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ABSTRACT

In order to obtain the cross-scan position of an optical

targe., more than one scanning detectors are used. As expected,

the cro.s-scan position estimation performance degrades when two

nearby optical targets interfere with each other. Theoretical

I .bounds on the two-dimensional parameter estimation performance

for two closely spaced optical targets are found. Two particular

classes of scanning detector arrays, namely, the crcw's foot and

the brickwall (or mosaic) patterns, are considered.
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I. INTRODUCTION

Recently, considerable attention has been focused upon the

S. accuracy of parameter estimates of an optical systemn for closely

spaced objects (CSOs) [1] - [7]. The intensity and location in-A

r ~formation of an optical image on the sensor focal plane is collect- j
ed by a scanning detector as shown in Fig. 1. The detector output,

F a time function, is a convolution of the optical image (which

contains intensity and location information) and the detector

response. There are various types of noise sources at the output

of the detector, therefore estimating the image position and in-

tensity from the noisy output can not be errorless. Theoretical

lower bounds on the accuracy of parameter estimates have been

derived in [1) - [4].

The Cramer-Rao lower bound technique is used in [21 - [4] to

calculate the best achievable performance of any unbaised estimator

of the unknown parameters. The results presented in [1] are

obtained using a different error analysis technique. Other than

somne numerical problems pointed out in [41, which occurred at

small target separations, the approach presented in [1] should

have results identical to those obtained by the Cramer-Rao lower

bound approach. There are algorithms developed to perform the

parameter estimation f or closely spaced objects from noisy

measurements, for example [5) - [7]. Monte Carlo simulation

results are presented in [5] and [7]. In [5], the well known
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maximum-likelihood estimator is implemented for parameter estimation

the number of targets in the CSO cluster.

~ All analytical and simulation results presented in the past

Ii pertain only to the in-scan direction and assume a vertical

[ ~rectangular detector as shown in Fig. 1. Many detector array]

arrangements have been considered by sensor designers to oib'ain

position information of a single optical target in the cross-scan

direction. some typical detector patterns considered are shown in

Fig. 2. The time between detector crossings for the chevron and

crows's foot patterns can be used to determine the cross-scan

~ I position of the target. 'With two targets, this problem becomes

I more difficult. Figure 3 shows three individual detector outputs

of a crow's foot pattern for different orientations of target

locations. It is obvious that with one linear detector (detector

M) output alone, one can not obtain cross-scan position information.

From the results we have presented in (2] - [5], one can obtain in-

scan position information of two CSOs no matter how close they are
L

if the detector output is noise free. It is, however, not true for

a noisy output; the estimation errors increase drastically as the

CSO separation decreases. For the chevron pattern (detectors L

anid R), the cross-scan position information can be obtained with-

out error from noise free outputs for all target locations. For]

noisy outputs, there are target locations, for example, case II of

3
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Fig. 2. Typical detector patterns have been considered.

4

...........



II
i LlO11414"t-#-

U

JA

SCAN
S"- DIRECTION

1 2 1 2 1 2
2 1

Cl)z
0

112
2 1 2

o A-

112
1 ~2 1

2 TIME "'

Fig. 3. Individual detector outputs of a crow's foot patterne for different orientations of target locations.

..



"Fig. 3, where the target position estimation errors may be very

large no matter how large the actual target separation is. This

is because there is a CSO situation for the detector R, A more

complicated detector array arrangement may solve this problem,

-for erample the crow's foot pattern shown in Fig. 3. The

achievable estimation performance of the cross-scan position

of two CSOs for these particular detector patterns has not been

studied analytically previously. It is the purpose of this report

to derive the Cramer-Rao lower bounds on the variance of parameter

estimates as a function of both scan and cross-scan saparations

for CSOs measured by detector patterns shown in Fig. 2. The

performance bounds presented in this zeport are derived with the

assumption that all detector outputs are utilized optimally for

unbiased parameter estimation; no particular signal processing

procedure has been adopted in the analysis.

