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FOREWORD

This woirk was undertaken to provide a design tool for use in estimating the

aerodynamics of tactical weapons. Rapid estimation of these aerodynamics will

then allow one to predict performance or conduct static/dynamic stability analy-

sis in the preliminary and intermediate design stages in an efficient and reason-

ably acccurate marner. Prior to the development of this technology over the past

10 years, aerodynamics were calculated by hand using design charts, wind tunnel

data, empiricel methods, or just "engineering experience." It is hoped that this

methodology has helped to lend an improved process for generating aerodyaamics.

Support for the work was provided by the following sponsors: The Naval Sea

Systems Command under the Surface-Launched Weapons Aerodynamics and Structures
Block Program, the Naval Air Systems Command under the Strike Warfare Weaponry/
Aerodynamics/Structures Technology Block,
7 Project No. 1L162303A214, and
g F41411.

|
!
\

the U.S. Army Missile Command under
the Office of Naval Research under Project No.

Major procurement contracts. from the above funds were let to North Carolina

State University, Nielser Engineering and Research, Inc., and Lockheed Missiles

R 1 ST b R S AR

. Strategic Systems Department
(]

3 and Space Co., Inc. Minor contracts were let to General Electric, Armament Sys-
gli tem Dept., Burlington, Vt.; COMPRO of Fredericksburg, Va.; and EG&G of Rockville,

V{ Md.

o

i; This report was reviewed and approved by Mr. C. A. Fisher, Head, Weapon

T Dynamics Division (K20).
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1. INTRODUCTION

In the design of any airframe, there is a need to estimate the aerodynamic
characteristics of the body in flight. During the preliminary or conceptual de-
sign phase, design changes necessitate the revision of the preliminzry estimates

each time a change is made. To meet this need, the Navy (Army support in 1977)

undertook in 1971 the development of 5 comput.er code which would be ahle to pre-\/

dict the aerodynamic coefficients of a wide variety of configurations rapidly,
inexpensively, and with relatively good accuracy. The code was developed in
phases with preliminary versions of tlie code being published in 1972, 1974, and
1977 (see References ', 2, and 3, respectively). These versions were foz the
body alone static aerodynamics, wing-body-tail static aerodynamics, and dvnamic
derivatives, respectively. Applicable Mach number and angle-of-attack ranges
were 0 < M_ < 2.5 and 0 < a < stall, respectively. The final version of this
code, simply referred to as the Aeroprediction Code, was completed in late 1981.
This version of the code extended the Mzch number range to 6 and aagle-of-attack
to 180°. However, wing-body aerodynamics can only be computed to a = 45°. Above
o = 45°, body alone aerodynamics ar=s generated. Theoretical documentation of
this last version of the code is given in Reference 4. The code has been devel-
oped to handle a general class of axisymmetric, wing-body-tail configurations
(this does not include inlets or base flow). The general approach in the code
development has boer to combine existing and newly developed computational meth-
ods into a single computer program. The basic method, described in more detail
in Section 2, is that of component superpositicn where the body alone, lifting
surface alone, and interferemce contributions are added to obtain the total con-

figuration aerodynamics.

The purpose of this repoci is tweiold: 1) to provide a brief summary of the
methods used iu the Code, end 2) to provide representative design charts which
have been generated by the usc of tas Aeroprediction Corde and which can be used
for preliminar, Jjesign estimates or data comparison. Section 2 provides the sum-

mary cf the prediction methods. The xethnds are outlined in sufficient detail so
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that one familiar with aerodynamic theory will probably not need to seek further
detaii in the earlier works. However, many of the intermediate steps and data
tables used in the Code are not presented. Section 3 provides a comparison oi
the theory in the Code and experimental data fer a number of representative
configurat"ions which will provide th2 users of both the Code and the design
charts a feel for the overall accuracy of the predictions. There are also sec-
tions discussing the design of projectiles aad missiles to achieve optimum per-
formance. Section 4 presents a limited number of design charts which can be used
by the designer to obtain an estimate of the aerodynamic coefficients for a
variety of configuration components. The chief purpose of the charts is to show
the trends in the coefficients which result from changes in a configuration
component. The charts in many cases represent reproductions or extensions of
charts provided in earlier werks, which are shown both for comparison and to
provide new data. The charts presented by no means vepresent the full range of
application of the Aeroprediction Code. Time and funds would not allow a com-
plete examination of the effects of varying geometric parameters. The user may
wish to conduct additional pairametric analyses within the applicable limits of
the Code.
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2. METHODS OF ANALYSIS

