of propagating control signals. Controller intervention into system activity is not delayed
by ongoing transmiasions upon the data bus.

The modularity that is built into the system provides ease of programming together with expandability and
- jmproved serviceability.

; It 18 clear, therefore, that the configuration arrived at is a direct result of the requirewenta of reli-
ability, ablility, high throughput and flexibility.

There are, however, many interesting problems not yet studied in any great depth. The simulation of the
present structure has been partial and with respect only to specific characteristics such as job scheduling
delays, reilability and bus access delay. A more complete simulation package for the system is planned.
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THE DEVELOIMENT OF ASYNCHRONOUS MULTIPROCESSOR CONCEPTS FOR

{ FLiGHT CONTROL SYSTEM APPLICATIONS

S. M. Wright and J. G, Brown
British Aerospace
Brough
: North Humberside
! ’ United Kirgdom

SUMMARY

' In early 1979 a limited research investigation was initiated tc exemine the possible impact that recent
' advances in large scale integrated circuit technology might have if applied to flight control syatems.
The initial studies goncentrated on aliernative digital processor architectures.

One promising research avenue was identified as beirg the use of muitiple microprocessors, each functionally
dedicated and running asynchronously with a short program cycle time. This approach promises benefits in
a number of areast

: 1. ease of generating/proving high integrity software
! 2. reduced propagaticp delays

TRy T g i e e e s

§ 3. reduced hardware/software synchronisation overheads
SN k. retention of classical feedbesck control design techniques
S. extendable processing power

Part of the ongoing Active Control Technology activity at BAe Brough ie an involvement in a flight dynamics
research programme using a RAE Hunter aircraft converted to fly-by-wire., This programme has identified a

: . need for a flexible digital flight control proceusor for such research and has provided a focus and stimulus
for multiprocessor studies. As a result BAe Brough are now in the process of developing a multiplex digital
full authority flight control computer for this specific application, with a view to installation in the
aircraft.

Because of the short timescale of this particular applicatiun certain questions which would relate to a
F produc*ion system have been circumvented rather than resolved. However, this dces not affect the concept ;
which is considered to be of considerable interest and relevance to future systems.

1. INTRODUCTION

As aircraft designers have striven for more and more aerodynamic performance, the aircraft's natural
stability snd control characteristics have deteriorated. This has required the application of increasingly
complex feedback control systems in order to artificially restore good handling characteristics. This
process has reached the stage where some current and most projected cembat aircraft are totally reliant on
the coirect and continuous operation of these active control systeuws. Typically, present generation
aircraft use analogue computation which is multiple redundant in order to achieve the integrity targets
necessary for a flight critiecal fuaction e.g. Tornado or Flé6.

Analogue computation, however, restricts the type and complexity of control law which can be applied. It
can also cause production and/or maintenance problems in achieving the required level of matehing of
characteristics between one computer and the next, and it can be difficult to modify the control character-

istics.

TR, ~wr e e .

These problems have led designers towards the application of digital processors to computation of the

control action since they promise to substantially reduce all the above problems. Digital computers offer
- the additional advantages of being able to incorporate extensive built-in and pre-flight tests, together
with a reduced size and weight. The overall architecture of the system nas remained as a aumber of
identical lanes each lesigned around a central digital processor. In practice it ie becoming increasingly
spparent that the software costsassociated with such systems are very high. These costs are principally
aggociated with the flight critical nature of the computation since if there were any faults in the software,
then it would occur simultaneously in all lanes of the system causing possible loss of the aircraft. In
order to minimise the possibility »f such a failure, great reliance is placed on independent and
comprehensive croas checking of the operation of the control program, and or the management system
established to ensure compliance with these safeguards. Further costs are iuntroduced by the need to
produce large amounts of code which must be optimised so that any computation time delays are minimised,
This involves programming at assembler level, and thkis in turn requires the establishment of a dedicated
team of experienced programmers. This results not only in high costs but also in long timescales from
control law specification to the production of verified software. This may be acceptable for a production
aircraft but certainly ot for u reaearch aircraft, and probably nov for the development phase of a new
aircraft since here the ability to rapidly modify the control characteristics is essential,

e b o

Even after the most cumprehensive software testing there will still be some concern that there could be

some latent fault present in the program which would only manifest jtself under a particular combination i
of circumstances, resulting in a catastrophic failure. This is due to the very large nuaber of states i
that a digital processor can enter, corresponding to difierent data values and paths through the program. 1
Because of these problems it wus considered worthwhile re-examining the basic concept of the central

digital processor to see if a different hardware approach could ease the task of software generation,

particularly with reference to research and development aircraft but poientially for general application.

The aim of this investigation was to reduce the magnitude of the software task to a level where it could

be acocommodated by an on-site team, to suggest ways of generating visible testable software less prone to

context dependent failurees and to provide a system with the type of excess computational power that would

allow the convenient investigation of advance® control concepts, This approach was gconsidered viable

firstly because the amount of programming normally aesociated with control functions could be less than 25%
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the rest being accounted for by various housekeeping funciions such as consolidation, brilt-~ir. and
pre-flight test, failure managemeat etc. (Ref. Corney 1979). Secondly, becanse of the considerable
alvances heing maie in the field of large scale integrated circuit technology, particularly in the area
of microprocessors.

2, PROPOSED PHROCESSOR ARCHITECTURE

Z2.1. Relevance of a multiprocessor approach

The first step is to attempt to pertition the software into small modules which can only interact in a
limited number of well Aefined ways which, il possible, should ease the specification, modification and
testing of the program. This type of partiticning has been implemented on ground based systiems using
specialised operating systems e.g. MASCOT (ref. Jazkson K. and Simpson H. R, 1974) and . 3 the considerable
advantage that the interrace between modules is so well defined that an individual modul. can be removed,
modified and replaced vithout requiring re~validation of all the other software modules comprising the
system. However, this technique implies the use of somplex executive softwsre which in itself would be
difficult to develop and validate to the required level of confidence, and would be an extra overhead on
the control processor's time. Hence both the software and hardware need to be partitioned, i.e. each
goftware module can be allocated its own dedicated processor such that all the tasks run in parallel.

Since the constituent processors in such a tystem are rurning in parallel then the computation time delay
can be significantly reduced, hopefully to a value where it becomes insignificant. This should relax the
otherwiae atrizgent requirement of producing highly optimised code to minimise execution time. It could
also simplify the contiol law design task since, if time delays are insignificant, then the analysis and
design of the control system ¢an be azcomplished using classical linear control theory with no need to
vesort to Z transform techniques.

An additional advantage of a multiprocessor configuration is that it provides extendable processing power,
thus allowing flexible incremental enhancement of the control capabilities of 1 system, either in response
to new applications, or to & gradual development of the original application.

2.2, Choice of a communication strategy

The traditional difficulty wiih 2 multiprocessor system lies in the choice of a communication stiategy.

If a bus structure is chosen then the throughput of the bus can consirain system expansion or introduce
variable time delays dependent on bus loading. If a multiport nemory technique is used then this limits
the number of processors which can be attached. More advanced concepts such as packet switching networks,
could comprise a research programme in their own right. With any ot these systems it is difficult to
constrain access between processors such that the effect of a software fault in one processor cannot cause
unpredictable software faults in oth{r modules.

A network communication strategy doesynot inhibit system expansion sinco the number of links can be
increased indefinitely to accommodate \the exira data traffic caused by additional processors. If the
links are constrained arbitrarily to cakry data but not control information then the effects of failure in
any one module become predictable, hencd allowing the possible containment of failures which occur in non
flight critical secticns of code. Thisishould either improve reliability in operation, or reduce the
burden of testing. This inherently ri ous control over the interfaca between software modules also
reduces the putential for adverse interagtion between the sections of code prodiaced dy different members
of a programmiig team either during the itial program develcpment phase, or after modification of an
individual module, since the structured pYogramming concept of having locally defined variables only
available locally is impliecit in this sysiem.

Typically the data being transmitted betwe¥n processing modules irn a real time control system conaists of

a number of variabvles each representing a dontinuous function of time. If each variable is allocated a
unijue communication channel then the operdfion of the system can be conveniently monitored, hence easing
testing and acceptance procedures, Since elich varfat’e represents u continuous function of time and cannot
be overwritten except by a more recant value, then it becomes possible to dispense with the need for
handshake routines, interrupt handlers, or other software protorols, again easing the programming task,

Thus we have the concept of ar asynchronous muiitiprocessor flight control gomputer. If thia computer can
be made from a number of identical hardware blocks then there is also potential for reduced hardware costs
and increased flexibility in configuring a control computer to meet different applications, requiring
perhape different levels of redundancy, or proceasor power. This is in addition to tae system design,
programming, and integrity benefits alrealy suggested,

3. EXPERIMENTAL MU, .IPROCESSOR SYSTEM

3.1. Choice of Processor

Having decided to investigate the implications of :his type of asynchronous multiprocessor concept, the
first task was to choose a commercially available microprocesscr which could demonstrate the major
features of the idea without involving an extensive hardware development programme. The relatively large
numter of processor modules anticipated for a practical system focused our attention on single chip
mieroprocessors in order to keep the volume of the final system within practical bounds. One simple
method of achieving asynehronous communication between processors is to use analogue interconnectione;
this, together with a requirement for high processor speed and UV Erasable PROM prograiming, narrowed the
available field down to one device, the Intel 2920 Analogue Signal Processor (See figure 1 for a
functional block diagram and functional specification of this proceasor.)

The choice of a device with analogue interfaces also allows convenient integrati:-n with existing analogue
flight control systems with which we are involved and offers the possibility of enhancing tliese syetems
and developing ccntrol computing ideas in parallel.

i e M
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There are, howuver, some characteristics of this devire which, while they wculd nct affeet any consept
proving exercises, might prejudice zpplication to & reelictic control task., Vias

T 1/0 resolution of only 9 bits (internal resolutioa of 25 bite)

2, Limited instruction set (no branch instruction)

3. Limited program space

b New device of uncertain detailed characteristics

It was decided to prcceed with a concept proving exercise since it was anticipated that, if successful,
then the above limitations could be overcome if necessary on a fully engineered system, probably using

a different processor. Alternatively this initial study might show tnat the short term expedient
application of this device tc current flight control tasks wes practical,

The resolution of the analogue input and output ‘s ai least twc bits less than required but, since the

relevant interfaces are an integral part of the device, it was impossible to alter the hardware character—

i istics. A moftware tectmique was therercre developed which (at the expense of & small external hardware ]
modification) enabled bandwidth to be traded for improved resolution., This technique has been shown to E
be capable of achieving a three bit senhancement with a reduction in interface bandwidth from 8 kHz to 1 kHz. f

b ' See Fig. 2 {Ref. Wright and Fletcher 1980).

The lack of branch inatructiona is an advantage from the point of view of software testing since it

dramatically reduces the number of possible context dependent failures. It is also of benefit in the

coding of linear control functions since every instruction is executed every program pass and hence the 3
iteratio: rate is conotant, independent of the software (equal to 0.12 ms for the 2920-16 operating at

a 600 ne cycle time), However, combined with the limited instruction set and program size, this cast

doubts on the ahility to use the device to implement complex control functions, particularly those

involving logarithmic and trigonometric functions, and so several exercises were undertaken to test this,

Y Y e e e

In one case a waveform generation/co-ordinste transfcrmation task was progranmed on one processor, including
full four quadrant sine/coeine functions (See Fig. 3 and Ref. Wright, 1980), In a seccnd exercise the i
programming of aircraft control laws was investigated, This study indicated that a typical longitudinal
contrcl system, including gain scheduling and special high incidence control laws, could be implemernted
on four processors (Ref. Sharaz, 1980), PFigure L, illustrates a representative flight control law element,

The detailed hardware cheracteristics of the device are still undergoing extensive testing but it appears
that if suitable precautions are taken then this device can be applied in the short term to a number of

control tasks.

3.2. Standard computing and interface modulies

3 In order to use this device in a range of applications without incurring extensive additional hardware
development, a pair of hardware niodules were developed, one performing computing and one the interfacing
function. (See Fig. 5) Each is a printed circuit card csarrying a number of sub-modules. The PC3 tracks
carry the interconnectione always reyuired in any application, while those connections needed for a
specific task are ¢3ided by component selection and appropriate wire links, The design for a computing
card incorporates provision for up to eight microprocessors. All the analogue input and output lines from
each procesmor, together with a substantial proportion of the edge counection lines are left unccmmitted

4 ready for suitable wire link patching to suit a specific task.

f It is less obvious how the interfacing can be standardised. However, since the Intel 2920 has its own

analogue Input/Output and the bulk of control signals will be analogue, the interfacing requirsment reduces

to a simple one of buffering, antialiaising filter, offset and gain adjustment. This list of requirements

can be accorplished using a single op-arp circuit which can also act as the summing junction needed to

perform the resclution enhancement referred to previously., Even the usually complex antiliaiaing filter

can be accomplished with a simple first order filter because the very high sample rate relative to signal

bandwidth will tolerate the shallow cut uff slope. Thus a PC design comprising eight of these standard

modules on a card ' a8 been prodiiced and can be rodified by suitable component se¢lection to suit most

tasks. The exceplione to this can be considered as special cases, and for this purpose an uncommitted

area has been allowed on the PC card to cater for any special purpose sircuitry. ;

L. DOCUMENTATION AND TESTING

R e L S N,

The foregoing sections have shown that the software generation task can be reduced by functionally partitionig
the hardwure and software, and how this might be achleved in practice. However, this sofiware still has to

be free of errors and there is still a need for rigid specification, documentation, test and acceptance
procedures., It is interesting to note the parallels between the computing philosophy ocutlined above and a i
general purpose analogue computer., This suggests a possible dccumentation and test philosophy based on
conventional analogue practice which should ens.re maximum visibility to all concerned (see PFig. 6).

Following design, analysis and simulation, ccntrol laws are normally specified by functional block diagrams.
This form is readily ccnverted inio & full computer specification by identifying the function of each

rocessing moduie and the details of the intercvunnzctions both between modules and external to the computer '
Eincluning analogue signal levels, scale factors etc). Each module functional specification can then be
converted into a program and thence into discrete hardware. The documentation of this module would comprise
the program listing (fully comrented), a definition of the mcaling and truncation of all intermediate
variables, and a definition of all possible context deperdencies,

e o MG s
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A test procedure is required for each module, independently d2rived from the module functional specification,
This will be a hardware functional check to be performed on the proceseing module after programming by
stimulating the inputs and monitoring the outpute. The tests will exercise all inputs, internal variables
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[ . and outputs over their full range of amplitude and "requency and will check for correct operation of all
conditional instructions.

The test procedure sexrves both to verify the software and to check that the prosessor has been correctly
: ) programmed and is functioning correctly. Since the check out is fully comprehens.ve there 1s no need
fcr separate software verification procedures based on emulations or other computer bamed procedures.

: The complete computer would be functionally tested in a similar way, testing all input/output interfaces,
all communications between modules, all mecdes of operation etc. but without having to repeat the exhaustive
software checkout since no module can affect the correct functioning of any other module,

' This reliance on functional specification and test promises to reduce the magnitude of the doocumentation
task, and the increased visibility of the testing process should give improved confidence that the final
product vwill operate consistently and correctly.

S CURRENT APPLICATIONE

Of meveral applications teing pursued, the most challenging involves the Royal Aircraft Establishment's
Fly-by~Wire Hunter aircraft which is currently being operated Jointly with British Aerospace, Brough, on
a flight dynamics research programme. This aircraft is currently fitted with a quadruplex analogue
active control system. It is hoped that by gradually introducing a number of processors into this system 4
the multiple asynchronous microprocessor congept can be proved, while at the same time enhancing the . 1

B e ;s
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capability (in terms of flexibility and complexity of control laws) of the existing system and it is
intended that a number of the processing and interfacing caris be configured as a duplex, fail passive,

computer which can be used for ad hoc extentions to the existing control law computations. Initially :
this will be of limited authority but, as confidence is gained in the system, more comprehensive control

functions can be added wita wider authority until all of the present analogue control law implmentation I
) has been replaced. This should provide a considerable increase in utility of this aircraft as an

3 experimental vehicle, and should expose these asynchronous multiprocessor concepts to & realistic test 4
of their practicality at an early stage., If this work is successful it is then anticipated that further 3
extension of the digital computing sections could allow the failure management, built=-in and pre-flight
test functions {currently implmented with analogue techniques) to be updated until a multiprocessor
configuration was achieved which would be fully revresentative of a production flight control computer

configuration,

rmsen e e

In addition to the above flight control applications there is a need to investigate the maintainability
] ) and survivability of such a system and its possible application to, and implications on, tne rest of the
¢ aircraft systema, With this in mind a laboratory breadboard of a multiplex system is being developed to
4 atudy the flight control system architecture per se and also to provide a weans of emulating a flight
control system to study the interaction with other systems. This work is therefore closely tied to other i
development work involving avionic and hydraulic systems rigs. ¢ 3
I
i
1
1

6. FUTURE _DEVELOPMENTS

If, in pursuing these research tasks, the experimental system provides the flexibility amnd performance 3
that is hoped for, then the next step would be to develop a fully engineered version, At that stage !
the choine of processing module would be reassessed in the light of experience, bearing in mind the less
severe constraints on hardwars development. In particular the choice of analogue comunication between
uodules, while being expedient in the short term, is inappropriate for an engineered system since it
reintroduces some of the problems of analogue systems: it is succeptable to noise pick up, gain variation
and offset problems, and can have significant variation of characteristics with temperature. A possible
alternative is to use a small dual port memory as en asynchronous bufter between each pair of processing
ot modules. There would then be more freedom of choice of processing module and this could make other ;
desirable features such as hardware multiply avaiiable, This type of development would result in a chip :
set rather than a single chip processing module. This could conveniently be integrated using a hybrid :
packaging technique to retain the ocircuit design advantages of a simple modular structure, '

It is worth noting that this asynchronous multiprocessor concept with its very simple communication
structure lends itself to investigation of other advanced flight control system concepts. In partioular,
the 2920 Signal Processor with its analogve interfaces should be eminently suitable for implementing
hybrid dissimilar redundant control systems where a very simple analogue control loop is augmesnted by an
advanced digital controller (such as that suggested by GILL F 1979). Also it has been suggested that
asynchronous multiprocessors can be organised into a fault tolerant system by the addition of suf table
control structures (ref. Segall et al 1979). While this obaervation was aimed at general purpcsw 3
computing, a simple variant on the theme could allow an equivalent philosophy for dedicated control ;
procesaing to be developed, The aim of these studies would be to reduce the level of redundancy required !
in order to achieve a high integrity control scheme. Both schemes operate by accepting degraded operation !
of non essential functions following a failure. If the level of redundancy required could be reduced,
then it could allow the considerable benefits of active control techniques to be applied to a much wider

range of aircraft.

et sl il o
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7.  CONCLUSIONS

oot L L,

Digital computation of control functions using a multi redundant system offers considerable benefits over
& similar analogue system. However, it introduces some difficulties of its own, particularly 1) a lack
of visibility of system operation which complicates ‘esting, 2) time delays and synchronigation problems
which complicate the control law design and the coding, 3) possible occurrence of obscure context

dependert failures.

A multiprocessor flight control computer allows the software task to be partitioned into convenient

medules thus easing the generation and testing of suitable code. It allows these modules to run in parallel
thus reducing time delay problems. Asynchronous communication over dedicated linke provides visibility of
operation so aiding test and acceptance procedures. Finally, a restricted instruction set can substantially
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reduce the nurber and type of possible context dependent problems.

Thus the task of develcping and testing flight control software shovld be considerably eased. This is
particularly important during the development phase of & new aircraft, or for an experimental control
law/flight dynamice research aircraft. The disadvantages of this approach are that it does not provide
a minimum hardware solution and it does not lend itself to high order matrix computation., These fuctcrs
are probably not significant given the rapidly reducing costs of hardware and the contrcl techniquee
which are likely to be used in aircraft in the forseeable future. The asynchronous multiprocessor
apprcach may even introduce hardware berefits by developing a number of modules which can be readily
cenfigured for a wide range of high reliability control applicatioms,

If in total these factors reduce the software task to a level which can be supported "in house" then major
imprcvements should be possible in the rate at which results can be achieved from and improvements
incorporated into a flight developrent programme. In practice these potential advantages can only be assessed
on the basis of practical experience and it is hoped that the research programme cutlined abtove in both
ground rig ard airborne applications, will demonstrate these.
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FUNCTIONAL VERSUS COMMUNICATION STRUCTURES IN MODERN AVIONIC SYSTEMS
by

K. Brammer and A. Weimann
ESG Elektronik-System—-Gesellschaft mbH
Postfach 800569
D-8000 Muenchen 80
W. Germany

SUMMARY

In the early design stages, an avionic system is functionally structured into subsystems,
which in turn are broken down into functional units (eguipments). With conventional tech-
nologies and with signal wiring connections of the single source, single drain type, the
functional structure, which is of the hierarchical type, could more or leass be carried
over to the implementation stage. Especially the line ruvlaceable units comprising an
equipment were typically wired to the master unit of the equipment which in turn mainly
communicated with the master unit (e.g. computer) of the subsystem.

In recent years this situation has been changing rapidly. Current technological trends
that have major implications on avionic system structures are:

- For intrasystem signal transmission, networks of wires connecting a single transmitter
with a single receiver are being replaced by bus systems with time division broadcast
characteristics.

- Progress in data processing technology renders it feasible to assign digitally per-
formed functions to much lower system levels than before.

- In aircra“‘t design, control configured vehicle {CCV) technology implies the substitu-
tion of mechanical means for flight critical functions, such as basic stabilization
and primary flight control by electronic data processing and transmitting means. This
has raised unprecedented requirements on reliability and survivability of avionic ele-
ments and intrasystam communication,.

- In the field of navigation sensors, mechanically stabilized units like inertial plat-
forms, Doppler radar antennas, flux valves etc. are replaced by strap down sensors,
where the decoupling of sensed information from the aircraft's rotations is now per-
formed by electronic data processing.

- Scanning of directional sensors, e.g. fire control radar, ESM or ECM antennas, is in-
creasingly performed by electronic means.

In the paper, the implications of the accompanying increase in functiornal and communica-
tion interfaces on avionic system structures are analyzed. Especially the passage from
functional design to implemented communication structure of the airborne electronic sys-
tem is scrutinized. The distributed organisation of an avionic system, the realizaticn of
which is greatly simplified by bus type intrasystem signal transmission, is compared to
the conventional hierarchical system organisation. Advantages and drawbacks of both
organisations are reviewed especially with respect to interface efficiency., cabling
requirements and the typical topology of avionic systems,

The topic is illustrated by the structures of a conventional and a modern avionic system.

1. INTRODUCTION

The paper addresses a problem which has arisen in avionic system design due to technolo-

gical changes in intrasystem communication. In the past, there existed a great degree of

correspondence - at least in principle - batween the process of functional structuring

of an avionic system in the design stage on the one hand, and the communication structure
within the system on the other hand. Both structures were essentially of the hierarchical

type.

In the meantime the advent of aew concepts and technologies has brought about a certain
discrepancy between the functional design of the system and the implementation of intra-
system communication. Whereas the former continues to be hierarchical, the latter treats
the terminals as peers.

It seems that this trend has been produced mainly by three developments: the simplification
of cabling, e.qg. by the use of bus systems, the distribution of processing to equipments
and line replaceable units, and the transfer of network and switching concepts from tele-
communications to computer networks and, subsequently, to avionics systems.

In this paper an attempt is made to draw a partial resumé of the former clean situation
as a reference and to discuss the new mixed situation with respect to this background.
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2. HIERARCHICAL ASPECTS IN AVIONIC SYSTEMS
2.1 Avionic System Design Principle

The basic method and the main steps of avionic system design have becomc fairly well
settled and generally accepted. Here we sum up the major features as a starting point
for the subsequent analysis.

The task of sy<i.om design is always subject to the relevant general constraints such as
national or in{@knational standards, practices, logistics procedures and so on. These
are not always -xplicitly listed by the customer, rather their knowledge is often impli-~
citly expected to be part of the professicnal experience of the designer.

The specification of the avionic system requirements is the bhasic dccument containing
the technical points of reference for the system to be designed. It defines the task,
the functions, the performance and the modes of the system, together with its technical
boundary conditions (e.g. given constraints regarding weight), the physical operating
environment, the external interfaces (e.g. communicaticn, power supply, man machine
interface) and the availability parameters.

In response to this input, the designer conceiv.- and nominates the system parts which
in combination are potentially able to fulfil. the requirements.

The interrelation of these parts is then manifested by the design of the system archi-
tecture and organisation, i.e. by creating the structure and assigning functional res-
ponsibilities and management authorities to hardware parts, software parts and the operator.

This step must be accompanied by the definition of all arising interfaces between the
system parts., Now the fulfilment of the requirements can be checked. If the result of
this cycle is positive, one is able to specify the system parts.

Usually the decomposition of a system requirement or specification into a set of partial
specifications is not done in a single cycle, but in repeated cycles at successively
lower system levels.

Although in reality it is not always possible to follow this design procedure in complete
purity, this so-called top down design philosophy has become widely accepted as a basic
guideline.

2.2 Functional Architecture

Figure 1 illustrates the top down design process and the resulting functional architecture
of the avionic system (LAUBER, 1980).

At the top level we have the functional description of the overall system. At level 2 the
decomposition into functional areas or subsystems has been performed. The intermediate
level between levels 1 and 2 describes the interrelations between the system and its
subsystems and between the subsystems amcng each other.

The next cycle leads from the subsystem level to the level of functional modules, impie-
mented either by software or by hardware, i.e. equipments.

From a systems engineering point of view it is necessary to proceed until the level of
construction modules, at least in case of hardware, because the installation and power
supply of all black boxes or line replaceable units must be defined.

The breakdown of black boxes internally, e.g. into circuit boards, is ucually left to
the equipment manufacturer and is of no concern in the following discussion.

It is evident from Figure 1, that the top down design method automutically produces a
hierarchical set of specifications for the parts of the avionic system.

2.3 1Interface Efficiency

It is remarkable, that one finds much agreement on the top down procedura, but scarcely
any philosophical or useful theoretical justification for it. The feeling exists that
it i3 an economical and efficlent way to proceed.

In Fig. 2 this point is confirmed with respect to the maximum number of potential inter-
faces among the members of hierarchies as compared to peer grcups.

As a reference we use the total nuwber of possible mutual interfaces in a peer group.
This number R is obviously equal to N(N-1)/2 where N is the nurber of members. The number
of lnterfaces in a hierarchy is calied R,. Dividing by the referance number R, we ob-
tain a measure of interface efficie ¢, .BRAMMER, 1981). This measure is plotted in Fig, 2
ag a function of the number of mewbe.'t, N, in a double logarithmic scale. Two parameters
are used to describe the hierarchy: the number of levels, and the number of asscciates to
each master. For simplicity the latter parameter is kept equal for all masters, regard-
less of the levels.
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If the hierarchy has only 2 levels, the number of all possible mutual interfaccs is equal
to the case of the peer gromp: the interface efficiency quotient remains at one.

In all other cases the hierarchy features less interfaces than the peer group. The inter=-
face efficiercy improves uniformly and markedly along with the growing number of levels,
with the shrinking number of associates and with the total number of members, as shown

by the set of decreasing lines.

For example, consider a group with the order of 32 members. In the peer group or in a two-
level hierarchy they have about 500 possible interfaces. The same number of members, orga-
nised in three hierarchical levels with 5 associates to each master, have only 20% or 100
possible interfaces. If they are organised in 5 levels with 2 associates, the number of
interfaces reduces still further to 103.

The efficiency effect is clear and uniform. It is the more marked, the larger the group
of members is. For instance, with 1000 members, the number of interfaces in hierarchies
with up to ten associates is 1% and less, compared to the unstructured case. Although the
hierarchy has weaknesses in other respects, its interface efficiency can be judged as an
advantage,

Clearly the number of interfaces is a measure for the labour involved in complete system
specification down to component level, to contract negotiations, acceptance test and sys-
tem integration activities.

2.4 Classical Communication Structure

In the classical avionic system, the implemented communication structure basically fol-
lowed the hierarchical system organisation, see Fig. 3., This was essentially due to:

~ the prasence of a single central computer as the only resource for digital general pur-
pose data processing,
- the prevalence of single source-single drain data and signal transmission lines, and

~ the co-use of tne ceatral computer as a central message switching node in order to
allow multi-user interconnections despite the absence of bus technology (CARRUTHERS,
1979).

For example, in classical avionic systems, the subsystem functions are centralised in
the form of subprograms within the main computer. These subprograms communicate via
dedicated links directly with the associated ejuipments. In Fig. 3 the equipments in the
upper line belong to the navigation subsystem, the first four equipments in the lower
line belong to the d.splays and controls subsystem, etc.

The wiring shown goes between the central computer and the master unit of each equipment.
Their associated line replaceable units (black boxes) are in turn wired to the equipment
master unit.

This way a hierarchical communication network, formed by pcint-to-point links, is
realised, reflecting very well the functional specification tree.

Of course, also here, reality is not as pure as the idea. For reasons of reliability,
damage resistance and speed the considered system has numerous additional cross connec-
tions which were skipped here.

3. CURRENT TRENDS INFLUENCING AVIONIC SYSTEM ARCHITECTURE

For several years the architecture of avionic systems has been changing. Fig. 4 illus-
trates some of the major contributing trends and their interrelationships.

3.1 Technology

The left hand side of Fig. 4 shows examples for relevant technological advances. In the
field of sensors they are phased arrays and strap down components, in the area of intra-
system transmission we had the advent of high reliability electronic links, and in the
processing field, high speed switching elements and large scale integration are being
introduced.

3.2 Concepts and Equipments

The center part of Fig. 4 presents a number of current concepts and ecuipments influen~
cing systems arrchitecture. To name some of them, we have for instance

~ Abstract implementation of coordinate frames

- Fly-by-wire

- Active stabilization and electronic control

- Multiplexed tcansmission, and of course

~- Microprocessors and -comp.uters.
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3.3 Impact on Systems

In the context of this paper, the given factors have three main impacts on avionic sys-
tems, shown on the right hand side of Fig. 4. They are

- A substantial increase in signal and data processing
- Time division multi-source multi-sink transmission
- Locally distributed computing.

All three points have led to importai.t structural changes: On the one hand, distributed
computing aliows location of processing functions at their proper level and frees the
designer from concentrating them artificially in one single computer, see e.g. (SYRBE,
1978), (CIMSA, 1979) or (BRAMMER, 1980). For example, the navigation subprogram can be

' removed from the central computer and allocated to a navigation subsystemgs computer.
This type of distributed computing tends to spread out the functional hierarchy more
visibly throughout the system topology.

On the other hand, distributed data processing in the strict sense implies not only
physical dislocation of processing functions and associated hardware, but also distri-
burtion of the data base and of the control function (ENSLOW, 1978), (SCHERR, 1978).
This philosophy tends to diminigh the hierarchical features of system organisation.
Furthermore, the transfer of network and switching concepts from telecommunications to
computer networks (WECKER, 1979) and from there to avionic systems gives rise to peer-
T like communication procedures. Finally, multiple access, broadcast type transmission

d systems render economic implementation of direct all-to-all communication feasible.

4. COMMUNICATION IN AVIONIC SYSTEMS
4.1 Available Communication Structures

The communication structures available for avioric systems today are summarised in

i'ig. S, Eack line in the structures represents a connecting cable. A simplex connection
contains one basic channel of the type shown top left, consisting of a transmitter, dri-
- ver, line and receiver. A full duplex connection contains two such channels in opposite
¢ . directions. ° "~ duplex connections use the same line for both directions.

Every avail. structure shown allows the direct or indirect communication among all
participating :its, indicated as solid dots arranged in a circle.

Using conventional point~to-point links, usually bit-zerial and word-serial,

one obtains first the classical structures:

~ Network of direct all-to-all connections

~ the star

~ the layered star.

E?iibottom part of Fig. 5 shows the newer structures using links with broadcast capa-
ty:

; - the matrix formed by a set of single-source, multiple~sink channels, e.g. of ARINC
1 429 standard ("DITS")

- the multiple access bus, e.g. of MIL 1553 standard ("MUX"), carrying multiple-source,
multiple~-sink traffic in both directions on a time division basis.

4.2 Cable Lengths

Suppose that all the structures shown in Fig. 5 are implemented with links of the same
technological state of the art, especially with the same serially transmitted data bit
rate. Remember further that all structures allow messages to be transmitted from each
unit to any other unit. Then, the main advantage of the bus structure above all the
other structures is the minimum cable length. This is evaluated in Fig. 6 and comparesd
to the cable length of the layered star, the star and the all~to-all network (BRAMMER,
1981).

For simplicity and generality, the topology of participating units has been assumed
here as a uniform distribution at the points of a square raster with constant raster
width in both orthogonal directions.

The graph shows the total cable length necessary to allow complete communication among
all units. This length is normaliged by the raster width and plotted against the total
number of units on a double logarithmic scale.

For instance, for 20 unjts our model yields a total cable length of 450 times the ras-
ter width for the all-to-all network, as compared to 19 for the bus. The cabling effi-
ciency of the bus gets even better for larger numbers of units.

Note however, that the star and especially tile liéyered star are doing fairly well in
this respect, too.

Seeme L e o o : . R N e
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4.3 Topological Considerations

We have seen that from a functional point of view the layered star structure is the most
natural. In Fig. 7 this is case A, shown top left in idealised form. In this example,
there are two subsystems: One constituted by round units in the upper half and the other
consisting of square units in the lower hialf. Each subsystem, in turn, has three equip-
ments. Each equipment has a master unit and three associated units.

Nowadays, we can assume computing functions down to tne equipment level. Then this topo-
logy represents a federated computer architecture, where distcibuted cumputing is allo-
cated according to disjunct topological areas.

However, in a real avionic system the functional and topological ordering of the line
replaceable units Aoes not coincide as in case A, but is mixed up as in case B. The
cabling pattern then no longer follows the layered star, but is better characterisged as
a superposition of several stars. So the advantage in cable length of the layered star
cannot be realised.

The same mixed configuration of LRU's as in case B is shown in case C and it is obvious
that from the cabling point of view the bus structure is not affected by the mixed topo-
logy of functional units. But the question is, whether it is really desirable that a
single-level bus connects all units down to LRU level.

4.4 Mcdern Communication Structure

From Fig. 8 which represents a typical interconnection structure of a modern fighter
avionics system, one can conclude that not each and every black box is connected to a
common bus. The avionics bus - dumlex for redundancy - picks up the subsystems such as
navigation, fire control, flight control and some equipments that have many communica-
tion interfaces such as air data, multifunction keyboards and displays.

Thus, the present state of the art in avionic systems still features hierarchical levels
of communication: the central system control, the subsystem computers and some equipments
communicate on an upper level bus, while in the lower levels either dedicated buses
(triplex for flight control) or even still star type cables are used.

5. CONCLUDING REMARKS
5.1 Advantages of Multi-Level Communications

It has been noted that a common single~level bus running past all units of the system has
the minimum possible cable length of all communication structures. Nevertheless, a multi-
level structure persists due to the following advantages:

- Hierarchical structuring is efficient, not only in the design process, but also for
contractual specifications, configuration control, acceptance testing, integration,
maintenance and retrofit.

~ This efficiency is mainly due to the reduction of the various sorts of interfaces
between units, especially the communications interfaces.

- Generally the data rate decreases when we pass from lower to higher levels, therefore
transmission capacity problems are alleviated by layering.

- Vice versa, reliability requirements often differ among subsystems, giving rise to dedi-
cated components and links.

- Functional autonomy of equipments is maintained if they have dedicated lines to their
TLRU's. Otherwise, equipment development and acceptance testing would be greatly com-
plicated. ’

These points call for at least two levels of communication: System bus, and links between
the LRU's constituting an equipment. An intermediate third level may be adeguate for some
subsystems such as flight control.

5.2 Characteristics of Distributed Processing
Distributed processing has become cost-effective and is increasing in avionic systems.
The advantages are

- The hierarchical decomposition of subsystem functions can be directly implemented,
yielding a set of smaller programs instead of one large central program.

- Autonomy of subsystems is possible, with better reliability and survivability charac-
teristics.

- In conjunction with the use of communication buses the central computer is eliminated
as a central ncde or switching element.

-~ Locally dispersed computing resources with reconfiguration capability are reducing
vulnerability.

However, due to communication delays, the interplay of distributed algorithms is less
deterministic than in the centralized case in that each part must operate without a
complete instantaneous knowledge of the state of all other pu:-ts.
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Furthermore, even in a diatributed system of avionics application programs it is neces-
sary that their functional authority and the validity of data bases be system~wide managed.

Lot e Ee 2R L,

5.3 Remaining Problems and Outlook

We have secen that at the present atate of the art we live with an - at least partial -
discrepancy between functional and data flow structures in avionic systems.

Bus systems make a logical connection of all-to-all type easily feasible, allowing mul-
tiple use of sensors for improved system performance and/or distribution of processing
resources for better failure or damage resistance. But, even if we restrict this to
equipment level and above, the system desijyn has to cope with a substantial growth in
communication interfaces. The overlay of functions versus communications must be subject
; to careful book-~keeping, timing and control. This problem is aggravated by dynamic recon-
[ figuration capabhility of the functional system architecture, ¢specially when time-

: critical, high-priority functions require a high degree \f confidence to be served at

! the right moment without delay.

Regarding avionic system operation we note the parsistence of three types of central sys-
tem elements

- System functions synthesizing top level applications on the basis of subsystem functions
- Control of distributed data processing
- Control of bus transmissions /)

i

These elements remain critical and need special redundancy protection and installation
considerations.

T et e e

Summing up briefly, it might be suggested that for avionic systems the conflicting goals
P of deterministic system behaviour requiring few functional and communication interfaces
! and tight control on the one hand, and of enhanced availability requiring distribution
of resources, reallocation of functions and many communication interfaces on the other
hand, require more research and piractical experience in orde. to harmonise them and to
establish new adequate and generally accepted avionic system implementation procedures.

PR
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CONTINUOUS RECONFIGURATION IN A MULTI-MICROPROCESSOR
FLIGHT CONTROL SYSTEM

LT. SCOTT L. MAHER AND CAPT. STANLEY J. LARIMER
Air Force Wright Aeronautical Laboratories
Flight Dynamics Laboratory
Wright-Patterson AFB, OH
U.S.A.

SUMMARY

Recent regsearch at the US Air Force Wright Aeconautical Laboratories (Flight Dynamics
Lab) has resulted in the development of a pro: ising microprocessor based flight control
system design. This system is characterized by a collection of cooperatively autonomous
distributed microcomputers interconnected by an arbitrary number of common serial
multiplex busses. Each processor in the system independently determines its assignments
using a simple algorithm that dynamically redistributes system functions from processor
to processor in a never-ending process of reconfiguration. This approach offers several
potential benefits in terms of system reliability, and the architecture in general
incorporates many state-of-the-art features which promise improved system throughput,
expandability, and above &all, ease of programming.

The Continucusly Reconfiguring Multi-Microprccessor Flight Control System (CRM2FCS)
represents a significant data point in multi-processor control system research. Promising
ideas from a variety of references have been included and integrated in its design. 1Its
laboratory implementation will provide a demonstration of the extent to which these ideas
may improve throughput, reliability, and ease of programming in £light control
applications,

1. INTRODUCTION

Before beginning a detailed discussion of the Continuously Reconfiguring
Multi-Microprocessor Flight Control System (CRM2FCS) it is desireable to briefly 4'ucuss
the design goals and philosopby which lead to this architecture. The original objective
of this in-house effort was to develop an Air Force understanding of and capability in
the area of multi-microprocesor flight control systems. It was determined that a high
risk-high payoff approach could be taken in an effort to advance the state-of-the-art
while achieving the primary objective. The approach taken was simply to make a trade off
between low cost hardware and simplification of software as well as to distribute control
to its extreme in an effort to obtain data as to the extent to which the potential
advantages of such a system could be achieved. Other goals were to reduce overall
hardware, software, and life cycle costs of flight control systems while maintaining high
reliability and fault tolerance. Design considerations alsoc included expandability for
integrated control applications and reconfigurability to meet future self-healing
requirements.

The concept of continuous reconfiguration is developed in some detail in this paper. An
example is given and the advantages of such a scheme are discussed briefly. Autonomous
contsol is introduced as an ideal method for controlling the continuously reconfiguring
architecture, The requirements of a continuously reconfiguring autonomously controlled
multi-processor architecture are listed and a novel bus contention scheme and the concept
of wvirtual common wmemory are put forward as the means of meeting the requirements.
Methodes tor simplifying software programming are also discussed as well as a description
of a software simulation of the CRM2FCS. Finally the actual laboratory implementation of
the architecture and the testing and data gathering facility to support the architecture
are described.

2. IHE CONCEPT OF CONTINUQUS RECONFIGURATION

Continuous reconfiguration is defined as a scheme whereby the tasks to be performed in a
multi-processor system are dynamically redistributed among all functioning processors at
or near the minor frame rate of the overall system. This approacl allows continuous spare
checkout, 1latent fault protection, and elimination of failure transients due to
reconfiquration delay. By treatiig reconfiguration as the norm rather than the exception,
failures can be handled routinely rather than as emergencies, resulting in predictable
fajlure mode behavior. Using this approach, it is projected that the need for unscheduled
system maintenance may be greatly reduced.

2.1 Example Of Continuous Reconfiguration

An example of what is meant by continuous reconfiguration is shown in Figure 1. A system
of 9 processors is shown performing 6 different tasks, A thru F during three consecutive
time frames. During the first time frame processor 1 is doing task B, processor 2 task D,
processor 3 is a spare, and so on. In continuous reconfiguration the tasks are
redigtributed among the processors at the beginning of every time frame. For example, in
the second time frame , there is an entirely different assignment of tasks to the
processors. This reassignment is accomplished by having all of the processors that are
currently healthy in the system dompete for task assignments. If a processor fails during
any time frame, it is no longer able to compete for task assignments. In Figure 1, if
processor 4 failed during the second time frame, then during the next frame, it would not
be able to compete for task assignment. The 6 tasks which need to be done are taken by
healthy processors and the 2 remaining processors become spares. In other words, a
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failed processor simply disappears irom the system without any other processors being

aware that it is gone.
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Fig. 1 Continuous Reconfiguration
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2.2 Advantages To Continuous Reconfiguration

There are a number of advantages to the continuous reconfiguration approach. One of these
is the ability to have continuous spare check-out. In traditionl systems, where certain
processorse are permanently assigned to the apare gtatus until they are needed, it is
possible for one of these processors to fail while functicning as a spare. When a system j
processor fails and the failed spare is brought on line, catastophic results may occur.
The technique of continucusly switching which processors are acting as spares allows
every processor in the system to be constantly exercised. If a processor does f.11, it is
identified quickly and removed from the system, before it can cause any problems.

Latent fault protection is another advantage of the continuous reconfiguration approach.
Latent faults are a class of faults that are characterized by the partial failure of a
processor. The processor failure is not immediately detectable and may impede the :
systems ability to recover from any subseguent failur:s. Continuously exercising each ]
processor, 80 that over a period of time every processor performs every task, forces a
partially failed processor to reveal its failure and be removed from the system before it
can interact with another partially failed pro.essor in a manner that may preclude
recovery. :

1 A third benefit of continuous reconfiguration is zero reconfiguration delay. Most systems i

1 that are reconfigurable treat a failure as an emergency requiring special processing.

3 Thig produces delays and possible fajlure transients in bringing the system back to its

- fully operational state. With continuous reconfiguration there is no emergency. The i
systes reconfigures naturally every time frame so that, when a failure occurs, the system ;
takes it in stride and with no failure transient. ;

2.3 Controlling A Continuously Reconfiguring System

A unique approach has been taken to controlling the continuously reconfiguring
multi-microprocessor flight control system. One approach would be to have a central
controller in charge of assigning tasks, handling reconfiguration and controlling bus
access. A high throughput computer would be needed to meet the overhead requirements of
the continuously reconfiguring architecture. A central controller alsc introduces the
possibility of a single point failure in the system requiring redundancy incompatable
with the architecture and reducing the reliability of the continuous reconfiguration
concept.

ami
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An alternative approach to a central controller is autonomous control. This is a scheme i
whereby each procesior independertly determines its own next task based upon the current
aircraft etate. 7Tnis can be better understood by using an analogy. Like the traditional
centrally controlled computer architecture, a company has a president who has several
vice-presidents working for him, The president has access to all information concerning
the states of the company and an understanding of how the company should function. He
uses this knowledge to allocate tasks to the vice-presidents and arbitrate any
disagreements that may arise between them. Autonomous control is analogous *+o replacing
each of the vice-presidents with a clone of the president. The vice-i :esidents are now
capable of making the same decisions that the president would have made under the same
circumstances, since they Lave access to the data that he had and would go through the
same decision making process that he would . The need for the president has been
eliminated and he has been replaced by autonomous vice-presidents. This approach is not
practical in the human world because no two humans think alike. In the computer world,
however, it is a realizable possibility.

-

PAPEVASTITR I




Core oy o -

e

T N .
LLQ dcn e tanis

2.4 Requirements Of A Continuously Reconfiguring System

In order to make continuous reconfiguration of autonomously controlled processors
possible, several requirements must be satisfied. These requirements linclude an efficient
bus contention scheme, availability of system state information to all processors,
availability of all software to every processor, and a well-defined se% of task
assignment rules. The methods used to meet each of these requirements in the laboratory
implementation are covered in some detail. Considerable attention has alsco been devoted
to techniques for simplifying the actual software design for use in this system. Such a
scheme is clearly required if the organization of a large number of processors,
performing complex flight control algorithms, is to be implemented without total chaos.
The two-dimensional task assignment chart is introduced to simplify this process.

The first requirement is for a set of well defined task assignment rules. Each of the
processors must have an efficient means of determining the next task that it is required
to do., There must not be an opportunity for any processor to conflict with other
processors in the system and cause system failures, The task assignment rules are a
function of the operating system software (Larimer, S.J., JUNE, 1981) and are discussed
further in section 5.

A second requirement is that all processors must have all software. In order for a
processor to be capable of doing any system task at any point in time, it must have the
software available to do the task. This may seem unrealistic at first but a study of the
trends in memory technology reveal that memory will continue to double in density every
year to year and a half for at least five years and that the cost of merory will
continue to go down. This trend makes supplying all software to every processor a
reasonable trade to get the benefita offered by the CRM2FCS.

A third requirement of this system is that all processors must have all data. A processor
must be capable of doing any task at any point in time and in order to perform most tasks
must have access to data concerning the present state of the aircraft. This requirement
could be met almost ideally by the common memory architecture illustrated in Figure 2b.
The common memory is accessed equally by every processor in the system. This is excellent
from a software standpoint, since the programmer can treat the common memory as though it
were & part of the processor's local memory. Simply reading variables from a set location
and writing results into other locations.

Althcugh ideal from a software standpoint it is very poor from a hardware standpoint. The
number of processors that can access the common memory is limited to the number of ports
which can realistically be interfaced to it. This approach also introduces complex timing
problems when more than one processor actempts to access the common memory at the same
time.

A more suitable architecture from the hardware standpoint is the common bus structure
also shown in Figure 2a. The processors in this architecture are interconnected by a
common serial bus. The number of processors that can be attached to this bus is virtually
unlimited and the interface hardware is relatively simple. This is a poor architecture
from a software standpoint, however, since data must e formatted before transmitting it
and must be processed as it 1is received. T.is architecture is also subject to bus
contention problems when more than one processor attenpts to transmit data on the bus
simultaneously. The fourth requirement is, therefore, that an efficient bus contention
scheme is needed.
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3. VIRTUAL COMMON MEMORX

An architecture which meets all four requirements was developed in the Flight Dynamica
Laboratory. It is a combination of the software advantages of the common memory
architecture and the hardware advantages of the common bus architecture. The best of
these two archiectures form the basis of the virtual common memory architecture
illustrated in Figure 2.

One of the key advantages of the virtual common memory architecture is that it is a
: common bus architecture which looks like a common memory architecture to the software
' programmer. In this architecture each microprocessor simply interacts with a set of
information in the virtual common memory that contains all necessary information about
the state of the aircraft. This area of the virtual memory is called the state
information matrix or SIM.

ey s

! The SIM is a mathematical abstraction used for organizing all the available information
‘ about the state and environment of an aircraft., With this structure all microprocessor
functions can be broken down into three sets. The first set of functions takes raw sensor
data, the F functione in Figure 3, process, filter, and store it in designated locations
within the SIM. Another set of functions, the H functions in Figure 3, take information

which is in the SIM, process it, and refine it to produce higher quality data. This could 7
be, for example, a Kalman Filter algorithm. This refined data is stored back in the SIM
where it can be accessed by other processors in the system. A third set of processor 7
functions take information from the SIM and processes it for use by the outside world.

These are the G functions in Pigure 3 and are typically control laws or display

algorithms. With the SIM structure, all software programming for each microprocessor has -
been reduced to a simple set of interactions with the state information matrix.

3.1 Implementation Of Virtual Common Memory

The implementation of the virtual common memory in hardware (shown in Figure 4) utilizes ]
the simple serial bus structure described earlier. Each unit interfaced to the serial
bus is referred to as a processing module. A processing module consists of a
l microprocessor, lccal memory, transmitter, receiver, and a copy of the state information

matrix. Each processing module independantly determines which task it must do next. It
accesses variables from the local SIM which are needed to do a computation. When the
i algorithm has been completed, the data and its location in the SIM are placed in the
processing module's transmitter buffer. The transmitter circuit automatically searches
for an available bus and transmits the information. Every processing module receiver,
including the originating processing module, receives the data. Through a direct wmemory
access, the data is then placed in the proper location in the SIM of every processing
moduie. Each processing module maintains an identical copy of the SIM., As far as any
processing module is concerned, the SIM appears to be entirely within its own local
memory. Using this concept, processors connected by a simple serial bus appear to share i
one common memory containing all information in the system. This greatly simplifies
programming by reducing interprocessor communication to simple reads and writes on a
virtual common memory. {
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Fig. 4 CRM2FCS Architecture Elements

4. BUS CONTENTION

The virtual memory concept requires a great deal of information transfer and required a
new approach to bus contention which would allow the processors to compete for access to
a serial bus without the need for a central controller. The bus contention scheme
presented greatly increases the efficiency of bus utilization and allows improved
bandwidth, expandibility, and reliability over other conventional approaches. The
technique also permits simple precise scheduling of transmission on the bus to virtually
eliminate the effects of transmission delay in the system (Larimer, S.J. and Maher, S.L.,

MAY, 198l1).
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Time on the bus is divided into a series of consecutive intervals (slots) that are
exactly one transmission word long, 32 to 46 bits, depending on word tormat. At the
beginning of each new slot, all processors with something to transmit compete to fill
the slot with a word of data. The resulting massive bus collision is then resolved using
a technigque called “transparent contention®. Transparent contention is a scheme which
allows collisions to occur on the bus in a manner such that only one of the colliding
messages survives. All other messages are automatically suppressed without wasting & bit
of transmission time during the collision. As a result, the slot is filled with one and
only one data word and competition moves on to the next available interval.

In order to insure that there is always data available for transmission, each processasor
maintains a queue of words to be transmitted. As each new piece of data is generated; the
processor places it into a first-in-first-out (FIFO) buffer. A special tranamitter
' circuit is then responsible for emptying the FIFO onto the bus by competing for time
slots with all other transmitters in the system. This frees the processor from
transmission considerations and ensures a constant flow of data onto the bus.