The general formulation of this problem and its associated

Cramer-Rao bounds are presented in the next section. In Section

Sb III, results for linear, chevron, and crow's foot arrays using a

F particular optical point spread function are presented. For other

[ point spread functions and detector widths, one can utilize

the formulas provided in Appendix A to calculate the associated

estimation performance bounds. In Section IV, the brickwall (or

mosaic) detector patterns are considered. Some typical results fot

the same point spread function considered in Section III are pre-

6



sented. Formulas that can be used to calculate the estimation

performance bounds are provided in Appendix B. A summary and

conclusions are given in Section V.

II. ANALYSIS

Let us aaume there is an array of M detectors in the focal

plane of a scanning optical sensor; some typical patterns of these

detectors are shown in Fig. 2. Let (xk,yk) be the center and 0

be the orientation of the kth detector with the center of the

focal plane scanning along the x-axis as shown in Fig. 4. Let

pk(ttx,y) be the output of the kth detector to a unit strength

point source located at (x,y) at t=01 A point source is called a

unit strength point source, if for (xy)=(xkyk) and ek =90, the

output signal Pkltxy) satisfies:

f p2(t,x,y)dt = 1. (1)

it is important to note that, Pk(t,x,y) .As a convolution of the

point source blurred image (e.g., point spread function, PSF, ior

a monochromatic source) on the focal plane and the response of the

kth detector. In general, it is a complicated function of the

detector location (xk' yk) shape, orientation (6k) , and the

instantaneous target location (x-t,y) on the focal plane at time t.

A single point source located at (x,y) with amplitude a will

tIn the remainder of this note, a point source (or, target) location
is always referced to its location on the focal plane at t=O. .

7
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have a noiseless output

sk(t) = aPk(t,x,y) (2)

at the kth detector at time t.

The problem treated here concerns the measurements of a pair

of point sources from the output of an M detector array. Let

SI'. (al, (xl' Y()) and (a 2 , ( Y 2 ) be the amplitude and location of
the point souzces. The noiseless output of the kth detector can

be written as the following:

s k(t) = alPk(t,xl,YI) + a 2Pk(t,x 2 ,Y2 )o (3)

We wish to determine (ai, (iYi)), i=1,2 from noisy measurements,

taken at the output of each detector, i.e.,

Yk(t) = Sk(t) + nk(t), k=l,2,...,M, (4)

where nk(t) is a white Gaussian noise with two-sided power spectrum

density N /2. Furthermore, these noises are mutually independent,
0

that is

E[ni(t)nj(t)] = 0, for all t and T, when iyj. (5)

The Cramer-Rao lower bound on the variance of any unbaised

estimator of the unknown parameters: amplitude of object 1, al,

amplitude ratio, R = a2 /a,, location of object 1, (xlY1 ) , separa-

tion, r, and orientation of objects, e (the angle between the

detector scan direction and the vector (x 2 ,y 2 ) - (xlyI), as shown

9
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in Fig. 5, can be obtained by inverting the Fisher information

matrix, F, whose (i,j)th element is [9]

!F.1i = EIln A DAlnj (6)

Lij
where a. denotes the ith ,nknown parameter, namely, al=al, a 2 =R,

1t3= 1, a 4 =Yl, • 5 =r and a 6 =G, and where in A is the log likelihood

ratio [9, p'. 274]

i n A = 2 yf12(t)s(t)dt -f (t)s(t)dt}, (7)

and

s (t) yl(t)
s(t)= S2 (t) y(t)= Y2 (t) • (8)

s (t) YM(t)

Substituting (7) and (8) into (6), and using the statistical model

of the problem described in (4) and (5), we have

F C (a skt) s(t
jF dt .9)

Having an explicit expression for the output function Pi 1,)

i=l,2 and k=l,2,...,M, one can compute F.. according to (9). In

the following sections we will consider two simple cases where the

partial derivatives, . sk(t)/D i i=l,..,6, can be obtained explicitly.

