
AGARD-CP-303

C-,*

Computing and Networks

NORTH ATLANTIC TREAUTY O'GNiATI)AN

DISTRIBUTION AND AVAILABILITY
ON BACK COVER

~201 05 008

AGARD-CP-303

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

)

AGARD Conference Proceedings No.303

TACTICAL AIRBORNE DISTRIBUT ED -

COMPUTING AND NETWORKS

... ;P~jJ9

Copies of papers and discussions presented at a Meeting of the Avionics Panel
held in Roros, Norway 22-25 June, 1981.

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in. the fields cf science

and technology relating to aerospace fur the following purposes:

- Exchanging of scientific and technical information;;

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence
posture;

- Improving the co-operation among member nations in aerospace research and development;

- Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field
of aerospace research and development;

- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field;

- Providing assistance to member nations for the purpose of iucreasing their scientific and technical potential;

- Recommending effective ways for the member nations to use their research and development capabilities for
the common benefit of the :,ATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representativvs from each member nation. The mission of AGARD is carried out through the Panels which are
composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace
Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO
Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is oy invitation only and is normally limited te citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published October 1981

Copyright Q AGARD 1981
All Rights Reserved

ISBN 92-835-0302-3

Printed by Technical ý-itbqj and Reproduction Ltd
Harford House, 7-9 Charlotte St. London, WIP IHD

"II• ' . .

THEME

A distributed processing system has been characterized as having a multiplicity of
physically distributed resources interacting through a communication network; high-level
operating system software unifies, controls, and integrates the components and provides
transparency to services rendered.

The distributed system architecture offers cooperative autonomy in overall operation
to achieve efficient use of avionic resources and to provide high system integrity, cost-effective
maintenance, expandability, and improved performance. The physical distribution of resources
comprising a system works to insure immunity to battle damage and accidents. Also, in some
instances systems for distributed computation may take the form of air-to-satellite, air-to-surface,
or air-to-air. The advent of small, inexpensive, low-power computing revolutionized complex
systems design, and raises serious questions regarding the future of centralized, hardwired
avionics computer systems.

Distributed processing, having been made possible by the price performance revolutionin micro-electronics, now challenges us to correctly apply the concept to alleviate cost, schedule,

reliability, operational, and maintenance problems in avionic systems.

T:. , c r

1 T•

V-"

idi

- -t,*

PROGRAM AND MEETING OFFICIALS

Chairman: Mr B.L.Dove, US

Program Committee: Mr W.F.Ball, US
Mr T.J.Sueta, US
Mr O.Rossignol, FR
Ir. H.A.Timmers, NE
Dr G. Van Keuk, GE
Mr R.Vaughn, US
Mr R.Wright, UK

LOCAL COORDINATOR

Dr L.Hoivik, NO
NDRE, Div. for Electronics
Kjeller, NO

AVIONICS PANEL

Chairman: Dr M.Vogel Deputy Chairman: Mr Y.Brault
DFVLR e.v. Thomson CSF
8031 Oberpfaffenhofen Division Equipements
Post Wessling/obb Avioniques et Spatiaux

FRG 178 Bid Gabriel P6ri
92240 Malakoff
FR

PANEL EXk •UTIVE

Lt.Col. J.B.Catiller
AGARD/NATO
7, rue Ancelle
92200 Neuilly-sur-Seine
France

iv

CONTENTS

Pale

THEME iii

PROGRAM AND MEETINu OFFICIALS lv

TECHNICAL EVALUATION REPORT
by B.L.Dove viii

Reference

SESSION I - STATE-OF-TnE-ART IN DISTRIBUTED PROCESSING

DISTRIBUTED DATA PROCESSING - WHAT IS IT?.
By P.H.Enslow, Jr. 1

Paper 2 cancelled

THE EFFECT OF INCREASINGLY MORE COMPLEX AIRCRAFT AND AVIONICS ON
THE METHOD OF SYSTEM DESIGN

by J.T.Martin 3

A l UTORIAL ON DISTRIBUTED PROCESSING IN AIRCRAFT/AVIONICS APPLICATIONS
by B.A.Zempolich 4

SUMMARY AND DISCUSSION SI

SESSION II - DISTRIBUTED AIRBORNE SYSTEM ARCHITECTURE,

Paper 5 canclled

PERFORMANCE STUDY OF A DISTRIBUTED MICROPROCESSOR ARCHITECTURE
FOR USE ABOARD MILITARY AIRCRAFT

by K.G.Shin and C.M.Krishna 6

THE DEVELOPMi\ T OF ASYNCHRONOUS MULTIPROCESSOR CONCEPTS FOR
FLIGHT CONTROL SYSTEM APPLICATIONS

by S.M.Wright and J.G.Brown 7

FUNCTIONAL VERSUS COMMU: 4ICATION STRUCTURES IN MODERN AVIONIC SYSTEMS
by K.Brammer and A.Yeimann 8

CONTINUOUS RECONFIGURATION IN A MULTI-MICROPROCESSOR FLIGHT CONTROL
SYSTEM

by S.L.Maher and S.J.Larimer 9

EXPERIENCES WITH THE EXPERIMENTAL FFM-MCS
by L.V.Imendorff 10

SUMMARY AND DISCUSSION S2

SESSION II - DISTRIBUTED SYSTEM DESIGN APPROACHES

SAVANT - A DATABASE MANIPULATION TECHNIQUE FOR SYSTEM ARCHITECTURE
DESIGN VERIFICATION ANALYSIS

by A.A.Callaway 11

SIGNAL PROCESSING WITH SYSTOLIC ARRAYS
by R.W.Priester, K.Brondey, J.CIary and H.Whitehouae 12

<T777X~v

Reference

ECONOMIC CONSIDERATIONS FOR REAL-TIME NAVAL AIRCRAFT/AVION'C
DISTRIBUTED COMPUTER CONTROL SYSTEMS

by B.A.Zempolich 13

FUNCTIONAL DOCUMENTATION - A PRACTICAL AID TO THE ORDERLY SOLUTION
OF THE SYSTEM DESIGN PROBLEM

by J.T.Martin 14

SUMMARY AND DISCUSSION S3

SESSION IV - DISTRIBUTED SYSTEM SOFTWARE

A CONSISTENT APPROACH TO THE DEVELOPMENT OF SYSTEM REQUIREMENTS
AND SOFTWARE DESIGN

by A.O.Ward 15

A PEARL SOFTWARE SYSTEM FOR MULTI-PROCESSOR SYSTEMS
by P.Ehzer and H.J.S.hneider. Presented by Mr Schloch 16

DISTRIBUTED AND DECENTRALIZED CONTROL IN FULLY DISTRIBUTED /
PROCESSING SYSTEMS

by P.H.Enslow, Jr. Presented by Dr Livesey 17

RECOVERY IN DISTRIBUTED PROr:ESSING SYSTEMS /
by L.S',obodova 18

GENERALIZED POLLING ALGORITHMS FOR DISTRIBUTED SYSTEMS
by J.K.Wolf i9

SUMMARY AND DISCUSSION - - S4

SESSION V - FAULT TOLERANCE AND RLLIABILITY IN DESIGNS

STAGE-STATE RELIABILITY ANALYSIS TECHNIQUE
by A.D.Stem 20

METHODOLOGY FOR MEASUREMENT OF FAULT LATENCY IN A DIGITAL AVIONIC
MINIPROCESSOR

by J.G.McGough, F.Swern and S.J.Bavuso. Presented by Mr Moses 21

HIERARCHICAL SPECIFICATION OF THE SIFT FAULT TOLERANT FLIGHT CONTROL
SYSTEM

by P.M.Melliar-Smith and R.L.Schwartz 22

RECONFIGURATION: A METHOD TO IMPROVE SYSTEMS RELIABILITY
by J.Szlachta 23

RESEAU D'ECHANGE RECONFIGURABLE POUR CONTROLE DE PROCESSUS REPARTI
par Ch.Meraud et B.Maurel 24

SUMMARY AND DISCUSSION s5

SESSION VI - INTERCONNECT!ON - BUSSING AND NETWORKING

Paper 25 cancelled

PROTOCOL LEVEL MODULES - FOR COST EFFECTIVE STANDARD COMPUTER
COMMUNICATION

by Q.Hvinden, Y.Lundh and Q.Sandholt 26

vi

Reference

LES STRATEGIES DE RETRANSMISSION POUR LE CONTROLE D'ERREUR DANS LES
PROTOCOLES DE TRANSFERT DE DONNEES

par G.Juanole 27

PRACTICAL ASPECI'S WHICH APPLY TO MIL-STD-1 553B DATA NETWORKS
by IMoir and P.A.Duke 28

THE TRAFFIC FLOW IN A DISTRIBUTED REALTIME COMPUTING
SYSTEM (RDC-SYSTEM) WITH A FIBER OPTIC RINGBUS SYSTEM

by D.Heger and R.Bjihre 29

DISPERSED SENSOR PROCESSING MESH PROJECT
by V.A.Megna 30

NEXT GENERATION MILITARY AIRCRAFT WILL REQUIRE HIERARCHiCAL/MULTI-
LEVEL INFORMATION TRANSFER SYSTEMS

by J.W.McCuen 31

SUMMARY AND DISCUSSION S6

SESSION VII - APPLICATION OF DISTRIBUTED SYSTEM DESIGNS TO AVIONIC SYSTEMS

SiFT - AN ULTRA-RELIABLE AVIONIC COMPUTING SYSTEM
by K.Moses 32

STATE-OF-THE-ART COMPUTER MONITORING EQUIPMENT
by H.Nelson 33

INTEGRATED CONTROL OF MECHANICAL SYSTEMS FOR FUTURE COMBAT AIRCRAFT
by G.W.Wilcock, P.Lancaster and C.Moxey 34

ARCHITECTURE DU SYSTEME D'ARMES DU MIRAGE 2000
par S.Croce-Spinelli, B.Vandecasteele et J.F.Ferreri 35

THE COMPUTER SYSTEM OF THE TORNADO*
by P.A.Bross 36

F/A-i 8A TACTICAL AIRBORNE COMPUTATIONAL SUBSYSTEM
by T.V.McTigue 37

F/A-I 8 WEAPONS SYSTEM SUPPORT FACILITIES
by T.F.C'Neil 38

SUMMARY AND DISCIISSION S7

LIST OF ATTENDEES A

*Paper RESTRICTED. Copies available from author, see Lit of Attenijees.

vii

1ACTTCAL AIRBORNE DISTRIBUTED
COMPUTING AND NETWORKS

TECHNICAL EVALUATION REPORT

Billy L. Dove

Technical Program Chairman

EXECUTIVE SUMMARY -

CONCLUSIONS

o Benefits credited to distributed data processing are not capable of being realixed within the
current state-of-the-art.

o Preparation of military standards fov airborne distributed data processing is inappropriate at
this time. However, a mechanism to promote uniformity in technical deflinitions between workers
in this area would be useful.

o The state-of-the-art is not adequate to support the design and validation of airborne distributed
data processing systems fnr critical military missions.

o The economic leverage of the military Is no longer a factor with microelectronic manufacturers,

therefore, system designers must c.ins;der technology independence in their designs.

o Software is of considerable importance t(this area.

RECOMIENDATIONS

o AGARD follow up on this subject area with a future meeting.

o AGARD support specialist meeting on Methodology and Design Techniques for Distributed Systems.

GENERAL -

The symposium was three and a half days in ltngth being held June 22 to 25, 1981, in Rnros, Norway.

Approximately 130 people were registered. Attendance at all sessions was unusually high.

Thirty-eight papers were scheduled for presentation as of June 22, 1981, and only two papers were
not presented at the meeting.

Few of the papers were invited ones. Even so, the material gathered for the program proved to be
of interest overall.

A large number of questions were asked whose answers are contained in the proceedings.

A major objective of this meeting was to seek a delineation of the state-of-the-art in airborne
distributed computing. Fortunately, this symposium attracted a large number of people representing
a broad range of interests and included academics, institutes, and avionic and airframe manufacturers.
This was as intended by the program committee.

TECHNICAL SESSIONS -

The potential benefits from distributed computing system concepts such as improved reliability/
availobility, ease of system growth, shared resources, etc., offer attractive alternatives to today's
problems, however, the technical capability to realize these benefits has been brought into question.
Thus, the purpose of the meeting was established- to assess the state-of-the art capability in air-
borne distributed data processing.

The meeting was organized in such a way as to encourage a diverse response from the call for papers.
Seven sessions were defined, as follows:

Session I State-of-the-Art
Session II Architectures
Session ITI Design Approaches
Session IV Software
Session V Fault Tolerance and Reliability
Session VI Bussing and Networking
Session VII Applications

Session I: State-of-the-Art in Distributed Processing. This was a tutorial session. The first
paper was invited and given extra time. It focused on the definition of distributed computing
systems. The matter of definition is important as it relates a name to a level of potentiAl benefits.
This proved to be a very interesting and much needed paper as judged by the reaction of the audience.
A continuing -.ld for the refinement of technical definitions was established. A major point from
this session was that the state-of-the-art is far from being able to provide the benefits claimed by
airborne distributing system; enthusiasts.

The introductory paper (1) written by Dr. Philip Enslow, USA, "Distributed Data Processing--
What Is It?" was presented by Dr. John Livesey. The paper focused on definitions which set
the scene for the entire symposium.

Mr. Martin's paper (3), "The Effect of Increasingly More Complex Aircraft and Avionics on
the Method of System Design," presented a historical treatment of aircraft and their systems.
His point being that little change was required in the design methodology for systems of the
past, but that a revolutionary change in methods is required in order to design distributed
systems.

Mr. Zempolich's paper (4), "A Tutorial orn Distributed Processing in Aircraft/Avionics Applica-
tions," dealt with systems architectural concepts from the analog to digital and beyond to the
hierarchical. Emphasis was placed upon the need for top-down design and the synergism achieve-
able from a team approach.

Following the three tutorial papers of the first session, the authors and Dr. Von Issendorff
participated in a free-exchange question and answer period. Arising from the many questions
and comments during this period was the subject of military standards and academic definitions.

Session IT: Distributed Airborne System Architecture. The papers of this session revealed a tendency
to explolt the advances made in microcomputer technology by partitioning both hardware and software
into functional modules. The drivers for this are: a possible positive influence on reliability and
damage tolernce; use of identical hardware; cost of software; and better visibility into the system
for better maintainability. It was abundantly clear that system architects are at work putting new
technology to use in new ways. It is also clear that the resulting architectures are in general
following the same trend., i.e., distributed microprocessors, bus connected, and with some form of
dynamic redistribution of resources or functions. It seems logical and can be so argued that these
architectures offer benefits in cost and reliability. It was not established from this session that
a body of data exist which quantifies design factors and substantiates the claims made for the various
category of architectures presented.

The paper by Dr. Shin (6), "Performance Study of a Distributed Microprocessor Architecture
for Use Aboard Military Aircraft," proposed a concept based upon the decomposition of a
mission into "atom funct 4ons" to be implemented by microelectronic technology. A central
controller communicates with the "atom functions," and the pilot interfaces with the certral
controller. A hypothetical system was studied and some performance data generated.

Mr. Wright's paper (7), "The Development of Asynchronous Multiprocessor Concepts for Flight
Control System Applications," describes a concept for the use of multiple microprocessors,
functionally dedicated, and running asynchronously. The concept will be implemented and
flown on a Hunter aircraft as a fly-by-wire system.

Mr. Brammer's paper (8), "Functional Versus Communication Structures in Modern Avionic
Systems," presented results from investigations into the amount of interconnections in
several avionic system concepts. The bus concept and the layered star appear to offer
less interconnections from this analysis.

Lt. Maher's paper (9), "Continuous Reconfiguration in a Multi-Microprocessor Flight Cortrol
System," offered another concept of microcomputers interconnected with busses and an alqorithm
to dynamically redistribute system functions. Three advaitages of this architecture were
offered: expandability, reduction of software cost, and reduction of unscheduled maintenance.

Dr. Von Issendorff's paper (10), "Experierces with the FFM-MCS," presented the aesign of a
test-bed for research on distributed data processing. Research tasks undertaken include
decomposition of data processing tasks into sets of functions, message construction, and
transfer protocol.

Session III: Distributed System Design Approaches.

Dr. Callaway's paper (11), "SAVANT - A Database Manipulation Technique for '.lstem Architecture
Design Verification and Analysis," described an interactive tool capable of representing the
various facets of a digital system design. SAVANT traces errors, identifies inconsistencies
in designs, and provides data for trade-off between different configurations.

Dr. Whitehouse's peper (12), "Signal Processing with Systolic Arrays," presented a specialized
hardware approach for fast matrix computation.

Mr. Zempolich's paper (13), "Economic Considerations for Real-Time Naval Aircraft/Avionic
Distributed Computer Control Systems," emphasized the economic aspects to be considered
during system design. Lack of economic leverage over microelectronic manufacturers has
resulted in questions about the viability of standardization and commonality.

ix

Mr. Martin's paper (14), "Functional Documentation - A Practical Aid to the Orderly

Solution of the System Oesign Problem," discussed an organized approach to the
decomposition of system requirements from specification to functional detail. This
technique promotes communication between persons of different disciplines, and results
in a well-documented design.

Session IV: Distributed System Software. Considering the criticality of software to the realization
and success of distribued systems, it was surprising that this session received the least support in
papers. The individual papers were of sufficient qslity; however, the scope and number were inade-
quate. A final conclusion cannot be drawn rega,-ding the state-of-the-art ot software for distributed
systems.

Mr. Ward's paper (15), "A Consistent Approach to the Development of System Requirements
and Software Design," reported on the SAFRA (Semi-Automatic Functional Bequirements
Analysis) project, Many of the ingredients of a careful analysis of requirements and
their mechanization were discussed. No comparison of SAFRA to other approaches was
mentioned. A limited experience base exists with SAFRA.

Dr. Livesey's naper (17), "Distributed and Decentralized Control in Fully Distributed
Systems," reinforced the definition of fully distributed systems through the discussion
of decentralized contiol. An important aspect of the paper was the task graph concept.
Information stored in task graphs could be useful to implementing the dynamics of
reconf'guration.

Dr. Svobodova's paper (18),"Recovery in Distributed Processing," discussed techniques
for analyzing task handling, confinement of failure effects, preservation of status,
and recovery in digital systems.

Dr. Wolf's paper (19), "Generalized Polling Algorithms for Distributed Systems," compared
two polling algorithms with the objective uf eliminating the inefficiency of round-robin
polling. This theoretical paper offered no example to illustrate the amount of improvement
made.

Session V: Fault Tolerance and Reliability in Designs. Three papers in this session demonstrated
"great breadth in the consideration being given reliability assessment and validation. Emphasis on
ultrareliability and the validation problems for such systems is being worked In the civil R&D sector.

Mr. Stearn's paper (20), "State-State Reliability Analysis Technique," presented an
improved method for r.eliability analysis for redundant systems. The state-state tecnique
is less difficult to use and simpler, thus not as many errors will be caused by having such
a large number of combinations in the analysis. Sources of unreliability become readily
apparent using this technique.

Mr. Moses' paper (21), "Methodology for Measurement of Fault Latency in a Digital Avionic
Multiprocessor," discussed the use of an emulator to conduct fault injection experiments.
The results from this work brings into question the fault/faillrc detection capability of
self-test programs in avionic s.ystems, and the accuracy of reliability analysis program
results.

Dr. Schwartz's paper (22), "Hierarchical Specification of SýFT Fault Tolerant Flight
Control System," offered for consideration a formal mathematical proof of ultrareliable
computer functional and reliability requirements. This approach establishing a mathe-
matically provable relationship between the specification and the programs of the actual
systems is an intriguing and novel approach.

Mr. Szlachta's paper (23), "Reconfiguration: A Method to Improve Systems Reliability,"
discussed the improvement of reliability by use of hardware reconfiguration.

Mr. Meraud's paper (24), "Reseau d'Echange Reconfigurable pour Controle de Proc{isus
Reparti ," discussed a means fer dynamic distributed (decentralized) cuntvol of reconfigu-
ration. This technique is directed to systems of high reliability although no reliability
analysis results were given.

Session VI: Interconnection - Bussing and Networking.

Mr. Hvinden's paper (26), "Protocol Level Modules- For Cost-Effective Standard Computer
Communications," describes a "host independent" implementation of computer communication
protocols. This is realized by the development of hardware and software modules. Work-
load on the host is reduced.

Mr. Juanole's paper (27), "Les Strat~gies de Retransmission pour le Contrdle d'Erreur dans
les Protocoles de Transfert de Donnges," presented the functions of a protocol for data
transfer. Error control is included in an error detection and data retransmission scheme.
This strategy was analyzed and the logic of the process explained.

Mr. Duke's paper (28), "Practical Aspects Which Apply to MIL-STD-1553B Data Networks,"
discussed the ramifications of trying to satisfy two different standards--one relating
to data transmission anJ the other to standard interfacing electronics. This situation
is created when bus redundancy, multibus architecture, and some intelligence is required
in a stores management and weapons aiming system.

x

Mr. Heger's paper (29), "The Traffic Flow Measured in a Distributed Real Time Computing
System (RDC) With a Fiber Optic Ring Bus System," presented results from anilysis and
neasurements taken from a fcult tolerant microprocessor system's fiber optic ring bus.
This is a very good example from which to compare the results of an analytical method
vs. practical data gathering. Many more examples will be required to validate either
method.

Mr. Megna's paper (30), "Dispersed Sensor Process 4ng Mesh Project," presented the
mechanization of a limited port netwo; communication structure. Although detailed
in implementation, neither the general analytical methods nor the general study results
were presented which compared performance to the existing F-8.

Mr. McCuen's paper (31), "Next General Military Aircrait Will Require Hierarchical/Multi-
Level Information Transfer Systems," was concerned with a discussion of a future high-
speed data bus standard and architectural approaches to it. Information was requested
to assist the task grouwl 'n the formulation of a high order transfer-type system.

Session VII: Application n Distributed System Designs to Avionics Systems.

Mr. Moses' paper (32), "SIFT - An Ultra-Reliable Avionic Computing System," noted that
in recent years automatic flight control systems (FCS) in aircraft, which previously
provided mainly stability augmentation and other pilot-relief functions, have more
recently taken on flight-critical tasks. These flight-critical tasks are those whose
successful accomplishment is vital to the safety of the aircraft (e.g., automatic
landing, fly-by-wire control system, control-figured vehicle methods). An FCS which
takes on these critical safety-related tasks must be ultrareliable. SIFT implements
software-implemented fault-toleranc otechniques utilizing hardware redundancy. Achieve-
ment of failure probabilities of 10 per hour were quoted. Using multiprocessor "star
connection" techniques, the computing is carried out by high-speed 10-bit Bendix 950
processors (each with a throughput of 800 KOPS with an appropriate FCS instruction mix
and with 32K memory). Software algorithms are used for failure detection. After fault
detection and isolation, the software provides reconfiguration to accommodite the fault.
The paper described the SIFT architecture and its hardware implementation. As an
efficient approach to the design of ultrareliable avionics, the author noted that itshould pave the way for acceptance of fly-by-wire and other advanced FCS techniques.

Mr. Nelson's paper (33), "State-of-the-Art Computer Monitoring Equipment," described the
results of a significant software support effort at the NAVWPNCEN that has resulted in
the availability and practical use of an airborne-computer hardware monitor. This device,
called SOVAC (Software Validation And Control) provides a high capacity, real-time and
user-selective-"window"-that gives-higih visibility into the internal operation of the
tactical computer. SOVAC is a computer monitor that can conceptionally be thought of in
terms of its basic components. These are: (I) Tactical Computer Interface. This section
provides real-time control of the tactical computer and provides the capability to capture
information available on the tactical computer's bus and control lines. (2) SOVAC
Controller. This high-speed, microprogrammed controller coordinates the operation of the
various subsystems. It has the capability to recognize various types of events or complex
combinations of events and set a breakpoint. It has a very flexible data selection and
logging capability. The functions of the controller are under the control of the user.
(3) User Interface. This part of the SOVAC is the part that the operator actually uses.
Its primary components are: a minicomputer, a terminal, an interface to the SOVAC con-
troller arid the SOVAC software. The paper noted that SOVAC is a powerful tool for use
by anyone who has a need to know what is :happening inside a tacticol computer.

Mr. Wilcock's paper (34), "Centralized Management of Mechanical Systems for Future Combat
Aircraft," described a computer oriented approach to the management of aircraft mechanical
systems (fuel management, engine control,etc.). The approach described was a micro-
processor-based management system distributed throughout the airframe. It is planned
that these Systems Management Processors will operate independently as separate computing
centers and will be interconnected via a data bus (MIL-STD-1553B or a derivative). Some
of these microprocessors will act as remote terminals forwarding raw data via the bus
to designatjd processing points. The paper described the various mechanical systems to
be controlled, detailed the system architecture, described the mechinical system interface
with the microprocessor and speculated on the cockpit displays and pilot interface. The
system approach was seen to not only utilize current technology, but can take advantage
of future technolo".. .d can be adapted at a reasonable cost and schedule to meet changing
system requirements.

Mr. Vandecastelle's paper (35), "Architecture Du System D'armes Mirage 2000," stated that
the architecture of the armament system of the Mirage 2000 represents an advanced generation
of digital systems. It was described from the points of view of digital equipment, assign-
ment of software to the equipment, digital links, and monitoring the system in flight. The
paper discussed architectural principles that embraced hardware, software, the distribution
of tasks, and corresponding interfaces. It is flexible enough to allow for the development
of a family of systems of different sizes and different operational needs. It was noted
that the architecture can be grossly characterized by the use of digital multiplex links
of the "Digibus" type, a standard for French military aeronautics since 1974. In outline,
the paper gave a general view of the Mirage 2000 system, including (1) a discussion of the
principal sensors (navigation, radar, EO, active and passive countermeasures); (2) display
and controls, all linked together by the standard Digibus techlique; (3) the philosophy for
the distribution of the computive tasks; (4) discussion of integrated and centralized functions;

xi

(5) architectures for the central computers and the Digibus; and (6) the development
methodology for the software.

Mr. Bross' paper (36), "Computer System of the Tornado," described the Tornado,
while not representdtive of a modern distributed computer system, nevertheless,
as a system with physically and functionally distributed computing power operating
through a dense digital nctwork. The end result is therefore a highly Integrated
system. The paper described the computing system and its architecture, viewing
especially the functio .l autonomy of various subsystems. The provision of system
integrity and fault lerance incorporating redundancy and monitoring capability was
highlighted. The Tornado's computer system was seen to be of a hierarchical distributed
system type instead of an equally distributed mechanization. The (inner) lower part,
serves for aircraft stability purposes, comprises the least intelligence but is highly
redundant; the middle part provides for basic autopilot functions, is less redundant;
the upper part s~rves for mission functions/modes and is simplex only. However, these
highest mission functions are divided into two master functions, one as master for the
horizontal (steering) and one for the vertical plane (terrain following). The paper
concluded with "lessons-learned" and remarked on improvements to be considered for a
next generation avionic system.

Mr. McTigue's paper (37), "F/A-18 Tactical Airborne Computer and Subsystem," presented
a description of the Tactical Airborne Computational Subsystem used in the U.S. Navy/
McDonnell Douglas F/A-18A Hornet Fighter/Attack Weapons System. The F/A-18A Hornet
tactical computer subsystem consists of two central mission coirputers and a number
of distributed processors embedded in various sensors and display subsystems. This
distributed processing system is interconnected by and communicates over a MIL-STD- 9
1553A serial 1-MHz command/response multiplex network. The distributed processing
system architecture was discussed and the rationale was presented for the partitioning
of the computational tasks between the central mission computers and the distributed
processors embedded in the sensor subsystems. The salient features of th2 central
mission computer and the distributed processors were discussed along with a description
of the functional operation of the interconnecting MIL-STD-1553A multiplex communications
"system. Finally, the development process for the Operational Flight Program (OFP) for
the central mission computers was described, including a discussion of the support
facilities, which were used for the software integration and validation.

Mr. O'Neill's paper (38), "F/A-18 Weapon System Support Facilities," described the
support facility tools being developed by the Navy. The U.S. Navy is currently
acceptance-testing the McDonnell Douglas F/A-18 aircraft, which is an all-weather,

f~ghter/attack aircraft with more than 30 on-board computers containing nmore than
700K words of programs. Since the F/A-18 is so much more complex than any aircraft
currently deployed, suphisticated tools will be required by the system engineers to
support the avionics. According to his paper, the F/A-18 Weapons System Support
Facility (WSSF) at the NAVWPNCEN, China Lake, CA will contain all of the support tools
(both hardware and software) necessary to test, modify, generate, and validate all of
the avionics softwarn, hardware, and firnware. The WSSF uses several minicomputers
tied together In a distributed network to provide a realistic simulation of the air-
craft flight characteristics. Using this approach, the avionics computers can be
integrated into the simulation and tested in the WSSF before flight testing starts.
The WSSF appears to be well under way in development and should ease the Navy's task
of supporting the F/A-18 aircraft.

L _iU
I'

l-Ii

DISTRIBUTED DATA PROCESSING --- WHAT IS IT?
PHILIP H. ENSLOW JR.

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE

ATLANTA, GEORGIA 30332

SUMMARY

Distributed processing has been presented as the means to obtain improvements in a number of areas of system performance. Utilizing
a list of these desired improvements as the motivational factors, this paper presents the key design characteristics of systems tiat will
deliver a major proportion of these improvements. Because of the wide use of the term "distributed processing," the systems described
here are identified as "fully distributed."

1 •&~ai~m
1.*1 lsa.it nL e~m~utar svza-i Dmn

Although the state of the art in digital computers has certainly been advancing faster than any
other technological area in history, it is somewhat remarkable that the goals motivating most oomp'iter
system development projects have remained basically unchanged since the earliest days. Perhaps the most
important of these long sought-after improvements are the 'ollouing:

1. Increased system productivity
- Greater capacity
- Shorter response time
- Increased throughput

2. nproved reliability and availability
3. E e of system expansion and enhancement
II. Gra ful growth and degradation
5. Impro ,l d ability to share system resources

The "final or ulti e values ' for these various goals cannot be expressed in absolute numbers, so it is
not surprising that y continue to apply even though phenomenal advances have been made in many of them
such as speed, capac y, and reliabiltty. What, is perhaps more noteworthy and important to the discus-
sion being presented her is how little progress has been made in areas such as easy modular growth,
availability, adaptabilict etc.

It seems that each ne"ýmajor 3ystein concept or development (e.g., multiprogramming;, lultiproeee-

sing, networking, etc.) has been presented as *the answer* to achieving all of the goals listed above
plus many others. *Distributed processing* is no exception to this rule. In fact, many salesmen have
dusted off their old lists of benefits and are marketing ta distributed systems as the means to
achieve all of then. Table 1 lists some of the benefits currently being claimed for distributed proces-
sing systems in current sales literature. Although some forms of distributed processing appear to offer
great promise as A posible RA I&nu make j~ja$.nan& Md *A in many of the areas listed, the state-of-
the-art, particularly In system control software, is far from being able to deliver even a significant
proportion ef these benefits today.

1.2 A• MA- IQ JV=Xn axAon 2ar=mnu
Efforts to improve the performance of digital computer systems can address or be focused on a num-

ber of major levels or design issues within the overall computer structure. These levels are:

1. Materials - the basic materials used in the construction of operating devices Such as
transistors, integrated circuits, or other switching devices.

2. Devices - operating devices such as transistors, integrated circuits, junctions, etc.

3. Switching circuits - design of circuits that provide fast and reliable logic operations.

4. Register-transfer - assemblies auch as registers, buses, shift registers, adders, etc.

5. System architecture - algorithms for executing the basic functions such as arithmetic and
logic operationa, interrupt mechanisms, control of processor and memory states, etc.

6. System organization - the interconnection of major functional units such as control,
memory, I/0, arithmetic/logic units, etc., and the rules governing the flow of data and
control siguals between these units. This level also considers the implementation of mul-
tiple, parallel paths for simultaneous operations and transfers.

7. Network organization - the number, characteristics, and topology of the interconnection of
*complete" systems and the rules governing the control and utilization of the resources
those systems provide.

8. System software - control and support software for the effective managment and utiliza-
tion of the hardware capabilities provided.

I-2

From the very beginning of the compueter eva there has been activity at all of these levels and such work
continues today. (To place it into proper perspective, It should be noted that the research work carried
On under this project is focused primarily at the three highest levels0 system organization, network
organizati=n, and system software, with some work at level 5, syst,= architecture.)

1.3 ZArUA L Ant---
An important theme of computer system development work at levels 5-8, 'system architecture,'

"system organization,' 'network organization," and 'system software," has been waL&Ji arogsIm±.
Parallel processing has been implemented utilizing approaches focused primarily on the system hardware or
the software as well as integrated systems desire.

Since the early days of computing, a direction of research that has offerod high promise and

attracted much attention is 'parallel oomputing.w Work in this area dates fr-.w. the late 1950's which saw
the development of the PILOT system [Lein58] at the National Bureau of Standards. The PILOT system
consisted of "three Independently operating computers that could work In cooperation *[EnslT7]. (From
the information available, it appears that PILOT would be classified as a 'loosely-coupled system'
today.) It is interesting to note that the evolution of parallel whardwaro' systems lead primarily to
the development of tightly-coupled systems such as the Burroughs B-825 and B-5000, the earliest examples
of the classical multiprocessor. Other development paths saw the introduction of specialized hardware
systems such as SOLOMON and the ILLIAC IV, examples of other forms of tightly-coupled processors.

1.3.1 System Coupling
System coupling refers to the means by which twv or more computer systems exchange Information. It

refera to oath the physical transfer of such data as well na the manner in which the recipient of tbh
data responds to its contents. These two aspects of system interconnection are called *physical
coup'Ing' and 'logical coupling,' and they are present in all multiple component systems whether the con-)
ponents of interest are complete computers or some smaller assembly.

The terms, "tight' and 'loose' have been utilized to describe the made of operation of each type of
coupling. (Some authors have utilized a third category 'medium coupling' and related It to a range of
data transfer speeds; however, history has clearly shown that basing any characterizations of digital
computers on speed, size, or even cost is an incorrect approach.) The interconnection and Interaction of
two computer systems can then be described by specifying the nature of its physical uoupling and the
nature of its logical coupling. It is important to point out thet all four combinations of these charac-
teridtics are possible and that they all have been observed in implemented systems.

1.3.1.1 Tiihtly-Counled Comnuter Zzmatem
Du-ing the ?960's and 1970's, activities in the development of parallel oomputing, specifically

multiple computer systems, were focused primarily on the development of tightly-coupled systems. These
tightly-coupled systems took the form of classical multiprocessors (i.e., shared main memory) as well asspecialized computation systems such as vector and array processors. This tight physical coupling resul-

ted in a sharing of the directly executable address space ccomon to both processors. There was no means
by which the recipient of the data or information being transferred cruld ,efuse to physically accept it

it was already there J& =±& Addma apae.

These early systems also usually implemented tight logical coupling. In this form of system
interaction, the recipient of a message is required to perform whatever service is specified therein,
With tight logical coupling, there is no independence of decision allowed regarding the performance of
the service or activity *requested.' The relationship between the sender and recipient is basically that
of master-slave.

Although the concept of tightly-coupled multiprocessor systems appears to be a viable approach for
achieving almost unlimited improvements in performance (i.e., Increases in system throughput) with the
addition of more processors, such has not been the results obtained with implemented systems. It is the
very nature of tight-coupling that results in limitations on the improvements achievable. Some of the
ways that these limitations have manifested themselves are listed below.

1. The direct sharing of resources (memory and input/output primarily) often results in
access conflicts and delays in obtaining use of the shared resource.

2. U-er programing languages that support the effective utilization of tightly-coupled
systems have not been adequately developed. The programmer must still be directly
involved in job and task partitioning and the assignment of resources.

3. The development of 'optimal' schedules for the utilization of the processors Is very
difficult except in trivial or static situations. Also, the inability to maintain perfect
synchronization between all processors often invalidates an "optimal' schedule soon after
it has been prepared.

4. Any inefficiencies present in the operating system appear to be greatly exaggerated in a
tightly-coupled system.

There was also significant activity during these earlier periods in the development
of nultiple computer systems characterized as wattached support processors (ASP).* These
systems were physically loosely-coupled; but, logically, they were tightly-coupled. The
earliest examples of this type of system organization were the use of attached processors
dedicated to input/output operations in large-scale batch processing systems. In the lat-
ter part of the 1970's, specialized vector and array processors as well as other special-
purpose units such as fast Fourier transform units were being connected to general oom-
putational systems and utilized as attached support processors. In any event, the
specialized nature of the services provided by the attached p-ooe~sor excludes them from

1-3

consideration as possible approaches to providing general-purpose computational support
such as ttit available from tightly-coupled general-purpose processors functioning as mul-
tiprocersors.

Tightly-coupled systems certainly do have a role to play in the total spectrum of
computer systems organization; however, their limitations should certainly be considered.
It was the recognition of these limitations and the small amount of prugress made in over-

coming them despite the expenditure of very large research efforts that contributed to the

decision to focus our current research program on loosely-ooupled systems.

1.3.1.2 JL ,sey-Coupled Synteem
Lo" dely-coupled systems are multiple computer systems in which the individual processors both con.-

municate physically and interact logically with one another at the "input/output level.' There is no
direct sharing of primary memory, although, there may be sharing of an on-line storage device such a;. a
disk in the interconnecting input/output communicaticn path. Th-. important characteristic of this type
of system organization and operation is that all data transfer operations between the two component
systems are performed as input/output operations. The unit of data transferred is whatever is permis-
sible on the particular input/output path being utilized; and, in order to complete a transfer, the
acti cooperation cf bh processors is required (i.e., one might execute a READ operation in order to
accommodate or accept another's WRITE).

Probably the most important oharacterintic of loose logical coupling is that one processor does not
have the capability or authority to "force" another processor to do something. One processor can
"deliver' data to another; however, even if that data is a request (or a 'demandw) for a service to be
performed, the receiving processor, theoretically, has the full and autonomous rights to refuse to
execute that request. The reaction of processors to such requests for service is established by the
operating system rules of the receiving processor, not by the transmitter. This allows the recipient of
a request to take into consideration 'local' conditions in making the decision as to what actions to
take. It is important to note that it is possible for a system to be physically loosely-coupled but
logically tightly-coupled due to the rules embodied in the component operating systems, e.g., a permanent
master/slave relationship is defined. The other reverse condition, tight physical .md loose logical
coupling, is also possible.

1.3.2 Computer Networks
A computer network can be characterized as a physically loosely-coup.'ed, multiple-computer system

in which the interconnection paths have been extended by the inclusion of data comunications links.
Fundamentally there are no differences between the basic characteristics of nomputer network systems and
other loosely-coupled systems other than the data transfer rates normally provided. The transfer of data
between two nodas in the network still requires the active cooperation of bot parties involved, but
thore is no inherently required cooperation between the operation of the processors other than that which
they wish to provide.

1.3.3 Distributed Systems
Although there is a large amount of confusion, and often controversy, over exactly what is a

"distributed system,' it is generally accepted that a distributed system is a multiple computer network
designed with somw uni U at agrI in mind. The processors, databases, terminals, operatirn systems,
and other hardware and software components included in the system have been interconnected for the accom-
plishment of an identifiable, common goal. That goal may be the supplying of general-purpose computing
support, a collection of integrated applications such as corporate management, or embedded computer sup-
port such as a real-time p'ocess control system.

This research program is concerned with a very specific subclass of all of the systems currently
being designated 'distributed.' The environment of interest here has been given the title "Fully
Distributed Processing System' or FDPS. Section 2 discusses the general characteristics of FDPS'a.

2 IZEQMC= M Z= A.LIJAO fIZ ZXLUK JM=

2.1 aJ.- &LM Sh L .LJh ZU Q~gaqL
A large number or claims have been made as to the benefits that will be achieved with distributed

processing systems. As pointed out above, this list is very similar to the lists of 'benefits to be
s:hieved' with several earlier computer technologies. However, each of those earlier solutions failed to
deliver its promises for various reasons. It was an examination of the 'weaknesses" in the earlier
concepts and the development of a set of principles to overcome these obstacles that led to the concept
of *Fully Distributed Proce•sing Systemew or as it is coemonly referred to 'FDPS.'

The principle of parallel (i.e., simultaneous and/or concurrent) operation of a multiplicity of
resources continues to be perhaps the most important goal. The unique feature of FDPS's is the means or
environment in which this is attempted. A distributed system should exhibit a continual increase in per-
formance as additional processing components are added. The users should observe shorter response times
as well as an increase in total system throughput. In addition, the utilization of system resources
should be higher as a result of the syntem's ability to perform automatic load balancing, servicing a
large quantity and variety of user work requests. A distributed systen should also permit the sharing of
data between cooperating users and the making available ofT speoialized resources found only on certain
processors. In general, a distributed system should provide more facilities and a wider variety of ser-
vices than those that can be offered by any system composed of a single processor [Hopp79]. Another
important and highly desirable feature of such a system is extensibility. Extensibility migt be
realized in several different ways. The system might surqport modular and incremental growth permitting
flexibility in its configuration, or it might support expansion in capacity, adding new functions, or
both. Finally, it might provide for incremental replacement and/or upgrading of system components,
either hardware or software. The executive control of the system is obviously the key to attaininj these
goals, and it is in the area of executive control that sore of the most significant defioiencies of ear-

lier systems have been found.

S. I muw l I

1-4

Tis major weakfess** In the executive jontrol of earlier torms of parallel systems appear to result
from an excessive degree ot oentralizatioul ot control functions. reflected In centralimed decision making
or centralized maintenance of system status information or both of theme. The not effect of these
aspects of control was to produce a rather tightly-coupled environment In which resources ortet were idle
waiting for work assigments and the failure of one major component often resulted In oatasti-ophi and
total system failure. The solution to this problem is to fare a condition of very looe couplng on
both the logical/ontrol decision-mLking process as well as the physical linkages of components. Thi
property at 'universala loose coupling result* In an environment in which the various compoents are
required to operate in an autonomous manner'.

If a single design principle must be identified as the woet important or central theme of FOPS
design, it in amponent autonomy or w'ooperative autonomy* as described below. All of the other features
of the definition of Fully Distributed Processing Systems given below have resulted from determining what
in required to support and utilize the autonomous operation oft the very loosely-coupled physical and
logical resources.

Fully Distributed Processing 3ystems (FDPS) were first definad by Enslow In 1976 [80a178] although
the designation Ofully' was not added until 1978 when it became necessary to clearly distinguish this
class of distributed processing from the many others being presented. An FDPS is distinguished by the
following characteristics:

I. jjJjnU~nLtz gL n*WMm an FDPS is composed of a multiplicity of general-purpose
resources (e.g., hardware and software processors that can be freely assigned on a short-
term basis to various system tasks as required; shared data bases, etc.).

2. raJoagIL i : the active ocmponentonC in the FDPS are physically interconnec-
ted by a communications network(s) that utilizes two-party, cooperative protocols to
control the physical transfer of data (i.e., loose physical coupling).

3. fUni aL anQ& j: the executive control of an FDPS must define and support a unified set
of polinies (i.e., rules) governing the operation and utilization or control of all
physical and logical resources.

-. Ala&= JUMCU : users must be able to request services by generic names, not being
aware of their physical location or even the fact that there may be multiple copies of thu
resources present. (System transparency Is designed to aid rather than inhibit and,
thtrefore, can be overridden. A user who is concerned about the performance of a
particular application can provide system specific information in order to aid in the
formulation of manageaent control decisions.)

5. rAmink" aut&2 : both the logical and physical components of an FDPS should interact
in a manner described as "cooperative autoinomy' [Clar8O, Ens1783. This means that the
corporents operate in an autonomous fashion requiring cooperation among processes for the
exchauge of information as well as for the provision of services. In a cooperatively
autonomous control enviroyment, the components are afforaed the ability to refuse requests
for servios, whether they be execution of a process or the use of a file. This could
result in anarchy except for the fact that all components adhere to a common set of system
utilization and management policies expressed by the philosophy of the executive control.

2.2.1 Discussion of the Definitional Criteria
In order for a system to qualify as being tullx distributed it must possess all five of the

criteria presented in this definition.

2.2. 1.1 a¶•tnle Resou * hkM
The requirement for resource multiplicity concerns hte assignable resources that a system provides.

Therefore, the type of resources requiring replication depends on the purpose of a system. For example,
a distributed system designed to perform real-time computing for air traffic control requires a mul-
tiplicity of special-purpose air traffic control processors and display terminals. It is not required
that replicated resources be exactly homogenous, however, they must be capable of providing the ame ser-
vices.

In addition to this multiplicity, it in also required that the system resources be dynamically
reoonfigurable to respond to a component failure(s). This reconfiguration must occur within a 'short'
period of time so ta to maintain the functioral capabilities of the overall system without affecting the
operation of components not directly involved. Under normal operation the system must te able to
dynamically assign its tasks to components distributed throughout the system.

The extent to which resourceb are replicated can vary from those systems where none are replicated
(ML a fully distributed system) to systems where all assignable resources are replicated. In addition,
the number of copies of a particular resource can vary depinding on the system and type of rssource. In
general, the greater the degree of replication, particularly of resources in high demand, the greater the
potential for attaining benefits such an increased performance (response time and throughput),
availability, reliability, and flexibility [Ens178].

1-s

2.2.1.2 faffiU aM" Lna~snn nAnd. £aNOnAkta
The extent of physical distribution of resources in distributed systems can vary from the length of

conneotien between components on a single integrated chip to the distance between two Qomputors connected
through an international network. In addition, interconnection organizations can vary from a single bus
to a complex vesh network. Since a component in a distributed system communicates with other components
through its own logical process, all physical and logical resources can be thought of as processes, and
interactions between resources can be referred to as interprooess communioation [DaviT9]. For examp-'e,
an application program interacting with processors and data files is accomplished through communication
between logical processes.

Both the physical and logical coupling of the systeax components are charaoterxied as wextremely
loose." *Gated* or 'master-slave' control of physical transfer is not allowed. Comunication, i.e., the
physidal transfer of messages, is accomplished by the active cooperation of both the sender and addres-
3ses. The primary requirement of the intercommunication subrsstem is that it support a two-party
cooparative protocol. This is essential to enable the system's resogrces to exist in c3operative
autonomy at the physical level.

The advantages of using a message-based (loosely-coupled) communication system with a two-party
cooperative protoool include reliability, availability, and extensibility. The disadvantage is the
additional overhead of message processing incurred to support this method of communication. There are a
variety of interconnection organizations and oomunication techniques that can be used to support a
message-based system with a two-party cooperative protocol.

2.2.1.3 Ma= Conto

In a fully distributed data processing system, individual processors will each have their own local
operating systems, which may or may not be unique, that oontm.!. local resources. As a reazilt, control is)
distributed throughout the system to components that operate autonomously. However, to gain the benefits

of distributed processing it is requirod that the autonomous components of the system cooperate with each
other to achieve the overall objectives of the system. To inaurn this, the concept of a high-level
operating syotem was oreated to integrate and unify, at least conceptually, the decentralized control of
the system.

A high-level operating system is essential to successfully implementing a distributd processing
system. This operating system is not a centralized block of code with strong hierarchical control over
the system, but rather it is a well-defined set of policies governing the integrated operation of the
system as a whale. To insure reliable e..id flexible operation of the system, these policies should be
implemented with minimal binding to any of the system's components [Emnl78].

What policies are required and how they shoulJ be implemeted dcpends greatly on the syster. For
example, if it ia a general-purpose system supporting interactive users, then a command interpreter and a
user control language will be requ ma~d to make the system's omponents compatible and transparent to the
user.

2.2.1.4 Transparency of Sysatg Control
The high-level operating system also provides the user with his interface to the disti ibuted

system. As a result, the user is accessing the system as a whole rather than just a host computer in the
network.

In order to increase the effectiveness of the distributed system, the actual system is made
transparent, and the user is presented with a virtual machine and a simplified command language to access
it. The user uses this language to request services by name and does not have to specify the specific
server to be used. Clearly, the same request might be assigned a different server depending on the state
of the total system when the request is made. However, to make the system truly effotive for all users,
knowledgeable individuals must be able to interact with the system more intimately, requesting specific
servers or developing service routines to increase the efficiency or effectiveness of the system
[Er-178].

2•.2.1.5 C za lii Autonomy
Cooperative &utonomy has already been described at the physical interconnection level. It is also

required t~iat all resources be autonomous at the logical control level. That is, a resource must have
full control of itself in determining which requests it will service and what future operations it will
perform. However, a resource must also cooperate with other resources by operating aoonrding to the
policies of the high-level operating system. Cooperative autonomy is an essential prerequisitt for
systems to have fault tolerance ond high degrees of extensibility [Enal78]. It is perhaps th most
important as well as the most distinguishing characteristic of a fully distributed processing system.

a.2.2 Zffeots on System Organization
Although the detailed design of tht hardware and software required to implement an FDPS is still in

progress, it has been psesible for soae time to identify certain characteristics that these components
must have. One aret in which certain criteria already appear reasonably well defined is the nature of
the organization of the following system components.

- Hardware
- System control software
- Data bases

It should be noted that a number of definitions and descriptions of distributed systems JA gneral are
based on the principle that nM or AM= of these components is pysically distributed. (Some such
discussions add to this list a fourth component -- "processing or function;* however, considering the
distribution of processing independent from the distribution hardware is quite improper. Why distribute
the hardware if it will not have some function to perform; similarly, how can the processing be
distributed without a corresponding distribution of the hardware? That would be processing on a truly
"virtual machine.')

1-6

An important oharacteristic of an FVP3 is that, in order to meet the definitional criteria given
above while alac attearting to provide an many as possible of the benefits listed in Table 1, aUl of the
three components listed above As e n RahLQAUX A kLtZ±ia±t and the degree of distribution maL In ea sh
case xagW & reasonably veil-defined LhrACMAb . A diagram illuetrating this requirement is shown In
"Figure 1. The various orgsnizations of each component, identified and positioned along each axis, is not
meant to be an exhaustive list. These points are listed to better identify the relative location of the
three thresholds defining the volume of spoce ocoupied by FDPS'a. (It might also be noted that It seome
quite proper to characterize any system that in not in the *origin cubew ns being "distributed" to some

degree.)

2.2.3 So" Excluded Systems
Considerable work haa been done on new system designs to achieve sthsetn of these benefits, but

very few systems have made substantial progress towar, meeting all of the criterf,-. Perhans the most
%idely known of these is Arpanet; however, only the oomunioaution aubsystem of that network qualifies in
this respect. Many other syntems, some of which aor discussed esewhere in thiki magazine, have made sub-
stantial improvements in subsets of the areas of system performance; examples are the Honewell
Experimental Distributed Processor, the Cos system at Carnegie-Mellon University, Mininet at the Univeer-
slty of Waterloo and ICOPS at Bren University. However, the number of systems mislabeled as distributed
data processing systems far exceeds these.

Most of the criteria contained within the definition are met by crossing a threshold on a
particular dimension. The definition is not a set of binary oriteria, and better understanding of these
criteria and their thresholds can be obtained by considering some systems that are excluded by the
definition.

It excludes, for example, distribution within a single mainframo. One writer has characterized the

arohitecture of several of the modern processor systems that include independent I/O channels as
*Incorporating distributed processors since (it) contains separate I/0 processors, arithmetic logic
processors and possibly diagnostic processors.W[Gild76]. Such a categorization has little utility and
has not found very wide acceptance. Obviously, there is a permanent binding of tasks to the various com-
ponents in this type of system organization.

A front-end processor that controls communication with a mainframe definitely does not oonsititute
the type of distributed system defined here. Although it may meet some of our criteria, it also is
dedicated to one function and is not freely assignable.

Many instances of a master/slave relationship occur in both hardware and software control. The key
point is that the recipient of the inforaation transferred, be it data or a conLrol signal, cannot decide
whether or not to accept the transfer and act upon it. When this concept is implemented in hardware, it
is often referred to an gated transfer. In software control systems the master/slave relationship is
quite comonly encountered in multiple computer and basic multiprocessor operating systems.

The continued decline in the price of hardware has made more and more attractive now multiple-
processor system organizations incorporating specialized functional units, such as vector multiplier, a
floating-point arithematic unit, or a fast Fouriea transform unit. In the general concept of operation,
such dedicated function processing is only slightly different from a master/slave relationship. The
major difference is that the master/slave control relationship also excludes many hardware systems
containing multiple general-purpose processing units from our definition. What causes some of the
terminology confusion with these configurations is that these specialized services are often provided by
a general-purpose unit, such as a programmable maoroprooessor. The functional unit may be wspeoialiaed"
by a microprogram, or it may be oompletely general but utilized in a dedicated funotional role, suoh as a
minicomputer to control input/output in a larger system. The distinguishing characteristic of this clams
of excluded systems Is the i1AkqBtI Lh fAoIn to A alnilZ A= • I set L •nlthf. It
operates in a master/slave mode, as far as the control over its own activities is concerned. The
criteria of both free assignment and autonomy are violated.

There is wide agreemo&- %eiapt perhaps among marketing and advertising people) that a single host
processor with a collection of remote terminals that simply collect and transmit data does not qualify as
a distributed data processing system, even if the terminals are intelligent and do some editing and
formatting.

Even the presence of multiple hosts in a complex netwark interconnection structure does not noees-
sarily make the system distributed. It may be distributed from the point of view of switching; but from
the point of view of overall operations and control, it usually is centralized. Systems such as these do
not have the capability for dynamic reallocation or reassignment of tasks in the event of hardware
failure.

Intelligent terminals systems are most often presented as distributed processing systems in

advertising copy. However, the operation of a system with intelligent terminals or local processors has
to be studied carefully to determine to what extent the prooesting is actually distributed. Such a
system (several are coimerciaily available) consists of several terminals connected to a local processor
that has secondary storage capabilities, such as disks or oanettes. It offers intelligent data-entry or

field-editing and similar functions executed in the local processor through the execution of a program
stored there. It has shared file access, but only to local files. It moimunicatoes with a main proces-
sor, but to do so, the local processor must emulate a '0amb" terminal in order to use normal protocols.
Finally, it is capable of rmote job entry. There is no indication of any distribution of the control
function, for the distribution of work is fixed and a looal terminal cannot affect It.

L L,

L wnt

1-7

A terminal with a resident text editor, whether it In provided by hardware or software, Is not an
example of a distributed data processing system. In order to meet the definition, their terminal must be"smart" enough, first, to do some real work, and second, to recognize when it cannot acoomplish itb
ass.ened work and to pass it on to another appropriate service unit. The simple off-loading of work to a
higher level when thin level is fully utilized is just the beginning of the transition to fully
distributed processing. If the terminal coordinates several concurrent and simultaneous reaote jobs,
giving each a different type ot' service at a different location, without human intervention, then it more
closely Pesembles a distributed system. The threshold in reached when the lonal cont.rol system can
decide whether work should be done locally or passed on to the rest of the system, basing its decision on
an analysis of local workloads and capabilities. Distributed processing in definitely not equated with
merely "moving equipment to the periphery of a business system to capture and process data at thm
source."

Peophaps the intelligent terminal does have a role to play in the devslopment of distributed prooes-
sing systems. It may facilitate a painless transition to more decentralized organizations for hardware
and data storage as well as control. This is accomplished by adding features to the local system and
making other modifications that increase the local functions, prior to establishing higher-level system
connections and a complete build-up of global functions.

2.3 R ̂ gh-•lvel na:rLtW AZIrM
The high-level operating system im a key ingredient in the distributed data processing system. Its

design must take into account several cha-acteristics ard problems.

The classical design for operating systems, as it has developed, assumes the availability of a
large amount of system information. Although the completeness and validity of information about the work
being presented by the user is questionable, the operating system is usually assumed to have access to
complete and accurate information about the environment in which It is functioning. This is not the case
in a distributed data processing system; complete information about the system will never be available.
The resources provide a service, but they may either intentionally or unintentionally, shield inforration
from outside inspection.

In distributed systems, there will always be a time delay in the collection of information about
the status of the system components. The ramifications of these time delays are extremely important. In
a conventional centralized processor, the operating syetem can requert status informatioai, being assured
that the interrogated component will not change state while awaiting a decision based on that statue
information, since only the single operating system asking the question may give o0nmande. In a
distributed data processivg system, the time lags that occur can become significant; as a reosult, Inac-
curate (badly out-of-date) information can be transmitted because the autonomous component .'oceeda along
its ovw path. If you have ever worked with Input/output device handlers, you surely have wondered
whether or not the information that has been obtained is accurate. For distributed data processing
systems, it will be easential to raise the degree of paranoia of the system designer to a such higher
level than for centralized systems. The system must be designed to work ewen with erroneous or inac-curate status information.

A further complication with regard to system information available is the possibility of variations
in the information presented to different system controllers. These variations may be a result both of
time delays and of differences in the shielding or information from different controllers. As LeLann has
observed, "This absence of uniqueness, both in time and in space, has very important
consequences. w[LeLaT7 1.

2.4 ~Aaeaa.1 r&%= ZCaLma
High-level operating systems as described here are highly nonhierarchical - that is, they are

single-level aud have no internal master/slave relationships. This characteristic, nombined with com-
ponent autonomy, greatly exacerbates the control problems. Even if autonomous multiple components are

-. cooperating, the probability of simultaneous oonflictIng actions is much higher than in hierarchical
systems. Also, synchronizing the actions of the various controllers in the system is much more
difficult, because of the presence of appreciable time-lags. Finally, the p,vblem of deadlocks or
infinite cycles within the system is quite different from that associated with other systems. Some
proposals call for an umpire (an outside third party) to solve this problem; however, such an umpire
would have to be transient, since the presence of a permanent umpire would denote an unacceptable degree
of hierarchical control.

From the operating characteristics of the distributed processing system, some conclusions can be
drawn about the nature of system comunication. The second criterion of our definition requires a
message-type protocol for all transfers, both physical an4 logical, both in interprocess comunications
and interprooessor comunications. There must be no global variables and there must be no tunneling
across system components. All parsmete,'m must be passed across well-defined and rigidly enforced inter-
faces.

Much of the work done on oomsunicatioa in uniprocessor and multiprocessor envi ionaents Is
applicable, but extensions to the solutions found there are definitely required to cope with the
autonomous nature of the system components in the distributed system.

The user must oemunicate with the system by directive containing service names only. Our
criterion of system transparency makes unnecessary and perhaps impossible to the user designation of the
system component offering a desired service. However, this requirement introduces new problems of system
failure ,nd user error detection, since no one processor can establish whether the service requested aan
be provided .nywhere in the system, or even whether it is legal.

Resource management in a distributed prooessing system Is a multidimensional Job. Thus far, very
little work has been done on the aspects of resource management thet apply specifricaly to dtatributed
processing systems. However, low-level functions are quite similar to those pertormsid on uniproceasors;
they include physical resource allocation, and management of those facilities required by a process after
it has been scheduled on a particular system component. Before that can be done, however, the required
resources may have to be asaseb.ed at one location, or linkage mechanisms established so that they can be
used remotely. The problems that have to be addressed in that process are locating the resources,
determining which components are suitable, and determining the beat way to move the resources to the
selected location. At an even higher level is the scheduling problem, determining when a function should
be in~tiated or terminated.

Any system exhibitinr monolithic, autonomous control presents completely new problems in system
suheJuling. A request for service ±n a nonhierarchical system might well result in an inl' 4al denial of
that service by all physical resources. In ttst instance, the requesting entity might initiate an
evaluation of relative priorities between the n•w request and currently executing tasks, followed -erhaps
by bidding (priority adjustments) and preemption. The efficient execution of this procedure in one of
the most important functions of the high-level operating system.

When all of these nzoblema and thelr possible solutions are compared to similar problems %nd
solutions encountered in uniprooessor systems, the major factor exacerbatins the distributed system
control problem is seen as communication within the distributed data processing system, which is asynch-
ronous with respect to the detailed execution of the functions, and which exhibits time-lags In addition
to the communication proessing time itself. Uniproceasors cope with many of the problems with
semaphores, flags, lookout gates, or timeouts. Tv attempt to do this in a reasonably complex distributed
system requires too much time, in the sense that such practices greatly reduce the throughput rate of the
system. Bear in mind that transit t~se for signals transmitting the semaphores is a the order of 100
milliseconds. In addition to the lowering of performance, the reliability and the robustness of moat of 9
the uniprooessor solutions are in doubt, since a system operation such rs TOT-and-SET cannot be
replicated as a single indivisible machine-level instruction that can be executed immediately on the next
"machine cycle.

The problem of time is further complicated by the fNct that most of the procedures, such as voting
and software synchronization, which have been presented as solutions to the difficulties introduced bytransit time, require even more processing by every component in the system.

2.5 Zknumag LanMUkau Zm 2DAtZiuUaWd AL
Four aspects of distributed processing systems have a significant impact on the goals of a language

design effort. First, data is stored throughout the system in a distribution which is in some sense
natural (for example, dat•a may be stored where it is generated or it may be stored where it is easily
accessible to those who use it most frequently). Second, It -my be infeasible to move data from node to
node for processing. Third, a single application may need to access data that ts stored on a number of
different nodes. Fouri;h, a programmer should not need knowledge of where data is stored in order to
access It.

It should be noted that fully distributed processing does not necessarily require new programming
languages, much less new models ca which to base programming languages. Any program can conceivably be
run on a distributed system; however, when a program :eds to aceess data on multiple nodes, a single
thread of execution is unlikely to be executed efficiently. Furtheruore, even languages with parallel
execution features are not adequate in a fully distributed environment. The key issue is tbht most
progrjmming languages hi~ve not been designed to allow a programmer to provide information about the
nature of program execution or to describe the appropriate structural units of the program needed by mr
operating system in ordor to make effective allocation and scheduling decisions in such an environment.
Thus, a major goal is to Cesign languag features that will elicit information and prolide structural
units which vill simplify allocation and soheduling decisions. Our other major eoal is that in doing so,
the langua"e should present a mtatural and he)pful framework for the description of a large class of
programs.

The moat important a;ipect of our initial des:Lgn work is the model of computation on which our
language will be bused. IIi order to explain the metivations for our computational model, we need to take
a closer look at !ully dintributed tystems. Conceptually, a fully distributed system consists oZ* a num-
ber of indeoendent machinee (where a 'machine' may denote one or more processors) with communication
links between them. Each machine ha: a processing capability, a storage capability and a message handl-
ing capability. Furthermore, ept: machine functions with a large degree of autonomy (the system as a
whole may make requests of the individual machines but has no control over how these requests are carried
out) and there t.s no memory shared between the machines.

In order to achieve our design goals, our ocmputational model mimics the logical structure of a
fully distributed system. In this model, a program 3onsists of a number of execution modules (which can
can even be thought of as irdividual programs) and a network description. In other words, a program is a
network of execution modules. The execution modules are independent and contain local variable
declarations (there is no shared memory), port declavations and executable code. (Forte are used to com-
municate with other execution modules and ;irmanent storage facilities.) Port to port connections, port
to permanent storage connections and the execution of the exocution modules are controlled by the network
description. Thus, the euteoution modules (because they resemble the machines of a fully distributed
system) are otruotural units which will saiplify allocation and scheduling decisions. On the other hand,
the network description contsins inforLation which will a-able an effactive allocation and scheduling of'
these units.

Two aspects of our itodel should be helpful in the writing, debuging and reading of programs.
First, because execution modulaes are independent (sharing only comunication links and a comon network
description), they may be developed, tested and uderstnod sepairately. Second, because all of the
control and network communication specifications are contained within it, the network description

1-9

provides a meaningful abstraot view of the program as a whose. This oontrol and communication abatrac-
tion should oontribute significantly to the understandability of distributed programs and perhaps even to
programs 'ritten for existirg iystse organizations (not meeting our criteria for 'fully' distributed).

2.5.1 Researoh Issues in 'Distr~bated' Languae Design
Communication primitives in languages for distributed oomputing are one of the most important

issues that should be addres.aed by the participants at the workshcp. The most obvious alternatives
inoludo message-based communication and call-based oommunioation (for example, the rendezvous in Ada).
However, the potential for t0e no~twork desaription presented above to be an active program imnt opens up
new possibilities. It could funotion as a communication o~ntroller for its execution modulos, providing
any hybrid communication primitives desired by a irogrammer. The utility of such an approaoh requires
further axamination. Due tc 3ur inroreat in very loosely coupled systems, messages are the moat likely
candidate for our language currently being developed. However, for Pystems where loose coupling is not a
dominant consideration, use of communication primitives implemented by a network controller might prove
quite useful.

Another important issue raisid by the model of programs presented above is how distributed profvams
are to be desoribed and controlled. A program might quite reasonably be composed uf execution modules
compiled and stored at different nodes in a netwok, conceivably composed of heterogeneous prooessorr, End
perhaps even written in different languages. These questions lead into a number of subproblems: con-
ventions for naming files throughout a distributed system, interactions botween programming languages and
command languages (note that our network descriptions fall somewhere between the traditional roles for
these two languages), and primitives needed by a programmer for the control and coordination of mul-
tiprocess exeout'on.

3 COCUIN
The concepts of distributed data processing giparly hold a great deal of promise for solvrng many

of the problems an,1 limitations ourrentlý faced by system designers. It is important, however, to make a
critical analysis of the operational characteristics of any system that is addressing those issues. This
pap.ir has reported on su~c effort --- The Georgia Institute of Technology Research Prugram in Fully
Distributed Procesring Systems.

The work discussed in this paper was performed as part of the Georgia Institute of Technology Research

Program in Fully Distributed Processing Systems. Twelve faculty members have been involved in this major
research program as well as four staff members and over thirty students. The program has been supported
by a number of agenLies with the principle funding being provide. by the Office of Naval Reuearch, U.S.Navy, under contiact N00014-79-C-0873.

5. IMAM=a

Dav179 Dvier, D. W., Parber, D. L. A., Price, W. L., and Solmov'odes, C. M., ComputerNetworkshflg
jhr, ZProtocols, John Wiley and Sons, 1979.

7nalTA EveKow, Philip H. Jr. (ed.), Multiprocessors 3 nd ParallejlgJ Pggggj New York: John Wiley and
Sons, 1974.

Ins178 Ens]ow; Th~lip H. Jr., ,hat is a tDiatributed' Data Processing System?" Combuter (January,
1978): 1V-21.

Ens18l Enslow, Philip H. ?r , "Distributed Data Prooesstng --- What Is It?,* AGARD Avionics Panel Sym-
posium on "Taotioal Airborne Dis.ributed Computing and Networks," Norway, (June 22-26, 1981).

Oild77 G lder, Julsi H., "Distributed Prooessing: Keyword for Tomorrow's Supercomputers," Coganuter

Di&% niqna, (April, 1976): 1I.

HopP79 Hopper, K., Kugler, H. J., and Unger, C., *Abstract Machines Modelling Network Control
Systems," D Ai stas viev 13 (Ja uary, 1979): 10-24.

Lein58 Leiner, R. L., and Weinberger, A., "PILOT, the NBS Multicomputer Syztem," Proceajn o ta h
Eastern Toigt '• miount= a=t 91 (1958): 71-75.

LeLan77 Le L.inn, Gerard, 'Distributed Systems--Towards a Formal Approach," IM Congress Prceeding
(1977): 155-160.

,L

1-10

Table 1. * BOastIts" Provided by DistrIbuted Proessing SytM

A nepresentatiwe List Assembled frm Claims Mde In

actual Sales Litet*atwe
J

High Availability and Reliability
Reduoed Wet-ork Costs
H1+h System Performanoe
Fact Ttosponst Time
High Throughput
Graceful Degradation, Fail-soft
Ease of Modular anS Inoremental Growth
Configuration Flexibility
Automatic Load and Recouroe Sharing
Easily Adaptable to Cbunges in Workload
Incremental 'iplaoeuent az•)r Upgrade
Easy Expansion in Capaoity and/or Funotion
Good Response to Temporary Overloads

_4

ft

*IOetwo.,L _.%_%

Wl. I Wlb M.n1, I~CT

/ O

* I I t

""-4-i- --$ --
____1 _ _______________________"

DMIUSKM CHAPACTSPIZING DWSRWJIMNI

Fi 1 As f Dis

Figuire ¶ * Mzoe of Distki .bution

3-I

THE EFIFCT OF DICREASINOLY MORE COMPLSX AIRCRAFT AND AVIONICS

ON THE METHOD OF SYSTEM DZSIO'

J.T. MARTTS

FERRANTI COMPUTER SYSTES43 LIMITED
Western Rcod, Bracknell, Berkshire, England.

$UMMANY

This paper describes the evolution of Aircraft and their associated 'Avionics'. The evolutionary progreas
is oonsidered as starting from a simple low speed Aircraft with rudimentary flight instruments and sighting
systetm, through the interconneotion of some of these systems and progressing to the recent Avionic System
with Centralized Digital Computing.

The paper shows how the changes in aircraft system, from the simple analog 3onnction of a few system,
through the analog sensor - interface box - centralized digital system, to the sensor producing digital
outputs - interface box - centralized digital system, have produced comparatively small changes in the
methodology used for the design of these systems.

The move to systems containing distributed proo•ssing interconnected by digital highways is shown to be
revolutionary rather than evolutionary and to require a now approach to the System Design problem so an to
reap the maxi.mum .dvantage trom the available omaputing capability.

1. • ITRODUCTIUN

The first aircraft used in war were seen not as fighting vehicles but as information gatherers, especially
for the ortillery, indeed the ability of the aircraft to fight was saerned by the Generals who controlled
them and, in the beginning, ignored by those who designed them. The main pro-occupation being the
production of as stable a platform as possible.

Aerial warfarm started in two ways. For air to air attack the standard service revolver was osed and for
air to surface attack standard army grenades were simply thrown from the cockpit. No attack avionics were
involved, the sighting system being the barrel of the hand held revolver or the pilot's impression of his
position over the target. It Ir from these rudimentary beginning., less than 70 years ago, that today's
highly sophisticated fighting aircraft have evolved. Today we have aircraft specifically designed for
either air to air or air to surface attack, aircraft where the cost of the attack avionics approaches that
of the airframe itself and on which the attack avionics seeks to integrate Information from most of the
available aircraft systems and sensors.

The following sectiLns of this paper will desoribe this evolution In slightly more detail and show how the
SysteS Design process has, up to now, been modified only slightly in order to cope with the increased
_-_o__plexi__y,

2. TH4E EVOLUTION OF AIR TO AIR ATTACK

It is hardly surprising that pilots %ngaging in air to air combat utilising service revolvers or rifles
rarely succeeded in shooting down their targets, The frustration engendered Ly this failure of th.uir air to
air weapon system together with a sudden realization by those in charge that jf aircraft were useful to
them in an observation role then they must be equally as useful to the opposition, and sh'uld perhaps L.V
deterred, led to the requirement for a more effective weapon system.

The more effective weapon system become machine guns either loosely mounted on the airoravi: anA aimed by an
observer using a sight fixed to the gun or a machine gun rigidly mounted on the aircraft and aimeaI oy the
pilot aiming the whole aircraft, ane. hence the gun, utilizing a eimple ring and bead sight mountut on the
aircraft.

Although a spectacular increase in success rate was achieved by thesF" msthod it was clear that further
improvements could be made. However, this %%s how the 1914-1918 air wvar wkas t:duo~ed.

The simple ring and bead sight suffered form two main disadvantagns, ftrstly the parallax et,'ort inherent in
attempting to track a target with a mechanical sight some inches from the eyes oreated large errors,
secondly firing at a moving target, the opposing aircraft, means that the t-llets must be ftiied not at the
target but at the position that the target wtll be at when the bulletL &-1 3.

These sources of error were reduced by the use of the gratical sight which both removed the source of

parallex error and allowed some degree of 'aiming off' although the acour, oy of this latter prooess depended
to a high degree on the quality of the pilot's estimation of the speed and attitude of the target in
relationship to his own aircraft.

The first real sign of avionics in gunsighta did not appear until the experimental Gyroscopic Lead Computing
Optical Ounsight appeared in 1940, entering service as the G0S Mk. 2 in 1942. This sight used a iRyroscopio
sensing unit and enabled an automatic computation of the required lead angle based on a meusure of the rate
of turn of the sight line (measured by the gyroscope), the range (estimated from the pilot's appreciation of
the target size and the velocity of the bullet or shell (fed into the gunsight as a design parameter).

3-2

The 'avionics' associated with the above gunsight was in fact awsingly simple, oonsisting of a gyroscope to
enable the computation of lead angle and non-linear variable resistors to allow the pilot to enter range and
thus the gravity fall to be expected to be experienced by the bullets or shells 4uring their trajectory.
However, for the first "ine an aircraft sensor, albeit one specially added into the gunsight, was being uptd
in the air to air weapon system.

Range of target was still being entered i.ito the system from a subjective appreciation supplied by thi
pilot. In 1949 this requirement on the pilot to providh such information was removed by the advent of radar
ranging system whereby a target range supplied by radar returns could be inserted directly into the
gunsight.
From this point systoem quickly emerged whereby, as the target was held and tracked on the radar and the

necessary adjustments for lead angel compensation and relative position of target and attacking aircraft
were carried out by electronic computation, the pilot no longer had to be able to see his target in order to
engage it.

At this stage the air to air attack system could be considered to have been produced. Aircraft sensors
supplying information regarding the motion of the attacking aircraft coupled with the sensor information
(from the radar) on the target, produce for a pilot, who may not even be able to see his intended target, the
necessary cues to enable his attack to be promulgated.

3. The Evolution of Air to Surface Attack

In the same way that the hand held revolver proved fairly ineffective for air to air attack, the hand thrown
bomb also proved to be somewhat less than perfect. There were two main reasons for this lack of
effectiveness, firstly it was somewnat unlikely that the pilot or observer would acourately hit the
intended target, having nothing better to calculate a release point with than his judgment of the track of
the aircraft and an imprar ion of the drop oharaoteristio of the weapon. Secondly the fact that a bomb that
is capable of being picked up and thrown from the cockpit is somewhat limited In size and thus effectiveness
upon reaching the ground.

The second of these problem was comparatively easy to solve - larger bombs attached to the aircraft which
fall off upon the application of some form of release oommand.

The first problem, that of producing the release pulae at the correct time is not quite sc simple. The path
followed by the bomb as It falls will basically depend on the flight characteristic of the weapon, the
velocity of the aircraft (and hence initial velocity of the weapon) at the point of release and the distance
that the weapon must fall (the height of the aircraft at release). Thus occurs the same type of progression
as for gunsighta, we move from the simple mechanical sights of early aircraft to the complex release point
calculating computers which are supplied with target position (from radar or laser seeker), aircraft height
(from altimeter), ground speed, air speed and aircraft track and heading (from air data computers).

41. OTHER SYSTEMS

So ftr only the comparatively simple problem of gunsights and bombaights have been considered and, although
these are undeniably important parts of any aircraft weapon ny!-tems, it is evidently apparent that there is
no point in having these system if the aircraft cannot be positioned in the right place at the right time
so as to be able to use them. It is thus worthwhile to consider some of the other major system components
required.

4.1 Navigation System

Early aircraft had very limited ranges and speeds. In the case of the artillery observation aircraft it
could often see its own trenches and navigated by flying from one visual landmark to another, landing in a
convenient field if it did lose its way.

With Increasing range, speed and landing weight it became necessary to be able to navigate to a target or
area and back to a somewhat more prepared landing strip than the nearest convenient field. Initially it was
possible to achieve this objeotivo by continuing to use the visual landmark with perhaps a good idea of in
which direction the sun should be. Two factors spoilt this happy state of affairs. Firstly the improved
performance and gunsights of the fighter aircraft decreed that the bomber should fly at night and secondly
somebody decided that flying should not be solely a fair weather occupation.

Thus began th two main methods of aircraft navigation - radio aids and aircraft position dead reckoning.

Radio aids for navigatlon have progressed from the simple bearing from a controller enabling a returning
fighter to be vectored back to its base, through the radio highways produced for bombers by such system ar
Knickebein, Wotan and Oboe to the sophisticated position fixes supplied by system using Geges and
eventually Navstar. Amongst these radio aids can albo be counted the round mapping radars introduced in
the 1939-45 war and progresaively improved ever since.

The dead reckoning aids include such system as integrating air data computers and of course Inertial
Navigation system whose accuracies increase almost yearly.

4.2 Communication System

Communications both between aircraft and the ground and between aircraft have progressed someuhat in the
last 65 or so years. We have moved from the artillery aircraft's different ooloured Very lights and the
pilot's arm indicating a potential ta-aget to anothes' pilot, through the radio with channels A to E, to the
complex array of VHF, UH and HF channels availabal to a modern pilot and his crew.

3-3

It is now possible for the pilot or crew of one aircraft to select a target for attack and for that target to
be automatically indicated to the pilot or crew of another aircraft via a digital data link completely
automatioally and without a word having been spoken. (As an aside it is also interesting to note that with
the advent of JTIDS we have reverted to the line of sight range of the original Very signal, but at least the
Information rate has been increased).

4.3 Pilot's Aids

From the above very brief sumary of the advances made in aircraft weapon a&kd supporting systems it can
easilv be seen that the work load of the pilot or crew of the modern aircraft has increased enormously over
that enjoyed by his historical counterpart. If we add to this list such systems as ESM, SC0, ECCH, the fact
that the aircraft is now flying faster, that the aircraft is probably the target of attauking missiles, that
it is firing missiles, that air engagements between aircraft may be measured irn periods of seconds we can
very quickly see that the pilot or crew can do with any help that they can get.

Avionics can, if used intelligently, solve some of these problems which, to a certain extent, it has helped
to create. Computers can be used to select that information which the pilot needs to know, cathode ray
tubes can be used to display connected information together, or display the moat important advisory notices
allAys in the same place ant' not spread around the cockpit, multifunction keyboards can replace banka of
switches (some of which always inevitably seemed to end up in ergonically bad positions) and also provide
prompts as to the information or actions required from the pilot cr crew. It is at this stage that System
Design should commence.

5. THE AVIONIC SYSTEM AND ITS DESIGN

As can be seen from the above descriptions of the evolution of avionics on aircraft the early sub-systems
gunsights, bombsights, navigation etc. did not form an overall system nor were they designed to do so. For
instance, in section 2 above, we saw how when rate of turn was required to be supplied to the OGS Mk. 2
gunsight the aircraft sensor, the gyroscope, was added to the gunsight producing a self contained unit.

The next step was for one sub-system to supply to another some particular oleoe of information required by
the recipient sub-system, range from the radar being supplied to the Sunsight, for instance.

Certainly up to this point System Design was concerned with ensuring that the various sub-system on an
aircraft worked satisfactorily but the total Avionics was still a very loosely coupled collection of
separate sub-systems rather than being designed as a total system. The interconnection of sub-systems was
tenuous to say the least and agreement about particular interfaces between two sub-systems could be, and
was, made without consideration being taken, or, to be fair, needing to be taken, of the other aircraft sub-
systems. As long as the synohro outputs from one sub-system matched the orientation of the inputs to the

other and the voltages produced and read at the ends of the connection were agreed as to their meaning then
that was generally the end of the System D-sign task.

Thus were produced systems such as that shown in extremely simplified form if figure 1. Information is
passed from one sub-system to another as required and as agreed by the sending and receiving parties. If
traneCormation of the date in terms of, for instance, units was required then it was generally carried out
as required for each sub-at stem ard many different transformation of units might be carried out for one
par,.ieular piece of d~ta dependl.\; upon which sub-system it was being sent to or received by - the
trai::-(-matlon beinF orried out ýy "he sa-system least unable to cope with the additional work.

1,:o-ing the 1960s cigital aomputers became available to carry out some zf the computations necessary within
the respective sub-systevs. however, due to their size and cost they could not effectively be added to any
"sub-system that required to narry out a calculation. This led to the concept of a small number or

Scentralized (from the system u:'int of view) computers receiving data from sensors or sub-systems, carrying
out the rv -ssary oalculabiws, and then feeding the results to the sub-systeem that required the results.
Unfortunately as the interfaces to the sensors and sub-systems still tended to be analog In nature and as
the units used by one sub-system were unlikely to match those required by another a large part of the
centralized computer task was taken up by performing analog to digital and digital to analog conversions
and in performing digitally the necessary furlongs per fortnight to knots unit conversions.

Figure 2 shows an, again extremely simplified, example of sch a system. Unfort-nately the system desIgn
technique- used for the loosely coupled system desoribed above still tended to be used for the production of
this type of system. Sensors and sub-systems produced those parameters which were demanded of them and
demanded those parameters which they needed. Both sets of parameters being produced or demanded in the
format and units most easily handled by the sub-system, ouith the resultant Interconnection tangle being
left to be sorted out by the centralized computer and its associated interface adapters. Thus the computer
ended up as being the go between for any two potentially connecting system rather than the producer of a
unified total system.

The next stage in the evolution of avionics produced some sub-system or sensors containing digital inputs o
outputs insteal of the older analog interfaces. This allowed some of the analog to digital and digital to
analog adaptors to be replaced by digital to digital adaptori, a not very encouraging step. The problem, of
course, was one of standardization. Every manufacturer or project had its own pet digital interface and
somehow it was always the incompatible ones that were trying to get together.

6. TOWARDS THE 'PERFECT' SYSTEM

During the 1970s two very important things happened. The digital computer became both small and affordable
and Mil. Std. 1553 was created and won a large measure of acceptability.

i. ... i

3-4

Givom a digital interface enjoying widespread aooeptance the interface adaptors could be put aside. More
importantly, given a digital bus, all sub-systems are automatioally connected to all other sub-systems
requiring intercommunication without having to worry about the complexity or cost of produoina a apeoia1.
link for an information path whioh although desirable is on the face of it not positively essential.

In the same way, given that most sub-system and sensors can now be, and are now being, supplied with their
own digital computational facilities it is possible for these sub-systems to supply the information that io
required, in the format that is required, to the sub-system that require it.

Suddenly information can be supplied, in the correct format, as and when required. Many of the old system
design constraints have been removed, re-eraion can be supplied not by the old back up sub-system approach
but by re-oonfiguring the system data flow. The prooessiong power limitation of the old centralized
computer can be forgotten, but hov do we design the system. It is no longer possible for two sub-system
designers to come to a gentleman's agreement about the data to be passed between them in terms of format and
repetition rate. Now every piece of data produced by one sub-system is potential information for every
other sub-system.

With a sytem of the type as shown in figure 3 the main limitation is the ability of the System besign
Methodology to cope with the design of the system not of the individual sub-systems to ocpe with their
tasks.

7. CONCLUSION

It is now possible, perhaps for the first time ever, to fully integrate an Avionio system and to provide a
means whereby all the necessary, rather than essential, information paths can be provided.

We saw, in the example of the gunsight, for instance, how in the past sub-systems have been connected
together so as to provide only the essential information required within the sub-system but in isolation to
the remainder of the total system. Even with the advent of the oentralised computer, whether connected to
the remainder of the system by analog converters or discrete digital links, the total system has tended to
be made up of a number of sub-systems with the computer acting as the interfsce device between sub-systeme
and serving the needs of connected sub-systems rather than providing an overall integrated system.

Throughout this period the task of system design has been that of producing compatibla interfaces between
one sub-system and another and attempting to produce, with these collections of sub-systems, a final
product that approximates to the original requirements of the customer and intentions of the designer.
Given the facts of both distributed computing and sub-system interconnected by a common highway, this
rather simplistic (although often far from simple) approach to system design can no longer cope with the
problem to be handled.

to reap the advantages that can be gained from a system built using todays available technology requires
that the system design task must be oommenced from the viewpoint of the customer's requirement and then
broken down into the sub-systems required to produce the end result. It is no longer possible to arbitrarily
assign tasks to sub-systems without having considered the effect of the assignment on the total system. The
methods used for system design must be able to cope with the task of designing the total system as a unit
rather than a collection of sub-systems. It is only in this way that full advantage can be taken of the
computing power that is rotentially available in the modern avionics system.

I-4

3-5

AIRCRAFT SENSORS ALTITUDE WE.APION SYSTrEM

AIR SiPEED
, I

AIRCRAFT POSITION YSTiEM

POSITION FIX

-Exampl of Lely Cotlld Syst em Figu 2

AIRCRAFT SENSORS WEAPON SYSTEM

i BALLISTIC INFORMATION

l AIR SEED

A AANALOGUE CETAALTZA [IGITAL RELEASE COPN T
;-TO DIGITAL TO INDICATION

ALTITUDE DIGITAL COMPUTER ANALOGUE

AIR CONVERTER CONVERTER
SPEED AIRCRAFT POSIT LON

,F POSITION FIX

I' ~ TARGET POSITION

NAVIGATION SYSTEM RADAR SSE

Exampl of InEpaed D&*isiibu Pinewuui S ystem F~gw2

AIRCRAFT SENSORS WEAPON SIYSTEM

S[.COMPUTER

I IPR40CESS. DATA !15.3 SUS

I !NAVIGATION COMPUTER rADAR COMPUTER

•1'NAVIGATION S~YSTEM RADAR SYSTEM

Exa"o" ofmtep.ld o.ib,-., Pnmk . •, ,3

4-1

A TUTORIAL ON DISTRIBUTED PROCESSING
IN AIRCRAFT/AVIONICS APPLICATIONS

BERNARD A. ZEMPOLICH
DEPUTY TECHNOLOGY ADMINISTRATOR FOR COMMAND, CONTROL AND GUIDANCE

RESEARCH AND TECHNOLOGY GROUP
NAVAL AIR SYSTE~MS COMM4AND, WASHINGTON, 0. C. 20361

SUMMHARY

The purpose of this tutorial is to present an overview of the state-of-the-art in real-time distributed
processing as applied to aircraft/avionics. Definitions and concepts are presented starting with the
total aircraft as a real-time distributed computer-controlled system. The relationship of aircraft
mission and avionic system architectures is discussed. Overall system architectural considerations are
identified and their impact upon a Real-Time Distributed Computer-Controlled System is detailed. A top-
down hierarchical, architectural structure is presented. This top-down structuring is described in terms
of the logical functional decomposition of the system as follows: total aircraft/avionic system partition-
Ing of aircraft/avionic subsystems, interconnect bus structure (network), system-wide processing architec-
ture, subsystems definition, and computer systems.

1.0 INTRODUCTION

By the early 1960s, operational needs in combination with the need for on-board equipment flexibility lead
to the introduction of general purpose, progranmmable digital computers into a variety of aircraft/avionic
systems. The programmability of these machines permitted rapid operational and technical changes to be
m'ade through software modifications rather than through hardware changes. The advent of the integrated
circuit also hastened the introduction of general-purpose digital computers because of the weight and
volume savings that these electron dedices had over other competing technologies. These "first generation
airborne computers' were termed "centralized"; that is, all Operational Flight Programs were contained in
the memory of a single machine. Unfortunately, while computer hardware made great strides forward in the
state-of-the-art during this period in time, the associated software tools did not. Thus, while the ute
of digital computers allowed the introduction of many new operational capabilities, management also had
to live with costly, highly complex, and in many instances, inefficient use of the computer as an opera-
tional resource due to the (then) lack of quality software development and support tools.

As the solid-state electronics technology matured, and its products applied to militarized computers, the
physical characteristics of the on-board computers decreased in value, which, in turn, led to the avail-
ability of a number of light-weight, lower cost computers. The availability of these computers led to

F their incorporation (physically) into various on-board subsystems. Thus, the term "embedded computers"
came about. And eventually, these machines were connected together in what was subsequently termed a
"federation" of computer resources.

As time progressed, the introduction of general -purpose, progranmmable digital computers continued to
bring about quantum improvements in operational capabilities to military aircraft. Unfortunately, due
to the (then) lack of computer hardware standards, these machines were individually unique from both
hardware and software support considerations. Furthermore, this situation was exacerbated by the fact
that the solid-state electronics industry continued to introduce microelectronic circuits with greater
densities, higher speed performance, and myriad circuit types which made obsolete almost overnight,
technology advancements which had not yet been fully operationally utilized in a military environment.

The continuation of proliferatior of hardware, the absence of suitable standards, and the ever-increasing
speed at which new solid-state electron devices were being invented and/or created and subsequently
manufactured, l'rd to the establishment by the late 1970s of standards for computer hardware and related
higher order languages. As a generalization, it can be stated that this is the technical manage"ent
situation which exists today in 1981.

As we enter'ed the decade of the 1980s, there were many questions yet to be answered relative to computer
architec~ture and language standards. Specifically, it was postulated that the decade of the 1980s and
1990s would see the introduction of Real-Time Computer-Controlled, Aircraft/Avionic Distributed Systems
containing several hundred microprocessors interconnected by various digital bus schemes. These micro-
processors would be embedded throughout the aircraft as computer resources which control the operation of
a highly fault-tolerant, reconfigurable, hierarchically structured iircraft/avionic system.

A major technical management challenge facing the avionics community today is how to transition from the
current inventory of analog "black boxes" to one in which by the 1990s the inventory will be approxi-
mately 90% digital in nature. The main reason why this is a major challenge to the avionics coummunity
is that throughout this transition period, it is imperative to maintain hardware Interchangeability and
not upset, nor negate, established hardware and software standards. Table 1 identifies the key technical
characteristics in aircraft/avionic equipments by time frames. The time period 1980 to 1990 itemizes
characteristics expected to be the foundation for future Aircraft/Avionic Real-Time, Distributed Computer-
Controlled Systems.

4-2

TABLE I
1940 - 60 1960 - 80 1980 - 2000

ANALOG CENTRALDIITAL DISTRIBUTED DIGITAL

9 Wired programs * Stored computer program e Distributed hierarchial
stored program

9 Dedicated analog a Central processor(s)
processors * Redundant central

a Communication through processor(s)
* Integration through I/O integration and

pilot displays central processor/stored * Distributed, dedicated
program fur',tional processors

a No redundancy
* Some degree of redundancy * Communication through a

9 Limited fault tolerance bus network
* Some degree of fault-

* No dynamic tolerance * Largi scale use of multi-
reconfiguration path redundancy
capability * No dynamic reconfiguration

capability e Fault-tolerance and dynamic
* Discrete hardware reconfiguration

* Use of MSI & LSI hardware
s VHSIC hardware

2.0 SYSTEM ARCHITECTURAL STRUCTURES

As the avionics community entered the decade of the 1980s, there was an absence of a generally accepted
system architectural approach to the design and development of on-board aircraft/avionics equipments and
systems. In the absence of a formal system architectural definition, a "Pseudo-Hierarchical Architectural
Structuring" is proposed (see Table 2). This concept is designated as "pseudo" solely because of the
current lack of "reduction to practice" (implementation) of such an approach. It should be noted,
however, that the top-down decomposition of the system architectural structure is real from an engineering
design viewpoint and does indeed lend itself to a logical, natural methodology for decomposition of a
system into its constituent parts.

TABLE 2

SYSTEM PSEUDO-HIERARCHIAL
ARCHITECTURAL STRUCTURING

* Total aircraft/avionics system

Partitioning of aircraft/avionics subsystems

* Inter-connect bus structure

9 System-wide processing architecture

a Subsystems definition

* Computer systems

The total aircraft/avionics system is presented as being at the top of the Pseudo-Hierarchial Architectural
Structuring as shown in Table 2. It is presented as the equivalent of the system mission for the aircraft.
The system mission is presented for definition purposes as being the operational functions performed by
the aircraft such as: fighter, attack, Anti-Submarine Warfare (ASW), Airborne Early Wal'ning (AEW), cargo
and/or passenger, or Electronic Warfare (EW). It is the system mission which determines the types, capabil-
ities, functions, and performance of the various aircraft/avionic electrical and electronic equipment
on-board the aircraft.

2.1 PARTITIONING OF AIRCRAFT/AVIONICS SUBSYSTEMS

The on-board subsystems required for any given aircraft system mission can be partitioned into a number of
groups of equipments which perform a general functional purpose. For example, the Vehicle Greup of sub-
systems would contain such equipments as the flight controls, pilots' displays, and the electrical
generators. The Core Avionics Group would contain the communications, navigation, and the computational
resources. The Mission/Sensors Group would contain the specific radars, acoustic sensors, or the
electronic warfare hardware equipments. The Weapons Group is of course self-explanatory as tC its
contents. It should be noted that these four major partitions or groups of subsystems are "glued"
together by the System Architecture, Integration, and Common Hardware considerations.

For the foreseeable future, it would appear that the interconnect bus structure will continue to be based
upon the requirements of MIL-STD-1553. However, this statement is not meant to imply that the technology
of implementation will necessarily remain the same. It is logical to expect that as a minimum, a fiber-
optics bus will be fully implemented and operational by 1990.

2.2 SYSTEM-WIDE PROCESSING ARCHITECTURAL ALTERNATIVES

Figure 1 is a "road map" of the various System-Wide Processing Architectural Alternatives available to
designers and developers of future aircraft/avionic systems. It would seem reasonable to assume that

----...

4-3

more and more the Distributed or Federated Control approaches will be used in future aircraft designs,
while the Centralized Control approach would more likely continue to appear in technology updates of
current aircraft systems. For definitional purposes, System-Wide Processing Architectures are defined
by this author as consisting of all of the on-board embedded computer resources: hardware, software, and
firmware.

Sstated previously, there is an absence of formalized industry and government approaches to aircraft/
avionic system architectural considerations. Thus, the following definitions of various processing
architectures are provided as working definitions only. That is, they are possibly subject to ,efinement
and/or modification. The definitions of Centralized, Distributed, Federated, and Hierarchial System-Wide
Processing Architectures are presented in Table 3 in terms of their key hardware and software
characteristics.

TABLE 3

SYSTEM-WIDE PROCESSING ARCHITECTURES CHARACTERISTICS
CENTRALIZED

Hardware Characteristics Software Characteristics

* Powerful central computer (may use e Single complex executive resident in
multiprocessor or redundant computer) central unit

* All communication through central unit 9 Application programs cover all
avionics system functions

* Other computers look like peripherals
e Central unit provides all systems

control

DISTRIBUTED

* High speed computer/computer bus * Low complexity local executives in
each computer

* Reconfiguration not difficult if:

1. All computers have same a Applications programs limited to local
1.tfunctions in any other computerarchi tecture

2. Multipath commiunication with * No single source for system control
peripherals (system control distributed throughout

local executives)

FEDERATED

* Hardware tailored to function * Single executive resident in one unit

a Low data bus rate communication a Application programs limited to local
bus treated like peripheral functions in any one computer

* Reconfiguration difficult a One unit provides general system
control

9 Computers may have different architectures

HIERARCHICAL

* High speed computer/computer global bus * Global bus system looks distributed

* Low speed local bus for control a Local bus systems look federated with
global bus interface computer acting

e Computers have sime architecture but as executive
tailored capability

* Reconfiguration not difficult

Figures 2, 3, 4, and 5 provide diagrammatic representations of the four major System-Wide Processing
Architectures previously identified in Table 3. Based on the working definitions given in Table 3,
architectural options available for consideration by military aircraft/avionic system designers are
listed in Table 4 and are diagrammed in Figures 6 through 11. These options offer the aircraft/avionic
system designers the latitude to maximize those characteristics which are of major importance to the
particular aircraft/avionic system application.

TABLE 4

SYSTEM ARCHITECTURAL OPTIONS APPLIED TO MILITARY NEEDS

Option 1: Full Functional Redundancy (Figure 6)
Option 2: Full Functional Redundancy Plus Dedicated Subsystems (Figure 7)
Option 3: Maximum Physical Redundancy (Figure 8)
Option 4: F0ll Functional Redundancy Within Local Group of Subsystems (Figure 9)
Option 5: Centralized (Figure 10)
Option 6: Multiprocessor (Figure 11)

F4-

2.3 STANDARDIZATION -ARCHITECTURE INTERACTION
b

Figure 12 is an attempt to visually demonstrate the inter-relationships between computer software and
hardware resources and the System Architecture, Integration, and Common hardware requirements. It is
hoped that the need for simultaneous consideration of all of these factors by system designers can be
explicitly visualized from the structure of the matrix.

In Figure 12, the FOUNDATION for the entire system is shown as the horizontal bar m'ntitled "System
Architectures". Being that it is a foundation, it cuts across each of the vertical bars which are meant
to convey the idea that the "Missions" are independent, separable, and unique to each operational mission
need. Contained within this concept of the System Architecture as the foundation upon which all the
operational systems are built, is the premise that any item identified within the block has general
applicability to all military aircraft systems (when required).

The horizontal bars listed under "Common Functions" are used to indicate equipments or software which cut
across various Missions, but are uniquely tailored to the particular operational application. For
example, signal processors and their associated software programs are used in many Naval aircraft;
however, it is only for the Anti-Submarine Warfare (ASW) Mission that the processor and its associated
software are tailored for the acoustic processing role. In like fashion, the aircraft displays may have
some identical hardware and software used across all aircraft, but again, any one particular combination
of controls and displays is unique to each Mission application.

2.4 DISTRIBUTED EMBEDDED COMPUTATIONAL RESOURCES

A key indicator of the degree of distribution of embedded computational resources within an aircraft/
avionic system architecture is the total number of microprocessors used within the on-board equipments.
Shown in Table 5 are projected number counts for "futuristic" Airborne Early Warning (AEW) and an An~ti-
Submarine Warfare (ASW) aircraft. The information contained in this chart was prepared by a major
supplier of navy aircraft, and as such represents, in the author's opinion, a fairly realistic projection
of the quantities of microprocessors that will be used as on-board embedded computer resources with the
next generation of naval aircraft. Worthy of particular note is the fact that the count difference
between the two aircraft operational applications lies in the area of Mission Avionics rather than in the
Core or Vehicle Systems areas.

TABLE 5

TOTAL SYSTEM MICROPROCESSOR COUNT

AEW APPLICATION ASW
(137 Microprocessors) (141 Microprocessors)

Mission Avionics - 24 Mission Avionics - 28

Core Aircraft Systems - 16 Core Aircraft Systems - 16

Core Avionics - 97 Core Avionics - 97

Table 6 itemizes the number of reprogramnable and fixed program microprocessors projected for certain
types of functional avionic equipments. This chart wais prepared by a firm currently engaged in providing
similar equipment for operational use. And 3gain, as with the statement made relative to the information
contained in TatbIe 5, it reflects more than a reasonable degree c"~ engineering certainty as to the
validity of the estimates shown.

TACLE 6

SELECTED AVIONICS SUBSYSTEMS MICROPROCESSOR COUNT

Number of Reprogranmmable Number of Fixed Program
Function Microprocessors -Microprocessors Total

Data System and Displays
(Core Mission) 25 64 89

Core Sensors & Conditioning 16 26 42

Acoustic Signal Processing 8 12 20

Radar Signal Processing 6 6 12

Other ASW Sensors & Conditioning 9 26 35

TOTAL 64 134 198

3.0 FUTURE TECHNOLOGY CONSIDERATIONS

There are a number of cotisiderations which must be taken into account relative to the transfer and
insertion of new technologies into future Real-Time Aircraift/Avionic Distributed Computer Control Systems.
First of all, the Real-Time, Computer-Controlled, Distributed System of the future will require that the
system conceptual and definition phase of each future aircraft program consider the inter-relationships
of factors such as: support/tools software, applications software, firmware, computer-aided design,
test and manufacturing software, prncessing system architecture software, and simulation, test and
diagnostics software.

-- A,

4-s

Secondly, system designers and developers must take into consideration the technology directions listed
in Table 7.

TABLE 7

TECHNOLOGY DIRECTIONS

* Software function taken-over by firmware in near-term

* VHSIC chips take over software functions in the long-term

* Emergence of hardware macros as basic building blocks

* Signal processing as doninant thrust

e More "Modular" software

9 New systems will be fault-tolerant, redundent, reconfigurable

e Emergence of the "Smart", reconfigurable memory system

* Greater thrust for extracting data from aircraft/avionic systems.

Lastly, the systems designers and developers must consider the items listed in Table 8. These items
represent the author's be.t judgment as to the challenges to be faced by the management and engineering
staffs both in government and in industry involved in the system conception, definition, design, develop-
ment, test and evaluation, and subsequent logistic support of future Real-Time, Computer-Controlled
Distributed Systems for aircraft/avionic applications.

TABLE 8

CHALLENGES TO BE FACED

* Amount of embedding into the system architecture

a Systems engineers not computer specialist/engineers performing the design function

* Primary failures will be at the system level not at the component level

* Lack of economic leverage

* Rapidity of change in the microprocessor state-of-the-art

* Fixed function vs. programmable microprocessors

* Lack of precise definitions throughout the field.

4.0 CONCLUSION

If tf.:re is any one conclusion which can be reached in trying to understand the att'ibutes of Real-Time
Aircr~ft/Avionic Distributed Computer Control Systems it would have to he, in the opinion of this author,
that system designers and developers can no longer build such systems from the "bottom-up", black box
approach. A partnership between the technical managers, the system designers, and the various technolo-
gists is required if future systems are to be developed "ith minimum proliferation of the embedded
computer resources, minimum logistics for both the avionics hardware and the software, and maximum
availability in the operational environment.

4-6

ARCHITECTURE
ALTERNATIVES

"OWTRIOUTioON CENTRAL

CONTROLCONTROL

OAOMCATE0 REGIONA GROUPS Of KOUNOANT CENTRAL. MUT
GUSPIMGMGYSTEMS WITH PROCESSOR& WITA4 PpROCGSSO4

PRCSUSORSI LOCAL 6 SVSTEM BUSES EMBEDDED SAISSvSTEM SYSTEM

CRITICAL CRITICAL

II

CUCINL USSENTA CENTRALI

PKUDAC ROCESSOR UNI UIT ROESS NI

FigreI SstmFigu e 2 rcessntrlie Architectura Ale raie

1 /0I "--,CONVERTER
L

PERI ERL PRIPERAL PERPHEAL ERIPE PRIPERAPO a UI "T ""NT! ---"F UNIT-
_~~~~~~~~~~~~~~ PIRIIR PHAEII~l IIS IOi UIYTMI1I

Fiue2 Cetaie PrchOtIctur

4-,

COMPUTERICOMPUTER BUS

COMPUTER COMPUTER COMPUTER TER

CN R IWPE HERAL BlUS

Figure 3 Distributed Architecture

l 1I

CONI HUL BUS

COMPUTER COWMUTER [j PTLR J COPUTR

PERIPHERALS PEiRIPHERALS PERIPHERALS PERIPHERALS

Figure 4 Federated Architecture

GLOBAL BUS

CMUCOMPUTER COMPUTER~

LOCAL BUS LOCAL BUS

COMPu iL COMPUTER COMPUTER 1 [MPUTR COMPUTER

PERIPHERALS PERIPHERALS PERIPHERALS PERIPHERALS PERIPHEaALS

Ficure 5 Helrarchical Architecture

4-8

RADAR ACOUSTIC ECM ESt MAD FI R

CTA'L CRL CTRL TRL TRI CTRL

OPTION I
FULL FUNCTIONAL

REDUNDANCY

FIGURE 6 - OPTION 1

RADAR ACOUSTIC ECM ESM MAD FLIRI~~ 1 "7'°°"!

PROCW PROCI 1PROC/ ROC R3C PROC

CTR T' CTRL
CT CTRL TRL TAL CTRL

OPTION 2
FULL FUNCTIONAL

REDUNDANCY
PLUS
DEDICATED SUBSYSTEMI~ -,','; I I

PROCI PROW/ PROC/ PROC/ PROC/
CTRL CTRL CTRL CTRL CTRL

I cT I" I C ...
.

SIONS DiSTOISREA NAV COM

FISURE 7 - OPTION 2

4-9

RADAR ACOUSTIC cm MAD FRI"

PROC/ .. , PROC/ PROC/ PROP PRoC/ RI
CLCTRL CT L l CTR

OPTION 3

MAXIMUM PHYSICAL REDUNDANCY

Ec]L

PRo - .ROI PRL Po,-/, PRI PR- PRO.-
SORES DISPLAY NAV COM

FIGURE 8 - OPTION 3

RADAR ACOUSTIC EFCM] ESM FM AD FLIR

PROC/ p oC PROC ROC ROC PROC
"CTRL CTRL ICTRL TRL TR CTRL

OPTION 4

FULL FUNCTIONAL REDUNDANCY

WITHIN LOCAL
GROUP OF SUBSYSTEMS

PROC/ PRd PROC/ PROC/
CTRL CTRL CTRL CTRL

D-ISPLAY NAy !I

FIGURE 9 -OPTION 4 k

4-10

OPTION 5

CENTRALIZED

i CETRALCONVERSION COMPUTER
SCOMPUTER UNIT

DTRSISPLAY NVCOM

FIGURE 10
OPTION 5

CENTRALI ZED

RADAR ACOUSTIC ECM Es A FLIR

IPROCES- PRCES

SoOCEC

SOR SOR SOR MEMORY MEMORY MEMORY MEMORY

OPTION 6

MULTIPROCESSOR

STORESDISPLAY

FIGURE 11
OPTION 6

MULTI PROCESSOR

4-11

STANDARDIZATION - ARCHITECTURE
INTERACTION MATRIX

MISSIONS

COMMON
o FUNCTIONS

NtAV.ICOMM.

DISPLAYS

'SIG. PROCESSORS

0 SAOFWANIE

FIGURE 12

SI-I

DISCUSSIONS

SESSION I

REFERENCE NO. OF PAPER: I-1

DISCUSSOR'S NAME: Dr. von Issendorff

AUTHOR'S NAME: Enslow (Livesey, presenter)

COMMENT: You mentioned that there are no suitable programming languages for distributed systems so
far. Among others there are CSP and PLITS from Feldman or ADA. Could you please comment on why these
languages are not sufficient?

AUTHOR'S REPLY: Sufficient for what? These languages do, of course, allow us to write distributed or
concurrent programs, but this is only 10 percent of the problem. We need active programming
environments including program specification, design, verification and debug tools for distributed
systems (test tools, too). These problems are especially difficult in a distributed system. (This is
the opinion of the presenter, and not necessarily that of the author.)

REFERENCE NO. OF PAPER: I-I

DISCUSSOR'S NAME: Erwin C. Ganql, WPAFB, Ohio

AUTHOR'S NAME: Enslow (Livesey)

COMMENT: In the application of distributed systems, flight safety concerns are reliability of hardware

and software performance and guaranteed real-time response. This can he obtained by maturing the
software through extensive use and correcting the bugs. We cannot use this approach in flight safety
systems since we have to have reliable software prior to first flight. Therefore, we have to
accomplish this through exhaustive testing. How can we get reliable softwarp by testing since in
distributed systems it is impossible to predict an; 1xercise all possible states of the system?

AUTHOR'S REPLY: This is also true for centralized systems And is not a special problem of fully

distributed processing systems. I do not know of any "magic" solutions, but rather see the continued
use of top-down design, verification, automatically generated test cases, extensive simulation and
perhaps new tools such as IPC control languages. (This is the opinion of the presenter and not
necessarily tnat of the author.)

REFERENCE NO. OF PAPER: I-I

DISCUSSOR'S NAME: B. A. Zempolich

AUTHOR'S NAME: Enslow (Livesey)

COMMENJT: Do you distinguish between ADA as a programming language and software development tools, such
as Hardware Description Languages?

AUTHOR'S REPLY: I'm not an ADA expert. However, the direction I see ADA going is that users of ADA
will subset it and that subset will look a lot like PASCAL. Another group of programmers will be
trained primarily in the use of tasking facilities. Other programmers will spend most of their time on
developing more advanced debugqing, testing, and specification tools to fit around ADA--the so-called
ADA environment. I expect the most exciting work to he done in the environment rather than language
development itself. We have enough programming languages. What is needed are the tools to enable
people to use them.

REFERENCE NO. OF PAPER: I-I

DISCUSSOR'S NAME: Dr. van Keuk

AUTHOR'S NAME: Enslow (Livesey)

COMMENT: Would you say that it will remain to be sensible to think about distributed processing with-
out addressing a precise, limited, and well-Analyzed case of application being in mind? The software
and hardware structure will often be dictated by the particular kind of application to a high degree.

AUTHOR'S REPLY: I think that both jobs are needed: (1) Basic research into abstract distribution
systems without the constraints of a particular application, and (2) applied research into the
performance and other special constraints of particular problems. Either will be much less useful
without the other. (This is the opinion of the presenter, not necessarily that of the author.)

SI-2

REFERENCE NO. OF PAPER: 1-3

DISCUSSOR'S NAME: G. Scotti, SELENIA

AUTHOR'S NAME: J. T. Martin

COMMENT: I feel that there are several other reasons to explain why the U.K. wrote the DSOO18. Can
you please state the differences between 1553B and the 0018 Standard?

AUTHOR'S REPLY: The U.K. decided to produce Defence Standard 00-18 (Part 2) because 1553B was seen to
be)f such great use in so many applications that it was felt that it should be possible to specify the
bus using a U.K. standard rather than by keep referring to a U.S. standard. The U.K. Defence Standard
00-18 (Part 2) is alsolutely technically ilentical to MIL-STD-1553B. The differences in format and
language used in Def. Statn. 00-1 (Part 2) come about purely and simply because the U.K. Authority for
Defence Standards has certain rules which apply to the format and language used in a U.K. Defence
Standard.

Just to reinforce and confirm:

Def. Stan. 00-18 (Part 2) is technically identical to MIL-STO-1553B. Units built to either

standard will be just as compatible with units built to the other standard as if they had all been
built to the same standard.

It may, however, be interesting to note that there are more things in MIL-STD-1553B, and hence in
Def. Stan. 00-18 (Part 2), that are not completely specified. For instance, alth~ough some responses
are defined as legal and some responses are defined as illegal there ere still some responses which
fall between the two definitions and the action to he undertaken in the event of receiving such a
response is therefore not clearly defined.

In an attempt to promote as much standardization as possible the U.K. has, therefore, produced
defined actions to be followed in the event that such a response is received. These U.K. preferred
responses are documented in the guide to Def. Stan. 00-18 (Part 2). This guide has the reference Def.
Stan. 00-18 (Part 1). The important difference is that whereas the requirements of Def. Stan. 00-18
(Part 2) are mandatory, the further information in Def. Stan. 00-18 (Part 1) is only advisory.

REFERENCE NO. OF PAPER: 1-3

DISCUSSOR'S NAME: H. Whitehouse, USN

AUTHOR'S NAME: J. T. Martin

COMMENT: Would you comment on the properties of an avionics bus which are not provided by standard
commercial buses such as the HP1B or its IEEE counterpart.

AUTHOR'S REPLY: MIL-STD-1553B has come about not just in order to redesign the wheel but because none
of the commercial buses available at the time were satisfactory for the application. The requirements
for a commercial interface include: high-speed capability (therefore, fast logic edges or parallel
interface) and cost-effectiveness, bearing in mind the environment that the interface is to operate
in. The requirements for an avionic bus include: EMC compatability (therefore, controlled logic
edges), low wiring density (to reduce weight and volume) and reliability and availability leading
usually to dual bus configuration (making the use of serial transmission techniques even more
important).

The above is a very brief summary of the reasons for MIL-STD-1553B. For a full account see MIL-
STD-15538 Handbook or/and Defence Standard 00-18 (Part 1), the handbook and explanation for Defence
Standard 00-18 (Part 2).

REFERENCE NO. OF PAPER: 1-3

DISCUSSOR'S NAVE: CDR J. A. Strada, ONR, London

AUTHOR'S NAME- J. T'. Martin

COMMENT: How di you see the role of distributed processing in reducing crew workload and dealing with
the multisensor Pnvironment in an ASW aircraft like the P3C or Nimrod,

AUTHOR'S REPLY: Distributed processing does not really effect crew workload as such. The crew should
be unaware of what the design of the system that they are using is. The main item to effect crew
workload is the design of the man-machgne interface, this includes, of course, the keyboards, the
displays and the processing which allownc these keyboards and displays to function.

P: ' said that it is true that a distributed processing system whereby the various subsystems of
the s)., Are connected together by, for instance, a 15538 bus does lend itself to the combining of
information into one place and the control of a number of systems from one place. Although the same
effect, as far as the crew is concerned, could be achieved without such a distributed system, I believe
that you would have to pay a high hardware overhead, for instance many extra 1/0 control channels from
the centralized system, to produce the same degree of centralization of controls and displayr.

1 -3

REFERENCE NO. OF PAPER: 1-3

DISCUSSOR'S NAME: Or. A. A. Cai away, RAE

AUTHOR'S NAME: J. T. Martin

COMMENT: Mr. Martin has talked about the opportunities for using distributed processing in modern
systems. There are many constraints which can be applied in distributinq processing - such as minimum
data flow, retaining comparable processing sizes. etc. In practice, however, because of the way
systems are procured, and the accountabllity of manufacturers, does the author, as a representative of
an Industrial systems company, sec us ever achieving anything other than functional distribution as a
practical criterion?

AUTHOR'S REPLY: The problem is to fully specify the requirements to be placed on the supplier and to
be able to specify the tests necessary to prove that the supplied item exhibits the attributes which
are demanded. Very few manifacturers actually manufacture all items of the subsystems or system that
they supply (for instance a sensor head may be purchased by a systenj supplier to be added into his
total system or subsystem by way of a subcontract or another supplier). For these items of subcontract
to be procured and accepted it must be possible to specify them and test them to that specification.
If it is possible for one main or prime supplier of a system to specify such a subcontracted item, then
it must be possible for some other supplier or procurement agency to also produce the necessary
specification. We could therefore imagine the case where a system design is carried out by one firm to
the level necessary for the equipment and subsystems specifications to be produced using as a criteria
for the division of the work any split required as long as it leads to the required specifications and
test specifications.

Summarizing - technically any split is possible and already achieved. Managerially, especially in the
case of the procurement agencies, it may be necessary to reconsider our present working practices.

REFERENCE NO. OF PAPER: 1-4

DISCUSSOR'S NAME: CDR J. A. Strada, USN, ONR-London

AUTHOR'S NAME: B. A. Zempolich

COMMENT: Reference the pc;ition of "Systems Architect" in NAVAIR. For whom would such an individual
work during aircraft development? Would he stay with the aircraft as itI moves into an operation
status? For whom would he work then?

AUTHOR'S REPY: (1) The PMA and his admninistrative division.
(2) Yes, he/she would stay with the aircraft.
(3) Continue to work for the PMA.

LA .

6-i

PERFORMANCE STUDY OF A DISTRIBUTED MICROPROCESSOR ARCHITECIURE

FOR USE ABOARD MILITARY AIRCRAFT

Kang G. Shin and C. M. Krishna
Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

An analysis of the performance of the Distributed Microprocessor Airborne Computing System (DM.CS) developed
at Rensselaer Polytechnic Institute is presented. The DHACS consists of a number of quasi-independent com-
puter subsystems loosely coupled in a highly decentralized structure that yet exhibits high cogency as a
system. Some important parameters in the system such as job scheduling and starting delays, bus access delay
and system reliability are studied.

In order to highlight the implications of the design options chosen, the structure of the DMACS and that of
the Draper Laboratory's Fault-Tolerant Multiprocessor (FTMP) system are compared and the impact of structure
on performance is discussed qualitatively.

1. INTRODUCTION

The increasing sophistication of fighter aircraft has raised the need for intelligent control equipment.
All too often at present, this equipment has been added in an ad-hoc fashion. The result has been a
variety of independent systems for such functions as fire control, flight control, navigation, etc. This
leads to wasteful redundancy, to relatively low system reliability and a high workload upon the pilot (who
is the coordinating agency). This is the main motivation for a new concept called Integrated Control

(Robinson, A.C., and Hitt, E. F., December 1978; Shin, K.G., December 1979). Integrated Control (IC) is
the use of control equipment as part of an organized and cogent system. Integrated Control treats the

entire aircraft (the pilot included) as an organic whole. Considerable benefits follow. For one thing,

equipment redundancy translates more efficiently to fault-tolerance. For another, the pilot -- while still

the coordinating agency -- is no longer involved in step-by-step and detailed low level control. Instead,

he is largely the decider of policy, choosing from a aumber of options open to him and letting the system do

the rest.

Needless to say, Integrated Control requires a sophisticated computer system that is highly reliable and is
capable of absorbing with equanimity the large surges of throughput demand that are characteristic of the

application at hand.

A number of attempts have been made to design highly reliable systems. These include the Software Imple-
mented Fault Tolerance (SIFT) machine of SRI International (Wensley, J.H., et al., October 1978), The Multi-

Microprocessor Flight Control System (M
2
FCS) program of the Air Force Flight Dynamics Laboratory (AFFDL) and

Honeywell (White, J.A., et al., October 1979) and the Fault Tolerant Multiprocessor (FTMP) of the Charles
Stark Draper Laboratory (Hopkins, A.L., et al., October 1978). The last of these is an especially interesting
design and is the result of certain well-defined design choices.

In a project recently initiated by the authors at Rensselaer Polytechnic Institute, an attempt has been made
to design a high-reliability and high-throughput machine with extensive decentralization of contral (Shin, K.G.,
and Krishna, C.H., December 1980). It has been sought to use the extended capabilities of recently developed
microprocessors such as the Motorola b8000 and the AND 2903. Delegation of control has been maximixed. The
system in entirely asynchronous and highly modular. Use has been made here of the essential characteristics
of the application. In the first place, the aircraft mission can be rather neatly divided into nearly in-
dependent portions. This decomposition of the mission into its component parts is formalized in the concept
of atom functions. Again, the nature of the application suggests a system dichotomy. This translated into
the way the architecture is composed: we have a central area and a peripheral area, each with its own dis-
tinctive characteristics. The peripheral area is dedicated to particular tasks such as data-taking and
actuator-driving, whereas the central area is in a symmetric formation and is therefore not dedicated to any
particular task. This has obvious implications for reliability -- both the actual system reliability and
the ease with which theoretical predictions concerning reliability may be made.

Also, the present architecture has been explicitly based on the concept of Integrated Control. This implies
that it has been attempted to uttack the aircraft control problem holistically and from a systems point of
view. This is a departure from other distributed systems in that these have generally tended to consider only
the computing equipment without much consideration being given to the operating environment.

This paper is organized as follows. Section 2 consists of an overview of the sy.item architecture. This is
abridged from an earlier publication (Shin, K.G., & Krishna, C.M., December k98gi) and is presented here for
completeness. Section 3 focuses on the central controller. The nature of tl., controller's functions has a
decisive impact on system periormance. Section 4 deals with the performanoe evaluatlot, of the system. A com-
parison with the Draper Laboratory's FTMP is provided in Section 5 and the paper concludes with Section 6.

2. REVIEW OF DMACS ARCHITECTURE

The IMACS architecture is based on both mission decoaposition and system dit-hotomy. The architecture has
been described in some detail .in (Shin, E.G., and Krishna, C.M., December 1980), but for convenience, the
major aapects are briefly described below.

6-2

2.1 Mission Decomposition

The ordered set of tasks to be performed by en airborne computer system is termed a mission. A mission con-
sists of mission segments such as takeoff, cruise, target tracking, lsnding,etc. Each mission segment is
then divided into basic mission components called atom functions. An atom functicn may be considered a unit
program performing a basic unit of the mission such as Kalman filteting, control law calculation, etc.

Each atom function receives raw data from its source set (of sensors, pilot-activated systems, and ground
communication systems) and feeds a sink set (actuators and the cockpit display) with processed data. in
view of the ever-increasing computation power of microprocessors it is not unreasonable to assume that any
atom function can be handled by a single advanced microprocessor (e.g. M68000, LSI-11123, AND 2900 series)
within the imposed time limit. This assumption together with the mission decompositi~a offers system mod-
ularity in both hardware and software, thereby enabling an atom function to be a hardware and software build-
ing block in the DMACS.

2.2 System Architecture

The input to the system is derived from sensors, ground communications and pilot-generated inputs. The
rate of data flow is small -- only a few Hertz. The outputs of the system are to mechanical Actuators and
to the cockpit display. These, again, are at low date rates. In contrast, the computations themselves are
generally involved and are required to be carried out at high speed.

Clearly, the processors handling the datý formatting tasks from the individual sensors have to be dedicated.
The processors carrying out the bulk of the processing do not have to be so dedicated.

By means of arguments similar to the above, it is possible to show that the application calls for a-system
dichotomy. Such a dichotomy is indeed built into the system and represented by the peripheral and central
areas (Figure 1). The peripheral area consists of the sensors, actuators and associated (dedicated) pro-
cessing equipment. This equipment is relatively low-capability hardware. The central area consists ot
high performance Processing Modules (PM's). Each PM consists of a main processor with its own private mem-
ory and two bus controllers to interface with the data and control serial bus sets. These are the only buses
in the system and are triply redundant. The basic system architecture is depicted in Figure 2 and the pa-

ripheral area is shown in some detail in Figure 3.

3. MORE ON THE DMACS ARCHITECTURE

The Central Controller (CC) is the top coordinating agency after the pilot and has a decisive impact on sys-
tem performance. Prior to performance analysis, therefore, it is in order to discuss the CC along with
architectural implications.

3.1 Central Controller

The CC is at the heart of the DMACS and operates in two different modes; the normal and abnormal modes. The
extent to which the architecture has been decentralized results in a light controller loading under normal
conditions. The system can be thought of as being a set of quasi-independent computer subsystems, each mem-
ber of the set being formally complete within itself under most normal conditions of operation. However,
the system may behave like a centralized computer under abnormal conditions (e.g. change of mission profile).

A. Normal Mode of Operation

The central controller has, under normal operating conditions, to carry out periodic error checks and to
control the allocation of the major comon resource in the system -- the data bus. Data bus grant is re-

- quested and granted asynchronously according to a quasi-handshake format. The main processor within the
processing module places the data word tr be broadcast in the data bus controller. Bus grant requesta are
entirely within the domain of the two bus controllers -- insofar as the main processor in the processing
module is concerned, the bus controllers represent its only contact with the outside world.

The data bus controller signals the control bus controller (CEC) that a data word is available for broadcast.
The CBC responds by setting the data bus grant request bit in its transactions register. The transactions
register is periodically polled by the central controller and bus grant is achieved on a first-come first-
served basis.

B. Abnormal Mode of Operation

Central controller intervention on a large scale is called for when abnormal events occur. These may call
for a redistribution and/or redefinition of system resources. The following are the most commonly encoun-
tered abnormal occurrences:

* Malfunctions in PM's

a Mission profile changes

a Test requests from the peripheral area.

To handle these occurrences, the CC needs precise, accurate and timely information on the status and duty
of each processor in the system. The principal table of information held within the central controller is
the Central Cluster Status Table (CCST). The CCST has the following format:

6-3

ATOM1 ACTIVE/ PROCESSOR3 PROCESSOR
FUNCTION PASSIVE ASSIGNED STATUS

The atom functions are ordered according to their importance. Processors not assigned to any atom functions
(i.e. free PM's) are listed as being assigned to atom function 0 (i.e. the lowest priority atom functf",),
Processor Modules that are malfunctioning are assigned an atom function number one higher than the most criti-

cal function of all -- the control function.

The active/passive column -indicates whether or nut the concerned atom function is active within the current
mission profile. (Note that all atom functions possible are listed: not just those that are currently active.
This does not cause a time penalty for table-search during reallocation due to the way the table is structured.)
Inactive functions generally do not have any PM's assigned to 0-"M.

When a PM malfunction is reported, the central controller scans the COST from the bottom. If -- as is
generally the case -- there is a free PM available, that PM is brought into the deplated triad.

In the event that there is no free PM available, the least critical atom function is retired and the PM's
assigned to it are used as spaves.

The process of triad reconfiguration is as follows:

1. Delink the injured processor.

2. Find a replacement PM.

3. Load status.

4. Check status and in,'uct into the system.

Of these steps, steps 1, 2 and 4 are controller-intensive, i.e. they require extensive controller involvement
Step 3 -in the other hand is handled without much reference to the controller. Transfer of software is carried
out by DMA.

A slightly more compl-..cated process is involved when triad reconfiguration is called for. The loading upon
the controller is far greater than in the case of a random processor knockout (i.e. the random demise of a PM).
Also, the volume of software to le transferred is far greater. The latter reason is the more straightforward
to handle: the time required on a bus for aoftwarc transfer is very nearly proportional to the volume of soft-
ware, while the controller loading is inure difficult to quantify precisely.

The effect of controller loading upon the system is minimized by carrying out the reconfiguration in stages,
configuring the most important triads first so that the more critical new functions are activated as soon as
posoible. Note that functions such as flight control are active throughout and are not affected by recon-
figuration except to handle malfunctions.

3.2 Implications of the Architecture

There are some particular aspects of the application we are concerned with aid some points in the architec-
ture here presented that are worth further discussion.

The most important point to consider in aircraft control is that the atom functions into which the mission
divides are essentially decoupled. Flight control, firs control and navigation (to name just a f--w atom
functions) affect different actuators. The application at hand is characterized by the fact that while
different atom functions might be triggered by common sensor inputs, the sink sets of the individual atom
functions are generally distinct. It should be noted here that the pilot is still the overall coordinating
agency -- albeit at a much highe.r level than in the conventional method.A

From this fact follows the present architecture which is not so much a true multipnrocessor architecture
(Enslow, P.H., March 1977) as It is a collection of cooperatively coupled computer systems that require
controller intervention at a low level for most of the time.

A secc-ad point worth considering is the existence two distinct bus sets - the data bus sat and the control
bus et. Tlhe control bua simplifies the executive software considerably and reduces the need for tight
syncroniation in the system.

Linked with the idea of a control bus permanently captured by the central controller are the bus controllers
and the architecture of each PM. The PM admits of considerable internal dec-entralization. The two bus
controllers -- which are actually dedicated processors with their own buffers -- handle transactions with the

* outside world. The Control Bus Controller (CBC) Is the "local arm" of the central controller. The CBC is
* activated by central controller command and is thus entirely under central control; but it has sufficient

intelligence to reduce controller loading. (An analogy nay here be drawn between the above and the channel
and device controllers in a commercial computer system. With a modestly intelligent device controller, the

4 channel controller simply needs to initiate device action and let the device do the rest until a device end
is encountered. Examples of device controllers are disk controllers, card-reader controllers, etc.) The
control hierarchy in DHACS is as follows:

6-4

Central Controller

Control Bus Controller

U

Data Bus Controller

1 4 Ms.i rocesaor

Memory

4. SYSTEN PERFON•WCE

4.1 Job Starting and Job Scheduling Delays

* Job scheduling delay is defined as the duration between a job request and the allocation of the system re-
sources for the execution of the job. Job starting delay is the time delay between the job request and the
actual execution of the job.

Due to the quasi-static scheduling policy followed, job scheduling and job starting delay are relevant only
when jobs need to be scheduled; i.e. at moments of change in mission profile or during P1M replacements.

Changes in mission profile are brought about when there is a demand for a new set of atom functions. The
varying nature of mission requirements suggests two choices: either allot a separate PH triad for every atom
function (whether required in the current mission profile or not) or allot PH triad, only on demand. The
second approach is the more practical and is adopted here. There are certain flight functions such as flight
control and navigation that must remain operational throughout the mission lifetime. Others such as those
used for landing and takeoff are available on demand. It is the scheduling delay for these jobs that we are
primarily concerned with: job scheduling delays do not ordinarily affect the "perennial" atom functions such
as those cited above.

Job starting and scheduling delays are expressed as follows:

Job starting delay - t 1 + t 2 + t 3 + t4

Job scheduling delay = t 1 + t2

where

t1 - time taken by the controller to take action upon the request for that particular atom function.

t - processor allotment time

t - software transfer time

t4 - processor check time

Of these times t1 and t 3 are highly variable; t 2 and t 4 are not so inconstadt.

Time invested by the central controller in reconfiguring the atom function is the sum of t 2 and t 4 , which
is relatively small and constant. The rate determining step in job starting delay is either t 1 or t 3 de-

pending on central controller loading. Except under'the most difficult conditions, tI<< t 3 which indicates

t3 as the rate determining step. t 3 is the ratio of the volume of software transferred to bus handwidth.

As estimation of the values of these variables iw not easy. However, an order-of-magnitude calculation may
be attempted as follows.
Processor allotment consists of two stages: 1) Find a PM that is available

2) Update the CBC Table and the CCST.

Step 1 involves (a) accessing of a record from the CCST, (b) checking its suitability, and (c) deciding
whether or dot to term±nate the search.

For a moderately fast system, accessing a record should take much less than 1 Usec. Checking its suitability
involves computing a Boolean function that, again, should take somewhat less than 5 usec (we assume a clock
rate of 10 MHz). The step (c) is essentially an appendage of (b).

It follows therefore that the total time (in psec) taken in locating a suitable PM is less than six times
* the number of accesses (typically 1). It is usually less than 12 psec even under poor conditions.

Once a PM has been located, updating the tables entails entering some four variable values in the CCST end
the atom function number in the CBC transactions register. This should involves less than 10 clock cycles
per entry making 50 clock periods in all, or about 5)eec.

6-5

Each applications program has a bootstrap portion that loads into the CRC table the variables of interest.
These are the variables the bus controllers are to recognize as being relevant to the particular atom
function in hand. This does not usually take more than 100 lisec. Hence t2 < 100 peec, and t 4 or the status

check time is very small and constant. The PM in question runs a test prograin atd sends the results to the
controller. The controller has only to match the answers with the right ones (held in its private memory)
to determine processor status.

It follows then that the total central controller time invested per PH reconfiguration approximates 100 l~sec.

Hence tI is now estimable by:

S1 z housekeeping time for normal activities + t 2 * n

where

n = # of PM's configured after request was received from the cocerned PM.

The allotment of PM's proceeds on a priority basis. The controller scans the atom functions that are to be
represented by the PM's and chooses the most important or eritical atom function :rom amongst these for
implementation. This procedure ensures swift implementation of the more important atom functions.

The Job scheduling and starting delay for reconfiguring indiv~dual PM's ideally have identical profiles --

L only the constants involved are aiffereut.

One possible outcome of the PM induction procedure is that under extreme circumstanceg it may so happen that
the least important atom function will never get assigned. This could be forestalled by automatically up-
dating priority as a monotonically increasing function of waiting time. We choose, however, not to do so
since the more critical functions must never be impaired for more than the minin.um possible duration. In any
case, as we shall see, this problem is more academic than real.

Figure 4 depicts the job scheduling delay as a function of the precedence in th- job request queue. The

precedence in the Job request queue is easy to determine. We have two distinct conditions under which
allocation is carried out. The mission profile may change or processors could suffer random knockouts.
The former case involves an entirely new set of atom functions simultaneously being required. The preced-
ence in the waiting queue is then simply the relative importance of the function in relation to the others
in the new sef.I A more complicated case (theoretically speaking) arises in random knockouts. As was mentioned earlier, it
is entirely possible that the random knockout of processors should occur at soah a pace and in such a se-
quence as to effectively kill a lowly atom function. This can, however, occur only when more than one
failure occurs more or less simultaneo.jsly. This is highly improbable. The probability of failure of a P1

is around 10-4 per hour. Reconfiguration takes less than 100 Usec for the controller to achieve. Prob-

ability of a processor failing in that time is approximately 10-11. For any atom function to be kept waiting
for central controller attention for time T, the number of more critical PM's that must fail is T/100 since
100 psec is approximately the time required by the central controller to reconstitute the injured triad.

4.2 Bus Access Delay

The system consists of a set of processors communicating by means of two sets of buses -- a data bus and a
control bus; both triply redundant for adequate fault tolerance. The control bus is perr.anently captured
by the central cluster controller and employed in such activities as test initiation, bus grant and rebroad-
cast command as well as the DISCONNECT commant issued by the central controller to a failed processor. The
data bus is allocated to whichever processor needs it on a First Come First Served basis. The average access
delay and maximum access delay as a function of the bus demand profile are studied.

The actual procedure for determining delay is very simple. Bus grant requests are put into a time indexed
array (a list) in the order in which they arrive. The central controller steps through the items in the
list granting access to the oldest item still outstanding. The time at which this bus grant is achieved is
noted and the delay is computed by subtracting the request arrival time from the bus grant time. Using these
figures, it is poseible to arrive at values for the maximum wait time for bus grant and for the average wait
time. Both parameters are of interest in evaluating the system; they have an important role to play in the
validation process.

The specific case we have described here is for 20 central cluster requests per "request cycle". The figure
of 20 may appear somewhat arbitrary, but in fact represents a system of typical complexity. Again, we're
looking more for the shape of the response profile than for actual numerical values.

The input arrival rate profiles studied are as in Figure 5. They therefore range from the uniform (1 request
per interval) to the very bursty (20 requests in the first frame; 0 elsewhere). The average and maximum
delay values that results are graphed in Figure 5.

4.3 System Reliability*

Reliability is a measure of the probability of failure. In a system as complicated as ours, there are clearly
many classes of failure. These are listed below.

Type 1 failure: A type 1 failure is said to have occurred when the capacity of the system to compute a
particular atom function haa been permanently removed. (By 'permanently' we mean of course till the system
is manually serviced). Since there are many atom functions, more than one type 1 failure can have occured
in the system at any one time.

This portion is drawn from' (Shin, K.G., and Krishna, C.M., December 1980).k[

6-6

Type 2 failure: A type 2 failure is said to have occurted when the capatity of the system to compute a
particular atom function has been temporarily removed. We subdivide this class into two subclasses.

Tye2a: A type 2a failure occurs when the impairment of system function has occurred for the time naided
to switch from active to backup units. This time is relatively small.

yp2: A type 2b failure occurs when the impairment lasts for as long as it takes to reallocate functions
amonS the central cluster processors.

Generally, a type 2b failure takes much longer to recover from then does a type 2a failure.

Probabilities of failure can be deduced as follows:

Let
mi - number of output actuator triads forming the sink set oZ atom function i.

nl . corresponding number for sensor triads in source set of atom function i,

Poens " probability of a sensor failure.

Pact - probability of an actuator failure.

Pbus - probability of a bus failure.

Pproc - probatility of processor failure.

It bears pointing out at this stage that the above probabilities are very small; we note that a typical

range is 10"4 to 10"7 per hour. With these values in miud;

Probability of a type 1 failure

p1 [nip3 sen + miP act + (mi+ni)p roc] +2pbus

Probability of a type 2a failure,

FP2 ~ [m ipact + (mi+ni)Pproc] + proc +2Pbu

Probability of a type 2b failure,

P2b p3 roc

where a - number of atom functions in the mission. To obtain a feeling for the actual figures involved, we
employ the following prubability estimates:

l- 4/r -6 -6 -5 /rproc lO-/hr, -10 /hr, p s 10 /hr, Pbus lO /hr"
Prcact sens

A- jimpl that all atom functions are identical with respect to hardware requirements and

ni - 2 for all i, mi - 1 for all i, a -5.

In such a case,

P) 0.5 x o0-11 per hour, p2a Z 0.5 x 10-3 per hour, p2b 10-6 per hour.

Note here that a - failure is the only true failure in the system sense; type 2a and 2b failures result
in system recotfi., -i tion with some less of throughput, but no system impairment of more than a temporary
nature.

5. COMPARISON WITH FTHP

We turn now to comparing two similar architectures: the DMACS and the C. S. Draper Laboratory's Fault-Tolerant
Multiprocessor (FTMP). It is not our intention in this section to seek to make definitive Judgments upon
the relative worth of the systems -- only to describe the implications of a set of design options taken in
each case.

The FTMP is, in hardware terms, superficially similar to our architecture. For instance, it is a bus-oriented
machine, with triple redundancy being used throughout for the detection and correction of errors.

The Draper Laboratory has essentially chesen a different set of options from ourselves. A study of the
differences together with a brief overview of the implications is worthwhile since it brings out in sharp
relief the tradeoff cption3 available to the systems architect.

. .w _" .. I

6-7

The major points of difference are:

& The processors in a triad operate in tight synchronism in the
FTMP while operation is completely asynchronous in the D1ACS
architecture.

a FTMP is essentially the central portion of an aircraft computer
control facility: data acquisition and delivery are not considered
in much detail. The DMACS architecture explicitly incorporates
sensors, actuators and associated processing equipment into the
system.

a Job scheduling in FTMP is completely dynamic; the system controller
is, for all practical purposes, a job scheduler. The DMACS system
involves quasi-static job scheduling.

* The bus structures are different. FTMP has a "Mass Memory Bus",
an "Internal I/0 Bus" and a' "External I/0 Bus" while the DMACS
makes do with just two sets of buses: a data bus set an4 a control
bus set.

a The basic processing module is far simpler in FTMP than in the
DMACS.

We provide below a more detailed exposition of the consequences of the differences noted above. In the
FTMP, all elements of the multiprocessor operate using a common time reference. Four mutually phase-locked
clock generator modules operating together provide a fault-tolerant time reference (Lala, J.H., & Smith, C.J.,
1979). The effect of this tight synchronism is to make data transfer between processors and memory and pro-
cessors and processors simpler and therefore faster. A comtuc-n clock obviates the need for a pseudo-handshake
its is used in the DACOI architecture. However, for this benefit in lowered intercommunicntion complexity, we
have to pay in terms of reduced reliability. The disabling of the clock will be disastrous to the system;
and i.htle the existence of four clock modules phase-locked to each other assures considerable fault-tolerance,
the synchronism nonetheless intr:duces an additional potential source of catastrophic failure. An additional
consequence of this is seen in the consideration of the third point in the above to which we shall come.
FTMP has an External I/0 bus and .n External I/0 port that handle data input and output. No restriction is

therefore placed on the hardware acquiring and using data: the configuration of the sensors and actuators
is undefined. This makes for easier adaptability to existing systems. The FTMP can therefore be "added on",
so to speak.

On the other hand, the DMAC architecture imposes a certain structure upon the actuators and sensors. The
reason is that we felt that characterizations of the system would be invalid if they did not include the
communication with the environment as part of the systems - and this, is after all, the very reason for

the existence of the computer system in the first place.