The essenrtial elcments of the bus architectue are shown in Figure 6. Three processing
modules are shown interconnected by a common serial bus made up of a data line and a
: clock line, Each processing module consists of an ordinary microcomputer with two 1I/0
g devices including a broadcaster (B) and a receive (R). These devices use the signal on
f the clock bus to synchronize data transmission and reception. "T" in the figure is a bus
f termination circuit which gunerates the clock signal, terminates the clock and data

SN busses, monitors the busses for faults, and generates synchronization pulses for the

: processing modules. ‘J

+ rof
olosh pull-up reaistor
b |T[ dote .
] A BY R BT R
mioro micro micro transmitier collector  [Genemitier] & CORC.,,
transistor transistor
{
Fig. 5 Essential Architecture Elements Fig. 6 Transmitter-Bus Interface

Access is granted to the bus on a first-come first-serve basis. While one transmitter is :
L actively using the bus, a logical BUSY signal is maintained which prevents any other
transmitter from initiating a broadcast. This eliminates many conflicts, but the
probability is high that more than one transmitter will initiate a transmission on the
same clock juvlse, When this happens, some other method is required to resolve the bus :
contention pro»lem, !

The solution is found by observing exactly what happens when two transmitters try to put
data on the bus at the same time. Figure 6 shows each transmitter connected to the bus by
an open collector transistor buffer. When the transmitter puts a "0" on the bus, the
output transistor drives the bus to ground. To transmit a "1" the transistor is turned
off, allowing the bus to float high, because of the pull-up resistor. As long as no
transistor is turned on, the bus will remain floating at a logic "1"; but if any of the
transistors turn on, the bus will be pulled to the logic "0" state.

The net result is that logic zeroes have an inherent priority on the bus. Because a "1"
is transmitted by releasing the bus while a "0O" is transmitted by actively pulling the
bus low, units transmitting zeroes will always have priority over those sending ones. 1
This fact is used to develop an effective arbitration scheme.

The key to this scheme is that every transmitter constantly compares what it is trying to
put on the bus with what is actually there. 1In the event of a disagreement, the
transmitter simply stops sending, waits for the bus to become available again, and
retransmits. This approach works because when any two processors disagree, only one of
them detects the disagreement and drops off. The other transmitter does not detect the
difference, because of the logic level priority, and continues its transmission. No bus
time is wasted because one message is completed without interruption.

This concept workc equally well for any number of transmitters in contention. If ten
transmitters start simultaneously, they all send in parallel until there is a
disagreement. Any transmitter attempting to send a one will then drop off while those
transmitting zeros will continue. Eventually, only one transmitter is left and it
completes its transmission, completely unaware that it has been contending for the bus.

sl Sk & el et dee e

4.1 The Multi-Bus Concept

The bus structure described represents a very simple way to interconnect a large number
of autonomous processors without need of a central controller. However, a single bus
system of any kind is generally unacceptable from a reliability standpoint. At the very
least, some form of redundancy is required in order to avoid a potential single point
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failure in the system. Also, a single serial bus has a finite bandwidth. A large system
of processors exchanging rassive amounts of data can quickly saturate such a bus, making
further system expansion impossible. The approach proposed in this paper is ideally
suited to expansion to as many busses as are needed to meet the reliability and
throughput requircements of most any system (Larimer, S$.J. and Maher, S.M., MAY 1981),

This bus design. has tremendous flexibility. There are four serial busses used in the
in-house program. The bus bhandwith of the system is exactly four times that of a single
bus and can be expanded still further with additional busses. Reliability is also
advanced. Selection of an alternate bus in the event of a failure is instantaneous and
automatic because processor to bus connections are continuously reconfiguring.

» 5. TASK ASSIGNMENT RULES
Another major outgrowth of this research has been the development of a method for
programming a multiprocessor syster (Larimer, S.J. JURE,1981). Programming a system
consisting of a large number of processcrs can become a formidable task. Figure 7a shows
how four different processors might be programm:é in a multiprocessor system. As each
rrocessor completes a task it goes on tc the next oae immediately. This approach is very
difficult to synchronize. For example, processor 2 does task A while processor 4 does
task B and processor 3 does task C which combines the results of tasks A and B. 1f task B
is not completed before task C is started, then task C will not have “he information
n- >ded to complete its calculations. This possibility can greatly increase the complexity
f the software. A second problem with “his programming technigque is that it is very
difficult to modify. If a block of software requires r¢ ri: 3 0  new algorithm must be
added, the timing of the software wiil he chanage. svnonronic.otion must be maintained )
between certain tasks and guarantesing the synch: iization requires revalidation of all
software. One small change in the 30 *vwar— will therefors influence t'e software

validation of the entire system.
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Fig. 7 Segquential vs. Quantizeu Software

- 5.1 O antize + & ftware

1 ¢orogramming method us¢ in the RM2rCS s called the quantized-software approach
.1gure 7b . Every task 3 give an int ‘ger number of :ime intervals depending upon the
length ot thaz tasli. Tn thiy part: \r s\viiem, everv interval is cne millisecond long
ard i: referred to as a millim . vver task ir some integer r wmber of millimodules
long. lor example, a tasi which . normal iy be e.ecuted in 1.5 milliseconds would be
allocated “wo ~umplete millimod 3. Thus allcws control uver which tasks are being
performed during any agiven ruierva f time, so strict synchronizztion of tasks can be
maintained. Data 1is exche .4yed only on boundaries hetween mi.limodules. A a result, the
availability o' data or subsesuent tisng is known dwring any millimodule. Since
softwa e modul 28 arc the same si”e, they can be eaugily iaterchanged.

LIS

The qrantized—software app: »aut obvioussI'y sacrifices some throughput, for example a 1.5
milli :cond -~ask now -aka2f twe villisecHnds, and therefore ie less efficient than the
cont: wous : vftware metho.i, Fowever, tae sacrifice in throughput is well Jjustified in
view of the added softw:ire simplic:-y and flexibllity. Additional throughput can be added
by s mply 2.ding n:.re processing m dules while ma:ntaining the goftware simplicity and

ler (bilit .
5.2 Re.vafigur tion

The reco. figusation :aze of the CRMI?CS is once every ten milliseconds. This rate is
and cou.d be azjusted tc a sluwer rate if data gathered from tle laboratory

ar~itrary
is lement -ticn indizates the rate 1is unnecessarily high. Figure 8 shovs how
r-confic.catiorn fits .nto the software scheme. A processing module health status table i

15 main-alied 1n :ne STM, B~ the beginning or every major frame the status table is . !
"zeroed cut, as i1 vask A of Pigure 8b. } J
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Fig. 8 vVolunteering and the Volunteering Status Table

Each processing module must then perform a self-check to determine its own health, task B
in Figure 8b. The processing module then broadcasts its health status which becomes
available in the SIM processcr status table. A processing module cuan then determine the
task set it will be required to do during the next major frame, task C in Figuire 8b. To
do this, each processing module accesses a specific variable in the SIM. The random
nature of the variable is used to generate an offset pointer which every processing
module uses to determine its starting point in the SIM processor status table. In Figure
8a, for example, the random offset pointer 1is pointing at processing modi.e 7.
Processing module 7 will therefore do the highert priority task set during the next major
frame. Processing modules 8 and 9 have "0" status indicating they are unavailable for
task assignment. Processing module *en will determine that it mvst do the second highest
priority task set since 8 and 9 are unavailable. Similarly processing modules 1 and 2
will do task sets 3 and 4 and processina modules 4 and 5 will do task sets 5 and 6. This
process is repeated every major frame so that task sets are randomly distributed among
functioning processors.

}
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Fig. 9 A Generic Task Assignment Chart

5.3 Task Assignment Chart

The task assignment chart is used to organize all of the one millisecond software modules
(millimodules) to be used in the system (Larimer, S.J., May 198l1)., Figure 9 illustrates
how the task assignment chart is organized. The vertical axis represents the number of
processors in the system, The horizontal axis is divided into one millimodule time
increments (milliframes). Ten milliframes form a minor frame and 3 minor frames complete
a major frame. Every task is performed at least once duriny every major frame . To use
the chart, the progammer first divides a function into a group of subfunctions each of
which requires at most one millisecond to execute. Each of these subfunctions is then
designated as a millimodule and placed in a convenient location in the task assignment
chart. In Figure 9, function F(fl, f2, f3, f4) executes in four consecutive time
intervale beginning with milliframe .. Function G(gl, g2, g3, g4, g5) executes entirely
in parallel) requiring five processors and only one milliframe. Function H(hl, h2, h3,
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and h4) first generates intermediate results in parallel and then combine3s them in
milliframe 6, Various iteration rates may be achieved by assigning the same function
several times in the same chart as shown for function K(kl).The task assignment chart is
used to easily distribute tasks among available processing modules.

5.4 Tagk Assignment Compiler

The task assignment compiler is currently under development at the Flight Dynamics
Laboratory. It is an automated method for generating the task assignment chart. The
task assignment chart rapidly becomes difficult to work with as the number of processing
modules increases and the number and variations in rate of tasks .ncreases. Data
concerning each of the millimodules is input to the task assignment compiler and a
complete task assignment chart and data file for the processinc modules is generated.

Millimodules are given an identification number or name when they are written., The
millimodule identification, required repetition rate, and data 1/0 requirements are input
to the task assignment compiler. The compiler automitically rearranges millimodules to
make room for new millimodules and indicates to the usir whether additional processing
modules will be required to accomplish all tarts. Tnie method of simplifying the
software development will further reduce the worklcac for the programmer.

5.5 Software Simulation

A software simulation of the CRM2FCS hardware and software is also being developed at the
Flight Dynamics Laboratory. Thre simulation outjwt will be compared to results obtained
from the laboratory system, Discrepencies netween the simulation and laboratory system
will be analyzed and improvements made to tne simulation or laburatory system as required
until the simulation can be verifyed &as accurstely representing the laboratory system.
The software simulation can then be used to predict the cffects of changes to the
baseline system without having to make changes to the system itself. The effects on
throughput or bus utilization of adding more processing modules, using a different
microprocessor, or changing the transmitter-receiver hardware can be studied. The
software simulation is expected to be a valuable tool for analyzing advanced

configurations of the CRM2FCS.

6. LADORATORX IMPLEMENTATION

An effort 1is under way at the Flight Dynamics Laboratory to demomstrate the CRM2FCS
concepts. Data gathered from this in-house program will be used to quapzify the extent to
which expected benefits and limitations of the architecture are met. A vsalidated software
simulation of the system will then be used to project throughput, fault tolerence, and
other quantifiable characteristics of modifications to the baseline hardware.

The in-house facility, shown in Figure 10, has been designed to waximize data gathering,
data reduction and programmability of the system. The basic CRM2FCS architecture is
represented by the six processing modules and bus termination circuit shown in the
figure. The remaining blocks represent interfaces to an aircraft simulator, cockpit CRT
display, data gathering, data reduction, and software development facilities.
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A processing module consists of a 16-bit microcomputer, 8 Kwords of memory, and custom
engineered transmitter, receiver, and state information matrix (SIM). At this writing a
processing module has been successfully implemented in the laboratory. The custom
circuitry uses small and medium scale integrated circuits. A future effort could put the
circuitry in a single large scale integrated circuit.

The block labeled "68000" is a state of the art 16-bit microcomputer which will be used
for a single axis digital aircraft simulation., It 1is interfaced through a dedicated
processing module to demonstrate one method of accessing external system components such
as sensors and actuators. A follow-on effort will use an analog computer to do more
complex aircraft simulations.

The block marked "8002" is a Tektronix microprocessor development system. It is used for
both hardware and software development. It has a direct hardware interface to a
processing module's microprocessor. The "8002" can download software to the processing
modules prior to a simulation run., After the simulaton the "8002" is used to make
software modifications based on data gathered during the simulation. The new software can
then be rapidly downloaded and the system brought up for another run.

A Radio Shack TRS-80 is used in conjunction with a dedicated processing module and custom
serial bus interface to gather data during a simulation run. The processing module is
used to monitor the history of specific variawles in the SIM. The serial bus interface is
used to gather raw data from each of the four serial busses. The TRS-80 then processes
the data to pinpoint specific problems and to determine bus utilization and system
throughput. The TRS-8Y also controls the RS-232 switching circuit. This circuit allows
data and software to be easily transferred between the major components of the test
system.

The real-time display controller is a microprocessor-based color graphics display which
can be configured as a cockpit instrumentation display or be used to monitur the system
status real time. The display controller also has a joy stick input which caan be used in
more advanced aircraft simulations. The real time display controller also demonstrates
the ease with whch the architecture can be interfaced to other aircraft subsystems.

The Tektronix 4081 is a stand alone minicomputer with graphics capability and a link to a
main frame computer. It is used for further data reduction and display and for the
development of complex software for the millimodule compiler and software simulation.

7. CONCLUSION

There are three major potential benefits to designing a flight control system using the
methods described in this paper. The first is simply expandability as system needs grow.
It is a well known fact that frcm the time the first model of a particular aircraft rolls
off the assembly 1line until the last one lines up in mothballs, there are inumerable
changes that occur to the system. This causes excessive increases in cost due to the
difficulties of changing hardware and adding new software to the system. The CRM2FCS
approach has the potential to greatly reduce these costs. Modularity of both hardware and
software allows considerably easier expandability.

A second potential benefit is the ability to reduce software costs which are the single
biggest <cost in digital systems today. By designing an architecture that is inherently
easier to program, the cost of programming, maintaining, and updating software can be
greatly reduced. This contributes to a reduction in life cycle costs.

The third potential benefit is the possibility of greatly reducing unscheduled
maintenence. With the present redundant flight control computers, if any component of the
computer has failed the aircraft is not allowed to take off. As digital technology
progresses, it will become practical to confiqure the CRM2FCS with as many as one hundred
processors. If only 40 processors are required to accomplish the necessary processing
there will be 60 spare processors. A requirement that 20 spares be available before the
aircraft takes off leaves 40 processors that can fail oefor2 the aircraft is grounded.
When scheduled maintenence occurs, any failed processors can be replaced. Since it is
unlikely 40 processors will fail between maintenance periods, the goal of no unscheduled
maintenance can be closely approached.
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EXPERIENCES WITH THE EXPERIMENTAL

FFM - MCS
Hermann v. Issendorff

FGAN - FFM
Kdnigstr. 2
5307 Wachtberg-Werthhoven
Germany

SUMMARY

The FFM-Multicomputersystem was built up to investigate the utilization of microprocessor
based computing networks for the various requirements of embedded data processing and
control in military systems. Being designed as an adaptable building block system the
FFM-MCS is serving as a testbed for research on distributed data processing. The paper
deals with a general method for the design of process-networks followed by the adaption
of adequate hardware-nztworks. Several types of messages are introduced for efficient
and safe communication between autonomous process-modules. Finally some i{mprovements

of the hardware building block system are presented.

1. INTRODUCTION

Distributed systems seem to be particularly well suited for embedded data processing
and control in military applications l1ike airborne systems. Apparently * :re are numer-
ous advantages which make distributed systems preferable to conventional monolithic
systems.
Some attributes seem to be of particular importance to airborne systems:
Distributed systems can be designed as a network of autonomous computers. A network
of this kind constitutes a good base for the construction of fault tolerant, fail
soft and damage resistant urchitectures.
Distributed systems can be built up with only a few types of different components
which may even be massproduced commercial products. This may result in ecasier main-
tenance and repair as well as in lower hardware costs.
Last not least there are indications that software production, i.e. programming and
testing could become much easier than with conventional data processing systems. The
same holds for subsequent extensions and chanyes of the network. Hence there {s a
good chance that l1ife-costs of distributed systems can become considerably lower.

On the other side the science of distributed systems is still in an infant state. Even
the term distributed system is not rigidly defined yet. There is no profound knowledge
how to control a network of autonomous nodes. The data transfer in a distributed
system of this kind will be greatly increased compared to monolithic systems. It is
not clear so far if this problem can be sufficiently solved or if it presents a severe
restriction to the utilization of distributed systems. There isn't any design methodo-
logy available and there exists no language which supports programming of autonomous
processes and their communication. The promising aspects on the one side and the
unsolved or even undetectad problems on the other side gave rise to a long term research
project at the FFM in Werthhoven. Some of the ma’‘’n results of this work are presented in

this paper.
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1t begins with a description of the general approach to decompose the data processing
task of a given application, the formation of a network of process modules and the
adantion of a hardware network to the network of process modules. Paragraph 3 describes
the hardware building block approach and the experimental FFM-MCS (Multicomputersystem).
Paragraph 4 deals with the important subject of communication especially with the def-
tnition of messages and simultaneous message execution. Improvements of the hardware
building block system which increase flexibi{1ity and decentralization will finally be

discussed in paragraph 5.

2. THE DISTRIBUTED SYSTEM DESIGN APPROACH

The first step towards a distributed system consists ¢f a decomposition of a data process-
ing task into a set of functions which are interrelated by their input and output para-
meters. This first step resembles very much that of Mascot (Mascot Suppliers Ass.,1980).
But while our functions are nearly identical with the activities of Mascot, we do not
introduce IDA's (Intercommunication data areas). A function is not a welldefined ob-
Ject. It 1s likely that this object has a minimal interface in relation to its com-
plexity but that may not be true. A function may be further partitioned, as vice versa
adjacent functions may be combined to one function. The final size of a function will
be confined later by the features of the hardware network. An example of decomposition
is shown in figure 1. Simple as it is it shows already how a processing task can be
executed by macropipelining to increase the throughput (Hindler, ¥., 1973). In general
a data proucessing task will be decomposed in many more functions resulting in a more
complex network. Functions in separate paths are independent and hence may be executed

in parallel.

Process Chargcteristics
o Autonomous processatie portion of o given DP-problem
o Sequental program
» Suppled with all resources durng runtime
» Unambiguous name

Process Module Structure

Head: Name Priority, Size
Butter : Stote. I5Kernel intormation lelegroms

Dota ond Working Space

Progrom and Subroutines

Figure 1: Functional decomposition Figure 2: Characteristics and structure
of a process

In a next step each function 1s realized as a sequential program and embedded in a
process module. Any conventional higher order language suitable for the kind of ap-
plication may be used for the internal programming of a process module as long as the
special characteristics of the process module are taken into consideration. A process
module is selfcontained and autonomous. Figure 2 shows the process characteristics
and the module structure. The only way how & process mndule can be accessed is by
messages from other modules. Vice versa a process module cannot access anything else

i

W

R NP SN

et DM Nk o e



! T
!

i 10-3
but another process module. Hence any data base or a device must be emhedded in a
process module, Such a process module is called a monitor. A}l functions of the op-
erating system are represanted as monitors too. Monitors are not as mobile as ordinary
process modules are. Figure 3 represents an example of a process-network.

Communfcation between process modules takes place by sending or receiving messages
(Walden, D.C., 1972). The sending and the receiving process must agree to the message
before the transfer is actually executed. This message concept makes the processes
' really autonomous and protects them against erroneous information from other processes.
Communication by messages will be treated in detail later on. But it may be mentioned
that tha message type being 1introduced in the language Ada is no- sufficient and has

to be backed up by other types of messages.
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Figure 3: A typical process-network Figure 4: Building block system I
What has been constructed up to this point is a pure software-network. There is nothing
v said so far about the hardware system into which the software-network is to be loaded
and where it is to be processed. Indeed the software-network could be loaded into any

: computer system no matter if it is a single processor architecture, a multiprocessor
architecture or even a computer-network. This independence of the hardware architec-
ture represents an ideal base for reconfiguration. On the other hand it allows to
adapt the hardware architecture to the requirements of a given application. This
could be particularly beneficial if the hardware would be composed from a building
block system consisting of a few and highly standardized components.

3. THE EXPERIMENTAL FFM-MCS

A building block system with a high degree of flexibility on which our research is g
based has been described earlier (v. lIssendorff, H. and Grinewald, W., 1980). Figure & ]
and 5 depict the main features. The hardware-network can be adapted to a given pro- 1
cess-network in two levels. At the higher level autonomous computers (nodes) can bhe

! ) interconnecte: by channels {(lines) to an arbitrary network, 1.e. to a network with an
arbitrary number of nodes which are interconnected in an arbitrary manner. The channels
are only necessary in a logical sense. Several channels can always be combined to ohe
bus if this is desirable. No other difficulties would arfse from this but possibly a

bus contention problem.
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At the lower level each autonomous computer can be equipped with several processors,
memorvy modules and peripheral controllers besides of the communication 1inks which
serve for the interconnection of the channels.

In general a process-network will not have an equal flow of information between pro-
cesses. There will be groups of processes which communicate heavily while others will
have a rare or small data transfer only. For efficiency reasons these groups are pref-
erably clustered in one node or at least in nodes which are directly connected. A node
which contains several processes should of course be equipped with several processors.
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Loz RO cmucnuRe 3——
O :process €L : Comm. Link
@:05 - Kernel SMO: System Message Device
P :Processor MOS : Microcomputer Dev. System
Figure 5: Hardware building block Figure 6: Some configurations of the
system I FFM-MCS

The experimental FFM-MCS is constructed in very much the same way. Some restrictions
and some compromises had to be accepted because of the utilization of commercial
products, Base of the building block systems is the SUE-minicomputer from Lockiced
Electronics which has a bus-oriented architecture and can be extended up to 4 proces-
sors. Figure 6 exhibitis two different configurations. Each node has its own operating
system kernel. This kernel handles several types of supervisor calls, e,g. calls ta
allocate processors to processes which are ready to be started and calls to control the
communication with adjacent nodes. The set of operating system kernels represent the
basic operating system of the network. Figure 7 depicts the logical system structure
which displays the different layers and the kind of communication between them.

Bootstrapping of the MCS is done stepwise. It begins with a node which is resat by hand.
This node then resets, loads and starts his neighbour nodes, which then do the same with
their next neighbours until the whole system is bootstrapped. It does not matter where
the bootstrap begins provided that the first node has access to a data base where the
basic operating system is stored. But each bootstrapped path must be predefined in order
to guarantee that each node will be bootstrapped only once.

e i
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4.  COMMUNICATION

A conventiona’ monolithic computer permits direct access to (globally defined) data from
any point of a program. Hence data do not have to be moved very often. This architectur:
offers high speed performance but suffers from a rather low reijability because one sin-
gle fault may destroy the whole system. A distributed system instead permits high system
protection on the expense of a high load of data transfer. The control of the data trans-
fer between autonomous process modules even increases this 1oad. Communication is thern-
fore the most important topic of distributed systems and has carefully to be investigated
in order to preserve system efficiency. The results which we got in this area are prasen-

ted in the sequel.

Type 1 Open input Message

W (P- Name, M-Name, M-Length, |
RO (M-Name, M- Length 1)

QERATIR

Type 1 Open Output Message

[ [H AT EIHIT

MESSAMLS WO(N-Name, M- lenglh,l)——:]

R{P-Name, M- Name, K- Length, 1)
oPERATOR’ Talth- DEVICE-
] [t o] [l
T
sve sve

e sve we Type O Privale Message
— D L = (Yo, Mo, - org ) =
= ARGWA |
TypeidV Telegram {unsynchronized }
® SISIEN SuiPeRT TASES W1 (P- Name, M- Name. 1)
Figure 7: Logical System Structure Figure 8: Types of Messages

Several types of messages are needed for practical reasons 1ike efficiency or safety,
] b They are listed in figure 8. Each message consists of a write-instruction ir one process
' and a corresponding read-instruction in another process. The parameters in the brackets
of both irstructions will be checked prior to the information transfer. The first type
is called an open input messagce. This type corresponds to the rendezvous concept intro-
duced in Ada {Ichbia,l).D.,et al., 1979). An open input message is necessary if there is a
receiving process which has to accept messages from severai other processes. The receiv-
ing process is waiting until another process contacts him by transmitting his name and
where he 1s located. This results in a most extensive protocol of 4 steps (figure 9).
The next message type called open cutput message is complamentary to the first type.
This message takes care of sending data to any process which applies for them. The
sending process dnes not know the receiving process until he gets a call which tells ‘
him name and Tocation of the receiver. The protocol consists of 3 steps only.

A third message type is called private message. This type has been used in CSP (Hoare,
C.A.R., 1978). Here both the sending and the receiving process know each other by nome ]
and location. This message permits a maximum of protection against unauthorized access

by other processes., The prutocol consists of 2 steps as the open output message.

AR i

The open {nput message 1is mainly useda to transfer information to monitors, e.g. to a
printe.-monitor. The open output message on the other hand serves for the case where
several processes compete for one message which is repeatedly produced by the sending
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process. This arises for example {f a process {s duplicated for speed or fault tolerance
reasons as indicated by dashed lines in figure 3.

The open output wmessage is introduced for efficiency reasons only. It could be sub-
stituted by an open Jinput message followed by a private message with an expense of
7 steps altogether. In this case the open input message serves merely to transmit name
and location of the calling process. Even the private message could be substituted by
the public input message yet with the disadvantayes of a tonger protocol and a reduced

protection.

SENDER RECEIVER Process A B L
PS Pn . ] L)
W(Bl RIC)  ®iA)
Ivoe I Message Announcement to 0S-Kemnel (PR } Wi RW W)
ype L Send Request b 0S-Kernel {PR) . . .
Messoge o PR o
Acdmowiedge to 0S-Kernel {PS) A
Send Request to 0S-Kernel (PS) | %
Pr e

Type I
od [ Message to PR 1 j

" Acknowledge to 05-Kernel (P5)

rd
Telegrom 1o PR Dependency Structure:/” \
eV rowiedge fo D5-Kernel (P5) E\ﬁ
/

Figure 2: Message Transfer Protocols Figure 10: A Simple Case of a

Deadlock-~Ring
Message type IV is called telegram. It permits transwmission of information without
the control of the receiving process. Only one word at & time can be transferred. This
message type is very useful 1if information is to be transferred which is not time
critical. For example such information could be either slowly changing data from an
input device or status reports or the like. A telegram has a two step protocol.

There is another important subject with regard to communication which has to be discussed

too. By inspecting an average process module it will be recognized that there are a

group of several message-instructions at the beginning and another group at the end of
the module with only some of them scattered in between. The instructions at the begin-
ning will mostly be read-instructions, collecting input parameters from other processes
while those at the end will mostly be write-instructions which distribute the results to
other processes. There seem: to be no reason why the read- and write-instructions should
not be executed in the same sequential order as all other 1instructions in a process
rmodule. And indeed no problem will show up as long as there are only a few processes
with 1ittle communication between twnem. But this changes with an increasing number of
processes especially if they are closely interrelated by messages.

A first problem will be that the software-network becomes trapped in deadlocks though it

may be logicaliy correct. The effect is explained in figure 10. The messages in each of

the processes A, B and C are assumed to be independent with regard to their contents,

The message cannot be executed however because of the order of the read-

structions. Each process tries to execute the instruction of a different message and is
therefore. This results in a deadlock-ring

waiting for signals from another process,
which {s being dispiayed in a dependency structure.

and write~ in-

o .o RIS s
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A deadlock-ring can easily be broken up by reversing the order of messages in one of the
processes. Moreover, they are easily to be detected. Checking for deadlock-rings could
even be done during compile-time if there were a suitable higher order language for
distributed systems.

But there ., another procblem which arfses with ihe sequential execution of message-
instructions: The average delay time of a message increases with *he number of all
messages in the oprocess-network. The overall delay time becomes proportional to the
number of processes {f the processes are interconnected to a ring (figure 11).

Consecutive Simultoneous E
Communication Communication “le=pl S
{worst case) (best case) S 3 Processar ‘\)
/
4 processes:
A-B o A-B (-0 //
¢« B—( A~8—-C,0
. C-D 4 Pracessor with L’E Private
A 0 odditional Memory ] Memory
6 processes /{
A=-B o o o o A—8 C—0 E-—F hriphem[ ' \\W Penph
e B—( o o o A-B—=C D—E/F Controfler | Device
. C—0 o o \
. D—E o
. E—F \ B ﬂ
A-————————F Communicotion  \ E i
W8 Nesage Tansier beeen And B Lnk -
aither direction
» . Process is waiting

Figure 11: Consecutive and Simultaneous Figure 12: The Janus Processor
Communication

Both protlems, the deadlock problem and the delay time problem would be solved if instead
of executing the message-instructions sequentially this could be done simultaneously.
This wou'd reduce the total time for communication in the example of figure 11 to 2 steps.
Simultancous execution is possible only for messages which are not related with regard
to their information contents. This means that the contents of one message must not be a
function of another. This restriction could not be easily impiemented but there is an-
other stronger restriction which is clear and simple. It holds under the additional
assumption that there will be a separate buffer for each message-instruction: Blocks
of messages i.e. sequences of message-instructions which do not contain any data pro-
cessing may be executed simultaneously. Simultaneous execution means that the block of
message-instruction will be repeatedly run through until all messages are carried out.

5. IMPROVEMENTS OF THE HARDWARE BUILDING BLOCK SYSTEM

The FFM-MCS is operational for about two years and has been used for several test
applications. Detailed measurements have been carried out to localize bottlenecks
and to get a better insight into the dynamic behavior of the system. (Neumann, G.,
et al., 1980). The evaluation of the results led to several improvements with regard to
the hardware structure. These improvements are currently being implemented in a new
experimental system which wiil be used for further research on reliable, fault tolerant,
fafl soft and damage resistant systems. The name of the new system is MICON (Micro-
computer-network).

i b,
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Key component of this building block system will be a microprogrammable microprocessor
with two identical {input/output ports as his main feature (ffgure 1ZzZ). Because he can
look and act to two sides at the same time he is called Janus-processor. The second
port can be used in three different ways. It can be used for the connection of private
memory which doubles the adress space of the processor. But even more {mportant ft
allows to store code and data which are heavily accessed and reduces the nodal bus con-
tention thereby.

With a peripharal device connected to the second port, the Janus-processor would serve as
an intelligent device controller and could take care of the appropriate device-monitor
at the same time.

The Janus-processor finds the most important application as an active communication 1link,
{.e. with the second port being directly or indirectly connected to the bus of another
node. The Janus-processor 1s able to handle the message transfer between the two nodes
all alone, a work which has to be controlled in the MCS by a complex and lengthy dialogue
between the masterprocessors of both nodes. While in the MCS the transfer of a message
to an adjacent node takes 4.5 ms plus additional 33 ps/word, a transfer in MICON wil]
probably be reduced to something 1ike 250 ps plus 10 ps/word. (Average instruction ex-
ecution time in both systems is about 3 pus.)

A new design of the node internal bus will be another major hardware {improvement.
The nodal bus arbitration will be piecewise attached to all processors and memory mod-
ules which are plugged to the bus and therefore be totally decentralized, The number of
processors which can be plugged to the bus is merely restricted by the number of open
slots and may be as high as 16.

The changes of the bus control permit to distribute the functions of the master-processor
of the MCS to all processors of each node. The contention problem of the master-processor
has such been eliminated, too.

Acknowledgement: This research would not have been possible without the cooperation of
many coworkers, Besides of W. Griinewaid and G. Neumann who have been mentioned already
before, 1 would very much iike to thank W. Jansen who is taking care of the hardware, a
contribution which cannot be valued highly enough.
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ﬁ ‘ DISCUSSIONS

REFERENCE NO. & PAPER: 1I1-6 SESSION 11

DISCUSSOR'S NAME: Jim McCuen, Hughes Aircraft
AUTHOR'S NAME: K. Shin

COMMENT: What is the criteria for the need for separate data and control buses? Can the buses
operating at 50 megabits employ contention-type protocol?

AUTHOR'S REPLY: 1) To increase data bus bandwidth or to reduce bus contention. If you don't separate
' them, all control signals (information) should be passed via data bus to processors.

2) No, not as of now. Presently we are considering the MIL STD 1553 serial bus that
has a maximum l-megabit/sec bandwidth. But, it may be feasible when the fiber optics become available
for practical use. Note that if you don't separate control bus from data bus, the 1553 bus will not
have the 1-megabit bandwidth for data passing.

t ' REFERENCE NO. OF PAPER: [I-6
' DISCUSSOR'S NAME: Dr. van Keuk, AVP member

AUTHOR'S NAME: K. G. Shin

COMMENT: How do you estimate the importance of an atomic function? I feel this can be a difficult job
in a complex system with a Yow degree of redundancy.

AUTHOR'S REPLY: Practically it is not too difficult although the decision may be to some extent
! subjective. For example, it is reasonable to give more importance to an atom function associated with
§ fiight control than to that associated with navigation.

REFERENCE NO. OF PAPER: 11-6 i
3 DISCUSSOR'S NAME: G, Scotti, Selenia, Italy
AUTHOR'S NAME: K. G, Shin

COMMENT: Ycu have shown some graphs for Bus Request Profile and Average Bus Access Delay. On what
assumption did you define the graphs and did you have confirmation of the correctness of the
assumptions via simulation or pr ctical measurements?

AUTHOR'S REPLY: Numbers shown in the graph don't mean anything significant. We assumed there are 20
bus requests over 2) time frames. This cculd be very bursty, i.e. all 20 requests during the first
frame and none thereafter; or uniform distribution during the first two time frames, i.e., 10 requests
for each of the first two time frames, and none thereafter--or one request for each of 20 time frames,
et¢., This is an arbitrary example which has a reasonable sense. Of course, bus access delay can be
computed for any bus request profile; therefore the graph in the paper has to be understood as a simple
but sensible hypotuetical example. Of course, this graph is not obtained from real measurements and
e does not have to be validated with such measurements since bus access delay can be estimated. Any bus 3
' request profile which will be procuss (or task)-dependent and a random variadle.

REFERENCE NO. OF PAPER: II-7

DISCUSSOR'S NAME: H. Timmers, AVP member

AUTHOR'S NAME: 3. Wright

COMMENT: Can you give some technical details about the microprocessor you are using?

AUTHOR'S REPLY: The main processor characteristics are outlined in the paper, its important
characterisitics for our application are its small size and high speed (more than 2000K OPS per

second)}. There have been problems in achieving the correct instruction operation, but Intel has
promised a corrected version of the device for this August.

REFERENCE NO, OF PAPER: 1]-8
DISCUSSOR'S NAME: Dr. von Issendorff
AUTHOR'S NAME: K. Branmer

COMMENT: Would it not be important to include the questicn of vulnerability into the considerations of
which communication structure should be preferred?
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AUTHOR'S REPLY: Yes, reduction of vulnerability is one of the major reasons for locally distributed
processiny and must be considered with respect to the interconnecting network, too. Consider, for
{nstance, a single cut of a transmission 1ine--in the case of the multiple access bus, you would lose
all communication; in the case of the layered star, it can mean the loss of a group of equipments; in
the case of the star, one unit {s cut off; and in the all-to-ail network, you lose only one two-party

1ine.

On the other hand, by comparing the cabling cost (see fig. 6) one can easily afford at least a
double, redundant bus, and that is usually done, Of course, the two cables should run along different
tracks separated as much as possible,

There are several subsequent papers dealing with this problem in more detail.

REFERENCE NO. OF PAPER: 11-8
DISCUSSOR'S NAME: H. T{mmers, AVP member

AUTHOR'S NAME: K, Brammer

COMMENT: Can you compare the relative benefits of the ARINC 429 bussing concept with the MIL STD
15538 bus?

AUTHOR'S REPLY: 1In the context of this paper the basic difference is that the ARINC Standard allows
only one single source to speak on a given line, which is unidirectional (simplex), while the MIL
Standard allows multiple sources to use one biodirectional (partial duplex) line on a time division
basis. So the ARINC Standard requires a separate cable for each unit that has information to transmit,
whereas with the MIL Standard all transmitting units share the same cable.

Both Standards use a single twisted and shielded pair of wires for the channel line and in both
cases the messages are broadcast to all listeners (multiple sink). The bit rate of the MIL Standard is
ten times higher than that of the ARINC Standard, but due to time sharing and control overhead of the
former, the average data capacity allocatable to the message sources connected to a MIL bus may easily
drop below the value possible with ARINC. The absence of bus access management in the ARINC concept
facilitates system specification and integration, but ARINC requires definitely more cabling (in
general, n times as much as MIL if there are n sources). Also, while the number of transmitter ports
is equal for both standards, the number of receiver ports is much higher for ARINC: an equipment
1istening to x other equipments needs only a single receiver port with MIL, but x receiver ports with

ARINC.

REFERENCE NO, OF PAPER: 11-8
DISCUSSOR'S NAME: Jim McCuen, Hughes

AUTHOR'S NAME: K, Brammer

COMMENT: [ question the future use of ARINC 429 multiplexing due to the increased number of buses
required on the latest commercial aircraft, e.g., the 767 aircraft requires over 130 buses and one
avionics black box (LRU) requires 22 ARINC 429 receivers. The Airbus A310 provides another example of

how ARINC 429 is outdated.

AUTHOR'S REPLY: I understand that this is not a question but a comment. It illustrates some of the
points in the paper, thank you.

REFERENUE NO. OF PAPER:; 11-9
DISCUSSOR'S NAME: P, A. Bross, ESG
AUTHOR'S NAME: S. Maner

COMMENT: Why do you synchronize software for multiprocessors instead of using mailboxes, where
processors can access data asyncnronously? Why did you use a serial bus for communication between the

processors instead of a paraliel bus?

AUTHOR'S REPLT: {1) The synchronization and quantization of the software is desired in this
architecture because it shows potential for simplifying development, validation, and verification of
software in a distributed system. The "mailbox" approach to data access 1s not compatible with the
continuous reconfiguration concept. The state information matrix, however, might be ccnsidered a
"mailbox" where the "mail” is delivered immediately instead of having %o go to the post office to get

it-
(2) Although a parallel bus has the potential for being much faster than a serial bus,
there are several reasons why we did not use a parallel bus. First, the number of interconnected wires

would be very large and would greatly inhibit the degree tu which the processing modules could be
physically distributed. Also, a failure in a single wire of the parallel bus would essentialiy cause

the entire bus to fail.
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REFERENCE NO. OF PAPER: 11-9
CISCUSSOR'S NAME: Alan Stern, Boeing Military
AUTHOR'S HNAME: S. Maher

COMMENT: Questions concerning failure modes: What is to prevent an “autonomous controller" to seize
~ontro) of the bus due to a failure of one of the microprocessors? What prevents one microprocessor
from writing bad data into all the SIM, adverseiy affectfug flight safety?

AUTHOR'S REPLY: (1) Autonomous control, as implemented in this architecture, has no influence over the
actual transmission or reception of information. The transmitters and receivers are independent pieces
of hardwired digital logic, designed s> that a transmitter can control only one bus at a time,

] g microprocessor ftself has no control over the transmission of data beyond supplying the data to the

! transmitter input buffer.

(2) We have several methods of "filtering out" faults from the system. These include

'self-test, hardware voting, watchdog timer, software voting, and "blackballing hy peers® where a
concensus of the other processors in the system can <liminate a faulty processor. Another method of
"fault filtering" which shows great promise for supplyirg broad coverage and reducing overhead software
is the self-checking microprocessor pair (SCMP) implemented by Honeywell in a pzrallel effort to the
; ! in-house program. The SCMP is simply a pair of tightly synchronized microprocessors configured as a
f- single processor. The outputs of each processor are compared bit-by-bit to detect faults. Any of the

“ "fault-filter" methods will offer a certain degree of coverage for the possible variations of a certain
type of fauil, in this case a processor attempting tc fi11 the state information matrix (SIM) with
erroneous information. Hopefully, the total fault filter will closely approach 100-percent coverage
for all possible faults.

S e

REFERENCE NO. OF PAPER: 1I-9
DISCUSZOR'S MAME: R. W. MacPherson, D.N.D,, Canada
AUTHOR'S NAME: S. Maher

COMMENT: Your system is highly redundant except for the clock. What happens if it failstY Do you have
"reconfigurable clocks"?

AUTHOR'S REPLY: The clock is redundant and is generated by bus termination circuits. For exampie, a
system with four buses, as we are implementing at the Flight Dynamics Laboratory, has four bus
termination circuits. Each bus termination circuit has four functions. First, simply to terminate a
data and associated clock bus for nofse suppression. Second, tc monitor both the clock and data bus
and eliminate the bus in the event a failure i3 detected. Third, to generate a 1-MHz clock to
synchronize data transmission between processing modules. Finally, the bus termination circuit
generates a synchronization pulse every millisecond to synchronize the processing modules at the
“millimodules" boundary. Each processing module has a voting circuit requiring at least two

1 : synchronization pulses be present simultaneously before accepting the pulse. The bus terminatfon
circuits also synchronize the synchronization pulses through a similar voting circuit.

W

1 REFERENCE NO. OF PAPER: 11-9
- DISCUSSOR'S NAME: B. Zempolich, USN

AUTHOR'S NAME: S. Maher

COMMENT: We have had problems with regard to where does fault-tolerant design begin and end. For
examp'e, do you include the power supplies in your fault-tolerant conceptual design? Do you consider
the bounding of your fault-tolerant design to no single-point failures?

AUTHOR'S RE®LY: The architecture descrfbed in this paper was intended to be a research effort aimed at
implementing a f1ight control computer using distributed processing techniques. The refources were not
available to study any larger segment of the flight control system, nor would it have been appropriate
to do so. Presently, there is much work Yeing done in this area. Once we have completed trade-off
studies we should be abla to urderstand the advantages and disadvantages to the many pussible methods
of implemeniing a distributed fault-tolerant computer compiex, we can then expand our efforts to
include larger segments of the system such as power supply, sensors, actuators, etc.

i e b ek

RCFERENCE NO. OF PAPER: I11-10
DISCUSSOR'S NAME: J. T. Martin, Ferranti

g AUTHOR'S NAME: H. von Issendorff i

COMMENT: The system was likened to MASCOT. A program running under a Mascot Kernal can be slowed by
real time interrupts. How does the system cope with real time {nterrupts and what effect do they have?
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AUTHOR'S REPLY: There are ro interrupts in our system. Each event coming in from the outside is
received by a monitor which then may inform other processes by sending messages.

REFERENCE NO. OF PAPER: 11-10
DISCUSSOR'S NAME: K. Shin, Rensselaer Polytechnic Institute

AUTHOR'S NAME: H. von Ilssendorf

COMMENT: Simultaneous message communication is obviously superfor to sequential one. However, there
nust be a way of handling precedence constraints existing in process communication which may force
messages to be dealt with sequentially. This is needed even for the case when the message passing is
the communication method.

AUTHOR'S REPLY: As pointed out in the presentation already, simultaneous communication is not allowed
if the content of the messages depend on each other. The precedence constraint in our system {s that
only blocks of messages with no data processing in between may be treated simultaneously. This
restriction is sufficient because each message has its own private buffer,
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SAVAN! = A DATABASE MANIPULATION TECHNIGUE WOR SYSTEM ARCHITECTUKE
DESIGN VERIFICATION AND ANALYSIS

by
Dr A. A, Callaway

Flight Systems Department
Royal Aivcraft E. “ablishment
Farnborough, Hampshire
Englsnd

SUMMARY,

i SAVANT ~ System Architecture Verification and Analysis Technique - ie a computer program developed
: witbin BAE specifically to provide a tool for automatic system design verification and analysis, Its

i application is oriented towaris loosely-—coupled bus connectsd systems but is not exclusively confined to
f these., Ficxibility bheu been built inio the program to characterise aspects of the system architecturu.

E‘ . The SAVANT program provides the facilities for interaciively initiating, extending, modifying, filing and
t

rotrieving the Zatshase, which represents various facets of the system under investigation, and for con-
figuring a system from the database information. The eystem thus configured can be analyseé in a number of
t ways and ‘ae analyses performed can suggest how the basic information should be moiified it order to correct

errorsz and inconsistencies or to ‘uprove efficienocy, ard so on., A consistent system can be further modifiod
apd tuned, although SAVANT still checks the validity of all oparations performed. Minally, the ussr is able
3 to 'firm up' the system when it has reached a satisfactory state, producing design requirements and a system
description in a form which can be input as a schedule to a bus control processor.

| 1 INTRODUCTION

3 The configuration of avionic systema has seen a move in recent years away fiom the concept of s net- i
work connected system controlled by a large central processor towards a more federaied type of architeoturw,

, with digital yrocessing embedded in various subsystems and with the majority of system data communicated by
means of s multiplex data bus. A number of recent papers have justified this approach {1, 2, 3), and the

‘ purpose of this paper is to introduce a software teclmique to assist in the design of such systenms.

The type of data bus which has become accepted for avionic system use ia that known as Mil Sta 1553B
{ (ref 4) in USA and Def Stan 00/18 (Part 2) (ref 5) in UK. This is a 1 Wbit/s commard-responsc serial buc
where the system data traffic is under the software control of a bus controller. Now the flexibility whi~h
is inherent in the partitioning of distributed procensing means that decisions taken at an early Jdesign
stage for a system will have an effect on the volume and nature of the intercommuricated cata, This,
together vith the fact that ths system data traffic is under eoftware control, demands that an integrated
‘ top~down approach ie taken to the overall aystem design. Thus, it is important (u investigate the total
system architecture at an early stage in the project so that the individual subsyatem requirements can be
hierarchically derived from a common base.

At the outset of & design study, thea, it iw valuable 'to postulate, in a reasonable amount of detail,
the operational functions to be performed by the system, and the nature of the subsystems which comprise
these functions, together with estimates of the data flowing between tke functional areas. Oiven thia
initial system breakdown, it is then postrible to subject it to analysis in order ic obtain an early incdic-
ation of the correctness of the approach. Important factorms to oheck can includes

et et s

Conformunce - whether the poutulatesd design functionally conforms to the requirement.

Conuistercy - whether data produced or required by one subsystom is conmistent witk the
capabilities or requirements of cther rubsyctems, whether there are conflicts
in the production of data, and ’o on.

Completeneas — whether all required subsystems exist, whether all required data is generated
and all generated dats is used, etc.

Faasibiiity - whether requirements placed on subsystome are within their canabilities,
whethe1r total system data low produces acceptabls data bus loading
estimates, and so on. i

It is clear that the earlier the stuge of development ut which prodloms can be identified, the less
tker cost to resolve., It is also true that the more complex the proposed =mystem, the greater will be the
potential benefits of esrly system design analysis. At the eame time, the very comy “sxity which prumpts
this approach may result in a design analysim procedurs which ¢s extremely t- ‘ious, vime-o...suming and
error-prone in itself urless automatic methede loying compute~ asmistance are adopted.

The systematic analysis of a large database is, of course, a task ideally suited to a digital oomputer,
which has an infallible memory and inexhaustitle putience. Murthersore; once the dccision is made to invoke
automatic assistance, then further benefits become appurent. As well as uaing the computer to trace errors
and inconsistencies in ths proposed system, the existence of the detadese facilitates the trying out of
different configurations, trade-offe, eto, and tLe examination of tie subsequent effects in an iterative
manner which would normally be too time consuming if done manuclly. It can also provide an automatic
documentstion service on tbe current and previous system configuretions, and tbe forms of the reports can
be many and veried according to the needs nt the consumer.
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Once the system database has beer processed automatically, further manipulation can be capable of
tuning the resultant configuration into a form acceptable to the system desigusr, and the specification of
the system data traffic which resides in the database can be used automatically to generata bus contro?

schedules and subeystem interface requirements.

This paper, then, desoribes such a system analysis program which ras been developed at RAE Farntorough
specifically to investigate problems of completeness, consistency asnd feasitility for a postulated avioric
system design. Its application is oriented towards loosely-coupled bus-connected systems but it is not
exclueively confined to these, and flexibility has been built into the program by including ressttable
parameters which specify aspects of the intercorwmnication philosorhy.

The technique is called SAVANT, which is an acronym for System Architecture Verification and Analysis
Technique. It is programmed in Coral 66 anu was developed on a Prime 300 computer system. A design aim
was to make the program as transportable as possible, using no machine dependent features in the main body
of the source by extensive use of macro definitions, SAVANT is now operational on a PDP 11/34 system in

addition to the Prime 300,
2 YREPARING TO USE SAVANT

SAVANT is an interactive program, which means that the user communicates with the program by means of
a VU terminul and keyboard, giving commends to the program which define the required operations and resp-
onding to prompts and questione displayed in order to amplify or qualify the commands, Results and reports
are received directly on the terminal as well as being able to be committed to file for future refersnce

and hard copy output.

The purpose of SAVANT is to provide an automatic tool to enable the data flows in a speculative aystem
design to be analysed ard refined in an iterative menner so that errors and inconsistencies can be corrected,
the effects of various trade-offs can be examined and aspects of the feasibility of the proposed design can

be established at an early stage.

The SAVANT program operates on & database held in memory. The database represents various facets of
the system under investigation and SAVANT provides the facilities for creating, modifying, extending,
analysing, filing and retrieving the data. The database is divided into three megments: the reference

segment, tkhe configured system negment and the messagee segment.

The 'raw' system data which the user prepares forms the basis of the reference segment of the database.
In order to generate this, the user formulates a list of potertial subsysteme whick may b6 incluced in the
system under investigation, although the term ‘subeystem' is very much depsndent on the interpretation which
the user wishes to place on it. For example, it may be a single identifiable subsystem, or it may be a
complete functional area which in reality would consist of a number of distinguisbable eubsystems. On the
other hand, several different 'Jubsystems' might in fact te different manifestations of the same eubaystem
allowing for different modes of operation. Once the data is on the SAVANT databtase, a 'system' can be
configured from whichever of the known 'subsystems' the user wishes to nominate, and not necesearily all of

trem,

BEach subsystem ie given a name which describos its function, such as 'INU' (inertial nezvigation urit),
‘ADC' (air data conputor?, 'HUD 1' (one option of the head-up display subeystem) and so on. Having decided
on the subsyrtems, the user then prepares a list of all the data itsms which are required to be received by
each and the data items which eack will produce for trunsmission to o‘her suvusystems, and each of tkese data
items is given a name. Thus, the INU might require to receoive 'BARO ALT' and 'MACH' among its input data,
and may produce 'LATITULE' and 'LCNGITUDE' among its output data,

Each data item thus specified must be provided with an estimation of its iteration (update) rate und
its precision, either required, if it is input by the subsyatem, or capable of being produced if it is out-
put by the subsystem. Also, the urits in which the data is represented may be specified.

For the representation of r~te, CAVANT uses the 'rate group' concept rather than sbsolute iteration

By this method, the maximuz data iteration rute in the system (which might, in practice, be 50, 64
or 100 Ez, say) is repremented by Hute 1, Binary subdivisione of this raute are then expressod as Rate N,
80 that Rate 2 is one half of Rate 1, Hate ) is one half of Rate 2, and so on. The decision about absolute
rate values does not have to be mude at tkie stage, and one of the SAVANT analyses <an be to inveatigate the
effect on ayetem data traffic of varying the value of HEate 3}, Rate O is used to represent a direct conrection

where the data is not transmitted on the data bue.

rates.,

The precision value is simply the numter of bite needed to represent ihe data quantity. Thus, accuracy,

range and resolution are comprchended within this figure, but it is felt thut, together with the urits
idontification, this is adequate to expreas the procision attribute of the auta quantity at this stage of

the description without introducing undue complexity.

Tho units identifier, like the subsystem and data name, is an alphanumerioc character string. If a
data quantity is dimensionless, such as a ratio, or if units are not considerea importan: to the analys.s,

then the string can te null.

To summarise, ther, in preparation for operating SAVANT, the user bas formed a description of the
especulative syatem whioh comprises a number of data flow specifiers, sach of which consiste ofy

Subsystem name

Lata item name

lata flow direction (tranrmitted or received)
Data zate

Data preocision

Cata units
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and it ie such date flow speocifiers which form the basis of the reference segment of the database The way
the data is used in analysing the system design is described in the next section.