The basic approach is that of component linear superposition. Body alone,
lifting surface alone, and interference aerodynamic contributions are combined

into total configuration aerodynamics. No inlet or plume effects are considered.

The general approach has been to combine existing and newly develcped ap-
proximate computational methods into a single program to compute aerodynamics.
Computational times required for the estimate of static and dynamic asrodynamic
coefficients fcr a body-tail-canard configuration, which is the most complex
configuration considered, are in Central Processing Unit (CPU) seconds on the
CDC 6700 computer as opposed to minutes or hours required for more detailed
physical and numerical models. The accuracy obtained, Lowever, is compatible
with that required for preliminary or intermediate design estimates.

2.1 STATIC AERODYNAMICS

2.1.1 BODY ALONE AERQDYNAMICS

Complete generality of bodvy configuration is not possible. The basic ge-
ometry for the most complex configuration considered is shown in Figure 1. The
body is axisymmetric.

CANARD
DISCONTINUITY TAIL
- , BOATTAIL
NOSE — |- AFTERBODY ——emei OR
‘ FLARE

Figure 1. General Body Geometry
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The nose may be pointed, spherically blunted, or truncated. For the

spherically blunted case, the origin of coordinates is where the spherical cap

joins the rest of the nose. Note that X is a coordinate from the nose tip. The

nose may also consist of two piecewise continuous sections in addition to a pos=-
sibie spherical cap. At high supersonic Mach numbevs, the spherical cap may be
generalized to a conic section curve. The afterbody consists of a constant

radius section. The boattail or flare nay be a conical frustrum or a curved

section. A rotating band for a projectile can also be included.

The reference area is associated with a referetice body diameter for all
aerodynamic coefficients. The diameter must be that at the end »f the nose.

2.1.1.1 AXIAL FORCE

Axial force components are bioken down into linear superposition of wave or

T : e L 5 e L Lo i

pressure force, frictiun force, rotating band force, and base force.

2.1.1.1.1 WAVE OR PRESSURE AXIAL FORCE

The wave or pressure axial force is defined as the forebody axial ferce due
to normal stress or pressure, In the subsonic-transonic flow region, the fore-
body surface pressur2s arve affected by boundary layer separation at the nose-
afterbody junctions, at the end of the body, and on a steep boattail.

2.1.1.1.1.1 SUBSONIC AND TRANSONIC FLOW (M, < 1.2). Currently the wave axial

turce is assumed to be contributed by the nose and the boattail in a linear

s d

Bl e ST Lo T + o T 1 A ETE AR TS

superposition. For bodies with long afterbodies, the nose and boattail drag are
essentially uncoupled. In other words, the nose axial force does not depend on
boattail parameters and afterbody length (subscnic Mach numbers), and the boat-
tail axial force does not depend on nose parameters and afterbody length. 1In

reality, the boattail axial force and base force are coupled for suhsonic Mach
numbers, even for long afterbodies.

Complete generality of solution would require a solution of small dis-
turbance potential, fuil potential, or Euler model equations. Computational
times are prohibitive even fcr the simplest smail disturbance model.

s i -

ik




For the nose axial force, the approach is to utilize computational axial
force coefficient data and experimental data for a nose followed by a long after-
body in a table lookup manner. Reference 5 indicates that the nose axial force
coefficient is shape dependent. The family of tangent ogives and conical noses

approximate the boundaries of the envelope of shapes of interest.

The nose axial pressure or wave drag force coefficient is given by a linear

interpolation between a blunted ogive value and a blunted cone value.