Job scheduling in the FTMP is entirely dynamic. This is justified by the Draper Laboratory after considera-
tion of the alternative which is the synchronous job scheduler. In synchronous job scheduling, periodic jobs
are completely prescheduled with each job occupying a certain predefined time slot in the schedule. The main
advantage is low central control overhead. It is claimed by the Draper Laboratory that the major disadvantage
of this kind of algorithm is the lack of flexibility and the complexity of preassigning jobs to processors in
a three-unit vultiprocessor. Again, failure of one of the processors in a triad or changes in job narmeters
:such as iteration rates, may require a totally new schedule. The synchronous scheduler is therefore not
adopted in FTMP (Lala, J.H.. and Smith, C. J.. 1979). Instead, an entire scheduling is carried out whenever
an atom function has to be executed.

The problems pointed out in the remarks above are very real; bit we believe they follow partly from the
tight synchronism the FTMP is forced to operate in. In an asynkchronous and highly decentralized system --
such as ours -- all the advantages of on-time job execution with practically no delays and a high load factor
are available (as we have seen in the performance characteristics) without the disadvantages mentioned above.

Again, when the mission profile changes, requiring a large-scale reallocation, the applications softoare for
the new atom functions thereby introduced are loaded (in the DMACS) using DMA and a conceptually simple pro-
cedure. Reconfiguration time in such cases is very low.

Our bus system is conceptually simple. All data (whatever its origin) is treated in the same way anJ broad-
cast on the data bus according to the same format. This simplifies malfunction detection and handling and
makes the systems software less complex. A control bus is ubed in addition to the data bus to simplify
central controller intervention in the system. The bus structure of FTMP is much more complex. While it
does not necessarily follow that a reduced reliability is the reslt of such increased complexity, it is,
in our opinion, to be avoided wherever possible.

All differences in structure and performance between the FTMP and DMACS can be held to issue from one basic
difference in design philosophy: FTMP IS LESS DECENTRALIED THAN OUR SYSTEM. The. central controller has a
major role to play in finding a processor every time an atom function is to be executed; no matter whether
the atom function is periodically required or not. The central control.ler -- which as has been pointed
out is basically a job scheduler -- is thus involved in scheduling evpn continuously periodic functions.
Thle result is a continuous high loading upon the controller and a relatively high overhead in the form
of applications software transfer. This may result in needlessly slowing down the system.

The DMACS architecture, on the other band, follows a consciously laid down policy of maximum decentralization.
The central controller is involved ir regular activitiec mainly in arbitrating access to the data bus.
Regular housekeeping chores are therefore not time-consuming. This has the merit that when an abnormal

event takes place the co roller response is faster than it would otherwise be. The controller delegates
many of the routine chores to the control bus controller@ in the various processing modules.

It is worth pointing out that the FTMP system is far older than our own. Consequently, it has undergone
more detailed analysis than the 1t1ACS. For one thing, a prototypical version of FTMP has been constructed
while our system is a. yet in the dewign stage. All our ratarks should therefore be read in this context.

6. CONCLUSINS AND DISCUSSION

This pipe-. has sought to describe a distributed processor structure for the effective control of military
aircraft. The goal has been to configure, out of components of military-grade reliability and easy avail-
ability, a computer system that is at the some time easy to expand, service, program and that is reliable
and flexible eaough to accept a considerable number of alterations without requiring a major revision of
the basic structure.

This project was motivated by a desire to employ the concept of Integrated Control in fighter aircraft.
Ad-hoc addition of components to aircraft results in wasteful redundancy that does not necessarily translate
into increased real redundancy from the performance point of view. Again, there is the very real possibility
of one element in the system affecting the performance of another; thus degrading the overall iystem per-
formance. This is clearly an unsatisfactory state of affairs but one that occurs frequently in extremely
complex systems. The conception and design of the system as a whole generate certain problems. However,
the holistic design of complex systems provides one with an opportunity to carry out optimization with
respect to the whole system enid not just with respect to one isolated component portion of it. By pooling
all resources into one large system it is possible always to provide increased reliability to the more
critical functions. Fighter aircraft today are designed to fly to the edge of instability and designers
push the inherent properties of the basic mechanical structure of the aircraft to the maximum possible
extent. In such a dynamic -- and not always friendly -- environment, it is essential that the reliability
of the basic critical flight functions be extremely high. The high reliability required of any system used
aboard a manned aircraft has to be achieved by using components that by themselves are far less reliable than

that. Commonly used figures for the reliability of rroctssors peg the reliability at around 10-4 failures
per hour. Mechanical devices such as actuators do V4ot show a very great improvement upon this figure. It
is therefore contingent upon the structure or the configuration of the compute- system to create, out rf
components that are by themselves not very reliable, a super-reliable system.

The requirement of high throughput is no less important than that of reliability. The fighter aircraft
operates in a highly dynamic environment and much of the data from the sensors has to be processed in real-
time. The environment is characterized by rapid surges in demand upon the services of the computer system.
The system t.ust therefore be robust enough to absorb such surges witbout a lowering of reliability.

A third requirement is ease of programing and system flexibility. A system thnt is not easy to program is
potentially very expensive to operate and is prune to errors. System flexibility and modularity are required
for ease of servicing and maintenance.

The present system is based upon the three basic requirements liited above. Reliability is provided through
the use of triple-modular redundancy with voting and a conceptually simple structure.

A high throughput (or low bus-accees delay whichis equLvalent to high throughput in our case) is achieved
by meano of using two sets of buses instead of juet ona. The control bus triad serves essentially two pur-
poses: first, it lowers the demand upon the data bus and second, it provides the central controller with a
simple means of propagating control signals. Controller intervention into system activity is not delayed
by ongoing transmissions upon the data bus.

The modularity that is built into the system provides ease of programing together with expendability and
improved serviceability.

It is clear, therefore, that the configuration arrived at is a direct result of the requirements of reli-
ability, ability, high throughput and flexibility.

There are, however, many interesting problems not yet studied in any great depth. The simulation of the
present structure has been partial and with respect only to specific characteristics such as job scheduling
delays, reliability and bus access delay. A more complete simulation package for the system is planned.

REPERENCES

EIl Enslow, P. H., March 1977, "Multlprocessor Organization - A Survey", Computing Surveys, Vol. 9, No. 1,
pp. 103-129.

[2] Hopkins, A. L. Et al., October 1978, "FTMP - A Highly Reliable Fault-Tolerant Computer for Aircraft
Control", Proceedings of the IEEE, Vol. 66, No. 10, pp. 1221-1239.

131 Lala, J. H. and Smith, C. J., 11,79, "Performance and Economy of a Fault-To| -rant Multiprocessor",
New York, troceedinst of National Computer Conference. pp. 481-492.

[4] Robinson, A.C., Hitt, E.F., December 1978, "Integrated Control - A Unified Approach to Manngement of an
Aircraft", Task Final Report, AFFDL/AC, Contract No. F33615-76-C3145.

[5] Shin, K. G., December 1979, "System Architectures for Implementing integrated Control Approach to
Management of a Military Aircraft", Final Report, AFFDLIAGC, Contract No. F 33615-76-C314', Request
No. 49.

[6] Shin, K.C., and Krishna, C.M., December 1980, "A Distributed W'.croprocessor System for Controlling

and Managing Military Aircraft", Miami, Florida, Proceedings or Distributed Data Acquisition, Computing

6-9

and Control Symposium.

[7] Wensley, J.11., et al., October 1978, "SIFT, The Design and Analysis of Fault-Tolerant Computer

for Aircraft Control", Proc. IEFE, Vol. 66 No. 10. pp. 1240-1235.

181 White, J. A., et al., October 1979, "Multi-microprocessor Flight Control System Architectural Concepts",
Los Angeles, CA., Proceedings of AIAA Computers in Aerospace Conference, pp, 87-92.

SENSORS, ACTUATORS, DISPLAY,PILOT COMMANDS

!

CT
C;LUSTER

PERIPHERAL
CLUSTER

Figire 1. Overview of System Architecture

MEN

V4)

wI

wG

IPERIPHERAL
CLUSTER OF

IPROCESSORS

SENSOR BUS M*OE TRIAD

CONTROL

ATA ACTUATO

I~ENO DAAAERPTA

IBSESR PRCESS

n n

CLUSTER

~Figure 3a. Peripheral Area Detail

6-12

Job)

Scheduling slope t 1 t

T

1 2 3 4 5 6 7 8 9 10 11 12

Precedence in

job queue

T' housekeeping time

Figure 4. Job Scheduling Delay

6-13

20

heq/f rame

10

rI

1 2 3 4 5 6 7 8 1 10 11 13 17 20

Frame -•

Figure 5a. Bus Request Profile

14

13

12

11

delay to

9

8

7

6
5

4

3

2

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

req/frame

Figure 5b. Average Bus Access Delay

12

I1

10

delay 7

6

3 j

15, 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

req/framu

Figure 5c. Maximum Bus Access Delay

..

7-1

THE DEVELOPMENT OF ASYNCHRONOUS MULTIPROCESSOR CONCFPTS FOR

FLIGHT CONTROL SYSTEM APPLICATIONS

S. M. Wright and J. G. Brown
British Aerospace

Brough
North Humberside
United Kirgdom

SUMAY

In early 1979 a limited research investigation was initiated to examine the possible impact that recent
advances in large scale integrated circuit technology might have if applied to flight control systems.
The initial studies concentrated on alternative digital processor architectures.

One promising research avenue was identified as being the use of multiple microprocessors, each functionally
dedicated and running asynchronously with a short program cycle time. This approach promises benefits in
a number of areast

1. ease of generating/proving high integrity software
2. reduced propagation delays
3. reduced hardware/software synchronisation overheads
4. retention of classical feedback control design techniques
5. extendable processing power

Part of the ongoing Active Control Technology activity at BAe Brou6h is an involvement in a flight dynamics
research programme using s RAE Hunter aircraft converted to fly-by-wire. This programme has identified a
need for a flexible digital flight control processor for such research and has provided a focus and stimulus
for multiprocessor studies. As a result BAe Brough are now in the process of developing a multiplex digital
full authority flight control computer for this specific application, with a view to installation in the
aircraft.

Because of the short timescale of this particular application certain questions which would relate to a
production system have been circumvented rather than resolved. However, this does not affect the concept
which is considered to be of considerable interest and relevance to future systems.

1. INTRODUCTION

As aircraft designers have striven for more and more aerodynamic performance, the aircraft's natural
stability and control characteristics have deteriorated. This has required the application of increasingly
complex feedback control systems in order to artificially restore good handling characteristics. This
process has reached the stage where some current and most projected combat aircraft are totally reliant on
the correct and continuous operation of these active control systems. Typically, present generation
aircraft use analogue computation which is multiple redundant in order to achieve the integrity targets
necessary for a flight critical function e.g. Tornado or F16.

Analogue computation, however, restricts the type and complexity of control law which can be applied. It
can also cause production and/or maintenance problems in achieving the required level of matching of
characteristics between one computer and the next, and it can be difficult to modify the control character-
istics.

These problems have led designers towards the application of digital processors to computation of the
control action since they promise to substantially reduce all the above problems. Digital computers offer
the additional advantages of being able to incorporate extensive built-in and pre-flight tests, together
with a reduced size and weight. The overall architecture of the system has remained as a mumber of
identical lanes each designed around a central digital processor. In practice it is becoming increasingly
apparent that the software costsassociated with such systems are very high. These costs are principally
associated with the flight critical nature of the computation since if there were any faults in the software,
then it would occur simultaneously in all lanes of the system causing possible loss of the aircraft. In
order to minimise the possibility of such a failure, great reliance is placed on independent and
comprehensive cross checking of the operation of the control program, and or. the management system
established to ensure compliance with these safeguards. Further costs are introduced by the need to
produce large amounts of code which must be optimised so that any computation time delays are minimised.
This involves programming at assembler level, and this in turn requires the establishment of a dedicated
team of experienced programmers. This results not only in high costs but also in long timescales from
control law specification to the production of verified software. This may be acceptable for a production
aircraft but certainly not for u research aircraft, and probably noL Cor the development phase of a new
aircraft since here the ability to rapidly modify the control characteristics is essential.

Even after the most comprehensive software testing there will still be some concern that there could be
some latent fault present in the program which would only manifest itself under a particular combination
of circumstances, resulting in a catastrophic failure. This is due to the very large number of states
that a digital processor can enter, corresponding to different data values and paths through the program.
Because of these problems it was considered worthwhile re-examining the basic concept of the central
digital processor to see if a different hardware approach could ease the task of software generation,
particularly with reference to research and development aircraft but potentially for general application.
The aim of this investigation was to reduce the magnitude of the software task to a level where it could
be accommodated by an on-site team, to suggest ways of generating visible testable software less prone to
context dependent failures and to provide a system with the type of excess computational power that would
allow the convenient investigation of advancee control concepts. This approach was considered viable
firstly because the amount of programming normally associated with control functions could be lens than 25%

7-2

the rest being accounted for by various housekeeping functions such as consolidation, br'ilt-irn and
pre-flight test, failure management etc. (Ref. Corney 1979). Secondly, becalse of the considerable
a4.vances being maie in the field of large scale integrated circuit technology, particularly ir the area
of microprocessors.

2. PROPOSED PROCESSOR ARCHITECTURE

2.1. Relevance of a multiprocessor approach

The first step is to attempt to partition the software into small modules which can only interact in a
limited number of well defined ways which. if possible, should ease the specification, modification and
testing of the program. This type of partitioning has been implemented on ground based systems using
specialised operating systems e.g. MASCOT (ref. Jackson K. and Simpson H. R. 1974) and . i the considerable
advantuge that the interface between modules is so well defined that an individual modul, can be removed,
modified arid replaced v!itnout requiring re-validation of all the other software modules comprising the
system. However, this technique implies the use of complex executive software which in itself would be
difficult to develop and validate to the required level of confidence, and would be an extra overhead on
the control proceesor~s time. Hence both the software and hardware need to be partitioned, i.e. each
software module can be allocated its own dedicated processor such that all the tasks run in parallel.

Since the constituent processors in such a eystem are rur-ning in parallel then the computation time delay
can be significantly reduced, hopefully to a value where it becomes insignificant. This should relax the
otherwise atri'.gent requirement of producing highly optimised code to minimise execution time. It could
also simplify the contý.ol law design task since, if time delays are insignificant, then the analysis and
design of the control system can be accomplished using classical linear control theory with no need to
resort to Z transformn techniques.

An additional advantage of a multiprocessor configuration is that it provides extendable processing power,
thus allowing flexible incremental enhancement of the control capabilities of ; system, either in response
to new applications, or to a gradual development of the original application.

2.2. Choice of a communication strategy

The traditional difficulty with a multiprocessor system lies in the choice of a communication stLategy.
If a bus structure is chosen then the throughput of the bus can constrain system expansion or introduce
variable time delays dependent on bus loading. If a nultiport temory technique is used then this limits
the number of processors which can be attached. More advanced concepts such as packet switching networks,
could comprise a research programme in their own right. With 'any of these systems it is difficult to
constrain access between processors such that the effect of a software fault in one processor cannot cause
unpredictable software faults in other modules.

A network communication strategy doe: not inhibit systei' expansion since the number of links can be
increased indefinitely to accommodate the extra data traffic caused by additional processors. If the
links are constrained arbitrarily to c rry data but not control information then the effects of failure in
any one module become predictable. hen Aallowing the possible containment of failurer which occur in non
flight critical sections of code. This should either improve reliability in operation, or reduce the
burden of testing. This inherently ri -ous control over the interface between software modules also
reduces the potential for adverse intera tieor between the sections of code prodaced by different members
of a programming teem either during the itial program development phase, or after modification of an
individual module, since the structured Iogramming cocept of having locally defined variables only
availble locally is implicit in this y :ý m.

Typically the data being transmitted betwen processing modules in a real time control system consists of
a number of variables each representing a 4ntinuouua function of time. If each variable is allocated a
unique communication channel then the oper ion of the system can be conveniently monitored, hence easing
testing and acceptance procedures. Since esch variable represents L continuous function of time and cannot
be overwritten except by a more recent value, thei 'i it becomes possible to dispense. with the need for
handshake routines, interrupt handlers, or other software protocols, again easing the programming task.

Thus we have the concept of ar asynchronous multiprocessor flight control computer. If this computer can
be made from a number of identical hardware blocks then there is also potential for reduced hardware costs
and increased flexibility in configuring a control computer to meet different applications, requiring
perhaps different levels of redundancy, or processor power. This is in addition to tne system design,
programming, and integrity benefits already suggested.

3. EXPERIMEidTAL MU, IPROCESSO SYSTEM

3.1. Choice of Processor

Having decided to investigate the implications of ;his type of asynchronous multiprocessor concept, the
first task was to choose a commercially available microprocessor wnich could demonstrate the major
features of the idea without involving an extensive hardware development programme. The relatively large
nutmer of processor modules anticipated for a practical system focused our attention on single chip
microprocessors in order to keep the volume of the final system within practical bounds. One simple
method of achieving asynchronous communication between processors is to use analogue interconnections;
this, together with a requirement for high processor speed and UV Erasable PROM programming, narrowed the
available field down to one device, the Intel 2920 Analogue Signal Processor (See figure 1 for a
functional block diagram and functional specification of this processor.)

The choice of a device with analogue interfaces also allows convenient integrati-n with existing analogue
lAight control systems with which we are involved and offers the possibility of enhancing these systems

and developing control computing ideas in parallel.

7.3

Thero are, howtiver, some oharacteristics of this devire which, while they would not affect any concept
proving exercises, might prejudice e pplJcation to a realistic control task. Viz:

"-. I/0 resolution of only 9 bits (internal resolution of 25 bits)

2. Limited instruction set (no branch instruction)

3. Limited program space

4. New device of uncertain detailed characteristics

It was decided to proceed with a conuept proving exercise since it was anticipated that, if successful,
then the above limitations could be overcome if necessary on a fully engineered system, probably using
a different processor. Alternatively this initial study might show that the short term expedient
application of this device to current flight control tasks was practical.

The resolution of the analogue input and output t. at least twc bits less than required but, since the
relevant interfaces are an integral part of the device, it was impossible to alter the hardware character-
istice. A software technique wan therefore developed which (at the expense of a small external hardware
modification) enabled bandwidth to be traded for improved resolution. This technique has been shown to
be capable of achieving a three bit enhancement with a reduction in interface bandwidth from 8 kHz to 1 kHz.

!" See Fig. 2 (Ref. Wright and Fletcher 1980).

The lack of branch instructions is an advantage from the point of view of software testing since it
dramatically reduces the number of possible context dependent failures. It is also of benefit in the
coding of linear control functions since every instruction is executed every program pass and hence the I
iteration rate is conotant, independent of the software (equal to 0.12 me for the 2920-16 operating at
a 600 no cycle time). However, combined with the limited instruction set and program size, this cast
doubts on the ability to use the device to implement complex control functions, particularly those
involving logarithmic and trigonometric functions, and so several exercises were undertaken to test this.

In one case a waveform generation/co-ordinate transformation task was programmed on one processor, including
full four quadrant sine/cosine functions (See Fig. 3 and Ref. Wright, 1980). In a second exercise the
programming of aircraft control laws was investigated. This study indicated that a typical longitudinal
control system, including gain scheduling and special high incidence control laws, could be implemented
on four processors (Ref. Sharae, 1980). Figure 4 illustrates a representative flight control law element.

The detailed hardware characteristics of the device are still undergoing extensive testing but it appears
that if suitable precautions are taken then this device can be applied in the short term to a number of
contxol tasks.

3.2. Standard computing and interface modules

In order to use this device in a range of applications without incurring extensive additional hardware

development, a pair of hardware modules were developed, one performing computing and one the interfacing
function. (See Fig. 5) Each is a printed circuit card cnrrying t number of sub-modules. The PO3 tracks
carry the interconnections always required in any application, while those connections needed for a
specific task are tided by component selection and appropriate wire links. The design for a computing
card incorporates provision for up to eight microprocessors. All the analogue input and output lines from
each processor, together with a substantial proportion of the edge connection lines are left uncommitted
ready for suitable wire link patching to suit a specific task.

It is less obvious how the interfacing can be standardised. However, since the Intel 2920 has its own
analogue Input/Output and the bulk oý control signals will be analogue, the interfacing requirement reduces
to a simple one of buffering, antialiaising filter, offset and gain adjustment. This list of requirements
can be accomplished using a single op-amp circuit which can also act as the summing junction needed to
perform the resolution enhancement referred to pieviously. Even the usually complex antiliaiaing filter
can be accomplished with a simple first order filter because the very high sample rate relative to signal
bandwidth will tolerate the shallow cut uff slope. Thus a PC design compviiing eight of these standard
modules on a card 'as been prod•,ced and can be modified by suitable component selection to suit most
tasks. The exceptions to this can be considered as special cases, and for this purpose an uncommitted
area has been allowed on the PC card to cater for any special purpose circuitry.

4. DOCUMETTTION AND TESTING

The foregoing sections have shown that the software generation task can be reduced by functionally partitiontu
the hardware and software, and how this might be achieved in practice. However, this software still has to
be free of errors and there is still a need for rigid specification, documentation, test and acceptance
procedures. It is interesting to note the parallels between the computing philosophy outlined above and a
general purpose analogue computer. This suggests a possible documentation and test philosophy based on

conventional analogue practice which should ensihre maximum visibility to all concerned (see Fig. 6).

Following design, analysis and simulation, control laws are normally specified by functional block diagrams.
This form is readily converted into a full computer specification by identifying the function of each

rocessing module and the details of the interuvanorntions both between modules and external to the computer
indcluing anaiogue signal levels, scale factors eto). Each module functional specification can then be

converted into a program and thence into discrete hardware. The documentation of this module would comprise
the program listing (fully comnented), a definition of the scaling and truncation of all intermediate
variables, and a definition of all possible context dependencies.

A test procedure is required for each module, independently derived from the module functional specification.
This will be a hardware functional check to be performed on the processing module after programming by ý
stimulating the inputs and monitoring the outputs. The tests will exercise all inputs, internal variables

7-4

and outputs over their full range of amplitude and "requency and will check for correct operation of all
conditional instructions.

The test procedure serves both to verify the software and to check that the processor has been correctly
programmed and is functioning correctly. Since the check out is fully comprehensve there is no need
for separate software verification procedures based on emulations or other computer based procedures.

The complete computer would be functionally tested in a similar way, testing all input/output interfaces,
all communications between modules, all modes of operation etc. but without having to repeat the exhaustive
software checkout since no module can affect the correct functioning of any other module.

This reliance on functional specification and test promises to reduce the magnitude of the documentation
task, and the increased visibility of the testing process should give improved confidence that the final
product will operate consistently and correctly.

5. CURRENT APPLICATIONS

Of several applications being pursued, the most challenging involves the Royal Aircraft Establishment's
Fly-by-Wire Hunter aircraft which is currently being operated Jointly with British Aerospace, Brough, on
a flight dynamics reseerch programme. This aircraft is currently fitted with a quadruplex analogue

V active control system. It is hoped that by gradually introducing a number of processors into this system
the multiple asynchronous microprocessor concept can be proved, while at the same time enhancing the
capability (in terms of flexibility and complexity of control laws) of the existing system and it is
intended that a number of the processing and interfacing carts be configured as a duplex, fail passive,
computer which can be used for ad hoc extentions to the existing control law computations. Initially
this will be of limited authority but, as confidence is gained in the system, more comprehensive control
functions can be added with wider authority until all of the present analogue control law implmentation
has been replaced. This should provide a considerable increase in utility of this aircraft as an
experimental vehicle, and should expose these asynchronous multiprocessor concepts to a realistic test
of their practicality at an early stage. If this work is successful it is then anticipated that further
extension of the digital computing sections could allow the failure management, built-in and pre-flight
test functions (currently implmented with analogue techniques) to be updated until a multiprocessor
configuration was achieved which would be fully representative of a production flight control computer
configuration.

In addition to the above flight control applications there is a need to investigate the maintainability
and survivability of such a system and its possible application to, and implications on, the rest of the
aircraft systems. With this in mind a laboratory breadboard of a multiplex system is being developed to
study the flight control system architecture per se and also to provide a means of emulating a flight
control system to study the interaction with other systems. This work is therefore closely tied to other
developmený work involving avionic and hydraulic systems rigs.

6. FUTURE DEVELOPMENTS

If, in pursuing these research tasks, the experimental system provides the flexibility and performance
that is hoped for, then the next step would be to develop a fully engineered version. At that stage
the choice of processing module would be reassessed in the light of experience, bearing in mind the less
severe constraints on hardware development. In particular the choice of analogue communication between
Smodules, while being expedient in the short term, is inappropriate for an engineered system since it
"reintroduces some of the problems of analogue systems: it is succeptable to noise pick up, gain variation
and offset problems, and can have significant variation of characteristics with temperature. A possible
alternative is to use a small dual port memory as en asynchronous buffer between each pair of processing
modules. There would then be more freedom of choice of processing module and this could make other
desirable features such as hardware multiply available. This type of development would result in a chip
set rather than a single chip processing module. This could conveniently be integrated using a hybrid
packaging technique to retain the circuit design advantages of a simple modular structure.

It is worth noting that this asynchronous multiproc~ssor concept with its very simple communication
structure lends itself to anvestigetion of othar advanced flight control system concepts. In particular,
the 2920 Signal Processor with its analogue interfaces should be eminently suitable for implementing
hybrid dissimilar redundant control systems where a very simple analogue control loop is augmented by an
advanced digital controller (such as that suggested by GILL F 1979). Also it has been suggested that
asynchronous multiproceesors can be organised into a fault tolerant system by the addition of suhtable
control structures (ref. Segall et al 1979). While this observation was aimed at general purpoes
computing, a simple variant on the theme could allow an equivalent philosophy for dedicated control
processing to be developed. The aim of these studies would be to reduce the level of redundancy required
in order to achieve a high integrity control scheme. Both schemes operate by accepting degraded operation
of non essential functions following a failure. If the level of redundancy required could be reduced,
then it could allow the considerable benefits of active control techniques to be applied to a much wider
range of aircraft.

7. CONCLUSIONS

Digital computation of control functions using a multi redundant system offers considerable benefits over
a similar analogue system. However, it introduces some difficulties of its own, particularly 1) a lack
of visibility of system operation which complicates testing, 2) time delays and synchronisation problemsS~which complicate the control law design and the coding, 3) possible occurrence of obscure context

dependent failures.

A multiprocessor flight control computer allows the software task to be partitioned into convenient
modules thus easing the generation and testing of suitable code. It allows these modules to run in parallel
thus reducing time delay problems. Asynchronous communication over dedicated links provides visibility of
opuration so aiding test and acceptance procedures. Finally, a restricted instruction set can substantially

7-5

reduce the nwr.ber and type of possible context dependent problems.

Thus the task of developing and testing flight control software should be considerably eased. This is
particularly important during the development phase of a new aircrafi, or for an experimental control
law/flight dynamics research aircraft. The disadvantages of this approach are that it does not provide
a minimum hardware solution and it does not lend itself to high order matrix computation. These factors
are probably not significant given the rapidly reducing costs of hardware and the control techniques
which are likely to be used in aircraft in the forseeable future. The asynchronous multiprocessor
approach may even introduce hardware benefits by developing a number of modules which can be readily
configured for a wide range of high reliability control applications.

If in total these factors reduce the software task to a level which can be supported "in house" then major
improvements should be possible in the rate at which results can be achieved from and improvements
incorporated into a flight development programme. In practice these potential advantages can only be assessed
on the basis of practical experience and it is hoped that the research programme outlined above in both
ground rig ard airborne applications, will demonstrate these.

ACKNOWLEDGaENTS

The authors are indebted to British Aerospace for permission to present this paper, and to the Royal
Aircraft Establishment for their support and encouragement during the course of this project. The views
presented, bowever, are entirely their own.

REFERENCES

Corney, J. M. Aircraft active control systems: the inner loop. RAeS Spring
Conrention "Aerospace Electronics in the Next Two Decades" 1979.

Gill, F. Ideas for future efficient flight control systems. RAE Tech. Memo.
FS 256, 1979.

Jackson, K. and Simpson, H. T. MASCOT - A modular approach to system ccnstruction operation and
test. AGARD CP 149 1974.

Segall, Z., Yoeli, M., Strosbourger, E. Parallel fault toleran;• computation structure. Computers and
Digital Techniques Vol. 2 No. 2.

Sharaz, A. Implementation of Flight Control System constituents using an
Analogue Prccessor. BAe Tech. Note YED 6981 1980.

Wright, S. M. and Fletcher, M. A technique for improving the effective resolution of an A to D
converter. BAe Tech. Note YEL 6351 April 1980.

Wright, S. M. Implementation of log hyperbolic, trigonometric and exponential
functions on an Intel 2920 signal processor. BAe Tech. Note
YED 6986 1980.

7-6

0 Real Time Digital Processing of
Analog Signals

* Nominal Signal Bandwidths from DC

to 10KHz

0 Diqitai Processing Accuracy and
Stability

0 Special Purpose Instruction Set for
Signal Processing

* Twentyfive Bit Wide Data Word

0 400 ns Instruction Execution Time

* Multiple Analog Inputs (4) and Outputs (8)

* On-Chip Sample and Hold Circuits
and D/A Converter

* On-Chip EPROM: User Programmable
and UV Erasable

* On-Chip Scratch Pad Memory (40 Locations)

0 Analog and/or TTL Output
Waveforms, User Selectable

0 192 Program Locations

Fig. Ia Summary of INTEL 2920 Processor Features

Il

VSF PROGRAM STORAGE(EPROM) RST/EOP

RUN/R= 192 x 24

-II SIG0)(0
SIGIN ill AD" SIGOUT (01

SIGIN f2) MU IMMR SIGOUT Ill

SIGIN (3) CAP_ 1 SH a 8- SIGOUT 12)

7 r MIX SIGOUI 13)
CAP 2&

S&I's SIGOUT (4j

X2 =,,GOUT 15)

DCOUGEU 5160)1

6CL- - XK1CLK SIGOUT (7)

VREF -5V 5V O- GRDD GRA M1 M2

"EXTERNAL COMPONENTS

DIAGRAM COURTESY OF INTEL

Fig. I b Functional Block Diagram of INTEL 2920 Processor Architecture

7-7

INPUT NON ENHANCED
SIGNAL OUTPUT

WAVEFORM x<3

GENERATOR

0.1 Hz 0.25 V P to P i

Wn =800 RAOs LI.

+ .LOW PASS X3 WP'

0 0

-o (a

k1 01
SAWTOOTH ,_________.

GENERATOR

ENHANCEMENT ENHANCED

SIGNAL OUTPUT

Ra

Fig.2 Resolution Enhancement Test Results

S~7-8

4(4 WAVEFORM

GENERATOR
FUNCTION*

OSCILLOSCOPE

rXIrI 0 Aee 8to 0 01 r 1:0 Sin e Coso A s B(ttO) Sin (W x t)[y ,0a0 Lc xt II

WHERE x, y ARE ORTHOGONAL INPUTS TO THE OSCILLOSCOPE
A, B, C ARE REAL CONSTANTS

t =TIME
to - INITIAL TIME
W = ANGULAR VELOCITY OF HELIX VECTOR ROTATION IN

THE ORIGINAL x, y PLANE (a- 0)
I = INPUT ANGLE USED TO ROTATE THE HELIX IN THE

Z PLANE NORMAL TO THE ORIGINAL x, y PLANE

TYPICAL DISPLAY
REPETITION RATE 25 Hz

II

e= o 0
0 450

Fig.3 Example of Trig Function Implemented on INTEL 2920

7-9

INPUT OUT OUTPUT

BLOCK DIAGRAM OF THE FILTER

RESPONSE TO A LARGE INPUT

TESTEPO INPUT

RESPONSE TO A SMALL INPUT

TIME

COMPARISON OF NORMALISED RESPONSES TO A STEP UNIT

Fig.4 Non Linear Filter - In Example of the Type of Control Law Function Cuwintly Implemented

7-10

PROCESSING
MODULES (8)

CLOCK
CIRCUIT

RESET
BUFFERS

COMPUTING CARDJ

503 100

milimetres VOLTAGE

INTERFACE
MODULES (8) -

OPERATIONAL
AMPLIFIER

COARSE GAIN &
OFFSET SETTING

FINERET
OFFSET
ADJUST FINE INTERFACE CARD GENERATOR

GAI N
ADJUST

Fig.5 Example Computing and lnterf.~ce Cards

7-11

CONTROL REQUIREMENTS

SIMULATION CONI ROL LAW DESIGN

CONTROL COMPUTER CONCEPTUALISPECIFICATION DESIGN

I ~COMPUTER FUNCTIONAL SPECIFICATION)

PROCESSOR INTERFACE INTERCONNECTS A/C
FUNCTIONAL CIRCUITS SPECS INSTALLATION

SPECS SPECS SPECS

CLOSED

LOOP

CIRCUIT OFFICIALTEST I PROGRAMS AND WIRING HARDWAREI P!OEDUESDIAGRAMS DEFINITION

COMPUTER PROGRAMMED MANUFACTURE
TEST TESTED AND

PROCEDURE PROCESSORS ASSE MB LY

COMPUTER

------------------------------------ TESTED COMPUTER

Fis-6 Deejin lest and Documentation Process

8-! "

FUNCTIONAL VERSUS COMMUNICATION STRUCTURES IN MODERN AVIONIC SYSTEMS

by

K. Brammer and A. Weimann
ESG Elektrorxik-System-Gesellschaft mbH

Postfach 800569
D-8000 Muenchen 80

W. Germany

SUMMARY

In the early design stags, an avionic system is functionally structured into subsystems,
which in turn are broken down into functional units (equipments). With conventional tech-
nologies and with signal wiring connections of the single source, single drain type, the
functional structure, which is of the hierarchical type, could more or less be carried
over to the implementation stage. Especially the line replaceable units comprising an
equipment were typically wired to the master unit of the equipment which in turn mainly
communicated with the master unit (e.g. computer) of the subsystem.

In recent years this situation has been changing rapidly. Current technological trends
that have major implications on avionic system structures are:

- For intrasystem signal transmission, networks of wires connecting a single transmitter
with a single receiver are being replaced by bus systems with time division broadcast
characteristics.

- Progress in data processing technology renders it feasible to assign digitally per-
formed functions to much lower system levels than before.

- In aircraft design, control configured vehicle (CCV) technology implies the substitu-
tion of mechanical means for flight critical functions, such as basic stabilization
and primary flight control by electronic data processing and transmitting means. This
has raised unprecedented requirements on reliability and survivability of avionic ele-
ments and intrasystem communication.

In the Zield of navigation sensors, mechanically stabilized units like inertial plat-
forms, Doppler radar antennas, flux valves etc. are replaced by strap down sensors,
where the decoupling of sensed information from the aircraft's rotations is now per-
formed by electronic data processing.

- Scanning of directional sensors, e.g. fire control radar, ESM or ECM antennas, is in-
creasingly performed by electronic means.

In the paper, the implications of the accompanying increase in functional and communica-tion interfaces on avionic system structures are analyzed. Especially the passage from I

functional design to implemented communication structure of the airborne electronic sys- V
tem is scrutinized. The distributed organisation of an avionic system, the realizaticn of
which is greatly simplified by bun type intrasystem signal transmission, is compared to
the conventional hierarchical system organisation. Advantages and drawbacks of both
organisations are reviewed especially with respect to interface efficiency, cabling
requirements and the typical topology of avionic systems.

The topic is illustrated by the structures of a conventional and a modern avionic system.

1. INTRODUCTION

The paper addresses a problem which has arisen in avionic system design due to technolo-
gical changes in intrasystem communication. In the past, there existed a great degree of
correspondence - at least in principle - between the process of functional structuring
of an avionic system in the design stage on the one hand, and the communication structure
within the system on the other hand. Both structures were essentially of the hierarchical
type.

In the meantime the advent of aew concepts and technologies has brought about a certain
discrepancy between the functional design of the system and the implementation of intra-
system communication. Whereas the former continues to be hierarchical, the latter treats
the terminals as peers.

It seems that this trend has been produced mainly by three developments: the simplification
of cabling, e.g. by the use of bus systems, the distribution of processing to equipments
and line replaceable units, and the transfer of network and switching concepts from tele-
communications to computer networks and, subsequently, to avionics systems.

In this paper an attempt is made to draw a partial resumb of the former clean situation
as a reference and to discuss the new mixed situation with respect to this background.

8-2

2. HIERARCHICAL ASPECTS IN AVIONIC SYSTEMS

2.1 Avionic System Design Principle

The basic method and the main steps of avionic system design have becomo fairly well
settled and generally accepted. Here we sum up the major features as a starting point
for the subsequent analysis.

The task of syL,,,n design is always subject to the relevant general constraints such as
national or in' national standards, practices, logistics procedures and so on. These
are not always :Rplicitly listed by the customer, rather their knowledge is often impli-
citly expected to be part of the professional experience of the designer.

The speý,ification of the avionic system requirements is the basic dccument containing
the technical points of reference for the system to be designed. It defines the task,
the functions, the performance and the modes of the system, together with its technical
boundary conditions (e.g. given constraints regarding weight), the physical operating
environment, the external interfaces (e.g. communicaticn, power supply, man machine
interface) and the availability parameters.

In response to this input, the designer concei, .- and nominates the system parts which
in combination are potentially able to fulfil' the requirements.

The interrelation of these parts is then manifested by the design of the system archi-
tecture and organisation, i.e. by creating the structure and assigning functional res-J
ponsibilities and management authorities to hardware parts, software parts and the operator.

This step must be accompanied by the definition of all arising interfaces between the
system parts. Now the fulfilment of the requirements can be checked. If the result of
this cycle is positive, one is able to specify the system parts.

Usually the decomposition of a system requirement or specification into a set of partial
specifications is not done in a single cycle, but in repeated cycles at successively
lower system levels.

Although in reality it is not always possible to follow this design procedure in complete

purity, this so-called top down design philosophy has become widely accepted as a basic
guideline.

2.2 Functional Architecture

Figure 1 illustrates the top down design process and the resulting functional architecture
of the avionic system (LAUBER, 1980).

At the top level we have the functional description of the overall system. At level 2 the
decomposition into functional areas or subsystems has been performed. The intermediate
level between levels 1 and 2 describes the interrelations between the system and its
subsystems and between the subsystems among each other.

The next cycle leads from the subsystem level to the level of functional modules, imple-
mented either by software or by hardware, i.e. equipments.

From a systems engineering point of view it is necessary to proceed until the level of
construction modules, at least in case of hardware, because the installation and power
supply of all black boxes or line replaceable units must be defined.

The breakdown of black boxes internally, e.g. into circuit boards, is uvually left to
the equipment manufacturer and is of no concern in the following discussion.
It is evident from Figure 1, that the top down design nethod automatically produces a
hierarchical set of specifications for the parts of the avionic system.

2.3 Interface Efficiency

It is remarkable, that one finds much agreement on the top down procedure, but scarcely
any philosophical or useful theoretical justification for it. The feeling exists that
it is an economical and efficient way to proueed.

In Fig. 2 this point is confirmed with respect to the maximum number of potential inter--
faces among the members of hierarchies as compared to peer grcups.

As a reference we use the total number of possible mutual interfaces in a peer group,
This number R is obviously equal to N(N-1)/2 where N is the number of members. The number
of interfaces in a hierarchy is calle R . Dividing by the reference number R, we ob-
tain a measure of interface efficie i.- .RAMMER, 1981 -. This measure is plotted in Fig. 2
as a function of the number of meb•.'s, N, in a double logarithmic scale. Two parameters
are used to describe the hierarchy: the number of levels, and the number of associates to
each master. For simplicity the latter parameter is kept equal for all masters, regard-
less of the levels. 4L'ii

8-3

If the hierarchy has only 2 levels, the number of all possible mutual interfacca is equal
to the case of the peer group: the interface efficiency quotient remains at one.

In all other cases the hierarchy features less interfaces than the peer group. The inter-
face efficiency improves uniformly and markedly along with the growing number of levels,
with the ohrinking number of a3sociates and with the total number of members, as shown
by the set of decreasing lines.

For example, consider a group with the order of 32 members. In the peer group or in a two-
level hierarchy they have about 500 possible interfaces. The same number of members, orga-
nised in three hierarchical levels with 5 associates to each master, have only 20% or 100
possible interfaces. If they are organised in 5 levels with 2 associates, the number of
interfaces reduces still further to 10%.

The efficiency effect is clear and uniform. It is the more marked, the larger the group
of members is. For instance, with 1000 members, the number of interfaces in hierarchies
with up to ten associates is 1% and less, compared to the unstructured case. Although the
hierarchy has weaknesses in other respects, its inteiface efficiency can be judged as an
advantage.

Clearly the number of interfaces is a measure for the labour involved in complete system
specification down to component level, to contract negotiations, acceptance test and sys-
tem integration activities.

2.4 Classical Communication Structure

In the classical avionic system, the implemented communication structure basically fol-
lowed the hierarchical system organisation, see Fig. 3. This was essentially due to:

- the pr-sencc of a single central computer as the only resource for digital general pur-
pose data processing,

- the prevalence of single source-single drain data and signal transmission lines, and
- the co-use of tne central computer as a central message switching node in order to

allow multi-user interconnections despite the absence of bus technology (CARRUTHERS,
1979).

PFor example, in classical avionic systems, the subsystem functions are centralised in
the form of subprograms within the main computer. These subprograms communicate via
dedicated links directly with the associated equipments. In Fig. 3 the equipments in the
upper line belong to the navigation subsystem, the first four equipments in the lowerline belong to the displays and controls subsystem, etc.

The wiring shown goes between the central computer and the master unit of each equipment.
Their associated line replaceable units (black boxes) are in turn wired to the equipment
master unit.

This way a hierarchical communication network, formed by point-to-point links, is
realised, reflecting very well the functional. specification tree.

Of course, also here, reality is not as pure as the idea. For reasons of reliability,
damage resistance and speed the considered system has numerous additional cross connec-
tions which were skipped here.

3. CURRENT TRENDS INFLUENCING AVIONIC SYSTEM ARCHITECTURE
Fir several years the architecture of avionic systems has been changing. Fig. 4 illus-
trates some of the major contributing trends and their interrelationships.

3.1 Tuchnology

The left hand side of Fig. 4 shows examples for relevant technological advances. In the
field of sensors they are phased arrays and strap down components, in the area of intra-
system transmission we had the advent of high reliability electronic links, and in the
processing field, high speed switching elements and large scale integration are being
introduced.

3.2 Concepts and Equipments

The renter part of Fig. 4 presents a number of current concepts and equipments influen-
cing systems architecture. To name some of them, we have for instance
- Abstract implementation of coordinate frames

- Fly-by-wire

- Active stabilization and electronic control
- Multiplexed transmission, and of course
- Microprocessors and -coml~uters.

8-4

3.3 Impact on Systems

In the context of this paper, the given factors have three main impacts on avionic sys-
tems, shown on the right hand side of Fig. 4. They are
- A substantial increase in signal and data processing

- Time division multi-source multi-sink transmission

- Locally distributed computing.

All three points have led to importai.t structural changes: On the one hand, distributed
computing allows location of processing functions at their proper level and frees the
designer from concentrating them artificially in one single computer, see e.g. (SYRBE,
1978), (CIMSA, 1979) or (BRAMMER, 1980). For example, the navigation subprogram can be
removed from the central computer and allocated to a navigation subsystems computer.
This type of distributed computing tends to spread out the functional hierarchy more
visibly throughout the system topology.

On the other hand, distributed data processing in the strict sense implies not only
physical dislocation of processing functions and associated hardware, but also distri-
bution of the data base and of the control function (ENSLOW, 1978), (SCHERR, 1978).
This philosophy tends to diminish the hierarchical features of system organisation.
Furthermore, the transfer of network and switching concepts from telecommunications to
computer networks (WECKER, 1979) and from there to avionic systems gives rise to peer-
like communication procedures. Finally, multiple access, broadcast type transmission
systems render economic implementation of direct all-to-all communication feasible.

4. COMMUNICATION IN AVIONIC SYSTEMS

4.1 Available Communication Structures

The communication structures available for avionic systems today are summarised in
Vig. 5. Each line in the structures represents a connecting cable. A simplex connection
contains one basic channel of the type shown top left, consisting of a transmitter, dri-
ver, line and receiver. A full duplex connection contains two such channels in opposite
directions. duplex connections use the same line for both directions.

Every avail. ýtructure shown allows the direct or indirect communication among all
participating ýits, indicated as solid dots arranged in a circle.

Using conventional point-to-point links, usually bit-3erial and word-serial,
one obtains first the classical structures:
- Network of direct all-to-all connections

- the star

- the layered star.

The bottom part of Fig. 5 shows the newer structures using links with broadcast capa-
bility:

- the matrix formed by a set of single-source, multiple-sink channels, e.g. of ARINC
429 standard ("DITS")

- the multiple access bus, e.g. of MIL 1553 standard ("MUX"), carrying multiple-source,
multiple-sink traffic in both directions on a time division basis.

4.2 Cable Lengths

Suppose that all the structures shown in Fig. 5 are implemented with links of the same
technological state of the art, especially with the same serially transmitted data bit
rate. Remember further that all structures allow messages to be transmitted from each
unit to any other unit. Then, the main advantage of the bus structure above all the
other structures is the minimum cable length. This is evaluated in Fig. 6 and compared
to the cable length of the layered star, the star and the all-to-all network (BRAMMER,
1981).

For simplicity and generality, the topology of participating units has been assumed
here as a uniform distribution at the points of a square raster with constant raster
width in both orthogonal directions.

The graph shows the total cable length necessary to allow complete communication among
all units. This length is normalised by the raster width and plotted against the total
number of units on a double logarithmic scale.

For instance, for 20 units our model yields a total cable length of 450 times the ras-
ter width for the all-to-all network, as compared to 19 for the bus. The cabling effi-
ciency of the bus gets even better for larger numbers of units.

Note however, that the star and especially the layered star are doing fairly well in
this respect, too.

8-5

4.3 Topological Considerations

We have seen that from a functional point. of view the layered star structure is the most
natural. In Fig. 7 this is case A, shown top left in idealised form. In this example,
there are two subsystems: One constituted by round units in the upper half and the other
consisting of square units in the lower half. Each subsystem, in turn, has three equip-
ments. Each equipment has a master unit and three associated units.

Nowadays, we can assue computing functions down to tne equipment level. Then this topo-
logy represents a federated computer architecture, where di~tzibuted computing is allo-
cated according to disjunct topological areas.

However, in a real avionic system the functional and topological ordering of the line
replaceable units 'eoes not coincide as in case A, but is mixed up as in case B. The
cabling pattern then no longer follows the layered star, but is better characterised as
a superposition of several stars. So the advantage in cable length of the layered star
cannot be realised.

The same mixed configuration of LRU's as in case B is shown in case C and it is obvious
that from the cabling point of view the bus structure is not affected by the mixed topo-
logy of functional units. But the question is, whether it is really desirable that a
single-level bus connects all units down to LRU level.

4.4 Modern Communication Structure

From Fig. 8 which represents a typical interconnection structure of a modern fighter
avionics system, one can conclude that not each and every black box is connected to a
common bus. The avionics bus - duplex for redundancy - picks up the subsystems such as
navigation, fire control, flight control and some equipments that have many communica-
tion interfaces such as air data, multif unction keyboards and displays.

Thus, the present state of the art in avionic systems still features hierarchical levels
of communication: the central system control, the subsystem computers and some equipments
communicate on an upper level bus, while in the lower levels either dedicated buses
(triplex for flight control) or even still star type cables are used.

5. CONCLUDING REMARKS

5.1 Advantagee of Multi-Level Communications

It has been noted that a common single--level bus running past all units of the system has
the minimum possible cable length of all communication structures. Nevertheless, a multi-
level structure persists due to the following advantages:
- Hierarchical structuring is efficient, not only in the design process, but also for
contractual specifications, configuration control, acceptance testing, integration,
maintenance and retrofit.
-This efficiency is mainly due to the reduction of the various sorts of interfaces
between units, especially the communications interfaces.

- Generally the data rate decre~ases when we pass from lower to higher levels, therefore
- transmission capacity problems are alleviated by layering.

- Vice versa, reliability requirements often differ among subsystems, giving rise to dedi-
cated components and links.

- Functional autonomy of equipm~ents is maintained if they have dedicated lines to their
T.RU'S. otherwise, equipment development and acceptance testing would be greatly com-
plicated.

These points call for at least two levels of communication: System bus, and links between
the LRU's constituting an equipment. An intermediate third level may be adequate for some
subsystems such as flight control.

5.2 Characteristics of Distributed Processing

Distributed processing has become cost-effective and is increasing in avionic systems.
The advantages are

- The hierarchical decomposition of subsystem functions can be directly implemented,
yielding a set of smaller programs instead of one large central program.

- Autonomy of subsystems is possible, with better reliability and survivability charac-
teristics.

- In conjunction with the use of communication buses the central computer is eliminated
as a central node or switching element.

- Locally dispersed computing resources with reconfiguration capability are reducing
vulnerability.

However, due to communication delays, the interplay of distributed algorithms is less
deterministic than in the centralized case in that each part m~ust operate without a
complete instantaneous knowledge of the state of all other pL~tS.

8-6I

Furthermore, even in a distributed system of avionics application programs it is neces-
sary that their functional authority and the validity of data bases be system-wide managed.

5.3 Remaining Problems and Outlook

We have seen that at the present state of the art we live with an - at least partial -
discrepancy between functional and data flow structures in avionic systems.

Bus systems make a logical connection of all-to-all type easily feasible, allowing mul-
tiple use of sensors for improved system performance and/or distribution of processing
resources for better failure or damage resistance. But, even if we restrict this to
equipment level and above, the system desi-n has to cope with a substantial growth in
communication interfaces. The overlay of funutions versus communications must be subject
to careful book-keeping, timing and control. This problem is aggravated by dynamic recon-
figuratton capability of the functional system architecture, especially when time-
critical, high-priority functions require a high degree if confidence to be served at
the right moment without delay.

Regarding avionic system operation we note the parsistence of three types of central sys-

tem elements

- System functions synthesizing top level applications on the basis of subsystem functions

- Control of distributed data processing
- Control of bus transmissions

These elements remain critical and need special redundancy protection and installation
considerations.

Summing up briefly, it might be suggested that for avionic systems the conflicting goals
of deterministic system behaviour requiring few functional and communication interfaces
and tight control on the one hand, and of enhanced availability requiring distribution
of resources, reallocation of functions and many communication interfaces on the other
hand, require more research and p~actical experience in order to harmonise them and to
establish new adequate and generally accepted avionic system implementation procedures.

6. REFERENCES

BRAMMER, K., 1980, "Architecture of Flight Guidance and Control Systems," Working Paper
prepared for AGARD GCP WG 05, Functional Integration of Positioning and Guidance and
Control Systems, ESG, Munich, 24 March 1980.

BRAMMER, K., 1981 "Functional Interrelations and Communications Interconnections in
Avionic System Structures," Tech. Rep. ES-T/81, ESG, Munich, 30 April 1981.

CARRUTHERS, J.F., 1979, "SHINPADS - A New Ship Integration Concept," Naval Engineers
Journal, April 1979, pp. 155-163.

CIMSA, 1979, "On-Board Computer Systems: Architecture, Technology, Support Software,"
Topic 3 of Vol. V (Data Processing) of Initial Technological Studies on European
Air Traffic Management, European Community, Brussels, Dec. 1979.

ENSLOW, P.H., 1978, "What is a Distributed Data Processing System?", Computer, Jan, 1978,
pp. 13-21.

LAUBER, R. (Ed.), 1980 "EinfUhrung in das Entwurfs-unterstUtzende ProzeB-Orientierte
Spezifikationssystem EPOS 80," Inst. f. Regelungstechnik u. Proze~automatisierung,
Univ. Stuttgart.

SCHERR, A.L., 1978, "Di3tributed Data Processing," IBM Syst. J., Vol. 17, No. 4,
pp. 324-342.

SYRBE, M., 1978, "Basic Principles of Advanced Process Control System Structures and a
Realisation with Optical-fibre-c.upled Distributed Microcomputers," Proc. 7th. IFAC
Congress (Helsinki, June 1978), pp. 393-401, Pergamon Press.

WECKER, S., 1979, "Computer Network Architectures," Computer, Serit. 1979, pp. 58-72.

8-7

Level

Lystlij 1

Interrelation of System and its Subsystems 1-2

Subsystem Subsystem j Subsystem 2

Interrelation of Subsystem j with its modules 1 2-3

Modu Module k eug.
Equipment

Interrelation of 3rd and 4th level mcdules j 3-4

I I

ModleModul jl Modul 4
jki oo eq. LH1U lekmjk

- N,
e.g. circuit boards 5

Figure 1: Hierarchical Lbscription of Avionic System

RHi- Levels
" 1 2 5 10 32Associates

0,11

RH=~~~~~ !ni~c~;N••Levels

a Hierarchy _0,01--

R -= N 'N-1) /2 4Levels

I 5 Levels

3 10 30 100 300 1000 No. of Me•r bers N
----Figur2: I E in a i

Figure 2: Interface Efficiency in a Hierarchy

8-8

HUDA RD.SPLAY DOPSPLAER CONTROL AINSRAA

Withot wiing etwen Eqipmets ad/orLRU'

Figue 3: ClasicalAvioics nteronnetionStrutur

Technol. AdvancesMACNcet qimnsIpc nSse

COenTE
sing

Figure 3: Currstsrecsa i Avionics SysronetemnStuur

8-9

Basic Unidirectional Channel: Net:

Driver
Transmitter Receiver

Source Sink

Star: Layered
Star:

Node

Matrix: Bus:

Figure 5: Communication Structures

8-10

000 Star
300 Cable Length

600 -Raster Width -

400 -Bus

All-to-All Layered)

Network Star

-100 •__._ •_ - i-----

80
.60

Fiur 6 otl aleLegt n qur Rstr

A: C: 0 0 -0 - 0 -13
U-13-48-11

0

1 0

B:
System)

"h =m Subsystems

o (/ •3 j Equipment (Main Unit)

0 03 LRU's

Figure 7: Topological Considerations j

NAVIGA- FIRE FLIGHT AIR MISSION/ RADAR
TION CONTROL l CONTROL DAT'i MANAGEM. rL/TF

DUPLEX BUS

MULTI- CONTROLS, TR SENSORS/EFFECTORS/
HEAD-UP- FUNCTION MIULTI- TARGET COMPUTING
DISPLAY DISPLAYS FUNCTONRDI

Without dedicated hardwiring (e.g. for video signals) and subbuses
(e.g. flight control bus)

Figure 8: Modern Avionics Interconnection Structure

9-1

CONTINUOUS PECONFIGURATION IN A MULTI-MICROPROCESSOR
FLIGHT CONTROL SYSTEM

LT. SCOTT L. MAHER AND CAPT. STANLEY J. LARIMER
Air Force Wright Aeronautical Laboratories

Flight Dynamics Laboratory
Wright-Patterson APB, OH

U.S.A.

Recent research at the US Air Force Wright Aeronautical Laboratoties (Flight Dynamics
Lab) has resulted in the development of a proi ising microprocessor based flight control
system design. This system is characterized by a collection of cooperatively autonomous
distributed microcomputers interconnected by an arbitrary number of common serial
multiplex busses. Each processor in the system independently determines its assignments
using a simple algorithm that dynamically redistributes system functions from processor
to processor in a never-ending process of reconfiguration. This approach offers several
potential benefits in terms of system reliability, and the architecture in general
incurporates many state-of-the-art features which promise improved system throughput,
expandability, and above all, ease of programming.

The Continuously Reconfiguring Multi-Microprocessor Plight Control System (CRMi2FCS)
represents a significant data point in multi-processor control system research. Promising
ideas from a variety of references have been included and integrated in its design. Its
laboratory implementation will provide a demonstration of the extent to which these ideas
may improve throughput, reliability, and ease of programming in flight control
applications.

1. iNTRODUCTION

Before beginning a detaileO discussion of the Continuously Reconfiguring
Multi-Microprocessor Flight Control System (CRM2PCS) it is desireable to briefly d'..'uss
the design goals and philosophy which lead to this architecture. The original obfective
of this in-house effort was to develop an Air Force understanding of and capability in
the area of multi-microprocesor flight control systems. It was determined that a high
risk-high payoff approach could be taken in an effort to advance the state-of-the-art
while achieving the primary objective. The approach taken was simply to make a trade off
between low cost hardware and simplification of software as well as to distribute control
to its extreme in an effort to obtain data as to the extent to which the potential
advantages of such a system could be achieved. Other goals were to reduce overall
hardware, software, and life cycle costs of flight control systems while maintaining high
reliability and fault tolerance. Design considerations also included expandability for
integrated control applications and reconfigurability to meet future self-healing
requirements.

The concept of continuous reconfiguration is developed in some detail in this paper. An
example is given and the advantages of such a scheme are discussed briefly. Autonomous
control is introduced as an ideal method for controlling the continuously reconfiguring
architecture. The requirements of a continuously reconfiguring autonomously controlled
multi-processor architecture are listed and a novel bus contention scheme and the concept
of virtual common memory are put forward as the means of meeting the requirements.
Methods for simplifying software programming are also discussed as well as a description
of a software simulation of the CRM2FCS. Finally the actual laboratory implementation of
the architecture and the testing and data gathering facility to support the architecture
are described.

2. THE CONCEPT OF CONTINUOUS RECONFIGURATION

Continuous reconfiguration is defined as a scheme whereby the tasks to be performed in a
multi-processor system are dynamically redistributed among all functioning processors at
or near the minor frame rate of the overall system. This approactf allows continuous spare
checkout, latent fault protection, and elimination of failure transients due to
reconfiguration delay. By treating reconfiguration as the norm rather than the exception,
failures can be handled routinely rather than as emergencies, resulting in predictable
failure mode behavior. Using this approach, it is projected that the need for unscheduled
system maintenance may be greatly reduced.

2.1 Example Of Continuous Reconfiguration

An example of what is meant by continuous reconfiguration is shown in Figure 1. A system
of 9 processors is shown performing 6 different tasks, A thru F during three consecutive
time frames. During the first time frame processor 1 is doing task B, processor 2 task D,
processor 3 is a spare, and so on. In continuous reconfiguration the tasks are
redietributed among the processors at the beginning of every time frame.. For example, in
the second time frame , there is an entirely different assignment of tasks to the
processors. This reassignment is accomplished by having all of the processors that are
currently healthy in the system dompete for task assignments. If a processor fails during
any time frame, it is no longer able to compete for task assignments. In Figure 1, if
processor 4 failed during the sedond time frame, then during the next frame, it would not
be able to compete for task assignment. The 6 tasks which need to be done are taken by
healthy processors and the 2 remaining processors become spares. In other words, a

9-2

failed processor simply disappears ftrom the system without any other processors being
aware that it is gone.

BEL ---- Jm
Fig. 1 Continuous Reconfiguration

2.2 Advantages To Continuous Reconfigur~ation

There are a number of advantages to the continuous reconfiguration approach. One of these
is the ability to have continuous spare check-out. In traditionl systems, where certain
processors are permanently assigned to the Spare status until they are needed, it is
possible for one of these processors to fail while functioning as a spare. When a system
processor fails and the failed spare is brought on line, catastophic results may occur.
The technique of continucusly switching which processors are acting as spares allows
every processor in the system to be constantly exercised. If a processor does f.!l, it is
identified quickly and removed from the system, before it can cause any problems.

Latent fault protection is another advantage of the continuous reconfiguration approach.
Latent faults are a class of faults that are characterized by the partial failure of a
processor. The processor failure is not immediately letectable and may impede the
systems ability to recover from any subsequent failures. Continuously exercising each
processor, so that over a period of time every processor performs every task, forces a
partially failed processor to reveal its failure and be removed from the system before it
can interact with another partially failed pro essor in a manner that may preclude
recovery.

A third benefit of continuous reconfiguration is zero reconfiguration delay. Most systems
that are reconfigurable treat a failure as an emergency requiring special processing.
Thic prodi'ces delays and possible failure transients in bringing the system back t) its
fully operational state. With continuous reconfiguration there is no emergency. The
systat• reconfigures naturally every time frame so that, when a failure occurs, the system
takes it.- in stride and with no failure transient.

2.3 Controlling A Continuously Reconfiguring System

A unique approach has been taken to controlling the continuously reconfiguring
multi-microprocessor flight control system. One approach would be to have a central
controller in charge of assigning tasks, handling reconfiguration and controlling bus
access. A high throughput computer would be needed to meet the overhead requirements of
the continuously reconfiguring architecture. A central controller also introduces the
possibility of a single point failure in the system requiring redundancy incompatable
with the architecture and reducing the reliability of the continuoui reconfiguration
concept.

An alternative approach to a central controller is autonomous control. This is a scheme
whereby each procesior independently determines its own next task based upon the current
aircraft state. Tnis can be better understood by using an analogy. Like the traditional
centrally controlled computer architecture, a company has a president who has several
vice-presidents working for him. The president has access to all information concerning
the states of the company and an understanding of how the company should function. He
uses this knowledge to allocate tasks to the vice-presidents and arbitrate any
disagreements that may arise between them. Autonomous control is analogous to replacing
each of the vice-presidents with a clone of the president. The vice-ý:esidents are now
capable of making the same decisions that the president would have made under the same
circumstances, since they have access to the data that he had and would go through the
same decision making process that he would . The need for the president has been
eliminated and he has been replaced by autonomous vice-presidents. This approach is not
practical in the human world because no two humans think alike. In the computer world,
however, it is a realizable possibility.

9.3

2.4 Requirements of A Continuously Reconfiguring System

In order to make continuous reconfiguration of autonomously controlled processors
possible, several requirements must be satisfied. These requirements include an efficient
bus contention scheme, availability of system state information to all processors,
availability of all software to every processor, and a well-defined set of task
assignment rules. The methods used to meet each of these requirements in the laboratory
implementation are covered in some detail. Considerable attention has aloo been devoted
to techniques for simplifying the actual software design for use in this system. Such a
scheme is clearly required if the organization of a large number of processors,
performing complex flight control al~gorithms, is to be implemented without total chaos.
The two-dimensional task assignment chart is introduced to simplify this process.

The first requirement is for a set of well defined task assignment rules. Each of the
processors must have an efficient means of determining the next task that it is required
to do. There must not be an opportunity for any processor to conflict with other
processors in the system and cause system failures. The task assignmen~t rules are a
function of the operating system software (Larimer, S.J., JUNE, 1981) and are discussed
further in section 5.

A second requirement is that all processors must have all software. In order for a
processor to be capable of doing any system task at any point in time, it must have the
software available to do the task. This may seem unrealistic at first but a study of the
trends in memory technology reveal that memory will continue to double in density every
year to year and a half for at least five years and that the cost. of mewrory will
continue to go down. This trend makes supplying all software to every processor a
reasonable trade to get the benefits offered by the CRM2FCS.

A third requirement of this system is that all processors must have all data. A processor
msbecapable of doing any task at any point in time and in order to perform most tasks

must have access to data concerning the present state of the aircraft. This requirement
could be met almost ideally by the common memory architecture illustrated in Figure 2b.
The common memory is accessed equally by every processor in the system. This is excellent
from a software standpoint, since the programmer can treat the common memory as though it
were a part of the processor's local memory. Simply reading variables from a set location
and writing results into other locations.

Although ideal from a software standpoint it is very poor from a hardware standpoint. The
number of processors that can~ access the common memory is limited to the number of ports
which can realistically be interfaced to it. This approach also introduces complex timing
problems when more than one processor actempts to access the common memory at the same
time.

A more suitable architecture from the hardware standpoint is the common bus structure
also shown in Figure 2a. The processors in this &rchitecture are interconnected by a
common serial bus. The number of processors that can be attached to this bus is virtually
unlimited and the interface hardware is relatively simple. This is a poor architecture
from a software standpoint, however, since data must Y~e formatted before transmitting it
and must be processed as it is received. T,.is architecture is also subject to bus
contention problems when more than one processor atteýRpts to transmit data on the bus
simultaneously. The fourth requirement is, therefore, that an efficient bus contention
scheme is needed.

a.q
common ata busCommo memoy

//F-F / oontrol outputs

sensor daft

Fig. 2 Evolution of Virtual Memory P'ig. 3 State Information Matrix

9-4

3. VIRTUAL COMMON MEMORY

An architecture which meets all four requirements was developed in the Flight Dynamics
Laboratory. It is a combination of the software advantages of the common memory
architecture and the hardware advantages of the common bus architecture. The beat of
these two archiectures form the basis of the virtual common memory architecture
illustrated in Figure 2.

One of the key advantages of the virtual common memory architecture is that it is a
common bus architecture which looks like a common memory architecture to the software
programmer. In this architecture each microprocessor simply interacts with a set of
information in the virtual common memory that contains all necessary information about
the state of the aircraft. This area of the virtual memory is called the state
information matrix or SIM.

The SIM is a mathematical abstraction used for organizing all the available information
about the state and environment of an aircraft. With this structure all microprocessor
functions can be broken down into three sets. The first set of functions takes raw sensor
data, the F functions In Figure 3, process, filter, and store it in designated locations
within the SIM. Another set of functions, the H functions in Figure 3, take information
which is in the SIM, process it, and refine it to produce higher quality data. This could
be, for example, a Kalman Filter algorithm. This refined data is stored back in the SIM
where it can be accessed by other processors in the system. A third set of processor
functions take information from the SIM and processes it for use by the outside world.
These are the G functions in Figure 3 and are typically control laws or display 9
algorithms. With the SIM structure, all software programming for each microprocessor has
been reduced to a simple set of interactions with the state information matrix.

3.1 Implementation Of Virtual Common Memory

The implementation of the virtual common memory in hardware (shown in Figure 4) utilizes
the simple serial bus structure described earlier. Each unit interfaced to the serial
bus is referred to as a processing module. A processing module consists of a
microprocessor, local memory, transmitter, receiver, and a copy of the state information
matrix. Each processing module independantly determines which task it must do next. It
accesses variables from the local SIM which are needed to do a computation. When the
algorithm has been completed, the data and its location in the SIM are placed in the
processing module's transmitter buffer. The transmitter circuit automatically searches
for an available bus and transmits the information. Every processing module receiver,including the originating processing module, receives the data. Through a direct memory
access, the data is then placed in the proper location in the SIM of every processing
moduie. Each processing module maintains an identical copy of the SIM. As far as any
processing module is concerned, the SIM appears to be entirely within its own local
memory. Using this concept, processors connected by a simple serial bus appear to share
one common memory containing all information in the system. This greatly simplifies
programming by reducing interprocessor communication to simple reads and writes on a
virtual common memory.

II

up uP uP uP uP uP
Iboal liocal local l ocal local local

In~unmor I mnw" I n • Iu"m N- M" n~unory n Nor

Fig. 4 CRM2FCS Architecture Elements

4. nUS CONTENTION

The virtual memory concept requires a great deal of information transfer and required a
new approach to bus contention which would allow the processors to compete for access to
a serial bus without the need for a central controller. The bus contention scheme
presented greatly increases the efficiency of bus utilization and allows improved
bandwidth, expandibility, and reliability over other conventional approaches. The
technique also permits simple precise scheduling of transmission on the bus to virtually
eliminate the effects of transmission delay in the system (Larimer, S.J. and Maher, S.L.,
MAY, 1981).

9-5

Time on the bus is divided into a series of consecutive intervals (slots) that are
exactly one transmission word long, 32 to 46 bits, depending on word foxmat. At the
beginning of each new slot, all processors with something to transmit compete to fill
the slot with a word of d~ta. The resulting massive bus collision is then resolved using
a technique called "transparent contention*. Transparent contantion is a scheme which
allows collisions to occur on the bus in a manner such that only one of the co..liding
messages survives. All other messages are automatically suppressed without wasting 6 bit
of transmission time during the collision. As a result, the slot is filled with one and
only one data word and competition moves on to the next available interval.

In order to insure that there is always data available for transmission, each processnor
maintains a queue of words to be transmitted. As each new piece of data is generated, theprocessor places it into a first-in-first-out (FIFO) buffer. A special transmitter
circuit is then responsible for emptying the FIFO onto the bus by competing for time
slots with all other transmitters in the system. This frees the processor from
transmission considerations and ensures a constant flow of data onto the bus.

The essential elements of the bus architectue are shown in Figure 6. Three processing
modules are shown interconnected by a common serial bus made up of a data line and a
clock line. Each processing module consists of an ordinary microcomputer with two I/O
devices including a broadcaster (B) and a receive (R). These devices use the signal on
the clock bus to synchronize data transmission and reception. "T" in the figure is a bus
termination circuit which generates the clock signal, terminates the cJock and data
busses, monitors the busses for faults, and generates synchronization pulses for the
processing modules.

treneatof

Fig. 5 Essential Architecture Elements Fig. 6 Transmitter-Bus Interface
Access is granted to the bus on a first-come first-serve basis. While one transmitter is
actively using th• bus, a logical BUSY signal is maintained which prevents any other
transmitttr from initiating a broadcast. This eliminates many conflicts, but the
probability is high that more than one transmitter will initiate a transmission on the
same clock p.ise. When this happens, some other method is required to resolve the bus
contention problem.

The solution is found by observing exactly what happens when two transmitters try to put
data on the buq at the same time. Figure 6 shows each transmitter connected to the bus by
an open collector transistor buffer. When the transmitter puts a "0" on the bus, the
output transistor drivez the bus to ground. To transmit a "I" the transistor is turned
off, allowing the bus to float high, because of the pull-up resistor. As long as no
transistor is turned on, the bus will remain floating at a logic "1"; but if any of the
transistors turn on, the bus will be pulled to the logic "0" state.

The net result is that logic zeroes have an inherent priority on the bus. Because a "1"
is transmitted by releasing the bus while a "0" is transmitted by actively pulling the
bus low, units transmitting zeroes will always have priority over those sending ones.
This fact is used to develop an effective arbitration scheme.

The key to this scheme is that every transmitter constantly compares what it is trying to
put on the bus with what is actually there. In the event of a disagreement, the
transmitter simply stops sending, waits for the bus to become Available again, and
retransmits. This approach works because when any two processors disagree, only one of
them detects the disagreement and drops off. The other transmitter does not detect the
difference, because of the logic level priority, and continues its transmission. No bus
time is wasted because one message is completed without interruption.

This concept work, equally well for any number of transmitters in contention. If ten
transmitters start simultaneously, they all send in parallel until there is a
disagreement. Any transmitter attempting to send a one will then drop off while those
transmitting zeros will continue. Eventually, only one tiansmitter is left and it
completes its transmission, completely unaware that it has been contending for the bus.

4.1 The Multi-Bus Concept

The bus structure described represents a very simple way to interconnect a large number
of autonomous processors without need of a central controller. However, a single bus
system of any kind is generally unacceptable from a reliability standpoint. At the very
least, some form of redundancy is required in order to avoid a potential single point

L~hLI

9•.6

failure in the system. Also, a single serial bus has a finite bandwidth. A large system
of processors exchanging Passive amounts of data can quickly saturate such a bus, making
further system expansion impossible. The approach proposed in this paper is ideally
suited to expansion to as many busses as are needed to meet the reliability and
throughput requicements of most any system (Larimer, S.J. and Maher, S.M., MAY 1981).

This bus design has tremendous flexibility. There are four serial busses used in the
in-house program. The bus bandwith of the system is exactly four times that of a single
bus and can be expanded still further with additional busses. Reliability is also
advanced. Selection of an alternate bus in the event of a failure is instantaneous and
auto.natic because processor to bus connections are continuously reconfiguring.

5. -ASK ASSIGNMENT RULES

Another rajor outgrowth of this reseac.ah has been the development of a method for
programming a multiprocessor system (Larimer, S.J. JUNE,1981). Programming a system
consisting of a large number of processcrs can become a formidable task. Figure 7a shows
how four different processors might be programmd in a multiprocessor system. As each
processor completes a task it goes on to the next oae immediately. This approach is very
difficult to synchronize. For example, processor 2 does task A while processor 4 does
task B and processor 3 does task C which combines the results of tasks A and B. If task B
is not completed before task C is started, then task C will not have the information
n' Aded to complete its calculations. This possibility can greatly in-reast the complemity
f the software. A second problem with this programming technique is that it is very

difficult to modify. If a block of software requires r(-i, q o i new 3lgorithm must be
added, the timing of the software will oe chanae,. s\,nc:roni3tiuio must be maintained)
between certain tasks and guaranteeing the syncht iization requires revalidation of all
software. One small change in the :o ,ar* will therefori influence t' e softwarevalidation of the entire system.

R P.

1'1(j. 7 Sequential %wý. Quantize,! Softwark

I.i • intize c ftwate

,Lo,lramming method us• in the 'Rh2FCS IL called the quantized-software approach
igure 7b . Every task 3 giv' in int ,ger number ol zime intervals depending upon the

length ol tha Las'. Tn this part. ir s~tem, eve:, inteLval im ene millisecond long
and i- referred to as a millim '. tver task i! some integer rimber of millimodules
]onq. For example, a tas'k whicl, normal iy be e ecuted in 1.5 mitliseconds iould be
allocated 'w,, -','nplete millimok 3. This all. ws control ,ver which tasks are being
performed duririq any given 1,,'erva f time, so sttict synchronriation of tasls can be
maintained. Data is exchE :.ed only on boundarie6 between mi~limodules. As a result, the
availability oi data or subses uent tz5s is known during any millimodule. Since
softwa e module-s art rhe same st'e, tht y can be easily i.iterchanged.

T),i qiantized-software app: ,act obviou;!> sacrifices some throughput, for example a 1,5
milli ýcond -ask now -ake, two *ilisec~ndu, and therefore ic less efficient than the
cont• uous !.iftwarc methuo'. •owevet,, t:te sacrifice in throughput is well justified in
view)f the added !oftw ;re simplic: y and flexibility. Additional throughput can be added
by s mply n aitg i ;re 1,rocessing m dules while maIntaining the software simplicity and
•le> Lbilif •

5.2 Re, ,7f igur ,tion

The reco figur:tion :ate of the CRM 'CS is once every ten milliseconds. This rate is
ar'-itrarv and could be trjusted to a slower rate if data gathered from tle laboratory
i; Lemený ticn indurates the rate is unnecessarily high. Figure 8 shove how
r' confiq..atior. tits ,nto thp software scheme. A processing module health status table
is main' aied in ne S-M. A- the beginning oi every major frame the status table is
"zeroed rut', as it *iask A 01 Figure 8b. |

--7

I ~ ~ C'Cu~u

Fig. 8 Volunteering and the Volunteering Status Table

Each processing module must then perform a self-check to determine its own health, task B
in Figure 8b. The processing module then broadcasts its health status which becomes
available in the SIM processor status table. A processing module ccan then determine the
task set it will be required to do during the next major frame, task C in Figu~.r 8b. TO
do this, each processing nodule accesses a specific variable in the SIM. The random
nature of the variable is used to generate an offset pointer which every processing
module uses to determine its starting point in the SIM processor status table. In F~gure
8a, for example, the random offset pointer is pointing at processing nodL..a 7.
Processing module 7 will therefore do the h~ghet priority task set during the next major
frame. Processing modules 8 and 9 have "0 status indicating they are unavailable for
task assignment. Processing module ten will determine that it mi.st do the second highest
priority task set since 8 and 9 are unavailable. Similarly procePsing modules; 1 and 2will do task sets 3 an' 4 and processing modules 4 and 5 will do task sets 5 and 6. This
process is repeated every major frame so that task sets are randomly distributed among
functioning processors.

.6 0gro17 __ __ _

'4 loom h -h -

S, % h3

ael 1_ k k_ k_ k, 1 k

1 2 3 4 5 6 7 8 9 10
time slice axiS(milliframes)
Fig. 9 A Generic Task Assignment Chart

5.3 Task Assignment Chart

The task assignment chart is used to organize all of the one millisecond software modules(millimodules) to be used in the system (Larimer, S.J., May 1981). Figure 9 illustrates
how the task assignment chart is organized. The b ertical axis represents the number of
processors in the system. The horizontal axis is divided into one nillimodule tine
increments (millifranes). Ten milliframes form a minor frame and 3 minor frames completea major frame. Every task is performed at least once duringa every major frame .To use
the chart, the progammer o lrst divides a function into a group of eubfunctions each of
which requires at most one millisecond to execute. Each of these subfunctions is then
designated as a millitodule and placed In a convenient location in the task assignment
chart. In Figure 9, function r n fl, f2, f3, f4) executes in four consecutive time
intervals beginning with milllframe d Function G(gl, g2, g3, g4, gs) executes entirely
in parallel requiring five processors and only one millisrame. Function H(hl, h2, h3,

and h4) first generates intermediate rcsults in parallel and then combines them in
milliframe 6. Various iteration rates may be achieved by assigning the same function
several times in the same chart as shown for function K(kl).The task assignment chart is
used to easily distribute tasks among available processing modules.

5.4 Task Assignment Compiler

The task assignment compiler is currently under development at the Flight Dynamics
Laboratory. It is an automated method for generating the task assignment chart. The
task assignment chart rapidly becomes difficult to work with as the nur!ber of processing
modules increases and the number and variations in rate of tasks ±ncreases. Data
concerning each of the millimodules is input to the task assignment compiler and a
complete task assignment chart and data file for the processing modules is generated.

Millimodules are given an identification number or name when they are written. The
millimodule identification, required repetition rate, and data I/O requirements are input
to the task assignment compiler. The compiler automý.tically rearranges millimodules to
make room for new millimodules and indicates to the usr whether additional processing
modules will be required to accomplish all taO'3. Tni* method of simplifying the
software development will further reduce the workloau for the programmer.

5.5 Software Simulation

A software simulation of the CRI2FCS hardware and software is also being developed at the
Flight Dynamics Laboratory. Tte simulation outlut will be compared to results obtained
from the laboratory system. Discrepencies between the simulation and laboratory system
will be analyzed and improvements made to the simulation or laboratory system as required

until the simulation can be verifyed as accut~tely representing the laboratory system.
The software simulation can then be used to predict the offects of changes to the
baseline system without having to make changes to the system itself. The effects on
throughput or bus utilization of adding more processing modules, using a different
microprocessor, or changing the transmitter-receiver hardware can be studied. The
software simulation is expected to be a valuable tool for analyzing advanced
configurations of the CRM2eCS.

6. LABO MTORY IMPLEMENTATION

An effort is under way at the Flight Dynamics Laboratory to domo-trate the CRM2FCS
concepts. Data gathered from this in-house program will be used to qualify the extent to
which expected benefits and limitations of the architecture are met. A validated software

simulation of the system will then be used to project throughput, fault tolerence, and
other quantifiable characteristics of modifications to the baseline hardware.

The in-house facility, shown in Figure 10, has been designed to oaximize data gathering,
data reduction and programmability of the system. The basic CRN2FCS architecture is
represented by the six processing modules and bus termination circuit shown in the
figure. The remaining blocks represent interfaces to an aircraft simulator, cockpit CRT
display, data gathering, data reduction, and software development facilities.

r --

I 9K &- a-----1

L L--------------- --

SOFTVM 9i0

9-9

A processing module consists of a 16-bit microcomputer, 8 Kwords of memory, and custom
engineered transmitter, receiver, and state information matrix (SIA). At this writing a
processing module has been successfully implemented in the laboratory. The custom
circuitry uses small and medium scale integrated circuits. A future effort could put the
circuitry in a single large scale integrated circuit.

The block labeled "68000' is a state of the art 16-bit microcomputer which will be used
for a single axis digital aircraft simulation. It is interfaced through a dedicated
processing module to demonstrate one method of accessing external system components such
as sensors and actuators. A follow-on effort will use an analog computer to do more
complex aircraft simulations.

The block marked "8002" is a Tektronix microprocessor development system. It is used for
both hardware and software development. It has a direct hardware interface to a
processing module's microprocessor. The "8002" can download software to the processing
modules prior to a simulation run. After the simulaton the "8002" is used to make
software modifications based on data gathered during the simulation. The new software can
then be rapidly downloaded and the system brought up for another run.

A Radio Shack TRS-80 is used in conjunction with a dedicated processing module and custom
serial bus interface to gather data durinq a simulation run. The processing module is
used to monitor the history of specific variables in the SIM. The serial bus interface is
used to gather raw data from each of the four serial busses. The TRS-80 then processes
the data to pinpoint specific problems and to determine bus utilization and system
throughput. The TRS-80 also controls the RS-232 switching circuit. This circuit allows
data and software to be easily transferred between the major components of the teat
system.

The real-time display controller is a microprocessor-based color graphics display which
can be configured as a cockpit instrumentation display or be used to monitor the system
status real time. The display controller also has a joy stick input which can be used in
more advanced aircraft simulations. The real time display controller also demonstrates
the ease with whch the architecture can be interfaced to other aircraft subsystems.

The Tektronix 4081 is a stand alone minicomputer with graphics capability and a link to a
main frame computer. It is used for further data reduction and display and for the
development of complex software for the millimodule compiler and software simulation.

7. CONCLUSION

There are three major potential benefits to designing a flight control system using the
methods described in this paper. The first is simply expandability as system needs grow.
It is a well known fact that frcm the time the first model of a particular aircraft rolls
off the assembly line until the last one lines up in mothballs, there are inumerable
changes that occur to the system. This causes excessive increases in cost due to the
difficulties of changing hardware and adding new software to the system. The CRM2FCS
approach has the potential to greatly reduce these costs. Modularity of both hardware and
software allows considerably easier expandability.

A second potential benefit is the ability to reduce software costs which are the single
biggest cost in digital systems today. By designing an architecture that is inherently
easier to program, the cost of programming, maintaining, and updating software can be
greatly reduced. This contributes to a reduction in life cycle costs.

The third potential benefit is the possibility of greatly reducing unscheduled
maintenence. With the present redundant flight control computers, if any component of the
computer has failed the aircraft is not allowed to take off. As digital technology
progresses, it will become practical to configure the CRM2FCS with as many as one hundred
processors. If only 40 processors are required to accomplish the necessary processing
there will be 60 spare processors. A requirement that 20 spares be available before the
aircraft takes off leaves 40 processors that can fail aefora the aircraft is grounded.
When scheduled maintenence occurs, any failed processors can be replaced. Since it is
unlikely 40 processors will fail between maintenance periods, the goal of no unscheduled
maintenance can be closely approached.

REFERENCES

Larimer, S. J., June 1981, *Managing Software in a Continuously Reconfiguring
Multi-Microprocessor System", Proceedings of the 1981 Joint Automatic Control
Conference.

Larimer, S.J. and Maher, S.L., May 1981, "A Solution to Bus Contention in a System of
Autonomous Microprocessors", Proceedings of the IEEE 1981 NAECON Symposium.

10-i

EXPERIENCES MITH THE EXPERIMENTAL

FFM - MCS

Hermann v. Issendorff

FGAN - FFM

K6nigstr. 2
5307 Wachtberg-Werthhoven

Germany

SUMMARY .9

The FFM-Mdlticomputersystem was built up to investigate the utilization of microprocessor

based computing networks for the various requirements of embedded data processing and
control in military systems. Being designed as an adaptable building block system the
FFM-MCS is serving as a testbed for research on distributed data processing. The paper

deals with a general method for the design of process-networks followed by the adaption
of adequate hardware-networks. Several types of messages are introduced for efficient
and safe communication between autonomous process-modules. Finally some improvements

of the hardware building hlock system are presented.

1. INTRODUCTION

Distributed systems seem to be particularly well suited for embedded data processing
and control in military applications like airborne systems. Apparently A •re are numer-
ous advantages which make distributed systems preferable to conventional monolithic

systems.
Some attributes seem to be of particular importance to airborne systems:

Distributed systems can be designed as a network of autonomous computers. A network

of this kind constitutes a good base for the construction of fault tolerant, fail
soft and damage resistant architectures.

Distributed systems can be built up with only a few types of different components
which may even be massproduced commercial products. This may result in easier main-

tenance and repair as well as in lower hardware costs.
Last not least there are indications that software production, i.e. programming and

testing could become much easier than with conventional data processing systems. The
same holds for subsequent extensions and changes of the network. Hence there is a
good chance that life-costs of distributed systems can become considerably lower.

On the other side the science of distributed systems is still in an infant state. Even

the term distributed system is not rigidly defined yet. There is no profound knowledge
how to control a network of autonomous nodes. The data transfer in a distributed

system of this kind will be greatly increas.ed compared to monolithic systems. It is
not clear so far if this problem can be sufficiently solved or if it presents a severe

restriction to the utilization of distributed systems. There isn't any design methodo-
logy available and there exists no language which supports programming of autonomous
processes and their communication. The promising aspects on the one side and the

unsolved or even undetected problems on the other side gave rise to a long term research
project at the FFM in Werthhoven. Some of the main results of this work are presented in

this paoer.

10-2

I t begins with a description of the general approach to decompose the data processing
task of a given application, the formation of a network of process modules and the

adaption of a hardware network to the network of process modules. Paragraph 3 describes
the hardware building block approach and the experimental FFM-MCS (Multicomputerlystem).

Paragraph 4 deals with the important subject of communication especially with the def-
inition of messages and simultaneous mes!.age execution. Improvements of the hardware

building block system which increase flexibility and decentralization will finally be
discussed in paragraph 5.

2. THE DISTRIBUTED SYSTEM DESIGN APPROACH

The first step towards a distributed system consists of a decomposition of a data process-

ing task into a set of functions which are interrelated by their input and output para-
meters. This first step resembles very much that of Mascot (Mascot Suppliers Ass.,1980).
But while our functions are nearly identical with the activities of Mascot, we do not

introduce IDA's (Intercommunication data areas). A function is not a welldefined ob-

ject. It is likely that this object has a minimal interface in relation to its com-

plexity but that may not be true. A function may be further partitioned, as vice versa
adjacent functions may be combined to one function. The final size of a function will

be confined later by the features of the hardware network. An example of decomposition

is shown in figure 1. Simple as it is it shows already how a processing task can be
executed by macropipelining to increase the throughput (HNndler, W., 1973). In general
a data processing task will be decomposed in many more functions resulting in a more

complex network. Functions in separate paths are independent and hence may be executed

in parallel.

Process Chorocteristic
U Atonom s processate portion a givm DOP-probe
Sequenteia program
Sup Splked th at resources during rntine

* Unombiguos name

Process Module Structure
JProcewing

put- tHed: Nome,Pority,Size

Butterr Stte.4emTel I motmabn.Wgroms

D o and Working Space

Program and Subroutines

Figure 1: Functional decomposition Figure 2: Characteristics and structure

of a process

In a next step each function is realized as a sequential program and embedded in a
process module. %ny conventional higher order language suitable for the kind of ap-

plication may be used for the internal programming of a process module as long as the

special characteristics. of the process module are taken into consideration. A process
module is selfcontained and autonomous. Figure 2 shows the process characteristics

and the module structure. The only way how a process module can be accessed is by
messages from other modules. Vice versa a process module cannot access anything else

10-3

but another process module. Hence any data base or a device must be embedded in a
process module. Such a process module is called a monitor. All functions of the op-
erating system are represented as monitors too. Monitors are not as mobile as ordinary
process modules are. Figure 3 represents an example of a process-network.

Communication between process modules takes place by sending or receiving messages
(Walden, D.C., 1972). The sending and the receiving process must agree to the message
before the transfer is actually executed. This message concept makes the processes
really autonomous and protects them against erroneous information from other processes.
Communication by messages will be treated in detail later on. But it may be mentioned
that the message type being introduced in the language Ada is no- sufficient and has
to be backed up by other types of messages.

I- Input_______________________ __

Mum. Device

Data-
Men. Bow Net Elitments () Atonomous Computer I ode)

Proc. A - Bidirectional Channel (Line)

Some Net Contigurations:

routput o
Device Mon.

Figure 3: A typical process-network Figure 4: Building block system I

What has been constructed up to this point is a pure software-network. There is nothing
said so far about the hardware system into which the software-network is to be loaded

and where it is to be processed. Indeed the software-network could be loaded into any
computer system no matter if it is a single processor architecture, a multiprocessor

architecture or even a computer-network. This independence of the hardware architec-
ture represents an ideal base for reconfiguration. On the other hand it allows to
adapt the hardware architecture to the requirements of a given application. This
could be particularly beneficial if the hardware would be composed from a building
block system consisting of a few and highly standardized components.

3. THE EXPERIMENTAL FFM-MCS

A building block system with a high degree of flexibility on which our research is
based has been described earlier (v. Issendorff, H. and GrUnewald, W., 1980). Figure 4
and 5 depict the main features. The hardware-network can be adapted to a given pro-
cess-network in two levels. At the higher level autonomous computers (nodes) can he
interconnecte; by channels (lines) to an arbitrary network, i.e. to a network with an
arbitrary number of nodes wht;h are interconnected in an arbitrary manner. The channels
are only necessary in a logical sense. Several channels can always be combined to one
bus if this is desirablc. No other difficulties would arise from this but possibly a

bus contention problem.

10-4

At the lower level each autonomous computer can be equipped with several processors,

memory modules and peripheral controllers besides of the communication links which
serve for the interconnection of the channels.

In general a process-network will not have an equal flow of information between pro-

cesses. There will be groups of processes which communicate heavily while others will

have a rare or small data transfer only. For efficiency reasons these groups are pref-

erably clustered in one node or at least in nodes which are directly connected. A node

which contains several processes should of course be equipped with several processors.

K UK BytByi3 6kBYte 4.8K ye Byt)

Link to MOS 6 da .Dsplay AutoloQd RW4II
Paper lape boer SMO Disk

Node Elements: Processor, Memory Module.
Pervowra Con•rollerCum..tunicotion Link

•z2 DisplaysI
/- ~Lineprinter

ii Cardreoder I
3 Switches

Internal Bus ...--- STRUCTURE 4---

F MvIW "GY o" n=.

,"32K Byte 49K Byte *
L 2.CL 3-CL _ _IKUE3 -

O:process CL Comm. Link
O:OS-Kerne SMO: System Message Device
P ;Processor MOS : Microcomputer Bev. System

Figure 5: Hardware building block Figure 6: Some configurations of the

system II FFM-MCS

The experimental FFM-MCS is constructed in very much the same way. Some restrictions

and some compromises had to be accepted because of the utilization of commercial
products. Base of the building block systems is the SUE-minicomputer from L.ockled

Electronics which has a bus-oriented architecture and can be extended up to 4 proces-
sors, Figure 6 exhibitis two different configurations. Each node has its own operating

system kernel. This kernel handles several types of supervisor calls, e.g. calls to

allocate processors to processes which are ready to be started and calls to control the
communication with adjacent nodes. The set of operating system kernels represent the
basic operating system of the network. Figure 7 depicts the logical system structure

which displays the different layers and the kind of communication between them.

Bootstrapping of the MCS is done stepwise. It begins with a node which is reset by hand.
This node then resets, loads and starts his neighbour nodes, which then do the same with

their next neighbours until the whole system is bootstrapped. It does not matter where

the bootstrap begins provided that the first node has access to a data base where the

basic operating system is stored. But each bootstrapped path must be predefined in order
to guarantee that each node will be bootstrapped only once.

10.5

4. COMMUNICATION

A conventional monolithic computer permits direct access to (globally defined) data from
any point of a program. Hence data do not have to be moved very often. This architectur:'

offers high speed performance but suffers from a rather low reliability because one sin-

gle fault may destroy the whole system. A distributed system itrstead permits high system
protection on the expense of a high load of data transfer. The control of the data trans-

fer between autonomous process modules even increases this load. Communication is there-

fore the most important topic of distributed systems and has carefully to be investigated

In order to preserve system efficiency. The results which we got in this area are presen-

ted in the sequel.

Type I Open kipul MMesEsa.ME

W (P- Nam, M-Name, M.Legth.)-1S~~ROK(N,,Ne. -Legth.l!

Type U Open Output Memo

N essAk I WO (I -Nome, - Lengtht) -

Off ATOR I A a .RI(P- Iame.M -Name. M-Leng~h.) -

ol ~ ON$ U u"at's M us

_ _ _ _ __ERA WIP- Name,. M- Name. M- tingth 1)
I RIP-Name. M-Name.M-Length.lli

A •WAi Ei
Type I Telegram Wunsyndhronized)

0 lISN SOhsiI WASEs WT (P-Nome, M- Nome.l)

Figure 7: Logical System Structure Figure 8: Types of Messages

Several types of messages are needed for practical reasons like efficiency or safety.

They are listed in figure 8. Each message consists of a write-instruction in one process
and a corresponding read-instruction in another process. The parameters in the brackets
of both irstructions will be checked prior to the information transfer. The first type

is called an open input messago. This type corresponds to the rendezvous concept intro-

duced in Ada (Ichbia,J.D.,et al., 1979). An open input message is necessary if there is a
receiving process which has to accept messages from severai other processes. The receiv-
ing process is waiting until another process contacts him by transmitting his name and

where he is located. This results ir a most extensive protocol of 4 steps (figure 9).

The next message type called open output message is complementary to the first type.

This message takes care of sending data to any process which applIes for them. The

sending process does not know the receiving process until he gets a call which tells
him name and location of the receiver. The protocol consists of 3 steps only.

A third message type is called private message. This type has been used in CSP (Hoare,
C.A.R., 1978). Here both the sending and the receivin9 process know each other by nime

and location. This message permits a maximum of protection against unauthorized access
by other processes. The prvtocol consists of 2 steps as the open output message.

The open input message is mainly used to transfer information to monitors, e.g. to a
printe,'-monitor. The open output message on the other hand serves for the case where

several processes compete for one message which is repeatedly produced by the sending

10-6

process. This arises for example if a process Is duplicated for speed or fault tolerance

reasons as indicated by dashed lines in figure 3.

The open output message is introduced for efficiency reasons only. It could be sub-
stituted by an open input message followed by a private message with an expense of
7 steps altogether. In this case the open input message serves merely to transmit name

and location of the calling process. Even the private message could be substituted by

the public input message yet with the disadvantages of a longer protocol and a reduced
protection.

SENDER RECEIVER Process A B C
PS P

W' (R8i) R(C) 9(A)

Heswge Ann xcemtnt to OS-Kemet (PR) W(CI RJA) WM)
Type I: SendI Rlest lOS-Kernel (PR)

MesMg to PR
Admowleoge to OS-Kernel (PS)

Send Request to OS-Kernel (PS)
and 1 Message to PR

Acknowledqe to OS-Kernel (PS)

Wegomm to PR Dependency Struct ,/e

Admowledge to OS-Kernel (PSI

Figure 9: Message Transfer Protocols Figure 10: A Simple Case of a

Deadl ock-Ri ng

Message type IV is called telegram. It permits transwission of information without

the control of the receiving process. Only one word at a time can be transferred. This
message type is very useful if information is to be transferred which is not time

critical. For example such information could be either slowly changing data from an
input device or status reports or the like. A telegram has a two step protocol.

There is another important subject with regard to communication which has to be discussed
too. By inspecting an average process module it will be recognized that there are a
group of several message-instructions at the beginning and another group at the end of

the module with only some of them scattered in between. The instructions at the begin-

ning will mostly be read-instructions, collecting input parameters from other processes

while those at the end will mostly be write-instructions which distribute the results to

other processes. There seem; to be no reason why the read- and write-instructions should
not be executed in the same sequential order as all other instructions in a process

rmodule. And indeed no problent will show up as long as there are only a few processes

with little communication between t-lem. But this changes with an increasing number of
processes especially if they are closely interrelated by messages.

A first problem will be that the software-network becomes trapped in deadlocks though it

may be logicaliy correct. The effect is explained in figure 10. The messages in each of

the processes A, B and C are assumed to be independent with regard to their contents.
The message cannot be executed however because of the order of the read- and write- in-

structions. Each process tries to execute the instruction of a different message and is

waiting for signals from another process, therefore. This results In a deadlock-ring
which is being displayed in a dependency structure.

10-7

A deadlock-ring can easily be broken up by reversing the order of messages in one of the

processes. Moreover, they are easily to be detected. Checking for deadlock-rings could

even be done during compile-time if there were a suitable higher order language for

distributed systems.

But there another problem which arises with the sequential execution of message-

instructions: The average delay time of a message increases with the number of all

messages In the process-network. The overall delay time becomes proportional to the

number of processes if the processes are interconnected to a ring (figure 11).

Consecutive Simultoneous
Communication Communication
(worst case) (best case)

4 processes /
A-B * * A-B C-1

C B - Processor with

A - B additional Memory) -I._me"..

A--B e* * A-B C-B E-F Peripheral I ~Peniph.
*B-C * * * A B-\Cý D- E F Controtler Deic
* C-0 -. *

* BO-E 0
* E-F
A- F Communication

A--B: Message transter between A a Bnd m link
either direction
Process is waiting

Figure 11: Consecutive and Simultaneous Figure 12: The Janus Processor

Communication

Both protlems, the deadlock problem and the delay time problem would be solved if instead

of executing the message-instructions sequentially this could be done simultaneously.

This wou' d reduce the total time for communication in the example of fiqure 11 to 2 steps.

Simultaneous execution is possible only for messages which are not related with regard
to their information contents. This means that the contents of one message must not be a

function of another. This restriction could not be easily implemented but there is an-

other stronger restriction which is clear and simple. It holds under the additional

assumption that there will be a separate buffer for each message-Instruction: Blocks

of messages i.e. sequences of message-instructions which do not contain any data pro-

'essing may be executed simultaneously. Simultaneous execution means that the block of

message-instruction will be repeatedly run through until all messages are carried out.

5. IMPROVEMENTS OF THE HARDWARE BUILDING BLOCK SYSTEM

The FFM-MCS is operational for about two years and has been used for several test

applications. Detailed measurements have been carried out to localize bottlenecks

and to get a better insight into the dynamic behavior of the system. (Neumann, G.,

et al. , 1980). The evaluation of the results led to several improvements with regard to

the hardware structure. These improvements are currently being implemented in a new

experimental system which wiil be used for further research on reliable, fault tolerant,

fail soft and damage resistant systems. The name of the new system is MICON (Micro-
computer-network).

10-8

Key component of this building block system will be n microprogrammable microprocessor

with two identical Input/output ports as his main feature (figure 12). Because he can

look and act to two sides at the same time he is called Janus-processor. The second

port can be used in three different ways. It can be used for the connection of private

memory which doubles the adress space of the processor. But even more important it

allows to store code and data which are heavily accessed and reduces the nodal bus con-

tention thereby.

With a peripheral device connected to the second port, the Janus-processor would serve as

an intelligent device controller and could take care of the appropriate device-monitor

at the same time.

The Janus-processor finds the most important application as an active communication link,

i.e. with the second port being directly or indirectly connected to the bus of another

node. The Janus-processor is able to handle the message transfer between the two nodes

all alone, a work which has to be controlled in the MCS by a complex and lengthy dialogue

between the masterprocessors of both nodes. While in the MCS the transfer of a message

to an adjacent node takes 4.5 ms plus additional 33 ps/word, a transfer in MICON will

probably be reduced to something like 250 ps plus 10 ps/word. (Average instruction ex-

ecution time in both systems is about 3 ps.)

A iiew design of the node internal bus will be another major hardware improvement.

The nodal bus arbitration will be piecewise attached to all processors and memory mod-

ules which are plugged to the bus bnd therefore be totally decentralized. The number of

processors which can be plugged to the bus is merely restricted by the number of open

slots and may be as high as 16.

The changes of the bus control permit to distribute the functions of the master-processor

of the MCS to all processors of each node. The contention problem of the master-processor

has such been eliminated, too.

Acknowledgement: This research would not have been possible without the cooperation of

many coworkers. Besides of W. GrUnewald and G. Neumann who have been mentioned already

before, I would very much iike to thank W. Jansen who is taking care of the hardware, a

contribution which cannot be valued highly enough.

References

Handler, W.. 1973, "The concept of Macro-Pipelining with high availaeility"

El. Rechenanl. 15, Nr. 6, pp.269-274

Hoare, C.A.R., 1978, "Communicating Sequential Processes"

CACM 21, Nr. 8, pp. 666-677

Ichbiah, J.D. et al., 1979, "Rationale for the Design of the ADA Programming

Language" SIGPLAN NOTICES, Vol. 14, Nr. 6, 11.4.2

v. Issendorff H., Grunewald, W., 1980, "Ar. adaptable Network for Functional Distributed

Systems" Conf.Proc. 7. Symp. on Comp.Arch., IEEE Cat. Nr. 8OCH 1494-4c pp. 196-20!

MASCOT, 1980, "The Official Handbook of Mascot" Mascot Suppl.Ass., RSRE, UK.

Neumann, G., Ackermann, R. u. GrUnewald, W., 1981, "Messungen zum Kommunikationsaufwand

fUr Prozesse in einem lokalen Rechnernetz" Ber.z. German Chapter of the ACM, Bd.7

Walden, D.C., 1972, " A System for Interprocess Communication in a Resource Sharing Com-

puter Network" CACM 15, Nr. 4, pp. ?21-230

S2-4

DISCUSSIONS

REFERENCE WOO. Or PAPER: 11-6 SESSION II

DISCUSSOR'S NAME: Jim McCuen. Hughes Aircraft

AUTHOR'S NAME: K. Shin

COMMENT: What is the criteria for the need for separate data and control buses? Can the buses
operating at 50 megabits employ contention-type protocol?

AUTHOR'S REPLY: 1) To increase data bus bandwidth or to reduce bus contention. If you don't separate
them, all control signals (information) should be passed via data bus to processors.

2) No, not as of now. Presently we are considering the MIL STO 1553 serial bus that
has a maximum 1-megabit/sec bandwidth. But, it may be feasible when the fiber optics become available
for practical use. Note that if you don't separate control bus from data bus, the 1553 bus will not
have the 1-megabit bandwidth for data passing.

REFERENCE NO. OF PAPER: 11-6

DISCUSSOR'S NAME: Dr. van Keuk, AVP member

AUTHOR'S NAME: K. G. Shin

COMMENT: How do you estimate the importance of an atomic function? I feel this can be a difficult job
in a complex system with a low degree of redundancy.

AUTHOR'S REPLY: Practically it is not too difficult although the decision may be to some extent
subjective. For example, it is reasonable to give more importance to an atom function associated with
flight control than to that associated with navigation.

REFERENCE NO. OF PAPER: 11-6

DISCUSSOR'S NAME: G. Scotti, Selenia, Italy

AUTHOR'S NAME: K. G. Shin

COMMENT: Ycu have shown some graphs for Bus Request Profile and Average Bus Access Delay. On what
assumption did you define the graphs and did you have confirmnation of the correctness of the
assumptions via simulation or pr ctical measurements?

AUTHOR'S REPLY: Numbers shown in the graph don't mean anything significant. We assumed there are 20
bus requests over 23 time frames. This could be very bursty, i.e. all 20 requests during the first
frame and none thereafter; or uniform distribution during the first two time frames, i.e., 10 requests
for each of the first two time frames, and none thereafter--or one request for each of 20 time frames,
etc. This is an arbitrary example which has a reasonable sense. Of course, bus access delay can be
computed for any bus request profile; therefore the graph in the paper has to be understood as a simple
but sensible hypothetical example. Of course, this graph is not obtained from real measurements and
does not have to be validated with such measurements since bus access delay can be estimated. Any bus
request profile which will be proc!.s (or task)-dependent and a random variable.

REFERENCE NO. OF PAPER: 11-7

DISCUSSOR'S NAME: H. Timners, AVP member

AUTHOR'S NAME: S. Wright

COMMENT: Can you give some technical details about the microprocessor you are using?

AUTHOR'S REPLY: The main processor characteristics are outlined in the paper, its important
characterisitics for our application are its small size and hiqh speed (more than 2000K OPS per
second). There have been problems in achieving the correct instruction operation, but Intel has
promised a corrected version of the device for this August.

REFERENCE NO. OF PAPER: I-8

DISCUSSOR'S NAME: Dr. von Issendorff

AUTHOR'S NAME: K. Braniner

COMMENT: Would it not be important to include the questi,ýri of vulnerability into the considerations of
which communication structure should be preferred?

S2-2

AUTHOR'S REPLY: Yes, reduction of vulnerability is one of the major reasons for locally distributed
processinq and must be considered with respect to the interconnecting network, too. Consider, for
instance, a single cut of a transmission line--in the case of the multiple access bus, you would lose
all communication; in the case of the layered star, it can mean the loss of a group of equipments; in
the case of the star, one unit is cut off; and in the all-to-all network, you lose only one two-party
line.

On the other hand, by comparing the cabling cost (see fig. 6) one can easily afford at least a
double, redundant bus, and that is usually done. Of course, the two cables should run along different
tracks separated as much as possible.

There are several subsequent papers dealing with this problem in more detail.

REFERENCE NO. OF PAPER: 11-8

DISCUSSOR'S NAME: H. Timiers, AVP member

AUTHOR'S NAME: K, Brammer

COMMENT: Can you compare the relative benefits of the ARINC 429 bussing concept with the MIL STD
1553B bus?

AUTHOR'S REPLY: In the context of this paper the basic difference is that the ARINC Standard allows
only one single source to speak on a given line, which is unidirectional (simplex), while the MIL)
Standard allows multiple sources to use one biodirectional (partial duplex) line on a time division
basis. So the ARINC Standard requires a separate cable for each unit that has information to transmit,
whereas with the MIL Standard all transmitting units share the same cable.

Both Standards use a single twisted and shielded pair of wires for the channel line and in both
cases the messages are broadcast to all listeners (multiple sink). The bit rate of the MIL Standard is
ten times higher than that of the ARINC Standard, but due to time sharing and control overhead of the
former, the average data capacity allocatable to the message sources connected to a MIL bus may easily
drop below the value possible with ARINC. The absence of bus access management in the ARINC concept
facilitates system specification and integration, but ARINC requires definitely more cabling (in
general, n times as much as MIL if there are n sources). Also, while the number of transmitter ports
is equal for both standards, the number of receiver ports is much higher for ARINC: an equipment
listening to x other equipments needs only a single receiver port with MIL, hut x receiver ports withARINC.

REFERENCE NO. OF PAPER: 11-8

DISCUSSOR'S NAME: Jim McCuen, Hughes

AUTHOR'S NAME: K. Brammer

COMMENT: I question the future use of ARINC 429 multiplexinq due to the increased number of buses
required on the latest commercial aircraft, e.g., the 767 a4rcraft requires over 130 buses and one
avionics black box (LRU) requires 22 ARINC 429 receivers. The Airbus A310 provides another example of
how ARINC 429 is outdated.

AUTHOR'S REPLY: I understand that this is not a question but a comment. It illustrates some of the
points in the paper, thank you.

REFERENCE NO. OF PAPER: 11-9

DISCUSSOR'S NAME: P. A. Bross, ESG

AUTHOR'S NAME: S. Maner

COMMENT: Why do you synchronize software for multiprocessors instead of using mailboxes, where
processors can access data asynchronously? Why did you use a serial bus for communication between the
processors instead of a parallel bus?

AUTHOR'S REPLY: (1) The synchronization and quantization of the software is desired in this
architecture becaise it shows potential for simplifying development, validation, and verification of
software in a distributed system. The "mailbox" approach to data access is not compatible with the
continuous reconfiguration concept. The state information matrix, however, might be ccnsidered a
"mailbox" where the "mail" is delivered imnediately instead of having to go to the post office to get

it.

(2) Although a parallel bus has the potential for being muLh faster than a serial bus,
there are several reasons why we did not use a parallel bus. First, the number of interconnected wires
would be very large and would greatly inhibit the degree tu which the processing modules could be
physically distributed. Also, a failure in a single wire of the parallel bus would essential'iy cause
the entire bus to fail.

,I

S2-3

REFERENCE NO. OF PAPER: 11-9

DISCUSSOR'S NAME: Alan Stern, Boeing Military

AUTHOR'S NAME: S. Maher

COMMENT: Questions concerning failure modes: What is to prevent an "autonomous controller" to seize
-ontrol of the bus due to a failure of one of the microprocessors? What prevents one microprocessor
from writing bad data into all the SIM, adversely affectinig flight safety?

AUTHOR'S REPLY: (1) Autonomous control, as implemented in this architecture, has no influence over the
actual transmission or reception of information. The transmitters and receivers are independent pieces
of hardwired digital logic, designed s, that a transmitter can control only one bus at a titm. The
microprocessor itself has no control over the transmission of data beyond supplying the data to the
transmitter input buffer.

(2) We have several methods of "filtering out" faults from the system. These include
'self-test, hardware voting, watchdog timer, software voting, and "blackballing by peers" where a
concensus of the other processors in the system can ,Aiminate a faulty processor. Another method of
"fault filtering" which shows great promise for supplying broad coverage and reducing overhead software
is the self-checking microprocessor pair (SCMP) implemented by Honeywell in a parallel effort to the
in-house program. The SCMP is simply a pair of tightly synchronized microprocessors configured as a
single processor. The outputs of each processor are compared bit-by-bit to detect faults. Any of the
"fault-filter" methods will offer a certain degree of coverage for the possible variations of a certain
type of fault., n this case a processor attempting to fill thr, state Information matrix (SIM) with
erroneous information. Hopefully, the total fault filter will closely approach 100-percent coverage
for all possible faults.

REFERENCE NO. OF PAPER: 11-9

DISCUS'_OR'S NAME: R. W. MacPhereon, D.N.O., Canada

AUTHOR'S NAME: S. Maher

COMMENT: Your system is highly redundant except for the clock. What happens if it fails? Do you have
"reconfigurable clocks"?

AUTHOR'S REPLY: The clock is redundant and is generated by bus termination circuits. For example, a
system with four buses, as we are implementing at the Flight Oynamics Laboratory, has four bus
termination circuits. Each bus termination circuit has four functions. First, simply to terminate a
data and associated clock bus for noise suppression. Second, to monitor both the clock and data bus
and eliminate the bus in the event a failure is detected. Third, to generate a 1-MHz clock to
synchronize data transmission between processing modules. Finally, the bus termination circuit
generates a synchronization pulst every millisecond to synchronize the processing modules at the
"millimodules" boundary. Each processing module has a voting circuit requiring at least two
synchronization pulses be present simultaneously before accepting the pulse, The bus terminatian
circuits also synchronize the synchronization pulses through a similar voting circuit.

REFERENCE NO. OF PAPER: 11-9

DISCUSSOR'S NAME: B. Zempolich, USN

AUTHOR'S NAME: S. Maher

COMMENT: We have had problems with regard to where does fault-tolerant design begin and end. For
example, do you include the power supplies in your fault-tolm.rant conceptual design? Do you consider
the bounding of your fault-tolerant design to no single-point failures?

AUTHOR'S REOLY: The architecture described In this paper was intended to be a research effort aimed at
implementing a flight control computer using distributed processing techniques. The rerources were not
available to study any larger segment of the flight control system, nor would it have been appropriate
to do so. Presently, there is much work being done in this area. Once we have completed trade-off
studies we should be abl.- to understand the advantages and disadvantages to the many pussible methods
of implementing a distributed fault-tolerant computer com;plex, we can then expand our efforts to
include larger segments of the system such as power supply, sensors, actuators, etc.

REFERENCE NO. OF PAPER: 11-10

DISCUSSOR'S NAME: J. T. Martin. Ferranti

AUTHOR'S NAME: H. von Issendorff

COMMENT: The system was likened to MASCOT. A program running under a Mlascot Kernal can be slowed by
real time interrupts. How does the system cope with real time interrupts and what effect do thqr have?

'2-

AUTHOR'S REPLY: There are no interrupts in our system. Each event coming in from the outside is
received by 'i monitor which then may inform other processes by sending messages.

REFERENCE NO. OF PAPER: 11-10

DISCUSSOR'S NAME: K. Shin, Rensselaer Polytechnic Institute

AUTHOR'S NAME: H. von Issendorf

COMM4ENT: Simultaneous message comuumnication is obviously superior to sequential one. However, there
nust be a way of handling precedence constraints existing in process communication which may force
messages to be dealt with sequentially. This is needed even for the case when the message passing is
the commiunication method.

AUTHOR'S REPLY: As pointed out in the presentation already, simultaneous communication is not allowed
if the content of the messages depend on each other. The precedence constraint in our system is that
only blocks of messages with no data processing in between may be treated simultaneously. This
restriction is sufficient because each message has its own private buffer.

11-I

SAVAT - A DATABASE MAANIPULATION TECHNIQUE FOR SYSTEM ARCHITECTURE
DESIGN VERIFICATION AND ANALYSIS

by

Dr A. A. Calaway

Flight Systems Department
Royal Aircraft EKablishment

Farnborough, Hampshire
England

SUImARY

SAVANT - System Architecture Verification and Analysis Technique - is a computer program developed
within MAE specifically to provide a tool for automatic system design verification and analysis. Its
application is oriented towards loosely-coupled bus connected systems but is not exclusively confined to
these. Flexibility hp.2p been built into the program to oharacterise aspects of the system arohitecturo.
The SAVANT proraw provides the facilities for interactively initiating, extending, rAtifying, filing and
rotrieving the database, which represents various facets of the system under investigation, and for con-
figuring a w;stem from the database information. The system thus configured can be analysed in a number of
ways and the analyses performed can suggest how the basic information should be molified in order to correct
error; and inconsistencies or to '2aprove efficiency, and so on. A consistent system can be further modified
and timed, although SAVANT still checks the validity of all opirations performed. Finally, the user is able
to 'firm up' the system when It has reached a satisfactory state, producinL design requirements and a system
description in a form which can be input as a schedule to a bus control processor.

1 ISTROIACTIOC

The configuration of avionic systems has seen a move in recent years away ftom the concept of a net-
work connected system controlled by a large central processor towards a more federated type of architecture,
with digital mrooessing embedded in various subsstemas and with the majority of Vystem data communicated by
mans of a multiplex data bus. A number of recent papers have justified this approach (1, 2, 3), and the
purpose of this paper is to introduce a software technique to assist in the design of such systems.

The type of data bus which has become accepted for avionic system use is that iwown as •il Std 1553B
(ref 4) in USA and Def Stan 00/18 (Part 2) (ref 5) in UK. This is a 1 MNIt/s ocommrd-respons serial bue
where the system data traffic is umder the software control of a bus controller. Now the flexibility whiin
is inherent in the partitioning of distributed processing means that decisions taken at an early iesign
stage for a system will have an effect on the volume and nature of the intercoumunicated data. This,
together with the fact that the system data traffic is under software control, demands that an integrated
top-down approach is taken to the overall system design. Thus, it is important tu investigate the total
system architecture at an early stage in the project so that the individual subsystem requirements can be
hierarchically derived from a commn base.

At the outset of a design stud.r, the,,, it is valuable to postulate, in a reasonable amount of detail,
the operational fumntions to be performed by the system, and the nature of the subsystems which comprise
these functions, together with estimates of the data flowing between the functional aras. Given this
initial system breakdown, it is then possible to subject it to analysis in order to obtain an early indic-
ation of the correctness of the approach. Important factors to check can includes

Conformance - whether the poutulated design functionally conforms to the requirement.

Consistercy - whether data produced or required by one subsystem is consistent with the
capabilities or requirements of cther mubyrctems, whether there are conflicts
in the production of data, and so on.

Completeness - whether all reqired subsystema exist, whether all required data is generated
and all generated data ia used, etc.

Feasibility - whether requirements placed on subsystems are within their oanabilities,
whether total system data flow produces acceptable data bus loading
estimates, and so on.

It is clear that the earlier the stage of develorpent at which problems can be identified, the less
they cost to resolve. It is also true that the more complex the proposed system, the greater will be the
potential benefits of ezrly qatem design analysis. At the same time, the very couq''xtty which prompts
this approach may result In a design analysis procedure which 4w extremely t, 'iotts, hims-o,.tsiming and
error-prone in itself urlesse automatic methods)loying ompute-, assistano. are adopted.

The systematic analysis of a large database is, of course, a task ideally suited to a digital computer,
whicb has an infallible, memory and inexhaustible patience. Furthermore, once the docision is mode to invoke
automatic assistance, then further benefits become apparent. As well as using the computer to trace errors
and inconsistencies in the proposed system, the existence of the database facilitates the trying out of
different configurations, trade-offs, etc, and tUm examination of tVe subsequent effects in an iterative
manner which would normally be too time consuming if done manuully. It can also provide an automatic
documentation service on the current and previous system oonfigurations, and the foram of the reports can
be many and varied according to the needs .) the consumer.

.... . ..

11-2

Once the system database has beer processed automatically, further manipulation can be capable of
tuning the resultant configuration into a form acceptable to the system desigr.,r, and the specification of
the system data traffic which resides in the database can be used automatically to generate bus controe
schedules and subsystem interface requirements.

This paper, then, describes such a system analynis program which has been developed at RAE Farntorou&h
specifically to investigate problems of completeness, consistency and feasibility for a postulated avioric
system design. Its application is oriented towards loosely-coupled bus-connected systems but it is not
exclusively confined to these, and flexibility has been built into the program by including reesttable
parameters which specify aspects of the intercommunication philosophy.

The technique is caile4 SAVANT, which is an acronym for System Architecture Verification and Analysis
Technique. It is programmed in Coral 66 anu was developed on a Prime 300 computer system. A design aim
was to make the program as transportable as possible, using no machine dependent features in the main body
of the source by extensive use of macro definitions. SAVANT is now operational on a PDP 11/34 system in
addition to the Prime 300.

2 PREPARING TO USE SAVANT

SAVANT is an interactive program, which means that the user communicates with the program by means of
a VDU terminal and keyboard, giving commandw to the program which define the required operations and resp-
onding to prompts and questions displayed in order to amplify or qualify the commands. Results and reports
are received directly on the terminal as well as being able to be committed to file for future reference
and hard copy output.

The purpose of SAVIT is to provide an automatic tool to enable the data flows in a speculative system

design to be analysed and refined in an iterativa manner so that errors and inconsistencies can be corrected,
the effects of various trade-offs can be examined and aspects of the feas 4bility of the proposed design can
be established at an early stag.

The SAVANT program operates on a database held in memory. The database represents various facets of
the system under investigation and SAVANT provides the facilities for creating, modifying, extending,
analysing, filing and retrieving the data. The database is divided into three segmental the reference
segment, the configured system sement and the messages segment.

The 'raw' system data which the user prepares forms the basis of the reference segment of the database.
In order to generate this, the user formulates a list of potertial subsystems which may be included in the
system under investigation, although the term 'subsystem' is very much dependent on the interpretation which
the user wishes to place on it. For example, it y be a single identifiable subsystem, or it may be a
complete functional area which in reality would consist of a number of distinguishable subsystems. On the
other band, several different 'jubsystems' might in fact be different manifestations of the same subsystem
allowing for different modes of operation. Once the data is on the SAVANT database, a 'system' can be
configured from whichever of the known 'subsystems' the user wishes to nominate, and not necessarily all of
them.

Each subsystem Is given a name which describes its function, such as 'INU' (inertial navigation unit),
'ADC' (air data computer), 'HUD 1' (one option of the head-up display subsystem) and so on. Having decided
on the subsystems, the user then prepares a list of all the data items which are required to be received by
each and the data items which each will produce for %ransmission to other suosystems, and each of tLese data
items is given a name. Thus, the IWU might require to receive 'BARO ALT' and 'MACH' among its input data,
and may produce 'LATITUDE' and 'f1l4OITUTE' awong its output data.

Each d:.ta item thus specified must be provided with an estimation of its iteration (update) rate and
its precision, either required, if it is input by the subsystem, or capable of being produced if it is out-
put by thp subsystem. Also, the urito in which the data is represented may be specified.

For the representation of r-te, 'AVANT uses the 'rate group' concept rather than ebsolute iteration
rates. by this method, the maximum data iteration rate in the system (which might, in practice, be 50, 6A
or 100 E-, say) is represented by Mte 1. Binary subdivisions of this rate are then expressed as Rate N,
so that Rate 2 is one half of Rate 1, Rate 3 ie one half of Rate 2, and so on. The decision about abtolute
rate values does not have to be made at this stage, and one of the SAVANT analyses ian be to investigate the
effect on system data traffic of varying the value of Rate 3. Rate 0 is used to represent a direct connection
where the data is not transmitted on the data bus.

The precision value is simply the number of bits needed to represent the data quantity. Thus, accuracy,
range %nd resolution are comprehended within this figure, but it is felt that, together with the units
idontification, this is adequate to exprezs the precision attribute of the eats quantity at this stage of
the description without introducing undue complexity.

The units identifier, like the subsystem and data name, is an alphanumeric character string. If a
data quantity is dimensionless, such as a ratio, or if units are not considered important, to the analysis,
then the string can be null.

To summarise, then, in preparation for operating SAVANT, the user has formed a description of the
speculative system whioh comprises a number of data flow specifiers, each of which consists ofi

Subsystem name
Data item name
L:ate flow direction (transmitted or received)
[)ata z .its

Data precision
Vata unilte

I 1-3

and it is such data flow specifiers which form the basis of the reference segment of the database The way
the data is used in analysing the system design is described in the next section.

3 THE OPERATION OF SAVANT

Depending on the phase of operation and the state of the database, the SAVANT program operates in one
of seven program states. Those program states govern the taske rhioh the user is able to perform. The
seven states in which the user can operate are as followas

EMPT.Y
OPEN
INCONSISTENT
CONFIGURED
F•RMED
LIMITED
LIMITED FORMED

The full range of commands to which SAVANT responds comprises 52 major commands, some of which can be
further qualified in operation. Of this range, only a certain number are valid in each stats, and the user
can at any time display the current program state and the menu of commands valid in that state by typing
'HI. If the user types a command which is not valid in the current state, or is simply not understood,
SAVANT comments on the fact, echoing the erroneous command and reminding the user of the listing option.

With the exceptions of the commands 1H' and 'STOP', all major commands which the user types consist
of 3-letter abbreviations of the actual commands. A list of all commands, showing the abbreviations and
the states in which they are valid, is given in Table 1.

Often during the course of command execution, the user is requested to supply further information,
such as subsystm or data names, file names, and the like. In such cases, if the user's response is erro-
neous, such as giving a name which does not exist, or specifying a file for reading which contains the wrong
type of information, the user is warned of the error and SAVANT returns to the command level. The program
always recovers from error in this manner and never exits without giving the user a chance to file the data
on which he has been working.

The operation of SAVANT in each state will now be described.

3.1 The ELTT state.

When the SAVANT program is started, the database area ia initialised and the program enters the EMPTT
state. An operation which can only be done in this state is to reset any or all of the preset system para-
meters. These are declared in SAVANT with the values characteristic of Mil Std 1553B, where appropriate,
so every time the program is run afresh then these values will prevail, but once they are changed within a
ru• then the new values prevail until changed again or until the program is stopped.

The paramwter. which can be changed are as follows, with the preset values given in parentheseess
lowest rate group (8), data word length (16 bits), number of words in a message (32), word overhead - eg,
sync, parity, etc - (4 bits), transmission bit rate (1 MbIt/s), number of addressable terminals (30),
typical message overhead for transfers involving the bus controller (2.6 words) and not involving the bus
controller (4.9 words).

The other operations which can be performed in the EMPTY state involve the input of data, either
directly from tLe terminal or from a Jisc file. Data input from the terminal comprises information on the
data flow specifiers detailed in Section 2, and this is entered ir the reference segment of the database.
Multiple entries can be made with one conmand, and these can either be miscellaneous or specific to one
subsystem. It- the latter case the subsystem name nned only be typed once. The user is prompted for each
specific piece of information required. As soon as an operation is performed which places data in the
reference segment then the program state becomes OPEN.

It will be seen later that a reference database which exists within SAVANT can be saved as a disc
file, and such a file can also be input in the EMPTY state to set up the reference segment. Again, this
r,sulte in the program state btcomi•g OPM2.

Another option in the &11PTY state is to input information from a disc file directly into the messages
saglnt of the database, in which case the program state becomes LIMITED. This is discussed in 3.6.

3.2 The OP2 state.

Tho OPN1 state allows various operations to be performed on the reference segment. These fall into
several categorlec: listing, it'ensalon, odifioation, filing and state-changing.

The listing oommandn allow various lists to be produced. For example, one can list the referenoe
dat.nbase ontri's in tabulated form, or oni can list only those)ntries which relate to a specific subsystem.
One c-n produce a list or all 3ubeysttm names or a list of al. 4ata item names. Also, one can trace a data
item by listing all occurrencee of that name in the reforence segment, with the appropriate qualifying
i.. formatian.

With all of the listing co.oaAnds in SAVANT, if the list produced could exceed the capacity of the
terminal screen then the user is offers,' the option to pause on each page so that the information can be
examined at leisure. This optiron also allows the output then to be aborted rather than continued to the
ne.xt page. If the option is not exmrcised then the lietin; runs to completion without pausing, which may
be useful if a monitor file is being produced. All the listing commands of the OPEN state are also avail-
able in the INCONSISTENT, CONFI3URED and FORMED states.

11-4

The reference segment can be extended by adding entries from terminal or file, using the same commiards
as are available in the EMPTY state.

Modifioation of the reference entries can take sJeveral forms. Any subsystem or data item name can be
changed, either to a completely new name or to another name which already exists on the datp.base. This
latter is useful for resolving spelling inconsistencies. Rate and precision entry valuee can be modified in
the following wayes the value for a specific entry can he changed, the entry being identified by the sub-
system and data names and tho transmit/receive flag; the value for a pa-ticular data item can be generally
set/changed at every occurrence of the data item, and any specified rate 'r precision value can be changed
to another value either generally throughout the reference segment, or just for those entries relating to
a specified subsystem.

A units identifier can also be changed to a new or other existing name either generally throughout
the reference segment, or for every occurrence of a data item, or just for one specific entry.

Finally, among the modification commands, refecence segment entries can be deleted in two ways.
Either a specific entry, identified by its subsystem and data names and transmit/receive flag, can be
deleted, or all entries relating to a specified data item can be deleted. If any deleting operation removes
the last remaining reference segment entry then the program state reverts to EMPTY.

The filing commands enable the current reference segment to be saved in one of two ways. Either the
complete reference segment can be filed or only those entries relating to a specified subsystem. Using the
latter command, a library of files relating to different subsystems can be established. When the files are
written they are provided with identification which can be checked as part of the reading-back operation.

There are two state-changing commands available in the OPEN state. Firstly, the database can be
cleared, in which case the program state reverts to EMPTY. The user is asked to confirm the intention to
clear sl.,n' any work thus far perfonred will be lost if no filing has taken place. The second state-
changing ormand is that which requests a system to be configured from the subsystems known to the reference
segment. Here the user can specify that all subsystems are to be included, or a 'yes/no' indication can be
given as SAVANT offers each subsystem in turn.

Once SAVANT has ascertained the subsystems to be included in the confib-wed system it formaulates the
configured system eenLment of the database, using information derived from the reference segment. This
configured system sa,=ment contains information on the desired linking of data in the system, identifying all
transmitted data items, together with their rate, precision and units ' and all configured
receivers of each data item, together with their rate, precision Lnd unite requirements.

The data thus assembled is then checked for fatal inconsistencies - ie, those which preclude the
formation of valid massages between subsystems in the configured system. If such exttPt then the mesRages
segment of the database cannot be formula.od and the program state becomes INCORSIbIENT. If no fatal
inconsistencies exist then the messages segment, which comprises the valid traffic resulting from the data
linking operation, is formulated and the program state becomes CONFIGURED.

In neither of tiese states can the reference segment of the database be modif!ed, vince this must
alweys correlate with the system which has been configured.

3.3 The INCONSISENT state.

If the program state on conlit-uration is found to be INXO1XSISrENT, then SAVANT automatically gene-
rates a list of the fatal inconsistencies which have been found. These fall into four categories. Firstly,
the rate, precision or -Anite requirement specified for a Aata item in a particular receiver may not be
:onsistent with the capability speciried for the transmitter of the data item (is, rate or preicsion too
high, or different units). Seconily, it may be found that a data item is transmitted by more than one sub-
system, or, thirdly, that a subsystem both t-ansmits and receives the same data item. The fourth type of
fatal in:onsistency ie where the number of addressable terminals resulting from the data traffic would exceed
the terminal limit set.

Any of these would preclude the formation of valid message traffic in the system, and the list is
useful in identifying whore the referenc segment needs to be corrected. Of course, such mo~iification *ctr.
only be performed in the OP-N state, so the only state-ch,-nging uommsnd available in this state is to
dismantle the inconsistent configured system, in which case the state reverts to OPEN. No modification to
any of the database structures can be performed in the IMCONSISTMiT state. The listing and filing options
of the OPEN state are still available, ani there are now three further listing commands.

One of these cosniands allows tho user to re-display the list of fatal inconsistencies, and another is
used to gn-3rate a list of non-fatal inconsistencies, indicating a lack of uompleteness of Aata paths.
He.-c all data generated L'nd not used in the configured system iZ listed, as is all data required but not
generated. This type of inco~:p±eteness is not fatal because it ..oea not provide any dilama in forming the
messages - the incompleti patn is simply not included in the message structure - nhi i.t may be an intent-
ional condition of this conCigoraticn. The third new list command produces a general tr,%ce of data in thn
config•,red oystem, listing each transmitted data item, together with its transmitting eubsystem and capabi-
lities and all configured receivera with their requirementz. The lattier two listing commands are also valid
in the CONFIOURED otate - the former is not applicable since ther" are no fatal inconsistencies if the
program is in that state.

It should be noted that the ITO- comu-and in valid in all program states. This etopo the ZAVAET run
and returns control to the computer operating system. Bt fore the nommand is executed the user is re;'aeeted
to confirm the intention to stop since all information on the dataliase wil bi lost unless filing has taken
place.

3.4 The CONT1SUREP state.

When a system is configured from the referenoe segment information which does not involve any fatal
inconsistency then the program state becomes CONFIGURED. As wall as formulating the configured system eeg-
ment, SAVINT is also able to set up the messages segment of the database.

A meusage is a package of data words passing from a specific source subsystem to a specific sink sub-
system (a source/sink pair) at a specific rate. During oonfiVLration by SAVANT, if the total number of data
words satisfying this requirement in a particular ease exceeds the value nf the message length setting then
more than one actual message must be generated. Furthermore, if the precision requirement for a data item
is greater than the word lerngth setting then mora thnn one data word must be used to represent the quantity.
This is known as partitioning of data words. In SAVANT, ,he precision value of a data item can be as high
as 1024 bits (64x 16--oit words), so it is possible, when formulating the dezign, to comprise a l&rge package
of data under one generic name.

The partitioning of data woids and the disposition of words into messages is performed automatically
during configuration, and the result foxna the basis of the meesages segment. 'heaze is Lne entry for each
message generated, and each entry contains references to the source and sink subsystems, rate, number of
words and the individual data word names. Pavtitioared data words are assigned subscripti so that they can
be individually identified during modificstion. Suol, modification can be performed, and further information
added to the messages segment, by commauds available in the CONFIGURE) slate.

The operations which can be performed in thin state fall intu several categories: fliting, analysis,
modification, filing and state-ohanging. A,, well as the listing commands available in the OPEN and INCON-
SISTENT states, a new range of listing iptions become available in the CONFIGURED state. For example, it
is poscible to list the names of configurcd subsystems, and this list includes indications as to whether
each subsystem is connected via the data bus and, if so, whether its terminal address has been set and what
the value is. The terminal address is required by Mil Std 1553B protocols, and one of the commands in this
state provides for the assignmert of t-ses values by the usee.

Several listing options are derived from the configured system segment of the database. For example,
one can produce a list of all source/sink pairs together with all data items passing between each, f-ach
data item bing qualified by rate value, or cne can list this information for one specified source/sink
pair. One can also generate a visual map of the data traffic between source/sink pairs, either displayed
on the terminal screen or directly into a file.

Other listing commands derive their information from the messages segment. A summary list of messages
can be generated which tabulates, for each message, the source, sink, rate, number of words and retry coda.
The retry code is intended to be used for error racovery action by the bus controller in the actual system
as implemented -nd, since SAVANT may be used to generatu bus control schedules, the user is able to assign
or change valuue of this cod(for any message whilst in the CONFIGURED state. In addition to the summary,
fuller details of all bus messages and all direct data packages can be listed, including identification of
the actual data words, or, alternatively, one can list this information for any one specific message which
nueds to be examined.

The analysis commands enablo the user to analyse the message structure for the presence of message
subsets, and to calculate the data bus loading percentages which would result from implementation of the
system in practice.

The subset information is required so that the user may rationalise the message structure in prepara-
tion for the automatic generatlon and assignment of subaddressee which takes place when the program is
advanced to the FORMED state. A subaddress is used to identify a pardicular message, or package of data
within a subsystem. In other words, the subaddress value can be used as a vector which accesses the begin-
ning of the package of data within the subsystem. This is particularly valid if e aubsyste, involves
processing and is lilhely to buffer i.s data in memory. In the Nil Std 1553B protocol the subaddress value
is part of tde command word which is rent ly the bus controller to a subsystcm, and it is likely that the
subaddress for a particular message will be different in the source and sink subsystems.

Naturally, if a subsystem transmits an identical message - in terms of data content-to a number of
different receivers, then the contents of that message can be assigned a single subaddresas for the source
subsystem. Furthermore, if the message sent to Terminal 1, say, is a subaset of the message sent to Term-
inal 2 then the subaddress for the shorter message within the source subsystem can still b the ease as
that for the longer message since the word count field of the command word specifies the number of words in
the message. For this to be valid, bearing in mind that the subaddress points to the beginiing of the data,
the words comprising the the uLort message must be contiguous within the longer message and must occupy the
beginning of that message.

The facility to list subsets is, therefore, provided tj allow tie Leer to examine the relevant messages
and make appropriate use of the modification commands in o'der that the automatically assigned subaddresses
ar3 as efficiently derived as poscible.

An important veasure of the feasibility of a proposed syrtem 'a whether the data bus has the capacity

to handle all thb required data traffic. The loading calculation command ca•nse SAVANT to estimate the
loading percr .eagse which would result from running the system in reality, using the set vulues for overhsads
and transesr'sion rate. The user is requested to specify the value in Hs represented by Rate 1 and to declare
which s.'•aystem is to act as bus controller. If none of the knoci configured iubsystemc is indicated then
SAVAr. assumes a dedicated controller which is not taking part in the actual mesjage traffic. SAVANT
ov'.oulates and displays the l,ad in wordn, including overhe "'i, at each rate, and then displays three bus
,oading percentages.

In order to comprehend these it is necessary to defin, ae 'major frame' as the interval represented
by the lowest iteration rate in the system - is, the iteration period of the cooflicte message repertory,

1I1-6

and the 'minor cycle' as the highest iteration rate period. The first loading figure calculated, then, is
the Iong--term (major frame) average Thad, and then two peak (minor cycle) loading figures ari oijiplayrd.
The first of these is calculated on the busis that all rate group massages e•r initiated in the same mino'
cycle - eg, when the system is reset on start-up, say - and this iw the peak. lumped loaling. The peAk
dis~ributed loading, on the other hai.A, assumes that the initiation of the different ra'.e groul. mostiags is
staggered so that only the Rats I messages and those in one of the other rate groups occur in any minor
cycle. Thus, it mayr be possible to ob3erve, for examp.ls, that a system whose average loading is a-ceptabl;.
low would produce an impossibly high peak lumped loading percentage which is alleviatee, br distributing the
iniitiation of the different rate group messages.

The use of the loading analysis on the configured system, particularly as the meacage structure is
modified, or as the reference segment is rationalised and the system re-configured, provides a vital check

on the feasibility o! the design approach.

Two ot the modificttion commands have already been mentioned - the ability to '(t and change terminal
addresses and retry codes. Two further modification ,.oytands are available in order to allow the user to
change the order of data words within messages or to redistribute data words between messagre. SAVANT
formulates message contents in the order in which data items are encountered in the reference segment, the
result of which may not be satisfactory to the user. For example, it may be necessary to -re-order a message
in order to rationalise subsets, or partitioned data W•e cross the boundary between two ricesages whereas
the designer would prefer it in one message, and so on.

There are three filing comsmands available in the CONIGUR•DF state. The two reference seegmnt filing
options of the OPFM state are still valid, and it is now also possible to file a meseaga structure for
future reference. In this case, only the informution in the messages segment of the database is sent to
file, but this includes any terminal address and retry code assignments which might have been made and, of
course, takes account of any maesage re-forwatting.

Of the two etate-changing commands, one dit.mantles the configured system, taking the program brck to
the OP0132 state, thus facilitating further rference segment modification. The other advances the program
to the FORMED state.

3.5 The FORMD state

In the FORMED state the database represents a finalised system configuration and is, therefore, no
longer available for modification. It is from this state that the user is abl,. to generate schedule tables
for control of the system in reality, together with detailed information on data requirements in a subsystem
related form.

When the command is given to form the system, UAVANT automatically gfinerates the source aid Eize..
subaddresses for each message, making the beet possible use of subset information, and implants these values
in the messages segment entries. There is a limit to the maximum number of subaddressas for a sub3yetems
in Mil Std 1553B, for example, thie limit is 31. Thus if, during the course of formation, a message sub-
address value for any subsystem would exceed this limit then the user is warned, the forming fails and the
program remains in the CO1FIGUBED state.

This, then, is another check on the feasibility of the proposed system, and if forming fails then it
is up to the user to examine the message structure and the reference segment date in order to reduce the
total number of messages a subsystem he.z to handle. One wey, for exuaple, may be to reduce the nutber of
different rate group transfers so that messages may be coalesced.

The commands available in the FORMED state include all the listing and filing couwandu of the OPEN
and CONFIOURED states but there are no database modification comonands of any sort. There is one new listing
command which displays a list of all subaddress assignments, and one new filing oommand which generates the
bus control schedule.

On receipt of this latter command, SAVANT requests the user to declare which subsystem is to act as
thr bus controller anu, as ita the -alculation of bus loading, assumes a dedicated controller if the name
supplied is not recognised. From the information in the messages segment, a table of bus control schedules
is created and sent to a disc file. The format for the schedule is flexible and can be changed to suit any
particular bis controller i'plementation although, at the present time, the flexibility is not paramsterised.
It is intended that thir should Le so in the futvue.

Following the schedule filing, SWANT then sends to another disc file details on each subeystem's
requir-%ments, including its terminal addr(-ss, the data content of all subaddreeses, transmitted and rec-
eived, and all direct ransfer informotion.

The only state-changing command in the FORUlD state reverts the program to the CONFIGURED state.