3 THE OPERATION OF SAVANT

Depending nn the phase of operation and the state of the database, the SAVANT progrem operates in one
of seven program states. Those program states govern the “aske whioh the user is able to perform. The
seven states in which the user ocan operate are as follows:

EMPTY

OPEN
INCONSISTENT
CONFIGURED
FORMED

LIMITED
LIMITED FORMED

The full range of commands to which SAVANT responds comprises 52 major commands, some of which can be
further qualified in operation. Of this range, only a certain number are valid in each state, and the user
can at any time display the current program state and the menu of commande valid in that atate by typing
'H'. If the user types a command which is not valid in the current state, or is simply not understood,
SAVANT comments on the faot, echoing the erroneous command and reminding the ueer of the listing option.

With the exceptions of the commands 'K' and 'STOP', all major commande which the user types consist
of 3-letter abdbreviations of the actual commands, A list of all commands, showing the abbreviations and
the states in which they are valid, is given in Table 1.

Often during the course of command execution, the user is requested to supply further information,
such as subsystem or data names, file names, and the like, In such casmes, if the user's response is erro-
neous, such a8 giving a name which does not exiet, or specifying a file for reading which contains the wrong
type of information, the user is warned of the error and SAVANT returns to the command level. The program
always recovers from error in this manner and never exits without giving the user a chance to file the data
on which he has been working.

The operation of SAVANT in ezch state will now be describded.

3.1 The EMPTY state.

When the SAVANT program is started, the database area i3 initiulised and the program enters the EMPTY
state. An operation which can only be done in this stute 1s to reset any or all of tha preset system para-
meters. These are declared in SAVANT with the values characteristic of Mil 8td 1553B, where appropriate,
80 every time the program is run afresh then these values will prevail, but once they are changed within a
rua then the new values prevail until changed again or until the program is stopped.

The parameter: which can be changed are as follows, with the preset values given in parentheses:
loweet rate group (82, data word length (16 bits), number of words in a message (32), word overhead - eg,
sync, parity, etc - (4 bits), transmission bit rate (1 Mbit/s), nurber of addressable terminals (20),
typical message overhead for transfers involving the bus controller (2.6 words) and not involving the bus
controller (4.9 words).

The other operations which can be performed in the EMPTY state involve the input of data, either
directly from the terminal or from a iisc file. Data input from the terminal comprises information on the
data flow specifiers detailed in Section 2, and this is entered ir the reference segment of the database.
Multiple ontriss can be made with one comrand, and these can either be miscellaneous o specific to one
subsystem. In the latter case the subsystem name nred only be typed once. The user is prompted for each
specific piece of information required. As soon us an operation is performed which places data in the
reference scgmwent then the program state becomes OPEN.

It will be seen later that a reference database which exists within SAVANT can be waved as a disc
file, and such a file can also be input in the FMPTY stats to set up the roference segment. Aguin, this
rssults in the program state becoming OPEN.

Another option in ‘he MPTY state is to input information from i disc file directly into the messages
segment of tho databuse, in which case the program state becomes LIMITED. This is discussed in 3.6.

3¢2 The OP:N stats.

The OPTN state allows various operations Lo be performed on the refsrence segment. These fall into
several categorles: 1listing, vxtension, modification, filing and state—changing.

The listing commands allow vicious 1ists to ba produced. For sxample, one can list the referenze
datsbase entrics in tabulated form, or ony can liat only those antries which relate to a specific subayetem,
One cin produce a list of all subsystem names or a 1ist of &1l data item names. Alseo, one can trace a data
item by liating all ocourrences of that name in the reforence segment, with the appropriste qualifying
i Pormation,

With all of the listing comaminds in SAVANT, if the 1ist produced could exceod the oapacity of the
terminal screen then the user is offere’ ‘he option toc pause on each pagn so that the information can be
examined at lsisure. This option also allows the output then i> bo aborted ruther than continued to the
aest page. 1f the option is not exsrcised then the listin;; runs to completion without pausing, which may
be useful if a monitor file is being produced. All the liating commands of the OPEN state are aleo avail-

able in the INCONSIIPENT, CONFISURED and FORMED states.
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The reference segment can be axtonded by adding entries from terminal or file, using the same commards
a8 are available in the EMPTY state,

Uodification of the reference entries can take several forms. Any subsystem or data item name can he
changed, either to a completely new name or to another name which already exists on the datsmbase., This
latter is useful for resolving spelling inconsistencies, Rate and precision eniry valuer oan be modified in
the following wayss the value for a specific entry can be changed, the entry being ident.ified by the sub-
system and data names and the transmit/receiva flag; the value for a pa~tiocular data iiem can be generally
set/changed at overy occurrcnce of the data item, and any smpecified rate ~r precision value can be changed
to another value either generally throughout the reference segment, or just for those entries relating to
a specified subsystem.

A units identifier can also be changed o a new or other existing name either generally throughout
tke reference segment, or for every occurrence of a data item, or just for one specific entry.

Finally, among the modification commands, reference segmen® entiries can be deleted in two ways.
Either a specific en%ry, identified by its subsystem and data names and transmit/receive flag, can Ye
deleted, or all entries relating to a specified data item can be deleted. If any deleting operation removes
the last remaining reference sagment eniry then the program state reverts to EMPTY.

The filing commands enable the current reference segment t3 be saved in one of two ways. Either the
complete reference segment can be filed or only those entries relating to a specified subsystem, Using the
latter comnand, a library of files relating to different subsystems can be established. When the filss are
written they are provided with identification which can be chacked as part of the reading-back operation.

There are two state~changing commands available in the OPEN state. Firstly, the database can be
cleared, in which case tha program state reverts to EMPTY. The user is asked to confirm the intention to
clear sice’ any work thus far performed will be lost if no filing has taken place. The second state-—
charging command is that which requosts a system to bYe configured from the subsysctems known to the reference
sogment. Here the user can specify that all subsystems are to be included, or & 'yes/no' indication can be
glven as SAVANT offers each subaystem in turn,

Once SAVANT has ascertained the subsystems to be included in the configured system it foruulates the
configured system sesment of the database, using lnformation derived froam the reference segment. This
configured system svament contains information on the desired linking of data in the system, identifying all
transmitted data items, together with their rate, precision and units =13.7i"%i-i0=, and all configured
receivers of each data item, together with their rate, precision und units requirements.

The data thus assembled is then checked for fatal inconsistencies ~ ie, those which preclude the
formation of valid messages betwsen subsystems in the configurcd system. If such exirt then the messages
segment of the database cannot be formula:ed and the program state becomes INCONSISTENT., If no fatal
inconsistencies exist then tho messages segment, which comprises the valid traffic resulting from the data
linking operation, is formulated and the program state bYecomes CONFIGURED.

In neither of tlLese states can the reference segmen® of the dutabase be modified, since this must
alwuys correlate with the system which has been configured.

3.3 The INCONSISTENT stale.

If the program state on coniiguvaziion is found to be INCONSISTENT, then SAVANT automatically gene-
rates a list of the fatal inconsistencies which hava besn Zfound. These fall into four categories. Firstly,
the rate, precision or units requirement specified for a Aata item in a particular recciver may not be
concistent with the capability specified for the transmitter of the data item (1e, rate or precision too
high, or different units). Seconily, it may be found that a dnta item is trarsmitted by more than one sud~
system, or, tnirdly, that a subsystem both t-anwmits and recsives the same data item, The fourth tyve of

fatal inconusistency ie vwhere the number of addresaable terminala resulting from the data traffic would exocsed

the terminal limit set.

Any of these woulld preclude the formation o2 valid massage tralfic in the system, and the list is
useful in identifying whure the referenc- se yment neads to be corrected. Of course, such moiification 3ur
only be performed in the OPEN state, so the only stale~chunging command available in this state im to
dismuntle the inconsistont configured system, in which tase the atate raverts to OPEN. No modifisation to
any of the databuse structures can be performed in the INCONSISTENT state, Thne listing and filing options
of the OPEN state are still availabls, ani there are now three further listing commanda.

One of these commands ullows the user to re-~display the :ist of fatal inconsistencies, and another is
uscd to genarate a list of non-fatal inconsistencies, indicating a lack of vompletuness of data paths,
He o all data generated =nd not used in the configured system i= Yisted, as is 1ll data required but not
generated, This type of incom leteness is not fatal hecause it .oes not provide any dilemma in forming the
messeges — the incomplete patt is simply not included in the message structure - wni it may be an intent-
ional condition of this cornciguraticu. The third new list command produces a gunersal truce of data in the
configured syctem, listing each trausmitted data item, together with its tranamitting subsystem and capabi-
lities and all configured receiveras with thair requirament:z. The latter two listing commands are alss valid
in the CONFIQURED ntute -~ the tormer is not applicable since ithers are no fatal inconsistencies if the

program is in that state.

It chould be noted that the STO” commund is valid in all program states. This atops the SAYANT run
and returns control to the computer operating system. DRBufore the ~ommand is executed tle user is reguested
to confirm the intention to stop since all information on the database wil. 49 lost unless {iling has taken

place.
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3.4 The CONFISURED state.

When a system is configured from the ruference segment informution which does not involve any fatal
inconsistenoy then the program state becomes CONFIGURED, As woll as formulating the configured system ceg-
ment, SAVINT is also able to set up the messages esegment of the database,

A meusage is a package of data words passing from a specific source subsystem to a spooific sink sub-
system (a source/sink pair) at a specific rats. During configiration by SAVANT, if the total number of data
woris satisfying this reaquirement in a particular case exceeds the valuc nf the measage length setting then
more than ona actual message must be generated. Furthermore, if the precision requirement for a data item
is greater than the word length setting tben mora thrn one data word must be used to represent the quantity.
This is known as partitioning of data words, In SAVANT, “he precision value of a data item can be as high
as 1024 bits (64 x 16-0it words), so it is possibla, when formulating the decign, to comprise a large package

of data under one generic name.

Tbe partitioning of duta woids and the disposition of words into memsages is performed automatiocally
during configuration, and the result foims the basis of the messages segment. Thsre is ane ontry for each
mescage gencrated, and each entry containe references %o the source and sink subsystwms, rate, number of
words and the individual data word names, Partitiored data words are assigned subroripin so that they ocun
be individually identified during modificstion. Suck modification can be performed, and further information
added to the messages segment, by commauds nvailabls in the CONFIGURED siate.

The operations which can be performed in thio state fall intu several categories: listing, analysis,
modification, filing and state—changing. A:- well as the listing ocommands available in the OPEN and INCON-
SISTENT states, a new range of listing jptions become available in the CONFIGURED state. For example, it
is posgible to list the names of configured subsystems, arnd this list includes indications as to whether
each subaystem is connected via thoe data htus and, if so, whether its terminal address has been set and what
the value is, The terminal address is required by Mil Std 1553B protocole, ani one of the commands in this
state provides for tho assignmer’ of tlese values by the user.

Several listing options are derived from the configurcd sysiem segment of the database, For example,
one can produce a list of all source/sink pairs together with all data items passing between each, rach
data item being qualified by rate value, or cne can 1ist this information for one specified source,/sink
pair. One can also genarate a visual map of the data traffic between source/sink pairs, either displayed

on the terminal screen or direcily into a file,

Other listing commands derive their information from the messages ssgment. A summary list of messages
can be generated which tabulates, for each message, the source, sink, rate, nunber of words and retry coda,
The retry code is intended to be used for error racovery action by the bue controller in the actual system
as implemented and, since SAVANT may be used to generate bus control schedules, the user is able to assign
or change valuua of this code for any meesage whilst in the CONFIGURED state. In addition to the summary,
fuller details of all bus messages and all direct data packages can be listed, including identification of
the actual data words, or, alternatively, one can list this information for any one specific message which

nceds to be examined.

The analysis commands enable the user to analyse the message structure for the presence of message
subsets, and to calculate the data bus loading percentages which would result from implementation of the

system in practice.

The subset information is required so that the user may rationalise the message structure in prepara-
tion for the automatic generation and assignment of subaddresses which takes place when the program is
udvanced to the FORMED state. A subaddress is used to identify a periicular messsge, or package of data
within a subsystem. In other words, the subaddress value can be used as a veotor which accesses the begin--
ning of the package of data within the subsystem. This is partiocularly valid if a subsystew involves
processing and is likely to buffer i.s data in memory. In the Mil Std 1553B protocol the subaddress value
is part of tae commind word which is rent bty the bue controller to a subsystem, and it is likely that the
subaddress for a particular message will be different in the source and sink subsysteme.

Naturally, if a subsystem transmits an identical message - in terms of datu content = to a number of
different receivers, then the contents of that measage can be assigned a single subaddrsas for the source
subsystem. Furthermore, if the measage sent to Terminal 1, say, is a submet of ths message sent to Term—
inal 2 thon the subaidress for the shorter meesage wiihin the source subsystem can still he tho mams as
that for the longer message since the word count tield of the command word specifies the number of words in
the message. For this to be valid, bearing in mind that the subadiress pointe to the beginning of the data,
the words comprising the the elort meesage must be vontiguous w#ithin the longar meseage and must occupy the

beginning of that message.

The facility to list subeets is, therefore, provided tu allow ime user to examine the relevant messages
and make appropriate use of the modilication commands in omder that the automatically aesigned aubaddresses

ara as etficiently derived as poscible.

An important measure of the feasibility of a proposed syriem ‘e whether the data bus kas the capacity
to bandle all tbc required data traffic. The loading calculation command causec SAVANT to estimate the
loading perce-.cages which would result from running the system in reality, using the szet values for ovarhsads
and transr’ ssion rate. The user is requested to apecify the value in He represented by Rate 1 and to declare
which s uaystem is to act as bus controller. If none of the know: configured subsysteme is indicated then
SAVAN. assumes a dedicated controller which is not taking part in the actual mesuage traffic. SAVANT
cs culates and displays the l-ad in wordn, including overhe: "3, at each rate, ard then displays three bus

wvading percentages.

In order to comprehend thesc it is necessary to defin. e 'major frame' as tlie interval reprssented
by the lowest iteration rate in the system - ie, the iteration period of ths coaplcte mesnage repertory,
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and the 'minor cycle' as the highest iteration rate period. The first loading figure calculated, then, is
the long-term (major frame) average loud, and then two poak (minor cycle) loading figures arc dinsplayed.
The first of these is calculated on the bhusis that all rate group mossages ara initiated in tho same mino:
oyole - eg, when the system is rnset on ntart-up, oay - ard this ie the peak lumped loading. The peuk
discributed loading, on the othor haild, assumes that the initiation of the different vra’e group mesunges ia
staggered so that only the Rate 1 mussages and ikose in one of the other rate groups ocour in any minos
oyole. Thus, it may be noasible to oblerve, for axamyle, ‘hat a system whose average loading is azceptabls
low would produce an impoasibly high peak lumped loading percentage whioch is alleviated Yy distrituting the

initiation of the different rate group messages.

The use of the loading analysis on the configured system, partiocularly as the message atructure ie
modified, or as the referance segment im rationalised and the system re-~configured, provides a vital check

on the feasibility o the design approach,

Two of the modificition commands have already been mentioned - the ability to sct and change teiminal
addressss and retry ocodes, Two fuvther modification commande are available in order to allow the uwer to
obange the order of data words wiihin messages or to redistributle data worde betweean meesagus, SAVANT
formulates mossage contents in the order in which data items are encountered in the refercrnce segment, the
result of which may rot be satisfactory to the user. ¥or exumple, it may be necessary to re~order a message
in order to rationalise subsets, or partitioned data may cross tke boundary betwwen two ncosages whereas

the designer would prefer it in one message, and so on,

There are three filing cormands available in the CONFIGURED stute. The two refervnoe sogmeni filing
options of the OPEN stute are etill valid, and it is now also possible to file a messaga struoture for
future reference. In this case, only the information in the meesages segment of the dutabase is sent to
file, but this includes any terminal address und retry codo assignmenta which might have been made and, of

course, takes account of any wecsage re-foruatting.

Of the two state-changing commands, one diumantles the oconfigured system, taking the program buack to
the OPEN state, thus facilitating further refarence segment modifiocation, Tne other advances the program

to tze FORMED state.

3.5 The FORMED state

In the FORMED state tho database represenis a finulised system configuration and ie, therefore, no
longer available for modification., It is from thie state that the user is able to generate uchedule tables
for ocontrol of the system in reality, together with detuiled informatjon on dnta requirements in a subsystem

related form.

When the command ia given to form the system, SAVANT automatically gunerates the source and siz..
subaddresses for each message, muking thke bust possible use of subset information, and implants these values
in the mecsages eegment entries. There is a limit to the maximum number of subaddresscs for a subsystem:
in Mil Std 1353B, for example, thie limit is 31. Thue if, during the course of formation, a message sub~-
address value for any subsystem would exceed this limit then the user is warned, the forming fails and the

program remains ir the CONFIOURED state.

This, then, is another cbeck on the feasitility of the proposed system, and if forming failes then it
is up to the user to examine the mmesage structure and the reference segment data in order Lo reduce the
total number of messages a subsystem has to handle. One way, for exsmple, may ve to reduce the nunmter of
different rate group tranafers so that mescages may be coalesced.

The commande available in the FORMED state include all the listing and filing commandu of the OPEN
and CONFIGURED states Mut ithero are no database modification commands of any sort. There is one new listing
command which diaplays a list of all subaddress ussignments, and one new filing command which generates the

bus control schedule,

On receipt of this latter command, SAVANT requesta the user to declare which subsystem is to aot as
tac bus controller anu, as in the calculation of bus loading, assumes a dedicated controller if the name

supplied 18 not recognised, From the information in the messages szgment, a table of bus control achedulsa
is created und sent to a disc file. The format for the schedule is flexihle and can be ohanged to suit any

particular bus controller implementation although, at ihe present iime, tbhe flexibility is not paramoterised.
It is intended that this should Le so in the futu-e.

Following the mcheduls Tiling, SAVANT then sends to another diec file details on each sudsystem's
requir~mente, including ite terminal addrcss, the data contont of all subaddresses, transmitted and rec-
eived, and all direct 'ranafer information.

The only state—changing command in the FORMED avate reverts the program to the CONFIGURED atate.

3,6 The LIMITED and LIMITHD FORMED states,

It was discussed in 3,4 how ths message structure of a configured system cun be saved as a diss file,
With SAVANT in the EMPTY state, such a file can be read back inlo the meseages reogment, in which casec the
program state becomes LIMITED, which is a special came of the CONF1 3ED state,

This is because although the messages eegment exists it is backed up by neither the reclerence segment
nor the configured system segment, 8o the range of coumands avallable is conetrained. For example, the
only listing commands are those related to the messages segments the limting of uonsigured subsyeisme,
message summar,, message detaile and the data traffic map, plue the listing of data iter names, Tt is not
possible to revert to the OPEN etate because there is no reference segment. The only reversion from the

LIMITED state ie dircotly to the EMPTY state.
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In the LINITED stute, however, the analysis and modifioation commamxis of the CCNFIGURED state are
s8t1]11 available, so it is poesiblas to modify Lhe message stiructure, to perform loading analyses, to asmign
terminal addresses, etc. Ii{ is also poseible to form the system, in which case the nrogram utate becomes
LIMITED FORMED. Thue bus oontrol schedules for the revised mescage structure oman be generated., Reversion

‘ from the LIMITED FORMED state ie to LIMITED,
Figure 1 showe the relutionship of all the SAVANT program atates.

4 CONCLUSIOXS

This paper has briefly described the software technique for system analysis known as SAVANT. A full
report nn its development and application, including an examrle of its use, has been published (ref 6).

{ Future avionio syatema are certain to become¢ more iniegrated, where the individual subsystem elements
must be regarded as performing co—omerntively in order to provide their overall contribution tu the system
! task. The options open to the initial system designer are varied, and decisions made at an early stage
bave a very significant effect on the future development of thc systom.

: The volure of information which has to be considered at this early design stage, and the nature of

r . the analysis taske which have io be done, demand thet tools und techniques are developed which snable auto-

: mutic proceesing to play the part for which it is so oclearly suited. The availability of such tools and

“ the contribution they can provide in easing tle mor» menial design tasks in an unerring manner mean that
the initial deeign phase can be more speculative, trving out diffeorent ideas und gauging their effects.
This can only be of benefit to the resulting design.

The SAVANT technique describer in this paper provides a facility whioch, it i{s helieved, will prove
a useful pari of tue standard warehouse of support tools needed for the development of future avionic

syutems.

fcpyright (@), Controller HMSO, London 1981
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Table 1

SAVANT COIMANDS

Command Valid states
H -~ LIST VALID COMMANDS ., + v v » 8.0 .1 .C. M.
RSP - RESET PARAMETERS . + . « . . . E
ITE - INPUT TERMINAL ENTRIES . . . . E . O
IFE - INPUT F1LED ENTRIBS . . . .+« B, O
IR - INPUT PFILED MESSAGES , . . . + B
IEN - LISTENTRIES . + ¢« ¢ ¢ ¢ ¢ o4 ¢ s O, I .C.PF
JSD - LIST SUBSYSTEM DATA + ¢ ¢« ¢ ¢ oo O .I.C.PF
LSN - LIST SURSYSTEM NALES . . v o v v O . I .C, P,
LIN - LIST DATA NAMES . ¢ v « 4« ¢+ s o6« O .1 ,C. P,
TOP ~-TRACE DATAPATH . « v v v ¢ s »» O .2 .C . P
CSN ~ CHANQE SUBSYSTEM NAME . . + + . » O
CDN —~ CHANGE DATA NAME . . . ¢« « v ¢« » « O
CRE - CHANGE RATE ENTRY « + « « s s« ¢« &« O
CRG - CHANGE RATE GENKRAL . . + .+ + . O
CDR -~ CHANGE DATARATE . ¢« ¢« « ¢+ o « + + O
CSR -~ CHANQE SUBSYSTEM RATE . v « + « » O
CPE -~ CHANGE PREC ENTRY « « + ¢« ¢« o ¢« O
CPQ ~ CHANGE PREC QENERAL . . . . . . . O
CDP ~ CHANGE DATA PREC . ¢« . « s ¢« & « + O
CSP ~ CHANGE SUBSYSTEM PREC . .. . . . O
CUE ~ CHANGE UNTTS ENTRY . « « + o -« . O
CUQ ~ CHANGE UNITS QENERAL . . . . . « . O
CIU ~ CHANGE DATA UNITS . . « « v o =« O
DDR - DELETE DATA REFERENCE , . . + « « O
DOE ~ IELETE ONE ENTRY . . « ¢« ¢« ¢« « + . O
m-F‘IlEmTPIES...........O.I.C.F
FSD ~ FILE SUBSYSTEM DATA & ¢« ¢ ¢ ¢« ¢ o« O . I .C . F
CIR -~ CIEAR DATABASE , ¢ s o+ ¢ s o o 0 a0 0 0 ¢ 0 s o
CFS - CONFIGURE SYSTEM + « ¢« « ¢« ¢« s « . O
LIP - LISTDATAPATHS . . . ¢ ¢ ¢ v ¢« ¢ o » T .C . F
1S - LIST CONFIQURED SUBSYSTEMS . « . « » « T . C . ¥,
LDT - LIST DATATRAFFIC ¢ ¢« v ¢ ¢ o o ¢ & & C. 4
m"'mDATATRAFFIC.Ol..l‘...‘.lC‘Ft
SSP - SOURKCE SINK PAIR DATA . « . « ¢ ¢ & &« c.PFr
CCS - CHECK CONSISTENCY « « ¢ ¢ o ¢ ¢ ¢« o & 1
CCR - CHECK CORRELATION « ¢+ « ¢ « ¢ s ¢« ¢ o 1 .C . P
SUM - SUMMARISE MESSAGET . ¢« 4 « s v ¢ 6 ¢ v o o C . F.
LEM - LIST BUS MESSAGES « « ¢« ¢ ¢ o ¢ & o & c.F.
LDD = LIST DIRECT DATA . « & v o o o = s s ¢« « + C . F.
CLD - CALCULATE LOADINOS « ¢ o« ¢« o s ¢« s s » s « C . F,
IOM - LISTOGRE MESSAGE &+ = v ¢ ¢ ¢ o o s s 6 « s C . P,
1SS —~ LIST SUBSETS « « ¢ « ¢ ¢ v e« s = o . o s+ C . F.,
SRC - SET RETRY CODE + ¢ « s ¢« v o ¢ o o s o s «C v o
STA ~ SET TERMINAL ADDRESS . . + « v+ ¢« . ¢ o s o C & o
ROM - REORDER MESSAGE . « o ¢ ¢ ¢ o o = ¢ o o cC...
hFM - REFORMAT MESSAQGES . ¢ ¢ « ¢ o o s o o o c...
FIM - FILE MESSAGES « « v ¢ ¢ o o« o 2 5 ¢ o o c.Pr.
TMS ~ DISMANTIE SYSTEM « « + o o ¢ + ¢ + s o 34 C
FMS — FORM SYSTEM o « ¢ ¢ ¢+ ¢ s s 2 s o o s s s C.

LSA - LIST SUBADDRESSES . .
FIS - FIlE SCHEDUIES . . .
UFS - UNFOBM SYSTEM . . . .
9rOP (return to 0S) . . . .

Key 13

B
0
1
C
F
L
LF

EMPTY

OPEN
INCONSISTENT
CONFIGURED
FORMED

LIEITED
LIMITED FORMED

L L I I L I I

L L I I T Y B I )

E.O0O.I.C.

B B B K

L.LF
L.Lr
L. L
L

L .LP
L.LF
L.LF
L.LW
L.LF
L.uwr
L. L
L. LF
L

L

L

L

L. L
L

o o L
o« « LF
.« LF
L.LF
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Mgure 1
SAVANT Progrem State Disgram

EMPTY
| ITE
1Fe CIR 1IN
{
’ | CIR
oFs yd OPEN
_{
_ < LIMITED
INCONSISTENT crsi e '
3 ! |
urs| [P
CONFIGUHED
\
LIMITED
- I I FORMED
\
FORMED

Key to commandse:

ITE - INPUT TERMINAL ENTRIES

IFE - INPUT FLLED ENTRIES

IFM - INPUT FILED MESSAGES !
CLR - CLEAR DATABASE !
CFS - CONFIGURE SYSTEM ‘
IMS - DISMANTIE SYSTEM |
MS - FORM SYSTEM 1

UFS - UNFORM SYSTEM
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ABSTRACT

This paper discusses the application of systolic array procescors to signal processing problems that
are amenable to a matrix formulation. Systolic arrays are formed by providing nearest-neighbor
interconnect jons between a large number of elemental processors to form either a one- or two-dimensional
array. Witn the possible exception of boundary elements, each processing element performs identical
computations in syncaronism with other elements in the array. A number of important problems for which
systolic arrays hold potential are mentioned and the systolic array processor definition, in a number of
its forms, is reviewed. When applied to strongly band-limited matrices, systolic array processors can be
characterized as highly efficient from the standpoint of both hardware utilization and algorithm time.
However, as the bandwidth becomes large, this high performance is degraded. In an effort to overcome
performance deqradation, this paper introduces and evaluates a data transformation which, when applied to
an n x n dense matrix, results in an improved banded structure with attendant hardware savings. An
interesting feature of this transform is its invariance properties with respect to the ordering of output
time sequences and algorithm execution time. Another interesting aspert is its relation to tre classical

Gauss-Seidel's method of iteration.
I. is shown that systolic array processors possess some efficient testability features which can be

exploited concurrently. These are briefly summarized.

*The worx reported in this paper was sponsored by the Naval Ocean Systems Center, San Dieqgo, CA, under
contrac - N66001-80-C-0118,
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1.0 INTRODUCTION
This paper discusses the application of systolic array architectures to signal processing problems.

Introduced by Kung (1978, systolic array architectures provide the capab‘lity for realizing a number
¢f importan®* matrix operatic.s. In addition to achieving a high computation rate by means of pipelining
and concurrent computation, che architecture is a good candidate for implementation with VLSI (very large
scale inteqration) technology. If the matrices processed are characterized by a narrow bandwidth, excel-
lent hardware utilization efficiency can be achieved. However, in those cases where the matrix baudwidth
becomas appreciable, for instance in the case of square densely-popu’ated matrices, hardware utilization
eificiency is degraded significantly. This paper addresses the problem of using systolic arrays to process
matrices whose structur2 is less constrained. A simple but effective data transform which can in some
instances significantly improve hardware utilization efficiency is introduced and developed.

The paper is organized as follows. Section 2.0 presents a brief and general discussion of several
problem argas where the systulic array architecture is of interest. Section 3.0 outlines the main fectures
of the systolic array architecture and unly summarizes the extensive tr- atment given by Kung (1978) and
Mead (1980); this section is included only for purposes of completeness of presentation. The PRT (partial
row translation) data transform is introduced and developed in detail in Section 4.0. Section 4.0 also
quantitatively compares the efficiency of the original systolic array processor with that which results
from applying the PRT transform. These results provide a means for deciding when PRT is advantageous.
Matrix inversion is the topic of Section 5.0 while Section 6.0 briefly ouclines an efficient technique that
is useful f¢r testing some systolic array matrix processors,

2.0 MATRIX OPERATIONS IN SIGNAL PROCESSING APPLICATIONS

Matrix operations represent a significant portion of the computational burden encountered in many sig-
nal processing applications., Adaptive filteriny, data compression, beamfcrming, and cross-ambiguity cal-
culation represent problem areas where stable matrix analysis techniques are of .urrent interest. In terms
of resources required for system implementation, these problems can be clussified as memory intensive and
computation intensive. Construction of systems capable of providing the computations required for analysis
of the above problems must provide for operations such as matrix multiplication, inversion, e*dition and
various decompositions,

For example, in least squares approximation problems, one might encounter matrix multiplication, ma-
trix inversion, and/or singular value decomposition. The computational approach used in a pariicular
instance depends upon the numerical stability properties of the problem at hand. For instance, if the
order of a particular problem is sufficiently small, the Gauss normal equations might be solved by perform-
ing a straightforward matrix iaversion. However, in the solution of il1-conditicned systems commonly en-
countered in large-scale problems, achieving a meaningful solution might require application of singular
value decompusition computations.

Speiser and Whitehouse (1980) discussed the signal processing problems mentiored above and considered
the applicability of competing architectures such as transversal filters, array processors, bus-organized
multiprocessors and systolic array architectures. Of these, the most promising architecture is that of the
systolic array which has the potential to support real-time implementation of the algorithms required in
order to adress those problem areas mentioned in this section.

3.0 THE SYSTOLIC ARRAY ARCHITECTURE

In the interest of a self-rontained presentation, the systolic array architectura will pe outlined and
i)lustrav2d in this section. A thorough, comprehensive treatment can be found in Kung (1978) or in Mead
(1980). The systolic array architecture is founded almost exclusively upon a single computational
element - the inner product si.ep processor - which implements the relation

k+1 k
y =41 Xl TV k=0,1,2, ..., n-1. (1)

Systolic array processors are constructed by appropriately interconnecting a group of inner product step
processors. In the systolic array architecture, only nearest-neighbor processor comwnication {s
permitted. For purposes of dzta communication and computation, each inrer product step processor is
equi.- »d with three data registers: R, (for y), R, (for 3) and R, (for x, ). Each register has

two cumi.c erc - one far input, the other for output. Kung (1978) defined two types of finner procurt step
processors wiicn . - llustrated in Fig, 1. These elemental processors can be connected in a number of
ways which provide tne capability to perform various matrix operations such as matrix multiplication, L-ll
decomposition of symmetric positive-definite matrices, and the solution of triangular linear systems or
equations.

A basic umit of time measure for both types of processors shown in Fig. 1 ts defined as fcliows: {2)

the processor loads inputs yk, Xy and . into R Rx' and Ra respectively, (b) yk+1 is computed accurding
to (1), and (c) yk+1. Xy and 3 are output .

As an example, a systolic array matrix-vector processor will be configured to form the product

y = Ax (2)

Y’

using a linearly connected group of Type 1 processors. The relations which must be implemented are as
follows

o amm

S e

O e
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; k+l k - -
r VU T et N Yy K0 L 20, el
Yo (3)

. ¥ - y:, i=1,2, ..., n.

Fig. 2 illustrates the systolic array of processors, the element dataz arrangements and flow required to

evaluate (2) for the case where A is zn n x n matrix with bandwidth w=p + q - 1 = 4, The y, enter the

array from the right as zero and accumulate so as to form the inner product of the fth row of A with vector

x which moves to the right after being input from the left. As the x and y vectors move through the array
! in the manner noted, A is shifted downward such that elements along the mxin diagonal pass “hrough P,.

In general elements of A above and parallel to the main diagonal pass through processors to the left of

P,. Similarly elements of A below and parallel to the main diagonal pass through processors to the right-~

og Po. A detailed example illustrating the operation of this systolic array matrix-vector processor will

be presented in Section 4.0.

? Generalization of the linearly-connected systolic array to a two- dimensional orthogcnally-connected
structure enables the evaluation of matrix-matrix products. A systolic array for evaluating

C=AB (4)

where all matrices are n x n is shown in Fig. 3. Matrix A is input to the systolic array in exactly the
same way as described earlier for the matrix-vector processor while coiumns ¢f B are input, with appropri-
ate spatial shift to allow for A's time delay, into successive rows of the array. If B contains a large
number of columns this implementation can be inefficient even for strongly banded matrices. Kung (1978)
overcame this problem by devising the hexagonal-connected systolic array which is based upon the Type 2
processor of Fig. 1. An exampie of this prccessor is presented in Fig. 3 (b) for the case (4) when A, B
and C are strongly banded. Note the direction of flow and orientation of A, B and C. Entries in C are
accumulated as this matrix is shifted upward from the bottem of the array, where the Cyj enter with

zero value.

Using the array structures presented above, Kung (1978) was able to realize two additional important
matrix operations. Due to space limitations, these only will be mentioned here. A triangle equation
solver can be constructed using a linearly connected array of inner product step processors: however, it is
necessary to introduce a new processor capable of division. The resulting processor solves a nonsingular
triangular system of linear equations by back-substitution. Similarly, by adding special elements on the
upper portion of the periphery of the hexagonal array (Fig. 3b), Kung (1978) showed that one can obtain the
following matrix decomposition

A= LU

where A is a symmetric, positive definite mat-ix
L is lower triangular having ls on the main diagonai
and U is upper triangular.

Therefore, this proucessor, when coupled with the triangle equation solver, can be used to solve a fairly
Jeneral class of simultaneous equations.

Table 1 summarizes the hardware requirements and algorithm execution time steps for the family of sys-
tolic array processors defined by Kung. When considered from the standpoint of hardware uniformity, a sur-
rrising degree of capability is realized by the systolic array architecture. For the case of strongly
banded matrix structures, this architecture is efficient in terms of both the quantity of hardware used and
in hardware utilization efficiency. However, if square dense matrices or matrices of more general struc-
ture are considered, hardware utilization efficiency can be degraded considerably. This problem is

Table 1. Summary of Systolic Array Hardware and Algorithm Execution Time Requirements
for Some Matrix Problems.

Systolic Array Problem No of Processors Algorithm
Configquration Solved Required _ Time Note: (a) Matrices are
assumed n x n
with bandwidths
Linearly Connected Matrix-Vector w 2n +w w=p+qg-1.
Array Multiplication Subscripted w
denotes
Linearly Connected Solution of w 2n +w bandwidth of
Array Triangular indicated
System matrix.
Orthogonally Matrix-Matrix ne min(wA,uB) 3n + m'"('A"h) (b) Matrix-Matrix

Connected Array

Hexagonally
Connected Array

Modified
Hexagonally
Connected Array

Multiplication

Matrix-Ma*rix
Mult ‘plication

L-U Decomposition
ALY

"A%s

p(a-1)

3n+ min(wA.uB)

3n + min(p,q)

Multiplication
either C = AB or
C' = A'B', where
(') = transposi-
tion.

OS—
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addressed in the next two sections of this papc: weere methods for wproving implementation efficiency are
introduced and studied.

f 4.0 DEFINITION AND DEVELOPMENT OF THE PRT TRANSFJIRM

In this section the PR™ (partial row translation) trarsform will be defined and some of the benefits
available from its application in connection with systolic arrays will be presen’ed. It will be shown to
improve hardware utilization efficiency and in additiorn provide a hardware savings in the case of square

dense matrices.

i ' Definition of the PRT Transform

Consider the matrix-vector multiplication problem stated in (2) with A constrained tc be n x n and

i densely populated. Express A as a strictly subdiagonal part, Ah i.e. with no diagonal elements)
: Juxtaposed with A,, the upper triangular part of A which contaifis the ma'n Jdiagonal elsments of A. Tnis

! may be expressed &s follows

[

! [N

5 . Al M (5)

A S
L N
Applying the PRT transform to (5) provides '
N :
Aor \\AU E \\o (6) )
7" !
0 \\EAL \

|
; That is, APRT is obtained from A simply by translating (i-1)} elements in row i to the right n posi-
; tions within the row for i = 2, 3, ..., n. In the resulting n x (2n - 1) array, all elements not specified

by Ay and the displaced AL are set to zero. MNow, applying the PRT transform to (2) yields the equiva-
Tent “expression

l Y = Rpgr %ppr * Ay [:':p] (7

]

1

)

where x_ = ("1’ Xgs veen "n-l)' It is noted that the PRT converts a square array into a non-square array 3
1

{

with enhanced banded structure. The transform necessitates augmenting x with a partial copy, x . A de- .
tailed example where A is 4 x 4 is shown in Fig. 4. Four processors are used and the required Kumber of

time steps is eleven. These quantities compare favorably with Kung's systolic arryy which would use seven i
processors and also eleven time steps. For n large, it follows that the PRT transform saves about n/?
inner product step processors with no increase in execution time. If the original systolic array were H
designed such that immediately upon processing element n» the values of y contained in the array :
could be unloaded, a time advantage would result for this processor configuration. The corresponding PRT

based array, while saving about one-half the number of processors, would incur only about a 50% increase in :

execution time.

The PRT transform readily extends to the problem of evaluating the product of two square matrices as X
expressed in (4). It can be shown that the resulting systolic array for this problem is identical to that
of Fig. 3a. The only difference occurs in the way A and 8 are input to the array. The PRT is applied to

A which saves about n2/2 processors and the columns of 8, input on the left side of the array are par-
tially repeated as prescribed in (7). Due to the large number of connections which would be required to
immediately unload this two dimensional array, the PRT configured processor will evaiuate the matrix-matrix
product without any time penaity compared with the original systolic array.

Although they will not be discussed here, the PRT transform can be advantageously applied to some
problems where non-square matrices are encountered.

SV

Quantitative Assessment of the PRT Transform

The remainder of this section will be devoted to a quantitative ~omparison of the performance of the
systolic array processor proposed by Kung (1978) (hereafter called original and denoted in certain
instances by the subscvipt orig) with that of the PRY baced structure (henceforth called alternate and .
denoted by subscript alt). The comparisons to be made wil1 be based upon the following three figures of

merit: »
b
(a? Processor utilization efficiency "or ig and w,,, .

(b) Space-Time product (ST)ng and (ST) ;, where

S = number of inner product step processors ’

T = number of algorithm time steps. ‘

(c) Overall figure of merit F = 7/(ST), Q = F _, /¥ . :
alt’orig ]

Also it !

e

In the comparisons which follow, no penalty or cost is assigned to implementing the PRT transform.
is assumed that n is large.
First consider the matrix-vector problem which is shown for both processor configurations in Fig. 5.

Adjacent to each processor configuratinn expressions for w, S, and T are given. 7 is defined as the ratio
of active area to the total area as shown in the figure. Simply stated it is an approximate measure of the

N
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proportion of algor ithm time for which computations are perfurmed. Only square matrices are considered
here with bandwidth w = p + q - 1. Note also that the comparisons made here assume processor

initialization as 1llustrated.

Fig. 6 presents pluts of » as a function of the normalized bandwidth parameters y = p/r and x = q/n.
This figure is drawn under the assumption that the array of the original configuration may be unloaded
immediately after element an has been processed. Alternately, Fig. 7 presents the same information

except ‘.nat immedizte unloading of the original configuration is not allowed. fhe results show tha: the
capabiiity to immadiately unload the array is important when x, y —1.0. Note that the original
configuration provides excellent efficiency for x and y both small, that is, for strongly banded matrices;
however, as x, y-—<1.0 the alternate form is superior.

Now consiaer a comparison on the basis of (ST) product. Solving the relation (ST)org = (ST)alt
provides the result plotted in Fig. 8. When the pair (x,y) lie above the curve, the alternate configura-
tion provides a smaller (ST) product.

Generally it will be desirable to maximize the quantity F = ®/(ST) for a given problem. Therefore,
Fig. 9 shows a plot of Q = Fa!t/Forg versus y with x a parameter. Given x and y for a particulav problem

I
: these results cicarly indicate the preferred processor configuration.

Attantion is now directed to the matrix multiplication problem where it is required to evaluate C = AB
- when both A and R are n x n dense matrices. For the sake of simplicity, the general case of banded ,
f matrices will not be treated in this comparison. Three systoliz array configurations will be considered. ) ;

{a; A PRT-based orthogonally-connected processor
(b) The orthogonally-connected processor shown in Fig. 3(aj.
(¢) The hex-connected processor presented in Fig. 3(b).

The quantities of interest for comparing these three configurations (subsequently referred to as
configuration (a), (b) and (c)) are tabulated in Table 2. (Note in Table 2 that the double subscript on Q
is interpreted to mean Qab = F“/Fb where a and b refer to the configurations listed above). From these ;

! results the PRT-based systolic array is seen to offer significant performance advantages with respect to i
‘ configurations (b) and (c) unjer the conditions specified. :

Table 2. Comparison of Systolic Array Configurations for 3
Matrix-Matrix Multipliication (all matrices n x n). !

Quantity of Conf iguration Configuration Configuration )
Interest (a) _(b) {c) b
T 5n 5n 4n
s n? 2n® an?
1 2/3 1/2 1/8
] Q& o 2.7
1 Qac = 1

5.0 APPLICATIONS OF SYSTOLIC ARRAYS TO MATRIX IHVERSION

This section will consider both explicit and implicit methods for solving a given consistent set of ;
1inear equations. By explicit it is meant that ihe inverse matrix 1is made available to the user while 1
implicit is used to imply that only the solution vector is determined and made available. j

The hexagonally connected systolic array mentioned earlier can be used to explicitly invert a given
symetric, positive-definite matrix. The approach is discussed by Spciser and Whitehouse (1980} and can be i
summarized as follows. First the L-U decomposition of the given matrix is formed using the hex-connected |

systolic array. Then using n appropriately interconnected triangle equation solvers, L'l can be .

computed. In this step the input to the array of iriangle equation solvers, i.e. the known input vectors ;

taken collectively, forms the identity matrix. -l is computed in a similar manner, and finally the

inverse matrix is obtained by taking the matrix product U'lL'l‘. A1l of these steps can be i

implemented using systolic arrays. j
|

Implicit matrix inversion can be performed in several ways, the most direct consisting of L-U
decomposition followed by two executions using a triangle equation solver., That is, given

Ax = b, A and b known

LUx = b: LU decomposition step

Ly = b: solve fur y using triangle equation solver
Ux = y: solve for x using triangle equation solver

This method, while it does not explicitly provide A'l is gener2ily more accurate than the explicit




R R .
F e — s i G, o v covin et TR

S

12-6

method which computes x = A-lb = u71L-Ib, Swwen (1977). Other implicit techniques such as Jacobi's method,
Gauss-Seidel's method and the successive overrelaxation (SOR) method, as discussed by Dahlquist (1974), can
be redlized with systolic arrays. Implementation of Gauss-Seidel's method is interesting because it is
closely related to the PRT transform. Constder the equation Ax = b. Factoring A into the form
A=D(L+1+U) wherelL and U are strict)y lower and upper trianqular matrices respectively (i.e., their
main diagonal elements are zero) and D is a diagonal matrix 0 = d ug(a“). a4 40, i=1,2, ...,n.

Jacobi's method of iter.ition can be written in terms of these definitions as follows
+
xl: 1, (-Lixk - Uixk) + b1/a”. i=1,2, ..., n (8)

where L; and Uy denote the ith rows of L and U respectively. Implementation of (8) using either the
origina] or alternate forms for systolic array matrix-vector myltiplication is straightforward, only
requiring insertion of zeros along the main diagonal and evaluation of the terms bj/ayy Outside the
array as on auxiliary computation. The equations defining Gauss-Seidel's method dre as follows

k+l k+1 k -
Xy (-L‘x - U‘x ) + bila“. i=1,2, ..., n. (9)
Here the notation is identical to that in (8) except that in the term fokﬂ xk*l represents only a

partially filled vector (x1 N PRI PR T 0, ...) which is "built 'up” as the computation proceeds.

Gauss-Seidel's iteration can be implemented in systolic array form by using the PRT transform. This is
illustrated in Fig. 10 which shows that the diagonal elements have been omitted and the terms b‘/a11 are

evaluated outside the array. Assuming that the computation is started with an initial estimate xk. it can
be observed from Fig. 10 ihat )('l‘*1 will be output and available for processing by the strictly Subdiagonal

elements L. (For a detailed example of this property see Fig. 4 and note that in the prasent case
x':'l =Y is output 2t time step 5. Note also that this value of ylis required in time sten 6 for

processing by a4 which in the present case is Lz). Since U always processes a backcaied estimate, it can

be seen that the PRT transform, or some equivalent method, must be applied in order to realize
Gauss-Seidel’s method using systolic arrays. That is, unless the elements of L can be moved to the input

side of the array where the x':ﬂ are input, the pipelining effect of the array prohibits implementing

Gauss-Seidel’s method. Therefore, the original form of the systolic array cannot, without modification, be
used to impiement Gauss-Seidel's iterative method.

Note from Fig. 1C that Gauss-Seidel's implementation can provide extremely efficient utilization of
processor capability. Processor utilization efficiency, starting at 83%, monotically increases toward 100%
as the number of iterations increase. Although not discussed earlier when matrix-vector processors were
considered, a form similar to that shown in Fig. 10 can be obtained for the probiem y = Ax where A is h x m
with n 2m. For this case, input vector x is simply repeated the required number of times while the PRT
transform is applied to successive m x m partitions of A.

‘the SOR method of solution by iteration is very similar to Gauss-Seidel's method, the most important
distinction being that the systolic array in this cise computes the residual error which is then weighed by
a relaxation parameter appropriately chosen to accelerate convergence.

6.0 CONCURRENT TESTING OF SYSTOLIC ARRAY PROCESSORS

Utilization of any functional device in realizing important system featuras ultimately leads to
questions regarding reliability and maintainability properties. In this section interesting methods for
externally testing systolic srrays for proper operation will be considered. It is not practical to
consider reliability features here; therefore, only issues related to maintainability, namely testability,
will be considered. Only external methods for testing will be explored.

Consider the systolic array for performing a matrix-vector product originally proposed by Kung (1978).
Given the way in which the matrix rows pass through the processor array, a rather simple external test for
proper operation of the array would be to augment the given matrix by adding two check rows - one at the
top and another at the bottom. This is illustrated in Fig. 11 where the two additional rows must be
jdentical in order to facilitate the check. Note from Fig. 11 that if no x; = O and no augmentation
element is zero, each processor will be checked in the process of performinJ the matrix-vector product.
The test is very simple since it requires only that " be compared for equality with Yne2'

Two additional prn-essors are required to realize this test. It is interesting to examine the cost
required to impiemant ihis check in terms of added hardware and algorithm execution time. Let S represent
the hardware required to realize a processor in the array and t denote the time interval required for each
shift in passing the matrix through the processor. For an n x n dense matrix and using the product Se
(computation time) as a measure of resources used, then the efficiency is given by:

(S » 2nt) without test
N =

[S(2n+2)t] with test
nx=1-2/n

!
§
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For n large, it fullows that this is a very efficient test in terms of required resources.

With respect to test effectiveness, however, questions follow with reqard to fault coverage. If x is
known to be dense and the augmentation does not use zero elements, the test will be good for detecting hard
failures. However, transient failures represent a problem for this approach.

The test method just described can be applied to matrix-matrix processors, although comparison of more
quantities is required. It also follows that this approach is appiicable to the PRT tronsform. Note for
this case from Fig. 11, however, that for about n iime steps no checks on the computation are performed.
This can be overcome by additional augmentations, appropriately interspersed, in the original matrix.

7.0 CONCLUSION

Systolic arrays represent a potentially important means for implementing computations involving
large-scale matrices, The realization of a general matrix-oriented computing capability that is founded
upon a few standard mdules using VLSI technology is appealing. However, as emphasized by Kung (1978),
minimization of wiring requirements (communication costs) is a central problem in this technology. The PRT
transform introduced in this paper can significantl reduce these costs for some problems. Of particular
importance is the fact that these savings can be realized in some cases without increasing algorithm time.

It has been shown that for n x n banded matrices the PRT-based systolic array and that originally
proposed by Kung (1978) are complimentary in the sense that when one is efficient, the other form tends
toward lower efficiency. The PRT transform dues not alter the original systolic array hardware definftion.
The time-ordered vutnuts are invariant under this transform - the only changes appearing in the order of
accumulation of intermediate values before they are output at the array port(s).

Solution of linear, simultaneous equations by iteration methods using systolic arrays results in an
interesting interpretation of the PRT transform. The PRT or some equivalent transform appears necessary in
order to apply systolic arrays to Gauss-Seidel's method or to the SOR method.

A simple, efficient - though somewhat limited - testing technique was introcuced for performing
external concurrent tests on systolic arrays. This topic, as well as the others considered in this paper,
is worthy of further study.
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SUMMARY

Using naval aircraft/avionic <ystems as examples, economic considerations for Distribu »: Computer Control
Systems (DCCS) are discussed. Centralized. cistributed ar ' federated proccssing architactures .re used as
the primary set of systems alternatives fron. which econom:. factors are developod. Technical, schedule
and financial risks for the system architectures are presented. Standardization of computer h ~.ware and
software {5 examined from the economic viewpoini and other related risk factors. The economic inpact of
subsequent logistic support for standardized computer hardware and software versus non-standard products
is identifled. System consideratinns such as reliapility, maintainability, availability, built-in-test,
fault tolerance, and redundancy are examined from the standpoint of resources available to design and
develop the DCCS, and also from the viewpoint of economic impact of failure of the DCCS to perform as
expected. The economir impact of external factors such as the rate of technology advancement, technology
independence, 1imited production runs, and the general lack of economic leverage upon the market are
examined and related to the 1ife-cycle support requirements of the DCCS.

1. INTRODUCTION

The wnherent nature of microelectronic circuitry is that it lends itself to digital design techniques with
ease. This attribute, coupled with the microprocessor, provides a powerful design capability to developers
of aircraft/avionic systems. Today, prwerful microcomputers can be embedded directly into each aircraft/
avionic subsystem with 1ittle if any inpact on weight and volume. With this capability, top-down struc~
tu;ed airc;:ft/:v1on1c systems based ¢n distributed processing and architectures, have become implementable
and cost effective.

