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ABSTRACT

This is the second report on the systematic differences be-

tween the AGK3 and SAOC positions and proper motions. The general

theory of formulating such differences, in three different circum-

stances, is developed and the method of (hemi)spherical harmonics

applied. Magnitude and color terms are treated, through terms

quadratic in m and c, by extending the variable space via tensor

product spaces. The statistical significance of an expansion

coefficient is ascertained by the F test. Also included is a

discussion of the time dependence of these differences and a

resolution of most of the poorly matching stars, (Table 2 of Part I).
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I. INTRODUCTION

In an earlier Report we presented the classical method of

analyzing the positions and proper motions of stars in common to

two star catalogs. It was applied to the Smithsonian Astrophysical

2Observatory Star Catalog (the SAOC hereinafter) and the third of

the Catalog der Astronomischen Gesellschaft 3 (the AGK3 hereinafter).

The motivation and importance of such work was given there too.

This Report explores the method of using a complete set of ortho-

normal basis functions to perform the same task. Brosche 4 ' 5 was

the first to propose and do this in astronomy. Moreoever, follow-

ing the public presentation of the first part of reference 16,

we received two suggestions for further work. Dr. Clayton N. Smith

(U.S.N.O.) advised us to look into the time dependence of the

differences between the AGK3 and the SAOC. This is presented in

Appendix II. Dr. John M. Sorvari (LL-M.I.T.) proposed some

astrophysical and observational selection effects which might

explain the results of the magnitude and color effects found

earlier. Our discussions and ideas on these points are in

Appendix III.

The next section describes a general procedure for expanding

any appropriately smooth function of right ascension and declina-

tion over an arbitary "rectangular" region on a spherical surface.

(All questions of convergence and smoothness are intentionally

avoided. The theory of generalized Fourier expansions is well

developed and we can't definitely answer convergence questions
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from numerical data.) We rapidly specialize to hemispherical

harmonics for the northern celestial sphere since the AGK3 -nly

extends southward to 6 - -2!5. The incorporation of magnitude

and color effects occupies our attention next. All of this is

especially easy to implement computationally when the parameter

distribution (i.e., a, 6, m, and c) is both uniform and dense.

The theoretical basis for the analysis, in two different ways,

is developed next. Sections IIID and IIIE may be skipped, there-

fore, without loss.

The last section presents the results for the positions and

proper motions with and without the magnitude and coloL terms.

Appendix I is a full FORTRAN source listing of our Pnm(x) generat-

ing subroutine. It's an adaptation of the subroutine LEGPOL from

the University of Rochester Computing Center (#309.2.507). The

programming for the majority or this Report was performed by

Sharon A. Stansfield.

2
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II. EXPANSIONS OVER "RECTANGULAR" REGIONS ON A SPHERICAL SURFACE

By "rectangular" region we mean any region of a spherical

surface that can be described as consisting of the simply connected

interior to a = aL, a - aU and 6 - 6 L' 6 = 6U" We also have

0 < a L< aU < 21, -ir/2 < SL -< 6U < n/2 and we don't pay attention

to the strict inclusion or exclusion at any boundary. This

definition will allow us to handle all star catalogs of interest.

A. In General

Define Y (a,6), the usual spherical harmonic, by
nm

Yn(a,6) = NnPn (sin6)exp(ima) (la)

where

S -m) 1/2

Nnm = (n(n+m) ! (lb)

and P is the associated Legendre function of order n, degree m;nm

(x) (-l)m 2 )m/ 2 d n+m 2 n(xnm) 2 nnI d;n+m(x -1)

m/2 amP x
S(-l)m(l-x)n

dxm
(1c)
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Here Pn (x) m P no(x) is the ordinary Legendre polynomial of order n.

The set {Ym(a,6)) n - 0,1,2,...; m - -n, -n + l,...,n forms a

complete set of orthonormal basis functions on a spherical surface,

viz.