3.6 The LIMITED and LIIMTkED FORMED states.

It was discussed in 3.4 how the message structure of a configured system can be saved as a disc file.
With SAVANT in the ?FWTY state, such a file can be rnad back into the messages nogment, in whicI case the
program state becomes LIMITED, which is a special case of the CONFI UED state.

This is beýause although the messages segment exists it is backed up by neither the reference segment
nor the configured system segment, so the range of commands available is constrained. For example, the
only listing commands are those related to the messages segments the listing of jon'igured subsystems,
message summar., message details and the data traffic map, plus the listing of data 3te. names. It is not
possible to revert to the OPIZ etate because there is no reference segment. The only reversion from the
LIMITED state is direotly to the EITTY state.

'Al

In the LIMITED state, however, the analysis and modifioation commands of the CNIOUBRED state are
still available, so it is poesiblo to modify the message structure, to perform loadig analyset,, to assign
terminal addresses, etc. It is also possible to form the system, in whioh nase the program state becomes
LIMITED FORMED. Thus bus control schedules for the revised message structure can bp generated. Reversion
from the LIMITED IFRMED state ie to LIMITED.

Figure 1 shows the relationship of all the SAVAMT program states.

4 CONCLUSIOWS

This paper has briefly described the software technique for system analysis known as SAVANT. A full
report)n its development and application, including an exam'ole of its use, has been published (ref 6).

Future avionic systems are certain to become more integrated, where the individual subsystem elements
must be regarded aj performing co-oceratively in order to provide their overall contribotion to the system
task. The options open to the initial system designer are varied, and decisions made at an early stage

have a very significant effect on the future development of the system.

The volume of information which has to be considered at this early design stage, and the nature of
the analysis tasks which have to be done, demand thet tools and techniques are developed which enable auto-
matic processing to play the part for which it is so clearly suited. The availability of such tools and
the contribution they can provide in easing the more menial design tasks in an unerring manner mean that
the initial design phase can be more speculative, trving out difforent ideas and gauging thir effects.
This oar. only be of benefit to the resulting design.

The SAVANT technique describedý in this paper provides a facility which, it is laelinved, will prove
a useful part of the standard warehouse of support tools needed for the development of foture avionio
sGytems.

rcpyright Q), Controller HMO, London 1981

I E C Gangl Time-division multiplexed data bus inteogration techniques.
Proc-3edings, USA? Multiplex Data Bus Conference.
Dayton, Ohio, November 197b.

2 A A Callaway Trends in digital data processing and syatcm architecture.
WUARD G0r Conference Proooeaings 272.
Ottawa, May)979.

3 A A Callaway The influence of digital techniques on system architecture.
Joint ISE/RAeS Symposiums Digital Avionics, promise and practice.
London, March 1980.

4 US DOD Aircraft Internal Time Division Command/Response Multiplex Data Bus.
Mil Std 1551B
21 September 1978.

5 Ministrn of Serial tim division command/respense multiplex data bus.
Defence Def Stan 00/18 (Part 2) Issue 1.

26 April 1980.

6 A A Callawsy SAVAN'I - A database manipulation technique for system architecture
verification and design analysis.
RAE TR8O1O1
Januarj 1981.

° I I--

Table I

SAVANT CO'MANDS

Command Valid sta•e

H - LIST VALID COMMANDS X 0 1 . I .C . L .LI
RSP - RESET PAHAMETERS
ITE -uNPDr TERMINAL FETRIEb3.0
IPE - INPUT FILED ENTRIES . U . 0
I1M - INPUT FILED WSS•AGES E
LIM - LIST ENTRIES . 0 .I C .F
LSD - LIST SUBSYSTEMDATA . 0 .1 C
ISN - LIT SUBSYSTE1i NAAES 0 0 P . L .LF
LI - LIST DATA NAMES .I. .L. 0 1 C P . L L?
TDP - TRACE DATA PATH 0 1• C P
CSN - CHANGE SUBSYSTEM NAME 0
Ctt - CHANGE DATA NAME0
CRE - CHANGE RATE ENTRY 0
CRO - CHANGE RATE GE•ERAL 0
CDR - CHANGE DATA RATE 0
OSR - CHANGE SUBSYSTEM RATE 0
CPE - CHANGE PREC ENTRY 0
CPO - CHANGE PREC GENERAL 0
CDP - CHANGE DATA PREC 0
CSP - CHANGE SUBSYSTEM PREC 0
CUE - CHANGE UNITS ENTRY 0
CUO - CHANGE UNITS GENERAL 0
CIA - CHANGE DATA UNITS 0
DDR - DELErE DATA REPRDICE 0
DOE - IELETE ONE ENTRY 0
FEN - FILE ENTPIES 0 . I .C .F
FSD - FILE SUBSYSTEM DATA 0 . I C . F
CLR - CLEAR DATABASE 0. L
CFS - CONFIGURE SYSTEM 0.........0
LI)P - LIST DATA PATHS I . 0.
LOS - LIST CONFIUUR D SUBSYSTEM I .C. F . L L
LDr - LIST DATA TRAFFICC
RIX -MAP DATA TRAFFIC C F . L . LF
SSP - SOURCE SINK PAIR DATA F
COS - CHECK CONSISTENCY I
CCR - CHECK CORRELATION I , . P
SUM - SUARISE MESSAOEF C F . L .LF
LBM - LIST BUS MESSAGES. C P . L .LP
LDD - LIST DIRECT DATA C F . L .LF
OLD - CALCULATE LOADINGS C F . L
LOM - LIS ONE MESSAGE C F . L LF
LSS - LIST SUBSETS C P . L .LF
SRC - SET RETRY COE C. . L
STA - SET TERMINAL ADDRESS L
RON - REORDER MESSAGE C . . . L
hFM - REFORMAT MESSAGES C .. . L
FLU - FILE MESSAGES C P . L . LF
tMS - DISMANTLE SYSTEM I . C
FlS - FOM YSTE.1 C . . . L
LSA - LIST SUBADDRESSES F . . .
PIS - FILE SCHEDULES P . . . LI
UPS- UNFOK SYSTEM LI
STOP (return to OS) E . 0 I. C F L .LF

Key s E - EMPTY

0 - OPEN
I - INCONSISTENT
C - CONFIOU1ED
F - FORMED
L - LIMITED
LF - LIMITED FORMED

L--boom

11-9

Figure1

SAVANT Program State Diaram

IEE CLETRIES

in ipm

IFE - INPIT TERIALE ENTRIESI•E -INPUT FILED D IES

CLR - CLEAR DATABASE
CFS - cONF£IUE S TFDO

E - DISMNL SY3TE L
IUN - STRN SYSTEM

U -NrS

12-1

SIGNAL PROCESSING WITH SYSTOLIC ARRAYS*

R.W. Priester
Research Triangle Institute

Research Triangle Park, NC 27709

K. Bromley
Naval Ocean Systems Center

Catalina Boulevard
San Diego, CA 92152

H.J. Whitehouse
Naval Ocean Systems Center

Catalina Boulovard
San Diego, CA 02152

J.b. Clary
Research Triangle Institute

Research Triangle Park, N 27709

ABSTRACT

This paper discusses the application of systolic array processors to signal process'ing problems that
are amenable to a matrix formulation. Systolic arrays are formed by providing nearest-neighbor
interconnections between a large number of elemental processors to form either a one- or two-dimensional
array. Witn the possible exception of boundary elements, each processing element performs identical
computdtions in syncoronism with other elements in the array. A number of important problems for which
systolic arrays hold potential are mentioned and the systolic array processor definition, in a number of
its forms, is reviewed. When applied to strongly band-limited matrices, systolic array processors can be
characterized as highly efficient from the standpoint of both hardware utilization and algorithm time.
However, as the bandwidth becomes large, this high performance is degraded. In an effort to overcome
performance degradation, this paper introduces and evaluates a data transformation which, when applied to
an n x n dense matrix, results in an improved banded structure with attendant hardware savings. An
interesting feature of this transform is its invariance properties with respect to the ordering of output
time sequences and algorithm execution time. Another interesting aspert is its relation to the classical
Gauss-Seidel's method of iteration.

V. is shown that systolic array processors possess some efficient testability features which can be
exploited concurrently. These are briefly summarized.

*The wox reported in this paper was sponsored by the Naval Ocean Systems Center, San Dieqo, CA, under
contrac N66001-80-C-0118.

12-2

1.0 INTRODUCTION

Thit paper discusses the application of systolic array architectures to signal processing problems.

Introduced by Kung (197PI, systolic array architectures provide the capab'lity for realizing a number
of importanO matrix operatin.s. In addition to achieving a high computation rate by means of pipelining
and concurrent computation, ýhe architecture is a good candidate for implementation with VLSI (very large
scale inteqration) technology. If the matrices processed are characterized by a narrow bandwidth, excel-
lent hardware utilization efficiency can be achieved. However, in those cases where the matrix batidwidth
beconms appreciable, for instance in the case of square densely-populated matrices, hardware utilization
efficiency I, degraded significantly. This paper addresses the problem of using systolic arrays to process
matrices whose structure is less constrained. A simple but effective data transform which can in some
instances significantly improve hardware utilization efficiency is introduced and developed.

The paper is organized as follows. Section 2.0 presents a brief and general discussion of several
problem areas where the systulic array architecture is of interest. Sec t ion 3.0 outlines the main features
of the systolic array architecture and unly summarizes the extensive tr atment given by Kung (1978) and
Mead (1980); this section is included only for purposes of completeness of presentitlon. The PRT (partial
row translation) data transform is introduced and developed in detail in Section 4.0. Section 4.0 also
quantitatively compares the efficiency of the original systolic array processor with that which results
from applying the PRT transform. These results provide a means for deciding when PRT is advantageous.
Matrix inversion is the topic of Section 5.0 while Section 6.0 briefly outlines an efficient technique that
is useful fcr testing some systolic array matrix processors.

2.0 MATRIX OPERATIONS IN SIGNAL PROCESSING APPLICATIONS

Matrix operations represent a significant portion of the computational burden encountered in many sig-
nal processing applications. Adaptive filteriny, data compression, beamftrming, and cross-ambiguity cal-
culation represent problem areas where stable matrix analysis techniques are of .'jrrent interest. In terms
of resources required for system implementation, these problems can be classified as memory intensive and
computation intensive. Construction of systems capable of providing the computations required for analysis
of the above problems must provide for operations such as matrix multiplication, inversion, e-dition and
various decompositions.

For example, in least squares approximation problems, one might encounter matrix multiplication, ma-
trix inversion, and/or singular value decomposition. The computational approach used in a particular
instance depends upon the numerical stability properties of the problem at hand. For instance, if the
order of a particular problem is sufficiently smafl, the Gauss normal equations might be solved by perform-
ing a straightforward matrix inversion. However, in the solution of ill-conditioned systems commonly en-
countered in large-scale problems, achieving a meaningful solution might require application of singular
value decomposition computations.

Speiser and Whitehouse (1980) discussed the signal processing problems mentioned above and considered
the applicability of competing architectures such as transversal filters, array processors, bus-organized
multiprocessors and systolic array architectures. Of these, the most promising architecture is that of the
systolic array which has the potential to support real-time implementation of the algorithms required in
order to address those problem areas mentioned in this section.

3.0 THE SYSTOLIC ARRAY ARCHITECTURE

In the interest of a self-rontained presentation, the systolic array architecture will be outlined and
illustrax)d in this section. A thorough, comprehensive treatment can be found in Kung (1978) or in Mead
(1980). The systolic array architecture is founded almost exclusively upon a single computational
element - the inner product slop processor - which implements the relation

k+1 k
y - ak+1 * xk+I + 0 k - 0, 1, 2, ... , n-i. (1)

Systolic array processors are constructed by appropriately interconnecting a group of inner product step
processors. In the systolic array architecture, only nearest-neighbor processor -o%,unication is
permitted. For purposes of d&ta communication and computation, each inner product step processor is
equl .d with three data registers: R.V (for y), Ra (for ak) and Rx (for xk). Each register has
two cn. .c r. - one f1r input, the other for output. Kung (1978) defined two types of inner product step
processors WIn11 .- :llustrated in Fig. 1. These elemental processors can be connected in a number of
ways which provide tne capability to perform various matrix operations such as matrix multiplication, L-i1
decomposition of symnetric positive-definite matrices, and the solution of triangular linear systems or
equations.

A basic unit of time measure for both types of processors shown in Fig. 1 is defined as iclcows: (•)
the processor loads inputs yk, xk and ak, into Ry, RX, and Ra respectively, (b) yk+l is computed accordl.ng

to (1), and (c) y xk, and ak are output.
As an example, a systolic array matrix-vector processor will be configured to form the product

y - Ax (2)

using a lineirly connected group of Type 1 processors. *rhe relations which must be implemented are as
fol lows

12-3

k+1 k
Y " a1 , k+l Xk+l + y 1 , k 0 0, 1, 2. n-i

0 (*)
y1

wi , IW1 , 2 , n .

Fig. 2 illustrates the systolic array of processors, the element dat& arrangements and flow required to
evaluate (2) for the case where A is an n x n matrix with bandwidth w - p + q - 1 4. The y1 enter the
array from the right as zero and accumulate so as to form the inner product of the ith row of A with vector
x which moves to the right after being input from the left. As the x a,.d y vectors move through the array
in the manner noted, A is shifted downward such that elements along the mkin diagonal pass through P2 .
In general elements of A above and parallel to the main diagonal pass through processors to the left of
P9 . Similarly elements of A below and parallel to the main diagonal pass through processors to the right,
oVP2. A detailed example illustrating the operation of this systolic array matrix-vector processor will
be presented in Section 4.0.

Generalization of the linearly-corinected systolic array to a two- dimensional orthogunally-connected

structure enables the evaluation of matrix-matrix products. A systolic array for evaluatinig

C = AB (4)

where all matrices are n x n is shown in Fig. 3. Matrix A is input to the systolic array in exactly the
same way as described earlier for the matrix-vector protessor while colnis V.' B are input, with appropri-
ate spatial shift to allow for A's time delay, into successive rows of the array. If B contains a large
number of columns this implementation can be inefficient even for strongly banded matrices. Kung (1978)
overcame this problem by devising the hexagonal-connected systolic array which is baseJ'upon the Type 2
processor of Fig. 1. An example of this processor is presented in Fig. 3 (b) for the case (4) when A, B
and C are strongly banded. Note the direction of flow and orientation of A, B and C. Entries in C are
accumulated as this matrix is shifted upward from the bottom of the array, where the cij enter with
zero value.

Using the array structures presented above, Kung (1978) was able to realize two additional important
matrix operations. Due to space limitations, these only will be mentioned here. A triangle equation
solver can be constructed using a linearly connected array of inner product step processors; however, it is
necessary to introduce a new processor capable of division. The resulting processor solves a nonsingular
triangular system of linear equations by back-subst~tution. Similarly, by adding special elements on the
upper portion of the periphery of the hexagonal array (Fiq. 3b), Kung (1978) showed that one can obtain the

following matrix decomposition

A - LU

where A is a symmetric, positive definite mat-ix
L is lower triangular having Is on the main diagonal

and U is upper triangular.

Therefore, this processor, when coupled with the triangle equation solver, can be used to solve a fairly
general class of simultaneous equations.

Table I summarizes the hardware requirements and algorithm execution time steps for the family of sys-
tolic array processors defined by Kung. When considered from the standpoint of hardware uniformity, a sur-

- prising degree of capability is realized by the systolic array architecture. For the case of strongly
banded matrix structures, this architecture is efficient in terms of both the quantity of hardware used and
in hardware utilization efficiency. However, if square dense matrices or matrices of more general struc-
ture are considered, hardware utillz3tion efficiency can be degraded considerably. This problem is

Table 1. Summary of Systolic Array Hardware and Algorithm Execution Time Requirements
for Some Matrix Problems.

Systolic Array Problem No of Processors Algorithm
Configuration Solved Required Time Note: (a) Matrices are

assumed n x n
with bandwidths

Linearly Connected Matrix-Vector w 2n + w w - p + q - 1.
Array Multiplication Subscripted w

denotes
Linearly Connected Solution of w 7n + w bandwidth of
Array Triangular indicated

System matrix.

Orthogonally Matrix-Matrix n • min(wA,0) 3n + min(wA,wB) (b) Matrix-Matrix
Connected Array Multiplication Multiplication

either C % AB or
Hexagonally Matrix-Ma t rix wAWB 3n + min(wA,wB) C' AB', where
Connected Array Mult pl cation Cs) - transposi-

tion.
Modified L-U Decomposition p(q-1) 3n + min(p,q)
Hexagonally A - LU
Connected Array

12-4

addressed in the next two sections of thIs pap" wvere mvthad.d for improving implementation efficiency are
introduced and studied.

4.0 DEFINITION AND DEVELOPMENT OF TI(PIPT TRAWIFJRi

In this section the PR' (partial row translation) trapsform will be defined and sam- of the benefits
available from its application in connection with systolic arrays will be presentel. It will be shown to
improve hardware utilization efficiency and in addition provide a hardware savings in the case of square
dense matrices.

Definition of the PRT Transform

Consider the matrix-vector multiplication problem stated in (2) with A constrained tc be n x n and
densely populated. Express A as a strictly subdiagonal part, At (i.e. %|th no diagonal elements)
Juxtaposed with Al,, the upper triangular part of A which contatl s the ma n diagonal elements of A. Tnis
may be expressed is follows

Applying the PRT transform to (5) provides

APRTU 0 6
That is, APRT is obtained from A simply by translating (i-i) elements in row i to the right n posi-

tions within the row for i - 2, 3, ... , n. In the resulting n x (2n - 1) array, all elements not specified
by AU and the displaced AL are set to zero. Now, applying the PRT transform to (2) yields the equiva-
lent expression

y = ApRt xpRt " APRT [(7)

where Xp - (x 1 , x 2 Xn_1). It is noted that the PRT converts a square array into a non-square array

with enhanced banded structure. The transform necessitates augmenting x with a partial copy, x . A de-
tailed example where A is 4 x 4 is shown in Fig. 4. Four processors are used and the required fAumber of
time steps is eleven. These quantities compare favorably with Kung's systolic array which would use seven
processors and also eleven time steps. For n large, it follows that the PRT transform saves about n/2
inner product step processors with no increase in execution time. If the original systolic array were
designed such that immediately upon processing element .n the values of y contained in the array
could be unloaded, a time advantage would result for thi processor configuration. The corresponding PRT
based array, while saving about one-half the number of processors, would incur only about a 50% increase in
execution time.

The PRT transform readily extends to the problem of evaluating the product of two square matrices as
expressed in (4). It can be shown that the resulting systolic array for this problem is identical to that
of Fig. 3a. The only difference occurs in the way A and B are input to the array. The PRT is applied to

A which saves about n2 /2 processors and the columns of B, input on the left side of the array are par-
tially repeated as prescribed in (7). Due to the large number of connections which would be required to
immediately unload this two dimensional array, the PRT configured processor will evaluate the matrix-matrix
product without any time penalty compared with the original systolic array.

Although they will not be discussed here, the PAT transform can be advantageously applied to some
problems where non-square matrices are encountered.

uantitattve Assessment of the PRT Transform

The remainder of 'this section will be devoted to a quantitative :.omparison of the performance of the
systolic array processtr proposed by Kung (1978) (hereafter called original and denoted in certain
instances by the subscript orig) with that of the PRT based structure (henceforth called alternate and
denoted by subscript alt). The comparisons to be made will be based upon the following three figures of
merit:

(a) Processor utilization efficiency !orig and valt.

(b) Space-Time product (ST)orig and (ST) &t where

S - number of inner product step processors
T • number of algorithm time steps.

(c) Overall figure of merit F - I/(ST), Q • Falt/forig.

In the comparisons which follow, no penalty or cost is assigned to implementing the PRT transform. Also it
is assumed that n is large.

First consider the matrix-vector problem which is shown for both processor configurations in Fig. 5.
Adjacent to each processor configuration expressions for 11, S, and T are given. i is defined as the ratio
of active area to the total area as shown in the figure. Simply stated it is an approximate measure of the

12-5

proportion of algodthm time for which computations are performed. Only square matrices are considered
here with bandwidth w - p + q - 1. Note also that the comparisons made here assume processor
initialization as illustrated.

Fig. 6 presents plots of q as a function of the normalized bandwidth parameters y - p/r and x - q/n.
This figure is drawn under the assumption that the array of the original configuration may be unloaded
immediately after element an, has been processed. Alternately, Fig. 7 presents the same Information

except '.nat tnmedi*te unloading of the original configuration is not allowed. the results show that the
capab l~ty to iux.diately unload the array is important when x, y -1.0. Note that the original
configuration provides excellent efficiency for x and y both small, that is, for strongly banded matrices;
however, as x, y---1.0 the alternate form is superior.

Now consioer a comparison on the basis of (ST) product. Solving the relation (ST) (ST)
org alt

provides the result plotted in Fig. 8. When t"_ pair (x,y) lie above the curve, the alternate configura-
tion provides a smaller (ST) product.

Generally it will be desirable to maximize the quantity F - "/(ST) for a given problem. Therefore,
Fig. 9 shows a plot of Q * F a t /Ft versus y with x a parmeter. Given x and y for a particular problem

atorgthese results clArly indicate the preferred processor configuration.

Attention is now directeI to the matrix multiplication problem where it is required to evaluate C - AB
when both A dn' R are n x n dense matrices. For the sake of simplicity, the general case of banded
matrices will not be treated in this comparison. Three systolic array configurations will be considered.

(a; A PRT-based orthogonally-connected processor
(b) The orthogonally-connected processor shown in Fig. 3(.ý).
(c) The hex-connected processor presented in Fig. 3(b).

The quantities of interest for comparing these three configurations (subsequently referred to as
configuration (a), (b) and (c)) are tabulated in Table 2. (Note in Table 2 that the double subscript on Q
is interpreted to mean Qab Fa/Fb where a and b refer to the configurations listed above). From these

results the PRT-based systolic array is seen to offer significant performance advantages with respect to
configurations (b) and (c) under the conditions specified.

Table 2. Comparison of Systolic Array Configurations for
Matrix-Matrix Multiplication (all matrices n x n).

Quantity of Configuration Config-Jration Configuration

T 5n 5n 4n

S n 2 2n 2 4n 2

2/3 1/2 1/8

Qab 2.7

Qac 17

5.0 APPLICATIONS OF SYSTOLIC ARRAYS TO MATRIX INVERSION

This section will consider both explicit and imlicit methods for solving a given consistent set of
linear equations. By explicit it is meant that Lhe inverse matrix is r~ade available to the user wbile
implicit is used to imply that only the solution vector is determined and made available.

The hexagonally connected systolic array mentioned earlier can be used to explicitly invert a given
symmetric, positive-definite matrix. The approach is discussed by Speiser and Whitehouse (1980) and can be

summarized as follows. First the L-U decomposition of the given matrix is formed using the hnx-connected

systolic array. Then using n appropriately interconnected triangle equation solvers, C"I can be
computed. In this step the input to the array of triangle equation solvers, i.e. the known input vectors

taken collectively, forms the identity matrix. U-1 is computed in a similar manner, and finally the

inverse matrix is obtained by taking the matrix product U'IL"1. All of these steps can beimplemented using systolic arrays.

Implicit matrix inversion can be performed in several ways, the most direct consisting of L-U
decomposition followed by two executions using a triangle equation solver. That is, given

Aa r b, A and b knoth
LUx a b: LU decomposition step
Ly - b: solve fur y using triangle equation solver
Ux a y: solve for x using triangle equation solver

This method, while it does not explicitly provide A-1 is generally more accurate than the explicit I

12-6

method which computes x - A 1 b J L 'b, Suaeh (1977). Other implicit techniques such as Jacobi's method,
Gauss-Seidel's method and the successive overrelaxation (SOR) method, as discussed by Dahlquist (1974), can
be realized with systolic arrays. Implementation of Gauss-Seidel's method is interesting because it is
closely related to the PRT transform. Consider the equation Ax - b. Factoring A into the form
A - 0(L + I + U) where L and U are strictly lower and upper trianular matrices respectively (i.e., their
main diagonal elements are zero) and 0 is a diagonal matrix 0 diag(a 1i), a11 0 O, i - 1, 2, n.

Jacobi's method of itertion can be written in terms of these definitions as follows

xk+1 o (-L x - U xk) + bk/a I .1, 2k... n (8)

where Lt and Ui denote the ith rows of L and U respectively. Implementation of (8) using either the
original or alternate forms for systolic array matrix-vector multiplication Is straightforward, only
requiring insertion of zeros along the main diagonal and evaluation of the terms bi/aii outside the
array as an auxiliary computation. The equations defining Gauss-Seidel's method are as follows

k+1 k+1 Itx 1 -(-Lx - uix) + bi/ai i" 1, 2,...n. (9)

Here the notation is identical to that in (8) except that in the term Lx k+1, x k+ represents only a
partially filled vector (x 1 , x 2 , x. 1, 0, ...) which is "built up" as the computation proceeds.

Gauss-Seidel's iteration can be implemented in systolic array form by using the PRT transform. This is
illustrated in Fig. 10 which show- that the diagonal elements have been omitted and the terms bi/a i are -
evaluated outside the array. Assuming that tle computation is started with an initial estimate x k, it can

1be observed from Fig. 10 t.hat xk~ will be output and available for processing by the strictly ttdiagonal

elements L. (For a detailed example of this property see Fig. 4 and note that in the prasent case

x0 yI" is output et time step 5. Note also that this value of ylis required in time step 6 for

processing by a2I which in the present case is L2). Since U always processes a backdated estimate, it can

be seen that the PRT transform, or some equivalent method, must be applied in order to realize
Gauss-Seidel's method using systolic arrays. That is, unless the elements of L can be moved to toe input

Sside of the array where the x are input, the pipeliring effect of the array prohibits implementing

Gauss-Seidel's metltod. Therefore, the original form of the systolic array cannot, without modification, be
used to implement Gauss-Seidel's iterative method.

Note from Fig. 10 that Gauss-Seidel's implementation can provide extremely efficient utilization of
processor capability. Processor utilization efficiency, starting at 83%, monotically increases toward 100%
as the number of Iterations increase. Although not discussed earlier When matrix-vector prncessors were
considered, a form similar to that shown in Fig. 10 can be obtained for the problem y = Ax where A is n x m
with n a m. For this case, input vector x is simply repeated the required number of times while the PRT
transform is applied to successive m x m partitions of A.

",he SOR methx)d of solution by iteration is very similar to Gauss-Seidel's method, the most important
distinction being that the systolic array in this csse computes the residual error which is then weighed by
a relaxation parameter appropriately chosen to accelerate convergence.

6.0 CONZURRENT TESTING OF SYSTOLIC ARRAY PROCESSORS

Utilization of' any functional device in realizing important system featuras ultimately leads to
questions regarding reliability and maintainability properties. Zn this section interesting methods for
externally testing systolic arrays for proper operation will be considered. It is not practical to
consider reliability features here; therefore, only issues related to maintainability, namely testability,
will be considered. Only external methods for testing will be explored.

Consider the systolic array for performinq a matrix-vector product originally proposed by Kung (1978).
Given the way in which the matrix rows pass through the processor array, a rather simple external test for
proper operation of the array would be to augment the qiven matrix by adding two check rows - one at the
top and another at the bottom. This is illustrated in Fiq. 11 where the two additional rows must be
identical in order to facilitate the check. Note from Fig. 11 that if no x " 0 and no augmentation
element is zero, each processor will be checked in the process of performin the matrix-vector product.
The test is very simple since it requires only that y1 be compared for equality with Yn+2'

Two additional prr!-essors are required to realize this test. It is interesting to examine the cost
required to implkmn.nt this check in terms of added hardware and algorithm execution time. Let S represent
the hardware required to realize a processor in the array and t denote the timc interval required for each
shift in passing the matrix through the processor. For an n x n dense matrix and using the product S.

(computation time) as a measure of resources used, then the efficiency is given by:

(S Ai2nt) without test

[S(2n+2)t) with test

n "x 1- 2/n

12-7

For n larqe, it follows that this is a vory efficient test in terms of required resources.

With respect to test effectiveness, however, questions follow with regard to fault coverage. If x is
known to be dense and the augniitation does not use zero elements, the test will be good for detecting hard
failures. However, transient failures represent a problem for this approach.

The test method just described can be applied to matrix-matrix processors, although comparison of more
quantities is required. It also follows that this approach is applicable to the PRT tri7nsform. Note for
this case from Fig. 11, however, that for about n time steps no checks on the computation are performed.
This can be overcome by additional augmentations, appropriately interspersed, in the nriginal matrix.

7.0 CONCLUSION

Systolic arrays represent a potentially important means for implementing computations involving
large-scale matrices. The realization of a general matrix-oriented computing capability that is founded
upon a few standard nmdules using VLSI technology is appealing. However, as emphasized by Kung (1978),
minimization of wiring requirements (communication costs) is a central problem in this technology. The PRT
transform introduced in this paper can significantl.ý reduce these costs for some problems. Of particular
importance is the fact that these savings can be realized in some cases without increasing algorithm time.

It has been shown that for n x n banded matrices the PRT-based systolic array and that originally
proposed by Kung (1978) are complimentary in the sense that when one is efficient, the other form tends
toward lower efficiency. The PRT transform does not alter the original systolic array hardware definition.
The time-ordered uutputs are invariant under this transform - the only changes appearing in thee order of
accumulation of intermediate values before they are output at the array port(s).

Solution of linear, simultaneous equations by iteration methods using systolic arrays results in an
interesting interpretation of the PRT transform. The PRT or some equivalent transform appears necessary in
order to apply systolic arrays to Gauss-Seidel's method or to the SOR method.

A simple, efficient - though somewhat limited - testing technique was introcuced for performing
external concurrent tests on systolic arrays. This topic, as well as the others considered in this paper,
is worthy of further study.

REFERENCES

Oahlquist, G. and A. Bjorck, 1974, Numerical Methods, Prentice Hall, Inc., New Jersey.

Kun•, H.T. and C.E. Leiserson, (1978), "Systolic Arrays for (VLSI)," Carnegie-Mellon University,

Pittsburgh, Pa., (last revised December, 1978).

Nead, C., and L. Conway, (1980), Introduction to VLSI Systems, Addison-Wesley, Reading, Massachusetts.
Sameh, A.H., 1977, "Numerical Parallel Algorithms--A 3urvey," in High Speed Computer and Algorithm
Organization, editors Kuck, Lawrie, and Sameh, Academic Press, NY.

Speiser, J.M. and H.J. Whitehouse, (1980), "Architectures for Real-Time Matrix Operations," GOMAC
(Government Microcircuit Applications Conference) Digest of Papers, Houston, Texas.

12-8

0KKI

Y

)

X K+ -w XK1 + X x+1

K+L KX

(a) (b)

Fig. 1. Two Types of Inner Product Step Processors: (a) Type 1. (b) Type 2.

-•)- e . f

IMA4

ROWS4MAIN
DIAGONALROWSj

3w.

a23

2l a.""•ll ,

P P P P.
1 2 3 o

Fig. 2. Systolic Array Processor Configured to Form Matrix-Vector
Product y =Ax.

......-..

12.9

MIPN DISONAUS

,AA

SYSTOLICLAIi}Y
Fig. 3(a). Orthogonally Connected S,ýstolic Array to Compute Matrix Product C *AB.

MATRIX A MATIX I

'22

wkYlix C

Fig. 3(b). Hexagonally Connected Systolic Array to Compute Matrix P~roduct C *ARE.

P¶

OaISIPAL FOP"

APT 2M. With imadiate unloaaing

ALTERN~ATE rOW~

all to

L T

al A

Ff.5ierolneloprso fOignlwt

*~ Alent ytlcAra o arxVco

Fig.. 5. Peetormaec Eampeo of Oriina wrisfrtan
Lltnearty CnetdSystolic Array forMarxVco
%1.4uan %arilVorl Poduct %I* Prbe wihSqaeBaddMarx

X.

FigFi. 6. Proceslor Utiamatlo Efficiencforyan

EvalVersns MatrixVcto Pardwict yssAxn

lomediate Unloading Capability.

-AWL-

12-11

-- 6'gi OUTPUT

l~I.

",. ~........ WOW~•

x
L

18, 14".. 16 181.8.

LL

I L 2 Le 4 L 6 8 1.8 . /

Fig. 7. Processor Utilization Efficiency Versus
Matrix Bandwidth Without Immediate Unloading LX+I
Capab4 l Ity. (KX

U L "

K .1 '

X'X'Ix' Ky A R

Y Fig. 10. Three Iterations of Gauss-Seidel's
Method on a Systolic Arrdy with
External Computdtloas Performed
in Block Labeled Z

(Initial Fstimate r. xki.

L 2 14 1'6 L8 8 .

Fig. 8, 'alues :f xy Which Satt-Fy the Equality
(ST) orq - (ST)dlt Wihout lhiediate

Unloadin4 Capability.

284

- - - N ouSON ARRAY - - - -

.6 THEtSE RWS ANOWNET INPUT PATRIX

L 6 .• 1 -
.4 TEST IMPLEMENTATIONS CCVANE 11 WITH Y

7
R4 FOR EQUALITY

IL 012 I 4 1 6 I18 1.1 Fig. 11. Concurrent Testing of SystolicArray Matrix-Vector Processor by
y Augmentation Method.

Fig. 9. Figure of Merit Q - Falt/Forig Without
Immediate Unloading Capability.

A t .. .|

13-1

ECONOMIC CONSIDERATIONS FOR REAL-TIME NAVAL AIRCRAFT/
AVIO)NIC DISTRIBUTED COMPUTER CONTROL SYSTEMS

BERNARD A. ZEMPOLICH
DEPUTY TECHNOLOGY ADMINISTRATOR FOR COMMAND, CONTROL AND GUIDANCE

RESEARCH AND TECHNOLOGY GROUP
NAVAL AIR SYSTEMS COMMAND, WASHINGTON, D. C.

20361

SUMMARY

Using naval aircraft/avionic ,ystems as examples, economic considerations for Distrlbu ý6 `ompý;ter Control
Systems (DCCS) are discussed. Centralized, distributed ar' federated processing architectures ..re used as
the primary set of systems alternatives fror. which economl.. factors are developed. Technical, schedule
and financial risks for the system architectures are presented. Standardization of computer h -,ware and
software is examined from the economic viewpoint and other related risk factors. The economic fipact of
subsequent logistic support for standardized computer hardware and software versus non-standard products
is identified. System considerations such as reliaoility, maintainability, availability, built-in-test,
fault tolerance, and redundancy are examined from the standpoint of resources available to design and
develop the DCCS, and also from the viewpoint of economic impact of failure of the DCCS to perform as
expected. The economin impact of external factors such as the rate of technology advancement, technology
independence, limited production runs, and the general lack of economic leverage upon the market are
examined and related to the life-cycle support requirements of the DCCS.

1. INTRODUCTION

The 'inherent nature of microelectronic circuitry is that it lends itself to digital design techniques with
ease. This attribute, coupled with the microprocessor, provides a powerful design capability to developers
of aircraft/avionic systems. Today, prwevtful microcomputErs can be embedded directly into each aircraft/
avionic subsystem with little if any In,,iact on weight and volume. With this capability, top-down struc-
tured aircraft/avionic systems based en distributed processing and architectures, have become implementable
and cost effective.

This pape, addresses economic considerations associated with the design of real-time aircraft/avionic
Distributed Computer Control Systems (DCCS) for future Naval aviation Avionic System Architectures. The
aircraft as a DCCS is examined based on stated aircraft mission and avionic system requirements. DCCS
design options and alternatives such as physical implementations and alternative processing architectures,
standardization, commonality, reliability, maintainabil,;ty, and availability are analyzed from the economic
viewpoint.

In addition to the options and alternatives available to the developing activity, there are many external
design factors which affec~t the design for an Avionic System Architecture over which the developer has
little or no control. Among them are the rate of technology advancement, technology dependence and
independence, and the general lack of economic leverage by the developers over the products of the solid
state industry. These factors are addressed from the viewpoint that management must be aware of their
potential impact on the design of a DCCS.

2. ECONOMIC CONSIDERATIONS

2.1 DCCS SYSTEM DESIGN OPTIONS AND ALTERNATIVES

As with most engineering efforts, the design of an aircraft DCCS allows the developer to exercise a number
of options, all which have inter-related technical, schedule, and economic (cost) risk. DCCS design
options and alternatives generally fall into two categories--those factors over which the designer has
direct control and those factors over which there is little or no control by the developing activity.
DCCS considerations over which the developer has control include: physical implementations; alternative
processing architectures; standardization and coemionality; and reliability, maintainability, and avail-
ability. Factors over which the developer his little or no control are all economic in nature. Among
these external considerations which impact the design of a DCCS are the following: the rate of technology
advancement, technology independence, and lack of economic leverage in the marketplace.

2.2 PHYSICAL IMPLEMENTATIONS

As stated previously, once the primary mission for an aircraft is established, the Avionic System
Architecture can le decomposed into functional requirements. In a similar fashion, subsystems can be
partitioned into various physical implementations. There are three basic equipment physical implementa-
tion alternatives: the "black box" approach, the form, fit and function (3F) approach, and the integrated
technolcyies concept.

With the black box approach, all equipment procurements over the life-cycle of the aircraft are bought to
a set of specifications which d~tail not only the function and form, but also the internal configuration--

electronic, electromechanical, and packaging. Once the desired performance of the production units is
established, subsequent procurements usuall have minimum technical and schedule risk. Quantity of units
to be bought per unit of time is the dominant economic factor with procurement of black box implementa-
tions of avionic equipments. Multiple suppliers can also be considered a major force in price determina-
tion as the competitive atmosphere tends to keep the per unit cost of the equipment down. The assumption
here, of course, is that alternate sources have the capability to produce the equipment with no technical
and/or cost problems. Lastly, with the black box approach, long-term logistic considerations (which have
a great impact on the life-cycle costs of the aircraft) can be established after the equipment reaches
production mdturity.

1342

A second physical implementation alternative for avionic equipments is that of form, fit and function
(3F). With the 3F approach, procurements of equipments are made based on a set of specifications which
detail the required physical dimensions as well as the electronic and electromechanical interfaces. The
technologies of the assemblies within the unit, on the other hand, are allowed to vary or "float". The
economic value of the 3F approach rests mainly with the options open to the supplier in having to meet
only the 3F specifications. In essence, the setlolier is free to make maximum use of his particular
resources, design approaches, and manufacturing facilities. It is normal tu expect that there is the
potential for cost savings through the use of the 3F approach in that it permits more suppliers to bid.
However, there is an economic shortcoming of the 3F approach in that I' does not readily lend itself to
long-term logistic gains and planning. This shortcoming ýay be minimized if the alternative supply
source were to use components and/or parts Already In the customer's inventory.

In both the black box and 3F approach, each avionic unil performs a fixed specific function. At the
other end of the spectrum, the Avionic System Architect.re can be partitioned along the lines of inte-
grated technologies in which functions are performed by generic task areas such as data processing,
communications, navigation, or controls and displays. In this instan,, Ndvanced technologies are used
in an integrated fashion such that any one given part of the subsystem i!, copable of performing different
functions at different times. Specifically, with the integrated technologies implementation, the func-
tional elements are all electronic? ly reconfigurable. While this concept has considerable potential
performance and economic merit, it has yet to be fully exploited in avionic arvlications, and thus the
risks are not yet well established.

Regardless of the alternative chosen, the selection of the physical implementations of aircraft/avionic
equipment(s) is a fundamental design decision which has major technical aiid management impact during the 3
development phase as well as during the operational life of the aircraft. For this decision dictates
life-cycle logistic support approaches for the systen such as depot repair, module "throw-away" concepts,
or factory repair and maintenance.

If the decision regarding which physical implementation alternatives should be selected could be made on
the considerations Just 3ddressed, the choice is reduced solely to a comparison of risks. Unfortunately,
the choice is also dependent to a large degree on the proposed aircraft installation. Specifically, is
the installation of the DCCS to be made in an existing operational aircraft as opposed to an installation
in a new airframe? With a new airframe, the weight, volume, and location of the equipment is normally
determined concurrently with the development of the aircraft, thus there is a degree of design latitude
allowed in the physical integration of the aircraft/avionic subsystem. On the other hand, with an
existing airframe, there are a number of significant restrictions on the installation of a newly designed
DCCS because of the need to conform to existing physical conditions.

The importance of installation options cannot be overstated. RestrictionL that may have to be faced when
installing equipment into existing aircraft may very well provent an optimal combination of airframe and
on-board aircraft/avionic subsystems from a logistic viewpoint. Needless to say, logistics considerations
are for all practical purposes economic considerations, and if experience to date is any measure, the
costs of lifetime logistical support far exceeds the non-recurring development costs.

2.3 ALTERNATIVE PROCESSING ARCHITECTURES

The modern aircraft/avionic DCCS will be required to handle a wide variety of tasks ranging from complex,
high speed signal processing to simple input/output formatting and control. Additionally, fault-tolerance
concepts demand that many of the processing elements within the DCCS be capable of reprogramming during
the operational mission. The overall processing architecture must therefore support the synchronization,
control, configuration, reconfiguration, and fault-detection of all processors in the DCCS. Furthermore,
to minimize architectural problems, both the hardware and the software must be fvnctionally partitioned
in such a manner that the interface complexity is manageable, and the design and implementation of each
unit processor is maintained in as independent a manner as is possible.

There exists a variety of processing architectures which can be utilized to design an aircraft/avionic
DCCS with the performance capabilities just identified. It should be noted, however, that each alt,,ria-
tive has attached to its use a unique set of technical, schedule, and financial risk factors. Figure 1,
Processing Architecture Alternative Comparison, lists a number of available processing architecture
options and identifies the associated risk factors. Risks are stated in low, medium, and high terms
because there does not exist a statistica'i data base from which precise numerical values can be derived.

Unfortunately, the procedure for selecting a specific processing architecture is not solely a matter of
looking at the risk factors inherent in the individual architectures tnd determining what is an acceptable
composite level of overall risk to the developer. For example, the Avionic System Architecture Consider-
ations identified in Table 1 also weigh heavily upon the decision concerning which processing architecture
is "best" for a specific application. The necessity for having to take into consideration both the
processing architecture alternatives as well as other Avionic System Architecture factors provides the
developing activity with a myriad number of possible combinations from which to choose during the design
of the DCCS. Tne technical management task required to separate these combinations into a set of
hierarchically structured options based upon a well u.,derstood set of selection criteria is complex unto
itself.

Because of the large number of interrelated factors which affect the selection of a processing configura-
tion for a specific Avionic System Architecture and the lack of a historical cost data base, one can only
address in general terms the economic considerations of the various processing alternatives. Even though
economic considerations can only be addressed in general terms they should not be interpreted as being
either superficial, lacking in importance, nor restricted to only one architec-tural choice. For even as
Incomplete as is the cost data at thti point in time, trends can be drawn from experiences with the
individual requirements of current dircraft/avionic systems. Examples of considerations which have
significant impact upon the life-cycle cost of DCCS and require detail management attention by the

_.H

13-3

developing activity during the project planning phase are: degrte of system integration, degree uf
partitioning of the system, software, firmware, and hardware trade-offs, and software cost/comple•ity.

2.4 DEGREE OF SYSTEM INTEGRATION

This issuý addresses the degree of total system integration of the Avionic System Architecture. For
example, should the categories or groups of subsystems identified earlier be placed on a single high-
speed data bus ur should each group have its own dedicated data bus to perform functions particular to
the individual gitiping of subsystems. A specific example of the dedicated data bus would be to keep all
vehirle-re'ated subsystems segregated for safety-of-flight reasons. It can be anticipated that if there
iý one high-speed data bus throughout the aircraft, then the complexity of controllirg the data bus and
performing real-time executive and interrupt functions would be increased dramatically. Iii turn, software-
related costs (design, test and documentation) would increase significantly, if not proportionately with
the degree of integration. This conclusion is based on the fact that cost experience (in terms of
dollars per instruction) with operationally deployed aircraft systems to date has shown that the real-time
executive and I/0 routines are much higher than application programs and test and diagnostic routines.

2.5 DEGREE OF PARTIONING OF THE SYSTEM

As stated earlier, future aircraft DCCS's must be designed using a structured process of decompition
into software, firmware, and hardware processing modules. In future aircraft, the degree of distribution
(partitioning) of computing, control, and conversion functions, will be dependent on the availability of
inexpensive and physically diminutive hardware elements--namely microprocessors and microcomputci-s. It
should be noted, however, that while the use of a central computer complex to provide functional digital
control of an aircraft has deficiencies due to the multiplicity of tasks which must be performed in one
machine, the DCCS has yet to face the same problems while performing similar tasks with as many as up t-o
150 to 200 (micros) machines.

2.6 SOFTWARE, HARDWARE, AND FIRMWARE TRADE-OFFS

The programmable digital computer allows in-service functional change without impacting the associated
hardware, except where additional memory is required. With the recent introduction of firmware, the
"best of two worlds" is available. Furthermore, the options for committal of functions to firmware
implementation as opposed to software is unbounded in number. Key to any decision-making process as to
whether or not to put a function into firmware is when should one freeze the software program design and
how often, if ever, is the program going to be required to be changed throughout the operational lifetime
of the system. Any misjudgement on the proper timing for freezing the program into firmware and miscalcu-
lation on the number of times that the firmware will require subsequent change, will result in major
increases in devElopment and support costs.

2.7 SOFTWARE COST/COMPLEXITY

In the centralized processing architecture, the cost and complexity of Applications/Control and Input/
Output programming rises exponentially as the throughput and mnemory of the centralized computer approaches
its maximum (see Fig. 2). On the other hand, with the distributed processing architecture, the Cost/
Complexity at near zero percent (0%) distribution is the same as one hundred percent (100%) utilization of
a centralized computer system. As the degree of distribution (i.e., perLitioning)is increased, each
application software module hecomes more independent and has less effect on the expcution of the total on-
board system processing (program). The I/O program, however, hocomes more complex since more processing
elements (micros) must be interfaced via the data bus structiure. The data availability and I/O control
becomes the dominant factor, ultimately following the I/0 program curve of the centralized computer system
in rising Cost/Complexity (see Fig. 3). The sum of the software trends indicates that there is probably a
point at which partitioninq may be optimal. As is Felf-evident from Fig. 3, at either end of the percent-
age distribution spectrjm, the w,,)rt of both situ;.tions may exist.

2.8 STA;mARDIZA1[ON AND COMIAONALITY

It is the author's tpinion t>..t no other area of the data processing field is more complex in scope and
controversial in nature than the area of standardization. Many professionals in the field of oata
processing do not agree that standardization has both technical and cost merit. This lack of consentus
on the worth of standardization is due to the naturally opposing views of computer system users and the
developers of computer systems. For the user views standardization as a means of management control of
development risks and system life-cycle cost control, while the developer and designer, on the other hand,
views standardization requirements as an unnecessary restriction on technical creativity. M&ny developers
also counter the user's position that proliferation of computer equipment and software is a major life-
cycle cost burden with the claim that given design freedom during the development phase of a new system,
they would introduce new technologies which would be cost-effective as well as having increased perform-
ance capability over existing operational systems. Unfortunately, there is a tendency amongst proponents
of this development philosophy not to mention that new designs also give rise to normal self-vested
interests, such as increased profits and keeping the in-house'design teams current with involvement in
emerging technologies and techniques. These two diametrically opposed positions will never change in
this author's opinion, as the developer normally will only address the technical and financial aspects of
the specific systems he is developing; while the user, on the other hand, is concerned with standardiza-
tion as applied to multiple system applications. Additionally, there is another dimension to the
standardization issue which often is not considered in any discussion of computer systems standards.

13-4

Specifically, the question Is at what point or level does one standardize? For example, one could
standardize at the Instruction Set Architecture (ISA) level while allowing the designer to incorporate
the latest technologies, change the physical and electrical characteristics (e.g., overall dimensions,
the internal mechanical structure of the machine, and cooling and primary power requirements).

Table 2, "Standardization Options", lists a number of possible standards which the user and/or the
developer of aircraft avionic equipmeit could adopt. Several or many nf these options could be combined
to form an all-encompassing single standard depending on the financial resources available, maintain-
ability/support approaches, and the end operational use of the system(s). However, the more these
standardization options are molded into one single standard, the greater will be the negative reaction
of the developer, as stated earlier.

TABLE 2 STANDARDIZATION OPTIONS

Languages
- Preprocessor (POL)
- Compiler (HOL)
- Assembler (MOL)

Instruction Set Architecture (ISA)
- Singlc Instruction Set
- Modular Instruction Set
- Extensible Instruction Set

System-Level fnterconnection Schemes 9
- Bus
- Loop
- Network
- Bus Interface Unit

System-Level Protocol
- User Module to Operating System
- Operating System to Hardware

Physical Interface
- Pin Compatible
- Plug Compatible

Physical Implementation
- Black Box

- Form, Fit, Function
- Standard Module
- Micro-chip Set

Of all the Standardization Options listed in lable 2, adoption of an Ilstruction Set Architecture (ISA)
as a standard offers the greatest economic return on investment to the customer. This is assuming that
the ISA selected as a standard has an established user and support software base.

If one were to address the standardization issue solely on the basis of generalized hardware and language
(HOL) alternatives, then a matrix of comparative risks can be defined. Figure 4, Hardware Standards,
shows the technical, .%hedule, and financial risks for various hardware alternatives. It should be noted
that high and medium/high risk factors have been assigned to the Strict Processor and Microprocessor
Standards because of: (1), the lack of experience with building DCCS's for aircraft/avionic systems
applications; and (2), it is not clear at this point that a single, cost-effective microprocessor can be
established as a standard for all app(ications throughout an Avionic System Architecture.

The key issue relative to establishing a microprocessor as a standard piece of hardware is at what point
does one not enforce standardization. For example, is every application which calls for a microprocessor
whose worT-ength 's less than 16 bits subject to the standard? Or, is there a minimum memory size below
which the microprocessor would be excluded from standardization considerations? These decisions, while
seemingly inconsequential, do have a significant impact on the design of the system and development costs.

Many individuals have postulated that microprocessors will decrease the cost of computer hardware to the
point at which it is an insignificant factor on futire developments of DCCS's. Ttis claim has yet to be
proven. Unfortunately, the rising costs of both applications and support software have lent credibility
to the position that the cost for microprocessors are no longer of relative importance in system life-
cycle cost considerations.

Regardless of the availability of comparatively low-cost microprocessors and microcomputers, the high
cost of software development and maintenance has given considerable support to the utilization of HOL's
and, in particular, a single HOL wherever possible. Figure 5 indicates that assembly level coding is
definately morp costly than that of using HOL(s). There are two major reasons for this cost differential:
(1), there ts a need for the programmer to know the particular Instruction Set Architecture of the target
machine(s); and (1'. in m)st cases assembly level code is used mainly lar very difficult program tasks
such as: input/output, operating systems, and executive control of real-time systems. In each of these
instances the programmer must work with "tight" coding requirements.

13-5

Within the context of this paper, commonality is defined as the utilization of equipment(s) of parts
thereof, in multiple operational applications. For example, many aircraft cockpit controls and displays
could be common within a single "family" of aircraft types. Each aircraft, however, would have a
specific set of cockpit controls and displays tailored to its own particular oporational need. Across
all aircraft within the family, the controls and displays would perform• common functions. The equipment
itself need not be standard items to be considered within the context of commonality as the term is used
herein. (See Figure 6.)

The potential for major cost-savings does not exist with the utilization of common equipment as it does
with standard equipment because of the specific tailoring or uniqueness of the equipment to each appli-
cation. On the other hand, when the developer applies commonality concepts effectively, there is a
great potential for significant cost-avoidance. For example, specific display components, bulk memories,
algorithms, etc., can be applied across all applications. In doing so, the developer avoids those costs
associated with developing totally unique equipment designs for each installation.

2.9 RELIABILITY, MAINTAINABILITY, AND AVAILABILITY (RMA)

In simplistic terms, aircraft/avionic systems are designed to meet pre-established levels of reliability
so as to be available for operational use for given time periods prior to a failure occurring which would

require a maintenance action to be taken. When the reliability levels are not achieved, the equip•entis not available and additional maintenance actions have to be taken. This cause and effect situation

is a major contribution to operational support costs. In the author's opinion, it is highly unlikely
that with the current degree of technical sophistication of aircraft/avionic equipment that these costs
will decrease in the near future. Furthermore, unless new Avionic System Architectures are developed
and designed as described earlier, the current RMA problems will remain.

It should be emphasized that using a PCCS as the basis for a future Avionic System Architecture will not
of itself negate the current RMA problems, however, if the system is designed in a structured manner, it
can include many features which would assist in reducing RMA shortcomings exhihited by current opera-
tional systems. Key features which will have a major impact in improvement of 'IMA factors and a corres-
ponding reduction in life-cycle operational costs are: fault-tolerant, redundaincy, and reconfigurability.

The capability to incorporate fault-tolerant, redundancy, and reconfigurability techniques and concepts
into a DCCS is based primarily on the availability of relatively inexpensive microprocessors. Given
that these microprocessý)rs will be available, the major question remaining is at what level does the
developer insert these concepts into the design of the DCCS. For these concepts can be applied either
on a system-wide basis, or at any of the subsystem or functional grouping levels. Furthermore, with
the coming of age of the reconfigurable memory, one can now have increased availability at the component
level.

The coupling of fault-tolerant, redundancy, and reconfigurability with automated fault-detection and
isolation also offers management a vehicle for minimizing RMA life-cycle cost for future DCCS's.
Unfortunately, the expected theoretical improvements in the RMA values have yet to be fully proven out
in actual practice over a substantial period of operational time. While there is no reason to believe
that the potential gains cannot be achieved, there is an area of concern (mentioned earlier) that should
be addressed during the development of the Avionic System Architecture--namely that of the actual amount
of distribution of computing resources throughout the system and its impact upon the associated software.

The complexity of the software associated with a DCCS is going to be a major challenge by itself. There
are many problems yet to be faced with an a'rcraft/avionic DCCS which may contain over 150 microprocess-
ors throughout the aircraft. Additionally, there could be hidden costs because of unforeseen needs for
performing extensive test and evaluation of such a system. Hopefully, sufficient software verification
and validation techniques will be available to insure that the developer can adequately separate proving
the quality of the software from the quality of the DCCS to function adequately as an integrated network
of computer resources.

3. EXTERNAL FACTORS IMPACTING DCCS DEVELOPMENTS

3.! EXTERNAL FACTORS

The -zuestion that developers of an aircraft/avionic DCCS must ask themselves before starting out on a new
des.gi, i what degree of control do they have over their final design. Unfortunately, the dynamics of
the microeiectronics industry as mirrored by the microprocessor/microcomputer mark-etplace presently defy
the providing of reasonably precise answers to the question. At best, one can only hope that the impact
upon DCCS development efforts and related life-cycle consideration of the Avionic System Architecture
are minimized through the recognition of external factors during the planning phase of the project. The
following external factors are identified as having a major impact upon the DCCS design and development
and thus should be addressed during the planning phase of the project: the rate of technol'gy advance-
ment, technology dependence/independence, limited production runs as a function of time and lack of
leverage upon the market, technology transfer and insertion, and the vertical structure of certain
corporations.

3.2 TECHNOLOGY ADVANCEMENT

It is almost inconceivable that the technological inventiveness of the solid state electronics industry
is such that new products become obsolete almost immediately after introduction into the marketplace.
Breakthroughs in such areas as materials, manufacturing processes, computer aided design, architectures
and packaging are made almost daily. Furthermore, it is highly unlikely that in the near future there
will be any slow-down in new performance capabilities being introduced in the microprocessor/
microcomputer marketplace. If anything, there will be a continued explosion of new applications as the
prices of these mach'ies (micros) decrease as a function of time.

13-6

All other design factors being equal, advancements in the solid state electronics field are not
necessarily detrimental to the aircraft DCCS developer. Desired system-level capabilities such as
redundancy, reconfigurability, and fault-tolerance can now be built into the system economically and
contribute to achieving the desired performance goals set for system maintainability, reliability, and
availability. On the other hand, these capabilities cannot be logistically supported over the life-cycle
of the system DCCS without taking into account the other external factors wt.ich impact DCCS developments.

3.3 TECHNOLOGY INDEPENDENCE

In similar fashion to the commercial computer industry expression of "plug-to-plug" compatibility, the
phrase "technology independence" has been introduced into the military-industry lexicon. In a manner of
speaking, it can be considered a technology level equivalent to the form, fit and function (3F) physical
implementation approach addressed earlier. The concept is very simple, that is, by being independeut of
technology uniqueness one can insert new technologies at given time intervals during the life-cycle of
the a rcraft/avionic DCCS. Th? economic return on investment for incorporating this capability into the
initial system design is.significant. On the other hand, it does demand that there be some level of
mechanical packaging standards in order to introduce the new devices and/or components into the existing
equipment with minimum impact upon the associated logistic considerations. Assuming that a standard
mwchanical packaging concept can be established for both the in being and the rotentiil replacement
technologies, than there r.ill be a logistic cost avoidance in that the higher level electronic assemblies
do not change with the insertion of the new technology.
With regard to software, however, technology independence takes on a number of meanings, all of which

depend on the point of via. of the developer. For example, applications and support software for a
given programmable digital computer could be run, with no changes, on a newer technology machine provid- 9
ing the Instruction Set Architecture and other software program dependent characteristics are taken intG
consideration durinn the initial design phase. A second conceptual approach would be to keep the High
Order Language (HOL) interface independent of the operational target ,achine. L:stly, a third approach
would be that of using a pr.-processor in the software development chain. Specifically, with this
approach, one establishe, the near-equivalent of a hardware plug-to-plug compatability by using a pre-
processor as a software program translator. In this instance, the firmware is used to provide the
software compatability link.

Regardless of the type of hardware technology used, the concept of software transportability implies
unto itself, technology independence. However, unlike hardware technology independence, software
transportability of its very nature explicitly implies reusability of software as opposed to the basic
concept of plug-to-plug compatibility; namely that of technology insertion through technology invisi-bility (Independ6nce).

It can be generally stated that software transferability offers the developer a basis for cost savings.
On the other hand, since the application/program will no doubt be different to a certain degree from
functional task to functional task, new compilations will have to be performed in order to insert
different application dependent parameters and data. Thus it is perhaps more correct to state that as
a minimum, using software transportability concepts in an aircraft/avionic system design there will be
a cost avoidance in that both the operational and support programs do not have to be re-created froti the
initial design stage.

3.4 LIMITED PRODUCTION RUNS

There is not a better method to insure price stability than that of having the advantages that accrue
from large szale procurements over a given period of time. In essence, this is the economy of scale
factor of classical economic theory. Unfortunately, it is a fact of life iat at best there will be
limited quantities of aircraft/avionic Digital Cnmputer Control Systems p cured by any one development/
nrocurement activity. For example, even if an aircraft manufacturing firm has incorporated OCCS's
(utilizing microelectronic chips) into several different aircraft models, the quantities of either
commercial or military aircraft coming off the production lines are miniscule compared with the quanti-
ties of microelectronic chips currently being procured by both the automotive and toy industries on a
per year basis.

It would appear that there are two management alternatives which would overcome the inherent economic
shortcomings of limited production runs for military applications of commercial components. The first
approach, would be to add onto existing commercial production runs which are expected to produce
microelectronic chips over an extended period of time. In this instance, individual procurement of chips
for t he DCCS would be made part of a standard product line which the solid state electronics firms
expect to market to multiple users for into the foreseeable future.

In the second case, the aircraft/avionic systems manufacturer would "front-end" the development costs
associated with the design of a given microelectronic chip and only use the solid state electronics
firms as a production facility. Thus, the system developer order parts to his specifications and is not
dependent upon the microelectronic circuit manufacturers for any initial non-recurring investment in
chip design and development costs.

It is essential that an acceptable manufacturing alternative be established prior to production in order
to maintain the availability of chips throughout the lifetime of the DCCS or until the chips are
replaced by a new technology during the operational phase of the system life-cycle. It is imperative to
note that the lack, or shortage, of logistic spare parts destroys any logistic planning performed during
the R&D stage of the DCCS and further compounds the subsequent operational problems which range from
day-to-day system availability to long term maintainability and reliability.

'' __ _ __L

13-7

3.5 LACK OF ECON4OMICAL LEVERAGE

Since World War 11, the aerospace industry has introduced many advancements in the electronic state-of-
the-art into the operational environment. In general, the industiy has introduced new technologies
because they have had both the performance need as well as the economic leverage 1.o do so. Over the last
decade. this preemptive position has been eroded so that presently the aircraft/avionic developers have
very little impact upot. the technological directions of the sc~id state electronics industry (based upon
a percentage of scales). Neaglecting such considerations as global macroeconomics, the changing role of
the multi-national firms, and the emergence of a truly international capability to manufacture solid state
electronic devices, no single factor has had such a major negative impact upon the economic leverage of
the aircraft/avionic firms over the solid state electronicsi mretplace as that of the coming of age of
microelectronic circuitry. That this is so is so ironic in that the aerospace firms first introduced
integraoed circuits into aircraft/avionic application in the early 1960's.

Since the mid 1960's. the combined sales of aircraft/avionic systems to both the private ond public
(defense and space) sectors has declined. While decreasing sales voltme of aircraft per unit of time has
had a profound negative effect upon industry leverage, it has really been the quantum jump in densities
of the chips (transistors per unit of area) which has become the dominant factor in changing who, in the
private sector, has the economic leverage over the solid-state industry. That this is so shovid be some-
what self-evident in that the higher density chip development made obsolete the first generation
"integrated circuit". It was, for all practical purposes, a single (physical) low cost replacement for
hundreds of individualiy packaged integrated circuits. Thus, in reducing by orders of magnitude the
number of chips to be procured, all vestiges of economic power over the solid state marketplace b'y the
aircraft/avionic system developers d~sappeared.

In retrospect, it is somewhat ironic that in the early 1960's it was the aircraft/avionic industry that
was the only group of users that "carried" the then infant microelectronic industry during those days of
high-risk integrated circuit venture enterprise. By contrast, today a common 3 to 5 chip microcomputer)
design serves applications in the aerospace industry, automated factories, medicine, as well as the home
entertainment market. On the other hand, projecting into the future, there is the possibility that there
may be yet another "role reversal" concerning leverage of the market. Specifically, the use of Very
Large Scale Integrated Circuits (VLSIC) in aerespace applications may very well prove to be the key
factor in having the microelectronic circuit manufacturers re-tooling to meet onco again the unique needs
of the aer'ospace Industry. Whether this situation will come to pass has yet to be determined. Until that.
time, however, aircraft/avionic system developers will have to fit their needs into standard product lines
-if they do not wish to incur large non-recurring costs for production of customized chips.

3.6 VERTICALLY STRUCTURED CORPORATIONS
Throughout the private sector there are man.y instances where a corporation is vertically structured--that
is where the organization is made up of companies and/or divisions which supply the raw materials,
engineering (including R&D), manufacturing, and sales and distribution functions. In essence, the
corporation does not go outside of itself for any major aspect of its operations And for all practical
purposes is its own supplier of goods and services. The "verticality" of the organizational structure
is derived from the nature of the manufacturing process whereb~y a unit of the corporation builds upon
the output of another part of the organization. The management and cost advantages of this s tuat on-
whereby availability of materials, scheduling, and coeuiittment to corporate goals are all self-contained
and controlled needs no further amplification.

With the advent of the transistor, many firms added a solid state technology division (as a separate
profit and loss center) to the corporate organization. Except in certain instances, the majority of these
solid state technology plants manufactu'red parts for the general commercial marketplace with no objective
cf serving internal corporate vieeds for devices such as tran~sistors. In the author's opinion, the
subsequent introduction of the microelectronic chip initiated the push for many aircraft/avionic equipment
manufacturers to also take corporate action to change to a vertical organizational structure. For the
rricroelectronic chip took away many design prerogatives from the developers and effectively made the
solid state electronics manufacturing firm design competitor, albeit at the very low end of the design
process. However, as the techniques for manufacturing microelectronic chips matured, and the industry
introduced medium and large scale integrated circuits, the impact upon the classical design freedom of the
aircraft/avionic equipment firms became fairly significant as the chips. began to contain more and more of
the individual circuits previously developed as physically separate~ designs.

To counter the growing impact of the external factors addressed earlier and the inroads that advancedf microelectronic circuitry was making upon their traditional development efforts and organizational makeup,
many aerospace firms changed their corporate structures to a vertically-oriented one. What many of these
corporations did within the past decade was to create an in-house solid state electronics and technology
organization with the prime customer being the corporation itself. The capabilities of these in-house
facilities are, as could be expected, as sophisticated and advanced as many of those in California's so-

it is premature to state that the vertically-oriented aerospace fi rm will provide a management approach to
overcoming the negative aspects of external factors such as technology advancement and independence,
limited production runs, and the general lack of economic leverage over the industry. An exception, of
course, is the case where the aerospace company provides chips to other divisions in the organization in
bulk quintlties.

In general it appears that th~e creation of an in-house solid state manufacturing facility is a questionable
long-termn cost-effective solution to the problem. Specifically, the economic law of supply and demand will
become a diminant factor relative to the final salution. That is, if the number of fi rms having in-house
solid-state technology R&D and manufacturing facilities increases unbatedly with time, then it follows that
in turn, the aerospace fi rms will become contributors to the herein defined technology and matmifacturing .
external factors over which they currently have little control. It is also not unrealistic to envision4

13-8

that with time, the aerospace firms will also become suppliers of microelectronic circuitry to the
marketplace and thus eventually become competitors with today's solid state electronics firms. To use
the cliche, the solution becomes part of the problem.

4. CONCLUSIONS

There are several conclusions that may be reached relative to economic considerations for future Naval
aircraft/avionic Real-Time, Distributed Computer Control Systems. The primary conclusion is that
designers/developers will have very little economic leverage over the microelectronics industry with the
current low rates of production of aircraft and related avionic systemis. What follows from this lack of
economic control is questionable future enforcement of standardization and commonality requirements.
On the other hand, if there is an economy of scale due to a large quantity buy over an extended period
of time, then there will accrue to the customer the expected savings in development and support costs.
However, with the rapidity of technological change in the solid-state electronics industry, it is
becoming more and more self-evident that to fully obtain the economic benefits of standardization and
conmmonality, technology independence over the life-time of the aircraft/avionic system must ',e maintained.

_X)

13-9

RISK
ARCHITECTURE .
ALTERNATIVES TECHNICAL SCHEDULE FINANCIAL

I1) DEDICATED SUBSYSTEM LOW/MEDIUM LOW/MEDIUM LOW/MEDIUM
PROCESSORS __WI____U_ _____U_____U

(2) REDUNDANT DEDICATED MEDIUM
SUBSYSTEM PROCESSORS EI LOW LOW/MEDIUM
WITH LOCAL BUSES (WEIGH

13) REDUNDANT DEDICATED MEDIUM/HIGH ow LOW
SUB#YSTEM PROCESSORS IWEI•OTI OW

141 REGIONAL GROUPS OF MEDIUM LOW/MEDIUM LOWIMEDIUM

HIGH
(B) CENTRAL PROCESSORS MINIMUM MEDIUM IINTERFACING(INTERFACING) & SUPPORT)

HIGH

IS) MULTIPROCESSORS ISOFTWARES MEDIUM/HIGH MEDIUM/HIGH
BUS PROBLEMS)

FIGURE 1

ARCHITECTURE ALTERNATIVE COMPARISON

I -APPLICATIONICONTROL
PLUS 110

COSPLI •APPLICATIONICONTROL
COMPLEXITY _ _ _ PROGRAM AND 110

CEN: R /_2 PROGRAM

S100%

%UTILZATION OF CENTRALIZED RESOURCE

FIGURE 2

CENTRALIZED PROCESSING ARCHITECTURE
SOFTWARE COST!COMPLEXITY

Ii
COST/COMPLEXITY I/O PLUS

APPLICATION/
CONTROL

/ I/O CONTROL/
SCHElDULING

4. 0 -APPLICATION/
~."'/CONTROL

-------- PROGRAM
0 % DISTRIBUTION 110

* THE SUM OF THE TWO SOFTWARE TREND$ INbICATID A POINT OF DISTRISUTION

WHICH MAY K OPTIMUM. FURTHER, AT EITHER END OF THE DI0|IDUTIOR

SIPECTNUM T14E WORST OF ROTH WURLDS MAY EXISTl

FIGURE 3

DISTRIBUTED SYSTEM TRADEOFFS

13-10

HARDWARE ______________________ RISK

ALTRN~iES TECHNICAL SCHEDULE FINANCIAL

STRICT PROCESSOR
AND MICROPROCESSOR HIGH MEDIUM MEDIUM/HIGH
STANDARDS

PROCESSOR STANDARDS LOW/MEDIUM LOW MEDIUM/HIGH

NO SANDRDSMINIUM IGHHIGH

FIGURE 4

HARDWARE STANDARDS

LANGUAGE RISK__ _____

ALTRNTIES TECHNICAL SCHEDULE FINANCIAL

SINGLE HIGH LEVEL ./MIU LOLO
LANGUAGE .WMDU LOLW

MANY HIGH LEVEL MEDIUM MEDIUM MEDIUM/HIGH

HIGH LEVEL LANGUAGE
AND LOW LEVEL LOW MEDIUM/HIGH HIGH
CODING (FALLBACKI

FIGURE 5

LANGUAGE STANDARDS

- -\Y ,' /COMMON
FUNCWiONS

it ~i *v. cmm.

STA DARDIZATIN ON-ARCHTECUR

INTERACTION MATRIX

14-1

FUNCTIONAL DOCUMENTATION - A PRACTICAL AID TO THE ORDERLY

SOLUTION OF THE SYSTEM DESIGN PROBLEM

J.T. MARTIN

FERRANTI COMPUTER SYSTEMS LIMITED,
Western Road, Bracknell, Berkshire, England.

ShE*IARY

This paper de'icribes a method of breaking down a Customer Requirement in an orderly manner so as to produce
progressively more detailed design levels such that at any one stage of the System Design the particular
part of the design under consideration can firstly be easily understood and secondly comparatively isolated
from the other parts of the design.

The most important characteristic of the design methodology is that the Requirement is considered in purely
Functional terms until a highly detailed level of the design is reached. An example of this deosig
methodology and the technique of Functional Dooumentation is given and the paper concludes by discussing
the advantagas that can accrue from a sensible use of the design methodology.

1. INTRODUCTION

To produce a successful design the system designer must start his design f•rom the viewpoint of what the
customei' requires and work down to what sub-systems are required to achieve this requirement - the Top Down
approach.

In order to carry out this Top Down design in a logical, structured, way it is important that:

(a) the overall problem is decomposed in a controlled fashion

(b) that each layer of the design is considered in the correct level of detail such that on the one
hand sufficient information is considerd before moving to the next lower level of design, while
on the other hand the particular level of design reached is not unduly cluttered by
consideration of too much detail.

The met hod 1xsed by Ferranti Computer System Limited to achieve these ends is Fuai'otinal System Design
at'i.izing as a tool in this pmooess the powerful Functional Dooumaitation (FD) technique.

The basic ocoacepts behind design phase documentation were developed by the System Effectiveness Laboratory
of Technical Operations Incorporated, Burlington, Mass. and further amplified by the United Kingdom Royal
Nkvy.

'h, system of Funotional Documentation, first used by Ferranti Computer System Limited (FCSL) as a tool for
- the design of extremely coamplex shipborne distributed processing systems, is now being used to carry out the

demanding tank of System Design for modern airborne distributed computing system.

The main fundamentals of FD will now be described together with a brief example of the use of the technique.

2. THE PURPOSE OF DESIGN DOCUMENTATION

A fundamental tenet of the FCSL approach is that design and the documentation of that design ar
inseparable. The production of design documentation is, therefore, an integral part of the design task and
the design documentation is itself a most important aid to the design process. At each stage of
development, existing design documentation forms the basis for further development.

Until system development arA implementation begins, the design documentation is the only tangible evidence
of the intentions of the design team. It is a paper model of the system.

Furthermore, corsidering the project as a whole, design documentation must meet the needs of all subsequent
stages through development, production, integration, installation and trials to post-delivery support. The
design documentation must, therefore, provide not only a description of the proposed system, but also
information necessary for the preparation of test requirements, trials specifications and servicing and
maintenance data.

The successful design and development of an integrated system raquires that each member of the design team
be aware or the current design intent of his colleagues. In practice this implies a real time documentation
system with a language common to the three principal disciplines involved, namely hardware, software ad
user.

Functional Documentation (FD) is this comon language for use when the three disciplines mast work in oo-
operation. It is a design tool developed specifically to assist in co-ordinating the design ant through-
life oevelopment of real-time system. The formal documentation system of PD channels the paperwork output
of system, hardware, software and user engineering staff into n standard format which is circulated amongst
the understood and agreed by the design team. During the Project Definition phase it is the only available
evidence of progress.

14-2

The oompleted FD forms an agreed document which defines the required systm functions and their interfaces,
and the inter-relationohips between the disciplines. It in the specification of the system which shall be
implemented by the Individual disciplines during the Project Developmant phase. Hardware FD (W'D),
Software FD (SFD) and User FD (UPD) are the languages employed at that stage when the individual disoipnines
may validly be developed independently.

The primary purpose of FD is, therefore to make and omemunicate the definitive statement of design. In
fulfulling this it also achieves the following objectivess

(a) To assist in the correct breakdown of the design into separable tasks and to logioadly define
the scope, boundaries and interfaoes ot each task before the oommenoement of that '.ask. As a
result of performing each task, not only is technical progress achieved, but mre detailed
tasks are defined whioh also fit into the overall structure.

(b) To all-w technical analysis of the design. The documentation effectively provides a paper
model of the system at all design phases and is constructed so as to highlight areas where
design imy be doubtful, inconsistent, ambiguous or incomplete. It in particularly suitable for
examining the hardware/user/software interfaces and for prediciting the reliability and
maLntainability of the proposed system. It furt ior allows an individual designer to visualise
the imp.lications of design chanres on related areas.

(a) To enable technical management and the customer to monitor the progress of design, both to
ensure that timesoales and workloads are satisfactory and that technical requirements are being
achieved. It is especially ametable to the use of PERT.

(d) To provide a standard communications medium between the members of design team working in
different disciplines and in different companies.)

(a) To provide a perarnent record of design, as it proceeds. It allows, for example, new staff
joining the project to appreciate the philosophy, limitations and state of the design with a
minimum of effort, and equally reduces disruption when members leave the project.

(f) To provide & smooth transition of technical data into the maintenance handbook.

(g) To form i basis and design record for subsequent Post Design (PDS) activities.

(h) To provide an entry to HFD, UD and SFD.

3. PD PRINCIPLES

FD is a technique of logical and ordered techni3al description which uses graphical and pictorial
presentation, supported by the written work, as the oommmnications medium. It therefore takes advantage
of the precision inherent in diagramatic presentation.

To provide clarity of technical description, the subject matter is sub-divided in two dimensions, which are
known as the "level" and the "function".

(a) Level. As the design phase of a project develops information becomes available in inoreasinL
degrees of detail and complexity. By its nature, early phase informtion is more general. It is said to be
"high level" information an.d is by definition the first to be documented. Subsequent information may be
classified as either "intermediate" or "low" level.

These levels are asnigned a numerical reference as followst-

Highest level I I
Inteimediate levels 1 2

3
etc.

Lowest level a n

The number of levels actually required for a complete description will depend on the complexity of the
subject, and the amount of original design/development work.

(b) Function. The function, in the general case, is defined as that grouping of hardware, software
and user necessary for the achievement of a required event or events. This implies that any possible
division of a subject into its hardware, user or software boundaries is of secondary oonaidoration.
Functions will exist at all levels but the "required event" will become increasingly detailed at lower
levels. For example, "target destruction" may be a valid event at a high level and "status bit set" may be
equally valid at a lower level. Therefore each f'dnotion described at higher levels will be progressively
sub-divided and amplified at lower levels.

3.1 Level/Function Relationship

Each function identifie& a number of sub-functions which are then "expanded", i.e. described separately in
greater detail, as functions at the next lower level. The process of sub-dividing the functions is repeated
until a sufficient level of detail is reached. This is the lowest level, which will identify sub-functions
performed solely by hardware, software or user.

The pyramid of functions formed by the progr•nsive sub-division of the overall function is termed an
hierarchical structure. Each function at each level is at one:t-

-.-,HI-

(a) A statement of requirement for its sub-funoticon at the level below, and

(b) A definition of the implementation of the requirement stated at ,he level above.

Rach piece of information necessary to define the design has a correct place in this logical structure, so
missing information is highlighted, and there should be no duplication between levels or functions.
Information is, therefore, rapidly accessed and easily retrieved.

3.2 PD Formats

At each level, and for each function at that level, information is produced in three oatagor•ies which are
mutually dependent. These ares-

(it) Functional Block Diagram (PUD). The ftnction as defined by the previous level in expanded into
its various sub-functions, _and the inter-relationship of these sub-functions is defined in terms of
sequence and information flow. Thu Ltab-functions are then each subsequently further developed on
individual FD's at the next level.

(M) Functional Text. OPT). the FPD is supported by text, Intluding a concise statement of the
purpose of each sub-function, which may be presented in the corresponding physical location on the page
fraing the 73D, as Functional Blocked Text (FUT).

(a) Supplementary Info-mation (3I). This category covers all other information not readily
assimilated into the first two categories. It includes such data as physical layouts, channel allocatior.s,
manning requirements, design theory If applicable etc.

It is the FBD which makes the definitive statement concerning the function and its scope, whilst the PT or
FlT Is of a supporting nature. Any additional information my be presented as SI.

3.2.1 WD Document

The FT, F7D, FBT, and SI (in that order) for each function may be made up with a covering front sheet or
commient sheet and muster page/distribution list as an PD document. These individual FD documents then fit
into the hierarchical structure and build up the complete Functional Documentation for the system.

3.2.2 Functional Reference

All functions at all levels (except Level 1, the top level) are assigned a functional reference of the form
F1.2.3.4... The number of numerical dititrs in the reference defiiues the level at which the FD document forthat function will appear.

Thus P1 appears &t Level 2
F1.2 appears at Level 3

F1.2.3 appears at Level 4

etc.

Sitwe every function at, say Level 2 is expanded at Level 3, so each functional reference is expanded also,
retaining the digits of the original functional reference.

If a given function requires more than one FBD document to expand it meaningfully at the next level, then
the subject is divided up as befits the cirto'tances. The functional references for, say, three FPDs would
appear as F1.2.3/I, F1.2.3/2, F1.2.1/3 and the overall reference at the prev.ous level would appear as
F1.2.3/1.3. This facility, which should not be abused, is however very useful for describing a function

- which has for example more than one mode (e.g. normal and reversionary modes) or more than one phase of
operation.

Clearly it is advantageous if documents normally issued separately, e.g. trials schedules, interface
specifications, requirements specifications, are published as further Supplementary Information. These
documents are then indexed by the functional reference and are accessible from the hierarchical structure.

4. FD EXAMPLE

Annax 1 to this paper presents an example of the use of the FPD teohnique.

The example shows how part of a system (Fu,,ction 33 of the overall system in the example given) is first
simply described at level 1 with only the wain attributes of the function, as seen externally, describ&J.
The overall function is considered to be dividable into three (in this example) sub-functions which are then
each considered in more detail at the next level down (Level 2). This process of functional division can be
carried out until it is possible to define the process that each box on the PD is to perform in either
hardware, software or user term. In the example given it can be seen that each box on the level 2 diajrain
can be used to produce the necessary speciflations to enable the implementation of the partioular box in
question.

5. COKCLUSION

The Punotianal Documentation system allows the orderly decomposition of an overall systm specification
into progressively more detailed levels of design information. At any particular level of the design the
amount of information to be handled ic manageable by, and understandable to, the designer tanked with the
job of furthering the design. The technique allows people from the different disciplines working on a

14-4

project (user, hardware, Poftware) to communiSate together in a oommonly understood descriptive format.
The technique forces a complete examination of the system specification and exposes any defioienoies or
omissions that may exist. Functional Documentation allows the oatomer full insight into the design, shows
him whioh seas of the original aPtifioation are insufficiently precise and also shows him which parta of
the speofioation afe most difficult to accomplish and perhaps candidates for re-examination in term of
oost/oouploxity/requirement tradeoffs.

Using Funotioianl Documentation allows a oomple~e futnotional description of the design to be produoed, and
ohanged if necessary, before the prototyping stage is started. Design ohaages can be made by simply
altering lines on paper, not by expensive re-design of hardware or softwaure modules. At the and of the
Fvuntional Design stage the information necessary for the production of the hardware, software and user
specifioations is available, consistent and achievable.

)

I

, 11

14-5

ANNEX 1

EXAMPLE OF THE USE OF FUNCTIONAL DOCUMENTATION

1.1 Functional Block Diagram Format

1.2 Example Functional Documentation Level 1

1.3 Example Punotional Dooussitation Level 2 Function I

1.4 Example Functional Documentation Level 2 Function 2

i.5 Example Functional Doaumentation Level 2 function 3

14-6

ANNEX I. I

FUNCTIONAL BLOCK DIAGRAM FORMAT

The diagramiatic format employed to desoribe the design is that of "Functional Dooufentat 'n" as used
within Ferranti Computer System Ltd. The following is a brief summary of the salient pointa,

(a) The diagram illustrate primarily the flow of information (be it data or control) between
functions. Thicker lines are used to emphasise signifioant information paths. The diagrams are
essentially time-sequential, left to right.

(b) Functions which are to be implemented by the "system", be it hardware or software (or as yet
unknown) are illustrated by the symbol%

(c) Functions which are to be implemented by an operator action are illustrated ass

The device used in the operation is identified above the symbol, e.g. KB a Keyboard, TB a Tracker Ball.

The use of' the operator function implies some interfacing hardware and software to get the infor,-ation into
the system. These hardware and software oomponents (Service Functions) are omitted if they do not add to
the understanding of the function in hand.

(d) Display of system information to the ope.iator, is shown by the following symbol, annotated by
the device type:

Again the Service Functions involved are omitted if non-critical to understanding of tU:e application.

(e) hardware item are shown within dashed boundaries.

(f) Where other Application Functions are involved in the operation of the module, these are
illustrated by the symbol:

The operation of these functions would be detailed elsewhere in the documentation.

(g) There is frequently a requirement to illustrate alternative paths for information flow. The
following symbol is used:-

Ab

This illustrates either source A or source B being rouý.ed to destination C, subject to the control input D.

14-7

ANNEX 1.2

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL I

MATCH CONTROL

1. INTRODUCTION

MATCH (Medium-Range Anti-Submarine Torpedo-Carrying Helicopter) Is a weapon system which utilises a
helicopter to carry and launch a torpedo in an anti-submarine engagement.

The control function is involved, primarily, in the calculation of the helicopter's course to fly and time
to weapon release so that the aircraft controller can relay commands to the pilot. The procedure used for
course and launch calculations is 1,nown as Vectored Attack (VECTAC). The calculations take account of the
torpedo cha-acteristics when deriving the aim point. -,..c target position may be any track held by the
system, or may be a fixed datum point indicated by tracker ball. Ship's radar is used to track the
helicopter during its flight so that course corrections can be applied.

The function is also able to control a MAD Verification Run ('NADVEC). In this application the helicopter is
used to carry Magnetiu Anomaly Detection (MAD) equipment to a suspected submarine position sa that the
presence can be verified or discounted by the change in magnetic field. This enables sonar contact which
may in fact be shoals of fish, for example, to be eliminated. In a MADVEC the helicopter is guided to pass
directly over the selected position, without any lAunch calculations.

Although the name MATCH indicates that a helicopter is used, it is also possible to employ a fixed wing
aircraft without any differences to the operation of the function. Also it is possible to control an
aircraft which is based on a consort rather than own shi.p.

Guidance of the helicopter is achieved by voice communication of the appropriate orders betwek he
aircraft controller (ship's operations room) and the helicopter pilot. The pilot is responsible for
launching the weapon by hi.s own weepon controls.

Control of two MATCH engagements is possible at any one time. The two engagerents must be controlled one by
a North display operator and the other by a South display operator. A North (South) engagement may be taken
over by another North (South) operator to allow for equipment failure. The Functional Specification does
not describe two simultaneous engagements, as this simply implies two independent operations. A MATCH
engagement can be controlled from any console which has facilities for communications with the aircraft.

2. MODE OF OPERATION

The function is sub-divided into three sequential phases of a MATCH engagement, see Block Diagram.

2.1 MATCH Preparation

This function Is concerned with the insertion of certain parameters necessary for the calculation of a
VECTAC and for the initiation of radar tracking on the helicopter. The actions involved can be carried outprior to and in anticipation of an engagement.

The following data is insertedt

(a) Helicopter i,.dicated Air Speed (IAS).

(b) Torpedo IniAal Search Depth (ISD) - this is the depth from which the torpedo search becomes
effective.

(c) Torpedo Ballistic Correction - this indicates the distance the torpedo will fly between release
and splash point.

(d) Magnetic Variation - for helicopter course corrections.

(e) Wind Data also for helicopter course corrections.

Tracking of the helicopter can either be carried out manually or by an Puto-extractor. The normal close
range surveillance radar, or the helicopter's transponder returns to the RRA equioment, may be used, as
appropriate to clutter and range conditions.

2.2 MATCH Approach

The approach function controls the engagement from the point of initiation until the final attack phase.
Throughout this phase the function repeatedly re-calculates the course to be steered by the helicopter so
that it will intercept the target allowing for increment of the target and drift cf the helicopter. It is a
basic assumption of the calculations that the helicopter will fly the adhered course from its current
position at the pre-determined IAS and height, and thet the target will maintain its last estimated heading
and speed. The vector calculations performed do not therefore allow for turning circles of the aircraft nor
for non-linear prediction of the target position and velocity.

The target may either be a track in the system or a fixed datum point inserted by an operator. The latter
case allows for suspected target positions which are not being tracked, or for fleeting sonar contacts, etc.

14-8

The VECTAC calculation is performed every 4j seconds during the approaah phase up to 13 seconds before
weapon release where a countdowm phase Is entered 'aee Match Attaok). It is essential for the operator to
guide the aircraft on to a stabilised path (hiring the approach phase, or else engagement will have to be
aborted and a new Vestae initiated.

The Approach Function calculates the following date for display to the operator and transmissinn to the
pilots

(a) Course to Steer (CTS) Mtagnetio or True.

kb) Distance to Fly to Weapon Release Point (DOG).

(o) Time to go to Weapon Release Point (TTn).

It also controls the synthetic display of a Drop Point on the Controller's radar display.

2.3 MATCH Attack

The Attack Functicn controls the final approach of the helicopter on its current fixed oourse. During the
attaok, a countdown is relayed to the pilot so that he knows exactly when to release the weapon. The same
procedure applies in a MADVEC since it is necessary t',r the pilot to know exactly when he is over the target
area in order to record the MAD detection (or to &-rk the output of a pen recorder).

Once the weapon has been released the facility calculates where the torpedo will hit the water, and
initiates the display of a splash point on the radar display, together with a surrounding weapon danger area
(dogox).

iI

!I

14-9

ul

0 w

II J

KTk Flit N

Aoi

,!4

14-10

ANNEX 1.3

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 1

MATCH PhEPARATION

1. INTRODUCTION

This function is concerned with the insertion of parameters necessary for the calculation of a VdCTAC and
for the initiation of radar tracfing on the hilioopter. The actions involved can be carried out prior to
and in anticipation of an engagement.

2. MODE OF OPERATION (References refer to FBD)

Initiation of a MATCH engagement will generally come from the Anti-Submarine Warfare Director. On his
command the variable parameters are manually injected into the system, led by the injection to convert (6)
Relative Wind to True Wind. The :Lnjections can be checked on the Check Line readout of the tote, or at any (2)
stage by query injections.

According to radar considerations, the operator will also select auto or manual tracking of the helicoptter, (8)
"thus implementing the Radar Manual Tracking or Radar Autotracking Functions. (11-13)

When all the variable parameters have been inserted, anC the helicopter track has been initiated, the 1I)
operator can proceed to the MATCH Approach phase.

3. DESCRIFTRION

3.1 Conversion of Relative Wind to True Wind (1-s)

Relative ilind is displayed or a VCS unit which indicates direction and speed (relative to ship's motion).
The VECTAC requires true wind and hence the following injection is used to input relative and obtain true
wind:

RW? W1O5P S18

"Display ii. the readout the True Wind direction and speed, where tlw- relative direction and speed are
as indicated (e.g. Red 1050, 18 knot)".

After the conversion, the readout is presented as:

W215 (direction to + 1c)
S25 (speed to + 1 inot)

3.2 Insertion of True Wind (6)

The true wind velocity, requirud for calculation of helicopter's relative velocity, is inserted by the
folloing injection, using data from the relative to true conversiont

HC + W215 325

True wind value is as indicated (e.g. direction 215 , speed 25 knots).

3.3 Insertion of Ballistic Correction and Indicated Air Speed (6)

Ballistic Corrections are available to operator3 for each aircraft type which may be used in a Vectac. The
correction is a distance value (horizontal displacement Weapon Release Point to Splash Point) which L)
applicable to the aircraft's Vectao engagement speed (IAS). The value applies to a preordained altitude at
which the aircraft will fly.

The MI Control function requires these to be inserted as a parameter couplet in the form:-

HC + R16 S90

Ballistic Correction and Indicated Air Speed
Values are as indicated (e.g. 160 yards, 90 knots).

For a MIDVEC, the Ballistic Correction is indicated as zero.

3.4 Insertion of Magnetic Variation (6;

The MATCH Approach Function automatically converts helicopter bearings to magnetic for relay to the pilot.
The variation is injected as:

HC + V-7

"Magnet~o Variation is as indicated
(e.g. 7 East)" 4

14-11

-J-
i~ c.c

4ga

-- .. I I

rr]

iii OIL

14-12

Note: If a True heading is required (as will be necessary for some types of helicopter) a variation
of + or - should be injected.

3.5 Insertion of Initial Search Depth (6)

Initial Search Depth (ISD) is required so that Veotac can allow for the time taken for the torpejo to reach
an effective search position, when calculating the desired splash point. The value is injected as:

HC + U25

"ISD is as indicated (e.g. 250ft)".

For a MADVEC, the ISD value is indicated as zero.

3.6 Checking Veotac Parameters (6)

Manual injections are also available to enable one of two groups of sto. ed Vectao Parameters to be
interrogated at any time:

HC? WSV

"Display In the readout stored values of True Wind
Direction and Speed and the Magnetic
Variation".

Readout (".g. : W215 (5)
S035
V-07

HC? RSU

"Display in the readout stored values of Ballistic
Correction, LAS and ISD".

Readout (e.g. : R016 (5)
S090
U250

3.7 Tracking the Helicopter

The operator selects the mode of tracking and the type of equipment to use according to con, itions and (8,
whether the helicopter is on board or airborne. Reference should be made to Picture Compilation for detall 11-
on the tracking functions. If the helicopter is on deck and cannot be tracked normally, a manual track is 13)
set up alongside the ship for correlation with the helicopter when it is airborre. Alternatively, tracking
may be initiated using the RRA 6quipment and the helicopter's transponder. The Vectao calculations can
start as soon as initiation is made. It is possible to change the tracking mode from Manual to Primary to
Secondary radar during any phase of a MATCH engagement without afecting the VECTAC.

r

14-13

ANNEX 1.4

EXAMPLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 2

MATCH APPROACH

1. INTRODUCTION

The MATCH Approach Function calculates the VECTAC solution at regular intervals between initiation and the
final attack phase. As a result of the calculations, the helicopter is guided to the target area.

2. MODE OF OPERATION (References refer to FBD)

The VECTAC calculation is commenced by the initiation command which may either specify a track number a
datum point for the target. (10)

The calculation is carried out once every 4J seconds until time to go (TTG) is less than 13 seconds. (11,
1-4)

As a result of the calculation, the aircraft controller's tote and labelled radar display are updated with (5-
engagement symbology and guidance commands for the helicopter pilot. 9)

The VECTAC can be cancelled prematurely if required.

3. DESCRIPTION

3.1 Selection of Target Type (10) 9
If the target is being tracked by the system, the VECTAC will be initiated using the target's and
helicopter's track numbers. Otherwise the target position is marked by tracker ball.

3.2 VECTAC Initiation for Tracked Target (10)

Initiation of the VECTAC is made by the following Manual Injection:

HC? 4731 00465
"'Calculate VECTAC for target and helicopter tracks
indicated, and display the solution in the readou.
(e.g. target tAack 4731, helicopter toack 0465)".

The target track may alternatiely be indicated by placing the tracker ball over the track and injecting:

HC? ITBI 00465

A North aide VECTAC can only be initiated if a North side console is not already progressing a VECTAC

(similarly for South side).

3.3 VECTAC Initiation for a Fixed Point Target (12)

The following manual injection is used to initiate a VECTAC on a fixed datum point:

HC? PITBI 00465
"Calculate VECTAC for the fixed position using tVe indicated
helicopter (e.g. 0465) and display the solution in readout".

Similar restrictions to the initlation apply for this operation, as are explained in Paragraph .. 2.

3.4 Cycling the VECTAC Calculation (11)

Every VECTAC Calculation provides a solution with which the helicopter can be controlled. In order to
allow for changes in course of the target, and deviations from defined course by the helicopter, the
calculation is repeated every 4J seconds during the approach phase.

3.5 The VECTAC Calculation (2-4)

Refer to Figure

The aim of the VECTAC calculation is to make the helicopter reach the Splash Point (SP) at the same time as
the submarine reaches point A. The distance x (Weapon Effective Correction) is such that the torpedo will
fall to Initial Search Depth in the same time as the submarinA takes to reach the Splash Point (it is
asoumed that the torpedo travels vertically downwards once it is in the water).

In order for the torpedo to enter the water at Lhe splash point, it is necessary for the weapon to be
released at the Drop Point (DP). The distance y, known as the Ballistiu Correction is supplied an a VECTAC
Parameter and is dependent on the aircraft and weapon type. Ballistic Correction is not corrected for wind
during the calculation.

Once the distance x is known and the current position of the submarine and helicopter have been derived, the
vector velocity solution can be calculated. Other factors available or derived for the solution ares

14-14

Helicopter [AS
True Wind
Target True Course and Speed

The result of the vector calculation is the itdicated course of the helicopter. There are generally two
solutions to this calculation (a quadratic), the function adopts the solution which provides the maximum
closing relative velocity.

,•PIASN P.8e

3.6 Calculation of Splash Point()

The time taken for the t.ýrpedo to reach ISD is calculated from the following algorithm:

t a 53 + ISD seconds
53

where ISD is in feet.

With t, the distance x is calculated, knowing the target speed.

If an ISD of Zero is injected the Value Of t is Set to 10 seconds.

3.7 Calculation of Helicopter Course (6)

The vector solution is applied to calculate the helicopter indicated course, employing the following data*

H~elicopter current poisiton
Target current position
Target true velocity
Helicopter IAS
True Wind velocity •Weapon Effective Correction (z)

If there is no Solution to the calculation the function causes the indication NOGO to be displayed for the
current calculation cycle. (6)

3.8 Calculation of Helicopter Control Data (4)

Once the vector pdlution has been obtained the following values are calculated:

True Range (R)
True Distance to Drop Point (e-y)

Time to Drop Point (TTG)
Indicated Distance to Fly (DTG)

The Ballistic correction value defines y.

If TTG is calculated to be greater than 9 minutes 59 seconds the VECTAC is oonsidered unfeasible and NOGO is (6)
displayed. (1)

3.9 Calculation of MaHneter Course

The mavnetic course value is required by the pilot, and is calculated from the Helicopter course.

1~elioptercurrnt posito

SJ•'.':•,• Target current. .osi-ion

14-15

I1 I I]•

I ! o

I ,

I iW

S. I

14-16

3.10 Controller's Tote Readout (5,6)

Dit'ing a MATCH Approach a readout of the following form Ia produced:

04165 (Helicopter Track Number) 0
C105 (Helicopter Course, e.g. 105')
0075 (Distance to Fly, e.g. 7.5 dols)
5M00 (Time to Weapon Release, e.g. 5 sin. 0 sac.)

3.11 Controller's LRD Display (7,8)

The he Lioopter and target tracks will be on display, as supplied by the Track Formation function.

The MATCH Approach Function supplements the display with a synthetic marker for the Drop Point, ir. t.ne form
of an asterisk.

3.12 Guidanoe of the Helicopter (9)

The controller relays the data on his readout to the pilot to enable him to steer the helicopter.

3.13 Detection of Completion of MATCH Approach (4)

When TTO reaches 13 seconds the Approach phase is complete, so the calculation cycle Is terminated and
control passes to the Attack Function.

3.141 Premature Cancellation

The VECTAC can be cancelled prematurely by use of the standard, "cancel readout" injection, e.g. "DR-".)
This effectively clears the inhibit on further VECTACS described in para. 3.2.

fi
IJ

I I.

14-17

ANNEX 1.5

EIA14PLE FUNCTIONAL DOCUMENTATION LEVEL 2 FUNCTION 3

MATCH ATTACK

1. INTE-DUCTION

The MATCH Attack Function controls the final phase of a MATCH engagement when the helicopter is on a steady
course and counting down to Weapon Release Time. It also provides information to the controller when the
torpedo has been dropped, for tactical evaluation.

2. MOD'; OF OPERATION

Refer to `he Funos Ion Blo•ik Diagrim.

The kttaok phase is initiated by thu signal Co1mence Attack which is received 13 seconds before Weapon (1)
Release. This signal starts the countdown in seconds.

The oountdown display on the tote is relayed t0 the pilot by the controller. When the oountdown reaches (2
zero, the pilot launches the weapon. .4)

Once the weapon has been released the Drop Point display is removed and a Splash Point and Weapon Danger (5
Zone (Dogbox) are painted instead. This enables the nontr'oller to assess whether the engagement was -9)
accurate, with reference to the target track.

3. DESCRIPTION

3.1 Countdown Control

The hATCH Attack Funotion is controlled by a one second countdown which initiates a tote update until TTO (1)
equals zero.

3.2 Countdown Readout (2,3)

During the attack the tote readout only shows the countdown value:-

0007 (Ist line, e.g. 7 seconds)

This value is relayed to the pilot by the aircraft controller. (4)

3.3 Action at Weapon Release Time

When TTG x 0 the display of the Drop Poi-,t is removed and instead a splash point and dogoox are painted. The (5-
Helicopter pilot operates the launch controlD for the torpedo. The inhibit on further VECTACS Is removed at 10)
this time.

3.4 Splash Point Display

The splash point oo-ordinates are oalculated and a request is made for the Picture Control Function to (7)
generate a Sp!Ash Point and Dogbox. These two markers are deleted autommtically after 7J minutes by Oioture (8-
Control. Alternatively they may be cleared on demand by the appropriate Picture Control Injection. 10)

3.5 Terminating the Engagement

The ai•.oraet controller evaluates the engagement ecoording to his display data and the helicopter pilot's (11)
report. A new engagement say be initiated by the ASWI If desired.

If no new engagement is required the operator should clear the 0000 readout by injecting "DR-".

14-18

� Ii
I

Ii a

..iiI�
_________ ii

ii 9
_ I S

II

' LI

liii

f a

I?

- Ii I

ii II �iI
II II

'1 P�

S3-4

DISCUSSIONS
SESSION III

REFERENCE NO. OF PAPER: 111-11

DISCUSSOR'S NAME: J. T. Martin, Ferranti

AUTHOR'S NAME: A. A. CallawVy

COMMENT: I notice that the program uses a constant overhead to allow for command and status words and
the response times of the terminals. Have you considered allowing the response time to be a variable
rather than a constant, the variable being specified on a per RT basis, if required? This would allow
known response times of terminals to be inserted. Or. the same basis, are ycu intending to extend the
program so as to cope with acyclic messages? In such a case, I would recommend that the program accept
as a parameter the amount of time allocated to all acyclic messages and produce as an output the
average and maximum waiting time before the acyclic message is handled.

AUTHOR'S REPLY: I feel that the average value of overhead is sufficient for the purpose, especially
since the controller/terminal and terminal/terminal overheads are resettable parameters. The
inter-word and inter-message gap figures preset into the program are 6 lis - thought to be a reasonable
average value between 4 us and 10 ps which MIL-STD-15538 specifies. If the user observes that his
terminals involve a spread of response times, then a representative average value will still suffice in
the analysis - if the system is critically affected by this, then it probably needs some redesign
anyway.

With regard to the second point, it is intended to extend SAVANT into the acyclic regime, and Mr.
Martin's suggestion is gratefully noted.

REFERENCE NO. OF PAPER: 11-1l

DISIISSOR'S NAME: Jim McCuen, Hughes Aircraft

AUTHOR'S NHAME: Tony Callaway
COMMENT: Can SAVANT be modified and expanded to model a contention protocol, high speed data bus
operating at 50 megabits?

AUTHOR'S REPLY: SAVANT includes resettable parameters - for example, the transmission bit rate, word
overhcads, message overheads, word length, and message length. These can be changed to any values

charactreristic of the protocol one wishes to investigate. For example, we have used it at RAE to
estimate traffic on a 50-megabit time slot bus protocol.

REFERENCE NO. OF PAPER: 111-12

DISCUSSOR'S NAME: K. Brammer, ESG

AUTHOR'S NAME: H. J. Whitehouse

COMMFNT: Are you aw.re of any applications of systolic array processing to nonlinear optimal recursive
filtering?

AUTHOR'S REPLY: Systolic ,,rays can be used for the computation and inversion of the covariance
matrices associated with Kalman filtering. In the area of nonrecursive nonlinear filtering, syttolic
arrays whose elements can perform comparisons can be used for rank-order filtering, especially median
filtering.

REFERENCE NO. OF PAPER: 111-14

DISCUSSOR'S NAME: H. P. Kuhlen, G. E.

AUTHOR'S NAME: J. T. Martin

COMMENT: To be compatible with your "design documentation," I would like to know how an "ideal"
specification should look? More functional diagrams or the "old-fashioned" item-by-item specification?

AUTHOR'S REPLY: It does not really matter in what format the requirement specification is presented.
The important thing is to ensure that the requirement specification specified fully those things that
you require. The specification should nct request items that are not required but tend to be put into
the specification because the custo-ner has a preconceived idea of what the design should look like.
For instanc3!, if you require a computer to be able to store data in a non-volatile store then state
that in the requirement, do not specify that a core store should be used--that is not the requirement
in this case. Of course, if you have a particular reason for needing to use a defined piece of
equipment, for instance so as to provide compatibility with some other unit, then this is one of your
mandatory requirements and should be included in the specification.

L . .. ,..., " I IIlTII 4

S3-2

REFERENCE NO. OF PAPER: 111-14

DISCUSSOR':" NAME: OR. N. J. B. Young, Ultra Electronic Controls

AUTHOR'S NAME: J. T. Martin

COMMENT: You have talked about an aid to system design, but not covered testing or post-development
modifications to the customer's specification. It is our experience (in Ultra Electronic Controls
Ltd.) that these absorb a very high percentage of costs. Can you tell us scmething of how your system
design aid can be applied to system (hardware and software) testing and post-development modifications,
and whether it makes them easier or more difficult?

AUTHOR'S REPLY: Functional documentation helps you to move from the original system requirement
specification to the specification necessary for the hardware and software required to produce the
system. Test specifications for the system come from the FD because the FD describes in an easily
understandable form the attributes that must be proven to exist.

If the customer's specification changes after development, the functional documentation lower
levels can be used to discover whether the change to the specificaticn will affect the software ur the
hardware or both and also help to choose between a change to the software or a change to the hardware
if a choice exists.

As stated above, FD is used in •ie overall system desgn phase, those attributes which the system
must exhibit are defined, data structures, processing functions, and crew actions to meet this defined
system requirement are detailed on the FD, if required, to make the system function in the required
manner, otherwise they are left to the hardware, software, or user design stages.

Functional documentation does produce a good interface between the designer and the customer,
because it is so understandable. However, it also allows the design to proceed in a logical top down
manner and thus offers all the other advantages listed in the paper.

REFERENCE NO. OF PAPER: 111-14

DISCUSSOR'S NAME: J. P. Quemard, Electronique Marcel Dassault
SAUTHOR'S NAME: J. T. Martin

COMMENT: Trois remarques sur la m~thode pr~sent4e

- pas d'aspect structure des donnL~es

-pas de regroupement fonctionnel des traitements

- pas de gestion de references crois~es, de chromogrammes

N'est ce pas simplement une fajon de presenter une documentation pour le client plutet qu'une

m6thode de travail.

Three remarks on the method presented:

- not mentioning the data structure aspect

- not mentioning the processing functional regrouping

- not mentioning the cross-reference management, chromograms

Isn't is merely a method to present a documentation to the customer/user rather than a
working method?

AUTHOR'S REPLY: The response to this question is included in the response to Dr. Young's question.

REFERENCE NO. OF PAPER: 111-14

DISCUSSOR'S NAME: Dr. van Keuk, AVP Member

AUTHOR'S NAME: J. T. Martin

COMMENT: I would agree with you that in the early phase of system design you may not need any computer
assistance. The main reason may be that many of the ideas to be invoked are unsharp. But, of course,
in the software design phase computer assistance in large systems is necessary to define the data
organization, of positioning, and things like these.

S3-3

AUTHOR'S REPLY: The question asked was whether the use of interactive computer display techniques
wnuld be useful for producing the functional documentation designs. The answer is - not at all. When
the FO diagrams are produced, each diagram Is the cooe~ined effort of a numb~er of people working
together using pencils on a piece of paper. The initial diagram produced is very rough, not even
rulers are used to draw the lines. When the diagram has been produced by '.e engineer it is redrawn by
a technical author but this is a small task.

The paper concerned itself with only system design. Functional documentation is used at the
system design stage. Other techniques are used for software, hardware, and user designs. I would Just
briefly state that computer-aided design techniques and simulation are useful in all the three areas.

I5-1

A CONSISTENT APPROACH TO THE DEVELOPMENT OF
SYS~TEM REQUIREMENTS AND SOFTWARE DESIGWf

By
A. 0. Ward

British Aerospace Public Limited Company
Aircraft Group

Warton Division
Preston
PR4 lAX

United Kingdom

SUMMARY

Some of the problems encountered in the development of system and software
requirements are discusscd and generalised solutions suggested. h specific approach is
described, the SAFRA Projeut, including extensions into the area of software design.
This approach embraces the use of a new methodology, Controlled Requirements Expression
(CORE) interfaced with a computer based System Description Language for storage and
automatic analysis. Software design assumes the use of a MASCOT rationalised executive
and CORAL as the implementation language. Experimentnl procedures for the automatic
extraction of CORAL progranaes from detaileC requirements held on a database are discussed.

The techntques are illutitrated via an example based oin the processing associated with
a Fuel Management System.

1. INTRODUCTION

1.1 Problem Areas

During the latter half of the previous decade there was a growing awareness of
the importance of the requiremen:s for embedded software, particularly for large
projects with lifecycles extending over many years. Two of the major problems are
the desire for realisation leading to insufficiant resources being allocated to
the requirements phase and the apparent iw-bility to communicate the requirement
effectively to the implementer.

A mora specific case for examining the way in which requirements are developed may
be made by noting that the cost of changes to software increase over the lifecycle
particularly when many of the errors which precipitate such changes may be traced
to inadequacies in requirements and design. Also, traditionally a relatively small
percentage of the procurement budget is devoted to requirements and so a large

, absolute increase in the resources devoted to requirements will lead to a
relatively small percentaoe increase in the overall cost of a project. These three
pieces of evidence st.ggest that increased investment in the early stages of projects
involving embedded software will potentially have a large cost leverage on their
success. Unfortunately this is difficult to achieve because although funding can
usually be found to solve critical problems just prior to entering service it is
hard to convince people of the worth of investment early on in projects.

There are a number of areas in which requirements can be improved, some outside
the scope of this paper, chose addressed by the technique described here are
discussed below.

A heavy reliance on the use of a nataral language invariably leads to ambiguity.
English, althoigh semantically a very rich language, is notoriously open to
interpretation. Imposing a detailed format on a requirement document goes some
way towards alleviating this problem but if the detail itself is communicated
using English the problem will still remain.

Projects of reasonm.la size will inevitably lead to the rcquirements phase being
undertaken as a team activity and this in turn causes problems when attempts are
made to assess the consistency of the various documents produced. Again, the use
of English and the lack of any detailed structure prevent the use of formal
methods to check for consistencj. The many stages involved in current
Implementations not only make it difficult to demonstrate conformance but increase
the risk of errors due to the many communication I.nterfaces that have to be
crossed. einally, requirements are usually incomplete and as suggested earlier
this is usuallj due to insufficient effort rather than a lack of methodology or
formalism. However, there are some clases of information which, due to the
conventional form of requirements, it is almost impossible to check for
completeness. In addition, currcnt approaches do not have the mechanism for
accommodating viewpoints which although seemingly irrelevant at the early stagas
of a project will become very relevant once the system approaches service.

15-2

1.2 General Solutions

These problem areas we helieve can be addressed by the following means. Ambiguity
can only be solved by using a precise method of exprespion, such as the diagrammatic
notation shown in Fig. (1). Here, the simple expedient of representing processes
in boxes, data on arrows and depicting time ordering as left to right across the
paper provides an imambiguous picture of the relationships between the processes
and their sequence.

Validation for consistency is impossible without a visible information structure.
If the simple system shown in Fig. (1) is to be described in such a way as to
assist a consistency check then a suggested infcrmation structure could be as
follows:

PROCESS: Centre of Gravity Calculation;
PART OF: Mass C of G Calibration;

USES: Individual Tank Fuel Mass;
Wing Sweep Position;

DERIVES: Fuel Centre of Gravity;

COMES AFTER: Mass Calculation;

The reserved words in capitals are a selection of specific information categories
to which have been arsigned the objects and relationehip shown in the diagram.
Clearly the checking of two descriptions for consistxz-y is simplifiem by having
such a structure and this is illustrated in Fig. (2) where two inconsistent
descriptions of the functions depicted in Fig. (1) are given and soun of the
errors highlighted. Because of its mechanistic nature this process is amenable
to automation provided we have access to a language which can be used to describe
the structure and a database in which to hold the information.

Conformance can only be pi'eserved and demonstrated if the requirement has a
structure which allows this. Such a structure, of course, will correspond to the
various stages of development as well as the detailed steps through each stage
and the documentation produced. A good analogy is a notional aircraft drawing
scheme. Here a general arrangement (GA) will be originated from which, at the
next level, some features will be represented in a little more letail via a
feature G.A. The latter will be broken down into assemblies and in turn to
sub-asseiblbies, the final stage being a detailed part which can be hanied to the
implementer for manufacture. One can observe that there are several levels of
detai?. and at each level the customer and designer assess in turn whether the
design is practicable, will satisfy the requirement and if it ic correct. The
hierarchy of information that each drawing level reprenents can be seen to be a
logical decomposition of the preceding levels and there is an unambiguous method
of expressing the design (i.e. a drawing system with standards). In addition the
interrelationships between various levGls and drawings at the same leveX are
referenced on the diagrams.

W When applied to the development of syster and software requirements it is clear
that such an approach, if applied rigorously, would enable conformance to beestablished via a series of small increments of detail. Equally, the effect of

changes to the requirement can be quickly traced through the hierarchy In order
to establish the functions affected by such a change.

Finally, ccmpletenesr is satiified maiiuly by the allocation of adequate resources
and sufficient time to the requirements phase, however, ac stated earlier
mechanisms for partitioning work with complete interfaces In a team acti.ity
must be sought.

A three element solution to the derivation of requirements which will alleviats
t'eue problnms is provided by the use of a:

Methodology

Standard

Automated Aid

and we will discuss these briefly in turn.

The methodology should encompass the process by which requirements are both
developed and expressed. It must be usable by engineers, as opposed to systems
arialvais in the traditional sense, and have a notation which is not only simple
to use but is relatively transparent to the technical content. The latter is
important from the customers point of view where ft should not be necessary fur
him to have a detailed understanding of the methodology in order to undertake
technical reviews of the documentation produced. It should be applicable to any
stage of system conception as far as the customer will allow. It should impose
no constraints on design decisions but rather provide the necessary cues to the
engineer so that such decisions are made at the appropriate level of detail at
the correct time.

15-3

The standard should provide the information structure and the tests to be made
against asich a structure. These quality control actions should be matched by
rigorous configuration control procedures. Automated aids to the application of
the standard via the use of computer based tools to implement the mechanistic
aspectE of the quality control procedures should have a minimal impact on the
prime method of expression used by the engineer. Where the tests cannot be
carried out automatically, reports should be provided which give maximum assistance
to the engineer in checking hMs requirement. One should also aim to minimise the
data preparation task. The important elements of such a tool are shown in Fig. (3).

The notation used for expression is described using a System Description Language
(SDL) via the information structure specified in the standard. Once the
requirement is in this form it may be checked using an Input Analyser which not
only assesses the validity of the input in its own right but also its consistency
with information already held on the database.

Once held on the database it may be subjected to the repertoire of reports
, available for analysis or interfaced with other tools.

1.3 Software Design In-erface

The software design interface is yet another barrier to successful conmuunication
of needs and we should seek to minimise discontinuities by aiming for a more
gradual transition between requirements and implementation. If possible the
notation and methodology used in the requirements phase should be consistent with
those used during design. Also, if use is made of a rationalised (and ideally
standard) executive to specIfy software module communication and control it should
be possible to produce a more formal route map between requirements and basic
design.

Similarly if a standard Higher Order Language (HOL) is employed then this argument
can also be used to justify a similar formalism between detailed requirements and
the subsequent sofcware.

In the next section we will attempt to describe a specific approach to
requirements and design which it is hoped goes some way towards satisfying the
above. Some aspects of tbs approach are still experimental and these will be
highlighted in the discussion.

2. SPECIFIC APPROACH

2.1 SAFRA Project

A specific approach to requirements and software design is suggested by the SAFRA
project. Semi Automated Functional Requirements Analysis (SAFRA) is a proposed
approach to requirements and software design, consisting of existing methods and
tools and rvew ones currently under development. A more detailed picture oZ the
background to SAFRA and its initial objectives and assumptions can be found in
Ref, (1). If we consider a phased life cycle approach (Fig. (4)) then what is
proposed is a consistent set of methods and tools for each phase. These will be
described below in as much detail as this paper will allow but with reference to
the discussion above they may be summarised as follows.

The methodology used by the engineer to develop and express the requirement is
Controlled Requirements Expression (CORE). This is a new technique developed
jointly by B.Ae. Werton Division, and Systems Designers Ltd., embracing a method
for the assembly and analysis of information relevant to a requirement and an
easily understood diagrammatic notation as the method of expression.

The automated aid to validation and storage of both requirement and software design
is the University of Michigan's Problem Statement Language and Problem Statement
Pnalyser (PSL/PSA).

The software design interface assumes the continuing use of CORE notation to
produce detailed specifications with storage using PSL/PSA but aimed at the use
oz a rationalised executive and HOL. The former is the Modular Approach to
Software Construction Operation and Test (MASCOT) and the latter is the UK MoD
standard CORAL 66. A further assumption is the use of a commmarcial)y available
MASCOT based software development and test environment for the testA-g phase
working on the host-target principle.

2.2 Controlled Requirements Expression

CORE is a method of analysing and expressing requirements in a controlled and
orecise manner. It enables a subject requirement to be expressed as either a
number of lower level requirements or as a component part of some higher level. Any
lower level requirement derived using CORE may in turn be subjected to the method to
produce a hierdrchy of lower levels. The lowest level is that at which the full
method need no longer be applied and one may resort to strictly hierarchical
decomposition making use of the notation alone. This is considered to occur after
the basic design staqe has taken place. In general the same notation is employed at all
levels of requirement and design and some of the malor symbols are illustrated in Fig. (5) .

15-4I

CORE diagramE utilise boxes to represent processes and arrows to represent data.
The diagrams are time ordered from left to right and thus the box ordering
specifies the sequence in which processes must occur. Symbol free boxes shown in
parallel indicate indeterminate order and overlapping indicates a number of
identical processes occurring in parallel. All input data entering a CORE
diagram is referenced to a source and all output data to a destination.

Data arrows may also be used to describe repetition, selection and condition.
Those arrows appearing from the top of a process box point to a reference which
indicates that this process is functionally equivalent to the one described at
the reference. Those appearing at the bottom of a process box indicate the
mechanism that performs the process. Iteration is shown by an asterisk in the Vop
right-hand corner of a process box and mutual exclusion by a small circle in the
top left-hand side.

The method comprises eleven logical steps which when applied to a subject
requirement will decompose it into its lower level components and these are
summarised below.

The method has three stages for each level of decomposition which may be summarised
as

Information Gaths_.,Aug
Propose Relationships)
Prove Relationships

Information is gathered with respect to a number of subdivisions of the problem,
referred to as Viewpoints, in tents of input and output data and gross functions.
This information is refined by a Data Decomposition Step which specifies in more
detail the data already tabulated.

Relationships are proposed between the inputs and outputs for each Viewpoint in
turn and for data flowing across the Viewpoint, and these are termed 'Single
threads', The proof of such relationships is done in two ways; fivit theinterrelationship between Viewpoints is examined and where such links exist new
diagrams in the forn, of 'combined threads' are drawn. Secondly, as threads
represent only particular pat.s through system operation and in no way depict
such aspects as parallelism or the operational time ordering of processes
another diagram is required which will illustrate this. This is achieved by the
construction of a 'combinad operational' diagram or examir.ing how threeds interact
operationally across Viewpoints.

Both of these will lead to iterations through the previoas steps precipitating a
more detailed examination of the single threads for cor!:ect combination and in
order to establish operational relationships.

The outcoet of the above is a partitioned description (in terms of Viewpoints)
with a detaileS and hopefully complete picture of how the Viewpoints intArrelate
and react with each other as well as 3ome indication as to the major functione
contained within them. It is now possible to extract the Subject Viewpoint as
the one of interest and in turn take Viewpoints which describe how it is composed
a.id repeat the methodology in full.

Such decomposition& continue until furctions emerge which may be seen to ve
implemented ap software on a particular processor. once decisions have been made
regarding the com puting elements. At this stage It is posaible to enter into
basic design, but before discucsing this phase we must say a little about MACCOT.

2.3 MASCOT

The definition of MASCOT given in Faf. (2) de.3cribes it as i set of facilities
Zor real time programming incorporating features concerned with systems
development and construction, achieving this by providing the following:

(a) A fcrmalism for expressing the Aoftwars structure of a multi programmond or
real time system which can be independent of computer configaration and
programming language.

"(b) A discipliied approach for design, implementation and testing which provides
a concept if modularity for real time systems and added reliability brought
about by increased control over access to data.

(c) An interface to support the implementation and testing nothodologies which
is provided by a small kernel that can either be implemented directly on a
bare machine (for operational use) or on top of a host operating system
(useful for system prototypes) as well as software construction facilities.

(d) A strategy for docunentation.

MASCOT, as Ref. (2) continues, views an application system as a nun'ber of
activities, or processes, which operate independently and asynchronously, but
which cooperate by accessing shared Intercommunication Data Areas (IDAs). Thus
the system can be seen as a network whose nodes are the activities and the IDAs
.ihose directed links are pathways for data flow between activities and IDAs.

Although the MASCOT facilities allow great variety in the implementation of IDAs,
it has been found useful, for design purposes, to distinguish two conceptual
classes of IDA according to the nature of the data flow which they support. These
are called channels and pools. A channel supports unidirectional data
transmission, it has an input interface associated with a number of producer
activities and an output Interface associated with a number of consumer activities.
A pool provides a permanent data area in which data remains available for
activities to read until it is specifically overwritten. The data in a pool does
not have the essential transcience of channel data and reading it does not imply
consumption, conceptually it has a simple bi-directional interface wi-h associated
activities.

MASCOT system designs are represented by Activity-Channel-Pool (ACP) diagram3 and
Fig. (6) shows the symbology along with a simple example. Clearly, the logical
outcome of a basic design phase using MASCOT would be a set of ACP diagrams showing
the identified activities and how they are related through appropriate IDAs.
Integrating a requirements phase using CORE with a basic design phase using MASCOT
specifically means changing a requirement (a CORE) diagrem into a design (an ACP))
diagram. This area of methodology is still in the very early stages of development
but it is possible to postulate two possible approaches to this step.

A software designer takes the CORE diagram as a statement of the requirement
and by considering the constraints of processor throughout, memory available
etc., produces what he views as an optimum basic design in the form of an ACP
diagram.. The design, while reflecting the software architecture, will retain
the functional relationships specified in the requirement and because of the
structural method of expression in use it will be possible to demonstrate
that the basic design conforms to the needs of the requirement.

The second a.d perhaps controversial approach is to draw parallels between data
relationships in the CORE sense and those between activities in MASCOT. In
short, propose a direct correspondence between a CORE diagram and an ACP
diagram and thus minimise the software design step in the traditional sense.
One might suggest that this approach is only feasible where performance
constraints do not exist.

However, let %ir dssume that by either means the design diagram has been produced,
subsequent -,eps consist of further decomposition of each activity or software
functior making use of CORE notation. A¶ each 'layer' of this detailed
description the diagrams are encoded in PSL, checked and stored on the database.

;ne terminating layer is one where the diagrams reflect logic which is directly
transcribable to a programming language, in this case CORAL, however the
transition is done automatically by use of a specially designed suite of PSA
reports and a formatter.

2.4 PS_ PSA

This topic has been left until now so as not to break the continuity of the
discussion on the transition from requirements to design. PSL/PSA is a System
Deicription Language, analyser and database developed as part of the ISDOS project
at the University of Michigan. The reader is referred to Ref. (3) for a discussion
of Its background and a description of the more important features. In the
context of SAFRA, PSL/PSA is being employed in two specific ways.

Conventions have been established for encoding particular subsets of CORE data
sets (i.e. Tabular Entries, Combined Threads etc.) into PSL and running sultzs
of reports to check their correctness. Such passes are part of the quality
control procedures demanded by the standard. The second area relates to the
detailed specification of software functions at the activity level and below, in
order to produce a database of the specification which may then be used to
automatically generate the programm.4.s which satisfy the root procedure that
corresponds to the activity. PSL consists of a large number of reserved words
pertinent to particular aspects of system description, these are summarised below
and examples of those relevant to procesees in particular are given in Section 3.4.

- Communication and analysis

- System boundary and in.put/output flow

- System structure

- Data structure

- Data derivation and manipulation

..- .-.. d-~-

15-6

- System size and volume

- System control and dynamics

- Project management

To complement the language there is a suite of 32 reports available, each one
related to the aspects given above. The reports fall into four categories,
Indented Lists, Matrix, Structure/Chain and Function Flow and some simple
examples ate shown in Fig. (7).

3. ILLUSTRATION VIA AN EXAMPLE

3.1 Introduction

The examples given below are the result of two separate studies addres3ins
requirements and design as separate entities but for convenience they are
presented here as the result of a contiguous series of phases. This obtains
because they are the result of two separate development phases for the
methodology dealing initially with requirements and then addressing the
interface with a software design phase and the production of programmes.

The example shown here is a Fuel Management System (FMS), or specifically the
processing associated with an FMS, and we will now say a few words about this
requirement.

The customer input was the hardware system layout diagram shown in Fig. (8) and
the need was to generate the requirement for an associated control system. The
design aim was to produce an automatic FMS to reduce pilot workload. It should
have the capability of initiating the normal transfer sequence but should also be
able to recognise faults and reconfigure the transfer sequence accordingly.

The agreed assumptions for the system's starting point were therefore:

•'Nwin engine aircraftSix fuel tanks - Forward Fuselage

-Rear Fuselage

- Left Wing

- Right Wing

-Left External

- Right External

Transfer; all tanks shall be capabl3 of transferring fuel to forward and rear
tanks.

Asymmetry; fuel asynmotty shall be automatically controlled to provide constant
asymmetry between forward and rear tanks.

Information ahould be provided to enable the ground crew to service the
aircraft via a Ground Service panel.

Single failure thnll not La catastrophic.

Sufficient information shall be made available to the crew to enable interaction
if and when required.

System shall perform automatically and provide self diagnosis and self

correction capability.

3.2 Development of Requirements

The requirement was developed through two levels of decomposition. Level 3 and its
associated layers transcend the traditional interface of software design although
in this approach it is seen as a continuing decomposition of the requirement in
order to produce a language independent description. However, for convenience level
3 will be discussed separately. A schematic representation of the hierarchy is
shown in Fig. (9). The objective was, by use of the methodology to first establish
the interaction between the complete FMS and other systems and then at a subsequent
level ectablish the interaction between the processing element of the FMS and other
parts of the subsyst-em. The thirn level, then, corresponds to a detailed
description of the functions satisfied by the FMS processing element.

The Viewpoints selected at level 1 were as follows:

Allied Command; the actions external to the aircraft of providing fuel, mission

and co-ordination data etc.

15-7

Other Aircraft Systems; those which h'ave an influence on or an area influenced
by the fuel system (i.e. cooling systems, engine systems etc.).

Environment in which the aircraft operates.

Fuel Management Syatem, embracing pumps, valves, pipes, tanks, processors,
embedded software etc.

The .Viewpoints selected at level 2 were as follows:

• Data Highway, the method of transferring the data from sensors to the processor
and from the processor to controls and displays etc.

• Controls and Displays, the pilot and ground service panels.

Fuel Management System Process, all management and control functions to be
embodied in software.

Fuel Handling, hardware such as pumps, valve, pipes, tanks etc.

Some brief examples of the CORE methodology will now be discussed. Fig. (10)
shows two aspects of information gathering associated with the second level of
decomposition. A Tabular Entry for the Viewpoint of FMS Processing is show"
with a decomposition of the data passing between the FMS Processing and Fuel
Handling Viewpoints. The additional level of detail in the latter allows the
former to be examined and a number of actions associated with the data identified.
The proposed threads, an example of which is shown in Fig. (11), are identified
for all the data listed. This particular thread, In Flight Refuel Control
Actions, is given for the Viewpoint FMS Processing and the data links identified
interface with the other three viewpoints as well as that data identified at the
previous level as flowing across the problem boundary. The initeracticn betwpen
this proposed thread in the Fuel Processing Viewpoint and that of other threads
in other viewpoints is now examined by considering these data relationships.
When particular or thread relationships can be found a Combined Thread diagram
may be constructed as shown in Fig. (11). Here, two threads proposed in the FMS
Processing Viewpoint are shown interacting with In Flight Refuel Valves Actions
in the Fuel Handling Viewpoint, data passing into and out of the diagram
demonstrate the relationships with other threads.

These diagrams have been drastically simplified from the original documents in
order to help communicate a feeling for the methodology, they also represent a
very small sample from a three volume data set. The final step is the construction
of the Operational diagram (Fig. (13)).

3.3 Basic Design

As stated in 2.3 the basic design phase consists of producing a design diagram
from the CORE requirement diagram either as a specific software design activity
(i.e. with recourse to optimisation) or by establishing a direct correspondence
between the two diagrams via their data relationships. For interest we will
discuss the latter approach, while bearing in mind that it may produce a less
than optimal solution, and consider the CORE Operational diagram shown in Fig.
(13).

There are similarities between some of the data relationships used in CORE and
those assumed in the use of MASCOT. Specifically we believe there is a
correspondence between what are termed Thread and Associated Thread relationship
in the CORE domain and channels and pools in the MASCOT sense. The Operational
diagram may be redrawn with the appropriate notation for channels and pools once
the configuration of speciiic pools has been decided. Such a conversion is
shown in Fig. (12) and corre.ponds to a CORE Design diagram. In principle this
differs from a MASCOT ACP diagram by having activities in rectangles rather than
circles.

3.4 Vetailed Design

The consequence of the rrevious steps are a number of software functions,
represented by threads, with an operational view of how these threads interact in
terms of a requirement. This requirement has been used to establish a Basic
Desigr consisting of Activities and their associated IDAs. For simplicity we will
now consider one of these Activities, specifically MASS-CALCS and show the steps
undertaken to carry out a detailed definition of the sequential process that
supports this Activity. In MASCOT terminology this is called a Root Specification
and the first description of the MASS-CALC Root Spec derived at level 2 is shown
in Fig. (14).

Further decomposition of the processes shown on this diagram will not only provide
the appropriate macro expansion but also give a more detailed breakdown of the
data structures associated with the channels &ad pools. Such decomposition is done
strictly hierarchically and the only resort to CORE is the use of the diagrammatic
notation. Such a decomposition is a lengthy business and the subsequent tree
transcends six layers. The terminating box on each branch of the tree correaponds

15-l

to an expansion of the macro referenced in the box. Layers above this
termination are expressed as CORE diagrams and the information they contain is
encoded in VSL for both data and process. The nature of the information stored
in this way is reflected in the example shown below, via the process CALC IND
TANK FUEL MASS part of the MASS CALCS ACTIVE composition of Fig. (14). Note
that words on the left-hand side of listing corresoond to PSL reserved words.

DEFINE PROCESS CALC-IND-TANK-FUEL-MASS;
/* DATE OF LAST CHANGE - JAN 26, 1981, 11:29:25 */
SYNONYMS ARE: BIP06;
ATTRIBUTES ARE:

REPEAT-RANGE SET-OF-TANKS,
ORDER 3,
TYPE 'REPEATED-MACRO-CALL';

SUBPARTS ARE: CALC-ONE-TANK-FUEL-MASS,
PUT-ONE-TANK-MASS,
ADD-TO-RUNNING-TOTAL,
ONE-PROBE-PRELIM-MASS-CALCS,
LOOKUP-ATT-CRCTN-FACTORS,
WRITE-FUSE-TANK-2UEL-MASS;

PART OF: MASS-CALCS-ACTIVE;
CREATES:

CALC- IND-TANK-FUEL-MASS-LOCAL;
DERIVES: IND-TANK-FUEL-MASS;
DERIVES: USABLE-FUEL-MASS;
USING: DENSITY-CRCTN-FACTOR;
EMPLOYS: BUS-ATTITUDE-DATA,
UPDATES: TANK-ID;
USING: TANK-ID;
UPDATES: TANK-RUNNING-TOTAL;
USING TANK-ID,

TANK-RUNNING-TOTAL;
INCEPTION-CAUSES:

LOOKUP-ATT-CRCTN-FACTORS;
TERMINATION CAUSES:

PUT-TOTAL-FUEL-MASS;
ON TERMINATION OF:

SET-TANK-RUNNING-TOTAL-ZERO;
PROCEDURE;

C 'FOR' TANK ID := LWT 'STEP' 1 'UNTIL' RFT 'DO'
N CALC IND MASSES (TANK,ID,DCF,GAUGING DATA,RUNNING TOT,
N ATTITUDE DATA,
N IND MASSES,USABLE MASS)-
E;

The above may be seen to consist of six areas:

The process name corresponds to that found on the diagrams with an appropriate
synonym, in this case a keying index which allows the process to be traced
back to the root of this particular tree, MASS-CALCS.

Qualities of the process in the form of Attributes may be entered and the
examples given here include the TYPE of process, a Repeated Macro Call with
the value of the REPEAT-RANGE given as SET-OF-TANKS.

. Upward and downward hierarchical relationships, via the SUBPARTS and PART OF
terms show that the macro has several constituent processes that will be
defined at the next layer.

Data relationships and their specif'.c significance are represented by:

USING: Conventional utilisation of data local to the diagram (eg TANK-ID).
EMPLOYS: Conventional utilisation of data entering the dii~gram (eg GAUGING

DATA).

DERIVES: Production of data which subsequently will leave the diagram.
(e.g. USABLE FUEL MASS).

UPDATES: Iterated variable (e.g. TANK-RUNNING-TOTAL).

Sequencing and control relationships, such as the first process to be triggered
within the process CALC-IND-TANK-FUEL-MASS, signified by INCEPTION-CAUSES, here
LOOKUP-ATT-CRCTN-FACTORS. Similarly the process to be triggered when this
sequence of processes is complete, signified by TERMINATION CAUSES, here PUT-
TOTAL-FUEL-MASS. Finally the process whose termination will start this
particular sequence, signified by ON TERMINATION OF, here SET-TANK--RUNNING-TOTAL-
ZERO.

The last area, classifind as PROCEDURE, will ultimately be reserved for

mathematical expression which cannot be described using PSL. However, the
currently experimental status of the PSA report suite and formatter being
employed means that some aspects other than mathematical ste'tements must be

S, ,, , ,

15-9

included in CORAL at this time. The PROCEDURE statement is a comment entry
on the database and hence is not amenable to being checked by the analyser.

3.5 Program Generition

Considering the MASCOT structure there are four vypes of program required to
complete a system and these comprise:

R Root Specs, the actual program body for each activity and which form the bulk

of the system.

* IDA Specs, (Pools and Channels) which include the body of Access Procedures.

* Module Declarations, which list all the components of the above giving the
actual names to be used in the Form lists.

Form Lists describe how the system goes together ie which pools and channels
connect which activities to form (via subsystems) the complete system.

In principle all the information pertinent to these programs should be found on
or derived from the database but here we will describe the steps concerned with a
Root Spen and for simplicity only for the first macro.

The information needed to construct the first macrt can be found in the PSL
statements ATTRIBUTES ARE, PROCEDURE, TRUE-WHILE ard FALSE-WHILE. An attribute,
when applied to a process, will have names TYPE anc ORDER, and when applied to
data items will have names TYPE and CORAL-NAME. A process will correspond to a
macro name and the attribute TYPE will thus describe the type of macro, in this
case it is ROOT-SPEC (i.e. ROOT-SPEC being the VALUE of TYPE). A data item can
be an ENTITY, GROUP or ELEMENT where the latter corresponds to an indivisable
CORAL variable while ENTITY and GROUP are types of ELEMENT collections. Here
the attribute name TYPE describes the CORAL variable for the purpose of making
declarations within the first macro.

The structure of a macro is made up of Heading, Declarations, Calls and Close
and the respective code elements are found as below.

Heading; in the PROCEDURE comment entry of the process with the macro name,
the attribute name TYPE will have the value ROOT-SPEC.

Declarations; in the attribute description ci the appropriate GROUPS and
ELEMENTS.

Calls; in the PROCEDURE comment entries of the SUBPARTS of the first macro
and the comment entries of the CONDITION section.

Close; not in the database and thus created.

The approach adopted is-

(i) Identify the macro name

(ii) Trace the local variables from the macro name

(iii) Trace the first layer subparts form the macro name.

Although this is the route for extracting the required information the order
which the call code elements must take in the macro cannot be guaranteed. This
has been overcome by the use of an additional attribute ORDER which provides the
appropriate key.

The programme is gexterated by applying the above strategy through a suite of
PSA repcrtz, where the results of one report act as the file input to the next.
The last step before submission to the compiler is a Formatter which deletes
extraneous PSA messages accrued during the previous steps. An example of
CORAL generated in this way is shown below representing the macro CALC-IND-TANK
FUEL-MASS and calls to tW' layers below.

152 'COMMENT' =-=>MACRO PSLNAME=CALC-IND-TANK-FULL-,'qS
153 'DEFINE'
154 CALC IND MASSES (TANK ID,DCF,GAUGING DATA,RUNNING TOT,
155 ATTITUDE DATA,
156 IND MASSES,USABLE MASS)
157 "'BEGIN'
158 'COMMENT' --- >MACRO PSLNAME.•CALC-IND-TANK-FUEL-MASS
159 'FLOATING''ARRAY' ATT MASS El:37;
160 'INTEGER' PROBE;
161 'INTEGER' ONE TANK MASS;
162 'INTEGER' PROBE MASS;

15-10

163 'FLOATING' ATT FAC;
164 LOOK UP ATT FAC (BUS ATTITUDE DATA,TANK ID,
165 ATT FAC);
166 'FOR' PROBE:- 1 'STEP' 1 'UNTIL' 3 'DO'
167 ONE PROBE PMC (PROBE,TANK ID, GAUGING DATA,
168 ATT MASS);
169 CALC ONE TANK M (DCF,ATT MASS,
170 ONE TANK MASS);
171 WRITE USABLE MASS(ONE TANK MASS,TANK ID,
172 USABLE MASS);
173 PUT ONE MASS (ONE TANK MASS,TANK ID,
174 IND MASSES);
175 ADD TO RUN TOT (ONE TANK MASS,RUNNING TOT);
176 'END'";
177 'COMMENT' -- >MACRO PSLNAME-LOOKUP-ATT-CRCTN-FACTORS
178 'DEFINE'
179 LOOK UP ATT FAC (BUS ATTITUDE DATA,TANK ID,
180 AT FAC)
181 "'BEGIN'
182 'COMMENT' --- >MACRO PSLNAME-LOOKUP-ATT-CRCTN-FACTORS
183 'FLOATING' P,R,A,B,PITCH ANGLE,ROLL ANGLE;
184 'IF' TANK ID - LWT 'THEN'
185 'BEGIN'
186 GET ATT 'OF' DH IN(BUS ATTITUDE DATA);
187 PITCH ANGLE:'BU ATTITUDE DATAEO?;
188 ROLL ANGLE:-BUS ATTITUDE DATAE1?;)
189 P:-(1/COS(PITCH ANGLE)-1);
190 R:- (1/COS (ROLL ANGLE)-i);
191 'END';
192 'IF' TANK ID = LWT 'OR' TANK ID - RWT 'THEN'
193 'BEGIN'
1.94 'IF' PITCH ANGLE 'GE' 0 'THEN' A:-P 'ELSE' A:=-P;
195 'IF' ROLL ANGLE 'LE' 20 'AND' ROLL ANGLE 'GE'-20 'THEN' B:-0
196 ATT FAC:=1+(A+B);
197 'END'
198 'ELSE'
199 'BEGIN'
200 'IF' PITCH ANGLE<=30 'AND' PITCH ANGLE>'-30 'THEN' A:-O;
201 'IF' ROLL ANGLE<=20 'AND' ROLL ANGLE>--20 'THEN' B:-R;
202 ATT FAC:=I+(A+B);
203 'END';
204 'END'";

4. STATUS

As stated in the introduction the techniques described above are still in the
development stage and the status of particular aspects are given below.