Ii ., -i -.- A~___



III. LINEAR, CHEVRON, AND CROW'S FOOT DETECTOR ARRAYS

In this section, a special class of detector patterns is

considered. The detector array consists of M parallogram detectors

Swith the shorter width along the scan direction as shown in Fig. 2.

The detector pattern is called a linear array if all 0 -90°,

FI. "a chevron array if 6 k takes only two values, one greater than and

one less than 900, and crow's foot if ek takes three values (i.e.,

a combination of linear and chevron arrays). For simplicity in

the analysis, let us make the following assumptions:

1) the center of each detector is located along the scan
L faxis, i.e., Yk= 0 for all k.

2) the output of each detector to a unit strength point

source located at (x,y) has the same functional form:t

Pk(tx,y) p(t-(x-xk) + y cotok), (10)

where p(.) is a symmetric, non-negative-valued function. Further-

more, let p(t) be the autocorrelation function of p(t),i.e.,
L

p(t) = J p(T)p (T-t)dT. (11)

It is easy to see that p(0) =1 from the definition of Pk(t,x,y) in

).

Rewriting (3) in terms of the parameters considered in Section

tThis implicitly assumes that the detector has infinite length or
no edge effects on the detector output.

12
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II with the above assumptions, we obtain

sk (t) a P t-(Xl ) + YlCOtek +

a aRp t- (xl+rcos0-xk) + (Yl+rsin0)cotO k). (12)

Substituting (12) into (9), we have Fij in terms of the following

functions:

p(T) =J p(t) p(t-T)dt (13)

-00

S) p(t)lt-T)dt (14)

and "p (T) =-f p(t)p(t-T) dt(1)

The expression of each element of F is given in Appendix A.

The lower bounds on the variances of the estimates for

a,, R, x', yI, r, and 0 are:

CRB (a 1 ) = (F-lll (16a)

CRB (R) = (F-I22 (16b)

CRB (xi) = (F-)33 (16c)

-1
CRB (yl) = (F-)44 (16d)

L -1CRB (r) = (F-)55 (16e)
51

CRB (0) = (F-I)66 (16f)

r "13



Tflhe results in this report are presented in the followlng normalized forms:

E CRB(a )/a (17a)

ER _;CRIB(R)/R (17b)

Ex=A CRBx (/d (17c)

E CRB(Y)/dx (17d)

EA CRB (r)/r (17e)Er =~

EA CRB(0) (17f)

where dx is the detector w.idth in the scan direction. All results

will be presented at SNR =10 for each detector, where1I
SNR 1 A al/ca (18a)

and 1/2

b~ A[ P(t)dt (18b)

It is easy to convert these results to any signal-to-noise ratio,

SNR, by the following relationship:

E at SNR = (E at SNR 1 =10) x (10/SNR) (19)

where w = a, R, xl, Yl' r, and 0.

For the numerical results presented here, let us consider that

14
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the function p(.) is generated by convolving an infinite length

rectangular detector of width, dx, along the scan direction with

Sa point spread function of the form [101

E •(xxo2 + (y-yo)2

sf (xy) 2 exp 2c2 [ (20)

where E is the image irradiance at the center of the diffraction

pattern and

= .3040 dx. (21)

The value of 0 is selected such that 90% of the total energy is

collected by a detector centered at (xoyo).

Figures 6a and 6b present the Cramer-Rao bouinds on the

estimation errors for a linear array detector (detector M in Fig.

2) for the amplitude, a1 , and the in-scan location, x1, respectively.