0 +n
S• Yn(a,6)Y*(ct',6') = 6(a-c')6(sin6-sin6') (2a)

n=o m=-n

27r ir/2
daY(c,6)Y*, ,(a,6)cos6d6 =6 ,6 , (2b)

L, rn n m nn MM

where the asterisk denotes complex conjugation, 6(u) is the Dirac

delta function, and 6 is the Kronecker delta function.
pq

For any (se, comment on page 1) function f(cy.,6) we can write

C +n

f(a,6) = nmY nm (,6)
n=o m=-n (3a)

where

2Tr Tr/2
f =f dc _ f f(a,6)Y* (a,6)cos6d6 (3b)
nm 0 7r/2 nnxr3b

4
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Now define ynu (a,6) by

Yn • 1 = (XU OL), 2 11/2

rnm [(a 'u-aL (sin6u-sin6Ljn

2sin6-(sin6L+sin6 U)

nLt sins • n] (4)

U LI ~exp [2wim (c-c*L) / (•U-•L)]

Then it follows from the properties of the IYnj that for any

function f(l,6) defined on the "rectangle" aE[aL, U], 6[L6 ,L'U

(with any square bracket replaceable by a parenthesis) we can write

C +n
f(a,,) = fnmynm(ct, 6 ) (5a)

n=o m=-n

with

fnm= dc f(0,,6)y* (a,6)cos6d6 (5b)(IL 6 L

B. Hemispherical Harmonics

S~Because the AGK3 is a Northern hemisphere catalog, we're

primarily interested in Northern hemispherical harmonics. The

Southern extension is straightforward.

5



Define H (ap,6) by
nm

Hnm (c,,6) - V2 NnmPnm (2sin8-l)exp(imci) (6)

Then the Hnm forms a complete set of orthonormal basis functions

for the Northern half of the celestial sphere. We note in passing

that only the combinations considered above, Eqs. (4,6), have the

requisite properties of being both complete orthonormal basis

functions in their domain of definition and require no ad hoc

presumptions concerning the nature of f(a,6) in regions outside

of the rectangle. Hence, the proposal of Bien et. al. 7 [i.e.,

their Eq. (17) wherein a Fourier series in right ascension

decoupled from a Legendre polynomial expansion in declination

is put forward] is somewhat curious. Contrarily (cf. section

IIC) their use of Hermite polynomials to accommodate the magnitude

term appears to be overkill.

C. Magnitude and Color Effects

The functions f(a,6) we shall deal with will be one of

SctCos6 ( AGK3 SAOC) cOS6SAoC

A •6AGK3- SAOC (7)

1/2
Ap r. (Acacos65

6



or one of Aliacos6, AV,, or AV -(AlaCOW 2 + (Aud 2 similarly

defined. Not only will these quantities depend on position,

they may also depend on the brightness and temperature of the

stars. Thus we would write for (say) 66, 66(m,6,m,c). To

incorporate this in Eq. (6), without loss of generality, we write

c c CO 4 1/2 rs

66mn ( ) o o[ (EU L) (MC A6mn

1( r2c-(c+c,+
r[- UL L U P s CU J B

for mc[mL,mU] and ce[cL'cU].
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III. NUMERICAL CONSIDERATIONS

A. In General

It is clear that in any numerical implementation of the

above one will truncate the series at some upper limit, say

nc[O,N]. A standard result of analysis is that the best, in the

least squares sense, fit of some function f(x) to an arbitrary

orthonormal basis lpný on xE[a,b] to order N, viz.

Nf Wx F f fpn Wx (9a)

n=o

occurs when the expansion coefficients fn are given by

b
f f(x)p*(x)dx. (9b)fn =f (xn

a

To be explicit, the representation (9b) minimizes

b N
RN f If(x) -E fnpn(x)12dx (9c)

Given this, it would appear that we're left with a numerical

quadrature problem as the f in Eq. (9b) are independent. Thisn

isn't quite true. As long as N isn't infinite there's the possi-

bility that some part of f isn't being modeled. This is an

incompleteness problem and will be reflected by the fact that

RN is still larger than the variance due to accidental (as

opposed t. systematic) effects. The independence of the



{fn does assure us, though, that the unmodeled component

of f isn't being projected elsewhere; it simply will be left

out.