PSL/PSA, MASCOT and CORAL are all commercially available and mature. PSL/PSA has
been used extensively In the United States for the statement of requirements and
MASCOT and CORAL have been employed on a number of real time projects in the
United Kingdom.

CORE as a requirements methodology, is being used on a number of small projects
within BAe and its use continaes to grow. Considerabla effort has been expended
in solving the transfer problem and an intensive Lraining course is available to
members of new projects.

Experience to date has highlighted the problem of data preparation of PSL from
CORE documentation as well as the control of the large data sets produced by the
method. In order to solve both of these problems a computer based CORE work
station is currently under development which will enable requirements to be
developed at a terminal and automatically produce the associated PSL.

The links with MASCOT and CORAL are experimental and a projnct currently being
undertaken will seek to evaluate the conventions given above, as well as Drovidinq
the means to produce a more powerful CORAL generator.

* Long term plans include interfacing CORAL with Ada including the automatic
generation of Ada programmes.

5. REFERENCES

1. An Approach to the Derivation and Validation of Requirements.
A. 0. WARD AGARDograph No. 258 Guidance and Control Software. May 1980.

2. MASCOT a Structured Software Design Methodology for Real Time Systems.
Infotech Seminar Nov. 1978.

3. PSL/PSA: A Computer-Aided Technique for Structured Documentation and Analysis
of Information Processing Systems.

D. Teichrow and E. A. Hershey III. IEEE Transactiona on Software
Engineering. Jan. 1977.

FIG .1 A SIMPLE DIAGRAMMATIC NOTATION

MASS C OF' DER I VVATION

R xw M A SS INDIVIDUAL TANK

SAUG LN G LCLATIONS FUE L M ASS
S~DATA

W I NG SWEEP P051TION4 R A R V IT Y CE NTRE OF

CL ALCtALATIONI~ A Iy)

P R O CESS MASS CALCULATIONS PROCESS' CENTRE OF GRAVITY
CALCULATIONi

I A 0A, CENT. O FG RAV1 PARl OF M AS.5 C Of G DE RIVATION'
PART OF: IVATION,

USES:~~ [75PP~F UES INDIVIDUAL TANK. FUELU E VE IWING SWEEP Po ;T9 MJ uN iASS A w G•UGING DATAI

DERIV : IN DIVI DUAL TANK FUEL DE RIVES IFUE-It OF A
HA S-S j

COCMES SEF'I SS CA..JULATIONt

COMES AFTE FoFCRAVTY1
ICALCULATION J

FIG. 2 INFORMATION STRUCTURE HIGHLIGHTS INCONSISTENCIES

5. Y YSTEMNP T

O7T0F 00 ~ DESCMIPTION
E P R E 55I0 L A N ra t.kGE[1 Y

INTERFACE
WITH OTHER D A T A R ASE
TO O LS y9TS J Y 5 E

FIG. 3 MAJOR ELEMENTS OF A COMPUTER BASED TOOL.

.

15-12

to RE

10 ,FINITI

.. ..

SM A S l T T
CORE/PSL

III

P SL• I C ORAL

[M 5 AC OT

FIG. 4 A CONSISTENT SET OF TOOLS FOR EACH PHASE

D ,Lp;tMENT

CONTROLuE IF . NTNN AN

04TA FLOWb

P u s s a 0 DERIV ES b

V E PHkN • A L 5PR•OH'

FIAS .•EML O"AI CHANNEL 0OOL

PART SSE6

C0 NT ROL

T~AID ITRULAR

yI. E XS A MPE OT CORE NTATONFU.

IL x00P tgj- - --. -~ - - - -.

15-13

3 4. S 6 7

I I CALC-jt4O.TAXC.FUILMAS PROCESS SSAT
3 PuT.OW-TAK--AjS MIOCLIAS SUSPART$.41

CAOTlYAKUkALS PROCESS SiISPAR11 aP 4a 6+-
4 ADO-TO - UMN 1A4 11- A 6pcl IPARTS AtI ~ *~-- .

5 O~t . 0061- Pat L f4 AAl-C ALCS PROCESS 6- P qt -

7 3 Lm rl poost-,qASI ~ octs tIu PAIRTS AP
LOOUP% AT.Cityli-PACTORSttP1I1 la

2 WPto~UITM~ULM P1(11 SUSPAftTS ARE) 4

LtU~L COUNT7 LEVIL COUN4T LtV1i COUNT
I t 6 10 -= 4

*--ILL41NT-- fPwHIAfky I
3 PUAL- EMIIPLOYS..+

-P OI 4--INTITY---j -Pltoccss--.. . -D~ IVIATA 1 jCIK
IWITi-uAI1 USASLI- I FufiL- I ? ,--IIVJO-q I Mi

ITAIAK- 1 1 ASVIV-. I. fI! lIIV _+FUEL- AS A MASSA I ICALCI I .mpI.ovs.~

I I NOT" IIMG
.AIS*Wt4OI I FOLILOWIN6 IN&

TINS DATA BSAE

FIG.? TYPICAL EXAMPLES OF PSA REPORTS

-~~ G I.,I

R ~ ~ FD R NUt RWLA E

G~U R. 0 Sq7 pr

It AR FU57.LAGIE
G0 0 au

____ ___ ___ ___LýD.i

T______ L EIF

COOLIN G

WLN W AN

FIG.8 FUEL SYSTEM LAYOUT

15-14

I I•' u I

FM.ANFE AjMANGEET YSE
OUTPUT~ ~ SSY M A DEOMPSTINHERRH

LIE" V N IPA S DATA I It D FE U0L DEMANDS

CTI,,,, Io 0T T5I t .INATIJII

-E E - - -"- -. -M '-- -"7 --1IR RAF

H --- 'NWAY, PLIi L$ IMF'BS N TRNSE DEAD DT
TUEDS L FLO R.T_ B US DEU| DE AD JW A

VAEN F . 9 CUL F UE E C O SY

LO REv E L. 1U TPU T R L F, W..TIN IN .U E 5 LE•IATO

FUo L ASYMM BU5 A/C ACTATE DATA,

TANKS TRANSFERRING INDICATIONS BU S INFLIGINT FUEL DEMANDS
FUEL DATA LEU DUMP SELECT
LEAK DATA

VALVES STATE DATA

FUEL C. OF' G-

ENGINE FEED PRESSURE
FU L F.9. F 'FUEL

CO NTD PL DATA PROCESSING RAW VALVES POSNA DA
T

A HANDLIND
SI G y L H T EL TU 4RAW SENSOR D EATA

;J DL N SN ,,' ' HAN L, NG T I __ _ _ _ _

TSANSF& RFULO P UME DBUUE DNLIGH COO MAN DS 14OGSTWA

WAR•:--L N INfs5U . C• 0 F r, ;•.
CFTO COUO EOTO D BSACSATA AT

TOTTR OL I NSER1 INDI ATIONSSU IT CONRO D

IrAUE DATA 8 U S DUMP SELECT5I PU P

K DATA

FGlO MECHANISMS FOR GATHERING INFORMATION:TABULAR ENTRIES AND DATA

T I AkHF III EFUDECOMPOSITION.IN

VAVS UAVS EUI A-

15-15

IND, TANK. FUEL MiASS INFL III IT REFUEL. LEAK OCT. INTIERR..uPT
IN F L iG4 IFLrH EUE RNFRTNIP

BUS INFLIGHT REFUEL CONT!LINL I~TRF~ RNPRI~R~
REFUtL DiMANDSB r U INCTION S INFLIr~iRT REFUEL. YAWE CONTROL jA1'A

F. MS.

RE FUIL OtmAN REFUEL CONTIZO1 NtFI TRFU'TASE TERRUPT

FIG.~ ~ 1 EX M LE O A T SI G E ADAIO CIN

COMBIN ED SSIHREADlTOE FE
I~~~~ ~ ~ ~ N TN ~T ii

FLGTLAE FUAES RE CLALVES.PO1 i

Adt -10 4W~NSOT U IASLIG REFUE
VALVESY A~I O ADATA

FUEL DT

"VA.%E STATECMVT DALESIGN DIAGRAMSI

INT I ERUPTeS

AtL INOT

15-16

____________ U $ABLE
BUS ACCELN DATA 1 FUE iAs
SU 5 ATT ITUDE D ATA M A S C A LCS

6JGI N G D A TA F UEL DATA

ID ENSI TY D ATA_____

U SABLE _____

rU EL ýMA l,_
LO0W L EV EL

WN CCHKSGLOW LEVEL

FUEL MAS5

FUEL FLOW -LOW LIVELO F LIGHT TIL FLMTME.LF

K~lE. WNGS LEFT C AL c 5 --

U 5A 6 L E ___ __

FULL1A~SASSYM WCIN5
U LM 1 SFUEL ASVmm E)

CALC~ FUELL

UC ALL S E ASSYM DATA9

-FU EL M A 5 F U EL R ATE.

FU EL RA T F F U EL R A TE A tCCUMULATORS
A CCtUIM %LATO0RS CA5

600ST
P U HP SPEED DATA -_____LACTA5R

nLE A K I NTERRUPT _

A 0-

LED~~~

LLEAAK
ET CT O

DATA
FUFL .A AND 0LA

*-F-MIF L T TMg LOAt4 FUEL RATE
E)Omim L 0f- AT 1 0N E)A CCU MULA-TORtSN

FULL RATE

BUS
s~C C U M U LATOIRS

SUA FIG.13 SIMPLIFIED FMS OPERATIONAL DIAGRAM

DAT A U A G DAT TU-~t~ UALM
DEOP~L:NOMsSLTR 1CLCS THEA I T

BU

16-1

A PEARL Softwaresystem for Multi-Processor Systems

Dr. P. Elzer
Dr. |1.-J. Schneider
Dornier System GmbH
Postfach 1360
7990 Friedrichuhafen
FRG

Summary

Most today and all future systems will be processor based. There is a trend to multi-
processor-systems. This is true for all types of systems, not excluding airborne ones.
Up to now the majority of these aystems is programmed in assembly language, a very a-,kward
and expensive job.

Seeing the difficulties arising from low level coding, Dornier System implemented a High-
Order-Language-System basad on PEARL to program Multi-Processor-Systemi in an airborne or
similar environment. From this environment certain condition, for the implementation :e-
sulted. It was necessary to minimize the overhead produced by the operating system. i1he
generated code was optimized to a very high efficiency with respect to time and memory.

Originally the aim of PEARL was process-control. Due to tne application area here, sub-
setting of PEARL was possible. This was done with high efficiency of code and a smwller
modular operating system in mind.

On the other hand extensions to allow distributed processing were implemented.

The syutem consists of

- Lax (Subset of BASIC-PFARL)
- Coml
- AssemLier
- Linker/Loader
- Testing aids
- Special hardware for testing

It exists on a host-computer and is .iritten in FORTRAN for portability. The target pro-
cessors as implemented up to now are DORNIER DP 432, AEG 80-20 and DORNIER DP 426, which
is based on an INTEL 8086.
The system was successfully uced in several applications.

1. Introduction

It is a well known fact that High-Order Lanquaqes (HOL's) are one of the most ruccessful
means to improve the productivity of programmers as well as the quality of proglams. For
several years, however, there was a heated discussion among experts as to whether or not
this was also true for real time and other time-critical applicationa, like e.g. avionics
or guidance and control applications. But mostly this discussion was not very well support-
ed by quantitative data, and it was therefore felt necessary to conduct a study (1) on
the applicability of High-Order Languages to guidance and control. The task was also, to
find out, which special aspects had to be taken into consideration in this - admittedly
difficult - application area. The study concentrdted on the Language PEARL (Process and
Experiment Realtime Automation Language), because it was the most promising candidate
language in the defenne environment.

The results were very encourageing. It turned out that all of the relevant problems could
be formulated in the language. It was not even necessary to exploit its full descriptive
power. There was one exception, however: PEARL did not contain yet all the elements
necessary for the programming of distributed systems and had therefore to be sltqhtly
expanded for this purpone.

Another important result was that the efficiency of the compiler and the size of the
underlying operating system were of crucial importance for the usefulness of a HOL in
guidance and control applications. The reasons for this are that, in this clas3 of
applications memory, however cheap, still is subject to severe limitations like physical size,
energy consumption, or weiqht. Dynamic efficiency of the proprams is of importance, too,
because guidance and control processes tend to be extremely time-critical.

It also turned out that translators forHOL's in guidance and control had to provide very
elaborate test and integration aids because of the intrinsic difficulties in testinq and
integrating embedded computer systems.

It was therefore decided that Dornier System should develop a PEARL translation system
under contract with the German MOD (!kMVg) which fulfilled the following requirements:

- Extreme Efficiency of the compiled code
- Elimination of Operating System Overhead as far as possible
- Possibility to program distributed systems
- Possibility to separate code-elements in RAM from those in PROM-type memory

162

Optional support for system integration
- Adaptability to various target processors
- Easy transportability between host-processors

It was also obvious that it would not be sufficient to just develop a compiler. It was
rather necessary to develop an entire PEARL translation system for distributed systems
which consisted of the fcllc.i~g components:

- Compiler-g#;nerator
- Compiler front-end
- Code generator
- Assembler
- Library managemnent
- Modular operating system
- Linking loader
- Test and Integration aids

The construction principles of that system,and details about its implementation have
already been published several times (3, 4, 5, 6).

2. The Language PEARL

The development an6 the properties of PEARL have also already been rather broadly publish-
ed, e.g. in (7, 8). For the purposes of this paper it '.a therefore sufficient to concen-
trate on a few highlights.

2.1 Development and support of PEARL

PEARL was developed in the early seventies by a group of computer manufacturers, software
houses and research institutes in the FRG. The development was organized by the University
of Erlangen and mainly sponsored by the German Ministry of Research and Technology (BMFT).
The first experi'entnl compilers were finished in 1975 and full scale industrial appli-
cations started in 1977. Today, more than 200 PEARL-applications are in operation through-
out the FRG in a broad variety of technological areas including defense systems.

Uniformity and continuity of iEARL are ensured by DIN standards. The draft standard
DIN 66253, part 1, 'Basic PEARL', has been available since 1978. Part 2, 'Full PEARL',
followed in August 1980. Besides, PEARL has been submitted to ISO for international
standardization.

The support organization for PEARL is the 'PEARL-Association' with offices at the follow-
ing addresses:

PEARL Association
Graf-Recke-Strasse 84
rcstfach 1139
D-4000 DUsseldorfF..G.

PFARL Association
c/o Institut fuer Regelungstechnik und LProzessautomatisierung
Techni.cal University of Stuttgart
Seidenstrasse 35
D-7000 Stuttgart 1
F.R.G.

2.2 Features of PEARL

PEARL has been developed for the application engineer. Great emphasis has therefore been
laid upon language elements which facilitate the design of application programs in a
real-time and process-control environment. The most important language elements belong to
the fullowing groups:

2.2.1 Real-time Language Elements:

To the knowledge of the authors PEARL contains currently the most complete set of elements
for description and control of parallel processes. It is possible to declare program com-
ponenLs as 'tasks' and initiate and control their execution as parallel processes, to react
on interrupts and exceptions, and to connect these actions to external time conditions.
£.S. it is possible to describe complex scheduling conditions like the following on
language level:

AFTER 5 SEC ALL 7 SEC DURING 106 MIN
ACTIVATE MEASUREMENT PRIORITY 5;

This means that five seconds after the execution of this statement the computing process
'MEASUREMENT' is activated with priority five every seven seconds for a total period of
onehundredandsix minutes.

2.2.2 Description of the Hardware Configuration

In the 'system-eivisioA' of PEARL-progritms the hardware confiquration, especially the
process peripherals and th9 data-paths, cI be described separ tely from the application
algorithmus proper the 'problem division'. The relevant terminal points for I/O operations

16-3

can be named by symbolic identifiers and thus be referred to in the 'Problem division'
independently from the actual hardware. This capability greatly enhances documentation
value and portability of PEARL programs.

2.2.3 Input/Output Language Elements

PEARL contains a consistent general I/O model for nonstandard devices as well ais a set of
user oriented I/O statements for the most usual operations. The general i/O model is
based on the observation that each data-path in a digital system can bc described by a
sequence of 'data-stations' ('dations') and 'interfaces'. A data-station can either be a
source of data, a sink,or intermediate storage. it further has so-called 'channels' which
can be of the following typc.s: 'data', 'control', 'signal' and 'interrupt'. The 'inter-
faces' are in principle sets of conversion routines which map the output characteristics
of one dation onto the input characteristics of the following one.

The user-oriented I/O statements are the following ones:
- GET/PUT for character transfer
- READ/WRITE for file handling
- TAKE/SEND for process peripherals

All necessary format and control elements are provided.

2.2.4 Algorithmic Language Elements

Number and descriptive power of the language elements for the formiulation of algorithms
and procedures correspond to the state-of-the-art of modern programming languages. The
concept of data types in Full-PEARL enables the user to define problem oriented, composite
data types and new operators. These abstract data types permit a great number of compile-
time checks and contribute to a refined modular structnre.

2.2.5 Md!.Ilar Program Structure

Last, but not least, PEARL supports modular program design and separate compilation cf
program components. A PEARL program is composed of separacely compilable modules with
exactly defined interfaces. This structure also greatly facilitates communication between
the members of a project team and supports the modular composition of complex program
systems.

3. The PEARL-Implementation by Dornier System

As already mentioned above, the characteristics of the PEARL-implementation by Dornier
System are mainly dictated by the requirements of its application area. They are most
obviously reflected in the choice of the implemented language subset.

3.1 The Language Subset

For the reasons mentioned above, those language elements were not implemented from which
it was known that they would result in poor object code efficiency or unnecessary overhead
at runtime.

In particular such elements are:
- Filehandling (on-board computers usually are not equipped with magnetic background

storage devices)
- Formatting (on board there are practically no printing devices and the few which there

are, can easily be handled by stream output of character strings)
- Absolute time (time is usually counted relative to 'mission start')
- Signals (exception handling is a source of huge overhead and it is mandatory that un-

planned software conditions do not occur during the operational phase of a systemn)
- Structures (Application studies showed that measurement data are usually of homogeneoustype).

On the other hand certain extensions had to be provided for the programming of distributed
systems. However, it was a s.rict policy to keep them very small in order not to deviate
too much from the original PEARL. Another important design criterium for these multi-
conputer extensions was that they had to be 'strategy independent', i.e. the user should
be enabled to implement whatever concept be deemed optimal for the safety - or redundancy-
strategy of his application. These cons'.derations resulted in the following extensions:
- Declaration of entities with the attribute 'NET GLOBAL' of types 'variable', 'semaphore'

and 'task'. These entities are thed either copied into or made known to every processor
in the distributed system.

- Operations on such entities. This was achieved without additional statements or operators,
just by extending the semantics of existing operations (overloading).

Besides, there is a facility for the connection to 'external' tasks or procedures, which
may e.g. be written in Assembler. Last, but not least, runtime checks can be inserted on
a statement-by-statement basis by means of 'check/nocheck' statements.

3.2 The Compiler Front-End and its Technology

The technology,which had to be used for the translator, was determined by the requirements
of adaptability to various target processors and easy transportability with respect to the
host processor. This led to the usual separation: into a 'front-end' which is independent
of the target machine and translates PEARL into machine-independent intermediate code.

164

Phe compiler front-end LA written in FORTRAN for the following reasons.
- FORTRAN t.anslitors are available for nearly every possible host computer
- A comniler, written in FORTRAN, is much more readable and much easier to maintain

than any other one which is constructed according to an elaborate bootstrapping
technology.

It turred out that this decision was tne right o7.e. The front-end could be adapteu to the
following host-computers with an effort of a few man-days each:

DEC PDP-11i70 and 11/44
AEG-Telefunker 80-20/4
Siemens 7760
DEC PDP 10

Fig. 1 shows an overview over the structure of the entire translation system.

The inte,:mediate representation had to be chosen according to the requirement ot maximum
code efficiency. Therefore it was not possible to use one of the usual virtual machine
representations, bevause these usually do not contain any more all the Information which
was there !a the source program and which is necessary for optimization. Besides, modern
target processors usually have a more powerful instruction set than the one which happens
to be implemented in a particular virtual machine architecture. This, too, leads to code-
inefficiencies.

Therefore it was decided to use a completely target-independent intermediate representation,
tho so-called 'triple-code'. In principle it is a numeric representation of the program,
",,here the individual operation is of the form:

3perator, operand 1, operand 2

To sum up: the compiler front-end is written in FORTRAN and translates PEARL-Source pro-
grams into triple-code. it can detect approximately 200 different syntactical and
semantical errors and identifies them by statement number, name of object and additional
information, if necessary.

During translation the following listings c n be produced on request:
- Source listing
- Cross-Reference listings for the fo: owing objects with their respective attributes

(e.g. 'GLOBAL')
Variables
Ta3ks
Semaphores
Procedures
Labels
Dations

Hierarchies of procedure calls
- Process hierarchy
- Synchronization structure
- Location of variables

3.3 The Code-generator

It produces symbolic assembly code wi h relaive addresses for the target processor in
Squestion. This se<.onrl intermediai- la er has the disadvantage of an additional trans-
lation step, which my ,o t some Lime duri i translation, but this is more than balanced
by the advantages. So, e.g. the asqembler-listing provides an excellent means for final
compiler testing and for easy link,,age of external routines.
At the moment code-generators ex.se f.- tie following target processors:

- DGORNIER-MUDAS t)P 432/133
- AEG-Telef-riken 80-20
- DORNIER-M DAS ')P 426 'NTE. b, 36-based)

3.4 Assembler

This component q necessary for -he reasons given aboie. It is fully integrated into Lhe
translator - istem but usua l• ac3- ad from the support software provided by the vendor
of the targ* processor.

3.5 Pre-Lins. -
In case the linking-loadex.-n :h is provided by the vendor of the target processor,is not
capable of hanaling the mulli-module structure of PEARL-Programs, a pre-linker is provided,
which perfocns the follow ,q finctions•

- Identification of program module, to be linked together
- Distribution of code into RAV - ROM
- Distribution of prograin modules over the various processors of the distributed system
- Completeness check for the definition of global entities
- Linkeage of the operating system components required by the proirain
- Sorting of task-control--blocks and code segments
- Output of the control sequence for the linking loader

i ni ' I• li • I[I

3.6 Linking-Loader

This tool performs the linkeage process proper and produces absolute code. In case it
cannot be taken from the vendor's software it is delivered together with the PEARL-System
and is functionally integrated into the pre-linker.

3.7 Modular Operating System

This is a unique feature of the DORNIER PEARL-System. It allows efficient use of PEARL
even in the smallest target conEigurations. This is achivted by abandoning the concept of
an underlying, more or less autonomous and "monolitic" operating system. It is replaced
by a set of routines which are automatically linked to the application program according
to its requirements. These routines operate on task-control-blocks, time-order-blocks,
etc. which are provided by the compiler. Thus it was possible to reduce the size of the
operating system kernel to a mere 300 to 500 16-bit words, depending on the quality of the
instruction set of the target processor. This kernel includes the following functions:

- Initialization
- Dispatcher
- An exit routine, which is executed if the system knows that there will be no task

switching

S,,The following functional modules can then be added automatically according to the require-

ments of the application program:

- Clock-routines
- Interrupt handler
- Activation of tasks
- Task-termination (regular)
- Task-termination (irregular; by 'TERMINATE')
- Suspension of tasks
- Continuation of suspended tasks
- Deletion of a schedule ('PREVENT')
- Inter-processor cormmunication
- User command interface
- Character I/O ('GET', 'PUT')
- Procedure entry/exit
- Array indexing
- Arithmetic routines for FLOAT and DURATION types
- Comparison routines for FLOAT and DURATION types
- Type conversion routines
- Standard functions (ABS, SIGN)
- Handling of runtime errors

If all operating system services are invoked, it uses up to 4 to 6 K of 16-bit words,
depending on the architecture of the target processor.

3.8 Library management

In order to be able to fully exploit the possibilities of the modular structure of PEARL
programs and to enable the user to expand his system-library by himself, a special library
management package is provided.
It contains the following functic',s:

"- - Inclusion of a new module
- Deletion of a module
- Listing of the Directory
- Modification of module names

3.9 Test and Integration Aids

Firstly, these include all the above mentioned listings which ire produced by the compiler
and serve as reference-documents for the user during test and integration.
Additionally there are runtime checks, which are on request inserted into the program
either by the compiler or as operating system routines. The following errors can be
monitored:

- Array index overflow
- Division by zero
- Range violation
- Conversion errors

These runtime checks can be enabled or disabled by the 'check/nocheck' feature.

Furthermore, several trace-routines can be built into the code:
- Jump trace
- Subroutine trace
- Call trace
- Task trace

Another important component is the debugger, which can be loaded together with the object
program. It supports the following test functions:

- Activation and continuation of tasks
- Set and reset of breakpoints

" • " - _s lhll I I I IlI L • - '

16-6

Output of environment information at breakpoints
- Input and display of values of variables
- Exit from Debugger (and return to normal execution of the program)

The design of this debugger allows for two modes of operation:
- Debugging on assembler level
- Debugging on source level

The first mode has alree'dy been implemented, the second one is being designed.

4. Application of tho System

This PEARL Translator syotem has already been successfully used in several applications.
Two of them are completed:

- A training simulator for the anti-aircraft tank 'Roland' (with 6 physically
distributed processors)

- A gust allnviation system for a light aircraft
In both project PEARL proved highly successful and the translator system fulfilled the
expectations.

5. References

1/ H.-J. Schneider:
Modulare Software ftrFlugfuehrunci (Modular Software for Guidance and Control)
Dornier System, Report, June 1978

2/ DIN 66253, Part 1, preliminary standard
Programmiersprache PEARL, Basic PEARL
Beuth Verlag GmbH, Berlin, Koeln, 1981

3/ H.-J. Schneider
PEARL-Softwaresystem fUr gekoppelte Klein- und Mikrorechner (PEARL-Software System
for distributed Mini- and Microcomputers);
PEARL-Rundschau, Vol. 1, No 4, Dec. 1980 (pp 3-5)

4/ M. AmmannPEARL W•r verteilte System (PEARL for distributed Systems),
Informatik-Fachberichte 39, 1981, Springer Verlaq (pp 399-403)

5/ F. Graf
PEARL f~r Mikrocomputer (PEARL for microcomputers),
Informatik-Fachberichte 39, 1981, Springer Verlaq (pp 413-421)

6/ M. Ammann, P. Elzer
Das PEARL-Uebersetzungssyster von Dornier System, Friedrichshafen
(The PEAKL-Translator system by Dornier Systems, Friedrichshafen)
PEARL-Rundschau, Vol. 2, No 2, March 1981

7/ PEARL Subset for Avionic Applications; Agard Advisory Report No 90, Annex J,
(A Study of Standardization Methods for Digital Guidance and Control Systems),

May 1977

8/ T. Martin
PEARL at the Age of three; Proceedings of 4th I'7EE Software Engineering Conference,
Sept. 1979 (pp 106-109)

:1

16-7

PEARL -
sourceprogram MOUEbSyntax, errors,

/ descriptior of
target Machins

managr ~ K. ASSEMBLER -

opertin !OS- built - in - De*bugger ul. Modut Modul lest, tasks.* modulSyte I routines jIfunctions In Ircds aabs

........ PEARL

FORTRAN

ASSEMBLER linker/loader

machin codeMUDAS
m a c hin er C o d s m a h 2e d m a c h in e c o d e A E G 8 0 -2 obr CU 1 or CU 2for CPUn Intel 8086

Fig I STRUCIUFIE OF THE SYSTEM

17-1

DISTRIBUTED AND DECENTRALIZED CONTROL
I N

FULLY DISTRIBUTED PROCESSING SYSTEMS
PHILIP H. ENSLOO JR.

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

Certainly one of the most important factors in designing and implementing fully distributed processing
systems (FDPS) ia the issue of distributed and decentralized control. Extremely loose coupling, both
physical and logical, is an essential characteristic of an FDPS. This mode of organization and operation
is quite different from the control of centralized systems. The first step in the development of
distributed and decentralized control has been the examination of various models of control that may
provide these features and the operational characteristics of those models.

1. 1 lual I& A ZHiJz, Dsruted fnan Zzat'sm?
It has been determined that a high degree of both distribution and decentralization of control is

essential if a system is to deliver a major proportion of those benefits being claimed for "distributed
systemc.w Not)nly must the control be distributed, but the hardware and data must also exhibit similar
characteristics. When all three system components, i.e., control, hardware, and data are sufficiently
distributed, then the system can be characterized as "Fully Distributed." (See other paper in these
proceedings [Ens181] for a complete discussion of FDPS's.) This paper will focus on the control aspects
of FDPS's.

1.2 2JlgatlofA at .tb& J= Definitin ann Conktsn

1.2.1 General Nature of FDPS Executive Control
Several of the characteristics of an FDPS are found to directly impact the design and implementa-

tion of the executive control for such a system. These include system transparency to the user,
extremely loose physical and logical coupling, and cooperative autonomy Ps the basic mode of component
interaction. System transparency means that the FDPS appears to a user as a large uniprocessor which has
available a variety of services. It must be possible for the user to obtain these services by naming

them without specifying any information concerning the details of their physical location. The result is
that system control is left with the task of locating all appropriate instances (copies) of a particular
resource and choosing the instance to be utilized.

"Cooperative autonomy" is another characteristic of an FDPS heavily impacting its executive
control. The "lower-level" control functions of both the logical and physical resource components of an
FDPS are designed to operate in a "cooperatively autonomous" fashion. Thus, an executive control must be
designed such that any resource is able to refuse a request even though it may have physically accepted
the message containing that request. Degeneration into totAl anarchy is prevented by the establishment
of a common set of criteria to be followed by all resources In determining whether a request is accepteC
and serviced as originally presented, accepted only after bidding/negotiation, or rejected.

Another important FDPS characteristic that definitely affects the design of its executive control
is the extremely loose coupling of both physical and logical resources. The components of an FDPS are
connected by communication paths of relatively low bandwidth. The direct sharing of primary memory
between processors is not acceptable. Even though the logical coupling could still be loose with this
physical interconnection mechanism, the presence of a single critical hardware element, the shared memory
would create fault-tolerance limitations. All communic~tion takes place over "standard" input/output
paths. The actual data rates that can be supported are prirarily a function of the distance between
processors and the design of their input/output paths. in any event, the transfer rates possible will,
probably be much less than memory transfer rates. This implies that the sharing of Information among
components on different processors is greatly curtailed, and system control is forced to work with
information that is usually out-of-date and, as a result, inaccurate.

The control of an FDPS requires the action and cooperation of components at all layers of the
system. This means that there are elements of PDeS control present in the lowest levels of the hardware
as well as software compononts. This paper is primarily interested in the software components of the
FDPS control which are typically referred to as the 4executive control."

The executive control is responsible for managing the physical and logical resources of a system.
It accepts user requests and obtaina and schedules the resources necessary to satisfy a user's needs. As
mentioned earlier, these tasks are accomplished so as to unify the distributed components of the system
into a whole and provide system transparency to the user.

1.2.2 Why Not Centralized Control?
Why then ii a centralized method of control not appropriate? In systems utilizing a centralized

executive control, all of the control processes share a single coherent and deterministic view of the
entire system State. An FDPS, though, contains only loosely-coupled components, and the communication
among these components is restricted and subject to variable time delays. This means that one cannot
guarantee that all processes will have the same view of the system stato [Jens78]. In fact, it is an
important characteristic of an FDPS that they will not have a consistent view.

17-2

A centralized executive control weakens the fault-toleranc of the overall system due to the
existence of a single critical element, the executive control itself. This obstacle, though, is not
insurmountable for strategies do exist for providing frult-tolerance in centralized applications.
Garcia-Molina [Garo79], for example, has described a scheme for providing fault-tolerance in a
distributed data base management system with a centralized control. Approaches of this type typically
assume that failurez are extremely rare events and that the system can tolerate the dedication of a
relatively long interval of time to reconfiguration. These restrictions are usually unacceptable in an
FDPS environment where it is important to provide fault-tolerance with a minimum of disruption to the
services being supported.

Also, the extremely important issue of overall system perfrmance must be considered. A
distributed processing system is expected to utilize a large quantity and a wide variety of resources.
If a completely centralized executive control is implemented, there is a high probability that a
bottleneck will be created in the node executing the control functions. A distributed and decentralized
approach to control attempts to remove this bottleneck by dispersing tke control decisions among multiple

components on different nodes.

1.2.3 Distributed vs. Decentralized
This paper advocates utilizing an approach for the control of an FDPS that is both distributed and

decentralized. There is a clear distinction between the terms "distributed" and "decentralized" as they
are used in the context of this project. "Distributed cognrl• " is characterized by having its e

Domponent pyially located 2A diffrent nodes. This means there are multinle lAoci 9L cntrol
•Jt X. In "decentralized control," on the other hand, .atiolj AUia ar= Awe e independently by

sanarate copnents daif locations. In other words, there are milatinla 12Ai 2L control AGA•ImI
makLU. Thuo, distributed and decentralized control has active components located on different nodes and
those components are capable of making independent control decisions.

Before examining specific aspects of executive control in an FDPS, a look at some of the various
issues of distributed control is appropriate. There are three primary issues that require examination:
1) the effect of the dynamics of FDPS operation on an executive control, 2) the nature of the information
an executive control must maintain, and 3) the principles to be utilized in the design of an executive' control.

2.1 DJUaaSnaDynamics are an inherent characteristic of the operation of an FDPS. They are found in the work
load presented to the system, the availability of resources, and the individual work requests submitted.
The dynamic nature of each of these provides the FDPS executive control with many unique problems.

2.1.1 Workload Presented to the System
In an FDPS, work requests can be generated either by users or active processes and can originate at

any node. Such work requests potentially can require the use of resources on any processor. Thus, the
collection of executive control procedures must be able to respond to requests arriving at a variety of
locations from a variety of sources. Each request may .equire system resources located on one or more
nodes, not necessarily including the originating node. One of the goals of an FDPS executive control is
to respond to thesi requests in a manner such that the load on the entire system is balanced.

2.1.2 Availability of Resources
Another dynamic aspect of the FDPS environment concerns the availability of resources within the

system. As mentioned above, a request for a service to be provided by a system resource may originate at
any location in the system. In addition, there may be multiple copies of a resource or possibly multiple
resources that provide the same functionality (e.g., there may be functionally equivalent FORTRAN com-
pilers available on several different nodes). Since resources are not immune to failures, the pos-
sibility of losing existing resources or gaining both new and old resources exists. Therefore, an fPPS
executive control must be able to manage system resources in a dynamic environment in which the
availability of a resource is unpredictable.

2.1.3 Individual Work Requests
Finally, the dynamic nature of the individual work requests must be considered. As mentioned

above, these work requests define, either directly or indirectly, a set of cooperating processes which
are to be invoked. An indirect definition of the work to be done occurs when the work request is itself
the name of a command file or contains -.,e name of a command file in addition to names of executable
files or directly' executable statements. ý command file contains a collection of work requests
formulated in command language statements (see Figure I for a description of the syntax for a suitable
command language) that are interpreted and executed when the command file is invoked. The concept of a
command file is similar to that of a procedure file which is available on several current systems.

Management of the processes for a work request thus includes the possibility that one or more of
the processes are command files requiring command interpretation. The presence of command files will
also result in the inclusion of additional information in the task graph or possibly additional task
graphs.

An important objective of work request management is to control the set of processes and do so in
such a manner that the inherent parallelism present in the operations to be performed is exploited to the
maximum. In addition, situations in which one or more of the processes fail must also be handled.

17-3

2.2 Tnformatio
All types of executive control systems require information in order to function and perform their

mission. The characteristics of the information &-vailable to the executive control is one aspect of
fully distributed systems thnt result in the somewhat unique oontrol problems that follow:

1. Because of the nature of the interconnection links and the delays inherent in any com-
munication process, system information on hand is a oua9A oL A".

2. Because of the autonomous nature of operation of all components, each processor can make
"its own decision" as how to reply to an inquiry; therefore, there is always the
22asibility that Information received is innqgl1.ji nd/or Inagnmazaa.

3. Because of the inherent time delays experienced in exchanging information 'Among processes
on different nodes, some information held by two processes may g during a
particulai, time interval.

2.3 DA u tlinEaniApl
Designing the oystem control functions required for the extremely loosely-coupled environment of an

FDPS and implementing those functions to operate in that environment will certainly require the applica-
tion of some new design principles in addition to those commonly utilized in operating systems for
centralized systems. These design principles must address at least the two distinguishing charac-
teristics of FDPS's:

- System information available, and
- Natv-e of resource control

2.3.1 System Information
The various functions of an FDPS executive control must be design-d recognizing that system

Information is:

i - "Expensive" to obtain

- Never fully up-to-date
- Usually incomplete
- Often inaccurate

All of these characteristics of system information result from the fact that the components provid-
ing the infomation are interconnected by relatively narrow bandwidth communication paths and that those
components are operating somewhat a,.tonomously with the possibility that their state may change

immediately after a status report has been tansmittod. Further, it is important to note that the mere
existence (or disappearance) of a resource is not of interest to a specific component of the FDPS
executive control until that component needs that information.

The design principles applying to system information that have been identified thus far include the
following:

1. E£onovaL AnmmuonLat": ask for only the information required.

2. Resilienny: be prepared to recover and continue in the absence of replies.
3. Flexibl : be prepared to recover and continue if the information provided proves to be

inaccurate when it is utilized.

2.3.2 Resource Control
Since all, of the resources are operating under local control under the policies of cooperative

autonomy, all requests for service, or the utilization of any resource such as a file, must be effected
through negotiations that culminate in positive acknowledgements by the server. In all instances, the
control function requesting a service or a resource must be prepared for refusal.

3. CHARACTERIZATION DE f XEL R£gUEST

3.1 a I= Rekuenat
One of the goals of an FDPS is the abl.l:ty to provide a hospitable environment for solving problems

that allows the user to utilize the natural distrib'tion of data to obtain a solution which may take the
form of an algorithm consistirg of concurrent processes. The expression of the solvuion is in terms of a
work request that describes a series of cooperating processes, the connectivity -f tt se processes (how
the processes communicate), and the data files utilized bv these processes. ihis descript .on involves
only logical entities and does not contain any node-specific information. A description of one command
language capable of expressing requests for work in this fashion oan be found in [AkinT78 (see Figure 1).

3.2 Impac aa~t IM Qrk enaaosa•o jLa U aKre.l
The nature of allowable work requests (not just the syntax but what can actually be accomplished

via the work request) determines to a large extent tha functionality of an executive control. Therefore,
it is important to examine the characteristics of work requests and further to see how variations in
these characteristics impact the strategies utilized by an FDPS executive control.

17-4

Five basic characteristics of work requests have been identifiedt
1. the external visibility of references to resources required by the task,
2. the presence of any interprocess communication (IPC) specifications,

3. the number of concurrent processes,
4. Lhe nature of the connectivity of processes, and
5. the presence of comwand files.

3.2.1 Visibility of Referenaea to Resources
References to the resources required to ratisfy a work request may either be visible prior to the

execution of a process associated with the work request or embedded in such a manner that sore Dart of

th, work request muac be executed to reveal the reference to a particular resource. A resource is made
"visible" either by the explicit z.tatement of the reference in the .jork request or through a declaration
associated with one of the resources referenced !n the work request. An example of the latter means of

visibility is a file system in which external references made from a particilar file are identified and
stored in the "header" portion of the file. In this case, the identity of a reference can be obtained by

simply accessing the header.

The greatest impact of the visibility characteristic of resource requirements occurs in the
construction of task graphs and the distribution of work. The time at which resource requirements are
detected and resolved determine,% when ind how parts of the task graph cn be constructod. Similarly,
some work cannot be distributed until certain details are remolved. For example, consider a case where
resource references cannot be resolved until execution time. Assume there exist two processes I and Y
where process X has a hidden reference to process Y. An executive control cannot consider T in the work
distribution decision that is made in order to begin execution of X. The significance of this is that
certain work distribution decisions may not be "globally optimal" because total information was not
available at the time the decision was made.)
3.2.2 The Number of Concurrent Processes

A wrork request can either specify the need to execute only a single process or the execution of
multiple processes which may possibly be executed eoncurrently. Obviously with multiple processes, more
resource availatility information must be maintained; and there is a corresponding increase in the data
to the work distribution and work allocation phases of control. In addition, the complexity of the work
distribution decision algorithm increasee with more '-esources needing to be allocated and multiple
processes needing scheduling. The compl~xity of controlling the cxecution of the work request is also
increased with the presence of multiple processes since tth control must monitor multiple processes for
each work request.

3.2.3 The Presence of Interp'ocems Communication
The problems described in the previous paragraph are amplified by the presence of communication

connections between processes. When interprecess conalunication is described in a work request, the work

distribution decision must consider the requirement for communication links. In addition, a compromise
must be made in order to satisfy the conflicting goals of mcximizing the inherent parallelism of the
processca of the work request and minimizing the cost of communication among these processes. The

control activity required during execution is aluo impacted by the presence of interprocess com-
munication. It must provide the means for passing messages, buf'eing messages, and providing synch-

ronization to insure that a reader does not underflow and a ,.ritor does not overflow the message buffers.

3.2.4 The Nature of Process Connectivity
There are a variety of techniques available for expressing interprocess communication including

pipes (see [Ritc78]) end ports (see LBalz71, Have78, Suns77, Zuck''T]). There are a number of approaches
to realizing these different forms of interprocess communi .ation. The main iwpact on an executive

control, though, is in those components controlling process execution.

3.2.5 The Presence of Command Files
A command file is comp. ed of work requests. Execution of a work request that references a command

file results in a new issue dealing with the construction of task graphs. This issue is concerned with
whether a new cask graph should be construoted to descrit.o the new work request or should these new

processes be included in the old task graph. The differenc.:))etween these two approaches becomes
important during work distribution. It is assumed that the ý.'k distribution decision will be made only

with the informetion available in the task graph. Thus, with t ie first approach, only those tasks in tha
new work request are considered while the second approach prc•.ides the ability to take into consideration

the assignment of tasks from previous work requests.

3.3 A Classification Qt 12& eOAM&
This examination of the characteristics of FDPS work requests has lead to tie identification of I

five 'asic attributes which have significant impact on an executive control. In Figure 2, all possible

types of 4ork requests are enumerated resulting in 32 different forms of work requests. It should be
noted, though, that 16 of these (those with an asterisk beside the task number) contain conflicting
characteristics and thus are impossible.

4. CHAUCTRRIRTMAT DXE OTO IA

4.1 Angrgeas* In T-IADnAhntigM Exectiv Co~± ntro
There are two basically different approaches available for implementing an operating system for a

distributed processing system, the base-level approach and the k.eta-system approach (ThomT8]. The base-
level approach does not utilize any existing software and, therefore, requires the development of all new
software. This includes software for all local control functions such as memory management and process
management. In contrast, the meta-system approach utilizes the "existing" operating systems (called

local operating systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced" to the
di,Rtributed system by a network operating system (NOS) which is designed to provide high level services
available on a system-wide basis. The meta-system approach is usually preferred due to the availability
of existing software to acoomplish local management functions, thus, reducing development costs [Thom78].

17-5

Figure 3 depicts a logical model applicable to an FDPS executive control utilizing either approach.
The LOS handles the low-level (processor-specific) operations required to directly interface with users
and resources. In the meta-system approach, the LOS represents primarily the operating systems presently
available for nodes configured in stand-alone environments. The LOS resulting from a base-level approach
has similar functionality; however, it represents a new design, and certain features may be modified in
order to allow the NOS to provide certain functions normally provided by the i.OS. Any "network"
operations are performed by the NOS. System unification is realized through the interaction of NOS com-
ponents, possibly residing on different processors, acting in cooperation with appropriate LOS com-
ponents. Communication among the components is provided by the message handier whiLh utilize, the mes-
sage transport services.

4 .2 n 4 BagjaaaflnA
Two types of information are required by an exenutive control, information concerning the structure

of the set of tasks required to satirfy the work requst and information about system resources. Tbis
data is maintained in a variety of data strictures by a number of different components.

14.2.1 Information Pequirements for Work Requests
Each work request identifies a set of cooperating tasks, nodes in a logiual h~etwork that cooperate

in sxecution to satisfy a request and the conrnectivity of thost nodes. Figure 1 illustrates the notation
used in this project to expý'ess work requests. An example of a work request using this notation is
presented in Figure 4. Work requests as linear textual forms can be easily accepted and manipulated by
the computer system; however, task graphs, which are an internal control structure used to describe work
requests, muat be represented in a manner such Lhat the linkage information is readily available. This
can take the form of the explicit linking of node control blocks (Figure 5) or an interconnection matrix
(Figure 6).

Information concerning a particular task, i.e., iogical node, is Iiaintained in a node control block
(Figure 5). Associated with each logical node is an execution file, a series of input files, and a
ser-ca of output files. The node control block contains information on each of these entities that
includes the name of the resource, the locations of possible candidates that might provide the desired
rebource, and the location of the candidate resource chosen to be utilized in the satisfaction of the
work request. In addition to this information, the node control block maintains a description of all
interprocess communication (IPC) in which the node is a party. This consists of a list of input ports
and output ports. (Interprocess communication is a term describing the exchange oV messages between
cooperating processes of a work request.) Typically, a message is "sent" when it is written to the out-
put port of a process. The message is then availablc for consumption by any process possessing an input
port that is connected to the previously mentioned output port. The message is actually consumed or
accepted when the process owning the connected input port executes a READ on that port.

A global view of interprocess communication is provided by the node interconnection matrix (Figure
6). This structure indicates the presence or absence of an IPC link between ai output port of one node
and an input port of another node. Thus, links are assumed to carry data in only a single direction.

An cxample of a task graph resulting from the work request in Figure 4 utilizing the direct linking
of node control blocks is presented in Figure 7. Figure 8 illustrates the utilization of an interconnec-
tion matrix.

4.2.2 Information Requirements for System Resources
Regardless of how the executive control is realized (i.e., how the components of the executive

control are distributed and how the control decisions are decentralized), information concerning all
system resources (processors, communication lines, files, and peripheral devices) must be maintained.
This inforation includes at a minimum an indication of the availability of resources (available, reser-
ved, or assigned). Preemptable resources (e.g., processors and communication lines) capable of accom-
modating more than one user at a time may also have 3nsociated with them utilization information designed
to guide an executive control in its effort to perform load balancing.

As discussed below, there are a number of techniques that may be em,.0oyed to gather and/or maintainthe system resource information.

4.3 14Uaig DAtrs±±n 9L EMCnto
The primary task of an executive contrnl is to process work requests that can best be described as

logical networks. A node of a logical network specifies an execution file that may either contain object
code or commands (work requests), input files, and output files. These files may reside on one or more
physical nodes of the system and there may be multiple copies of the same file available. Thus, to
process a work request, an FDPS executive control must perform three basic operations: 1) gather
information, 2) distribute the work and allocate resources, and 3) iniuiate and monitor task execution.
These operations need not be executed in a purely serial fashion but may take a more complex form with
executive control operations executed simultaneously or concurrently with task execution as the need
arises.

Examination of the basic operations in further detail (Figure 9) reveals some of the variations
possible in the handling of work requests. Two steps exist in information gather!ing --- 1) collecting
information about task requirements for the work request and 2) identifying the resources available for
satisfying the request requirements. Information gathering is followed by the task of distributing the
work and allocating resources. If this operation is not successful, three alternrtives are available.
First, more information on resource availability can be gathered in an attempt to formulate a new work
distribution. There may have been a change in the status of some resources since the original request
for availability information. Second, more information can be gathered as above, but this time the
requester will indicate a willingness to *pay more"f for the resources. This is referred to as bidding to
a higher level. Finally, the user can simply be informed that it ir impossible to satisfy his work
request.

1 7-o•

4.3.1 Information Gathering
Upon receiving a work requist, the first task of the cortrol is to discover what resources are

needed to satisfy the work request (Figure 10) and which resources r'e available to fill these needs
(Figure 11). Earth work request includes a description of a serL. c.: tasks and the connectivity of those
tasks. Associated with each task is a series of files. One is distinguished as the execution file and
the rest are input/output files. The executive control must first d,..ermine %.hich files are needed. It
then must examine each of the execution files to determine the nature of its contents (executable code or
commands). Each task will need a processor resource(s), and those tasks containing command files will
also require a command interpreter.

An FDPS executive control must also determine which of the system resources are available. For
nonpreemptable resources, the status of a resource can be either "available," "reserved," or "assigned."
A reservation indicates that a resource may be used in the future and that it should not be given to
another user. Typically, there is a time-out associated with a reservation that results in the automatic
release of the reservation if an assignment is not made within a specified time interval. The idea here
is to free resources that otherwise would have Leen left unavailable by a lost process. The process may
be lost because it failed, its processor failed, or the comraunication link to the node housing the
particular resource may have failed. An assignment, on the other hand, indicates that a resource is
dedicated to a user until the un'er explicitly releases that assignment. Preemptable resources may be
accessed by more than one concurrent user and thus can be treated in a different manner. For these
resources, the status may be indicated by more continuous values (e.g., the utilization of the resource)
rather than the discrete values described Lbove.

4.3.2 Work Distribution and Resource Allocation
The FDPS executive control must determine the work distribution and the allocation of system

resources (Figure 12 & 13). This process involves choosing from the available resources those that are
to be utilized. This decision is designed to achieve several goals such as load balancing, maximum
throughput, and minimum response time. It can be viewed as an optimization problem similar in many
respects to that discussed by Morgan [(.org77].

Once an allocation has been determined, the chosen resources are allocated and the processes com-
prising the task set are scheduled and initiated. It a process cannot be immediately scheduled, it maybe queued and scheduled at a later time. When it ia roheduled, a process control block and any other
execution-time data structures must be created.

14.3.3 Information Recording
Information is recorded as a result of management actions aa well as providing a means to maintain

a historical record or audit trail of systeN activity. The information recording resulting from
management actions maintains the system state and provides information for decision making. The
historioal infroimation is useful in monitoring system security. It provides a means to examine past
activity on a system in ordcr to determine if a breach of security occurred or how a particular problem
or breach of security may have occurred.

Management information is maintained iii various structures, including the task graph. The task
graph is used to maintain information about the structure of ar individual work request, and, thus, its
contents change as progress on the work request proceeds. A task graph is created when a work request is
first discovered, and ii:formation is then constantly entered into the structure as work progresses
through information gathering to work distribution and resource allocation and on to task execution. The
task graph remains active until completion of the work request.

Much of the information contained in the task graph is applicable to historical records. In fact,
the task graph can be used to house historical information as it is gathered during work request proces-
sing. Upon completion of the work request, the historical information is extracted and entered int. the
permanent historical file. Alternatively, the historical file can be created directly skipping the
intermediate task graph structure.

4.3.4 Task Execution
Finally, an executive control must monitor the execution of active processes. This includes

providing interprocess communication, handling requests from active processes, and supervising process
termiration. The activities associated with interprocess communication Include establishing communica-
tion paths, bufff-ing mesrages, And synchronizing communicating processes. The latter activity is neces-
sary to protect the system from processes that flooG the system with messages before another process has
time to absorb the messages. Active processes may also make requests to the executive control. These
may taxe the form of additional work requests or requests for additional resources. Work requests may
originate from either command files or files containing executable code.

An executive control must also detect the termination of processes. This includes both normal and
abnormal termination. After detecting process termination, it must inform processes needing this
information that termination has occurred, open files must be closed, and other loose ends must be
cleaned up. Finally, when the last process of a work request has terminated, it must inform the
originator of the request of the completion of the request.

4.3.5 Fault Rccovery
If portions (tasks) of the work request are being performed on different processors, there is

inherently a certain degree of fault recovery possible. The problem is in exploitin- that capability.
The ability to utilize "good" work remaining after the failure of one or more of the processors executing
a work request depends on the recovery agent having knowledge of the location of that work and the
ability of the recovery agent to reestablish the appropriate linkages to thu new locations for the
'ortions of the work that were being executed on the failed processor(s).

17-7

There is an extremely large number of features by which variations in dirztrituted control 0mudels
can be characterized. Of these, only a few basic attributes appear to deserve attention. These include
the nature of how and when a task graph is constructed, the maintenance of resource availability
information, the alincation of resources, process initiation, and process monitoring. In this section,
thiese issues are examined; but again, since the nua',er of variations possible in each Issue is rather
large, only tho.,s choices considered significant are discussed. Table 2 contains a summary of the
problems that have been identified and possible soluitions (significant and reasonable solutions) to these
problems.

5.*1 i&& Gr~aph Const~ruction
The task graph is a data structursr uaed to maintain information about the applicable task set. The

nodes of a task graph represent the tasks of Viae task set, and the arcs represent the connectivity or
flow of information between tasks. There arc. banicially four issues in task graph construction: 1) who
builds a task graph, 2) what is the basic staiucture of a task graph, 3) where are the copies of a task
graph stored, and 4t) when is a task grt.,,h built..

The identity of the component or components constructing tha task S.-aph is an issue that presents
three basic choices. First, a central node can be responsih~e for the construction of task graphs for
all work requests. Another choice utilize, the control 301. ..1 iihe)ode receiving "he wor1ý request
to construct the task graph. Firtal'y, the J" r- oc.-osng tc t' raph ,ýan be distributed among
several components. in particu'ar, the nodes in, ived I' executing individual tasks of the work request
car be resp.,nsible for' constructing those n-rer' C 'he task graph that they; are processing.

The general nature of the tas %.c gph it .If p-cvi(e.- cc, Iternatives for the design of an
exrecutive control. What is of cone "- rie -n not .ý intent ci a tas) F aph but rather it.o basic
structure. One alternative is tc a& i .n a t 3k~ Aph in a singtle st'mi Eur. regardless of hou _xecuticn

i s diatributed.- The ot >' e o mai. itain I)asý grap as a collection of subgraphs with esci1
subgraph representing a r 'ei ~ t. F(, e: uio,.e, a subgraph can i'epresent that portion of
the wo-k r(equast that - e -C -- or, 'a cricc ar' nocie at which thaý -ubgraph Is storedl.

Another '- *,rz:, -=:rt- o :c'j _ . ton:!e .- whPer t, var~ious cooies of the task graph art,
stored. If the co, r m.Aint s a rail, - pi: as unified- cLro-r r'epresenticcg the complete set of
tasks for zi Iwo - :iest, .truc' arc say eithef- bot st(on a Ingle node, or redUndant copies :,an
oe stored or, a pl node The t; ci? iod can eitnrrr 1, 2,er' ral)de that is used to store all task

graphs, the io, it ()I h ;if -- F vrk r'eVarriv, the crotrue node), or a node ehosf- for its

subgrapnsl thea' can ýa` a en i'

"Cjj ly, t' erc jiti sue c , ,ing the timing of tci gra!; cecistruction in 'he sequence of
ntep: t, t1, Work c-quest rccessine. Nwo h.4es are -available: 1) Ul task graph can b.
ons u(*t i (, , , -"S he irrrixiac' r. F rco-.ible, before execution ir begun, or 2) the

tasl --- tph ci, coc-i-truc te.f it -catrtally ia ex. ,t c-. ruc. '-csect.

ýther ioas, -i, sorý ý of vani 1.11tv I -I,ýntrol mo, 'i: is the maintenance of resource
.iila. ýity i foriL ..ion. W, 'C' is if !- .-t an.-v here "Who mair tiins this information" and "Where is

is rmrs ion maintcaine." A p. tJCUc r iocu i ed ncot uniformly apply t1- sarke technique for
icaintai :ri - resoorce -iv, tjatili'-; i:ciiorm, ion tc all r-'tcourceb. Pather, the technique beat suited to

partic, !at re,-'-ce Ia ,ma- c uti I Izec'.

Tht! re 1pon-5it ty for ii.tain:ci g -esourcL avei bultt infirmation c be delegated in a variety
cf iay ,The cerctrar ted E,' .h inv vt,-- asc.igning a -cngle component this responsibility. Tn this
ituation, r qucsts inid rc-lea or c -ou - ea 'I ow t ýrough the s~oecla !-7d Qompo'nent which maintalna the
utmorlete rerou,'oe a iil -, li rrmcrtion r one 1, ait on.

-r~atton of 1 - tech, e mainta cia ccrui ete copies af :he resource availability information at
several Incctic-q [Et '9a,h]. Imponenti at esiih f ttesa lo- at4.ons ia,' rtisponsible For updating their
copy o' the res' irce availa' ility infao'mation ic oroar to keep It consistent with the other copies. This
recuir, a pro' col to in-u that c n-ristc'ncy is mraintaifele'. Fc,- example, two cowponents should not
releas, a f.- e for wri ! to :ifferent users at 1ýhe same time. To provide this C-ontrol, messageri
contcc: cing up(. ctes fo' the itformat: ýab)Ile must be ex~hanged among -he components. In addition, a
st~ra'eccy for syn oi t-c ~ilk the ele-a2.e c' resourc-2s iti required. Ar example :if such a strategy is founi
in Icba79a,t] whE bi týoe i9 -3e Fsc -r ,und the network. The holkr of the beton 3.s permitted to
rplt sae reso- rces.

Acotth, ajpror- crc exh: - rig caere decentr'alization requires cividing the collection of r'esources
i csubset or clas re ctrcd .-sccgainV, 3er crate coapcccants to each subset. Each component is responsible

f r mainta ning reroun' - vailribiiity in'formation on i, particular subset. In this case, r-squests for
r~- unoe.s an only 1-e -5er-vi-mr: by the control tomponent responsible for that resoturce. Resources may be
r ed in. manner 3;cin 0-a- -he desi-9d manager is r-eadily iderntifiaole. Alternatively, a search may Die

r'- juireu 1* crder -.,, ocote t'-- -ipprG4.-iate manager. This search may involve passing the request from
-ipoflent a cecovccaert until ;;n Is round that is capable, cf ,erfor~ainjg the desired operation.

Preemptat..e resou'-:es which can be -,hared by multiple cc,,c rilent users 'e.g., processoirs and com-
,l- -tlof 1 rrol do r~ot -m-cerrrcanily -equire the mel "tenance of pre -Ise availability information. Fur

"creSe re.,13,1-1 e- it it reac-onablf. to maintain crly epproximat? a',icilability information because %such

17-9

5.3 Allocating Resources
One of the major problems experienccd in the allocation of resources is concurrency control. In a

hospitable environment, it is po0s1ble to ignore concurrency control. The users are given the
responsibility of insuring that access to a shared resource such as a file is handled in a consistent
manner. In other environments, for example that presented by an FDPS, this is an important issue, In an
FDPS, the problem is even more difficult than in a centralized system due to the loose coupling inherent
in the system.

There are basically two approaches to solving the problem of concurrent requests for shared resour-
ces. The first utilizes the concept of a reservation. Prior to the allocation of resources (possibly
when resource availability information is acquired), a resource may be reserved. The reservation is
effective for only a limited period (a period long enough to make a work distribution decision and
allocate the resources determined by the decision) and prevents other users from acquiring the resource.
The other solution to this problem is to make the work distribution decision without the aid of reser-
vations. If resources cannot be allocated, the executive control will either wait until they can be
allocated or attempt a new work di.stribution.

5.4 Process Ta Ia
Several issues arise concerning process initiation. Chief among these Is the distribution of

responsibility. There are a large number of organizations possible, but only a few are reasonable. The
basic organizations utilize either a single manager, a hierarchy of managers, or a collection of
autonomous managers. Two approaches result from the single manager concept. In the first organization,
a central component is in charge of all work requests and the processes resulting from these work
requests. All decisions concerning the fate of processes and work requests are made by this component.
A variation on this organization assigns responsibility at the level of work requests. In other words,separate components are asigned to each work request. Each component makes all decisions concerning the
fate of a particular work request and its processes.

Management can also be organized in a hierarchical manner. There are a variety of ways hierar-
chical management can be realized, but we will concentrate on only two, the two-level hierarchy and the
n-level hierarchy. The two-level hierarchy has at the top level a component that is responsible for an
entire work request. At the lower level are a series of components each responsible for an individual
task of the wor. request. The lower level components take direction from the high level component and
provide results to this component. The n-level hierarchy utilizes in its top and bottom livels the com-
ponents described for the two-level hierarchy. The middle levels are occupied by components that are
each responsible for a subgraph of the eatire task graph. Therefore, a middle component takes direction
from and ýeponts to a higher level component which is in charge of a part of the task graph that Includes

the subgraph for which the middle component is responsiole. The middle component also directs lower
level components each of which are responsible for a particular task.

Another organizational approach utilizes a series of autonomous management components. Each com-
ponent is in charge of some subset of the tasks of a work request. Cooperation of the components is
required in order to realize the orderly completion of a work request.

Regardless of the organization, at some point, a request for the assumption of responsibility by a
cominonent will be made. Such a request may be reasonably denied for two reasons: 1) the component does
not possess enough resources to satisfy the request (e.g., there may not be enough space to place a new
process on an input queue), or 2) the component may not be functioning. The question that arises
concerns how this denial i- handled. One solution is to keep trying the request either until it is
accepted cr il d ccrtali number of attempts have failed. In this case if the request is never accep-
ted, the wor-k request is abandoned, and the user is notified of the failure. Instead of abandoning the
work request, It is possible that a new work distribution decision can be formulated utilizing the
additional knowledge concerning the failure of a certain component to accept a previous request.

5.5o
The task or monitoring process execution presents the FDPS executive control with two major

problems, providing interprocess communication and responding to additional work requests and requests
for additional resources. With regard to the problem of interprocess communication, there is some ques-
tion as to the nature cf the communication primitives an FDPS executive control should provide. This
question arises due to the variety of communication techniques being offered by current languages. Ther,
are two bajic approaches found in current languages, synchronized communication and unsynchronized comf-
munication (buffcred messages). Synchronized communication requires that the execution of both the sen-
der and the receiver be interrupted until a message has been successfully transferred. Examples of
languages utilizing this form of communication are P.-ea's Ccmmunicating Sequential Processes [Hoar78]
and Brinch Hansen's Distributed Processes Di.-:n78]. In contrast, buffered messages allow the asynch-
ronous operation of both senders and receiv•.rs. Examples of languages using this form of communication
are PLITS tFeld79] and STARMOD [Cook80.

The executive control is required to provide communication primitives that are suitable to one of
the ýommunication techniques discussed above. If the basic communication system utilizes synchronized
communication, both techniques can be easily handled. The problem with this approach is that there is
extra overhead incurred wheo ?roviding the message buffering technique. On the other hand if the basic
communication system utilizes unsynchronized communication, there will be great difficulty in realizing a
synchronized form of communication.

The task of monitoring processes a!so involves responding to requests generated by the executing
tasks. These may be either requests for adLttional resources (e.g., an additional file) or new work
reauest3. If the request is a work request, tkhere is a question as to how a new set of tasks is to be.. , ..- h- inpluded in the existing tack

5.6 ZaQa10MLMUM
When a process terminates there is always some oleanur work that must be accompl Ished e.g., clos-

Ing files, returning memory space, and deleting records concerning that process from the executive
control's work space). In addition, depending on the reason for termination (normal or abnormal), other
control components may need to be informed of the termination. In the case of a fai'.ure, the task graph
will contain the information needed to perform cleanup operations (e.g., the irentities of the processes
needing information concerning the failure). Both the nature of the cloanup iad the identity of the
control components that must be informed of the termination are determined from ttie design decisions
resulting from the issues discussed above.

5.74 UKRM
To gain a better appreciation of some of the basic issues of control in an FDPS, it is useful to

examine an example of work request processing on an F'PS. In the example, emphasis is placed on the
operations involved in the construction of task graphs. T e work distribution decision that is utilized
is a simple one that assigns the execution of processes -, the same rndea that house the files containing
their code. The primary concern of this example (Figurti 4) is the impact of variations in work requests
on task giaph construction. In this example, the variout 7arts of the overall task graph describing the
complete work request are stored on the nodes util zed by each part. Other techniques for storing the
task graphs may also be utilized. In the example, the following syabols are utilized:

L I visible external reference('-)

embedded external r+ ference s)
(n)A responsibility :or h delegated from node n
A(n) responsibility for A celegated to node n
a-->b IPC from procemn a to process b
A,B,... uppercase letters indicate command files
a,b,... lowercase letters indicate executable files
u,v,w,x,y,z indicate data files

Now that we have taken a look at the construction of task graphs in a broad sense, let us examine
the details of the task of processing a work request. This is illustrated in tdo fiju'res. Figure 15
outlines the basic steps involved in work request processing. Finally, Figure in depicts the steps
involved in processing a specific work request. In this c-sc, the work -que_.r is the same as that
examined in the example of task graph building (Figure 14).

Thus far it has been possible to identify a number of the characteristics of a distributed 4rd
decentralized control system and to identify some of its operational features. The evaluation of this
mode of system control is the next task.

7. A U E9¢Z

Much of the work reported on here has been pernormed by Timothy G. Saponas as part of his research work
for the Ph.D. degree. His area of primary interest is distributed and decentralized control, The work
has been performed as part of the G.*Pgia Institute of Technology Research Prograe in Fully Distributed
Processing Systems. The support for tiis specific project was provided by the Department of the Air 2
Force, Rome Air Development Center, GrIffiss Air Force Base, New York, under contract F30602-78-C-0120.

8. AW!iz=

Akin78 Akin, T. Allen, Flinn, Perry B., Forsyth, Daniel H., "A Prototype for an Advanced Command
Lanruage," Xrq ýjL/ J of Ahnuh Southeast -a Regional AM Cf, (April, 1978):
96-102.

Balz71 Balzer, R. M., "PORTS - A Method for Dynamic Interprogram Communication and Job Control," AUIPS
C =221=9ng& 38 (1971 Spring Joint Computer Conference): 485-439.

Brin78 Brinch Hansen, Per, "Distributed Processes: A Concurrent Programming Concept," Communications
2L ±he ACK 21 (November, 1978): 934-941.

Caba79a Cabanel, J. P., Marouane, M. N., Besbes, B., Sazbon, R. D., and Diarra, A. K., "A Decentralized
OS Model for ARAMIS Distributed Computer System," Proceega ot 11 t First Internatn

n~ft.rDistributeda Cmang zSystems (October, 1979): 529-535.

Caba79b Cabanel, J. P., Sazbon, R. D., Diarra, A. K., Marouane, M. N., and Besbes, F., "A Decentralized
Control Method in a Distributed System," Pr g 2L hA irst In ternatlonal .ofein nce Qn

Distributed C utigx ajma (October, 1979): 651-659.

Knl8l Enslow, Philip H. Jr., "Distributed Data Processing --- What Is It?," AGARD Avionics Panel Sym-
posium on "T.ctical Airborne Distributed Computing and Networks," Norway, (June 22-26, 1981).

Feld79 Feldman, J. A., "High Level Programming for Distributed Computing," C a o the A•m
22 (June, 1979): 353-368.

17-jO

Garc79 Garcia-Nolina, H., "Performar.ce Comparison of Update Algorithms for Distributed Databases,
Crash Recovery in the Centralized Looking Algorithm," Progress Report No. 7, Stanford Univer-
sity, 1979.

Have78 Haverty, J. P., and Rettberg, R. D., "Inter-ppooess Cormunications for a Server in UNIX,"
C04PCON Fal J1 (September, 1978): 312-315.

Hoar78 Hoare, C. A. R., "Mc.zinicating Sequential Processes," C un tl at o• Ar. J 21 (August,
1978): 666-677.

Jems78 Jensen, E. Douglas., "The Honeywell Experimental Distributed Processor - An Overview," Computer
(January, 1978): 28-38.

Morg77 Morgan, Howard L., and Levin, K. Dan, 4Optimal Program and Data Locations in Computer
Networks, 3 Cc'-.,&tons a tha ACM 20 (May, 1977): 315-322.

Rito78 Ritchie, D. M., and Thompson, X., "The UNIX Time-Sharing System," The hell Axalas T lal
12utl. 57 (July-August, 1978): 1905-1929.

Suns77 Sunshine, Carl, "Interprocess Communication Extensions for the UNIX Operating System: I. Design
Considerations," Rand Technical Report R-2064/1-AF, June 1977.

Tho•78 Thomas, Robert H., Schantz, Richa'd E., and Foradick, Harry C., "Network Operating Systems,"
Bolt Beranek and Newman Report No. 3796 (March, 1978).

ZuokTT Zucker, Steven, "Interprocess Communication Extensions for the UNIX Operating System: II.)
Implementation," Rand Technical Report R-2064/2-AP, June, 1977.

Ii
<work request> ::f <logical net> (; <logical net>)]

<logical net> ::= <logical nods> { <node separator>
<node separator>) <logical node> I

<node separator> ::- , I <pipe connection>

<pipe connection> ::= [<port> 1 'I' [<logical node number> 3
[.<port>]

<port> ::= <integer>

<logical node number> ::= <integer> I * I <label>

<logical node> ::x [:<label> I C <simple node> I
<compound node> I I

<simple node> I <compound node>

<simple node> ::= I <i/o redireotor> } <ocvand name>
i <i/o redirector> I <argument> I

<oompound node> ::= { <i/o redireotor> I '(, <logical net>
<net separator> <logical net> 1 '}'
(i/o redireootr>)

<i/o redireotor> ::- <file name> '>' [<port> 3 I
<port>] '>' <file name> I

[<port> '>>' <file name> I
,>1' (<port>

<net separator>

<command name> ::= <fil o nAae>

<label> ::x <identifier>

Figure 1. Work Request Syntax
(Taken from [11178])

17-I!

W~ -4 C1 I

- I .I

b. a a

a. -q go -

D I.• I

l0

pq~0~ m m 0

o1

t rl A 11 X M 1- N M 114N M M N 14 M N M N

cc. 0 4 -0

o 0

~N mmM N M mm m"4 t~, m ml. •I

,.

oA

m m N m m - m m N N N) b m m

) 43 u

-4. -- -------------- - -- -

O~cto
NNmm k NNmm m aN N N MN M N o

-S - - - - - - - - - - - - - - - - - -

04) ~ NNNN NNmm mmN~ mNNNN

to - C' m.4f

17-12

0

*s I 0

.0 .0 .0 o

0 4. '1

V4. 4100 10

4~ 40 0) 40

W' 0% 6 004a%

140 0 0 43 9
14 a NJ 1.-

93 83 93 1 9

0 0 4 0 ~ 0 0 0

-41 -4 4 Hi"
42 : .. 4 04A 34t4

d o.
-00 0- a

A 04 0.0.0H4 ..4 0. 0. 0.3

6. 46 Vý I 4) %4 0. 0
.00 0030'3A 0 0' MO0H

0 4C CA 1

in 0.

-. i0.J4)~A 4.14 4
" "C -1 Cg~9.~6 a,

cl 93 ,s ,) '3 I0 1 t
M4 v. '34)' . 4-H C

0p 10 14

17-13

- -- - - - - - - - - -

4.$)

a 4 06b lea..3 0 .
43 0 . *"

LA ** 6 4))

a~~ 0. 0 .

00.4) 0

4j, &)L 4-)
0~~. a a4

41 f0 030 o
90 4.. 4U

4* 0 a *
.0 4,064

".p '

~. o4)0 0.4)000

PL.

* 4)

Z 0.

17-14

U .

t at

ot 4
0 0

0' " a" = 0"" -.
-92 ==W, .- 0. & 4

_= .C ,o= .=3 ==IWL 0 , U

-U 4) 0. .. 9= 01

-~~~ -~ -- - - - -- - -

I U

04) 01

to P-4 m p N U

k- 0

S. 0 C

15 2 C6
00

ad A 0

1. 1. 40

fA % a L.

04) I 0 O1104
13 W.0 I4 0 0

04 t'0 MV I 052O, 0
111 0 01. 14 O- - I -, - -2 -4 - S

4.

Le~ 41 .4
ta 4304 0 . *a-G :~. .-0~ 4J 0. 0.

00 654.0 -a 0

17-16

0 0.4a)

.40 SO A

AA
LI

I s

0 H
~4)

44 A

o I 0

0 000"

0. 4). ' 0

1 00
oU IV~10.0 01 St 0

--- p -* --- - - - --

10,

00 to 4
40 r- 0.0 0 0

-00

0 W4

0.
0.4

93 0 14.
.40 ___0

17-17

Request *RUN A STEP I STEP 2

Task Graph MaKikitained I Task Graph Maintained I Tawk Graph Naintained I I Task Graph Maintained
At This Node At This Node I At This Node At This Node

A IA o(1)->(1?)d/1\ I* I1\

-- >d(?) 0 e--.d(2?)

A c-d I d *s Q- I I lI s

I 1 1 aSi

Nod I os d I Noe

TakGahHitie I TakGahMitie I I Ts rp anand1 akGahMitie

- ---------------------- - --------------------- ----------------

Local Resources I Local Resources * Local Resources Local ReaourcesIA[c->d)] z Id4[y,eJ]• S (e~--d]) I [y=]

ctx i e ~]I y

Node 1 lode 2 * Node 1 Node 2
(Source of request:) (Filrce oc request)

I I - I

TasC Graph Maintained i Task Graph faintined * Ta Graph ditntained ly Task Graph t aintinede
At This Node AtThs dode n At Thisode I At Tbaode

e I

I I ii
At I N N

Ai c l - O d I A I()- (l)

I I

a I

- - --------------- - --------------- -- --------------- -- -------------------

Local Resources Local Resources 1 Local Resources Local Pesources
At I a I AI

, a .31 1 1 y a 6 1 X

Node 3 Nodes 2 Node 3 NodesCo~en t~s: e Gallant s:

A (ore complex request: a e d 1s located or equed 2 eSd rure",efrblety

1) Contains an explIcIt reference to Min. e or n8 i teaNtatlyly deleated to tGraph node.

First layer is buiNt. •C

seles. I.Ilaelllleass.e ll eee eseeeellllllll eleaeeleeelee55eeee leeeeee.Cese5Css55eeellel5ill Ul mllllls. ltlee llliee.*5eee •lele

*
STEP 3 6 STEP

1

TLca Graph IIintalned Tak Graph MainRasined r Task G R'sph Maintained I Teak Graph Mantained
At This Node At This Node I At This Node At This Node

A (1)-->()d t A (1)-->(1)d

II II\/

si f I
II 1 Exml

Local Resources I Local Resources I Leeal Resources I1 Local Resources
A [o-->d] • I ,] I [o-->d] z d [y,x]

Ii]ye (e Ic[x] I

Node 1 Node 2 C Node 1 Node 2

(Source of request) e (Source Of request)
e

Tech Graph Maintained I Task Craphi MaintAined e Task Graph heicta~ined I Task Graph Maintained

At This Node I I AThAi lode e AtmTis Node I At This •ode

Ii I I

Noei od e Bes od

Loomal Reorcs I I oalRsure e Local Re: re oa eore

INeaponaihility tor d isa ecepted by modeo 2. he Ipeph belca 8 1.• completed.

Figu•.e I•I. Example

17-18

........A...9 .AA L

................
.4 .

...I jj......-

tbo

4)

I E-AI

b .. ._lot

.._ ~.
_ -! 0

RECOVERY IN DISTRIBUTED PROCESSING SYSTEMS

Liba Svobodova
INRIA

Rocquencourt
78153 Le Chesnay Cedek

France

Abstract

A powerful control abstraction called an atomic action has been developed as a general mechanism for control-
ling accesses to shared distributed data. In order to preserve consistency of the system, if an atomic action
fails, all of its effects are undone; thus if a long complex computation is represented as an atomic action,
an importatt amount of possibly useful work might be lost. The proposed scheme which facilitates selective
internal recovery from detected errors, node failures, and communication failures employes nested atomic
actions. When an atomic action terminates, its results are not made permanent until the outermost atomic
action is committed, but they survive local node failures. Each subtree of nested atomic actions is reco-)
verable (undoable) individually, thus making it possible to switch to an alternative algorithm, service, or
physical no'ie upon a failure. Finally, a recovery point is established in stable storage as part of a remote
request, so that work done outside of the requesting node is not lost if this node fails.

I. INTRODUCTION

A distributed system, as viewed in this paper, is a network of computing nodes which, although they have to
cooperate in some predetermined manner, maintain a fair degree of autonomy with respect to their internal
organization and management [CLAR 80, SVOB 79A, SVOB 79B]. The communication subsystem facilitates exchange
of messages between any two nodes, but does not guarantee it at all times. Individual nodes provide certain
services to the rest of the system. These services are not memoryless : while they can be provided only if
adequate hardware resources are available at the node!, they contain another critical component, and that
is stored data.

Distributed systems are often claimed to be inherently more reliable than systems that are built on the top
of a single central processor. Fir! , propagation of low level errors is restricted by physical separation
of processes and resources. Second, if one node fails, it might be possible to finish the computing tasks
in progress by using services of another node. However, distributed systems introduce also new reliability
problems, the most basic one being the difficulty of maintaining a globally consistent state of the system.
Given that the programs of the individual tasks are correct, the problem of maintaining a consistent state
becomes a problem of synchronization and recovery. In a distributed system, the difficulty of recovery is
in part due, paradoxically, to the fact that a failure of a single node does not disable the whole system.
The other important aspect is the uncertainty brought about by the inperfect communication subsystem : from
the point of view of a node requesting a service, a failure of the communication subsystem to deliver the
request or the response is, in general, indistinguishable from a failure (crash) of the node providing the
service.

The problem of recovery in a distributed system has been studied mostly in the context of database manage-
ment. A logical unit of work is represented by a transaction [TRAI 79, GRAY 80]. Transactions are assumed
to preserve certain application specific integrity constraints defined on the data, as well as the integri-
ty constraints of the data structures representing the database. To maintain the integrity constraints, if
an error is encountered during execution of a transaction, the transaction is aborted and all of its effects
are indone. A related aspect is that of the stability of results : if a transaction completes, its effects
ar, guaranteed to be permanent, that is, the results will not be lest or damaged by subsequent system
f, lures; this is again a recovery problem, although at a different (lower) system implementation level.

A computation in a distributed system may not be able to proceed normally for many different res~ons

- the invoker decided to abort ,t
- the inputs were incorrect
- an unrecoverable hardware or software error was encounte-,,d during execution
- a scheduling conflict was encountered
- one of the involved nodes failed
- communication failed.

As said above, in the simple transaction model used in distriouted database management systems, all of
these situations are treated in the same way : the transactioa is aborted and its effects are undone. For
long, complex computations, a lo'. of work might be wasted ii this policy is followed. Thus, in addition to
guaranteLing data integrity and itability, an important goa is to complete computations in spite of errors
and failures of different system components. In particular, since the same of similar service might be pro-
vided by several nodes, a failure of some node or a failir, to communicate with a particular node does not
have to abort all computations requiring such t service. A so, if a failed node can recover in such a way
that it does remember the state of the computations that w.re running on it at the time of the crash, these
computations can be completed without having to seek alteTuative resources or alternative solutions. This
paper focuses on this problem of resiliency, and in partiu~ar, resiliency •ith respect to node and couxu-
nication failures. -r

18-2

2. GENERALIZED MODEL OF DISTRIBUTED COMPUTATIONS

The transaction model assumed in most studies of recovery issues in distributed database management systems
is limiting from yet another point of view : in general, database transactions are assumed to have a very
flat (usually just one level) strictly hierarchical structure. A transaction has a coordinator and several
data managers (workers, agents) that manage different parts of the database, but there are no lower level
dependencies between these data managers. More general distributed computations might present the sort of
problem depicted in Figure 1. In this example, the top level program is initiated at node A. This program
includes requests for service Si from node 8, and service Sj from node C. A short notation Sm.N will be
used throughout this paper where Sm specifies the service requested and N the name of the node providing
the service. The services provided by the individual nodes might be much more complex than "read data" and
"write data" usually assumed to be the only types of requests in database tr.insactions. Following the con-
cepts of structured programming, the actual implementation of these services is unknown to the invoker.
Thus the program at node A does not known that requests Si.B and Sj.C both, as part of their imp1Imentatiou
request services from node E and that each such request results in an update of a data object X.*

If the programs that implement the services Si.B and Sj.C are executed concurrently, their proper synchro.
nisation during normal execution represents practically the sami problem as the problem of the synchronizing
database accesses of independent concurrent computations. The problem that will be studied here is the pos-
sibility of recovery of the individual requests. Assume that the request sent to node B fails, but by that
time node C has already done a significant amount of work as a result of the request received from node A.
As a reponse to a failure of the request Si.B, the requesting program at node A might try one of the follow-
ing altcrnatives

1. retry request Si.B
2. search another node that provides the same service as node B
3. try an alternative algorithm (different service) that produces possibly different kinds of results,

but still satisfactory (less accurate, for example).

At the programming level, such alternatives could be specified with the aid of a construct called a recovery
block CRAND 75]. However, before an alternative can be tried at any level, it is necessary to restore the
state of the resources used by the failed branch of the computation. If object X has already been modified
as a result of the failled request Si.B, and if this modification has been seen by the other branch that
originated at node C, it might be necessary to undo indeed everything. The main point is, however, that
these dependencies are not known at the level of node A : unless some control mechanisms are added, it is
always necessary to account for the worst case, and to undo everything. It should be noted that this kind
of problem will be encountered even in a single processor system, if the "nodes" are just separate modules
such as, for example, the guardiens [LISK 79, SVOB 79A). However, additional problems occur in a network
'If physical nodes, as will be seen later.

3. ATOMIC ACTIONS

A general mechanism for solving the problem of consistency in the presence of concurrent computations ,nd
asynchronous faults is a construct or a control ab traction called atomic action. From the point of view of
the invoker, an atomic action is an operation the effects of which are determined entirely by its algorithm.
Atomic actions are:

I. indivisible with respect to concurrent computations : the intermediate results of one atomic action
cannot be modified or observed by concurrent comput&tions

2. indivisible with respect to failures : an atomic action either terminates normally and produces a
new consistent state as defined by its algori'thm, or has no effects.

In transaction-oriented database management systems, the transactions are in fact atomic actions; however,
the concept of an atomic action is more general than that of ar. apdate of a shared database.

From the implementation point of view, an atomic action can be viewed as a control sphere that encompasses
a sait of resources, botn shared and private. An atomic action can be executed by a single process, if all
these rcsources are in the same physical node, or it might involve several processes. The resources could
be all acquired at the beginning of the exectition of the atomic action, however, often this is not possible
since the cc.mplete set of the required resources is not known at that time. For example, the "resources" might
be records of a database. Which records will be read or modified might depend on the value of certain fields
of some other records. One solution is to "acquire" the whole database. A more effective solution is to let
the atomic action acquire needed records during the course of execution, as the need is determined. This
necessitates synchronization protocols thaL properly order tha elementary execution steps of different atomic
actions, and resolve scheduling anomalies. Bauically, it is necessary to ensure that a set o& atomic actions
executed concurrently is serializable FESYTA 76]. If an atomic action fails, the resources that it has acquired
have to be restored (recovered) to their state at the time of their acquisition, and released; to ensure that
no other computations have been affected by such a failure, the resources are not released until the atomic
action terminates.
Maiiy sophisticated mechanisms have been proposed to provide atomicity in distributed systew.3. Serializability
of atomic actions is achieved either by locking protocols or by a priori ordering of requc,,., belonging to
different atomic actions by associating with them globally unique timestamps. In this paper, c.ly the mecha--
nisms needed to assure atomicity from the point of view of failures will be discussed. Also. while ýt would
be interesting to consider different types of resources, the resources of an atomic action are assumed to be
data objects. The key problems thenare : i. coordination of the changes to the physical representation of

*) A more general transaction model that covers situations of this kind is developed in [LIND 79]. However,
the emphasis in this model is on detecting node crashes, after which the whole transaction is aborted.
Also, a transaction can be executing only on a single node at a time.

18-3

objects updated vithin the same atomic action, ii. their comitment, that is, making these changes perma-

nent and visible to other cor'nutations, iii. object recovery, chat is, restoration of an object to its

previous state, and iv. coot'ination of the recovery of the objects modfied by a failed atomic action.

These are non-trivial proble~s even if all objects are stored at the same node and thv atomic action in-

valves only a single process; in 4 diatribuzed system, tho inherent uncertainty and the cost of interaode
communicatioa add unother dimension to this problem.

In order to be able to execute arbitrary computations as atomic actions, it is necessary that the elementary

steps of which these computations ,,* constructed are also atomic. In particular, physib (updatee of data

on storage devices must be atomic. In general, to guarantee that stored .ata will survive node crashes, t. ay
must be stored on ncn-volatile secondary storage devices, since the usual recovery from e crash is to rein-

ittalize the system, which means thfY from the point of view of normal access, the previous content of the

primary wemory is effectiveiy lost. But such storage in not yet stable; additional precedures an *acha-
nisms (e.g. duplication, checkpoints f log) are needed in order t-atiIsored information survives device
crashes and spontaueous decays. Howevet, the system could crarh during a write operation, when part of the
data has already been overwritten with a new value; this would leave the data object in an undefined state.
Stable storage that guarantees that a write operation is either performed correctly or has no effects is
called atomic stable storage. Efficient implementation of a storage system with such properties is still
a researchssue 7LAMP 7,-SVOB 801; in this paper, it is assumed that all nodes provide stable storage and
that information stored there can Se changed atomically, although 't does not necessarily mean that such
information is updated in place.

4. NESTED ATOMIC ACTIONS

From the recovery point of view, atomic actions can be viewed as a damage cinfinement mechanism : whilie it
is generally assumed that everything within the failed atomic action is suavec., the mutual exclusion mecba-
nieme of atomic actions guarantee that nothing outside has been affected. The damge confinement is a very
useful property since it makes cnmeutations that are implemented as atomic actions separately recoverable.
However, as already argued, the Assumptions a&out the damage within an atonic action is often unnecessarily
strict.

An alternative to aborting the entire atomic action is to set up recovery lines within it : when an krror
is detected, the computation has to be backed out only to the nearest recovery line. If an atomic action
involves just a single process, a recovery line consists of a single recovery point (checkpoint) that coi-
tains the state of that process. If several processes are involved, then recovery lines can be either pre-
arranged, or determined dynamically. The beginning of an atomic nccion represents a preplanned recovery line.
However if processes do not set up recovery lines in a coordinated manner, where the nearest recovery line
is at the time whea an error is detected is not obvious. Merlin and Randell developed "chase protocols" for
determining recovery lines dynamically [MERL 77]. This work was extended by Wood who worked out a protocol
for keeping track of the dependen-ies between processes (propagation of information) and for determining
when it is safe to discard a particular recovery ýoint [WOOD 81]. The approach taken hgE7 ij essentially to
preplan the recovery structure, and to tie it to the logical structure of the program.

The basic solution is to use nested atomic actions : each atomic action can be built of smaller atoaic octioas
that can be executed either sequentially or in parallel, and that will be properly aynd;hronized with respect
to use rf shared deta objects. Reed developed an integrated set of mechanisms for implementation end control
of nested atomic actions [REED 78]; these mechanisms will be extended here to facilitate selective internal
recovery.

In Reed's model, each atom' action is represented by two entitieu : a pseudo-temporal environment and a
commit record. The pseudo-et..poral environment is the mechanism that assures serialisability of atomic ac-
tions. The ccumit record is u data structure that contains the state of the atomic action. The comeit record
is created with the %tate set to "undefined". When the atomic action terminates normally, the state is set
to "committed", otherwise, if the termination is abnormal, the state in the commit record is set to "aborted".
An atomic actiou Six which is nested within an atomic action ai is made dependent on the outcome of ai : this

dependence is recorded in the commit record of aix in the form of a reference to the co it record of ai.
Commit records are stored in atomic stable storage. Finally, all requests to create, read, update, or delete
an object include a reference):o the commit record of the atomic action within which the request is made,

When an object is updated, the system creates a new stable version of this object without destroying the old
one. This version contains a reference to the commit record of the atomic action under which it vas created
A" long as that commit record is in the state "undefined", only the atomic action that created that version
can vead it. Once this atomic action terminates, its commit record is set to the state "comitted", but it
dces not wean taat the new version can be used freely from anywhere within the system : its fate still depends
on the outcome of the enclosing atomic actions. However, once com'itted locally, a new version can be used
fToM anywhere within the invocation subtree rooted by the nearest enclosing atomic action that is still in
the sLaze "undefined", since if this atomic action is eventually aborted, all of its dependents will he abort-
ed anyway. When an atomic accikn is aborted, all of the object iersions created by it and by all of its do-
pendents are discarded, but this does not effect other branches of the invocation tree, since they could not
have seen the invalidated versions. Once the top level atomic action reaches the final state, be it "aborted"
or "committed", this information is propagated to its dependents .nd successively to their dependents and
encached in their commit records.

0) It is quite difficult to find a simple definition of "system crash"; in this paper, it will be asesued
that a crash is any event that causer such complete reinitialization.

•) A similar approach is used by Shrivastava, but he assumes that recovery eight be provided on a more
abstract level, under the direction of a manager of an atstract type [sflMI WJ.

; .. = _ . . - ' - - . J • - - .- --.- -- •• • ••,=. - •

3-4

Let us return to the example given in 3ection 2. The main program at node A will be, of course, an itomic

action, but in addition each zemote request will start a new atomic action in the receiving node. It is
assumed that each request returns a responae when the atomic Action created by that request term5.nates.
It ie the responsibility of the req%!estor to wait fir the response befeoe its atomic actian is committed.

Now assume that the requeut SjpE from node S is the first one to arrive ait n'de E ; this situation is de-
picted in Figure 2. Once the executi'on of this request is finished, it "s possible to process the request

Sk.E from node D, butt not Si.E from node C, since the atomic action roctsd at node B has not finished.
F.gure 3 ahows a aituation when Si.B terminated normally and a new versi-n of object X has been created

finally by the request Si.E from node C. If the request Si.B failed for some reason, both vercions XI and
X2 would be discarded before Si.E could proceed. Of course, it in astumed that theze do not exist any pre-
cadence con,!"raints 1,etween the ,1pdates performed on X, otherwise the requests 6 .B and Sj.C could not be
executed concurrently, without any explizit synchronizer;. n on their level.

5. CRASH RECOVERY

The mechanisms described in the preceding section tre sufficient xor orderly recovery from errors that are
either reported or can be safely detected by the invoker of a request for service. In the given example,
it would mean that if the request Si.- fails, either node B sends an error message to node A or A detects
an erroneous response. In either case, A receives some r.sponce from B. As said earlier, object versions
and commi. records are stored in utable storage, thus they surtive node crashes. This means that if, for
examuple, node E crashea after it has sent back a response to ,t.he request Sh.E, this crash can have no effect
on the results of that patticular call. However, if an invoker deas not receive a re'ponse to its request,
the situation becomes more complicated. Namely, to prevent that a node waits indefinitely for a response
from another node, it is necessary to set a timeout for each remote request. However, when the timeout ox-
pires, it is not possible to deduce tbe state of the atomic action created by that request. Any of the fol-
lowing might have happened

I. the target node Z never received the request (the communication subsystem did not deliver the
message)

2. the request was executed but terminated abnormally

3. execution of the request was interrupted by a crash of node Z

4. execution of the request terminated normally, but the response was not delivered to the requescor
(either the node Z crashed before the response could Le sent, or the communication subsystem failed
to deliver %he message)

5. execution of the request stiýl continues (either the timeout was set too shoct or the execution
is slower due to high load or the need to recover from internal errors).

When the timeout expires, the iovoker may decide either to repeat the request or try an alternative service,
or an alternative algoritla. Let us postpcne the discussion of the first possibility until the next section
and analyze the problem if switching to an alternative. For the first two situations listed above nothing
special has to be done since the failed request had no effects. In the other three cases, the atomic action

started by the request either has been or might be locally committed (in case 0 3, thIc assumes that the
node recovers in such a way that it ic capable of resuming the computations interrupted by the crasb). Its
commit record contains a reference to the commit record of the directly enclosing atomic action, that is,
the atomic action of its invoker; later, when the state of the comit record of the invoker is set to "com-
mitted", the whole subtcee abandoned when the invoker switched into an alternative algorithm would be in
fact cmitted I Thus it is necessary in some way to irvatidate the reference in the cmmit record of a
dependent atomic action declared to have failed on the basis of a timeout. The cmmit record of an atomic
action should reside on the same node as the objects manipulated by the atomic action, that is, in the given
model on the node on which the atomic action is executed. This means, however, that if no response is receii-
ed from this node, it must be issuawd that the coait record, if it exists, is also inaccessible and there-

S fore the reference to the commit record of the invoker cannot be removed. A possible solution shown in
Figure 4 is to add to each commit record a list of the identifiers of the current dependent atomic actions.
In addition, each atomic action uill contain its own id in its comit record-.WT_ identifier of a dependent
atomic action is generated by the invoker (although it cold be generated by com third party) and included
in the request sect to the node providing the service. When the invoker decides that a particular request
has failed, it :csoves its id (that is, the id of the atomic action that might have been started by the
request) from the list in its otm comit record. Beotae the results of a dependent atomic action aix can be
committed up to the level of its invoker aj, it is necessary to check if the identifier of six is still on
the list in the commit record of a:.

af a node is to resume local computations interrupted by a crash, and this is important in particular when
a computation had made remote requests, it is necessary for each such computation, to reasber not only its
local state, but also its interactions with other nodes. Some of this information Is already in the commit
record, however, it is also necessary to r&amber the outstanding requests. Thus a checkpoint should be eats-
blished in stable storage as part of a remoce request. A remote reque, t thus should include the following
Jfeps

i. thu invoker generates a new iden'ifier ID for the dependent atomic action

ii. this identifier is include n the list" in the ' \t record of the invoker ; the coeit

record is upd~ted atomically in stable storage

iii. a check.yint is made 4hich includes a reference to the commit record and the message to be sent

iv. the message which includes the identifier ID and a reference to the cmomit record of the invoker a)
is sent to the target ,ode

v. on failuie : remove ID from the list in the coamit record if the invoker ; the commit record is
updated atomically in stable storape

A) A reference Lo a eomit record could e an -•" -E-•-ier of the actual objef-t that ropresents the cormit
record or the identifier of the atomic action re-reeented by that comit record.

If the node crashen after the checkpoint but before another checkpoint is established, the request will be
resent, thus the target nude must be able to detect when a received request is a duplicate. Although many
communication subsystems detect and suppress duplicate messages, their mechanisms are not sufficient, since
from the point of view of the communication subsystem, each retry represents a different message. However,
if the request hat, been previously received, then the receiving node must contain a comhit record witit that
ID; detection of a dupliete is therefore siivple. Finally, if the invoking node crashes during step v but
before the ID hat been remo-ed from the list, agein the request Irill be resent; at this time, it might actual-
ly succeed, "f the "failure' detected previously was a result of a timeout, but this does not c.use any in-
consistency.

6. PRO(MRAIN' ASPECTS

As already mentioned in Section 2, a programing construct called a recovery block can be used to specify
the alternatives to be tried in onae that A particular request fAils. The structuting imposed by recovery
blocks also provides another c.-,_Atien to the problem of branches abenloned rs a rezult of a timeout discuss-
ed in the preceding sect'.on. ?ip:re 5 shows a possible structure of the program runniug in node A that uses
recovery blocks. A remote procedure call is used as a means fct making remote requests. Siuce when such a
call is made, the calling process must wait for a response, in order to be able to process requests Si.B :d
Sj.C in parallel, it is necessary to make the respective calls in different processes in node A. In the given
example, this is indica':ed by the enclosing parbegin/parend structure, although processee could be forked in
a more general manner, for example, just before a remote call is made. It is assumed that a timeout is asso-
ciated with each remote call; if the timcout expire,, the cell terminates by signalling an exception. This
exception and any other abnormal return, if not handled within the enclosing block, will result in a swi'ch
into a• alternative program within the same recovery block. If all altcrnatives fail, failure is signalled
to the next enclosing block, which, in this case, is the topmost level. Since no alternative is specified at
this level, the whole computation would be aborted.

According to the semantics of recovery blocks, before an alternative can be tried at any level, it is neces-
sary to return to the initial state of the recovery block, that is, undo what has been done by the failed
alternative. Consi&d'riig that it is also necessary to coordinate accesses to shared resources from different
recovery blocie executed in different processes, each alternative of a recovery block should be, in fact, a
separate atomic action. Figure 6 shows the tew tree of commit records for the same execution state as the
one that was depicted in Figure I : additional commit records were added for the recovery blocks that enclose
the individual ramore calls.

When a. remote call falls, then in order to abandon thAt particular branch, the alternative from Ahich thecall was made is abandoned also, and its commit record is net to "aborted". When another alternative is tried,

a nev commit record is created for it. Thus even though the remote request might be finished later (in case
that the remot., oall failed because of a timeout, after possibly several retries), its results can never
become erroneously committed. This meaks that it is not necessary to keep the list of current dependent atomic
actions in the commit reeord, as proposed in the preceding section. Or, viewed differently, this list now
consists of the commit records of the current alternatives.

Let us return now to the questioa of what has to be done if, after a timeout, the remote call is retriez.
It might seem that this is the ease problem as if the request was resent as part of recovery from a crash,
but the situation here is a little bit more complicated. At this level, whether or not to retry a request is
the decisior of the programmer. If it is the programmaer who in order to send a request to avother node has
to write the individual &teps of the program PI outlined in the preceding sectin, then the request can be
resent in the following way

P2 o. set retry n

i. get new ID
ii. create a checkpoint %hich includes a reference to the comit record*) of the invoker anc

the message to be sent.

iii. send the message which includec ID and a reference to the commit record of the invoker

iv. on timeout : retry :- retry - I
if retry 2 0, repeat step iii
else failure

The request will bu retried up to n cties, each time with the same IDW thus this is indeed the ssme problem
as if the request is retried after a crash. M'n the other handtM programer could be given a p-imitive
"remote-call" which consists of the stitpa i ti iii of P2. In order to retry 0 request, it is necessary to
repeat the call

P3 0. set retry :- n

I. remoote-call (service, node, parameters)

2. on timeout : retry :- retry - I
if retry a 0, repent step I

each time the remote-call is repeated, a new ID is generated ; thus f the receivie node, a repeated call
looks like a new request. This means that--e effects ' the previous try, if the request we indeed received
and executed, must be undone. Thus, in connection with ecovery blocks, the whole alternatire of tba recovery
block that contains the call should be repeated. A sre graceful solution is to provide a remote-call primi-
tive that includes the option of an automic retry, that is, in its implementation it includes the steps o and
iv of P2. Tbus the language should provide a priuitivv remote-call (service, node, parometers, n) wherv n is

0) The commit record still must be included in the chbekpoint, since it is part of thes state of a comut,'-
tios.

18-6

the number of retries desired.")

Many arguments have been raised recently with respect to the basic comamunication primitives for a dis-
tributed system, the primary aspect being the choice between remote procedure ralls and more general
send and receive primitives CLISK 79, LAUR 79]. Although in order to achieve desired concurrency a
separate process has to be forked for a remote call, this combination seems to provide a cleaner struc-
ture, particularly from the point of view of recoverability. The same effect could be of course achieved
with two separate send and receive primitives, but if the send and receive parts of different requests are
interleaved, it will be more difficult to determine the proper recovery structure. It should be noted that
in the context of the recovery model presented here, a remote node must reply to the requestor even if no
data is sent in the reply; thus having a simpler send primitive that does not wait for a response does not
provide any advantage. However, both the recovery model and the counication primitives require further
study.

CONCLUSION

The concept of an atomic action as a general meohartism for controlling recovery in computer systems and
particularly in distrib•,ted systems is gaining more and more acceptance. OZ course, there is always the
problem of cost. The heavy use of stable Etorage and the extra messages needed to test dependencies of
nesced atomic actions and to coordinate their commitment or abortion can be very expensive. However, if a
very reliable system is needed, alternative mechAnisms mig' be equolly expensive. Atomic actions have
some strong advantages. They provide a uniform scheme for coping with either local or remote failures.
Nested atomic actions support naturally common programming teehniques. What is needed is more of experi-
mental work that uses these concepts to demonstrate that it is indeed feasible to built in this way not
just a very reliable but also a practical system.

REFERENCES

CLAR 80 Clark, D.D., Svobodov-t, L., "resign of Distributed Systems Supporting Local Autonomy",
* Digeat of.Papers, CONPCON Spring '80, San Francisco, California, February 1980, pp. 438-444.

ESWA 76 Eswarer, K., et al., "The Notions of Consistency and Predicate Locks in a Database System",
Coem. of ACM, Vol. 19, N° 11 (November 1976), pp. 624-633.

GRAY 80 Gray, J., "'A Transaction Model", Lecture Notes iq Computer Science, Springer-Verlag, Vol. 85,
July 1980, pp. 282-298.

LAMP 79 Lampoon, B., Sturgis, H., "Crash Recovery in a Distributed Data Storage System", XEROX PARC,
Palo Alto, California, 1979 (to appear in Comm. of ACM).

LAUR 78 Lauer, H.C., Needham, R.M., "on Duality of Operating System Structures", Proc. of Se-ond ter-
national Symposium on Operating Systems, IPIA, Rocqi~en-ourt, France, October 1978.

LIND 79 Lindsay, B.C. et al., "Notes on Distributed Databasez ', IBM Research Laboratory Technical
Report N* RJ2571, San Jose, California, July 1979.

LISK 79 Liskov, B., "Primitives for Distributed Computing", Proc. ot 7th ACM Symposium on Oe
Systems Principles, December 1979, pp. 33-42

"MERL 77 Merlin, P.M., Randall, B., "Consistent state RestorL:ion in Distributed Systems", Technical
-•Report N' 113, University of Newcastle upon Tyne, Newcastle upon Tyne, England, October 1977.

RAND 75 Randell, B., "System Structure for Softwarc Fault Tolerance", IEEE Transactions on Software
Engineering, Vol. ,-1, N' 2 (Judt 1975), pp. 220-232.

REED 78 Reed, D.P., "Naming and Synchronization in a Decentralized Computer System", MIT Laboratory
for Computer Science Technical Report 205, Cambridge, Massachusetts, September 1978.

SHRI 81 Shrivastava, S.K., "Structured Distributed Systems for Recoverability and Crash Resistance",
IEEE Transactions on Software Engineering, July 1981 (to appear).

SVOB 79A 3vobodova, L., Liskov, B., Clark, D., "Distributed Computer Systems , Structure e:nd Semantics",
NIT Laboratory for Computer Science, Technical Report N" TR-215, Cambridge, Massachusetts,
March 1979.

SVOB 79B Svobodova, L., "Reliability Issues in Distributed Information Processing Systems", Proc. of the
Ninth IEEE Fault tolerant Computing Smpesiium, June 1979, pp. 9-16.

SVOD 80 Svoboduva, L., "Management of Object Histories in the SWALLOW Repository", MIT Laboratory for
Computer Science Technical Report 243, Cambridge, Massachusetts, July 1980.

TRAI 79 Traiger, I.L., et al., "Transactions and Consistency in Distributed Database Systems", IBM
Research Laboratory Technical Report RJ 2555, San Jose, California, June 1979.

WOOD 80 Wood, W.G., "Recovery Control of Communicating Processes in a Disteib'atad System', University
of Newcastle upon Tyre, Technical Report N' 158, Newcastle upon Tyne, G.5., November)0ý,O.

*) Note that if it is indeed desired to start a new atomic action on a retry, it is still possible to use
the sequence P3, where the last parameter in the •';ote-call is set to 0.

18-7

/0

\S.

S B/ \\j

St'D// N S 'E St'E," \S SF,c\ /

ii date X

Figure 1: Example of a distributed computation
with internal sharing

SI.

Fiqure 2: tate of th object X nd of th inmi eod

// \\

So." the enclosing atgtc actions before theS tevination of the request S .E

I

,ef d., 0. \•

onnmmtted

ondef nedd

ige3:SVtato duiF teeeuin fterqetS.

zI

Fiqu~ 4 Sae sateof Xecto0si lue2 dnilr

oiur3 Situaucation s du te addeduio of crahe recoverySV

-~~~~ e-- - n- - --

18-9

A: ensure A.tet

SAO: paebegLn

AB: ensure AB.test

AMI: býegin

remote call(SOB,parameter));

end

else b AB2: begin

remote call (S' ,R',parmeters);

end

else error

AC: ensure AC.test

I remote call (S1 ,C ,parameters);

end
~el s__t ...

else error

else ervor

Figure C: Structure of the program executed at node A that
uses recovery blocks

n/ e neinL ene

floe ne VinJ nY

In ne D

t!

Sk-EE

n en

Fiue6: Same state of executioti as in Flijure 2; each remiote
"request Is made from a selirate recovery block

GENERALIZED POLLING ALGORITHMS FOR DISTRIBUlED SYSTEMS

Jack Keil Wolf
Department of Electrical arid Computer Engineering

University of Massachusetts
Amherst, Massachusetts 01003 USA

ABSTRACT

A polling algorithm for a distributed system is an algorithm which can he simultaneously run at all term-
inals in a network and which has as its aim the oetermination of which tetrinals have a positive response
to a specific qu*,ry. Of particular interest is the situation where one expects very few of the terminals
to respond positively and where a terminal signifies a negative response by not transmittiny at all. In
such a case it is inefficiEnt Lo poll the terminals in a round-robin manner. A more eff4 cient procedure
is to group the terminals into subsets in which all terminals in a subset are queried simultaneously,
Then if all respond negatively no further queries need be addressed to that subset. If the responses from
the terminals in the subset are mixed than this subset I: further subdivided into smaller subsets until
the responses of all the terminals are determined.

In this paper two distinct algorithms for polling are considered. In both algorithms, the terminals of thenetwork are represented by leaves in a binary tree and the subsets are subtrees in the overall tree. The

two systems differ in the assumptions made regarding the types of responses sent and how the responses -re
interpreted. The performance of these two schemes are compared with each other and with ordinary round-
robin polling.

1. INTPODUr.TION

Consider a set of communication terminals (or nodes) which communicate over a common con-aunication channel
and for which every terminal can reliably receive the transmission ot every other terminal. Suppose that
a query is to be made of all terminals in the network and that it is desirable for every terminal to know
the yes/no response of every other terminal to the particular query. Furthermore assume that because of
reliability considerations it is undesirable to use a centralized algorithm at one terminal to conduct
this query but rather a distributed algorithm which is simultaneously run at all the terminals must be used.
Finally, assume that the network is in synchronism and that all terminals know of the response of all other
terminals.

The most straightforward method of accomplishing this task is via a round-robin polling techniqur whereby
all of the terminals respond to the query in some pre-determined order using a time-division multiplexing
technique. If we have N terminals we would require N time slots, one dedicated to each terminal. The
time slot must be of sufficient duration to carry the response of a terminal. We now mak.? two assumptions,
the result of which is to render the round-robin technique inefficient. We first assume that a termialindicates a negative response to a query by transmitting nothing at all. This method of indicating a nega-

tive response is quite common in a network, especially when radio silence is important. The second assump-
tion is that very few of the terminals will respond positively to the query. Our aim here is to investi-
qate alternative distributive schemes which are more efficient th-n the round-robin scho.me when then two
assumotions hold.

The basic approach is to break the set of terminals into subsets and to query simultaneously all terminals
in a subset. Then if no transmission is recelved from any terminal in the subset, all terntinals in that
subset are known to ha ve responded negatively. If, however, one or more positive responses are received,
further queries of the terminals in that subset in general are required. The querying is doneby further
subdividing the terminals in that subset into smaller subsets. All terminals in the network are able to
know which subset is being queried at any time since they all receive all responses and can use these re-
sponses to drive a cummon algorithin wnich prescribes exactly which terminals are being queried. Thus no
actual questions need be transmitted. Only the answers to the implied questions are transmitted over the
communications channei.

Two different algorithms are explored in this paper. The first algorithm was originally suggested by Hayes
(Hayes, J.F..., 1978) and assumes that a terminal which derires to respond positively to a query transmits
energy over the channe-l. If a .group of termi.-Is is simultaneously queried and energy appears on the
channel in the slot allocated to the response, then all terminals know that dt least one of the terminals
in the subset queried answered affirmatively to the qtery. The details of this algorithm are described in
the next section (Section 2) along with a sketch of the analysis of this algorithm.

The oriainal Hayes ,lgorlthm asks some q•,estions of groups of terminals, the answer to which could have
been predicted before the questions were atked. These redundant yjestions can be skipp%d without any loss
in performance. The subsequent sectiou (Section 3) details a mo.:ification to the rqayes algorithm achieved
by skipping redundant queries and on analysis of the improved elgorithm.

The next section (Section 4) describes a new algorithm (Gudjohnsen, E. et al.... 1980) for wilch fewer
queries are required but for which more complicated answers ire recuired. Now 6ach terminal in the net-
work is qiven a unique signature (or address) and if the terminal ishes to respond affirmatively it trans-
mits its signature in the appropriate time slot. Now if a subset of the terminals is queried, if none or
one of the torminals responds positively, the status of all terminals in the subset can be determined.
(If one resp(,nds, the identity of that one can be determined by reading its signat,,,re-all others have a
negative resForse.) Furthermore if two or more terminals simultaneously respond we assume that the sig-
natures of all transmissions are garbled but that all receivers recognize that a gar'oled set of signatures
was received ;o that they know there were two or more positive responses in the subset. In such a case, if
the subset contains more than two terminals, a further subdivsiot is required. If the subset contains
exactly two terminals no further subdivision is required since t'" garbled respense must have been the re-
sult of both terminals transmitting their signatures. Various arsivses are rereformed for this system.

19-2

First the average number of responses is calculated. Then the average number of bits itn these responses
is calculated using two different approaches.

In the sections to follow we will make the following common assumptions:

(1) The number of terminals N is a power of 2: I.e., N - 2k. Thus where signatures are assigned,
each signature is k bits long.

(2) For every terminal, the probability that the terminal wishes to respond positively is given by
the paran'ater p, 0 < p <_ I. (Note that p is assumed the sane for each terminal.)

(3) The random variables de;cribing the responses of all N terminals to any query are statistically
independent. Thus, the probability that exactly I of the N terminals wish to respond positively to a query
is given by the formula

(N) pi (l-p)N-I for I - 0,I,2.....Nt

To illustrate the steps followed in each of the algorithms we consider the following common example. Assume
there are 16 terminals denoted (0,I,2....,15). To a particular query, terininals 1, 10 and 11 wish to re-
spond positively and all other terminals choose to respond negatively by preserving radio silence. For
convenience, we show in Figure 1 all 16 terminals as the leaf nodes of a binary tree. 11ese nodes are
identified by the symbols, Ol,...,15 while the internal nodes are Identified by the letters A. B, ... , Q
(with I and 0 omitted to avoid confusion with the integers 1 and 0). The asterisks next to leaf nodes 1,
10 and 11 indicate that they respond positively. All other leaf nodes respond negatively.)
2. THE HAYES ALGORITHM (Hayes, J.F..., 1978)

Hayes described two different versions of his algoriuhm which he termed non-adaptive and adaptive. We
begin with a distussion of the non-adaptive version, since although the adaptive version is important from
a practical standpoint, its understanding follows easily from the non-adaptive c4se.

As in the example depicted in Figure 1, the N = 2 k terminals are identified with thi ?k leaves of a binary
tree of kepth k. A query is initially made of all the terminals by querying all of the leaf nodes that
stem from the root node. (This is node A in Figure 1.) If all terminals respond negatively the algorithm
is complete. If at least one of the terminals respond positively, *hen m. query is made of terminals which
stem from the node whose leaves are those in the upper half of the tree (This is the node B In Figure 1.)
If all terminals in this subset respond negatively the terminals corresponding to leaf nodes in the lower
half of the tree are then queried. (This i node C in Figure 1) Whenever a query o°fl2- leaf nodes
(z > 1) produces a positive response, the 2 itodes are subdivided into two sets of 21- nodes and each is
queied separately. Tihe process is iter'ted until, finally, individual leaf nodes are queried and the re-
sponses of all terminals are determined.

A0

FH

11*

D

13

" ~i

'1 40 an 11rsodn4oiiey

EE.• 0

7I*

ý.C
S12

ILL 0 13

S-- • 14

) " "Floure 1. A commion example for all algorithms--16 terminals with temInals

19-3

Since the algorithm is k.Wown to all terminals, and since thfz responses to the queries are available to all
terminals, no questions need to be asked. Rather the terminals respond to the next implicit question in
the algorithm without any time (or bits) being wasted by actually asking the questions. The response to
each implicit query only involves the terminals queried iending ore bit of information.

To illustrate this algovithn consider the examples of the IC terminal network numbered (0,1,....,15) shown
in Figure I where terminals I, 10 and 11 wish to resrpond positively and all other terminals wish to respond
negeti vely. For etch implicit question in the algorithm, the following table contains the node in the tree
from which the subtree grows, the leaf nodes (or terminals) which are being queried on each question. and
the response which appears on the channel (yes or no).

Table 1

Queries and Responses for Example Given In Table 1 Us,:ng ;Iayes Algorithm

Question No. Node in Tree Terminals Being Queried Response

I A all yes

2 B 0 1j2,3,4,5.6,7 yes

3 D 0,1,2,3 yes

4 H 0.1 yes

5 0 0 no

6 1 1 yes

7 O2.3 .. .no

8 E 4,5,6.7 no

9 C 8.9,10,11,12,13,14,15 yes

10 F d,910,11 yes

11 M 8.9 no

12 N 10.11 yes

13 10 10 yes

14 11 11 yes

15 G 12.13,14.15 no

In this example, 15 queries were required to determine the responses of all 16 nodes. Round-robin polling
would have required 16 queries so the savings here were not impressive. In order to determine what savings
(if any) this algorithm achieves over round-robin polling, one requires either a mathematical analyses of
the algorithm or a simulation. Fortunately, this algorithm admits to a neat mathematical analysis, the
details of which are given in the Appendix. The end result is a recursive formula which gives the average
numiber of queries required for a network of 2k terminals, E[Qk(P)J, in terms of the average number of queries
for a terninal with 2 k-1 terminals, E[Qk (p)]. This formula is

E[Qk(p)] = 2 E[Qk 1(p)] + l-2(l-p) k > 1

The initial condition to begin this recursive calculation is E[Qo(p)] - I since it requires only one query
to poll a network with a single terminal irrespective of the value of p. Numeric-0 results for E[Qk(p)]
for k = 1 to 10 and p .1 to .5 in steps of .1 are given in Table II.

Table II

Unmodified Hayes

P k E[Qk(p)] [Qk(p)/2 k]

.1 1 1.380 .690
1 2 2.488 .612

.1 3 5.035 .629

.1 4 10.699 .669

.1 5 22.329 .698

.1 6 45,655 .713

.1 7 92.310 .721

.1 P 185.621 .725

.1 9 372.24F .727

.1 10 745.483 .728

.2 1 1.720 .860

.2 2 3.621 .905

.2 3 7.906 .988

" .i | "•,, ' ii ° . . . T :'

19-4

Table II (cont.)

p k E[Qk(p)) k (p)/ 2 k]

.2 4 16.756 1.047

.2 5 34.510 1.078
,2 6 70.020 1.094
.2 7 141.040 1.102
.2 8 283.080 1.106
.2 9 567.161 1.108
.2 10 1135.322 1.109

.3 1 2.020 1.010
.3 2 4.560 1.140
.3 3 10.004 1.251
.3 4 21.002 1.313
.3 5 43.008 1.344
.3 6 87.008 1.359
.3 7 175,016 1,367
.3 8 351.031 1.371
.3 9 703.062 1.373
.3 10 1407.125 1.374
.4 1 2.280 1.140

.4 2 5.301 1.325
.4 3 11.568 1.446
.4 4 24.135 1.508
.4 5 49.271 1.540 9
.4 6 99.542 1.555
.4 7 200.084 1.563
.4 8 401.167 1.567•.4 9 803. 334 1. 569
,4 10 1607.669 1.570

.5 1 2.500 1.?50

.5 2 5.875 1.469

.5 3 12.742 1.593

.5 4 26.484 1.655

.5 5 53.969 1.687S.5 6 108.937 1.702

.5 7 218.875 1.710

.5 8 438.750 1.714

.5 9 878.499 1.716

.5 10 1757.998 1.717

This completes the discussion of the original Hayes algorithe for the non-adaptive case. The essence of
the addptive case is the potion that for certain values of p it may be advantageous to treat 2k terminals
as two distinct sets of 2K-1 terminals (or four distinct sets of 2K-z terminals, etc.) which are to be
polled separately. In order to determine the optimum partitioning of the set of terminals we compute for
each value of k and p the quantity E[Qk(p)]/2k. For a given vp lue of p, we then denote by k*(p), the value

eftk for which E(Qk(p)]/2k is a minimum. For a network with 2K termi nals, let koPTl if k* >1. Otherwise

= k if k <k*

k OPT k f~:t kOT " k* i f k >_ k*.

2k temnl nok-k OPT k OPTThen one should partition the 2 terminals into 2 groups, each containing 2 nodes and each group
should be polled separately using the non-adaptive algorithm. The average number of queries required is
then k-kOpT EfQk (p)}. If k*(p) * the adaptive algorithm reduces to a round-robin algorithm. TheOPTk

vhlues of E[Qk(p)1/ 2 are also contaiiied in Table 11.

For example in Figure 1, if the 16 terminals were treated as 4 sets containing 4 terminals each, only 12
queries would be required. Similarly, 12 queries would be required if the 16 terminals were treated as 8
sets containing 2 terminals ea:h.

3. THE MODIFIED HAYES SCHEME

The astute reader will have ncticed that the Hayes algorithm, as described in the previous section, asks
some questions to which the answers could have been predicted with certainty, Specifically, if 2m leaf
nodes are polled (m > 1), and a response is obtained, yet no response is obtained when the first half of
the terminals are quered, it is certain that a positive response will be obtained when the second half
are queried. Thus, these questions can be omitted from the algorithm with no loss of performance. (This
latter statement assumes that all terminals reliably receive all responses. If errors can occur, these
redundant queyies and responses stabilize the algorithm.) The modified Hayes algorithm suggested here is
thus to omit unnecessary questions. This modification can be used with either the non-adaptive or adaptive
scheme.

For example of Figure 1 and Table I, using the non-adaptive scheme, queries 6 and 12 can be omitted sioce
the answers to these questions are certainly "yes". Thus the number of queries, for this example, using
the modified version of the non-adaptive scheme would be 13 instead of 15. It is left to the reader to
count the queries for the modified version nf the adaptive scheme.

IL,-

It it desirable to know the average nwrber of queries (or responses) required with the modified Hayes algor-
ithT to poll 2k terminals, each of which has a probability p of answering yes, Calling this quantity
E[Qk(P)J the following recursive formula can be derived:

2k-l 2kE(Qý(p)J - 2E[Qý.I(p)] + 1 - (l-p) - (l-p), k > 1.
Again the initial condition is E[Qo(p)] = 1. Table III gives numerica, results for the average number of

queries as well as the information re4uired in order to determine the best adaptive scheme.

Table III

Modified Hayes

p k E[Qk(p)J E[EQ(p)]/2k

.1 1 1.290 .645

.1 2 2.114 .528

.1 3 4.141 .518

.1 4 8.667 .542

.1 5 18.114 .566

.1 6 37.192 .581

.1 7 75.383 .589

.1 8 151.766 S93

.1 9 304.531 .5z

.1 10 610.062 .5%6

.2 1 1.560 .780

.2 2 3.070 .768

.2 3 6.563 .820

.2 4 13.931 .871

.2 5 28.833 .901

.2 6 58.665 .917

.2 7 118.330 .924

.2 8 237.660 .928

.2 9 476.321 .930

.2 10 953.641 .931

.3 1 1.810 .905

.3 2 3.890 .972

.3 3 8.482 1.060

.3 4 17.903 1.119

.3 5 36.803 1.150

.3 6 74.606 1.166

.3 7 150.212 1.174

.3 8 301.423 1.177

.3 9 603.84/ 1.179

.3 10 1208.694 1.180

.4 1 2.040 i1.020

.4 2 4.590 1.148

.4 3 10.034 1.254

.4 4 21.052 1.316

.4 5 43.103 1.347

.4 6 87.Z06 1 .363

.4 7 175.413 1.170

.4 8 351.825 1.374

.4 9 704.651 1.376

.4 10 1410.302 1.377

.5 1 2.250 1.125

.5 2 5.188 1.297

.5 3 11.309 1.414

.5 4 23.613 1.476

.5 5 !8.227 1.507

.5 6 97.453 1.523

.5 7 195.906 1.531

.5 8 392.812 1.534

.5 9 786.624 1.536

.5 10 1574.249 1.537

4. NEW ALGORITHM (Gudjohnsen, E. et al..., 1980)

In this section we describe a new algorithm which, in general, requires fewer queries than the Hayes algor-
ithm (even when modified) but requires more bits in each response. Several methods of evaluating the per-
formance of this algorithm will be described. For eac:h method, we will compare the results of this analysis
with similar results for the Hayes algorithm. This algorithm is based upon a method originally put forth by
Capetanakis (Capetanakis, J.I..., 1979) for random access. We differ from Capetanakis in that he was con-
cerned with the terminals sending a multi-bit message whereas we are concerned with the terminals only re-
porting their response to a single yes/no question. Furthermore, the focus of Capetanakis's work was on the
situation with an infinite number of users whereas we are concerned with the cast of a finite numbier of
term! nals.

L~L.L-

!9-6

In this algorithm each of the 2 k terminals is assigned t unique k bit signature. If the terminal wishes
to respond positively it emits its signature. Again suosets of terminals are queried. If no signatures
are imposed on the channel in response to a query of a subset of terminals, all term'nals know that the
response of all queried terminals in that subset is known. It is only when two or more impose their sig-
nature in rsponse to a query that furthe: queries are required. The exception ti this latter statement
is if only two terminals are Qv, ried. Then no matter what the response, the responses of these terminals
are known by all.

Again an adaptive and non-adaptive version of this algorit'hm can be envisioned. We describe the non-adap-
tive version first. A query is initially asked of all 2f" terminals in the network. If none of the ter-
minals respond or one Gf the terminals respond by transmitting its k bit signiture the algorithm is com-
plete. The algorithm is also complete if k = 1 irrespective of tue response. If, however, for k > 2, two
or more terming•ls responJ by transmitting their signatures, the 2K terminals are subdivided into 2-subsets
containing 2k-i terminals earh and the process is repeated for each of the subsets until all of the re-
sponses are known. Questions which provide no new information are skipped just as in the modified Hayes
algori thin.

This algorithm again can be thought of in terms of querying leaf nodes of a binary treE stemming from given
internal nodes of the tree. The querics and responses for the example given in Figure 1 when this algorithm
is employed are given in Table IV. The signature of the ith user is assumed to be the 4 bit binary repre-
sentation of the decimal nunOer (i.e., 0 - 0000, 1 4 0001,..... 15 - 1111). Furthermore XXXX is used to de-
note the response when two or more signatures are transmitted, and * is used to denote no response.

Table IV

Queries and Responses for E:,-9ple Given in Table 1 Using Ntm Algorithm

_Question Number Node in Tree Terminals Being Queried Response

1 A all XXXX

2 B 0,1 ... 7 0001

3 C 8,9'....15 XXXX

4 F 8,9,10,11 XXXX

5 M 8,9

6 G 12,13,14,15

Note that .ftr- two or more signatures were found as a response to query number 4 and no signatures were
tound as 3 tv,ýsprse to query number 5. all terminals knew that terminals 10 and 11 responded positively
(and 8 and 9 'esponded negatively).

Let E[Q"(p)] denote the average number of queries required by this algorithm to poll 2 k terminals, each of
which hid probability p of responding positively. The recursive formula which determines this quantity is

E[Q"(p)] = 2E[Qjl(p)] + 1 - (1-p) 2 k - 2 k-l _ 3.2k-lp(l.p)(2kl).k ki

for k > 2. The initial condition here is E[Q(p)] = 1 since we need exactly one query to poll two te.,iinals
using this algorithm. Numerical values for E [QK(p)] are given in Table V.

Table V

New Scheme-Courn of Queries

p k E[Q (p)] EEQk(p)1/2 '

.1 1 1 .5 .

.1 2 1.096 .274

.1 3 1.532 .192

.1 4 2.955 .185

.I 5 6.507 .203

.1 6 13.967 .218

.1 7 28.932 .226

.1 8 58.864 .230

.1 9 I18.7k8 .232

.1 10 238.455

.2 1 1 .5

.Z 2 1.336 .334

.2 3 2.591 .324

.2 4 5.818 .364

.2 5 12.597 .394

.2 6 26.194 .409

.2 7 53.387 .417

.2 8 107.774 .421

.2 9 216.549 .423

.2 10 434.097 .424

.3 1 1 .5
3 2 1.652 .413

.3 3 3.711 .,64
.3 4 8.326 .520

Table V (cont.)
Sk M"0 [;p]2_

• 3 5 ~17.649•52
.3 5 3 6 .2 9 8 • .5 6 7

.3 6 73.597 .575
.3 7 148.194 .579
.3 8 297.388 .581

.3 595.775 .582
.3 1 1 . 5

,4 2 1.992 .498

.4 3 4.703 .588
• .4 4 10.385 .649
.4 5 21.769 .689

S.4 • 6 44.S39 .706
.4 7 90.078 .704
• .4 8 181.156 .708
.4 8 353.312 .710

.4 9.4 10 727.623 .711
.5 1 1 .5

.5 1 .578
.5 2 2.313 .689
,5 3 5.512 51
.5 4 12.019 .751

.5 5 25.038 .798.5 6 51.077 .780

.5 7 103.153 .80

.5 8 207.306 .812
.5 9 415.613 .813.5 10 832.225 .813

Also given in Table V is the value of E[Oi(p))J2k, the quantity needed to determnie the optimum partition-

ing for the adaptive version of the algorthm. (It is left up to the reader to fill in the details. They

follow exactly as for the Hayes algorithm.)

Although the new algorithm requires fewer queries than does the Hayes algorithm (even when modified) the

responses for the Hayes algorithm are only I bit long while here more bits are required in the responses,

In order to compare bits in the responses we note that since 01l terminals know which subset is being

queried, the terminals than know part of the signature of the potential responses, Only the portion of

the signature which is not common to all potential responders need be transmitted, For example, referring

to Table 1I1, the response to question number 2 could have been 001 instead of 0001 since the signatures

of all terminals being queried by this question began with a leading 0. Using this tecýnique to count bits

in the response, we define E[Bk(P)l as the average nuviber of bits in all restonses by 2K terminals each of

which has probability p of responding positively. The recursive formla for E[Bk(p)] can then be shown to

be 2 k,,k- k-I

E[Bk(P)l = 2EtBk 1(p)] + k - (1-pi2k, (k-l + (2k 1)(l1-P2 + (k-3)(2kPlpW1.)(2k-P)))) + kt.l-p)2 k

2k P(1.p)2k1,)

for k > 2 with initial condition C(Bl(p)) - 1. A further saving can be achieved by assuming that if no

termInals respond, this lack of response tan be recognized in I bit time. Defining E[B•(p)) as the average

number of bit-times required for such a system, one can derive the recursive formula.

E£q(pw] =2E[Bk I(P)J + k + (1-p)2p +k 2¥p (l"p)(2k-l) I l-1 (k-1 3(,_P2 2k-l (3k+1) 2k-l0k(lp ")'

for k > 2 again with initial condition E[(B(P)I = 1. Numerical values of these quantities are given in TW V1.

Let us compare the new algorithm with the modified Hayes algorithm by comparing E[Bý(p)j in Table VI with

EQ~(p)3 in Table III ,If we only consider the non-adaptive version of both algorithms we find thlt for a

fixed value of p (say p - .1), the new algorithm requires fewer bits in the respense for small values of k

while the modified Hayes algorithm requires fewer bits in the response for large values of k. If hmwmver

we use the adaptive version of both algorithms ve find that the new algorithm outperfonris the itodified

Hayes al gori thm.

Table VEI

New Scheme-Bit Count

p kEBk(P)J
E[Bk(P))

.1 1 1 1.840

.1 3 3.%72 2.942

.1 4 3.414 7.399

5 20.217 18.62?

,6 46.194 43.041

• 7 99.?81 93.07S

19-8

Table '/I ,cont.)

p k E[Bk(p)] E[Bý(p)]

a1 2U6.762 194.150(
.1 9 422.524 397.301
.1 10 855.048 804.60T

.2 2 2.336 1.926

.2 3 5.511 5.02)
.2 4 13.927 13.213
.2 5 32.700 31.293
.2 6 7,.396 68.581
.2 7 149.791 144. 162

.2 8 307.583 296.324
.2 9 624.166 601.648
.2 10 1258.331 1213.296

.3 1 1 1

.3 2 2.652 2.412

.3 3 7.117 6.834

.3 4 17.948 17.431
.3 5 40.881 39.E49
.3 6 87.762 85.698
.3 7 162.524 178.396J
.3 8 373.048 364.793
.3 9 755.096 738.585
.3 10 1520.193 1487.771

.4 1 1 1

.4 2 2.992 2.862

. 3 8.422 8.253

.4 4 20.780 20.447

.4 5 46.559 45.893

.4 6 99.118 97.787

.4 7 205.237 202.573

.4 8 418.473 413.146

.4 9 845.947 835.293

.4 10 1701.894 1680.586

.5 1 1 1

.5 2 3.313 3.250

.5 3 9.398 9.305

.5 4 12.784 22.597

.5 5 A0 .n.8 50.194
.5 6 107.136 106.388
.5 7 221.272 219.776
.5 8 450.5414 447.552
.5 9 910.087 904.104
.5 10 1830.175 1818.207

APPEVI X

We consider the unmodified Hayes 5cheV described in Section 2. We assume we hayv a tree consisting of 2t
leaf nodes, the upper subtree with 2K-1 leaf nodes and the lower subtree with 2k- nodes. Consider the
following four mutually exclusive and exhaustive events:

El: No positive responses from 2k terminals.

E No positive responses from upper 2 terminals; one or more positive reponses from lower 2
termihlls.

E - No positive responses from lower 2 terminals; one or wore positive responses from upper 2k-1
terminnis.l1

E One or more positive responses from both lower and upper set of 2" terliial.

The probability of these four events are:
?k

P(E1) -(l-p) 2

P(E2)-P(E 3) 0(1-p) 2 k (0 - (l-p)0),

P(E 4) = (I - 0-02

Let E[Ok(1p) be the average number of queries required to poll the 2k terminals. Then
4

E[Qk(P)l t[E[QklP) lEj) PIE1).i u

19-9

But

E[Qk(p)EiJ - 1, I

E[Qk(P)1E2 3 E[Qk(P)IE 3) = 2 + E[Qk.l(p)IEs] .

E[Qk(p) E4] - 1 + 2 E[Qk l(p)1 5],

where C. is the event that there are one or more positive responses from a set ef 2kl teinals.

Rut it is easy to verify that

E[Qkl(P)3- (l-p)
2k-l

E[QkI(P) E5] -

I - (1-p)
Substitut4 ng we ther find that

E[Qk(p)] ' 1 + 2EtQfor(D)] - 20-p)2

which is the desired result.

Similar derivations yield the othcr recursive fonmnlL3 given in this paper.

ACKNOWLEDGEMEP'T

This work was supported by the National Science Foundation under Grant ESC-7921140, Nuch of this work was
done in collaboration with Professor Don Towsley and the author gratefully orknowledges his pemission tW
publish this work here.

REFEuENCES

Capetanakts. J. I., Sel •iwer 1979, "Tree Algorithms for Packet Broadcast Channels." IEEE Trans. on Infor-
mation Thq , Vol, IT-L., pp. 505-515.

Gudjohnsen, E., D. Towsley and J. K. Wolf, June 1980, "On Adaptive Polling Techniques for Computer Commil-
cation Networks," ICC Conference Record, Vol. 1. pp. 13.3.1-13.3.5.

Hayes, J. F., August 1978. "An Adaptive Technique for Load Distribution," IEEE Trans. on Communications.
Vol. C0M-26, pp. 1178-1186.

SIi

tt

i-ii

DISCUSSIONS
SESSION IV

REFERENCE NO. OF PAPER: 11-15

DISCUSSOR'S NAW,. Harvey Nelson, Naval Weapons Center, USA

AONHG'S NAME: A. 0. Ward

CW0IENT: I'm very Interested in your concept of an engineer work station. That is an integrated net
of automated tools for developing requirements and proceeding on to PSL/0SA and code. •Jhen do you
expect to have the work station operational? What will be the steps of :implementation? What marketing
or availability plans do you totesee?

AUTHOR'S REPLY: We hope to have the work station oper'ational in the first half of 1982 but I would
prefer not to detail the implementation steps here. The tool is being developed for in-house use and
we do not have any short-term plans to make it commercially available.

REFERENCE NO. OF PAPER: IV-IS

D!SCIJSSOR'S NAME: Or. N. J. B. Y.ung, Ultra Electronic Controls

XU'iHOR'S NAME: A. 0. Ward

COMMENT: Have you considered producitig code automatically In a second language, e.g. PASCAL, as well
rs in CORAL? A second code implementation would enable you to ptrform a dwkl-ccding type tes; of the
first Implehentation (but wzuld not help in checking the specifi.ation, of course).

AUTHOR'S REPLY: We have considered languages other than CORAL but not for the reason you cite. Taking
a long view, we will certainly wish to have a similar capahility for use with the ADA language and a
program of work is being considered to achieve this.

REFERENCE WO. OF PAPER: ZV-15

DISCUSSOR'S NAME: Or. von Issendorff

AUTHOR'S NAME: A. 0. Ward

COMMENT: I am quite impressed by your method which seems to be very usable. But, in case you would
like to select your method or another one--and there are many more--I would not have the means to do
so. So, could you please compare your method to others.

AUTHOR'S REPLY: To answer this question properly is clearly outsi&% ths scope of this meeting. So, I
would like to respond in two ways. First, when we were formulating our ideas on requirements analysis
Just over 2 years ago, there seemed to be few alternatives. TRW's RSL/REVS system, although nowerful,
was not commercially available and the host machine and language were not compatable with our
enviromnent. SADT was not widely accessible in the United Kingdom and we understood that efforts to
model SADT descriptions in PSL had not proved successful at that time.

As far as tools were concerned, there were two alternatives, Michigan's PSL/PSA and the U.K.
;y_ýem SOS. The letter required significant front-end effort to be mar practicable and again was only
available on a host-machine to which we did not have access. PSL/PSA, con the other hand had a rich
language .ind was supported on our mainframes.

The second point I would make is that there are two studies which Dr. von Issendorf may find
useful. The first was sponsored by RSRE and is in the public domain, being an international survey of
reoulrements analysis methods and tools. The second is currently b.,ing undertaken by the Depart!cnt of
Industry and is entitled 'Dol Ada Methodology Study.' The latter should report before the end of 1.981.

REFEREPICi NO. OF PAPER; IV-17

DISCUSSOR'S NAME: K. Brammer, ESG

AUTHOR'S NAME: Enslow (Livesey, presenter)

COMMENT: Would you explain how priority Interrupts/requests are handled by the fully distributed
processing system (wiere t:he participk•ing units seem to have equal rights); for Instance, if a five
control component within en avionic system needb instant action. Can you elaborate on the notion of
the "price, a user of the FOPS has to offer while bidding for being served. Is it meant literally (in
dollars) or is 4t an abstract cornept?

- u t m m m a A

S4-2

AUTHOR'S REPLY: (1) Components can have equal rights in the sense of cooperative autonomy, but still
have differing priorities. If a user In the system needs (and deserves) instant service, then it is
e~ffectively bidding a very high "price" and should win most contests for resources.

An extremely high priority user might even have dedicated resources.

(2) The price in bidding is whatever is rmaningful in the system: dollars, budget, Gr
priorities, etc.

(This is the op'nlon of the presenter, not necessarily that of the author.)

REFERENCE NO. OF PAPER: IV-17

DISCUSSOR'S NAME: T. Sirestrd, WURE, Norway

AUTHOR'S NAME: Enslow (tivesey, presenter)

COMqENT: When trying to increate the performance of decentrclized decision making, one is often faced
with the second-guessing phenomenon (a decision maker anticipates the actions of other decision makers
to make his own actions more effective). Is this phenomenon present in your problem formulations - and
cpn it be used to iuq, :ve the performar-e?

AUTHOR'S REPLY: One classic example of this is the bidding problem. One asks for a resource. One is
told it is available, but then when one reserves the resource, it has already been taken by someone
else. This is due to time delays in inquiries and reservations. At Georgia Tech, we are actively
investigating this problem.

(This is the opinion of the presenter, not necessarily that of the author.)

REF2RENCE NO. OF PAPER: IV-18

DISCUSSOR'S NAME: Enslow (Livesey)

AUTHOR'S NAME: L. Svob'adova, INRIA

COMM4ENT: Is it not true that in this system message passing would have to be atomic (if a crash
occuri-ed after the textual part no a message arrived, but befoee the message identifier did (or
vice-versa) then an inconsistent state might result)? Do you know any system in which this is taken
care of?

AUTHOR'S REPLY: (1) It is not necessary that the comeunication subsystem delivers messages atomically,
h~owever, the receiver must be able to check the integrity' of a request. If the textual part of a
message arrived before the identifier of the atomic action to be created by the request, the request
would not be processed, since the first thing that must be done is to create a commit record, for which
-it is necessary to have the identifier. If the textual part got lost, the atomic action opened when
the identifier was received would be aborted, since a timeout is associated with each commit record.
(2) Co•munication protocols that provtW virtual connections deliver messages atomically, however, it
does not mean yet that a message is delivretd atomically to the destination process. I do not know any
distributed system that implements atomic process to process communication.

REFERENCE NO. OF PAPER: IV-18

DISCUSSOR'S NAME: Van Keuk, AVP Member

AUTHOR'S NAME: L. Svobodova

COWlENT: Crashes as you said can occur as a consequence of incorrect stochastic data as we are faced
with In signal processing applications. Do you see a conflict of your technique and backtracing
facilities for test and debugging.