The upper half of each figure is the Cramer-Rao bound computed

for the 1-D problem, in our previous reports (2] - [41, where

targets are located along the scan axis. The lower half of each

figure shows the equal performance contours plotted on the sensor

focal plane for the 2-D problem with one target at the origin and

the other at position (x,y). Because the detector pattern is
scanning along the x-axis, the equal performance contours plotted

in the lower half of each figure are symmetric about the cross-

scan axis (y-axis). This symnetric property is ii. common to all

figures shown in this report. Notice that the equal performance

15
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F

contours in these figures (6a and 6b) are independent of the y

component of the second target location. It indicates that there
is no way one can obtain cross-ccan position information from the j
output of a single detector alone. In Fig. 6b, we see that the

CRB's go to infinity as the true separation goes to zero. This

is correct for an unbiased estimator; however (biased) algorithms

F exist which produce finite errors at zero separation. Not

considered here but of great importance for CSO's is the CSO

detection problem (see Ref. 5). At small separations, it is "

equally difficult to recognize that there are two unresolved

j targets as it is to estimate their parameters assuming that there

are two targets. The singularity in estimation error at zero

separation will be seen to influence the performance bounds for

more complicated detector patterns later in this section.

?igures 7a and 7b present the Cramer-Rao bounds on the esti-

mation errors for a chevron array (detectors L and R in Fig. 3) for

the amplitude, al, and the orientation of objects, 8, respectively.

The upper half of each figure is a plot of the surface formed by

the Cramer-Rao bound, which is a function of the second target

position (x,y). The surface is cut-off at a fixed value. The edge

of the plateau forms the innermost equal value contour on the lower

half of the figure. The value of the Cramer-Rao bound approaches

infinity as the (x,y) position approaches (0,0). Note that the

maplitude estimation error does not approach infinity exept at the origin

18
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(where the two targets are colocated), while the estimation error

for the orientation of the objects approaches infinity at target

orientations aligned with either one of the detectors. Since the

target separation is zero for one detector, the CRB on estimation

errors for that detector is infinite. For orientation estimation,

information from both detectors is required resulting in infinite

error for an unbiased estimator of 9. As with a single detector,

this is a reflection of the CSO recognition problem. For amplitude

estimation, it is sufficient to use information obtained from the

detector which does not have CSO interference.

Figure Ba to Figure 8f present the Cramer-Rao bounds on the

normalized estimation errors defined in Eqs. (17a) - (17f),

respectively, for the crow's foot detector (detectors L, M, and

R in Fig 3). A similar format to the results shown in Fig. 7a

and 7b is used. One thing in common to all these figures is that

the errors increase monotonically toward the center (0,0) but none

of these parameters has errors approaching infinity except at the

* origin. As seen in Fig. 3, for any target orientation, there

will always be at least two detectors which measure a nonzero
separation. Since all parameters can be estimated using informa-

tion from two detectors, there are no singularites as was the case

for the chevron pattern.

The shape of the contours shown in Figs. 8a - 8f can be ex-

plained by the following heuristic argument: The estimation

21
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performance for individual parameters is a function of the in-

formation obtained by each detector in the scan direction. For

example, the effective target separation measured by the kth

detector in the scan direction

Axk = r[cos0 - sine cotek] (22)

changes as the target pair orientation, 6, changes. Figure 3

shows the detector outputs for three target pair orientations,

namely, 0°, 450 and 900. Table I shows the effective target

separation, Axk, measured by each detector depicted in Fig. 3

for the three target pairs. From Fig. 6a and 6b we can approxi-

mate the estimation errors as a function of Axk as follows:

2 (a) = Cl/(Axk) 2

(23)
2 2a(Axk) C2 /(Axk)

The overall estimation performance for a parameter w, o(w), can

be approximated as a function of the estimation performance for

r Axk by individual detector outputs, ok(Axk). If for simplicity,

we ignore the correlation between r and 6, we have

(r 2 2 (4
S(2r) (cosO - sine cotek)/ak (Axk) (24)

(ktl 2° -

and

22

18() • r~2lsine + cosO cotek)2c 2 I~xk) ( 25)