Having disposed of that point we are left with a

numerical quadrature problem. When the data densely spans the

range of x any scheme that will accurately integrate a 2N'th

order polynomial will do. Note though, that the f will not

necessarily be stable as a function of the order of the quadrature

scheme because as we go to higher order (which also means higher

resolution in x) w• may be discovering finer details in f(x).

If the data isn't uniformly dense or the value of N

isn't a priori decided, then the problem becomes more complex.

In the first case the sparseness of the data means that a

numerical implementation of Eq. (9b) may destroy the ortho-

gonality property. With this occurring while we vary the value

of N the independence of the {fn) vanishes. This can be handled

with a Gram-Schmidt orthogonalization procedure (section IIID)

as N varies or by ordinary least squares (section IIIE) with N

fixed. The reader may want to skip these two tangential sections

on a first reading. Below we detail the numerical procedures

employed here. Almost all of the statistical questions relevant

to this problem one might pose are sloughed off here because we

feel that they're immaterial.

9



B. Hemispherical Harmonics

The values of P (x) were computed using the code innm

Appendix I. The values obtained were checked against reference 8.

P nm(x) was computed using 64 bit arithmetic and then truncated

to 32 bits. Gauss-Legendre quadrature schemes using 16 and 32

base points were employed to perform the declination integrals in

Eq. (5b) with 6L = 0, 6U = 900. We judged that the analytical

simplicity of hemispherical harmonics outweighed the 4.4% loss

engendered 1((205 x 3600) [47r(180 0/n)] = 0.022 . This still

leaves us with 130,000 stars nearly uniformly distributed over

the Northern half of the celestial sphere. The base points in

each case are the zeroes of PL(x), L = 16 or 32. Their mean

separation is 5?3 + 2?3 and 2?7 + 1?2 and if PL(xz) = 0 then

6 = sin- 1 [(1 + xY)/2]. From Eq. (lc) we see that if N is fixed

at 15 (the value we've used) that the highest order "polynomial"

we need to handle is 30. The normalization integrals for the

HnmI n = 0,1,2,...,15, m = -n, -n + l,...,n were performed
I~- 5

as a check and never differed from unity by more than 5 x 10 .

Newton-Cotes type formulas, even at A6 = 0.01, were not accurate.

We also would prefer not to prejudice the results by having

different weights at different positions but have no choice.

The closeness of the mean separations in declination,

plus our just mentioned bias, led us to the trapezoidal rule at

A= 50 and 2?5 (as appropriate) to perform the right ascension

10
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integral (aL = au = 360*) in the hemispherical harmonic

version of Eq. (5b). Again the normalization integrals were

used to check the accuracy. The worst deviation from unity was

0.014 at 50 and 0.007 at 2?5. The possibility of using a

Filon type formula was also investigated.

The details of forming (say) 66(a,6) for the numerical

integrations were as follows: Fix L = 16 or 32 and t3 = 50 or

2?5 correspondingly. Compute the {64 and form the midpoints of

each bin (more complicatedi splittings have no better theoretical

basis and don't move the boundaries significantly). We now have

a grid over the Northern half of the celestial sphere. Differences

for each star are placed in the appropriate elements of an array

and the average value of each difference separately computed for

each bin. These are the numbers used for (say) A6(a,6). In

addition to computing the mean we also calculated the variance

in each bin (with respect to the mean) and then used these to

provide an estimate of the variance of an individual value of

A6nm

C. Magnitude and Color Effects

Formally the problem is as above. Practically one

must insure uniformity and density. As we have photographic

magnitudes for all of the stars (from. the AGK3), as long as we

stay within the bulk of the magnitude distribution and don't use

too fine an areal grid there'll be no difficulty. From Table 9

11i



of reference 1 we choose, therefore, m =8m and m - l1TO and
L U

don't look for more than a quadratic term in m. For the color

indices the situation is not as good. We again restrict ourselves

to at most terms in c 2 and use cL = 0m0, cU = 20. A 4. point

Gauss-Legendre quadrature scheme was used in each case and to

minimize potential difficulties with sparseness the 16 x 5° scheme

was used.