AUTHOR'S REPLY: It is true that automatic rollback to an esrlier state conflicts with testing and
debilo. .g, where it is important to keep a trace also of the erroneous states. However, the mechanisms
that I described are intended te facilitate orderly recovery rather than impose it at all times. That
is. it would be posssible to inhibit them while in a debuqging stage. Also, we have been designing a
system where the object versions, even the invalidated onz, are preserved for an unlimited period of
time. The inval dated versions are not accessible to ordinary user programs, but they could be made
available to a debugger. (See reference SVOB 80)

S4-3

REFERENCE NO. nF PAPER: IV-1B

DISCUSSOR'S NAME: K. SIbin, Rensselaer Polytechnic Institute, USA

AUTHOR'S NAME: L. Svobodova

COMMENT: Did you carry out any overhead analysis? Otherwise, how can you justify your proposed
method?

AUTHOR'S REPLY: No, I did not do any overhead analysis of the method that I have described in my
paper. Clearly, it is important to find out if this method is practical, however, I do not agree that
what is needed is overhead analysis. Overhead with respect to what? I believe that the -,see of
developing reliable software offered by the method (a programer can u!rite application K-ctisre without
any concern about restoring consistent state in case of a failure) is 7 1re important than the
additional processor time and memory need to implement It. And, I believe that only experimental work
can demonstrate if the proposed method is practical.

REFERENCE NO. OF PAPER: IV-19

DISCUSSOR'S NAME: Horst Kister, Germany

AUTHOR'S NAME: J. K. Wolf

COMMENT: Why using polling method at all? Why not issuing a broadcast and let then all terminals with
a "yes" respond in a priority order? (Any modern system should be able to do sure than polling.)

AUTHOR'S REPLY: Since any terminal initially only knows its own state, the suggest'".d technique of
responding in priority order is equivalent to "roll-call" or "hub" polling which th& paper shown is not
as efficient as probing.

Also, I believe the author has in mind a system where the polling is used as a method of terminals
gaining channel access to transmit information. This is only one of many uses to which polling con be
put. Status collection is a different use.

REFERENCE NO. OF PAPER: 1Y-19

DISCUSSOR'S NAME: K. G. Shin, Rensselaer Polytechnic Institute, USA

AUTHOR'S NAME: Prof. Wolf

COMPENT: How would you hendle an error in answering the query?

AUTHOR'S REPLY: Some of the algorithms are more sensitive to errors than)thers. As a rule of thumb,
the more efficient the algorithms, the lesa redundancy exists in the algorithm and thus the sore
sensitive the algorithm is to errors.

REFERENCE NO. OF PAPER: IV-19

DISCUSSOR'S NAME: J. H. Seltzer, MIT, USci

AUTHOR'S NAME: Prof. Wolf

COMMENT; How about applying this polling technique to a speed-limit Arcuit? In that case, thre may
be a longer time required to poll a larger number of points because of fan-out. It would seer that
this effect would lead to a different optimum polling pattern.

AUTHOR'S REPLY: This is an excellent suggestion. We have cvonsidered n problem which is in somq serse
the dual of the problem y." suggest witureby .nere is an upper limit to the number of times a station
can be "probed" in any givcn polling cycle. It certainly makes a great deal of sense to consider tie
problem you suggest.

FFR FERENCE NO. OF PAPER: IV-19

DISCUSSOR'S NAME: Dr. Van Keuk, AVP Member

AUTHOR'S NAME: Prof. Wolf

COMMEhNT: For your analysis you need, as you said, avsumptions on the statistical independence of the
events. I feel In addition you need the assumption of constant probability. If this is not given, how
do you modify your algorithm.

AUTHOR'S REPLY: We are presently working on just this problem. We are c. sldering the simplest case
where we have two classes of stations, one class having probability PI of being active and the other
class having probability P2 of being active. At this time, I cannot give you any concrete results
except tc say that one must carefully match the algorithm to the assumptions on the statistiec of the
statiots tn order to achieve an efficient scheme.

20-I

STAGE-STATE RELIABILITY ANALYSIS TECHNIQUE

Alan D. Stern
Boeing Military Airplane Company
Digital Flight Controls Research
Seattle, Washington

SUMNARY

Conventional reliability analysis techniques such as fault-tree and Booleen algebra methods are
difficult to apply to redundant systems with complex interactions and redundancy management
philosophies. Some advanced flight control systems, for example, employ multiple redundant channels
which, with proper redundancy management and failure detection, can degrade to simplex operation. The
reliability analysis must properly account for the defined success criteria, redundancy level,
redundancy management technique, system dependencies,and failure detection coverage. The Stage-State
reliability analysis technique properly accounts for these factors. It is also computationally simple
such that triplex redundant systems have been analyzed using an early 1970's desktop computer.

This method is well suited for analysis by the system architect. The process begins with a system block
diagram showing all element connections. A success logic digram is then written reflecting all
possible success states. The probability of success equatioti is written directly from the logic diagram
and evaluated by substituting the probability expression for each system element. Multiple success
criteria can be applied to one problem formulation simply by deleting those states which do not satisfy
the success criterion.

1.0 INTRODUCTION

Advanced digital flight control systems (DFCS) for new aircraft are assuming addifonal -oles relative to
today's operational vehicles. Such roles include stabilty augmentation systems (SAS) and manuever load
alleviation (MLA) systems plus other requirements which may require the DFCS to have flight safety
reliability over significant portions of the flight envelope. Provision of such reliability while
simultaneously striving to minimize hardware redundancy levels, have led to the development of
sophisticated DFCS architectures. Some prcmising system architectures have included in their redundancy
management philosophies, the ability to isolate failures to a particular line replaceable unit (LRU) and
to select that LRU successfully to the simplex level. The ability to redundancy manage LRU's in this
fashion reqires that the architecture provide the transfer of data (from redundant LRU's) between

channels (see Figure 1), and that the selection of one healthly LRU from two choices be achievable. The
probability of selecting one healthy LRU when one of two redundant LRU's has failed is called "failure
coverage" or Jwst "coverage".

t A • •' IPUT[JCOMNICTROL

SENSOR DIGITAL ACTUATOR
L AtIINPUTCONTROL- OUTPUT I

INTERCHANNEL
COMMUNICATION

SENSOR I LACTUATOR
A2 INPUTCONTROL

2 22
SSENSOR • UNITB OU ACTUAýTOR ,

Figure 1. Duplet DFCS With Intarchmnnri Communication

The concept of various degrees of "dependency" also arises with such architectures. An I.RU has a
dependency when It must rely upon one or more other LRU's to operate successfully before that LRU can
accomplish its function in the system. For example, Figure 1 shows that the transfer of sensor data
between channels depends upon successful operation of it's Input and DCU.

Conventional reliability analysis techniques such as fault-tree and Boolean algebra methods, become
extremely difficult to use for complex architectures possessing redundancy with dependencies and
coverage. The mathematitrs becomes massive with high probability for error. The Stage-State reliability
analysis technique, on the other hand, is quite simple while possessing the following features:

a) accounts for redundancy level for each specific LRU,
5) defines the collection of probability states which represent a desired success or failure

criteria,
c) a probability of success P(S) equation can be written directly from a success logic diagram

which includes the effe:ts of dependencies,
d) the P(S) equation is more compact and r:quires minimal memory for a digital evaluation relative

to competing methods,
e) multiple success criteria are easily evaluated by simply deleting those states (terms) which do

not satisfy the new success criteria, and
f) the effect of failure coverage is easily incorporated in the P(S) equation.

2.0-2

2.0 THE METHOD

2.1 Concept Definition

The Stage-State method, describtid below, was developed by Mr. Jlw Rice of The Boeing Military Airplane
Company in 1978 to sunport the systematic analysi% of a variety of DFCS architectures with a large
number of system elements (Reference 1). The need fie fulfilled was to nrovide a reliability analysis
tool that the system designer could easily ust to conduct system architecture trade itudies.

The method is based. upon straight-forward use of set lo•ry 4nd axioms of probaullity. It considers a
space S which contains all possible outcomes of the syst-m and breaks them up into soutually exclusive
events, or states. The sur of the probabilities of all such states must therefore ve unity.

Consider the following example of a system consisting of a duplex stag,.
A "stage" is defined as a set of like redundant elements (LRU's) as

F106re 2. DupIe't st~a

shown in Figure 2. This figure illustrates a success logic diagram; i.e., success consists of the chain

between points 1 and 2 not being totally broken due to failures. This stage consists of four
independent states. A "state" defines a particular combination of failed and/or healthy LRU's of a
given stage. The possible duplex states are

AB
Both Healthy a RARB - STI - State 1 a P(1

ABD

"A" Healthy, "B* Failed a RAQB - ST2 - State 2 - P(2
OUP

AB
"A,' Failed, *B* Healthy - QARB a ST3 - State 3 NP 3

DUP

AD
d both Failed a QAQB - ST4 - State 4 P(4

OUP

where Rt :-lnd Qi are the probabilities that the Ith LRU is good or bad, respectively. The
probability that the stage is good or bad is

P(S) - 1.0 - RARB + RAQB +QARB + QAQB (2)

"A success criterioi can be applitd to these states. If that criterion is that either, A or B good

represents success, tr, e;

P(success) - RARB + R/,QB + QAR6 (3)

If success says that both must be good, then only state 1 applies; i.e., P(success) % RAPa.

ine Stage-State techniquse employs conditional probability to adjust success criteria. Let S be defined
as the success function. The probability of S occurring for a duplex stage is

4P(S) - E P(SISTi) P(STi) (4)1-I
where P(S/STi) is the conditional probability of success given the stage is in state I (STi). For the
duplex stAge, where either element healthy constitutes success, equations (1) indicate

P(S/STI) - P(S/ST1) a P(S/Sl2) - P(S/ST3) a 1
P(S/ST4) - 0 (5)

20-3

Therefore, P(S) for duplex stage AB is the probability that that stage is in states 1, 2, or 3 duplex.

STG AB
P(S) - P(1,2,3) - 1F(STI) + I P(ST2) + i P(s13) (6)OUP

RARB RAQB QARB

If elements A and B are '.entical, then defining the reliability cf LRU A as RA and the probability

of. failure of A as QA we get

P(S) - RA2 + 2 RAQA (7)

or " 2RA - R2 (8)
where QA v I - RA (9)

2.2 Etfecý of Dependencies

Consider tile dupl-x system shown in Figure 3 Which has three duplex stages (A, B, and C) with C being a
dependency for stages A and B. Success is defined a-, getting information to the success node, S.

S' EM DIA(,RAM ISUCCESS LCiGIC DIAGRAM

Figure 3. OuPlex SyFstem~ With Oependency (•"tap C)

Two success states will be defined for each stage - both LRU's good (ST1); and either LRU good (S•Z).
The prolability of success can he written as

This equatto,; examines success Jdsed iupon the iiost dependent stage first. It veads: P(S) dluals the
probability .•uccess giv.en stage. C is in state 1 (duplex) times the L.iobability that stage C is in state
1, Plus the probability oF ,'iccess given stage C is in state 2 (duplex) times the probability that stage
C is in state 2.

To exami• -. the first term we can redraw Figure 3 assumring stage U is in state 1; i,,e., bot;i good.

A1

E§} I

SYSTM DG S
Fu e A.

S
A2 A C2 12 C

1 2

'iSSEM DIAGiRAMI SUCCE.SS LOGIC DIAGRAM

l Figure 3. Ouplex System With • cp in w teOW C

20-4

From Figure 4 it is readily observed that the conditional success can now be defined as follows

P(S.ISTI) - Probability of Al or A2; and 81 or B2 good

STG A STGB
P(S ~l) - P(1,2) P (1,2) (11)

DUP DUP

From equation (8) the following is written

(2RA - P.A21URB - PB2) (12)

Now let's evaluate the condi t ional probability where stage C is in state 2; i.e., only C1 or C2
good. Figure 5 illustrates this state.

AGOD4142)-5 Al D

ILED

SYSTEM DIAGRAM SUCCESS LOGIC DIAGRAM

Figure 5. Duplex System With Stag C in State 2

From Figure 5 the probability io• success given stage C is in slate 2! is

P(S/ST2) - p (STQ A) p (STG B)
SIMP SIMP

112

• RA x •(13)
That is, if C1 is healt.I•y, succiess depends upon the probability that the elements A and B are healthy
in their simplex state. Substituting (12) •nd (13) ir, tc (10) give2 the final result.

_ýcC2

P(5) - (2RA-RA2)12RB-R82)P(S) + RR~P(ST) C) (14)

RC2
2RcQc 2Rc-2Rc 2

p(S) Y (2RA.RA 2)(2R..M 2) p,2 + RAC (2Sc S2Rc
2) (15)

Equation (15) was derived with relative ease. A comparison with a Bolean algebra solution to Vie same
probleis Is illustrated in Reference 1 which shows thret• pages of detailed algebra were required toobtain a result identical to the Stage-State method.

2.3 A More Complex Example

: A duplex OFCS will now be evaulated. This system, shown in Figure 6, has duplex stages for all LRU's;i.e., sen.sors (A and B), input sections (UN), digital control units (OCUl, output sections (OUT), and
control surface servos (AlL, RUD, and ELE)s The CUis havi an snterchannel comunication capablitiy.

This DFCS has three dependencies. The most dependent element is

PSS2 -/pSURFAApCET B

SIMOMPUTER

ISENSORS SECTIONSETO _A L•L

SE RROS
P Figure 6. Dual DFCS

R- 2R~c 2R 2R

20-5

the DCU since its loss constitutes loss of a full channel. The input and output dependency impacts the
use of one full sensor or servo set. 1his Is illustrated by the associated success logic diagram shown
in Figure 7. This

Al IN1 91U iN1 OCU1 OUT1"AIL

DCI OUT' I DU T LEVI

FiqL,. z 7 Succr Logic Diagram f tft Duel DFCS

logic diagram can be used to define success states subject to various levels of conditional
probabilities as defined Welow.

The probability of system success P(S) can be written using repetitive application of the definition of
ccinditional probablility aiu the sub-division of the sample space into disjoint states. For the DCU
stage, P(S) is

DCU DCU OCU DCU
PM - P(S/!)P(I ' + P (S/ 2)P(2) (16)

DUP OUP OUP DUP

DCU
For the OCU in state I duplex, the system reduces to that shown in Figure 8, and P(S/ 1 I is defined
from this diagram. DUP

E & INPKT FUNCTION

OUTPUT FUNCTION

Figure 8. DFCS With DCU in State 1 (Both Good)

Observe that the first subdivision of the iample space was to divide it into all of the possible states
of the most dependent stage. Given that the DCU stage is in state 1 duplex, the system is reduced to
one composed if independent input ana output functions but which possess internal dependencie4 The
input function has the input stage as a dependency and the output function has the output stage as a
dependency. Then

DCU
P(S/ 1) • P [INPUT FUNCTION GOOD).(OUTPUT FUNCTION GOOD]

DUP

P(INPUT FUNCTION GOOD),P(OUTPUT FUNCTION GOOD) (17)

- P(INF)P(OUTF)

The input function is now subdivided into a reduced set of disjoint sample spaces.

IN IN IN IN
P(INF) - P(INF/ 1)P(1) + P(INF/ 2)P(2) (18)

DUP DUP OUP DUP

and

A, S

IN " A B
P(INF/1)-L . L. .. J - P(1,Z)P(I,2) (19)

DUP o i 2DUP DUP

Ai

20-6

IN
PAINF 2) 2-

DUP

A a
P(I)P(I) (20)

SINP SIMP

theryefore,

A B IN A B IN
P(INF) rP(IZ)P(1,2)'(1) +P(1(1)P(2) (M1)

DUP OUP DUP SIMP SIMP DUP

In a similar fashion the output function is subO"vided into its reduced sample space.

P(Output Function is Good) - P(OUTF)

OUT OUT OUT OUT
P(OUTF) * I(OLITF/ I)P(I) + P(OUTF/ 2)P(2 1 (22)

OUP OUP DUP DUP

where

OU'T LF*V
P(OUTF/ 1)") ,H.)

OUP L "

All RUD ELE

P(l,2)P(1,2)p(l,2) (23)
DUP OUP DUP

and LVOUT
P(OUTF/ 2)

OUP

EAlL RUB ELE•P(I)P" 1 MP 1 (24)

SIMP SINP SII•

substituting (23) and (24) into (22) and then (22) and (21) into (174 gives

DCU [pA B IN A B IN 1
P(S/ 1 - (l,2)P(1:2)P(1) + P(I)P(I)P(2)

DUP OUP OUP I'UP 51*P SIMP OUP (5

FAIL RUU ELEV OUT AIL RUB ELE OUT
(,I 2•,2),-G.2)P(I) + P(I)P()p(I P(1 2 I
DUP DIV DUP DUP SIMP SIMP SIIP DUPj

DCU
Looking at the conditional probability P(S/ 2) from equation (16), it can be

OUP
seen that the success path is now one simplex channel so that

DCU A B 'IN OUT AIL RUB ELE
P(S/2)"P(1) P(1) P(I) P(1) P(1) P(I) P(1) (26)

OUP SIMP SIMP SIMP SIMP SIMP SIMP SIMP

Substitition of equations (25) and (26) into (16) provides the final result.

(S f[A B IN A B IN1
P(S) -•IP(1,2)P(I,2)P(1) + P(1)Pi 1)P(I 2 x

IL DUP DUP DUP SIMP SIMP oUP]F ARL RUD ELEY OUT ALl RUD ELEV OUT] tIcu

P(I,2)P(1,2)P(I,2)P(1) + P(I)P(1)P(1)P(2 PA) P(1)

L DUP DUP DUP OUP SIMP SIMP SIMP DUP OUP

F A B IN AlL RUB ELEV OUT 1 DCU
P(1)P(1)P(1)P(I)P()P(I P(2) (27)

L SIMP SIMP SIMP SIMP SIMP SIMP SIMPJ DUP

S.i i= =, k g • . , • ,r /1 i", I •

The various reliability expressions with appropriate failure rates and oxposuv* times may be substituted
into each state's probability factor in equation (27) to obt3in a numerical *'..jlt.

2.4 Effect of Failure Coverage

Failure coverage is defined as the probability of successfully detýfting a failure within a redundant
stage, isolating that failure to the specific LRU, and reconfigur,ng the stage to place the failed LRU
off-line. It is gene-slly accepted that coverage v'lues of unity Ire possible .Ath 3 or more healthy
redundant LRU's. The irou'pm arses when a failure occurs when just previous tnere ere only 2 h.plthy
LRU's-which has failed? Therefjre, the coverage factor (c) is used Lo modify the probability of
achieving the simplex sto•te.

The Stage-State method includet, cov,-age by splstin, the simplex state 7or a stage into two parts-that
which successfully degrades to simp',ex, and that wih,,r. doen not. This is now illustrated for a d! Ilex
stage. Equation (2) is rewritten bolvw for a dupl, :;tage with identical LRU's.

P(good or bad) - 1.0 - R2 + 2RQ + Q2 (28)

STI ST2 ST3

If success is defined as having at least I of the I LRU's healthy, then the success states include
states 1 and 2 only. State 2 represents the 2 ways in which simplex operation can be achieved. When
coverale is not unity, the probability of achieving this state Is 2RQc. In this process a new
unsuccessful state has evolved, namely 2RQ(I-c). Now

previously 1 state

P(good or bad) - 1.0 - R2 + 2RQc + 2RQ(I-c) + +2

(29)
Success States Failure States

A triplex stage can be evaluated in a similar fashion. With unity coverage the triplex states are shown
by equation (30).

P!good or bad) - 1.0 - R3 + 3R 2 Q + 3RQ2 + Q3

' -'-r •'- (30)
ST1 ST2 ST3 ST4

If success is again defined as successfully achieving at least simplex operation, then the first 3
states represent success. State 3, however,
must be modified by c if the coierage is not unity so that

previously I state

Pgoorbad) *1.0 -R3 + 3R2Q + 3RQ~ +3R'2'1.-)+Q
'- 'r-"~(31)

Success States Failure States

3,0 Conclusion

Traditional reliability analysis methods are error-prone and difficult to usefor complex flight control
systems possessing a large number of LRU types and the redundancy management of individual LRU's. This
is primarily due to the large number (c: combinations of possible success states and dependencies. The
Stage-State reliability analysis method is a much simpler approach which is well-suited to use by the
system architect. The method makes it readily apparent where the sources of the system unrelidbilities
are locatei. Also, because of its simplicity, fewer errors arise and the use of small portable
computers is possible.

4.0 References

1) Rice, J.W., 20 Dec 1979, Digital Flight Control Reliability - Effects of Redundancy Level,
Architecture, and Redundancy Management Techuique, Seattle, Washington, Boeing Document
D180-25578-1.

Also published as technical paper without the Stage-State Reliability Analysis appendix as:

Rice, J.W. ind McCorkle, R.D. August 1979. Digital Flight Control Reliabiliiy - Effects of
Redundancy I,ývel, Architecture, and Redundancy Management Technique. Boulder, Colorado.
AIAA Guidan(c and Control Conference. AIAA paper #79-1893.

|.

sz~ _......

21-1

METHODOLOGY FOR MEASUREMENT OF FAULT LATENCY IN A DIGITAL

AVIONIC MINIPROCESSOR*

John G. McGough
Fred Svrern

Flight Systems Division
Bendix Corporation

Teterboro, New Jersey 07608

and

Salvatore J. Bavuso
NASA Langley Research Center

Hampton, Virginia 23665

ABSTRACT

Using a gate-level emulation of a typical avionics miniprocessor, fault injection experiments were per-
formed to (1) determine the time-to-detect a fault by comparison-monitoring, (2) forecast a program's
ability to detect faults and (3) validate the fault detection coverage of a typical self-test program.

To estimate time-to-detect, six programs ranging in complexity from 6 to 147 instructions, were eeiulated.
Each program was executed repetitively in the presence of a single stuck-at fault at a gate node or device
pin. Detection was assumed to occur whenever the computed outputs differed from the corresponding outputs
of the same program executed in a non-faulted processor. Histog:-ams of faults detected versus number of
repetitions to detection were tabulated.

Using a simple model of fault detection, which was based on an analogy with the sclection f balls in an
urn,distributions of time-to-detect were computed and compared with those obtained empiricdlly.

A self-test program of 2,000 executable instructions was designed expressly for the study. The only re-
quirement imposed on the design was that it sh'uld achieve 95% coverage. The program was exucuted in the
presence of a single stuck-at fault at a gate node on device pin. The proportion of detected faults was
tabulated.

In all experiments faults were selected at random over gate nodes or device pins.

1. INTRODUCTION

1.1 Background

NASA's Langley Research Centc.- has been actively pursuing the synthesis of a reliability assessment capa-
bility for fault-tolerant computer-based systems for several years. This work has cFllminatiod in the de-
velopment of CARE III (Computer-Aided Reliability Estimation) which is a general purpt.;V ,-eilability
assessment tool for highly reliable fault-tolerant systems tailored toward flight cruc'¶al avionic systems
employing multiple digital computers. A major innovation of CARE III is its treatment of coverage which
is a vital factor In the reliability modeling of digital fault-tolerant computer systems. Coverage, a
generic term, captures the notion of a system's ability to handle hardware faults and involves system
fault detection, isolation of the fault to a reconfigurable (redundant) hardware module, and fault recon-
figuration and recovery. The first two components havw been modeled extensively a.1 have been shown to
be critical for achieving high system reliabilities.

What is also evident in the literature is a lack of empirical coverage data although several very powerful
reliability evaluators require this data. As a result, a pilot study was conducted in 1978 to test the
feasibility of measuring detection coverage and investigating the dynamics of fault propagation in a digi.
tal computer. The specific cbjectives were to study how typical software causes stuck-at faults to prop-
agate and hence become detectable, to account for as many software code characteristics (e.g., instruction
:.ubset, branchinq) as possible affecting detection (with an eye toward optimizing fault detection by code
synthesisý, a'id to determine a method of forecasting a giver software program's detecting ability prior to
computation. A series of fault injection experiments were conducted using a gate-level simulation of a
small idealized processor with a limited instruction set. The results of the study were surprising since
tiey contradicted the prevailing belief that most hardware faults cause catastrophic and hence detectable
computational errorg. In fact, a significant proportion of faults remained latent after many repetitions
of a *rogram. The ramifications of these observations can have a significant impact on the design of
fault-tclerant digital computers which employ companion-monitoring or majority-voting for fault detection
and isolation. The risk is associated with the accumulation of latent anJ therefore undetected faults
which may defeat the comparison-monitoring or majority-voting detection schemes. Needless to say, these
considerations are of paramount importance to re~lability assessment; as a result, NASA funded another
study to investigate the findings of the pilot study as it was not clear from the pilot study that similar
resulcs could be obtainFd for a real processor-the follow-on work was based on a real avionic processor.
This work was also extended to evaluate an airborne self-test program, to account for undetected faults,
and to assess the significance of injecting faults at the gate-level and at the functional pin-level.

* The contents are ,)ased on the study:

"Methodology for Measurement of Fault Latency in a Digital Avionic Miniprocessor", NAS 1.15946, Flight
Systems Division, Ap•ix "orporation, sponsored by Langley Research Center, Hampton, Va.

21-2

1.2 Objectives of the Study

A primary objective of the present study is to ascertain whether the results of the previous study apply
to a real avionics processor. Specifically,

e Given a set of software programs ranging from a simple "fetch and store" to a complicated,
multi-instruction algorithm inject a single fault, selected at random, and observe the time to
detection. Detection is assumed to occur whenever there is a difference between the computed
outputs of the faulted and non-faulted processors executing the same program. Determine dif-
ferences in detection time when faults are injected at the gate-level and comoonent-level.

Based upon empirical distributions, develop and validate a model of fault latency that will
forecast a program's fault detecting ability.

The following additional objective was added,

* Given a typical avionics self-test program inject faults at both the gate-level and component-
level and determine the proportion of faults detected.

2. EMULATION UESCRIPTION

2.1 BDX-930 Architecture

The Bendix BDX-930 Digital Processor Is a microprogrammed, ptpelined machine designed around the A1D29O1A
four bit microprocessor slice. The machine contains sixteen general purop.e registers of which four)registers may be loaded directly from memory and two registers may be used as base registers. Oneregister is Lsed as a stack pointer.

The program counter and memory address register are contained in the 9407, a chip designed to perform
memory address arithmetic. Along with a temporary register contained on the same chip, the BDX-930 is
able to perform four basic addressing modes involving three registers and various instruction fields.I
The machine contains three memory interface data registers which are used to input and output memory
data. There are also a number of one bit status flag registers that can be manipulated under program
control. This includes the Fl and F2 registers, which are hardware flags, and the interrupt enable,
overflow status registers. There also exists the indirect and link registers used by the microcode for
branching.

The microcode is contained in seven proms and a pipeline register is included for simultaneous
microcode fetch and decoding. Various internal and external conditions can affect microcode branching as
selected by the microcode itself and a microcode control prom. In addition to a rich instruction set
which includes 16 and 32 bit fixed point operati' 'i. there is a test sst interface ;n the microcode. A
selectable saturate mode is available which limits tile results of arithmetic operations when overflow
or underflow occur.

For simulation purposes, the comnuter has been divided into six partitions:

1. Address Processor

2. Data and Status Registers

3. Microcontroller
Pipeline Register

4. ALU (2901A)

5. Microcode

6, Control Proms

The partitioning is roughly equivalent to the stages of the pipe: - adress, fetch, decode, and execute.
These stages of the pipe are joined by various buses throughout the CPU. These buses are formed from tri-
state logic and some are bidirectional.

A list of Lhe devices usýed in the BDX-930 and their failure rates Is given in Table 1, obtained from
MIL-HDBK217B, Notice 2.

2.2 Description of tne Emulator

The emulation includes the components of the CPU (Central Processor Unit), scratchpad memory and those
portions of the program memory containing six target programs and the target self-test program. The emu-
lation is derived from the circuic schematics of the BDX-930 and includes all of the devices identified
in those schematics. Each device is represented by a gate-level equivalent circuit supplied by the chip
manufacturer. It was found that six types of gates were sufficient to represent any device, e.g., NAND,
NAD, OR, NOT, NOR, EXCLUSIVE OR. Table 2 gives the number of equivalent gates in each device of the CPU.
In dll, 5,100 gates were required.

21-3

All devices of the CPUJ were represented at the gate-level except the following:

16 general purpose arithmetic registers

program memory

scratchpad memory

microprogram and control memories

which are represented at the functional level.

The emulation did not include the direct memory access unit (DMA) or any of the devices of the I/O. The
emulated devices the CPU are shown in Figure 1.
Faults were injected into all devices except the program and scratchpad memories. Because the program is
"read-only", no processor, faulted ov not, is permitted to write into this memory. However, even though
the scratchpad memory is never faulted, a faulty processor can write into it. As a consequence, in the
parallel mode of operation where 36 processors are simultaneously emulated, the corresponding 36 scratch-
pad memories are also emulated.

No delay has been simulated between logic gates. !t is assum-d that all combinational logic Is stable
at the output the instant an Input pattern is applied to it, This me~ins that each time the input is
changed, the network need only be evaluated once to supply the correct output pattern, Operating in this
manner is very time efficient, but puts stringent requirements on the order of evaluation of the gates.)
To be able to meet these requirements, the logic is levelizod, i.e., placed in groups or le#els that rep-
resent the proper order of evaluation.

The emulator utilized the parallel method of loqic simulation (see, for instance. (Seshu. S., et al 1962;
Hardie, F.H., et al 1967)). The data word of a POP-l0 contains 36 bits; each bit position is used to rep-
resent a different machine. The simplest gate operations are represented by a single Boolean Instruction;
when the two imputs occupy the same bit positions in their respective words, the output also occupies
this bit position. The advantage of this technique is execution time savings. Typically, the amount of
code necessary to simulate 36 machines is of the same order as the amount of code necessary to simulate
only one machine. For an additional increase in speed the BDX-930 description is contained in compiled
code, rather than in tables.

Certain portions of the machine, notably the memory elements, were represented at a functional level
rather than a gate level. For micropvogram memory, two words of PL'P-1O storage contain 56 bits of micro-
store; at micro memory fetch time, these bits are retrieved from the proper address far each of the sim-
ulated machines and combined to form suitable words to interface the gate portion of the emulation. The
ROM portion of macro memory Is handled in the same manner. Writeable store contains a routine to translate

he gate !rputs into consecutive POP-JO storage words so that there is one copy of writeable storage for
each machine being emulated. On rnading this storage, the process is reversed.

In a typical run of the emulator, 36 different machines are exercised; 35 faulted machines and one good i
machine. Euch faulted machine is assumed to have a single solid fault at one node, either stuck-at-one
(SAl) or stuck-at-zero (SAO). The faults are injected by 4efining e:,tra gates at each node, an AND gate
for stuck dt zero and ari OR gate for stuck at one. A typical AND gate u-ing this technique is shown in
Figure 2.

An additional reduction in run-time can be achieved by observing th- not all gate faults are distinguishable
at the gate output. For example, an SAO fault on the input node of an AND gote is indistinguishable from
an SAO fault on the output node. As a consequence, if two or more indistinguishable faults of the same
gate are selected, only -ne fault will be emulated.

It will be aoted that only one partition of the BDX-930 runt with faults injected in each simulated run.
ihe remaining tartitions run'true value', that is logic without fault injection capabilities. This re-
sults in a time saving in program execution. When the ntilre emulator is run true-value, the execution
ratio between POP-l time and simulated time is 21,000:1, with faults injected in one partition, this
numbpr is approximately 25,000:1.

3. FAULT MODELLING AND SELECTION

3.1 Fault Aooel

In the present study the fellowing assumptions are made regarding failure modes:

e Every device can be represented, from the standpoint of performance and failure modes, by the
manufacturer-supplied, gate-level equivalent circuit.

* Every fault can be represented as eithen an S-a-O or S-a-l fault at a q&te node.

* The failure rate of the device i.; equally distributed over the gates of th?, equivalent circuit.

* The fail'zre rate of a gate Is v-qually distrIbuted over the nodes of the gate.

* S-a-O and S-a-l fnults are equally likeiy.

* Memory faults are excý.usivaly failts of single bits.

* A memory fault is the complement of its non-faulted state.

Jib_ -

214

Faults are injected into all devices except the main memory. In the case of the microprogram memory,
which is emulated at the functional level, faults are injected into the memory cells where they remain
active for the duration of the test. Faults are injected at an input or output gate node, And also re-
main active for the duration of the test. When a fault is injected at an output node it is allowed to
propagate to all nodes and devices that are physically connected to the failed node. When a fault is in-
jected at an input node it does not propagate back to the driving node. This strategy provides a wider
variety of failure modes than would otherwise be possible if propagation were allowed. The resultant
fault set includes a rich assortment of static and dynamic (i.e., data-dependent) faults.

The above procedure does not distinguish between gate-level and component (i.e., pin)-!evel faults except
by probability of occurrence; the method automatically Assigns failure rates to pins. However, a differ-
ent selection procedure war employed foe component-leve! faults. For these faults it was assumed that
the failure raLe of eachi device is equally distributed over the pins.

While this assumption violates theprescribed fault model it is con•sistent with the conventional method of
estimating fault detection coverage by simulating faults in actual hardware.

4. DESCRIPTION OF EXPERIMENTS

4.1 Definition of Failure Detection

In the present study fault coverage and latency estimates are obatined by employing two, conventional
techniques of failure detection: comparison-monitoring and self-test.

In comparison-monitoring a set of computed variables is compared witn a corresponding sel computed in
another nrocessor. If it Is arranged that both processors operate on identical inputs and dre closely
synchronized, then Eny difference in a computed variable signifies that one of the processors has failed.
In practice each processor executes an algorithm which compares the appropriate variables and signals a
discrepancy when such exists. In the present study this algorithm was omitted; a fault is considered to
be detected if a differenc- between corresponding variables exists irrespective of the ability of either
processor to recognize the difference or signal the discrepancy. Thus, the fault, coverage obtained from
the study is somewhat more uptfinistic than would be obtained in practice.

In self-test, on the other hand, each component of the processor is exercised by a set of computations de-
signed specifically to test that component. The results of each computational set are compared with pre-
stored values and any diffcrence signifies that the fault was detected. In practice, and in the study,
the processor increments a register after the successful completion of each test and before proceeding to
the next test. If the test is root successful the program exits. After an interval of time equal to the
maximum t!)r -i complete the program, the contents of the counter are decoded. If the value exactly
equals the total number of tests, the fault was not detected. Otherwise the fault was detected.

4.2 Definition o' Failure Jetection Coverage

We assume that a test procedure is given for detecting failures of a component, C. Each failure mode of
C will require a non-zero time eor detection. By considering all failures of C and all combinations of
inputs and internal states of C, we obtain in principle, if not in practice, a probability density function
for time-to-detect, which is measured from the onset of the failure to the time of detection. Denoting
this density by pdf(t) where

i•time-to-detect = latency time

we define

Test Coverage

1) 1 - (•) pdf(X)dx

0

- probability of detecting a failure of C in
the interval 0 ý t < t.

Observe that, according to this de•inition, test coverage is a function of latency time. The definition
can be extended to all devices of the computer as follows:

Subdivide the computer into mutually exclusive components Cl, C2 . Ck with failure rates X,. X.

and test coverages 1 - cl(), a2- [•a ") . 1 -ak(T), respectively.

Set Pdfl(T) probability density for time-to-detect failures of

C I 1 1 1, 2 k.

Then the pdf for all failures of the computer is

i=k

2) pdf(T) E X\i pdf (T)

i =1

21-s

where X XI + 2X + Xk"

Test coverage of the whole computer is then

i=k

3)- ai()).

1=l

From 3 we obtain

i-K

4) 1(T) Z a1(t) , as expected

i-l

One of the objectives of the present study is to obtain estimates of the probability density function,
pdf(-). These estimates are presented in Section 7.

4.3 Indistinguishable Faults and Effects on Coverage

During the development of the emulator it became apparent that a s1oigfic-snt proportion of components had
no affect whatsoever on the digital process. For the most part, these components are associated with un-
used pins, e.g., a complementary output of a flip-flop. However, there are other components whose lack
of effect are not as obvious Ls, for example, a component that only affects the process when it is faulted.
Cirtair. micromemory bits are in this category. In order to distinguish between these categories of faults[we are lead to the following info,'mal definitions:

I A fault that cannot be detected by any test sequence is indistinguishable. All other faults are
distinguishable.

Effects on Coverage

The oresance of indistinguishable faults can lead to erroneous and misleading estimates of cove-age. In
theory, indistinguishable faults should be disqualified from the emulation or from the fault selection
process. This is consistent with the definition of coverage whidh implicitly assumes that all faults are
distlngt:ishable. Unfortunately, in order to disqualify indistinguishable faults from the emulation or
from the fault selection process they must be first identified, a non-trivial task. The approach taken
in this study was to select faults without regard to their distinguishability properties and analy'e only
those faults that were undetected by Self-Test. The proporticn of indistinguishable faults from this set
was then used as an estimate over all faults.

We now indicate, briefly, how indistinguishable Faults affect coverage.

If

-y = proportion of components yielding indistinguishable faults

and
I - a = coverage of distinguishable faults

then

I - a = desired coverage

and

5) (1 - c) (1 - y) = coverage when indistinguishable faults are counted as undetected. We note,
incidentally that

6) (1 - a) (1 - y) 4 y = coverage when indistinguishable faults are counted as detected.

The estimate of (5) will be obtained if indistinguishable faults are not disqualified. Then, coverage
estimAtes will be in error by the factor, 1 - y.

One of the objectives of the experiments is to estimate r for a variety of computations including self-
test. The Phase I experiments consist of six .,,,Ftware programs ranging from a simple fetch and store to
a complicated multi-instructinn, linear convergence algorithm. Using comparison-monitoring the probabil-
ity distribution for t will be estimated for each of the six programs and the interdependence of these
distributions and the number and type of instructions will he asrertained.

The Phase 11 experiments utilize a typical avionics system self-test program which consists of 241
separate, sequential tests. The progrem consists of 2000 executed instructions which requires an execu-
tion time of 3 milliseconds on the BDX-930.

4.5 Phase I Experiments

This phase consisted of six programs each of which was coded in the assembly language of the BDX-930.
For the purpose of comparison with the experiments in (Nagel, P., 1978) the instructions of the BOX-930
were primarily restricted to the following set:

21-6

LOAD
STORE
ADD
SUBTRACT
BRANCH

In the following programs the Initializing variables were stored slmultaiteously in the 36 copies of the
scratchpad memories. The ground rules governing the experiments were:

o After each repetition of the program (for a randomly selected set of Inputs) by the non-faulted
processor the output variables from each repetition are compared, term by term, with those of
the faulted processors. The first repetition which resulted in a miscomparison is referred-to
as the "time-to-detect" or "latency time".

o At the start of each experiment the initial conditions for all subsequent repetitions were
stored in successivE locations of memory and the program counter was preset to the address of
the first instruction.

An experiment consisted of executing one of the following programs in the presence of a single fault.

a) FIBONACCI (FIB)

Create a Fibonacci series starting with a pair of integers. Eight terms are generated, each
term constituting a repetition.

b) FETCH AND STORE (FETSTO)

Fetch an integer from memory and store in another location. This process is repeated eight times.

c) ADD AND SUBTRACT (ADDSUB)

Fetch two integers from memory and compute the difference and sum and restore in memory.
Repeat eight times.

d) SEARCH AND COMPUTE (SERCOM)

Fetch three integers, A, B, C, from memory and set

S B + C

S2 =B if B8 A

S I B + C

S2 =B -C If A < B and C A

S= B - C

2 - BC if A < B and A < C

and store Sl and S2 in memory. Multiplication is performed by successive addition.

e) LINEAR CONVERGENCE (LINCON)

A line, characterized by slope, M, and Y-intercept, Y, is given. A positive abscissa, X, is
selected at random. By successively incrementing or decrementing the slope, M, by 1 the slope is adjusted
to obtain a line that crosses the X-axis prior to X and has a minimum deviation from the X-axis. The new
slope and ordinate at X are stored in memory for comparison.

f) QUADRATIC (QUAD)

Fetch four integers A, B, C, X, from memory and compute and store AX2
- BX - C. Multiplication

is performed by repeated addition. The process is repeated four times. The type and frequency of the
instructions executed in the above programs are given in Table 3.

4.6 Phase II Experiments

This phase consists of injecting faults and executing a typical avionic flight control system
self-test program to determine failure detection coverage. The self-test program was written expressly
for this study.

The task of designing the self-test was given to an experienced prugrammer with considerable
Sexpertise in self-test. The only requirement imposed was that the resultant test rhould achieve a cover-
age of 95%. The result was a program consisting of 2000 executed instructions with an execution time of
3 milliseconds. The detection strategy was that of exercising every Instruction type at least once and,
in most cases, with numerous variations.

Self-Test

The program consisted of 241 subtests. After a successful completion of a test the program incre-
ments a register and proceeds to the next test in the sequence. If, however, a failure is detected the

21-7

program skips the remaining tests and transfers the contents of the register to a designated memory loca-
tion whose contents became the measure of failure detection. In the Phase I1 experiments a fault was
defined as detected if, after a complete execution of the self-tttst program by the non-failed processor,
the contents of the designated memory cid not equal 241 in the faulted processor. Observe that, according
to this definition, a fault is detected if the faulted processor jumps out of the program, gets hung-up in
a infinite loop or executes a single extra instruction before transferring the contents of the incremental
register to memory.

5. URN MODEL

5.1 Urn Model Description

Several models have been investigated in an actempt to characterize the dynamics of fault propaga-
tion in a digital computer. Although simplistic in their assumptions, these models may, nevertheless,
provide insight into this undoubtedly complexsprocess. It has been conjectured (Nagel, P., 1978) that the
distribution of latency can be modelled by analogy with balls in an urn. We prefer to employ a different
analogy although the resultant distributions ere the same.

We postulate that the computer can be subdivided into three sets of mutually exclusive components
C1 , C2 , C3 such that

C1 = Set of components randomly exercised by the program

C2 = Set of components continually exercised by the programIJ
C3 = Set of components never exercised by the program.

We make the further assumption that a fault is detected if and only if the faulted component is
exercised. The scenario is that of an avionics computer executing two software programs one of which is
executed full-time and the other, part-time. The components that are exercised by the full-time mode are
denoted by C2 and those exercised by the part-time mode by C1 . Neither the full-time or part-time modes
exercise components, C3 .

We assume that the part-time mode is exercised randomly. If the unit of time is a repetition of the
full-time program then we postulate that the excitation is poisson-distributed in time with

a - probability tha+ tC,- part-time mode is exercised in a repetition of the full-time program.

Let X1 Failure rate of C1 (r,iilures/hour)

X2 Failure rate of C2 (Failures/hour)

X3 - Failure rate of C3 (Failures/hour)

X X1 = X2 + X3 (Failures/hour)

We now derive the latency distribution given that a fault has just occurred. The distribution is
defined in terms of three parameters, a, P and QO where

P - Probability that the fault is detected in the first repetition given that it occurred in sets
C, or C2

QO - Probability that the fault is never detected.

It is easy to derive the following relationships:

X A2 X 17) PO "I - Q o T + T T Ao I .

X 2 I X 2 l
-%+ a --- X• + a--

8) P A
A 2 A 1 P0T+

If

Pk probability that the fault is detected in the k-th repetition and not detected in a previous
repetition, k - 1, 2, 3. , n

qn+l Probability that the fault is not detected in the previous n repetitions

21-8

then
X2 •1

P Po p T + a
x1

P2 (1 - P) a PO a (1 - a) T

9) pn a (1 - P) (I - a)n- 2 a P a (1 - a)n 2,3...
"q l " -Q- + n-1 2 3, .

P+k QOP QO + (1 - P) PO Z1 - a)
k- n+l

T+ (I - a)n n - 1,2,3,....

Observe that

qn Pk 1, as expected.
k-Z

In estimating the above distribution the number of repetitions will be limited to eight. Then, the)
study will estimate the quantities

pl, peg ... Peg q 9

for S-a-1, S-a-O and combined faults.

6. STATISTICAL ANALYSES

6.1 Estimators for Self-Test Coverage

The estimators for x, y and z are

I ~m d
1O) x*

nd

mn
12) z* d + d

where

x (y, z) - probability that a S-a-0 (S-a-1. combined) fault i. detected;

md (nd) - number of S-a-O (S-a-i) faults detected;

m(n) - number of S-a-O (S-a-i) faults injected.

6.2 Estimators for Latency

The estimators for xk, Yk and zk are

m
Xk* -m

nk
13) Yk* n n

m k + nk
Zk* - m + n k 1 1,2,3,.....8,

where

xk (yk' Zk) - probability that a S-a-O (S-a-i combined) fault is detected in the k-th repetition;

mk (nk) - number of S-a-O (S-a-l) faults detected in t:*e k-th repetition.

Ah-

i-9

With some abuse of terminology we define

xg (yg, zg) - probability that a S-a-0 (S-a-i, combined) fault is not detected In the previous
8 repetitions.

The estimators for x9 , y9 and z9 are

inm-In- 2 - .. - 1-m8. -KXg* m m 1 -m,* -- n x 2* - . . - x8*

n n, - n2 -... -n
14) yg*" n 1 Yl* Y2* Y8*

m xg* + n yg*
Z* n + n - Z* - z2- - z8 *.

6.? Estimators for Urn Model Parameters

The method of estimation will be descrihed for S-a-0 latency distributions. With an obvious change
in, parameters, e.g'. mk. the estimates can be applied to S-a-i and combiied latency distributions, as well.

The method is based on the principal of maximum likelihood. We note that mk S-a-0 faults are
detected In the k-th repetition. Accordingly, we seek Urn Model parameters a, P and Po that maximize the
likelihood function.

mI m 2 m8 M 9
L -P P2 "'" P8 qg

where

P) " V P

P2 (1 - P) a PO

15) P3 * (1 P) a PO (1 - a)

P8 " (1 - P) a PO (1-a) 6

qg . Q0 + (1 - P) PO (- a)

and mn9 m - m1 -in 2 ..2 m 8 ,

We note that qg corresponds to xg of Section 6.2.

The maximum likelihood estimators for a, P and Po are obtained as the solution of

j. L . 0, .3L -0.

6.4 Accuracy and Confidence of Coverage Estimates

It can be shown (McFarlane, M. A., 1950) that

16) E (x*) x, E (y*) - y, E (z*) -z

and

(x x*) 2) x -X)

17) E ((-y1 2) 2 (I_ "_J

t • (Z Z*2)"Z (I -Z)_
E (z z*) m + n

where

E (.) - expected value of (,).

For m, n sutficiently large the estimators x*. y* and z* are approximately Gaussian with means &nd
variances given by (16) and (17), respectively.

rV
21-10

The following derivation of accuracy and confidence is general and applies to any quantity, x,

estimated by the method of Se-tlon 6.2 As before,

x* - estimate of x

m - sample size.

It is well-known (see ref. 3) that the probability that x lies between the limits

m x* + Z+ X *(

m 72m -m

or, equivalently, that x* lies between the limits

18) x + Xk - m

is equal to X, where N is the area of the standard Gaussian tistribution between -X and X. Frow, (18) we
may say that the error in the estimate, x*, is

19) E- I m

with a confidence level of y.

Eq'tation (19) is an ellipse in x. Table 4 gives a tabulation of efm- versus x for a confidence

level of - .95.

It is often conven'ent to obtain error estimates that are independent of x. From (19) it can be
seen that the maximum error occurs when x - 1/2. Table 5 gives a tabulation of this maximum error versus
sample size and confidence level. It is noted that the maximum error can be extremely conservative.

7 RESULTS OF EXPERIMENTS

7.1 Distribution of Faults

Initially, 1,000 gate-level and 400 component-level faults were randomly selected. Later, in order
to reduce the cost of the runs it was necessary to reduce the number of faults actually Injected. The
number of faults finally selected for each experiment are given in Table 6.

7,2 Phase I Experiments

The results uf the Phase I experiments are summarized in Tables 7 and 8.

Table 7

This table shows the breakdown of faults injected versus faults detected in eaLh of the six oro-
grp;ds. Also shown is the percentage nf undetected faults after completiun of the specified number of
re.petitions of each program.

Table 8

This table gives the maximum likelihood estimates of a, P and PO, as defined in Section 7. Also
shown are the resultant, computed, Urn Model distribution in terms of the occupancy probabilities of
cells, 1, 2 , 8. These correspond to the probabilities xi, yi or zi for S-a-0, S-a-1 and combined
faults, respectively. In keeping with our pravioiis notation, the occupancy probility of cell 9 is actually
the probability that the fault is undetected in the previous 8 repetitions. As a comparison, the corres-
ponding empirical distributions are also given.

Figure 3a thruugh 5b show histograms of detected faults versus repetitions to detection for com-
bined (i.e., S-a-O and S-a-l) faults at both the gate and component-levels. Superimposed on each histo-
gram is the distribution of the corresponding Urn Model.

7.3 Phase 1! FVweriments

Indistinguishable Fault Estimates

In order to obtain an estimate of the proportion of indistinguishable faults each resultant,
undetected fault was analyzed and thoss faults which were obviously indistinguishable were disqualified.
At the gate-level, 71 out of 300 faults were identified as indistinguishable and, at the component-level,
11 out of 200 were identified as indistinguishable. Thus, the estimated proportion of components yield-
ing indistinguishable faults are:

11

21-11

1* 0.2366 a. the gate level

and y* .055 at the component-level

Since indiscinquishable faults were not disqualified in the Phase I experiments all coverage

estimotes of Phase I should be multiplied by the appropriate - y* fictor, as prescribed in Section 7,

Self-Test Coverage

After disqualifying 71 indistinguishable faults 229 faults were effectively injected at the gate-
level and 189 at the component-level. The resultant raw data Is given in Table 9 by partitions.

were As indicated previously, after each injected fault the self-test program was executed. Faults
were generally detected either because an explicit test detected the fault or the fault caused a jump out
of the program. These latter faults are denoted in Table 9 by "wild branches".

Summary of Results of Phase II Experiments

Gate-Level Faults

* 198 out of 229 combined faults were detected for k coveraGe of 86.46%,

* 100 out of 114 S-a-l faults were detected for a coverage of 87.72%.

* q8 out of 115 S-a-0 faults were detected for a coverage of 85.22%.

* 9 out of 17 faults in Partition #5 were detected for a coverage of 52.9a%.

* 5 out of 8 faults in Partition #6 were detected for a coverage of 62.5%.

* If faults in Partitions #5 and #6 are disqualified then 184 out of 204 faults were detectfd for
a coverage of 90.2%.

1 103 out of the 198 faults detected resulted in wild branches, i.e., 52%.

95 faults were dptected by an explicit test (even though it was not always possible to identify
the test)

* Out of the 241 possible tests, lt most 46 actually resulted in a detection, i.e., most of the

tests were, effectively, redutidant.

Component-Level Faults

* 185 out of 189 co,,bined faults were detected for a coverage of A7.9%.

* 97 out of 100 S-1-l faults were detected for" a coverage of 97%.

* 88 out of 89 S-a-O faults were detected for a coverage of 98.9%.

* 106 out of 189 faults detected resulted in wild branches, i.e., 56%.

"* 79 faults were detected by an explicit test (even though it wasý not always possible to identify

the test)

* Out of 241 possible tests, at most 44 actually resulted in a detection.

8. SUMMARY OF RESULTS OF EXPERIMENTS

8.1 Pha.e I Experiments

* Most detected faults are detected in the first repetition. Subsequent repetitions do not
appreciably increase the proportion of detected faults.

* S-a-l faults are easier to de'ect that S-a-O faults.

* The micromemory contains a large proportion of indistinguishable faults

* A large proportion of faults remain undetected after as ,dny Cs 8 repetitions

* Component-level faults are easier to -ietect than gate-levJl faults

* The coverage estimates of the Phase I cxperiments are not corrected for indistinguishable fault
ccntent.

Subsequent analysis of undetected faults indicates that the proportion ot indistinguisha le faults
at the gate-level is 23.66% and 5.5% at the component-level, The combined, S-a-l and S-a-O coverage

estimates should be corrected by dividing the raw coverage by 1--* where

-* - .7633 for gate-level coverage

S.945 for component-level coverage.

21-12

The poor detection coverage of the six programs of Phase I is not surprising particularly if one
considers that Self-Test, which exercises a much greater mix and ;uantity of instrucLions, achieves 86.5%
detectinn (at the gate-level). Table 10 shows the instruction mix and quantity of instructions executed
ve-"u. coverage for each of the six programs. By contrast, Self-Test exercises almost the entire instruc-
tionr set of the CPU and executes approximately 2000 instructions in a single pass.

8.2 Phase I1 Experiments

* There is a significant difference in coverage of gate-level versus component-level faults, e.g.,
after disqualifying indistinguishable faults gate-level fault coverage was 86.5% whereas
component-level fault cverage was 97.9%.

a There was a large proportion of indistinguishable faults in the gate-level emulation, e.9.,
23.7%. The worst offender was the micromemory which yielded 33 indistinguishable fault out of
a total uf 41 selected.

a Only 48% of all detected faults were detected by an explicit tesV, i.e., 95 out of 198. 103
faults were detected because the fault resulted in a wild branch, i.e., a jump out of the first
test.

a Most of the 241 tests compr-sing Self-Test wwra redundant; only 46 tests resulted in a detection.

* Of the 95 faults detected by an explicit test 59 were detected by the first 23 tests.

a This particular Self-Test was designed to exercise an instruction set rather than explicit hard-
ware. As noted in Section 10, this approach results in an inefficient Self-Test since, it
turned out, most of the tests exercised the same hardware.

8,3 Urn Model Distributions

From previous studies and results of experiments we make the following observations regarding the
Urn Model.

a Despite its simplicity the Urn Model results in good correlation with all of the empirical dis-
tributions of the study. This is not surprising considering that the model has 3 degrees-of-
freedom available for a best fit, i.e., P, P and a, and the empirical distributions are heavily
weighted in the first, second and last latenpy cells.

9. CONCLUSIONS

On the basis of the study we conclude:

e Emulation is a practicable approach to failure modes and effects analysis of a digital processor. a

a The run time of the emulated processor on a PDP-l0 host computer is only 20,000 to 25,000 times
slower than the actual processor. As a consequence large numbers of faults can be studied at
relatively little cost and in a timely manner.

a The fault model, although somewhat arbitrary, can be updated as more data becomes availhble.

* Gate-level equivaleot circuits are available for digital devices including the 2901A.

a Gate-level faults arm more difficult to detect than component-level faults.

e A computtr self-test program of the order of 2000 executable instructions can detect 98% and
possibly 99 or 100% of component-level faults. The feasibility of detecting the same proportions

of "ite-level faults .'emains to be determined.

a Emultion can be an important tool in the design of an efficient self-test.

a In a comparison-monitored system the accumulation of latent faults can be significant. In the
study the proportion of undetected faults after 8 repetitions ranged from 40 to 62%.

a For the range of values considered the proportion of undetected faults after 8 repetitions is a
linear function of the number of executable instructions.

a With a suitable choice of parameters the urn Model can be used to describe fault latency in a
comparison-monitored system.

* Faults in the micromemory are difficult to detect.

a In a comparison-monitored system most detected faults are detected in the first repetition of

the program. Subsequent repetitions do not appreciably increase the proportion of detected
faults.

a A gate-level emulation of a real processor may contain a large proportion of indistinguishable
faults. Identifying suvh faults is difficult.

* Only 48% of all detected faults were detected by an explicit subtest of Self-Test; ý2% were

detected because the fault resulted in a wild branch.

A W , iiiIi.

21-13

Concluding Remarks

Th: outcome of this study was no less surprising or intriguing than the results of the Nagel pilot
study. Most of the data generated in the Nagel study were essentially duplicated in this study which in
itself is remarkable because of the two "very different" hardware processors used in the studies (see
Table 11 for a comparison). A significant finding of this work which correlates well with Nagel's obser-
vations is that comparison-monitoring yields a detection coverage which rcnges from 40 to 60 percent and
is in sharp contrast to assumed values of unity for first failure coverage in comparision-monitoring c-
majority-voting (cm/mv) systems. Admittedly, the presence of undetected faults does not of and in Itself
constitute computer failure, but it does cast doubt on the validity of state-of-the-art reliability assess-
ments and causes one to wonder what those latent faults are doing in the computer.

Another important finding of this study relates to the question of where faults should be induced,
at the gate or pin (functional) level, to evaluate self-test computer programs. The study shows a wide
dispersion in results between the two methods, i.e., 8/-percent gate level versus 98-percent pin level.
The issue is far from trivial because the proponent of pin-level testing can argue that the 11 percent that
did not get detected by the pin-level method are don't-care faults anyway, whereas the proponent for the
gate-level method argues that 11 percent of the faults are still present in the computer and may be mani-
fested at a most inopportuiie time.

Currently it i simply not clear what impact latent faults could have in digital computers and their
possible effects on fault-tolerant computer fault detection. The reliability analyst must be conservative
when he cannot be accurate, so these findings must have a negative impact on reliability predictions for
cm/mv systems, i.e., detection values based on gate-level fault injection must be used in reliability pre-
dictions in lieu of the pin-level value. Furthermore, these results strongly suggest a more conservative
approach to fault detection in fault-tolerant systems utilizing cm/mv detection schemes. One approach to
enhance detection would be to employ both cm/mv detection and concurrent periodic self-test.

Finally, the vehicle and its application which made these results possible deso-ve sp-r1 1 emphasis.
Although gate-level simulation Is not new, the approach used in this study makes practi(A, the generation
of coverage data particularly for cm/mv schemes and opens up a new horizon of uses fcr such a tool, some
of which were explored and reported on. Its use for designing efficient self-test code, identific.ition of
indistinguishable faults, a practical approach tu failure modes and effects analysis, and fault anialysis
In general are just some that come to mind. In summary, gate-level simulation most assuredly will become

an essential tool to design and reliability engineers.

10. RECOMMENnATIONS FOR FUTURE STUDIES

* The Phase I experiments should be repeated using flight critical, fl.ght control computations.
The instruction set should not be timited as it was in the present study. Additional tasks
would include

* uetermination of t%., proportion of faults that affect the control surfaces.

a Determination of the proportion of faults that prevent failure detection in the faulted
processor.

a Investigate other methods of faulý 'etecr%-: !,:.ch as the use of redundant computations in a non-
redundant processor in a flight cr4tic..t, flignt control application.

* Investigate the feasibility of %xtending the emulation to I/O interface devices such as AD and
DA converters, I/O controllers, etc.

s Generate more realistic fault models. Perhaps manjfacturers could be prevailed upon to supply
equivalent circuits that are more closely correlated with failure modes as well as with
perFormance.

* Develop a more realistic Urn Model. The resultant model could be an important tool in rc'.labil-

ity modelling of a redundant system.

REFERENCES

1. Nagel, P., "Modeling of a Latent Fault Detector in a Digital System," Vought Corporation, Nasa contract,
NASl-13500, August, 1978.

2. Seshu, S. and Freeman, D. N., "The Diagnosis of Asynchronous Sequential Switching System," IRE Trans
actions on Electronic Computers, Vol. EC-l1 No. 4, August, 1962, pp. 459-465.

3. Hardie, F. H., and Suhocki, R. J., "Design and Use of Fault Simulation for Saturn Computer Design,"
IEEE Transactions on Electronic Computers, Vol. EC-16, No. 4, August, 1967, pp. 412-429.

4. Cramer, H., Mathematical Methods of Statistics, Princeton University Press: Princetion, 1958.

S. McFarlane Mood, A., Introduction to the Theoryof Statistics, McGraw-Hill: New York, 1950.

L[_ _

21-14

cmvtamtGen L C o w,?f mv AR p~aOceIm Mumlf

m. 4~MS6.

QMIL"*P 1 Oa -IOA

F
1
/0

I" MA-K N

PIUE2SSCIWOR I PROCESSO GATCHIAULTOUREL

FIUE2 IAI:TOIPU N AEFUThOE

21-1

*a F

atO YA =

am, PillKIS

P5Mm

F19A M
L.UL..T~PION w Ld

21-16

L TALE 1 C@1375 Of THE 300930 CPU
TABL 2

2901A 2.IC06
2902 0.3896 MIRc t06194113 MAMl
"540 0.061,
541 21 0.0653 MIA1 TOM

5M17 ".153 aim3 19
54300 0.0855
S4304 0.,1093 5.4113 8
54306$ 0.ON
S4$10 0.0784 54151 17
54320 0.06S4
54532 0.2138 SAisa 16
545151 0.1463545286 (32%8 prm) 0:17971 S41SI Is
64S472 (S12 6pilp ,) 1. 009
541300 0084 S4161 8
541302 I0.0
54LS04 0.09.3 54175 22
SWO110 0.064
541311 0.,07S2 5424S 18
541.32 0.084 1
541586 0.044 54255 1
54LS5113 0.1447
5415151 0:143 5 4273 14
541.51S3 0 .1447

545180.1410 43214
54L16519 0.6603
541.5175 0.1703 54374 24
541S24S 0.3792
541.2523 0.1447 54377 3S
541.5057 0.18634
S41SC 73 046882 8407 143
54LS3283 0 .2681
541S332 0.3117
5413347 0. 1 00
541.3374 0.7234
541.3377 0.7148

N0TE: The r4P1Iceiit ?er thl 9407 INC1.4O t04 ft11OWIRI d46lC"nt YAB1 4
541300. 541.532. HUZI)1. W40.5, 5413158 & 541.3257. ErrOi.afraCof~aL lo

TABLE 3 TVPE AM0 7RUENuECI OF INSTRUJCTIONS EXECUJTED

Fiu ! XIB M 4003W 500001 1-CM LNC 0
LOAD. 2 1 2 4 70. 0

STORE 1 2 2 6 S2. i .. 2 8

ADD 3 - i 2 17 L 18 30 .70 .1S

Smn1AC 0 1 1 1 1 4 1 .2S .

504406L 4 2 2 24 39 38.0

TRANCYER aL 2 s 11 6'-- .934 .3

.975 4

.39 .7

a97l .7

.794 .6

.935406

.437 .96
6410MM ERR0R VERSUS SAWMSIZE AND 4 CONFIDENCELEVEL 0.01.

T T - ---

CONFIOIN SI 00to 300 400 600 1000 TAWl 6

A~... 03 .02s .021 C017 .013 P AOif&T N M

. .037 .3 .021 .01 OOEPE N m

51 zm _ 11Aru 1000 416

11506600 400

SE!.F.TF14l

21-17

FAT- .. T, -------- ~ummr'

4l 34.0on A0 ll .2 COM lot0 Anfl 10 2 311 0

*1 00 0 0 0.1 249 le 10 a t. fe I0) lot ofI 0.3 lei.M

"R.. I- 1%4 i -si m i o 0 3. t It &I M0

Fl-I26 t 0. 4. to 1. c otl 1 - 1__ 12 64. MY

SWUMVi OF PWAS I AESOILTS
TAKE 7

FtTSIO/GAIC CWI.1000 t O.'-4.l4 0..6 0. 7176 *0. 3.J 71 Al 0. U.1): 1 4.4.l. 00711c O3.*0I .90 jl 130111 0.61?

A 0 .'41 1).1113.10. 0., 1 0 .0 0.0*30h 0.100' 0.1 c,' _0.617_

S... 7 1.*l U.2 . ? .7:3 .347 U-170 0.106 ().J. 4 U.2 1., 1.61 0 ~ ., I 'J. 16?'

A 0.270 0. W 1 0 C: ! 0 0 0.7*.1 I 0. G. 0 17..'

-A) T 0.61j? 0.340), 03.61032 0. 317M-) 0. 1.1. 0. 11,710 0.01.1 0,011 0.130k' Ii.:04 0. vel 0. 111)z 0.5376G

A 0.3:8 0.1151 0.1lu'l 0 0 U.004 11.1004 0.030 0.593

UtTGT/C0IW COMBINED T 0. 5.00 0. 4.'', 0.7?921 0,Io 0..2 WlA 0.013 0.701 V3. L)0 0.005 0.01)i 0.0-112 0.3%00

A 01!13 00OAS 0.011S QU03 0 0 0.013 0.008 0.355

S-A-0 T 0.6433 0.3397 0.7498 0. b,,3 0.467 0. 04 7 0.033 0.0117 0.014 0.0019 0.006 0.004 0.4010

A0.467 0.061 a.036 0.005 0 0 0.020 0.005 0.401

f..-)- T 0.3594 0.6406 0.8070) 0.680 0.057 0.005 0.031 0.011 0.004 0.007 0.000 0.000 0.3103

A 0.007 0.100 0.01S 0 0 0 0 .00 0 ,03)0

FIIMATE C0WA60E T 0.3177 0.083 0.0366 0.4106 67.350 0. 04? 0.010 0 000 0.002 0 0 0 0.0816

A 0.300 0.055 0.007 O.2'02 0.002 0.002 0 0.002 0.S82

S-8-1 T 0.290o 0.7001 0.803S 0.3784 0.3J00 0.053 0.0S 0.004 0.001 0 C 0 0.42)6

A 0.300 0.064 0.003 0.003 40 0 0 0.603 0.622

S-4-1 T 0.3466 0.0034 0.8632 0.4573 0.390 0.043 0.314 0.00s 0.00? 0.001 0 0 0.S427

A________ 0. 3" (.046 0.030 0 0.003 0.003 0 0 0.043

2128/Cg C0220131 T 0.255 0.7042 6.8007 0. 7700 D.613 0.076 0.022 0.00? 0.002 0.00) 0 0 0.250

A 0.4*3 C.090 0.006 0.003 C 003 0.003 0 0.003 0.260

&-a-@ T 0 1.006 0.8473 0.6000 0.5430 0.101S 0 0 0 0 0 0 0.335,

A 0.543 0.102 0 0 0 0 0 0 0.33S

S.1. T 0.44"8 0.5532 0.8031 0.7730 0 6"0 0.063 0.0we 0.013 0.006 0.00w 0.00 0.001 0.2264

A 0.680 0.079 0.030 0.001s 0.000 0.000 0 0.000 0.227

*0)06o/GATE CCMINE0 T 0.0309 0.14693 0.6214 0. 4000 0.330 0.033 0.010 0.000 0.000 0.003 0.001 0,003 0.5692

A 0.335 0.02' 0.030 0.003 0.000 C.003 0.00 0 0.500

S-A-I T 0,6001 0.1114909.7874 0.3604 0.2114 0.030 0.018 0.011 0.001 0.000 0.00a 0.003 0.641i

A 0.28 0.0?4 0.03, 0 0.007 0.001 0.003 0 0.842

S.-4- I PAM35 0.1447 0.8536 0.0009 0.3a0 0.0)? 0.038 0.2107 0.0*33 0.001 0.001 0 0.5493
393

A0.36S 0.030 0.028 0.007 0.003 0 0 0 0 54 9

6603410C0I C11300p 0.3401 0. 654 0.641) 0.6776 0.070 0.072 0.0?4 0.00 0.003 0.001 0 0 0.322S

A 0.070 4.0.0O ts. Q $5 0 0.2*WS! .1 4

5-- 0.37$3 0.6847 0.8064 0.6200 0.000 0.003 0.02's 0.0ON 0.10i 0.002 0 0 0CAT05

A 0.500 0.003 0.936. 0 0 0.00s 0 0 0.37)

$-s-1 T 0.3693 06307 0.0706 0. 7?42 0.6.11 0.060 0. 0. 0.004 0.003 0.00" a 0 0.2750

A 0.631 0.040 9.014 0 V. 0.60 1 0 0 0.276

UN0 NMI4* 015l1ll*T*79I *89 004* IS11I130SU 05
AMC PARADMII. WIWI061. 000 PAMAIRC(011160745

TAM6 4 TA66.k 9

- - GATE-LEVEL. FAULTS (P61.4% DTtECTIOft)

f.tTO .2WIL lSlMCT(EO AA ISTE

KNW 1 S A { DE'ttrED 151CILD

vi 14 14 16 Is 1 27 28 It

1z 26 32 30 36 29 J 3 SA 6S

Z3 19 20 t 19 17 22 31 39

P4 33 21 37 31 43 10 61 68

ps 12 , 8 9 7 2 g 7
P 61 3 2 4 4 8 3 s

]_-% t_. Il -(1-4 .951- 13 T f I2
**S-4.0 faults

* -- faults

*11 faults were disqualified 4s IndistingtIsa'uhl

(CWOVAREII-LEVEL lAULI.S (97.7% DETECTION)

FAKIUN4LTS, IN.JECTED FAULT1S

el Is it is 201 5 Z9 34 39

f2 38 34 38 36 35 37 72 73

P3 20 2t 1 2 6 2 41 41

P4 15 Z, I 23 23 is is 38

TOMAI W 9 91)Do 79, 1 10 19 169..__

SELf-TEST DIAT

PERCF3I PERCENT
101A. 11 IN KEICED SCIMCE0

MYA -m mu j ISIJ L A U. OTMC 9PL TRARM REPETITION UNK7[IEQlE gEPITICA VýKIECTE

rEISTO 6 a I I a 28.6 61,7 60.3 35.5

AD05U9 11 F 4 3 a 2 0 33.5 695. 97.0 31.3

f18)1 3 3 4 0 1 39,0 S1.2 81.3 211.4

$1 12 31 is 6 0 43.2 53.3 71.11 23's

6RD 9 12 1* 24 5 0 39.5 60,2 1 4.8 25.3

1C4 4'79 20 IV I11 1 111.7 41.3 74.1 17.5

ktli:. tis tell. It based aPsa ONa pass tORhtsaI 012 able psopan.

INSTRUCTION MIX wuseim DETECTION in PHASE I t0KRIlWUI9

TWO1 10

RELPETNR(. IO PWSE I EFI MI I RE. 1

1 .187 .3 . JS . M 33 .3311

.061 .044 .067 .06% .006 AT8

3 .011 .021 .047 .1307 .067 .03

4 .017 0 .Aft .0O2 AM .003

S 01 0 .k8h .00 .014 .011

6 .04Z .006 .033 .002 .014 .003

0 .on .012 09 .0

* 44 .417 .My .54 .44# .906

WIANIS-WI OF LAl(IRY ESTIMMTE

22-1

Hierarchical Specification of
the SIFT Fault Tolerant Flight Control System

P.M, Melliar-Smith and Richard L. Schwartz

Computer Science Laboratory
SRI International

Menjo Pat k, CA 94025

Abstract
This piper describes work in progress at SRI on the specificatiori and mccnanical verification of the Softwarc Implemerted Fault

Tolerance (SIFTl) flight control system. The methodology employed in the verification effort is discusscd, and a deseription of the
hiciarchical models of the SIFl system is given.

Introduction
To meet the objectives of NASA for the reliability of safeoy-critical fPighl control systcms, the SIFl" computer must achieve a

r:liability well beyond the levels at which reliability can be actually measured. "1his pap~r dQscribes the methodology employed to
demonstrate rigorously that the SIVI" computer meets its reliability requirements. We explain the hierarchy of design specifications
from very abstract descriptions of system function down to the actual implementation. 'The most abstract design specifications can be
used to verify that the system functions corectly and with the desired reliabilitv, almost all details of the tialization having been
abstracted out. A succession oflower'cvcl models refine these specifications to the level o, the actual implementation, and can be used
to de'aionstrate that the implementation has indeed the p'uperties claimed of the abstract design specifications.

The SIF"' (Software Implemented Fault Tolerance) computer is an aircraft flight controi comptser dce~lopcd by SRI for the
NASA ACHE program, under the direction of B. Dove and N. Murray of the Flight Electronics Divisicn of NASA ILangley Research
Center. A SiFI" system, designed to meet the required ultra high reli,.bility by processor replication and voting, has been consticted
by Bendix Corporation and is now operating at SRI. It will shortly be devi'.cred to NASA Langley for evaluation in the Airl~ab.
Rather than providing a general introduction to the SIFI' system alid the algorithms used to achievc the desired fault tolerance, we
,xplore the process of refining the high level specifications of SIll' down to the implement,,tion levrl. A general introduction to Silr
can ba found in 15, 21 and a description of the Stf-*' executive appears in [4]. TIhe s[Vlr hardware is documenited in (ll. The fault-
tolerance algorithms employed are defined in 12, 31.

Sections I and 2 of the pzper present a biief introduction to the requiiecmerts of SIFT and the mechanisms e"aployed to cope
with the ,eiiability requirements. Section 3 discusses how formal proof is used to substantiate the reliability claims. .cction 4 outlines
the specification hierarchy, Sections 5 through 8 describe each) of the functional models in detail, The probabilis,.ic analysis of system

reliability is discussed in Section 9. Finally, Section 10 gives the current statts of the project.

1. The Requirements for SIFT
The SIF5-' computc system has been designed to meet the requirements for future passenger aircraft contl'ol. Such nircraft must

be designed to use significantly less fuel than currcnt aircraft. Many design innovations are expected to assist in achie.ing the desired
fucl! ecrolnom, innovations 4 imtaerials, structures, aerodynamics, engines,.'and almost every other aspect of aircraft design. Several of

these innov:idions will require computer control of the flight of the aircraft, particularly to maintain dhe staL~lity of the iirciaft and to
reduce the stresses in the structures of dte aircraft. This computer control will be essentlal %t ai! times tc ensure the safety of flight
Existing ;iTrcraft use computers for various purposes, but never to perform flight safety cr;ti-ai functions, and thus do not have to meet
the very demanawing reliability requirements that apply to safety critical components of the aircraft.

t1le rcliabilitn reqoitement for a safety critical flight control computer, as pr'oposed by FAA and NASA, allows a probability of
life threatening failure no greater than 10'9 during a 1t) hour flight. "'this is equivalent to a mean time between failures of about one
million years of opc.ration. The requiremcnt allows higher rates for less criti,.al failures, but the difficulty of asscssiug all the
consequences of failures in computer systems has lead us to regard any deviation from the "corcat" output as a failure of thK system.
The SItI computici system has been designed nut only to meet this reliability requirement but also to make :t possible to demonstrate
that Uils extreme requirement is indeed met.

2. The Role o, Formal Proof
The extreme reliability requirement on SIFI imposes a very severe problem in substantiating the achievement of that level of

reliability. At the required reliahility , ite, mere observation, even of a large number of systems. will be ineffective. Further, a SIF"T
svstem must be able to recove- successfully from several million faults for every allowahle systeri failure, and must therefore be able to
:ecover from quite improbable and unforeseen faults and even comoinations of faults. Thus validation by fault injection, while
necessary, is unlike!y to convince us that SIFI' meets its reliability requirements.

'The justification that SIFT meets the reliability requirement must be based on an extrapolation from fault rates that are easier to
measure, such as those for an individual processor. For SIFT, this extrapolation takes the form of a discrete Markoe analysis, with the
numbers of working and faulty proessors defining the states and the fault and reconfiguratior, rates defining the transitions, The
validity of this extrapotation depends on a number of assumptions. ard at the desired level of reliability, even 'minor' violations of the
assumptions can have significant effects on the reliability achieved. Thus the assumptions mrost themselves be quite rigorously
substantiated if the claimed reliability is to be believed. For instance, one important assumption of the Markov analysis is that the
occurrence of faults is well described by a Poisson model with complete independence between processors. Much of the electronic and
mechanical design of SIFl is intended t.; maintain this independence.

The validity of the Markov analysis depends ilso on the assumption that the states and the transitions of the Markov model
correspond accurately to the actual system, and ttat the states in which systinm failure is possible are cotiretly identified. But this
correspondence is far from obvious, for the actual system has very many states with many complex transitions between them, and the
correspondence must be maintained even when one or more of the processors has sut'ercd a fault. In SIF'T, this correspondence is

The research reported herein was supported by the NASA Langley Research Center under Contract NASI-15428.

A ~ _ _ _ _ _ _ __ _

22-2

based on a predicate %ystem safe indicating that die replication of each of the tasks I- sumficnt so that the voting can mask the effects of
the faults present in the system. The validation of SIFI" now coisists of two parts. The first of these is a demonstration that, so long as
system safe is true, die system pe% forms the desired flight control function, even though one or more processors may be faulty. This is a
correctness property -or the function performeed by the system. 'be second is a demonstration that the Markov analysis computes an
upper bound on the probability that system safe becomes falsc. This is a correctness property for the probabilistic reliability model of
the system. Bt'causc even a very small defect in the demonstrations could allow failures at an unacceplmble rate, these demonstrations
must be performed with the rigor of mathematical proof,

lhe necessity for formal mathematical proof to ensure that SIFT meets the desired functional and reliability requirements

presents two imajor issues:

9 How does one define the criteria sufficient to ensure the correct functioning of the system?

e How does one prove that the criteria are satisfied by the actual system?

rThe first issue is crucial if the formal verification effort is to have any practical significance. One must have confidence, even as a non-
computer scientist, that the formal specifications stating what is meant by the correct functioning of the system in fact reflect the
intended behavior. That a formal specification expresses what the system designer intuitively means is determined by inspection. A
formal specification must therefore be believable if rigorous mathematical correspondence to the specification is to ensure the desired
"effect. 'Ile larger and more complex the system, the more acute the problem becvimes. Specifications reflecting the detailed behavior
of the system allow the most straightforward formal verification effort but it is difficult to ensure that low-level specifications embody
what is meant by Use proper functioning of the system. Very high-level specifications, abstracting from the details of Use system, are
necessary if we are to state the overall functional and fault-tolerance properties of the system in a way that can be understood and
believed. The problem then becomes one of reconciling the very high-lev0l specifications with dte detailed transformations performed
by the programs of the actual system.

In order to state high-level system specifications that can be shown to be consistent with the actual program, one must formulate
not just a single specification of the system, but a hierarchy of specifications. Our approach is to state a tiered set of models of the
system, as il':.strated in the following picture. Each model L in the hierarchy specifics an abstract view of the system, defining the
properaes of the system in terms of primitive predicates P. and functions F. employed at that level of abstraction. At each level in the
hierarchy, a model I.. can be sece, as a ref,/nemeti, of the previous level L~i l- torrespondence between successive model levels is done by
expressing each primitivc function and predicate of highcr-lcvcl I- in terms of the functions and nredicates of the lower-level L. ,.
Wilt this mapping, one must then prove that each property dcrivahie from the higher-levcl mod.- can be proved from the lowcr-level
model. Bly demonstrating this for all successive levels L. and .• . one can conclude by induction that any pruperty provable from the
highest-level model is also provable from the lowest-level modeS Thus, the lowest-level model is consistent (r corree,) with respect to
the highest-level model, ensuring that analysis of dte system bascd on a higher level model in the hierarchy is valid and could have been
performed on the lowest-level model of the system,

Within the nieraithy, the lowest level model of the system is the actual program executed by the harlwarc, while the highest level
model is chosen to allow the required properties of the system to be succinctly stated and analyzed. At different levels, models of the
system are specified in different manners. At the most abstract level, a model of the system is defined by a set of logical ax.orrs

L! (P1 .F,)

Li (P1 ,F1)

Li+1 (Ptil,Fi+)

describing properties of the primitive functions and predicates. Such a model need not fluily characterize dte functional behavior of the
primitives, instead specifying only the relevant properties A denoiational, or functional, model of the system can be used to provide a
more concrete model of the system. The model is specified as a recursive function, providing an abstract implementation of dhe system.
At this level of abstraction, the full functionality of the system is specified. A still lower-level is an imperative model of the system,
Programs in a language such as Pascal or Ada arc imperative models of a system, defining system function in terms of successive
transformations of a globa! state.

Our hierarchy of models of the system makes use of each of the three types of models just discussed. We employ axiomatic
models of the system at the highest levels of abstraction, denotational system models as intermediate levels of abstraction, and finally
several levels of imperative models corresponding to the levels of software support involved in compiling and running SR1i".

As we mentioned above, verification of the hierarchy consists of demonstrating that each property derivable from a higher level
model is supported by a lower level model., Between successive axiomatic models this is achieved by showing that, with the specified
mappings, each axiom of the higher level model is provable as a theorem at the lower level model, Between an axiomatic model and a
lower level denotational model, one must snow that each function of the denotational model satisfies the axiors of the higher level
model. Finally, in order to verify the relationship between a denotational model and an imperative model it is -,neccssary to s- ow that,
based on a denotational model of the imperative language, t6e function performed by the imperative program is equivalent
(homomorphic) to the function specified at the higher level denotational model.

3. An Outline of the Design of SIFT
The SIFI' aircraft control computer system is designed to achieve high reliability from standard comnputers by replication of the

hiardware and adaptive voting in-plcmented by software. The voting mechanism detects and masks hardware faults. Hardware:.,tectcd to be faulty is reconfigurcd out of the system, with its workload being transferred to other processors. Thus several successive

faults can be survived if there is sufficient time between them to pemsit the reconfiguration.

The system is constructed from tip to eight identical computer units, each containing a Bendix BI)X930 processor, a 32K main
store, a broadcast interface, and a 1553 interface, as shown in Figure 1. The BI)X930 is a 16 bit processor specifically designed for

!.

22-3

military and aircraft use, with an instruction set reminiscent of, but not compatible with, Data General computers and a speed of rather
less than one tnillio.v instructions per second. Fatch.l ROX930 ptocxsvr has its own 32k word nmain store, which cannot be a.cessed by
any other processor. [hc 1553 int-rface providcs a serial bus connecting the proc.sr)r to the various aircraft sensors and actuators.
The mean time between failures ot one of these units, contininth pro'rcesor, •tce, and interltces, is something less thun one thousand
hours.

']be processors commtricatc with ..irb other through the broa '.ast ii,. - whict. i n,'w- tirivers and receivers for the star
connected broadcast cables atn,. a 1 .24 word area if storage c!lled the data file. TI1- bro,,ucast interface operates autonomoosly from
the BI)X93G processor, and is desi-,ivd so that, if all ,rt.oi,0, biroadcast siknltaneously, the broadcast receivers will still he fast
enough to receive and store :l the informittion loru utlcast. '[be data file i, divided into eiý,.ht regions, one of which is used to hold
information to be bradt :r", .ale the: other sevz'n reons are for the ý,Z.'1'. .,'iri.trmation received from up to seven other processors.
'thus, if a faulty pf'oce,,r broadcasts garbage, iloat Ranrbaz,. wil all be placed in s •cific region of every other processor's data file,
where it can. ignored atud wherc :' cannt't damav, e u,,¢:mft)ormatioli bcing 'roa.:,Lt by other processors.

In -• e onceptuall i. a single in~tance n " a.l' logical task but, for reliability, that ta~k is actually rieplica'ed and executed
on thre .,,- orocessors. I ;re , shows a u'sk b, replicatcu on three proces;ors. with its outpot being used by a task (1, of which only
or.- repli.:ation :, Ann. [hw o!'tpvl if each replication of task b. a topic of one or more words, is placed during execution in an
output buffer in -at proces-or. Subs, 1' ently wese results are copied from the output buffer into the output region of the data file and
are broadcast to a:l the othe, ,)rocessors. At each 'of the processors, the various replications of the results of task b are received in the
regions of the data fit ,-,rcsponding to input from the various processors executing task b. In each of the processors, the three or five
versions of the results from task t, are extracted from the data file by voting oftwvare and the majority result is placed in the input
buffer, from whence it can be obtained by any task that needs t, use the results of task b& It' there is no majority, it distinguished value
is placed in that buffer and any special action is then the responsibility of the tasks using that value. All results broadcast are voted in
every processor, even though possibly no task on that processor will used the voted value. Since voting takes time, the various words
thxEt are components of the restult of a task may be voted at different times.

"The voting roftware notes any discrepancies amongst the values on which it votes. A task error reporter, rnn periodically on every
processor, gencrates a synopsis of the errors detected on that processor and broadcasts the synopsis, as is ;hown in Figure 3. The global
executive task, which is replicated like other critical tasks, receives the error sy nopses broadcast from the various processors and decides
from them which processors are faulty. T'he global executive is responsible for the reconfiguration of the system, generating the
configuration of processors to be used, excluding the processors decmed cfaulty and distribute the execution of application tasks
appropriate to the current phase of the flight among the configured 'rocessors. In each processor, the results from the various
replications of the global execulive are voted and then used by the local exec five task t'v select a task schedule for its ,scheduler, and to
set tip the sets of processors executing each task for use by dte voting software. Note that, while the global executive task is a replicated
and voted task common to the whole system, the error reporter and the local executive are tasks specific to each processor individually
and their results cannot be voted. Even though they are run on every processor, the results they generate relate to their own processor
alone. Care is taken in the design tu ensure that errors in the results of an error reporter or iocal executive can damage only its own
processor.

The schedule for SIft is designed so that different combinations of tasks can be execttted on different processors. Replicated
tasks can be executed at different times on different processors therefore. Figure 4 shows a small part of an activity sequence on three
processors. 'he sc hedule is organited into equal subfraines. which would typically be one or two milliseconds long, and are triggered
by interrupts from each processor's clock system, the only interrupts in the SIFI' system. The sequence of activities to he performed by
a processor within a subfirame is determined by a schedule table, which is selected from several such tables by the configuration
broadcast by the global executive. Within a subframe, the schedule can require a sequence of broadcasts, votes, and task executioas.
Voting and task execution reqiire the main processor and thus the time required for them is constrained by the length of the subframe.
"The broadcasting mechanism of the broadcast interface operates autonomously from the prtcessor. A task must have completed its
execution before its results can be broadcast, often in the next subframe, and voting of those results can begin in the subframc after that
in which .' last of the three or five rerlications are broadcast. A task execution can use results voted earlier in the same subframe, but
the voting of results broadcast earlier in the same subframe is prohibited, 'Ihis design decision was made to avoid a complex
asynchronous proof that the result will have been received before it is voted. The ovcrhead associated with dhe handling of the clock
interrupt, together with the control exercised over the skew between clocks, is sufficient to ensure that results broadcast by a processor
in one frame can safely be voted at any time during the next frame by any other processor.

Many of the flight control tasks require the same iteration rate, typically 10 to 20 iterations per second, but other tasks can be run
less frequently. This interval, wvihin which these important flight control functions run, is known as the systemfranme. Other tasks such
as the global and local executives are also run within the same frame, Slower tasks, such as navigation tasks, are tconstrained to run in
frames that arc simple integral multiples of each other and of the system frame. An execution window for each task is the interval of
time within which the task must be executed and its reaults voted. The stability of the control !aws mechanized by the flight control
programs depends on avoiding long transport delays between the reading of sensor values and the commanding of actuator positions.
For faster flight control tasks, the execution window may be only a few subframes: slower tasks are less demanding and the execution
window for them is the whole of their longer frame.

The validity of tht: majority voting approach depends on all task replications on working processors generating identical results.
which in turn depends on these replications performing identical calculations on identical inptmts, Where a task obtains inputs from
other tasks run at different iteration rates, the design must ensure that all replications of the task obtain their inputs from the same
iterations of the other tasks. In SII1', this is cn'uircdt by a system involving amixiliary input buffers to preserve input values for us. by
slower tasks, and odd/even dotble buffering to ensure that a task's inputs remain unchanged throughout a frame even though the next
set of input values are generated and voted at some time during that frame. Provided that the system remains safe, majority voting of
the results of replicated tasks suffices to ensure that all working processors obtain the same values for the results of those tasks. Where
an inpmt is obtained from an unreplicated source, no such asstrance applies, Not only may the result obtained front '.n vtrcplicated
source be erroneous, which the tasks "asing that value may be able to accommodate, but the faulty source might broadcast different
values to diflercnt processors, thus causing replicated tasks on those processors to obtain difflerent results. destroying the utility of the
majority voting. In SI1', a mechanism called interactive consislen)' 131 is utsed to ensure that all working piocessors obtain itue same
value fur any input derived from an unreplicated source, whether that be an unreplicated application task, a sensor, or an errorI reporting task.

22-4

4. An Outline of the Model Hierarchy
Figure 5 shows an outline of the various models and analyses that are used in the justification of the reliability of SilI'. Before

the individual models are described it. detail, we give a description of their intent and interaction. On the right of the figure is a
hierarchy of models of the correct functional behavior of Sli,' while on the left are a set of analyses that yield the probability of that
correct behavior. ihe models at the bottom of the figure describe the hardware of SilI', upon which the more abstract analysis Is
based.

The models on the right uf Figure 5 describe the intendcd functional behavior of the SIIT system. They form a hiciarchy of r
models, with the actual binary representation of the running SIF , .rograms. the 11,9X30 -Proagam is the base of the hierarchy. Fach
of the models above that is an abstraction of that model, omitting some of the detail present in thoe artual programs and thus easier to
describe and understand. The highest model of the system, the I/0 AModrl. describes the functional behavior that we desire from the
system whpn it is working correctly, and is thus the model of the system that we must demnonstrate is indeed consistent with the I
BDX930 Prugram. The intermediate models of the hieta rchy are necessary so that the relationships between nmodels arc simpler and
easier to substantiate formally.

The I/0 AModel specifics SIFT as a system that mechanizes a transfer function (defincd by the application programs) between the
sensor inputs and the Lctuator outputs of the system, provided that an uninterpreted predicate system safe, and its components task
safe, remain true. The model defines the input/output function perforned by each application task. specifying that inputs be read and
the outputs generated at the right times. ITe model contains no description of procc.sors, replication of task,% or voting. The
mechanisms for obtaining reliability have bcer completely abstracted out of the description, and all that remains is the intent -- a!"reliable sysem to fly the aircraft.

The next model, the Replication Alodel. augments the I/0 Model with the concepts cf processors, replication, and voting, and

also the knowledge of which processors ar- working. lbis allows us to derive the predicates system sale and task safe from the poll set.
of processors %hose re.-suls are to be voted for each task. However this model contains no concept of resource allocation or scheduling.

The Broadcatt Alodel increases the detail to include the concepts f resource usaoe and the allocation of resources dtroiglh a

schedule. It must therefore include a much finer grain representation of tin.c, and indted describe the slight time skews between
processors and the clock synchronization constraints that most be met by the implementation. 'Ibis s the only mnodel that describes
asynchrony between processors: the more abstract models use the same time for all processors, while the more detailed models describe
single processors in isolation.

The Denotational Model is the first complete model of the system, descmibed as a set of rectursive functions. It could in principle
be executed by ant aporopriate machine. Its purpose is to provide a complete specification of the behavior of the various prngrans in
the SI'- Yst.em against which the validity of the actual implementation can be demonstrated. Ibe varioas programs thalt form the
SIFT utive are written in Pascal and form the Pascal Impleneatatien. from which is derived by compilation the BDX930
iu,,;ementation. This is the lowest level specification of the SIFT s-oftware. In section 10 we discuss the hardware spocifi•ation leve!s.

The functional behavior described by the 1/0 Model is assured only so long as the predicate system safe remains true. The
analyses shown cn the left of Figure 5 provide the probability that system sale will remain true and hence that the desired functioual
behavior will "omtinue. 'The RDX930 Faidh Model describes the rates of occurrence of various kinds of fault behavior, distinguishing
only between faults that cause the same erroneous results to be seen and reported by all other processors, and those that cause different
results to be seen and thus cause conflicting error reports that could confuse the global executive.

The Error Rate Aiialys.as is used to dietermine the rates at which faults will cause errors, the rates at which those errors will be
detected, the probability that the error reports ,are clear enough for the Global Executive can be certain of its diagnosis, l'nd the rates at
which the system can be reconfigurcd in order that the last vestiges of erroneous rsults can be removed from the system by the
majority voting.

..y the An..nalysis computes the probability that system safe remains true for the 10 hour flight duration, as
K .ssors beci- jauity and arc reconfigured out of the system. Both the Error Rate Analysis and the Reliability Analysi.i ire Markov
models, whose state space must be dcmoirarrated to be an abstraction of the states of the Replication Model, but whose transition rates
are determined by the simpler probabilistic models.

5. lnput/Outpu 1',del
The Input/O:tj Wdel of SIFr', the highest level model sleciying functional behavior, defines the input/output

characteristics of tast .,ned by SIFI. The model, specified axiomatically, defines the configuration of system tasks and expresses
the flow of informa,- ,etween tasks. Bascd on an abstract notion cf time, which may be interpreted as subframe time, we refe to
iterations of a task taking place during various time intervals. The time interval for a particular iteration of a task is rcf-rred to as its
executionl window, having a bcgining time and and ending time. Each task uses as inputs the values produced by its input tasks and
produces one or more outputs during its execution window. Based on a high-level predicate specifying whether a task is safe during a
particular iteration of a task, the model defines that a task which is safe during an iteration will produce exactly one output value,
computed as a function of its input values. Provided that the entire system is safe throughout some interval (i.e., that all tasks are safe
for that interval), we can prove by induction that all tasks *ill compute correct functions of their intended inputs. This defines -t a high
level what it means for SI-l" to function correctly.

Conspicuously absent from this model is any notion that a task is replicated and computed on a set of processors. At a lower
level, we shall explain that the value the I/O model defines as resulting from a given task iteration will actually be the outcome of a
majority vote of processors assigned to compute the task. '"1m task safety predicate taken as primitive in the I/O model, defining when
a task can he relied upon to produce correct results, will be defined at a lower level to be a Rinctior, of the amount of task replications
and the number of working processors.

Briefly, the model is organized as follows. FEach task a in the set of all executive and application tasks Tasks computes P

(mathematical) function A of its input values. Inputs(a) denotes the set of tasks providing inputs to a. Recall that tasks do not all have
the same iteration rates. For task bElnputs(a), the most recently completed iteration ofb prior to the execution window of the iteration
of a. provides the input to an iteration of a. A derived function b to i of a denotes the iteration of b providing input to the i-th iteration
of a. During each iteration i of a task a, a(t) denotes the set of output values which may be produced. In order to map task iterations to
subframe time, the function i of a is used to denote the time interval 11.t21 comprising tde execution window of the i-th iteration of a.
The functions beg(i of a) and end(i of a) arc used to denote the begining and end of the execution window, respectively.

22-5

'The overall .tructure of tao configur.-tions within the 1/O model is illustroted in Figure 6 sk'ww below. For a task suich
that the predicate task a safe during i is true. a will pn'ducc exactly one output value during its execution window. A task which is not
safe during itf ,.ration may produce any number of outputs. IBcause the configuration of tasks is dillcrent fo(r thffcrent phases of the
Ib1hit, not all tasks neceswrily compute each iteration. An uninterprcted predicate a on during i determines whether af) is expected to
coaniputc a function of its inputs or to return a spfcial I elemer.t as its value.

Within the IO modcl the interactive consiswncy algorithm is defined as a special form o' task. For such a taik a, satisfying thc
predicate i/e(a), its associated Function A is the identity function. Recall from our diossion in Section 3 that the interac:.ve
consistency algorithm is used in order for multiple proclesor.; reading unreplicated (ani possibly usta•ilc) input t) rea-hi agreement on
an input value. As we explain below, a safe interactive consistency task will alwa)y- protuce a single output value.

Based on these primitive functions and p~edicates. the I/O modcl contains, s.ven axioms, e-ir,.ssing ronstraints on thc schcdule
defining when utsk iterations arc to take place and that safe tasks compute functions of their designatce inputs. We do not illustrate thed
entire set of axioms here. "'he axioms related to the schcduling of task iterations are straightforward. They exprc;is basic requirements
that successive iterations or a task are properly ordered in time and that the execution window of a task b -,ust precede the execution
Swindow of a task a to which it provides input.

The major axiom defining the Input/Output behavior of a task is the following:

VaETasks Vi Vv

a ou during i A task a safe during i A

VbElIputxs(a) b(b to i of a) {'b)

Sa~t) • (Avf,4(hm f)))

where v,,.,) ! { VbI bE Input%(at). This axiom defines that any iteration of a task a, such that (l) a is both on and safr and (2) each
task b providing input to the i-tlh iteration of a returned exactly one output value b during its corresponding ;tvration. will return
exactly one output du-ing its iteration, ''he value produced will he that rcsulting lrion applying its dcsignitcd tunctions A to the set of
valtcs produced by its input tasks. "htis, pro,'ided a is safe and its input is stable, it V. ill correctly compute an output value.

In the case of irteractive consistency tasks, one additional axiom governs its inpiot/output characteristics;

VaE•Tasks Vi 3iv (i/eta) A task a safedurinL i) :) al(i)-(Y}

"This defines that an interactive consistency task which is safe dtlring its iteration will always produce a single value as output. By the
previous axiom, if its input task is safe and thus provides a single output, the intetactive eorssisency task will perform its associatd
function (in th, case the identity function) on the input. Evcn if the input task is not safe however, the current axiom defincs that some
output value will be produced.

"Thesc, are the major axioms of the I/O model. In the next section, we p.-escnt the next lower-level model and show how the

primitives and stated axiomns of the 1/O model are supported at tdie .ext level.

6. The Replication Model
]he axiomaticaily-specified Replication model, at the next loer level, introduces the notion that tasks arc replicated and

executed by some number ot pro-cssor-, Wised on a high level concept of each processor com-nunicating its restlts to all other
pro'rew.rs, a specification of the majority voti,,.g performed by cich processor is given. Also dcfinecs is the information flow throvugh
which error reports from individual processors arc provided to the global executive. 'his infornmation is used by the global executive in
order to diagnose processor faults and remove from the configuration processors deemed to have solid faults.

Ibc concept of task scheduling has been tefined to dcfinc not only the execution window for task execution but also the set of
processors assigned to execute the task. Tihe function poll for i of a denotes the set of processors assigned to compute the i-th iteratio'n
of task a. The 1/0 model primitive predicate a on during i is derived within the Replication model as 3p(poll for i of a.

With the concept that a processor computes an iteration of a task comes the primit;ve function a(t) on p which denotes the set of
outputs produced by processor p for the i-th iteration of task a. hi a manner left unspecified by this leccl model, processor p
communicates its results to all other system processors. The primitive function aft) on p in q denotes the set of values that processor p
has reported to processor q for the .-th iteration o.' a. A derived function a(i) in q is used to define the result of processor q voting on
the output of the i-th iteration of a based on the results communicated to it. As we shall show shortly, dhe IO primitiveX l() Air a safe
task iteration will be derived as the value a majority of assigned processors obtained by their voting. All processors are required to
report the results of eah task computation to all processors, and all processors are required to vote on all received values.

One other newly introduccd derived function appears in the Replication model. T'he l)Wilndo for b to i of a is defined to be the
dale windiow consisting of the rime interval starting at bcg((b to i of a) of 1)) and ending at end(i of a), Based on this function, we define
l)W'indo% for i of a to be the interval extending from the begiining of the execution window of the earliest inp:t task to a and extending
to the end of the execution of i of a.

The overall structure of the Replication model is illustrated Figure 7. 'Te task structure shown is a rcfinen~ent of the task
configuration illustrated in Figure 6.

With the concept of processor computation occuring in the Replication model, the task safe predicate appearing as primitive
within the I/O model can now be derived within the Rcplkiatien model in terms of working processors. The Replication modcl
includes an uninterprct.d variable S which denotes the set of prcperly functioning processors at any given time. S0l'`21 denotes the set
of processors properly functioning during the interal [It'.r This variable must remain uninterpretcd in all lower level models as well,
since the implementation will never have perfect information concerning the set of correctly functioning processors. Using this concept

1.2-6

of the set of working procesAror, we can now derive dic task safe predicate of thc 1/0 model wt follows.

task a safe during i a

If .oted(a):

(2 X 1poilfor i of a S1 ?W~tmdoof ' 1) > 1poillfo i of Il

V - 4 a on during i

If I/e(a): ..

In thc above definition, Isi denotes the cardinality (i.e., number of elements) of the set s. The definition states that a task is safe either if
a majority of the processors assigned to compute thc task are working for the data window of the task or it the task is not on during i. It
is necessary that tic processors correctly function for the enthke data window of thc task in order that we can be assured that the
processor will not corrupt its input data prior to its use. We omit discussion of the conditions necessary to defnce the safety of
interactive consistency tasks.

Based on these concepts, -ye caix now dcflnc derived 4unctions a(t) In q and a(t). Definition of the latter fuinction will p.-ovide the
mapping up to its use as a primitive function in the 1/0 model. a(i) in q s defined by:

a(si) In q a

If *EPVnlwfrIo A task a safe during i

then ntaJ(box(a(i) on p In q : pEpolifor s ofa))

In the definition, bar is a fuinction cienting a bag' with the specified elements. and uiW is a runction returning A (singlctn) set
containing the nmajority value of its singleton set arguments. This decfinition defines that the valuie a working processor q obtains for a
safe task a will be the value reported to q by a majority of the pirocessoirs assigned to compute the rth iteration of a. From the
definition of task safe, one can see that task safety implies a n'ajoitty of working processors assigned to compute the task. Hecause ow
voting axiom (given shortly) will ensure that a working processor will produc-' only a single output during its execution window, we can
be assured that the majority of th.2 sinagleton sets reportecd for a saie. task will indeed U4 the majority computed by all assigned
processors. I

We now dcehin the derivation of a(,) as:

a(si) M

if task a safe durirng I

then a(i) on p : pc-(poll far i ct a nl St)Witddow (I of 0

The value of the rth iteration of a safe task a used in the 1/O model is thus the sirngleton set that any working processor assigned to
compute sof a obtains throi'gh voting. W'i are guaranteed (and can prove as 3 t~h-orer) that all such proce'ssors will obtain the same
resuIlt

With these functions and predieat-s, the axioms of the Replication model can be stated. The model consists of ten axioms. By
using the derived functions and predicates, many of the axioms appear identical tce those at the 1/0 model. Ibe difference is of course
that each axiom is expressed in terms of Replication model primitives rather than 1/0 model primitives. Our main execution axiom in
the Replication model is:

VaC Tasks Vi VpE (pollflor tof a nl DWiIndow fr Iof a)1 VV

a on during i A task a safe during i A

Vb~lnputs(a) b(b to i of a, In p-,v

D 12(i) ont p(A(tvIfPgtJ(a)))

where Y ig is defined as in the Replication model. This axiom, quite simi!:r tu its counterpart in the 1/0 model, defines that a
work inilir,~csor p will compute the proper function of its input values for a task a, provided a is safe. 'Ihe interactive consistency
axiom is exactly as given in the i/0 model.

Also included in the Replication model are axioms defining the error reports that each processor must file when discrepancies ai c
discovered during v. ttnb. Each processor contains a special error reporting trsk err . Any wvorking processor p which detects that the
value a processor q repf-rtcd for the i-th iteration of a task a is required to submit an trror report via the processor's error reporting task.
Only under these circumstances can a working processor report discrepancies. 'The error ruporting tasks in turn provide the report. as
input to the t~lobal executive. In the hiault Diagnosis model we specify the algorithm employed by the globL'. executive in its
determinat'ion of who is at fault and whether a solid or transient fault has Occurred.

U ir.g the dc.ivations for the primitives of the 1/0 model that we have given, one must show that each axiom of the 1/0 model is
provable as a theorem within the Replication model.

1A bag Isa "re" whichd can containa wtitple copies of the sum e dnx.

22-7

7. The Broadcast Model
Itle axiomnaticailly specified Btroadcast model occurs at the next lower level Iin die specification hicrarchy, At this level, a more

explicit model of the actual scheduling of broadc-asi, votnig, arnd task rxeewtiopt activities is introduced, While thie Replication model
defined the effect of the communication between pnoccsson, anJ of task execution, It did not dcflnc the means hy which this is
aciiieved. ''ihe current mnodel delirms tic sequcnce of activities. derived from tic schedule Lible, which is to support the specified
cflixt. 'l1hc a(t) on p In q primitive function within the replication model is refined ito define the broadcast mechanism responsible for
communicating the value of exi) on p to each of Lhe other processors, liascd onl the specification of tlc activity schedule present ror
each processor, specific recquirements on tic scheduling of the information flow throuigh thc systemi are formulated. Among these
requirements are M each iteration of each task is scheduled sulhicienit execution time, (2) the broadcast of each task output is
pet formed within the required period and after the completion o" the task iteration. (3) voting onl each task result occurs within the
required Nrme, after the broadcast has becn received and prior to its use as Input. And (4) all activities scheduled fur a given suhfranic
have sulflcient ltime to comrplete.

As we explained in Section 3, fotur different kinds of activities are involved in the operation ofSlI-l. Within 0-.c llroadcast model
these are reprcsented as

e <Overhead>

9 <"Broadcast", 0>

q C"Vote", a, S>

* <"Execute", a, sfart finish>

TInc "Ovorhead" activity represents the oiserhead period occuring at the beginning of each suhframe. and the 'Broadcast" activity
initiates the asynchronous b-',adcast of the output of task a to all processors Recall that voting oil a task restilt may occur Iin stages.
Within this model we explici~y represent the output of a task as a sequence of values (based on the number of machine words

representing the resuilt). A particular "Vote" activity votes on a suibsequence s of the output sequence resulting fromn the execution of

task a. T[he spccificatioti of the "Execute" actiN ity Fit. a task a includes an indications of whether this is the start of the task iteration, anA
intermediate execution, or the finish of the iteration,

The primitive funaidon sched(cjt.p) within the nmodel denotes the schedule table, specifying the sequetnce of activitics to be
executted by proccs:;ot 1 during suhfirainc time Iwhen in configuration c. As discussed in Section 3, the configuration at a particular
time cuasists of a mapping from each task to the , ot mif processors which have been assigned to exectite the task. 'lle configuiration is
calcolatedl once per- frame by the global execuitive and broadcast to all processors. 'I hie function coiimfigO ia) denotes tile set of processors
in the configuration for task a at(subfr-ame time i. Fite poll for i of k primitive function in Lhe Replication model is mapped tip fromt the
Biroadcast model a-, config(beg(i ofa. a), i.e., as the configuration present at the beginning of the execution window for die i-tb iteration
of task a.

From the schedule table sched the actual schedule of activities for each processor is determined. During a subiframe, each
processor performs the sequence if activities indicated by the schedule table. Within the model, aii ae~riil,j thie t denotes a finer grain
of time than solbframc timte. It is used to ordor the cuimulative activities fierformrd by a pr-ocessor p. TIwo auxiligry funictions arc, used
to convert between vulibIATICm time and activity timne. 'fhe function suiframne 0t) maps aii activity time! tion processor p to the subfranie
in which the activity is performed., thde oilher direction, the function s~Nf)maps a suhframc tainit to thie activity time of the first
activity of processor p Iin gubfiame 1. Based onl activity time, thie derived function schudult-0 .p) denotes the activity performed by by
processor Iat arlivity tune Tis. history of processor activity is derived font the scliclulc table and the changes o1 fcon figu ration

Figure 8 below illustrates the flow of informationti trough the system as a result of the Broadcast, Vote, and Execute activities.

The functions

& datafile out for a on A1

* datafile ;n q for a on pt

* input it in q for e of aA~q

denotes the values ofeacli of these data stetrutires at each activity time.

1lie output buffer for task a onl processor p is modlified during the E:xecute act% ities performed for the task. As a rcnuii of a
Broadcast activity on processor p for task a, the value of output for a on p is transfered to dwaraile out for a on p and aii asynchronous
broadcast is initiated, Sometime later (as we discussed Iin Section 3), the valuec broadcast is received in datafile in q for a Onl p within
each processor q. As the result ofa Vote activity <"Vote"%.as> on processor q. a particular subsequence s is extracted front die result for
task a received in each of the datafile in buffer-, and voting, based on the designated poll set is performed. T'he result of the vote is
placed in a set of input builers input it in q for e of a at fi for each element r contained in the sequence s. As we explained iii Section 3.
because of disparate iter.,itioti rates of the tasks it is neccessary to double buffer the resuli, ot' the voting and to maiintaiin separate copies
of the resuilts f'or each task iteration frequency dlependling on the value, [Tie it parameter is tihe boolean valuec selecting tile buffer for
receipt of the value, while fis the frequency parameter quantificed over all iteration rates for which thcre is a task depending on the
output of task it. The choice of buffer in die double b~ufferiing schteme is accomplished uuxirg two primitive functions %rtsoelcti,a) and
rdsclect(i f a) to select tile appropriate bolner for writing and reading, respectively, the result for task a at activity time 1P.

Within the Broadcast model is the first iitdication that wie SIFTsystem is not synclirtnovs. Associated with each processor p is a
function real (t) which maps activity titme on processor p to real time. As wec discussed in Section 3. because iif clock skew aiid
transport dela~y ýwithin SIlF, the processors will not be synchronized. In order for the System to fuinction ctcrrectly, it is necessary that
the clocks remain within a specified tolecance of each other -- to do so is thc responsibility of the clock synch ronization task which Is
part or each processor's Local E~xecutive. As we discussed earlier. SIFI is carefully designed so that the distributed system is effectively
s)nc/ironu~ts. Assuming the correctness of the clock syncroniization algorithm., asyncllrnism caused by processor clock skew has no
external effect. In the case of an asynchrciuouts Broadcast activity, for exanmple, our specifications define the value at the destination
only after the latest time at which the broadcast could have been completed given the maximum pnxo-css;)r skew. It is incumbent upon

'22-

us to prove that no access will be attcmptod of hedikat before this tinme in order to map this asynchronous system up to the higher-loevl
synchronous Replication and 1/0 modeIls

Based on tie llroadcast-lcvel primitive hinctions, the high-level operations representing information flow given In the Replication
model can be refined to dcflne Information flow directly rela'ibbk ito actual dataistructures present in the Sll-' system. lIbc 00(, on P
primitive In the Replication model can be derived in terms of the value of output for a on p at the fittish of thc Execution activity for a
on processor pi.'libe primitive function a(#) on p in 9 can he derived in terms of the value of datafile In q for a on p at the times of the
Vote activities for asi result. thbe fuinction a~t) In q within the Replicait'on model can similarly be derived as the values of the
inpot.,~ in q fur e of a at f for the appropriate bui~er number n and for each element P of the result.

The execution and Luata windows lbr each Iteration, of each task are present within the Broadcast model and form envelopes
during which cetain activities must be completed. In particular, all execution activities and all processors' voting on the results must be
scheduled within the execution window, and all exccution windows of all input i.isks must be contained in the data window for the task,

In terms; of these primitives, we can now illustrate the axioms decfining h:' V.ote stid Floccuto activities, corresponding to the
definition of voting and the main execution axiom of the Replication m"ýeie given in previous section~. We first give the axiom deflining
the Vote activity.

Vp Va Vs Vt VelEs Vprste(a)

pES('p-p] A schiedule(t., p) -<"Vote". a.us>

Input wrtselect(.,.a) In m !)r c of a at f(1P+1))
maj(hag',v4(e) :qCeonrig(stnrt,,(,) ,a) A v -datafllein p for a on q(It)

"A"nothing also changed"I

In this axiom, rate(a) is a function dcrivcrj from the sehed table and denotes the iteration rate of task a, "Nothing else changed" is used
informally here to indicate that no other daia structures are atffcted by the Vote activity. Briefly. the axiom states that if a working
processor p has been scheduled to vote on a suibsequence s of task a's output at activity time t, then the result, at activity ftime I + 1 will
be that the input buff'er selected by wrtselect for each element e of s will have received the giajor~ty valuu from the datarlle Ia1 buffers
corresponding to ý:ach processor in the configuration.

For the Execute activity we have die following axiom:

Vp Va VsVsiari Yfitni..'

VbKlnputs(a) VlIrn!result~sli,e(b)

finish A

Input rdselect(,rntinrate(a~b)) in p for e of b atrate(nalnrate(a.1b))(I,,) vb.

outnutfor a on pi(il,) - A(ytaw,(t)) A "nothing else changed*

where

kiuu a) (, bEinputs(a) A 1<e:5result~sitee(b))

Despite die forbidding appearance of~axiom dhe behavior specified is quite simpile. A working processorp which is scheduled to
perform an Execute activity for aoat activity time i will do the following. If this is the finish ing Execute activity for the iteration, and if

11is the value ir the selected Input buiffer toi- die e-th elemnent in thc value that processor p has voted fcr the result ofb. then at activity
time c + I the output btifier for a on p will contain the result of applying a's charact.-ristic function A to all input values bIn don
the sedcction of buffer in the double buffering schemec, the function nhinratc~o,b) is used to select the slower of die, two tasks for
determination of the proper buffer.

Recall that within the higher level models the interactive consistency Algorithm was specified as being performed by a special
task. This is refined within the Broadcast model to actually consist of a number of' lr:)adcast" (and in some cases "Vote") activities.

One can see from the brief description of the predicates and functions comprising the Broadcast model of SIt-i' and from the
axioms for voting and taisk execution thatI the structures and concepts defined are approaiching those employed in the implementation.
Okir speci fications are becomi ng progressively more detailed and lower- evel. In view i ng this level of speci fication and all lower levels
of specification the need fur more abstract system models in def~ennining system correactns should be appare~nt.

S. The DenotaVonal and Imperative Models
All tie modeli previotisly presented have been aixiomnitically specified, stating required pruperiies of primitives within the model

without giving complete functionality, Thec Denoiationa" MAtde is the first complete model of the system. It specifies a set of recursive
functions comprising the SIFF executive which is replieated on each orocessor. It could in principle be executed by an Appropriate
machine, albeit with excruciating inefficiency. Its purpose is to provide a complete specificationi of the behavior of dhe various
programs in die SIll'system against which the validity of the actual implementation can be demonstrated. Consequently it is highly

constrained by the needs of the program verification system.

22-9

The various programs that form the SIlT executive are written in Sequential Pascal and Ihrm the Piaal Implementaiaon, from
which is derihed by compilation the /'DXQ.tO hImpleni'atioit, These rcprercnt imperative models of the system, the latter of which
being the actual SIl-T implementation. Many programs in the system can be proved correct in their Pascal representation, and suL.,
proxfs arc simpler because it is easier to understand the intent of the Pascal program. The Pascal program is written within the limits
imposed by a sequential programming language. As such, real-time communication via external interrupts and message pa.sing
through the data files cannot be represented within the program. Such aspects of the SIlr executive ate represented through changes
to s,%ecial variables and flags not assigned within the Pascal program. liccausc of this, a few portions of the system cannot easily be
vcrilfled in Pascal, for instance the scheduler and the clock synchroniintý,, -'ode. Ary verification that is attempted oln the basis of the
Pascal code must he predicated upon the prool' that the clock synchrowioiawi algorithm allows one to reason about certain segments of
the code as sequential programs with no external interference, Any such vcrification of Pascal functions also depends upon a pnxfr that
the translation from Pascal to Ill)X930 code is correct. It is therefore anticipated that the majority or the formal proof of
correspondence will be will be between the Denotational Model and die ID/X930 Implementathon. Where Pascal program proofs are
available, the various lemmas and invariants developed for that proof can be mapped down into the Ill)X930 Machine Code proofs,
greatly speed'ng their construction.

The formal verification of the BDX930 Intplonention is pertonoed by refei Qnce to the IU)AQ30 Spr!ctrafion of the behaviour of
the processor and associated hardware, i)eveloped for this purpose is a formal interpretive model for the lI)X930 machine, written in
lktyer-Moore recursive function theory and deried from an ISPS scoi-fomral machine spelificaion. Here too design faults might lurk,
and it is neccessary to demonstrate the consistency of the hardware with its specification. 'Ihis %ill be a two step procedure. First it
must be shownt that the lD)A'.)3O Alieropmgnom executing on die 111)X930 Mliniprognan Ibox.ssor is consistent with the 11),X930
Slkeykation, and then it must be shown that tie ID)X030 Lo gic Design correctly implements the 111)5030 Alicrvprognm i'nllnessu
specication.j

We do not discuss these low level mov'elq o% i;ln this paper.

9. Reliability Analysis
The purpose of the various analyses culminating in the reliahili'y analysis is to estimate the probability that the SIFI' system will

enter a state in which system safe is not true, placing an upper bound on the probability of system failure. Iwo primary an;0lyses are
involed, the Error Rate Analysis, which involves the rate of detection, rcconfiguration, and error mmsking, and die Rclhailii, AnalJysis,
which investigates system safe.

The Reliability Analysis is based on a discrete Markcv model containing very many states, Fortunately it is possible to perform
an analytic reduction of these :;tates, discarding states with negligible occupancy and combining together many other state, uttil the
number of states becomes tractable. This reduced Markos model has .-tates described by three coordinates, the number of processois
remaining in th0 configuration, dte number of promessors in the configuration that have solid faults, and the number of transient faults
that have occurred and whose erroneous results havyx not yet been completely masked by the majority voting The reduced Markov
model is -valuated by successive squaring of the transition matrix. Figure 9 shows the model in the plane where the number or
translent errors is wero. Note that in some of these states system safe can be false, where a second or third fault has occurred before the
system has completed the reconfiguvtion from an earlier fault, or where the system has exhausted its supply of spare processors.

The validity of die Markov analysis depends on the correspondence of the state space to the states of the actual system, the
approximations introduced by the analytic reduction and the evaluation method, and the justifiability of the trdnsition rates betweenm
states. The correspondence with the actual system is substantiated by demonstrating that the states o'f the lvinikov nioll.,A are an
abstraction of the states of the Replication Model. Apl,roximations introduced by the reduction and evaluation can realily be shown to
be negligible, The justification of the transition rates, which are derived from the Error Rate Analysis, is less easy. A Markov analysis
requires that the transitions are independent of each other and satisfy a Poisson distribution. However, it is clear that these
requirements are not completely or even substantially, satisfied for the recovery transitions. At present we depend on a subjective

assessment that the actual distributions are reasonably approximated by the amsmed tois.ion distributions, and on . nsitivity am'alyses
that demonstrate the effects of different assumptions for those distributions. Figure 10 shows an ex:ample of the results from the
Reliability Model,

hlie Error Rate Analysis is a similar Markoe model, whose purpose is to inves-i;gate (1) the rate at which faults cause errors to be
generated, (2) the rate at which such errors ire d,"tccted, (3) the rate at which die (U,•bal Ixecutive algorithm can diagnose the e,'orý
and reconfigure the system, (4) the probability that die error reports ace simple enough for the Global Executive to be certai, of
making a correct diagnosis, and (5) the rate at which the erroneous infoinnation generated by die fault is masked by the majority vou.ng,
This last rate is, of course, the rate of importance to die Reliability Analysis, for it det, miines the rate at which die systca becomes
immune 'o a further fault, As above, it is necessary to demonstrnte that the state space lor iOe Error Rate Analysis is an abstraction of
the ste' :s of Cho Replication Model, and that the behavior o" the algorithm for the Global Executive corresponds to that implemented.

Much of the interest of the Error Rate Analysis concerns the algorithms used by the Global Executive to diagnose transient faults
and faults that generate conflicting error reports, which therefore must be represented by the I'd)X930 Fault Model. Transient faults,
which generate errors for only a short period of time, and which may be sufficiently frequient to he a significant fa,-,or in the reihability
of the system, are easy to represent. Conflicting error reports can be generated by two or more faults or by a single fatlt in the
broadcast interface which causes a broadcast result to he seen differently by other processors. A single, very malicious fault of this type
could persuade a naive Global Executive to discard a succession of good processors until the system fails, indicating that accurate
analysis of such faults is cssential. The great majority of faults, not involving the broadcast interface, are not di;Terentiated for the
analysis m;kes no amniptions about the behavior of a failed processor, allowing it even to gener'ite entirely corrct results, provided
only that it remains uncorrelated with other faults. Our proof of correct operation, while system safe is true, is required to be sound for
any fooi of behavior by a faulty processor, and should therefore be valid for the I -havior of actual faulty processors.

10. Current Status of Project
At the time of writing this draft of the paper. the major portion of system specification has been completed and the verification

effort has been initiated. The axiomatically specified I/O and Replication models have been completed and the IBroadcast niodel is
approximately 70% conimplcte. We are in the process of translating an earlier SPECIAL. state machine specification ofthe system into
the denotational model expressed in Ik)ycr-Moore theory. This is done to be consistent with our goal of using the lloyer-Moore
theorem prover for our verification cfforL Extensive design changes to SIFl necessitate revision of the SPECIAL specifications as well.
The Pascal executive is now operational and has performed well during preliminary testing. We anticipate some amount of future
modification to bring the implementation into line with our specifications. A Pascal to Bi)X930 compiler, d.veloped outside SRI, is
being used to translate into machi-ne code. Ibe SI"I" hardware has been built and is fully operatiotral in our laboratory, and a graphics-

22-10

oriented flight simulator is being de!veloped in order to simulate complete flight control.

Work on verification of the SIl' hierarchy Is proceeding on several levels. As mentioned earlier, a recursi,. model of the
BDX930 machine has been written and early work is proceeding on verifying portionsof the Il)X930 code. Various pans of the Pascal
code, such as the voting algorithm, have been pruved correct already, We anticipate that veriflcation of the consistency of the higher
level models w!I dirst be accomplished by hand and later mechanixed using the iloycr-Moore theorem prover. In preparation for the
mechanical verification of Jhe higher level modeis, each hi;hcr level axiomatically specified modlel is being translated into a Boyer-
Moore denoiatininal model, The result ofrthis effort is to specify an abstract SIF' implementatIon based on the primitives employed In
tho axiomatic sp,,,fication. When accomplished, the recursive models will be adopted 4s the higher-level models to avoid a consistency
pre•fbetween the axiomatic and denotatiunal models.

Our verification effort is expected to stop at the level of the lI)X930 machine code. Left to be verified in order to make an"absolute" claim orcorrectness is that the hardware f.nctions according to specification and that the Markov analysis is sound. Also
left as an open question is whv,her our figures for th, Frequency and distribution of soiid and transient faults reflect actuai fault rates
Senenunted during aircraft operation. T[be answer to the latter question falls outside the ,calm of formal proof, ofrcourse, and must be
decided on the basis of empirical study.

Acknowledgments
The design, specification and verification of the SIFT prot•ct has involvwd nearly all the members of the Computer Science

Laboratory, past and present. John A'ensley lead the original design effort for S-i' and conceived the basic architecture. Also
involved in the design were Jack Goldberg, Karl Levitt, P.M. Melliar-Smith, leslie Lamport. Rob Shostak, Marshall Pease, Mi!.e
Green, Bill Kaut,, and Chuck Weinstock, Formalization of`the SIFI' models is being done by P.M. Mel!iar-Smith, Richard Schwartz,
and Leslie Lamport. 'he design of ti'. Pascal imlnpmentation is due to Chock Weinstock. Karl Levitt, Dwight Hare, Mike Green, Rob
Boyer, and J Moore are involved in die mechanical verification eff'orL Jack Goldberg is the current project leader. The SIFF hardware
was built by Bendix under subc|cntract.

The work reported here was supported by the NASA-Iangley Research Center. ihe guidance of Nick Murray, our project
monitoi, is gratefully acknowledged.

References

[11 Goldberg, J.
Development and E'valuation ofa Sot•Uare Implemented I~ault- Tolerance Computer: SIR'T Hardware.
Interim Technical Report, SKI Intemational. Nov 1979.

[21 Goldberg. J.

SIFI': A Provable Fault''olerant Computer to AircvAft flight Control.
Proceedings Cf lF.P Congtes 80,1980.

131 M S Pease, R D Shosik and I LamporL
Reaching Agreement in the Presence of Faults.

Journaltof l he on'27(2):m on -l2 To, April, 1980.

141 Wei ristock, C.
SIFI: System Design and Implementation.
10Mh International S)'miposiuin on kiull Tolerant Computing, October 1980.

(5] J. Wensley et. al.

Sl.': Design and Analysis of a Fault-Tolerant Computer for Aircraft Control.
Prom eedings of the IEEE 66(10):1240-1254, Octobc,, 1978.

22-11I

32K 32K 32K

MAIN STORE MAIN STORE MAIN STORE

OXg230 G.X930 BDX930
PROCESSOR PROCESSOR LPROCESSOR

5983 jSROAOfCAST 1553 ~RaDC 1653 Off AOCASTI 1563
NINTERFACEJ INTERFACE JINTERFACEI INTERFACE INE(RFACE JINTERFACE INTERFACE

t iur :L A Viw ofthc LVýhadar

I'IL

Iftceoof. p [T.c. Pfpo q FrGomm. rj

Tmk If amb TakbI
Input

OutputOwu

Bull., Vl olBfe

Figure 2:1ibc Broadcasting and Voting of Inrormation in SIFT'

za-.

22-12

vow

Vow 1SduhrK

Figvn 3: Iinformafion Flows for Error Reporting and R~ocoAfguration

b I
I m

F,-uw 4: A Part of a Schedulc ror Three Processor in Swrf

22-13

,u.~iI If{

I

me"m

- IMwwwpboW

m _ i

oOXS~M~e DOqX"

Boxox

Fipire S: Ihe Htierarchy of Modch• and Anialysc• usc:a w uIsubiiflat: the R~i~aoihtv' of SiFT

Fius.r' b: Three Tubs an hc ;/O M',Jc

DDXIM

- 1 100

22-14

aab bill ar vott Tblip in P~

Iteration M n Vol.

To*~ll on billnnqA

bill an r3 3 .b 1 oIn q r -n nI~to
gwralc~k) bon In Task. aniqin

llolln ol

k- to akf Votlmr .n

Ilaratblte binon o lln r ra

!of&

A lb a ~t Iof t Tlaintoj f

kofc ~ ~ WW I____ of_____a_

Figuic 7: Three Tasks in the Replication Model

Task b ol~

A Input in q

ftaaaion aMW

II
______________W ~ Out_ _ __ _ __ _

___ ___ ___ _ _ ___ ___ ___ __

V.. ExoDI -

Figure 8: A Partial View of lbre- 1Tasks in the Broadcast Model

22-15

System Safe
4.0,0 4, J0 4,210 Fas

! ~I

3,0,0023,1,0

+ Incorrect
Correct Reconfiguretion

Reconfiguration

Figure 9: A Partial View of the Reliability Analysis

I'I

10-1 1way

+

3~ ~ 4 5 6

10 Fu+ R1:A mpd Rtsi li ty

I Wa

\ .tn

+

3 4 Be7

SFilure i0: A umbe of h.Rslsote

Fgr10A Sample o hReutofheReliability Analysis

23-1

Reconfiguration,
a method to improve systems reliability

J. Szlachta

Litton Technische Werke
7800 Freiburgi W.-Germany

ABSTRACT

To improve the reliability of a flight-
augmentation computerv a system with hardware and
software reconfiguration capabilities was
deveIoped. The system consists of a network of n
redundant computers, linked via m serial buses. A)
redundant computer consists of 2 CPU's, 2 memories
and 2 or more I/,3 drivers . A fault in one of the
components of the redundant computers causes a
hardware reconfiguration which replaces the faulty
component by its still functioning twin. If a
redundant computer fails altogether, all tasks
allocated to it are transferred to one of the
still working computers of the network. This is
made possible by loading dormant copies of the
tasks into at least one other computer of the ini-
tial system. These dormant copies are periodically

•- supplied with the program status of the active

copy.

Introduction redundancy, which means by
masking failures of individual

The objective of the components by the use of major-
Redundant Computer System pro- ity decisionsi and secondly by
ject was the development of an dynamic redundancy, by replac-
integrated hard- and software ing a failed component with a
system as a basis for a highly still functioning one of the
reliable flight-augmentation same type.
computer.

With few exceptions like
The reported reliability SIFT and FTMP9 the majority of

requirements for such a com- published systems are based on
puter are of the magnitude 10 static redundancy. In the
failures/hour for a 10 hour Redundant Computer System pro-
flight. Values of this magni- ject we aimed to improve relia-
tude can only be achieved by bility by dynamic redundancy at
the introduction of redundancy two levels.
into the system. There are two
standard methods by which this The first level (systems
can be done. Firstlyo by static level) consists of a network of

23-2

n computers loosely coupled via crosscoupling circuits. As the

m serial buses. Redundant system is switched on, ll

copies of the tasks to be run modules are active and con-

are distributed over these corn- stantly monitored as described

puters. below . A reconfiguration to a
component with a latent failure

At the second le'vel is therefore avoided.

(hardware level) the individual
computers and bus links are The methods used for error

duplicated so that a faulty detection in the different

component can be replaced by modules depends on their

its twin. After a brief over- respective type. For the two

view of the hardware basis at clock synchronized CPU's the

the systems level, we will con- output produced is constantly

centrate our attention in this compared by a comparator. If

paper on the mechanics by which this comparator detects 3

reconfiguration is performed. difference, a self-test program
is started by hardware, in

REtiuNOA•I COmPUtR ~order to identify the faulty
CPU. The run time of this test-

lisecond. In a sense it
replaces the third CPU of a

minimum majority-system.
I COMPA-

RAlOR The error checking of the

memoriti is performed with the

CROSSCOUPLER use of testbits which are
stored together with the data-
bits. These testbits not only
protect the data but also their

KMYORY i MEMORY 2 addresses.

The error checking of the
SI/O drivers uses special test

CROSSCOLIPLER data and self-test loops.

CROSS COUPLI:,G MUMIIPLEXERS

1)01 1/02 CONtROL .S.HAL
F---

1431.3UL A I *,I MODU? 91

FiG 1 REOUNDANI CO,!UIrER

The Redundant Computer CROSS COUPLER

The general configuration
of the individual comrrputers of MUL A --- 8,

the Redundant Computer System -__

natwork is illustrated in fig.l
They consists of the basic C--

modules CPU, memory and I/O 02

driver. These basic modules are

duplicated and linked using

*i-'..

23-3

The crosscoupling circuits normal dataflow by the
are configured as multiple mul- crosscouplers.
tiplexers (see fig. 2)1 each of
which is switched by the use of If, for example, the moni-
individually generated control toring circuitry detects a
signals. A fault in one of the fault in memory I,
crosscouplers, even certain it generates control signals
double faults, does not inter- which interrupt the dataflow
rupt the dataflow between the between CPU 1 and memory 1, and
modules, memory 1 and I/O driver 1.

Instead, a connection is
RLEu)•,-AT COPNAPMER created between CPU I and

memory 2 and memory 2 And 1/0

driver 1. As shown in fig. 4
the datapath now passes over
CPU 1v memory 2, and I/O driver
1. The reconfigured computer is

LI 1PA- still functioning, and, as far
as CPU's and I/O drivers are
concernedi still redundant.

CRDSSCOUPLE R REDUNDANT COMPU7 ER

CP~lCPU 2

W.EMORY 1 MEMORY 2 [CPU A 11
SCOMPUTE

RAIOR
CROSSCOUPLER

1101 1102CRO F1ERI

MEMORY 2

PIC, 3 DIATPAIH AFIER WINTIALI7A110N

Reconfiguration of the Computer CROS LER

At the initialization of
the system control signals for 1 710
the crosscouplers are gen-
eratedý so that CPU 1 is can-
nected to memory 1i and memory
1 is connected to I/0 driver 1.* ~DIP~ FE~R~NE~10

A datapath is thus createdFI AAAHFFý,RCNF"IO

which passes over the number' 1
modules (see fig. 3). The The systens, level is
number 2 moirdules are producing informed about this event byl
data as well and therefore have the creation of specific status-,ý
to receive the same input as ýnformation. It can now reactO
the number 1 modulesq but this by the removal of critical.l
enters only the monitoring cir- tasks from the faulty computer'
cuits and is blocked froarl the

£/

23-4

The Redundant Network Systems Level Software

The hardware at systems The software at systems

level consists of a network of level consists of three typest

n redundant computers which are the systemske-nel, the system-

loosely coupled by m redundant sprocesses, and the user-

serial buses. An example is processes. Systemskernel and

given in fig. 5. This figure systemsprocesses together

contains some additional allow the implementation of

detailes which refer to the user functions independent of

demonstration model. None of the system configuration and

the components of the network without any knowlege of the

is distinguished from any of internal structure of the sys-

the others. tems software. The actual

Within the limits of capacityi assignment of the individual

each of the redundant computers user functions to the computers

can perform the same function of the redundant networks at

as all the others. any moment in times is hidden
from the user. The user

KDUcotn CRNn1ox processes perform the systems
data processing functions . It

is these user processes which
I - I the systems software attempts

I .to keep running in case the
•RIýI L79 AR(NC 429 ARINC Q9 computer to which they where

originally allocated fails.

COMPuER I O04PUTER 7 COMPUIER N Systerrmskernel

The systemskernel provides

F" all those functions which are

s I I__ necessary for the control of

Band the communication between

_ _the systems- and the user-
BUS . . processes. These functions are

FIG. 5 basically identical with those
provided by the kernel of a

normal process control operat-

Contrary to the hardware ing system

level where the monitoring of
the main modules is performad In addition however$ the

by special circuitry, error kernel of the Redundant Cam-

detection in the computer net- puter System contains the two

work at systei,,s level is done functions "send tupdate" and

entirely by softwar'-. The main "receive update"

method used for error detection with which a process can send

is activity-rronitor ing, that and receive program status

means by checking wh-ser each information.

coMPputer produces output and This program status informa-

update messages within a prede- tion is used to synchronize the

fined time interval. The pur- programstatus of redundant

pose of update-messages will be copies of a userprocess.

described later.

S~J44

-N. 1

23-5

Systemsprocesses indexnumber. Using this index-
number a neighbourhood rela-

The systemsprocesses per- tionship is established between
furm the bulk of the the copies. The neighbqur of
redundancy-administration at the process with the highest
systems level. Tney exist, indexnumber is the one with the
like the kernel functions, as lowest. The synchronising mes-
identical copies in all comput- sage is handed from one copy of
ers of the network. When the the configuration administrator
system is switched on, every to its neighbour. A special
copy of a systemsprocess is algorithm is used to prevent
active in parallel, duplication of the synchronis-

ing message and recreates it in
case it is lost with a failing

PROCESS CONFIGURATION computer.

C.MPUIER Besides being2 used for the
l 1 2 synchonization of the network

POCESUS descriptirne these messages are
part of the error detection

SYSIEM 1 x X X algorithm at systems level.
S x x The receiving copy of the con-

3 x x figuration administrator sends
an acknowledgement to its

USER S x x predecesior. Using this
s x x handsh•t:e protocoll an activityH x x x test on the successor is per-
Sx x x formed. If this test fails the
Bx x configuration administrator
S x - - repeats the test with the suc-

cessor of its origional succEs-
sa r e.c.t. The results of
these tests are recorded in the
syrichronising message. An aux-

F.56 AFIER INITIALIZATION i llary test-canal is used to

differentiate between computer
and communication failiour.

The systemprocesses main- Userprncesses
tain local copies of network
description data in the indivi- The userprocesses perform
dual computers. This data must the systems data processing
be kept consistent throughout functions proper. Copies of
the system, so that all deci- the code of these functions are
sions based on it are indepen- loaded into several or all com-
dent of the arbitrary computer puters of the initial network.
on whioh they are performed. Obviously, only one of these
To achive this, one of the sys- redundant copies should, at any
temsprocesses, the configura- moment in time, take part in
tion administrator, circulates active dataprocessing.
a svnchonising message through
tl-. system. Each local copy of
the configuration administrator
is identified by a unique

23-6

Reconfiguration of User-
processes

PROC"SS CONFIGURATION

Each userprocess for which
redundant copies exist must COMPUTER

immediately after its initiali- [PROCESS 2 3
zation perform a call to the
kernel function "receive
update". In this functions the SYSTEM 1 x • X •
userprocess waits for the 2 x x . x

arrival of update messages. If 3 x a x . 0
such a message arrives, it will USER x • x X
be accepted and its dat. dis- * X x
tributed. The process returns
then to the "wait for update
message" state. At systems 7

initialization, each copy of
all the systemsprocesses is x - -
inside the "receive update"
call, and therefure passive.

It is the function of the FIG 7 AFTER USERPRDC.ESS ACTIVATION

systemsprocess process-
administrator to activate one
and only one of all the copies
of a userprocess. When "send update" call to which the
activated': the process- last received update message

administrator scans the local belonged. If no update message
process configuration descrip- has been veceived resumprpion
tion until it finds a userpro- takes place behind the "receive
cess of which no active copy update" call. The state of the
exists. Figure 6 illustrates process configuration descrip-
such a process configuration tion after -','stems initializa-
description. For fig. 6 to tion is shown in fig. 7. The
fig.9 the X indicates that a aHti, copies supply all other
copy of that particular process copis with process status
is loaded into the respective information by periodically
computers and a dot indicates calling the kernel function
that the copy is active. "send update". This call has

to be parameterized with a

At systems initialization description of all the process
this will be the first userpro- data which characterizes the
cess it finds. It then checks program status at the point of
wether this process fulfills call. The status of a passive
the locality criteria. If not, userprocess copy% after receiv-
it continues scanning the ing an update message,
table; if yes, it activates the corresponds exactly to the
local copy of the process by status of the active copy when
sending it a special type of sending it. It is therefore
update message. This special possible to activate a passive
update message causes the copy immediately behind the
receiving process to leave the send call of the last received
"receive update" call and update-message. The newly
resume activity behind the activated copy will produce

23-7

exactly the same output as the The next run of the

originally active one. periodically-started process-
administrator now again finds
processes of which no active

copy exists.
PROCESS CONFIGURAT ION

CWPUI ER

1 2 3 PROCESS CONFIGOiRA1ION
PROCESS FAULTY

SYSTEM I X X 12

2 X X. FROCESS _ __A_

3 X ye
SYSTEM I X a X

USER L X X

-5 X X 2 X.

5 XX3 Xcr

X USER X X

XS X X

9 X X

7 X Xe

of thenet- >
FIG 8 AFTER FAULT IN COMPUTER 2

If a computer of the net- FIG,9 AFTER RECONFIGURATInN

work failsi another of the sys-
tems processes, the
configuration-administrator,
marks the column in the process Because of the loss of one or
configuration description more computers, the locality

belonging to the failed corn- criteria has changed far the

puter as empty. Fig. 8 shows now fully passive processes. It

the process configuration han become true in exactly one

description after computer 2 of the still running computers.
has failed. Again% As described above, this copy

synchronising-messages are used of the userprocess will now be
to ensure consistency of the activated by the local copy of
configuration descriptioh th& process-administrator. The

before the process administra- result of this activation is

tor acts upon them. illustrated in fig. 9. In
closjing it should be mentioned
that this reconfiguration algo-
ritnm can also cope with tlce
return of a computer into
active service.

S.;ate of the Project

Currently we are building
a demonstration model of a

23-8

redundant network consisting of
one redundant and one non-
redundant computer of the type
LITEF 1432 linked by two twin
1553b bus connections. The
systems software i% nearing
completion and has been tested
in a simulated environment on
a single computer. Integration
of the system with reconfigura-
tion tests and errorsimulations
is planned for the second half
of 1981.