This paper addresses economic considerations associated with the design of rea'-time aircraft/avionic
Distributed Computer Control Svstems (DCCS) for future Naval aviation Avionic System Architectures. The
aircraft as a DCCS is examined based on stated aircraft mission and avionic system requirements. DCCS
design optiors and alternatives such as physical implementations and alternative processing architectures,
standa:dization. commonality, reliability, maintairabil*ty. and availability are analyzed from the economic
viewpoint,

In addition to the options and alternatives available to the developing activity, there are many external
design factors which affect the design for an Avionic System Architecture over which the developer has
little or no control. Among them are the rate of technology advancement, technology dependence and
independence, and the general lack of economic leverage by the developers over the products of the solid
state industry. These factors are addressed from the viewpoint that management must be aware of their
potential impact on the design of a DCCS.

2. ECONOMIC CONSIDERATIONS
2.1 DCCS SYSTEM DESIGN OPTIONS AND ALTERNATIVES

As with most engineering efforts, the design of an aircraft DCCS allows the developer to exercise a number
of options, all which have inter-related technical, schedule, and economic (cost) risk, DCCS design
options and alternatives generally fall into two categories--those factors over which the designer has
direct control and those factors over which there is 1ittle or no control by the developing activity.

DCCS considerations over which the developer has control include: physical implementations; alternative
processing architectures; standardization and ccmmonality; and reliability, maintainability, and avail-
ability. Factors over which the developer hzs 1ittle or no control are all economic in nature. Among
these external considerations which impact the design of a DCCS are the following: the rate of technology
advancement, technology independence, and lack of economic leverage in the marketplace.

2.2  PHYSICAL IMPLEMENTATIONS

As stated previously, once the primary mission for an aircraft is established, the Avionic System
Acchitecture can le decomposed into functional requirements. In a similar fashion, subsystems can be
partitioned into various physical implementations. There are three basic equipment physical implementa-
tion alternatives: the “black box" approach, the form, fit and function (3F) approach, and the integrated
technoliyies concept.

With the black box approach, all equipment procurements over the life-cycle of the aircraft are bought to
a set of specifications which detail not only the function and form, but also the internal configuration--
electronic, electromechanical, and packaging. Once the desired performance of the production units is

established, subsequent procurements usually have minimum technical and schedule risk. Quantity of units
to be bought per unit of time is the dominant economic factor with procurement of black box implementa-

tions of avionic equipments. Multiple suppliers can also be considered a major force in price determina-
tion as the competitive atmosphere tends to keep the per unit cost of the equipment down. The assumption
here, of course, is that alternate sources have the capability to produce the equipment with no technical
and/or cost problems. Lastly, with the black box approach, long-term logistic considerations (which have
a great impact on the 1ife-cycle costs of the aircraft) can be established after the equipment reaches

production maturity.
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A second physical implementation alternative for avionic equipments is that of form, fit and function
{3F). With the 3F approach, procurements of equipments are made based on a set of specifications which
detail the required physizal dimensions as well as the electronic and electromechanical interfaces. The
technologies of the assemblies within the unit, on the other hand, are allowed to vary or "float". The
economic value of the 3F approach rests mainly with the options open to the supplier in having to meet
only the 3F specifications. 1In essence, the svonlier is free to make maximum use of his particular
resources, design approaches, and manufacturing facilities. It is normal tu expect that there {s the
potential for cost savings through the use of the 3F approach in that it permits more suppliers to bid.
However, there is an economic shortcoming of the 3F approach in that i‘ does not readily lend itself to
long-term logistic gains and planning. This shortcoming may be minimized 1f the alternative supply
source were to use components and/or parts already in the customer's inventory.

In both the black box and 3IF approach, each avionic unit performs a fixed specific function. At the
other end of the spectrum, the Avionic System Architeci.re can be partitioned along the lines of inte-
grated technologies in which functions are performed by generic task areas such as data processing,
communications, navigation, or controls and displays. In this instan.c, tdvanced technologies are used
in an integrated fashion such that any one given part of the subsystem i: copable of performing different
functions at different times. Specifically, with the integrated technologies implementation, the func-
tional elements are all electronice 1y reconfigurable, While this concept has considerable potential
performance and economic merit, it has yet to be fully expioited in avionic ap.lications, and thus the
risks are not yet well established.

Regardless of the alternative chosen, the selection of the physical implementations of aircraft/avionic
equipment(s) is a fundamental design decision which has major technical and management impact during the
development phase as well as during the operational 1ife of the aircraft. For this decision dictates
1ife-cycle logistic support approaches for the system such as depot repair, module "throw-away" concepts,
or factory repair and maintenance.

If the decision regarding which physical implementation alternatives should be selected could be made on
the considerations just addressed, the choice is reduced solely to a comparison of risks. Unfortunately,
the choice is also dependent to a large degree on the proposed aircraft installation. Specifically, is
the instailation of the DCCS to be made in an existing operational aircraft as opposed to an installation
in a new airframe? With a new airframe, the weight, volume, and location of the equipment is normally
determined concurrently with the development of the aircraft, thus there is a degree of design latitude
allowed in the physical integration of the aircraft/avionic subsystem. On the other hand, with an
existing airframe, there are a number of significant restrictions on the installation of a newly designed
DCCS because of the need to conform to existing physical corditions.

The importance of installation options cannot be overstated. Restrictions that may have to be faced when
installing equipment into existing aircraft may very well provent an optimal combination of airframe and
on-board aircraft/avionic subsystems from a logistic viewpoint. Needless to say, logistics considerations
are for all practical purposes economic considerations, and if experience to date is any measure, the
costs of lifetime logistical support far exceeds the non-recurring development costs.

2.3 ALTERNATIVE PROCESSING ARCHITECTURES

The modern aircraft/avionic DCCS will be required to handle a wide variety of tasks ranging from complex,
high speed signal processing to simple input/output formatting and control. Additionally, fault-tolerance
concepts demand that many of the processing elements within the DCCS be capable of reprogramming during
the operational mission. The overall processing architecture must therefore support the synchronization,
control, configuration, reconfiguration, and fault-detection of all processors in the DCCS. Furthermore,
to minimize architectural problems, both the hardware and the software must be fynctionally partitioned

in such a manner that the interface complexity is manageable, and the design and implementation of each
unit processor is maintaired in as independent a manner as is possible.

There exists & variety of processing architectures which can be utilized to design an aircraft/avionic
DCCS with the performance capabilities just identified. It should be noted, however, that each alteraa-
tive has attached to its use a unique set of technical, schedule, and financial risk factors. Figure 1,
Processing Architecture Alternative Comparison, 1ists a number of available processing architecture
options and identifies the asscciated risk factors. Risks are stated in low, medium, and high terms
becanse there does not exist a statisticai data base from which precise numerical values can be derived.

Unfortunately, the procedure for selecting a specific processing architecture is not solely a matter of
looking at the risk factors inherent in the irdividual architectures znd determining what is an acceptable
composite level of overall risk to the developer. For example, the Avionic System Architecture Consider-
ations identified in Table 1 also weigh heaviiy upon the decisior concerning which processing architecture
is "best" for a specific application. The necessity for having to take into consideration both the
processing architecture alternatives as well as other Avionic System Architecture factors provides the
developing activity with a myriad number of possible combinations from which to choose during the design
of the DCCS. Tne technical management task required to separate these combinations into a set of
hiera;chically structured options based upon a well understood set of selection criteria is complex unto
itself.

Because of the large number of interrelated factors which affect the selection of a processing configura-
tion for a specific Avionic System Architecture and the lack of a historical cost data base, one can only
address in general terms the economic considerations of the various processing alternatives. Even though
economic considerations can only be addressed in general terms they should not be interpreted as being
elther superficial, lacking in importarce, nor restricted to only one architectural choice. For even as
incomplete as is the cost data at this point in time, trends can be drawn from experiences with the
individual requirements of current aircraft/avionic systems. Examples of considerations which have
significant impact upon the 1ife-cycle cost of DCCS and require detail management attention by the

gy 4 e gt - .+

C e ke - . —

e i it

e dma o n




VO

13-3

developing activity during the project planning phase are: degrie of system integration, degree uf
partitioning of the system, software, firmware, and hardware trade-offs, and software cost/complerity.

2.4 DEGRE OF SYSTEM INTEGRATION

This issu> addresses the degree of total system integration of the Avionic System Architecture. For
example, should the categories or groups of subsystems identified earlier be placed on a single high-
speed data bus ur should each group have its own dedicated data bus to perform functions particular to

the individual giouping of subsystems. A specific example of the dedicated data bus would be to keep all
vehicle-re”ated subsystems segregated for safety-of-flight reasons. It can be anticipated that if there
i« one high-speed data bus throughout the aircraft, then the complexity of controllirg the data bus and
performing real-time executive and interrupt functions would be increased dramatically. In turn, software-
related costs (design, test and documentation) would increase significantly, if not proportionately with
the degree of integration. This conclusion is based on the fact that cost experience (in terms of

dollars per instruction) with operationally deployed aircraft systems to date has shown that the real-time
executive and I/0 routines are much higher than application programs and test and diagnostic routines.

2.5 DEGREE OF PARTIONING OF THE SYSTEM

As stated earlier, future aircraft DCCS's must be designed using a structured process of decomgicition
into software, firmware, and hardware processing modules. In future aircraft, the degree of cistribution
(partitioning) of computing, control, and conversion functions, will be dependent on the availability of
inexpensive and physically diminutive hardware elements--namely microprocessors and microcomputecis, It
shouia be noted, however, that while the use of a central computer complex to provide functional digita®
control of an aircraft has deficiencies due to the multiplicity of tasks which must be performed in one
machine, the DCCS has yet to face the same problems while performing similar tasks with as many as up to
150 to 200 {micros) machines.

2.6 SOFTWARE, HARDWARE, AND FIRMWARE TRADE~QFFS

The programmable digital computer allows in-service functional change without impacting the associated
hardware, except where additional memory is required. With the recent introduction of f(rmware, the

"best of two worlds" is available, Furthermore, the options for committal of functions to firmware
implementation as opposed to software is unbounded in number. Key to any decision-making process as to
whether or not to put a function into firmware is when should one freeze the software program design and
how often, if ever, is the program going to be required to be changed throughout the operational 1ifetime
of the system. Any misjudgement on the proper timing for freezing the program into firmware and miscalcu-
lation on the number of times that the firmware will require subsequent change, will result in major
increases in deveiopment and support costs.

2.7 SOFTWARE COST/COMPLEXITY

In the centralized processing architecture, the cost and complexity of Applications/Control and Input/
Output programming rises exponentially as the throughput and memory of the centralized computer approaches
jts maximum (see Fig. 2). On the other hand, with the distributed processing architecture, the Cost/
Complexity at near zero percent (0%) distribution is the same as one hundred percent (100%) utilization of
a centralized computer system. As the degree of distribution (i.e., pariitioning)is increased, each
application software module becomes more independent and has less e27tect on the execution of the total on-
board system processing (program). The 1/0 program, however, hocomes more complex since more processing
elements (micros) must be interfaced via the data bus structure. The data availability and I/0 control
becomes the dominant factor, ultimately following the I/0 program curve of the centralized computer system
in rising Cost/Complexity (see Fig. 3). The sum of thc software trends indicates that there is probably a
puint at which partitioninq may be optimal. As is celf-evident from Fig. 3, at either end of the percent-
age distribution spectrum, the wst of both situzcions may exist.

2.8 STARNARDIZAT [ON AND COMMONALITY

It is the author’s rpinion t!.t no ciher area of the data processing field is more compiex in scope and
controversial in nature than the area of standardization. Many professionals in the field of aata
processing do not agree that standardization has both technical and cost merit. This lack of consensus

on the worth of standardization is due to the naturally opposing views of computer system users and the
developers of computer systems. For the user views standardization as a means of management control of
development risks and system life-cycle cost control, while the developer and designer, on the other hand,
views standardization requirements as an unnecessary restriction on tachnical creativity. Many developers
aiso counter the user's position that proliferation of computer equipment and software is a major life-
cycle cost burden with the claim that given design freedom during the development phase of a new system,
they would introduce new technologies which would be cost-effective as well as having increased perform-
ance capability over existing operaticnal systems. Unfortunately, there is a tendency amongst proponents
of this development philosophy not to mention that new designs also give rise to normal self-vested
interests, such as increased profits and keeping the in-house design teams current with involvement in
emerging technologies and techniques. These two diametrically opposed positions will never change in

this author's opinion, as the developer normally will only address the technical and financial aspects of
the specific systems he is developing; while the user, on the other hand, is concerned with standardiza-
tion as applied to multiple system applications. Additionally, there is another dimension to the
standardization issue which often is not considered in any discussion of computer systems standards.
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Specifically, the quastion is at what point or level does one standardize? For example, one could
standardize at the Instruction Set Architecture (ISA) level while allowing the designer to incorporate
the latest technologies, change the physical and electrical characteristics (e.g., overall dimensions,
the internal mechanical structure of the wachine, and cooling and primary power requirements).

Table 2, "Standardization Options", (ists a number of possible standards which the user and/or the
developer of aircraft avionic equipment could adopt. Several or many nf these options could be combined
to form an all-encompassing single standard depending on the financial resources available, maintain-
ability/support approaches, and the end operational use of the system(s). However, the more these
standardization options are molded into one single standard, the greater will be the negative reaction
of the developer, as stated earlier.

TABLE 2 STANDARDIZATION OPTIONS

Languages
- Preprocessor (POL)
- Compiler (HOL)
- Assembler (MOL)

Instruction Set Architecture (ISA)
- Single Instruction Set
~ Modular Instruction Set
- Extensible Instruction Set

System-Level Interconnection Schemes
- Bus
- Loop
~ Network
- Bus Interface Unit

System-Level Protocol
- User Module to Operating System
- Operating System to Hardware

Physical Interface
- Pin Compatible
- Plug Compatible

Physical Implementation
- Black Box
- Form, Fit, Function
- Standard Module
- Micro-chip Set

Of all the Standardization Options listed in Table 2, adoption of an Instruction Set Architecture ({ISA)
as a standard offers the greatest economic return on investment to the customer. This is assuming that
the ISA selected as a standard has an established user and support software base.

1f one were to adiress the standardization issue solely on the basis of generalized hardware and language
{HOL) alternatives, then a matrix of comparative risks can be defined. Figure 4, Hardware Standards,
shows the technical, s hedulz, and financial risks for various hardware alternatives., It should be noted
that high and medium/high risk factors have been assigned to the Strict Processor and Micruprocessor
Standards because of: ?l), the lack of experience with building DCCS's for aircraft/avionic systems
applications; and (2), it is not clear at this point that a single, cost-effective microprocessor can be
established as a standard for all appiications throughout an Avionic System Architecture.

The key issue relative to establishing a microprocessor as a standard piece of hardware is at what point
does one not enforce standardization. For example, is every application which calls for 2 microprocessor
whose word length is less than 16 bits subject to the standard? OUr, is there a minimum memory size below
which the microprocessor would be excluded from standardization considerations? These decisions, while

seemingly inconsequcntial, do have a significant impact on the design of the system and development costs.

Many individuals have postulated that microprocessors will decrease the cost of computer hardware to the
point at which it is an insignificant factor on future developments of DCCS's. Tris claim has yet to be
proven. Unfortunately, the rising costs of both applications and support coftware have lent credinilit;
to the position that the cost for microprocessors are no longer of relative importance in system life-
cycle cost considerations.

Regardless of the availability of comparatively low-cost microprocessors and microcomputers, the high
cost of software development and maintenance has given considerable support to the utilization of HOL's
and, in particular, a single HOL wherever possible. Figure 5 indicates that assembly level coding is

definately more costly than that of using HOL(s). There are two major reasons for this cost differential:

(1), there ts a need for the programmer to know the particular Instruction Set Architecture of the target
machine(s); and (i}, in m)st cases assembly level code is used mainly tor very difficult program tasks
such as: inpul/ouvput, operating systems, and executive control of real-time systems. In each of these
instances the programmer must work with "tight" coding requirements.
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Within the context of this paper, commonality is defined as the utilization of equipment(s) of parts
thereof, in multiple operational applications. For example, many aircraft cockpit controls and displays
could be common within a single "family" of aircraft types. Each aircraft, however, would have a
specific set of cockpit controls and displays tailored to its own particular opcrational nsed. Across
all aircraft within the family, the controls and displays would perform common functions. The equipment
itself need not be standard items to be considered within the context of commonality as the term is used
herein. (See Figure 6.)

The potential for major cost-savings does not exist with the utilization of comnon equipment as it does
with standard equipment because of the specific tailoring or uniqueness of the equipment to each appli-
cation. On the other hand, when the developer applies commonality concepts effectively, there is a
great potential for significant cost-avoidance. For example, specific display components, bulk memories,
algorithms, etc., can be applied across all applications. In doing so, the developer avoids those costs
associated with developing totally unique equipment designs for each installation.

2.9 RELIABILITY, MAINTAINABILITY, AND AVAILABILITY (RMA)

In simplistic terms, aircraft/avionic systems are designed to meet pre-established levels of reliability
s0 as to be available for operational use for given time periods prior to a failure occurring which would
require a maintenance action to be taken. When the reliability levels are not achieved, the equipwent

is not available and additional maintenance actions have to be taken. This cause and effect situation

is a major contribution to operational support costs. In the author's opinion, it is highly unlikely
that with the current degree of technical sophistication of aircraft/avionic equipment that these costs
will decrease in the near tuture. Furthermore, unless new Avionic System Architectures are developed

and designed as described earlier, the current RMA problems will remain,

1t should be emphasized that using a NCCS as the basis for a future Avionic System Architecture will not
of itself negate the current RMA problems, however, if the system is designed in a structured manner, it
can include many feaiures which would assist in reducing RMA shortcominys exhibited by current opera-
tional systems. Key features which will have a major impact in improvement of 'MA factors and a corres-
ponding reduction in life-cycle operational costs are: fault-tolerant, redundi.icy, and reconfigurability.

The capability to incorporate fault-tolerant, redundancy, and reconfigurability techniques and concepts
into a DCCS is based primarily on the availability of relatively inexpensive microprocessors. Given
that these microprocessors will be available, the major question remaining is at what level does the
developer insert these concepts into the design of the DCCS. For these concepts can be applied either
on a system-wide basis, or at any of the subsystem or functional grouping levels. Furthermore, with

the coming of age of the reconfigurable memory, one can now have incrcased availability at the component
level.

The coupling of fault-tolerant, redundancy, and reconfigurability with zutomated fault-detection and
isolation also offers management a vehicle for minimizing RMA life-cycle cost for future DCCS's.
Unfortunately, the expected theoretical improvements in the RMA values have yet to be fully proven out

in actual practice over a substantial period of operational time. While there is ne reason to believe
that the potential aains cannot be achieved, there is an area of concern (mentioned eariier) that shculd
be addressed during the development of the Avionic System Architecture--namely that of the actual amount
of distribution of computing resources throughout the system and its impact upon the associated software.

The complexity of the software associated with a DCCS is going to be a major challienge by itself. There
are many problems yet to be faced with an aircraft/avionic DCCS which may contain over 150 microprocess-
ors throughout the aircraft. Additionally, there could be hidden costs because of unforeseen needs for
performing extensive test and evaluation of such a system. Hopefully, sufficient software verification
and validation techniques will be available to insure that the developer can adequately separate proving
the quality of the software from the quality of the DCCS to function adequately as an integrated network
of computer resources.

3. EXTERNAL FACTORS IMPACTING DCCS DEVELOPMENTS

3.1 EXTERNAL FACTORS

The =uestion that developers of an aircraft/avionic DCCS must ask themselves before starting out on a new
des.gn it what degree of control do they have over their final design. Unfortunately, the dynamics of
the microeiectronics industry as mirrored by the microprocessor/microcomputer marketplace presently defy
the providing of reasonably precise answers to the question. At best, one can only hope that the impact
upon DCCS development efforts and related 1ife-cycle consideration of the Avionic System Architecture
are minimized through the recognition of external factors during the planning phase of the project. The
following external factors are identified as having a major impact upon the DCCS design and development
and thus should be addressed during the planning phase of the project: the rate of technoiogy advance-
ment, technology dependence/independence, 1imited production runs as a function of time and lack of
leverage upon the market, technology transfer and insertion, and the vertical structure of certain
corporations.

3.2  TECHNOLOGY ADVANCEMENT

It is almost inconceivable that the technological inventiveness of the solid state eiectronics industry
is such that new products become obsolete almost immediately after introduction into the marketplace.
Breakthroughs in such areas as materials, manufacturing processes, computer aided design, architectures
and packaging are made almost daily. Furthermore, it is highly unlikely that in the near future there
will be any slow-down in new performance capabilities being introduced in the microprocessor/
microcomputer marketplace. If anything, there will be a continued explosion of new applications as the
prices of thise mach'ies (micros) decreass as a function of time.
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A1l othker design factors being equal, advancements in the solid state electronics field are not
necessarily detrimental to the aircraft DCCS developer. Desired system-level capabilities such as
redundancy, reconfigurability, and fault-tolerance can now be built into the system economically and
contribute to achieving the desi:ed performance goals set for system maintainability, relrability, and
availability. On the other hand, these capabilfties cannot be logistically supported over the {ife-cycle
of the system DCCS without taking into account the other external factors wthich impact DCCS developments,

3.3  TECHNOLOGY INDEPENDENCE

In similar fashion to the commercial computer industry expression of “plug-to-plug” compatibility, the
phrase “technology independence” has been introduced intyv the military-industry lexicon. In a manner of
speaking, 1t can be considered a technology level equivalent to the form, fit and function (3F) physical
implementation approach addressed earlier. The concept is very simple, that is, by being indapendent of
technology uniqueness one can insert new technologies at given time intervals during the 1ife-cycle of
the alrcraft/avionic DCCS. Tk economic return on investment for incorporating this capability into the
initial system design is significant. On the other hand, it does demand that there be some level of

i mechanical packaging standards in order to introduce the new devices and/or components into the existing
equipment with winimum impact upon the associated logistic considerations. Assuming that a standard

nv chanical packaging concept can be establishud for both the in being and the potenti~l replacement
technologies, than there :i11 be a logistic cost avoidance in that the higher level electronic assemblies
do not change with the insertion of the new technology.

With regard to software, however, technology independence takes on a number of meanings, all of which
depend on the point of viow of the deveioper. For example, applications and support software for a /J

.

i given programmable digital computer could be run, with ro changes, on a newer technology machine provid-
ing the Instruction Set Architecture and other software program dependent characteristics are taken into
consideration during the initial design phase. A second conceptual approach would be to keep the High
Order Language (HOL? interface independent of the operational target machine. Lostly, a third approach
would be that of using a pre-processor in the software development chain. Specifically, with this
approach, one establishes the near-equivalent of a hardware plug-to-plug compatability by using a pre-
processor as a software program transiator. In this instance, the firmware is used to provide the
software compatability link.

Regardless of the type of hardware technology used, the concept of software transportability implies
unto itself, technology independence. However, unlike hardware technology independence, software
transportabiiity of its very nature explicitly implies reusability of software &s obposed to the hasic
3 concept of plug-to-plug compatibility; namely that of technology insertion through technology invisi-
b bility (independence).

It can be generally stated that software transferability offers the developer a basis for cost savings.

On the other hand, since the application/program will no doubt be different to a certain degree from :
functional task to functional task, new compilations will have to be performed in order to insert

different application dependent parameters and data. Thus it is perhaps more correct to state that as

a minimum, using software transportability concepts in an aircraft/avionic system design there will be

a cost avoidance in that both the operational and support programs do not have to be re-created from the

initial design stagc.

; 3.4 LIMITED PRODUCTION RUNS

— bt et e i

There is not a better method to insure price stability than that of having the advantages that accrue

from large szale procurements over a given period of time. In essence, this is the economy of scale
- factor of classical economic theory. Unfortunately, it is a fact of 1ife n1at at best there will be
limited quantities of aircraft/avionic Digital Computer Control Systems p cured by any one development/
nrocurement activity. For example, even if an aircraft manufacturing firm has incorporated DCCS's
(utilizing microelectronic chips) into several different aircruft models, the quantities of either
commercial or military aircraft coming off the production lines are miniscule compared with the quanti-
ties of microelectronic chips currently being procured by both the automotive and toy industries on &
per year basis.

It would appear that there are twn management aiternatives which would cvercome the {inherent economic
shortcomings of 1imited production runs for military applications of commercial components. The first
approach, would be to add onto existing commercial production runs which are expected to produce
microelectronic chips over an extended period of time. In this instance, individual procurement of chips
for the DCCS would be made part of a standard product 1ine which the solid state electronics firms

expect to market to multiple users for into the foreseeable future.

In the second case, the aircraft/avionic systems manufacturer would "front-end" the development cosis T
associated with the design of a given microelectronic chip and only use the solid state electronics
firms as a production facility. Thus, the sysiem developer order parts to his specifications and is not
dependent upon the microelectronic circuit manufacturers for any initial non-recurring investment in
chip design and development costs.

It s essential that an acceptahle manufacturing alternative be established prior tu production in order
to maintain the availability of chips throughout the 1ifetime of the DCCS or until the chips are
replaced by & new technology during the operational phase of the system life-cycle. It is imperative to
note that the lack, or shortage, of logistic spare parts destrcys any logistic planning performed during
the RAD stage of the DCCS and furthes compounds the subsequent operational problems which range from
day-to-day system availability to long term maintainability and reliability.

L SV
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3.5 LACK OF ECONOMICAL LEVERAGE

Since World Mar II, the aerospace industry has introduced many advancements in the electronic state-of-
the-art into the operational environment. In general, the industiy has introduced new technologies
because they have had both the performance need as well as the economic leverage to do so. Over the last
decade, this preemptive position has been eroded so that presently the aircraft/avionic developers have
very little impact upoi, the technological directions of the sciid state electronics industry (based upon
a percentage of scales). Neglecting such considerations as global macroeconomics, the changing role of
the multi-national firms, and the emergence of a truly international capability to manufacture solid state
electronic devices, no single factor has had such a major negaiive impact upon the economic leverage of
the afrcraft/avionic firms over the solid state electronics marketplace as ihat of the coming of age of
microelectronic circuitry. That this is so is so ironic in that the aerospace firms first introduced
integrated circuits into aircraft/avionic application in the early 1960's.

Since the mid 1960's, the combined sales of aircraft/avionic systems to both the private ond public
(defense and space) sectors has declined., While decreasing sales volume of aircraft per unit of time has
had a profound negative effect upon industry leverage, it has really teen the quantum jump in densities
of the chips (transistors per unit of area) which has become the dominant factor in changing who, in the
private sector, has the economic leverage over the solid-state industry. That this is so should be some-
what self-evident in that the higher density chip development made ohsolete the first generation
"integrated circuit". 1t was, for all practical purposes, a single (physical) low cost replacement for
hundreds of individualily packaged integrated circuits. Thus, in reducing by orders of magnitude the
number of chips to be procured, all vestiges of economic power over the solid state marketplace by the
aircraft/avionic system developers d‘sappeared.

In retrospect, it is somewhat ironic that in the early 1960's it was the aircraft/avionic industry that
was the only group of users that “"carried" the then infant microelectronic industry during those days of
nigh-risk integrated circuit venture enterprise. By contrast, today a common 3 to 5 chip microcomputer
design serves applications in the aerospace industry, automated factories, medicine, as well as the home
entertainment market. On the other hand, projecting into the future, there is the possibility that there
may be yet another "role reversal“ concerning leverage of the market. Specifically, the use of Very

Large Scale Integrated Circuits (VLSIC) in aercspace applications may very well nrove to be the key

factor in having the microelectronic circuit manufacturers re-tooling to meet onco again the unique needs
of the aevospace industry. Whether this situation will come to pass has yet to be determined. Until that
time, however, aircraft/avionic system developers will have to fit their needs into standard product 1ines
if they do not wish to incur large non-recurring costs for production of customized chips.

3.6 VERTICALLY STRUCTURED CORPORATIONS

Throughout the private sector there are many instances where a corporation is vertically structured--that
is where the organization is made up of companies and’or divisions which supply the raw materiais,
engineering (including R&D), manufacturing, and sales and distribution functions. 1In essence, the
corporation does not go outside of itself for any major aspect of itc operations and for all practical
purposes is its own supplier of goods and services. The "verticality" of the organizational structure

is derived from the nature of the manufacturing process whercby a unit of the corporation builds upon
the output of another part of the organization. The management and cost advantages of this s?tuatgon
whereby availability of materials, scheduiing, and committment to corporate goals are all self-contained
and controllied needs no further amplification.

With the advent of the transistor, many firms added a solid state technology division (as a separate
profit and loss center) to the corporate organization. Except in certain instances, the majority of these
solid state technology plants manufactured parts for the general commercial marketplace with no objective
cf serving internal corporate needs for devices such as transistors. In the author's opinion, the
subsequent introduction of the microelectronic chip initiated the push for many aircraft/avionic equipment
manufacturers to also take corporate action to change to a vertical organizational structure. For the
wicroelectronic chip tookh away many design prerogatives from the developers and effectively made the

solid state electronics manufacturing firm design competitor, albeit at the very low end of the design
process. However, as the techniques for manufacturing microelectronic chips matured, and the industry
introduced medium and large scale integrated circuits, the impact upon the classical design freedom of the
aircraft/avionic equipment firms became fairly significant as the chips began to contain more and more of
the individual circuits previously developed as physically separate designs.

To counter the growing impact of the external factors addressed earlier and the inroads that advanced
microelectronic circuitry was making upon their traditional development efforts and organizational makeup,
many aerospace firms changed their corporate structures to a verticaily-oriented one. What many of these
corporations did within the past decade was to create an in-nouse solid state electronics and technology
organization with the prime customer being the corporation itself. The capabilities of these in-house
facilities are, as could be expected, as sophisticated and advanced as many of those in California's so-

called "siticon valley".

it is premature to state that the vertically-oriented aerospace firm will provide a management approach to
overcoming the negative aspects of external factors such as technology advancement and independence,
limited production runs, and the general lack of economic leverage over the industry. An exception, of
course, is the case where the aerospace company provides chips to other divisions in the organization in

bulk quantities.

In general it appears that the creatjon of an in-house solid state manufacturing facility is a questionable
long-term cost-effective solution to the problem. Specifically, the economic law of supply and demand will
become a dominant factor relative to the final salutfon. That is, if the number of firms having in-house
solid-state technology R&D and manufacturing facilities increases unbatedly with time, then it follows that
in turn, the aerospace firms will become contributors to the herein defined technology and manifacturing
external factors over which they currently have little control. It is also not unrealistic to envision

et e
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that with time, the aerospace firms will also become suppliers of microelectronic circuitry to the
marketpiace and thus eventually become competitors with today's solid state electronics firfms. To use

the cliche, the solution becomes part of the protlem.

4. CONCLUSIONS

There are several conclusions that may be reached relative to economic considerations for future Naval
aircraft/avionic Real-Time, Distributed Computer Control Systems. The primary conclusion is that
designers/developers will have very little economic leverage over the microelectronics industry with the
current low rates of production of aircrart and related avionic systems. What follows from this lack of
economic control is questionable future enforcement of standardization and commonality requirements.

On the other hand, if there is an economy of scale due to a Targe quantity buy over an extended perfod

of time, then there will accrue to the cusvomer the expected savings in development and support costs.
However, with the rapidity of technological change in the solid-state electronics industry, it is
becoming more and more self-evident that to fully obtain the economic benefits of standardization and
commonality, technology independence over the life-time of the aircraft/avionic system must ‘e maintained.
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FUNCTIONAL DOCUMENTATION - A PRACTICAL AID TO THE ORDERLY

SOLUTION OF THE SYSTEM DESIGN PROBLEM

J.T. MARTIN

FERRANTI COMPUTER SYSTEMS LIMITED,
Western Road, Bracknell, Berkshire, England.

SUMMARY

This paper describes a method of breaking down a Customer Requirement in an orderly manner so as to produce
progressively more detailed design levels such that at any one stage of the System Deaign the particular
part of the design under consideration can firstly be easily understood and secondly comparatively isclated

from the other parts of the design.
The most important characteristic of the design methodology is that the Requirement is conaidered in purroly
Functional terms until a highly detailed level of the design is reached. An example of this design

methodology and the technique of Functional Doocumentation 1s given and the paper concludes by disoussing
the advantages that can accrue from a sensible use of the design methodology.

1. INTRODUCTION

To yroduce a succeasful design the system deaigner must start his design from the viewpoint of what the
custome:* reguirus and work down to what sub-systems are required to achieve this requirensent - the Top Down

approach.
In order to carry out this Top Down design in a logical, structured, way it is important that:

(a) the overall problem is decomposed in a controlled fashion

(b) that each layer of the design is considered i{a the correct level of detail such that on the one
hand sufficient information is considerd before moving to the next lower level of design, while
on the other hand the particular level of design reached is not unduly cluttered by

consideration of too much detail.

The method used by Ferranti Computer Systems Limited to achieve these ends is Furctional System Design
utilizing as a tool in this prucess the powsrful Functional Documeustation (FD) technique.

The basic concepts behind design phase documentation were developed by the Systems Effectiveness Laboratory
of Technical QOperations Incorporated, Burlington, Mass. and further amplified by the United Kingdom Royal
Navy .

T systum of Functional Doocumentation, first used by Ferranti Computer Systems Limited (FCSL) as a tool for

the desiyn of extremely cosaplex shipborne distributed processing aystems, is now being used to carry out the
demanding task of System Design for modern airborne distributed computing systems.

The main fundamentals of FD will now be described together with a brief sxample of the use of the technique.

2. TUE PURPOSE OF DESIGN DOCUMENTATION

A fundamental tenet of the FCSL approach is that deaign and the documentation of that deaign are
inseparable. The production of design documentation is, therefore, an integral part of the design task and
the design documentation 1s itself a most important aid to the design process. At each stage of
development, existing design documentation forms the basis for further development.

Until system development ard implementation begins, the design documentation is the only tangible evidence
of the intentions of the design team. It is a paper model of the system.

Furthermore, corsidering the project as a whole, design documentation must weet the needs of all subsequent
stages through develomment, production, integration, installation and trials to poat-delivery support. The
design documentation muat, therefore, provide not only a description of the proposed system, bSut also
infermation necessary for the preparation of test requirements, trials specifications and servicing and

maintenance daia.

The succassful design and development of an integrated system requires that each member of the deaign team
be awvare ol the current design intent of his colleagues. In practice this implies a real time doocumentation
system with a language common to the three principal diaciplines involved, namely hardware, software and

uaer.

Functional Documentation (FD) is this common language for use when the three disciplines must work in co-
operation. It 1s a design tool developed specifically to assist in co-ordinating the design an! through-
life (avelopment of real-time systems. The formal documentation system of FD channels the paperwork output
of system, hardware, software and user engineering staff into a standard format which is circulated amongst
the understood and agraed by the design team. During the Project Definition phase it is the only available

evidence of progress.
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The completed FD forms an agreed document whioch defines the required systeam functions and their interfaces,
and the inter-relationships between the disciplinea. It is the specifiocation of the syatem which shall be
implemented by the individual disciplines during the Project Development phasre. Hardware FD (H'D),
Software FD (SFD) and User FD (UFD) are the languages employed at that atage when the individual disciplines
may validly be developed independently.

The primary purpose of FD is, therefore to sake and communiocate the definitive statement of deaign. In
fulfulling this it also achieves the following objectives:

(a) To assist in the correct breakdown of the design into separable tasks and to logicalily define

the scope, boundaries and interfaces of each task bsfore the commencement of that “ask. Aa a

. result of performing emch task, not only i3 technioal progress achleved, but more detsiled

, taska are defined which also fit into the overall structure.

(b) To allow technical analysis of the design. The doocumentation effectively provides a paper
model of the system at all deaign phases and is constructed so as to highlight areas where
design may be doubtful, inconsistent, ambiguous or incomplete. It is partioularly suitable for
examining the hardware/user/software interfaces and for prediciting the reliability and
msintainability of the proposed aystem. It furtlur allows an individual designer to visualise
the implications of design changes on related areas,

(c) To enable technioal management and the ocuatomer to monitor the progress of design, both to
ensure that timescales and workloads are satisfactory and that technical requirements are being
achieved. It is especially ameable to the use of PERT,

———

(d) To provide a standard communications medium butween the members of design teams working in
different disciplines and in different companies.

(e) To provide a perdanent record of design, as it proceeds. It allows, for example, new ataff
Jjoining the project to appreciate the philosophy, limitations and state of the design with a
minimus of effort, and equally reduces disruption when wembers leave the project.

(f) Tn provide a smooth tranaition of technlcal data into the maintenance handbook.

(g) To form a basis and design record for subsequent Poat Design (PDS) activities.

(h) To provide an entry to HFD, UD and SFD.

3. FD PRINCIPLES

FD is a technique of logical and ordered technisal description which uses graphical and piotorial
presentation, supported by the written work, as the commmunications medium. It therefore takes advantage
of the precision inherent in diagremmatic presentation.

To provide clarity of technical description, the subject matter is aub-divided in two dimensions, which are
known as the "level®” and the "function®,

{a) Level. As the design phase of a project develops information becowes available in increasing
degreen of detail and complexity. By its nature, sarly phase informtion is more general. It is said to be
"high level™ information ard is by definition the first to be documented. Subsequent information may be
classified as either “intermediate® or "low" level.

These levels are assigned a numerical reference aa followss-

Highest level t 1

Intermediate levels : 2
3 1
eta,

Loweat level t n

The number of levels actually required for a completa desoription will depend on the complexity of the
subject, and the amount of original design/development work.

(b) Function. The funotion, in the general oase, is defined as that grouping of hardware, software
and user necessary for tho achievement of a required event or eventa. This implies that any possible
division of a subject into its hardware, user or software boundaries is of secondary considuration.
Functions will exist at all levels but the *required event™ will become inoreasingly detailed at lower 1
levels, For example, "target destruction®™ may be a valid event at a high level and “status bit set™ may be
equally valid at a lower level. Therefore each function described at higher levels will be progresaively
sub=-divided and amplified at lower levels.

3.1 Level/Function Relationship

Each function identifies a number of sub-functions which are then "“expanded®, i.s. described separately in

M greater detail, as functiona at the next lower level. The process of sub~-dividing the functions ia repeated
until a sufficient level of detail is reachad. This is the lowest level, which will identify sub-functions
performed solely by hardwars, software or user,

The pyramid of funotions formed by the progressive sub-division of the overall function is termed an
hierarchical structure. Each function at each level is at once:-

¥ LY I ;
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(a) A statement of requirement for its sub-funotions at the level below, and

(b) A definition of the implementation of the requirement stated at ‘he level above.
Each plece of information neceasary to define the design has a correct place in this logical structure, so
missing information 1s highlighted, and there should be no duplication between levels or functions,

Information is, therefore, rapidly accessed and easily retrieved.

3.2 D Pormats
At each level, and for emch function at that level, information is produced in three catagories which are

mtuslly dependent. These arei-
Fungtional Block Diagram (FBD). The function as defined by the previous level is expanded into
and the inter-relationship of these sub-funotions is defined in terms of

(n)
Thé sub-functions are then each subsequently further developed on

its various sub-functions,
sequence and Information flow.
individual FBD's at the next level.

(b) PFunctional Text (FT). Trhe FBD is supported by text, including a concise statement of the
purpose of each sub-function, which may be presented in the corresponding physical location on the page

froing the FBD, as Functional Blcoked Text (FBT).
This category covers all other information not readily

(c) Supplesentary Information (SI).
It includes such data aa physical layouts, channel allooations,

assinilated into the first two categories.
sanning requirements, design theory if applicable eto.

It is the FBD which makes the definitive statement concerning the function and its scope, whilst the FT or
FET is of & supporting mature. Any additional information may be presented as SI.

3.2.1 *D Dooument
The FT, FBD, FBT, and SI (in that order) for each function may be made up with a covering front sheet or
These individual FD documents then fit

comment sheet and muster page/distribution list as an FD document.
into the hierarchical structure and build up the complete Functional Dooumentution for the systeam.

3.2.2 PFunctional Reference
All functions at all levels (except Level 1, the top level) are aasigned a functional reference of the form
¥F1.2.3.4... The number of numerical digits in the reference defines the level at which the PD dooument for

that function will appear.

Thus F1 appears st Level 2
P1,2 appears at Level 3

F1.2.3 appears at Level 4

ete,
Since every function at, say Level 2 is expanded at Level 3, so each functional reference is expanded also,

retaining the digita of the original functional referencas.

If a given function requires more than one FBLD document to expand it meaningfully at the next level, then
The functional referencea for, say, three FBDs would

the subject is divided up as befits the circumatances.

appear as F1.2.3/1, F1.2,3/2, F1.2.2/3 and the overall reference at the previous level would appear as
F1.2.3/1.3, This facility, which should not be abused, is however very useful for describing s function
which has for axample more than one mode (e.g. normal and reversionary modes) or more than one phass of

operation,

Clearly it is advantageous if doocuments normally issued separately, e.g. trials schedules, interface
specifications, requirements spucifications, are published as further Supplementary Informatinn. These
documents are then indexed by the functional reference and are accsssible from the hierarchiocal structure.

B, FD EXAMPLE

Amndx 1 to this paper presents an example of the use of the FD tedhnique.

The example shows how part of a system (Furction 33 of the overall aystem in the example given) is firat
simply described at lavel 1 with only the pain attributes of the function, as seen externally, desoribed.
The overall function is considered to be dividable into three (in this example) sub-functions which are then
each considered in wore detail at the next level down (Level 2). This process of funotional division can be
carried out until it ia possible to define the process that each box on the FD is to perform in either
hardwars, softuare or user terms. In the example given it can be seen that each bHox on the level 2 diagrams
can be used to produce the neceasary specifisations to enable the implementation of the particu’ar box in

question.

5. CONCLUSION
The Functicnal Documentation aystem allows the orderly decomposition of an overall aystom spscification
At any particular level of the design the

into progressively more detailed levels of design information.
amount of information to be handled iz manageable by, and understandable to, the designer tasked with the

Job of furthering the design. The technique allows people from the dilferent disciplines working on a
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project (user, hardwars, software) to communicate together in a commonly undarstood descriptive format.
The technique forces a complete examination of the system specification and exposes any deficiencies or
omissiona that may exist. Functional Documentation allows the oustomer full insight into the design, shows
him which aeas of the original apecification are inaufficiently precise and also shows him which parts of
the specfiocation are most diffioult to accomplish and perhaps ocandidates for re-sxamination in terms of

gost/oomplexity/requiremsnt tradesffs,

Using Functional Documentation allows a complete functional description of the design to be produced, and
changed if neceasary, before the prototyping stage is started., Design changes can de made by simply
altering 1limes cn paper, not by expensive re-~design of hardware or softwure modules., At the end of the
Funational Design stage the information necessary for the production of the hardware, software and uaer

aspecifioations is avalladle, consistent and achievable.

\
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ANNEX 1

EXAMPLE OF THE USE OF FUNCTIONAL DOCUMENTATION

1.1 Functional Bloak Diagram Format

> 5 R

1.2 Example Functional Doocumentation Level 1
1.3 Exagple Functional Dooumentation Level 2 Funotion 1
1.4 Example Funoctional Documentation Level 2 Function 2

1.5 Example Functional Droumentation Level 2 Function 3
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ANNEX 1.1

FUNCTIONAL BLOCK DIAGRAM FORMAT

The diagrammatic format euployed to desoribe the design is that of "“Functional Documentation®™ as used
within Ferranti Computer Systema Ltd, The following is a brief summary of the salient pointa:

(a) The diagram illustrate primarily the flow of information (be it data or ocontrol) between
functions, Thicker lines are used to emphasise significant information paths. The diagrams are
essentially time-sequential, left to right.

(b) Funotions whioh are to be implemented by the "system™, he it hardware or software (or as yet
unknown) are illustrated by the symbol:

{c) Funotions which are to he implemented by an operator action are illustrated as:

The device used in the operation is identified above the symbol, e.g. KB = Keyboard, TB = Tracker Ball.

The use of' the operator function implies some interfacing hardware and software to get the inforuation into
the system. These hardware and software ccmponents (Service Functions) are omitted if they do not add to
tiie understanding of the funotion in hand,

(d) Display of system information to the opeiator, is shown by the foliowing symbol, annotated by
the device type:

tovh

Again the Service Functions involved are omitted if non-critical to understanding of tue appliocation.
(e) hardvare items are shown within dashed boundaries,

(f) ¥here other Applicacion Functions are involved in the operation of the module, these are
illustrated by the symbol:

The operation of these funotions would be detailed elsewhere in the documentation.

(g) There is frequently a requirement to illustrate altornative paths for information flow. The
following symbol is used:-
N

A ————t

.——.———-‘

b
This illustrates either source A or sourae B being rouved to destination C, subjeat to the control input D.
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ANNEX 1,2

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL 1

MATCH CONTROL

1. INTRODUCTION

MATCH (Medium-Range Anti-Submarine Torpedo~Carrying Helicopter) is a weapon system which utilises a
helicopter to carry and launch a torpedo in an anti-submarine engagement.

The control function is involved, primarily, in the calculation of the helicopter'a aourse to fly and time
to weapon release 3o that the aircraft controller can relay commands to the pilot. The procedure used for
course and launch caloulations is ‘nown as Vectored Attaok (VECTAC). The calculations take account of the
torpedo characteristics when deriving the aim point. -.... target position may be any track held by the
system, or may be a fixed datum point indicated by tracker ball. Ship's radar is used to track the
helicopter during its flight so that course correotions can be applied,

. The function is also able to control a MAD Verification Run (MADVEC). In this application the helicopter is

) usaed to carry Magnetiu Anomaly Deteotion (MAD) equipment to a suspected submarine position so that tha
presence oan be verified or discounted Ly the change in magnetic field, This enables sonar contact which
may in fact be shoals of fish, for example, to be eliminated. In a MADVEC the helicopter i1s guided to pass
directly over the selected position, without any launch calculations.

Although the name MATCH indicates that a helicopter is used, it is also possible to employ a fixed wing
aircraft without any differences to the operation of the function. Also it is possible to control an
aircraft which is based on a consort rather than own ship.

Guidance of the heliccopter is achieved by volce communication of the appropriate orders bstwec che
aircraft controller (ship's operations room) and the helicop'sr pilot. The pilot is responsible for
launching the weapon by his own weapon controls,

Control of two MATCH engagements is possible at any one time, The two engagenants must be controlled one by 1
a North display operator and the other by a South display operator. A North (South) engagement may be taken
over by another North (South) operator to allow for equipment failure. The Functional Specification does
not deacribe two simultanecus engagements, as this simply implies two independent operations. A MATCH
engagement can be controlled from any console which has facilities for communications with the aircraft.

f 2. MODE OF OPERATION

i . The function is sub-divided into three sequential phases of a MATCH engagement, see Block Diagram,

2.1 MATCH Preparation

This function is concerned with the insertion of certain parameters necessavy for the calculation of a

VECTAC and for the initiation of radar tracking on the helicopter., The actions involved can be carried out

prior to and in anticipation of an engagement.

The following data is inserted: {
(a) Helicopter u.dicated Air Speed (IAS).

. (b) Torpedo Ini..al Search Depth (ISD) ~ this is the depth from which the torpedo search becomes
3 effective.

(¢) Torpedo Ballistic Correction - this indicates the distance the torpedo will fly between release
and splash point.

ot -

(d) Magnetic Variation - for helicopter course corrections.

(e) Wind Data also for helicopter course corrections.

Tracking of the helicopter can either be carried out manually or by an suto-extractor., The normal oclose
range surveillance radar, or the helicopter's transporder returns to the RRA equipment may be used, as
appropriate to clutter and range conditions.

e o

2.2 MATCH Approach

The approach function controls the engagement from the point of initiation until the final attack phase.
Throughout this phase the function repeatedly re-caloulates the course to be steered by the helicopter so
that it will intercept the target allowing for increment of the target and drift cf the helicopter. It is a
basic assumption of the calculations that the helicopter will fly the adhered ocourse from its ocurrent
position at the pre-determined IAS and height, and that the target will maintain its last estimuted heading
and speed. The vector calculations parformed do not therefore allow for turning circles of the aircraft nor
for non-linear prediction of the target position and velocity.

The target may either he a track in the system or a fixed datum point inserted by an operator. The latter
case allows for suspacted target positions which are not being tracked, or for fleeting sonar contacts, eto.

o - -
|“.:.=i‘ . "
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The VECTAC ocaloulation is performed every 4} seconda during the approach phase up to 13 seconds before
weapon release where a countdown phase ia entered ‘see Match Attack). It is essential for the operator to
guide the airoraft on to a stabilised path during the approach phase, or else engagerent will have to be

aborted and a new Veoctao initiated.

The Approach Funotion oaloulates the following data for display to the operator and transmiasisn to the
pilott

(a) Courae to Steer (CTS) Magnetio or True.

\b) Distance to Fly to Weapon Release Point (PfG).

! (o) Time to go to Weapon Release Point (TTO).
It also controls the synthetic display of a Drop Point on the Controller's radar display.

2.3 MATCH Attaok

The Attack Funotion oontrols the final approach of the helicopter on its current fixed oourse, During the
attack, a ocountdown is relayed to the pilot so that he knows exactly when to release the weapon. The same
procedure applies in a MADVEC sinca it is necessary tor the pilot to know exactly when he is over the target
area in order to record the MAD detection (or to & -rk the output of a pen recorder).

Once the weapon has been released the facility calculates where ths torpedo will hit the water, and
‘ initiates the display of a splash point on the radar display, together with a surrounding weapon danger area
; (dogbox) .

s e B D 4 e it
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ANNEX 1.3

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 1

MATCH PKEPARATION

1. INTRODUCTION

This function is concerned with the insertion of parameters necessary for the calculation of a VECTAC and
for the initiation of radar tracking on the halicopter. The actions involved can be carried out prior to
and in anticipation of an engagement.

2. MODE OF OPERATION (References refer to FBD}

Initiation of a MATCH engagement will generally come from the Anti-Submarine Warfare Director. On his
command the variable parameters are manually injected into the system, led by the injection to convert (6)
Relative Wind to True Wind. The Lnjections can be checked on the Check Line readout of the tote, or at any (2)
stage by query injections,

Accorcing to radar considerations, the operator will also select auto or mamnual tracking of the helicopter, (8)
thus implementing the Radar Manual Tracking or Radar Autotracking Functions. (11-13)

When all the variable parameters have been inserted, and the helicopter track has been initiated, the {1%)
operator can proceed to the MATCH Approach phase.

3. DESCRIFTRION
3.1 Conversion of Relative Wind to True Wind (1-4)

Relative #ind is displayed o a VCS unit which indicates direction and speed (relative to ship's motion).
The VECTAC requires true wind and hence the following injection is used to input rolative and obtain true
winds

RW? W105P Si18

"Display iu the readout theo‘rrue Wind direction and speed, where the relative direction and speed are
as indicated (e.g. Red 105 , 18 knot)".

After the conversion, the readout 1s presented as:

W215  (direction to + 1°)
s25 (speed to + 1 kmot)

3.2 Insertisn of True Wind (6)

The true wind velocity, requirud for calculation of helicopter's relative velocity, is inserted by the
following injecvion, using deta from the relative to true conversion:

HC + W215 825

True wind value is as indicated (e.g. direction 215°, speed 25 knots).
3.3 Insertion of Ballistic Correction and Indicated Air Speed (6)
Ballistic Corrections are available to operators for each aircraft type which may be used in a Vectac. The
correction i1s a distance value (horizontal displacement Weapon Release Point to Spiash Point) which ia
applicable to the aircraft's Vectac engagement speed (IAS). The value applies to a preordained altitude at
which the aircraft will fly.
The MI Control function requires these to be inserted as a parameter ocouplet in the form:-

HC + R16 890

Ballistic Correction and Indicated Air Speed
Values are as indicated (e.g. 160 yards, 90 knots).