I-

!-i= .:.4
[28



Table I also shows the overall estimation performance for al, r,

and 6 using Eqsr (23) - (25). I
S~TABLE I

APPROXIMATE ESTIMATION PERFORMANCE FOR a,, r, AND 8

Target Pair Effective Target Separations Overall Estimation Performonce

orientation Ax1  Ax2  x3  a (a,) a (r) a (6)

S00 r r ci/3r2 c2/3r2 c2/2r4

1 ~22

450 0 r/vr 4cl/17r 2  4c 2 42r

900 r 0 r cl/2r 2  c2 /2r 2  c2 /2r 4

The approximate estimation performance for al, r and e

shown in Table I explains the trend of the equal performance

contours presented in Figs. 8a, 8e, and 8f. Thus in Fig. 8a,

estimation performance is best at 450 orientation and worst at

900 orientation. It is expected that the estimation performance

for R should have a similar pattern to that in Fig. 8a for a1 .

Combining the patterns for r and 0 observed in Figs. 8e and 8f,

one should be able to interpret the patterns shown in Fig. 8c

and 8d on x and y, respectively.

This model is oversimplified in that it treats the detectors

independently. The analysis used to obtain Figs. 6-8 accounts

)29
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for correct combination of individual detectors and thus these

results differ from those in Table 1.

To summarize the major points for the three classes of

detector patterns considered in this section~

(1) The linear detector can measure the locaition of a single

target only in the in-scan direction. It can resolve two

CSO's only if they are separated in the in-scan direction. O

(2)Thechevron detector can measure the location of a

sigetarget in both the in-scan and cross-scan directions.

It cnresolve two CSO's if they are separated in either

V direction but will have degraded performance if their

separation direction is aligned with one of the detectors.

(3) The crow's foot detector can measure the location of

a single target in both the in-scan and cross-scan directions.

It can resolve two CSO's if they are separated in either

direction.

(4) For all detector types, the resolution and measurement

performance improves with increasing signal-to-noise ratio.

30



IV. BRICKWALL DETECTOR PATTERNS

In this section, the detector array consists of M rectangular

detectors with ek - 900. The center of each detector is not

necessary located along the scan axis as shown in Fig. 2. For

simplicity, let us assume that the output of each detector to a

unit strength point source located at (x,y) has the same functional

form:
SPk(t, x, y) = Px(t-x+xk)Py(Yk-y) (26)

where px(°), py (.) are symmetric, nonnegative-valued functions

and (xk, y is the center of the kth detector. Let p(t) be the

autocorrelation function of p (t), i.e.,

p(t) I px(T)px (Tt)dT. (27)

Rewriting (3) in terms of the parameters considered in Section

II with the above assumptions, we have

alPx (t-l+Xk)Py (yk-yi) + a 2Px t-xl-rcosO+xk) pY(yk-Yl-rsin6).
(28)

00

Substituting (28) into (9), we have Fi in terms of p, 4, P°, py,1

and p The expression for each element of F is given in Appendix
y

B. The lower bounds on the variances of the estimates for a,, R,

x1, yI, r, and e are the diagonal elements of the inverse of the

Fisher information matrix, F, as in Eqs. (16a) - (16f) of Section

31
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The results presented in this section are valies of the

normalized errors defined in Eqs. (17a) - (17f) in the last

section. All results are presented at SNRI-10 of target No. 1.

SNR is defined in (18a) with

11/
0 a p py(O)[f Px (t)dt =1. (29)

For a different signal-to-noise ratio, the same formula given in

(19) applies. The same point spread function (Eqs. (20)-(21)) is

used in the numerical examples presented here.