24-1

Riseau d'Echange Reconfigurable pour Contr~le de Processus ROparti

Ch. MERAUD (SAGEM 6, avenue U'16na PARIS 16kie)

B. MAUREL (SAT 41, rue Cantagrel PARIS 136me

RESUME

Ce textetexpose Iles risultats pour la partie procidure de l'&tude d'un systime d'ichal~ges
ultraflabla 5 deblt ilev4.

Ce systinme dolt permettre la r~alisation d~centr'alis~e des 6changes entre les diVLrs iquipeinents
embarqufis d'un avion ou d un cautre type de v~hicule, pour l'int~gration et ia reconfiguration de fonctions
pouvant itre critiques.

L'apparitlon des VLSI et des fibres (2) optiques insensibles atx perturbations 6lectromagnitiques
a conduit, pour atteindre les objectif's vises, a une solutioig d~centraliý;e performante par l'incorporation
d'intelligence dans un module de raccordement de type universel appeli Interface Sous-Sy.,t me (ISS).

Le principe retenu substitue au mecanisme traditlonnelleinent progranwni de gestion des 6changes,
un m~canisme diynamique irmm~diatament adapti aux modifications, et permettant une grande souplesse de syn-)
chronisation. 1I fonctionne pa- diffusion de me~isages groupant des mots de 16 bits suivant une partition
joule en orchestre de chambre par l'ensernble des 155 repartis sur 1'ensemble des 6quipements raccord~s.
Les ISS se synchronisent entre eux par extraction de 1'horloge de I'6-nission i>- z:'-- et se concertent
p~riodiquement~ pour valider les 6changes, commnuter de mode 6ventuellement ou r~couvrir les pannes.

La gestion des kchanges au niveau de chaque 6quipement est donc confige 5 I'ISS qu'il incorpore.
Celui-ci joue sa partie spk ifique en interprfitant les param~tres messages que 1l6quipementier a inscrit
dans une memoire morte. Pfiiodiquement, uls se donnent rendez-vous pour 6changer les codes cycliques 6la-
borfis par chacun d'eux A partir des informations observ~es sur la ligne pLndant le cycle pr~c~ident. Cette
phase sert i la ditection, au diagnostic des -pannos, S la reconfiguration et enfin A la resynchronisation
et S]a r~initialisation des ISS victiines d'une panne transitoire.j

Le priricipe substitue au m~canisiie traditionnellement pi)granin@ de gestion des khanges, un mica-
nisme dynamique immindiateinent adapt6 aux miodifications, et permettant une grande souplesse de synchro-
nisat ion.

INTRODUCTION

bu 53L'avfinement au dibut des annies 1970 des liaisons siries multiplex~es normalis~es (Digibus GINA,
bu 53...) pour l'acheminement des communications inter-6quipements a permis la r~alisation des

preminies 96n~rations de syst~mes nunifiriques intfigr~s de condui~e d'arines ou de v~hicules.

One riflex~ion sur 1 'vollution des syst~mes Warlnes futurs vers tout ý la fois plus de perfor-
mances de comleiti et de criticitg -, un bilan de l'exp~rience acquise sur les liaisons normal isles
acetueles -ix ossbilites Timft-ees en tegard des besoins ftLurs ; un examen en contrepartie de l'accrois-
tcement consid4rable des performances de la technologie avec 1'apparition des VLSI et des fibres optinques
sugg~rent pour att-'indre les objectifs vis~s une orientation nouvelle pour la rialisation de la fonction de
commnunication vers une solution r~partie 2r l'ncor oration d'intelligence dans un module universel (ISS)
de raccordement incorpori i chaqUL iquipement.

One recherche en ce sens a W effectuie dans le caCre d'un contrat DRET (1) par la SAGEM en
collaboration &vec la Sociit6 Electronique Marcezl DASSAULT. Elle a abouti en dicernL're 1979 A une solution
bai~se sur l'utilisation des composants de ligne des bus normal is~s actuels permettant des kchanges 4 1 ou

La solution pr~sentfie ici en collaboration avec la SAT (2) privoit l'utili~ation des fibres

optiques pour atteindre les vitesses d'6changes de 10 M~d noacessaires dans les futurs systimes.

Elle parmettra alors:

-de simplifier la maintenance en r~alisant toutes les coimmunications digitales (lentes et rapides) suivant
1le mime protocole et avec ur~e seule famille de mat6rie~i (r~seau de bus optiques redondis 10 H~d et un
seul type de coupleur tris intigrE incorn p chaque ý.quipementjl,

-do faire survivre autoinatiquenent la fornctior. de conmmunication aux pannes et d'evoir un diagnostic prkis
facilitant la maintenance . La s~curiti tie functionnement pourrait dipasser 10' c /heure (probabiliti
d'une panne non passiv~e), et la fiabilit6 avant r~paration nourrait atteindrE compte tenU des possibi-
lit~s de reconfiguration automatique 1 o- par 24 heures davis'des -onditions d'environnement sfiv~res,

-d'incorporer des iquipements en redondance pour filtrer le~r3. pannes et fnciliter les op~rations de main-
tenance en ligne,

-d'effectuer avec une grande souplesse pzour le mat~riei et le logiciel, le rac.covaeinent des iquipernents et
les modifications de configuration et d'6changes du systnime,

-d'obtenir une datation pr~cise des variables 6changees.

24-2

Ce systime de colmmunic~tion, vu A travers le module de raccordement 155, fournira aux construc-
teurs d'iquipeinents einbarquis un nioyen d'interconnexion universel facile a interfacer et dont lzinteI-
ligence inc rpor~e libirera les dQuipements des sujfitions l1~es aux ichanges.

En ce sens, Ii Dermettra ley-Sution U'6&hanges privis et pr6-d~finls entre bottes d'un mime
sous-systime afin dWen accroltre jj nterchangeabilit6 d'une application a une autre.

Dans le mime but, 11 substituera au m~can~sme traditionnel de gestlon des 6changes par program-
mation, un m~canisme dynainique non p"rowime insm.4diatement adipt:6 aux modifications, am~iiorant la datation
des variables et permettant une grande soup'Vesse de syn~chioisto nr e ~qieens nfrtqu
systime.

Pour le maltre d'oeuvre et l'iquipementier, i1 sera accompagn6 0.'un moyen de gestion e;Ficace
pour l'I nt2rti n du syst~me ou d'un sous-systame s~pari en phase d& d~veloppement, sous la forme doutils
logiciels d aide S la conception et a l'analyse permettant la vfirification et Votmsto des fichanges,
la documentation de chaque kdltion du systeime at la giiain s prmte de gestion Pes messages.

DESCRIPTION GENERALE

Composition d'une Interfac(, Sous-Systime (figure 1)

Les 6quipeinents sont interconnectis par une double. liaisoo s~rle multiplexie via une interface
intelligent dit 155 (Inter~'ace Sous-Syst~me).)

En plils ties fonctions d'interfan'e classiquesi, sa fonction est

- d'assurer la gestion des khanjes syst~mes ou priv&s, critiques ou non, sur la liai-on multiplex~e,

- de pern~ettre la synchrunisatioa des tiches de son Equipement sur l'ex~utlon das khange!',I

- de r~aiiser la d-tectioni et le recouvrement des erreurs de transmission ct leur recouvrement par recon-
figuration du bus

- de r~aiser 13 d~tectior. et !P recouvrement de ses oropres fautes, ainsi que sa mise hors service et son
isolewent du bus en cas de panne pormanente.

Structure mat&)lel du bus

Le t~us est physiquem~ent dupi quj& pour survivrp aux pannes. Chaque 1 igne est constitu~e de deux
fibres, l'une riontarite, lautre desceniante.

Les d~rivations sont r~lis4es par des. coupleu.'s passifs transparents. En normal, cha'que ISS
r~pite linfomation ircinente pow que le nlveau soit nwintenu sur toute la ligne. En cab, Je panne
d'un ISS, la trartsparence du couple~ir atss.~re la continuici de la liaison.

F. ~Structure matiriý!1le d'un ISS (figure 2)

Un ISS es+ un canal spkciaiisi r~alisi a Vaide d'un cortr~leur microprogrammi~ dirpliqui. Uric
telle structure nermet de aftecter et de passiver imm~diatement toute anomalie de fonctlonnemen, pour
empicher tout comportemeirt Enarchioue d'un ISS vis-a-vis du bus.

LTýSS egicute un microprograime canal qui interprite les instructions de gestion des seuls mes-
sages int~ressant. l'6quipEiient. L~es instructions sort stock~es dans une EPROM appartenant 5 1'6quipement.

11 est reli6 iux lignes physiques du bus dupliqu6 par un connecteur coptique et les circuits de
conversion parll~l e/s~riL, modul ation/dgnodul ationi, 6mission!r~ceptlon opto-61ectronique qul assurent les
fonctions du niveau d'interface avec la ligop..

Informnations 6chang~es
Deux types d'informations dolvent 4tre ichang~es :les variables p~riodiques et les variables

al~atoires arux dflais maximaux fix~s. La p~riodicit6 des gmiss~ons des variables du premier type ayant leur
source dans l'~quipement, du point de VLe des 6changes elles peuvent 6tre traitges connie les secondes
pourý,u -ýue ies d~lais d'achemlnement spkiflis soient respect~s. Vest ce r-ul est r~alis6 en r~partissant
les variables sur 4 niveaux de priorit6.

Gestion &4~ rederidances *
Les 6quipements 96nerant des variables critiques peuvent 6tre implant~s plusieurs fols, ce qul

pertret une diffusion multiple de ces varlables pour accroitre leur disponibilit6. A la riception, 1155 de
::haque 6qripement concern6 se chargr. du filtrage des pannes et de lenregistrement du seul r~sultat juste
dins !a zone de 1'6quipement affect&~ a la r~ception de la variable.

Ce nrkcinisrie favorise l'interchangeabiliti en perinettant l'int~gration redondante d'iquipements
standards dairs les systames critiques sans leur imposer de modifications noitables.

24-3

Tolfirance aux pannes et aux erreurs de transmission

LA structure interne de VISS assure une ditectioi, parfaite de ses propres erreurs grice aux
choix d'une struicture dupliquie/coiipar~e.

Les errburs de traiisinission scnc ditectfies
-par ditection d'erreues de modulation yr~ce S l'eiplol d'un codage autorythmi.

-par Vemplol d'un bit de pariti par mnot de 16 bits ichangi,

-par l'utillsation d&un code cyclique ilaborg et comparg piriodiquement par lensemble des ISS.

Lorsqu'dne erreur est ditectie, un basculement sur la dieuxiie ligne 'ist effectui. Ce micanisme
permet de filtrer 12s pannes tr~nsitoires sanis digrader le systime.

Un ISS ditectant une erreur persistante 4ont il est la cause se r!!t hors serwice avec une ef'lia-
citi parfaite S caus, de sa structure dur~iiquie.

AfIn diviter l'accumulation de pannes cachges sur le bus de secours, le rile des deux bus est
pirlodiqueinent inverz-4 afin detre exerci par le fonctionnement normal et binificier d'une riparatlon

F priventive 6vitant la panne double.

DESCRIPTION DU FUNCTIONNEMEtir

NicessitE- d'une grande souplesse

La gestion classique des khanges selon une trame pra~grannie pour rfialiser la pirioeicite des
ficantllon aes u a datatlo~i des variables, est ef ecuze par un seul calculateur centralisi au inoyen

d~un progranmme canial icrit spk ifi quement gulil faut modifier S chaque changement de configuration du
systice.-

Cc T-hnique contraignante provient de la technique de prograimmation dorigine on automate des
calcilateurs quis. Ces derniers italent alors uniques dans les Fystemes, ce qui 6liminait !e- pro-
blimes de syn,.i, nisation. Utilisie aujourd'hui pour synchroniser des systimes muiti-calculateurs, elle est
mal adaptge et rend toute modification laborleuse. Aujourd'hui. le fonctionnemert parallile et as~ynchrone
des calculateurs du systinme exige. puur synchronisemr avec souplessme les 6changes de donnies entre les
t~ches multiples et hiirarchisges qu'ils exicutent, une dlasticit@ dans Il'or-donnancec~ent des ichangesif ~ ~qu'une gestion progreninie central isie ne permet pas. 11 en risulte que, pour rialiser e~ne datation pricise
ýes retards dans des ichanges rapides (par exemple infrireure au quart de piriode pour des variables
5 20 ins), 11 faudra:

- soil, multiplier par 4 111 friquence dichantillonnage,

- soit extrapoler i I'6mission et synchroniser les tiches 6mettrices et consoemmatrices sur la trame,

- soft transporter la donnie avec sa date de production et extrapoler sur les lieux de consomnation.

triimLes deux premniires solutions donnent une surcharge de calcul Elevie et une gestlon lourde ; la
troiike pls crreten'utilise di~jS plus la trame piriodique commne outil de datation.

Pour ce qui concerne la nicessit& actuelle de rialiser facilement des modifications rapides de
configuration doi systime, la suppression de la prisence obligie d'un calculateur central de gestion des
echanges et de ses programmnes est un accroissement de souplesse notoire. Elle restitue aux fabricants de
sous-systimes, lear autonomnie technique et linitiative dans leur domaine de compitence. Les responsa-
bilitis techniques sont mieux difinies favorisant la t~che du maitre d'oeuvre et la fiabiliti de conception
de Ilensembl e.

Gestlon dicentralisie de l'attributicoa du bus aux demandes d'6mission des tiches

La production des variables i ichanger a pour source lensemble des tiches riparties darns les
divers 6quipements. 11 famit ordonnancer la diffusion de ces variao~les pour une consoewnation par le nmem
ensemble de tiches A linitiative de chacune d'entre elles.

Pour 6tre Echangies, les variables sont groupies par train de miots de 16 bits en messaqes i
structure fixe avec un label d'en-tkte et une prioriti difinie S l'ichelle du systime. Les messages sont
diffusis par les ISS de chaque iquipeinent i tour de '-81e, et identiflis en rfiception gr~ce au label.

Le problime de 1 ordonnancemnent des messages sur le bus est de mime nature que celui de 1 ordon-
nanceinent des tiches sur l'uniti centrale. Celui-ci est aujourd'hui tris correctemtert risolu dans les sys-
times temps riel multitiches inodernes par un micanisme d'activation prioritaire S partir d'6vinewnents et
d'une gestion des files dattentes des tiches prites sur chaque niveau de priorit6. La meilleure solution
consiste domic A adopter ce micanisme pour 1 ordonnancement des messages. On disposera alors d'une interface
souple et facile entre les mnoniteurs temps riel de chaque 6quipement et la fonction d'change. Reste A
trouver une solution ripartle pour lexicution de ce micanisme.

On y parvient en faisant exicuter simultanimnent le mime algorithme par tous les ISS qui doiient
donc fonctionner en synchronisme. A chaque instant, un ISS est en imission. Les autres sont alors en ricep-
tion synchronisie par l'horloge des fimnissions eni cours. 11 y a donc: une horloge conmnue A la population
d'ISS i chaque instant qui suffit aux besoins de synchronisation.

24-4

Impi,~mentation d'une phase de contr~ie p~riodiguLe des ficaprs

Lensemtble des messageo' stisceptibies d'itre dlfi-usis a Wt riparti i 1 avance sur lts 4 niveaux
de priorit6 du syst~r*,3. Le nlveau courant reste actif tant qu'1l existe dans ie systbme des mesf~ages en
attente d~'kission i cq ni.'eau, et qu'ii nest pas apparu de messages A un niveau supirieur.

Pour dficider des changements de niveam et pour les autres besoins du contr~le des kchanges. un
dialogue entre its ISS est nicessaire. Pour limiter its retards au minimsu tout en conservant un bon
rendement du bus, une fengtre de 64 mots pour un cycle de 1024 mots kchangis est riservfe 1 ces besoins.

En flbut de fenitre, chaque ISS dfitermine parmi 4 files de 64 bits oO s'affichent les messages 1
6mettre le niveau le plus Sitv6 de]a file non vid6. Ce niveau est inskri sur 2 bits dars un mot de
contr8le. Ces mots de contr~le sont ensuite diffushs succe~sivement per its 155 scion leur ordre d'adresse
physique croissante. A la fin de ces inmlssions et quand ia fenitre de contr6ie s'achive pour dimarrer un
nouveau cycle, Ies 155 sav'en't

- s'ils doivent poursuivre Its ichanjjes sur ie mime niveau,

- s'ils doivent commuter sur un niveau supirieur et qui dolt prendre la parole (tlte est prise prr l'ISS
d'adresse physique 1- pius patite ý ce niveau). Bans ce cas. chaque ISS sauvegarde its; pointeurs da
niveau interroinpu pour un retour uit~rieur.

En ccurs de cy,,'e et en dehors de la fenitre dQ contrale, les 155 se comportent coauce un canal
spicialisi er'tre its in~moires des 6quipements scrvis et ie bus. Ils nassurent que des opfrations simples
de transfert de mlots 1 i'aide de pointeurs incrbment~s 3 chaque pas et la mise i Jour du code cyclique.
Nianmoins. quand l!SS 4emtteur na plus de messages au niveau coursnt, la commutation vers un seccesseur a
lieu innfidiatement. Ces coimi'tations se font vers un autre ISS soit sur it mime niveau. soit vers un niveau
intirieur S partir des valeurs de pointeurs ant~rieurement sauvegatdies. Elles ne nicessitent pratiquement
pas de caicul, 1 es paramitres de conmmutation ayant Ati d~termin6s pordant la dernikrt fenitre de contr8ie.

Critire de ventilation des messages sur its niveaux de prioriti (figure 4)

Les 4 niveaux sont les suivants
- rniveau 0 des ichanges ditffris (6changes longs, ichanges de surveillance de routine, 6changes de fond

divers ...),
- n~veau 1 6changes temps riel ordinaire,

- niveau 2 dchanges temnps ridl urgents ou a friquence rapide,

- niveau 3 alarmes, etc.

chres 1 est clair que la soupiesse du Jispositif et la faciliti divolution d pend des 3arges de

La figure 4 illustre ie principe de ripartition sur un exemple limiti i 3 niveaux pour pius de
cidrte. En ordornide, on classe les messages par ordre d'urgence spk Mfie dicroissante (courbe de droite).
On caicule (courtbe de gauche) ia situation de pire cas de dilal d'ache'ninewnnt. Celic-cl s'obtient pour its
de pointes de demande. en, accumulant Iles temps de transfert des messages supposis transmis dans 1 ordre do
leur classemnent en ordonnie. La figure inontre alors le Principe d'une ventilation par niveau qui mfinage des
ftrges 6quilibries et maximales.

Comparaison avec une tr3me progt-ammiee traditionnelie

La trame des ichanges obtenue est tris voisine de Ce que Von obtient par une progranmmation des
6changes dans la solution traditionnelle. Les diffirences sont its suivantes

- 3u flivedu des 6changes rapides la diifference est insignifiante,

- dux niveaux infirieurs, i'khange est accompli dans le dilal spkcifii, mais avec une inditermination do
eesitionnemnent croissante vers les niveaux bas Jut aux Yariaticns de charge des niveaux supirieurs. Ce
jitter" croissant giniralement sans, importance, peut si nicessaire itre compens6 par ie micanisne do
datat ion fine expos6 plus loin.

Eti contrepartie, les ichanges non urgonts iquilibrent la charge du bus et permettent d'en
exploiter efficaýement toute la capacit6.

La suppression de la prograntndtion des icharges perolet des modifications rapides df configuration
du systime conformiinent aux spicifications de souplesse souhaities.

Datatlon fine pou- it caicul des vielillissements des variables

La solution efficace 5 ce bosomn pour les vasriables quile itikesditent consiste i transporter la
date o'khantiiionniage dans le message plut~t 9ue d'aCcroltre i-'utilement la friquence dichange par
rapport S la friquence de consonmation juste necessaire,. Lts tiches utilisAtrices peuvent alors ruactua-
liser spkcifiquement its valeurs regues.

- -I--A---

24-5

Pour celi, une heure syst~in urniquement utilisdble pour les calculs de retards est entretenue par
chaque ISS S]a cadence des C-hinges mots sur]a ligne. Cette heure est transmlse i chaque fioulpement nar
son ISS avec une pfirlodlciti spiciflque (par exemple toutes les 0,5 ins, une friquenze trop 3Vevie satu-
rerait inutilement l'acc~s direct mkinoire de 1'equlpement).

Sync~ronisation mutuelle des ichangps et des tiches 'figure 6)

Les lieux do production et de consommatlon des variables sont des t~cties h~bergies dcns los
iquinements.

Un iokcanisme souple par ivinements rifirenc~s, interruption ou mise en fili permet do riallser la
synchronisation muituelle tkhe-message. Ce mficanlsme est le sulvant

-pour Vimission, le message preare par une tiche est signal6 *pr~t" i l'ISS ý:.r positionnemonc d',In bit
d'6tat d1ans une table de 64 bits (pour un mnaximumn de 64 messages elligibles par Equipement). 11 sera
diffuse au plus tbt. pat l'ISS en tenant compte do son niveau de prloriti,

-pour la r~ception. los messages 6t.dnt syst~matiquement d~ffus~s en mode label (c'est-3'-dire avec un rain

dans un mnot le procidure en-tite), il revient aux ISS do dfitecter i 1'aide des paramitres inscrits darns
la PR~OM dsadaptation do l~quipement los messages qui los concernent. L'instructlon do gestlon fournie
sur 32 bits par I'EPROM pormet A 1'ISS do sp~clfler slil est concerni et ce qu'll dolt faire pour charger
;p message S La borne place puis ins~rer un numiro d'gvkre: int avec un compte rendu d'6tat danis une file
diattente de l~quipeutent. Celui-ci exploite cette file S son -iythme or activant les t~ches on attento
sur les 6vinemnents qu'elle contient.

Portie d'adressage i structure do bloc monTotis

La port~e de disignation des labels fournie par los mots do procidure est structuri en
3 niveaux

-un niveau do cormmande pouvant comporter 256 valeurs (dort un petit nombr,ý seulemcnt est utilisi),
- un niveau de labels syst~nes coinportant 512 valeurs.I'- un niveau do labels soi:s-systeme pouvant cornportor jusqu3S 128 groupes do 256 valeurs.

Chaque ISS a]a vision complite des deux premiers niveaux et des valeurs d'un soul grosipe sous-
syst~me auquel il appartiont. Ce niveau correspond aux kchanges priv6s entre ýquipement~s attachfis 5 un meire
sous-systime. Los kchanges 3 ce niveau peuvent ktre librement modififis sarns produiro d'interfirence entro
los sous-syst~nes pourvu quo les marges do charges soient respecties.I La structuration avec un nivoau hi~rarchique suppli&.entaire ost envisageable.

Outre sa souplesse, ce dispositif limite ia capaciti d'adressago Okiessaire au nlveau dop ~chaque ISS A 6401 veleurs povinettant de limiter]a capacit6 de 1'EPROM paramiatros S 1 Kmots (do 32 bits).

SURETE DE FONCTIONNEMENT
Elle s'appuie sur une tris grando skcuriti do detection des anomalies do fonctionneinent O~s ISS

qui oxige leur rialisation par duplication dij rnatiriel et conmaraison des sorties (figure 21.

Les 155 r~alisent ensemble

-]a validation des khanges on fin do cycle,

- le filtrage des erreur!; dO A dos transitoiros,

- la reconfiguration du bus ou leur auto-reconfiguratIon.

Vailidation des ichanges en fin do cycle

Au fur et 3 mpsure des 6changes, chacun des 155 ilabore un code cyclique pour lensominbe des
1024 mnots du cycle.

Ce code est insiri sur 14 bits dans le mot do contr~le quo chaque ISS diffuse. It- cycle est
val idi qudnd tous ces mats do contr6le sunt identiques.

Les caises do pannes 6tant irndlpendantes entre les ISS, et ces derniers itant parfaitement
test~s par co'ipar-isori grkue 3 leur structure mat~rielle dupliqu~e et leur exercice corntlnu,]a validation
du cycle faite par rhacun d'eux, corn lite p-jr les tests do pariti diji rfialisfs au nlveav do rhaque mot4
3chanqg, est d'une s~curitý pratiquoment absolue.

Gette vdlidation di-verrouille l'ut~lisation par les tiches do llnformAtion &chang~e.

Filtage-sorrours transitoires

En cas d'errour constat~e une promiire fois au cours du cycle ou lots do sa validation, le cycle
e'st affichi or faute le mode reprise est allumi et l'ensemble des ISS bascule sur l'autre ligne (ou reste
stir la mine en cas do perte do la deuxi~ino.).

7:

24-6

L'IS c pus -pttevaleur d'adresse r4,0 n~a pas fait dc faute, envoie en dibut de cycle suivant

L'I.SS en fbutp iui avait dibrayi du cycle dis la d~tection de l'erreur pour atterndre ce message
est aio,.s res.vn('ronisg. Les &changes non valid~s maintenus par les tkches ~iettrices sont ensuite ripit~s.
En cas de tivccis, Ile mode reprise est effac&.

Reconfigurati-on des I1ýS ou du bus

Apris trois teaitatives infructuouses du mime ISS, celui-ci s'fiteint automatiquement. Ce sijnal
allIurne ir, ISS de sec.urs qul s'initialise suivant le mime procdi. 511l n',ý a pas d'ISS da secours, l'iqui-
pernent dispam aft. des 6-hanges sur le bus.

Quand plus dun tmot de contr~3~e se s~pare des autres, 1, erreur est mise au compte d'une panne de
bus, En cas do faute persistanto. svr le mieme bus physique, celul-ci est abandonni.

AIDE A LA CONCEPTION

Parall~iernent. i 1'itude et destinie S facililter sa mise en oeuvre et ;ion ivolution, !'ktud. d'uui
autil de conceptir~r est en cours dan,. sa phasý, thfiorique.

Cet cutil CESAR (3) (Conception Evaluation et Spfiification des Applications Riparties) est un
systi~me gin4ral d'alde & la conception d'applications d~coup~es en "bo~tes noires" &:,angeant des messales.

11 perniet de dkcrire
- larchitecture logigue d~coupage fonctionnel en t~chmes 6changeant des informations sous fc'-mes de

messages,
-]'architecture -physique dkoupage en 6quipements ayant d~es caract~rlstlqites spk ifiquas.

11 permnet d'ajuster le niveau de d~tail de la description aux besoins. Une telle dimarche estii ~bien adapt~e A une conception~ d-nscenmdajnte de l'ensemnble O'ur- systime r~parti, et persiet. d'offrlr les

- la virification de]a cohirence des spfiifications foitctiommnelle i tous les niveaux de description, solt
une validation partielli-etprogressive durant toute a phase de conceptiomm,

- l'optimisation de V'in~platatlon des tiches sur les tý-.iipements compte tern' des spkcifications logiques
et phySiwr;es,

- la documentation automatique di projet en phase de co.cýeption et eni prase de d~veloppement, 1- Mieau de

- tne rnod~lisation nmathfimatiqufe du syst~me (lorsqui le div'au de ditamil atteint est suffisant) permettant
d'etudier au moyen d'une an~s ttatique le res,,ect. Jes ~ont-aintes teniporellesý et la correction d<-s
%pk~ifications de synchro iisation, ainsiu'une *evaluation des -performainces atteintes en fonction de la
charge du syst~me.

Un tel systine periiettra de sp~cifie, les -~changes ý.ntre los @quipements, tant du point de vue
lngiqi.e (nature et fonction de- informnations krianq,6es) qu. du point de vue tenqporel (dur4~ des traite-
mei~ts, contrainites de datation, contrdintes do s~rquentialii6, etc.). 11 pnornettra la virificat~ion automw-
tique de la cohirence de ces spikcifications, OirA w.e iý diftermination de l'implbrntation optimale des
t~ches sur les iquippments et celle de la repoi- ti'u de; messages sur les dlffirents niveeu., do, prioriti.

11 permettra kcwlement de &~ ifier It espect des spiCif"cdtions de fiabilit6 attachies aux
differentes fonctions d, ;yst~"ne, c%,m.Pp toen de taux de difaillaimce des Yessources physiques imises en
jeu. Un molile iiarkovien permottra de s 'Oe I'i luti4on des probab1'~tis des diffirents Atats du syst~me
en fonction du temp,ý suite aux pannes.

CONCLUS ION

Les princijp -S (le base du protkicole o.--t -*c& expos~s airisi quo celui sur lequel repose la s~iret6 de
fonctionnement et powi Iquel , alcu& de f-ab1 :t6 privisionnelle a Wt r~alisi.

Aujourd'hui, i twide niieau du sys.ime ost en attente d'une progression des risultats aum
niveau des bus optiques. Au-dela, une riaquftte exp~rimentale pourra itre r~a~ls~e.4

REFERENCES

(1) SIERRA .Svstime d' Int~yration et d'Echange.. Pi, rti et Recovifigurable automatiquenwpnt.
Rapport de synthise -F~vrier 1980 - Contr-, DRLT

(2) Programmne "Ville ciblie de Biarritz' - Malt,-ise d'oeuvre SAT

(3) J.P. QUEIILE. The CZSAR System :An aided design and certificatiobi syste~lr for distributed applications.
The 2nd irternitional conference on distributed comp~uting systenrm PARIS France April 08-10 8C

24-7

Coupleurs passifi

\ Figure 1 - CONFIGURATION DENSEMBLE

Interface type 69000

ii PROM ou RAM
Carte EIS

PARAMETRES do I'dquipement

16 (Adresse) 16 (info)
A 5 V

it 155 (Hybrids 2 pouces 13

Reg. ROM2 VLSI identiques

I .

~~flUBU~PoineurSurveillant
SI BUS LENT: SI BUS RPU
-Circuit LSI existent Le -- Circuit LSI
-Emission r6ception Codae" -Circuits d'E/R

et micro transfos dif f~rentiels

BUS LENT:o U RPD
- D6 ivation 6 m ow-------- I- Ddirvation 15 m 5 Paires torsadtes dupliqudes
-Pairs torsadie dupliqu6s I I u piqedpiu

-Transfo do dirivation - Boltier actif 4 d6rivations

Figure2 - 55Boltiern as

Figre - SSREPRESENTE MONTE DANS UN EQUIPEMENT

24-8

P.C opirotions

Bus optique dupliqud . 1 Bo~tier do ddrivation 4 prises; par local

soute ISSEquiponments

Bus 6loctriques 1 Mmots/s (isolis entre aux) (15 m

PEUVENT ETRE CONNECTES
- CALCULATEURS
- DISQUES RAPIDES
- IMPRIMANTES RAPIDES

- ENREGISTREURS A BULLES MAGNETIOUES
- V'qUS CATHODIQUES

ETC...

Figure 3 - SCHEMA DIINTERCONNEXION

SUR RtISEAU DR DIFFUSION RAPIDE 0,5 M MOTS/$ (10 M BITS/I)

Indio@

I Nivoau I

I I ~Nilou

I NIao

Tempt

lExemple & 3 nlvemux)

Figure 4 - REPARTIT ION IN NIVEAUX DES MESSAGES,

24-9

cyr-k 1024 mots

MeteIsc~eb cku rnyeou a

m~et.1.a~tb cu n~vwv t

Figure 5 -STRUCTURE DE LA TRAME DYNAMIQUE

PROM dlodaphahori

casonbkrse di'ver~ob

Mo i pribi.11
Mcn~Vcur

Eo~ ~n r~iiTaceb~ ý cachc% dcc b dLatbell

1a ie bychro

I Zonnie

Figure 6 - SYNCHRONISATION INTRE LISS IT P'EQUIPEMENT

24-10

64 mots

1024 mots

nivou 31-

nlveau 2

niveeu 1 low- -4

nimou 0 --

- Sur un nivbmu, Is bus eot atrlbud aux ISS per ordre d'adraose cvioluantom

- L'lntorrupdlon en favour des nivomux prioritalre eat prin on charge darridra un cycloe dogeotlon (pointlilld)
Latence < 2 fm

Figure 7 - TRAME

s5-I

DISCUSSIONS
SESS-!ON V

REFERENCE I). OF PAPER: V-20

DISCUSSOR'S NAME: Dr. G. H. Hunt, AVP Member

AUTHOR'S NAME: A. D. Stern

COMMENT: It is an implicit assumption in your paper that the occurrences of failure in the different
LRU's are completely uncorrelated. It seems to me that there may be some mechanisms for failure ind
degradation, particularly those associated with variitions in environmental conditions, which are
common to many LRU's and which could correlate to some measure the o,:currence of failure. Has the
author been able to satisfy himself that this is not so?

AUTHOR'S REPLY: I agree with the comment entirely. 3owever, common failure modes should be designed
out of the system, elsewise why bother with redundeicy. The stage-state method presented is typical to
other reliability analysis methods in that it assumes randomness of failure occurrence. This is
sufficient for architecture reliability trade studies and comparisons for which most methods are
lrtended.

There is some work going on in reliabilitj wnich addresses different failure rates for recognition
of the fact that most failures occur during near "turn-on" time, and that failure rates for a given
device may change if it is in some standby mode.

REFERENCE NO. OF PAPER: V-22

DISCUSSOR'S NAME: K. A. Helps, Smith Industries

AUTHOR'S NAME: R. L. Schwartz

COMMENT: In making your analysis of the SIFT system depend on a sequence of proofs of the equivalence
in certain respects of one model to the next in the sequence from 1-0 model to Pascal program (figure
5), have you made any estimate of the likelihood of corrtctne; of the proofs necessary to match the
extremely low probability of system failure required (1 in 10'u per hour), and is there not ým need to
have (dissimilar) redundancy of proofs since human argument is fallible even when supported by
mechanical aids such as theorem provers? (Althoug', proof is either correct or incorrect, confidence
in a proef is generally not 100%.)

AUTHOR'S REPLY: You are indeed correct that the validity of the overall SIFT verification efforts
depends in part on the soundness of the mechanical theorem prover employed. The answer to this is not
however to replicate the proof process (with perhaps some sort of majority vote??) or to use a
probabilistic analysis of the proof validity.

The role of any verification attempt is to increase confidence in a system. That a machine-
generated axiomatic proof is correct merely means that the truth of the proposition follows from a
gi44n set of axioms and rules of deduction. This by itself is not difficult to check, either by
machine or by a human reader. This is not the problem area. Determining that the proposition (or
specification) actually expresses a property sufficient to ensure the behavior you intend is the more
difficult problem. That the I/O model, the highest level description of SIFT, expresses the intended
system function in the end must be determined by inspection.

I do not believe, however, that this is the weakest link in thp argument of SIFT's reliability.
To me, the weakest argument concerns the reliability assumptions for the underlying hardware which were
made in order to employ a Markov reliability analysis. Assumptions such as the statistical
independence of faults in various processors and that their occurrence satisfies a negative exponential
distribution appear to me more bothersome. It is here that further work should be done. Eventually, I
also expect that mechanical theorem provers will be shown to be consistent with a specification--
pushing the problem back one more level.

REFERENCE NO. OF PAPER: V-22

DISCUSSOR'S NAME: J. H. Saltzer, MIT, USA

AUTHOR'S NAME: R. Schwartz

COMMENT: Is it your experience that the process of systematic design and verification is actually
uncovering design errors?

AUTHOR'S REPLY: Yes, I believe the formal specification and verification process has been quite useful
in uncovering incomplete and flawed design decisions. Probably tie flaw with the widest significance is
that clock synchronization ca, not be guaranteed to withstand a single point failure using triplication
and majority voting. In 'esponse to this, a new "interactive consistency" algorithm was developed.
The problem, solution, and its)roof can be found in an article by Pease, Shostak, and Lamport in the
Journal of the ACM, April 1980. There are many other instances involving neglected and necessary
constraints on the schedule table, etc. In general, formal specification and verification forces every
possible state of the system to be considered and thus is one of the (if not the) most systematic
analyses possible.

S5,2

REFERENCE NO. OF PAPER: V-22

DISCUSSOR'S NAME: Schwartz, SRI, USA

AUTHOR'S NAME: Enslow (Livesey, Presenter)

COMMENT: Is your proof effort primarily oriented towards de~jgn verification or towards implementation
verification? For example, if I accepted your fiqure of 10- lufor fault independence, but asserted
that two processes would deadlock with a probability of I0-9, does your work address that?

AUTHOR'S REPLY: The proof effort extends from the highest level design specifications down through and
including the Pascal implementation. The highest level model specifies that the system must continue
to apply the correct task function on the correct input vaites. Any implementation claiming to
implement SIFT must satisfy this, therefore, lower level design decisions which result in df ,llock, for
example, will thus not satisfy this reqLirement.

I might comment that bccause we are verifying the validity of employed fault-tolerance algorithms
within our design verification, the lowest level proof of Pascal implementation is rather trivial.

REFERENCE NO. OF PAPER: V-,3
DISCUSSOR'S NAME: Jim McCuen, Hughes Aircralt, USA

AUTHOR'S NAME: M. Szlachta

COMMENT: Why did you select to use the MIL-STD-1553 Bus for the intertie for the computers?

AUTHOR'S REPLY. We had to chose between things availabl.e at the moment. The 1553 is supported by many
people. We are not fully satisfied with it. Probdbly because we are misusinq the bus--we are using it
as a processor link and had to change it a little.

REFERENCE NO. OF PAPER: V-23

DISCUSSOR'S NAME: G. Scotti, SELENIA

AUTHOR'S NAME- J. Szlachta

COMMENT: In normal operation only one computer has the possibility to access memory and I/0, while the
second CPU is maintained hot. If the crosscoupler disconnects the nonactive processor from the memory
and the I/O, how is it possible to compare the correct operations between the two processors in absence
of cnrrect data in the second CPU?

AUTHOR'S REPLY: The crosscoupler prevents only the output and not the input. That means that the
output of the active CPU is written into both maemory blocks. The line in figure 3 indicates the active
data flow ',nly. The additic.ial data flow, for exanple, error checking is not shown.

REFERENCE NO. OF PAPER: ý-23

DISCUSSOR'S NAME: Horst Kister, VDO

AUTHOR'S NAME: Szlachta

COMMENT: What does "synchronization" in this case mean?

AUTHOR'S REPLY: By synchronization we understand the periodic exchange of messages between the
distdibuted copies of a systems-process. This exchange serves to secure the consistency of a subset of
the global data space.

REFERENCE NO. OF PAPER: V-24

DISCUSSOR'S NAME: Jim McCuen, Hughes Aircraft Co., USA

AUTHOR'S NAME: M. Meraud

COMMENT: Have you built a fiber optic bus (lOOM to 300M, wit'i 32 taps/drops? If so, have you operated
it successfully?

AUTHOR'S REPLY: Not yet. This was a study. The ISS is under design and we will have it in 1982. As
for the optical part, it is tie other society which is in charge of it. We expect it to have it ready
by mid-1982. And a prototype ahould be ready by the end of that year.

26-I

PROTOCOL LEVEL MODULES - FOR COST EFFECTIVE STANDARD COMPUTER COMMUNICATION

0yvind Hvinden, Yngvar Lundh, 0ystein Sandholt

Norwegian Defence Research Establishment, P 0 Box 25 - N-2007 Kjeller, Norway

SUMMARY

A set of microcomputer modules for implementation Of network front-end, gateway and speci-
lized host computers are being developed. A highly modular design approach is taken. One or
more of these protocol modules may be interconnected to constitute the units referred to. A
"library" of tested hardware sub modules is established, new modules may quickly be deve-
loped using these sub modules. A framework for unified prou ,ol implementation and protocol
interconnection is defined. This includes a real time operaeing system kernel with functions
for buffer management, timing, pseudo parallel process execution and process communication.

1 INTRODUCTION

An experimental distributed computer system based on local networking is under development at the Norwegian
Defence Research Establishment (NDRE). This effort includes development and investigation of different
local nets, gateways between these nets and existing long haul nets, host computer network interfaces, host
computer network software and specialized host computers. This paper concentrates on techniques for imple-
mentation of "Network Front-Ends" (NFE), gateways and specialized host computers based on microprocessor
technology.

Local network technology is rapidly developing and various network types are needed in our experiments. A
ne,:work architecture that permits experimentation with different nets without having to redesign host com-
puter network interfaces is highly desirable. The front-end technique hides network specific details and
host interfaces may be standardized independently of tre underlying net. This technique haS both advantages
and disadvantages compared to "non-intelligent" hardware interfaces where the host carries out all protocol

software. Application independent protocols that are commonly used by all hosts are protocols well suited
for front-end implementation. The implementation effort for these protocols may then be reduced to one pro-
cessor type. Carrying out protocol fiunctions by a front-end may offload tn expensive host computer signifi-
cantly, thus providing more host capacity to the users.

On the other hand a front-end may be a throughput bottleneck for hosts with high performance network re-quirements. Increased packet delays may also occur.

For our current applications a front-end technique based on standard m:icroprocessor technology is adequate
in terms of throughput and delay. These applications are narrow band digital voice terminals, terminal
interface units and general host (mini-) computer networking (remote ttr-ninal access and file transfer).

2 ARCHITECTURE AND MODULARIZATION rF NETWORK FRONT-END GATEWAYS AND ROST COMPUTERS

The ISO reference model for "Open Systems Interconnection" (ISO TC97/hi 16, 1979) provides the framework
for protocol implementation. Protocols are hierarchically layered and 7r-amunicates internally, only with
protocols above and underneath it in the hierarchy. The hardware anJ !,cf~ware base for protocol implementa-
tion should preferably support this architecture.

The seven layer ISO hierarchy is divided into three main parts, network layers (1-3), transport control
layer (4) and application oriented layers (5-7). The transport control layer and layers above are network
independent. Layers 1-3 (physical link, link access and network) are used by all hosts, while different
transport protocols may exist within a network. Choice of transport control protocols depends on network
community (ARPA, X.25, ...) and application (file transfer, speech, ...) which may have different require-
ments with respect to reliability ai,d delay. The US-DOD ARPA Transport Control Protocol (ARPA IEN-129, 1980)
is a transport control protocol for extremely relaible communication in all imaginable conditions. Such a
protocol may be "overkill" for local communication on fast, almoct error free nets, and a solution with co-
existing transport protocols may be advantageous. The transport protocol shall provide reliable service to
the users of it, that means a reliable path from the transport protocol to its users must exist.

The network layers are used by all hosts and gateways and are theresfore obviously well suited for front-end
implementation. The transport protocol may also advantageously be implemented in the front-end if a reli-
able host-front end interface is obtainable. Transport control protocols are often very complex and resource
demanding both to implement and execute.

Protocols above the transport leyer are inherently host specific and in general not suitable for front-end

implementation.

A host computer may be connected to the front-end by various types of interfaces, parallel or serial. Paral-
lel interfaces are usually the best solution, they are fast, reliable and they represent little host pro-
cessing overhead, especially if they are DMA driven. Serial interfaces provides a "clean" interface and per-
mit greater distance between host and front-end than high speed parallel interfaces. A serial interface is
usually used with a link access protocol that provides reliable flow controlled service.

26-2

We may. now conclude that several combinations of host interface and protocol level for interfacing are func-
tionelly equivalen'. and of current interest. Which combination to select depends on host type, network type,
application and economy. No method is obviously best for all purposes. It means that a flexible front-end
design that permits usa of different nets, different host Juterfares and a variable number of protocol
levels is beneficial.

According to the layered structure in the ISO reference model a modular layereO front-end design approach
is sensible. We decided to implement one or more protocols on dedicated boards and .nterconnect these
boards to constitute tne units to be developed. These boards are referred to as "Protocol Level Modules"
(PLM) or 3ust "protocol modules".

A protocol module has at least two intarfaces, upper and lower. When more than one protocol module is needed
to constitute a unit, the protocol modules in the %nit communicates internr.lv by a "Inter Level Interface"
(ILI). A protocol module that interfaces to a host has a "Host Specific Interface" (HSI1. The ILl is stan-
dardized while the HSI may differ dependenting on host type. The lowest level protocol module has a Network
Specific Interface (NSI) and protocol modules carrying oat applications may have an "Application Specific
Interface" (ASI). Since protocol modules are single board units, several types have to be developed to
cover network and interface cnmbinations. This concept is not practical if extremely many such combina-
tions were needed. A multi-board processor design may then be a better solution. The following examples
will show bow such modules may be used in front-ends as well as in gateway and specialized host computers.
Figure 2.1 1hows 3 front-end configurations which we are implementing.

HWrY CON1,911 C

WNCEtlCOM sTE I I PKiCAI'I PROTOCOLS

A friCtllO 5AITON5LAPPLCATION leOTOCOLS ANu PRSENTw~ATION

NOT1 COWINPUSB A 1@111fND PRESENTATION0 TRANWSPOT COSTRBL PROTOCOmLS
WOMMIL MSUUCII

Ll. LEV EL
APPLICATION PROTOCOLS LEVEL I PROWTCOL

HNOT SECIPICI

' T [~ I •
" IT ON F E I

CONTROL PROT•COLL

15.aMWORT CSUITCL PROTOCOL TASOTCNRLX1LVLkJ

7-/-/77•i/ / / 7 / /

TINACI SITIPACK IAmma

LOCAL INITURK LOCAL MI5O~K LOCAL UTMAK
L PROTOCOL P°TSOt PROTICCL

I=MOS 10 ACCES LINK SACCRV
PROOICOL PROTOCOL PROT15CO

PRYSNCAt L14K PNlSICAL LINK PNINCAL LINE

LOCAL MYT CABLE

Figure n.1 Host network front-end interface examples

The low level protocol module contains the local network protocols used by all network stations. Host "A"
is connected to the front-end by the HSI at the network level. The HSI is a parallel interface in this cýse.
Host "B" is connected by a similar interface at the transport protocol level. Two protocol modules are used
in this front-end, interconnected by the ILI. Host "C" is connected at the network level, e. X.25 link access
anAl physical link constitutes the RSI here. Scope of X.25 is limited to host front-end access in this
example.

In Figure 2.2 protocol modules are used in two gateway configurations. The gateway between A and C are con-
stitated of protocol modules throughout, one network module for each net with the gateway protocol in a
module in between. Between similar nets this design in simple and straight ?orward. Cateways between very
different nets may be more complicated, and more powerful computers may then be needed. A (e g mini-) com-
puter already interfaced to an existing net may be converted to a gateway between too nets by interfacing
it to a front-end, connected to the new net. The gateway between network B (long haul store forward net)
and network C exemplifies this design

Specialized host computers are machines that are dedicated to special purposes. Typical examples are termi-
nal interface units for rmote terminal access to host computers and speech terminals for digitized, packe-
tized speech. The number needed of such units may be relatively large and cost-effective solutions are im-
portant. Figure 27.3 shows these 'wo hosts buiLt completely of protocol modules. The speech host has inter-
faces to a speech digitizer (vocoder) and key-pad/display for connection control and status, the terminal
host has standard RS-232 interfaces.

We have now discussed a system architecture based on protocol modules with several exaarles of use, both
potential mad currently implemented. Before going further into design details, two issues regarding this
#%rchitecture will be addressed.

Firstly, the number of protocol modules "stacked" to constitute a unit should be kept low to keep both cost
and packet (traffic) delays low. The ILI design is particularly important here, and delays may be kept very
low if microprocessors with block transfer capability or "Direct Memory Access" (DMA) are used.

- ' - . ..-- - -...... I_ _I_

LOCAL Il' CAEOLE

PH~YSICAL LINK

'AIKA LINK
PROTOCOL

LN L IN IKACS l .LK

INA tý T ROI PEELROTOCOL A AD

11vt MENETWORK

Q1 A PROTOCOL

OAIWKP, T tR L E-V L ASRY NO T O PCL --It FIACE INTIERFAtt

LOCAL 4' -fRK LOLAL NI5500K
PROTOCOL RKOTOCOL

LINK ACCEN LINK IACCEAO
In.D CLPROTOCOL

POVEICAL LINK PHYSICAL. LINK
PROTOCOL PROtoycOl.

LOCAL NET CAILK

Figure 2.2 Use of protocol mOcdules in gateways, an example

TERMINALS ITy, VOL. PRINTER I1

CIO IT- ANoOZER DISPLAYL

00232 INTERPACE

VIRT',AL TERMiINAL
NETWORK VOILE V00boCOL

POOTCOL INERFCE V~ITRANORT COETROL

VFýTOCOL

:lO N LEVEL NTRLEVEL

LOCAL 4EY 0%K I DIAL 11LIWOVA
j _POVyS IL 'HO yOCOL

LINK ACCESS LINK ACrOSS
ROyCOL

1PTITuL
PHYSICAL LINK PHySICA L LINKPROTOCOL .DDyCOO.

Figure ?. 3 0 rotocol module based specialized host computers

Secondly, using more than one protocol modul't permits "tailored" implementation of protocols. Low level
(e g link) and application protocols (e g tf-rminal controller) often needs very fast aand efficient inter-
rupt handling, while medium level protocols (e g network and traonsport control) beneficially are implemen-
ted under an operating svstem kernel. Meeting b(',.h these requirements with orke., processor means compromises
and more complex softwarc.

3 PROTOCOL MODULE HABOWAPE INTERCONNE(TIOU4 AND ARCHITFCTbRE

Based on the aystem archi tecture discussed a set of protocol modules navc bec.n developesd. The following
ma'r. requirements were 3at 'e, design goals:

- Protocol modules "~re single board microcomputers

- It must be possible to use different microprOcessors as protocol module CPU, both "8 and 16 bitters"

- A stý,.mdard inter module interface for fast, efficient inter module pa xket exchange should be defined.
This interface must not lock CPU's ti -,4tly together for long times dutring transfer

-Flexible combination of TWAM and EPROM memory should be possiblg7.

-The concept shouldi allow exploitation of new powerful microprocessors and associated ci.,,uitry as it be-
comes arailable.

-Initial series of protocol modules should serve as experimental tools

A standard inter module interconnection had to be Oefined. This interface is a very important part of the
system, and several solutions were analyzeO before a decision was made. The interface must be parallel, in
order to be fast and simple. The data transfer path must be 8 bits wide to accommodate both 8 and 16 bit

26-4

IrTSSMIAL VUs i111

FIFO PROTOCOL Scouts 041

L ARRAY

I.:

-I It5FACI

LOGIC gFE
AtSA

BIT I

INTERNAL CPU aSUS

Pipur-e 3.1 Prot-ocol. module "In' f_ .r K iars

processors. It must be fast e h, e jMA cia., -i'sc 2 ; 'byte/s a' a)nchronous sc. that Nat wi
slow processors may comrron' .itrio" n-, n;ecother up. heiota' e must hid(internal memory orga-
ni'xation. That means "' vc rt ielon' y iltiti 'ye' 'inreceotable. A 'gi beati e- fife ciro tS was se-
lected. Packets of' art, ts it .ici''"r-'e .r-in-' ret a s ''ti Or 'sore s zrints3 tndf.;' oftware control througi; (th -s interface, resad .3 tii e - 'atliois %r -,arited ci I anid are. completely asynchronous. The fi to

array capacity _.i 012 bytt -j " q)w. ow' r 1C. 'U-S with Triis interface, named. ILI.

The current iup' ..me shior 'ir" basqe"j
1
t x !3 i fo chiips and 1,3-7F 'or o r, Saýi status cit nitry.

count may r, ic- -ot '-liv it is.12 ', his ' chi ps 'ompulete with controlI, status

and bua interf - qircu ail' be "t.v da' *o cmisnor -o "suer mn~~,,''.f' Trees .In 1981. Two I"' pin chiips

can then ranla 1of present one !1. " ý irite' pa-,; 1 i ,it "ýe direct ' -corspatibl"-.

Hardwar r,-, .rc aeeJ' by ' orote,. arc! CPUl a t memory. An; type of ý'1`1' ma~y ne usr 'I with this con-

cept 7 e W, A-1l- 'as een use] the or"- desipen. A' inter/timer -ircuit is needed in many

pro' cc's i i" Il I as a. standar i devic, nu'" 'ot be sot)ý ti) star when power i s switched on,
Ins tial i7' tsel' b e co", qarn' c1-os 7ed i,:' r~eil`,rhor r lule ; before iizi'L1 orocessing 'say t,.senI.c.
"be - m a p~irtl' ir emrp 'taelc E'Ho'1, h er e memi~ry ,;t,'uetu;r? s oneeded, memory should be

[n incr-ements, AM a' iPROM r, iirsmriet a' I 'fl ult -~ iredji' at]- pin comnatible 'AM/EPRMCMi
,ire bate-lore -sed C ' etels tiugged 'riai Csoc "4isf can te' persc'n'z-ntly stored in

- ~ i~ I lom"iti i' ,ihi 's1 to7 w'ilonI thie ors""''s ''; ito RAM, only onta bootstrap EPROM
;t rem 1t1e1- J-. ItL is ''Xcecý 'to" e-1 us' ` ' ct'' u- "iiri for operati-at uise, to hawn protocol

;,rseramt, i'i EIKIOM.

osue or itocot . .iave h'eri ' ined ýiare 3.. mIows t'ir hardw,ýre ahir'otect' cz.

All proto"'i)l mod e 's ott -u're r, c ',finr the "'! tai! as, t~ If reqe, v1 far an i clock% -ici retry and the
first 1' Kbytes ock of emory. "Uri rial" t. z, b~oth 'iprier and low-r 1 a'i'i 64i kbytem of memo)ry. "iIi)LC"
hasq 3V cytets '' emo~ry tipper -'ii IL 'fI, . -iufti-rooro, link level controllerc chip I'VMlo-S10) with

* ;X/.i ;-h:",) ne tea'' 3- - t- it -L--' 'enerstintt cir ~tr" and a 1' b it ,EDj display for debug,

cr00',.'Pit li, bo rv ts / .b ol o:- ' '1 ottol of at laiyered ore: 1col module package since i L

.1as it Lr and ier IL " ?TA 't-iren'r t r-'r'a'.e to a narrow band digitpK voice voenider, lower 1ILI
tnd I kbyt-as 'r' rsemor: . A iu at. f the ' qeretil 1) buLs is maie accessible fo-r 1/0 devices not practical
1.o 1' utt " sie APA; boa' lit 's. ay antý ey-niad). "RI:IO-NY.T" co-ntain; an initerface to a commercially
vat ;1,l" 1 hi' 7 1,re-nt -Tn'' -0le'' kb-tes)f memo-v and upper ILI .It contains two dual port buf-
eýr m'orir- 'a ý -,' each n "-.m -Lu L' l't "i t/% rinf- send and receive operation.

-al "q ot, '"o'lf 'ire p) i - 'telt W -, 'arioun 'ost. and tpplication speci fic uppe-r interfaces. (e g standa,'oi

"0 -ttf'ii ', Pt ' ',;)' arc tlie- 7-! tark it' ert'aces (e a,, lr,nernet).

'.1-h -x I i""a ~ -rnt ".'-.r' l tis'q `-I *'iome of these mc lules, such a device should be in-

o)rat-' t' - 1"e r cr ' r" link-. aftn packet trnanfer bectween memory and i LT', and memory-memory
uciiCers)w - '--s i*s ' ý -ni ti -an', :ar'yt of ava:I tabl t,-'t1 cyr tes. A '/.t A-DM4A tirforms this 5 times faster
vs, Sb'' t)''A. "'r

CPU, CYTC la nv
SUFFERS gas #AMR
RFEW LOGIC 44 k IUTTU
CLOCK

LOIto NO UPPER9

ILI

PROTOCOL MODULE "UNIESL "

C~PUR L feEMEORY
NEWU LOGIC S TE

CLUCK

STEVI RFUCU
TO PROTEUS O0 ILLUPPE

(61TRM lot

PROTOCOL M00ULE "HORERC ,E

CPU. ELK STUBSY

I TO 1 , E

LCBOLK

1'. US TO5

lull,", 'U LUTE MIT ACOL

TO IETPA
USE ONPLAT

PROTOCOL MODOLE TAPAK'

Fi~gure 3.? Protocol ieadule block diagramn

4 THlE H4ARDWARE MODUL.E LIBRARY

An interactive layout syutetn was used for the pc-board artwork design. The protocol module family has a
modu).,r srch'tecture where certain sub-modules are used on many boards in the f,3ri of "library elements"
in the layout -system. Such submodules are, e g CPU and associated circuitry, upper and lower ILI and

memory, see Fisiore 4.1. F~igure 4~.1 shove segment layrout of the 4 boards developed.

O3ub-modules atre locatced on the same place on all protocol modules. A new board is desigied by picking sub-I
modules f'rom the library and placing them in an aggregate layout. Sub-modules which have been used before
redoces development time of new modules substantially.

26-6

Mann"Y~mmm ORFLuSUN EOR ETAL PawinglIM
ANC@Wffp~mm AN C.J*TIFi/t0

cecwt IMILC. EV12 LINKSLEVE

IN- 3h [IN IMZ. 10.1915 ENV MC LN LEVEL am vmumv so
1641h 4k 4

tINTOCIAE M ODULE mSIca& PRSOCO ONI "VVNAL'

9lN FIO91AFF

CIRCIT1N59 LEVEL INTERFACECRCI INTER LEVEL rnTiffAC*

EKIATAPAK INTERFACE PROU5T ININFSACE

PROTOCOL MODULE TAPAY DSINM. moa UUnsS-3*8Or

Figure 4.1l Protoco.. module segment layout

5 PROTOCOL MODUL.E SOFTWARE ARCHITECTURE

A unified a..ftware framework has been developed for structUr-id and flexible protocol module interconnection.
This framework supports corueszication between various softw.'re modules within a unit constituted of more
than one protocol module. Such softwa:*c modules are communication protocols and distributed functions for
network debugging, network experiments and network maintenance. A typical example of protoc~ol module and
protocol initerconneyction structure iq shown on Figure 5.1.

The host computer has various protocols that ui;es different protocols in the front-end package. 'he lines
between the protocols symbolizes logical communication paths between them. We have defined a f..ainevorY.
based on tnis structure. The abstract term "logical. charnel" is central in this framework. A logical chan-
nel is a one way communication path between software modules within one protocol module or between software
modules in protocol modules that are neighbours in a hieararchy of layered protocol modules. Messages of
finiýte length are exchanged on thene channels and a rule for flow control is defined. A pool of logical
channels is defined, this pcol is divided into two main blocks, internal and external channels.

The external block is divided int~o tvo blocks, upward and downward channels. Figu-e 5.2 shows logical chan-
nel allocation.

As protoconl development continues protocols will be assigned fixed external logical channel numbers, but
this is not part of the framework.

The logical protocol. for multiplexed meosage exchange ib the ligh level part of the ILI and the HSI pre-
viously described. The low level part of these standards are the interface hardware and associated software
drivers. The logical part or' the protocol are independent of the hardware and driver part, which are qub-
,iect to changes and new ifapleieentat ions.

We have defined two versions oif the logical protocol, full anr' simplified ILI/HSI. Both depend on. IO%
r~linhlp interface hardwarp aind driver scrvice. The difference is the flow control scheme used. The full

26-7

MISS mm- ma- m-

KMm ENDS IC

WIUEVMT PROhO

" 'T I M A GII E L

LOCALINT PROTOCOL 5IWroC]
MNII MTOISEL MODULE

LINK ACCES AND
MISSICA INK Ki

IRI
Figure 5.1 Typical protocol layering and interconnection

UPPER IN UPPER LIT

CHANNELS CHlANNELS

INTERNAL CHANNELS

CHANNEOLS IAUEJ

(6 127) 1124 S'

Figure 5.2 Logical channel block allocation

simpli"ied version does not utili'ze these "request messages", and a Bending "plrocess" may overflow the re-
ceivintý "process" so thet the interface becomes temporarily blocked until the receiving "1process" is able
to accept a new message.

Message exchange can only take place on logical channels known in both protocol modules, Messages sent on
channels not allocated to specific "processes" end uo in a "black hole" without any further notificatiýon
to the sender "process".

6 STANDARD SOFTWARE MODULES

Certain' parts of the protocol modu~le -3oftware Pre similar on many protocol modules. 1/0 drivers are a typi-
cal example. Most protocols need f"'Unctions for buffer memory management, message exchange and timing. Pro-
tocols above level I are implemented as real time programs and several protocols may share one CPU for exe-
cvtion. .1-ome protocols are so co-Lnpl.!x that they must be divided into sub-modules that are to be treated as
separate units for execution. A real time operating system that supports pseudo-parallel execution of such
units or processes would simplifY protoco(l implemertation considerably. Such an operating system kernel
imposCas some ,rocegsinp overhead and is not well suited for protocol impl~emenltations with extreme response

re ffert (ýe w, link level).

26-8

creation, bufrer management, proceus ccmurication an. p-:cess scheduling. The process communication sys-
tem is the logical chenntl system previously dricribed. It supports bofh internal and extv.:nal logical
channel comrniication. This package is constituted of an inner kernel and a number of kernel processee
that executes •,ncu-.-ntlv with prtceseas carrying out tho communication protocols. The ILI/HSI are imple-
mented as kernel processes which haveý p)Liority over protocol processes.

The kernel is now being used in wi APPA TCP implementation effort which will need all kernel functions. The
kernel design is not finished and frozen, we expect to modify it to new needs and to modify it for new pro-
censors. It is written in the Zilog PLZ/SYS system implementation lsnguage (Snook, T 1971) which allows
migration to 16 bit processors with little conversion effort.

7 CONCLUSION

A system has been described for "host independent" implementation of communication protocols. References
have been made to a preliminary design of such modules for experimental purposes. We believe that "networt:front-ending" using such a modular approach may have merit in future computer communications. Some of the
reasons are: Maintenance and further development of the front-ended protocols becomes independent of the
various host computer types. The work load on the host can be reduced substantially, and could be impor-
tant for economy. Practical, application oriented implementations may exploit the expected further develop-
ment of more powerful circuit technology, both microprocessors and more specialized circuits.
The most obvious limitations of "front-ending" are associated with the delay of packets travelling through

the Iront-end. Further study of details of these limitations are under way. These investigationus will
establish quantitative factors for throughput, delay - and on the other hand circuit and program perfor-9
mance requirements for various situations. Certain applications with extreme performance requirements will
probably still be better 3ev ved by utilizing host computer capacity for the protocol logic - in the con-
ventional manner.

References

ARPA IEN-129. 1980, "DOD Standard Transmission Control Protocol", Arpa RFCiT6l IEN:t29, Prepared for
Darpa by Information Sciences Institute, University of Southern California

ISO TC971/SC 16, 1979, "Reference model of Open Systems Interconnection", ISO/TC97/SC 16 Working Document
227

Hvinden 0, 1981, ý'The Paradis Kernel Software Package", FFI/NOTAT-81/7035, Norwegin Defenc Aesearch
Establishment

Snook T, Bass C, Roberts I, Nahapetien A, Fay F, 1978, "Report on the Programing Language PLZ/SYS,
Springer Verlag

27-1

LES tTRATtG!ES DE RETRANSMISSION POUR LE CONTR6LE,

D ERREUR DANS LES PROTOCOLES DE TRANSFERT DE DOWNES

GUY JUANOLE

LAB ORATOIRA' d 'AVTOMATIQUE
et d'Anatyae des Sysetmes du C.N.R.S.

7', at~nue dti ColoneZ Roche
31400 TOULOUSE - FRANCE

RESUME

Ce papier consjste en d'une part, la presentation go~n~raie du transfert de donr.~es (paquets) &travers
une ligne de transmission, compte tenu d'un contr-6le d'erreur bas6 sur la d~tection dlerre-vc et la, retransmis-
sion aprds d~tection d'erreur ; d'autre part, la definition et la pr4sentation des diffdrentr-'s Etrat~gies de
retransmission.

IA pr~sentation g4§ndrale du transfert de donndes est basde sur un mod~le hi~rarchisd A plusieurs niveaux
oil chaque niveau utilise les services du niveau infdrieur.

Cette approche, essentielle pour une bonne visualitiation des diffdrentes fonctions n~cessaires pour Ce
transfert, permet, en outre, de bien distinguer deux niveaux dans le contr8le d'erreur

-un niveau supdrieur relatif A un contrdle sur Ilarriv~e des paquets (mise en oeuvre de mdcanismes de
numdrotation des paquets, de rdponses aux paquets numdrotds et de retransmission des paquets nura~rotds9
non acrquittds) ,

-un nlveau infdrieur relatif A un contrdle sur le contenu des paquets nuxndrotds et des r~ponses (misc en
oeuvre de codes d~tecteurs dlerreurs).

La consideration de ces deux niveaux est essentielie pour ddfinir cisirement et pr~cisdment lea dif-
fdrentes strat~gies de retransmission. Nous d~finissons deux classes de s--ratdgies :I& classe I oil is retrans-
mission est dac uniquement A une temporisation qui est impl(2ment4§edans is niveau supdrieur isla classe 2 oil
la retransm4 .ssion est 6galement mise en oeuvre suite aux erreurs ddtect~es par le nivcau infdrieur , quc ceT ~' dernier signals au niveau supdrieur.

flans chaque classe, nous d~finissons les ditfdzentes stratdgies qui rdsultent des diffdrentes moelalitds
possibles pour

a) l'envoi des paquets num46rotds par la source de ces paquets num~rotds,
b) llacceptation des Paquets nuisdrot~ss par le puits de ces paquets numdrotds,
c) la mani~re dont. is puits accuse r~ception des paquets nuisdrotds accept~s.

Cette presentation des diffdrentes stratq~g'.s de retransmission nous apparalt cosine une premi~re dtape
essentielle avant dleffectuer leur mod~llsaiion furmalle en vue d'une part d'une vdrification de leur validitd
logiqiue et d'autre part d'une impldmentation.

Liste des sysboles utilis~s

p (P)Processus de ni~veau x (x 1,2,3,4,5) dans le calculateur C (Cxi xi i
TEMP TEM~orisation

MT Machine de Transmission

[PQ Kaie Emis par P5 et destinE A
E&PQ] i :[~j Njuxrotd Emis par P at destinE A P

41 e4j
[RPI j ~ REPonse dmise par P4)_ et dest-sn6e & 4

[I(W .[Rp~p qui eat un Agusd de r~ception

[Rpt ET)Ij :[p], ui eat une deisande de RETransmission

[RRPI, :[RP],i s1-drien 6mise par P et destinde A P3

IT~i Trame sdrie Emise par P ,et destides A P

tISE]i Signal WE rrur Ends par P3 at destind A P

[9E] 1 SignaL d'Erreur dmsi par P3 et destinE A P

[P . i Rp j..,. pluriel de [1ii [..1 3j.4

I NTROVUCTI ON

La fiabilit6 des applications distribudes (qui se multiplient actuellement compte tenu du d~veloppement

des systdmes de calculateurs gdogrdphiquement distribuds) d~pend, en partlculisr,de la fiabilitd du f-ansfert
des donnt-es au moyen des lignes de transmission, cc gui donne. donc, toute scn importance au contr6le dcerrsur
appliquE A cc transfert. D'unc inanidre rdn~rale, ce contrt~le d'errcur est bas6 sur lea principes suivents
d~tection dcerrcurs et ritransmission dpr~s I.Atection d'erreurs.

27-2

Le syst~lme, qui sert do support A notre analyse, consists en deux calculeteurs C et C , situ~s Cans
doux sites distants et connoctd~s an moyon d'une liaison point & point. Nous appelons, paquot,la structure
do donnde A rAtro dchangd~e entre Cj et Cj A travers la ligno de transmission. Nous consid~rons uniquement
le cas du trensfort unidirectionnel do paquets :en effet, los principes des strat~gies de retransmission
do us type de transfert se retrouvent dans les transferts hidirectionnels.

Ltanalyso offectude comprond deux parties :dens une promi~re partie, nous ropr4sontons is transfort
do donn~os par un mod~lo hidrarchisd ce qui nous permot de visualiser les doux niveaux du contr6le d'orreuir
et les classes do stratdgies do retransmission; dens une deuxiomo partie, nous definissons los diffdrontss
strat~sqies do retransmission.

1. MODEL HIEPARCHISE VU TRANSFERT PE VONNEES

I.1I Pk&&ntation g$ng~te du 6atafme coMi.WV.A

Le systdme considdrd ost roprdsontd sur la figure 1
p % reprdsents & la fois los processus d~applicetions do Cj et los processus ndcessaires pour transformer
los stractures do donndos do ces applications en pequets & onvoyer vors Cj ;P 5. roprdsonto & is fois les
procossus d'application do C ot los processus n~cessairos pour transfcrmor les paquots regus on stzj.c-
tures do donndes significati

4
os pour ces applications,

-lea procossus des niveaux 4,3,2 eL 1 mottent en oouvre ins principales fonctions n~cossairos an transfert
do donndes (sequence do paquots) dopuis C~ vers CV A& travers uno ligno do transmission (nivoau 0).

La d~composition multiniveaux amdne A distinguor deux typos do protocolos :des protocolos rolatifs
& is coopdration ontre procossus distants gui sont dens un m~mo niveau quo nons los appolons dos"protocoles
do nivoau" ; dos protocolos relatifs & is coopdratiota ontro des processus dens doux niveaux adjecents d'un
calculatour quo nous appolons des"protocoles ontre doux niveaux "(un"protocolo ontre deux niveaux" ost carec- -
tdrnsd par un ensembhle do primitives relatives an service qu~un nivoau demands au niveau immddiatement iif 4-

riour) . Nous no consid~rons pas ici los"protocoles ontro dowc niveaux."

Sons d~crivons meintonant les principalos fonctions des protocoles des niveaux 4,3,2 ot 1 on insistent

plus particuli~roment sur los nivosux 4 et 3 gui mettont en oeuvre 1e contr~ls d'errour.

1 .2 La, pxotocotu, du- niveawc 4 . 3L2 t I

1.2.1 Pkotocofe da niLveaa-

Cs protocolo a pour but do contr6ler si los [PQJ, arnivont A leur destination (los niveaux infdriours
pouvent pordro des informetions qui y transitent) . Af in ordalisor co contr6le, on a donc los dchanges sui-
vents au moyon du nivoau 3 :dos LNPQJ , do P4 Vera P4 jot des [RP.]fl deoP vor s r4 ~ Compto tonude co

contri~lo los fonctions do P 4 i ot p 4 j tont
IS11 numdroto los[P 3. qui P lui domnando cl'envoyor ýmise on forme des LNQ transoot ces

[NPQ A P ot ettrA do [n k~c] efin do pouvoir prendre do nouveaux1pQ3 ote done transBmettro

dou~ovoau.fPQ ; 1,,F doný les [m'5 (Acc)] j no soot pas rogus, sont rotreosmis (stratdgie
do retrananiosibn. [

D'uno mani4ýre g~n~rals, is retransmission intorviont & ia fin d'une TEMP (METrCALFE, 73) ou quendP
rogie os[PRTo o SEs1 (nous ellons voir dens l'analyso du nivoan 3 quo P a la
cepec itd do ddoctor des orrours et pout donc signaler cos errours A P). Notons 6galo~nt quo llon
pout 6gaeoment envisagor ie retransmission quand P i rogoit des [RPs($Afl non attendus (c'sst-&-

dire concernant des (NPQJ , non envoyds) .s j

p -j Il acpeou rejette un £tPQh A'u~uat qu: son numdro est on n'est pas un numdi? ettendu et

enoi des [R ,CCJA (le fai qe P;:efvoieountCr(ategi quend il rojotte un LNQ.pout pereltro

ceci a aarpeI) poutgleen rocovoir des [SE) I (P ,4 comme P a le capecitd do
d~tector des errours) aocothythsP onie doJL IiRET)] j.

En co qui concerno P~ il doit encore assurer uno autro fon.'tion .le maintion, vis & vis du niveau 5,

delos acceptordens LeQ . c est-A-diro P 4Vdoit rdordonne: Ir. jvC: Q]Iecpd (dn 'hyoth s oi[1Poutles cceterd n led~sordro) avant do po voir, arsao. av enmco rnmtrdens l'ordro oil ceux-ci ont Et6 tranamis A P p~ v:' entv lu~o raaotea &RP no ~
los "informations do service' du nivoau 4. 4i1e i 0jnmrsdn 0 5t 1 1 05!~ osiun

1.2.2 PAotocote dun nieueau 3

Co protocole a pour but do contxr~ler si le contenu des [PI 4 ItdsRJ et a roA(o
niveaux infdriours pou',ont alt~rer los informations gui y transitenstt. Afin do rdaliser co co~ntrblo, on a
donc los Echangos suivents au moyon du niveau 2 :des FPNPQ1i do P 31A P 3 et des [rPPP1 do P 3& p31
Compto tonu do ce contr~le, los fonctions do P 3o t P 1son

- P (P 3 ajouto un bloc do redorndence & cheque FNPQ3, (rRP~j) quo P 41(P 4j) liii domendo d'envoyor et

train st donc, A cheque fois, on IRpuQIg ([IRRPJ) a iP2 (p2 >, 4i 4
- P (P j) effect, le test du bloc- do redundance essucid & cheque CRP ([RNPQ]i) quo lui transmetP 2

(s)¾i ce test est satisfeisent, P3 (P) onl~ve le bloc doe redn nI ettrnsmot cheque [RP 1 2

ainsi obtenu A P4 (P4 si co toAs nest pas setlsfai sent, P~ (P3) re trensmet eucunvr
ErN)Al P4 (P4) mais,par cdntre, pout trensmettre un fSE)L ([S AP (P..

Loe Sder~onancesontlos "informations do service du u 3

1.2.3 P'wotocute du i ttucca ?
Ce protocols assure la transmission d'informetions sous forme e~rie (bits). Dens co but, on a los

6schanges n'wtvents au moyon du niveen 1 des IT] 1 do P, A P et- is s T.i4 do P &j P .j Learticle do
.I -i - -h a H ntvo fes fonctions jedoivent rbdiser P

1
2,.

27-3

1.2.4 P~o~to.oeohdttniveau_1

Ce protocole permet 14calange de bits au moyen d'one ligne de transmission. L'ouvrage de [LUCK1,68]
indi.que lea fonctions que doivtnt assurer P11 et Pij

1 .3. ModgLt' conaidWAt powiý d trL' p{tbenteAt tu~ Atiatie6 de AQeAanzm~si~aon

Etant doinn4 que le mdcanismc de retransmission est dlabord A partir de P (niveau 4) soit & la suite
de situations dlerreur d~tectdes pax !a TEMP dans P4 soit A la suite de situations d'erreur ddtectdes dans
le niveau 3 et signald'.s au niveau 4, nous conaiddrons donc le modile A 3 niveatuz reprdsentd sur la figure 2

- le niveau 5 repreaentf. le niveau de~mandeur du service pour lequel le m~canisme de retransmission eat
n~ce~ssaire,

- le niveau 4 reprdsente le niveau qui impldmente ce m~canisme,

- la Machine de Transmission (MVT, gui englobe lea niveaux infdrieura, repr6sente la machine globale uti-.
lisie par le n-ivedu 4 pour 1;, mise en oeuv-ce du mocanisme de retransmission.

1.4. L es deux qkandu~ ct.6 de ztata 9gia de Aet~anrsraL&zion
Classe 1 :La retransmisrion rdculte seulement de la TEMP dans P .Dana cette classe, la Mr ne. transinet pas

lea [E~,1i Et. au niveau 4 et donc, en particulier, l.es a nT] 'xnetpa note

ne tiend pas cowptedes [RP (ACC))]jnon attendus qulil reqoit.

On peut dire ciue la classe 1 reprdsente la classe des strat~gies de retransmission avec le minimum
d~actions causant la retransmission.

Classe 2 :Dana cu-tte classe, la MT traramet lea ISE~ et[SE 14 au niveau 4 et celoi-ci lea prend en conpte
af in de d~cloncher le m~canisme de retransmission comemJ & la de la TEMP (la classe 2 engiobe donc la
classe 1).

Le but de la classe 2 est double :d'one part, prendre en compte Ilintelligence do niveau 3 ;d'autre
part, permettre, par rapport a la classe 1, un mcuilleur d~bit d'information. en activant ls retransmission

ýP Notons de plusq qu, du fait du signal ISE] on doit en r~gle g~ndrale avoir deux: types de[R]

(AC~jjet P(RT,] alrsque seul le premieý type existe dans la classe 1. L

1. ý. Hypc the de 0~ 'initiom de6 sta 4iez de &Le~tanr&i6,6ok

-dana las conditions normales de fonctionnement (pas dlerreurs), P 4envoie un [PAC] A chaque NQ]

acceptd nous ne considdrons pas ici le cas oa P race.'rait pl jus rv e.1 v~ri e ten
unsul[P(PCC)] u acquitterait cmltvento es[NPQ Ji (c eda~ns le protocole DCe

mcde NRM avec les bits P/P~ C14CCHI,79)),

- une TEMP eat associ~e, dana P~k a chaque [NPQ]i envoyd,

- is dur~e de is TEMP tssoci~e A chaque fNPQ] envoyd, eat. telle que un [RP34 a ce(NPQ]. est obtenu par
P 41 avant is fin de la TEMP ou n'eat pas obtenu (nous ne sommes peas conceri~4s ici parldes milieux de
transmission indu isanat des retards qui pourraient f~aire arriver un [RP] j apr~s is fin de la TEMP et
donc dorant 1c~pdration de retransmission).

2. LES-S~TRATEGIES DE RETRANSMISSION

2.1. CUas62 1

La premiore considdration, afin de d~finir lea diff~rentes stratdgies, cuncerne lea deux modalit~s
possib.es pur e'nvoi de INPQ~li par P 4.

- L! mode 1, clest-A-dire P 4.envole seulement un [NP;2]jet ensuita attend le [RP(ACC)]J1 relatif A cc [NPQ1,
a-ci-li'pov en 4ye eI[Qi suivant, ou la fin'de ia TEMP associ~se A cc tNPQ]i pour le renvoyer,

- le mode 2, c'est-&--dire P 4envoie plusieurs [NPQ], (nous considdrons (q+lA oil q eat on entier positif
dont is -valeur eat one caftrainte dans une impldmen~atio-.) ot ensuite attend "des CRP (ACc) 1 ou la fin
de is TEbP associ.(e au premier des (q+l) [NPQJ4 (cette partie de phrase entre quillsemets 4eh floue

castA-dre qel at 'orde darride esiP (ACC)j poor qo 'us so'ent pris en compte et qilelle

action eat entraprise qoand on [RP(ACC-)] a td pris en gompte ?Quelle actiori est entreprise A !a fin
de is TEMP indiqude '? Noos loverons le iaude cette phrase dana is suite ie ce paragraphs en prdcisant
lea comport(,ments possibles de P4,) ; notons qoc nous sopposons qpilaocun [AP ne peot itre requ par

4i, avant is fin de i'anvoi do (q
4
1) bam[NpQji. -

En otilisant is notion de [NPQI, en transit ([NPQ], envoyd per P I5ais dont le [RP(ACC)ij n's peas
encore 6t6 oLtenu par P44), on peot encore dire pour disttnguer Ies modes 1 et 2 dana le m,,dc 1, ii y a on

[NPQ], en tran~si ;ans'la mode 2 ly . q~ [NPs],e rast

Ltescaractdriatio'ies do mode 1 sont P ncssiemn accepte lea 1NP en s~quence apr~b .------------.
t~esieet[Pavoir accepti on LP1iP 4j envoie immddiatemet. le [RP (ACC)] , relatif & !e CNp~t

La deoxiome consid~ration concerne dana l'hypoth~se do wode 2, lea deux politiques possib~es d'accFep-
tation de 4jQ1 a

12_a Eoljtj~ue, c's-&-dire P4 accepte lea (q+1) [NPQji seulement en sdquence (comme dana le mode 1),

lai politigue_2, c'est-&-dire P., accepte lea (q+1) JNPQ~ji dana n'importe qoel ordre. [

27-4

La politi~que 1 a 3-es consequences imm~diates suivantes

-si le premier des (q+1) (NQ] et a beupa 4 ,k 4 normalement rejettera)es q[NPQJ suivants,

-donct compta tenu de ce comportement de P,, on peut maintenant prdciser celui do' P 4f(cf phrasef3-oue)
P attend seulement le CRP(ACC)jJ, relati~a premier des (q+l)[NP25] et, quand il 'obtient, P4 peot
ao.rs envoyer un nouveau CNP~QJ ; A l-a fin de l-a TEMP re3-ativeau preniter des (q+1) [NPQJ1 4 uo

matiquament ratransmet les (q+f)[NPQ SI c'est-A--dire nuus avons ce que nouc appelons une retrainsmission
globale ("go back" procedure (BUIRTONM7 ; NERI,77)); l-a retransmnission globale permet de contr63-er lea

si~tuationis dans P consdcutive A la non-obtention du premier des [NPQ 14. Notonr que 3-ttat d'attente
dans P4 est iden4ique que Von soit avant ou apr~s l-a retransmiis-ionsgioba3-e.

LaEo3itigue-2 a une cons~uenco irnmiT diate l-a a~cessitd pour P 4j rdordonner les CNPQ 5 Js acceptds dans le
d~sordre. --- - -

La troiriAme-consideration concerne, dans 3-'hypoth~se du mode 2 et de la politique 2, lea deux techniques
possibles, pour P ., d~accuser r~ception des I NPQI.3 accept~s :nous distinguons ce quiS nous appelons 1i ACC
collectif et lea Aýý individual.

Avec !-a technique du ACC collectif, P 4 1 envoiecun LRP(ACC)14 A un [NPQJi acceptd seulement si tous
las [NPQ) dont les numdros sont inf4rieurL c7elui-ci ont Ot acdept~s . Don., avec cette technique, P4
peut accu der r~ception d ur4NPq]A accept6,de p3-usieurs fa(;ons :nou.s disona, relativement A on [NPQ)J
qu'Iun [RP (ACC)] j east un ACC Ap,:r re 0 ýu d 'ordre 1 0 suivant quli3 accuse reception de cs [NP6Ji

itraucdiatement avec un numi~ro supdrieur ou qu'il accuse r~ception de cc [NP] , et du [NPQ], avec lea numero
imdaeetsupdrieur

Avec l-a technique du ACC individuel, P accuse r~ception de chaque rNPQi acceptdA l1instant d'accep-
tation (comma dans le mode 1 et le mode 2 avectl politique 1,.

tecxniued AC coleoif 3-s consdquences imm6diates sui-antes

- ouivant cjue, P obtiendra le premier des (q+1) [LNPQi 00 na l'obtieridra peas, P~ envarra le IRP(ACC
d'ordre U)]. rafAtif au premier de can (q+1) [NPQ s), oo n envarra auuvunjwP m~me a il accepte des

k [NPQJ , parli 3-as q suivents,

doit ftre identique A celul indiqU4 dans 3-a cas do node I ysec la nolitique 1 (remarquons quacmt tPod amn~ad ~oda'eP~ npu orqal opreatd cprs hoe

ait op Wait pas accept6 des NPs prm les 1[P~ suivant le preŽmier, P ne. le sait pas et An

L'rr s M~8er toutes 3-a: situlat,0ios :si3sanPT)

]n effet, qmsoand gles a eNP t, le srannm oy d ontr Pi posie etn Pi3cpeir s tnn

1euteompte tento dans Pi apis]a. retranb isston de oal esPt] diccaptds p demmeuiavnt A la retransmission
globa3-aen(doyarec ainenian toEut modveti poseibde !asj~ (Acc)qe) c-A- notons encoren que, cmpte tan
dapot 3- ~atquel [duAC premier [0pic)]. bltanu a iports 3-a de qj)[retr~nms~ngoea autm alr envoare
onpuslaurs nouvpemiux des (en1 etfat 'q41)[P at pauven Wi trari q en C tallnsit). 1ode0 o eo

des (qe1fNPQt, P 4 .n lnvrr onP 1. (AC ralatifm A chqe£PI cet ami, uvat oc
dcit ~ ~ ~ ~ ~ ~ , prandra an Pcm~ naot qt., [si(cc) ra ti proie (qesP 7* at maintanant racisarL 3-a4

coporteaanpe del u (ci phraseflue). Josqu'A fin~ dea 3-aj] TI*IPeonoci ao premierýn da la+1 rernPQ5 s.ip.n

a) l-a [RP(aCCtilj Adu premier des (q+','~lbe aNPQ]. luan ii atransmsin glbe P 4 peut a3ors envoyrunoveau

b) Igalemante desAC [RPvi (ACCI ra lecntisaueiq~P) sui~ivantes (3-a potsailt 4 de cett P nobtienti dpaslpremd e

~~~~~fi a13TM asoieaprmrdes (q+1)NQ)i 4 nvrau R(C~l rltfAcau [NPQQi, onep- pratransact oniqaants ;ocai4

Lai quarindr eoadrt.n c7mie moncrne ~ensii(CC] 3'hyp this do , mode zp 2, ove 3- poliiue t 3-ai techntpcique do eC
idvd l,3ndexpsiascomportements de I'~ aprhrselo ) 3-au' r11anisisin do aTM uoiea premier des (q+l) NPQ~ P

i 4i

a)PQ le cndrIRPACl ct pnv reme da s no q+)u novauNPQ,,i un .. Ces omortenant doit avoi lr ds iitas parc qouve~an

b)l noalmbr , e s [Rxau&CPQ quiC~ peau isu (NQ1vants Itlevys ntqa3a posem iier des (q+1) (NP .eati ououspend
tran it )y -nq) d Lavla usre ae lat n autra conti6(reiniacc (aprAs3-a val neur daq) du ete eamnvotisdnouvau

[NsP uatr consnuifs rAtins noutnti em den (,A Cl ,~ii eroas cinq statgis seuivants 3-rsa firategia T qui
co crnsa~ e 3- lnde 3a firatge la TEuP acst r3-aiv aup cmr mde, 2q' avec- ), 3-a potqe1 astranm t u qieI qultc

eat relatrive aosdrto ocreCn hptCs u mode 2 avac 3-a politique 1 atetCco--ci las te~ja Va u tconiernt 3-a mode
2, la poJu-1-,ltqu 1, le ACT individual atrasectivdem?41an ~ 3-a opretrarnint.1 at dua cporemier 2. (~)(P



27-5

2.1.2. Gbt&hatittU6 6Au&cuktntg4?e,6 de Actttnhflttton

2.1.2.1. Lu eAh-aowtca n~ce,6a~aiedan6 4 P4i 4 1F~
Le noinbro de m~iniros tampons et do temporisationa dons P 4 1 a i6prl nmr immd

ýP on transit 1 tampon et 1 temporisation dans la strateg ie I j (q+1) tampons at (q+1) temporisations

donss os stratdgies IT, iII, IV et V.

La nombra do mduviroa tampons jans P oa et fixd par 1e nombro maximum do fNPQ] quo P4 pout acceptor
avant do pouvoir transmottro des [PQ I, a 14tamo daalssr gies I et ,s, lq+1) tailipns dans les
stret.ýgias It! ot IV; (Y+1) tampons a8a5 la

5 
ratdgio V.

2. 1. 2.2. Etatb £ondamenxaux- du .tAanId4 deAý qjPS
Co sent les Etats d'attonto, dans P ot P q ui soot caractdrisds par des "informations do contexto":

la Fangtro F. dons P at la Fondtra F dans P (to fonitro oat tin sous-onsomble do la sdquence des ontiora
naturals :Il plus p~it nou6bra at leIa u grg nombro soot roapoctivemont appolds 1e coin gauche at 1e coin
droit).

La fen~tre Fi comprand las num~ros des [NPQs], qui ont 6t,- onvoyds ot dont los [RP s(ACC)]L sent attanduL.

rou.La fon8tra F, comprond los numdros des NQsJ1 qui sent attondus ot soront donc accapt~s s'ils sont

Las fonAtros F. at F traduisont donc l'dtat des rossourcas utilisdas dana P a t P porle transfort
des ENPQ 51i,. 4 4j pour

2.17.2.3. ?A99~c44.on du COanAAC_&t dck(NPQ)
Cotta progrossior. art caractdrisdo par Il'volotaon das 6tats d'attonto dans P a1Lt P 4'c'ost-A-diro,

plus pr~cisdmont, par des changoments dons los fon~tras F, at F 4

Ces changomonts ddpondont A Ia fois des rdsultats du tronsfart daiý [NPQ ]i mais oqalamant des relations
do nivoati 4 avoc le nivoou 5 (P ,occupo sos rassources avec las [PQ511i venantsdo P a t P 4i lib6.ra 505 ram-
sources en tranasottant dos [Qs] A P 5.1)

Il ost absolomont essential quo los cliangomoents dons los fandtros F i at F jsoient synchronisds.

tine riAgle fondamentale de cette synchronis~ation etquand P PnVOJe onl [RP (Acc)] ., so fanotre F tnit ftre
positioniido do sani~ro a ca qu'il puisso acceptor le( s) [NPQ P4e petit lul Lnvoyar quand il regoit I
c( c[RP (ACc)].j. ( uo I H4

2.1.2.,. R2pone envoy& vc~l i4 qadt Aejctte unTPL a

P irajette uOENPQjI. ragu,choquo fois quo lo numdro do co[NPQ] est incompatible avoc la fen~tro F.

Cotto irncompatibilit6 a tine des causes suivantas

1 Co NPj est tin CNQprdc~ddmmont accoptd par ma is le [HP (ACe)] envoy6 par P~iapas 6t obtunou
par P4  parco quo e

a) oti ii. a d6~ perdu dens los niveaux infdrieura,
b) ou, son contonu ayant Estd pcrturb-d Par Ia transmission dons los nivoatix inf~srieu.rs, los orrours con-

adguantos nMont pas 6td d6tectdas par le test du bloc do rodondance dons P 31, affactent so sdman-
tiqoc.

2 -c CO NPQ2] ost tin (NP~j onvoy4 pour la promi~re fois par P4  mais

a) ou,son contonu~ayant dt3 ptxtorh6par sa transmission dens los nivoatix intdrioua:;, '-es erreurs con-
sdsquentos Went pas 6ttC d~toctdes par lo test do bloc do reo~ndanco dons P ýiuL atfectcnt son numidfro
do mani~ro a ca qu'il no corresponde plus A on ntimL~ro attandu,

b) 00 (sooloment dens lo stratdgia II) , ccNP, s n'impurto goal des qNQj uvn . rme
des (ql NQlorsqou cc dornior a 6t6 po tuiibttommO ilidiqods an 2.a),
c) o (efý.)reseofomexit dans la srtgeII) ce aNQ st n'importe qual desq N.]suvnlep-

mier~~~ ~ ~ ~ deaql(P., osu c rnaer a -t perA dons las nivoatix inf6riaors.

Qoand P4  a reje',t-i on[NPg3. reto, P4  onvojo comma .

- dens le3 strotdgios 1, I1, IV ot V, la FRM1Acci 3j ralatif & cc [twQJ..
- dalls lo SttdtttiiOIII, le dcrpi'ir [xr(Acc)]j exnvd46..

Cu~tte maniikdr: do rdpondre pormot do contrdlor las situations d'erreurs indiqudses ci-dossus
- si la 00 1.b, P4 obtiendra on fHP (Ace)] ottondu,
- si 2,o 00 2.b 00 4u2.c, P 4 i obtiondra on [ýP(ACC)] 4 non attendti, no le prand donc posean cornota ot donc

retransmattr l Io [NPj. concorn6 a la fin do la 4EkW1 qui lui ost associdoe.

Notons quo, si on consid4ýro qu'il Mly a pas d'orraurgnon ddstoctdos par las tostidos blocs do radoncanc

dons lo niveati 3, los situations 1.b, 2.a at L'.b n'axistont pas (6vidommant la voliditd do cotta hypoth~so c

d~pend des performances do cam tests ; cotta hypothdsa est la plus souvont considdr~e par las porsonnas trai-
tont des protocoles do communication mais,en toute riguour, at on particulier, dons tine Etude do flabilit6,
ii faut considdrar cam situations).

2.1. 2. 5. Co dag e _dels [RPJA - ].
Laes LrHP (AMC)jl soot rapralsentdm avoc lus num6ros dos 1NPQ.31  Plus prdcisdmsnt, le nomdro d'uu4NPQJ1repr~sante

- le ACC A cc [Nt'Q]. dans lea strat~gies 1, :i, TV at V,
- ~~~~- Ie ACC d ,3dre 0 2A .c rNv~a~ asrtgcII



~~rwrr7i

27-6

2. 1. 2. 6. Nuo-Vw (at( I [)Q
accpts.CO dJiit 6tre mjosj iemanidie d ce quo P 9 puisso datecter l'arriv&s de [NPQ]1 d0JAj

acep~g C.-s ovele ari~e slt on~ctisAl~a aon-ob ontion, par P des [RP, n
Afim dc d~Žterminer 1,1 numdrotetion, considerons l~a situation suivonto 41' (ACCs a 'lys

,A) supposons tout C shoerd quo le numeE-.ro du Promior[NPQJ1 onvoy6 ost le nim~ro 0 et quo P 4 j a accoptt Ce

LEPOII mais 6galemont tous los [NPQJ1 quo P 41 pout envoyox sanis recevoir lo [RPP(ACt)] rolatif A co

ENPfl ide numd~ro 0 ; nous roprosontosnfs ci-densouts la fon~tro F caractdristique do cot e situation
([a, b....J3 signifie quo d,2- tamnpons sont. dispontiblos pour r~cevoir les [NPQJ 1 Cod numdro a, b .... )

Stratdgio I Fj I

Stratdgie II F,=[ql

Stratdgio III et IV Fj = ql q+2, 2q1

Stratdgie V Fj - [v-i. y+2,. y+q+ 1j

b) supposons do plus quo le CRP(ACC)3 rolatiii au [NPQ] 1 do nuinsro 0 rilost toujours pans rog~u par P 1 gui
Cone le retransmet toujours. 4

Ce CNPI4± do num~ro 0, on supposant quo son nun-iro est reiiu corroctomont pat P ., no toit pas Atro
confondu avoc los nuadros des FNPQJI1 quo P 4 j pout acceptor. En consdquenco, las num6Ai;ttioni doit 6tro,au

stratdgie I modulo 2 ;strafdgie II :modulo (q4 2) ;stratdgies III ot IV : modulo (2q+'2ý)

stratdgio V itindulo (y+q+2) .9

2. 2 ta~se, 2

Compte tonu do Id ddfinition do cetto classe, nous obtenuns immddiatoment, sta atd2!2JI (pour lo
modo 1) et los stratdsgies 11I 1i, 1V 1 ot V-ý- (pour le mode 2) dont los caractdrisT.iquos nouoýýlios par
rapport rop1ieetax1htyo ,I, 411, IV ot V sont

a', quand P4 - rogoit un [sH]., P .enivole on [RO (RET)]j qui comprend un numsdro roprdsentant lo nuac~ro du
prochain [NPQJ a ttondu ýrn sJuenco,

b) quand P4  rogoit on CRiP (MOT)] C2-us la stratdgio 11, P4., ntreprond Ia retransmission Cu [NPQJ1 on
attonto býaccusd C, rdception

3
; C" s los stratdqies Il ot III ,P oj ntroprond la retransmissi~on globalo'.

Cans lece straukiies IV oet V o P rotri.- met sculoisentl It, £NP6J ont lo niumdro est inclus darts
ff(RT I (eiljl~o1s 1 *uc oitneiýrLP] . attonto 6'uxx .aCCOC do riLcuption),

ilans con stratieyies, comaeU1 on LA densX tyresdc ,le cardinali tie, 1' ensemble do, CPj

t,!5t donec dens oinit piesý eleov quo colui rolatit aus Ataeqe C~tinies ao paragrapho 2 .1.

tepersiani, on co' qui coiLonucn IL mode 1 , on pout d&-linir doux nouvolles stratcgiesý (strattgiqis 12 et 13
diont le cardinal do eiisenble de's [IOF'J esjLt idenliquc A colui doL l~a strat~sgie I:

- stratdyie I. delt utilise les 16mbmos [Rn'] que la st~ratE'gie 1, (le type [In'P (ACC)Jde dimension 2).
Sea -c-a-a-c-tdrstiquen, sent

a' quand P rogoit un [ssE]. il onvole? un [RH(ACmJ, comae s'il rojottait unNPQ].,
b) quand 143rogoit un RPn (4C"(1] - non attendoi, i I roAvoic, le INPOI en attenutoe d'Iactus6 do rdception

(Cans la stratdgio I. unl [R'(ACC~l sion attendo a i.a sdmantiquo A'uno Comanide do retransmission)
c)quanid P4, regoit un Sxj .,dd mani~re iocntique au cas b.

-- ~ sitratdgie I1 :c'est unoc stratdoic qui pout 6t~ec Cdfinio en supposant quo la redondance utilisdo Cans
lo _niv~eau53 ddtocte toutes los errours affoctant le contenu des [NPQ e t des [wi 1 dans cetto
hypothd~so, los niveaux infdriours au niveau 4 perdont sculemont des informations mains no laissont pins
passer das! infurnations errondes (on particulier, on pocut dire quo, lorsquo P rogoit oin [NPQJ.i dont
le nuadro oat incompatible avec la fon~tro P., cc ENPO]. oat on ELNPQ], pr~cdAd~lmont ac copt4 mals dont
le11 (sACC)] a 6t perdu).314

La strati~gie utilise doux types do [RiP] chaque type 6atdo dimension in on a an CnRlni-.Cj , qui
ost utilis6 pour Xcuerrcpind iot q~eol CNQ on a un 'R(E~ .gui ost utilisAs pour damr-ndor

la~~~~~~ ~ ~ rernmsinLeWmot ulCP] Lea carac t~ristiq'uos do fonctionnem nt sont

a) quand. P 4 j reyoit un LS] , i ! invoic le[P RT]j

2. quiiP re;i loSe] [RP(RETOjj, iCrnoedn e Pje tet 'accus6 do rdception,

LeLbeurdcapitulatif do I- figure 3 donne les diffdrontos ntrat6gios avec, d'uno part, les 616ments
ndcossaires a lour definition ct, d ire part, lours propridt~s.

CONCLUSION

La prdsontation offoctu~e Cants cc pzpier fait apparait-ro, A notre avis. doux grands points d'int~r~t.

Tout d'abord, l'utilisauion dun wudo~le hierorchisCf A trois nivo'rux (be niveau domandour: du service
pour lequob los stratCjios do retransmissiont sont impldmonttscs ; lc niveau qui impl~mente cos strat&;yes
la machine Ce transrnissi,,ii utilist-e par le nivoau rcdetafin do mettre en oeuvre css stratisgios) ;A pormis
doPffoctuor, A notre zo.-.arssance loux 1., premietre fois, one prdsontation prcl so ot exhaustive des strr-
avajnt ie pase, td stajeisin. uiiti-t jeures J sott Io Limpemdf~entatio do ct~es etrt qics otIap rcdslnatiun fo
tIAgIrn do J'SAret 'Insistuohi.dv Folo t-ýticpres ntaiox'itd, difftrlenetost( sLiet gis ostra.q oet ltap osfil or

- " - - ,',,- . f 1 - lor, i i rc l e .I



27-7

BIBLIOGRAPHIE

BARTLETT,1969 "A note on reliable full-duplex transmission over half duplex links", Commun. ASs. Comput.
Mach, vol. 12, May 1969.

BURTON,1972 "Erzors and error control", Proc. IEEE, vol. 60, n"ll, November 1972.

E.STON,1979 "Design choices for selective-repeat retransmission protocols", Research Report,IBM Thomas
J. Watson Research Center, Yorktown Heighti', New York.

GRAY, 1972 "Line control procedures", Proc. IEEE, vol. 60, n~ll, November 1972.

LUCKY,1968 "Principles of data communication", New York, Mc Graw-Hill, Book Company Inc., 1968.

LYNCH,1968 "Reliable full duplex file transmission over half duplex telephone lines", Common ACM 11,
6 June 1968.

MACCHI,1979 "T4l6informatique : transport et traitement de 11information dan. les r6seaux et systimes
t~liinformatiques", Dunod, 1979.

METCALFE, 1973 "Packet communication", MAC TR-144, Massachusetts Institute of Technology, December 1973.

METZNER, 1977 "A study of an efficient retransmission strategy for data links", NTC 77 Conf. Rec.,
pp. 3B : 1-1 to 3H1 1-5.

NERI,1977 "A reliable control protocol for high-speed packet transmission", IEEE Trans. on Communica-
tion, October 1977.

- - -liaison virtuelle

-- IcI cQj

•_ liaison r-lella

niveau 3 PP 5 .

EHNQJii 'J[]• [P'i• S
LMPQ]

1

P -e- - -.P--- --- P 2 J

niveau 4 P

nivaau 0 P 3 1 3j

S iqnatux 61ectriques C-31

C Mod~fi hEh4sPdM]6m on~4t

HNPQ i CPQ]



27-8

niveau 4 P4 1

niveau 4

nive u 3

Figme I ModdJe hduAchik6l cort6.dlI'

Conýnt p
4
i l)coimt Ng ODNIV4 P Pn 'u~t.-i,± no4ye causedoI

nooj t0 ~ op 19 accuu. i.., i±n nci fova )P o1 NumaIo' on I. Lo6rponso do 4j SI~ratdgios
N C:PS j 7 do% [UK~ qu'j I3 101 LpasreI:

0± aceps do q r~fOP01 ro, traosumlsai- mir. dinrojion dc
arcpt~7 .~.dor~cpt~onroble cypos yp

TEMP [RP IACC)]

F[R.P(A CC) I 2

mds I on aiquence individual non TEZ". moduo 2

ACC rr,~p[RP (ACC)]5 I

LsrT[W .[r1 ______ (RET )), ____1_

ACC TEM [RP (ACC)] II

onkunenon-
volycitTEMP E.RP(ACC)]3.

n~nACCt TEKP CRP (ACC)3.I
non

coel nldro TF.M P, [RP(ACC)]

nC rnz .[s oTEW[FP AC) IV

indviue _____TEMP_______C

i n d v i u a T lE W E R P (A C C )]j~ V

TlE'P, wdulo (y~q+2) np ACC)] I y~q+2

Fqigau 3 Tableau Ptcdp~ttaLti6



28-I

PRACTICAL ASPECTS WHICH APPLY TO MIL-STD-1553B DATA NETWORKS
by
I. Moir

Milita:j Systems Engineer
Smiths Industries Aerospace & Defence Systems Company

Cheltenham Division, Bishops Cleeve, Cheltenham
Gloucestershire, GL52 4SF. England.

and
Mr. P.A. Duke

Senior Avionics Systems Engineer
British Aerospace, Brough

North Humberside, UK

SUMMARY

This paper discusses practical aspects which apply when attempting to design a
complex avionics system based on a Data Bus Architecture. An example of such a system is
the Stores Management and Weapon Aiming system, and this is discussed in detail..

1. INTRODUCTION )
1.1 Tie Arrival of the Data Bus

The data bus offers many potential advantages over hardwired or dedicated data
transmission systems in the design of Avionic Systems. Systems are interconnected by a
single or redundant twisted pair of wires via standard interfaces, so reducing inter
system wiring and the types and numbers of interfaces. The quantity of data transferred
no longer has a direct intluence on the inter system wiring and distributed computing
becomes feasible. However in spite of the obvious advantages of a data bus system there
are certain limitations dhich could be the aource of much heartache to the system designer.Problems may result from transmission dela's, digital sampling noise and the fundamental

upper limit on data item-data rate productT Also, since interconnection tetween systems
is via a common path, faults in the communication medium can have serious consequences,
and therefore the use of redundancy and error correction techniques need to be employed.

1.2 Designing a New System

When starting to design a new avionic system based on the Data Bus principle a number
of systi=m configurations can be devised. The functional areas can be allocated to hardwire
units and the interface signals rationalised. However, the resulting system could present
a high technical risk unless practical experience has been gained with the system, and the
inevitable design problems identified.

In order to investigate th- limitations of data bus systems, to gain practical
expcrience of distributed computing centres interconnected by data buses (in advance of a
new aircraft project) and to stimulate manufacture of bus compatible equipments, an
Avionic Systems Rig facility has been established in the UK, at British Aerospace, Brough.

2. THE AVIONIC SYSTEMS RIG

2.1 History

The need for an Avicnics Systems Rig became apparent during the 1970s, the intention
being that the Rig would provide a tangible and cost effective means of risk reduction in
the development of future aircraft avionic systems. The purpose is to demonstrate, in
ground rig form, total system integration and system architectural design concepts, making
use of the considerable technological pro%-ress which has been achieved in recent years,
and in particular of the data bus.

2.2 Objectives and Aims

The next combat aircraft project was expected to appear during 1987 to 1990. Current
uncertainties about timing and form o. such an aircraft make a rig programirc wit uin the
spirit of that originally conceived even more valid to exploit and practically ax'. ±y
developing technology.

The general objectives for the rig are:

(a) To provide a focal point for the design, development and practical demonstration of
a fully integrated total system using a multi bus architecture with sub system
integration, asynchronous data transfers and total system executive control.

(b) To support the design and development of systems for a fixed wing tactical combat
aircraft to enter service towards the end of the present decade.

(c) To provide a stimulus for the production of equipment compatible with DEF Stan. 00-18
(part 2) (i.e. MIL-STO-1553B).



28-2

(d) To investigate the specification, procurement and management procedures for a
highly integrated system.

(e) To effect an improvement in total system fault diagnosis.

(f) To develop a capability for the control and management of software procurement and
adherence to quality assurance standards..

(g) To develop systems which will be properly matched to the pilot's requirements and
capabilities.

2.3 Avionicu Industry Participatiorn

It was recoognised from the outset that the UK avionics induszry should be closely
involved with the project. This has been achieved during the planning process through
consultation with UK avionics companies. A working group comprising senior engineers
from a number of these companies has been set up:

(a) To ensure that the Rig reflects current developments in avionic systems technclogy.

(b) To help in the communication of results and experience from the Rig program to the
Avionics Industry.

(c) To provi.de a forum for the discussion of Rig procurement difficulties.

(d) To provide a forum for the discussion of standards applicable to th"z rig.

During the early stages of the programme the working group has assisted in
establishing xn overall system architecture, and producing outline specifications for

r its sub systems.

2.4 The Architecture of a Multi Bus Avionic System

The overall systems architecture was derived in the light of studies carried out by
the UK aircraft and avionics industry over a number of years. one of the studies was to
develop a systems architecture for an offensive support aircraft. This was carried out
using a 'top down' approach to system design which led to functional grouping of
equipments. These functinnal groupings were found to give advantages in the comprehension

of system operation, the specification of system performance, and in equipment procurement

and management. The functional groups derived were:
(a) Aircraft Group#
(b) Pilot Group

()Navigation Group

()Mission Group

The Aircraft Group of sub systems comprise those sub systems which akre primarily
concerned with keeping the aircraft flying safely i.e. they are safety critical, and
contain the Flight Control and General Aircraft systems.

The Pilot Group contains systems and functions which interface directly with the
pilot, such as the cockpit controls and displays together with those such as the avionics
bus controller which provide a total system control function.

The Navigation Group contains systems and functions which determine the position of
the aircraft and where it is to go.

The Mission Group embraces all those functions that are concerned with attack, I
defence and stores management.

The systems within these functional groupings will communicate over the avionics bus
as shown in Figure 1.

Whilst communication between groups takes place over the Avionics Bus it warn found
that for geographically distributed sub systems and units within groups additional dita
buses within the group were required. A particular instance which will be considered in
more detail later in this paper is the Stores Management function within the attack area
of the mission group.

The architectural configuration was driven mainly by availability and safety
requirements. One requirement which was a strong driver was that wherever possible nc
single failure should camse a mission abort. Another was that single or :ombined failure.
should have a very low probability of hazarding the aircraft or friendly personnel on the
ground. Groups of systems which have this safety requirement are shown at the bottom of

Figure 1.



28-1

PRACTICAL ASPECTS WHICH APPLY TO MIL-STD-1553B DATA NETWORKS
by

Mr. I. Moir
Military Systems Engineer

Smiths Industries Aerospace A Defence Systems Company
Cheltenham Division, Bishops Cleeve, Cheltenham

Gloucestershire, GL52 4SF. England.
and

Mr. P.A. Duke
Senior Avionics Systems Engineer

British Aerospace, Brough
North Humberside, UK

SUMMARY

This paper discusses practical aspects which apply when attempting to design a
complex avionics system based on a Data Bus Architecture. An example of such a system is
the Stores Management and Weapon Aiming system, and this is discussed in detail.

1. INTRODUCTION

1.1 The Arrival of the Data Bus

The data bus offers many potential advantages over hardwired or dedicated data
transmission systems in the design of Avioz~ic Systems. System$i are interconnected by a
single or redundant twisted pair of wires via standard interfaces, so reducing inter
system wiring and the types and numbera of interfaces. The quantity of data transferred
no longer has a direct influence on the inter system wiring and distributed computing
becomes feasible. However in spite of the obvious advantages of a data bus system there
are certain limitations which could be the source of much heartache to the system designer.
Problems may result from transmission delays, digital sampling noise and the fundamental

is via a common path, faults in the communication medium can have serious consequences,
and therefore the use of redundancy and error correction techniques need to be employed.

1.2 Designing a New System

When starting to design a new avionic system based on the Data Bus principle a number
of system configurationL can be devised. The functional areas can be allocated to hardwire
units and the interface signals rationalised. However, the resulting system could present
a high technical risk unless practical experience has been gained with the system, and the
inevitable design problems identified.

In order to invostigate the limitations of data bus systems, to gain practical
experience of distributed computing centres interconnected by data buses (in advance of a
new aircraft project) and to stimulate manufacture of bus compatible equipments, an
Avionic Systems Rig facility has been established in the UK, at British Aerospace, Brough.

2. THE AVIONIC SYSTEMS RIG

2.1 History

The need for an Avionics Systems Rig became apparent during the 1970s, the intention
being that the Rig would provide a tangible and cost effective means of risk reduction in
the development of future aircraft avionic systems. The purpose is to demonstrate, in
ground rig form, total system integration and system architectural design concepts, making
use of the considerable technological progress which has been achieved in recent years,
and in particular of the data bus.

2.2 Objectives and Aims

Tha next combat aircraft project was expected to aypear during 1987 to 1990. Current
uncertainties about timing and form of such an aircraft make a rig programme within the
spirit of that originally conceived even more valid to exploit and practically ap-ly
developing technology.

The general objectives tor the rig are:

(a) To provide a focal point for the design, development and practical demonstration of
a fuily integrated total system using a multi bus architecture with sub system
integration, asynchronous data transfers and total system executive control.

(b) To support the design and development of mystems for a fixed wing tactical combat
aircraft to enter service towards the end of the present decade.

(c) To provide a stimulus for the production of equipment compatible with DEF Stan. 00-18
(Part 2) (i.e. NIL-STD-1553B).



28-3

2.5 Reliability Requirements

The general reliability requirement for a mission critical avionic function 4s
that no single failure within that function should prevent the completion of a mission.
This requirement cean be satisfied by simplex systems provided that an alternative (or
reversionary) source of the data produced by that sySLem i3 available. A second failure
occi.ring within an avionic function can result in the lailure of that tunction and cause
the m.. s,.:iot, to be abandoned.

For a safety critical function there is an add.iional requiroment that no single
failurE within that function shall result in a hazardous output.

A given function, may involve several systems (e.g. The Weapon Aiming Function may
call for data from the Padar, Electro Optical Sensors, Navigation System, Air Data System
and Pilot). The communication path between these systems needs to reflect the reliability
requirements of a given function. Hence the avionics bus, which only transfers signals
which are classed as being mission critical is itself mission critical and must be at
least dual redundant. Within the weapon control and release area however two functions
with different reliability requirements come together to produce the successful release
of a weapon. They are the weapon aiming function, which is mission critical, and the
weapon release function, which is safety critical.

A discussion concerning the design options available for a future weapon system fcrms
the main contents of this paper. It has been written jointly by MAe Brough and Smiths
Industries, who have for some time been working together on the design and use of
MIL-STD-1533B data bus transmission systems.

3. THE WFEAPON SYFTEM

3.1 Introduction

On the majority of aircraft, weapons are carried externally, on wing and fuselage
pylons. There may be eleven or more weapon stations and each may carry more than a
single weapon. When considering a new weapon system a major design consideration is how
to communicate between the sensors and weapon system processors and the weapons. Many
alternative configurations are possible and it has been argued that it would be more cost
effective to employ a current digital data transmission system which has been proved,
than to develop a new one. However, this paper is exclusively concerned with data bus
issues and therefore existing data transmission systems have been excluded.

The signals required by a weapon can be divided in three general classes: Aiming,
Arming and Release.

3.2 Weapon Aiming

The weapon aiming system will obtain information from a number of sources to provide:

(a) Attack geometry to the flight control system.

(b) Display information to the cockpit.

(c) Release cues to the weapon release system.

(d) Guidance signals to the weapon heads.

Many weapon types need to be told where their targets are. Additionally they may
require such data as aircraft altitude, velocity, target velocity etc. This data is
dynamic, is genierated by the combined operation of several systems (e.g. Navigation
Radar and EO 3ystems and the p•1ot). These signals demand high data rate and are mission
critical.

As the guidance signals result from the combined operation of a number of systems,.
an early consideration involves the distribution of processing between the various
systems which contribute to the weapon aiming function. The centralised and distributed
weapon aiming system architectures are shown schematically in Figures 2, 3 and 4.

A centralised aiming system has the advantage of having all the data required for
aiming calculations available within a single unit. However, this data must be
transferred from the scnsor and using a data bus as shown in Figure 3 can introduce
delays and digital sampling noise onto the highly dynamic data. The loss of accuracy and
noise could bQ removed by using dedicated links from the sengors but this dlutl n should
be discouraged as the proliferation of dedicated liUiks d( ,troys the vantages of using
data buses.

If we consider air-to-air and air-to-ground weapon aiming separately then we find
that various systems are already pariorming many of the calculations required for weapon
aiming. Thus with minimal additional processing th4.e radar, for example, could perform
the majority of the air-to-air Weapon Aiming computation and the Navigation system tould
perform the majority of the air-to-ground Weapon Aiming computation. On balance the
diwtributed processing option shown in Figure 4 is preferred.



284

In each case the guidance signals must be transferred to all weapons. To add 11 or
more extra remote terminals onto the Avionics bus would exceed the limit for a single
bus and for this reason above we are forced to add an extra bus to transfer the aiming
data.

3.3 Weapon Arming

Arming signals include borw and missile frze selection, missile priming functions
such as thermal battery initiate, and the switch on of aircraft supplied electrical power.
These are generally discrete signals which place the weapon in an active state, initiate
clectro-exploslve devices or control the action of electro explosive devices. They
require a low data rate but are both mission and safety critical.

3. K Release Signals

In general there are three different types of release signal, which are classified
according to their form at the aircraft to weapon interface.

- Type I Release Signal

In order to release a bomb it is necessary to apply a high current discrete to the
Ejector Release Unit mounted in the aircraft pylon or multiple carrier unit. No signal
passes from the aircraft to the external store.

- Type 2 Release Signal )
In order to release a missile it is necessary to apply a high current discrete

signal to the rocket motor igniter. This discrete must be pessed from the aircraft tothe missile.

-Type 3 Release Signal

For many small weapons carried in large numbers on a special carrier with release
under the control of a unit mounted within the weapon carrier. The release signal is a
low current discrete or digital data word which is passed from the aircraft to the
carrier.

Whichever type is required the release signal is of very low data rate, mission
critical end safety critical and will have to be applied at a precise time.

With the addition of the weapon aiming bus we must now consider the weapon release
and arming functions and the options available for their implementation.

4. BUS REALISATION OPTIONS AND THE EFFECT UPON SUBSYSTEM DESIGN

4.1 System Requirements

(a) Safety

(i) 'No single failure ahall result in a safety critical signal being generated.'
This generally means that signals such as rrlease of stores, etc. must
operate effectively in a duplex mode i.e. tLo independent signals must be
present before release or other safety critical function can occur.

(ii) 'The probability nf dormant or multiple failure modes resulttig in a safety
critical output shall "e extremoly small.' (The figure of 1 in 10 -7 per
flight hour is often quoted.)

(b) Availability

Existing Stores Management Systems typically specify that the probability of a
failure to operate should be not greater than a certain figure, and in this context
a figure of 1 in 10 -4 per flight hour Ls often quoted.

Bearing in mind that current systems are usually designed to provide alternative
(reversionary) methods for releasing weapons and that it should be the aim as far
as possible to minimise the need for such reversion in future designs (which
utilise data buses), the requirement for availability will be somewhat more
strinrent that the above figure suggestc. However, the main avionics system will
have reversionary modes enabling weapon release points to be computed using various
sensors subsequent to sub system failures. It is ussential therefore that the
Stores Management System should be capable of exploiting this capability. A
requirement for further methods of weapon release which exclude communication via
the Avionics Bus needs to be questioned critically since this will involve theintroduction of dedicated hardware with its appropriate cost and weight penalties.

(c) Survivability

The term survivability means mission survivability in .•n environment where there it
a high probability of battle damage being experienced. Given that the effective
release of the stores and missiles would be inadequate without the support of some
of the aircraft sensors and other sub systems, then crude reversionary mechanisms



28-5

would be unlikely to contriDute significantly to mission success. The potential of
a dual redundant or similar data bus for providing both survivability and
availability therefore needs to be fully excploited to match the avionic system
capability.

4.2 Redundancy Options

The options available for dual operation may be summarised as follows:

(a) Duplex Redundancy

Both elements of a dullex redundant system have to be fault free to obtain full
system performance. This nay be likened to Figure SA where two switches are
connected it1 series.

(b) Dual Redundancy

In a dual redund3ant system either of the two elements can perform the same specified
system function. This form of redundancy may be Active (e.g. cyclic redundancy, in
which the elements are switched from one to the other and back again) or Passive
(e.g. stand by rodundancy, in which one element is active until a failure occurs in
which case the alternative element is used). Dual redundancy is akin to the
parallel switches show.: in Figure 5B.

The safety requirements of a weapon release system dictate the oneration of the
elements in a duplex manner. The availability and survivability requirements demand
some form of dual redundancy. Therefore the overall. requirement will nncessitate both9
duplex and dual redundant features such as shown in Figurei 5C.

4.3 Bus Realisation

Duplex operation in a time division multiplexed digital txaLcsmission system
(i. e. 1553B) may be implemented by time separation of identical messages down a data bus
instead of duplicating hardware. By suitable coding of the independently generated
duplex signals into separate words and transmitted over a single data highway to a RT
and subsequently decoded back Into true duplex signals, then it can be shown that for a
bit error rate of 10 -12, the occurence rate of valid duplex word error is of the order
of 10 -18 per hour. Indeed even if noise burst occur at higher levels than this, then
providing reasonable temporal separation of the duplex words is made, the occurence of
error is still highly improbable. It seems reasonable then that techniques such as
this may be implemented to protect against inadvertent release due to noise.

If the duplex words representing the release signal are dissimilar in bit structure,

spuriously both words. To prove this, however will require a rigorous failure mo~de
analysis on the simplex part of the system, and this can only be done on a reasonably
detailed design. Therefore whilst preliminary investigation indicates that safety
critical signals may be transmitted satisfactorily via a dual redundant bus system,
acceptance of the system will lean heavily on a detailed failure mode analyiis followed
by supporting experimental evidence.

A high weapon delivery availability (failure to operate not greater than 10 -4 r~r
hour) consistont with a high level of signal integration into the bus sytem, make it
necessary to analyse the proposed system on the basis of random failure rates. The
presence of dual computing and a dual redundant bus system should enable this requirement
to be met in the configuration shown in Figure 6. The attractions of this configuration
are as follows:

(a) Duplex operation may be accommuodated using one set of hardware by transmitting
independently generated signals down a single highway and combining into true
duplex signals in the pylon interface unit.

(b) The existence of dual redundancy within the 1553B buses and RT hardware permits
availability and survivability requirements to be met.

(c) The architecture includes separate signal paths and processing areas fur both
weapon aiming and weapon release functions which may aid certification. However,
the option is available to combine both aiming and release functions on the same
bus should experimentation suggest this to be a sensible alternative.

5. INTERFACINMG WITH EXTERNAL STORES

As a result of the above discussion we now assume separate Weapon Aiming and Weapon
Release Buses (remembering that current weapon release DDTS systems are excluded from
this paper). There remains one link in the chain from the sensors and pilot to the
weapons. That is the interface between the weapon buses and the weapons. Here again
several design options, involving the partitioning of processing elements are available.

The use of data buses offers the possibility of obttini'nq a standar~d interface
connector such as that proposed in MIL.-STD-i760. This is highly desirable as it will
improve interoperability. However, as we shall see, this is not easy to achieve.



28-6

5.1 External Store Types

A wide range of external stores are now carried by aircraft and the pace of new
weapon development and the complexity ot those weapons are continually increasing.
Store types which a new aircraft can be expected to carry includes

- conventional 'iron' bombs

- cluster or dispenser weapons

- short range and medium range IR and Radar guided missiles

- Fuel Tanks

- Electro Optic ser~s- and designator pods

- Electronic warfarc Vods

The signals required by these stores cover many different types, but typicall7:

- 28 V low current and high current discretes

- Analogue signals

- Digital data highways of various types

- 28 V and 115 V power supplies

- Video

-R.F.

They are generated at each store station within Pylon Interface Units from signals
transmitted via the Weapon Release and Weapoa Aiming buses.

The aim of any new system should be to provide a standard interface which can
accept current and futsire store types with the minimum of hardware modification.

To provide an example of the interface design process and the options available we
will look at the installation of an AIM-9 missile. This is a typical guided weapon and

can be carried singly or on multiple carriers.

5.2 Pylon/Launcher Configurations

Figure 7 shows a possible configuration for a simple weapon such as the AIM-9
Sidewinder. Weapon aiming (head slaving) data is fed into the pylon processor via a
dual redundant weapon aiming bus. Firing signals to the ERU are fed from both release
processors in order thx... oitergancy jettison may be achieved in the event of either
processor failure. Discrete and head aiming signals are routed to the store in a
conventional manner and existing launchers could be used. The advantages and
disadvantages of this scheme are:

Advantages

- Uses existing launcher hardware, therefore no cost increment

Disadvantages

- Non standard interfaces Launcher/store

- rower lines and head aiming routed via pylon processor

- Expensive in RT hardware (2 RTs for headaiming signals might not be justifiable)

Figure 8 show. a modified arrangement where the aiming signals are routed directly
to the launcher without interfacing with a processor in the pylon. This arrangement
would require a Remote Terminal and processor in launcher to receive and generate head
aim signals. This would require a simplex RT for simplex genezation, or a dual-
redundant RT if dual-redundant weapon aiming generation were preferred or justified.
The advantages and disadvantages of this layout are:

Advantages

- Discrete and head aiming signals net routed via pylon processors, therefore
cheaper aircraft equipment

- Common pylon to launcher interface possible

- Reduction in hardware possible (I RT for head aiming may be justitiable)



28-7

Disadvantages

- Requires new or modified launcher, with resulting cost increase

- New or modified launchar not common with old launcher at pylon to launcher
interface and therefore not compatible with existing aircraft

Figure 9 shows a multistore launcher capable of carrying a number of smart stores,
each of which is interfaced to the launcher by means of a standard stores interface.
As for the previous option tha head aiming and discrete lines are consolidated in the
launchers before being routed to the store(s). The advantages and disadvantages of this
configuration are:

Advantages

Could be standard with new AIM-9 launcher interface

- Standard launcher/store interface

- Dual redundant "RIB bui; routed to multiple 'smart' stores

Disadvantages

- Expensive in terms of hardware - bus extender and standard interfaces

- Several missiles now share one electronics unit which becomes a common failure
point

It may be seen that this configuration could easily be made compatible with the
'new' AIM-9 launcher configuration just described. Hence standard pylon* couid be
interfaced with interchangeable launchers permitting a wide mix of weapons options to be
carried. Furthermore, the use of standard stores interfaces at the launcher/store
interface means that a mix of smart or dumb weapons of differing National ordnance could
be carried. This feature woule, g).atly enhance the effectiveness of NATO airborne
tactical forces in any f, -_ .Alict. The penalty paid for this interoperability is
however the introduction o! ,.aw and more complex launcher hardware including the
incorporation of micro-processor hardware.

The technicalities associated with the 'bus extender' facility shown in the multiple
MIL-STD-1760 launcher are presently being examined by Smiths Industries, in order to
fully identify and quantify the trade-offs which are involved.

It may be seen that each of the three simplified options h&s advantages and
disadvantages. Depending upon the need for carriage of smart weapons, and the need for
standardization of the stores interface, trade offs exists in the areas of hardware
complexity, weight, reliability, integrity and cost (including cost of owniership). The
user will therefore need to list the relative priorities in these areas and quantify the
trade-offs in order to assume maximum cost-effectiveness of the overall weapons system.

CONCLUSION
The paper has served to describe the work being undertaken in the UK industry on

the interfacing of MIL-STD-15535 buses. The development of an integrated systems rig
has been outlined and the aAms of the rig identified. The use of data buses for weapon
aiming and weapon release purposes have been described in detail. The trade-offs which
exist when the requirements of a standard launcher/stores interface have also been taken
into consideration.

,jI



28-8

E]missioN Cnrnc.AL

SAFETY CRITCAL

FIG.1 GENERALISED SYSTEM ARCHYTECTURE

11 [ SENSOR ISLENSORm mm

PROCESSING
AND

DISTRIBUTION

WWEAPON WEAPON WEAPON~m

FIG.2 GENERALISED WEAPON AIMING FUNCTION

______AVIONICS BUS

WEAPON AIMING
COMPUTER AND

BUS CONTOL LER

FIG. 3 A CENTRALISED WEAPON AIMING SYSTEM



28-9

NAAVISYSTEMBUS

RADAR +AIR AIIOGON IO' OT4L
M T AIR WFSPOIN^,, • 'o WEA,..O IN AND• DI0SPLAYS

S• COMPUTATION

1 - 1 AVIONICS BUS

WEAPON AIMING
Bus

CONTROLLER
•__"--"___----'_WEAPON AIMING BUS

FIG.4 DISTRIBUTED WEAPON AIMING SYSTEM

Am SYSTEM A SYSTEM B B. S___L ,• --- LANE1
\ .... • DUPLEX DUALREDUNDANT

LANE 2

SYSTEM A I SYSTEM SJ LANE/BUS 1-K u DUPLEX DUAL REDUNDANT
.& ANE/ BUS 2

FIG.5 DUAL SYSTEM OPERATION OPTIONS - SIMPLIFIED SCHEMATIC

DUAL-REVI. OA. AVEIONS BUS

u~s ICONT°OLLER

DEDICEDýA I

D r . IT T O

PR UMESSOR E OSSOT PROCESSOR
AB u

ATR

DUL-EDONAN STORE SIARET STOR

DFIG.6 GENERALISED WEAPON SYSTEM CONFIGURATION

1 1 A -...-..



28-10

*WAUS

P'YLON

RT - REMOTE TERMINAL

E EU ERU - EJECTOR RELEASE UNIT

EU - ELECTRONICS UNIT

0 AND

STORE

AIM 9

FIG.7 PYLON INTERFACE OPTION 1

I WA Bus

WR BUS

PYLON

MIL-STD-I 
Uh

RT - REMOTE TERMINAL

ERU- EJECTOR RELEASE UNJIT

EU - ELECTRONICS UNIT

U AND

STOREW

AIM 9

FIG.8 PYLON INTERFACE OPTION 2

,,WA BUS

WR BUS

Mw .st-,7W RT - REMOTE TERMINAL

LAUNCHER EU EU - ELECTRONICS UNIT
BE- BUS EXPANDER

MIL-SID-1700

STORE

SMART SMART
STORE STORE

x Y

FIG.9 PYLON INTERFACE OPTION 3



29-1

THE TRAFFIC FLOW IN A DISTRIBUTED REALTIME COMPUTING SYSTEM (ROC-SYSTEM)

WITH A FIBEROPTIC RINGBUS SYSTEM

Dirk Heger and Reinhard B~hre

Fraunhofur Institut fG'

Informations- und Datenverarbeitung (IITB)

Sebastian-Kneipp-Str. 12/14
0-7500 Karlsruhe i, Germany

ABSTRACT

The new generation of automatic systems is essentially characterized by distributed multi-
computersystems. The architecture is based on distributed microcomputer stations linked
together by a bus system. These systems give much more design alternatives than conventia-

nsl single or multicomputer systems, the danger of obtaining bottle necks of system per-)
formance is considermbly greater than it was by using functional nodules operating inde-
pendently and simultaneously. Therefore, mathematical modelling of bus-linked multicom-
puter systums and the experimental evaluation of these models in online operation by means

of measurements is a+ increasin- importance.

In this paper the ROC-system, a realtime computing system developed by the IITB and the

traffic flow on its fiberoptic ringbus system are presented,

1. INTRUDUCTION

The new generation of automatic systems is essentially characterized by distributed multi-
computersystems (Fig. I and /I/). In systems like this use is made of a hierarchical da-

composition of all tasks of the automating system. The decomposed tasks are distributed
among a hierarchy of autonomous subsystems communicating with each other. These subsystems
are realized by means of microcomputer stations today. Referring to an automatic fire
control system we have for instance three functional levels performing the following taskst

- Weapon control level controlling directly the weapons and the equipment in the field,

- fire control level coordinating several weapon control systems,

- command level for the orientation of all weapon3 in the battle field.

Swe~aLEM.

' . b . . .,• • .

low= MAWiP ().

Fig. 1: Automatic control system,
(P. . fi". control system)

.6 M.......u. : = - - I = • • l '



29-2

Fig. 2 shows a typical architecture of such automating systems. There we see the whole

system which is composed by several subsystems called equipments. The equipments are

coupled with each other by means of bus couplers to a bit serial system bus. This system

bus for instance makes the connection to a central master control panel. The equipments

again comprise subsystems which are called devices. These devices are linked together by

the equipment bus, in generai a parallel bus system. The devices in turn are built up by

printed circuit boards which are connected by a parallel device bd-. In tl.e next step

down we Find components on the boards tied together again by e parallel bus system called

board bus. And finally, we see clusters of I/O-devices which are connected with each other

and the boirds by an i/O-bus in turn.

K IuI w I 2

-i 1 • •lSW LO-ut

Fig. 2: Bus hierarchy in a distributed automating system

Let's :'immar' ze :

The hierarchy of the automatic control system is mapped onto a hierarchy of hardware sub-

systems in a dual manner /2/. Clusters of subsystems are pooled together by means of bus

systems and form the subsystems belonging to the adjacent level of the hierarchy higher

up. In any cast, the functions of the subbystems should be performed autonrmnously in tha

main and the need of communication between these autonomous subsystems should be mini-

mized in order not to get bottle necks of system performance ard/oc system availability.J

Typical lengths of the shown busses are for the devicu Lus s-vjral 0.1 meters, frt the

equipment bus about 10 meters and for the serial syste," b: A 'p to several kilometers.

Distributed systems as described above are pmrticular~y imrportant in :.2OG in which the

technical process is locally distributed. In these cases it is possible to limit the effects

of failures locally and to replace the crashed functions by other parts of the system.

This principle of error recovery or system reconfigureticn .ith graceful degradation uses

the principle of dyrnomic and functional redundency.

"I



29-3

2. THE DISTRIBUTED, FAULTTOLERANT RDC-SYSTEM

The Fraunhofer Institute L' Information and Data Processing has devqloped the "Really Dis-

tributed Control Comput'3 System", it is called ROC-system /3/,/4/. In this system there
exist a lot of distributed microcomputer stations communicating with each other via a

fiberoptic ringbus system. Up till now five RDC-systems are put into operation in .different
industrial applications, one of them for th•. closed loop control of 28 pit furnaces. The
latter system has been working at the iron works at THYSSEN AG since 3une 1979. This appli-

cation will be described in the following,abreviations used in thb text and the pictures

are listed in table i.

LpP Communication processor
LASP Working storage of the LwP

SEA Transmitter/receiver adaption

LSEM Light transmitter/receiver module

PwP Process control processor

PASP Working storage of the PpP

BS/SR Bus switch unit/fault diagnoris 9
NT9T Supply control

AA OigitAl-to-analog converter
AE Analog-to-digital converter
SBA Binary output

BE Binary input

SBF/SBFT Local control panel

SE/A I/O-devices
[M Sensors
S) Actuators

DSG Alphanumeric terminal

NB Magnetic tape recorder
MSP Mass storage in the master control room

CAF Color screen I/O panel
ZE Computer for the master control oprratior with the color screen I/O

panel
PR b1O Micrcomputer SIEMENS 310

Table 1: Abýleviations

2.1 hARCWARE STRUCTURE

The hardware structure of the ROC-system is shown in Fig. 3. Here we see the d'rtributed

microcomputer stations with the microco'puters (PUP) performing the control tasks, the 1/0-

devices (E/A) and the measuring and actuating elements at the technical process (M,ST).

Each station is connected by means of a special communication processor (LuP) to a bit

serial fiberoptic ringbus system. In the middle of each station there is a special de-
vice (BSU) performing the on-lKne error detection within the station and at its inter-

faces, initializing the status reporting messages conveyed by the LpP to the whole system

and beinz. to isolate the faulty parts. By this a systemwide distributed on-linq fault-
diagnosis is performed anc the reconfiguration procedure is started. In the case of the

pit furnace ano1Dcatior the neighbour station replaces the functions of the faulty station
and controls both technical processes simultaneously, but with degraded performance for
each of them. After repair system regeneration atitcmatically takes place as well. More-

* over, we see at the top of Fig. 3 a double computer system. One of these computers per-

forms all functions of displaying the statuses of the technical process and the automating

system as well, the interactive operation by the operators and bll documentation and data
gathering tasks being essential for the next levels in the functional hierarchy. It is

* called EAF-system. The other computer fulfills in normal cases the task of dynamic loading



29-4

and starting of the ROC-stations in dependency of the system status. Moreover, it is the
program production system for 'MULTICOMPUTER-PEARL*-programs /5/. This "MULTICOM'PUTER-
PEARL* was developed by the Fraunhof~er Institute and the German software house MBP/Werum.

"nOCUAWNTATDI AW FAMAM PXWEW T? VARP CON'OL OV MAN) AND
PROOLtTIO 1PEAL I EVNT RECO

MaMID

LOALT

0 WAK TLEAAUE hLISLAN. W THIES CAN A FAKWOM JMMLE

*FUMWNTmALLY EQALW a"e4DWAEIO CflOPMILES (W9TMff MASTER)

~~LNP

F~~g. 4:StutueofaRO-tet



29-5

If one of these two computers fails the latter tasks are shtit down and the remaining faci-

lities are used to maintain the more important tasks of displaying the technical process

and the irteraction of the operating personal. Besides the farility of central operation

thare exists thepussibility of distributed input and outpv actions by an operator at the

ROC-stations in the field. For this reason, each RDC-station has a local control panel.

Fig. 4 shows thq detailed internal hardware structure of a RDC-station.

2.2 PROGRAMS

Fig. 5 shows the distribution of thA program system in the RDC-system. Each station con-

tains identical transport systems, status reporting systems and line reconfiguration systems.

All these programs are microprogrammed and performed by the LUP.

The ROC-stations contain identical network operating systems, local PEARL operating systems

and run time systems in the levels higher up. These programs reside in the PUP and are call-

ed DISPOS (Distvibuted PEARL Operating Syntem). And finally, all application programs are

residently loaded for both cases of normal and reconfigured operation. Both computers of the

centz'al master control roor contain the transport system, the status reporting system and

the line reconfiguration system running on their LiPs. Higher up we see the network operat-

ing system with a local observer and the manufacturer supplied operating cystem ORG 310.

And finally. there are the application programs of tte EAF system and the program production

and loading system.

TF ~SPAR EAF-

IIA~AI O~W IPROGAW PORAM Ip~g
gLOADER SYSTuM PROORAA

It LOCAL OPERATING

0960 003 SYSrEM
LOS NETWORK OPERATING SYSTEM WITH

Ns LOCAL ONSERVER
LKSLKS LAW COWMRAFMI SYSTEM

SMS SMS STATUS REPORTINGO YSE

TS TRANSPORT SYSTEM

-MX1 I---C r--/
RDC It) IO_( Roe uIn

T! rs TS TS TRANSPORT SYS TEM
SMSSMSSMS STATUS REP~WORV SYSTEM

LNS LKS LKS Ltdf CO0ft4PPA*AI( SYSTEM
S Iss IIssI I I' ru ,•,,o'•sse

NETWC's OPERATOG SYS TEll WITH
Nos MRS ?WS LOCAL OffKRVER

PE!ARLs I A As ILEARL-sS PEARL OPERATING SYSTEM

LI LZ' ! Z iA7M J Ioc, sPSTF

,PP A,• APPLICA7T7O PROGRAM In;
4VP AlPj MSPn AjftCATIE PROGRAM Ik)

Fig. 5: The d3stributed program system of ROC

2.3 DATA bASE

Fig. 6 shows the distr.bution of the data base of the ROC-system. Each station has a list

of system statuses, a list of actual process values, a list of control parameters and a

list of internal process data. Mor'eover. each station has accesc to the actual valiJe com-

ing from the technical process. Copies for initialization are located on the bulk memories



29-6

of the master control computers. There exiGts an additional copy for reconstruction of

the data bass in case of a complete crash of the central computer system for a time.

S • LisTr OF PARAMVETERS In)

.T OF PRAMETERS fnj):2LE Or-CPMRAMEETMS0 1

LET OF ALr , i

Mi ULT OF ACTUIL
mPAL, PACCSS W&ALEStin)

L L T~7W

LET OFACTUAL

lid PROWSS VALAES(J)

S -TL- LIST OF STATUSES

Fl te. Sm EAF- Systm

ItZODC (2)1 IRDC '1)I

ROC 10) ROC1 RIX In)

L IPL i PL ,J I•L rn LIST OF ATALk)
MIeb F L **•i n ' W IW tf)
M~jO j1Kk PROCESS V4ALLE(k)

FInf IAL 'n)

Fig. 6: The distributed data be•a of ROC

2.4 SUMMARY OF THE MOST IMPORTANT FEATURES

The most imrportant features of the ROC-system are

dynamic redundancy for all system levels and modules,

fault tolerance. distributed feult diagnosis, also transmitted to and displayed on the

central colour screen systems

000-type bussyStem:

Decentralized channel assignment

Decentralized message transmission

Decentralized message absorption

tr-ansmission medium: optical fibers

transfer rate: 10 bit per seci

distributed, hierarchical data base,

MULTICOMPUTER-PEARL,

dynamic loader for automatic on-line loading,

central control panel with flow chart represention with realtime update, curves and so on,



29-7

rolling map, light-pan interaction with operator guidance,

automatic selection of display information at changes of the process state.