For a MADVEC, the Ballistic Correction is indicated as zero.
3.4 Insertion of Magnetic Variation (6

The MATCH Approach Function automatically converts helicopter bearings to magnetic for relay to the pilot.
The variation is injected as:

HC + V-7

"Hngnet&o Variation is as indicated
(e.8. 7 East)"
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Note: If a True heading is required (as will be necessary rfor some types of helicopter) a variation
of + or - should be injected.
3.5 Insertion of Initial Search Depth (6)

Initial Search Depth (ISD) is required so that Vectac can allow for the tims taken for the torpeio to reach
an effective search position, when calculating the desired splash point. The value 1s injected a3:

HC + U25
"ISD is as indicated (e.g. 250ft)",
For a MADVEC, the ISD value i1s indicated as zero.
3.6 Checking Vectao Parameters (6)

Manual injections are also available to enable one of two groups of sto.2d Vectac Parameters tc be
interrogated at any time:

HC? W3V

"Display in the readout stored values of True Wind
Direction and Speed and the Magnetic

Variation".

Readout (e.g. ¢ W215 (5)
5035
v-07

HC? RSU

"Display in the readout stored values of Ballistic
Correction, LAS and ISD".

Readout (e.g. : RO16 (5)
5090
U250

3.7 Tracking the Helicopter

The operator selects the mode of tracking and the type of equipment to use according to com 'itions and (8,
whether the helicopter is on board or airborne. Reference should be made to Picture Compilation for detail 11.
on the tracking functiona. If the helicepter is on deck and cannot be tracked normally, a manual track is 13)
set up alongside the ship forr correletion with the helicopter when it is airborre. Alternatively, tracking

may be initiated using the RRA e¢quipment and the hellcopter's transponder. The Vectac calculations can
start as soon as initiation is made. It is possible to change the tracking mode from Manual to Primary to
Secondary radar during any phase of a MATCH engagement without afecting the VECTAC.
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ANNEX 1.4

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 2

MATCH_APPROACH

1. INTRODUCTION

The MATCH Approach Function calculates the VECTAC solution at regular intervals between initiation and the
final attack phase, As a result of the calculations, the helicopter is guided to the target area.

2. MODE OF OPERATION (References refer to FBD)

The VECTAC calculation is commenced by the initiation command which may either specify a track number . a

datum point for the target. (10)
The calculation is carried out once every U} seconds until time to go (TTG) is less than 13 seconds. 21;;
As a result of the calculation, the ailrcraft controller's tote and labelled radar display are updated with ;5-
engagement symbology and guidance commands for the helicopter pilot. 9)
The VECTAC can be cancelled prematurely if required.

3. DESCRIPTION

3.1 Selecticn of Target Type (10)
If the target is being tracked by the system, the VECTAC will be initiated using the target's and
helicopter's track numbers., Otherwise the target position is marked by tracker ball.

3.2 VECTAC Initiation rfor Tracked Target (10)

Initiation of the VECTAC is made by the following Manual Injection:

HC? U731 00465

"Calculate VECTAC for target and helicopter tracks
indicated, and display the solution in the readou:
(e.g. target track 4731, helicopter tiack 0U6S)™,

The target track may allernatiely be indiceted by placing the tracker ball over the track and injecting:

HC? |TB| 00465

A North side VECTAC can only be initiated if a North side console is not already progressing a VECTAC
{similarly for South side).

3.3 VECTAC Initiation for a Fixed Poiut Target (12)
The following manual injection is used to initiate a VE(TAC on a fixed datum point:

HC? P|TB| 00465
ACalculate VECTAC for the fixed position using the indicated
helicopter (e.g. O465) and display the solution in readout".

Similar restrictions to the initiation apply for this operation, as are explained in Paragraph 3.2.
3.4 Cycling the VECTAC Calculation (n

Every VECTAC Calculation provides a solution with which the helicopter can be controlled. In order to
allow for changes in course of the target, and deviations from defined course by the helicopter, the
calculation is repeated every U} seconds during the approach phase.

3.5 The VECTAC Calculation (2-4)
Refer to Figure .

The aim of the VECTAC caloulation is to make the helicopter reach the Splash Point (SP) at the same time as
the submarine reaches point A. The distance x (Weapon Effective Correoction) is such that the torpedo will
fall to Initial Search Depth in the same time as the submarine takes to reach the Splash Point (it is
assumed that the torpedo travels vertically downwards once it is in the water).

In order for thc torpedo to enter the water at the splash point, it is necessary for the weapon to ba
released at the Drop Point (DP). The distance y, known as the Ballistic Correction is supplied as a VECTAC
Parameter and is dependent on the airoraft and weapon type. Ballistic Correction is not corrected for wind
during the calculation.

Once the distance x is known and the current position of the submarine and helicopter have been derived, the
vector velocity solution can be calculated. Other factors available or derived for the solution are:

G S Nm l oM b it R s m e
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Helicopter IAS
True Wind
Target True Course and Speed

The result of the vector oalculation is the indicated aourse of tiie helicopter. There are generally two
solutions to this calculation (a quadratic), the function adopts the solution which provides the maximum
closing relative velooity.

\
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3.6 Calculation of Splash Point (2)
3
g The time taken for the torpedo to reach ISD is calculated from the following algorithm:
t = 53 + ISD seconds -
53

where ISD is in feet.
With t, the distance x is calculated, knowing the target speed.

If an ISD of Zero is injected the value of t is set to 10 seconds.

3.7 Calculation of Helicopter Course (6)

The vector solution is applied to calculate the helicopter indicated course, employing the following data:

L4 Helicopter current poisiton

Target ourrent position i
Target true velocity !
Helicopter IAS .
True Wind velocity - ,
Weapon Effective Correction (r) T

If there is no solution to the ocalculation the funotion causes the indication NOGO to be displayed for the -
current calculation cycle, (6) :

3.8 Calculation of Helicopter Control Data W)
Once the vector solution has been obtained the following values are ocalculated:

True Range (R)

True Distance to Drop Point (R-y)

Time to Drop Point (TTG)

Indicated Distance to Fly (DTG)
The Ballistic correotion value defines y.

If TTG is ocaloulated to be greater than 9 minutes 59 seconds the VECTAC is cousidersd unfeasible and NOGO is (6)
displayed, Q)

3.9 Caloulation of Magnetic Course

The magnetic course value is required by the pilot, and is calcuiated from the Helicopter course.




14-15

31va

NYHOVIA XJ0T8 TYNOILINNS | 2 13AF)

HIVOUAY HOLYIW Teed

T bt st ] i LA, et s e ol et

/ bl alls

_A@

W ®y




f 14-16
; 3.10 Controller's Tote Readout (5,6)
During a MATCH Approach a readout of the following form is produced:
065 (Helicopter Track Number) o
C105 (Helicopter Course, e.g. 105 )
0075 (Distance to Ply, e.g. 7.5 dmla)
SM00 (Time to Weapon Releass, e.g. 5 min. 0 sco.)
(7,8)

N Controller's LRD Diaplay
The helicopter and target tracks will be on diaplay, as aupplied by the Track Formation functionm,

The MATCH Approach Function supplements the display with a synthetic marker for the Drop Point, ir the form
of an asterisk.

i 3.12  Guidance of the Helicopter )]
f The controller relays the data on his readout to the pilot to enable him to steer the helicopter.
3.13  Detection of Completion of MATCH Approach 1)
E When TTG reachea 13 seconds the Approach phase is complete, so the calculation cyocle is terminated and
. control passes to the Attack Function.
L 3.14  Premature Cancellation )
L The VECTAC oan be cancelled prematurely by use of the standard, “cancel readout™ injection, e.g. "DR-", .

This effectively clears the inhibit on further VECTACS described in para. 3.2.

. !
e N _
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ANNEX 1.

EXAMMPLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 3

MATCH ATTACK

1. INTH.DUCTION

The MATCH Attack Function controls the final phase of a MATCH engagement when the helicopter is on a steady
course and counting down to Weapon Release Time. It also provides informstion to the controller when the
torpedo has been dropped, for tactical evaluation.

, 2. MOD:; OF OPERATION

Refer to "ne Func: ion Blouk Diagrom.

The Attack phass is initiated by the signal Commence Attack which is received 13 seconds before Weapon (1)
Release. This aignal starts the ocountdown in aeconds.

' The ocountdown display on the tote ia relayed t> the pilot by the controller. When the countdosn reaches (2
zero, the pilot launches the weapon. -4)

L Once the weapcn has bean released the Drop Point display is removed and a Splash Point and Weapon Danger (5
: Zone (Dogbox) are painted instead. This enables the cont:oller to asseas whether the engagement was .9)
1 accurate, with reference to the target track.

3. DESCRIPTION

3.1 Countdown Control

The MATCH Attack Function is controlled hy a one second countdown which initiates a tote update until TG (1)
[ equals zero.

3.2 Countdown Readout (2,3)
During the attack the tote readout only shows the countdown value:-

l 0007 (1st line, e.g. T meconds)
This value is relayed to the pilot by the aircraft controller. (4)

3.3 Aotion at Weapon Release Time

When TTG = 0 the display of the Drop Polit is removed and instead a splash point and dogbox are painted. The (§-
Helicopter pilot operates the launch controls for the torpedo. The inhibit on further VECTACS is removed st 10)
this time,

3.4 Splash Point Display
: The splash poin’ co-ordimates are ocalculated and a request is made for the Picture Control Punation to (7)

4 gensrate a Splash Point and Dogbox. These two markers are deleted autowatically after 7} minutes by ®ioture (8-
Control. ilternatively they may be cleared on demand by the appropriate Ploture Control Injection. 10)
- 3.5 Terminating the Engagement

The aircrart controller evaluates the engagement rocording to his display data and the helicopter pilot's (11)
report. A new engagement may be initiated by the ASWL if desired.

If no new engagement is required the operator should clear the 0000 readout by injecting "DR-",

R S
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DISCUSSIONS

SESSION 111
REFERENCE MO. OF PAPER: TII-11

DISCUSSOR'S NAME: J. T. Martin, Ferranti
AUTHOR'S NAME: A. A. Callawyy

COMMENT: I notice that the program uses a constant overhead to allow for command and status words and
the response times of the terminals. Have you considered allowing the response time to be a varfable
rather than a constant, the variable being specified on a per RT basis, 1f required? This would allow
known response times of terminals to be inserted. Or the same basis, are ycu intending to extend the
program so as to cope with acyclic messages? In such a case, 1 would recommend that the program accept
as a parameter the amount of time allocated to all acyclic messages and produce as an output the
average and maximum waiting time before the acyclic message is handled.

AUTHOR'S REPLY: 1 fee! that the average value of overhead is sufficient for the purpose, especially
since the controller/terminal and terminal/terminal overheads are resettable parameters, The
inter-word and inter-message gap figures preset into the program are 6 us - thought to be a reasonable
average value between 4 pys and 10 yus which MIL-STD-15538 specifies. If the user observes that his
terminals involve a spread of response times, then a representative average value will still suffice in
the analysis - if the system is critically affected by this, then it probably needs some redesign

anyway.

With regard to the second point, it is intended to extend SAVANT into the acyclic regime, and Mr.
Martin's suggestion is gratefully noted.

REFERENCE NO. OF PAPER: III-11
DISCUSSOR'S NAME: Jim McCuen, Hughes Aircraft
AUTHOR'S NAME: Tony Callaway

COMMENT: Can SAVANT be modified and expanded to model a contention protocol, high speed data bus
operating at 50 megabits?

AUTHOR'S REPLY: SAVANT includes resettable parameters - for example, the transmission bit rate, word
overheads, message overheads, word tength, and message Tength. These can be changed to any values
charactreristic of the protocol one wishes to investigate. For example, we have used it at RAE to
estimate traffic on a 50-megabit time slot bus protocol.

REFERENCE NO. OF PAPER: 1I11-12
DISCUSSOR'S NAME: K. Brammer, ESG
AUTHOR'S NAME: H. J. Whitehouse

COF]HENT: Are you aware of any applications of systolic array processing to nonlinear optimal recursive
filtering?

AUTHOR'S REPLY: Systolic & rays can be used for the computation and inversion of the covariance
matrices associated with kalman filtering. In the area of nonrecursive nonlinear filtering, systolic
arrays whose elements can perform comparisons can be used for rank-order filtering, especially median
filtering.

REFERENCE NO. OF PAPER: 1II1-14
DISCUSSOR'S NAME: H. P. Kuhlen, G. E.
AUTHOR'S NAME: J. T, Martin

COMMENT: To be compatible with your “design documentation,” 1 would like to know how an "ideal”
specification should look? More functional dfagrams or the "old-fashionod" item-by-item specification?

AUTHOR'S REPLY: It does not really matter in what format the requirement specification is presented.
The important thing is to ensure that the requirement specification specified fully those things that
you require. The specification should nct request items that are not required but tend to be put into
the specification because the custowmer has a preconceived idea of what the design should look like,
For instanca, if you require a computer to be able to store data in a non-volatile store then state
that in the requirement, do not specify that a core store should be used--that is not the requirement
in this case. Of course, if you have a particular reason for needing to use a defined viece of
equipment, for instance so as to provide compatibiiity with some other unit, then this is one of your
mandatory requirements and should be included in the specification.
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REFERENCE NO. OF PAPER: 1I1-14
DISCUSSOR'S NAME: DR, N. J. B, Young, Ultra Electronic Controls
AUTHOR'S NAME: J. T. Martin
COMMENT: You have talked about an aid to system design, but not covered testing or post-development
modifications to the customer's specification. It is our experience (in Ultra Electronic Controls
Ltd.) that these absorb a very high percentage of costs. Can you tell us scmething of how your system
design aid can be applied to system {(hardware and snftware) testing and post-development modifications,
and whether it makes them easier or more difficult?
AUTHOR'S REPLY: Functional documentation helps you to move from the original system requirement
specification to the specification necessary for the hardware and software required to produce the
system. Test specifications for the system come from the FD because the FD describes in an easily
understandable form the attributes that must be proven to exist.

1€ the customer's specification changes after development, the functional documentation lower
levels can be used to discover whether the change to the specificaticn will affect the software ur the

hardware or both and also help to choose between a change to the software or a change to the hardware
if a cheice exists.

As stated above, FD is used in *“e overall system design phase, those attributes which the system
must exhibit are defined, data structures, processing functions, and crew actions to meet this defined
system requirement are detailed on the FD, if required, to make the system function in the required
manner, otherwise they are left to the hardware, software, or user design stages,

Functional documentation does produce a guod interface between the designer and the customer,

bezause it {s so understandable. However, it also allows the design to proceed in a logical top down
manner and thus offers all the other advantages listed in the paper.

REFERENCE NO. OF PAPER: 11I-14
DISCUSSOR'S NAME: J. P. Quemard, Electronique Marcel Dassault
AUTHOR'S NAME: J. T, Martin
COMMENT: Trois remarques sur la méthode présentée
- pas d'aspect structure des données
- pas de regroupement fonctionnel des traitements
- pas de gestion de references croisées, de chromogrammes

N'est ce pas simplement une fagon de présenter une documentation pour le client plutdt qu'une
méthode de travail.

Three remarks on the method presented:

- not mentioning the data structure aspect

- not mentioning the processing functional regrouping

- not mentioning the cross-reference management, chromograms

Isn't is merely a method to present a documentation to the customer/user rather than a
work ing method?

AUTHOR'S REPLY: The response to this question is included in the response to Dr. Young's question.

REFERENCE NO. OF PAPER: 111-14

DISCUSSOR'S NAME: Dr. van Keuk, AVP Member

AUTHOR'S NAME: J. T. Martin

COMMENT: I would agree with you that in the early phase of system design you may not need any computer
assistance. The main reason may be that many of the ideas to be invoked are unsharp. But, of course,

in the software design phase computer assistance in large systems is necessary to define the data
organization, of positioning, and things like these.
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AUTHOR'S REPLY: The question asked was whether the use of interactive computer display techniques
would be useful for producing the functional documentation designs. The answer is - not at all. When

the FD diagrams are produced, each diagram is the conuined effort of a number of people working
The inftfal diagram produced is very rough, not even

together using pencils on a piece of paper.

rulers are used to draw the lines. When the diagram has been produced by “he engineer {t is redrawn by

a technical author but this i{s a small task.
The paper concerned {tself with only system design. Functional documentation is used at the

system design stage. Other techniques are used for software, hardware, and user desfigns. 1 would just

briefly state that computar-aided design techniques and simulation are useful in all the three areas.
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SUMMARY

Some of the proklems encountered in the development of system and software
requirements are discussad and generalised solutions suggested. A specific approach is
described, the SAFRA Prolect. including extensions into the area of software design.

This approach embraces the us:c 0of a new methodology, Controlled Requirements Expression
(CORE) interfaced with a computer based System Description Language for storace and
automatic analysis. Software design assumes the use of a MASCOT rationalised executive
and CORAL as the implementation language. ZXxperimental procedures for the automatic
extraction of CORAL programmes from detaileC requirements held on a databhase are discussed,

The technigues are illuutrated via an example based cn the processing associated with
a Fuel Management System.

1.  INTRODUCTION
1.1 Problem Areas

During the latter half of the previous decade there was a growing awareness of

the importance of the requiremen:s for embedded software, particularly for large
projects with lifecycles extendii.g over many years. Two of the major problems are
the desire for realisation leading to insufficiant resources being allocated to
the requirements phase and the apparent ir ibility to communicate the requirement
effectively to the implementer.

A more specific case for examining the way in which requirements are developed may
be made by noting that the cost of changes to software increase over the lifecycle
particularly when many of the errors which precipitate such changes may be traced
to inadequacies in requirements and design. Aalsc, traditionally a relatively small
percentage of the procurement budget is devoted to regquirements and so a large
. @bsolute increase in the resources devoted to requirements will lead to a

' relatively small percencave increase in the overall cost of a project. These three
pleces of evidence siggest that increased investment in the early stages of projects
involving embedded software will potentially have a large cost leverage on their
success. Unfortunately this is difficult to achieve because although funding can
usually be found to solve critical problems just prior to entering service it is
hard to convince people of the worth of investment early on in projects.

There are a number of areas in which requirements can be improved, some outside
the scope of this paper, chose addressed by the technique described here are
discussed below.

A heavy reliance on the use of a nataral language invariably leads to ambiguity.
English, althovrgh semantically a very rich language, is notoriously open to
interpretation. Imposing a detailed format on a requirement document goes some
way towards alleviating this problem but if the detail itself is communicated
using English the problem will still remain.

Projects of reason-ple size will inevitably lead to the reguirements phase being
undertaken as a team activity and this in turn causes problems when attempts are
made to assess the consistency of the various decuments produced. Again, the use
of En¢lish and the lack of any detailed structure prevent the use of formal
methods to check for consistency. The many stagees involved in current
implementations not only make it difficult to demonstrate conformance but increase
the risk of errors due to the many communication interfaces that have to be
crossed. Ffirally, requirements are usually incomplete and as suggested earlier
this is usuall,; due tc insufficlent effort rather than a lack of methodology or
formalism. However, there are some clases of informution which, due to the
conventicnal form of requirements, it is almost impossible to check for
completeness. In addition, current approaches do not have the mechanism for
accommodating viewpoints which although seemingly irrelevant at the early stagas
of a project will become very relavant once the system approaches service.
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1.2 General Solutiions

These problem areas we helieve can be addressed by the following means. Ambiguity
can only be solved by using a precise method of expression, such as the diagrammatic
notation shown in Fig. (l). Here, the simple expedient of representing proceases

in boxes, data on arrows and depicting time ordering as left to right across the
paper provides an unambiguous picture of the relationships between the processes

and their sequence.
. Validation for consistency is impossible without a visible information structure.

: , If the simple system shown in Fig. (1) is to be dascribed in such a way as to

i agsist a consistency check then a suggested infcrmation structure could be as

é follows:

b PROCESS: Centre of Gravity Calculation;

! PART OF: Mass C of G Calibration; ;
USES: Individual Tank Fuel Mass;

wWing Sweep Position;

P DERIVES: Fuel Centre of Gravity;

Lo COMES AFTER: Mass Calculation; ’
The reserved words in capitals are a selection of specific information categories )i

1

to which have been acsigned the objects and relationrhip shown in the diagram.

Clearly the checking of two descriptions for consistarcy is simplifie¢ by having i
such a structure and this is illustrated in Fig. (2) where two inconsistent )
descriptions of the functions depicted in Fig. (1) are given and som» of the 3
errors highlighted. Because of its mechanistic nature this process is amenable

to automation provided we have access to a language which can be used to describe

the structure and a database in which to hold the information,

Conformance can only be pieserved and demonstrated if the reguireament has a

structure which allows this. Such a structure, of course, will correspond to the

various stages of development as well as the detailed steps through each stage 4
and the documentation produced. A gocd analogy is a notional aircraft drawing P
scheme. Here a general arrangement (GA) will be originated from whizh, at the ;
next level, some features will be represented in a little more Jletail via a
feature G.A. The latter will be broken down into assemblies and {n turn to
sub-assemblies, the final stage being a detailed part which can be hanjed to the
implementer for manufacture. One can observe tl.at there are several levels of

1 detall and at each level the customer and designer assess in turn whether the
design is practicable, will satisfy the requirement and if it ir correct. The
hierarchy of information that each drawing level represents can he seen to be 2
logical decomposition of the preceding levels and there is an unambiguous method ]
of expressing the design (i.e. a drawing system with standards). In addition the b
: interrelationships between various levela and drawings at the same level are .
referenced on the diagrams. . !

v ———
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When applied to the development of syster and software requirements it is clear
thhat such an approach, if applied rigorously, would enable conformance to be
- established via a series of small increments of detail. Equally, the effect of
- changes to the requirement can ke gnickly traced through the hierarchy in order
to =2stablish the furctions affected by such a change.

Eh 8

Finally, ccmpleteness is satisfied maiuly by the allocation of adequate resources §§
and sufficient time to the requirements phase, however, ac stated earlier lg
mechanisms for partitioning work with complete interfaces in a team activity é
must be sought. ]
i

) three element solution to the cderivation of requirements which will alleviats 3
tYeue probloms is provided by the use of a: !
+ Methodology ;
« Standard H
.  BAutomated Aid i
’ i

and we will discuss these briefly in turn. }j
, p

The methodology should encompass the process by which reguirements are both
developed and expressed. It must be usable by engineers, as opposed to systems
analveis in the traditional sense, and have a notation which is not only simple
to use but is relatively transparent to the technical content. The latter is
important from the customers point of view where )t should not be necessary four
him to have a detailed uncderstanding of the methodology in order to undertake
technical reviews of the documentation produced. 1t should be applicable to any
stage of system conception as far as the customer wili allow. It shnuld impose
no constraints on design de~isions but rather provide the neceasary cues to *he
engineer sc that such decisions are made at the appropriate level of detail at
the correct time,
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The standard should provide the information structure and the tests to be made

: against snch a structure. These quality control actions should be matched by

j rigorous configuration control procedures. Automated aids to the application of

‘ the standard via the use of computer based tvols to implement the mechanistic
aspectes of the quality control pro-edures should have a minimal impact on the
prime method of expression used by the engineer. Where the tests cannot be
carried out automatically, reports should be provided which give maximum assistance
to the engineer in checking his requirement. One should also aim to minimise the
data preparation task. The important slements of such a tool are shuwn in Fig. (3).

The notation used for expression is described using a System Description Language
' (SDL) via the information structure specified in the standard. Once the
' requirement is in this form it may be checked using an Input Analyser which not
only assesses the validity of the input in its own right but also its consistency
with information already held on the databasse.

P A

Once held on the database it may be subjected to the repertoire of reports
avallable for analysis or interfaced with other tools.

1.3 Software Design In:erface

The softwarc design interface is yet another barrier to successful communication
of needs and we should seek to minimise discontinuities by aiming for a more
gradual transition between requirements and implementation. If possible the
notation and methodology used in the requirements phase should be consistent with
those used during design. HAlso, if use is made of a rationalised (and ideally
standard) executive to specify software module communicatior. and control it should
be possible to produce a more formal route map between reguirements and basic
design.

L Similarly if a standard Higher Order Language (HOL) is employed then this argument
1 can also be used to justify a similar formalism between detailed requirements and
the subsequent sofcware. E

In the next section we will attempt to describe a specific approach to
requirements and design which it is hoped goes some way towards satisfying the
above. Some aspects of the approach are still experimental and these will be
highlighted in the discussion.

2. SPECIFIC APPROACH
2.1 SAFRA Project

A specific approach to requirements and software design is suggested by the SAFRA
project. Semi Automated Functional Requirements Analysis (SAFRA) is a proposed

approacii to requirements and software design, consisting of existing methods and

tools and new ones currently under development. A more detailed picture oZ the
background to SAFRA and its initial objectives and assumptions can be found in

Ref. (l1). If we consider a phased life cycle approach (Fig. (4)) then what is

proposed is a consigtent set of methods and tools for each phase. These will be )
described below irn as much detail as this paper will allow but with reference to ;
the discussion ahove they may be summarised as follows.

AFE=E & U e

" Wy

v The methodology used by the engineer to develop and express the requirement is
Controlled Requirements Expression (CORE). This is a new technigue developed
jointly by B.Ae. Warton Division, and Systems Designers Ltd., embracing a method
for the assembly and analysis of information relevant to a requirement and an
easily understood diagrammatic notation as the method of expression.

The automated aid to validation and storage of both requirement and software design
is the University of Michigan's Problem Statement Language and Problem Statement
Pnalyser (PSL/PSA).

The software design interface assumes the continuing use of CORE notation to
produce detailed specifications with storage using PSL/PSA but aimed at the use
o. a rationalised executive and HOL. The former is the Modular Approach to
Software Construction Operation and Test (MASCOT) and the latter is the UK MoD
standard CORAL 66. A further assumption is the usze of a commarcially available
MASCOT based software development and test environment for the test'ng phase
working on the host-target principle.

e e i e et i o At k. e T

2,2 Controlled Requirements Expression

CORE is a method of analysing and expressing requirements in a controlled and
nrecise manner. It enables a subject requirement tc be expressed as either a

number of lower level requirements or as a component part of some higher lavel, Ary
lower level requirement derived using CORE may in turn be subjected to the method to
produce a hierdrchy of lower levels, The lowesc level is that at which the full
method need no longer be applied and one may resort to strictly hierarchical
decomposition making use of the notation alone. This ie considered to occur after
the basic design stage has taken place. 1In general the same notation is employed at all
levels of requirement and design and some of the major aymbols are tliustrated in Fig. (5).
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i CORE dlagrams utilise boxes to represent processes and arrows to represent data.

! The diagrams are time ordered from left to right and thus the box ordering
specifies the sequence in which processes must occur. Symbol free boxes shown in
parallel indicate indeterminate order and overlapping indicatas a number of
identical processes occurring in parallel. All input data entering a CORE
diagram is referenced to a source and all output data to a destination,

) Data arrows may also be used to describe repetition, selection and condition.
Those arrows appearing from the top of a process box point to a reference which
’ indicates that this process is functionally equivalent to the one described at
the reference., Tuose appearing at the bottom of a process box indicate the
mechanism that performs the process. Iteration is shown by an asterisk in the vop
right-hand corner of a process box and mutual exclusion by a small circle in the

top left-hand side.

e - e L

The method comprises eleven logical steps which when applied to a subject
requirement will decompose it into lts lovwer level components and these are

summarised below.

The method has three stages for each level of decomposition which may be summarised
as

+ Information Gathe..ing

+ Propose Relationships

+» Prove Relationships

e Sl

Information is gathered with respect to a number of auhdivisions of the problem,
referred to as Viewpoints, in temus of input and output data and gross functions.
This infornation is refined by a Data Decomposition Step which specifies in more
detail the data already tabulated.

turn and for data flowing across the Viewpoint, and these are termed ‘'Single
threads'. The proof of such relationships is done in two ways; fiyet the
interrelationship between Viewpoints is examined and wheare such 1links exist new
diagrams in the form of 'combined threads' are drawn., Secondly, as threads
represent only particular patlis through system cperation and in no way depict

such aspects as parxllelism or the operational time ordering of prccesses

another diagram is required which will illustrate this. This is achieved by the
construction of a ‘combinad operational' diagram or examir.ing how threads interact }
operationally across Viewpoints.

l Relationships are proposed between the inputs znd outputs for each Viewpoint in

TV X
At

Both of these will lead to iteratiocns through the previoss steps precipitating a
more detailed examination of the single threads for correct cumbination and in
order to establish operational relationships.

[ The outcon of the above is a partitiovned descriptior. (in terms of Viewpoints)
with a detailed and hopefully complete picture of huw the Viewpoints interrelate
and react with each other as well as some indication as ¢to the major functione
contained within them., It is now porsible to extract the Subject Viewpoint as
the one of interest and in turn take Viewpoints which describe how it is composed

and repeac the methodology in full.

Such decompositions continue until furnctions emerge which mav be seen to ve
implemented ae sortiware on a particular processor, cnce decisions have been made
regarding the computing elements. At this stage i¢ is posasible to enter into
basic desian, but before discucsing chis phage we must say a lit+ie about MACCOT.

2.3 MASCOT

The definition of MASCOT given in Fef. (2) de3cribes it as a3 set of facilities
for real time progyramming incorporating features concerned with systems
devalopment sand construction, achieving this by providina the following:

(a) A fcrmalism for exprecsing the softwara structure of a milti nrogrammnd or ‘
real time system which can be independent of computer configuration and

programming language,

(b) A disciplined approach for design, implementation and testing which provides
a concept of modularity for real time systems and added reliability brought
about by increased control over access to data.

(c) An interface to support the implementation and testing mathodologies which
is provided by a small kernel that can aithe: be implemented directly on a
bare machine (for operational use) or on top of a host operating system
(useful for system prototypes) as well as software construction facilities.

(d) A strategy for docunentatiorn.
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MASCOT, as Ref. (2) continues, views an application system as a number of
activities, or processes, which operate independently and asynchronously, but
which cooperate by accessing shared Intercommunication Data Areas (IDAs). Thus
the system can be seen as a network whose nodes are the activities and the IDAs
7hose directed links are pathways for data flow between activities and IDAs.

Although the MASCOT facilities allow great variety in the implementation of IDAs,
it has been found useful, for design purposes, to distinguish two conceptual
classes of IDA according to the nature of the data fiow which they support. These
are called channels and pools. A channel supports unidirectional data
transmission, it has an input interface associated with a number of producer
activities and an output lnterface associated with a number of consumer activities.
A pool provides a rermanent data area in which data remains available for
activities to read until 1t is specifically overwritten. The data in a pool does
not have the essentiai transcience of channel data and reading it does not imply
consumption, conceptually it has a simple bi-directional interface wich associated

activities.

MASCOT system designs are represented by Activity-Channel-Pool (ACP) diagrams and
Fig. (6) shows the symbology along with a simple example. Clearly, the logical
cutcome of a basic design phase using MASCOT would be a set of ACP diagrams showing
the identified activities and how they are related through appropriate 1DAs,
Integrating a requirements phase using CORE with a basic design phase using MASCOT
specifically meaus changing a reguirement (a CORE) diagrem into a design (an ACP)
diagram. This area of methodology is still in the very early stages of development
but it is possible to postulate two possible approaches to this step.

A software designer takes the CORE diagram as a statement of the reguirement
and by considering the constraints of processor throughout, memory available
etc,, produces what he views as an optimum basic design in the form of an 2CP
diagrar., The design, while reflecting the software architecture, will retain
the functional relationships specified in the requirement and kecause of the
structural method of expression in use it will be possible to demonstrate
that the basic design conforms to the needs of the reguirementi.

« The second ard perhaps controversial approach is to draw parallels between data
relationships in the CORE sense and those between activities in MASCOT. 1In
short, propose a direct correspondence between a CORE diagram and an ACP
diagram and thus minimise the software design step in the traditional sense.
One might suggest that this approach is only feasilble where performance
corstraints do not exist.

However, let uvr assume that by either means the design diagram has been produced,
subsequent sceps cornsist of further decomposition of each activity or soiftware
function making use of CORE notation. At each ‘'layer' of this detailed
description the diagrams are encoded in PSL, checked and stored on the database,

“ne terminating layer is one where the diagrams reflect logic which 1is directly
transcribable to a programming language, in this case CORAL, however the
transition is done automatically by use of a specially designed suita of PSA
reports and a formatter,

PSL/PSA

This topic has been left until now so as not to break the continuity of the
diacussion on the transition from requirements to design. PSL/PSA is a System
Description Language, analyser and database developed as part of the ISDOS project
at cthe University of Michigan. The reader is referred to fef. (3) for a discussion
of its background and a description of the mcre important features. 1In the

context of SAFRA, PSL/PSA is being employed in two specific ways.

Conventions have been established for encoding particular subsets of CORE data

sets (i.a. Tabular Entries, Combined Threads etc.) into PSL and running suitas

nf reports to check their correctness. Such passes are part of the quality

control procedures demanded by the standard. The sacond area relates to the
detailed apecification of software functions at the activity level and below, in
order to produce a database of the specif.cation which may then be used to
automatically generate the programmss3 which satisfy the root procedure that
corrasponds to the activity. PSL consiats of a large number of reserved words
pertinent to particular aspects of system description, these are summarised helow
and examples of those relevant to prccesses in particular are given in Section 3.4.

~ Communication and analysis

- System boundary and iﬂbut/output flow
- BSystem structure

- Data structure

- Data derivation and manipulation
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- System size and volume

- System control and dynamics

~ Project management

f To complement the language there is a suite of 32 reports available, each one
' related to the aspects given above. The reports fall into four categories,
Indented Lists, Matrix, Structure/Chain and Function Flow and some simple
examples atre shown in Fig. (7).

; ' 3. ILLUSTRATION VIA AN EXAMPLE

3.1 Introduction

requirements and design as separate entities but for convenience they are
presented here as the result of a contiguous series of phases. This obtains
because they are the result of two separate development phases for the
methodology dealing initially with requirements and then addressing the

L

3

E The examples given below are the result of two separate studies addressing
v

E

: ! interface with a software design phase and the production of programmes.

r

The example shown here is a Fuel Management System (FMS), or specifically the
processing associated with an FMS, and we will now say a few words about this )

3
E requirement.

E The customer input was the hardware system layout diagram shown in Fig. (8) and

. . the need was to generate the vequirement for an associated control system. The

E design aim was to produce an automatic FMS to reduce pilot workload. It should

t have the capability of initlating the normal transfer sequence but should also be
3 able to recognise faults and reconfigure the transfer sequence accordingly.

The agreed assumptions for the system's starting point were therefore:

+ ''win engine aircraft i

+ Six fuel tanks - Forward Fuselage

] - Rear Fuselage
; - Left Wing

- Right Wing

- Left External 1
: - Right External f?‘

s ) . Transfer; all tanks shall be capablz of transferring fuel to forward and rear
E tanks.

. Asymmetry; fuel asymmctry shall be automatically controlled to provide constant 3
asymmetry between forward and rear tanks. i

+  Information 3hould ke provided to enable the ground crew to service the
- aircraft via a Ground Service panel.

. Single failure shall not bLa catastrophic.

« Sufficieat information shall be made available to tha crew to enable interaction
if and when required.

. System shall perform automatically and provide self diagnosis and self
correztion capability.

3.2 Development of Reqguirements

The requirement was developed through two levels of decomposition. Level 3 and its
associated layers transcend the traditional interface of software design although

in this approach it is seen as a continuing decompositior. of the requirement in
order to produce a language indepsndent description. However, for convenience level
3 will be discussed separately. A schematic representation of the hierarchy is
shown in Fig. (9). The objective was, by use of the methodology to first establish
the interaction between the complete FMS and other systems and then at a subsequent
level ectablish the interacticn between the processing element of the FMS and other
parts of the subsysvem. The thir¢ level, then, corresponds to a detailed
description of the functione satlisfieé by the FMS processinjy element.

The Viewpoints selected at level 1 were as follows:

+ Allied Command; the actions external to the aircraft of providing fuel, mirsion
and co-ordination data etc.
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+ Other Aircraft Systems; those which have an influence on or an area influenced
by the fuel system (i.e. cooling systems, engine systems etc.).

+ Environment in which the aircraft operates.

+ Fuel Management Syustam, embracing pumps, valves, pipes, tanks, processors,
embedded software etc,

The Viewpoints selected at level 2 were as follows:

) + Data Highway, the method of transferring the data from sensors to the processor
and from the processor to controls and displays etc.

|
: + Controls and Displays, the pilot and ground service panels.
;
{

+ Fuel Management System Process, all management and control functions to be
embodied in software,

4 | + Fuel Handling, hardware such as pumps, valve, pipes, tanks etc.

Some brief examples of the CORE methodology will now be discussed. Fig. (10)
shows two aspects of information gathering associated with the second level of
decomposition. A Tabular Entry for the Viewpoint of FMS Processing is showsn
with a decomposition of the data passing between the FMS Processing and Fuel
Handling Viewpoints. The additional level of detail in the latter allows the
former to be examined and a number of actions associated with the data identified. |
The proposed threads, an example of which is shown in Fig. (11), are identified 1
for all the data listed., This particular thread, In Flight Refuel Control X
Actions, is given for the Viewpoint FMS Processing and the data links identified
interface with the cther three viewpoints as well as that data identified at the
previous level as flowing across the problem boundary. The interacticn between
this proposed thread in the Fuel Processing Viewpoint and that of other threads
in other viewpoints 1is now examined by considering these data relationships.
When particular or thread relationships can be found a Combined Thread diagram
may be constructed as shown in Fig. (11), Here, two threads proposed in the FMS
Processing Viewpoint are shown interacting with In Flight Refuel Valves Actiomns
in the Fuel Handling Viewpoint, data passing into and out of the diagram
demonstrate the relationships with other threads.

T e e e e

These diagrams have been drastically simplified from the original documents in

4 ' order to help communicate a feeling for the methodology, they also represent a
very small sample from a three volume data set. The final step is the construction
of the Operational diagram (Fig. (13)).

3.3 Basic Design

As stated in 2.3 the basic design phase consists of producing a design diagram
from the CORE requirement diagram either as a specific software design activity
(i.e. with recourse to optimisation) or by establishing a direct correspondence
between the two diagrams via their data relationships. For interest we will
: discuss the latter approach, while bearing in mind that it may produce a less
- than optimal solution, and consider the CORE Operational diagram shown in Fig.
. 13).

Py

There are similarities between some of the data relationships used in CORE and
those assumed in the use of MASCOT. Specifically we believe there is a
correspondence between what are termed Thread and Associated Thread relationship
in the CORE domain and channels and pools in the MASCOT sense. The Operational
diagram may be redrawn with the appropriate notation for channels and pools once
the configuration of speciiic pools has been decided. Such a conversion is
shown in Fig. (12) and correeponds to a CORE Design diagram. In principle this
differs from a MASCOT ACP diagram by having activities in rectangles rather than
circles.

3.4 Cetalled Design

The consequence of the rrevious steps are a number of software functions,
represented by threads, with an operational view of how these threads interact in
terms of a requirement. This requirement has been used to establish a Basic
Desigr consisting of Activities and their associated IDAs. For simplicity we will
now consider one of these Activities, specifically MASS-CALCS and show the steps
undertaken to carry out a detailed definition of the sequential process that
supports this Activity. In MASCOT terminology this is called a Root Specification

4 and the first description of the MASS-CALC Root Spec derived at level 2 is shown
in Fig. (14).

R L PSS

Further decomposition of the processes shown on this diagram will not only provide
the appropriate macro sxpansion but also give a more detailed breakdown of the
data structures associated with the channels and pools. Such decomposition is done
strictly hierarchically and the only resort to CORE is the use of the diagrammatic
notation. Such a decomposition is a lengthy business and the subsequent tree
transcends six layers. The terminating box on each branch of the tree corresponds

ey
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to an expansion of the macro referenced in the box. Layers above this
i termination are expressed as CORE diagrams and the information they contain is
; encoded in PSL for both data and process. The nature of the information stored
in this way is reflected in the example shown below, via the process CALC IND
TANK FUEL MASS part of the MASS CALCS ACTIVE composition of Fig. (i14). Note
that words on the left-hand side of listing corresvond to PSL reserved words,

DEFINE PROCESS CALC-IND-TANK-FUEL-MASS;
/* DATE OF LAST CHANGE ~ JAN 26, 1981, 11:29:25 */
SYNONYMS ARE: BlPO6;

ATTRIBUTES ARE:

REPEAT-RANGE SET-OF-TANKS,
ORDER 3,
! TYPE ' REPEATED-MACRO-CALL';

SUBPARTS ARE: CALC-ONE-TANK-FUEL-MASS,
PUT-ONE-TANK-MASS,
ADD-TO~RUNNING-TOTAL,
ONE-PROBE-PRELIM-MASS~-CAILCS,
LOOKUP-ATT-CRCTN~-FACTORS,
WRITE-FUSE~-TANK-{UEL~MASS;

; PART OF: MASS-CALCS-ACTIVE;
! CREATES 1
! CALC-IND-TANK~FUEL-MASS-LOCAL;
v DERIVES: IND-TANK~FUEL-MASS; J
; DERIVES: USABLE-FUEL-MASS;

USING: DENSITY~CRCTN-FACTOR;

EMPLOYS : BUS-ATTITUDE-DATA,

UPDATES : TANK-ID;

USING: TANK-1ID;

UPDATES : TANK-RUNNING-TNTAL;

USING TANK-ID,

TANK~RUNNING-TOTAL;
INCEPTION-CAUSES :
LOOKUP=-ATT-CRCTN~FACTORS ;
TERMINATION CAUSES:
! PUT-TOTAL-FUEL-MASS ;
| ON TERMINATION OF:
j SET-TANK-RUNNING-TOTAL-ZERO;

sy

i

PROCEDURE;
C 'FOR' TANK ID := LWT 'STEP' 1 'UNTIL' RFT 'DO' '
N CALC IND MASSES (TANK,I1D,DCF,GAUGING DATA,RUNNING TOT,
N ATTITUDE DATA,
N IND MASSES,USABLE MASS)-

E;
The above may be seen to consist of six areas:

. The process name corresponds to that found on the diagrams with an appropriate
synonym, in this case a keying index which allows the process to be traced
back to the root of this particular tree, MASS-CALCS.

+ Qualities of the process in the form of Attributes may be entered and the
examples given here include the TYPE of process, a Repeated Macro Call with
the value of the REPEAT-RANGE given as SET-OF-TANKS.

« Upward and downward hierarchical relationships, via the SUBPARTS and PART OF
terms show that the macro has several constituent processes that will be
defined at the next layer.

e e e

+ Data relationships and their specific significance are represented by:

USING: Conventional utilisation of data local to the disgram (eg TANK-ID). [
EMPLOYS: Conventional utilisation of data entering the diagram (eg GAUGING i

DATA) . '
{

DERIVES: Production of data which subsequently will leave the diagram. :
(e.g. USABLE FUEL MASS).

UPDATES: Iterated variable (e.g. TANK-RUNNING-TOTAL).

« Sequencing and control relationships, such as the first process to be triggered
within the process CALC-IND-TANK-FUEL-MASS, signified by INCEPTION-CAUSES, here
LOOKUP-ATT- CRCTN-FACTCRS. Similarly the process to be triggered when this
sequence of processes is complete, signified by TERMIWATION CAUSES, here PUT-
TOTAL-FUEL-MASS. Finally the process whose termination will start this
particular sequence, signified by ON TERMINATION OF, here SET-TANK--RUNNING-TOTAL-
ZERO.

- The last area, classifind as PROCEDURE, will ultimately be reserved for
mathematical expression which cannot be described using PSL. However, the
currently experimental status of the PSA report suite and formatter being
employed means that some aspects other than mathematical statements must be

L vrarans . - s s s -
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included in CORAL at this time. The PROCEDURE statement is a comment entry
on the database and hence is not amenable to being checked by the analyser,

Program Generation

Considering the MASCOT structure there are four vypes of program reguired to
complete a system and these comprise:

+ Poot Specs. the actual program body for each activity and which form the bulk
of the system,

+ IDA specs, (Pools and Channels) which include the body of Access Procedures.

+ Module Declarations, which 1list all the componénts of the above giving the
actual names to be used in the Form lists,

+ Form Lists describe how the system goes together ie which pools and channels
connect which activities to form (via subsystems) the complete system.

In principle all the information pertinent to these programs should be found on
or derived from the database but here we will describe the steps concerned with a
Root Sper and for simplicity only for the first macro.

The information needed to construct the first macrc can be found in the PSL
statements ATTRIBUTES ARE, PROCEDURE, TRUE-~WHILE ard FALSE-WHILE. An attribute,
when applied to a process, will have names TYPE anc ORDER, and whe: applied to
data items will have names TYPE and CORAL-NAME, A process will correspond to a
macro name and the attribute TYPE will thus describe the type of macro, in this
case it is ROOT-SPEC (i.e. ROOT-SPEC being the VALUE of TYPE). A data item can
be an ENTITY, GROUP or ELEMENT where the latter corresponds to an indivisable
CORAL variable while ENTITY and GROUP are types of ELEMENT collections. Here
the attribute name TYPE describes the CORAL variable for the purpose of making
declarations within the first macro.

The structure of a macro is made up of Heading, Declarations, Calls and Close
and the respective code elements are found as below.

Heading; in the PROCEDURE comment entry of the process with the macro name,
the attribute name TYPE will have the value ROOT-SPEC.

« Declarations; in the attribute description ot the appropriate GROUPS and
ELEMENTS.

. Calls; in the PROCEDURE comment entries of the SUBPARTS of the first macro
and the comment entries of the CONDITION section.

» Close; not in the database and thus created.
The approach adopted is-
(1) 1Identify the macro name
(11) Trace the local variables from the macro name
(iii) Trace the first layer subparts form the macro name.

Although this is the route for extracting the required information the order
which the call code elements must take in the macro cannot be guaranteed. This
has been overcome by the use of an additional attribute ORDER which provides the
appropriate key.

The programme is generatcd by applying the above strategy through a suite of
PSA reports, whare the results of one report act as the f£ile input to the next.
The last step before submission to the compiler is a Formatter which deletes
extraneous PSA messages accrued during the previous staps. An example of
CORAL generated in this way is shown below representing the macro CALC-IND-TANK
FUEL-MASS and calls to two layers below.

152 'COMMENT' ===>MACRO PSLNAME=CALC-IND-TANK-FUEL-MASS H
153 'DEFINE’

154 CALC IND MASSES (TANK ID,DCF,GAUGING DATA,RUNNING TOT,

155 ATTITUDE DATA,

156 IND MASSES,USABLE MASS)

157 "'BEGIN'

158 'COMMENT' ===>MACRO PSLNAME~CALC-IND-TANK-FUEL-MASS ;

159 'FLOATING''ARRAY' ATT MASS £1:37;
160 'INTEGER' PROBE;

161 'INTEGER' ONE TANK MASS;

162 'INTEGER' PROBE MASS;

PP
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! 163 'FLOATING' ATT FAC;

§ 164 LOOK UP ATT FAC (BUS ATTITUDE DATA,TANK ID,
165 ATT FAC);
166 'FOR' PROBE:= 1 'STEP' 1 'UNTIL' 3 'DO'
167 ONE PROBE PMC (PROBE,TANK ID, GAUGING DATA,
168 ATT MASS);
169 CALC ONE TANK M (DCF,ATT MASS,
170 ONE TANK MASS);
171 WRITE USABLE MASS (ONE TANK MASS,TANK ID,
172 USABLE MASS);
173 PUT ONE MASS (ONE TANK MASS,TANK ID,
174 IND MASSES);
: 175 ADD TO RUN TOT (ONE TANK MASS,RUNNING TOT):
| ' 176 ‘'END'";
i 177 'COMMENT' ===>MACRO PSLNAME=LOOKUP-ATT~CRCTN-FACTORS ;
: 178 ‘'DEFINE'
‘ 179 LOOK UP ATT FAC (BUS ATTITUDE DATA,TANK ID,
: 180 AT FAC)
: 181 "'BEGIN'
! 182 'COMMENT' ===>MACRO PSLNAME=LOOKUP~ATT-CRCTN=-FAZTORS ;

183 'FLOATING' P,R,A,B,PITCH ANGLE,ROLL ANGLE;
: 184 'IF' TANK ID = LWT 'THEN'
: 185 'BEGIN®

v " 186 GET ATT 'OF' DH IN(BUS ATTITUDE DATA);
187 PITCH ANGLE:=BU3 ATTITUCE DATA£O0?; )
188 ROLL ANGLE:=BUS ATTITUDE DATAg£1l?;
189 P:=(1/COS (PITCH ANGLE)-1);
190 R:=(1/C0S (ROLL ANGLE)~-1);
191 '‘END"';
1 192 'IF' TANK ID = LWT 'OR' TANK ID = RWT 'THEN' 1
4 193 'BEGIN'
3 194 'IF' PITCH ANGLE 'GE' O 'THEN' A:=~P 'ELSE' A:=-P;
195 'IF' ROLL ANGLE 'LE' 20 'AND' ROLL ANGLE 'GE'-20 'THEN' B:=0 H
196 ATT FAC:=1+(A+B);
197 'END*
198 ‘'ELSE'
199 'BEGIN'
200 'IF' PITCH ANCLE<=30 'AND' PITCR ANGLE>=-30 'THEN' A:=0;
201 'IF' ROLL ANGLE<=20 'AND' ROLL ANGLE>=-20 'THEN' B:=R;
202 ATT FAC:=1+(A+RBR);
203 'END'; R

204 'END'";
4. STATUS

As stated in the introduction the techniques described above are still in the ?
development stage and the status of particular aspects are given below. ;

+« PSL/PSA, MASCOT and CCRAL are all commercially available and mature. PSL/PSA has
3 been used extensively in the United States for the statement of requirements and
3 MASCOT and CORAL have been employed on a number of real time projects in the
United Kingdom.

+ CORE as a requirements methodslogy, is being used on a number of small projects
within BAe and its use continaes to grow. Considerabla effort has been expended
in solving the transfer problem and an intensive training course is available to
members of new projects.

+ Experience to date€ has highlighted thaz problem of data preparation of PSL from
CORE documentation as well as thc control of the large data secs produced by the
method. 1In order to solve both of these problems a computer based CORE work
station is currently under development which will enable requirements to be
developed at a terminal and automatically produce the associated PSL.

P

* The links with MASCOT and CORAL are experimental and a project currently being
undertaken will seek to evaluate the conventions aqiven above, as well as providing
the means to produce a more powerful CORAL generator.

+ Long term plans include interfacing CORAL with Ada inciuding the automatic
generation of Ada programmes.
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Summary

Most today and all future systems will be processor based. There is a trend to multi-

| processor-systems, This is true for all types of systems, not excluding ajrborne ones.

Up to now the rajority of these aystems is programmed in assembly language, a vary avkward
and expensive job.

; Seeing the difficuities arising from low level coding, Dornier System implemented a High-
i Order-Language~System baszd on PEARL to program Muvlti-Processor-Systems in an airborne or
l similar environment. From this environment certain conditions for the implementation ce-
' sulted. It was necessary to minimize the overhead produced by the operating system. ‘rhe
generated code was optimized to a very high efficiency with respect to time and memory.

Originally the aim of PEARL was process-~control. Due to tne application area here, sub-
setting of PEARL was possible. This was done with high efficiency of code and a smaller
modular operating system in mind.

On the other hand extensiong to allow distributed processing were implemented.