Figures 9a - 9f present the Cramer-Rao bounds on the

estimation errurs defined in Eqs. (17a) - (17f) for a brickwall

detector pattern shown in Fig. 10. The results presented here

are very similar to those shown in Figs. 8a - Bf for the crow's

foot pattern in terms of the shape of the equal performance

contours. Notice that for the same signal-to-noise ratio for

each detector in both patterns* the overall signal-to-noise ratio

of the brickwall pattern is lower than that of the crow's foot

pattern. For example, for a target located along the scan axis

(x-axis), the ratio is about 1.5 to 1. This difference should be

taken into account when a comparison of parameter estimation per-

formance between these two patterns is made. The amplitude of

each detector output to a unit strength point source is a function

of the cross-scan separation between the point source and the

- *To achieve the 'same SNR per detector requires matching the blur
circle to the smaller detector size in the brickwall pattern.
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33

. .. . - , ,L•+.,+ •?+++ .33



0.4

S0 .114

II 0. I

0.0

-I. A I .00

II
a 0

". 4

Fig. 9b. The Craxrer-Rao bound on thei
amplitude ratio estimation errors for

a 5-detector brickwall pattern.

SAA AXS\4

iti

',., 34



r.t

-, 0.11

0.0

0 ,O0

-1.00

-. 00 .00I)

.00

INS

I "'

CRAAtER-RAO BOUNDS ON X (FRACTION OF DETECT OR WIDTH)

Fig. 9c. The Cramer-Rao bound on the
in-scan location estimation errors for
a 5-detector brickwall pattern.

35I

: '• 35



0.40

0.32

0.24

,. 0.08

-1 .00 001

1 .00 00

94

f I Soo

[-+1

SCANAXIS 00 0.5) 1.

Ri" I .iR

CRAMER-RAO BOUNDS ON Y (FRACTION OF DETECTOR WIDTH)

Fig. 9d. The Cramer-Rao bound on the
cross-scan location estimation errors
for a 5-detector brickwall pattern.

36



0 .40

0. 32

0.24

- 0. 16 C

el* 0 50 0.50 X

I 1 1 011 0

C4 C

?I0 A1I

CRAMER -RAO BOUNDS ON r (FRACTION OF r)

Fig. 9e. The Cramer-Rao bound on the

target separation estimation errors for

a 5-detector brickwall pattern.

37

.. ................



0.30

0.24

o . Is

0.08

SCN. IS 0. 0.5 0 O

1310

Ctoo RRA BONS(ZFATIN0 tDIN

iRi
CRME RA OUD O FRCIO 38A IN

Fig.9f. The ramr-Ra bond o th

___________ oretto esiainerr o
a 5-dtectr brckwal patern

38 ..



zI

C E B D A

!•>° / .i ,,•7I / \ -

Si~0.4 -
/ "4

0.0 --2 0 -1.0 0.0 1.0 2.0

Target Cross-Scan Location In Detector Widths

Fig. 10. The 5-detector brickwall pattern and the
normalized peak of each individual detector as a
function of target cross-scan locaticn. I

-' "I I I I I _ ".



center of the detector as indicated in Eq. (26). The normalized

peak amplitdue of each detector output is plotted as a function of

the cross-scan target location in Fig. 10 for the detector patternr shown in the figure. The brickwall pattern differs from the pre-

vious chevron and crow's foot patterns in using amplitude rather

than separation estimates from individual detectors to obtain

information on target separation in the cross-scan direction. In

spite of this difference, the resulting performance is quite

similar to that achieved by the crow's foot.

The brickwall pattern occupies much less area on the focal

nlane than does the crow's foot pattern. However to achieve the

performance presented in Fig. 9, optimal signal processing of the

outputs of at least 5 detectors was assumed. Simpler suboptimal

processing may be carried out by combining adjacent detectors as

shown by the dotted lines in Fig. 10. In this way, a crow's foot

pattern may be synthesized from the mosaic pattern.
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V. DISCUSSION AND SUMMARY