.. [CANO(RN’ Lys M) (R = R + 2C, (e, Mw)Rg o
AN (Ré + Rb)

Details and evaluation of the prediction are given in Reference 4.

CANO is the tangent ogive value and CANC is the shar . value. R6 is the
slope at x = 0 and Ré is the slope at the nose-afterbody; nction. When Ré is
zero, the ogive value is obtained, and, when Ré = Ré, the cone value is obtained.

Eg is the cone angle associated with Ré.

The value for CANO (RN, LN’ M“) is obtained from a table lookup interpola-
tion routine for blunted tangent ogive noses with long after-bodies. Tabular
values are obtained from solutions of the full potential equation and a model of
the Euler equations. The original computational met%od reported in Reference 6
obtains a solution of the Euler equations model by an implicit time asymptotic
method. Computational accuracy from Reference 6 for shorter nose lengths was
deemed to be insufficient. Hence, the full potential model of Reference 7 was
used to update the table. The potential model data transmitted by G. Kuhn cf
NEAR, Inc. are unpublished. Discrete values of M are .8, .95, 1.05, and 1.2.

J,

RN values are spaced in .05 increments from 0 to .5. LN values range from .75 to

5. For values below M = .8, CANO is decayed quadratically from the value at
M, = .8to0atM =.5.

®

The CANC tabular values were obtained by integrating pressure data for
pointed cone-cylinders from Reference 8 and blending these data with values from
the classical Taylor-Maccoll solutions. CANC values are decayed to a finite
value asymptote below Mo = -3, Reference 9 indicates that the effect of blunting

is not significant for bluntness as great as RN = .4 for pointed conical noses
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below shock attachment Mach numbers. ¢

S tabular values are in 5° increments

ranging from 0° to 20°. M  tabular values are .5, .7, .8, .95, 1.05, and 1.2.

The boattail axial force model is reported in Reference 1. For supersonic
Mach numbers close to 1.0, Reference 10 gives an approximate solution of the
small disturbance potential equation on a boattail which follows a long after-
bedy. For Mach numbers below 1.05, the boattail drag is decayed to 0.0 ip a

linear manner at Mg° = .95 from the value at M°° = 1.05.

2.1.1.1.1.2 LOW SUPERSONIC MACH NUMBERS (1.2 < M, < Mz). M2 is a Mach number
separating low supersonic inviscid computations from high supersonic computations
for the body alone components for static coefficient prediction. Mz is a program
input between 2 and 3.5 which is dictated by the limits of the small disturbance
models used for the low supersonic Mach number flow region.

Detailed theory and evaluation for this section are given in Reference 1.
For pointed bodies, the basic model is the Van Dyke secondworder perturbation
solution of the potential equation (Reference 11). The full nonlinear poten-
tial equation can be separated into an axial flow nonlinear problem and a linear
nonconstant coefficient (constants depend on an axial solution) crossflow problem
when the angle of attack is small (15° or less).

First-order linear solutions are obtained by neglecting all nonlinear terms
for the axial flow and crossflow problems. The first-order axial flow problem is
solved by superposing axial source solutions in integral form. The source
strength distribution is estimated by a piecewisc second-order Taylor geries
representation. The classical Kirmadn-Moore source distribution is first-order
piecewise linear. Van Dyke estimates the highest order nonlinear terms using the
first-order solution., Thus a solution of the nonlinear axial flow problem is

obtained by a second-order iteration or perturbation. The second-order partial
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differential =equation has the same linear terms aad is nonhomogeneous. An ap-
prcximete closed form particular solution was found by Van Dyke to the same order
of accuracy as the nonlinear terms retained. Thc second-o:rder homogeneous solu-

tion is solved using a piecewise second-« rder axial source distribution.

To be consistent, the crossflow solution contributes terms of order sin® ¢
to the axia) force coesfficient. However, the Code uses the full nonlinear pres-
sure co2fficient relation. The crossflow soluticn coatributes a term of order
sin o to the normal force. The crossflow solation will be discussed in the sec-
tion on rormal force cr lift at zero angle of attack. Only a first-order linear
crossflow sclution is considered in the "hybrid" model.