The system consists of

- La: (Subset of BASIC-PFARL)
- Comy .

- Asseniler

- Linker/Loader

- Testing aids

- Special hardware for testing

It exists on a host-computer and is 'written in FORTRAN for portability. The target pro-
cessors as implemented up to now are DORNIER DP 432, AEG 80-20 and DORNIER DP 426§, which
is based on an INTEL 8086.

The system was successfully used in several applications.

1. Introduction

It is a well known fact that High-Order Lanquages (HOL's) are one of the most successful
means to improve the productivity of programmers as well as the quality of programs. For
several years, however, there was a heated discussion among exnerts as to whether or not
this was also true for real time and other time-critical applications, like e.q. avionijcs
or guidance and control applications. But mostly this discussion was not very well support-
ed by quantitative data, and it was therefore felt necessary to conduct a study (1) on

- the applicability of High-Order Languages to guidance and control. The task was also, to
find out, which special aspects had to be taken into cunsideration in this - admittedly
difficult - application area. The study councentrated on the Lanquage PEARL (= Process and

Experiment Realtime Automation Language), because it was the most promising candidate
language in the defense environment.

The results were very encourageing, It turned out that all of the relevant problems could
be formulated in the lanquage. It was not even necessary to exploit its full descriptive
power. There was one exception, however: PEARL did not contain yet all the elements
necessary for the programming of distributed systems and had therefore to be slightly
expanded for this purpore.

Another important result was that the efficiency of the compiler and the size of the
underlying operating system were of crurjial importance for the use@fulness of a HOL in
guidance and control applications. The reasons for this are that, in thic class of
applications merory, however cheap, still is subject to severe limitations like phvsical size,
energy consumption, or weight. Dynamic efficiency cof the proarams is of importance, too,
because quidance and control processes tend to be extremelv time-critical.

It also turned out that translators forHOL's in guidance and control had to provida very
elaborate test and integration aids because of the intrinsic difficulties in testing and
integrating embedded computer systems.

It was therefore decided that Dornier System should develop a PEARL translation system
under contract with the German MOD (:MVg) which fulfilled the following requirements:
- Extreme Efficiency of the compiled code
- Elimination of Operating System Overhead as far as possible
- Possibility to program distributed systems
-~ Possibility to separate code-elements in RAM from those in T'ROM-type memory
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Optional support for sgystem integration
- Adaptability to various target processors
- Easy transportability between host-processors
It was

It was alsc obvious that it woulid not be sufficient to just develop a compiler.
rather necessary to develop an entire PEARL translation system for distributed systems
which consisted of the fcllowing components:
- Compiler-geénerator
Compiler front-end
Code generator
Assembler
~ Library manuge.ent
- Modular operating system
- Linking loader L
- Test and Inregration aids

The construction prirciples of that syctem,and details about its implementation have
already been published several %“imes (3, 4, 5, 6).

2. The Language PEARL

The development ana the properties of PEARL have also alrealy been rather broadly publish-
ed, e.g. in (7, 8). For the purposes of this paper it ‘3 therefore sufficient tc concen- /)

trate on a few highlights,
2.1 Development and support of PEARI.

PEARL was developed in the early seventies by a group of computer manufacturers, software
houses and research institutes in the FRG. The development was organized by the University
of Erlangen and mainly sponsored by the German Ministry of Research and Technology (BMET).
The first experimentzl compilers were finished in 1975 and full scale industrial appli-
cations started in 1977. Today, more than 200 PEARL-applications are in operation through-
out the FRG in a broad variety of technological areas including defense systems,

Uniformity and continuity of ¥EARL are ensured by DIN standards. The draft standard
DIN 66253, part 1, 'Basic PEARL', has been available since 1978, Part 2, 'Full PEARL',
followed in August 1980. Besides, PEARL has been submitted <o ISO for international

standardization.

The support organization for FEARL is the 'PEARL-Association' with offices at the follow-
ing addresses:

e s s . s ot .

-

- PEARL Association
Graf-Recke~Strasse 84
Festfach 1139
D~-4000 Diisseldorf 1
F.R.G.

c e e e ag

- PFARL Association
c/o Institut fuer Regelungstechnik und P'rozessautomatisierung

Technical University of Stuttgart
Seidenstrasse 35

D-7000 Stuttgart 1 ;
F.R.G. i

2.2 Features of PEARL
Y

PEARL has been developed for the application engineer. Great emphasis has therefore been
laid upon language elements which facilitate the design of application programs in a
real-time and process-control environment. The most important language elements belong to ;

the fullowing groups:

2.2.1 Real-time Language Elements:

To the knowledge of the authors PEARL contains currently the most complete set of elements
for description and control of parallel processas. It iz possible to declare program com-
ponents as 'tasks' and initiate and control their execution as parallel processes, to react
on interrupts and exceptions, and to connect these actions to external time conditions.
E.c. it is possible to describe complex scheduling conditions like the following on
language level:

AFTER 5 SEC ALL 7 SEC DURING 106 MIN

ACTIVATE MEASUREMENT PRIORITY 5;
This means that five seconds after the execution of this statement the computing process

'MCASUREMENT' is activated with priority five every seven seconds for a total period of
onehundredandsix ninutes.

sa Mgl

2.2.2 Descripticr of the Hardware Configuration f
{

In the 'system-civisioa’ of PZARL-progrums the hardware confiquration, ospecially the
process peripherals and th2 data-paths, cza be described separ tely from the application
algorithmus preper the 'problem division'. The relevant terminal points for I/O operations
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can be named by symbolic identifiers and thus be referred to in the 'problem division'
independently from the actual hardware. This capability greatly anhances documentation
value and portability of PEAKL programs.

2.2.3 Input/Output Language Elements

PEARL contains a consistent general I/0 model for nonstandard devices as well as a set uf
user oriented I/0 statements for the most usual operations. The general i/0 model is
based on the observation that eacl data-path in a digital system can b« described by a
sequence of 'data-stations' ('dations') and 'interfaces'. A data-satation can either be a
source of data, a sink,or intermediate storage. Tt furtaer has so-called 'channels' which
can be of the following typcs: 'data', ‘control', 'signal' and 'interrupt'. The 'inter-
faces' are in principle sets of conversion routines which map the output characteristics
of one dation onto the input characteristics of the following one.

The user-oriented I/0 statements are the following ones:
- GET/PUT for character transfer
- READ/WRITE for file handling
- TAKF/SEND for process peripherals

All necessary format and control elements are provided,

2.2.4 Algorithmic Language Elements

Number and descriptive power of the language elements for the formulaticn of algorithms
and procedures correspond to the state-of-the-art of modern proqramming languages. The
concept of data types in Full-PEARL enables the user to define pircblom oriented, composite
data types and new operators. These abstract data types permit a great number of compile-
time checks and contribute to a refined modular structuie.

2.2.5 Muailar Program Structure

Last, but not least, PEARL supports modular program design and separate compilation cf
program components. A PEARL program is composed of separacely compilable modules with
exactly defined interfaces. This structure also greatly facilitates commuunication between
the members of a project team and supports the modular composition of complex program
systems.

3. The PEARL-Implementation by Dornier System

As already mentioned above, the characteristics of the PEARL-implementation by Dornier
System are mainly dictated by the requirements of its application area. They are most
obviously reflected in the choice of the implemented language subset.

3. The Language Subset

For the reasons mentioned above, those language elements were not implemented from which q

it was known that they would result in poor object code efficiency or unnecessary overhead ;
at runtime. 3

In particular such elements are:

- Filehandling (on-board computers usually are not equipped with magnetic background
storage devices)

- Formatting (on board there are practically no printing devices and the few which there
are, can easily be handled by stream output of character strings)

- Rbsolute time (time is usually counted relative to 'mission stazt')

- Signals (exception handling is a source of huge overhsad and it is mandatury that un-
planned software conditions do not cccur during the operational phase of a systen)

- Structures (Application studies showed that measurement data are usually of homougenmous

type).

On the other hand certain extensions had to be provided for the programming of distributed
systems. However, it was a s.rict policy to keep them very small in order nct to deviate
too much from the original PEARL. Another important design criterium for these multi-
conputer extensions was that they had to be ‘'strategy independent', i.e. the user should ]
be enabled to implement whatever concept be deemed optimal for the safety - or redundancy-
strategy of his application. These cons‘derations resulted in the followina extensions: i
- Declaration of entities with the attribute 'NET GLOBAL' of types 'variable', 'semaphore’ i
and 'task'. These entities are therl either copied into or made known to every processor
in the distributed system.
~ Operations on such entities. This was achieved without additional statements or owerators,
just by extending the semantics of existing operations (overloading).
Besides, there is a facility for the connection to 'external' tasks or procedures, which
may e.g. be written in Assembler, Last, but not least, runtime checks can be ingerted on
a statement-by-statement basis by means of 'check/nocheck' statements.

3.2 The Compiler Front~End and its Technology

ko <

The technology,which had to be used for the translator, was determined by the requirements
of adaptability to various target processors and easy transportability with respect to the
host processor. This led to the usgual separation into a 'front-end' which is independent
of the target machine and translates PEARL into machine-independent intermediate code.
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The compiler front-end iu written in FORTRAN for the tollowing reasons:

- FORTRAN ‘ranslutors are available for nearly every possible host computer
- A comhiler, written in FORTRAN, is much more readable and much easier to maintain
than aay other one which is constructed according to an elaborate bootstrapping

vechnology.

It turned out that this decision was the right ore. The front—-end could be adapted to the
tollowing host-computers with an effort of a few man-days each:

DEC PDP-11,70 and 11/44

AEG-Telefunken 80-20/4

Siemens 7760

DEC PDP 10

fig. 1 shows an overview over the structure of the entire translation system.

The inte.medlate representation had to be chosen according to the requirement ot maximum
code efficiency. Therefore it was not possible to use one of the usual virtual machine
representations, because these usually do not contain any more all the information which
was there ‘a the source program and which is necessary for optimizatiou. Besides, modern
target processors usually have a more poweriul instruction set than the one which happens
to be implemented in a particular virtual machine architecture. This, too, leads to code-~

ineificiencies.

Therefore it was decided to use a completely target-independent irtermediate representation,

the so-called 'triple-code'. In principle it is a numeric representation of the progran,
rthere the individual operation is of the form:
sperator, operand 1, operand 2

To sum up: the compiler front-end is written in FORTRAN and translates PEARL-Source pro-
grams into triple-code. it can detect approximately 200 different syntactical and
semantical errors and identifies them by statement number, name of object and additional

information, if necessary.

During translation the following listings c'n be produced on regquest:

- Source listing

- Cross—Reference listings for the fo.‘ owing objects with their respective attributes
{e.g. 'GLOBAL')
. Variables

Tasks

Semaphores

Procedures

Labels

. Dations

- Hierarchies of procedure calls

- Process hierarchy

- Synchronization structure

Location of variables

« o e »

1.3 The Code~-generator

It produces symbolic assembly ccde wi 7 relative addresses for the target processor in
guestion. This second intermediai - la. =r has the disadvantage of an =2dditional trans-
lation step, which m:'y =<ost some time durii j translation, but this is more than balanced
by the advantages. S0, e.g. the assembler-listing provides an excellent means for final
comptler testiny and for easy linksage of external routines.
At the moment code-yenerators ex.s f. - -1e following target procegsors:

- DORNIER~MUDAS DP 432/133

- AEG~Telef'inken 80-20

=~ DORNIER-M DAS WP 426 TNTE ™. 8 36-based)

3.4 Assembler

This cowponeni is necessary for
translator @ vstem but usua ly acap 2d from the support software provided by the vendor
of the targe prouvessor.

3.5 Pre-Liika:

In case the linking-~loader .+ :ch is provided by the vendor of the target processor,is not
capable of hanaling the mul:i-module structure of PEARL-Programs, a pre-linker is provided,

which performs the follow .ng f inctions:-

- Identification of program modulec to be linked together
- Distribution of code into RAM : r ROM

- Distribution of program modules over the various processors of the distributed system

- Completeness check for the definition of global entities

- Linkeage of the operating system comporents required by the program
- Sorting of task~control~blocks and code segments

- Output of the control sequence for the linking loader

-he reasons given above. Xt is fully integrated into ihe

!
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3.6 Linking-Loader

This tool performs the linkeage process proper and produces absolute code. In case it
cannot be taken from the vencor's software it is delivered together with the PEARL-System

and is functionally integrated into the pre-linker.

3.7 Modular Operating System

This is a unique feature of the DORNIER PEARL-System. It allows efficient use of PEARL
even in the smallest target configurations. This is achivied by abandoning the concept of
an underlying, more or less autonomous and “monolitic” operating system. It is replaced
by a set of routines which are automatically linked to the application program according
to its requirements. These routines operate on task~control-blocks, time-order-~blocks,
etc. which are provided by the compiler. Thus it was possible to reduce the size of the
operating system kernel to a mere 300 to 500 16-bit words, depending on the quality of the
instruction set of the target processor. This kernel includes the following functions:

- Initialization
- Dispatcher
- An exit routine, which is executed if the system knows that there will be no task

switching

The following functional modules can then be added automatically according to the require-
ments of the application program:

- Clock-routines
- Interrupt handler

- Activation of tasks
Task-termination (regular)
Task-termination (irregular; by °'TERMINATE')
Suspension of tasks

Continuation of suspended tasks
Deletion of a schedule ('PREVENT')
Inter-processor communication

User command interface

Character I/0 ('GET', 'PUT')
Procedure entry/exit

Array indexing
Arithmetic routines for FLOAT and DURATION types

Comparison routines for FLOAT and DURATION types

Type conversion routines

Standard functions (ABS, SIGN)

Handling of runtime errors

If all operating system services are invoked, it uses up to 4 to 6 K of 16~bit words,
depending on the architecture of the target processor.

| 2 T R I T A |
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3.8 Library management

In order to be able to fully exploit the possibilities of the modular structure of PEARL
programs and to enable the user to expand his system-library by himself, a special library

management package is provided.
It contains the following functicus:
- Inclusion of a new module
- Deletion of a module
- Listing of the Directory
Modification of module names

3.9 Test and Integration Aids

Firstly, these include all the above mentioned listings which ire produced by the compiler
and serve as reference-documents for the user during test and integration.
Additionally there are runtime checks, which are on request inserted into the program
either by the compiler or as operating system routines. The following errors can be
monitored:

- Array index overflow

- Division by zero

- Range violation

~ Conversion errors

These runtime checks can be enabled or disabled by the 'check/nocheck' feature.

Furthermore, several trace-routines can be built into the code:

~ Jump trace

- Subroutine trace

- Call trace

- Task trace
Another important component is the debugger, which can be loaded together with the object
program. It supports the following test functions:

- Activation and continuation of tasks

- Set and reset of breakpoints

T U
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Output of environment information at breakpoints

- Input and display of values of variables
~ Exit from Debugger (and return to normal execution of the program)

The design of this debugger allows for two modes of operation:
~ Debugging on agsembler level
~ Debugging on source level
The first mode has already been implemented, the second one is being designed.

4, Application of the System
; ’ ‘This PEARL Translator syastem has already been successfully used in several applications.
! Two of them are completed:
(with 6 physically

- A training gsimulator for the anti-aircraft tank 'Roland’

| distributed processors)
; - A gust alleviation system for a light aircraft

; In both project PEARL proved highly successful and the translator system fulfilled the

f expectations.
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DISTRIBUTED AND DECENTRALIZED CONTROL
IN
FULLY DISTRIBUTED PROCESSING SYSTEMS

PHILIP H. EnsLow JR.
GEORGIA INSTITUTE oF TECHNOLOGY
ScHooL oF INFORMATION AND COMPUTER SCIENCE

ATLANTA, Georeia 30332
SUMMARY

Certainly one of the most important factors in designing and implementing fully distributed processing
systems (FDPS) iy the issue of distributed and decentralized control. Extremely loose coupling, both
physical and logical, is an essential characteristic of an FDPS. This mode of organization and operation
is quite different from the control of centralized systems. The first step in the development of
distributed and decentralized control has been the examination of various models of control that may
provide these features and the operational characteristics of those models,

¥ FULLY DISTRIBUTED CONTROL

1.1 Xbat 15 a Fully Distributed Procesalng Syatem?
It has been determired that a high degree of both distribution and decentralization of control is

essential if a system is to deliver a major proportion of those benefits being claimed for "distributed
systemz,"™ Not >nly must the control be distributed, but the hardware and data must also exhibit similar
characteristics, When all three system components, i.e., control, hardware, anc data are sufficiently
distributed, then the system can be characterized as "Fully Distributed.® (See other paper in these
proceedings {Ensl81] for a complete discussion of FDPS's.) This paper will focus on the control aspects
of FDPS's,

1.2 Implicationa of the FDPS Definition on Control

1.2.1 General Nature of FDPS Executive Control

Several of the characteristics of an FDPS are found to directly impact the design and implementa-
tion of the executive control for such a system, These include system transparency to the user,
extremely loose physical and logical coupling, and cooperative autonomy es the basic mode of component
interaction., System transparency means that the FDPS appears to a user as a large uniprocessor which has
available a variety of services., It must be possible for the user to obtain these services by naming
them without specifying any information concerning the details of their physical location., The result io
that systemn control is left with the task of locating all appropriate instances (copies) of a particular
resource and choosing the instance to be utilized,

"Cooperative autonomy" is another characteristic of an FDPS heavily impacting its executive
control, The "lower-level®™ control functions of both the logical and physical resource components of an
FDPS are designed to operate in a "cooperatively autonomous™ fashion. Thus, an executive control must be
designed such that any resource ls able to refuse a request even though it may have physically accepted
the message containing that request, Degeneration into totil anarchy is prevented by the establishment
of a common set of criteria to be followed by all resources in determining whether a request is acceptec
and serviced as originally presented, accepted only after bidding/negotiation, or rejected.

Another important FDPS characteristic that definitely affects the design of its executive control
is the extremely lcose coupling of both physical and logical resources, The components of an FDPS are
connected by communication paths of relatively low bandwidth. The direct sharing of primary memory
between processors is not acceptable. FEven though the logical coupling could still be loose with this
physical interconnection mechanism, the presence of a single critical hardwars element, the shared memory
would create fault~tolerance limitations. All communication takes place over "standard"™ input/output
paths. The actual data rates that can be supported are prirarily a function of the distance between
processors and the design of their input/output paths. In any event, the transfer rates possible wiil
probably be much less than memory transafer rates. This irplies that the sharing of information among
comporents on different processora is greatly curtailed, and system control is forced to work with
inTormation that is usually out-of-date and, as a resvit, inaccurate.

The control of an FDPS requires the action and cooperation of components at all laycrs of the
system. This means that there are elements of ¥D¢S control present in the lowest levels of the hardware
as well as software compononts. This paper is primarily interested in the software components of the
FDPS coutrol which are typically referred tc as the "“executive control."®

The executive control is responsible for managing the physical and logical resources of a system.
It accepts user requests and obtains and schedules the resources necessary to satisfy a user's needs. As
mentioned earlier, these tasks are accomplished so as to unify the distributed components of the system
into a whole and provide system transparency to the user.

1.2.2 Why Not Centralized Control?
Why then is a centralized method of control not appropriate? In systems utilizing a centralized

executive control, all of the control processes share a single coherent and deterministic view of the
entire system ustate, An FDPS, though, contains only loosely-coupled couponents, and the communication
among these components is reatricted and subject to variable time delays, This meanz that one cannot
guarantee that all processes will have the same view of the system states [Jena7B8)]. In fact, it is an
important characteristic of an FDPS that they will not have a consistent view,
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A centralized executive control weakens the fault-tolerance of the overall sasyster due to the
existence of a single critical selement, the executive control itself'. This obstucle, though, is not
insurmountable for strategies do exist for providing ferult-tolerance in centralized appliocations.
Garcia-Molina ([Garc79], for example, has desoribed a scheme for providing fault-tolerance in a
distributed date base management system with a centralized control. Approaches of this type typically
assume that failures are extremely rare events and that the system can tolerate the dedication of a
relatively long interval of time to reconfiguration. These restrictions are usually unacceptable in an
FDPS environment where it 1is lmportant to provide fault-tolerance with a minimum of disruption to the
services being supported.

Also, the extremely dmportant issue of overall system performance nust be considered. A
distributed processing system 4is expected to utilize a large quantity and a wide variety of resources,
If a completely centralized executive control is implemented, there 1is a high probability that a
bottleneck will be created in the node executing the control functions. A distributed and decentralized
approach to control attempts to remove this bottleneck by dispersing tre control decisions among multiple
components on different nodes.

1.2.3 Distributed vs, Decentralized

This paper advocates utilizing an approach for the control of an FDPS that ia both distributed and
decentralized, There is a clear distinction between the terma "distributed" and "decentralized®™ as they
are used in the context of this project. "Distributed control™ is cheracterized by having its exeguting
components phvalcally Jlocatod on gdifferent nodes. This wmeans there are multiple logi of gontrol
agtdvity. In "decentralized control," on the other hand, goutrol decisions are made independeptly Ly
Acharate componentd at different locations. In other words, there are multiple lood of conirol decialon
Bakipg. Thun, distributed and decentralized control has active components located on different nodes and
those components are capable of making independent control decisions.

2. ISSUES IN DISTRIBUTED CONTAQL

Before examining specific aspects of executive control in an FDPS, a look at some of the various
issues of distributed control is appropriate. There are three primary issues that require examination:
1) the effect of the dynamics of FLCPS operation on an executive control, 2) the nature ol the information
an executive control must maintain, and 3) the principles to be utilized in the design of an executive
control,

2.1 Dynamiqa

Dynamics are an inherent characteristic of the operation of an FDPS. They are found in the work
load presented to the system, the availability of resources, snd the individual work requests submitted.
The dynamic nature of each of these provides the FDPS executive contr2l with many unique problems,

2.1.1 Workload Presented to the System

In an FDPS, work requests can be generated either by users or aciive processes and can originate at
any node, Such work requests potentially can require the use of resources on any processor. Thus, the
collection of executive control procedures must be able to respond to requests arriving at a variety of
locatinns from a variety of sources. Each request may require system resources located on one or more
nodes, not necessarily including the originating node. Ore of the goals of an FDPS executive control is
to respond to thess requests in a manner such that the load on the entire system 1s balanced.

2.1.2 Availability of Resources
Another dynamic aspect of the FDPS environment concerns the availability of resources within the

system. As mentioned above, a request for a service to be provided by a system resource may originate at
any location in the system. In addition, there may be multiple copies of a resource or possibly multiple
resources that provide the same functionality (e.g., there may be functionaliy equivalent FORTRAN com-
pilers available on several different nodes), Since resources are not immune to failures, the pos-
sibility o losing existing resources or gaining both new and old resources exists. Therefore, an rI'PS
executive control must be able to manage system resources in a dynamic environment in which the
availability of a resource is unpredictable,

2.1.3 Individual Work Requests

Finally, the dynamic naturs of the individual wvork requests must be considered. As mentioned
above, thase work requests define, either directly or indirectly, a set of cooperating processes which
are to be invoked. An indirect definition of the work to be done occurs when the work request is Aitself
the name of a command file or contains ..e name of a command file in addition to names of executable
files or directly executable statements, ; command file contains a collection of work requests
formulated in command language statements (see Figure 1 for a description of the syntax for a suitable
command language) that are interpreted and executed when the command file is invoked. The concept of a
command file is similar to that of a procedure file which is available on several current systems,

Management of the processes for a work request thus includes the possibility that one or more of
the processes are command files requiring command interpretation. The presence of command files will
also result in the inclusion of additional information in the task graph or possibly additional task

graphs,

An important objective of work request management is to control the set of processes and do 80 1in
such a manner that the inherent parallelism present in the operations to be performed 1s exploited to the
maximum, In addition, situations in which one or more of the processes fail must also be handled.
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2.2

All types of executive control asystems require information in order to function and perfora their
mission. The charactsristics of the information cvajilable to the sxecutive oontrol i1is one aspsct of
fully distributad systems thnat result in the somewhat unique control problems that follow:

1. Because of the nature of the interconnection links and the delays inherent in any com-
munication process, system information on hand is glways gut of date.

2. Beocause of the autonomous nature of operation of all components, sach processor ocan make
"its own decision™ as how to reply to an inquiry; therefore, there is always the

Doagibility that iInformation received is ingomplete and/or jnagqurate.

3. Because of the inherent time delays experienced in exchanging informatior =mong processes
on different nodes, suvme information held by two processes may gopfligl during a
particulay time interval.

2.3 Daaign Pr

Designing the uystem control functions required for the extremely loosely~-coupled environment of an
FDPS and implementing those functions to operate in that environment will certainly require the applica-
tion of some new design principles in addition to those commonly utilized in operating systems for
centralized systems. These design principles mvst address at leaat the two distinguishing charac-
teristics of FDPS's:

- System information available, and
- Natuvre of resource control

2.3.1 System Information
The various functions of an FDPS executive control must be designe? cecognizing that system
information is:

- "Expensive™ to obtain
- Never fully up-to-date
= Usually incomplete

- Often inaccurate

All of these charecteristics of system information result from the fact that the components provid-
ing the 1Information are interconnected by relatively narrow bandwidti communication paths and that those
components are operating somewhat aitonomously with the possibiiity that their state may change
immediately after a status report has been tansmittod. Further, it is important to note that the mere
existence (or disappearance) of a resource is not of interest to a specific component of the FDPS
executive control until that component needs that information.

The design principles applying to systeuw information that have been identified thus far include the
following:

1. Boonomy of communication: ask for only the information required,
2. Resilienav: be prepared to recover and continue in the absence of replies.

3. Flexibility: be prepared to recover and continue if the information provided proves to be
inaccurate when it is utilized,

2.3.2 Resouroe Control

Since all of the resources are operating under local control under the policies of cooperative
autonomy, all requests for service, or the utilization of any resource such as a file, must be effected
through negotiations that culminate in positive acknowledgemer.ts by the server. In all instances, the
control function requesting a service or e resource must be prepared for refusal.

3. CHABRACTERIZATION OF EDPS WORK REQUESTS

3.1 Ihe Mork Requeak

One of the goals of an FDPS is the ability to provide a hospitable environment for solvitig problems
that allows the user to utilize the natural distribution of data to obtain a solution which may take the
form of an algorithm consistirg of concurrent processes. The expression of the solvtion is in terms of a
work request that describes a series of cooperating processes, the connectivity ~f tt se processes (how
the processes communicate), and the data files utilized by these processes. 1iils description involves
only leogical entities and does not contain any node-specific informetion. A description of one command
language capable of expressing requests for work in this fashion can be found in [Akin78] (see Figure 1),

3.2 lmpaot of the Work Reguest on the Contrcl

The nature of allowable work requests (not just the syntax but what can actually be accomplished
via the work request) determines to a large extent the functionality of an executive control. Therefore,
it is important to examine the characteristics of work requests and further to see how variations in
these characteristics impact the strategies utilized by an FDPS executive control.
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Five baaic characteristics of work requests have been identified:

1. the external visibility of refersnces to resources required by the task,
2. tha presence of any interprocess communicalion (IPC) specifications,

3. the number of concurrent processes,

4, ithe nature of the connectivity of proceases, and

5, the presence of comwand fileas.

3.2.1 Visibility of Referenaes to Resources
References to the resourcea required to zatisfy a work requeat may either be visible prior to the

execution of a process associated with the work request or embedded in such a manner that some part of
the work request muai be executed to reveal the reference to a particular resource. A resource is made
nyisible"™ either by the explicit statement of the reference in the work request or through a declaration
assoclated with one of the resources referenced !n the work request. An sxample of the latter means of
visibility is a file system in which exterunal references made from a particular file are identified and
stored in the "header” portion of the file. 1In this case, the identity of a reference can be obtained by

simply accessing the header,

The greateat impact of the visibility ocharacteristic of resource requirements ocours in the
construction of task graphs and the distribution of work. The time at which resource requirements are
detected and resolved determinem when &nd how parts of the task graph cun be constructed, Similarly,
some work cannot be distributed until certain details are resolved. For example, consider a case wvhere
resource references cannot be resolved until execution time. Assume there exist two processes X and Y
where process X has a hidden reference to process Y. An executive control cannot consider ¥ in the work
distribution decision that 4is made in order to begin execution of X, The significance of this is that
certain work distribution decisions may not be "globally optimal”™ bocause total information was not /)

available at the time the decision was made.

e e
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3.2.2 The Numbmr of Concurrent Processes
A work request can either specify the need tu execute only a single process or the execution of

multiple proceases which may possibly be executed concurrently. Obviously with multiple proceaaes, more
resource availatility information must be maintained; and thers i1s a corresponding increase in the data
to the work distribution and work allocation phases of confrol. In addition, the complexity of the work
distribution decision algorithm increases with more nresources needing to be allocated and multiple
processes needing scheduling. The complexity of controlling the ecxecution of the work request is also
ircreased with the presence of multiple processes since th3 control must monitor multiple proceases for

each work request.

R amda,

3.2.3 The Presence of Interprocess Communiocation
The problems described in the previous paragraph are amplified by the presence cof communication

connections between processea. When interprccess communication is described in a work request, the work

distribution decision must consider the requirement for communication links, In addition, a compromise

must be made in order to satisfy the conflicting goals of meximizing the inherent parallelism of the R

processes of the work request and minimizing the cost of communication among these proceasses, The

control activity required during execution is also impacted by the presence of interprocess com-

munication. It must provide the means for passing messages, huf’e~ing messages, and providing synch-

ronization to insure that a reader does no: underflow and a iritur does not overflow the message buffers.

3.2.4 Tha Nature of Prociss Connectivity
There are a variety of techriques available for expressing interprocess communication including

pipes (see [Ritc78]) end ports (see {Balz71, HaveT8, Suns77, Zuck?7}). There are a number of approaches
to realizing these different forma of interprocess communication, The main impact on an executive

control, though, is in those components controlling process execution.

3.2.5 The Presence of Command Files
A command file 1s comp sed of work requests. Execution of a work request that references a command

file results in a new issuw dealing with the construction of task graphs, This issue is ooncerned with
vwhether a new cask graph should be construncted to descril.w the new work request or should these new
processes be included in the old task graph. The differenc.s Yetween these two approaches becones
important during work distribution. It is assumed that the :o-k distribution decision will be made only
with the informstion available in the task graph. Thus, with *1e first approach, only those tasks in ths
new work request are considered while the second approach prc.ides the ability to take into consideration

the assignment of tasks from previous work requests.

3.3 A Claasifloation of Hork

Thisz examination of the characteristiocs of FDPS work requests has lead to tue identification of
five bhasic attributes which have significant impact on an executive control. In Figure 2, all posaible
types of work requests are enumerated resulting in 32 different forms of work requests. It should be
noted, though, that 16 of these (those with an asterisk beside the task number) contain conflicting

characteristics and thus are impossible.

G i o,
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4, CHARACTERISTICS QF FDPS CONTIROL, MODELY
4.1 Approaches fo Implementing EDPS Exsoutiva Control
a

There are two basically different approaches available for implementing an operating system for
distributed processing system, the base-level approach and the weta-system approach [Thom78]. The base-
level approach does not utilize any existing software and, therefore, requires the development of all new
This includes software for 2ll local control functions such as memory management and process
management. In contrast, the meta-system approach utilizes the "existing" operating systems (called :
local operating systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced" to the i
diatributed system by a network operating system (NOS) which is designed to provide high ievel services
available on a system-wide basis, The meta-system approach is usually preferred due to the availabilicy
of existing software to accomplish local management functions, thus, reducing development costs [Thom78].

ks e
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Figure 3 depicts a logical model applicable to an FDPS executive nontrol utilizing either approach.
The LOS handles the low-level (processor-specific) operations required to directly interface with users
and resources. In the meta-system approach, the LOS represents primarily the operating systems presently
avallable for nodes configured in stand-alone environments, The LOS resulting from a base-level approach
has similar functionality; however, it represents a new design, and certain features may be modified in
order to allow the NOS to provide csrtain funotions normally provided by the 1.0S. Any "network"
operations are performed by the NOS. System unification is realized through the interaction of NOS com-
ponents, possibly residing on different processors, acting in cooperation with appropriate LOS com~
ponents. Communication among the components is provided by the message handler which utilizes the mes~
sage transport services,

4.2 Information

' Two types of information are required by an exenutive control, information concerning the structure
of the set of tasks required to satisfy the work requast and information about system resourcas. This
data is maintained in a variely of data strictures by a number of different components,

4.2, Information Pequirements for Work Ruquests

' Each work request identifles a set of cooperating tasks, nodes in a logical network that cooperate
in <xecution to sati=€y a request and the connectivity of those nodes. Figure 1 illustrates the notation
used in this project to express work requests. An example of a work request using this notation is
presented in Figure 4. Work requests as linear textual forms can be easily accepted and manipulated by
the computer system; however, task graphs, which are an internal control structure used to describe work
requests, must be represented in a manner such vhat the linkage information is readily available. This
can take the form of the explicit linking of node control blocks (Figure 5) or an interconnection matrix
(Figure 6).

g e e e

Information concerning a particular task, i.e., iogical node, is waintained in a node control block
(Figure 5). Associated with each logical node is an execution file, a series of input files, and a
series of output files, The node control block contains information on each of these entities that
b includes ths name of the resource, the locations of possible candidates that might provide the deaired

resource, and the location of the candidate resource chosen to be utilized in the satisfaction of the
work request. In addition to this information, the node control block muintains a description of all
interprocess communication (IPC) in which the node is a party. This consists of a list of input ports
and output ports. (Interprocess communication is a term describing the exchange of messages between
cooperating procssses of a work request.) Typically, a message is "sent" when it is written to the out-
put port of a process, The message 1s then availablc for consumption by any process possessing an input
port that is connected t¢o the previousiy mentioned output port. The message is actually consumed or
accepted when the process owning the connectud input port exeocutes a READ on that port.

A globsl view of interprocess communication is provided by the node interconnection matrix (Figure
6). This structure indicates the presence or absence of an IPC link between an output port of one node
and an input port of another node. Thus, links are assumed to carry data in only a single direction.

An example of a task graph resulting from the work request in Figure 4 utilizing the direct linking
of node control blocks is presented in Figure 7. Figure 8 illustrates the utilization of an interconnec-
tion matrix.

4,2,2 Information Requirements for 3ystem Resources

Regardless of how the executive coutrol 1s realized (i.e., how the components of the executive
control are distributed and how the control decisions are decentralized), information concerning all
system resources (processors, communication lines, files, and peripheral devices) must be maintained.
This inforration includes at a minimum an indication of the availability of resources (available, reser-
ved, or assigned). Preemptable pggources (e.g., processors and communication lines) capable of accom-
modating more than one user at a gime may also have associated with them utilization information designed
to guide an executive contrel in its effort to perform load balancing.

As discussed below, there are a number of techniques that may be emr:loyed to gather and/or maintain
the system resource information.

4.3 Baala Querations of FDPS Control

The primary task of an executive control is to process work requests that can beat be described as .
logical networks. & node of a logical network specifies an execution file that may either contain object
code or commands (work requests), input files, and output files. These fiies may reside on one or more
physical nodes of the system and there may be multiple copies of the same file available. Thus, to
pProcess a work request, an FDPS executive control must perform three basic operations: 1) gather
information, 2) distribute the work snd allocate resources, and 3) ini.iate and monitor task execution.
These operations need not be exscuted in a purely serial fashion but may take a mure complex form with
executive control operations oxecuted simultaneously or concurrently with task execution as the need
arises,

Examination of the basic operations in further detail (Figure 9) reveals sowe of the variations
possible in the handling of work requests, Two steps exist in information gathering --- 1) collecting
information about tusk requirements for the work request and 2) identifying the rescurces avallable for i
satisfying the request requirements. Information gathering is followed by the task of distributing the !
work and allocating resources, If this operation {8 not successful, three alternrtives are available.
First, more information on resource avajlability can be gathered in an attempi to formulate a new work
distribution, There may have been a change in the atatus of some resources since the original request
for availability information, Second, more information can be gathered as above, but this time the
requester will indicate a willingness to "pey more" for the resources. This is referred to as bildding to
a higher level. Finally, the user can simply be informed that it 1r impossible to satisfy his work
request.

Y AM‘M;_ o o , e R . i AM
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4,3.,1 Information Gathering

Upon recelving a work requast, the first task of the corirol is to discover what resources are
needed to satisfy the work request (Figure 10) and which resources 'te availcble to fill these needs
(Figure 11). Each work request includes a desoription of a serica c. tasks and the connectivity of those

tasks, Associated with each task is a series of files, One is discineuished as the execution file and
the reat are input/output files. The executive control must first d-iermine vhich files are needed. It
then muat examine eacl. of the execution files to determine the nature uf its contents (executuble code or
commands). Each task will need a processor resource(s), and those tasks containing vommand files will

also require a command interpreter,

An FDPS executive control must also determine which of the system resources are available. For

nonpreemptable resources, the status of a resource can be either Mavailable," "reserved," or "assigned,"
A reservation indicates that a resource may be used in the future and that {t should not be given to
another user. Typically, theve is a time-out associated with a reservation that results in the automatic
release of the reservation if an assignment is not made within a spescified time interval. The ldea here
is to free resources that otherwise would have L2en left unavailable by a lost process, The process may
be lost because it failed, its processor failed, or the comwunication link to the node housing the
particular resource may have failed. An assignment, on the other hand, lIndicates that a resource is
dedicated to a user until the user explicitly releases that assignment. Preemptable resources may be
accessed by more than one concurrent user and thus cun be treated in a different manner. For these
rescurces, the status may be indicated by more continuous values (e.g., the utilization of the resource)

rather than the discrete vslues described ubove.

4.3.2 Work Distribution and Resource Allocation

Tho FDPS executive control must determine the work distribution and the allocation of system
resources {(Figure 12 & 13). Tbhis process involves choosing from the available resources those that are
to be utilized. This decision is designed to achieve several goals such as load balancing, maximum
throughput, and minimum response time, It can be viewed as an optimization prodlem similar in many

respects to that discussed by Morgan (horgT?l].

Once an allocation has been determined, the chosen resources are allocated and the processes com~
prising the task set are scheduled and initiated, It a vrotess cannot be immediately scheduled, it may
be queued and scheduled at a iater time. When it iy scheduled, a process control block and any other

execution-time data structures must be created.

4.,3.3 Information Recording
Information 4is vrecorded as a result of management acticns aa well as providing a means to maintain

a historical record or audit trail of systen activity. The information recording resulting from
management actions maintaine the system state and provides information for decision making. The
historical infoirmwation is useful in monitoring system 3ecurity. It provides a means to examine past
activity on a system in order to determine if a breach of security occurred or how a particular problem

or breach of security mar have occurred,

Management information is maintained in various structures, including the task graph. The task
graph is used to maintain information about the structurc of ar individual work request, and, thus, its

contents change as progress on the work request proceeds. A task graph is created when a work request is
entered into the atructure as work progresses

first discovered, and irnformation is then constantly
through information gathering to work distribution and resource allocation and on to task execution, The
task graph remains active until completion of the work request.

In fact,

Much of the information contained in the task graph is applicable to historical records.
the task graph can be used to house his'orical information as it i{s gathered during work request proces-

Uponr completion of the work request, the historical information is extracted and entered into the

sing.
be crrated directly skipping the

permanent historical file. Alternatively, the historical file can
intermediate task graph structure.

4,3.4 Task Execution
Finally, an executive control must monitor the execution of active processes. This includes

providing interprocess communication, handling requests from active processes, and supervising process
termiration. The actlvities associated with interprocess communicalion include establishing communica-
tion raths, buffe-ing messagea, and synchronizing communicating processea. The latter activity is neces-
aary to protect the system from processes that flooc the system with messages before another process has

ime Lo absorb the messages. Active processes may 1lso make requests to the executive control. These
may taxe the form of additional work requests or requests for additional resources, Work requests may
originate from either command files or files containing sxecutable code.

An executive control must also detect the termination of processes. This includes both normal and
abnormal termination. After detecting process termination, it must inform processes needing this
information that terminotion has cccurred, open files must be closed, and other loose ends must be
cleaned up. Finally, when the last process of a work reguest has terminated, it must inform the

originator of the request ol the completion of the request.

4.3.5 Fault Rcoovery

If portions (tasks) of the work request are being performed on different processors, there is
inherently a certain degree of fault recovery possible, The problem is in exploitine that capabllity.
The ability to utilize "good" work remaining after the failure of one or more of the processors executing

a work request depends on the recovery agent having knowledge of the location of that work and the
ability of the recovery agent to reestablish the appropriste 1linkages to thu new locations for the
rortions of the work that were being executed on the failed processor(s).

R P
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5. YARXATIONS IN FDPS CONTROL MODELS

There 13 an extremely large number of features by which variations in dicirituted control m.dels
can be characterized., Of these, only a few basic attributes appear to deserve attention., These include
the nature of how and when a task graph is constructed, the maintenance of resource availability
information, the allncation of resources, process initiation, and process monitoring. In this section,
these 1issues are exemined; but again, since the nuzber of variations poasible in each issue is rather
large, only tho.2 choices considered significant are discussed. Table 2 contains a summary of the
problems that have been identified and posaible solutions {significant and reasonable solutions) to these
problems,

5.1 Iaak Graph

The task graph is a data structurs used to maintain information about the applicable task set. The
nodes of a task graph represent the tasks of the fask set, and the arcs represent the connectivity or
flow of information between tasks. There ar. basiically four issues in task graph construction: 1) who
builds a task graph, 2) what {s the basic stiucture of a task graph, 3) where are the copies of a task
graph stored, and 4) when i1s a task gri.,h bullt,

The identity of the component or componerts constructing tha task g:aph 13 an issue that presents
three basic choices. First, a central node can be responsihble for the construction of task graphs for
all work requests., Another choice utilize, the control ocor, «1. ¢ ihe aode receiving the work reguest
to construct the task graph. Final'y, the Ji.° .. o.._ding ts. yraph can be distributed among
several components. 1In particul.ar, the nodes ir .lved 1- executing individual tasks of the work request
car be responsible for constructing those »ar‘s . *he task graph that they are processing.

The general nature of the tas. gr.ph it -1f piovicer 1w -lternatives for the design of an
executive control. What is of conc “r :re _u not s+ ontent ¢ a tas: g aph but rather its basic
structure. One alternative is t¢ m.nt .n u ¢t 3 aph in a sinpgle stru cure regardless of how .xecution
1s distributed. The ot"e K3 o mal :tain 1+ 1ass grap as a collection of subgraphs with eaca
subgraph representing a v T W g =+t. Fu e, e, a subgraph can iepresent that portion of
the work request tha: : € =¢ "+ on Y: vovarticl ar node at which tha: -ubgraph is stored.

Anothar 1. sus talh oaresh ttr2t4 5 onoern- wher tY various copies of the task giraph are
stored. If the co- r maint 2 4 Taak - apt as . unified -° .clure representing the complete set of
tasks for o wo -~ :gest, - .. utructurc may either be st on a Ingle node, or redundant copies <un
pe stored or » pl  node: The s° 12 ucde can either b cer:ral ode that is usad to store all task
graphs, the 1o it aih ae or g . work recuaest arrive : iihe source node), or a node chos¢- for its
ability tc ide * is wor 1 ues’ witl pt * servsirce., If the task graph is divided int: several

)

subgrapns, thes. can @t 2 e onto e ..

"ir ly, tvere a3 ti . sue ¢« . ning the timing of ta . gra; . coanstruction 1in ‘he sequence of
step:  tr de WOk ‘eques! rcecessing. ‘wo ~h-i.es are avallable: 1) t}: task graph can be
ons W <% e i ely, a .o-ast he maximu te poanible, before execution i= begun, or 2) the
tasl —uph ce e coastrucied ir smentally a- ex ur - Lrok sses.

S.2 & wnlel svdilabioity Ao ormation

- ther 9Jo0ss ¢ 801 « of vari: 1litv t-r sntrol  wod 1t 1s  the maintenance of resource
svalla. ity 1 form .cion. W' .( 18 of dimr ~tance here . "Who mairtains this information®™ and ™Where 1is
*s .- ‘orms ion wmaintaine.." A p ticui.r wode’ .ared not uniformly apply t'~ sare technique for
~ainta: .1 - resource .iv.ilatiliry inrorme ion tc all resources. HKather, the technique best sujted to
partic iar res: ~ce ~la " ma¥ « utilizeo,

The reasponsib ty for lntaini g -esource avei bility information ¢ =, be delegated in za variety
»f say . The centra. zed z - ch inv  ve-+ asiigning a - ingle component this responsibility. in  this
situation, riquests aud rolea ‘or © sou: ves Tlow t o rough the specia’ ‘zed nompcnent which maintaina the
comhlete resousrce a aidl:n-li rmation r one 1« _ation,

raation of + 13 tech e mainta ax com; ~te copies ot ' he resource availability information at
several leacatic-s [Ca 79a,h]. >mponent.; at ee h >f thes: lo-:at‘ons a'- rssponsible for updating their
copy o° the resac.rce aveila' iiity information ia oracer to keer it consistent with the other copies. This
recair. v a pro’ col to insu 2 that ¢ nuaistency 1s maintained. For example, two cowpounents should not
releass a f: ¢ for wri': 3 to :ifferent wusers at *he same time, To prcvide this control, message.
conta: iing upc ites for the -format: :m “a®les must be ex.hanged amorg .he components. In addition, a
strategy for synctror .y the eleasme o resourc:s iu required. Ar example >f such a strategy is found
in I :bva79a,! ] whe 1 bzton 19 :.ssed Aarcund the network. The holdzr of the beton 1s permitted to
relc ise reso.rces.

Aothe - approzcen exh:-  .ag wmore decentralization requires qividing the collection of resources
i- . subset or classe and zssigaing serarate compcaents to euch subset. Each component is responsible
f r maint: ning resour’ - availnbirity 4rformation on « particular subset. 1In this case, roquests for
r«~= urces - an only t-2 servi-wmr by the control component responsible for that resource. Resources may be
r sed {ir i manner such trat - he desi~ed manager ia 1-eadily identifiaple. Alternatively, a search may oe
r- quireu I+ crder z: .oca“2 ‘me approg ~la‘e manager. This search may invoive passing the request from
‘caponent. o corpedrent untll cee 18 {ound that iz capable cf _erforuing the desired operation,

Preemptai..e resour-es which can be thared by multiple ccncirient usera {e.g., processors and com-
sl catior 1 nesd do ot vecesnarily require the mairtenance of pre -ise availability information, Fur
‘nese  re:ow “es it {: rea:onable to maintain conly approximate availability information because such

- PRV 2ecbannn da Ansradad narPAraanns
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5.3 Allocating

One of the major prublems experienccd in the allocation of resources is concurrency control. 1In a
hospitable environment, it is possible to ignore concurrency control. The users are given the
responsibility of insuring that access to a shared resource such as a file is havdled in a coniistent
manner. In other environments, for example that presented by an FDPS, this (s an importani issue. In an
FDPS, the problem is even more difficult than in a centralized system due to the loose coupling inherent
in the system.

There are basically two approaches to solving the problem of concurrent requests for shared resour-
ces, The first utilizes the concept of a reservation. Prior to the allocation of resources (possibly
when resource availability information is acquired), a resource may be reserved. The reservation is
effective for only a limited period (a period long enough to make a work distribution decision and
allocate the resources determired by the decision) and prevents cther users from acquiring the rescurce.
The other solution to this problem is to make the work distribution decision without the aid of reser-
vations. If resources cannot be allocated, the executive control will either wait wuntil they can be
allocated or attempt a new work distribution.

5.4 Proceas Initlation

Several issues arise concerning process initiation. Chief among these is the distribution of
responsibility. There are a large number of organizations possible, but only a few are reasonable. The
basic organizations utilize either a single manager, a hierarchy of managers, or a collection of
autonomous managers. Two approaches result from the single manager ccncept. In the first organization,
a central comronent is in charge of all work requests and the processes resulting from these work
requests. Al. decisions concerning the fate of processes and work requests are made by this component.
A variation on this organization assigna responsibility at the level of work requests. In other words,
separale components are a'signed to each work request. Each component makes all decisions concerning the
feile of a particular work request and its processes.

Management can also be organized in a hierarchical manner. There are a variety of ways hierar-
chical management can be realized, but we will concentrate on only two, the two-level hierarchy and the
n-level hierarchy. The two-level hierarchy has at the top level a component that is responsible for an
entire work request. At the lower level are a series of components each responsible for an individual
task of the wor« request., The lower level componenta take direction from the high level componen®: and
provide results to this component., The n-level hierarchy utilizes in its top and bottom l2vels the com-
ponents described for the two-level hierarchy. The middle levels are occupied by components that are
each responsible for a subgraph of the eatire task graph, Therefore, a middle component takes direction
from and reports to a higher level component which is in charge of a part of the task graph that includes
the subgraph for which the middle component is responsiole. The middle component also directs lower
level components each of which are responsible for a particular task.

Anoiher organizational approach utilizes a series of autonomous management components. Each com-
ponent is in charge of some subzet of the tasks of a work request. Cooperation of the components is
required in order to realize the orderly completion of a work request.

Regardless of the organization, at some point, a request for the assumption of responsibility by a
comvonent will be made., Such a request may be reasonably denied for two reasons: 1) the component does
not possess enough resources to satisfy the request (e,g., there may not be enough space to place a new
process on an input gqueue), or 2) the component may not be functioning. The question that arises
concerns how this denlal 4~ handled, One solution is to keep trying the request either until it is
accepted cr .11 a certain number of attempts have falled. In this case if the request is never accep-
ted, the wcr'k request is abandoned, and the user is notified of the failure. Instesd of abandoning the
work request, it is possible that a new work distribution decision can be formulated utilizing the
additional knowledge concerning the failure of a certain component to accept a previous request.

5.5 Eroqeas Monltoring

The task of monitoring process execution presents the FDPS executive control with two major
problems, providing interprocess communication and responding to additional work requests and requests
for additional resources, With regard to the problem of interprocess communication, there is some ques-
tion as to the nature cf the communication primitives an FDPS executive control should provide. This
question arises due to the variety of communication techniques being offered by current languages. Ther~
are two basic approaches found in current languages, synchronized communication and unsynchronized com-
munication (buff'cred messages). Synchronized communication requires that the execution of both the sen-
der and the receiver be interrupted until a message has been successfully transferred. Examples of
languages utilizing this form of communication are Huare's Ccmmunicating Sequential Processes [Hoar78]
and Brinch Hansen's Distributed Processes {#rin78]. In contrast, buffered messages allow the asynch-~
ronous operation of both senders and receiv.rs., Examples of languages using this form of communication
are PLITS [Feld79] and STARMOD [Cook80].

The executive control is required to provide communication primitives that are suitable to one of
the -ommurication techniques discussed above, If the basic communication system wutilizes synchronized
communication, both techniques can be easily handled. The problem with this approach is that there is
extra overhead incurred whes providing the message buffering technique. On the other hand if the basio
communication system utilizes unsynchronized communication, there will be great difficulty in realizing a
synchronized form of communication.