3. CLASSIFICATION OF TECHNICAL COMMUNICATION SYSTEMS WiTH RESPECT OF TRANSPORT AND

CONTROL PRINCIPLES

Essential part of the ROC-systsm is its communication system. In the following a classi-

fication scheme for transport and control principles in technical communication systems
with an analytical assessment of the performance is given /6/.

Technical communication systams have to convey messages between several stations and wide

use is made of bus systems. Three main actions must be performed for each complete trans-

mission cycle:

1. bus assignment

2. message transmission

3. logical and physical message absorption

These actions can be performed with or without the aid of a central master. In accordance

to this we get a classification scheme as shown in Fig. 7. The ROC-system ij. classified

as a 0DD-type system.

MESSAGE TRANSMISSION

CENTRAL DECENTRAL CENTRAL DECENTRAL

CENTRAL ZZZ ZDZ ZZD ZDD

DECENTRAL DZZ DDZ DZD DDD

CENTRAL DECENTRAL
I.G. PASSIVELY CMUPLE I.G. ACTIVELY COUPLE

MESSAGE ABSORPTION

Fig. 7: Classification of bus systems

For the analytical assessment two variables are important

- the average maximum throughput iAx available for each station and
imax

- the average transmission time t from transmission demand in the source station till
complete reception of the message in the destination .tation.

Fig. 6 shows the results for 3 classes: ZZZ, DOZ and 0OD. We see three axis with loga-
rithmic scales:
- x-axis: Aurival rate in bits per sac A..

- y-axis: Average transmission time T
- z-axis: Total number of stations N

The maximum throughput X imax of 0OD is approximately 4 times higher than of a ZZZ system and

about 2-3 times higher than of a ODZ system. The average transmission times I of ZZZ are
higher than DOZ, and DOZ has essentially higher transmission times than 0OD in any case.



29-8

5

2 k zzz .Wk
b, -M DNS

104 .A.5 I ýav 4.-sOOZ

5

3 Nv5 I

NV
Na

3' IN-10]

2 trasfe rae,...esa. ent

N odlnt. b-cnrloeha

Fig. 6:% Aver.ge trnmac im ns steso

th . lasse ZZZ .. I an ... ODD... ..

4. T RFI LWO H O IOU YTMI H I UNAC PPIATO
The ~ ~ ~ & reutzandb nlticlmasaego o rnil n envleasamns

But ~ 2 th elwrdi uh oecmiae spone uPreaplb h aibe

of he orloa ofa ussstm. her w haeN



29-9

- distribution of source and destination addresses

- distribution of interarrival time between messages

- distribution of mersage lengths

- distribution of message types

- frequency of message sequencs

All these distributions are locally dependent and dependent in time, with steady-state or

unsteady-state behaviour. Moreover, they depend very strongly on the application, parti-

cularly the source and destination address distribution. Typical application classes are

centralized management of distributed control systems (saa measurements of the pit fur-

naces system)

pipelined technical process

- hierarchical structured technical process (tree structure)

uniform distribution (totally meshed communiration structure)

and so on.

Because of this complicated world the IITB has developed a measuring processor /7/ for

gathering the message flow in the RDC ringbus system. Bul before describing the traffic

flow in the ROC communication system and the applied measuring method it is necessary to

understand how this system works.

!w F

TN,

Fig. 9: Queueing model of the RDC-ODD-type communication system

Fig. 9 shows thequeueing model of the communication system. The ROC-stations are connRcted

by means of serial fiberoptic lines to a ring structure. Each station has A receiver E. and

a transmitter S.. In order to achievn communication between the stations each of them has

its own address and consequently each message has in its header besides the message type

the information where this message (source address) comes '•rom and where this message (de-

stinatt- address) is destined to. Special types ol messages (e.g. the status reporting

messages) have a broadcast address. Let's have a look on the handling of messages within

a station. On receipt of the first word of a message the contained destination address is

compared with the station's address by the LWP. If the addresses are equal the arriving

message will be delivered to the seation and absorbed (wi), if it is not equal it will be

forwarded to the next station (Afi). This will be with the minimum delay of one word in

all cases in which the queue P. for passing messages is empty and if the station is not
transmitting a message by itself (Xi). In the latter case the words of the passing message
are buffered in the first come first serve queue P.. Messages of the station (Xi) are not

allowed to be senL if the station is receiving or transmitting a passing message. By this

buffer insertion mechanism we have a decentralized bus assignnnInt, a decentralized message

transmission and a decentralized message absorption. In this protocol consideration of

round-trip delay of the transmission medium is not needed as for instance in collision type



29-10

local area networks as ETHERNET.

In order to detect faults on the ringbu3 sys'.em each ROC station has its own fault detectors,

and in order to tolerate them there are two fibarcptical rings, one for each direction with

the respective receiver and transmitter devices. That means that each direction can be ope-

rated unidirecticnally or pseudo-bidirectionally -n the so-called oscillating mode of ope-

ration where the directiun is changed periodically.

In the DOD-type communication system a lot of key data are available, but locally dietri-

butid. The measuring system was implemented by a further ROC station connected to the serial

fiberoptic bus with special functions. These are:

- observation of the traffic flow at its connecting point

- sending and receiving of special measuring messages in order to get the transmission

times

buffering with optional preselection and recording of the measured data.

Because of the knowledge about the dif-ferent traffic flows in the pit furnace application

the optimal connecting point is adjacent to the two computers of the master control room

(Fig. 10). Unfortunately, not all distributed traffic flows (e.g. demand messages and the

respective reply meas3ages) can be accessed in bus systems of the class ODD at this connect-

ing point, but all criticas oat;es of heavy load can be detected In this way.

D:0mm F •2 aEAF N8 DISPLAY

Fi.B10-EROPTIC Tra o (tOSerTWOi
system OPERATANI furnac a

Fi.I:Tafcfo nteROC 9lngbu

system~ ~ ~~ ~C intepi2un 1eaplcto



29-I1

In the case oa undisturbed ring operation (Fig. iOA) we have three main message typest

The status reporting messges with the arrival ratea . the demand messA'es of the EAF-

computer A a and the reply messages o;' the ROC stitione with the arrival rate Ad" In the

left ring direction operation mode as shown in this figure all status reporting messages

and reply missages pass the measuring system. If we ctiange into the right direction all

status reporting massages and demand messages will be accessed. For simulation of ths os-

cillating mode of operation we apply an interruption of the ringbus between the two com-

puters of the master control room (Fig. 10B). In addition to the message types of the un-

disturbed ring operation we now have the massages with the arrival rate Au initialized by

the communication computers adjacent to the Interruption points to perform the oscillating

mode. All messages to and from the EAF computer and the mnssages of the communication ccm-

puters pass the measuring system.

At any event, a set of data is recorded with the following contents;

Message type, source iddress, destination address, message length and clock tims (time re-

solution 10 ps).

Tnese records are concentrated stepwise and if necessary preselected, recorded on a mag-

netic tape and finally transferred into a mainframe computer systeni (Fig. 11].

FIKR OPTIC #IWSSJ

l~aSIT4EOTI, CACHE 1

eLOC INE lie(10 us)

KEYDATA OF 5C00 UESSABES

Pir CACHE 2 DATA SELECTION OPIIONAL
(PASP)

MAGNETIC TAPE
KEYDATA OF 106 M&SAAS

DUNK TOP MAGNETIC

CO7WUT I S• ALK

CSfR IECONDS U TA1hjI2hA

Fig. 11: The measuring and analyzing systqm

' *1



29-12

Here, a lot of analyses can be done. Examples for results evaluated from measurements

in the pit furnace application are shown in the Figs. 12-14. Fig. 12 ohowR typical load

distr!butions of the traffic flow for the transmission into the right direction (A) in-
cluding As and X ai L'.o the left direction (B) ichluding Ns and Ad and the case of os-

Llating mode of operation (C), including A5 , AI. ad end Au.

iC 0. ++ . +
t I I

I I It

O.W ÷ n, +: 0,.

! I I
1 . I

50.6 + 10.0 + 10.6 +

I 1 I

I I

I I I

I• I •I.

300 + 300 +0

lo * I •I.I*
100 *• 3Ol 0 4 . O. * **

I.. +. + + +()..I

i9* •1* , 9 1. *

,- : ; 1- 9 .... 1*. 9: 9 ;:

t1t+4.1<++tIt+elt+14++I4++1+ 4 I+!*4*,l'tt+ +4+('*+I+i++a 41+÷1+÷+I t4I t4I444+÷+I
01 o.3 48 64 , 0 0 1 32 4 o 64 8a 0616 3 4 8 6 o 0

v-axis: Freqi'rncyI x-axis: Message length in words

cFig. 13: Oistrcbution of the message lengths corresponding to the diagrams of Fig. 12.

I I



rr...... ......- - r-

29-13

Fig. 14 shows the round trip delay time for test messages of the lengths of I data word

(A) and of 64 data words (B) respectively.

I I
K !

A B
0.8+ ÷ 0.84

I * I

0.6 + * 0.6 +0
+ .1 •

.1 1I * K a
13.4 + * 0.44 0

I * 1 40

F i I ot0,• + * 0. + o
I * K •

I *.* I 0*t

0.1 0.3 I 3 10 30 100 tu 0.1 0.3 ¶ 1 0 30 ¶00 tu

y-axis: Frequency, x-axis: Transmission time in time units )
Fcig. 14

t Distribution of the transmission timos for rouned trip test messages

In general one sees that all distributions are very pesky in particular in the case of

message lengths. The distributions depend very strongly on the application. And therefore,

it is necessary to do the classification, the analytical work, simulation work if possible,

and measurements, too. The classification gives a framework for thinkingi by the analy-
tical work one is forced for a detailed modelling of the general system behaviour, by this

one gets an assessment which is good Por a general view and for finding instabilities or

things liko thnt, by simulating one is able to model more complex models or more special

situations which represent, foxr instance, certain applications, and finally, the measure-
ments with application and artificial patterns are necessary for getting cunfidence in all

these models.

5. REFERENCES

/I/ Borsi. L.a E. Pavlik, 1980, "Konzepte und Strukturen dezentraler ProzeBautomatisie-

rungssysteme., Regelungstechnische Pra,:is 9 (1980).S.302-309, R.Oldenburg-Verlag MOnchen.

/2/ Syrbe, M., 1981, "The description of fault-tolerant systems". Process automation
1/1961.

/3/ Heger. D., H. Steusloff, M. Syrbe, 1979, "Echtzeitrachnersystem mit verteilten Mikro-
prozessoren", BMFT-Forschungsbericht OV 79-01, Datenverarbeitung, April 1979.

/4/ Heger, 0. (Hrsg.), 1981. "Systemerggnzungen und Piloterprobung sines fehlertoleran-

ten Echtzeitrechnersystems mit verteilten Mikroprozessorei. (RDC-System)", BMFT-For-

schungsbericht DV 81- , Datenverarbeitung, Mai 1981 (to be published).

/5/ Steusloff, H., 1980, "Programming distributed computer systems with higher level

languages. Distributed computer control systems, Proceedings of the IFAC workshop,
Tampa, Florida, U.S.A., 2-4 Oct. 1979. Pergamon Press, New York.

/6/ Heger. D., 1979, "Kommunikationsverfahren f~r Sammelleitungesysteme und deren Lei-
stungsbeschreibung". Regelungstechnik 1979.

/7/ Heger. D.j R. BMhre. 19a0, "MeBprozessor fOr Rekonfigurationsabl8ufe und Obertragungs-
str~me im Echtzeitrechnersystem mit verteilten Milroprozessoren (RDC-System)V. IITB-

Mitteilungen, Karlsruhe, FhG-Berichte, MUnchen, S. 2-80.



29-14

CONTRIBUTION TO THE OIflCLISSION by Mr. J. Schoelch, IAB(, Ottobrunn / Germany.

Question: How do you tolerate an interruption on the ringbus system ?

Answer: Let mo explain the fault-tolerance by 'hre. typical examples

a) Communication computer failuret

Faults within a station are detected by the fault diagnosis unit (BS/SR) or by

self test. In case of error the communication computer is disconnecfed by the

bus switch unit (BSUo Fig. 4) and the light receiver / transmitter module

(LSEM. Fig. 4) works as a repeater device.

b) Line interruptior in one direction (e.g. break of one fiberootic line):

At any time there are signals on the fiberoptic lines of thn current trans-

mission direction, either messages or delimiter bytes batween the messages.

If a station receives no more signals the receiver / transmitter adaption
(SEA, Fig. 4, recognizes this by a time-out and the LuP (Fig. 4) sends a broad-

cast message to all other LiP's as command for changing the ring direction.

c) Line interruption in both directions (e.g. breakdown of power-supply in a ROC

station):

The LiP adjacent to the interruption acts as in case b) but after changing the

direction the ring Is not clcted. This is recognized by the two L•P's adjacent

to the interruption pcint and thus the transmission direction is periodically

changed by them. So. in one time period each station can send messages to all

other stations on the left end i, the following time period to all stations on
the right. Thus, the traffic flew is chopped periodically into two directions

and the performance is only reduced by the idditional messages reversing the

transmission direction. If one of the LiO's adjacent to the interrupting point

receives signals from a previously failed direction a reconfiguration procedure

is started with the VU-i11te&ration ý! repaired modules. Py this procedura the

system reconfigures towardr the ring configuration with its full performance.

bI

.4

"j.



30-1

DISPERSED SENSOR PROCESSING MESH PROJECT

by

Vincent A. Mugna
The Charles Stark Draper Laboratory, Inc.

555 Technology Square
Cambridge, Massachusetts 02139

U.S.A.

SUMMARY

The F-8 Dispersed Sensor Processing Mesh (DSPM) project is ain exploratory program in-
volved in the development and test of the concept of a network communication structure.
The elements of the structure are a Bus Controller and a number of nodes all of which are
interconnected by multiple data flow paths. This structure is proposed as the communica-
tion medium between the subsystems of a distributed avionic system.

The multiplicity of data paths between nodes, in conjunction with an intelligent control-
ler that constructs, monitors, and controls a virtual data bus composed of these nodes
and their interconnecting links, is envisioned as a structure much more tolerant to
faults and physical damage than the presently employed avionic data busses.

The virtual data bus constructed by the Bus Controller can be reconfigured by the Con-
troller in response to sensed faults and physical damage; thus, it should be capable of
maintaining communication between the various subsystems oý an avionics system through
more numerous and more severe occurrences of fault3 and physical damage.

In order to tejt and e3tablish a data base for this proposed communication structuie, the
elements that comprise it must be designed and built. These elemlents are not just the
hardware that is inherent to the structure, they also include the algorithms mech7.nized
in the Bus Controller's software, the operating characteristic of the network, and the
conmunication protocol used. The decisions made during the de,,elopment of the system
must be carefully thought out and mechanized in the most efficient and reliable manner
possible. This paper addresses the design arA associated decisions made during the deve-
lopment of the network hardware and software.

1. INTRODUCTION

The evolution and development of integrated avionic systems in which a number of distri-
buted, dediceted processors perform specific aircraft-control and mission-oriented func-
tic,.is hes demonstrated that the communication structure between the elements is the crit-
ical hardwarc element in a distributed computer architecture.

To date, the solution to this problem has concentrated on the means to adapt a bus to
such applications. The inherent vulnerability of buses to physical damage and the dis-
abling effects of failed subsystems connecte.d .,) a bnr' have required a number of develop-
mental modifications to the basic bus. Multiple buses, redundant buses, cross-strapped
buses, and various combinations of these are typical . u. modifications. An alternative
approach-a network communication structure-has been proposed as a becter solutA4,n to
the problem.

The F-8 Dispersed Sensor Processing Mesh (DSPM) project has integrated a communication
network structure to an engineering version of a flight-qualified, triply-redundant,
digital flight-control system, the F-8 Digital Fly-.By-Wire (F-8 DFBW) System. Operating
the communication network in parallel to the existing architecture gives a concrete com-pa•-ison of dedicated sensorjeffector interfaces to the communication network strategy.

Figure 1 displays the layout of the DSPM network. The primary node (Bus Controller) is
the central processor. Each other node services one or a small collection of devices that
are physically very close together.

2. GENERAL CHARACTERISTICS

Messages flow exclusively from the central processor to the nodes and from the nodes to
the central processor. Message routing through explicitly activated links controls the
flow of information through the net. Messages are relayed from the central processor and
back on a bit-by-bit basis without respect to the intended recipient. The nodes route the
information through an assigned reconfigurable conductivity. The Input/&:Itput (1.00) Fort
of each node is always in a listening mode to receive any incoming messagos. Configvra-
tion commands from the central processor activate particular node ports to transmit me&-
sages either back to the central processor or on to other nodes in the network.

The network nodes and links are fully duplex; they can handle incoming and outgoing data
simultaneously. The network structure configured by the central processor creates a
tree-structured bus between the central processor and the nodes. Because of the multi-
ple paths available from a given node to the central processor, it is believed that this
structure will be more reliable and tolerant to faults and physical damage.



30-2

The initial desion decisions on the PD'PM network involved the central processor. The
central processor is the most importait element to the operation )f the communication
network. The need for high reliability requires either an extremely reliable processor
or redundancy. The fact that the goneral reliability ef processers has i,&t reached the
desired level and the relatively low unit cost of piioceLors led us to uEe triplicate
central-processor processint elements.

Experience gained on the triplex F-8 tiFBW and other rodundant systeme has shown that
fault-detection ai."I fault masking are greatly enhanced by the synchrcnous operation of
redundant syst.nus. Furthermore, the desire to mechanize a hardware mechanism for the data
exchange/compare between processors reinforced this decision ýnd resulted in a design that
uses instruction-level synchronization.

The next aree., ot co-cern involved isolation between the central-prtcensor channels. Each
of the processors in the cental procearor simultaneously executes id,,ntical code. Each
processor though has unique I/O interfaces. These unique I/O interfaces are mechanizeo
through the use of globally unique 1/0 addresses that enable each processor to manipulate
its o~n I/O registers without impacting on the other processors' registers, i.e., an
instruction that addresses an occupied address in Channel A actually manipulates thac
register while the same instruction in Channels B and C is a vacant operation.

3. NETWORK HARDWARE

The hardware elements which comprise the communication network consi.t of t central pro-
cessor Bus Controller, six nodes, and the interconnecting links. TI., foilowing paragraphs
describe these items.

I F U D0M BUS CONTROLLER
CHA U I CHN

CAN A CHAN B CHAN C

1-T

CHAN A CHANB I HC LINK LINK
SENSORS/ SENSORS/I SIENSHCrO ELC

EFFECTORS .EFFECTORSI Is ELEC ELEC

Pt P? P3

- ~ 1 SNSORS DVAUJEMID VALUE MDAU'""AcruA'rOR I

CHA A4HN.CA COMAND

N N

CHA A
JCA CHAN AN JCH ANBI

SENSORS - - - S

Fiur1 DispMID VALUE
MID VALUE ACTUATOR
ACTUATOR COMMAND
COMMAND

Figure 1. Dispensed sensor processing mesh.



30-3

3.1 Primary Node-Bus Controller

The central intelligence of this network resides in the software algorithms mechanized in
the Bus Controller. These algorithms manage both the simple message transfers to and
from the various nodes and the critical functions relating to the organization and main-
tenance of the network.

The Bus Controller must configure the nodes to cteate a suitahle network structure, re-
establish this structure after power interrupts, detect failed links or nodeýs, and either
rebuild or repair the structure to circumvent the failure. Also, since all links are not
in simultaneous use, the inactive links must be activated periodically and used to re-
place other actiie links in the structure. This periodic activatior maintains up-to-date
status information on all parts of the network. The Bus Controller's hardware and soft-
ware design must incorporate the highest reliability and fault tolerance obtainable to
execute these functions.

Each third of the Bus Controller -ontains a microprocessor, Random Access/Programmable
Read Only Memory (RAM/PROA), an Oscillator, Clock Interval Timers (CITs), a Watchdog
Timer, I/O interfaces, an Interprocessor Communicator, and an External interrupt Syn-
chronizer. (See Figure 2.)

Although each section of the Bus Controller operates independently, they are synchronized
with each other at the instruction level, and the exchange/comparison of data makes the
Bus Controller's redundancy transparent to the network.

3.1.2 Bus Controller Processors

The primary considerations in selecting the microprocessors for the Bus Controller werea 16-bit processor and a large instruction repertory.

Sixteen-bit processor. Experience in programming various computer control systems

from spacecraft to ground support equipment has shown that most data manipulation and
formatting requires a minimum of 16 bits for both handling ease and data granularity.

PROCESSOR

RAM

FAULT-
TOLERANT

CLOCK

PROM

SINTERPROCESOR

COMMUNICATOR

AP-101
INTERFACE

EXTERNAL

INTERRUPT
SYNCHROFigBZER

NETWORK

INTERFACE

TIMERS
INTERVAL/

WATCHDOG

.i BUSCONTROLLER

SFigure 2. Bus Contr-ller

Awei•j



30-4

Large instruction repertory. The programming task eases greatly when the proces-
sor has a large instruction repertory. It is much easier to eliminate certain types of
instructions from the programming (i.e., exotic addressing modes) than to work with un-
mechanized instructions.

3.1.3 Bus Controller Meiory

The Bus Controller memory compliment involved two main considerations:

(1) Bits/vclume.

(23 Availability of units.

The use of the erasable memory required to develop, test, and modify the operational
software was secondary to the design but important to the research aspect of this project.

3.1.4 Bus Controller Clock

Each processor has its own dedicated oscillator as a clock source. The decision to
operate at instruction-level synchronization between processors required the active con-
trol of these oscillators. The incorporation of a fault-tolerant, phase-locked clock
design deveioned (and subsequently patented) by W. M. Daly and J. F. McKenna of CSDL
under NASA spoasorship met this requirement. This clock has a nominal frequency of
16 megahertz with a phase error of 5 degrees (Figure 3). The design is such that the loss
of any one oscillator will not inhibit the phase lock between the remaining oscillators.

3.1.5 Interval Timer

The time-cyclic nature of many operational functions in an avionics system and the gen-
eral need for an interval timer resulted in the incorporation of two 16-bit, 1-microsecond-
per-bit interval timers. Experience has shown that this degree of mechanization meets
all the expected uses of an interval timer.

CONTROLLER

A REFERENCE

CONTROLLER -RSVX

tIREFERENCE 
VOTER

CONTROLLER

SYSCLOCKC REFERENCE DIVIDER
16MHz 4MHz

INTERNAL A !TASMISSION

REFERENCE COMPENSATION

BUS CONTROLLER - FAULT-TOLERANT CLOCK

Figure 3. Bus Controller; fault-tolerant clock.

3.1.6 Watchdog Timer

A Watchdog Timer, which requires periodic servicing by system software, is an excellint de-
tector of correct sof+ware program excecution.

3.1.7 DFBW Computer I/O

The DFBW computer to Bus Controller I/O interface is unique in that the triplex Bus
Controller processora act as a single processor but must interface to the DFBW triplex
computers as separate units. This is due to the asynchronous relationship between the
Buc Controller and DFBW system and the DFBW system frame synchronization versus the
Bus Controller instruction-level synchronization.

I



30-5

The complexity of this interface is increased further because the Bus Controller is
considered an external device by the DFBW computer, and the external device must respond
with the correct handshaking protocol during I/O execution and initiate buffered I/O
execution. In fact, this interface must function for both direct output, which is a
DFBW computer macro instruction execution, and buffered I/O, which is device initiated
and executes in the DFBW computer on a cycle-steal basis transparent to software pro-
gram execution. The direct output execution time is approximately 10 microseconds totransfer two 16-bit words across this interface, whereas the buffera I/O execution time
is approximately 15 microseconds per 16-bit word transferred across the same interface.
In order to meet these diverse requirements, this interface is mechanized with two first-
in, first-out (FIFO) buffers; control logic; and a FIFO status register betwenn each DFBW
computer and Bus Controller processor (Figure 4). Communication between this interface
and the Bus Controller processor is on an interrupt basis for information flow from the
DFBW computer to the Bus Controller and on program control for information flow from the
Bus Controller to the DFBW computer.

3.1.8 Network I/O Interface

Three ports on the Bus Controller connect to the communication network. Each port is
uniquely associated with a processor.

The interposition of a bus between the controller processors and the three ports such
that any processor could address any port would require either I/O serialization be-
tween processors and ports or the interconnection of a minimum of 17 lines between each
processor and each port. The need to interconnect this number of wires would create a
packaging problem and a possible multiple source of failures that could affect reli-
ability. Serialization of this processor/port interconnect would impose a transmission-
time penalty on I/O. Therefore, each processor is uniquely associated with an I/O port,and the use of globally unique addresses for I/O registers allows a single processor tomanipulate a port without impact on other ports.

Each port is a 1-megahertz serial connection into the communication network. This
serial connection could be mechanized with a number of different protocols. The proto-
cols examined were: Synchronous Data Link Control (SDLC), Asynchronous Digital Data
Link, and MIL-STD-1553. Although the first two of these methods would be easier to
mechanize from both an operational and a hardware pcnt of view, the HIL-STD-1553 was
chosen for its compatibility with a wide range of presently operating avionics subsys-
tems (Figure 5).

The 1553 interface actually mechanized in the Bus Controller and each node is modified
to conform to the network operating characteristics. Communications between the Bus

AP-101
OUTPUT INPUT BIA
BUS RECEIVER FIFO DRIVER

DATA
Bus

AP-101
CONTROLNTROL

AP-10 BS
INPUT DOGI

BUS <

BUS CONTROLLER - AP-101 INTERFACS

Figure 4. Bus Controller; AP-101 interface.



30-6

ENABLE

TO SRIALMANCHESTER MODULATOR
CONVERTER ENCODER IDRIVER]J

.I

BUS CONTROLLER - NETWORK INTERFACE

Figure 5. Bus Controller; network interface.

Controller and the addressed node are received and retransmitted by each node betweep.
the Bus Controller and the addressed node. Transmission of a standard 1553 pulse-vode-

I modulated Manchester code would suffer both distortion and time delay by this receive/A

transmit function. Therefore, the 1553 inter•.ace in the Bus Controller and each node[Iis modified such that the Manchester code is converted to a self-clocking pulse-width- :
modultated code for transmission on the interconnnecting link, converted back to Man-
chester code within each node for decode, and reconverted to self-clocking pulse-width-
modulated code for retransmission (Figures 5 and 6). Thus, the actual 1553 interface
can exist between the node and its atttached device but not between the Bus Controller i
and the device.

FROM PORT B

SERIAL MACETEO 1663LLL

SMANCHESTER LINK

TIO PR OPR OPR PARALLEL EIL MANCHESTER T m

DEMODULATOR RECIORVERI

CONVERTER ENCODER

NOUE -OTOLE LIN INPUTNTRFC

NODE - LINK OUTPUT

Figure 6(a). NodeF link Input. Figure 6(b). Node; link output.

3.2 Interprocessor Communicator
4g The exchange and comparison of all I/O data between processors is essential to failure

tndetection and fault masking in a multiprocessor controller, various combinations of
software and hardware logic tan be chosen as the method through which the exchange/
comparison of data cad fetranmenized. For- the DSPM, the design uses all hardware logic,
Sand the Interprocessor Communicator is the mechanism that executes this function (Fig-

du'es 7 and 8).

FRO POT



30-7

CONTEROLLCESSOR COMMUNICATOR

TT

DsRASIVTER CANE

FROM TOLRTASI E

FRO

TRNSI CE
'IV

NT RPRCESOR OMMNICTO

Figue 8.IntepocssrcommnicTor



30-8

The Interprocessor Communicator is used to distribute data from one channel to all other
channels and to exchange data simultaneously from all channels with comparison, error
flagging, and correction. The data exchange mechanism only functions correctly between
synchronized channels. An attempt to exchange data between unsynchronized channels will
generally cause a loss of the tzansmitted information (the transmitted information is
not correctly received by anyone except the transmitter himself). An attempt to accept
a data value from an unsynchronized channel produces an indeterminant result, most often
a zero. Table 1 summarizes the functional registers of the Interprocessor Communicator.

Table 1. Interprocessor communicator registers.

Transmitter Registers

Name Function

XV Transmit a single data item from all channels. The received v-lue
will be the bit-by-bit 2-of-3 majority function. A bit fault will
set the corresponding bit of the error latch.

Xl Transmit a single data item from Channel 1 to all channels. The
received value in all channels will be that value. The error latch
status is unaffected.

X2 Transmit a single data item from Channel 2 to all channels. The
received value in all channels will be that v.lue. The error latch
status is unaffected.

X3 Transmit a single data item from Channel 3 to all channels. The re-
received value in all channels will bp that value. The error latch
status is unaffected.

Receive Register

XR The received result of a transmitted operation can be retrieved
from this register. The register is read/write and can be directly
loaded by a store into the register.

Status Register

XE A status register that contains 4 bits.

Bit 0 is an error bit corresponding to Channel 1.

Bit 1 is an error bit correspcnding to Channel 2.

Bit 2 is an error Lit correspond~ig to Channel 3.

Bits 3-14 are always zero.

Bit 15 is a summary bit that is set if any of the bits 0 thru 2 are
set and is clear if they are all clear.

The register bits are set if a bit fault is noted for the correspond-
ing channel during an XV, operation.

The register is read/write and van also be directly loaded by a store
to the register. Only bits 0 thru 2 (and by function bit 15) can be
altered by a store to the register.

A store to a transmit register and a subsequent fetch from the receive register, XR,
exchanges data between channels. The transmit register selection determines the char-
acter of the exchange. All channels must execute the store to the exchange register in
synchronism. The error latch, XE, is set if errors are detected during XV exchangas.
Once an exchance has been initiated by a store to an exchanqe reoister, the processor
proceeds with normal instruction execution. While a transfer is in progress, a reference=
to the exchange mechanism suspends the processor instruction execution until completion
of the exchanae. An exchange operation takes 3 microseconds. An immediate reference to
the receive register, XR, after a store is thus likely to suspend operation of the pro-
cessor for about 1 microsecond to allow time to complete the exchange. Since the inter-
lock mechanism is automatic and the maximum loss of processor time per ex..he.nge is neg-
ligible, the programmer need not concern himself with either assuring completion of the
exchange before accessing the received data or padding the program between exchange re-
quests and subsequent receiver register, XR, accessing.

This design was chosen because the exchange/comparison of data takes minimal execution
time, requires instruction-level synchronization between processors, and avoids the need
to establish criteria for agreement between two nearly identical results, Agr,.ement is,
by definition, bit-for-bit.

_-Al I



30-9

Through the use of globally unique 1/O addresses, the various Interprocessor Communicator
transmitter registers are mapped to different memory locations for each Bus Controller
processor. Thus, only Channel 1 can manipulate the Xl transmit register while the execu-
tion of an identical instruction in Channels 2 and 3 is a vacant operation. However,
the instruction execution sets the address latch in the communicator which then passes
the correct output to the receiver,

When all processors simultaneously address the XV transmitter, a bit-for-bit comparison
of the inserted data is performed. The voted results are passed to the receiver, XR,
and XE records any discrepancy. The processors can then use the XE information for fault
detection.

3.3 External Interrupt Synchronizer

The instruction-lAevel synchronization between processors imposed the requirement that all pro-
cessors process external interrupts simultaneously even though the external device gen-
erating the interrupt was associated with only one processor.

Devices requiring service signal the event through the generation of an interrupt. Since
these interrupts can occur at random times in each channel, and, if processed randomly
would destroy the instruction level synchronization between processors, an Interrupt Handler
is positioned between the devices and the processor (Figure 9).

SINT 1 SYNC

INTREQ-- - INT 1
ROM • LATCH

INT2SYNC-- INT 2

INT 3 SYNC INT 3

INTERRUPT HANDLER

Figure 9. Interrupt handler.

The function of the Interrupt Handler is to record the identity of th' interrupting de-
vice and transmit the fact that an interrupt is pending to the Interrupt Handlers associ-
ited with the other processors. When all Interrupt Handlers have been notified, an in-
cerrupt is simultaneously applied to each processor. The interrupt that actually triggers
interrupt processing in the processors is taggel as originating with some actual channel
I-'ice (i.e., interrupts from Channel 1 devices will, through the Interrupt Handler.

generate a level 1 interrupt, while Channels 2 and 3 will generate level 2 and level 3
interrupts, respectively). The interrupt processing routine that begins execution will,
therefore, only address the actual device in the processor responsible to service that
device. In its simplest form, each processor has three routines to service a device,
and the particular routine executed depends upon the interrupt level seen by the processor.

Use of the Interprocesscr Communicator makes the singularity of the processor/device re-
lationship transparent to the processors. The routine that executes in the procassors
allows only or'. processor to manipulate the device register, but all processors receive the
data from the acttnl interrupting device through the Interprocessor Communicator which has
an addressed transmit register that is keyed to the interrupt level.

The identity of the actual interrupting device is suppled to the processor in an Inter-
rupt Status Word extracted from the Interrupt Handler when interrupt processing begins.
The various channeL devices will set a bit in this word to indicate service required.
This bit is cleared when the device has been serviced. Figure 10 is an example of the
software use of the Interprocessor Communicator in response to inputs from the External
Interrupt Handler.

4. NETWORK MESSAGES

The information flow in the network consists of Command messages ani Response messages.
Command messages are at least two words long and consist of a cuiRand word and one or more
data words. Response messages are either a single status word or a number of data words.

The Bus Controller transmits Command messages into the network of the form shown in Fig-
ure 11 and Table 2. Command messages have two formats: Node directed messages and Device
directed mHssages.



4.1 Node Directed Messagesf

Nod diectd mssaes onsstofaCommand word that identifi.es the message and a data

wor tht dfins te ndeports enable/disable configuration.

Deiedrce esgsconsist of aCmndword taidnfeshemag and ons
limoe dta ord. Te mst ignficnt its(MSB) of the first data word following the
commnd ordsigifis wethr i ina tue ataword for the device or a word that de-

fioe soe action the device is to perform.

INTCNTL1~I DNCT2ITNL

*MASK ALL 0 MASK ALL 0 MASK ALL
INTEFPRUPTS INTERRUPTS NERPS

* I#~- *IL4- 2 C L43

IL
XIL#- INERROR:EDATATEXCPTANGETDSSAGRXEMENT

(ISTATWDIL#AEr I) 0R VOTENIL

1 TATWDLAV#IT2BIT) OR ISAD NRCVINTIL NTWRKREEE

NETWOR TRANSfITTE? y CAL INTRRUPTPRCESOR

(ISTATWDIL#ANTIB3IT): 0 0 NCVATLL IMR O

AR101 ? FLIGHT COMPUTER 1/0

RESTORE REG!STERS J

Figure 10. Interrupt controller (interrupt levels).



30-11I

SIT TIMES 1 2 13 14 15 S 7 S 01112 13 14 15 16 17 16 19 12ý0

I[

COMMAND WORD

REMOTE rERMINAL 1T/RI SUSADDRESS/ DATAWORD
ADDRESS MODE COUNT/MODE CODE

DATA WORD

S ,YNC IDATA P

STATUS WORD 53T TH
GYC REMOTE TERMINAL IIRSRE WI I -1u
SY C ADDRESS - n R S R E

NOTE: T/R - TRANSMIT/RECEIVEz
P -PARITYO

Io -

0m

< M

m >

m

I •igure 11. Word formats.

Table 2. Command message format.

CoTRaand MessagesigrCommand Word

Remote Terminal Address Definition

11111 Message to Node
"00000 Reserved
00001 Message to Device 1
00010 Message to Device 2
etc.

Subaddrebs/Mode

NNNNN Individual Node Address

Data Word Count/Mode Code

00001 Number of Data Words Fol-
00010 lowing C(ommaid Word
etc.

T/R Bit Always set to 0

Data Word

lXXXXXXXXXXXAAAA Node Port Enable/Disable
0DDDDDDDDDDDDDDD Data or CommanO to Device
OOOODDDDDDDDDDDD Device Data
0111CCCCCCCCCCCC Device Command

4.3 Note Response Message

The Response Message issued by a node to acknowledge the receipt of a Node Directed Mes-
sage consists of a sinqle status word as defined in Figure 11. This response is auto-
matically executed by the node hardware logic.

- - - . ~



30-12

4.4 Device Response Message

The Response Message issued by a device to acknowledge the receipt of a Device Directed
Message is device dependent and message dependent. The response might be a single status
word signifying message received, or it could be a number of data word. in response to
a data request.

4.5 Intramessage Word Gap

The time gap between the words that compose the Command Messages is on the order of 5 micro-
seconds, while the gap between multiple words in a Response Message is device dependent.

5. NODE HARDWARE

Each node is logically and physically divided into two sections-a Communicatiun section
And a Device Servicer. The Communir:-tion section executes ail functions that relate to
the activation/deactivatian of I/O ports, receipt and retransmission of all messages, and
recognition of messages directed to its attached device (Figure 1k).

TRANSMITER
PORT ENABLE

STRANSMITTER

SELECTION
LOGIC

ADDRESS E TFI-STATEE

EODER I

____________NODE BUS

LINK FIFO RECEIVERS TRANSCEIVER
CONTROLI REGISTER

TRANSMITTER )VCSRIE OPORT ENABLE DVC EVCR~ARINTERFACEI E

Figure 12. Node detail.

5.1 Node Communication Section

The desire for minimal time-loss impact on the receipt and retransmission of messages
and on the execution/response to port configuration commands dictated the design of this
section. Therefore, each node has a dual message-fiow path. One path receives and re-
transmits all messages without any examination, and the second simultaneously examines each
message for the identity of its appropriate recipient.

Node configuration commands are executed by hardware logic within the Communication
Section, and an immediate response to receipt of command is transmitted to the Bus Con-
trollnr. Messages directed to the attached device are passed to the Device Servicer
section which transfers the message to the device. In this case, the response is not
necessarily immediate, as it is a received-message function.

5.2 Device Servicer Section

The Device Servicer Section consists of a FIFO buffer, receivers, and control logic be-
tween the node bus and the attached device. This design enables the node to recognize
messages directed to the attached device, temporarily store them, and then transfer the J
message to the device at the device acceptance rate. Therefore, the device does not need
to process messages at the network data rate. Data flow from the device to the node for
transmission to the Bus Controller is executed at the device rate.



S30.13

5.3 Xttached Device

Devices that are attached to nodes can have many forms and functions. Figure 13 defines
one of the devices used in the DSPM network.

N
0

i •CONTRlOL 11)

DEVICE IOP/DATA C SENSOR FROM!SERVICER OONVERSION DATA SEDAOA

INTERFACS SYSTEM CONVERSION
INTERFACE I • SUBSYSTEM

", ADDReS (4)

U
S

SOUTPUT T

1/0 DATA
PERIPHERAL (12) CONVERSION EFFECTORSPROCESSOR i SUBSYSTEM

Figure 13. Device servicer.

5.3.1 Node Processor

The node Communication section is designed to use hardware logic while executing all of
its functions. In order to facilitate both the expansion of node capability and node
test, a microprocessor with associated memory was inserted into the design. This proces-
sor interfaces directly to the node bus, and therefore, it can be used to execute more
detailed types of node configuration commands and/or introduce controlled typos of fail-
ures into the network structure, i.e., failed link, babbling node, scrambled messages.

6. DSPM SOFTWARE

The Bus Controller and network structure function directly influenced software design and
development. This function is the collection and dispatch of data between sensors, DFBW
computers, and aircraft effectors. Essentially, the Bus Controller is an interrupt-driven
processor that executes tasks directed by the DFBW computers.

6.1 Software Structure

The softwLre structure is a list of event-dependent tasks. Either an interrupt occurrence
or a fault detection signals an event. Each task (or response to an event) has a priority
that determines its sequence of execution. Network fault-detection tasks have the highest
priority since no other task can be accomplished while the network is not functional.

6.2 Cod2 Generation

The use of a 7eneral proqramming language (PASCAL) was investigated early in the software
development phase. A number of routines were coded in PASCAL and the assembly-level lan-
guage. The memory space and associated execution time required by PASCAL-generated code
was too inefficient and slow; therefore, all coding was performed in assembly-level language.

C.3 Support Software

Support software for the selected microprocessor, and most microprocessors, suffers from a
prime deficiency. The program must be assembled and the image produced from a single file.
This creates problems in code modulization and the use of mnemonics. Individual programmers
must be careful in their selection and use of mnemonics in order to prevent dual use and
library overflow. Also, module boundaries lose their identity.



30-14

The solution to these support software deficiencies was to divide the program into sections,
each of which starts at some absolute address. Then, the program sections were linked to-
gether through a common data section that contains "Jump tables" and other necessary linkage
devices for intermodule communications.

7. CONCLUSION

A network structure's effectiveness in maintaining communications between the varous ele-
ments of a total aircraft avionics system can only be demonstrated by actually bu'lding and
testing such a structure. This structure must be exposed to the most comprehensive poisible.
test matrix of simulated physical and fault damages. The structure's response to these
imposed failures must be measured for both the level and the speed of response. The degree
of data loss during communication, the data bandwidth, and the duty cycle must be measured
under various operating conditions. Only when a comprehensive data base, established
through the operation of such a communication network, has been compiled can an intelli-
gent decision be made on the effectiveness of this communication strategy.

BIBLIOGRAPHY

1. Cattel, J.J., and Kemp, A.M., Damage and Fault-Tolerant Network Incorporation
Into F8 Digital Fly-By-W:re SLm, CSDL Report R-1309, Cambridge, Mass.,
August 1979.

2. Hopkins, A.L., and Smith, T.B., "OSIPIS-A Distributed Fault-Tolerant Control
System", Digest, 1 4 th IEEE Computer Society Int. Conf., San Francisco, Calif.,
March 1977.

3. McKenna, J.F., Demonstration and Evaluation of a Vault-Tolerant Input/Output
Network, CSDL Repnrt R-918, Cambridge, Mass., Septemler 1975.

4. Smith, T.B., A Highly Modular Fault-Tolerant Computer System, Ph.D. Dissertation,
Dept. of Aeronautics and Astronautics, MIT, Cambridge, Mass., November 1973.

5. Smith T.B., "A Damagot-and-Fault-Tolerant Input/Output Network", IEEE Transactions
on Computers, Vol, C-24, No. 5, May 1975.

6. Szalai, K.J., and Megna, V.A., "Development of a Multicomputer Fault-Tolerant
Digital Fly-By-Wire System", Third USA-Japan Computer Conference, San Francisco,Calif., October 1978.

Ii



JBXT GENERATION MUIiTARY AIRCRAFT WILL REQUIRE
HIERARCHICAL/MULTILEVEL INFORMATION TRAWFER SYSTEMS

James W. MaCuen
Hughes Aircraft Company

Fullerton, California, U.S.A.
TP 81-16-3

ABSTRACT

Changes In avionic subsystems and mission roles of next generation aircraft will require new concepts in data
trasfder. New aircraft will need total airframe/weanon system integration which means new approaches must be
developed for the Interconnection of avionic mubaystems. Effort has begun to dimelop a Military Stanidard (MIL-STDý
which will define the -.4quirements for a high apeed data bus network. The SAE/A-2K Subcommittee on Multiplexing
has accepted the task of developing thin MIL-STLD. The standard shall oharactsrize a higher order Information Trans-
fer System (rMS that will Interconnect avlonic sy&~tems, that contain their own m~ultiplex ITS, into a fully Integrated

P, data complex. The higher order ITS shall employ an operational protocol that aill provide aubsyntem. and common
sensors, Independence and fault isolation 1:y distributedl control of the common data bus.

This paper presenta an overview of the functions to be conrsidered In developing the standard. Several ITS' architec-
tural conftigurati-ns are presented to Phow bus network topology and data tranafeý path requirements at the subsystem
black box levol and at the aircraft/mimsion level.

INTRODUCTION

Future advanceir ats in aircraft basic flight and weapor, subsystems accompanied by the nt. ý, for total avionics system
Integration will demand changes in both tntra and inter subsystem data transfer au' we know it today. These changes
are due to many factors, some of which are:

e Need to Xminnate costly hardware/software elements required of centralliad controlled, data transfer
systemns.

*Dispersion of micropronessors within subsystem. necessitating the Interchange of processed data between

e Need for the generation of t, aircraft data babe, available to all subsystems, which includes all airframe/
mission parameters.

* MaxIntizingr the ume of coinimon sensor data.

a Making maximum use of multifunctional Contiol/DIsplay (C/D) elements.

* Maximizing the use <i common sensor data.

* Making m Wxinum us of multifunctional crinltrol/DIsplay (C/`D) elements.

- ~1589. 1750, an 1760 for interchangeability between weapon systems and aircraft.

aohrvamutually suppnrted, mernory ittorage Interface units. With subsystems Integrated In thi3 manner, a
change in one results %, unpleasant ripple alieants progressing throughout the others. This action is due to the changes
necessary In the centralized command/response software packages In each of the supporting ITSs.

A solution to this problem is the development ande use of an ITS which will efficiently interconnect in a hierarchical
order, multilevel multiplexed ITSs. With such an approach a higher order operating system (Btasson Management)
can be crer ted which provides the processing of functions rcquired of multi subsystem Inputs. Such a high speed
Higher Order Transfer (HMX system, employing cor~tention protoce will provide each lower level ITS a functionally
isolat.ed communication medium whenever dataL iterchange Is required.

The extensive use of MIL-STD-1553 bus networks has proven the concept of multiplexee late transfer systems to
achieve a degree of integration. UtJortunately 1553B protocol does not provide tha characteristics (speed and proto-
col) needed to Jnfclently operate with future hleravchical/multilevel networks. MIL-STD-1553fl characteristics are
Ideally matched to many lntra, avionics subsystem data transfer requiremente which necessitates sensor data collec-
tion, central process"n, than distribution of results to peripheral areas, e.g. , Electrical Power fJontrol, Flight
Control, Propulsion and Stores Iuanagement subsystems. There will be continued use of 1553B bus networks forI

In the next decade we can exp~ect some well kn-m'n subsystems to be combined and the appearance of new ones. Each
major subsystem wkIl have Its own Intra multiplexed bus network. All these asynchronous operating ITS will need to
be interconnected to create an integrated data base. Such a data base will maximize use of common data and allow
for continuing changes in the subbaiyt-ims and total airframe/weapon tasks with mintmuhi disturbance to the higher
order ITS. Characteristics of the liOX system murt provide for isolation of flight critical functiona, allow for Inds-
pendent designt, prod1uction and test of subsystoms and Incorporate distributed bus control, to eliminate costly central
hardware/software complexes.



31-2

H1MRARCHICAL ITS ARCHITECTURIE

The oom'pouition of an avionto subsystem suite and the aircraft's mission role will deitermine the configuration of thehigher order ITS that should be used. Exmnples of hlerarchloal/multllevel. MT contigurations are shown InFigures 31-1 and 31-9 to Illustrate different 17S topology. Figure 31-1 shown this architectural thinking by incorpor-ating three levels of MT to interconnect the full complement of avIonic subsystems and units shown. These levels,being Identified ts bus networks, operate under their own control Independent at other bus networks.

TOTAL [D G GLOBAL @US(CONT)~

NAV CONTROL PL1111NT
aEMUXI ONTROL

POCEISSOR - ACTUATORS (1SIS)
115511I Is5 PLGHT -

CRITICAL STORRS1C 1US MGMT6CM3) (CONTI SySTOMA

0111141$ ~COMPUTER Is3
PLT ~~AVIONICS RPUSO
~ ~ I~CONTICORL

TOTAL ED- COMMON SiSO --..- (. - -

TAPS/1SUS i
COMMON ~COMMONCO.ON UL

SENSORS ~SENSORS SNOS DT
AtIR DATA RADAR INERPTIAL BULK DATA STORAQECOMPUTE R ALT DT FI NT

(CONTI - CONTENTION PROTOCOL NEITWrORK

(&S53) - MIL-STO-1915311 BUS NETWORK

Figure 31-1. Three Level information Transteir System (ITS) with Dual-Higher '.).'cr Transfer Networks

(1553)
SENSORS ACTUATORS tISS3)

(COMMER~CIAL SENSORS) ,Y
1 Ij

WXR'SCAS-MLSSI
FLýONT ATARS-DAnSPOCSR
CONTRO0L PROPULSION

TOTAL (D W F LIGHT SAFETY

CONTNLJ!OIPL
COMN MAAEET ITIIT ( 15) I

0 0TAPPS/SuSN N 0 (CO(4T)

CONTROL WEAI~~ONT 0 EPN E
COMMON) COTM N(LQRTL PAV 0V5113M STTMAANGIAC

""VI DTAPE/u

TOCANT CONENIO PROTOCOL
Fiue3-.ToLve lrainTasfrSse IS itrulHge rcrcifrNtok



31-3

Operation of the multilevel networks of Figure 31-1 is illustrated by the tran ifer of data from a lower network to the
highest. The Navigation (NAV) subsystem, incorporating as an intra-1558B bus network (Level 1), interfaces w4th
the other two avionic subsystems and the Mission Computer via the Avionics Bus Network (Level 2), using contention
protocol. At this higher level, processing can be accomplished on data functions common to all three avionic sub-
systems. At the third and highest level (Level 3) the Mission Computer Interfaces with the remaining subsystems
and common sensors via either the Global or Common Sensor buses using contention protocol. At this highest level
data processing can take place that could involve any cornhination of subsystem functions. Note that the two flight
critical subsystems (Flight Control and Propulsion) employ a common bus (Flight Critical), employing contention
protocol as their means of integration. The Flight Control Processor provides the interface to the two higher order
buses. There is a significant difference in the ITS configuration of the two subsystems. Wherein the Propulsion sub-
system contains Its own 1553B MUX bus network, the Flight Control subsystem employs the Flight Critical Bus as its
intra subsystem network including the Propulsion Control Processor.

Such a topology provides functional isolation between the two flight critical subsystems and to all oher subsystems
and common sensors. A point of interest is that tf a signal function originating In any of the three major 2vionic sub-
systems (NAV, COMM., FLT-INSTR.) Is requiicd in the propulsion subsystem, it must be processed through five (5)
bus networks.

F*gure 31-1 presents a hierarchical structure ITS with two BOX bus networks (Global and Common Sensor Buses)
operating at the highest level, each with a specific assignment. The Global Bus used for interconnection of major
subsystem and the Common Sensor Bus providing common sensor data t o these same subsystems In a broadcast oper-
atinR mode. These HOX networks operate with contention protocol and p--ovide the functional Isolation so important
to flight critical subsystems.

Figure 31-2 presents another ITS configuration which Incorporates only two levelc of bus networks. It is comprised
of two higher order bus networks, incorporating contention protocol, supporting their functionally related subsystem.
Each subsystem (excluding the ICS-Command/Control) incorporates its own 155311 bus network. One HOX network,
identified as the Flight Safety Bus provides data integration between those subsystems and sensor/unite involved in
basic flight of the aircraft. The Mission Bus provides the Integration medium between mission/weapon type subsys-
tems which have no direct function with basic flight.

Data/signal functions originating in the Mission Bus subsystems, required by the Flight Control and Propulsion sys-
tems, to assist in implementing mission/weapon tasks, are transferred through the Mission Management Processor
(MMP). The MMP either processes and/or provides the storage for data transferred directly between the two HOX
networks. The MMP broadcasts its data to the respective bus, like other subsystems on the buses, which it Is
serving. The Common Sensors have data paths to both HOX networks as do the Control/Display (C/D) subsystem(s)
to provide maximum redundancy for both basic flight safety and mission functions.

Figure 31-3 illustrates the data flow through the hierarcMcal/multilevel bus network of Figure 31-2 that could occur
with the detection of r hostile missile track in the Defensive Weapon Subsystem. Such detection, with appiopriate
aircraft/mission action, would require data transfer and processing at various ITS levels and involve many subsys-
tems. The most critical would Involve the transfer of date and command functions to the Flight Control and Propul-
sion subsystems to affect aircraft evasive action.

MILSTO-1553B MIL-STD-1553 FLUSFS MIL-STO-15536 5

CONTROL C DPLA PROPULSION

SYSTEM DISPLAYT ) S/STEMFI
2 ND ORDE R DA 1 A/CM D S T flS-

FLIGHT SAFETY BUS

1ST ORDERORDECOMPUTED DATA/EN

SUBSYSTEMS VIA AND HOX
HOX NETWORKS TRANSFER TASETTRANSFER

AND
STRAGE

.IIS 
M I_ ISI -- ----- --- MISSION BUS

T I

DIGITAL RAW DATA XFERED TO DEFENSIVE OFFENSIVE
VOICE MISSIION MMT PROCESSOR WEAPON WEAPON

&6 VIA HOX NETWORK SYSTEM SYSTEMI I &
NAVIGATION COMM.

RECONITON)MIL.STO-1SS36 MIL-STO-15538

(MISSILE TRACK DETECTED)

Figure 31-3. Illustration of Data Flow Between Hierarchical/Multilevel Bus Networks

ai'



I

31-4

Worthy of note is the postulated appearance of new subsystems and the functional combining of others. Such aircraft/
syattem functions as Fire Control, Stores Management, AMAC, Weapon Guidance, and Release have been combined
into one subsystem which contains Its own 1553B bus network. A new subsystem identified as the ICS/Command
Control subsystem was created to handsl digital voice, audio control functions, and facilitate Integration with the
JTIDS digital audio channels. This subsystem will provide voice synthesis, and the all important voice recognitlon/
command function, to improve the cre'y member's effectiveness by reducing his manual workload. This subsystem,
unlike a. majority of the others, would jot incorporate a 1553B type ITS mince its data transfer characteristics are
not compatible with centralised command/response protocol but are with the contention protocol of L .OX system.

Two subsystems are identified as Control/Display (C/A in Figure 3-2. These subsystems consolidate all those C/D
functions that have previously been dedicat..d to the various avionic subsystems. Whether two are required depends
on the size and mission tasks of the aircraft. The design concept and functional operational configuration of the C/D
area Is complicated because the cross-disciplinary engineering requirements are presently divided between many
organizations, i.e., Human Factors, Flight Dynamics, Avionics, Propulsion, etc. One can foresee the need of
single command/control selections via pusbbuttons, e.g., the selection of a required atti-k mode in the Fire Control
System which would result In an associated autoptkI response, preparation of appropriate weapons, selection of a
Radar System, selection of HUD eymtolngy, selection of other displays, report via JTUDS, and etc. Further investi-
gation will reveal whether C/D subsystems can be serviced by intra-1553B bus networks with special video switches
and symbol generators or require a high speed ITS incorporating possible FM/YM operation on the bus or with the
bus accepting processed/compressed digital video.

An imposing task even now confronting avjionic system integration is the requirement that now aircraft integrate
Flight Control and Fire Control subsystems to Improve weapon delivery and gun laying acmuracy. This integration
task is complicated by the need of an Integrated Interactive Propulsion/Flight Control System. One wonders how
many cooks are going to be stirring this p.ot. The complications of the aforementioned task can be simplified by
employing a higher order ITS to interconnect th±ese critical avionic subsystems. ' ch an ITS incorporating contention
type protocol, can preserve subjystem intgrity, provide the avionics subsystem manufacturers independence in sub-
system development, but most importantly, provide the means for integration.

Figure 31-4 is presented to show the physical ancd functional impact, a supposedly minor change made in the physical
configuration of the bus network, can have on subsystem functional isolation, hardware minimization, dapendence on
state-of-the-art technology, etc. The connection of the two-HOX configuration (Figure 31-2) into a single HOX not-
work (Figure 31-4) Is certaaly feasible, functionally. The single HOX network providoe certaia advantages over the
dual configuration but also adds certain disadvantages. In-depth investigation would be required to determine if the
advantages gained in the single network, primarily in elimination of hardware, would offset possible negative features
of less isolation between flight and mission subsystems and less data path redundancy.

"51',3) "

SENSORS ACTUATORS (

TOTAL L ( ZOMMERCCIDL
PLIGHT WXR-UCAS MLS PROCESSOR PROPULSION
ST S CONTROL ATa ISAS LECORDER

II
TOTA rID

TA PS/-,. ID I!D ID M
COTOI Io.
DISPLAJY COMMAND/

(FLIGHT) CONTROL

2 ~(1553)?1
(153)

MISSION U4
MANAGEMENT A

COMMON PROCESSOR C TROL'
SENSOPS DSLY DT

'2_H [OFFENSIVE IDEFENSIVE -XII 1 -- 2
POW0'EMRMR WEAPON & WEAPON & WtPO PARE CONT/SMI

CONROL COMM M AY. fsYSTEM AMACW. UIACE
EMSYSTEM LSTM• NO. I NO. 2

(1553) 113) iS ) (1555)

(1553) (1553) TA3IESMIUS

Figure 31-4. Two Level Information Transfer System (ITS) wiab Single-Higher Order Transfer (HOX) Network



31-5

Asignificant saving could be obtained, using the single HOX network by the eimination of hardare necessary toI

inte-Ace common subsystems and sensors to the dual HOX networks. Also, the Mission. Management Processor
(M.._') no longer need act as the transfer and storage agent for the Interchange of data between the two HOX networks.
The state of teihology within the time frame of hardware implementation must be considered. The numbers shown
in the squares at each bus-tap connection In Figures 31-2 and 31-4 gives the quantity of tap/drops required of each
subsystem and sensor/unit per a bus network. In the dual HOX network configuration of Figure 31-2 a single bus in
the Flight Safety Bus network has 26 tap/drops while a single bus in the mission bus network has 28. Fiber optics
could not be used as the bus medium today. The single HOX network (Figure 31-4) has 42 tape/drops per bus. Could
such a bus make use of fiber optics, not unless there Is a major breakthrough.

AVIONIC SUBSYSTEMS/ITS CONFIGURATIONS

Each futare avioulcs subsystem will have special data processing and transfer characteristics that will require certain
Intra- and inter-subsystem bus network configurations and protocol characteristics. Accepting the premise that each
subsystem -ill contain its own multiplexed ITS and incorporate a data transfer interface to a HOX system, then each
subsystem's physical and functional characteristics must be evaluated for datta rates, accuracy, redundancy, isolation
faull tolerance, etc., before the optimum Intra- inter-ITS configuration can be determined.

Figure 31-5, an expanded version of Figure 31-2, illustrates various subsystem intra-bus networks and weapon
system functions associated with each major subsystem. Figure 31-5 also presents a more In-depth picture illustra-
ting the many different MIL-STD-1553B bus network configurations that can be adapted to the particular physical/
functional requirements at the a.sbaystem, remembering that there can be many network configurations developed,
based on the ground rules and weighing factors selected. It is beyond the scope of this paper to present the reasoning
for the choice of the different subsystems int'-a-inter-network configurations - although a Flight Control subsystem
configuration is presented as an example of how subsystem characteristics and requirements can determite a selected
ITS configuration and how the subsystem may use the HOX network to simplify its Intra data-transfer task.

F

SENSOR PROCESSOR ACTUATOR *

P -0 WCR OCAS INEILT

N O. o

Bus

S U

PROPULSION

FLIGHTSU
CONTROL FOSET U

SENSORS DA. PROCESSORC
AND CONOL/PLA P WOCAN

TRANSFFP -R COMMAOND.U
CNO C..NTROL SONTT CONTROLSTORAGE IBASIC FLIGHT)

MISSION Bus

OFF. WPN oUIBPM Der.

POWER COMMRA AP&LICA RE 5.51

CONTROLCOM CO ,,ONTISST2 ~
rR ~ PR (1553V)V 

iI,

T- REMOTC TK(5SMINA

Figire 31-5. iwo Level Information Tr•'.nlfer Syuecr (Sqhowin hitri Sa~syew ITS G~onC/q~a~ion1.)

_A I" A. . ---- •'-K R- -- I1 •' 1- i'MEC ML4l•



31-6-

Figure 31-6 depicts a multiplexed, fly-by-wire, Flight Control system (FCS) - Its intra/Inter bus network configura-
tion the result of tradeoffs that will be discussed. The FCS shown employs triple redundant 1593B data path/bus
and interfaces with the two HOX networks, via tht' Flight Control Processors which Integrates the FCS functions to
the aircraft/mission functions. The FCS incorporates cross-strapping of triple redundant sensors/trasducers to the
three, single channel MIL-STD-1553B buses. Cross-strapping provides each Plight Control Processor (FCP) all
inputs via Its dedicated single channel Bus Controller (BC), bus, and Remote Terminals (RI'). The C.Oss strapping
technique eliminates system hardware. For the FOP to receive ali Inputs from the triple redundant sensors, without
cross strapping, the FCPs would require three BCs for connection to the three buses and each RT would also Tequlre
three l3IUs. This approach would probably meet the Isolation/fault criteria required of a multiplexed fly-by-wire
FCS, and it certainly reduces the hardware complement significantly, but one critical data path function ts missing.
interchange of data between the FCPio, for voting and redundancy criteria, to not possible in the intra-bus network
shown because it lacks intertie of the FCPs. This problem Is solved free of charge by the BOX bus network which
provides each FCP a redundant dafta path between FCPs - free ot charge because the FCPs must have this connection
to the BOX buses for aircraft/miess 'on functions. Each FCP through its BIU can, by contention protocol, broadcast
on the BOX buses that data req~uired of the other two FCPs. This subsystem configuration ts given as an example of
haw multiplexed bus networks, operating at different data rates and protocol, can be intertied In a manwer that are
complementary and the characteristics of each, evo-. in a hierarchical./multilevel. ITS, can provide functions aot
attainable In a single level bus network.

HIGHER ORDER TRAriSFER (HOX) SYSTEM (CONTENTION PROTOCOL)
CU AL (4 R

Bus -REDUNDANT FLIGHT
MISSION DATA CONTROL DATA

PROTCEDURE)

(SAME) XDUEU FT U R FT HS/A

*IU/
(SAME) XDUC RT FCP FCP FCP FIT NS(A

t I AE:L;N UCNTANC T/ RUDDER

iAXIS *TflIPLE Bus .,HEA HYDRAULIC AdRVO/ACTUAT-3R

CHAN. THREE SINGLE 5U (N SSCoTOLE
BIU - SUCZ~ NERFACE UNIT
FIT - REMOTE TERMINAa.

XDIUC -T RANSDUCER
FCP - PLIGHT CON4TROL PROCESSOR

I Figure 31-6. Multipbxecd Fly-By-Wire Flight Control System

HOX SYSTEM NUL-STD-DEVELOPMENT

A Task Group (TO) formed within th3 SAE/A-2K Subcommittee on Multiplexing, has accepted the task of gellerating
a MIL-STD for a Higher Order Transfer, Information Transfer System. The TG will need help, especially asslstIS-Ce
and information fromn various agencies and organizations that are responsible for-:

* Flight dynamic

e Avionic systems

II Propulsion/power generatilon and distribution

"* Human factors and resources7

"* Standardization

Basic Information needed will Include: 4
e Intra-and inter-subny~tem. data bases coverbig aIrcraft/mIssion subsystems configuration for various

aircraft sizes and mission roles.

e Processing tasksa/requiremunts of the Mission Manag.'mc~t Processfor(s).



31-7

With the above described information, the TG can conduct trade-off/analysis covering such HOX ITS areas as.

e Operational protocol-involving various addressing schemes, data flow paths, variable transfer speeds
and message lengths, etc.

* Bus network and unit characteristica - involving bus length, number of bus tap/drops and bus/unit
electrical characieristics.

e Bus network Intertie and topology - involving means of providing the required level of unit/bus
redundanty and fault isolation, plus the functional/physical intertie of hierarchical bus networks.

* Forecast of available technology.

It took ten years to develop MIL-STD-1553B. Its formulation was greatly assisted by the parallel development and
use of various types of airborne multiplexed systems during the same period. The generation of a H.Ci ITS MIL-STD
will be more difficult since there will be little development of hif-archlcal ITS within the period while generating the
MIL-STD. A significant factor making the effort difficult will involve the ever changing functions of subsystems and
the creation of new ones. The progress of the TG and the quality of the MIL-STD will depend upon the quality of
information presented to it by the many military organizations whose task is to give direction and identify needs, and
the industrial companies that manufacture the hardware/software elements respectively. Otherwise the MIL-STD
will be a defacto standard generated by the TG.

First action of the SAE/A-2K, in developing the HOS ITS MIL-STD, was the conduction of an open-house meeting at
WPFB, Ohio, USA on 11 March 1980. Thirty-three (33) people attended the meeting and expressed their views on
the MIL-STD development program. Each person attending was requested to submit what they believed to be the
basic requirements of the HOX system Including desired characteristics. Next meeting will be held in conjunction
with the National Aerospace and Electronics Conference (NAECON) in May of this year.

CONCLUSIONS

A new Higher Order Transfer (HOX) type system (defined by a MIL-STD) Is needed as the medium to interconnect
avionic subsystems for total weapon system integration on next generation aircraft. MIL-STD-1553 data bus systems
have given us a good start in the art of multiplexing and they should continue to be used to the maximum extent
possible to provide subsystems with their intra-dats transfer requirements. There Is the need to tie all these I nde-

pendent operating subsystem bus networks together, and this can be accomplished by higher order systems operating
between 1 and 50 MHz (possibly variable) with a contention type protocol. Effort is already underway by a Task
Group sponsored by the SAE/A-2K Subcommittee on Multiplexing, to generate a MIL-STD covering such as ITS.

Information is requested by the TG covering new avionic subsystem functions/configuration requirements and associ-
ated data base lists. We must remember that the TG is comptued of volunteers and that its accomplishments will be
determined by the support It receives,

GLOSSARY

AMAC Aircraft Monitor and Control

4 ATARS Automatic Traffic Advir ory and Resvilution System

BC Bus Controller

BCAS Beacon Collision Avoidance System

BIT Built In Test

bIU Bus Interface Unit

C/D Control Display

DABS Discrete Address Beacon System

DoD Department of Defense

FCP Flight Control Pr~vessor

VCS Flight Control System

FM Frequency Modulation

HOX Higher Order Transfer

HUD Heads Up Display

ICS Intercommunication Subsystem

1'0S hiformation Transfer System

JTIDS Joint Tactical Infcrmation Distribution System

MIS Microwave Landing System

MMP Mission Management Processor

S . ..



31.8

UT Remote Terminal

SAE Society of Automotive Engineers

SMS Stores Management System

TG Task Group

WPAFB Wright Patterson Air Force Base

WXR Weather Radar

REFERENCES

Bain, J. M., 1978, 'The Impact of Fiber Optic Multiplexing on Distributed Avionics Architecture,' 1978, Data Bus
Conference, ASD-TR-78-34.

Betts, R., 1980, '50 MBPS Fiber Optics Data Bus,' SAE/A-2K Presentation/Paper, IBM.

Gross, J. P., Broadhead, S. L., Moore, J. D., 1980, 'IMUX: High Speed Communication Bus,, SAE/A-2K,
Presentation/Paper, S.C. I., Inc/University of Alabama.

Huslands, C. R., 1979, 'Airborne Integrated Communication System,' 3rd Digital Avionics Systems Conference.

Smith, L. A., Croesgrove, W. A., Dervey, D. E., 'Advanced Avionic Systems for Multimission Applications,'
AFAWL Report F33615-77-C-1252, Boeing Military Airplane Company.

Swaney, R. E., 1980, 'CI1 Data Bus, ' IR&D Report, Hughes Aircraft Company.

Whiting, J. H., 1979, 'Military Aircraft Avionics in the 1980's,' Standardization in Military Avionics System
Architecture Symposium, WPAFB, Ohio.

Metcalfe, P. M., Boggs, D. R., 'Ethernet: Distributed Pocket Switching for Local Ccriputer Networks,'

Communications of the ACM, July 1976.

.1

[

4



S6_1

DISCUSSIONS
7SSION VI

REFERENCE NU. OF PAPER' Vl-.

DISCUSSOR'S NAME: Erwin ,tnq'i, ..eFB, USA

AUTHOR'S NAME: I. Moir (P. Duke, presenter)

COMMENT: You seem to imply that MIL-STO-1760 does not totally satisfy your requirements and is too
complex. Since this standard is in the final coordination cycle 0o you have any .tdditlonal inputs?S•;onerns?

AUTHOR'S REPLY: Bi-ltish Aerospace-Brough had a number ;.f cominents to make on MIL-STD-1760. Our
conrients were sent to Smiths Industries who were tasked with collating a UK industry response. This
rf."s.e wis duely sent to the 'JS but British AerospAce-Brough have had no further information on the
state of 0I60. In view of the serious implications of some of our comments, I would be very interested
to see a revized version of this standard, hopefully before it is "frozen."

REFERENCE NO. OF PAPER: VI-28

DISCUSSOR'S NAME: CDR Strada, USN

AUTHOR'S NAME: Moir (P. Duke)

COMWENT: How do you intend to accomplish "tuning the system to pilot capabilities"? How would you
handle the calibration constants/initial conditions that the weapon-aimin':, system needs to know about
the weapon? These constants may vary from aircraft to aircraft as well a* weapon to weapon.

AUTHOR'S REPLY: (1) The pilot's capability to interact with the aircraft system was seen from the
outset to be very important. To give a brief history, the Rig has grown from two activities &t British
Aerospace Brough. The first was research into data bus systems from an avionic point of view and the
second was the develolpnent of an advanced cockpit for a single-seat tactical combat aircraft. The
latter has been used W perform ergonomic assessments of new control and display concepts. Extensive
"outside world" and data analysis features have been added to provide a complete tool for the
assessment of future systems. "Tuning" the system will be achieved by modifying the cockpit andavionic systems. The avionic systems will initially be simulations, building up through emulations to

"real" hardware and software. Hence, modification during the early development of the system will be
relatively cheap.

(2) Navigation parameters will probably be input to the aircraft using a portable
on-board data source. The extension of this to weapon data Is controversial and requires study. In
the absence of a method for modifying the constants, I would suggest more use of the role change
philosophy. Certain LRUs which contain preset data should be easily replaced. In general, the rule is
that the most feasible system will contain the minimum hardware and software dedicated to a specific
weapon type.

b "REFERENCE ND. OF PAPER: VI-28

DISCUSSOR'S NAME: J. F. Ferrevi, DASSAULT

AUTHOR'S NAME: Moir (P. A. Duke)

COMMENT: Comment comptez vous r~soudre le probl~me des interfaces analogiques et en particulier les
signaux discrets de tri compte tenu de la standardisation que vous souhaitez Dote.nir.

How do you intend to solve the problem of analog interfaces and in particulir the use of discrete
signals taking account of the standardization you are looking for?

AUTHOR'S REPLY: This depends on the aircraft/launcher/weapon interface. However, for conventional
weapons the analogue and di;crete signals would be generated within a Pylon Interface Unit by D to A
conversion or switching of power supplies. Only power supplies and digital data would be input to the
Pylon Interface Unit.

REFERENCE NO. OF PAPER: VI-29

DISCUSSOR'S NAME: Schnelch, IABG

* AUTHOR'S NAME: HEGER

COMMENT: How do you achieve tolerance against interruptions of the fiber optic bus?

AUTHOR'S REPLY: In normal ring operation one transmission direction is used (out of two possible). In
this operation mode several messages can be conveyed simultaneously using the principle ODD, the
messages run from the source station till the destination station where are absorbed. On-line segments



S6-2

where no message transmission takes place special delimiter symbols are transmitted. In case 0f live
interruption (broken transmi,%sion medium in both directions or faulty station) this is detected by the
adjacent station by means of ; time-out. This station initializes the reconfiguration procedure; this
leads to two stations which recnignize themselves as being adjacent to the interruption. These two
stations reverse the transmiessiovi direction alternatively and periodically by means of special
broadcast messages. Messages having certain destination addresses are only transmitted within the
respective period with the adequate transmission direction. By reversing procedure no messages are
lost but the message flow is only chcoped and so the average throughput is not affected in the main,
but the average transmission times become longer. When an additional interruption happens, the same
procedure as described is performed. When a statlen at the Lnd of the phjsical line receives bits from
the so far interrupted line (again) the new or repaired part of the line with its stations is
identified and coupled (again). And finally, when all interruptions of the ring bus are closed the
system reinstalls the ring structure with on arbitrary transmission direction.

In the case of the interruption of only one of the two transmission directions the other direction
is selected and full performance is guaranteed.

Besides inteiruptions direct effects are also detected, and the respective line reconfiguration
takes place as well.

And finally it must be pointed out that all changes of the configurations are reported Wstem-wide
by means of broadcast status reporting messages and so the line and system status is displayed on the
display of the master control panel in order to be able to inform the repair personnel effectively.

REFERENCE NO. OF PAPER: VI-30

DISCUSSOR'S NAME: G. H. Hunt, RAE

AUTHOR'S NAME: Megna

COMMENT: In your paper you mention the objective of comparing the dispersed sensor mesh system with
the existing dedicated system already developed for the F-8 fly-by-wire aircraft. Could you state
whether this comoarison has yet been made and give an indication of the results obtained.

AUTHC. REPLi: An F-8 iron bird facility was used which has the flight system as a part of it--the
netwok is in paralle, with that. The comparison is made based upon examination of the functions
performed by the two different implementations.

REFERENCE NO. OF PAPER: VI-30

DISCUSSOR'S NAME: Alan Stern, Boeing Co., USA

AUTHOR'S NAME: V. Megna

COWMENT: You seem to be attempting to solve the problem of interfacing sensors and actuators to flight
control system - iters using a flight safety reliable bus. Why isn't a redundant 15538 approach good
rOI7,•,, 7thic 'ý What is the advantage of your approach relative to 15538?

AUTHOR'S REPL;: There are a number of bus problems which we hope to avoid through the use of a
network. One is physical damage which results in loss of cenmunication to units beyond the break,
another is the problem of some subsystem disabling the bus by constantly transmitting on the bus. But,
basically we are investigating the use of a network concept to establish a data base upon which to make
decisions as to tho best method for interconnecting avionic subsystems.

REFERENCE NO. OF eAPER: VI-30

DISCUSSOR'S NAME: Horst Kister, VDO

AUTHOR'S NAME: V. Megna

COMMENT: The controller is the most critical part of the system in respect to safety. If each of the
terminals were able to disconnect the bus from itself without any handover mechansm (not like dynamic
bus control, but "automatically"), would that help?

AUTHOR'S REPLY: Distributing bus control complicates the problem. Central bus control makes for less
complexity, but requires extra reliability consideration. Complexity comes about when control is
passed.



S6-3

REFERENCE NO. OF PAPER: VI-30

DISCUSSOR'S NAME: 'orst Kister, VDO

AUTHOR'S NAME: V. Megna

COMMENT: The controller is the most critical part of the system in respect to safety. If esch of the
terminals were able to disconnect the bus from itself without amy handover mechanis;: (not like dynamic
bus control, but "automatically"), would that help?

AUTHOR'S REPLY: Distributing bus control complicates the problem. Central bus control makes for less
complexity, but requires extra reliability consideration. Complexity comes abit when control is
passed.

REFERENCE NO. OF PAPER: VI 30

DISCUSSOR'S NAME: K. Brammer, ESG

AUTHOR'S NAME: V. Megna

COMMENT: The communication network shown by you has 6 nodes. If they were all mutually connected to
each other, every node would have 5 ports to the other nodes and there would be a total number of 15
links (i.e., N(n-1)/2 links with N06). You did not choose this maximum configuration, but some
configuration between the maximum and the minimum possible. Is there a particular reason for the
selection of your configuration? Has it to do with a specified degree of redundancy (e.g., for flight
safety) or did you design for a specified cut set (the minimum number of link failures that cause the
net to split into two separate parts)?

AUTHOR'S REPLY: Every node has 4 ports and the controller has 4 ports. With this configuration you do
not end up with unconnected ports--all will be used. Otherwise, you end up with a port that cannot be
connected to anything else.

REFERENCE NO. OF PAPER: VI-30

DISCUSSOR'S NJ,4E: E. Gangi, WPAFB, USA

AUTHOR'S !AME: Megna

COt•MNT: You imentioned in your discussion that MIL-STO-i553 LSi hardware was not available and also
that there was nu standardization guidance on fiber optic bussing. I would like to mention that the US
is considering a fiber optic version of 1553 (probably will be MIL-STD-1773) for publication. Also
that LSI 1553 terminal hardware will be available this year from several sources. In the US from
Harris Corp., Collins, Grumman, Circuit Technology, Inc., and in the UK from Smiths and Marconi
Electronic Devices.

AUTHOR'S REPLY: As I mentioned in nv presentation, at the ,ine that we were designing and constructing
our system MIL-STD-1553 LSI chips were not available and therefore, they were not included. This does
not preclude the addition of 1553 LSI chips when they are available. As far as a specification for
1553 fiber optics is concerned, the system which we have built is an engineering model to test out our
network concepts. If we do go on to build a flight system, we will tbke in consideration any fiber
optic standard which exists at that time.

REFERENCE NO. OF PAPER: VI-31

DISCUSSOR'S NAME: Alan Stern, Boeing Co., USA

AUTHOR'S NAME: J. Mrruen

COMMENT: Because it is desirable to reduce the number of buses and interfaces to a milimum, and
because MIL STD 1553 Is strongly encouraged even within flight control systems; it is desirable to
provide a 1563 mode which is a "contention scheme." This would prevent the need for additionl bus
redundancy management in flight safety critical systems.

AUTHOR'S REPLY: Identify a contention Information Transfer System (ITS) as one wherein each Remote
Terminal (RT) has the means of acquiring the bus under its own control. There is no central control
needed or allowed as in a 1553 system.

Since a 1553 system has central control, even operating if. a "dynamic bus control" it cannot ever
operate as a pure contention system. Even a 1553 system operating in a dynamic control mode must keep
handing off control from RT to RT in a set sequence. The U.S. tri-services have determined there will
be no change in 15538, i.e., no 1553C allowed.

Also, a 1553 bus cannot provide the functional isolation from other subsystem (RT) failures as can
a contention bus system. Bus management in a contention-type system would be minimal.



32-i

SIFT - AN DITRA-RELIABLE AVIONIC COMPUTING SYSTIF
Kurt Moses

Bendix CorporatJon
Flight Systems Division

Teterboro, New Jersey, USA

SUMMARY

SIFT (Software Implemented Fault Tolerance) is an ultra-reliable computing system that is
designed for flight-critical control an.; avionics applications. A typical application
would be a fly-by-wire control system tor civil or military aircraft. SIFT is based on
a multi-processor architecture that ach'Zeves fault tolerance by replicating computing
tasks among processing units. Error detection and system configuration are performed by
software to maintain the operational integrity of the compxiting system. SIFT has been
designed to mit a system failure probability goal of 10-1 per hour.

SIFT operation requires a high speed inter-computer communication system. This is real-
ized by dedicated serial links arrayed in a star connection, i.e. every processor broad-
casts to and receives data from all other processors in the coinplex. Care has been taken
that no delay due to contention for ports, buses and processors, limits system operation.

Computing is carried out by high speed, 16 bit Bendix 930 pr(,ces..ors, which have a through-
put of approximately 800 KOPS based on an appropriate flight control instruction mix.
Each procespor has a 32K memory associated with it.

Software algorithms are used for failure detection by means if voting, failure isolation
to the faulty processor, and reconfiguration after fault detection. Frame synchronization
between processors is employed to reduce data skew and minimize false alarms.

This paper desprrhes the architecture of SIFT, its hardware implementation, and the unique
test stand used for evaluation. Potential applications of this technique to current and
anticipated ultra-reliable electrical flight control systems are givell.

The work presented in this paper was done by Bendix Flight Systems Division for SRI
International under NASA contract number NASl-15428. This work is being sponsored by
NASA Langley Research Center.

1. !NTRODUCTION

Automatic flight control systems which once provided mainly pilot-relief functions, have
in recent years taken on flight-critical tasks, i.,. tasks whose successful accomplish-
ment is vital to the safety o* the aircraft. Automatic landing under low visibility/
ceiling conditions was one of the first of these flight-critical tasks to be imposed on
the AFCS. More recently, "fly-by-w.ire" (electrical) control systems have taken the place
of conventional mechanical controls, and the Control-Configured Vehicle (CCV) which
achieves the desired flying characteristics at least partly by means of electronic con-
trols, rather than solely by aerodynamic configuration, has made its debut. The desire
to reduce fuel consumption has given a powerful impetus to the use of electrical flight
controls, since this permits the unaugmented aircraft to be designed in a minimum drag
configuration. The vehicle then achieves satisfactiry flying qualities through the use
of the electrical flight control system. Mechanical controls then become superfluous in
such a vehicle since, without the electrical system, the vehicle is uncontrollable (un-
flyable). Obviously, a flight control system entrusted with such tasks must be ultra-
reliable, i.e. its reliability must be of the order of the basic aircraft structure.
These considerations i.'ve led to the development of SIFT, which achieves the failure prob-
ability of 10-10 per hour through the use of software-implemented fault tolerance tech-
niques and hardware redundancy.

While primarily motivated by the requirements of flight control and related flight-
critical applications (e.g. flutter control, engine fuel control etc.), SIFT can be used
in the context of the total avionic system for both flight-critical and non-critical
tasks to achieve an overall avionic system that may be more economical than the present
accumulation of separately designed LRU's. These often cannot even communicate with each
other, much less substitute for one another. With SIFT, it is possible to substitute a
failed processor that was performing a critical task with one that is performing a less
critical task, and processor inter-communications are handled in a routine manner. SIFT
is a multi failure-survivable, multi-processor computer array that utilizes dedicated
ports and busses for all interprocessor data transmissions so that there are no major
delays due to contention. All fault detection and reconfiguration aigorithms are imple-
mented in software.

"Each processor communicates with the other processors over bit-serial busses by broad-
casting its computed data. This data is validated by means of, 3 or 5 fold voting, with
presumably identical data broadcast by the other processors. Voting is done exclusively
by software. Majority voting is most effective if the values subjected to vote are
identical exce,.t for errors. The computed results can only be expected to be identical
if the programs receive identical inputs. This in turn requires some degree of synchro-
nization between processors and further, requires a basic strategy to insure input data



32-2

consistency. These requirements impose a large Interprocessor communication load on the
bus system which could lead to unacceptable delays due to contention for bus or data port
access in multiplexed busses.

External I/O information is transferred by MTL-STD-1553A serial links. Time division
multiplex controllers govern the data flow to and from aircraft actuators and sensors.
There is one controller for each processor and 1553A bus. Each 1553A controller and bus
can support up to 32 remote terminals with associated actuators or sensors.

The SIFT hardware design, build, and test •ffort was the responsibility of Bendix Flight
Systems Division, under contract to SRI, Internaticnal who is the prime contractor to
NASA Langley Research Center under NASA Contract NAS1-15428.

2. SYSTEM DESCRIPTION

The present system has been designed to accommodate up to 8 processors, a Software Devel-
opment System, fault tolerant rediundant power supplins and 8 1553A terminals that can
connect the SIFT processoys to sensors, actuators, controls and displays. Each processor
is capable of executing a complete control program, typically including fly-by-wire con-
trol, stability and control augmentation, autopilot modes including autoland functions,
navigation, guidance, etc. Each processor also executes the redundancy management algo-
rithms including fault diagnosis and reconfiguration strategies, as well as the executive
Program. Although not included in the SIFT development program, a preflight and mainte-inance BIT program will be required for most operational avionic applications of SIFT.

Typically, a flight-control application program includes the processing of sensor data
and control inputs (filtering and otherwise shaping the data data, voting and comparing
of redundant data); the generation, by means of the applicable control laws, of actuator
and instrumentation commands and other outputs; the engage, disengage and mode control
logic; fault and other types of warning displays; and ensuring the integrity of the out-
put commands by appropriate monitoring and switching logic. In addition, and as a
characteristic of SIFT, all computed data that is transmitted between processors is sub-
jected to the software voting algorithms, and failures in any processor are communicated
to all processors.

Figure 1 illustrates the arrangement of the SIFT architecture and shews the interproces-
sor serial bus structure and the I/O data link which communicates with the other constit-
uents of the aircraft flight control system. The I/0 data link is a MIL-STD-1553A bus.
Each bus can communicate with 32 remote terminals.

3. SYSTEM OPERATION

The organization of each computer-LRU is shown in Figure 2. The CPU is a Bendix 930
minicomputer. Computations and broadcasts of data are carried out in an iterative
sequence. The result of the computations are temporarily stored in the scratch pad
memory data fila (1K) that is uniquely associated with the processor. Each processor
has associated with it its own program memory. This memory may be read by but cannot be
written into by any other processor. The data file can be accessed by the broadcast
transmitter, the receiver, the 1553A data link and the CPU in this order of priority.
This sequence has three phases which control the .c.tivities of the system components.

Load Phase. The prc'cessor computes its assigned tasks, loads resultant data into its
local "data file", loads the associated destination address into its transaction file,
and loads the starting transaction address into the transaction pointer. The broadcast
sequencer then starts the Broadcast Phase of operation !ollowed by the Receiver Phase in
each destination processor. It should be noted here that the Broadcast-and Receiverphases described below function independently of the processors onot detract from
the power and speed of the CPU's that make up the SIFT Computer System.

Broadcast Phase. The broadcast sequencer broadcasts a data word (from "data file") along
with the associated destination address (fiom "transaction file") at a maximum rate of
1 data word/15 microseconds. This broadcast sequence continues until End-of-File (EOF)
is reached in the "transaction file." The flow diagram for this sequence of events is
shown in Figure 3. End-of-File (EOF) is reset by loading the transaction pointer with
tho starting address. The 16-bit data file word is then combined with the 7-bit desti-
nation address in the broadcast transmitter (Figure 4). The 25-bit serial word is then
concurrently broadcast to all other processors in the system. The EOF is updated, and
the transaction pointer is advanced to the next transaction if additional data words are
required by the program. Otherwise, the sequence of broadcasts is terminated.

Receiver Phase. The bit-serial word is transmitted in synchronism with a 4 MHz clock
over busses that are dedicated to each destination processor. The transmitted word is
stored momentarily in dedicated lecivers in the destination processors. Here, receiver
sequencers (Figure 5) scan the receivers for full registers, then steer the data words
to the local data file locations indicated by the destination addresses. All receiving
processors receive the same data words and store these data words at the same relative
locations in their local data file. The maximum time to load a received word into the
data file is 9.12 microsaconds, the minimum time is less than 1 microsecond.



32-3

4. CPU DESCRIPTION

Central Processor. The CPU selected for the SIFT ti the BDX-930, the latest in a 'ine
of Bendix series 900 processors. The BDX-930 is a 16-bit, microprogrammed, parallel,
general-purpose machine employing a 2901 bit-slice ALU (Arithmetic Logic Unit). The
architecture, integrated oy Bendix with the latest standard "off-the-shelf" MSI and LSI
components, results in a processor specifically tailored for high-speed real-time flight
control computations qualified for military applications.

The BDX-930 CPU is constructed using a family of bipolar micro-processor devices supported
with low power Schottky MSI arrays, thereby providing maximum computational capability in
a minimum power and size configuration.

The computer per. ur,, _C-bit parallel arithmetic operations during its micro-command

execution time. To maximize execution speed, an instruction-stream pipeline organization
is used which provides concurrent fetch, decode, and execute operations, together with a
pipelined microprogrammed sequencer and broad micro-control field. Therefore, many si-
mnultaneous funct:.oni3 can be performed at maximum speed.

:n addition, there cre separate memory address and data buses to increase the throug'aput
with the memory. To interface with the slower operating speeds of core memories and
various I/O devices, a request/response system is used to lengthen those micro-orders in
which communications with these external elements is necessary. The BDX-930 contains
21 registers which are usable by the programmer. Sixteen of these serve as general pur-
pose accumulators, while the remaining six include the program counter, switch register, )
ajid four specialized single bit registers.

Aocumulators 0 through 15 are used as general purpose accumulators, providing the capa-
b:lity for most machine operations. The registers are operated upon primarily through
uce of a powerful set of inter-register iistructions. Provision is also made to utilize
two of the registers as index registers during memory raference operations, and one reg-
ister as a stack pointer in stack related operations. In addition, sequential registers
are automatically linked for double !recision operations.

Tht. use of high-performance Schottky transistor-transistor logic elements permits extremely
fast internal clocking rates - as high as 16 megahertz (62.5 nsec period). This produces
a CPU cycle time of 250 nanoseconds and an average operations rato of 942 KOPS. Inte•-
reg:ister ADD is executed in 250 nanoseconds; firmware-based MULTIPLY is executed in
5.1 microseconds.

The BDX 930 consists of 86 microcircuits mounted on one printed circuit board (approxi-
mat.ýtly 50 in.").

5. MEMORY

Memory addresses are logically subdivided into mapped segments as shown in Figure 6.

Each processor's main memory and stack contain 30K words, each word 16 bits long. This
memory holds the SIFT executive program, the application program, and the control stack.
As noted, the cignifi-ant results of each processor's computations are temporarily stored
in a scratch pad memory data file. Each data file contains 1K data words. each word
16 bits long.

High speed interprocessor communication is provided by separate processor/bus interface
elements which control the bit-serial transmission and reception of data words. The
memory destination of each transmission is provided by the transaction file in each pro-
cessor. Each transaction file contains 1K words, each word 16 bits long.

Discrete Functions. A reserved block of 8 addresses is used to address 12 discrete
functioiis that are firmware or hardware implemented (see Figure 7). These functions
increasc the power and speed of the SIFT Computer System. The implemented functions
includei

* read processor identity number
e set EOF
9 read real-time-clock
* write (set) real-time-clock
a read 1553A registers
o write 1553A registers

External I.10. External I/O information is traniferred by MIL-STD-1553A aerial links.
Time divisiAon mvltiplex controllers govern the data flow between aircraft actuators,
sensors, avionics modules, and the BDX 930 processor. There is one controller for each

BDX 930 processor and 1553A bus. Each 1553A controller and bus can support up to 32
remote terminals with associated actuators, sensors, or avionics modules.

The 1553A controller is a 32-bit-word-sized, microcoded processor. It has address com-
putation capability, microcode% test routines, ability to program branch and special
purpose registers and ability to operate on a prioritized interrupt or polling basis.

L, w.a



32.4

The controller shares memory with one BDX 930 processor through the data file of the pro-
cessor. The interfbce to the data file is parallel by 16-bit word. The interface to the
1553A bus is serial by bit. The 1553A controller consists of two major sections:

The analog section is a waveform and impedance converter. It converts the pulsed digital
data received from the digital section to a 1 megabit serial 155zA bus-compatible signal
for transmission over the 1553A bus. In turn, it converts the received 1553A bus signals
to pulsed digital data that can be processed by the digital section. The digital section
responds to commands fom the BDX 930 processor to transmit, receive, or idle. In addi-
tion, it encodes and decodes bus data as require.d by mode logic. The digital section is
firmware-programmable with respect to parity sense, host processor byte/word requirements,
inter-word gap length and error routines. The present microcoded routines handle these
error situations:

o early RT response
* late or no RT response
o incorrect response word
* Inter-word gap too long
v invalid syne or parity
* Manchester errors

The 1553A controller consists of 64 microcircuits and a miniature transformer mounted on
one printed circuit board.

Computer Specifications. One SIFT computer/Processor IRU is composed of 9 modules. Com-
puter functions are allocated to these modules at follows:

MODULE FUNCTION

BDX 930 CPU

Memory #1, #2 Main Memory, 15K words each

Timing & Control Timing for CPU
Real-Tinke Clock
I/0 Bus Interface Logic
Control Logic

Memory Interface & Control Transaction File and Logic
Data File and Logic
Transaction Pointer
Timing for Broadcast (4 MHz)
Broadcast Shift Register

Processor Interface Broadcast Sequencer
Receiver Sequencer

Broadcast/Receiver Broadcast Drivers

Receiver Shift Registers
Holding Registers

1553A Controller 1553A Controller Functions with BDX 930 Interface

Power Supply +5V D.C. 13 amps
+15V D.C. 1 amp

Physical Caracteristics. Each SIFT LRU conforms to ARINC 404A packaging and is a * ATR
•hrtnit. t'weighspproxiffately 13 lbs. and has a computed MTBF of 8,900 hours.
Cooling is self-contained by means of an internally mounted fan, Construction is per
conventional multi-layered printed circuit boards. 25% growth space is provided in each
unit. Power consumption is 90 watts.

Software Development System. Software generated for the SIFT system can be developed on
a Data Ueneral Eclipse YKnTcomputer system. The equipment is capable of:

* compilinj, assembling, linking and testing the SIFT code
* loading the digital processors
9 providing real-time monitoring, timing and alteration -f executing programs
* providing automated documentation and change control
* providing automated module testing
* providing control law evaluation capability under a simulated airplanelflight

profile environment

The equipment comprising the Software Development System consists of:

* A Data General Eclipse minicomputer chassis containing an Eclipse S/230 mini-
computer with 128K bytes of core memory, a floating-point unit, and disk, con-
sole, line printer, and flight-processor computer interface modules.

e a 10-megabyte disk unit
e a console
e a line printer
0 interface modules
* an EIA interface module

A & L 1 1i s m



32-5

All operations are performed urder software centrol executed on an Eclipse S/230 Data
Gereral computer. A maximum of eight Bendix BDX 930 computers can be controlled with the
current SDS interface.

The interface between the Eclipse S/230 and the Bendix BDX 930 consiscs of two modules.
The first module is a standard 15" x 15" card that plugs into any unused I/0 slot of the
S/230.

The second module is mounted in a rack mounted chassis that connects with the first module
through a standard V3 4192 paddleboard connector wired to the unused I/0 slot of the S/230
computer backplane. The Bendix BDX 930 computers are connected to the rear of the second
module through their respective access panel cables. The Eclipse S/230 govelrns all trans-
fer of data to and from the SDS by means of I/0 instructions. Resident in the Eclipse
S/230 is the SDS software; software to control a Data General Nova 3/12 Computer which
controls the 1553A terminals; aid the software to simulate sensors and actuators, as well
as airframo characteristics suitable, to a particular application to demonstrate the capa-
bility to ac.ieiy control a simulated Pirplane. Figure 8 shows the overall system con-
figuration (Includ'ng the test sei-up). The vertical dotted line indicates the hardware
resident in thb two electronir bay,. shown in Figure 8. One controller controls tha 1553A
communication link, one DMA co.troller is needed for the interprocessor bus transmitter,
and the third one for the bus receiver as shown in Figure 8.

Testing. In order to validate the design to the confidence level required by the speci-
M3at---on, extensive tests were planned. Those include hardware tests, system tests, and
software validation tests, Hardware tests ensure the correctness of the design implemen-
tation, specifically timings, interface cir.cuitry operations, and integrity of construc-
tion. System tests are conducted both on developmental models of SIFT and on any later

production versions. These tests will exercise SIFT in both open and closed loop modes.
Loop closure is achieved by tie-in to E siwulation of aircraft dynamics and iensors on a
gennral purpose minicomputer (e.g., Data General Eclipse, PDP-ll, etc.).

A general block diagram of such an arranrement is shown in Figure R. The pL.rpose of sys-
tem tests is to ensure dynamic stability., achievement of static and dynamic system accu-
racy requirements, validation of execution time ostimates and inter-sample ripple char-
acteristics, and observing system behavicr in tbe presence of injected faults. These
and similar characteristics of the system can only b, evaluated in a dynamic environment
that Is as similar to the aircraft environment as pussible. In view of their cost and
the difficulties of controlling flight test conditions, flight tests are only used for
final system validation and certification, and very rarely for development purposes.
Because SIFT depends on correct software, not only for the application program, but spe-
cifically, for voting, fault detection and isolation, and reconfiguration, it is essen-
tial that the software be validated to an extremely high level of confidence. Software
quality will be encianced by the use of a structured language fo-r the higher level soft-
ware. Extensive software tests are planned on the prototype ST[T system and these tests
have been proceeding at SRI, International. These tests will encompass complete flight
conditions, environmental conditions, single and multiple failures, crew inputs, etc.

• Later on, much of the testing will also be performed at NASP Lpngley Research Center.

The SIFT hardware has undergone extensive testing, and an effective 'on line' time of
3 months was achieved with less than 1% infant mortality rate experienced during the
initial first week of testing per box. Figure 9 shows the hardware configuration.

Prior to delivery to SRI, the following tests were conducted.

A. The extended Bendix BDX 930 CPU Test was conducted on all 7 SIFT computlrs and run
continuously for 30 minutes each with no failures. This tests all the instructions
in the BDX 930 repertoire. A memory test was conducted on all the SIFT computers in
which bit patterns were written and then verified in all memory locations, main
memory, transaction file, data file, and discrete registers. This test was conducted
continuously for 20 minutes each with no failures.

B. Interprocessor data transfer tests were conducted where each processor's ID was
stored in the upper data file location starting at location 77801, to 77F71 . All
SIFT processors then broadcast simultaneously their respective ID values to all other
processors. Each data file was printed out and verified as to ccrrect data content.
Each SIFT Processor was moved to a new ID location and the test was repeated. An
additional test was also conducted where the Real-.Time-Clock value of each processor
was transmitted once to each other processor and then verified by reading the data
file. This test was conducted for each data file ).ocation. These tests we-e con-
ducted at full clock rates and no fnilures were noted.

C. All SDS (Software Development System) functions wure performed simultaneously on the

7 SIF'P processors including halt, read, load, ard restart with no failures noted.

D. Data transfer tests over the 1553A Data Link were conducted for blocks of words from
1 50 32 in Contiroller to Terminal and Terminal to Controller mode for all SIFT pro-
cessors simultaneously. Terminal to Terminal transmission mode tests were not con-

ducted since the system is not configured fo,* this mode of operation. This capability
is nrovided for in each processor.

All the tests were conducted at the nominal input voltage of 28 volts DC, and again at

32 volts DC and 24 volts DC, with no failures noted.



32-6

Concluding Remarks. A brief description of the SIFT system, with emphasis on implementa-
tion, has been presented. The system, a multi-processor computing system that relies on
software - implemented fault detection and reconfigurLtion algorithms, is an efficient
approach to the design of ultra-reliable avionics. Its development will pave the way
for the acceptance of fly-by-wire and other advanced flight control systems.

Potential applications of SIFT include all new technology aircraft, including the energy-
efficient transport, military developments such as a new strategic bomber, and space-
craft such as an Advanced Shuttle. SIFT shuuld be considered whenever flight control
system survivability requirements can not be satisfied with conventional triplex or dual-
dual configurations. It shoulu also be considered in the context of integrated avionic
systems having a mixture of flight-critical and non-flight critical sub-systems.

I1



32.7

SIFT ARCHITECTURE

SENSORSI SENSORS SENSORS

ACTUATORS ACTUATORS ACTUATORS

1553 1553 1553
I /O BUS I/0 BJS I/O BUS

#1 #2 #8
PROCESSOR PROCESSOR PROCESSOR

MEMLMRY MENORY

BROADCAST BROADAS BROADCAST BROADT TCMR i~ • xTR ,I'TR TcR

SERIAL BUS STRUCTURE

FIGURE I

SIFT COMPUTER ORGANIZATION

930 DATA BUS

1/0 PROLCESSOR MAIN DATA TRANSAC11ON
BUFFERR 930 MEORY FILE FILE

TRANSACT ION
DATA FILE BUS FILE BUS

I/O BUS

DMA DMA u
1553 DATA LINK RECEIVER BROADCAST

CONTROLLER CONTROLLER CONTROLLER

TRANSCEIVER P9JLTIPORT 1

2 6CWRlREGISTERS 
15 jSEC/ WORD

000001

1553 DATA LINK FROM OTHER TO OTHER

SENSORS & ACTUATORS PROCESSORS PROCESSORS

FIGURE 2



32-8

SROADCAST
SEONENCER c E

STRTDLACI NX

ADACKNOWLECIDGE

SEARIAL WORDME

0.50 pSEC

ADACKNOWLEDGED

ADVANCABE ETAS

TACSMTION PO INTR

0.15 JASEC

AT0.7m p SEC

00.125 SEC

AD AN ET HE ADJIF a'N

TIGUE OU rrn 0.125 S1



32-9

RECEIVER
'3EGUENCER POWER

ON
START

I ~ADVANiCEI
SCANNER

REGISTERt 11
I ~FULL?I

YES

STO $C AN

LOAD DATA FILE

CLEAR 1~

NOP

FIGURE 5

- [I $s"tM1io -uI%

onm NA" 11,63AUSATUS MS1 LOAN UDA MUG!

laws"$ I DATA m m

SR snm aI m Ms U LM NT ILTBS

on"11 MsAIA ISMIS 914. wat" 111011 W.us.

MEMORY MAP ICES

FIGURE 6 FIGURE 7



32-10V

COMPUTER BAY SYSTEM STAND

DISKETTE BENDIX .1SBU
ECLIPSE SDS

LINES/230 COMPUTER
PRITER32K CONTROL

IONSOLE (CRT

CO11ICTO PROC. PROC. PROC. FPROCJ. PROC,
1 2 3 L. 5

ADAPTER

NOV 312 CIINTERPROCESSOR BUS

16K BUS 1553 ~_______________
W/EXP. CHASSIS CONTROL T______

JUNIT 1553 BUS

SENSOR & ACTUATOR
DATA LSF /_

TEST SYSTEM CONFIGURATION

FIGURE 8

FIGURE 9 SIFT LABORATORY SET-UP



33-1

STATE-OF-THE-ART
COMPUTER MONITORING EQUIPMENT

Harvey G. Nelson
Naval Weapons Center

Facility Engineering Branch (Code 3115)
China Lake, CA 93555, U.S.A.

SUMMARY

In any tactical airborne computing system, it is crucial for developers and maintenance personnel to know in considerablz
detail what is happening inside the computer on a real-time basis. This is especially true for a distributed system. This
paper describes a hardware monitor, called SOVAC (Software Yalidation And Control), that provides a high-capacity, real-
time, user-selective "window" that gives visibility into the internal workings of the tactical computer.

I. INTRODUCTION

SOVAC is a computer monitor and controller that can be thought of in terms of its basic components and the environment
it is used in. Figure 1.1 illustrates this concept.

S 0 V A C TACTICAL COMPUTER
: PLUS

USER ENVIRONMENT
CONTROL.*

TERMINAL HOTSVCREAL-TIME

MINI- SPECIAL SUIUECT SYSTEM OR
COMPUTER t PURPOSE t COMPUTER REAL-TIME

GRAPHICS SIMULATOR

TERMINAL *

FIGURE 1.1. The SOVAC system and its environment.

There are three major components of the system: (1) The tactical computer and its environment. The minimum requirement
is to have an operating tactical computer. The computer may be installed in an operational aircraft, or installed in an
aircraft simulator or on a test bench. (2) The special-purpose hardware, which will be described in section 4 is attached to
the tactical computer AGE (Automatic Ground Equipment) port. This allows it to monitor and, if desired, control the
tactical computer's internal operation. (3) Connected to the special-purpose hardware is a general-purpose minicomputer with
a cathode-ray-tube-type terminal. Our systems are using a Digital Equipment Corporation PDP-l1/34 with a VTIOO
terminal. If hardcopy and/or graphics is desired, a suitable terminal can be added. This host mini-omputer with its special-
purpose SOVAC sofware provides the user interface to the SOVAC system and through its use interface to the tactical
comput er.

The basic functions of SOVAC are: (I) Automated computer control. This includes the ability to start, stop, and reset the
computer. The user mpy also load (or read) memory or a part of memory. (2) Computer imaging. A copy of the contents
of all internal registers is maintained at all times. (3) Data compare. SOVAC provides the user with the ability to take
action based on the value of a specific piece of data. (4) Counting. SOVAC can count the number of times a specific event
takes place. (5) Timing. The time between any two events can be accurately measured. (6) Breakpoint/event detection.
SOVAC can detect a user-defined condition such as the access of a specific address location, counter value, or data value
(or cczntination thereof) and then take a user-specified action. (7) Data selection and logging. The user may selectively
cause a large number of data words and/or registers to be logged each computer cycle. (8) Tracing. Four types of traces
w!ih three triggering modes are available under user control.

SOVAC is a powerfil tool for anyone who has a need to know what is happening inside a tactical computer. It is designed
to be a common tool, with an absolute minimum of user-related diffLrences between its use on various tactical computers.
A key feature of SOVAC is that it is entirely passive in its effect on the target computer unless the operator specifically
dictates otherwise. Thits, SOVAC provides a flexible, real-time, user-interactive tool that can greatly increase the productivity
of those who work with tactical computers.

In this paper, I will review the basic steps of software engineering as applied to the life cycle of tactical software. After
establishing a common reference p'-int, I will discuss the uses of a computer monitor and display device like SOVAC in
each of the phases of the software cycle. Following that, I will explain in greater detail the SOVAC functions and then
briefly describe its architecture.

2. SOFTWARE ENGINEERING REVIEW

2.1. Software System Life Cycle Overview

.'I In this section, I will discuss very briefly the life cycle process associated with tactical airborne computing systems. Most of
my comments can be applicd to the whole system, that is, to the hardware and software. However, I will be directing my
comments primarily toward the software issues. Figure 2.1 illustrates the software life cycle process (Jensen and Tonies,
1979), By life cycle process, I am referring to the life of the system from its conception through development and its
operational use, including maintenance and updates.



33-2

PHASEPRIMARY FLOW -

ANALYSI REQUIRMENTRAIERATIL

F EIGUR N21 So YSwa EM s DsEmSIfecyle

I wil brefl disuss achPHASEoftesfarlieclenthfoowgpraah:i 21.1 Suvey Befre ne etsintoa srios aalyIsPtLsEMporTATINt to D deem NeDfteeiutfcainfrpoedn

with ~ ~ ~ ~ ~ PHS a rjc n oDOCUMENT terltdprmtr.Tesre hs smc iete AnayIsOhse N ta ttst

analysis ~ ~ ~ ~ ~ ~ IGR of1 waisdsrdidcuetdThanlSotwisre sposibem lfor undle.sadn h ed n eie fteue

and.1 forvappyin hefos analysistoos ito d erives thelyspeifictisimon.an The spefaterione sfhouldcompletelycbtion anr poeasy-to
unerthapoetand form definemwht the dsreltd syst meemrshol bhe ablvey to as do.c ieth nlssphsi htttist

def.3. Dhatsign, The desitgndt proesduetive a thnaie bdgesired systemwlle inomplemente. H tonverns ithesurelf wihahow the
vasios functmpioshe are tonbe allohathed amongaious modulesoranedewha the reultant mftispodular intherfacsiwilt bedhodulestI
armpe th oen ts deiged buvy inoroatin detaiedy spie ciiainffrainit. e f ouedsrp iali h

pack2.Agnalss.Ti process, the envronentindepvedndenttdesgismodfedy tmortakeIi intacon the realyits phsfta the machdesh
oeatnglysysohtems, cdeingd lagugs, dacmetad base procestsorespandsobl forth Indesadditingt the packsaned designf the tu la se

u logndersated atrm tefise s httage. dsrdsse hudb bet o

2.1.4. Impemenatin. Aft esgprothes designphase wte arrived atsthem coing beiphas ene, .I t amaloinclurng insl wthi phase the
teiostiungasction r ob oated amoth eachou modules beoeiasnnertd wihath othe reutn modularo h yse n h integration wlbeThmofdthes
ir hndvda mduesignto ay icomporetin packae. Thsphaeimiayio ifralson includ an hadae/softwarue inegraptions reqired.y in the
including ineratonesin the enimplementationdephasen because its modften dontae inoncuroentl wthe relthes codng the suchies,

conlusiognead of this phase.i nitgae rga ht srayfrfnltsig

2.1.4. Tmleesttin.ion. thetestingeig phase, thwoalssem arise atesthed todensur thatste. raurmentso ascldeived in thes analsisth
phtigaseochaved been metandcha thdue sysrete is rnegadyd forh oprtioalue. othis iouls af vhersyccastep for theitgactical systhefo

obvious reasons. It is also an extremely difficult task in that it is Impossible to completely test even a relatively simple
computer program. The result of successfully compl',ting this phase is that the system is ready for operational use.

2.1.6. Iteration. It wojald be nice if we could completely finish each phase correctly before proceeding to the next.
However, it seldom, if ever, works out that way. For example, the designer, in determining hg to implement a specific
requirement, may find that the requirement is unreasonable or perhaps impossible. Thus, formally or informaily, the require-
ment is modified. This iteration is shown in Figure 2.1 as the arrow coming out of the bottom of the box and turning
to the lcft. It is extremely important to provide for and control the iteration process rather than to ignore it,.

2.1.7. Entropy. Entropy is the energy that is dissipated during each process and thus does not show up in the final
* output of the phase. Entropy is symbolized in Figure 2.1 by the squiggly arrow. Entropy is a waste of resources. In our

environment, entropy refers to a waste of prog~rammner manpower, slipped schedules, cost overruns, and perhaps faikire of
the project. It is this issue relative to the procusses that brings us to the subject of tools for software life cycle use.

2.1.8. General Comments. My purpose in presenting the above breakdown of the process is to provide us with a common
* view of the process. This will facilitate the discussion that follows.



33-3

2.2. Software Tools

Bell Laboratories has established the concept of a Programmers Workbench. As Bell Laboratories uses the term, it is a
collection of programs integrated with an enlightened operating system (Kernighan and Plauger, 1976). The integrated set of
programs that can be used to help the programmer perform his work are called software tools. SOVAC 'Is a tool that is
composed of more than just programs.

2.3. SOVAC

2.3.1. As noted in section 1, SOVAC is a tool that is ccmposed of a general-purpose minicomputer anc special-purpose
hardware and software. It is a tool that provides the user with very powerful computer control and monitorirg capabilities.
As a tool, SOVAC is most important in the implementation, test, and operational phase, as discussed in section 2.1 abo've.
As will be shown latcr, it also is applicable to the survey, analysis, and design phases.

2.3.2. In this section I will discuss the uses of SOVAC in the context of the above discussion of the software life
cycle. For each phase, I will suggest ways that we can decrease the entropy of the process by using a tKool such as
SOVAC.

2.3.2.1. Analysis Phase. In this phase it is especially important to know what is being asked for. As mentioned above,
SOVAC has the ability to measu'e or quantify most information that one desires to know about the internal workings of a
program in a tactical computer. Thus, if there is a prototype or earlier version of the system, SOVAC can be used to
provide benchmark information such that there can be higher confidence in the resultant requirements document.

2.3.2.2. Design Phase. The ability to quantify the operation of a previous version, or a prototype, of the software can
peovide valuabie information for the designer. In addition, the designer could uie SOVAC to modify or insert a special
algorithm into the target computer for evaluation. '1
2.3.2.3. Implementation Phase. SOVAC can be used in many ways during the implementation phase. It is in this phase
that concern is primarily with the validity of a particular module or perhaps a small group of modules. SOVAC could be
used to load these into the tactical computer with or without supporting modules. One could then single-step through the
module, collect data, and ensure that on a stand--alone basis the module works as expected.

2.3.2.4. Test Phase. In this phase, the ability to monitor the operation of the computer without affecting its operation
is also crucial. It has been shown that the ability to exhaustively test all combinations of paths through even relatively
small programs is impossible. SOVAC may be used to allow much greater internal data about the operation of the program
to be collected and thus gain a confidence about the program as a whole that may be very difficult to obtain otherwise.

2.3.2.5. Operational Phase. In this phase, the ability of SOVAC to monitor and collect data about the internal operation
of the tactical computer without affecting its operation is crucial. SOVAC can be used to collect the data necessary to
assess the validity of the operational program. As the program moves toward the need for being updated in either a major
or minor manner, SOVAC can be a very useful tool to collect the data needed for the decision-making process. This ability
is discussed further in the comments on the analysis and design phases.

2.4. SOVAC as a Hardware and System Tool

SOVAC is also an indispensable tool for avionics sy!tems personnel and the hardware engineers and technicians. With the
SOVAC, they can monitor and record the input and output activity. For example, it could be used to determine that a
certain bit is always 0 or 1. For output channel testing, the SOVAC could be used to force a particular tit pattern on a
specific output channel. Systems personnel could use it in much the same way to fEnd out what type of data is being
passed around the system. This could be especially useful with distributed systems.

3. SOVAC FUNCTIONS

In this section I will explain in moderate detail each of the basic SOVAC functions. The basic functions of SOVAC are
summarized in Figure 3.1.

3.1. Automated Computer Control

Automated controi includes the ability to start, stop, and reset the computer. Also, it is possible to load (or read) memory
or a part of memory. Examples:

Load from a file all (or part) of memory.

Verify all (or part) of the computer memory against any specified rile.

Copy fro,-m computer memory to disk, display, or hardcopy a9l or part of memory in hex, ASCII, binary, or real
formbit.

Reset and start the computer at the progrim entry point.

Halt the computer based on any user specified condition or breaknint.

Interactively observe and/or change any memory or register value.



33-4

USER
INTERFACE

AUTOMATEO COMPUTER I
COMPUTER IMAGING
CONTROL

II

C ATA COUNTING TIMING! ~COMPARE

SCOMPLEX DATA
UREAKPOINTIPG/ CONDITION SELECTION TRACING

E DE~CTICNANDi EVENT DEThCTICN *REAXPOINTING ANOi • LOGGING ,

FIGURE 3.1 The ten basc functions cf SOVAC. A
3.2. Co:nputr Imag•g

A copy of the contents of all internal registen is maintained at all times. The cuntents of these image registers may be
used for real-time logging and display purpos-i.

3.3. Data Compare

SOVAC provides the user with the ability to take action based oi the value of a specific piece of data. The compare may
be done against any memory location or specified register.

3.4. Countirg
At the occurrence of any specificd event, one of several counters may be reset, incremented, decremented, or read. This

allows SOVAC to collect data on the number of times a specific event takes place.

3.5. Timing

At the occurrence of any specified event, one of seweral timers may be reset, started, stopped, or read. Thus, the time
between any two events can be accurately measured.

3.6. Breakpoint/Event Detection

SOVAC can detect a user-defined conditioa such as the access of a specific Qddress location, counter va!ue, or data value
and then take a user-specified action.

3.7. Complex Condition Brt~akpointing

The user may select a complex combination of events described in the paragraphs above and use these to initiate the
breakpoint.

3.8. Data Selection and Logging

The user may selectively cause a large number of daýa words and/or registers to be logged each computer cycle.

3.9. Tracing

Four types of traces with three triggering modes are available under user control. For each type of trac, the user-specified
data is stored in a first-in-first-out history (FIFO) stack. This is done on a real-time bat,, without altedng the operation of
the tactical computer.

The types of traces available include:

Full instruction trace where each instruction cycle initiates the storage into the FIFO stack.

Partial instruction trace where each instruction within a user-specified range is recorded. This allows concentration of
the data gathering resoutces to a specific area of interest.

LI.AL4.Ai -



33-5

Event trace allows data to be stored at each occurrence of a specific event.

Branch trace allows the storage to take place when the instructioiý counter changes by greater than a user-specified
value.

The three modes of the trace function are:

Normal. In this mode the trace action takes place when the breakpoint occurs.

Delay. In this mode the t ,ce action is delayed from the specified event by a user-selectable time, count, or number
of events.

Prerecord. In this mode the trace action takes place at each specified event and is stopped by a user-specified event.
This allows the operations up to a specific event to be stored. Adding a user-specified delay to this mode allows the
operations before and after the specified event to be recorded.

4. SOVAC ARCHITECTURE

4.1. Overview

The basic functional components of SOVAC are shown in Figure 4.1 below.

The following sections will explain the role of each part of the SOVAC hardware in further detail.

4.2. Tactical Computer Interface

The tactical computer interface is composed of the computer control section and the computer image section. The computer
control section provides real-time control of the tactical computer and provides the capability to capture information
available on the tactical computer's bus and control lines. This is the most difficult of the sections to design. In general we
have found it very hard to obtain the level of documentation necessary ta make the design straightforward. The techniques
used have combined detailed analysis of the computer documentation available and the use of logic analyzers to gather
empirical data about the activity on the AGE port. It FJso happens t'iat not all desired signals are available at the AGE
port. This makes the SOVAC design much more dii.-cult in that the internal activity of the computer must be inferred
from the activity of the signals that are available.

The computer image section contains a copy of each of the tactical computer's rr.isters. For those situations in which a
given register may have more than one function during the execution of a specific instruction, a copy of the register for
each of its functions is provided. Thus, at any time, the contents of all the internal registers are available for whatever
use is desired. These uses will be discussed in the following sections.

4.3. SOVAC Controller

The high-speed, microprogrammed SOVAC controller coordinates the operation of the various subsystems. It monitors the
contents of the tactical computer image registers and has the capability to recognize various types of events or complex
combinations of events and set a breakpoint or store data into a hardware FIFO stack that is 18 words wide. The dataselection and logging capability is very flexible. The breakpoints can be used for a wide variety of purposes including the
control of counters and timers.

The functions of the controller are set up under the control of the user. The controller must do all of its evolutions within
the instruction cycle time of the tactical computer. Thus, the activity in the controller is several orders of mag;i~tude faster
than could be controlled from the host minicomputer. Therefore, the controller functions are set up by the host
minicomputer under user control.

4.4. Mir.icoinputer Interface

This interface is placed on the minicomputer system bus and provides the data path between the minicomputer and the
SOVAC controller.

TOMINICOMPUTER TOWTE
MINI- EFSOVAC SYSTEM BUS CONTROL TACTICAL

COMPUTER COMPUTER

So R TO
SOVAC COMPUTER TACTICAL

CONTROLLER IMAE COMPUTER

FIGURE 4.1. SOVAC hardwam system.



33-6

4.5. Commonality/Portability

This is an appropriate time to note that the SOVAC coicept is not applicable to just one specific tactical computer. In
fact, considerable effort has been expended to minimize the uniqueness of each SOVAC. This is especially true of thi user
interface. If a user knows how to use a SOVAC for one tactical computer, he should know how to use it for any oihers
without further training. For maintenance purposes it is also desirable to minimize the differences between the hardware
designs of the various SOVAC models. Referring to Figure 4.1, the minicomputer interfaces (and the minicomputers and
peripherals) arm common among all SOVACs. Also, the bus systems are common between the SOVACs. The computer
control and computer imaging hardware is unique to each tactical computer type. The event detection, selection and logging,
and system controller are similar in concept but unique in implementation due to the differences in the number and type
of registers in the various computers.

5. CONCLUSION

SOVAC is a powerful tool for anyone who has a need to know what is happening inside a tactical computer. It is designed
to be a common tool with an ab-olute minimum of user-related differences between its.use on various tactical computers.
A key feature of SOVAC is that it is entirely passive in its effect on the target computer unless the operator specifically
dictates otherwise. Thus, SOVAC provides a flexible, real-time, user-intenictive tool that can greatly increase the productivity
of those who work with tactical computers.

REFF RENCES/BIBLIOGRAPHY

DeMARCO, Tom, 1978, "Structured Analysis and System Specification", Yov.don Press.

DeMARCO, Tom, 1979, "Concise Notes on Software Engineering", Yo,'ufon Press.

FLETCHER, W. 1., 1980, "An Engineering Approach to Digital Design", Printice-Hall.

JENSEN, R. W., and TONIES, C. C., 1979, "Software Engineering", Prentice-Hall.

KERNIGHAN, B. W., and PLAUGER, P. J., 1976, "Software Tools", Addison-Wesley.

FRYER, R. E., 1980, "The User Interface for a Real-Time Software Debugging System", Proc. of the Fourteenth Asilomar
Conference on Circuits, Systems, and Computers.

LEMON, L. M., 1979, "Hardware System for Developing and Validating Software", Pro.. of the Thirteenth Asilomar
Conference on Circuits, Systems, and Computers.

YOURDON, E., 1979, "Classics in Software Engineering", Yourdon Press.

YOURDON. E., and CONSTANTINE, L. L., 1979, "Structured Design: Fundamentals of a Discipline of Computer Program
and Systems Design", Prenmice-Hall.

4



34-1

INTEGRATED CONTROL OF MECHANICAL SYSTEMS FOR

FUTURE COMBAT AIRCRAFT

G. W. WILCOCK

Royal Aircraft Establishment, Farnborough, U.K.

P. A. LANCASTER & C. MOXEY

British Aerospace, Warton Division, U.K.

SUMMARY

This paper describes a system for achieving digital control and monitoring of Utility
Systems for future combat aircraft. The aim is to:

i) Reduce penalties such as mass and engine power take-off associated with conventional
systems.

ii) Reduce pilot workload.

iii) Improve maintainability.

iv) Increase survivability.
v) Reduce the cost of ownership.

The p&per explores various approaches to system design, leading to a system utilising
distributed processors and data terminals linked via interfaces to the Utility Systems,
components.

The work to date has shown that a sianifi.ant number of the objectives can be achieved;
for example, a weight saving of app-oximately 100 Kg (i.e. 50%), and a pilot workload
reduction of the order of 4:1, may be achieved in a twin engine combat aircraft.

1. INTRODUCTION

In today's generation of combat aircraft, mechanical systems or "Utilit, Systems" - such
as those associated with Powerplant Control, Secondary Power, Environmental Control,
Hydraulics and Fuel Gauging/Management - have been designed as individual systems and
consequently have their own dedicated control units. The result is:

1. A large number of dedicated, single function Line Replaceable Units (LRUs).

2. Boxes containing relay and diode logic.

3. Large numbers of discrete wires.
- 4. Many dedicated cockpit instruments.

5. Dedicated switches and warning lamps.

The many interconnections result in large cable looms; these impose a severe installation
penalty on the aircraft. The cable looms may also be subject to damage and Electro-
Magnetic Interference.

For future aircraft this method of control is likely to be unsatisfactory due to the
limited space available and is inefficient in terms of equipment utiiisation. In
addition, future high technology combat aircraft will incorporate a highly integzated
avionic system and will require increased automation from all systems, including Utility
Systems, in order to siqnificantly reduce the pilot workload (especially in a single
cockpit configuration).

The above demands, together with the increasing use of serial digital data transmission
systems means that alternative design methods must be applied to Utility Systems.

A considerable amount of research work has been progressing at British Aerospace, Warton
(under both MOD and Private Veikture funding) and also at the Royal Aircraft Establishment,
Farnborough, into alternative methods of controlling the Utility Systems. The most
favoured approach for realising this control is to consider a Central Management System
which controls ALL of the Utility Systems, as listed in Para, 3.

The result of this approach is the Integrated Control of Mechanical Systems (INCOMS)
which is based on a number of data acquisition and contrul units (INCOMS Processors) which
ere geographically dispersed throughout the airframe. These INCOMS Processors will
operate independently os individual computing centres, and will be interconnected via a
MIL-STD 1553B data bus (or its derivative). Some of these Processors will act as remote
terminals, collecting raw data for onward transmission (via the data bus) to their
designated processing centre(s).



34-2

It must be borne in mind that, whilst most Utility Components dre inherently simplex in
nature, (in terms of their input and output functions), the systems in which they are
incoiporated are mainly safety critical systems. Separate redundant components and
control circuits are included, where appropriate, to achieve the necessary reliability.

2. BACKGROUND SUPPORT ARGUMENT

Various reasons can be cited to support the view that digital control should be used
(Seabridge, A. G., 1979; Smith, T. B., et al, 1978). The general arguments for supporting
the implementation of digital control for utility systems (INCOMS) are twofold, namelyt

a) Safety.
b) Efficiency.

a) SAFETY improvements can be realised by:

i) System integrity improvements through increased reliability and the more
efficient use of redundancy techniques.

ii) Reduction of the pilot workload as a result of increased system automation.
iii) Improved communication capability (between the sub-systems).

b) EFFICIENCY improvements are expected Jue to:

i) Reduced wiring and reduced weight.

ii) Easing of the maintenance task by p-oviding a self-test and fault diagnosis
capability. This would provide status indications to flight and ground crews
to ee-tablish pilot confidence in correct system operation (even under fault
conditions). It would also reduce the maintenance time.

iii) Reduction in the initial and life cycle costs.
Iv) Improved System Performance leading to load scheduling and, hence, raore

efficient use of available power.

A further argumenc to support the general philosophy is that the introduction of digital
control allows the system to be designed so that, even in service, but partimularlyduring development, adqantage can be taken of techihological advance. In addition tlhDsystem can be adapted at reasonable cost to meet changing demands. (Durkin, H., 1977).

On today's aircraft the majority of control changes tend to be hardware orientated, whereas
in INCOMS it is anticipated that most changes can be implemented in software, thereby
reducing the impact on the airframe.

The adoption of this type of system will give a reduction in the number of dedicated
equipments, thereby reducing overall equipment mass and volume; and should promote the
design and use of common items of hardware.

INCOMS will have a significant impact on the crew-system interface and thus upon the
requirements for cockpit displays and controls. A fully automatic ma-agement system with
the ability to operate without significant degradation under fault conditions will reduce
the necessity to continuously display status information. A digital computing system
with access to the cockpit via MIL-STD 1553B will enable the pilot to communicate with
systems via non-dedicated or multifunction switches.

3. EVOLUTION OF THE INTEGRATED CONTROL OF MECHANICAL SYSTEMS (IK:OMS) PHILOSOPHY

The systems that are being considered in the global term "Utility Systems" are shown belowI

Engine and Associated Systems

* Engine Intake De-Icing * Engine Starting and Ignition
* Engine Speed Signals * Thrust Reverse Control
* Fire Detection and Suppression *System Health Monitoring* S)rstem Warnings

Hydraulic and Associated Svstems

SHydraulic Utilities * Hydraulic Control
SHydraulic Depressurisation * Brakes and Anti-Skid Control
SUndercarriage Control * Nosewheel Steering
*Flight Refuelling Probe * Canopy Control
*Systems Heilth Monitoring * System Warnings

Aj

___
L&~W___



34.3

Fuel System

* Fuel Management * Fuel Boost Pump Control
* Re/Defuel Transfer * Fuel Gauging
* Fuel-Flow Metering * Hit Detection and Suppression
* System Health Monitoring * System Warningzi

Oxygen Supply System i

* Nuclear/Chemical/Biological Protection

Environmental Control Systems

* Cabin Temperature Control * Temperature a Pressure Safety Control
* Rain Dispersal * Canopy Standby De-Mist
* Equipment Bay Cooling * Coolant System Control
* System Health Monitoring * System Warnings

Secondary Power System

* Gearbox control * Auxiliary Power Unit Control
* Emergency Power Unit Control

Miscellaneous Systems

* Cockpit Lighting * Electro-Luminescent Panel Control
* Landing and Taxy Lights * Anti-Collistca Lights
* Windscreen Heating Control * Probe :'^- t
* Seat Adjustmsnt * Arrestor Hook

The systems range from the very complex, e.g. Fuel Management, to the very simple, e.g.
Arrestor Hook. The one thing that all of these systems have in common is that they must
conform to the aims and constraints of INCOMS.

A brief description of the "total systems" approach that has been adoptad at BAe, Warton

and at RAE, together with a description of an ideal system follows, to give some background
to the technical aspects of the work carried out to date.

Figure 1 shows a block diagram of a typical integrated avionic system envisaged for future
aircraft, but with the Utility systems shown as they exist on contemporary aircraft - i.e.
JAGUAR/TORNADO. These Utility systems have individual sets of components and control
elements. Only five control elements are shown, whereas on today's aircraft one set of
control hardware would be expected for each of the systems. To connect the individual
systems to the cockpit would require a considerable amount of discrete wiring and would be
contrary to the general policy of using digital data transmission.

To avoid this situation, all the control elements could be combined into a single block
called Utility Systc-ms Management (see Figure 2), and that block connected as a terminal
onto the main Aviontcs Bus. If recognition is taken of the distribution of Utility
Systems ccmponents throughout the airframe, it will be seen that this method is unacceptable
for at least three reasons:

a) The large amount of discrete wiring involved.

b) The concentration of wiring at the central block.

c) The susceptibility of the central block to damage or failure.

These problems can be overcome by the Integrated Control of Mechanical Systems (INCOMS)
whose system consists of a number of data acquisition and control devices situated at
strategic locations throughout the airframe (see Figure 3).

Thiý- will enable components local to the devices to bo connected to the most suitable (e.g.
nearest) device, thereby restricting discrete wiring to local areas. A data acquisition
and computing sub-system can now be considered which consists of a number of INCOMS
processors (the current work at BAe, Warton indicates that 6 may be an optimum numbtr) which
are interconnected via a MIL-STD 1553B data bus. This bus is in turn connected to the main
Avionics Bus via Bus Interface Units (BIFU) which can also act as Bus Controllers. This
is illustrated in Figure 4.

The interfaces with the data bus, CPU and memory, and the interfaces with the mechanical
system's components are shown. These interfaces will allow receipt of information from
discrete, analogue, digital and optical devices/sensors, and power control interfaces will
allow power to be switched to devices such as valves, pumns, etc. In an ideal system
each INCOMS processor would be hardware identical, with its indiviaual program store
taking acccunt of the various peripheral components in each INCOMS processor's aircraft
location.



344

This cystem offers a minimum hardware, minimum wiring solution that can be envisaged for
a future combat aircraft.

Work already completed by British Aerospace, Warton under UK MOD funding, tested the
abovec philosophy applied to a possible future advanced fuel management system. The aim
of this work was to define a suitable overall system architecture that would give a
management system in which greater emphasis is placed on automation, fault detection/
tolerance and survival. In pursuance of this a number of possible configurations were
considered.

In each of the configurations studied, control was assumed to be based on some form of
digital computing system, installed in a twin engined aircraft. The configurations
ranged from a system employing discrete, dedicated wiring between components and computer
(Kaye, A., 1979; Moxey, C., 1980) to those employing a distributed processing system with
a serial data bus connection (Seabridge, A. G., iS80).

Each configuration was tested against a representative aircraft layout, and it was
observed that some of the earlier configurations presented major wiring problems, in that
they were complicated to install and also left major sections of th6 system susceptible to
battle damage. To overcome these basic problems the later configurations subjected the
system to further detailed examxnation in order to determine the optimum interconnection
of components and computing system elements that satisfy the conditions of fault
tolerance and serviceability, whilst also being possible to install.

In order to meet the overall integrity requirements of the systermn included in INCOMS it
was considered necessary to develop a method to define the reldative importance of these
systems and prepare from this a Criticality Analysis and Ranki.ng List (CARL).
Information thus obtained would be used to idertify if a need exists to duplicate data,
to cross-strap from sen:ors to computing elements by hard wiring, or if a pre-set datum
needs to be introduced in the event of failure of primary data sources.

To this end four methods were investigated, each taking account of the effects of systems
failure on flight or mission success, in both peace time and war time operation. The
first three methods considered were all discounted (Lancaster, P.A., 1980). By adoption
of the fourth method the CARL chart as shown in TABLE 1 was compiled. Briefly, this
method was developed through discussions with engineers whose experience spanned a number
of aircraft projects, where the INCOMS systems were broken down into five discrete levels
in order of importance, see TkILE II. Also taken into account was the frequency c1 each
system operation during the different phases oZ a missi.-L, see TABLE III. A full
description of this analysis may be found in Lancaster, P. A.. 1980.

SYSTEM RANKIN N SYSTEM RANKING

FUEL SYSTEM 130 CABIN TEMPERATURE CONTROL 54
HYDRAULICS-CONTROL 125 NOSE WHEEL STEERING 52
3EAR BOX CONTROL 120 DEPRESSURISATION 52

IGNITION MANPGEMENT 105 BRAKE/ANTI-SKID 45
ENGINE CONTROL SERV loo WINDSCREEN HEATING .8

HYDRAULICS UTILITIES 100 COCKPIT LIGHTING 28
APU /EPU 100 YHRUST REVERSE 28
SYSTEMS WARNINGS 95 ARRESTOR HOOK 26
OXYGEN 92 CANOPY DE-MLST 20
U/C CONTROLS AND IND. 90 HIT DETECTION 16

EQUIP. BAY COOLING 84 HEALTH MONT/MAINT 15
N.B.C. 80 RAIN DISPERSAL 15
AIR SYSTEM CONTROL 72 CANOPY CONTROL 14
CABIN ALTITUDE 69 ANTI-COLLISION LIGHTS 13
REFUEL PROBE 68 NAV/OBST LIGHTS 12
PROBE HEATING 64 E.L. PANELS IL

FIRE DETECTION 60 LAND/TAXI LIGHTS 10
INTAKE DE-ICING 57 SEAT ADJUSTEMENT 3
ENGINE START 55 1 1 1

TABLE I CRITICALITY ANALYSIS RANKING LIST (CARL)



34-5

LEVEL SYSTEMS

FUEL MANAGEMENT APU/EPU
ENGINE START HYDRAULICS-CONTROLS

IGNITION MANAGEMENT UNDERCARRIAGE
ENGINE CONTROL SERVICES NBC
GEAR BOX CONTROL SYSTEMS WARNINGS

FIRE DETELTION AIR SYSTEM
HYDRAULIC UTILITIES REFUEL PROBE

2 DEPRESSURISATION HIT DETECTION
NOSE WHEEL STEERING EQUIP. PAY COOLING
PROBE PEATING OXYGEN

INTAKE DE-ICING HEALTH MON./MAINT. RECORDING
3 BRAKES AND RNTI-SE'ID CABIN TEMP CONTROL

CABIN ALTITUDE

WINDSCREEN P2ATING ARRESTOR HOOK
4 COCKPIT LIGHTING E.L. PANEL.

CANOPY DE-MIST THRUST REVERSE

CANOPY CONTROL ANTI-COLLISION LIGHTS
5 RAIN DISPERSAL NAV./OBST. LIGHTS

LAND/TAX! LIGHTS SEAT ADJUSTMENT

TABLE II CRITICALITY LEVELS

SYSTEM START TAXI TAKE CRUISE COMBAT APPR &
-OFF LAND.

ENG. IGNITION *----- **** ****** ****** **
ENG. START --
ENG. CONT. SERV (R.P.M.)
ENG CONTROL--------------------------- -----

ENG. INTAKE DE-ICING
THRUST REVWRSE
FIRE DETECTION ANJD SUPP. XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX
ENG. GEAR & X DRIVE
APU/EPU ----

HYD. UTL. - -............
V'vD. CONT. ----------------
LEPRESSURISATION
BRAKES 0ND ANTI-SKID
CANOPY CONTROL ----- -

U/C CONT. AND IND.
NOSE WHEEL STEERING
FLIGHT REFUELLING PROBE
FUEL BOOSI PUMPS
LP COCKS --
RE/DEFUEL AND TRANS.---------------------------------
FUEL DUMP
FUEL GAUGING
FUEL FLOWMETERING
HIT DET. AND SUPP. XXXXXX XXXXXX XXXXXX XxXXXX XXXXXX XXXXXX
CABIN TEMP. CONTROL
AIR SYS. CONT.
RAIN DISPERSAL
CANOPY DE-MIST
EQUIP. BAY COOLING
N. B. C.
COCKPIT LIGHTING
E.L. PANEL
LAND/TAXI LIGHTS
ANTI-COLL LIGHTS.
NAV/ODST LIGHTS
W/S HEATING

PROBE HEATING
SEAT ADJUST ---
SYSTEMS WARNINGS------- -----------------------

HEALTH MONT/MAINT REC.

CABIN OLTITUDE
OXYGEN

KEY: .... Continuous Operation; ***** Possible Systems Requirement

XXXXX Continous Monitoring

TABLE III - SYSTEM UTILISATION DURING A MISSION



34-6

The analysis gives an indicator of the integrity targets that must be met for the
individual systems, and for the total INCONS aystem. In conjunction with the
geographical position of the sensors and actuators it also helps in the allocation of
tasks to individual processors. As a result the number of interfaces at each
Processor can be defined.

4. CONTROL SISTEM DESIGN REQUIREMENTS

To meet the requirements of the Utility Systems, particularly in respect of reliability
and integrity, without imposing intolerable burdens of mass, complexity and cost requires
careful evaluation of alternative approaches to system design. !t is essential to think
in system level terms at the outset so that the design philosophy encompasses all
components and requirements of the system. Some of the special features and constraints
of the application and their influence on the majot components of the control system are
discussed in the following sub-sections.

4.1 Control Requirements and Characteristics

It is convenient to categorize the control tasks in Utility Systems on a hierarchical
basis, as shown in TABLE IV. At the lowest level most of the data is in single bit
quantities representing physical parameters such as limit-switch position or valve open-
close command. Additionally, there is a lesser number of data values related to
analogue quantities such as temperature and pressure. Processing at this level consists
largely of parking and unpacking words for computation and transmission, evaluation of )
Boolean expresuions for load control, and the generation of status information for
individual Utility components and their interfaces.

SYSTEM EXECUTIVE
(System functionsstatus, bus controi)

FUEL HYDRAULICS SUB-SYSTEM EXECUTIVES SEAT

EXECUTIVE EXECUTIVE (Modq Seiection, Status Monitorins) ADJ'JST"MENT
EXECUTIVE

TRANSFER, ENGINE
ENGINE qTARRT RAISE/
RF-LIGHT, PRESSURE SUB-SYSTEm FUNCTIONS LW.ER
QUANTITY SCHEDULING INTERLOCK
CALC. ETC. ETC.

VLV/PUMP VALVE
CONTROL, CONTROL, POWER
LEVEL; FLUID COMPONENT LEVEL FUNCTIONS SWITCHING
FLOWRATE LEVEL TO
SENSING SENSING MOTOR
ETC. ETC.

'AABLE IV - CLASSIFICATION OF UTILITY SYSTEM CONTROL TASKS

At the next level the basic functions or operating modes of the Utility sub-systems are
accomplished. For example, in the fuel system some of the modes would be fuel quantity
computation, refuel/defuel, transfer, engine start-up, engine relight and system status
monitoring. Most functiDns at these levels would involve logical processes and
sequences with a lesser number of analogue functions such as control of braking
deceleration. Each of the functions ma-' either be fiAed or one of a set of related
functions to cover different flight, regimes, aircraft status, or failure modes.