In this report, we have derived the Cramer-Rao lower bounds

on the variances of parameter estimates for two CSOs separated in

both the in-scan and the cross-scan direction as measured by two

classes of detector patterns. Numerical results are presented for

a particular point spread function and a fixed detector width in the

scan direction for both detector patterns. The trends of the equi-

performance contours of each parameter of interest for both patterns

are quite similar. For the cases considered in this report, the

achievable parameter estimation performance of the 5-detector

brickwall (mosaic) pattern is, in general, poorer than the 3-de-

tector crow's foot patterns for targets with SNR of 10 per detec-

tor. This is because the overall received SNR of the particular

brickwall (mosaic) pattern considered is lower than that of the

crow's foot pattern. To achieve the same performance using the

mosaic pattern would require more detector columns (>2) as well as

a greater signal processing load. However, the brickwall (mosaic)

* pattern may still require a smaller focal plane area to achieve

the same performance as the simple crow's foot pattern.

We have not implemented an algorithm to do 2-dimensional CSO

detection and parameter estimation. No simulation performance re-

sults have been obtained to compare with the theoretical bounds
L presented here. The signal processing load for the 2-D problem

increases as a power of the number of detectors in the pattern, if

41



an optimal performance algorithm is implemented. For a sub-

optimal algorithm, the predicted performance presented here may

I:' not be easy to achieve. This is an area which requires further

investigation.

General trends in estimation performance were summarized at

the ends of Section III and IV.
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F
L
rAPPENDIX A. THE FISHER INFORMATION MATRIX FOR LINEAR# CHEVRON,

AND CROW' S FOT DETECTOR ARRAYS

IJ SLet

S~(A.1)
sk(t) = alp(t-Tk) + alRp(t-•TkAk), A0

EI

where
Xk •l-Xk-Ylctk (A.2)

and

= rcos8 - rsinecote . (A.3)
k~ke

Then, the derivatives of s are:

s S(t)
___k__ = p(t-Tk) + Rp(trkAk), (A. 4a)

S•~ a1

Sk(t)

a

a _aP(t-Tkk -A (A.4b)

D? R

s k(t) (A.4c)•~~ =-a[P(t-T) +Rp(t-Tk-Ak]

x I

Sosk(t)

[ -- -- - ---t = a l c o t e k [p ( t _T k ) + R p (t _T k _A~ k ) ] , (A o4 d )

kr - R(cose - sin6 cotek)Pt- k-Ak), (A.4e)
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s

of the following functions:

P f p(t)p(t-r)dt, (A.s5a)

-f a(t)p(t-T)dt, (A.5b)
-00

and C

S/ (A. 5a)

we have
M

F.. (f..)k for i,j=1,2,..,6 (A.6)

where

(f (1+R )p(O) d 2Rp( (A.7a)

f (12)k a lp(Ak) + a1R P(O) (A.7b)

(f 15)k a 1R(cosO sinecotek);(Ak) (.c

(f -R r(sinc + cosecotk)P(A) (A.7d)J

f 22)k 2,(O (A.7e)

S23)k - al P(Atk) (A.7f)

44.

we hav
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( €24)k = a1 2cotek Ak (A.7g)

( =_a 12 R )*p*_2al RpA A.h

(f) -cote(f) (A.7i)
34 k = tk 33 k

(f35)k =--a2 R(cosO - sinecotek) Mp(Ak) + Rp(0)] (A.7J)

(36)k 1 R(sinO+cosecotek) [4pO +Rp*(0)] (Ao7k)

(f44)k =-cotek(f 3 4 )k (A.71)

(f45 k Cotk (f35)k (A. 7m)

(f46)k wcotok (f 3 6 )k (A.7n)

2 2(f55)k =-a 1 R (cose-sinecotek)2p(O) (A.7o)

222
(fR56)k a r R sricos-sincote (s in@+cos)cotOk)ý*(0) (A.7p)

1 ~ kk( f6 2 R =a2R r2 (sin6+cos~cotek 2*p.10) (A1. 7q)

and

" (fl31k = (l4)k = (f25)k = (26)k =0

where p and p are the 1st and 2nd order derivatives of p, res-

pectively. Inverting this 6 x 6 symmetric matrix, F, one should

be able to obtain the Cramer-Rao lower bound on the estimates as

shown in (16a) - (16f) of Section III.
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APPENDIX B. THE FISHER INOMTO ARXFRBIKALDTCOr PATTERNS

r Let

Sk kt = lXtT)Y(Yk-Y1) +alRpx(t-T k rcos)p Y (yk-71l-rsinf)
(B. 1)