D. Gram-Schmidt Orthogonalization

A standard result of linear algebra is that if one has

a set of K linearly independent vectors 'Iy k = 1,2,...,K then

there exists a set of orthonormal vectors jký that spans the

same space. The are defined through the intermediaries

V 1 =u

Y2 = U1 12

-3 A Y 2Y2lI12Y (10)

k-i uvY !1 k -y iv12/ v

12



This construction is known as the Gram-Schmidt orthogonalization

process, the normalization occurring in the last step.

Consider Eqs. (9) when N is variable and the values

of f(x) are not dense on [ab]. Then, since the practical

version of Eq. (9a) is

N
f(xe) = F fnpn(Xxe) + e£, t =,2,...,L (11)

n=o

for L aamples of f where c. is the noise, we can't simply obtain

f n via the extension of (9b),

L

= lf(xt)P*(xt)

Brosche4 when dealing with this situation suggested applying the

Gram-Schmidt procedure to the Pn . In particular set

n [Pn (xl),Pn (x2)1 .. Opn(XL )] and define ~InOvia

go 20

n - i m * -qn= an- a (12a)
nm n'anm =S1i -m--o

then, with akk = 1 and A = {anm}, P { pn), q =q

n
pn = a or P - Aq (12b)

m=o

13



The matrix A is triangular and non-singular (because the linearly

independent n span the vector space). The inverse is given

by

n
an= E bnm~m (13a)

m=o

where

n-1
bkk =, bnm =m antbtm form < n

and AB = I, the N dimensional unit matrix. Equation (11) is

transformed into

N
f. E Fnn + E_ (14a)

n=o

where f = If(xl), f(x 2 ),...,f(xL)J , E is the new noise vector,

and{F n are the expansion coefficient of f in the S basis. As

the { n are mutually orthogonal the least squares computation of

F is trivial,

F = (14b)n

and the original set of fn are given by

N
f n Fmbmn (14c)

m=nmn

14



This completes the solution of the original problem taking into

account the sparseness of lf(xt) and a variable N. Brosche 4

goes on to discuss methods of determining the best value of N

and assessing the significance of the if Note that no large

matrices need be inverted.

E. Least Squares

We consider the problem of representing f(a,6;m) in the

form

R R +pY
f(a,6;m) f p fp pqrpq M)r (15a)

r=o p=o q=-p

where f is real, known at l(cti,5; mk)i j = 1,2,3,...,J; k = 1,2,3,

#..,K. In the case of a continuous distribution

+1 +2T/2
fdmf da~ f (as,6; m) P (M).pqr r

(15b)

y* (cL,6)cos6dd

When the data is sparse an alternative to this is to minimize

SPR ,k j;k) - RP(q pqrpq (k) (16a)
I rk Ir, p Iq

15



PPPI

where f(j;k)sf(caj,6j;mk) etc. When f is real we have

fpqr = (-I)P f*-qr so that all of the unknowns aren't independent.

When S PR is rewritten solely in terms of independent expansion

coefficients, the gradient of SpR computed, and then set equal to

zero one derives the normal equations. They turn out to be

R[+p ,O1pqr . Vpqr•mnF E 0 [2 E+ (xpqr, mn - Ypqr Iimn)
r•° p =(1b

+ x Xmn = f(J;k)CSm(J)P (k)
por por I kj,k n

R ~ +qp pqrr)

h [2 iy , r ,E T •,pqr tmn - pq tLmn
r=o qo=+

+mpr] V = t f (J ;k) S tm(J) Pn (k)

where fpqr = pqr + iypqr, Ypq(J) C pq(j) + ispq(j) (xIyCS

real) and

Zynnmn = C (j)Pr (k) C(j) Pn (k)
pqr pq r Pq n

mn = p S (j) Pr (k) Stm(j)Pn (k) (16c)
j,k

v =m F C (j)P (k)S ()(kpqr jlk pq r Stm(J)Pn(k)

16



IV. RESULTS

In order to decide which of the (say) A6ts 1 [cf. Eq. (18)]
mn

are important we have used thu F-test. Kendall and Stuartl

contains a readable discusFion of the topic of discarding

variables including the fact that there is no purely logical

way to do so. We have presumed that the lower index expansion

coefficients are a priori more probably significant than are

the higher index ones. In every case the 90% level of

significance has been used. Moreover because the systematic

differences are real the expansion coefficients satisfy

ns= (-1)m(A6ns) *
mn \-~m m-n

A. Poritions

Table 1 lists those expansion coefficients for

Aacos&S, A6, and Ap which were significant at the 90% level when

each of these quantities was expanded in the form (5).