The selection of individual moces .ould be made by the system executive in response to
pilot commands and status data. Practical considerations indicate the desirability of
splitting this executive function Into two levels. The lowest of these extends as far
as the sub-system boundary so that a vertical structure is now imposed on the functional
diagram (TABLE IV) to separate sub-systems into distinct modules. This both eases the
design process and improves visibility and integrity, and accords with techniques for
structured system design. The mai.n functions of the topmost executive level would now be
to instruct individual sub-system executives as to the desired iode of operation, handle
data flow in the system ý,nd perform global functions such as load shedding or engine
relight which require action in a 'aumber of sub-systems. In exi ;ting aircraft most of
the executive functions are performed by the pilot, in additon to many of the sequences
and some of the individual component level switching and monitoring actions. Replacement



34-7

by computer control will obviously reduce pilot workload significantly, although a
system which leaves the pilot without control is neither desirable nor acceptable.
Means must be provided to enable the pilot to monitor system operation and to over-ride
executive functions when desired.

The processing requirements of the sub-systems vary considerably from the complex (e.g.
fuel) to the very simple (e.g. seat adjustment). in the case of the simplest the
classification into function level may appear academic since only minimal processing is
required at each level, for example to pass a discrete signal from the cockpit to the
seat motor. However, there is value in retaining the classification for consistency in
specification, design and implementation.

The partitioning described suggests that distributed processing could be appropriate on
either a horizontal (sub-system) or a vertical (function level) basis. The design of a
system which assignrs groups of sub-systems to different processors, with separate units
to perform the System Executive function is described later in section 5.2.

4.2 Reliability and Integrity

The critical nature of many Utility sub-systems to aircraft safety has already been
underlined. The reliability of mechanical dnd electrical components demands the use of
varying levels of redundancy to achieve sufficient safety and this translates into the
control system. A simple approach would be to determine the level of redundancy required
to meet the most critical needs and apply this at all levels of the system fiom processorE
to interfaces. However, thi3 would lead to significant mass and cost penalties due partly
to the large number of discrete signal sources and sinks. Consider the basic output
interface function of load switching: to provide dual redundancy against open and short-
circuit failures of the switch elements requires them to be quadruplicated, as shown in
Figure 8. This arrangement must be used because Utility components do not in general
lend themselves to a redundant configuration similar, for example, to actuators for flight
control: sep~arate actuators or sensors must be replicated to achieve redundancy.
Since there nay be around 200-500 discrete outputs on an aircraft the total mass penalty
could be considerable with current solid-state switches having a mass of around .04 to
.20 Kg depending urpon rating. N-fold redundancy requires N2 switch elements so that the
application of redundancy at the discrete output level needs to be tailored to the needs
of individual circuits rather than applied wholesale. The same consideration should be
applied at all interface circuits since studies have shown that they dominate the mass
and complexity of the local control units owing to the large number required.

The optimtum solution for the Utility Systems would be to accept varying levels of
redundancy throughout the system for different circuits and sub-systems and at the
different function levels. Many mechanical and electrical componen~ts have failure
rates of the order of l0-4/hour, and for their related interfaces duplex or even simplex
redundancy would be adequate. However, a basic principle of their design is that to
reduce the probability of multiple failures individual sub-systems are isolated, hence
higher levels of redundancy are essential for processors and data terminals which could
cause multiple function loss upon failure. An acceptable level of total control faiiure
is unlikely to be less than around 10-5/mission and studies have shown (Collingbourne, L.R.,
1981) that at least 3-fold redundancy will be required based on reasonable estimates of
failure rates and success for BIT procedures. At the local terminal level lower
redundancy levels could be acceptable since each handles only part of the system. This
aspect of design involves careful analysis of Utility System operation so that signals
can be grouped to avoid mutual reinforcement of disaster. This would occur, for example,

- if control of wheel-brakes and reverse thrust were obtained from the same terminal but not
for the combination of fuel-level and reverse thrust. Finally, use can be made of
reversionary modes in the event of terminal or system failures so that loads assume a
preferred state, e.g. fuel pumps permanently on.

Assuming that Avionic requirements lead to the use of a duplex data bus for conrrnnication
with the cockpit, a subsidiary panel and data link providing flight safety instruments
and controls for the mos' vital Utility functions is likely to be necessary. This
solution could be preferable to penalising the main Avionic bus with requirements for a
higher level of redundancy.

4.3 Data System

Provision of a data system to reduce the mass and complexity of the cabling linking widely
dispersed Utility components has been shown to be a prime requirement for future designs.
The widespread adoption of MIL-STD1553B for national~ (e.g. UK Defence Standard 00-18
(Part 2)/l) and international standards for military aircraft is a powerful argument for
its adoption for Utility Systems and most of the work in the UK has assumed its use.
Studies have shown (Wilcock, G. W., 1978; Moir, 1., 1981) that for a centralised system
a bus loading of around 25-38% is likely to result. Such a relatively high level
supports the argument for provision of a separate Utility System bus with an interface to
the main Avionic and cockpit busses so that traffic on the latter is increased only by
the smaller amount needed for cockpit control and display.

A loading of 25-38% is acceptable for the Utilities bus, although since these values were
based on relatively early designs lacking many of the higher level control tasks it is a
factor to be kept under careful scrutiny. A distributed processing system would tend to
alleviate problems by reducing the amount of low level data on the bus. The need for a

------A



34-8

bus-contruller in MIL-STD-1553B systems tends to mitigate against a distributed approach,
although it is compatible with a hierarchical system where it could be incorporated at
system enecntive level.

A practical consideration which has a major influence on system design is the relative
complexity of MIL-STD-1553B terminals, comparable in LSI chip count and failure rate with
microprocessors. The implication is that the penalties of incorporating intelligence
into terminals in terms of increased failure rate, mass and volume will ;e small. This,
then, is a strong indication for distributed processing based on microprocessors within
the data terminals.

4.4 Software

Although the basic control algorithms for individual Utility components are relatively
simple the overall control task which must allow for fault detection, corrupt data and
automatic control in a system with of the order of 500 inputs and outputs Is formidable.
Pv'actical constraints of mass and complexity do not permit monitoring of mechanical and
electrical Utilities to the degree necessary to uniquely identify all possible single
faults. Multiple faults are less common hut do occur and could be extensive following
battle damage. Loss of power at one or more electrical bus-bars causes widespread
corvuption of data from sensors supplied from them. The task of coping with these
problemn falls largely to the aircrew at present. Automatic control must attempt to
duplicate to some extent the partly intuitive logic processing of the aircrew to be
wholly successful, although such complete control must await advances in the state of the
art. Nevertheless, computer based system monitoring and automatic control designed on
existing knowledge could significantly reduce pilot workload. The problem still remains
that softuare must cope, without failure, with corrupted data and incompletely defined
system status magnifying the problems of software debign and validation. An approach
which results in "resilient" software is desirable. An assessment of thes problem
(Collingbourne, L. R., 1980) has shown the value of the appropriate high-level language
and a structured Eelf-documenting approach, whilst the SAFRA methodology (Ward, A. 0., 1979)
has been used in trials which show that the method leads to a rigorously obtained, fully
documented requiremeit. The use of text processing and automated aids for data
consistency checking used in this method mkke it a valuable aid in a structured design
process. A particular problem in the Utiity systems is the large number of autonomous
simple functions which would lead to processing inefficiency if each were modularized.
A pnssible solution is to group simple fnctions into modules, relyi.ng on the self
documenting features of a language such As CORAL 66 to achieve integrity through visibility.

A distributed approach to computing would ease software problems by reducing the size of
individual programs, although the privis..on of a validated distributed executive would be
a critical task. The MASCOT system (MSCOT Suppliers Association, 1980) for multi-tasking,
although mainly thougnt of for use on centralised systems at present, could be applied to
di-tributed processors and would be a v Luable system building tool.

5. SOME APPROACHES TO SYSTEM DESIGN

Studies are currently in progress tc inve! :igate alternative approacher to system design.
The optimum choice for a particular application is affected by procurement considerations av
well as technical factors and definitive answers have yet to be produced. In this section
the two basic approaches of centrali -ed and distributed processing are considered with
emphasis on the latter. It was coni :Edered that in dealiny with safety critical systems a
pessimistic rather 'han aA optimi~stic: view of failure was appropriate, hence the need for
"relatively high levt.ls cf redundancy and integi-ity have been assumed. With practical
experience some simplification mioht be achievable.

5.1 Processing Based on Parallel Bedundancy

Synchronized parallel redt.n-an-y a an established technique for detecting and isolating
failures with nigh confide- s nd ntegrity. Triple modular redundancy (TMR) is tho
minimum level capable of m- :ing t e requirements of system failure rate and fault level
capability. The architect ire of , possible system is shown in Figure 5. The system and
bus controllers and software at al2 function levels are triplicated and linked via a
triplex bus to 6 local data terrtioo s adjacent to Utility components. Within local
units the d.fta bus terminal a ano b, erface controllers are triplicated. Discrete inputs
are cross-s rapped to all 3 channeli with relatively little penalty in complexity, but it
is sufficien, to redice to duplex redundancy in individiial discrete outputs since
availability -quir, -ients are lest than at terminal or processor levels. There is a range
of possibiliLies for Jistribution of the voting and data consolidation points within the
system. That shown in Fiqure: 5 enables failures within the interfaces and their
controllers to be isolated - local level but data terminals are included as part of the
system availability at the expense of added complexity.

A disadvantage oi TMR is the prosper, of common-mode failure due to causes such as EMC,
EMP, common servicing defects, generic software failures, propogation of electrical faults,
or by failure of BIT arbitration after 2 failures. The relatively long time-constant of
most Utilities should enable recovery from transient effects such as EMC. Electrical
isolation could be achieved using fibre-optic links between channels, although at some



34-9

* pen~alty in complexity. An alternative approach which in articularly appropriate since
mechanical and electrical systems are already largely baseg on a two chann~el structure
(designated left and right channels) is to use a dual duplex system, as shown in Figure 6.
Isolated left and ri~ght-hand dual busses are used, with duplex redundancy within each
system and bus controller, and within local terminals. Comparison of channels is used
to detect failures, with BIT to determine the faulty channel. The failures are detected
with high confidence, although the probability of incorrect arbitration is increased
relative to TMR. However, any defects in this area are confined to one half of the
system so that overall integrity and availablility requirements are met. Assuming the
need to communicate with a duplex Avionics bus dual links to each duplex Utility bus are
needed so that a single fault does not result in loss of function. Fibre optic links
are desirable to preserve electrical isolation.

Both of the systems described are complex in terms of both the number and capabilities
of the functional units. Although only 3 processors are required for TMR they must each
have the capability to handle total system and bus control. Mission reliability could be
degraded using TMR since missions may have to be aborted following single failures since
further ones could hazard flight safety, In the dual duplex arrangement vulnerability

* considerations are a strong indication for separation of the processors in each duplex
channel, increasing the number of boxes and complexity since bus terminals would have to
be duplicat-ed for each processor rather than for pairs of processors.

5.2 Distributed S-stem

The dual duplex system represents a stage in the progression to distributed systems since9
It effectively separates processing between lef..- and right-hand channels each controlling
only half of the Utility System. The next stage is to incorporate local processors within
the already distributed data tp.rminals. Although the system, shown in Figure 7,
resemrbles the dual duplex systexit symbolically, its characteristics and operation are quite
distinct. Its design is based on the partitioningj scheme described earlier. There are
practical limits on inter-system (horizontal) partitioning since it would be wasteful of
resources to provide individual Processors for the many sub-systems involved, i.e. 30-40,
nor would It be appropriate in view of their widely differing processing requirements.
A preferred approach would be to distribute groups of sub-systems to different groups of

processors, the redundant functions of each sub-system being partitioned between different
processors in a group. Allocation to a particular processor would involve considerations

of component layout, processor utilization, and reliability requirements. Separate
processors are shown to perform the function of the System Executive, with bus control
(assuming a MIL-STD-1553B based data system) and communication with the duplex Avionics
bus through the Bus Interface Unit (BIFU) as appropriate subsiduary tasks. Alternatively,
a distributed executive could be incorpor.ý-.ted; although this would minimise the number of
processors it would impose additional requirements for processing and storage on those

F remaining and might lead to a nett penalty.

Adual duplex Utility bus arrangement is used to increase integrity through isolation,
preserved by fibre-optic links to the BIFO. These links could also be used for inter-
processor communication at executive level which would increase resilience to failures in
both the control system and Utility components by facilitating interchange of status
information and rescheduling of tasks.

Individual sub-system tasks such as fuel, air system control or brakes are assigned to
groups of local terminals according to the level of redundancy required. In the event
of local failures the tasks, including the sub-system executives, are re-assigned to a
different terminal. In the event that this results in excessive loading on the remaining
terminals the tasks would be executed on a priority basis, resulting in a gradual
degradation of system performance and response time. This is preferable to abrupt
failure, particularly in permitting time for corrective pilot action, for example changes
of flight regime or aircraft configuration. Since many Utility sub-systems are only
required in particular areas of the flight regime they lend themselves to this approach.J
Rescheduling of taskr- could be controlled by the system executive processors, but in thie
event of failure here a task rescheduling protocol could be activated based on a
dis~tributed executive in local processors. This would also require a local executive to
take over as bus controller, perhaps actuated after cross monitoring detects a failure.
Obviousl.y a new approach to data transmission which did not require a bus controller and
which lent itself to the protocols of a distributed system would be advantageous in
simplifying local units and software, and improving system reliability.

It is unlikely to be acceptabie for sin(,le failures to lead to loss of control over the
relatively large number of loads connected to a terminal, thus the use of dual reduindancy
is indicated at processor, data terminal and bus level f-)r both the left and right
channels. A possible terminal architecture Is shown in Figure 9. Although the number
of processors is now increased their required capability has been reduced by distribution
and it is probable that suitable single-chip devices will be available in the time-scale
of need. Since the mass and complexity of the local units has been shown to be dominated
b', the large number of interface circuits for the Utility components the practical

*penalties of the microprocessors will be small. To reduce the number of separate boxes
to be installed the system executive processors, shown as stand alone units in Figure 7,
could be integrated with local processors.

The methods used to identify failures at each level are critical design factors. Failures
of Utility components and interfaces could be detected by their related local processor



34-10

using te.~..hniques such as loop tests, dat~a reasonability checks, and comparison with
effectively redundant data, for example comparison of ga~uged fuel quantity with calculated
values based on integration of flow-rate. Processors could similarly test their
associated data terminals. Failure detection for processors and data terminals involves
comparison of lanes. Single faults can thus be detected with high confidence and BIT
action initi~ated to determine the failed unit. ThL effectiveness of BlT arbitration
could be improved by involving processors in other terminals to test the faulty terminal,
since cross-monitoring in those terminals provides high confidence of their correct
operation. The involvement of other terminals enables a voting procedure to be
introduced without the penalties of increasing the redundancy level within individual
terminals.

It can thus be seen that the quoted advantages of distributed processing such as high
integrity, cost-effective use of processor resources, reduced vulnerability to battle
damage and more gradual and easily contained degradation under fault conditions should be
obtainable in the application to aircraft mechanical and electrical systems. Such systems
have Lharacttb'istics which lend themselves to the distributed approach, the major factors
being:

a) Mechanical and electrical components are widely distributed in the aircraft.

b) Tasks are largely autonomous at the lower functional levels.

c) The intr'grity and reliability requirements of different sub-systems vary widely so
that a parallel redundant approach based on the most stringent requirements is
inefficient.

d) Most sub-systems can tolerate relatively long breaks in service enabling task
F rescheduling and reconfiguration to be achieved using resources normally performing

lower level functions. The rapid response of synchronous parallel redundant
systems is not required.

e) The wide range of sub-system priorities and the capability to rank them according to
flight regime3 is well suited to a distributed processing scheme in which efficient
use is made of processing resources combined with a progressive reduction in system
capability under failure conditions.

6. BENEFITS

The work to date has been based largely on the system shown in Figure 4. A comparison
between this system and mechanical systems control on a current high technology aircraft
(TORNADO) has highlighted the following quantifiable benefits:

a) A mass reduction in the order of 50% of control system hardware and wiring which
represents approximately 100 Kg in real terms.

b) A volume reduction in the order of 30% of control hardware.

c) A reduction in pilot workload of about 4:1 (based on analysis of an emergency
situation and the modelling of a twin engine start routine).

Figure 10 shows these results compared with claims found in other published work. This
figure also shows claims for improvements in reliability, maintainability and survivability.
These last three parameters have not yet been. addressed in the INCOMS work, but it is
anticipated that future work will obtain similar results.

Further analysis of INCOMS will yield results that will enable us to establish reliability

Advanced Health Monitoring and Maintenance recording techniques that are being considered4
in the Utility Systems should dramatically improve the Maintenance turn-round time.

Improved fault detection capability and the ability to reconfigure will improve
survivability aspects.

7. CONCLUSIONS

Various techniques for the application of digital control to Utility Systems have been
investigated in this paper. It has been shown that the preferred approach utilises a
number of distributed processors and terminals that interface with the Utility components.
Analysis performed to date shows that significant reductions in mass and pilot workloadF
can be achieved.

Further work is required to refine the System's design and to assess other potential
advantages of adopting !NCOMS.

This work has been carried out with the support of Procurement Executive MOD. Where

opinions are expressed they are those of the authors. The encouragement of the Director,
Royal Aircraft Establishment, and by the Directors of British Aerospace, Warton Division,
is auknowledged, as is the generous assistance of the authors' colleagues.



34-1 I

REFERENCES

Collingbourne, L. R., 1980:
"Application of Digital Computer Control to Aircraft Electrical Systems"
TR80095 Royal Aircraft Establishment, Farnborough, UK.

Collingbourne, L. R., 1981:
"Reliability and Integrity Aspects of Digitally Controlled Aircraft Utility Systems"
Report to be published, Royal Aircraft Establishment, Farnbcrough, UK.

Durkin, H., 1977:
"Some Engineering Problems in the RAF"
AGARD-R-653.

Kaye, A., Swetman R. E., 1979:
"Advanced Fuel Management System Study - Progress Report 1"

BAe Report TNAM 3343.

Lancaster, P. A., Moxey C., 1980:
"Study of Systems Management for Future Military Aircraft - Volume 2"
BAe Report TNAM 3374, Volume 2.

MASCOT Suppliers Association, 1980:
"The Official Handbook of MASCOT"
Royal Signals and Radar Establishment, Malvern, UK.

Moir, I., Moxey, C., Lancaster, P. A., 1981:
"Command Response Data Transmission Applied to Mechanical Systems Management. Effect
on the Crew System Interface"
AGARD 32nd Symposium of the Guidance and Control Panel.

Moxey, C., Wilson, P., 1980:
"Advanced Fuel Management System Study - Progress Report 3"
BAe Report TNAM 3371.

Ohlaber, J. I:
"Aircraft Electrical Multiplex System"
IEEE Intercon Conference, March 1973.

Ohlhaber, J. I:
"An Integrated Systems Approach to Helicopter System Design using Redundant Multiplexing
Techniques"
5th European Rotorcraft and Powered Lift Aircraft Forum, September 1979.

Ohlhaber, J. I:
"Integrated Multiplex for Lhe Augusta A-129 Attack Helicopter"
6th European Rotorcraft and Powered Lift Aircraft Forum, September 1980.

Rice, C. I., 1977:
"Avionic Solutions to Future Requirements"
Interavia News Letter No. 8888.
Roth, S. P., Miller, R. J., Mihaloew, J:

"Future Cnallenges in V/STOL Flight Propulsion Control Integration"
SAE Aerospace Congress, October 1980.

Seabridge, A. G., 1980:
"Advanced Fuel Management System Study - Final Report"
BAe Report TNAM 3382.

Seabridge, A. G., 1979:
"A Proposed System Management Centre for Future Military Aircraft"
IEE 3rd Int. Conference on Trends in On-Line Computer Control Systems.

Smith, T. B., et al, 1978:
"A Fault-Tolerant Multiprocessor Architecture for Aircraft"
NASA CR3OIO.

Ward, A. 0., Forsyth, D. Y., 1980:
"SAFRA: Controlled Requirements Expression"
BAe Report TNAAS 484.

Wilcock, G. W., 1978: I
"Evaluation of a Data Transmission System Based on MIL-STD-1553A for Control of
Electrical Power Distribution in Aircraft"
TR78137 Royal Aircraft Establishment, Farnborough, UK.



34-12

COCKPI T

AVIONIC Controls WEAPON

SYSTEM Displays F x I.TEM

FLIGHT CONTROL

POWERPLANT CONTROL)

COMPONENTS

FIGURE I UTILITY SYSTEMS MANAGEMENT WITH SEGREGATED CONTROL

COCK PI "

ConitrolsaWEPO
AVIONIC WAO
SYSTEMS Displays F. T I. SYSTEMS

FLIGHT CONTROL

UTILITY SYSTEMS MANAGEMENT

POWERPLANT CONTROL

FIGLiýE 2 - UTILITY SYSTEMS MANAGEMENT WITH CENTRALISED CONTROL

J. .



34-13

KIT
* UTILITY SYSTMS119 COMPONENTS

900SU INTREAPACII UNIT

*~NOI DNCTM PSUCSS__

tFIGURE 3 - TYPICAL AIRCRAFT. UTILITY SYSTEM LAYOUT

MECHANICAL GY21tEMS8 COMPONENTlIPUUP6.VALYEQ.TC) INTIGNAT16 CONTIOt.IF 01ONANIGAL

INTERFACIS INTERFACES INTERFACES

MEOY MEMORY MEMORY FLIHT 663 INTERFACK

CPU CPU CPU ISRMNCNRLE
184139 1"333 1453339 CT

LINTURPAC E -1 I INA 1R3 NEFC

0

16536B INEWC

CPU oltCPUI1NO"D CONTROLLER

MEMOY maloa M5Mftv168311 INTERFACE]

FIGURE~~~~~~ 4 - T E I C S B LOC I G A

&hL9RsAj9% I!.-..--.-F!.,



34-14

Flight 6 local terminals

bus BIFU LTLT L

CT F Mutplxtrmnl ,i

IC - Interface controllei I
I - Interface to utitity

Tu conponents

LoadIC TL1 PC -- Power controller

l. Local terminal--I I LT)
Fig 5 TMR control system

Utility components

Fig 6oto Cenralze coto yse ae

Avonc duigh saupefetyrdac

ý ==t I----



34-15

Utility components

A'Fionc 7 Ditriute processor colirht systty

prw LeI LP6

, , linUtiUitytycomponents

A~~' B Ight t-

Fed 7r Distributedprocessor controeril stem

Sprocessor S system

MV
7 

'Le t,

Power

I T I I

FiC itiue rcso ontrol siystsemr

Fi B Rdunan dicree utpt ntollrtegm Texemuinal arochie cture for a di cotrobutedm"a



34-16

11- I- BIii 1

C
D

A C

AA

Equiment &Wiring MAss Equipment Volume Pilot Workload

A E

C

A
D B

Reliability Improvement Maintenance Manhours Surviveability Improvement

FIGURE 10 - MEASURES 0)F EFFECTIVENESS

KEY

A: Ohlhaber, J. I., 1980 B: Ohlhaber, J. I., 1973
C: Ohlhaber, J. I., 1979 D: Roth, S. P., 1980
E: Rice, C. I., 1977

1 is current situation I denotes INCOMS results



35-1

ARCHITECTURE DU SYSTEI'E D AEIES DU MINAGM 2000

S. Croce-Spinelli
B. Vandecasteele
JF. Ferrari

Avions Marcel Damsault-Breguet Aviation
78, Quai Carnot

92214 Saint Cloud
France

R681unl

L'architecture du Syst~rne d'Armes du MIRAkGE 2000 represent. une g~n~ration avanc~e de

systbme nun~riqnie. Ella eat d~crit.a des points de vile:I
- des dquipements numariques
- do la ripartition des logiciela entre ces 6qilipements
- des liaisons numdriques
- de la surveillance du syst~nme en vol.I

On analys. lea principes qui ont servi de base A la conception, leiý mdthodes de dive-
loppement et do test nicessaires. i
On montre la flexibiliti inhirente gui perimet de a'adapter A diffirentes exigonces
opirationnellea at A diffirentes versions possibles.



35-2

Le ____ Sytm dAms uMRAE200Ttprscui : xmplAe dun gndo: nouvell~e de

11 et itdrabat demonrerleaprincipes qui on' aerv. A ma& conception et comment
ces prin.cipes sont A !a base de toute iine farnille de aystitmes. Cette famille risulte
de la flexibilitt inh~rente A ces principes, flexibilitd qui permet ainsi de crfer
ais~ment des solutions de d4.fftrentes ot~ailles" wlapt~es A differentes exigenices
op~rationnelles sans n~cessiter A chaque iýois d~es .investissements trop important..

Ces principes d'architectiire recouvrent A la fois des aspects "matgriels", en particu-
].ier tout ce qui concerne lea liasions numdriques entre lea caiculateurs, et des
aspects "logiciels", en particulier -La repartition des tAches entre leas calculateurs
et lea interfaces correspondarites.

A cette g~n~ration d'architectivie sont associ~e6 de,. rnethode. de -ýveloppement qu'il
[ a fallu mettre au point pour prendre en covnpl la conplexite. et la variftf! des tiches

que lee syst~mes correspondants sont en -iesui~e d:- r~aiiser.

Dana cette famille de systbmes on Pe C'&sser <ar~alisat.IOTS T10mb'euses d~ja en
production ou en cours de d~svelopve-* t tLar no' e Soc~ilst.

on' -peut grassibremerit car S.r . -ircliitet 'ore oar . 'utilisation des liaisons
num~riquwý inultiplex~e" Pe "Di ~is" 1;rlt ui. rn~c standard a 6t* utilis6 Pour
l'aftonautique militai-e fr iqaisc depuis -.974 et qui eat aussi u i so pour de
nornbroux autres bascdr - ssp~ntlel Fnent nd);tjires).

2. PRESENTATION G17.F-LýýLE DU~ - STEME 0Lw rIRAGL 2000

Le Syst~ne. d'Arm d& MIRA ,F 200" Dmpoit.t essentiel isent det squipem..nts num~riques
prograxcmahleE, 6 Li: la-tructure rterrie es;t a apt~e aux besoins spfci~iques de
traitement: tail.,c, rpL' tre ;t,.3se de trai4 L.ft diu processeur, sp~cia2.isation
dventualle dAu procease r .,_ oryý dt kiculs orqanis~ss en "multiprocesseu; a").

Sur le F nc, iqufý ,n~ral lu sys~' -e un peut distinque,.

--- s p'-inc1,.aujx c pt eurs
s visualisatio:.s '.t lea 'in

- he calculvteurs ccntreux qui roa'lsent notamMe-* c une 4estior.
centr..ItP.%e ( i syst-The
l es (-ganes J3 interface

-~Le Digibus.

-Lees capt*,rs

On pek citer lus particuligremew:

*La centralt Lner- ie qui a 5t6 adopt~e po'az Ron utilit6 dana tous
le.- :-5c a;Vioi7_, iussi bif~n la navigati-r , que IlIair-air ou
que I'atta, tr-aol- La ce-tt~ale _;omporte --on propre calculateur.

Lc LCro'ar qui lsa~de h'galement des f~nctiuns air-air cosine des
forc.6iýs tiir-.ol et naviqati~in. et dont !a "taille" r~suu.te
principal 'ment d'-s besoins en portl~e pouz 1cr interceDtiona air-air.
Le radar fait la plus large -part au Lraiternent nusfrique di signal

et poss#-'3e 6gaiewnt une unit6 arithndtiqve programmable assurant
la cQ sriton du fo:m6-tionnernent du radar, lea calculs it lea 6changes

a Isc1. rests' du systeme.
*'eSvateme ei-t 6oalevvnt cavable de recevoir d'autreE capteurs de
Lype Olectrc optique par example (en pods), gui sont relids par le
Dialbus.

*Lat- coiltrvsaesureB passives (et actives) 6galement nuni6riques

*Las vw.sua2.,sations -t les cominandes

La.s visua3.isations sent du type Latodique. La t~te haute pose~de un
chvp particulitre-yent important, pour permettre un confort m~aximlum
ae pilvztagW dans toutes lee phases de mission et pour permettre
Sgaleme-t lea vis~os qui se fcrnt dana lea diffdrentes conduites de.- -1-~ 4'--. -1- navr. des hausses tr~s diff~rentes. On peut



ausmi signaler quo lee angles d'incidence pratiquem par 10 MIRAGE
2000 sont tras importao'4. et quo cola aussi entrain. Is niceusitf
do champ. 6levds; par exez~ple, des hautes incidences mont utilisdom
pour obtonir des vitessem d'approche foibles. La tdte baseso, trich-
rome comporte la possibilit6 de presenter sminultanmfent des image. au
standard TV et une symbologie cavaligre. Le gdn~rateur do smyboles
eat num6rique at comport. une unit6 arithmz4tique do type universel.
11 exists 6gaiement une visualization cathodiqtie mp~cialiude pour
!as contremeaurem.

Par ailleurs quelques instruments A indication analogique aubsistent;
ils sont parfoim n=%Griques.

*Loe commandos comportent principalement:

- des commander "temps r6el1 situles sur la manette et our lo mancho
le pilotage; silos permettent toutes lea action. n~cessaires done
les phases critiques des missions.

-un poste de s~1ection des armes et des modes entibr mnt pilot6 parlogicieI
- d'autres post.. do commando, num~riques, tel. quo 1e poste do

commando do navigation.

-Les Calcul -tours centraux

Ces deux: calculateurs se partagent de noimbreuses tiches do calculs
asscocides aux missions do 1'avion, en liaison avec tous lee autres
6quipements numdriques. Ils assuront notammsnt la gestion centraliule
du syst~mpm cameo on le vorra. plus loin. En redondance, uls g.,rent lea
Gchanges numfiriques cur is Digibus.

-Los Organes d'intorf ace

On pout ranger dans cette catigorie les circuits armament et los
In~terfaces avec lea missiles.

On pout y ranger le pilots automat ique qui assure la liaison entre los
capteura du syst~me at los commandos do vol 6iectriques pour r~aliser
lea nodes do bass et les mo-tns supdrieurs ds pilotage automatique.

Rentre 6gaiement dans cette cat~gorie le boitier do compatibilitf
contremesures.

Le Digibus

On remarque cue tous ces 6quipements numfriques qui sont repr~sent~s
swe 1e Synoptic.-n mont reli~s entre eux par la liaison otandard do

pe "Digibus", dont la gestion est assurle, couxue on vient do is dire,
en mode n')rmal par l'urm des deux calculateurs centraux, en mode secours
par l'autre.

A ce systbme enti~rement num~rique, ii faut ajoutor des moyens do
radiocommuunicatio,-, do radionavigation st d'identification. D'ailleurs
certains do ces 6quipements font un large appel aux techniques
num~riques (IFF, TACAN...)

3. PHILOSOPHIE DE REPARTITION DES TACHES DE CALCTJL

Lorsgue I'mn out pas96 progressivement do systtmes hybrides qui no comportaient
au depart qu'un seul calculateur num~rique, aux systbmes do cetto g~n~ration qui
en comportent un grand nombre, ii a fallu rAflic~hir N ia manibre do r~partir lea
calculs, r~partition qui fixe corrdlativement lea interfaces et los 6changos entre
les calculateurs.

Un certain nombre do critires apparaissent clairement pour ces localisations; Ce
sont lea critbres techniques lift aux caract~ristiques des calculateurs (volumes
m~nioires at viiesse deccul; et des liaisons (d~bit maximum d16change sur is
digibus). Ii faut so r.ppeler en A~ffet qu'on a affaire A des systbares "temps
r~el" dons lesquols lea contraintes temporellem sont assentielism (cadences
d'6chantillonage cu de calcul, synchronisation et datation, pildtabilitf...).

on n'insistorm pas plus our ces crit~res qui conditionnent au premier chef la
faisability de toutes lea solutions -nviuageableu.



35-4

Par contre il y a d'autres critbres qui sont momns 6vidents: critires humains, indus-
triels, logiatiques.., et pour lesquels nous pouvons donner queiques exemples.

Nous pouvons diatinguer plusieurs catfigories de calculs A 1'intfrieur du systiine:

a) Les fonctions lautonomes". Ce sont des fonctions spicialisfes on rapport direct
avec une technique particullire. Nous serons encore plus clairs en dormant
trois exuamples:

- l~a fonction "capteur" du radar qui consiste A extraire lee informnations de
position, vitesue, acciliration. .. .des cibles.

- l~a fonction Icapteur" de l~a centrale inertlelite iui permet de mesurer la
position, let; attitudes, le cap... .de 1'a-ion.

- l~a fonction 'trac6 de symbolea" du q~nkrateur de symbo les de la t~te haute
et dc l~a t~te basse.

On peut noter que ces fonctions sont assez bien indtpendantes lea unes des
autres d'oa1 l~a dnomination d'auton-imes (pour certaints fonctions on parle
aussi de fonctions autonomes, "assist6"s").

Cern fonctions peuvent se mettre au point siparmment; elies nicessitent meine
souvent une misc au point prialable avant d'Atre int4~ries dons un systime
d'armes complet A cause des problimes techniques et techno.'ogiques qui y

sotassociis.

Cern fonctions font appel. A des 6quipes de spicialiates chcz des fabricants
qui ont accumul.4 une expfrience dans cc domaine d'Gquxipements et dans leur
maintenance.

Dana Ia technologie numirique actuell~e qui met A dispositioun de tons lea
composanta de base faciles A utillser (enconibreinent ot ~c=ns--wation falbles,
outils l~ogiciela de base diveloppis ... ), ces fonctions ctoivint Otre incorpordes
directesaent dans les dquipementa correspondants (radar', certrrrale inertielle ...)
alors que dans le passe on a pu imaginer de lea centraliser dans un seul

b) Lea fonctions "intigries!

tin systime ne s'identifie pas A la sonmme des fonctions autonomes que lVon vient
de dicrire. Il faut y ajouter un certain nombre de fonctions de cooperation et
de synthise que l'on a appeliea "intigries". Elles permettent de crier lee
guidages de navigation et lea conduites de tir au acns large.

Donnona quelques exemples:

- Calculs des lois de navigation pour iattaque des cibles aftiennes qui
utilisent lea donnies de toua lea capteura, A commnencer par le radar bien
sar, qui suont fonction de l'arme silectionnie et peuvent bventuellement
6voluer avec l'expenience opfrationnelle;

- - Calculs des domairies de tir des divers n. 4asiles air-air;

- Calculs de tin canon air-air, par example calcul. de la ligne de traceurs ou
calculs A pridiction:

- Calculs de balistique pour lea armes air-aol conventionnelles;

- Gestion des adquences de tire en salve de bombes;

-etc.

Il faut ajouter A cette haste lea fGnctions fondamentales de gestion et de
surveillance du systbme sun lesquelles nous reviendrons plus en difail au
paragraphe suivant. Ellen reprisentent uai volume trios important de mimoires
progranmme (cc sont essentiellement des logiques). Elles dipendent trbs 6tnoite-
ment des missions et des besoins directs des dquipages; elles ont en effet pour
but d'assister lea opinateuna humains dana l'utilisation d'un systine complexe
prisentant un ncmbre extrimenent important d'6tata que l.'homme ne peut girer
seul en temps ride.

Ces foncti'nna ne peuvent Otre attribuies A priori A un 6quipenent donn6. En
dehors des criteres techniques dijA 6voquis on fait alors intervenir d'autres
critbres.



35.S

*Loraque des fonction3 d6pendent 6troitement de l'6quipage an cherche A lee
rasaembler dana lea calculateurs centraux. Ce sont en effet de. fonctions
dont la mise au point se prolongo beaucoup et qui n'ont Pu coamencer quaprbe
l'int~gration de tous lea 6quipements composant la systime (alors que Ia.
plupart dVentre eux ont fait l'objet d'une mise au point individuelle
pr~alable.)

*Lorsqu'une fonction est 6troitement lii. aux caractariatiquos d'un capteur
on pout avoir int~rdt par contre A faire appol A la aime 6quipe do sa~cialiate3
et A localiser lea calcula dana l16quipement. Cela a ft 1e cas sur le MIRAGE
2000 pour lea lois dd navigation air-air qui sont dana le radar.

*Des consid~rations de probabilit6 do r~ussite do mission sont parfois prio-
ritaires. Ainsi certains calculs de tir canon li~s A des fonctiona d'auto-
difenae sont localis~s dana le gimirateur do symboles, do figon & mottre en
oeuvre 1e minimum d'6quipements n~ceaaaires.

TOe la mime manutre on 6vite quo tous lee modes dlautodifense aoient dana le
mime calculateur (Canon et Magic) do fagon A ce quo do simples p'anries no
suppriment pas tous los modes, sans pour autant nicosaiter des redondaxrces
completes.

La mise au point des fonctions cit~es prisonte d'ailleurs en g~n~ral uno
as.~oz bonne indipendanco via A via des autres.

En risum6 les critL'res pris on conipte pour la r6partition sont:

- la facilit6 do muse au point)
- la souplesse d'&volution
- la comp~tence particuliL~re do cortaines dquipes do spicialistes
- los criti~res logistiquos: fiabilit6 des chaines, maintenabilit6 ...

Ils doivent 6tro pesos cas par cas. D'une manuire ginirale on a tondance A
rogrouper los fonctions dana lea calculateurs centraux d'autant plus qu'elles
sont intAgr~oa, c'est-A-dire quoelles associent un plus grand nombre
d'informations 61abor~es dana des fonctions autonomes, et qu'elles sont plus
prochos des prociduros op~rationnelles et do l'utiliaation par liOquipago.

En particulier on y a mis toutes les fomctions do gostion d'ornsembleLi du syst~me qui n~cessitent un volume important do logiquos. La gestion
du digibus avec son architecture rodondante, ost un cas particulier.
Il oat certain quo la situation est lo r~sultat des possibilitfis tochnologiques
et des moyen3 de ddveloppenent do logiciel disponibles.

Elle ost auss1. caract~ristique d'une certaine "taille" do syst~me. Sont
actuellement on d~veloppement, en parallL~le sur le MIRAGE 2000, dos systbmes
plus simples - poss~dant une momns grando vari~t6 d'armos et do modes et
con'qus autour du calculateur do 3a centrale a inertie - et des systlmes plus
complexes - poss~dant une architecture hi~rarchis~e. Tous utiliseat cependant
des calculateurs do puissance 6quivalente et des liaisons do typo digibus.

4. LES PRINCIPALES FONCTIONS INTEGREES ET CENTRALISEF.S

Pour illustrer ce qui pr~c~hde on pout revenir avoc un peu plus de d~tails sur ce que
V'on a appel6 la gestion d'ensen'ble du syst~me et plus particuli~rement sur deux
aspects:

- a gestion des commandos, des visualisations et des modes
- kisurveillance permanente du systc-me et la maintenance int~gr~e

Los logiciels correspondants sont reqroupds dans los calculateurs contraux.4

a) Gestion des commandos, des visualisations et des modes

Le but est d'apýýrL';r une assistance aussi grando quo possible au piloto. on
essaye ainsi quo le pilote, en face d'un objectif ou d'un but do mission donn6,
a-'ait si possible A d~cider quo do l'arme A utiliser et quo le syst~me so charge
des autres selections: mise en oeuvre des 6quipaemnts et does logiciels et miso
en osuvre des visualisations. On lui laisse 3culemen,-. le choix des options, lors-
qu'1l y on a. L'accbs aux modes doit Otre d'autant plus simple et immidiat
qu'i]. s'agit Oe situations opdrationnelles critiques (telles que l'autod6fense).

Sur la. iigne inf~rieure du poste do silection d'armes et do modes apparalssent
les armes effectivenont emport6es par l'avion. Lorsqu'on siloctionne une arnieI
(par d~faut on eat en mode navigation) apparalssent sur la ligne aupirieure loa
seulos options disponibles pour cotte arnie. Encore ossaye-t-on do prdailectionner
lea options los plus probables (quo le pilote n~a A modifier qu'6ventuellement).



35-6

Ces aglactions entrali~snt autcxnstiquament 'UL m..ue en oeuvre des fonctione adiquates
de toue lea 6&iuipementL (fonctiono' iiintd.ielles et logicielles). Sn particulier lee
r~ticules et syaaboles qaii doii)ekit apparattre mont entiirement dfiterminis (aux
options in"1 par cen operations.

Une commsande reste cependant p~iairitaire par rapport A ne poste de silection; cleat
un bat lon a1 trois po~sitions situf Sur la manette des gaz at accessible A tout
instant. Ces train positions correspondent A:

- Magic
- Canon
- Posice de silectior. des armes et des modes

de sorte qu'on peut passer instantaniment dans un mode dlautodifense. (on change
d'arme ibi on a d6JA silectionnG un mode air-air).

Certainas ccniuandes "t-emps rid3" situies Sur la manette ou le manche, sont utili-
sges diffiramment pour diffirents modes ou armes. Par exemple ii exists une
commande multiple qui pilots:

- en air-air: le dicrochage radar et lea diffirents modes d'accrochage automatique
(axe, viseur, vertical)

- en air-aol: disignation de la cible, passage en navigation - passage en attaque
(aprbs prisilection d'un mode d'attaque et des options corresý-andantes Sur Ie

paste de silaction on peut repasser en navigation tout en mimorisant le mode9

En ce qui concerne la iozaande des visuaý'sations; on peut signaler que den itudes
de c>..urge dcfichange ant conduit A fixer l'interface de la manitre suivante: la
gastian centralisie adresse une haste des riticules A prisentar A chaque instant.
Par -illeurs le ginirateur des nymboles reqait (giniralement A cadence beaucoup
plub 6levie) len variables pour lea riticules mobiles; ces variables peuvent Stre
soit des grandeurs physiques debane d'usage g~n~ral (roulis, tangage... ), soit

le ginirateur de symbols posside-t-il une bibliothbque de tous lee riticules ou
symbales, Ia gestian die leur prisentation effective 6tant faite A chaque instant

par un logiciel intigrA et centralis6.

Il faut noter 6galement que cette gestian fait intervenir l'itat rich dr 6quipe-I
ments at de leurs fonctions. 11 faut en effet ne prisenter que lea rit-cules
validen at utihinables par he pilate. Cette gestion me fait au besoin par groupes
de riticulas qui nant nicessaires ensemble pour un mime mode. En can de panne
on prisente les consignas positives Sur lea modes qui restent disp~oniblen, par
example: passez ark hausse manuelle, repartaz-vaus A Ia planche de bard (instruments
secours)....

Enf in pour chaque mode une trame difffrente peut 4tre nicessaire pour let ichariges
sur le digibus. Le choi-z k~e cette trame fait dgalement partie de ha gentian

- ~On peut en risunii schdmatisar ha gestion centralisie des conunandes, den visual.iva-
tiaois at des modes, comme un module lagique dant len entries sant:

- l'6tat des 6quipementa
- hea camrnandes actianngen par Ia pilate

at leas sorties sont:

- la liate des visualisations
- hen ardras de mine an oeuvre des fanctians matfirilles at lagicielles

des 6quipements
- l'affectation den camnandes en fanction du made, la gestion des

affichagan our he paste da silectian.
- le choix de ha trame d'ichange digibus.

b) Surveillance du syntime at maintenance iati~jrie

La surveillance permanente du nyntbme ent basde Sur Ilutilisation des autotests
permanents (ou cycliques) qui existent dana tous hen Gquipaments, et qui ant un
taux d'efficacit6 Olevi plus particuji~rement dans lea 6quipements numiriques.

La but premier de cette surveillance ant de permettre une gestion complute den
visu~alisations, des can'mandes at des nodes pour dicharger complbtement le pilote
de ce souci en ne lui lainsant A dimposition que len fonctions riellement opara-
tionnelles.j



F Le risultat de ceo autoteats circule cycliquement sur le digibus. Il eat utiling
par l~enaemble des 6quipements pour la %constitution des validitia de certainea
chalnes et par la gestion centralio~e comme on viont de 1e voir.

Une retombie do cette surveillance oat une fonction de maintenance intigrie.

On pout en effet enregiotrer lea changemonta d'dtat des 6quipomonts pendant 1e vol
dana lea mimoires non volatiles du calculatour central. Ceci eat utilis6 au retour
du vol pour diclencher lea opirations de maintenance.

5. DIFFERENTES ARCHITECTURES CONCERNANT LES CALCULPLTEURS CENTRAUX ET LE DIGIBUS

Les choix ayant conduit au diveloppoment des diffirenta matiriele tela que calculateurs
centraux et digibus nous permettent d'avoir A notre disposition un ensemble de modules
s'adaptant parfaitement A diffirentes architectures do systbmes en fonction desbois~ons
opirationnels.

Les modules de base principaux sont lea suivants:

-Coupleur standard de bus permettanit A un 6quipement d~tre abonnO our un digibus
(simple ou redondant)

-Coupleur procidure permettant de girer un digibus

-Coupleur digibus CD84 assurant une gestion 6voluic d'un digibus (simple ou redondant)
ainsi que le mode abonn6

-Fichiers, prises et. cAbles spicifiques assurant une excellente imuni:6 aux parasites

-Coupleurs de sous-bus permettant d'6tendre Is procidure de base du digibus et en
particulier Ie nombre d'abonnis.

-Rdpiteur de bus permettant d'interconnecter deux digibus en assurant un trio bon
dicouplage 6lectrique entre eux (immunitd au bruit).

.La premiCire architecture (diveloppie) est conque autour de deux digibus redondants
gin~s par un calculateur en mode normal et par un deuxibme calculateur en mode secours
en cas de panne du premier.

Le deuxiime digibus n'est utilis6 qu'en cas de panne du premier.

.La deuxifme architecture prisentie (diveloppie) diffire de la premibre par le fait que

deux calculateurs girants.

Les deux digibus sont gin~s alternativement par Is calculateur normal ou le calculateur
secours en cas de panne du premier (dibit 6quival-ýnt lMbit/s).

Il y a par ailleurs un digibus a~vant et un digibus arriire our l'avion conaiddni, et
ceci pour des considdrations de vulnirabilit6.

.La troisigme architecture (diveloppie) dif ftre de la deuxibme par l'utilisation du
calculateur aecours. Celui-ci n'est plus dormant en mode normal mais travaille en
abornni comme exWL,:.2on de volume mimoire et de puissance de calcul du premier calcula-

- teur.

En cas de panne du calculateur girant en mode normal, le calculateur aecours gina lea
deux digibus alternativement.

.La quatniime architecture (en coura de diveloppement) permat d'obtenir deux digibus
indipendants travaillant en mgme temps et non plus alternativement (dibit 6quivalent
2 Mbit/s).

Chaque calculateur, en mode normal, gire un bus et eat en mime temps abonn6 sur le
deuxiime; lea transferts d'informationa ent--e lea deux digibus s'effectuent par
l'intermidiaire de coupleura COS intignis dana leas deux calculateurs.

En cas de panne d'un des deux calculateura, le calculateur reatant peut girer lea
deux digibu8 alternativement comme dana l'architecture pricidente.

.L'architecture suivanta prisentie (syatime en projet) permet de gdniraliser le digibus *A tous leo points d'emport par extension de la capacit6 d'abonnio.



35-8

Co saytbmo as distingue per:

- l'utilisation de coupleurs de scus-bus,

- la programmation des antr~es:sortiea analogitlues wera lea diff~frents points d'emports,

- l'utiliaation d'armements et d'einports sophistiqu6s qui indiquent au systlme qui ils
sont et I quel point d'emport U3s ont accrochifa.

-l'utilisation d'une m~moire do masse permettant de charger lea programmes n~ceasaires
suiVant la configuration des emports.

-des pylones avec une interface digitale et analogique standard et s'adaptant A
diffirerits bus (Di~ibus, Arinc 429 et MIL STD 1553-B) pour permettre llinterop~rabilitG
des arises.

*La deinibre archiite..ture pr~sent~e (d~velopp~e) est caract~ria~e par uno atructure
diatribu~e et non plus centralis~e comme lea pr~c~dentea.

6. METHOCOLOGIE CE DEVELOPEMENT DE LOGICIELI
D'une manibr.ý g~ndrale, la m~thodolcogie apparalt cosmmc uric forme d'organisation
technique, huxnaine et administrative du travail A r~aliser permettant de:

- ODf iriir, r~partir et coordonner lea activitfs du personnel.
- Prdvoir et contr8ler lea d~lais, lea cofits et A la qualitO des travaux.)

Lea programmes assurant les diff~rentes fonctions du syet~me doivent Stre fiables et
facilea A modifier.

Pour atteindre cea objectift, Ja mdthodologie doit reposer sur lea principes suivanta:

-Collaboration 6troite entre 1.'avionneur et les fabricants du logiciel

- E 1compos:Ltion des tAches par 6tapes parfaitement ddfiniea
- Emploi d'aides automatia~es.

Le developpemnent du. logiciel comporte trois phases principales &ýcompoades en 6tapes:

Diffinit:Lon du logiciel:

apficifications fonctionnelles globalca
s p~cifications ddtaill~es des fonctions opfirationnelles;

- Raliaation du iogiciel:

*sp~cifications ddtaill~es du logiciel
analyse globalc

*analyse d~taillde
*difveloppement desi m~thodes de test
*progranmation et misc au point
*test d'eneemble

-Validation du systkne:

escsais au aol stp.tiques et dynamiques
escsais en vol

La phase do d~finition du loqiciel es*- placde sous la responaabilit6 do
l'avionneur, avec la. participation 6troite des utilisateurR, des Squipementiers et
des fabricants de lc'giciel.

Elle conaiste A 6tablir deux types de documents:

- Lea apdcifi~cationa fonctionnelles globalca du syst~ne dana lesquelles lea fonctiuna
sont d~crites d'un point de vue opdrationnel sans tenir compte du dfc,:IpfAge do
celles-ci entre lea diff~renta dquipements.

- Lea apdcifications ddtailldes des fonctiona op~rationnelles qui ap~cifient, pour
chaque fonction A r~aliaer, le d~coupage du logiciel entrc lea diffdrents 6quipe-
ments et lf- tftches A effectuer par chacun d'eux.



r-, - - ---- -35.--

La phase de rialisatiori du logiciol oat de la rosponaabilltl do
cheque fabricant do logiciel, c'ost-&-dlre, en g~nlral do chaque fabricant d'Iquipemont.

Lea troll premlgrou Otapis prhcisont toutes lea informations n~ceasairos & l'dcrituro
et & la mine au po:Lmt des programmes: organig~rammes, bilan mimoire, charge. de calcul,
d~coupage en modulus, moyesn de tests,...

Lea doux 6tapes suivantes so ddroulont simultandmont:

- Diveloppement des moyans do tests
- Programmatiom et miss au point en statique des diffironts modules.

La derni~re Itapo permot do s'assurer quo lee programmes sont conformes aux sp~ciflca-
tions. Los tests sont faits en dynamique sur une bale do validation do logiciel four-
nissant en temps rfie des joux de paramitros cohironts thdoriques.

*La phase do validation du syst~me eat do nouveau do la rosponsabilitG do 1 'avionaour.
Ii s'agit do tester lea diffirentos fonctions dams un onvironnement opdrationnel avec
lea viritablos 6quipomonts et un ciblago conforme & colul do l'avion.

Un banc dCintigration eat utiliad dana un premier tomps pour des ossals atatiquos
(essais d'Gquipomonts, virification des ciblages, mesures do prcicaon... ) puis des
ossais dynamiquos A l'aido d'un ensemble do stimulation.

Cot ensemble Ce stimulation permet d'injector au nivoau des capteurs du syatime
(contralo A inirtle, radar, equtralo airodynamique,....) un iou do parambtros cohhremts
enl temps LUe1 et p~lta.lUDeiuelt UI1reg±nLLCM on vol ou sur des simulateurs. Co systimo
pormet do "rojouor" un vol d'r.-isai, uno phase partlouliiro do la mission, autant do
fois qu'on lo d~sire afin do taire des neauros ou des onregiatromonts particuliers.

C'oat au cours do cotto phase d'essaia au sol qu'un certain nombro do modifications
A apporter au logiciol vont apparaitro, dues A des errours et. prograimnatiom, des
changoinents ou dcs pricisions A apportor aux sp~cifications.

Emfin la phase d'essais en vol se termine par l'accoptatlon dui logiciol qul sAra
implantie dana los Equipemonts do siriu.



35-10

Al

0v

d3

itL

( ____we

fzrzi

a ma

CL 99



35-11

FLIVINT PARA411TERS CiT HmAD UP
O•ItATIOCUAL PARAMETERSS DISPLAYS

INUD , UVAPM SYSTEI STATUS

* CENTRAL SITUATION

, • • / IV~B DISPL.AY LIIYI. rVt

*LAR0E FIELD Of VIEW
N AVICAflOM
GUNS AND ROCKITS

* LOW AND MIGN DRAG MOCISS
*APPRAOAC

FUPUSENTATION Or ALL NEEDED INFOI.IATION

IN A SINGLE PLACE
FOR EACH PHASE Or A MISSION

.P ,RL ,ADAR UA'A NA'IGAT 1O,
INDICATOK WEAPON SYSTEM INUICATOR

DATA TER4IHAL

Fig.2 Displays

"REAL TIME" 0ONTROLS ON THE STICK
AND ON TO THROITTLE

, CENTRAL MODES Af OPTIONS SEI.CTIUN

*SOFTWAR AIDED SELECTION
- ONLY POSSIB E OPTIONS AVA!LAILE AT UlNE TIMH

WEAPONS
tK)DES AND OPTIONS WEKAPONSl

-
SELECTAO PREPARCATTRN$

WEAPONS AND RADAR"R•EAL TIME" CM•ONTROLS

ItmAnA SETT'ING S

Fig.3 Controls



35412

Accuisitiofi ebot

Dicrocha I.
(ou T61faftrne Air/S

Fig.4 Mirage 2000 -- poign~e pflote

Coinmmnd* alidade
*accrochage radoi

Cite radar

AvantI



35-13

D~lM O0 P L I -RVTIRRR
-- IMRISORLI j

Fig.6 Poste de commande armement

*Al

|ig. 7 1ote ie preparation 0 aren eTt.

I



35-14

-j

b-4

0CY

to2t

aja

.. 4 .0.

0.4

.4 .4

z ow

'IV

IA >.

ojU

u z 
do



3 '5

AND HAVE RECOMM'ENDED AND STUDIED FOR MANY YEARS THE USE OF DIGITAL TECHNIQUES.

1961 : IDEA OF USE OF A DIGITAL COMPUTER FOR NAV/ATTACK COMPUTATIONS
, 1967 : SUGGEST THE USE OF MULTIPLEXED DIGITAL BUSLS

1968 ; DEVELOPMENT OF A MULTIPLEXED DIGITAL BUS AND STUDY OF PROTECTION
AGAINST INTERFERENCES.

, 1970 : STUDY WITH EMD OF GINA DIGIBUS
, 1973 : DEVELOPMENT OF THE FIRST AIR TO GROUND ATTACK iNTEGRATED SYSTEM

USING AN UNIVERSAL DIGITAL COMPUTER, INU AND CRT HUD
, 1974 : SUPER ETENbARD AIRCRAFT
, 1974 : DEVELOPMENT WITH EMD OF GINA DIGIBUS
, 1975 : DIGIBUS GINA HAS BEEN SELECTED FOR SUPER MIRAGE AMD MIRAGE 2000

INTEGRATION TESTS
1975

: DIGIBUS GINA HAS BEEN OPERATED ON INTEGRATION BENCHES AND FLIGHT TESTS -
1)

IT IS USED ON ALL MODERN AIRCRAFT
IN DEVELOPMENT : MIRAGE 2000

ATLANTIC
MIRAGE Fl

IN SERIAL PRODUCTION : MIRAGE Fl

IT IS STANDARDIZED IN THF MILITARY A/C, SHIPS, MISSILES

Fig.9 History of Gina Digibus

-fill'

COMN LINK

i| |i

COS: SIAA•DD COURLER
C, C oOULU REDONDANT BUS
"S 4 4 .ML BACK-UP MANAGEMENT UNIT

Fig. 10 Architecture I



35-16

FRONT AND REAR BUS FOR TACTICAL PROBLEMS
TWO MANAGEMENT UNITS MAIN AND BACK-UP UIN~i'S

EQUIVALENT 1 Msis/s

MANAGEKENT

'uNIT

FRONT BUS

REAR BUS

Fig. 11 Architecture 2

BACK-UP MANAGEMENT UNIT PERFORMS ADDITIONAL COMPUTATIONS IN NORMAL MODE

BACK-UP MODE (FAILURE OF ONE MANAGEMENT UNIT) IDENTICAL TO NORMAL MODE BUT WITH FEWER TASKS

MANAGEMENT

Ft(ONT BUT

REAR BUS

A1ENABE1ENT

UNIT 2

Fig. 12 Architecture 3

t4



35-17

TWO SEPARATE BUS EACH ONE CONTROLLED Y A COPTER s EOUVALENT'2 Pstrs/s

EACH COMPUTER CONTPOLS ITS BUS AND IS CONNECTED TO THE OTHER ONE

BACK-UP MODE EACH COMPUTER CONTROLS THE TWO BUSES BY FLUP-FLOP

MiANAGEM'ENT
UNIT I

Cos CONTROI
I-LER

YRONT BUS p

REAR BUS

COS 1CONTRO
LLER

M4ANAGEMENT/

Fig. 13 Architecture 4

UNIT

fl o N T BU S

/ LEA .I Co

&WIUT 2

ARCHITECTURE D + ARNAKNT GENERALIZED ORGANIZATION
+ MAS wmIay

STAkhAMD INTERFACE BOX FOR
SJ- SSFIRE

- SUB-WSES COUP~ING -

- A•IAL COUPLING
- INCREASE OF THE 0IS£R OF RAOTE UNITS
- PROGRAIWTION OF I/0 DISCRETES SPECIFIC TO

DIFFERENT WEAPONS
STANDARD PYLONS:IGITAL INIFR:ACE FOR

- FIRE LINES
- DIFFENAT STADARDS INTEFACE

Fig. 14 Architecture 5



35-18

DISPLAY

MAGNETIC EC4
TTY COMPUTER TAPE

KAAK AUXI 
D

CADC IlU A EN AGE14E
UNIT UNIT

DISPLAY

LECTRONIC
ADIO-NAY DISPLAY ACC

Buoys
GRAPHIC DISPLAY

DISPLAY DISP Y

ACc 2' TAPE

RADAR

IFF
DISPLAY

FLIR KIN
DISPLAY RMAMENT

Fig. 15 Architecture 6



37-1

F/A-18A TACTICAL AIRBORNE COMPUTATIONAL SUBSYSTEM

T. V. McTigue
Branch Chief

McDonnell Aircraft Company
McDonnell Douglas Corporation

Post Office Box 516
St. Louis, Missouri 63166 U.S.A

ABSTRACT

This paper presents a description of the lactical Airborne Computational Subsystem used in the U.S.
Navy/McDonnell Douglas F/A-18A Hornet Fighter/Attack Weapon System. It describes an airborne processing
system of physically distributed conputer resources interconnected through a multiplex communication
network. Specifically, the paper describes the design, development, and integration of the Tactical
Airborne Computational Subsystem for the U.S. Navy/McDonnell Douglas F/A-lA Hornet Weapon System. The
F/A-18A Hornet tactical computer subsystem consists of two central Mission Computers and a number of
distributed processors embedded in various sensor and display subsystems. This distributed processing
system is interconnected by and communicates over a MIL-STD-1553A serial 1 MHz command/response
multiplex neLwork. The distributed processing system architecture is discussed and the rationale is
presented for the partitioning of the computational tasks between the central Mission Computers and the
distributed processors embedded in the sensor subsystems. The salient features of the central Mission
Computer and the distributed processors are discussed along with a description of the functional opera-
tion of the interconnecting MIL-STD-1553A multiplex conmmunications system. Finally, the develonment
process for the Operational Flight Program (OFP) for the central Mission Computers is described includ-
ing a discussion of the support facilities which were used for the software integration and validation.

1. INTRODUCTION

The purpose of ti.e F/A-1A Hornet Weapon System is to deliver air-to-air and air-to-ground weapons
on targets that must be detected, identified, acquired, tracked, and destroyed by the pilot using
sophisticated sensors and weapons. In the course of an F/A-I5A Hornet mission, millions of split-second
computations and decisions must be made within the aircraft. The pilot, in addition to flying theI aircraft, must constantly monitor the instruments and interpret the readings to ensure that the weapon
system can accomplish its purpose. One-man operability was a prime goal in the design of the F/A-18A

Hornet. Every decision and task that could be safely removed from the pilot was incorporated in a
tighly integrated computational subsystem. The operations within tVe subsystem are still at the pilot's
command, but he is able to perform his primary tasks with confidence based on reliable, real-time
operation of his computational subsystem. This subsystem consists of two nission computers and a number
of distributed computers in various sensor and display equipments. The Operational Flight Program (OFP)
for the Mission Computer was developed by McDonnell Douglas Corporation, St. Louis, Missouri, and is
being flight-tested and qualified by McDonnell Douglas and Navy pilots at the Naval Air Test Center,
Patuxent River, Maryland. The first U.S. Navy squadron was activated at the Naval Air Station in
Lemoore, California, in February 1981, and the first production aircraft will be delivered in July 1981.
The F/A-18A has also been selected by Canada and is under serious consideration by a number of other
U.S. allies.

2. DATA PROCESSING SUBSYSTEM (DPS)

The DPS consists of two Mission Computers (MC) and several distr;buted computers in various sensor
and display equipments. The Mission Computers, which employ the U.S. tavy AN/AYK-14 standard computer,
integrate the overall operation of the avionics. The rationale for to Mission Computers was the same
as for two engines. When they both are operational, they provide increased weapon system performance.
When one is not operational, the other provides enough performance for self-defense and safe return.

The airborne computational requir;,ients were classified into two major categories (Figure (1)):

o Sensor-oriented comnutations

o Mission-oriented computations

Sensor-oriented computations are defined to be those independent computations, such as sensor coor-
dinate transformdtions, platform management, and signal pr,.essing, which are peculiar to a particular
sensor or display. Mission-oriented computations, such as weapons launch calculations, are defined to
be those computations directly related to performing the mission and dependent on the integration of
information from several avionics subsystems. Table I shows typical examples of the two categories of
computations.

TABLE I - COMPUTATIONAL CATEGORIES

Sensor-Oriented Mission-Oriented

o Air Data Calculations o Air-to-Air steering and launch
o Radar Signal Processing zones for gun and missiles
o Inertial Platform Management o Air-to-Ground steering and release
o Ulsplay Symbol Generation for bombs, rockets, gun, and missiles

o Selection of best available data
from various sensors

o Integrated display management



37-2

A system design technique was used on the F/A-18A Hornet that produced a set of Integration Block
Diagrams which were used to partition the system requirements into specific tasks for each subsystem
onboard the aircraft. The total airborne computational tasks were partitioned into mission-oriented
tasks allocated to central mission computers and Into sensor-oriented tasks performed in distributed
processors in the sensor subsystems (Figure (2)). This relieved the central computers of those tasks
which could be more effectively performed and managed in distributed and independent sensor processors.
This approach offered functional modularity of the sensors, whereas system integration was provided by
the Mission Computers. Hence, improved sensors and displays can be added later to the Avionics System,
and present ones can be changed, with minimum impact on other equipment. Likewise, if the armament is
altered for new or modified weapons as the mission of the aircraft is enlarged, such changes can be
accommodated primarily through changes to the Mission Computer and Stores Management Set software.

A top-down software design approach is used, which partitions each computer program into software
modules of manageable size based on functional groupings of computational tasks. The rationalE for
modular software is analogous to that for modular hardware. First, it permits each module to be
independently developed, debugged, and tested in parallel with the other modules. Second, it allows
changes to occur within a module without causing changes to be made in other modules, as long as the
external modular interface remains the same. Analogous to the modularity and controlled interfaces in
the hardware, new programming nodules can be added and old ones deleted without impacting the whole
program as long as the module interfacing rules are followed. Documentation and understanding of the
total computer program is simplified, because each module can be described and understood as a separate
entity.

2.1 Sensor-Oriented Processing

On-board the F/A-18A Hornet there are four major subsystem-embedded reprogrammable computers and a
number of smaller subsystems with embedded microprocessors with Read-Only Memories (ROM). Table II
summarizes the computer hardware for the major subsystems with reprogrammable computers. Table III
presents the computer hardware information for the subsystems with ROM computers.

TABLE II - SENSOR-ORIENTED REPROGRANMABLE COMPUTERS TABLE III - SENSOR-ORIENTED ROM COMPUTERS

COMPJTER CPU SPEED MEMORY SUBSYSTEM CPU MEMORY

INERTIAL 2901 238 KOPS 16K CORE AIR DATA COMPUTER 2901 5K ROM
NAV COMPUTER

COMM SYSTEM CONTROLLER 8080 16K ROM
RADAR DATA 2901 700 KOPS 250K DISK/

PROCESSOR 16K RAM FLIGHT CONTROL MCP-701P 44K ROM
COMPUTER (4)

RADAR SIGNAL 54S181 7100 KOPS 250K DISK/
PROCESSOR 48K RAM FORWARD-LOOKING !NFRARED 9900 32K ROM

STORES 8080 200 KOPS 32K CORE LASER SPOT TRACKER 2901 12K ROM
MANAGEMENT
PROCESSOR MAINTENANCE MONITOR PANEL 8080 1K ROM

MAINTENANCE SIGNAL DATA 8080 14K ROM
RECORDER SET

MULTIPURPOSE DISPLAY (2) 2901 5K ROM

Each sensor computer performs only those computations necessary to perform its well-defined task.
This inludes all computations required to translate some measured physical parameter, such as air
pressure, into useful information for the pilot, such as altitude, airspeed, and Mach nun*mer. Once the
information is computed, it is sent to the Mission Computer over the Avionics Multiplex (MUX) bus.
There it is used with information from other sensors to perform the mission-oriented computations as
well as for display to the pilot. Figure (3) shows the major sensor computers and their allocated
software computational tasks.

2.2 Mission-Oriented Processirj

2.2.1 Mission Computer Hardware

The Mission Computer Subsystem consists of two identical computers built by Control Data Corpora-
tion (CDC). They are the new U.S. Navy Standard Airborne Computers designated the AN/AYK-14. Although
the hardware of the two computers is identical, their computer programs are different and are dedicated
to specific processing tasks. The AN/AYK-14 is a high-speed, general purpose digital computer specifi.
cally designed to meet the real-time requirements of airborne weapon systems. The computer uses four
AMD 2901 four-bit slice Large Scale Integrated (LSI) circuits to implement the 16-bit Central Processing
Unit (CPU). The CPU is micro-programmed by means of ROM firmware to emulate the instruction set of the
U.S. Navy Standard Shipboard Computer designated the AN/UYK-20. By emulating the AN/UYK-20 instruction
set, t,.e AN/AYK-14 can use the same CMS-2M Higher Order Language (HOL) support software originally
designed for the AN/UYK-20.



37-3

The AN/AYK-14 consists of ten plug-In modules and a single plug-in modular power supply contained
in one Weapon Replaceable Assantly (WRA) weighing about 42 pounds and occupying 0.625 cubic feet. Each
romputer contairis 65,536 (16-bit) words of 7/13 mll (inside/outside diameter) core memory for a total of
more than a million individual cores per computer. The memory in each Mission Computer can be doubled
from 64K to 128K within the present equipment envelope si mply by replacing the tuo present 32K memory
modules with two recently-developed 64K modules. Figure (4) shows the computer and some of its plug-in
modules.

The salient features of the computer are presented below:

o Type and organization General-purpose, stored program, parallel, binary.
fixed-point, integer, two's complement

o Storage 65,536 words, 16 bits/word plus 2 bits/word parity,
nonvolatile, random access, 3D magnetic core,
0.9 microsecond cycle time, 16 bit addressable

o Instruction execution rate 450,000 operations/sec (depending on instruction mix)

o CPU Four PMD ?901 4-bit slice LSIs

o Instruction Set ROM firmware emulation of ANIUYK-20 instruction set

o Serial Input/Output Three independent, dual-bus MIL-STD-1553A multiplex
channels (serial, 16 data bits pIus I bit parity,
transformer-coupled, 1 MHz, 50,000 words/sec!channel)

o Discrete Input/Output 32 input discretes

32 bi-directional imiput or output discretes

o Interrupts Eight external, 22 internal

o Clocks Two programnmable clocks

2.2.2 Mission Computer Software

Each of the two Mission Computers is dedicated to specific processing tasks by means of its storedprogram. One computer is assigned the Navigation (NAV) and Support processing tasks and associated

display management. The other computer is assigned the Air-to-Air and Air-to-Ground Weapon Delivery
processing tasks and ass%; ated display management. The stored program in each computer is partitioned
into functional software iiodules. Each software module is assigned to an engineer/programmer develop-
ment team that follows the software module from initial concept uidll delivery of the computer program
in the weapon system. Each computer has a smail backu software module for selected functions of the
othei computer. These backuD modules are executed only in the event the primary computer for these
functions should fail The functional software modules in each computer are shown in Figure (5).

2.2.2.1 Executive Module

The executive program module imposes order and structure on the entire F/A-18A operational flight
program. All functional program modules are processed under executive control, which sequences them in
an appropriate flow and calls them at a rate consistent with their requirements.

Six major tasks are performed by the executive module. First, it initializes the MC after start-up
or after restart from a powei interruption. Second, it schedules the order and rate of execution of
each functional module. Third, it schedules the order and rate of input/output operations for each
module. Fourth, it controls the serviciag of all interrupts, external and internal. Fifth, it manages
inter-computer communication between the Navigatioti MC and the Weapon Delivery MC. Sixth, it uses the
scheouling and input/output management functions to ensure proper sequencing of applications processing.

2.2.2.2 Air-to-Air Module

The air-to-air module performs the following functions:

1) initializes the radar air-to-air search pattern based on the weapon selected

2) computes aiming reticle for director or disturbed gun mode

3) computes aiming reticle for director or manual rocket mode

4) computes maximum and minimum launch ranges and steering cues

5) computes other aircraft and target parameters for display.

A~L4 -. Mai



37-4

2.2.2.3 Air-to-Ground Module

The air-to-ground module performs the following functions:

1) desi gnates ground targets using radar, forward looking infrared (FLIR), laser spot tracker
(LST), or visual means

2) automatically positions sensors

3) calculates ballistic release times

4) calculates steering cues for weapon release and reattack

5) calculates launch envelope data for air-to-ground mis3iles and gun

6) issues release pulses for correct weapon delivery and weapon intervals

7) manages strike camera (SCAM) for damage assessment.

2.2.2.4 Navigation Module

The navigation module performs the following functions:

1) selects/calculates the best available navigation data

2) calculates steering to prestored waypoints

3) performs velocity and position updates

4) performs target marking

5) calculates range, bearing, heading, and steering error to selected waypoint and TACAN station.

2.2.2.5 Data Link Module

The data link module decodes and processes messages received from a shipboard, airborne, or
ground-based terminal. The messages contain information used in the following functions:

1) waypoint insertion

2) display of data for vectoring to airborne targets and rendezvous points

3) display of precision course direction data for air-to-ground weapon delivery

4) display of automatic carrier landing data

5) processing of couple requests to the flight control computers

6) processing of test messages

7) processing of radar target data and aircraft data to be transmitted in the data link reply
messages.

2.2.2.6 Tactical Controls and Displays Module

The tactical controls and displays module performs-the following functions:

1) manages the radar control paneldisplay graphics program. Symbology controlled by this func-
tion includes targets, tatyet status, radar statuis, air-to-air weapon delivery cues, air-to-
ground and navigation cues, armament status, aircraft flight status, data link targets and
cues, pushbutton legends/status, and hands-on-throttle-and-stick cues. This function also
controls radar and display moding so the above calligraphic symbology can be superimposed on
radar video presentations.

2) maiiages the FUR control pane!/display graphics program. Symbology controlled by this function
includes FUR status, aircraft flight status, and pushbutton legends. This calligraphic
symbology is superimposed ur FLIR video presentations.

3) manages the LST/strike camera control panel/display graphics program. Synmology contolled by
this function includes LST/strike camera status and pushbuttcn legends.

4) managez the air-to-ground guided weapons control panels/display graphics program. Symbologyfor the high-speed antiradiation missile (HARM). Maverick. and Walleye weapons conxrolled by

this function includes targets, weapon status, aircraft flight status cues, weapon delivery
cues, and pushbutton legends. This calligraphic symbology is superimposed on weapon video
presentations.

5) manages the stores management control panel/display graphics program. Symbology controlled by
this function includes stores status for each station, air-tei-ground weapon delivery program-
ming, and pushbutton legenas. I



37-5

2.2.2.7 Support Controls and Displays Module

The support controls and displays module performs the following functions:

1) manages the cautions/advisories display graphics program. Symbology controlled by this
function Includes cautions and advisories for engines, hydraulics, electrical, environmental
control system, flight control set, and avionics systems.

2) manages the built-in test (BIT) display graphics progran. •,.bology controlled by this func-
tion includes avionic subsystem status, memory inspect data, maintenance panels, and pushbutton
legends.

3) manages the test pattern display graphics program. Symbology controlled by this function
includes test pattern, pushbutton test cues, and boresight cues.

4) manages the engine display g-aphics program. Symbology controlled by this function includes
left and right engine status and pushbutton legends.

5) manages tne checklist display graphics program. Symbology controlled by this funct'in includes
checklist cues, aircraft data, and pushbutton legends.

2.2.2.8 Navigation Controls and Displays Module

The navigation controls and displays module performs the following functions:

1) manages the horizontal situation display control panel/display graphics program. Symbology
controlled by this function includes comprass and associated steering cues, aircraft flight
status, TACAN/waypoint data, alignment data, navigation data, update cues, and pushbutton
legends.

2) manages the attitude director indicator display graphics program. Symbology controlled by this
function includes aircraft flight status cues, such as attitude and turn 'ate.

3) manages the data link display graphics program. Symbology controlled by this function includes
command data, data link cues, and data change cues.

4) manages the up-front control panel to provide data entry/readout and mode selection capability
for autopilot, navigation data, and weapon delivery data.

5) computes the position of the film strip for moving map and navigation functions related to the
horizontal situation display.

2.2.2.9 Head-Up Display Module

The head-up display (I1UD) module manages the KID graphics program. Symbology controlled by the HUD
module includes aircraft flight data, data link cues, navigation cues, radar status, armament status,
air-to-air weapon delivery cues, and air-to-ground weapon delivery cues.

2.2.2.10 Inflight Engine Condition Monitor Module

The inflight engine condition monitor module monitors various engine and .,ssociated aircraft
parameters to provide engine health information to the pilot and maintenance personnel. Cautions,
advisories, and real time enqine parameters are displayed in the cockpit. Life usage indices and other
engine maintenance information are transmitted to the Maintenance Signal Data Recorder (MSDR).

2.2.2.11 Inflight Monitoring And Recording Module

The inflight monitoring and recording module monitors and processes various aircraft sensor outputs
for control and display of m.st of the pilot cautinns and advisories and transmits avionic and non-
avionic equipment failurcs to the MSDR. Control is provided for the data recorder dnd provision is mnde
for the recording of tactical data in t'Vie air-to-air and air-to-ground aircraft modes. Also, aircraft
fatigue levels are monitored and recorded during flight.

2.2.2.12 Avionics Built-In Test Module

The avionics built-in test module provides the control by which an operator can run individual
tests on each of the interfacing subsystems. It also evaluates data received by the MC from each of the
interfacing subsystems as to their operational status. This data is correlated by subsystem and current
status and is displayed in the cockpit. In addition, the data is converted into predefined codes each
representative of a specific tailure ot an individual subsystem for transmission to the MSUR.

U+ . . . . . . . . .



37-6

2.2.2.13 Mission Computer Self-Test Module

The mission computer self-test module performs the following functions:

1) inmiediately after computer turn-un, tests those functions ihich, when tested, interfere with
normal computer operation;

2) periodically tests those functions of the MC CPU and memory which, when tested, do not
interfere with normal computer operation as well as performing an end-to-end check of the
capability of the MC to communicate with each peripheral;

3) maintains error information for later maintenance action; and

4) latche. WRA fault indicator and sets WRA status signal as required.

2.2.2.14 Mission Computer Backup Modules

A backup module is resident in each computer. Each backup module performs essential software func-
tions of the other mission computer when a failure occurs in that computer.

2.2.2.15 Mathematical Subroutines Module

TRe mathematical subroutines module supports other proqram mnodules by providing conmmn mathematical
routines such as trigonometric, logarithmic, and matrix operations.

2.3 Avionics Multiplex System

Digital data betwecn the Mission Computers and the peripheral avionics components is transfrred on
the MC-controlled Avionics Multiplex System. The system consists of three multiplex channels, as shown
in Figure (6). Each channel consists of two redundant 1 MHz MIL-STD-1553A buses, with only one bus of
each channel active at any given time.

2.3.1 Physical Characteristics

Each bus is operated in a half-duplex fashion (two-way transmistion, but not simu taneously) using
self-clocking Manchester encoding and word-serial, bit-serial, time-division formatý All peripheral
units on a single channel are connected to the transmission lines comprising that channel in parallel,
party-line fashion, such that physical removal of a unit from the lines does not interrupt the continu-
ity of the lines. All units on the same channel see all of the data on that pair of buses. However, on
a given channel, data is transferred oiily between the MC and a single peripheral at a time. Each bus is
independently routed through the aircraft to ensure reliable communication in the event of damage.

A multiplex terminal is incorporated as an integral part of each equlitent interfaced with the MC.
Each torminal performs the necessary functions to rece4 .. .,' validate data from the MC and transmit
date to the MC. In addition, it provides the necessary conversion/reformatting of data to interface
with the equipment component logic and accepts/geoerates the control signals that coordinate the
transfers within the equipment. No peripheral is required to receive or transmit over more than one bus
at a time. Data words transmitted by the NC or by the peripheral are always transmitted over the same
bus that carried the command word.

All transmissions are formatted into standard messages. The MC initiates each message transmission
by a command word that identifies the message, the number of data words, and the peripheral involved.
Each word transferred contains a three-bit sync waveform, 16 information/control bits, and one parity
bit.

2.3.2 Functional Characteristics

Only one of the buses of each redundant pdir is ective at any one time. The MC selects which of
the data buses is to be used for data transmission and initiates each data exchange over the selected
bus.

If the MC detects an input/output (I/0) error, i.e., no response from a peripheral, a parity error,
or a data dropuut, it will terminate processing of the I/O message. The MK then re-interrogates the
peripheral by re-transmitting the same command word on the othEr bus. If another error occurs on the
seconid bus, the MC internally flags an invalid response condition and proceeds to the next transmission
scheduled for the peripherals on that channel.

Message transfer rates of 20, 10, 5, and 1 Hz are provided to metch the execution rates of the
nodiles which generate or use the data. On-demand transfers, such as weapon release, also are utilized.

The Mi;sion Computers have an independent I/O processor for the multiplex channels per-itting full use
of the computer CPU for processing tasks during I/O. However, transfers are controlled by the CPU to
ensure that inputs, processing, and outputs occur sequentially for each rate. Control of the multiplex
system is transferred between the two MCs based on priority of need.

Ali



3747

3. MISSION COMPUTER wuFTWARE DEVELOPMENT

The F/A-18A Hornet software development pruess was based on testing the f'ight program before,
during, and after the actual coding of the program. FIgure (7) shows the five iaJor phases of the
software development.

o Phase 1 consisted of creating FORTRAN iwaels of selected equations, algorithms, and mode con-
trol. These models were tested in the Software Development Facility to provide the analytical
validation of the equations anO algorithms to be used in the OFP.

i In Phase 2, a FORTRAN model of the baseline design was used at the McDonnell Douglas Cockpit
' %imuletor Facility to evaluate the interface with the pilot and to test the mechanization
proposed for the weapon system. This step provided vital confirmation of design adequacy at an
early stage and allowed alternate approaches to be studied.

o In Phase 3, the mathflows were coded in the CMS-2M language syý,cem and the program compiled in
the Software Deveiopment Facility. The object programs were tested in the Software Test
Facility. At this point. KC hardware/software inconsistencies were isolated and corrected,
leading to preliminary confirmation of correct OFP sortware and MC equipment integration. The
McDonnell Douglas Software Test Facility w3s used to monitor and control the integration.

o As other avionics equipment arrived, Phase 4 tested the Mission Computer and associated software
with actual interfacing equipment. This step provided integration of the MC and the ML OFP with
the individual avionics equipment, followed by integration with groups of related equipment.

o Phase 5 ther. reintroduced the man-in-the-loop to verify the total man/machine system. This
phase used the McDonnell Duuglas cockpit simulator with the OFP running in the Mission Computers
along with the actual flight hardware for the controls and displays. The chief test ilot flew
the first flight profile at the cockpit simulator prior to aircraft first flight. ThC MC OFP
was then thoroughly evwluated during subsequent flight tests which are the final measure of its

performance.

4. F/A-18A SOFTWARE DEVELOPMENT FACILITIES

The F/A-18A Hornet integrated software development process, discussed above, made use of three
separate software facilities:

o Software Development Facility
"o Software Test Facility
o Cockpit Simulator Facility

4.1 Software Development Facility (SDF)

The Software Development Facility is a modest-size data processing facility. It uses an IBM
System/370 commercial computer system and standard peripheral equipment, operating system, and language
processors (see Figure 8)). This facility is used for all FORTRAN processing, database processing, and
compilation/assembly of airborne MC programs.

Figure (9) is a block diagram of the Software Development Facility showing the IBM S/370 mainframe
and associated peripherals, The facility includes the following equipment:

o (I) IBM 370/138 Computer (512K memory)
o (4) 100 megabyte disk drives
o 2J magnetic tapes drives
o0 l1 printer
o M card reader
o 5CRT/keyboard terminals

The following software is currently active in the facility:

System Software Avionics Support Software

o VM/CMS Operating System o CMS-2M HOL Compiler/Assembler
o IBM System/370 Assembler o MACRO-20/14 Assembler
o FORTRAN H Compiler o CMS-2M SYSGEN
o FORTRAN H Library o AN/AYK-14 Functional Simulator (SIM-14)
o SORT Utility o Avionics Environment, Sensor, and Display Models
o SCRIPT Word Processor o Database Catalog Program
o Display Editor o Operational Flight Program Tape Generator
o Plotter and Tablet Support o PATHFIND Program
o Graphics Attachment Support o Display Lompiler
o Basic System Extension o Software Configuration Control Program



3 3 7-8

4.2 Software T,,st Facility (STF)

The Mission Computer Software Test Facility is , minicouter-controlled, real-time simulatiun and
test facility ustd to test the airborne Operatiowl Flight Program (OFP) in the MC and to integrate the
MC and its OFP with the other avionics with which they interface. The STF accomplishes this by slimu-
lating the inputs to the MC and sending them out over the Avionics MUX fi response to the C requests
for data from various aircraft sensors. The MC processes these inputs as though it were flying in an
aircraft and then isues output data to the simulated sensors and to the cockpit displays. In general,
the input sensors are all modeled in software in the minicomputer whereas the CRTs used to display the
MC outputs are the actual displays used in the cockpit. This provides a realistic input signal environ-
ment for the MC and a realistic display of MC outputs for test and evaluation by the engineers and
programmers. Figure (10) is a block diagram of the STF.

4.2.1 STF Hardware

The hardware in tle McDonnell Douglas STF is divided into three nwjor benches plus tOa host
computer system with its veripherals as luentified below:

Host Computer Group (see Figure (11))

(I) HARRIS/7 Minicomputer
(2) Disk Storage Modules
()Magnetic Tape Unit
1 Card Reader
(1) Line Printer
(4) CRTs (System Console ai,'d General User)
( VERSATEC Printer/Plotter

General Purpose Interface Bei'ch (See Figure (12))

(1) High-Speed CRT and Keyboard

2 Simulation Control Panels
( Analog/Discrete Interface U01it
(1) Aircraft Stick/Throttle

Radar Interface Simulator

Avionics Integration Bench (See Figure (13))

(1) Communications System Control (CSC)

(1) Stores Management S .t (SMS)
1( Maintenance Signal Data Recorder (MSDR)

Head-Up Displiy (HUD)
(1) Multipurpose Oisplay Group (MDG) (three cockpit CRTs)
(1) Up-Front Contril

MC Integration Bencd, (See Figure (13))

(2) Mission Computers
(1) Multiplex and Discrite Interface
I Control Keyboard
ý1) Magnetic Tape Drive
2 Lab CRT Displays

Il, MuX ,•n.'itnr and PD, ipheral Simulator
I Interface for MC Support Channel

4.2.2 STF Software

The environment and avionics simulation softwyare provides realistic real-time inputs for the
Mission Computers by simuliting the aircraft environmnt (e.g., Atmosphere, Equations of Motion) .nd the
aircraft avionics subsystem (e.g., Radar, Air Data Ccmputer, Inertial Navigatinn Sat). There are four
major divisions if these functions:

Scheduler

Aircraft Environment Modules

Atmosphere
Autotrim/Autopilot
Inertia, Forces, Moments
EquAtions of Motion
T get
Aerodynami cs|

J'



37-9

Aircraft Avionics Subsystems Modules

Radar
Data Link (O/L)
Inertial Navigation Set (INS)
Air Data Computer (AD')
Laser Spot Tracker (LIT)
Forward Looking Infrdred (FLIR)
Flight Control Computer (FCC)
Maintenance Signal Data Recorder (MSDR)

(includes engine intertace)
Stores Management Set (SMS)
BL'ilt.-In rest (BIT)
Comnuincation System Controller (CSC)

(includes interfaces for Instrument Landing System and TACAN)

Support Functions

Envirornrmnt, Sensor, and Display Model Subroutines
Input/Output Conversion Subroutines
Aerodynamic Library Subroutines
Multipurpose Display Group Subroutines

4.3 Cockpit Simulator Facility

The Cockpit Simulator Facility, Figure (14), is a laboratory complex oriented primarily to manned,

real-ti. flight simulation. It includes a COC Cyber 175 computer, four crew stations, terrain maps,
horizon end target displays, and associated hardware. Each crew station includes complete flight con-
trols and instruments and is located in a forty-foot fiberglass dome. Target and terrain imagery is pro-
jected oi the dome and presented in the cockpit on software-driven displays or actual flight display
equipment. Both visual and sensor (electro-optical, infrared, radar) imagery is supported. The facil-
ity is used for weapon system design, pilot training. tactics development, and effectiveness assessment.

5. SUMMARY

In summary, the F/A-18A Tactical Airborne Computational Subsystem is a distributed computer system.
The mission-oriented computations are performed in two central Mission Computers and the sensor-oriented
computations are performed in distributed processors In the sensor and display equipment. The memory in
each Mission Computer can be doubled from 64K to 128K words within the present equipment envelope for a
total combined capability of 256K words. This memory growth along with the flexibility of the MC multi-
plex input/output system and the distributed partitioning of the sensor and display computations makes
the F/A-lBA computational subsystem easily adaptable to changes and expansions in F/A-18A mission
requirements and ready to share a long and successful future with the F/A-18A aircraft.

References

1. Griffith, V. V., Keifer, L. F., Paxhia, E. C., et al., "Aircraft Avionics Trade-Off Study (AATOS),"
McDonnell Aircraft Co., St. Louis, Mo., ASD/XR 73-20 Final Report, Nov. 1973.

2. Finkj, H. G. and Rosenkoetter, E., 'Aircraft Avionics from the Aircraft Manufacturer's Point of
View," McDonnell Aircraft Co., St. Louis, Mo., MCAIR 73-023, Sept. 1973.

3. McTigue, T. V., "F-15 Computational Subsystem," AIAM JOURNAL OF AIRCRAFT, Vol. 13, No. 12, Dec.
1976, Pp. 945-947.

IjIi

.I



37-10

SENSOR ORIENTED MISSION ORIENTED
* RADAR SIGNAL PROCESSING * NAVIGATION
* AIR DATA COMPUTATIONS 0 WEAPON UELIVERY
* INERTIAL NAVIGATION a INTEGRATED CONTROLS

AND DISPLAYS
* ENGINE MONITORING
0 SYSTEM BIT

!K

OP134M~I

FIGURE 1
FIA.1SA COMPUTATION REQUIREMENTS

AIR DATA
COMPUTER

P OCOPUTERS PROCESORS

SINERTIAL

NAVIGATION
COMPUTE

FIGURE 2
FIA.18A MISSI")N vs SENSOR COMPUTATIONS

AIR DATA INS STORES RADAR RADAR
COMPUTER COIPUTER MANAGEMENT SIGNAL

PROCESSOR PROCESSOR PROCESSOR

* PRESSURES o ALIGN/GB 0 SPARROW o RCVR GAINS 0 TARGET

0 AOA e ACCELERATIONS INTERFACE ' SIGNAL POSITION

e SIDESLIP . VELOCITIES 9 SIDEWINDEN THRESHOLDS • IRGET
INTERFACE * RANGE VELOCITY•Al TITUDE a PRESENT 0 GNRATNGE ST'HE

POIIN 0GUN GATING 0 TARGET
a AIRSPEED e POSITION INTERFACE a PULSE ACCELERATION
0 MACH ATTITUDE B DOMBS COMPRESSION 9 TARGET RANGE

* TEMP INTERFACE • AMPLITUDE 9 VELOCITY

0 AIR o HARM WEIGHTING ERRORS

DENSITY INTERFACE* RANGE S DISPLAY
0 WALLEYE RESOLUTION DATA

INTERFACE 0 TARGET
9 MAVEFICK DETECTION

'NTERFACE 0 TRACK S/N

0 RACK/VIDEO

CONTROL

0 JETTISON

0 WEAPON

INVENTORY

FIGURE3SESORORINE SOFTAR FUNCTIONS



37-11

FIGURE 4
MISSION COMPUTER AND PLUG-IN MODULES

09 - ___? _ - *OflU,\
NAVIGATION DATA U rb

Way UD WMPOJmgISPAVS 0

1110001 MTOR DATA 6WUGKffMOTO

LU~~~~ Val W~ agui

UC.FOH 
m0v

_________0L

M U:.inH DATA .na

FIGURES6
MISSION COMPUTER SUBSYSTEM

CsCMIh3IOt
COMPUTER I ag

No.1

4FCCA] RADAR

FCCO

MSCAM

0P0341UI

No.



37-12

AIR COMBAT SIMULATOR
DEVELOPMENT CENTER (FORTRAN OFP)

AIR COMBAT
SIMULATOR u~S~(ACTUAL

UC & OFP)

LAB BENCH INTEGRATION SOFTWARE TEST FACILITY

FIGURE 7
FIA-1IA MISSION COMPUTER SOFTWARE DEVELOPMENT PROCESS

FIGURE I
FIA-IA SOFTWARE DEVELOPMENT FACILITY



37-13

USERRSETEMIALTEMIAL TE RMIAL [TERMINAL

IBM I
S/370 r II

COMPUTER DISK IDS IK DS

1100 MBYTE 100MYE 00MYEjOMYT

CARD LN A AEMOTP
READER PRNE 75PST) 7IPST

OPERATORI4

FIGURES9
FIA.IISA fPOFTWARE DEVELOPMENT FACILITY

BLOCK DIAGRAM)

£V~in U111 ML AintoI
m~ja~lgm xfl~v CRY

FIGURE 10
FIA.IA~~ilph SOTAETS AIIYBOKDA RAMIwri eA

"AAWT ' L12

F$GUR 11 M
FDAiS S FTW - TElT FACIIT 4OST COUPTE GROU

BAA O .A



37-14

QP343 . Ise

FIGURE 12
FIA-1IA SOFTWARE TEST FACILITY

GENERAL PURPOSE INTERFACE EENCH1)

' l A

FIGURE 13
FIA-IMA SOFTWARE TEST FACILITY

INTEGRATION BENCHES

I

FIGURE 14

FIA-1IA COCKPIT SIMULATOR FACILITY

4'



38-1

F/A-18 WEAPONS SYSTEM SUPPORT FACILITIES

Thomas F. O'Neill
Naval Weapons Center

F-I1 Facility Branch (Code 3114)
China Lake, CA 93555, U.S.A.

SUMMARY

The U.S. Navy is currently acceptance-testing the McDonnell Douglas F/A-18 aircraft Since the F/A-18 is so much more
complex than any ai'craft currently deployed, more sophisticated support tools will be required. The main support tool
will be a weapons system support facility. This facility will ha'e all of the hardware and software necessary to test, modify,
and validate all of the avionics hardware, software, and firmware. A distributed processing approach is used in the facility,
which contains several minicomputers and super minicomputers.

I. INTRODUCTION

The McDonnell Douglas F/A-18 aircraft is an all-we,.the- fighter/attack aircraft capable of hosting a wide range of ordnance.

Figure 1.1 shows the F/A-18 with some of the ordnance it can deliver. Upon its acceptance into the Fleet, the Navy will
assume responsibility for the modification, test, and certification of the avionics, software, and weapon systems in the air-
craft. The Naval Weapons Center (NWC), China Lake, Calif., has the responsibility to provide system engineering, system
integration, software development, configuration management, and test and evaluation support throughout the life cycle of )
the F/A-18 aircraft.

In late 1978, the Weapons System Support Activity was formed at NWC to provide system engineering support to the
aircraft.

A specialized avionics support facility has been tasked by the Weapons System Support Activity to provide weapon system
support during all phases of the weapon system life cycle.

fI

FIGURE 1.1. The FIA-18 and some of its ordnance.

2. SUPPORTING THE F/A-18

With the addition of the F/A-18, NWC becomes the proving ground for an increasing majority of the fleet: of fighter/
attack aircraft within the Navy.

NWC has overcome a number of problems normally associated with verification and validation with the inception of a
unique weapons system support facility. The long-term success of this support facility approach has been demonstrated
in a varety of other programs, including those for the A-7, A-6, A-4, and AV-8B aircraft,

Validation through the use of test flights is impractical because of time and cost factors. By providing a work station
in which the various subsystems of the aircraft can be modified and rigorously tested, NWC has succeeded in reducing
cost and manpower requirements dramatically.

L A. . . . . . ... . . . . . ... . . ... ..



38-2

2.1 The Weapons System Support Facility

During the if, tycie of the F/A-18, many changes will have to be made to the avionics software. These changes may
be made in responise to problems detected or new capabilities de..rid by the Fleet, or may occur with the addition of
new equipment to the aircraft.

The Weapons System Support Facil•ty (WSSF) will contain the avionics procesrs, commercially available computers, and
the hardware and software necessary to test the operational flight programs. The facility then becomes the main tool for
validation. Any change to the avionics equipment will be tested in the facility before its incorporation into the aircraft.

The facility will provide two broad categories of software-simulation and support. The simulation is a high order language
program package that, given the same inputs, will produce an output identical to that of the avionics subsystems. The
facility user can then work with a mixture of simulated and real avionics. The support software consists of programs that
allow the engineer to generate, test. and validate new load modules for the avionics computers.

Since the avionics computers are not designed for software development, the facility's computers must provide the ability
to modify the source code for the flight programs, compile or assemble them, and then form a load mc,dule that the
avionics computers cart utilize. The tools necessary to implement this process include cross compilers and cross assemblers
to translate the source code into an object file, and some form of linker/loader to create a load module from the individual
object code files.

2.2 The F/A-I8 Aircraft

The F/A-18 is a sophisticated, high-perfornance aircraft that is, in itself, a distributed processing system. There are approxi-
mately 30 computers with a total of 700,000 words of program storage in the aircraft. 1 hese computers anlge in sie
from microprocessors with their programs in read-only memory to general-purpose computers with more than 256K words
random-access memory and disk memory. Each subsystem in the aircraft (for example, the inertial navigation system, stores
management set, and the radar) is a separate, self-contained computer that uses a dual redundant MIL-STD 1553 bus to
communicate with the two AYK-14 mission computers.

The AYK-14s act as bus controllers while the other computers in the aircra.t -espond to the commands from the AYK-14
as remote terminals. That is, the AYK-14s act as "traffic directors"; all data on the 1553 either comes from or goes to
the AYK-14s.

The F/A-18 cockpit is designed to give the pilot a visual display of all information concerning the operation of the aircraft.
A control panel could not be provided for each aibsystem because of the prohibitive number of subsystems present within
the aircraft. Therefore, the solution was to place three cathode ray tubes in the cockpit, and drive these displays by two
microprocessor generators. These displays are surrounded by 20 pushbutton switches, which are used to select the infor-
mation to be displayed, change the modes of the avionics computers, and select the weapons to be dropped. Typical dis-
plays are shown in Figure 2.1.

VIF/-" NhIW COCO"I

IMASM

.,,.-,
USGth,,uft & :-•-- *iomwra.

UtafOUSISPINAMAt

FIG'IRE 2.1. The F/A-18 cockpit.

2.3. Functional Requirements

The following are functional requirements to which the Weapons System Support Facility must respond:



38 3

(a) The facility must provide the a.ity to interchange simulated models of the avionics subsystems with the real
avionics hardware. This must be accompllshe; Ai such a manner that the r.al aviorics hardwre cannot detect that the
rest of the aircraft, as well - the world, is being simulated.

(b) The 1553 bus traffic has to be realistic. This requires that the hardware interface between the facility computers
and the 1553 has to respond in the prescribed manner, and that the data that the simulation g.1nerates must be in the
correct foTmat.

(c) The software written for the ,imulatlon must be in some high order language (HOL). The facility is expected to
support the F/A-18 program well into iie 199 0s. Over the life of the laboratory, if the software is not readable and eaily
modified, the cost would become astronomical. This requirement has a major impact on the design of the laboratory
because the avionics wftware is mostly coded in smembly language. The amount of memory and time it would take for
an HOL simulation of assembly language programs of this size becomes a maor cooicem.

(d) fit order to host the cross assemblers, cross compilers, and the linker/loaders necessary to develop software for the
avionics computers, a large address space is essential hi the facility's computers. These programs have been developed by the
contractors who produce the avionics subsystems, and are currently hosted on IBM mainframes.

(e) Line printers, magnetic tape drives, large disk storage, and graphic devices all must be provided in the facility to
store and process the data collected from the simulation and from flights.

3. A DISTRIBUTED PROCFSSING APPROACH

Analysis of the above tequirements revealed two baskv approaches to the WSSF design.

The mainframe approach requires the purchase of a single computer to host the simulation and all associated tools.

The distributed mirncomputer design involves the use of a number of minicomputers tied together in a distributed network
scheme.

3.1. Advantages of the Distributed Approach

Information gathered from other facilities revea!.d that the distributed approach has several advantages over thi; single
mainframe.

There are typically three types of users who need access to the simulation computers:

The simulation programmer requires computer time to code, test, debug, and integrmte his software with the other
models in the simulation.

The hardware engineer needs access to the computer to interface rnd test new equipment.

The simulation user uses the computers to run the programmer's simulation using the engineer's hardware.

In the past, limiting users to a single computer quickly resulted in scheduling problems. Multiple computers s&lve this
problem by dedicating an individual computer to each pa,.ticular area of need,

The distributed processing approach also has the advantage of easily accommodating the addition of more miniccmputers
to meet future needs. Whtn dealing with a project the size and complexity of the F/A-18, it is impossible to accurately
access fliture needs, particularly in the area of computer memory requirements. The use of minicomnruters promides an
unlimited expazsion capability.

3.2. Selection of a Family of Computers

The Digital Equipment Corporation's (DEC) PDP-1 I line of computers ý;as beeii chosen as the architectural base of the
facility because it offers a broad range of computers that can meet the general ii iport and real-time requiremepts in the
facility. In addition, DEC supplies a networking scheme which is extremely applicable to the facility's distributed pm)cesaing
approach.

3.3. Testing Tools

A necessary function of the facility is to provide a means of testing the avionics software. 'In. primary tool to provide
this capability will be a simulated environment that, using a combinatior of softwp--e models and real avionics subs)stems,
appears to the avionics computers ts an F/A-18 aircraft in flight. The sim!%lated models have to provide all of the ne essry
outputs in the correct format to stimulate *he other models and any real avionics; if the real avionic3 needs sensory inputs,
the simulation computers will have to provide these stimulations.

In addition, the facility provides a macro-level emulation of the avionics computers in the form of F software pak*age
that, uaing the load module of the avionics computers as input, emulates the actions of the avionics computers one q acmo-
code instruction at a time. This package also has the ability to set breakpoints in the execution to allow the operat r to
examine the data within the proaram and tract the path of the program through the load module.

When the simulation is running, data will be tamsed from one model to another within the simulation computers and 'rom
one avionics computer to another on the 1553 bus. The facility computers will provide real-time monitoring of selected
subsets of all of this data.



38-4

3.4. Evaluation Tools

Software packages are provided to . 3low the system engineers to evaluate the simulation and avionics software. Specifically:

(a) Any or all of the data that is passed among computers on the 1553 bus can be recorded on magnetic media for
later data analysis.

(b) By recording tl'c control inputs to the simulation and passing these back through the simulation at a liter date,
the simulation can be forced througi the same maneuvers time after time. Using thIs method, difterences between two
versions of the avionics software can be detected.

(c) The 1553 data can be recorded while the aircraft is in fllht and used at a later date to drive the simulator
cockpit displays.

(d) The facility will provide a wide range of data-reduction software, from line printer listings to user-interacive,
plotting packages. These data-reduction techniques allow rigorous scrutiny of datt collected duming flight for the purpose of
isolating errors and specific problem areas.

3.5. General Support Capability

Because of the large address space requited ty certain software packages, sui.h as cross assemblers and cross compilers, a
PDP VAX 11/780 was purchased. The VAX is a 32-bit, virtual memory c ,mputer with disks, magnetic tape drives, and liue
printers needed tu support the -vionics software generation tools. A backend graphics processor has been added to faciltate
data reduction. This relieves the VAX of the heavy processor load normally associated with graphics software. Figure 3.1
is a schematic layout of the VAXs used in the facility.

HOST CAPABILITY

WSSF/ASDSI WSF/VCMS

"II___ ___ __

3.6 Rel-Tme tatonsFIGURE 3.1. PDP VAX 11/780 schematics.

we sic

In the area o'f general support, the only requi~rement as that the work be completed. There ar, however, real-time aspe•cts
of the facility whe;.-by the work must be completed within a certain time frame. These real-time requirements indicated
that three types of work stations v'ould be required-the integration, vaslidation, and special function stations.

3.6.1. The integration Work StationI

Error correction or the addition of hardwar requires that a change be made to the avionics progprams. The ilasitid testn
of any modification is made in the integration station. If a change must be made to the avionics software or hardware, the
engineer will devise a solution, be it a simple software fix or something as complicated as a new weapon system. The
Integration station will be used to test this modification until the perfonrmance meets with the eng~neer's approval.

3.6.2 The Validation Work Stst•

Once thes software or hardware has pained the initial testing in the integration station, it is transferred to the validation
station. Just as the name implies, validation involves rigorous testin for the pups of ensuring that the modification made
hus corrected the known errors without Introducin any additional ones.

hAam



38-5

3.6.31 Special, Dedicated Work Statior•os

Dedicated work stations are necessary to kntensely test individual subsystems of the alrcrnft. In these stations, it is not
the entire weapon delivery system that is being tested, hut rather the software in only one subsystem. Currently planned
are work stations for the stores management sat and the radar.

4. THE FACILITY AT NWC

The PDP-11/60 computer has been chosen as the basic build!ng block of the facility. The 11/60 is a 16-bit minicomputer
with a maximum of 128K (K is equal - 1024) words of memory. Using the RSX-I IM operating system allows both soft-
ware developmc:.tM Pn real-time responsiveness. The design of the integration station is shown in Figure 4.1.

AM IN

MNSTIPRAll IYSSMSUT11

4.1. TheI21 lie3 lnrfc

i AA

!~RNC INTAIPP 1hIAI fa ilt N•TI

%ill sv IýllI

thsrqiesa nfce bewnth faiity coiuer andth 13bu.Tsinefcisk own A0 ulil rmt

€011IRITIS

tennlbeas tl s aal fr•pnigo h u si twr eea voissbytm. w•Themi pl emt

ii @i
ht aio sui

FIGURE• 4.!.. The integration worf station.

4.1. The 1R53 Intri rfac.o

The facility compute i must aommunicate with the avionics subisyefo s for the real-tiom e work stations to function property;
this requires an interface berweio the facility computers and the 1553 bus. This interface is known am a multiple remote
termini because it'hes crpble of taponding on the bus as if it wert several avionics subsystemsn The multiple remote
terminal is a micseontroller-based, direct-memory-occess devicer O nce this device is enabled, it handles all of the brs traffic

a with no Icad on the iscility computers.

Then am the u ypes of rentc timuLais on, tihes facility-one that responds to commands on the 1553 as the tiNfo micro-
pnmceors for the display grouai and one that responds as the rest of the avionics subsystems. The display group remoten
terminal w spondsm tm h mods to th AYK-14s to eutonatically build a display file in PDP memory, perform checksum
calculations to verify the data transfers, and transmit status inibrcnatidn oncesting the display group( m

The other remote cainal is capable of acting as either the bus contoruler (for testing purposes) or ts 16 remote terminals.
It is through these sin chted remote terminal ports th the simulation communicates with the AYK-14il

4 2. The Real-rime Computers

Centrati to the facility is a PDP- ar60 used exclusively for software development and epmulation control. Tracking the
development of the variou th mods would be unnecessarily complicated if each programmer were to write code on adifferent computer. Therefore, software development is Uimitod to this single "HOST"' 11160. Baseline versions of the models

ae kept in sed on t f Accounts, and the d yvelopment versions of the models in another.

Becausame trcomputers, a simulation executive has been written to run on the "HOST" 11/60.When the user wants to run the simulation, he starts this executive, which in turn requests the followhig information: the
name of the Mie contai, iv a fist of the models the user wants to run, whether the models ame baseline or development,
and which computer the model is to run in. The executive then starts the models in the appropriate computers. At this
time, the user can release the simulation to run at 50 milliseconds, singlle step the simulation (this mode is useful for
debulting), or he can request the time ii takes for each model to run. Tite executive will calculate the total run time for
the models the user has chosen and will disallow the configuration if this total exceeds the 50-millisecond maximulm.

It was estimated that Ave I li60s are needed to run the simulation of the avionics equipment including the AY-14s and
the world (modes of the earth and e'mospb-.- are needed for proper simulation of the airframe characteristics). This
estimate is based on the numt,•r of models, the cycle time of the simulation, and the fact that certain models neod to run
in the same computer,



38-6

A sixth cowoputer drives th.- display units. Since the display group has a very powerful instruction set, one 11/60 is
dedicated to processing the display data received on the 1-':53 bus from the AYK-14s.

Yet another 11/60 is dedicated to hardware development. The hardware engineer can develop his interfaces on this machine,
and if the device ever crashes the computer, he can. simply reboot without affect•.•g other users.

4.3. Multiport Memory

Because the simulation tasks are not all located within the same computer, there has to be a means of communicating data
from one -:del in one computer to anot:ier model in a different computer. Conventional communication schemes were not
appealing since they were relatively slow (on the order of milliseconds per transfer). To solve this problem, a multiport
memory has been designed and fabricated.

'This memory unit is 8192 words of random-access memory which contains eight computer ports. Each port can interface
with a different computer, thereby allowing up to eight computers to communicate with each other at memory access
speeds (on th, order of inicro•.econds, a factcr of 1000 be*':r than other -nmunication schemes). This memory is fast
enough so that it all eight ports i'equest data simultaneously, all requests wvill be granted within the normal memory access
speed of the 11/60 memory system. There is a self-contained arbitrator in the common memory unit to resolve multiple,
simultaneous data requests.

Error logging and diagnostic ports have been built In fi facilitate detugging of both hardware and software errors. These
ports allow errors to be collect,.d for detection of error-causing condri '., within the memory system.

4.4 The Displays

The simulation of the two display microprocessors is complicated by th' addition of an out-the-window display behind the
head-up display. This out-the-window view has been added to increame the realism of the work station. Figure 4.2 shows
the three displays and the out-the-window view.

I

FIGURF 4,2. The integration cockpit.

The test fliights thi Amre currently planned for the F/A-18 when it arrives at NWC will cover several thousand square mUm.
To be able to display all of the areas the pilnt will be looking at during these flights, software has been written to digitim
ihe background d Ia for the western half of the United States. Data is constantly being added to the background to
increase the detail.

The. display of the graphic data (the background and the simulation of the avionics displays) is divided between two
graphical processors. The background is displayed by an Evans & Sutherland Picture System 11. This is a highly capable
graphics system that displays data in three dimensions, with the processor handling the time-consuming work involved in the
generation of three-dimensional data.

The simulation of the avionics displays is performed on an ADAGE 4145, which is a two-dimensional device having the
features of a user-programmable writable control 3tore (WCS). The WCS can then be programmed so that the ADAGE
performs as though it were two avionics display generators.



38-7

4.5. 3he Static Control Panel

Figure 4.3 shows another integral part of the cr-.kplt work station, the static control panel. This 'Vatlc panel" is a serie

of control switches and lilht-emitting diode displays which allow operator control over certain parameters affecting tlse air-

craft, By dialing in the roll, pitch. and heading )f the aircraft, the user can effectively fly the simulator from this panel.
The simulation is constantly monitoring the pawl !.) see if the operator has selected control of any of the more than

30 parameters available. If a particular variable is not selected for operator control, the simulation will calculate it; if on

the other hand, the operator does want control, then the simulation receives the value for the parameter from the panci
inputs. In ,,is way. the aircraft can be frozen in space and any of the parameters can be varied in small, controlled steps.

FIGURE 4.3 °he static panel.

4.6. Data Logging

Hardware and software will have to be built and written to interface with the 1553 bus and collect all or any part of the

data that is being passed from one computer to another, The data will be collected, time tagged, and then recorded directly

onto magnetic media for later analysis.

S. CONOU LSION AND SUMMARY

The Naval Weapons Center has a long and successful history of suppurting aircraft using the Neapons System Support

Facility approach. Facilities to support the newer avionics systems are required to be more complex, cost effectim, and

support a project from initial verification through Fleet maintenance. NWy providing a WSSF for thC F/A-18 aimraft, NWC
will succeed in reducing long-term cost and manpower requirem•nts dramatically.

-A.. i



S7-I

DISCUSSIONS
SESSION VII

RFFLPZNCE NO. (IF F PER: VII-32

DISCUSSOR'S NAME: Alan Stern, Boeing Co.

AUTH,)R'S NAME: K. Moses

COMMENT: In the eý,.,nt of an in-flight reconfiguration, how is new software loaded and how is it
assured to be co-'vect?

AUTHOR'S REPII: In-flight reprogramming of software (as distinct from reconfiguration of LRU's) is not
contemplated.

REFERENCE NO. OF PAPER: VII-32

DISCUSSOR'S NAME: O". A. A. Callaway, RAE

AUTHOR'S NAME: A4. Noses

COMMENT: One of the rumors we hear coming out of USA is the requirement by the USAF that the MIL ST1
1750A Instruction Set Architecture be used for all future embedded computer applications. Is the SIFT
concept compatible with the 1750A ISA?

AUTHOR'S REPLY: The SIFT concept is compatible with the 1750A ISA. The problem might be to find the
processor that has the 1750A ISA and the required speed for flight control computers. We, in the US,
hear the same rumor, and hope thaTiTt's not true.

REFERENCE NO. OF PAPER: VII-33

01OCUSSOR'S NAME: G. Hall, Sweden

AUTHOR'S NAME: Nelson

COM4ENT: Have I understood it right that this can be used only on machine-language level?

AUTHOR'S REPLY: Yes, for those functions that involve instruction by instruction analysis. However,
many of the functions are more global in nature. SOVAC could use information from a compiler symbol
table and loader map to allow most functions tL le used with high-level languages.

In fact, if the SOVAC software had full access to the data available from a compatible high-level
compiler, it could perform all correspording SOVAC functions for the high-level language user.

REFERENCE NO. OF PAPER: VII-33

DISCUSSOR'S NAME: Richard Schwartz, SRI, USA

AUTHOR'S ?IAME: H. Nelson

COMMENT: In what language is your application software written? As you mo-,e to higher level
languages, do you expect SOVAC to still be useful? Would you attempt to siNport design aids taking
advantage of the use of a higher level language?

AUTHOR'S REPLY: (1) The SOVAC software is written in PASCAL. (2) SOVAC has the ability to recognize
and collect data on all observable activity in the tactical computer. Thus,it is primarily an issue of
SOVAC software development to give it high-level language support capability. (3) In the future, we
plan to develop SOVACs for machines using high-level languages. As we develop the requirements, we
will investigate reasonable high-level aids. I expect it will be able to fully support the needs of
the high-level language user.

REFERENCE NO. OF PAPER: VII-33

DISCUSSOR'S NAME: M. Mansell, British Aerospace

AUTHOR'S NAME: Harvey G. Nelson

COMMENT: On a number of occasions during flight development trials on Set Harrier we experienced core
store corruptions in the main computer. Have you experienced similar problems at the NWC and could yot.:
describe whether and how the SOVAC system could be used to investigate sch problems?

AUTHOR'S REPLY: We have had similar types of problems at NWC. SOVAC was developed to be able to
assist in the isolation of the source of these faults. To identify the memory locations changed, use
the verify function to compare all protected locations against the corresponding values in a reference



S7-2

file. Once the locations have beer, identified SOVAC can be used to watch activity associated with
those locations. Any of the SOVAC functions car be used to collect the data desired to analyze the
cause of the problem.

REFERENCE NO. OF PAPER: VII-33

DISCUSSOR'S NAME: W. R. Richards, Smith industries

AUTHOR'S NAME: H. Nelson

COMMENT: I am familiar with the facilities provided by Universal 'icroprocessor Development
Systens--in particular the Tektronix 8002 system. The facilities provided by "SOVAC" seem almost
identical. Would the speaker please comment?

AUTHOR'S REPLY: Microprocessor developmetit systems address the same general programmer needs.
However, they are intended to be used with specific microprocestors with complete access to all needed
signal and data lines. Also, their capability is somewhat low in bandwidth.

SOVAC is designed to work with high c,,p.icity, high speed "mini" computers with less than full
access to the desired signal and data lines. 13VAC has a very high bandwidth and high capacity data
collection capability.

Finally, SOVAC has the full data collection, stcrage, and computational caoebilities of the POP
11/34 computer to support it. Most enhancements to SOVAC involve only changes to the SOVAC software in
the POP 11/34.

REFERENCE NO. OF PAPER: VII-34

DISCUSSOR'S NAME: Jim ?IcCuen, Hughes, USA

AUTHOR'S NAME: G. Wilcock

COMMENT: Has the UK as yet developed a MIL-STO for Solid State Power Controllers (SSPC)? •c there
any SSPC in production?

AUTHOR'-, REPLY: The IUK has not yet produced a document similar in scope to a MIL standard 'or Sol id
State Power Controllers, although standardization is being pursued in a number of differenL ways.
Specifications EL2141 and EL2143 have been published (source Elec 2/4, MOD(PE)). These do nrt have the
authority of a MIL staviiard but are intended to promote information interchange betweer proýpective
users and suppliers and subsecueýntly to serve as a basis for particular equipment speLifications. The
UK MOO is participating in ti* ictivity of the International Standards Organization which is drafting a
standard for Renote Power Controllers (ISO/TC20/SCI). British Defence Standard 00-18 (Part 4)/Issue 1
relates to discreet (on/off)signaling but includes the operation of controllers for load rat',iigs. up to
O.2A. A more comprehensive coverage of loads and ratings is being considered for future issues.

There are no Defence Standard SSPCs in production, although there are a number of different
devices in an advanced state of development. UK MOO has funded development of both ac and dc solid
state and hybrid units at Plessey, Titchfield. Development fif a monolithic IC to perform the control
functions of an SSPC with increased reliability and reduced volume is also being funded (Swindon
Silicon Systems, Swindon). Initial devices are being ev',Iuated.

REFERENCE NO. OF PAPER: VII-35

DISCUSSOR'S NAME: Schoelch, IABG

AUTHOR'S NAME: S. Croce

COMMFNT: Can you give some figures on the size of the software programs, especially of the main
computer? Do you have any experience in software maintenance of this system? Which people and how
many people are involved in this bus,,iess?

AUTHOR'S REPLY: (1) Les programmes du calculateur principal occupent entre 40 et 50K mots pour une
m•n•ire installce de 64K mots de 16 bits (plus 2 bits de pariti). (2) Le systbr du mirage 2000 est
actuellement en cours de dfveloppenent. On procade done h des modific,,tions plutOt qu'l de la
maintenance. Celle-ci sera cependait eff.ctu~e par les fabricants des matiriels, qul sont aussi les
"fabricants" du logiciel incorpore. Cette maintenance sara toutfois facilitie par l'utilisation d'un
langage de haut niveau (ltr) et la mise en pratique d'une methodologie rigoureuse qui oblige les
programmeurs I r~aliser la documentation er mnoe temps que le codage.

(1) The programs of the main processor occupy from 40 to 50K words for an installed memory of 64K words
of 16 bits (plus 2 parity bits). (2) The system in the Mirage 2000 is presently in the process of
development the next (step) is to proceed to (a phase of) modifications rather than to maintenance.
The latter (maintenance), moreover, will be accomplished by the equipment manufacturers, who are also
the "manufacturers" of the embedded software. The maintenance will be ever facilitated by the use of a
high order language (HOL) and the application of a rigorous methodology which forces the programmers todo the documenting at the same time as the coding.



S7-3

REFERENCE NO. OF PAPER: V1I1-35

DISCUSSOR'S MAME: M. Mansell, British Aercspace, Kingstrc, Division

AUTHOR'S NAME: B. Vandpcasteele

COMMENT: On your dynamic development rig do you inject "dynamic" computer generated synthetic signals
representing & target and if you do, at what point do you inject these into the radar system?

AUTHOR'S REPLY: La stimulation peut s'effectuer de deux manieres diff6rentes:

- le radar pousuit effectivement une cible r4ele; ses informations sont alors traities par les
equipments du banc et peuvent etre envoyifes ý l'autodirecteur du missile.

- le radar ne pousuit pas de cibles; la mission est entibrement simul~e. Les ichos simul6s sont
alors injectds au niveau de la ligne num6rique interne du radar.

Stimulation can occur two different ways:

- The radar effectively tracks a real target; its data are then processed by the test-bench
equipment and can be sent to the missile's automatic controller.

- The radar does not track targets; the mission is entirely simulated. Simulated echos are then
injected at the level of the digital data line internal to the radar.

REFERENCE NO. OF PAPER: VII-38

DISCUSSOR'S NAME: M. Mansell, British Aerospace, Kingston Division

AUTHOR'S NAME: T. F. O'Neill

COMMENT: If you wish to look at particular parameters within a mission computer computation do you
make changes to the OFP to output data for recurding and how do you cope with flight clearance of the
OFP with this mode in and then removed when the problem has been solved?

AUTHOR'S REPLY: Two choices: (1) put the patch in, validate it and leave it in. This is useful only
if the problem 's a long term one. (2) put patch in, solve the current problem, take patch out, then
validate.

REFERENCE NO. OF PAPER: VII-38

DISCUSSOR'S NAME: G. Scotti, SELENIA, Italy

AUTHOR'S NAME: T. F. O'Neill

COMMENT: How many people are currently Joining the WSSF team? And how much man-year effort have you
spent on the F18 progrim?

AUTHOR'S REPLY: There are 50-55 people working full time for the WSSF. Totally, there are probably
twice that at NWC.

J



A-I

APPENDIX

LIST OF ATTENDEES

ACTON, A.A. Mr Marconi Avionics (Training Dept.) Ltd, Airport Works, Rochester,
Kent MEI 2XX, UK

ATKINS, R.J. Mr Smith Induatries, Aerospace & Defence Systems Co., Winchester Road,
Basingstoke, Hants, UK

BAHRE, R. Mr Fraunhofer-Institut fu-r Inforniations, u. Datenverarbeitung, Sebastian-Kncipp
Str. 12-14, D-7500 Karlsruhe, FRG

BALL Wm.F. Mr Head, Avionics Facilities Div., Naval Weapons Center (Code 311), Dept. of the
Navy, China Lake, CA 93555, USA

BARBER, B. Mr ADV Team, British Aerospace P.L.C., Aircraft Group-Warton Division, Warton
Aerodrome, Preston, Laiacs, UK

BARTH-NILSEN, K.W. Mr A/S Kongsberg Vaapenfabrik, Boks 25, N-360 i Kongsberg, Norway

BENNIS, H.G.M. Mr Physics Laboratory TNO, Oade Waalsdorper-eg 63, The Hague, The Netherlands.

BRAATHE, R. Mr A/S Kongsberg Vaapenfabrik, Boks 25, N-3601 Kongsberg, Norway

BRAMMER, K. Dr ESG Elektronik-System-Gesellschaft, Postfach 800569, D-8000 Mrinchen 80,
FRG

BRAULT, Y. Mr Sous-Directeur, Thomson-CSF, 178 Bd Gabriel P6ri, 92240 Malakoff, France

BROSS, P.A. Mr Postfach 80 05 69, Electronic-System-GmbH, Vogelweideplatz 9,
D-8000 MOnchen 80, FRG

CALLAWAY, A.A. Dr Flight Systems Dept. Y20 Bldg., Royal Aircraft Establishment, Farnborough,
Hants GU14 6TD, UK

CLEMENT, Mr Ferranti Ltd, Ferry Rd., Silverknowles, Edinburgh EH4 4AD, UK

CROVELLA, C. Mr Caselle Plant Manager, AERITALIA-Gruppc Equipaggiamenti, Esercizio di
Casselle, 10072 Caselle Tonnese, Italy

DANIEL, Mr Thomson CSF, 52 rue Guynemer, 92130 Issy les Moulineaux, France

DELEGUE, Mr Thomson CSF, 52 rue Guynemer, 92130 Issy les Moulineaux, France

DE WINTER, J. Capt. Belgian Airstaff - VDT/B, Rue d'Evere 1, 1140 Brussels, Belgium

DIAMOND, F. Dr Chief Scientist, Rome Air Development Ctr./CA, Griffiss AFB, NY 13441, USA

DOVE, B.L. Mr Head, Avionics Systems Branch, Electronics Directorate, Mail S. 477, NASA
Langley Research Center, Hampton, VA 23665, USA

DUKE, P. Mr British Aerospace Aircraft Group, Kingston/Brough Division, Brough, North
Humberside HUI 5 1 EQ, UK

DUNCAN, I. Mr Ferranti Ltd, Ferry Road, Silver Knowles, Edinburgh, Scotland, EH5 2XS, UK

EIKELAND, G. Major Air M.terial Command, P.O. Box 10, 2007 Kjeller, Norway

EVANS, B. Mr Marconi Avionics Limited, Elstree Way, Borehamwood, Herts, UK

FAEGRI, A. Mr A/S Kongsbcrg Vaapenfabrik, Boks 25, N-3601 Kongsberg, Norway
FANTOZZI, C. Ing. Indusu-ie Face Standard, Via Della Magione, 00040 Pomezia, Roma, Italy

FERRERI, J.F. Mr Avions Marcel-Dassault, 78 Quai Carnot, 92214 St. Cloud, France

FORGUES, M. Mr CIMSA, 10 -12 Ave de I'Europe, 78140 Velizy, France

GANGL, E.C. Mr ASD/ENAI, Wright-Patterson AFB, Dayton, Ohio 45433, USA
GERHARDT, L. Prof. Systems Engineering, Rensselaer Polytechnic Institute, Troy, N.Y. 12181, USA

GHICOPOULOS, P. Mr Hellenic Air Force Technology, Research Centre (KETA), Delta Falirou,
P Faliron, Athens, Grcece



A-2

GIORDANI, E. Dr Systems Engineering Mgr., c/o S.I.A., V-a Canovp,, 25, 110126 Torino, ItalyI

GOULET, Mr MATRA, BP No. I - Ave. Lous BregiatA, 78146 Vedizy, Villacoublay Cedex,
France

GREFFET, R. Mr SFIM, 13 Ave. Marcel Ramolfo-Garnier, 91301-Massy, France
GRICE, J.A. Mr Attn of TRC/Personnel Dept., Easains Ltd, Lyon Way, Frirnley Road,

Camberley, Surrey GU 17 0P4

HALL, L.G. Mr Research Institute of National Defence, Dept. 2, Fack, S-10450 Stockholm,
Sweden

HARDENBOL, A.G. Ir. Scientific Advisor to Cincent, HQ AFCENT, Post Box 270, 6440AG, Brunssurn,
The Netherlands

HARTKE, DipI. Ing. Institut ffur Luft-und Raumfahrt, Marchstr. 14, Ski. F3, D-1000 Berlin 10, FRG
HAUGLAND, T. Mr N.D.R.E., P.O. Box 25, Kjeller, Norway
HEGER, D. Fraunhofer-Institut f~r Information, u. Datenverarbeitung, Sebastiant-Kneipp-

Strasse 12/14, D-7500 Karlsruhe, FRG
HELPS, Mr Smiths Industries, Aerospace & Defence Systems Co., Cheltenham Div., Bishop's

Cleeve, Cheltenham, Glos. GL52 4SF, UK
HOENINK, G. Mr Centrum Automatiscring Wapen en Commandosystemen, Koninhlyke Marine,

Marine Postkastoor, 1780 CA Den Heider, The Netherlands)
HOIVIK, L. Dr NDRE, P.O. Box No.25, N-2007 Kieller, Norway
HUNT, G.H. Dr Royal Aircraft Establishment, Farnborough, Hants GU 14 6TD, UK
HVINDEN, 0. Mr N.D.R.E., P.O. Box 25, N-2007 Kjeller, Norway

von ISSENDORFF, H. Dr Forschungsinstitut Funk & Mathematik-, Konigstr. 2, D-5307 Wachtberg-
Werthhoven, FRG

JACOBSEN, M. Mr AEG-Telefunken N I4/V3, D-7900 Ulm, Postfach 1730, FRG
JANIK, K. Mr Bundes~mt fir Wehrtechnik und Beschaffung, Luftfahrtgerit der Bundeawehi,

Landshuter Allee 162a, 8000 Mtinchen 19, FRG
JUANOLE, G. Dr Laboratoire d'Automatique et d'Analyse des Syst~mes du C.N.R.S., 7 Ave. du

Colonel Roche, 31400 Toulouse, France

KENNIS, F. Col. Belgian Airstaff - VDT/B, Rue d'Evere 1, 1140 Bruxelles, Belgium
KIRSTETITER, B. Dr Eurocontrol, rue de !a Loi 72, B-1040 Bruxelles, Belgium
KISTER, H. Mr VDO-Luflitfahrtegerate Werk, Am der Sandelmuhle 13, 6000 Frankfurt-

Heddernheim, FRG
KLEIH, W. Dr Mesaerschmitt B~lkow-Blohm GmbH, FE 411, Postfach 80 1160,

8000 Mllnchcai 80, FRG
KOLSTAD, B. Mr Air Material Command, P.O. Box 10, 2007 Kieller, Norway
KUHLEN, H.P. Mr ESG Elektronik System GmbH, Postfach 800569, Vogelweideplatz 9,

8000 Mfinchen 80, FRG

LAMBRAKIS, Mrs KETA, Delta Falirou, Palaion Faliron, Athens, Greece
LECOQ, M. Ms MATRA SA, 37 Av L. Breguet, 78140 Velizy, France
LE GAC, i.Y. Mr DTEN/STEN, Bureau Guidage-Pilotage, 26 Boulevard Victor, 75015 Paris,

France
LIE, 0. Mr Air Material Command, P.O. Box 10, 2007 Kjeller, Norway
LIVESEY, J. Dr School of Information & Computer Sc., G,-orgia Institute of Technology,

Atlanta, GA 30332, USA
LOHNERT, F. Mr TU Berlin, Institut f. Technische Informatik, Sekr. HHIl, Einsteinufer 35-37,

1000 Berlin 10, FRG

MACKINTOSH, 1.W. Mr Royal Signals and Radar Establishment, St Andrews Road, Great M~alvern, *
MACPHERSON, R.W. Dr NDHQ, CRAD 19NT, 101 Colonel By Drive, Ottawa, Onatario, KIA 0K2,

Canada

MAHER, S. Lt AFVWAL/F1GLB, Wright-Patterson AFB, OH 45433, USA
MANSELL, M. M-r British Aerospace Aircraft Group, Kingston/Brough Divisio-a, Brough, North

Humbe rside HUI 151EQ, UK



A-3

MARTIN, i.T. Mr Bracknell Division, Ferranti Computer Systems Ltd, Western Rd, Bracknell,
Berkshire RGI12 IRA, UK

MA'.'UHN, P. Mr Postfach 1120, Bodenseewerk Geratetechnik GmbH, D-7770 Uberlingen, FRG
MAYES, D.J. Mr Smniths Industries Ltd, Bishops Cleeve, Cheltenham, Glos., UK
McCUEN, i.W. Sr Proj. Engineer, Systems Div., JTIDS Program Office, Hughes Aircraft Co.,

P.O. Box 3310, TC13, A-l05, Fullerton, CA 92634, USA
McTIGUE, T.V. Mr Dept, 312 Bldg 27 1B, McDonnell Aircraft Co., P.O. Box 516, St Louis,

MO 63166, USA
MEGNA, V.A. Mr F-8 DFBW Program Manager, The Charles Stark Draper Lab., Inc., MS #04,

555 Technology Square, Cambridge, Mass 02139, USA

MERAUD, M. Mr SAGEM. rue de la Tour Billy, Argenteuil 95500, France
MOIR, 1. Mr Smiths Industries, Cheltenham Div., Bishop's Cleeve, Cheltenham,

Glos. GL52 4SF, UK

MOSES, K. Mr Flight System~s Division, Bendix Corporation, Teterboro, NJ 07608, USA
MOWAT, A.R. Mr Ferranti Ltd, Ferry Rd, Silyerknowles. Edinburgh, EH4 4AD, Scotland, UK
MOXEY, C. Mr British Aerospace Public Ltd Co., Aircraft Group Warton Division, Warton

Aerodrome, Preston, Lancs PR4 lAX, UK

NELSON, H. Mr Naval Weapons Center, Code 3115, China Lake, CA 93555, USA

O'NIELL, Mr Code 3114, F-18 Facility Branch, US Naval Weapons Ctr., China LIake,
CA 93555, USA

PAGANO, F. Mr Oto Melara S.p.a., v. Valdilocchi 15, 19 100 La Spezia, Italy
PAR f RIDGE, B.W. Mr Marconi Radar System, West Hanningfield Rd, Great Baddow, Chelmsford,

Essex CM2 8HN, UK
PENERY, M.T. Mr EMI Electronics Ltd, R&E Div., Wells, Somerset BAS I1AA, UK
PUTZKI, R. Dr SCS GrnbH, Oehleckerring 40, 2000 Hamburg 62, FRG

QUEMARD, i.P. Mr Electronique Marcel Dassault, 55 Quai Carnot, 92214 St. Cloud, France

RICHARDS, W.R. Mr Smiths Industries Ltd, Bishop's Cleeve, Cheltenham,. Glos., UK
ROBERTS, M, Mr British Aerospace Aircraft Group, Kingston/Brough Division, Brough, North

Humberside HlU 15 1 EQ, UK

ROSSIGNOL, 0. IA STTI/PNI, 129 rue de Ia Convention, 75731 Paris Cedex 15, France

SAGE, D.S. Mr Marconi-Avionics Ltd, Monks Way, Linford Wood, Milton Keynes, UK
-SALTZER, J. Prof. Prof.. Computer Science, M.I.T., Room NE 43-505, 545 Technology Square,

Cambridge, Mass. 02139, USA
SANDBRAATEN, H. Major Air Material Command, P.O. Box 10, 2007 Kjeller, Norway

SCHLICHT, E. Mr ESG Elektronik System GmbH, Postfach 800569, Vogelweideplatz 9,
8000 Muanchen 80, FRG

SCHOLCH, J. Mr Industze.anlagen-Betriebsgesellschaft, IABG-Einsteinstrasse Geb. 2 1,
8012 Ottobrunn b. Munchen, FRG

SCHWARTZ, R.L. Mr Computer Science Laboratory, SRI Intrniational, 333 Ravens-wood Ave.,
Menlo Park, CA 94025, USA

SCOTTI DI UCCIO, G.A. Dr Proj. Mur., Selenia S.p.a. Avionics Systems, V. dei Castelli Romani 2, Pomezia,
Italy

SERRA, E. Ing. Elletronica San Giorgio, Via Hermada 6, 161 .4 Genova-Sestri, Italy

SHIN, K.G. Prof. Electronic-Comptr & S~ystems Eng Dept., Rensselaer Polytechnic Inst.,
Troy, NY 1218 1, USA

SMEDSRUD, P.B. Mr A/S Kongsberg '/aapenfabrik, Boks 25, N-3601 Kongsberg, N,)rway4
SMESTAD, T. Mr NDRE, Div. for Electronics, P.O. Box 25, 2007 Kjeller, Norway
SORASEN, 0. Mr NDRE, Div. for Electronics, P.O. Box 25, Kjeller, Norway

SPONHOLZ, R. Mir Bodenseewerk Geratetechnik Abt FRN-EL, Postfach 1120, D-7770 Uiberlingen,
FRG$

STERN, A.D. Mr Mgr., Dgtl Fit Ctrls Res., MS 86-06, Boeing Military Airplane Co., P.O. Box 3707, A
Seattle., Wa 98124, USA



A4

STERNANG, A. Mr A/S Kongsberg Vaapenfabrik, Boks 25, N-3601 Kongsberg, Norway
STOEVNE, H.H. Mr A/S Kongsberg Vaapenfabrik, Boks 25, N-3601 Kongsberg, Norway
STRADA, J.A. Cdr Office of Naval Research, Box 39, FPO NY 09510, USA

SVOBODOVA, L. Mrs B.P. No. 105, INRIA, Domaine de Voluceau-Rocquencourt, 78153 Le Chesnay,
France

SZLACHTA, M. Mr LITEF, Der Hellige GmbH, Lorracher Str. 18 Postfach 774, 7800 Friebu,, k-RG

THORSEN, J.G. Mr A/S Kongsberg Vaapenfabrik, Boks 25, N-3601 Kongsberg, Norway
TIMMERS, H.A. Ir. National Aerospace Laboratory NLR, Anthony Fokkerweg 2,

1559 CM Amsterdam, The Netfie,-tands

VAGNARELLI, F. L/Col. Prof. Aeronautica Militaire, Ufficio Delegato Nazionale all'AGARD, P. le K. "nauer,
3, 00144 Roma-Eur, Italy

VAN KEUK, G. Dr Forschungsinstitut f'tir Funk & Math., FGAN, 5307-Wachtberg-Werthoven, FRG

VANDECASTEELE, B. Mr B.P. 3G0, 78 Quai Camot, 92214 St. Cloud, France
VASLIN, Mr SFIM, 13 Ave Marcel Ramolfo-Garnier, 91301-Massy, France

VOGEL, M. Dr DFVLR, D-8031 Oberpfaffenhofen, FRG

WARD, A.O. Mr Warton Division - Warton Aerodrome, British Aerospace - Aircraft Group,
Preston PR4 lAX, UK

WARR, H. Mr EMI Ltd, Radar House, Dawley Road, Hayes, Middlesex, UK

WEISS, M. Dr Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009, USA

WHITEHOUSE, H.J. Mr Naval Ocean Systems Center, Code 5303, Catalina Blvd., San Diego, CA 92152,
USA

WILCOCK, G.W. Mr EP Department, Royal Aircraft Establishment, Farnborough, Hants GU14 6TD,

t UK
WOLF, J.K. Prof. Dept. of Elec. & Comp. Eng., University of Mass., Amherst, Mass 01003, USA
WRIGHT, S.M. Mr Systems Design Office, British Aerospace, Aircraft Group, Kingston-Brough

Division, Brough, North Humberside HU 15 1EQ, UK

YOUNG, N. Dr Ultra Electronic Controls Ltd, 136 Mansfield Rd, Western Ave., London W3, UK

ZEMPOLICH, B.A. Dep. Tech. Admin. for Command, Ctrl & Guidance Research & Tech. Gp. NASC,
Naval Air Systems Command (AIR-360B), Washington D.C. 20361, USA

LA



S~ REPORT DOCUMENTATION PAGE

I. Recipient's Reference 2.Originator's Referew.e 3. Further Reference 4. Security aassification
of DocumentAGARD-CP-303 ISBN 92-835-0302-3 UNCLASSIFIED

5. (hginator Advisory Group for Aerospace Research and Development

North Atlantic Treaty Organization
7 Rue Ancelle, 92200 Neuilly sur Seine, France

1 6. Title

TACTICAL AIRBORNE DISTRIBUTED COMPUTING AND NETWORKS

a Meeting of the Avionics Panel held in Roros, Norway,
22-25 June, 1981.

8.Author(s)/Editor(s) 9. Date

Various October 1981

10.Author's/Editor's Address 11. Pages
Various 434

12. Distribution Statement This document is distributed in accordance with AGARD

policies and regulations, which are outlined on the
Outside Back Cover of all AGARD publications.

13. Keywords/Descriptors

Computer systems hardware Design criteria
Data links Reliability
Switching theory Avionics
Computer programs

14.Abstract

These proceedings consist of the papers and discussionspresented at the Avionics Panel
Meeting on "TacticalDistributed Computing and Networks" held in Roros, Norway,
22-25 June 1981 .4The 35 papers were divided as follows, three on state-of-the-art;
five on system architecture; four on system design approaches; five on software; five
on fault tolerance and reliability; six on interconnection, bussing and networking;
seven on applications to avionics systems.

V .?'



w. L) 0. c0

r 0

0..

o -0 q -

O oC :

s 
.r

.4 1 :0 CE J

0~ -- ý

FS o_____ E-

E . 'A2 - 2 i 2 C orz U

C.s5 .o .

> )M2 U z

.1 41 00

ba 0. AdU

E0 :0 a 0 0

0.- 9 9. 0 * 0~

0~ tm >
0 6;4

4 w o )~i sc 'd(0.~U~0
_ _ _ _ _ _ __0_ 0 -a 0
_ _ _ _ _ _ _ _ _ _ _ r . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