The task of monitoring processes 8.:0 involves responding to requests generated by the executing
tasks., These may be either requests for aduitional resources (e.g., an additional file) or new work
reauests, It the request is a work request, trere is a question as to how a new set of tasks ia tn be

- s s4 —=ld adthar he innluded in the existing task




5.6 Procasa

Iarnination

When a process terminates there is always some cleanup work that must be accomplished ‘e.g., cles-
ing files, returning memory space, and deleting records concerning that process from the executive
control's work space). In addition, depending on the reason for termination (normal or abnormal), other
control components may need to be inforwed of the terminaticn. In the case of a fal'ure, the task graph
will contain the information needed to perform cieanup operations (e.g., the icentities of the processes
needing information concerning the failure). Both the nature of the clcanup «ad the identity of the
control components that must be informed of the termination are determined from tue design decisions
resulting from the issues discussed above,

5.1

To gain a better appreciation of some of the basic issues of control in an FPPS, it is wuseful to
examine an example of work request processing on an F°PS, In the example, emphasis is placed on the
operations involved in the construction of task grapbs. 7T :.e work distribution decision that is utilized
is a simple one that assigns the execution of processes - the same mxJes that house the files containing
their code. The primary concern of this example (Figure U4) is the impact of variations in work requests
on task graph construction. 1In this example, the varjious narts of the overall task graph describing the
complete work request are stored on the nodea util zed by each part. Other techniques for storing the
task graphs may also be utilized. In the example, the following symbols are utilized:

[ visible external reference(-)

{1} embedded external re ference.s)

(n)A responsibility Jor » delegated from node n
A(n) responsibility for A celegated to node n
a==>b IPC from procesz a to proceas b

AB,... uppercase letters indicate command files
a,b,... lowercase letters indicate executable files

U, V, W, X,¥,2 indicate data files

Now that we have taken a look at the construction of task graphs in a broad sense, let us examine
the details of the task of processing a work request. This is illustrated in two figures. Figure 1S
outlines the basic steps involved 1in work request processing. Finally, Figure 1o depicts the steps
involved in processing u specific work request. In this csse, the work -~oguemr 1is the same as that
examined in the example of task graph building (Figure 14).

6. CONCLUSIONS

Thus far it has baen possible to identify a number of the characteristics of a distributed ard
decentralized control system and to identify some of its operational features. The evaluation of this
mode of system control is the next task.
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<work request> ::= [ <logical net> { ; <logical net> } ]

<logical net> ::= <logical node> { <node separator>
{ <node separator> } <logical node> }

{node separator> ::- , | <pipe connection>

<pipe connection> ::= [ <port> ] '|' [ <logical node number> ]
{ .<port> ]

<port> ::= <integer>
{logical node number> ::= <{integer> | $ | <label>
<logioal node> ::x [ :<label> ] [ <simple node> |
<compound node> ] |
( <simple node> | <compound node> )

{simple node> ::= { <i/o redirector> } <{occwmand name>
{ <i/0 redirector> | <argument)> }

<compound node> ::= { <i/o0 redirector> } '{' <logical net>
{ <net separator> <logical net> } '}’
{ <i/0 redirecotr> }
<i/0 redirector> ::= {file name> '>' [ <port> ] |
[ <port> ] '>' <file name> |
[ <port> ] ">>' <(file name) |
' [ <portd> ]
<net separator> ::= ;
<command name> ::= <{fils naaed
<label)> ::= <identifier>

Figure 1. Work Request Syntax
(Taken from [AXINTS8])
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Request =« RUN A STEP 1

Task Graph Maintained
At This Node
A
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Local Resources
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y s

Node 1
(Source of request)

Node 2

Task Graph Maintained
At This Node

Task Gruph Maintained
At This Node

Local Resources

Local Rescurces

Nod: 3

Comments:
A more complex request:

1) Contains an explicit refersnce to IPC.
2) Resource filer loocated on different nodes.

First laysr is built.

Node &
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Comments:
File d 1is located on node 2 and respeunibility
for d is tentatively delegated to t!:. node,
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STEP 3
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At This Node
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x
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Comments:

Reaponsibility for d is sooepted by mode 2.

Node A
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Figuie 14.
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Comments:
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RECOVERY IN DISTRIBUTED PROCESSING SYSTEMS

Liba Svobodova
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Rocquencourt
78153 Le Chesnay Cedek
France

Abstract

A powerful control abstraction called an atomic action has been developed as a general mechanism for control-
ling accesses to shared distributed data. In order to preserve consistency of the system, if an atomic action
fails, all of its effects arv undene; thus if a long complex computation is represented as an atomic action,
an important amount of posiibly useful work might be lost. The propcsed scheme which facilitates selective
internal recovery from det:cted errors, node failures, and communication failures employes nested atomic
actions. When an atomic action terminates, its results are not made permanent until the outermost atomic
action is committed, but they survive local node failures. Each subtree of nested atopmic actions is reco-
verable (undoable) individually, thus making it possible to switch to an alternative algorithm, service, or
physical node upon a failure. Finally, a recovery point is established in stable storage as part of a remote

request, so that work done outside of the requesting node is not lost if this node fails.

1. INTRODUCTION

A distributed system, as viewed in this paper, is a network of computing nodes which, although they have to

cooperate in some predetermined manner, maintain a fair degree of autonomy with respect to their internal

organization and management [CLAR 80, SVOB 79A, SVOB 793]. The communication subsystem facilitates exchange
nodes, but does not guarantee it at all times. Individual nodes provide certain

of wessages between any two
services to the rest of the system. These services are not memoryless : while they can be provided only if

adequate hardware resources are available at the nods, they contain another critical component, and that
is stored data.

Distributed systems are often claimed to be inherently more reliable than systems that are built on the top
, propagation of low level errors is restricted by physical separation
to finish the computing tasks

introduce also new reliability
consistent state of the system,

of a single central processor. Fir:
of processes and resources. Second, if one node fails, it might be possible

in progress by using services of another node, However, distributed systems
problems, the most basic one being the difficulty of maintaining a globally
Given that the programs of the individual tasks are correct, the problem of maintaining a consistent state
becomes a problem of synchronization and recovery. In a distributed system, the difficulty of recovery is
in part due, paradoxically, to the fact that a failure of a single node does not disable the whole system.
The other important aspect is the uncertainty brought about by the inperfect communication subsystem : from
the point of view of a node requesting a service, a failure of the communication subsystem to deliver the
request or the response is, in general, indistinguishable from a failure (crash) of the node providing the

service,

The problem of recovery in a distributed system has been studied mostly in the_context of database manage-
ment. A logical unit of work is represented by a transaction {TRAI 79, GRAY 80). Transactions are assumed

to preserve certain application specific integrity constraints defined on the data, as well as the integri-
ty constraints of the data structures representing the database. To maintain the integrity constiraints, if
an error is encountered during execution of a transaction, the transaction is aborted and all of its effects

are 'indone. A related aspect is that of the stability of results : if a transaction completes, its effects

ar. guaranteed to be permanent, that is, the results will not be lest or damaged by subsequent system
fr Liures; this is again a recovery problem, although at a different (lower) system implementation level,

A computation in a distributed system may not be able to proceed normally for many different reasons

- the invoker decided to abort *t
- the inputs were incorrect
- an unrecoverable hardware
- a scheduling conflict was encountered
- one of the involved nodes failed

- communication failed.

or software error was encountercd during execution

As said above, in the simpie transaction model used in distributed database management systems, all of
these situations are treated in the same way : the transaction is aborted and its effects are undone. For
long, complex cowmputationg, a lo: of work might be wasted if this policy is followed. Thus, in addition to

guarante.ing data integrity and stability, an important goa is to complete computations in spite of errors
and failures of different system components., In particular, since the same of similar service might be pro-
vided by several nodes, a failure of somz node or a failur: to communicate with a particular node does not
have to abort all computations requiring such a service. A so, if a failed node can recover in such a way
that it does remember the state of the computations that w.re running on it at the time of the crash, these
computations can be complered without having to seek alteruative resources or alternative solutions. This
paper focuses on this problem of resiliency, and in parti.ular, resiliency - ith respect to node and commu-

nication failures.

RPN
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2, GENERALIZED MODEL OF DISTRIBUTED COMPUTATIONS

The transaction model assumed in most studies of recovery issves in distributed database management systems
is limiting from yet another point of view ! in general, databage transactions are assumed to have a very
flat (usually just one level) strictly hierarchical structure. A transaction has a coordinstor and several
data managers (workers, agents) that manage different parts of the database, but there are no lower level
dependencies between these data managers. More general distributed computations might present the sort of
problem depicted in Figure 1. In this example, the top level program is initiated at node A. This program
includes requests for service §; from node B, and service Sj from node C, A short notation Sp.N will be
used throughout this paper where Sy specifies the service requested and N the name of the node providing
the service. The services provided by the individual nodes might be much more complex than "read data" and
"write data" usually assumed to be the only types of requests in database tr.insactions. Following the con-
cepts of structured programming, the actual implementation of these services is unknown to the invoker,

, Thus the program at node A does not known that requests Si.B and §j.C both, as part of their imp%imentatiou
request services from node E and that each such request results in an update of a data object X.

If the programs that implement the services Sj,B and 8j.C are executed concurrently, their proper synchro-

i nization during normal execution represents practically the sam: problem as the problem of the synchronizing
: database accesses of independent concurrent computations. The problem that will be studied here is the pos-
£ sibility of recovery of the individual requests, Assume that the request sent to node B fails, but by that

r time node C has already done a significant amount of work as a result of the request received from node A,
As a reponse to a failure of the requast Si.B, the requesting program at node A might try one of the follow—

1 ' ing altcrnatives :

; 1. retry request S;.B
! 2, search anotier node that provides the same service as node B )
3. try an alternative algorithm (different service) that produces possibly different kinds of results, y

but still satistactory (less accurate, for example). .-

\,
sl niiataitioe,

At the programming level, such alternatives could be specified with the aid of a construct called a recovery
block (RAND 75]. However, before an alterrative can be tried at any level, it is necessary to restore the
state of the resources used by the {ailed branch of the computation. If object X has already been modified

L as a result of the failled request §;.B, and if this modification has besn seen by the other branch that
originated at node G, it migh® be necessary to undo indeed everything. The main point is, however, that
these dependencies are not known at the level of node A : unless some control meciianisms are added, it is
always necessary to account for the worst case, and to undo everything. It should be noted that this kind

of problem will be encountered even in a single processor system, if the "nodes'" are just separate modules
such as, for example, the guardiens [LISK 79, SVOB 79A]. However, additional problems occur in a network

of physical nodes, as will be seen later. i

3. ATCMIC ACTIONS

A general mechanism for solving the problem of consistency in the presence of concurrent computations .nd
asynchronous faults is a construct or a control ab.traction called atomic action. From the point of view of
the invoker, an atomic action is an operation the effects of which are determined entirely by its algorithm.

f Atomic actions are :

] 1, indivisible with respect to concurrent computations : the intermediate results of one atomic action |
cannot be modified or observed by concurrent computstions ; :
2. indivisible with respect to failures : an atomic action either terminates normally and produces a
new consistent state as defined by its algorithm, or has no effects. i

: In transaction-oriented datubase management systems, the transactions are in fact atomic actions; however,
i the conzcpt of an atomic action is more general than that of ar. update of a shared database.

q -

F . From the implementation point of view, an atomic action can be viewed as a control sphere that encompasses

a set of resources, botn shared and private. An atomic action can be exccuted by & single process, if all
these rcsources are in the same physical node, or it might involve several processes. The resources could i
be all acquired at the beginning of the execution of the atomic action, however, often this is not possible |
since the ccmplete set of the required resources is not known at that time. For example, the "resources" might ]
be records of a database. Which records will be read or modified mipht depend on the value of certain fields |
of some other records. One solution is to "acquire" the whole datahbase. A more effective solution is to let
the atomic action acquire needed records during the course of execution, as the need is determined. This 1
necessitates synchronization protocols thai properly order tha elementary execution steps of different atomic :
actions, and resolve scheduling anomalies. Rasically, it is necessary to ensure that a set o° atomic actions
executed concurrently is serializable [ESWA 76]. If an atomic action fails, the resources thuat it has acquired
have to be restored (recovered) to their state at the time of their acquisition, and released; to ensure that
no other computations have been affected by such a failure, the resources are not released until the atomic

action terminates

Mauy sophisticated mechanisms have been proposed to provide atomicity in distributed systems. Serializability
of atomic actions is achieved either by locking protocols or by a priori ordering of reque . : belonging to
different atomic actions by associating with them globally unique timestamps. In this paper, c.ly the mecha-
nisms needed to assure atomicity from the point of view of failures will be discussed. Also. while it would
be interesting to consider different types of resources, the vesources of an atowic acticn are assumed to be
data objects. The key problems thenare : i. coordination of the changes to the physica) representation of

it

*) A more gemeral transaction model that covers situations of this kind is developed in [L1ND 79]. However, .
the emphasis in this model is on detecting node crashes, after which the whole transaction is aborted. ‘ ‘
Also, a transaction can be executing only on a single node at a time. ‘
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objects updeted vithin the smme atomir action, ii. their commitment, that is, making these changes perma-
nent and visible to other comoutations, iii., object recovery, chat is, restoratinn of an object to its
previous state, and iv. coox ‘ination of the recovery of the objects modified by a failed atomic ?ction.
These are non-trivial problews aven if all objects are stoved at the same node and th» atomic action in-
vulves only a single process; in a distributed system, the inhesremt uncertainty and the cost of interaode
communicatioa add another dimension to this problem.

In order to be able to execute arbitrary computations as atomic actions, it is necessary that the elementary
steps of which these computztions .2 constructed are also atomic. In particular, physir 11 updates of data
on storage devices must be atomic. Ip general, fo guarantee that stored uata will survive node crashes, t. 2y
must be stored vn nca-velatile secondary storage devices, since the usua. recovery from & crash is to rein-
itisxlize the systom, which means thgs from the point of view of normal access, the previous content of the
primary wemory is effective.ry lost. But such storage is not yet stable; additional prccedures s&n macha-
nisms {(e.g. duplication, checkpoints + log) are needed in order that stored inforration survives device
crushes snd spontauecus decays. However, the system could crarh during a wrile operation, when part of the
data has already been overwritten with a new value; this would leave the data object in an undefined state.
Stable storage that guarantees that a write operation is either performed correctly or has no effects is
called atomic stable storage. Efficient implementation of a storage system with such properties is stiil

a research issue [LAMP 79, SVOB 80]; in this paper, it is aseumed that all nodes provide stable storage and
that information stored there can be changed atomically, although it does not necessarily mean that such
information is updated in place.

4, NESTED ATOMIC ACTIONS

From the recovery point of view, atomic actions can be viewed as a damage ccnfinement mechanism : whiie it
is generally assumed that everything within the fajled atomic action 1s susvecc, the mutual exclusion mecha-
nisme of atomic actions guarantee that nothing outside has been affected. The damage confinement is a very
useful property since it makee crmoutations that are implemented as atomic actions separately recoverable,
However, as already argued, thie nssumptions aout the damage within an atcamic action is often unnecessavrily
srrict.

An alternative to aborting the entire atomic action is to set up recovery lines within it : when an error
is detected, the computation has to be backed out only to the nearest recovery line. If an atomic actiom
involves just a single nrocess, a recovery line comsists of a single recovery poiat (checkpoint) that cou~
tains the state of that process. If several nrocesses are involved, then recovary lines can be either pre-
arranged, or determined dynamically. The beginning of an atomic accion represents a preplanned recovery line.
However if processes do not set up recovery lines in a coordinated manmer, where the nearest recovery line
is at the time when an error is detected is not obvious. Merlin and Randell developed "chase protocols" for
determining recovery lines dynamically [HERL 77]. Tkis work was extended by Wood who worked out a protocol
for keeping track of the depsnden-~ias between processes (propagation of information) and for determining
when it is safe to discard a particular recovery point [HOOD 8]]. The approach caken h:if ié essentially to
preplan the recovery structuce, and to tie it to the logical structure of the progranm,

The basic solution is to use nested atomic actions : each atomic action can be built of smaller atouic scticas
that can be executed either sequentially or in parallel, and that will be properly synchronized with respact
to use nf shared deta objects. Reed develuped an integrated set of mechanisms for iwmplewentation and control
of nested atomic actions [REED 78]; thesc mechanisms will be extended here to facilitate selective internal
recovery.

In Reed's model, each atom! action is represented by two entities : a pseudo-temporal enviromwent and a
comnit record. The pseudo-tuwporal environment is the mechanism that assures serializability of atomic ac-
tions. The ccmmit record is u data structure that contains the state of the atomic action. The commit record
is created with the atate set tc "undefined". When the atomic action terminates normally, the state is set

to "committed", otherwise, if the termination is abnormal, the state in the commit record is set to "sborted".
An atomic actiou ajy which is nested within an atomic action aj is made dependent on the outcome of aj : this
dependence is recorded in the commit record of ajx in the form of a reference tv the commit record of aj.
Commit records are stored in atomic stable storage. Finally, all requests to create, read, update, or delate
an object include a reference x0 the commit record of the atomic action within which the rejquest is made,

When an object is updated, the system creates z new stable version of this object without destroying the old
one. This version contsins a reference to the commit record of the atomic action under which it vas created
A= long as that commif record iu in the stste "undefined", only the atomic action that created that version
can read it. Once this atumic action terminates, its commit record is set to the state "committed”, but it
dces not mean taat the new version can be uued freely from anywhere within the system : its fate still depends
on the outcome of the enclosiag atomic actiouns. However, once comritied locally, a new versiom can bde used
from anywhere within the imvocation subtree rooted by the nearest enclosing atomic actionm thaz is still in
the stace "undefined", since if this atomic action is eventually aborted, all of its dependents will be abort-
ed anyway. When an atowic acciien is aborted, all of the object versions created by it and by all of its de~
pendents are discarded, but this does not effect other branches of the iavocation tree, since they could not
have seen the invalidated versions. Once the top level atomic action reaches the final state, be it "aborted”
or "committed", this information is propagated to its dependents .nd successively to their dependents and
encached in their commit records.

*) It is quite difficult to find a simple definition of "system cxash"; in this paper, it will be aseumad
that a crash is any event that causes such complete reinitialization.

#*) A similar spproach is used by Surivastava, but he sssumes thax recovery might be provided on a wore
abstract level, under the direction of a mansger of an abstract type [SNRI 81].
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Let us return to the example given in 3ection 2. ‘The main prograr at node A will be, of course, an ~tomic
: action, but in addition each remote request will star:t a new atomic action in the receiving node. It is
i : assumed that each request returns & response when the atomic action created by that request terminates,
3 It ie the vesponeibility of the requestor to wait for the response before its atomic action ie committed,
b
F

Now assume that the request S;.E from node B is the first one to arrive 4t nwde E ; this situation is de-
picted in Figure 2. Once the execution of this rzquest is finished, it iu porsible to process the request
Sy.E from node D, but not Si.E from sode C, since tke atomic action rocted at node B has not finished,
Figure 3 shows & aituation when %j.B terminated normally and &« new versi-m of object X has been created

: finally by the request Sj.E from node C. If the request S;.B failed for some reason, both vervions X; and
) Xy would be discarded before §i.E could proceed. Of course, it is assumed that tLhe:c do not exist any pre-
- . cedence con. “raints hetween the updates performed on X, otherwise tlie requests & ,B and Sj.C could not be
4 executed concurrently, without any expli:it synchronization on their level.

5. CRASH RECOVERY

The mechanisms descrited in the preceding section ire sufficient ror orderly recovery from errors thst are
either reported or can be safely detected by the invoker of & request for service. In the given example,
it wouvld mean that if the reques: S;.% fails, either node B sends an error message to node A or A detects
an esroneous :cesponse. In eitlier case, A receives some responce from B, As said earlier, object versions
! and commi: recoras are stored in ctable storage, thus they survive rode crashes., This means that if, for
t exanple, node E crashes after it has sent back A response to vhe request Sk.E, this crash can have no effect
' or the rusults of that particular call. However, if an invoker dc28 not receive a response to its request,

- . the situation becomes more complicated., Namely, to prevent that a node waits indefinitely for a response .
) ‘ from another node, it is necessary to set a timeout for each remote request. However, when the timenut ex-
\ . pires, it is not possible to deduce the state of the atomic acticn created by that request. Any of the {ol-
3

g ‘ lowing might have happered :

1. the target node Z never received the request (the communication subsystem did not deliver the
message)

o

3 2. the request was executed but terminated abnormally

. execution of the request wis interrupted by a crash of node 7

3

4. execution of the request terminated normally, but the response was not delivered to the requestor §
(either thr node Z crashed before the response couid bLe sent, or the communication subsystem failed b
to delivexr he message)

saq

5. execution of the request stiil continues (either the timeout was set too shoct or the axecution
is slower due to bigh load or the need to recover from internal errors).

When the timeout expires, the invoker may decide cither to repea: the request or try an alterrative service,
or an alternative alporithm. Let us postpcne the discussion of the first possibility until the next seztion i
and analyze the problem sf switching to an alternative. Fov the first two situacions listed ahove nothing o
special has to be done since the fziled request had no effects. IR the other three cases, the atomic action
started by the request either has been or might be locally committed (in case ¢ 3, thir assumes that the
. node recovers in such a way that it ic capable of resuming the computations interrupted by the crasl). Ite
commit record contains a refercnr.e to the commit recosd of tane directly enclosing stomic asctiom, thet is,
the atomic action of its invoker; later, when the staie of the commit record of the invsoker is set to "cow- .
mitted", the whole subtree abandoned when the invcker switched intc an alternstive algorithm would be in i
J fact committed ! Thus it is necessary in some way to irvalidate the reference in the commit record of a
{ dependent atomic action declared to have failed on the hasis of a timeout. The commit record of an atomic
action should reside on the same naode as the objocts manipulated by the atomic action, that is, in the given
podei on the node on which the atomic action is executed. This means, howsver, that if no response is receis-
ed from this node, it must be assuaed that the commit record, if it exists, is also inaccessible and there-
fore the reference to the commit record of the invoker cannot be vemoved. A possibie solution showm in
Figute 4 is to add to each commit record a list of the identifiers of the current dependent atomic actionms.
In addition, each atomic action will contain its own id in its coamit record, The identifier of a dependent !
atomic action is geaerated by tha invoker (although it covld be generited by come third party) and included
iu the request sent tc the node providing the service. When the invoker decides that a particular request
: has failed, it -cmoves its id (that is, the id of the stomic action chat might have been staried hy the
: request) from the list in its own commit recordi. Betove the results of s dependent atomic action 2jx can be
i committed up to the lavel of ita invoker aj, it is neceussary to check if the identifier of ajx is still on
the list in the commir record of a:.

e

If a node is to resume local computations interrupted by a crash, and this is important in particular when

s computation had made remote requests, it is necesscry for each such computation, to remamber not only its
local state, but also its interactions with other nodes. Some of this information ls already in the commic
record, however, it is also necessary to re.ember the outstanding requests. Thus a checkpoint ahould be esta-
blished in stable atorage as part of a ramote request. A remote reque't thus should include the following
ateps ¢

i. the invoker generatas & new idsn”ifier ID for the dependent atomic action

ii. this identifier is iuclude n the lis in the ¢ it record of the invuker ; the coramwit
? record ig und.ted aromically in stable storage

1ii. 2 chackpoint is made vhich includes a refersnce to the cemait record and the message to be sent

| iv. the wessage which includes the identifier ID and & reference to the commit record of the invoker *)
' is sent 2o the target node

. v. on failute : remove ID frow thea liet in the commit record uf the iavoker ; the commit record is
d updated atomically in stable storage

. *) A reference Lo & commit record could he an identifier of the actusl objezt that rapresents the commit
vecord or the identifier of the atomic action re-resented by that commit record,
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If the node crasher after the checkpoint but before another checkpoint is established, the request will be
resent, thus the target nude must be able to detect when a received request is & duplicate. Although many
communication subsystems detect and suppress duplicate messages, their mechanisms are not sufficient, since
from the point of view of the communication subsystam, each retry repressnts a different message. However,
if the request ha. been previously received, then the receiving node must contain a commit record witii that
. ID; detection of a duplicate is therefore siwple. Finally, if the inveking node crashes duriug step v but

b before thke ID has becn removed from the list, again the request will be resent; at this time, it might actual-

ly succaad, if the "failure” detected previously was a result of a timeout, but this does not cause any in-
consistency.

&. PROGRAMMING ASPECTS

As slready mentioned in Section 2, a programming construct called a recovery block can be used to specify

the alternatives to be tried in rase that a particular request fails. The structuriag imposed by recovery

' blocks also provides ancther c.’iticn Lo the problem of branches abandoned e¢s a result of a timeout discuss-
ed in the preceding sect’on. Figure 5 shows a possible structure of the program runniug in node A that uses
recovery blocks. A remote procedure cell is used as a means fcr making remote requests. Siuce when such a
call is made, the calling process must wait for a response, iu order to be able to process requests 5i.B .ad
8.0 in parallel, it is necessary tc make the respective calls in different processes in node A. In the given
example, this is indica:ed by the enclosing parbegin/parend stsucture, although processes could be forked in
a more general manner, for example, just before a remnte call is made. It is assumed that a timeout is asso-
ciated with each remote call; if the timcout expires, the ceil terminates by signalling an exception. This

: exception and any other abnormsl return, if not handled within the enclosing block, will result in a swirch

! into an alternative program within the same recovery block., If all altcrnatives fail, failure is signalled

to the next enclosing block, which, in this case, is the topmost level. Since no alternative is specified at
. this level, the whole computation would te aborted.

- e TR AT T
G ey e T N TR AR
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According to the semantics of recovery blocks, before an alternative can be tried at any level, it is neces—
sary to return to the initial state of the recovery block, that is, undo what hag been done by the failed
alternative. Consid-:riag that it is also necessary to coordinate accesses to shared resources from difZerent
recovery blocks executed in different processes, each alternative of a recovery block should be, in fact, a

separate atomic action. Figure 6 shows the new tree of commit records for the same execution state as the
one that was depicted in Figure 2 : additional commit records were added for the recovery blocks that encloee
the individusl rsmote calls.

When 2 remote call falls, then ir order to abandon that particular branch, the alternative from which the

call was made is abandoned also, and its commit record is set to “aborted". When another alternative is tried,
& new commit record is created for it, Thus even though the remote request might be finished later (in case

! that the remot. cull failed becsuse of a timeout, after possibly several retries), its results can never

\ : become erroneously committed. This meavs that it is not necessary to keep the list of current dependent atowic

actions in the commit record, as proposed in the preceding section. Or, viewed differently, this liat now
consists of the commit records of the current alternatives.

ey

Let us return now to the question of what has to be done if, after a timeout, tha remote call is retriel.

It wight seem that this is the save problem as if the request was resent as psrt of recovery from a crash,
but the situation here is a little bit wore complicated. At this level, whethsr or mot to retry a request is

the decisior of the programmer. If it is the programmer who in order to send s requeat to avother node bas :

to writc the individual steps of the program P] outlined in the preceding sectisn, then the request can be
resent in the following way :

R T L P
e ik P

3 P2 : 0. set retyy = n

i
i. get new ID 1

create a checkpoint which includes a reference to the commit record®) of the invoker anu
the message to be sent.

send the message vhich includes ID and a reference to the comnit record of the invoker
iv. on timeout : retry := retry - )

if retry 2 0, repeat step iii i
else failure }

The request will bu retried up to n vimes, esch time with the seme ID: thus this is indeed the same problem

as if the request is retried after & crash. (n tbhe other hand, the programmur could be given a primitive
“remote-call" which consists of the staps i to iii of P2. In order to retry & request, it is necessary te
repeat the call :

P3 : 0. set tetry := n

I. remote.call (service, node, paramsters)
2. on timcout : retry := retry - |
if retry > 0, repent step 1

Each time the remote-call is repsatcd, a new ID is generated ; thus t the receivin_ node, a repeated call
looks 1ike a new request. This means that the affects ~ the previous try, if the request wes indesd received
and executed, must be undone. Thus, in connection with .ecovery blocks, the whole alternative of tha recovery
block that contains the call should be vepeatsd. A more graceful solution is to provide a remote-call primi-

tive that includes the option of sn sutomic retry, thet is, in its implementation it includes the stejs o and

iv of P2. Thus the language should provide a primitive remote-—call (service, node, parameters, n) whery n is

'1 The commit record still must be included in the checkpoint, since it is part of the state of a computu~
tion.

e
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the number of retries desired.*)

Many arguments have been raised recently with respect to the basic communication primitives for a dis~
tributed system, the primary aspect being the choice between remote procedure valls and more generszl

send and receive primitives [LISK 79, LAUR 79]. Although in order to achieve desired concurrency a
separate process has to be forked for a remote call, this combination seems to provide a cleaner struc-
ture, particularly from the point of view of recoverability. The same effect could be of course achieved
with two separate send aud receive primitives, but if the send and receive parts of different requests are
interleaved, it will be more difficult to determine the proper recovery structure. It should be noted that
in the context of the recovery model presented here, a remote node must reply to the requestor even if no
data is sent in the reply; thus having a simpler send primitive that does not wait for a response does not
provide any advantage, However, both the recovery model and the communication primitives require further
study.

CONCLUS1ION

The concept of an atomic action as a general mechanism for controlling recovery in computes systems and
particularly in distrituted systems is geining more and more ascceptance. O course, there is always the
problem of cost. The heavy use of stable ctorage and the extra messages needed to test dependencies of
nesced atomic actions and to coordinate their commitment or abortion can be very expensive. However, if a
very reliable system is needed, alternative mechanisms mig' “ be equglly expensive. Atomic actions have
some strong advantages. They provide a uniform scheme for coping with either local or remote failures.
Nested atomic actions support naturally common programming techniques. What is needed is more of experi-
mental work that uses these concepts to demonstrate that it is indeed feasible to built in this way not
just a very reliable but also a practical system,

REFERENCES

CLAR 80 Clark, D.D., Svobodova, L., "Cesign of Distributed Systems Supporting Local Autonomy",
Digeut of Papers, COMPCON S»ring '80, San Francisco, California, February 1980, pp. 438-444,

ESWA 76 Eswaran, K,, et al., "The Notions of Consistency and Predicate Locks in a Database System",
Comm. of ACM, Vol, 19, N° 11 (November 1976), pp. 624=-633.

GRAY 80 Gray, J., "A Transaction Model", Lecture Notes in Computer Science, Springer-Verlag, Vol. 85,
July 1980, pp. 282-298.

LAMP 79 Lampson, B., Sturgis, H., "Crash Recovery in a Distriluted Data Storage System", XEROX PARC,
Palo Alto, California, 1979 (to appear in Comm. of ACM).

LAUR 78 Lauer, H.C., Needham, R.M., "On Duality of Operating System Structures”, Proc. of Se'nnd .ter-
national Symposium on Operating Systems, IPIA, Nocquen:ourt, France, Nctober 1978.

LIND 79 Lindsay, B.G. et al., "Notes on Distributed Database: ', IBM Reseurch Laboratory Technical
Report N° RJ2571, San Jose, California, July 1979,

LISK 79 Liskov, B., "Primitives for Distributed Computing", Proc. of 7th ACM Symposium on Operating
Systems Principles, December 1979, pp. 33-42

MERL 77 Merlin, P.M,, Randell, 3., "Consistent state Restor. :ion in Distributed Systems", Technical
Report N° 113, University of Newcastle upon Tyne, Newcastle upon Tyne, England, October 1977.

RAND 75 Randell, B., "System Structure for Softwarc Fault Tolerance", IEEE Transactions on Software
Engineering, Vol. se-1, N 2 (Juac 1975), pp. 220-232.

REED 78 Reed, D.P., "Naming and Synchronization in a Decentralized Computer System", MIT Laboratcry
for Computer Science Technical Report 205, Cambridge, Massachusetts, September 1978.

SHRI 81 Shrivastava, S.K., "Structured Distributed Systems for Recoverability and Crash Resistence",

IEEE Transactions on Software Engineering, July 1981 (to appear).

SVOB 79A 3vobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems : Structure ond Semantics",
MIT Laboratory for Computer Science, Technical Report N* TR-215, Cambridge, Massachusetts,
March 1979,

SVOB 79B Svobodova, L.. "Reliability Issues in Discributed Information Processing Systems", Proc. of the
Ninth IEEE Feult tolerant Computing Sympcsium, June 1979, pp. 9-16.

SVOB 80 Svoboduva, L., "Management of Object Histories in the SWALLOW Repository", MIT Laboratory for
Computer Science Technical Report 243, Cambridge, Massachusetts, July 1980.

TRAI 79 Traiger, I.L., et al., "Transactions and Consistency in Distributed Database Systems", IBM
Research Laboratory Technical Report RJ 2555, San Jose, California, June 1979.

wooD 80 Wood, W.G., "Recovery Control of Communicating Processes in a Distributed System’, Univeraity
of Newcastle upon Tyre, Technical Report N® 158, Newcastle upon Tyne, G.3., November ) su0.

#) Note that if it is indeed desired to start a new atomic action on a retry, it is still possible to use
the sequence P3, where the last parameter in the remote-call is set to O.




18-7

\ p; \
E . S;.D/ \ S,.E Sy.E \ S4.F
3 1/ \‘1 1 // \\1

' .

S \ 4 \
\ e \
; N \\

g H ~ ’

r { Sk.E

L

ir ! update X

E‘ H

Figure 1: Example of & distributed computation
with internal sharing

|
F 4 £i
| | |
! 1
f :
!
;
:
i
1
a_
|
4
1
i
i

Fiqure 2: State of the object X and of the commit records ,
0. the enclosing atomic actions before the ‘
termination of the request SJ.E !




18-8

e — R o

et S L

SARRAE e ket T

ommitted

n
\\
jcormitt
7/ g
Vd
si.o// \sj.a S4-E \\SJ.F
\ yd \
\ /7 \
\ 7/ \
\\\ / :
Sk.E
Som
Xo
SN pmiited  [STR
X
Eommitted
e
Xy
&,
undefined R
g
Q’___’”’/
Figure 3: Situation during the execution of the request Si.E
@ ndefine
L {
>
/ N 3
S..3 7 $;.C N\
i // b N
1d¢ | N
undefined B ¢ n n
T
/ V4 \
Ve
$;-0/ \ $;.E $;-E \S1F
\ Ve \
\ yd \
~ 7/
S,.F ~
k \
fcom
e~ o
undefin ST o
X

Figur: 4: Same state of execution as in Figure 2; dentifiers
of atomic actions were added for crash recovery




;» 189
]
E
'
{ A: ensure A.tect
: by AO: parbegin
AB: ensure AB.test
r by ABl: begin
i v.-emote_can (Sy+B,parameters);
¢ end
| glse by AB2: begin
t .
' remote_call(S},R',parameters);
; : ('md
) ’ . else error
o - AC: ensure AC.test
: by ACl: beqin
i .
é renote_call(S;,C,parameters);
5 | end
f‘ . else by ...
‘ ~ else error
parend
~ else ervor ]
1
X
3 Figure £: Structure of the progvam executed at node A that
uses recovery biocks ]
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GENERALIZED POLLING ALGORITHMS FGR DISTRIBUTED SYSTEMS

Jack Keil Wolf
Department of Electrical ard Computer Engineering
University of Massachusetts
Amherst, Massachusetts 01003 USA

ABSTRACT

A polling algorithin for a distributed system is an algorithm which can be simultaneously run at all term-
inals in a network and which has as its aim the cetermiration of which terminals have a positive response
to a specific query. Of particular interest is the situation where one expects very few of the terminals
to respond positively and where a terminal signifies a negative response by not transmitting at all. In
such a case it is inefficient o poll the terminals in a round-robin manner. A more efficient procedure
is to aroup the terminals into subsets in which 211 terminals in a subset are queried simuitaneously.

Then if all respond negatively no further queries need be addressed to that cubset. If the responses from
the terminals in the subset ar¢ mixed than this subset i3 further subdivided into smaller subsets until
the responses of all the terminals are determined.

In this paper two distinct alqorithms for polling are considered. In both algorithms, the terminals of the
network are represented by leaves in a binary tree and the subsets are subtrees in the overail tree. The
two systems differ in the assumptions made regarding the types of responses sent and how the responses zre
1n§$rpref$$. The performance of these two schemes are compared with each other and with ordinary round-
robin po ng.

1. INTPODUCTION

Consider a set of communication terminals (or nodes) which communicate over a common comaunication chaanel
and for which every terminal can reliably receive the transmission ot every other te:minal. Suppose that
a query is to be made of all terminals in the network and that it is desirable for every terminal to know
the yes/no response of every other terminal to the particular query. Furthermore assume that because of
reliability considerations it is undesirable to use a centralized algorithm at one terminal to conduct

this query but rather a distributed algorithm which is simultaneously run at all the terminals must be used.

Finally, assume that the network is in synchronism and that all terminals know of the response of all other
terminals.

The most straightforward method of accomplishing this task is via a round-robin polling technique whereby
all of the terminals respond to the query in some pre-determined order using a time-division multinlexing
technique. If we have N terminals we would require N time slots, one dedicated to each termminal. The

time slot must be of sufficient duration to carry the response of a terminal. We now maka two assumptions,
the result of which is to render the round-robin technique inefficient. We first assume that a terminal
indicates a neqative response to a query by transmitting nothing at all. This method of indicating a nega-
tive response is gquite common in a network, especially wnen radio silence is important. The secona assump-
tion is that very few of the terminals will respond positively to the query. Our aim here is to investi-
aate alternative distributive schemes which ave more efficient than the round-robin schome when then two
assumntions hold.

The basic approach is to break the set of terminals into subsets and to query simultaneously all terminals
in a subset. Then ff no transmission is received from any terninal in the subset, all *terminals in that
subset are known to have responded negatively. I[f, however, one or more positive responses are received,
further queries of the terminals in that subset in general are required. The yuerying is done by further
subdividing the terminals in that subset in%o smaller subsets. A1l terminals in the network are able to
know which subset is being queried at any time since they all receive all responses and can use these re-
sponses to drive a cummen algorithin wnich prescribes exactly which terminals are being queried. Thus no
actual questions need be transmitted. Only the answers to the implied questions are transmitted over the
communications channei.

Two different alaorithms are exploved in tnis paper. The first algorithm was originally suggested by Hayes
(Hayes, J.F..., 1978) and assumes that a terminal which derires to respond positively to a query transmits
enerqy over the channel. If a qroup of termio-ls {s simultaneouslv queried and energy appears on the
channel in the slot allocated to the response, then all terminals know that at least one of the terminals
in the subset queried answered affirmatively to the query. The details of this alyorithm are described in
the next section (Section 2) along with & sketch of the analysis of this algorithm.

The oriainal Hayes algorithm asks some giestions of groups of terminals, the answer to which could have
been predicted before the questions were atked. Theie redundant (uestions can be skippad without any loss
in performance. The subsequent section (Saction 3) details a mouification to the rayes algorithm achieved
by skipping redundant queries and an analysis of the improved <lgorithm.

The next section (Section 4) describes a new algorithm (Gudjohnsen, E. et al..., 1980) for which fewer
queries are required but for which more complicated answers ire reouired. Now cach terminal in the net-
work is glven a unique signature (or address) and it the terminal .ishes to respond affirmatively it trans-
mits its sianature in the appropriate time slot. Now if 2 subset of the terminals is queried, if none or
one of the torminals responds positively, the status of all terminals in the subset can be determined.

(If one respinds, the identity of that one can be determined by reading its signature—all otiers have a
neqative restonse.) Furthermore if two or more terminals simultaneously respond we assume that the sig-
natures of all transmissions are garhled but that al! receivers recognize that a garhled set of signatures
was received o thai they know there were two or more positive rasponses in the subset. In such a case, if
the subset contains more than two teirminals, a further subdivision is required. If the subset contains
exactly two terminals no further subdivision is required since t"= garbled respcnse must have been the re-
sult of both terminals transmitting their sianatures. Various analvses are rerformed for this system.
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First the average number of responses is calculated. Then the average number of bits in these responsas
is calculated using two different approaches.

In the sections to follow we will make the following common assumptions:

(1) The number of terminals K is a power of 2: {.e., N = 2“. Thus where signatures are assigned,
each signature 1s k bits long.

(2) For every terminal, the probability that the terminal wishes to respond positively is given by
the pararater p, 0 < p < 1. (Note that p is assumed the sane for each terminal.)

(3) The random variables describing the responses of all N terminals to any quury are statistically
independent. Thus, the probability that exactly i of the N term'nals wish to respond positively to a query

is given by the formula
M et (o™ for 1« 0.,200000M.

To 11lustrate the steps followed in each of the algorithms we consider the following common example. Assume
there are 16 terminals denoted (0,1,2,...,15). To a particular quary, terminals 1, 10 and 11 wish %o re-
spond positively and all other terminals choose to respond negatively by preserving radio silence. For
convenience, we show in Figure 1 all 16 terminals as the Teaf nodes of a binary tree. These nodes are
{dentified by the symbols, 0,1,...,15 while the internal nodes are identified by the letters A. 8, ...,
(with I and O omitted to avoid confusion with the integers 1 and 0). The asterisks next to leaf nodes 1,

10 and 11 indicate that they respond positively. A1l other leaf nodes respond negatively.

2. THE HAYES ALGORITHM (Hayes, J.F..., 1978)

Hayes described two different versions of his aigoriithm which he termed non-adaptive and adaptive. We
begin with a discussion of the non-adaptive version, since although the adaptive version is important from
a practical standpoint, 1ts understandina follows easily from the non-adaptive case.

As in the example depicted in Figure 1, the N = zk terminals are identified with tha 2k leaves of a binary
tree of kepth k. A query is initially made of all the terminais by querying s11 of the leaf nodes that
stem from the root node. (This is node A in Figure 1.) If all termminals respond negatively the algorithm
is complete. If at least one of the terminals respond positively, chen a query is made of terminals which
stem from the node whose leaves are those in the upper half of the trse (This is the node 8 in Figure 1.)
If 311 terminals in this subset respond negatively the terminals corresponding to leaf nodes in the lower
half of the tree are then queried. (This i5 node C in Figure 1.) Whenever a query of 2t leaf nodes

(2 > 1) produces a positive response, the Z° nodes are sutdivided into two sets of 2¢-1 nodes and each is
querted separately. Tie process is itercted until, finally, individual leaf nodes are queried and the re-

spenses of 211 terminals are determined.
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Since the algorithm is kaown to all terminals, and since thu responses to the queries are available to all
terminals, no quastions need io be asked. Rather the terminals respond to the next implicit question in
the algorithm without any time (or bits) being wasted by actually asking the questions. The response to
each implicit query only involves the terminals queried sending ore bi% of information.

To illustrate this algorithm consider the examples of the 1C terminal network numbered (0,1,...,15) shown
in Fi?ure ) where terminals i, 10 and 11 wish to respond positively and all other terminals wish to respond
negetively. For ecch implicit question in the algorithm, the following table contains the node in the tree
from which the subtree grows, the leaf nodes (or terminals) which are being queried on each question, and
the response which appears on the channel (yes or no).

Table 1
Queries and Responses for Example Given in Table 1 Us:ing ayes Algorithm

uestion No. Node in Tree Terminals Being Queried Response

1 A all _yes

2 ___8B 0,1,2,3,4,5,6,7 _yes

) 3 D 0,1,2,3 _yes

. __4 H 0,1 _yes

5 0 0 no

6 1 1 _yes

7 J 2,3 no

8 E 4,5,6,7 no

9 c 8,9,10,11,12,13,14,15 yes

10 F 4,9,10,11 _yes

l n M 8,9 no

E ' 12 N 10,1 yes
' ' 135 10 10 yes
14 A 11 _yes

15 G 12,13,14,15 no

In this example, 15 queries were required to determine the responses of all 16 nodes. Round-robin polling
would have required 16 queries so the savings here were not impressive. In order tc determine what savings
(if any) this algorithm achieves over round-robin polling, one requires either a mathematical analyses of
the algorithm or a simulation. Fortunately, this algorithm admits to a neat mathematical analysis, the
details of which are given in the Appendix. The end result is a recursive formula which gives the average

., ] number of queries required for a network of 2K terminals, E[Ok(p)]. in terms of the average number of queries
. for a terminal with 2k-1 terminals, E[Qk_](p)]. This formula is

3 k

| - E[Q,(P)] = 26[Q_1(p)] + 1-2(1-p)? k21

The initial condition to begin this recursive calculation is E[Q,(p}] = 1 since it requires only one query
to poll a network with a single terminal irrespective of the valye of p. Numerica! resylts for E[Qk(p)]
fork =1tol0and p= .1 to .5 in steps of .1 are given in Table II.

Table 11
Unmodified Hayes

I3 * ELQ, (p)] £[0, (p)/2%)
N 1 1.380 .690
1 2 2.488 612
) 3 5.035 .629
| 4 10.699 .669
.1 5 22.329 .698
N 6 45.655 713
. 7 92.310 J21
8| e 185.621 725
A 9 372.24¢ 727
A 10 745.483 728
2 1 1.720 .860
.2 2 3.621 .905
.2 3 7.906 .988
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Table II (cont.)

p K E[Q, (p)] £LQ, (p)/2°)
2 4 15.756 1.047
2 5 34.510 1.078
2 6 70.020 1.094
2 7 141.040 1.102
2 8 283.080 1.106
.2 9 567.161 1.108
2 10 1135, 322 1.109
S 3 1 2.020 1.010
¢ 3 2 4.560 1.140
E 3 3 10.004 1.251
; 3 4 21.002 1.313
{ .3 5 43.008 1.344
| 3 6 87.008 1.359
| 3 7 175.016 1.367
' 3 8 351.03) 1.37
i : 3 9 703.062 1.373
; 3 10 1407.125 1.374
; 4 1 2.280 1.140
: 4 2 5.301 1.325 i
5 .4 3 11.568 1.446
4 4 24,135 1.508 /)
4 5 49.271 1.540 -
4 6 99.542 1.555
4 7 200.084 1.563
4 8 401.167 1.567 1
4 9 803,334 1.569
4 10 1607 .669 1.570 !
5 1 2.500 1.250 !
5 2 5.875 1.469 i
.5 3 12.742 1.593 |
5 4 26.484 1.655 :
5 5 53.969 1.687 ]
5 6 108.237 1.702 ]
: 5 7 218.875 1.710 i
‘ 5 8 438.750 1.714 ,
‘, 5 9 878.499 1.716 o
; 5 10 1757.998 1.7

! This completes the discussion of the original Hayes algorithm for the non-adaptive case. The essence of
the adaptive case is the noffnn that for certain values of p it ma{ ge advantageous to treat 2K terminals
as two distinct sets of 2K~ ! terminals (or four distinct sets of 2k-Z terminals, etc.) which are to be
polled separately. In order to determine the optimum partitioning of the set of terminals we compute for
each value of k and p the quantity E[Qk(p)]/zk. For a given v:lue of p, we then denote b k*%p). the value
9Lk for which ECQ(P)1/2¢ 1s a minimum. For a network with 2K terminals, Tet kgpy=l 1f k* >1." Otherwise

: k 1F Kk < k*
~ kopt *

k* if k > k*,

k-k k
Then one should partition the Zk terminals into ¢ OPT groups, each containing 2 0PT nodes and each group
should be polled separately using the non-adaptive algorithm. The average number of queries required is

ko

k-
then 2 PT E(Qk > (p)}. If k*(p) = the adaptive algorithm reduces to a round-robin algorithm. The
OPT,

i

values of E[Qk(p)]/zk are also contaived in Table 1I.

For example in Figure 1, if the 16 terminals were treated as 4 sets containing 4 terminals each, only 12
querles would be required. Similarly, 12 queries would be required if the 16 terminals were treated as 8 i
sets containing 2 terminals ea:h.

3. THE MODIFICD HAYES SCHEME

The astute reader will have ncticed that the Hayes algorithm, as described in the previous section, asks
some questions to which the answers could have been predicted with certainty. Specifically, if 2 leaf
nodes are polled (m > 1), and a response is obtained, yet no response is obtained when the first half of
the terminals are queried, it is certain that a positive response will be obtained when the second half

are queried. Thus, these questions can be omitted from the algorithm with no loss of performance. (This
latter statement assumes that all terminals reliably receive all responses. If errors can occur, these
redundant queries and responses stabilize the algorithm.) The modified Hayes algorithm suggested here is
thus to omit unnecessary questions. This modification can be used with either the non-ajaptive or adaptive
scheme.

TS OUR

B

For example of Figure 1 and Table I, using the non-adaptive scheme, queries 6 and 12 can be omitted siice
the answers to these questions are certainly "yes". Thus the number of queries, for this example, using
the modified version of the non-adaptive scheme would be 13 instead of 15. [t is left to the reader to
count the queries for the modified version of the adaptive scheme.

iiiais . .
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It ic desirable to know thc average number of queries (or responses) required with the modified Hayes algor-
1thm to poll 2K terminals, each of which has a probability p of answering yes. Calling this quantity
E[Qe(p)] the following recursive formula can be derived:

k-1 k
ECQu(p)] = 2600y _1(P)] + 1 - (1-pZ - (1-p? k> 1.

Again the initial condition s E[Q (p)] = 1. Table III gives numerica’ results for the average number of
Gueries as well as the information required in order to determine the best adaptive scheme.

Table I1I
; . Modi fied Hayes
(] ]
; p k E[Q,(p)] ELQy(p)1/2¥
‘ A | 1.290 .645
f 1 2 2.114 .528
; 0 3 4.4 .518 i
i R 4 8.667 .542
a B 5 18.114 |566
: N 6 37.192 .58
¥ N 7 75.383 589
f 1 8 151.766 593
B 9 304.53 J5Gk
1 10 610.062 .506
| 2 1 1.560 .780 1
2 2 3.070 .768
22 3 6.563 .820
] -2 4 13.931 8N
.2 5 28.833 -90)
.2 6 58.665 .917 {
.2 7 118.330 .924
L .2 8 237.660 .928
] .2 9 476.321 .930
2 10 953.641 .93
.3 ) 1.810 .905
} 3 2 3.890 .972
3 3 8.482 1.060
3 4 17.903 1.119
3 5 36.803 1.150
3 6 74.606 1.166
3 7 150.212 1.174
3 8 301.423 177
3 9 603.84/ 1.179 i
.3 10 1208.694 1.180 ]
.4 1 2.040 1.020
.4 2 4.590 1.148
4 3 10.034 1.254
.4 4 21.052 1.316 ]
| 4 5 43.103 1.347
4 6 87.206 1.363
L~ 4 7 175.413 1.27
\ 4 8 351.825 1.374
3 4 9 704.65) 1.3%
4 10 1410.302 1.377 i
5 1 2.250 1.125 ;
5 2 5.188 1.297 :
5 3 11.309 1.414 i
.5 4 23.613 1.476 !
.5 5 28.227 1.507 i
5 6 97.453 1.523 |
5 7 195.906 1.531 i
.5 8 392.812 1.534 ?
5 9 786.624 1.536
5 10 1574.249 1.537 |
4. NEW ALGORITHM (Gudjohnsen, E. et al..., 1980) !

In this section we describe a new algorithm which, in general, requires fewer queries than the Hayes algor-

ithm (even when modified) but requires more bits in each response. Several methods of evaluating the per- .
formance of this algorithm will be described. For each method, we will compare the results of this analysis

with similar results for the Hayes algorithm. This algorithm is based upon a method originally put forth by
Capetanakis (Capetanakis, J.1..., 1979) for random access. We differ from Capetanakis in that he was con-

cerned with the terminals sending a multi-bit message whereas we are concerned with the terminals only re-

porting their response to a single yes/no question. Furthermore, the focus of Capetanakis's work was on the
situation with an infinite number of users whereas we are concerned with the case of a finite number of

terminals.
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In this algorithm each of the 2K terminals is assigned » unique k bit signature. If the terminal wishes
to respond positively it emits its signature. Again subsets of terminals are queried. If no signatures
are imposed on the channel in response to a query of a subset of terminals, all term’nals know that the
response of a1l queried terminals in that subset is known. It is only when two ¢r more impose their sig-
nature in rasgonse to a query that furthe: queries are required. The exception ta this latter statement
is if only two terminals are ai':ried. Then no matter what the response, the responses of these terminals
are known by all.