II where

T 1k- (B. 2)

Then, the derivatives of s kare:

Sk~t
_____ =ap(t-T )p (cs1) + pY(Yk -T 1yinO 1 (B.3bO )

(B.3d)

~ k~ a csj (t-krcs Tk-r(yk6) psine),(.

_ _ _ - -)- ) y

(B.3c)

k- ( -T ( - )-, p~-T- rcosO--)--- rsin6)



a akl)_aRrsinxltT k~-rcos'lp y'k-.- rsine)

a i (t-R rCoSPx(t-Tk-rcosy (yk-y-rsin),

(B.3f)

[ where 6x(.) and y(.) are the 1st order derivatives of px and p ,

respectively, For notational simplicity, we will use p, and P2

in the rest of this Appendix to denote py(YkYl and p yk-il-rsinS),

respectively.

Substituting (B.3a) - (B.3f) into (9) and rewriting it in

terms of p, the autocorrelation function of p defined by (11),

and its derivatives p, and op, we have
M

2
F.i = Eoo = ( ) , for i,j = l,2,.,.,6 (B.4)

NJ ok=1  ij k

where

(f) = (p 2+p 2
2 2 )p(0) + 2Plp2 Rp~rcose) (B.,5a)

2

(f12)k = a 1PIP2 P(rcose) + alRP2  (0) (B.5b)

(fl4)k =-al(DlPl+R2 p 2 p2 )p(0) - alR(plP 2 +plP 2 )P(rcosO) (B.5c)

(f15)k = alRplP2 cosOp(rcose) - alRplP2 sinep(rcosO)

-a R2 p 2P2 sin p(O) (B.5d)

(f1 6 )k=-alRrplp 2 sineý(rcose) - alRrplP2 cos6p (rcose)

-alR2 rP 2 P2 cosep(O) (B.5e)
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- 22p (B.5f)

(f 2 3)2 I .a1 2p p ( o ) 
(B. 5g)

f24)k -- al plp2 p(rcos8)

f253 k -- a1 lRp 2 2 p

=-26 ak -'al 2 Rrp 2 p•2 C seo) (B,5j)

f33) k -- a1
2 (pI 2 +p 2 2R)°(0) - 2al 2 RPlp2 P(rCOsB) (B 5k)

(f34)k = a1
2 a(Pi• 2 . jiP 2 )•(rCose) (B,51)

-~2 
(B 222

I (f35)k =-lRpp1 o'rcs - a1~2R2cosep°(0)

S 2 RPlsin p(rcos)

2 a1ep(0 (B. 5j)

(f36)k =-aRrplp2 sinl°(r + a12 RrPPC°SP(rcose)

+ a1
2 R2 rP 2

2sin62'(0) (B, 5n)

"(0 2a c+aoR e*(B. 5k)

(f (a 1( 1 2+ • 2
2 )p() +2a1 RPl P 2 p(rcose)

2(45)k _ Pr aI 2 RPlP2 sin)p(rc(se)

+ a1 2Rp 2 s22 (O (B.5p)

(f aa 

2r

(f4) = a 2 Rr lP 2 SinP(rcos0) + R lP2cosp"(rs

22o2

a1 ( Rr coso () (B. 5q)

2 2 P2 2 '(0) . 2 2 p(0(B5r)
+a55,k =-a 1 R 1 CSP + 2ac (B.5r)
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[R 2ri co 2,a2 o
* 1R~hncO~ 2 P(O) ' 2~()

(f6 ) =-a 2R2r2[P 2
2 in2 oop(O) - 2c0.2ep(o) (B.5t)
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