B. Proper Motions

Table 2 is similar to Table 1 but for AV a cos 6 , A16,

and. Au.

17



TABLE 1

EXPANSION COEFFICIENTS FOR POSITIONS

Aacos6 (0.001)

n m Coefficient

0 0 -0.808
1 0 -1.47
2 0 8.17
3 0 -5.86
3 2 3.71 -2.081
4 0 2.74
5 0 -3.52
7 0 -1.83
8 0 6.15

10 0 3.55

A6 (0:01)

0 0 16.8
2 0 12.93 0 -1.473 1 -2.29 -6.38i
4 0 12.7
4 1 -3.34 +2.561
5 0 2.57
r5 1 -3.65 +3.91i

6 0 10.5

Ap (0"01)

0 0 22.8
2 0 0.713
4 0 9.78
8 0 -7.25

18



TABLE 2

EXPANSION COEFFICIENTS FOR PROPER MOTIONS

Ap cos 6 (0o001 cent)

n m Coefficient

0 0 -5.17
2 0 20.9
3 2 4.07 -8.22i4 0 18.7
5 2 5.40 -10.4i
6 0 -13.37 0 -8.109 0 3.34

10 0 8.89

Ap6 (0!:01/cent)

0 0 2.38
1 0 -5.13
1 1 3.72 +9.81i
2 0 22.6
2 1 5.54 -14.Oi
3 0 13.2
4 0 26.1
5 0 17.2
6 0 27.0
9 0 28.2

12 0 25.3
13 0 -23.4

Fp (0A'.01/cent)

0 0 7.03
4 0 11.6

19



C. Magnitude and Color Lffects

Tables 3 and 4 list, in the same format as Tables 1

and 2, the coefficients significant 4t the 90% level when either

magnitude or color effects are separately included for Aacos6

and A6 as in (15a).

20



TABLE 3

EXPANSION COEFFICIENTS FOR POSITIONS WITH MAGNITUDE TERMS

Aaco86 (0.001)

n m r Coefficient

0 0 0 -1.25
1 1 0 151 +1.17i
2 0 2 -3.842 2 0 6.96 +1.83i
3 0 0 -8.83
3 2 0 4.76 -3.42i
4 0 0 3.70
4 2 0 -2.60 +1.24i
5 0 0 -4.40
5 1 0 0.770 -5.17i
6 0 0 -1.10
6 0 1 -4.27
7 0 0 -1.93
7 1 0 -2.10 +2.96i
8 0 0 7.94
9 0 0 1.74

A6 (o0'ol)

0 0 0 22.0
1 0 1 14.6
1 1 0 2.36 +1.45i
2 0 0 14.7
3 0 0 -3.82
3 1 0 -2.51 -9.07i
4 0 0 15.6
4 1 0 -5.12 +2.59i
5 0 1 7.29
5 1 0 -5.24 +6.01i
6 0 0 12.3
6 1 0 4.15 -6.84i
7 0 1 -4.67
8 0 0 -11.6
9 0 0 20.2

11 0 0 -7.47
12 0 0 6.83
13 1 0 5.85 -0.879i
15 1 0 -3.29 +0.918i

21



TABLE 4

EXPANSION COEFFICIENTS FOR POSITIONS WITH COLOR TERMS

Aacos6 (0?001)

n m r Coefficient

0 0 0 0.495
1 0 0 3.21
1 1 0 4.26 +2.69i
2 0 0 5.95
2 1 0 -0.235 +3.98i
3 0 0 4.12
4 0 0 -1.78
5 0 0 -6.47
5 1 0 0.985 -3.21i
6 0 0 -6.39
6 3 0 -2.20 +3.60i
7 0 0 -2.23
7 1 0 -2.25 +3.32i
8 0 0 3.14
9 0 0 6.27

10 0 0 5.46
12 0 0 3.12

A6 (0o.'01)