Again an adaptive and ron-adaptive version of this algoritim can be envisioned. We describe the non-adap-
jve version first. A query is initially asked of all 28 terminals in the network. If none of the ter-
minals respond cr one ¢f the terminals respond by transmitting its kX bit sign.ture the algorithm is com-
plete. The algorithm is als0 complete if k = 1 irrespective of tne r~esponse. If, however, for k > 2, two
or more termin?1s respond by transmitting their signatures, the 2K terminals are subdivided into 2 subsets
containing 2k-1 terminals earh and the process is repeated for each of the subsets until all of the re-
sponses are known. Questions which provide no new information are skipped just as in the modified Hayes
algorithm,

This aigorithm again can be thought of in terms of querying leaf nodes of a binary tree stemming from given
internal rodes of the tre2. The queries and responses for the example given in Figure 1 when this algorithm
is empioyed are given in Table IV. The signature of the ith user is assumed to be the 4 bit binary repre-
sentation of the decimal numwer (i.e., 0 - 0000, 1 + 0001,..., 15 + 1111). Furthermore XXXX is used to de-
note tlie response when twe or more signatures are transmitted, and ¢ is used to denote no response.

Table IV

Queries and Responses for Ex-mple Given in Table 1 Using New Algorithm

Question Number Node in Tree Terminals Being Queried Response
1 A all XXXX
2 B 0,1....,7 ooM
3 ¢ 8,9:...,15 XXXX
4 F 8,9,10,1% XXXX
5 M 8,9 ¢
6 G 12,13,14,15 ¢

Note that xfior two or more signatures were found as a response to query number 4 and no sigratures were
tound as @ vesponse to query number 5. all terminals knew that terminals 10 and 11 responded positively
(and 8 and 9 ~esponded negatively).

Let E{Q!'{p)] denote the average number of queries required by this algorithm to pell Zk terminals, each of
which h§d probabiiity p of responding positively. The recursive formula which determines this quantity 1is

k k-1 K
ERQp(p)] = 2600 4(m1 + 1 - (-p)2 - (-p? - 325 Tp(1p) (2T

for k > 2. The initial condition here is E[Q?{p)] = 1 since we need exactly one query to poll two tesminals
using this algorithm. Numerical values for E Qﬁ(p)] are given in Table V.

Table V
New Scheme—Cour* of Queries

p A E[Q(p)] ELQ () 1/2¥
N ] 1 .5

A 2 1.096 274
A 3 1.532 192
A 4 2.955 .185
A 5 6.507 .203
a 6 13.967 218
N 7 28.932 .226
A 8 58.864 .230
A 9 118,78 .232
a 10 238.455 .23
.2 1 1 .5
Wz 2 1.336 L334
2 3 2.591 .324
2 4 5.818 .364
.2 & 12,597 .394
.2 6 26.194 .409
2 7 53.387 .47
2 8 107.774 421
2 9 216,549 .422
.2 10 434,097 .424
.3 1 1 .5
.3 2 1.652 413
.3 3 3. 464
.3 4 8.326 520
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E Table V (cont.)
14 p
! p k Efo; (p)] el (p) 12"
: 3 5 17.649 552
: .3 6 36.298 .567
i ' 3 7 73.597 575
: 3 8 148,194 579
: 3 ] 297.388 .581
.3 i0 595.775 .582
? 4 1 1 .5 i
A 4 2 1.992 .498
i .4 3 °4.703 .588
g 4 4 10.385 .649
§ 4 5 21.768 .682
.4 6 44.539 .696
; .4 7 90.078 .704
i .4 8 181.156 .708
. .4 9 353.312 Al
. 5 .4 10 727.623 TN
5 1 ] 5
N .5 2 2.313 .578
[ .5 3 5.512 .689
. .5 4 12.019 151
. .5 5 25.038 .182 )
.5 6 51.077 .798 .

o .5 ? 103.183 .B06
d S 8 207.3106 810
; .5 9 415.613 .812
§ .5 10 832.225 .813

Also given in Table V {s the value of E[Qi{(p)]lzk, the quantity needed to determine the optimum partition- ;
4 ing for the adaptive vergion of the algorithm. {1t 1s left up to the reader to fill in the details. They ;
} follow exactly as for the Hayes algorithm.)

gorithm (even when modified) the

Although the new algorithm requires fewer queries than does the Hayes al
1 : vesponses for the NHayes algorithm are only } bit Jong while here more bits are required in the responses.
: In order to compare bits in the responses we note that since all terminals know which subset is being ;
' gueried, the terminals than know part of the signature of the potential responses. Only the portion of :
the signature which is not common to all potentia) responders need be transmitted. For example, referring ;
to Table III, the response ta question number 2 could have been 001 instead af 0001 since the signatures -
of all terminals being queried by this question began with 2 leading 0. Using this ted! nique to count bits }
in the vesponse, we define E{Bk(p)] as the average auber of bits in all responses b 2k terminals each of )
which has probability p of responding positively. The recursive formula for E[Bk(p)%l can then be shown to

be
k
E(B, (p)] = 2E08,_q(M] + K - (1-p)°

-1 k-1 k-1 K
et + 0 ¢ e a0 I s . .

{3
p(-p2

- for k > 2 with initial condition E[B‘(p)] = 1. A further saving can be achieved by assn.mn that 4f no
terminails respond, this lack of response tan be vecognized {n 1 bit time. Defining E[By(p)] as the averaje
number of bit-times required for such a system, one can derive the recursive formyla.

k k-1 k-1 ¥-1
YNy e+ 0 aen2 i ® ),

AT e

¥
eloy(p)] = 2E08_ (0] + k + (1-0)T & & (V-p
for k > 2 again with initial condition E[B."(p)] = 1. Numerica) values of these quantities are given in TH1.Vi.

- an

Let us compare the new algorithm with the modified Hayes algorithm by comparing E[By(p)) in Table V1 with
£f0k(p)] in Table 111, 1f we only consider the non-adaptive version of poth algorithms we find that for a
fixed value of p (say » = 1), the new algorithm requires fewer bits in the response for small values of k
while the modified Hayes algorithm requires fewer bits in the response for large values of k. If however
we use the adaptive version of both algorithms we find that the new algorithm outperforis the wodified

Hayes algorithm.

e k8

Table Vi :
New_Scheme-B1t Count '
P k E8, (s)) E[8, (p)) !
N 1 1 1 j
A 2 2.096 1.440
N 3 3.872 2.942 :
3 3 8.414 7.399 ]
. 5 20.217 18.62¢ i
2 6 46.194 43.081 L
A 7 99.781 93.07¢ L
)
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F.‘: One or more positive responses from both lower and upper set of 2"" terminals.
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L Tahie %I “cont.)
p k E(8, (p)] EB, (p)]
; — —_ - il
: 1 3 206.762 194.150
; A 9 422.524 397.201
: A 10 £55.048 804.607
.z 1 1 1
.2 2 2.336 1.926
.2 k} 5.511 5.027
, .2 L) 13.927 13.2113
: .2 5 32.700 3).293
i .2 6 77.396 68.581
.2 7 149.79 144162
| .2 8 307.583 296.324 ]
' .2 9 624.166 601.648 :
i .2 10 1258. 331 1213.296
‘ 3 ) 1 1 4
! .3 2 2.652 2.412 ]
; .3 3 1.7 6.834 ]
.3 4 17.948 17.431 [
: .3 5 40,881 36,849 ,
: R | 6 87.762 85.698 ;
; ] 7 162.524 178.396
| .3 8 373.04¢ 364.793 ’
i .3 9 755.096 738.585
; 3 10 1520.193 148717 4
!
i .4 1 1 1 (
, .4 2 2.992 ?.862 !
_‘ . 3 8.422 8.253 i
: .4 4 20.780 20.447 .
.4 5 46.559 45.893 !
.4 6 9%.118 97.787 i
.4 7 205.237 202.573 i
.4 8 418.473 413.146 !
; .4 9 845.947 835.293 |
b .4 10 1701.894 1680 . 586
.5 1 1 1 i
5 2 3.313 3.250 i
L .5 3 9.398 9.305 1
I .5 4 22.784 22.597 ]
¢ .5 5 50,558 50.194 ;
| 5 6 107136 106 .388 ;
j .5 7 .22 219.776 :
.5 8 450.544 447.552 ;
b .5 9 910.087 904.104 i
.5 10 1830.175 1818.207 '
APPENTIX J
* We consider the unmodi fied Hayes Schimf described in Section 2. We assume we have a tree consisting of * 3
‘ ' leaf nodes, the upper subtree with 2k-! leaf nodes and the lower subtree with 2k-1 nodes. Consider the .
1 following four mutually exclusive and exhaustive events:
. Ey: No positive responses from 2* terminals. 1!
! E,: Mo positive responses from upper z""' terminals; ore or more positive rerponses from lower Zk'7 1
: termindls. ;
No positive responses from lower 2"'] terminals; one or more positive responses from upper 2&‘" i
q
i

The probability of these four events are:

i

2k
P(E1) = (]‘p) [}
zk-l zk-I
P(£2)=P(E3) =(1-p) - {1 - (1-p) ).
= ad
P(Eg) = (V- (1-p)2 3%
Let E[Qk(p)] be the average number of queries required to poll the 2% terminals. Then

4
E[qk(p)] = 1{] E[QH(DHEi] P(Ei)'

S
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But
E[Qk(p)|E1] f ]t
ELO, (P)IE,D = EIQ (P)IE,) = 2 + ELQ,_¢(P)IE5),

E[QR(PHE4] =1+ ZE[Qk_,"(p)lES])
where ES is the event tnat there are one or more positive responses from a set c¢ z“" terminals.

Rut #t is easy to verify that

2k~
ELQ,_,(P)]- (1-p)
-

E[Qk_](p)lcs] "
1 - (1-p)?

Substituting we ther: find that
K
ELQ, (p)] = 1 + 2602, ()] - 2(1-p)?

which {s the desired result.
Similar derfvations yield the athcr recursive formulzs given in this paper. ) ]
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DISCUSSIONS
SESSION 1V

REFERENCE NO. OF PAPER: 1V-15
DISCUSSOR 'S MAME: Harvey Nelson, Naval Weapons Center, USA

RUTHCR'S NAME: A. 0. Ward

COMMENT: I'm very interested in your concept of an engineer work station. That is an integrated net
of automated tocis for developing requiraments and proceeding on to PSL/PSA and code. Jhen do you
expect tu have the work station operationai? What will be the steps of Jmplementation? What marketing

or availability nlans do you foresee?

AUTHOR'S REPLY: We hope to have the work station opevational in the first hal¥ of 1982 but I would
prefer not to deteil the implementation steps here. The tool is being developed for in-house use and
we dn not have any short-term plans to make it commercially available.

REFERENCE NO, OF PAPER: 1V-15
DISCUSSOR'S WAME: Dr. N. J. B. Ycung, Ultra Electronic Controls

AUTHOR'S NAME: A, 0. Ward

COMMENT: Have you consideres producing code zutomatically in a second language, e¢.g. PASCAL, as well
#s in CGRAL? A second code fmplementation would enable you to prrform a dual-ccding type tes: of the
first implesentation (but would not help in checking the specifi:ation, of course).

AUTHOR'S REPLY: We have considered languages other than CORAL but not for the reason you cite. Taking
a iong view, we will certainly wish to have a similar capahility for use with the ADA language and a

program of work is being considered to achieve this.

REFERENCE WG. OF PAPER: 1v-15
DISCUSSOR'S NAME: Dr. von Issendorff

AUTHOR'S MAME: A, 0. Ward

COMMENT: 1 am quite impressed by your method which seems to be very usable, But, in case you would
1ike to select your method or another one--and there are meny mcre--1 would not have the means to do

so. S0, could you please compare your method to others.

AUTHOR'S REPLY: To answer this guestion preperly is clearly outside tha scope of this meeting. So, 1
would 1ike to respond in two ways. First, when we were formuiating our ideas on requirements amalysis
Just over 2 years ago, there seemed to be few alternatives. TRW's RSL/REVS systam, although powerful,
was not commercially available and the host machine and language were not compatable with our
environment. SADT was not widely accessible in the United Kingdom and we understcod that efforts to
model SADT descriptions in PSL had not proved successful at that time.

As far as tools were concerned, there were two alternative:s, Micnigan's PSL/P3A and the U.K.
sy.vam SOS.  The latter required significant front-end effort to be made practicable and again was only
available on a host-machine to which we did not have access. PSL/PSA, cn the other hand had a rich

language and was supported on our mainframes.

The second point I would make {s that there are two studies which Pr. von Issendorf may find
useful. The first was sponsored by RSRE and is in the public domain, being an internatfonal survay of
requivements analysis methods and tools. The second is currently baing undertaken by the Departmcnt of
Industry and is entitled "Dol Ada Methodology Study." The latter should report before the end of 1981.

REFEREWCE NO. OF PAPER: 1V-17
DISCUSSOR'S NAME: K. Brammer, ESG

AUTHOR ‘S NAME: Enslow (Livesey, presenter)

COMMENT: Wculd you explain how priority interrupts/requests are handled by the fully distributed
processing system (where the participa:ing units seem to have equal rights); for instance, if a five
control :omgonent within an avionic system needs instant action. <Tan you elaborate on the notion of
the "price,” a user of the FOPS has to offer while bidding for being served. Is it meant 1iterally (in

dollars) or is %t an abstract comcept?
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AUTHOR'S REPLY: (1) Components can have equal rights in the sense of coogerative autonomy, but stil)
have differing priorities. If a user fn the system needs (and deserves) instant service, then it s
offectively bidding a very high "price” and should win most contests for resources.

An extrenely high priority user might even have dedicated resources.

(2) The price in bidding s whatever is meaningful in the system: dollars, budget, cr
priorities, etc.

(This is the oo 'nion of the preserter, not necessarily that of the author.)

REFERENCE NO. OF PAPER: 1V-17
DISCUSSOR'S NAME: T. Smestrd, wURE, Norway
AUTHOR'S NAME: Enslow (Livesey, presenter)

COMMENT: When trying to increace the performance of decentr:lized decision making, one is often faced
with the second-quessing phenomenon (a decisfon maker anticipates the actions of other decision makers
to make his own actions more effective}. Is this phenomenon present in your problem formulations - and
can it be used to imy.:ve the performar-e?

AUTHOR'S REPLY: One classic example of this is the biddiny problem. One asks for a resourca. One is
told it is availasle, but then when one reserves the resource, it has already been taken by someone
else. This s due to time delays in inquiries and reservations. At Georgia Tech, we are actively

investigating this problem.
(This is the opinfon of the presenter, not necessarily thaf. of the author.)

REFCRENCE NO. OF PAPER: 1v-18
DISCUSSOR'S NAME: Enslow (Livesey)
AUTHOR'S NAME: L. Svobodova, INRIA

COMMENT: Is it not true that in this system message passiing would have to be atomic (if a crash
occurred after the textual part ov z message arrived, but before the message identifier did (or
vice-versa) then an inconsistent suate might result)? Do you know any system in which this {s taken

care of?

AUTHCR'S REPLY: (1) It is not necessary that the communication subsystem delivers messages atomically,
liowever, the receiver must be able to check the integrity of a request. If the textual part of a
message arrived before the identifier of the atomic actfon to be created by the request, the request
would not be processed, since the fivst thing that must be done is to create a commit record, for which
1t is necessary to have the identifier. If the textual part got lost, the atomic action opened when
the {dentifier was received would be ahorted, since a timeout is assoctated with each commit record.
(2) Communication protocols that provioe virtual connections deliver messages atomically, however, {t
does not mean yet that a message is delivored atomically to the destination process. 1 do not know any
distributed system that implements atomic process to process communication.

REFERENCE NO. OF PAPER: 1V-18
DISCUSSOR'S NAME: Van Keuk, AVP Member
AUTHOR'S NAME: L. Svobodova

COMMENT: Crashes as you said can occur as a consequence of incorrect stochastic data as we are faced
with in signal processing appiications. Do you see a conflict of your technique and backtracing
facilities for test and debugging.

AUTHOR'S REPLY: It {s true that automatic rollback to an earifer state conflicts with testing and
debu:ja . 1g, where it is important to keep a trace also of the erroneocus states. However, the mechanisms
that I described are intended tc facilitate orderly recovery rather than impose it at all times. That
is, it would be posssible to inhibit them while in a debugying stage. Also, we have been designing a
system where the object versions, even the invalidated on:,, are preserved for an unlimited period of
time. The invalidated versions are not accessible to ordinary user programs, but they could be made
available to a debugger. (See reference SVOB 80)
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REFERENCE N0, NF PAPER: IV-18
DISCUSSOR'S NAME: X. Sbin, Rensselaer Polytechnic Institute, USA
AUTHOR'S NAME: L. Svobodova

COMMENT: Did you carry out any overhead analysis? Otherwise, how can you justify your proposed
method?

AUTHOR'S RCPLY: No, I did not do any overhead analysis of the method that I have described in ay
paper. Clearly. it is important to find out if this method is practical, however, 1 do not agree that
what is needed is overhead analysis. Overhead with respect to what? 1 believe that the .:ase of
developing reliable software offered by the method (a programmer can irrite application sc<trare without
any concern about restoring consistent state in case of a failure) is - ire important than the
additional processor time and memory need to implement it. And, I believe that only experimental work
can demonstrate if the proposed method {s practical.

REFERENCE NO. OF PAPER: 1IV-]9
DISCUSSOR'S NAME: Horst Kiater, Germany
AUTHOR'S NAME: J. K. Wolf

COMMENT: Why using polling method at all? Why not issuing a broadcast and let then all terminals with
a "yes" respond in a priority order? (Any modern system should be able to do mure than polling.)

AUTHOR'S REPLY: Since any terminal initially only knows its own state, the suggestad technique of
responding in priority order is equivalent to “roll-call” or "hub”™ polling which the paper shows is not
as efficient as probing.

Also, I believe the author has in mind a system where the polling is used as a method of terminals
gaining channel access to transmit information. This is only one of many uses to which polling cen be
put. Status collection is a different use.

REFERENCE NO. OF PAPER: IV~-19

DISCUSSOR'S NAME: K. G. Shin, Rensselaer Polytechnic Institute, USA

AUTHOR'S NAME: Prof. Wolf

COMMENT: How would you handle an error in answering the query?

AUTHOR'S REPLY: Some of the algorithms are more sensitive to errors than others. As a rule of thumb,

the more efficient the algorithms, the les3 redundancy exists in the algorithm and thus the more
sengitive the algorithm is to errors.

REFERENCE NO, OF PAPER: 1IV-19
DISCUSSOR'S NAME: J. H. Saltzer, MIT, US.
AUTHOR'S NAME: Prof. Wolf

COMMENT: How about applying this polling technique to a speed-limit civrcuit? In that case, there may
be a longer time required to poll a larger number of points because of fan—out. It would seer that
this effect would lead to a different optimum polling pattern.

AUTHOR'S REPLY: This is an excellent suggestion. We have cunsidered a problem which is in some serse
the dual of the problem y.: suggest wii.reby cnere is an upper limit to the number of times a station
can be "probed” in any given polling cycle. It certainly sakes a great deal of sense to consider tte
problem you suggest.

KFFERENCE NO. OF PAPER: 1IV-19
PBISCUSSOR'S NAME: Dr. Van Keuk, AVP Member
AUTHOR'S NAME: Prof. Wolf

COMMENT: For your analysis you need, as you said, acsumptions on the statistical independence of the
events. 1 feel in addition you need the assumption of constant probabillity. If this is not given, how
do you rmodify your algorithm.

AUTHOR'S REPLY: We are presently working on just this problem. We are cc-sidering the simplest case
where we have two classes of stations, one class having probability P, of being active and the other
class having probability Py of being active. At this time, I cannot give you any concrete results
except tc say that one must carefully match the algorithm to the assumptions on the statistice of the
statious (n order to achieve an efficient scheme.
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STAGE-STATE RELIABILITY ANALYSIS TECHNIQUE

Alan D. Stern

Boeing Military Atrplane Company
Digital Flight Controls Research
Seattle, Washington

SUMMARY

Conventional reliability analysis techniques such as fault-tree and Boolean algebra methods ere
difficult to apply to redundant systems with complex interactions and redundancy management
philosophies. Some advanced flight control systems, for example, employ multiple redundant channels
which, with proper redundancy management and failure detection, can degrade to simplex operation. The
relfability analysis must properly account for the defined success criteria, redundancy level,
redundancy management technijue, system dependencies,and failure detection coverage. The Stage-State
reliability analysis technique properly accounts for these factors. It is also computationally simple
such that triplex redundant systems have been analyzed using an early 1970's desktop computer.

This method is well suited for analysis by the system architect. The process begins with a system block
diagram showing all element connections. A success logic diagram is then written reflecting all
possible success states. The probability of success equatiow is written directly from the logic diagram
and evaluated by substituting the probability expression for each system element. Multiple success
criteria can be applied to one problem formulation simply by deleting those states which do not satisfy

the success criterion.

1.0 INTRODUCTION

Advanced digital flight control systems (DFCS) for new aircraft are assuming addidonal -oles relative to
today's operational vehicles. Such roles include stabiity augmentation systems (SAS) and manuever load
alleviation (MLA) systems plus other requirements which may require the DFCS to have flight safety
relfability over significant portions of the flight envelope. Provision of such reliability while
simultaneously striving to minimize hardware redundancy levels, have led to the development of
sophisticated OFCS architectures. Some proaising system architectures have included in their redundancy
management philosophies, the adility to isolate failures to a particular line replaceable unit (LRU) and
to select that LRU successfully to the simplex levei. The ability to redundancy manage LRU's in this
fashion reqires that the architecture provide the transfer of data {from redundant LRU's) between
channels (see Figure 1), and that the selection of one healthly LRU from two choices be achievable. The
probability of selecting one healthy LRU when one of two redundant LRU's has failed is called “failure

coverage” or just "coverage®.

se:?on DIGITAL Acné.:ron
'N':UT CONTROL our‘rur
1 unt -
Semsor y [ AcTuAaTOR
el e > UA
I 3
INTERCHANNEL
cxuuTL»n§$:1ou
SENSOR DIGITAL > Ac“é;\mn
INPUT o CONTROL R our‘;ur
? T unm ACTUATOR
5 o [
e ——ed N

Figure 1. Duplex DFCS With Interchennel Communication

The concept of various degrees of "dependency” also arises with such architectures. An L.RU has a
dependency when it must rely upon one or more other LRU's to operate successfully before that LRY can
accomplish its function in the system. For example, Figure 1 shows that the transfer of sensor data
between channels depends upon successful operation of it's Input and DCU.

Conventional reiiability analysis techniques such as fault-tree and Boolean algebra methods, become
extremely difficult to use for complex architectures possessing redundancy with dependencies and
coverage. The mathematins becomes massive with high probability for error. The Stage-State reliability
analysis technique, on the other hand, is quite simple while possessing the following features:

a) accounts for redundancy level for each specific LRU,

») define: the collection of probability states which represent a desired success or failure
criteria,

¢) a probability of success P(S) equation can be written directly from a success logic diagram
which includes the effects of dependencies,

d) the P(5) equation is more compact and raquires minimal memory for a digital evaluation relative

to competing methods,

multiple success criteria are easily evaluated by simply deleting those states (terms) which do

not satisfy the new success criteria, and

f) the effect of failure coverage is easily incorporated in the P(S) equation.

e)
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2.0 THE METHOD

2.1 Concept Definition

The Stage-State method, described below, was deveioped by Mr. Jiwmy Rice of The Boeing Mil{tary Airplane
Company in 1978 to sunport the systematic analysis of a variety of DFCS architectures with a large
number of system elements (Reference 1). The need tie fulfilled was to nrovide a reliability analysis
tool that the system designer could easily use to conduct system architecture trade studies.

The method is base¢ upon straight-forward use of set “neury and axioms of probavility. It considers a
space S which contains all possible outcomes of the systsm and breaks them up into mutually exclusive
events, or states. The sum of the probabilities of all such states must therefore e unity.

Consider the following example of a system consisting of a duplex stags.
A "stage" is defined as a set of Yike redundant elements (LRU's) as

s o

Figure 2. Duplex Stage

shown in Figure 2. This figure {1lusti-ates a success logic diagram; 1.e., success consists of the chain i
vetween points 1 and 2 not being totally broken due to failures. This stage consists of four
independent states. KA “stave” defines a particular combination of failed and/or healthy LRU's of a
given stage. The possible duplex states are

AB

= RpRg = STl = State 1 = P(Dl }

Both Healthy o

bl .

AB
A" Healthy, "B Failed = RpQg = ST2 = State 2 = P{ 2 )
ouP

A
“p" Fafled, “B" Healthy = QuRp » ST3 = State 3 - P{ 3 )
DypP

AB
voth Failed = QaQg = ST4 = State 4 = P(DQP)
U

Where R{ 1ad Qg are the probabilities that the 1th LRU {s good or bad, respectively. The
§

probability that the stage is good or bad is
P{S) = 1.0 = RaRg + RAQg +QaRg + Qnlp

A success criterion can be appliud to these states.
represents success, inen
{3)

P(success) = RaRg + RaQp + QpRp
1f success says that both must be good, then only state 1 applies; i.e., P(success) = RpRy.

ine Stage-State technique employs conditiona) probability to adjust success criteria. Let S be defined
as the success function. The probability of S occurring for a duplex stage is ;

£))]

{2)

1f that criterion {s that either A or B good

e | .
s "

4
P(S) = Z P(S/STi) P(STH)
1=}
where P(S/ST1) s the conditional probability of success given the stage {s in state § (STi). For the i
duplex stage, where either element healthy constitutes success, equations {1} indicate

P{S/ST1) = P(S/ST1) = P(S/S12) = P(S/8T3) = 1
P(S/ST4) = O {5)

ek s ,‘_.._._.;__‘._W‘m.._...‘.,.‘.m . r
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E Therefore, P(S) for duplex stage AB is the probability that that stage is in states 1, 2, or 3 duplex.
STG AB
P(S) = P(1,2,3 ) = 1 B(ST1) + 1 P(5T2) + y P(5T3) (6)
: RaRg RaCp QaRa
? If elemunts A and B are ' .entical, then defining the reliability cf LRU A as Ry and the probability
: of failure of A as Qp we get
P(S) = RZ +2 RaQa n
. or * 2R - Ral (8)
' where Qp * 1 - R (9)

2.2 Etfac. of Dependencies

Consider the dupl2x system shown in Figure 3 which has three duplex stages (A, B, and C) with C being a
dependency for stages A and B. Success {5 defined a= getting information to the success node, S.

L
' < {TEM DIAGGRAM

SUCCESS LOGIC DIAGRAM
Figure 3. Duplex System With Dependency (Jtage C)

Two success states will be defined for each stage - both LRU's good (ST1Y; and efther LRU good (S)2),
The probability of success can he written as i

STGC STGC (1v)
= P(s/C )P 5P
P(S} (Sén) mljp } + P(3 Tz) (L‘%r’ )

Thi~ equatioq examines success Jased upon the most dependent stage first. It reads: P(S} cyals the
probability vuccess given stags C is in state 1 (duplex) times the 1..obability that stage C is fn state
1, plus the probability of success given stage C is in state 2 (duplex) times the probabiiity that stage
C i in state 2.

To exami: o the first term we can redraw Figure 3 assuming stage U 1s in ctate 1; i.e., botn good.

| ofsrsS,)- N N

g

[ —
SYSTEM DIAGRAM SUCCESS LOGIC DIAGRAM

Figure 4. Dupjex Systern With Stege C in Stata 1
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From Figure & it is readily obsarved that the conditional success can now be defined as follows

P(S/5T1) = Probability of Ay or Az; and By or By good
STG A STG 8
PISA Y= PUL1,2)P (1,2 ) (11)
1 oup ouP

Frrom equation (8) the following is written

=Ry x Ry
is healthy, success depends upon the probability that the elements A and B are healthy
Substituting (12} «nd (13) irtc (10) gives the final result,

{ (13

That is, if C
in their simplex state.

= (2Ry - Rp%)(2Rg - Rg?) (12)
: ) Now let's evaluate the condizional probability where stage C is 1n state 2; 1.e., only Cj or C2
: ! good. Figure 5 {llustrates this state.
! Ay 600D !"(S'sgz)- 47 T
¢ : L | L— %
- ™ : Ay (s Tlﬂ
!
;f |
! G !
i L._':_J FAILED ! — Mo "'@
, SYSTEM DIAGRAM SUCCESS LOGIC DIAGRAM
! Figure 5. Dupiex System With Stage C in State 2
é From Figure 5 the probability (ov success given stage C s in state 2 is
| rarsm) +p I P OTD
|
]

t p(S) = (ZRA_-RAZ)(ZRB-RQZ)P(S;?PC )+ nAagp(slgpc) (14)
U
Re2 2RQc™ 2Rc-2R¢2
(15)

P(5) = (2Rp-Ra2)(2Rg-Rg2) RcZ + RpRg (2Rc - 2Rc2)

‘ tquation (15) was derived with relative ease. A comparison with a Boolean algebra solution to the same
- problem is illustrated in Reference 1 which shows threv pages of detailed algebra were required to
obtain a result fdentical to the Stage-State method.

P

2.3 A More Complex Example

A duplex DFCS will now be evaulated. This system, shown in Figure 6, has duplex stages for all LRU's;
i.e., sensors (A and B), input sections (IN), digital control units (DCU), output sections (QUT), and
control surface servos (AIL, RUD, and ELE). The DCU's have an interchannel communication capabflity.

This OFCS has three dependencies. The most dependent element is

A
1
\ N Decul ouTt
] ELEVATOR
1 SURFACE
INTER-
COMPUTER RUDDER
BUSES SURFACE i
Ay AILERON
P~ T SURFACE
, e Dcu2 our2
" 8, - ]
{ 2 INPUT DIGITAL IUTPUT :
i ' SECTION COMPUTER SECTION
’ SENSORS SECTION f
i SERVOS i
' Figure 6. Dual DFCS
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the DCU sfince its Yoss constitutes Yoss of a full channel. The input and output dependency impacts the
use of one ful) sensor or servo set. This 1s fllustraied by the associated success logic diagram shown

fn Figure 7. This

A‘j— Nt | ocun 9 Nt 1 beut ocut [~ ouTt o ALty
‘ ‘ -®
Ay H N2 [qocu2 8 [ N2 [{ocu2 ocuz = outa = A2
DU [~ ouTH }- RUDY DCU1 f~{ OUT |=ELEVY
ocu:}— ouT2 p-l:;n-z}- DCU2 [~ OUT2|=ELEV
| Fe——

Fiau.+ 7. Success Logic Diagram for the Dual DFCS

logic diagram can be used to define success states subject to various levels of conditional
probabilities as defined helow.

The probability of system success P(S) can be written using repetitive application of the definition of
conditigr(\al) probablility anu the sub-division of the sample space into disjoint states. For the DCU
stage, P(S) is

DCu DU DCY

PIS) = P(S/ 1 )P( {16)
oup ©

pcy
1y+pP(S7/2)P(2)
P oupP  DuP
DCY
For the DCU in state i duplex, :he system reduces to that shown in Figure 8, and P(S/ 1 ) is defined

from this diagram. pup

A Nt 8, N1 P
H —® INPLIT FUNCTION
Ay H N2 By | IN2 M

out ALY QUTY b=t RUDY1 I ouTt -—EEV
L

}" OUTPUT FUNCTION

oUT2 4 AilL2 ouT2~{RUD2 QuT2 LEV2

Figure 8. DFCS With DCU in State 1 {8oth Good)

Observe that the first subdivision of the sample space was to divide it fnto all of the possible states
of the most dependent stage. Given that the DCU stage is in state 1 duplex, the system is re.uduced to
one composed 1f {ndependent input ana output functions but which possess internal dependencie. The
input function has the input stage as a dependency and the output function has the output stage as a

dependency. Then
DCY
P(S/ 1 ) P[(INPUT FUNCTION GOOD)-{QUTPUT FUNCTION GDODﬂ
pup

= P{INPUT FUNCTION GOOD): P(QUTPUT FUNCTION GOOD) (17}
= P{INFIP(OUTF)

The input function is now subdivided into a reduced set of disjoint sample spaces.

N N N N
PCINF) = PCINF/ 1 )PL 1 )+ P(INF/ 2 )P{ 2 ) (18)
DUP  DUP OUP  DUP
and
A 8y
IN A B
PLINF/ 1 )= r } = P(1,2)P(1,2) (19)
DUP ;;7 82 DUP  DUP

et £ e
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} A l‘ SN
: PLINF/ 2 )= - Ay By p—
DUP A2 N2 4 By b= N2 P4
A 8
=P 1)P( 1 ) (?0)
CIMP  SIMP
therefore,
CL A B IN A B IN
} PIINF) = P(L,2)P(L,2)R( L )+ P( 1 P( 1 P(2) (21)
! DUP  DUP  DUP SIMP  SIMP  DUP
f In a similar fashion the output function {s sub/’vided into {ts reduced sample space.
| P(Output Function is Good) = P(OUTF)
! ouT  Out ouT
b P(OUTF) = P(O\ITF/ 1 )P( 1 ) + P{OUTF/ 2 )P( 2 ) (22)
| where
[ ouT ALY RUD1 ELEV! )
( PIOUTF/ 1 ) » .
E bup AL2 RUD2 ELEV2
E AIL  RUD ELE
= P{1,2)P(1,2)P(1,2) (23) f
f OUP  DUP  DUP !
i
E and ouT ALY | uot ELEV? r———-L
: ' P{OUTF/ 2 ) = i
. oup i
AIL2 T2 RUD2 ur&—! gLEV2—uT |
;: ' ©
E _‘ AlL RUD €LE
{ r ALY numr——Er— =P(1 P11 P11 ) (24)
SIMP  SINP  SIMP
substituting (23) and (24) into (22) and then (22) and (21) into (17} gives
ocu A B IN A 8 IN
P(S/ 1) = plr,2yv(2.2p0 1Y +PLY WL Y P 2)) x
Dup DUP DUP DVUP SIMP SIMP DUP (25)
- 25
. AIL  RUD ELEV OUT AIL RUD ELE out
Pli,2i2{i 20,201 Y +PU Y YPCL JP(Y YP(2)
DUP  DLT  DUP DUP SIMP  SIMP  SIMP  DUP
DU |

i,

Looking at the conditional probability P(S/DZP) from equation (16), it can be
Ul

seen that the success path is now one simplex channel so that

A B N ouT AIL RUD ELE
YPCY YR YPCL YPCY YPOCL YP(L ) (26) !
|

DCy
P(Ss/ 2)=P(1
oup SIMP SIMP Siwp SIMP SimMp SIMP SImp

Substitition of equations (25) and (26) into (16) provides the final result.

A B IN
P(S) = [%(1 QP(1, 2)P( h y+P(1 PP 1 YP(2 )] x {
SINP DUP

DUP  DUP SiMp
AlL  RUD ELEV QUT AlL RUD ELEV  OUT iy {
POL2IP(L2P(L,2 )P( L Y+ PO L PO WPCL PC2YPPCL ) !
DP DUP DUP oup SIMP  SIMP  SIMP  DUP DU¥ .
A 8 IN AlL RUD ELEV  OUT pvl] i
+ PCL WPCL PCL JFCL YCL (L IPCL )] PC2) {(27)
SIMP  SIMP  SINP  SIMP  SIMP  SIMP  SINP Dup




The varfous relfability exgressions with appropriate failure rates and oxposure times may be substituted
into each state's probability tactor in equation (27) to obtain a numerical ~.ult.

2.4 Effect of Failure Coverage

Failure coverage is defined as the probability of successfully det~-ting a failure within a redundant
stage, isolating that failure to the specific LRU, and reconfiguring the stage to place the failed LRV
off-11ne. 1t {s gene-s1ly accepted that coverage values of unity .re possible .ith 3 or more healthy
redundant LRU's. The nrouiem ar.ses when a failure dccurs when just previous tiere were only 2 herlthy
LRU's-which has failed? Therefire, the covarage factor (c) is used \o mudify the probability of
achieving the simplex stute.

The Stage-Stal.e method includet: coviivage by splitin, the simplex state “or a stage into two parts-that
which successfully degrades to simp.ex, and that wii-.r. does not. This is now {llustrated for a d: >lex
stage. Equation (2) is rewritten beluw for a duplc' ;tage with identical LRU's,

P(good or bad) = 1.0 = RZ + 2RQ + Q2 (28)
ST ST2 ST3

If success is defined as having at least 1 of the ¢ LRU's healthy, then the success states ingiude
states 1 and 2 only. State 2 represents the 2 ways in which simplex operation can be achieved. When
coveraje is not unity, the probability of achieving this state is 2RQc. In this process a new
unsuccessful state has evolved, namely 2RQ(1-c). Now

previously 1 state
P,

r A
P(good or bad) = 1.0 = RZ + 2RQe  + 2RQ(1-c) + @2
~———— N e’ (29)

Success States Failure States

A triplex stage can be evaluated in a similar fashion. With unity coverage the triplex states are shown
by equation (30).

Plgood or bad) = 1.0 = R3 + 3RZQ + 3RQZ + @3
L S s (30)
STL ST2 ST3 ST

If success is again defined as successfully achieving at least simplex operetion, then the first 3
states represent success. State 3, however,

must be modified by ¢ 1f the coverage is not unity so that
previously 1 state

—
Plgood or bad) = 1.0 = R3 + 3RZQ + 3RQ2c +3RQ2(1-c) + Q3

Success §Eates Failure States

3,0 Conclusion

Traditional reljability analysis methods are ervor-prone and difficult to usefor complex flight control
systems possessing a large number of LRU types and the redundancy management of individual LRU's. This
is primarily due to the large number ¢: combinations of possible success states and dependencies. The
Stage-State reliability analysis method is a much simpler approach which is well-suited to use by the
system architect. The method makes it readily apparent where the sources of the system unreliabilities
are locateu. Also, because of its simplicity, fewer errors arise and the use of small portable

computers is possible.
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METHODOLOGY FOR MEASUREMENT OF FAULT LATENCY IN A DIGITAL

L

AVIONIC MINIPROCESSOR*

j John G. McGough
Fred Svern
Flight Systems Division
Bendix Corporation
Teterboro, New Jersey 07608

and

Salvatore J. Bavuso
NASA Langley Research Center
Hampton, Virginia 23665

ABSTRACT

! Using a gate-level emulation ot a typical avionics miniprocessor, fault injection experiments were per-
formed to (1) determine the time-to-detect a fault by comparison-monitoring, (2) forecast a program's
ability to detect faults and (3) validate the fault detection coverage of a typical self-test program.

To estimate time-to-detect, six programs ranging in complexity from 6 to 147 instructions, were erulated.
Each program was executed repetitively in the presence of a single stuck-at fault at a gate node or device /)

Detection was assumed to occur whenever the computed outputs differed from the correspending outputs

pin.
Histograms of faults detected versus number of -

of the same proyram executed in a non-faulted processor.
repetitions to detection were tabulated.

Using a simple mode! of fault detection, which was based on an analogy with the sciection ¥ balls in an

b iR s o S

urn, distributions of time-to-detect were computed and compared with those obtained empiricilly.
3 A self-test program of 2,000 executable instructions was designed expressly for the study. The only re- 2
quirement imposed on the design was that it should achieve 95% coverage. The program was exucuted in the i
presence of a single stuck-at fault at a gate node on device pin. The proportion of detected faults was i
tabulated. :
. !
E In all experiments fauits were selected at random over gate nodes or device pins. i
1. INTRODUCT ION ;

1.1 Background {
g

NASA's Langley Research Cente has been actively pursuing the synthesis of a reliability assessment capa-

bility for fault-tolerant computer-based systems for several years. This work has culminated in the de-

velopment of CARE III {Computer-Aided Reliability Estimation) which is a general purp::b relfability

assessment tool for highly reliable fault-tolerant systems tailored toward flight crucial avionic systems

employing muitiple digitai computers. A major innovatfon of CARE IIT is its treatment of coverage which ‘
is a vital factor in the reliability modeling of digital fault-tolerant computer systems. Coverage, a i
generic term, captures the notion of a system's abi1ity to handle hardware faults and involves system i
fault detection, isolation of the fault to a reconfigurable (redundant) hardware module, and fault recon-

figuration and recovery. The first two components have been modeled extensively axd have been shown to ;

e be critical for achieving high system reliabilities.

J .

4 What is alse evident in the literature is a lack of empirical coverage data although several very powerful
: retiability evaluators require this data. As a result, a pilot study was conducted in 1978 to test the

) feasibility of measuring detection coverage and investigating the dynamics of fault propagation in a digi-

tal computer. The specific cbjectives were to study how typical software causes stuck-at faults to prop- i
agate and hence become detectable, to account for as wany software code characteristics (e.g., instruction f
»ubset, branching) as possible affecting detection (with an eye toward optimizing fault detection by code
synthesis;, aad to determine a method of forecasting a giver software program's detecting ability prior to
computation. A series of fault injection experiments were conducted using a gate-level simulatfon of a
small idealized processor with a limited instruction set. The results of the study were surprising since ) 5

e

tiey contradicted the prevailing delief that most hardware faults cause catastrophic and hence detectable
computationa! errard. In fact, a significant proportion of faults remained latent after many repetitions j
of a nrogram. The ramifications c¢f these observations can have a significant impact on the design of !
fault-tcierant digital computers which employ companfon-monitoring or majority-voting for fault detection :
and isolation. The risk 1s associated with the accumulation of latent ard therefore undetected faults i
which may defeat the comparison-monitoring or majority-voting detection schemes. Needless to say, these

considerations are of paramount importance to relfability assessment; as a result, NASA funded another :
study to investigate the findings of the pilot study as it was not clear from the pilot study that similar '
resulcs could be obtained for a real processor—the follow-on work was based on a real avionic processor. :
This work was also extended to evaluate an airborne self-test program, to account for undetected faults, P
and to assess the significance of injecting faults at the gate-level and at the functional pin-levei. !

* The contents are dased on the study: j
"Methodology for Measurement of Fault Latency in a Digital Avionic Miniprocessor", NAS 1.15946, Flight ]

Systems Division, Reﬁlixliorporat1on, sponscred by Langley Research Center, Hampton, Va.
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1.2 Objectives of the Study

A primary objective of the present study {s to ascertain whether the results of the previous study apply
to a real avionics processor. Specifically,

] ¢ Given a set of software programs ranging from a :imple "fetch and store” to a complicated,
: multi~-instruction algorithm inject a single fault, selected at random, and observe the time to
detection. Detection is assumed to occur whenever there is a difference between the computed
outputs of the faulted and non-faulted processors executing the same program. Determine dif-
ferences in detection time when faults are injected at the gate-level and component-level.

T T e e e ]
|
1

:

Based upon enpirical distributions, develop and validate a model of fauit latency that will
forecast a program's fault detecting ability,
The followiny additional objective was added,

o Given a typical avionics self-test program inject faults at both the gate-level and component-
level and determine the proportion of faults detected.

e ———

{

{'.

F 2. EMULATION CESCRIPTION

; 2.1 BOX-930 Architecture

E The Bendix BDX-930 Digitai Precessor is a microprogrammed, ptpelined machine designed around the AMD2901A

{ four bit microprocessor slice. The machine contains sixteen general purwese registers of which four ,)
: One

registers may be loaded directly from memory and two registers may be used as base registers.
register is vsed as a stack pointer,
The program counter and memcry address register are contained fn the 9407, a chip designed to perform

memory address arithmetic. Along with a temporary register contained on the same chip, the BDX-930 is
ahle to perform four basic addressing modes involving three registers and various instruction fields.

The machine contains three memory interface data registers which are used to input and output memory
data. There are also a number of one bit status flag registers that can be manipulated under program
' conirol. This includes the F! and F2 registers, which are hardware flags, and the interrupt enable,

overflow status registers. There also exists the fndirect and 1ink registers used by the microcode for i

l . branching.
The microcode is contained in seven proms and a pipeline register is inciuded for simultaneous
microcode fetch and decoding. Various internal and external conditions can affect microcode branching as
selected by the microcode itself and a microcode control prom. 1n addition to a rich instruction set
which includes 16 and 32 bit fixed point operati  1s. there is a test s»t interface 'n the microcode. A
selectable saturate mode is available which Timits tie results of arithmetic operations when overflow

or underflow occur,

W T Ty
T gy S e~ e e

For simulation purposes, the computer has been divided into six partitions:
‘ 1. Address Processor
i 2. Data and Status Registers

3. Microcontroller
bt . Pipeline Register

4. ALU (2901A)

5. Microcode

6. Control Proms

The partitioning is roughly equivalent to the stages of the pipe: - adress, fetch, decode, and execute.
These stages of the pipe are joined by various buses throughout the CPU. These buses are formed from tri-

state logic and sume are bidirectional.
A 1ist of the devices used in the BDX-930 and their failure rates is given in Table ), obtained from
MIL-HDBK2178, Notice 2.

i
]
!
]
!
!
|

2.2 Description of tne Emulator

The emulation includes the components of the CPU {Central Processor Unit), scratchpad memory and those
portions of the program memory containing six target programs and the target self-test program. The emu-
lation is derived from the circuic schematics of the BDX-930 and includes all of the devices identified
in those schematics. Each device is represented by a gate-level equivalent circuit supplied by the chip
manufacturer. It was found that six types of gates were sufficient to represent any device, e.g., NAND,
NAD, OR, NOT, NOR, EXCLUSIVE OR. Table 2 gives the number of equivalent gates in each device of the CPU.

T In 4il, 5,100 gates were required.
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A1 devices of the CPli were represented at the gate-level except the following:
16 general purpose arithmetic ragisters
program memory
scratchpad memory
microprogram and control memories
which are represented at the functional level.

The emulation did not include the direct memory access unit (DMA) or any of the devices of the I/0. The
emulated devices the CPU are shown in Figure !,

Faults were injected into al! devices except the program and scratchpad memories. Because the program is
“read-only", no processor, faulted ov not, is permitted to write into this memor). However, even though
the scratchpad memory is never faulted, a vfaulty processor can write into it. As a consequence, in the
parallel mode of operation where 36 processors are stmultanesusly emulated, the corresponding 36 scratch-
pad memories are alsu emulated.

No delay has been simulated between logic gates. It is assumead that all combinational logic is stable

at the output the instant an input pattern is applied to it. This means that each time the input is
changed, the network need only be evaluated once to supply the correct output pattern. Operating in this
manner is very time efficient, but puts stringent requirements on the order of evaluaticn of the gates.
To be able to meet these requirements, the logic is levelized, i.e., placed in groups or lesels that rep-
resent the proper order of evaluation.

The emulator utilized the parallel method of logic simulation (see. for instance, (Seshu, S., et al 1962;
Hardte, F.H., et al 1967)). The c¢ata word of a POP-10 contains 36 bits; each bit position s used to rep-
resent a different machine. The simplest gate operations are represented by a single Boolean instruction;
when the two imputs occupy the same bit positions in their respective words, the cutput also occupies

this bit posttion. The advantage of this technique is execution time savings. Typically, the amount of
code necessary to simulate 36 machines is of the same order as the amount of code necessary tc simulate
only one machine. For an additional increase in speed the BDX-930 description is contained in compiled
code, rather than in tables.

Certain portions of the macirine, notably the memury elements, were represented at a functional level

rather than a gate level. For microprogram memory, two words of PCP-'0 storage contain 56 bits of micro-
store; at micro memory fetch time, these bits are retrieved from the proper address for each of ihe sim-
utated machines and combined to form suitable words to interface the gate portion of the emulation. The
ROM portion of macro memory is handled in the same manner. Writeable store contains a routine to translate
~he gate i‘rputs into consecutive PDP-10 storage words so that there is one copy of writeable storage for
each machine being emulated. On rcading this storage, the process is reversed.

In a typical run of the emulator, 36 different machines are exurcised; 35 faulted machines and one good
machine, fuch faulted machine is assumed o have a single solid fault at one node, either stuck-at-one
(SA1) or stuck-at-zero {SAO). The faults are injected by defining eitra gates at each node, an AND gate
for stuck at 2ero and ar OR gate for stuck at one. A typical AND gate using this technique is shown in
Figure 2.

An additional reduction in run-time can be achieved by observing th. not all gate faults are distinguishabl
at the gate output, For example, an SAO fault on the input node of an AND gete is indistinguishable from
an SA0 fault on the output node. As a consequence, if two or more indistinguishable faults of the same
gate are selected, only ~ne fault will be emulated.

It will be noted that only one partition of the BDX-930 runs with faults injected in each simulated run.
ihe remaining tartitions run'true value', that is logic without fault injection capabilities. This re-
sults in a time saving in program execution. When tke entire emulator is run true-value, the execution
ratio hetween PDP-10 time and simulated time is 21,000:7, with faults injected in one partitfon, this
numbar is approximatelsy 25,000:1,

3. FAULT MODELLING AND SELECTION

3.0 Fault dodel

In the present study the felilewing assumptions are made regarding failure modes:

o Every device can be represented, from the standpoint of performance and failure modes, by the
manufacturer-supplied, gate-level equivalent circuit.

® Every fault can be represented as eithes an $-a-0 or S-a-1 fault at a gste node.

¢ The failure rate of the device i; squally distributed over the gates of th» equivalent circuit.
¢ The failure rate of a gate is «qually distributed over the nodes of the gate.

o S-a-0 and S-a-1 faults are equally likeiy.

® Memory faults are exc?usive1y faults of single bits.

¢ A memory fault is the complement of its non-faulted state.
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Faults are injected inio all devices except the main memory. In the case of the microprogram memory,
which is emulated at the functional level, faults are injected into the memory cells where they remain
active for the duration of the test. Faults are injected at an input or output gate ncde, and also re-
main active for the duration of the test. When a fault is injected at an output nnde 1t fs allowed to
propagate to all nodes and devices that are physically connected to the failed node. When a fault is in-
Jectod at an input node it dnes not propagate back to the driving node. This strategy provides a wider
variety of failure modes than would otherwise be possible if propagation were allowed. The resultant
fault set includes a rich assortment of static and dynamic {i.e., data-dependent) faults.

The above procedure does not distinguish between gate-level and compuneni (i.e., pin)-level faults except
by probability of octurrence; the method zutomatically assigns failure rates to pins. However, a differ-
ent selectfon procedure was employed for comporent-leva! faults. For these faults it was assumed that
the failure rate of each device is equally distributed over the pins.

While this assumption violates the prescribed fault model it 1s coussistent with the conventional method of
estimating fault detection coverage by simulating faults in actual hardware,

4, DESCRIPTION OF EXPERIMENTS

4. Definition of Failure Detection

In the present study fault coverage and latency estimates are obatined by employing two, conventional
techniques of faiiure detection: comparison-monitoring and self-test.

In comparison-monitoring a set of computed variables is compared witn a vorresponding set computed in
another nrocessor. T1f it is arranged that both processors operate on identical inputs and are closely
synchronized, then any difference in a computed variable signifies that one of the processors has failed.
In practice each processor executes an algorithm which compares the appropriate variables and signals a
discrepancy when such exists, In the present study this algorithm was omitted; a fault is considered %o
be detected if a difference between corresponding variables exists irrespective of the ability of either
processor to recognize 