0 0 0 10.2
1 0 0 19.6
1 1 0 4.34 +2.lli
2 0 0 14.0
2 1 0 2.78 -5.55i
2 2 0 -3.80 -9.21i
3 0 0 2.47
3 0 1 -3.23
4 0 0 10.4
4 1 0 -6.26 +2.84i
5 0 0 20.0
5 0 1 6.25
6 0 0 6.38
7 0 0 -4.08
7 1 0 2.22 -3.16i
8 0 0 6.73
9 0 0 11.3

10 0 0 2.45
10 1 0 -4.72 -1.05i
13 0 0 -4.94
13 1 0 5.13 -0.858i

22



APPENDIX I: COMPUTING Pn (X)
nm

As mentioned in the Introduction we've used the University

of Rochester Computing Center subroutine LEGPOL to compute Pnm(x).

We had to modify it to adequately cover the n = m case. It's

also inaccurate for very small x because it raises x to the

n - m power which can easily result in underflows. Several

thousand values of P (x) were generated for n = 0, 1, 2, .... 15;nm

m = -n, -n + l,...n and compared to the values in reference 8.

The largest discrepancy we found was 1 unit in the last decimal

plaee (i.e., <5 parts in 108).

The argument list for LEGPOL is N, M, X, ANS, AGAMA. Here

N = n, M = m, X = x, ANS = P (X), and AGAMA is a vector of thenm

natural logarithm of the gamma function; AGAMA(I) = tn[rI(i+l).

This is used for normalization purposes. The full FORTRAN source

code follows.

23



1 ~Su~t~UTrNL LEGOL(NvmqWIyvANJSvAGAIlA)
2 IMPLICIT NLAL*d (A-Hqn.t)

4 lFltvfli'N&U)b7O TO 6U)
5 .LFti~.INJE.U)bO TO 6U
6 65 Aljb=1*g00
7 LOU K I UK14~
A b2U 7'0.j.UbUT bdd

90 i V (:'10N .1 ) lG U 1 0 bi

11 ~ U lu11 b3
12 b2 7LeirI.%uU

14 A=U

17 I l~ltilt

I- 1\1 U 14

1~ I v"* If

25 1F4A*L..),U~bu ru 5

d- 7 bb suI"=A
28 1U lu '42

29 4+1 SUrl=I :'ýo
.30 bO N 42

32 L I .L2

34FUIVU

35 FI-1

36 LOV~i*1)

39 UO( 2c et=19L1

41, PNL-=1*(I*'-1-UU)/1(bI.JTtI+2.fl)*FNUmv*)(**2)

43 SI"-b -,+ * U
44 A-1

4 6 22 F 4I;*NIliF,-whUM -k DU
4+7 4+2 I=rl/i

'49 Aiu.*

50 FI = Ie J 0
51 IF I ri- ) 7 11 to 19
52e 18 W) IL) 71

58 bO rU jU
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APPENDIX II: THE TIME DEPENDENCE OF <AGK3-SAOC>

The table gives the average values, for those stars in both

catalogs with matching BD numbers and with the indicated Ap

restrictions, the values of Ap and its dispersion (for the mean

equator and equinox of 1950.0) for the epochs of place 1950.0,

1975.0, and 2000.0. For Ap < 10" the means of the components

at the three epochs are given too. Obviously there is a

relentless secular increase in all of these quantitie•. In the

Ap < 275 bin the average slope is 15/cent - not a very good

state of affairs.
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TABLE Al

THE TIME DEPENDENCE OF <AGK3-SAOC>

Ap < 2r5 AP < 5".0

Epoch <Ap> aAp <AP> ap
(0.7001) (01.'001)

1950.0 469 296 473 316

1975.0 897 515 937 535

2000.0 1206 592 1423 849

AP < 10"0

Epoch <Aacosd> <A6> <,AP> Ap

1950.0 6 42 483 419

1975.0 9 54 948 649

2000.0 11 66 1448 919

C94-606
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APPENDIX III: ASTROPHYSICS AND THE MAGNITUDE AND COLOR EFFECTS

Table A2 zepeats a small part of the information contained

in Tables 10 and 11 of reference 1. The questions are "Is the

trend reversal in Aacos6 in the last m and c bins meaningful?"

and "Is the discontinuity in 66 in the last m and c bins meaning-

ful?" We argue in posing these questions that A6 for

8TO < m < 1Oi5 (the mpg values are from the AGK3 and presumably8•0• pg-_mp

homogeneous) and for -0T5 < c < 1T5 ( c = m v-mpg both apparent

magnitudes from the SAOC) are constants and that both

a(acos6)/am and 3(Aacos6)/ac are negative. The constancy of

A6 is beyond statistical reproach, the fact that a(Aacos6)/3m<0

nearly so, but that 3(Aacos6)/ac<0 questionable.

Before attempting to answer these queries we observe that
m|

c> >m implies that the star is red. Red stars are intrinsically

faint. From Allen 9 a B-V (=m mp) of i•5 implies MV = 9T8
v pg

(Mv = absolute visual magnitude = mv at a distance of lOpc with

no absorption) for the main sequence. B-V = li.6 means M = 11T8.
vvThese stars, therefore, can have an my • 10m if and only if they

are close, at about lOpc. Therefore there should be a very close

correlation between the c > 1.5 and m > p 0m results. This isPg

exactly what is seen. Moreover these stars must be distributed

all over the celestial sphere (because they're close) and because

if they weren't we'd know about it (e.g. Gould's Belt for the

blue 0 and B stars). This means that they can't all (or even a

28
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sizeable fraction) to be from one of the source catalogs of the

SAOC (except for the AGK2). Hence, we've really discovered a

systematic difference between the AGK2 and AGK3. We now

turn to potential astrophysical causes or explanations.

Because these stars are close they'll have larger secular

parallaxes than does the average star. But even if the mean

epoch difference between the AGK3 and the SAOC (read AGK2) is

fifty years this amounts to a milliparsec. It's not a systematic

difference in the plate reduction schemes, as long as they were

the same (to first order) because this is a catalog to catalog

comparison. Although the presence of a color and magnitude terms

m 10(-,01-251m - 9121, see EichhornI) in the original version of the

AGK2 is known, the AGK2 plate measurements were re-reduced to

provide AGK3 proper motions. Similarly we rule out other plate

reduction difficulties. This exhausts the astrophysical causes

that immediately come to mind. Another point is the smallness

of the numbers in Table A2. No position is given to better than

0.0l and very, very few are truly known this accurately. Hence,

could not Table A2 be showing us truncation effects? No, not

in both right ascension and declination only for fuint, red stars.

29



TABLE A2

THE MAGNITUDE AND COLOR EFFECTS*

m Range Aacos6 A6 Ap Number

(0'001)

8T0 : 9T 0  25 38 457 25736

9.0 : 9.5 4 40 430 23247

9.5 : 10.0 -10 35 444 25576

10.0 : 10.5 -17 40 459 20800

10.5 : 11.5 -2 57 509 15429

All 3 40 465 126630

c Range

-0T5: 05 8 31 437 19821

0.5 : 1.0 -2 25 440 24233

1.0 : 1.5 -5 39 454 21746

"*1
1.5 : 2.5 12 82 499 12069

W-t•rs in bot catalogs, with matching BD numbers, north of the
equator, and with Ap 2 2.5.
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APPENDIX IV: STARS WITH LARGE POSITIONAL DIFFERENCES

Table 2 of reference 1 lists several hundred stars for which

Ap was in excess of 6". We have checked each of these stars

individually by looking them up in the SAOC source catalog. For

the huge majority there is no large di3crepancy in position.

Rather these stars are members of a binary system, each star

having the same DM number, with the AGK3 containing both

components while the SAOC only has one. As we sorted by in-

creasing right ascension (and clearly it would've mattered how

or if we sorted) within common DM numbers and used DM number

as an identifier, nearly half of all such occurrences would

result in a misidentification. The majority of the remaining

large Ap values apparently belong to variable stars. A few,

probably less than 10, represent actual catalog errors (e. g.,

the SAOC right ascension for SAOC 92316 = GC 3456 BD +15 500

is wrong). These are still being sorted out.
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