Thus far, tue discussion has dealt with a pointed body solution. The origin
of the supersonic axial source and doublet distributions coincide with x = 0.
The perturbation solution is limited by the requirément that the Mach angle be
greater than the maximum body slope. In the Code, the requirement is that the

maximum body slope be 1238 than .95 of the slope of the Mach angle for pointed
bodies. ’

For a spherically blunted body the slope exceeds the Mach angle slope on
part of the sphere. A modified Newtonian pressure distribution is matched with

the perturbation theory at some point on the sphere. The modified Newtonian
pressure distribution is given as
= in2 .
C, = Cpq sin 5 (2)
sin 8 = sin € cos @ - cos € cos O sin a (3)

where
0 is the azimuthal angle from the leeside,
€ is the angle associated with the body slcpe, and
Cpo is the stagnation pressure coefficient behind 2 normal shock.

The method for matching pressure distribution and for selecting the origin

of the source distribution is complex. 1n order tc improve the recompresaion
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predicted at higher Mach numbers ia the neighborhood of the sphere-body junc-
tion, the iofse shape was modified as shown in Figure 2.

Y

A

Figure 2. Spherically Blunted Nose Geometry

The tangent to the body at the origin of coordiaates is extended,

and a
perpendicular is dropped from the origin to point t.

For low supersonic flow
the spherical nose cap is replaced by a sphere and a conical frustrum recom-
pression ramp. The effective sphere radius is then RNE = Ro cos £, as opposed
to the one shown in Figure 1 where RN = Ro/cos €4

The perturbation solution starts at point §. The point s initially is

chosen where.the surface tangent angle is 27.5°. An additional requirement is

that

F tan p < Ry (4)

where

F is an input to the code of about .95, and

M is the Mach wave angle.

4
e

If Equation (4) is not satisfied, then the effective free stream Mach aumb: .
cut back to the pnint where F tan § = R

'
P

i+ If tan (27.5°) <R}, then s coincides
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with t. The origin for the source or doublet distribuvtion, S%, is obtained by
3 ~ 4 N + .
extending a tangent from s to the axis at st. Thus, the perturbation solution

starts as a cone solution and marches from s down the body. The modified New-

tonian solution starts at the stagnation point. On seven meridian planes of con-
stant 6 (0°, 30°, 60°, ..., 180°), an intersection between the two distributicas

is sought. If no intersection is obtained, then a pressure discontinuity is

allowed at s. Howaver, even if there is an intersection, there is a pressure

slope discontinuity. The Newtonian pressure distribution is used upstream of the

point of intersection. The perturbation solution is used downstream of the

intersection.

For the truncated body case (Figure 1 with a flat nose), a pseudo sphere
is used to provide a solution at the spherical cap-body junction. The "hybrid"
solution begins at point s and continues down the body. Loads are not in-
tegrated on the pseudo sphere. No pressure intersection is required. On the

flat face, the mean pressure is assumed to be .9 of the stagnation value.

Once the Cp distribution is obtained from the "hybrid" model, the axial

force coefficlient is given by
L n . -
- 1
Cy = 8/n fo fo ¢, (x,0) RR'dodx . (5)

Dimensions here are in calibers. Cp is ziven by the full nonlinear isentropic

Bernoulli relation.
A lower limit criterion for Mz is given approximately by

. t
.95 tan 4 > R max

For a spherically blunted body, Réax is for the part of the body downstream of
the spherical cap. Numerical stability and accuracy is degraded for blunt bodies

as the Mach number increases.

2.1.1.1.1.3 HIGH SUPERSONIC FLOW (M, > Mz). Detailed theory and evaiuation for
this section is given in Reference 4. The method used is based on a modification

of that given in Reference 12.
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The body in Figure 1 consists cf piecewise continuous elements. Th2 first

element is a conic section of the form
R% = 2 Cx + Bx2 . (6)

The remainder of the body consists of twe nose sections, an afterbody, and
a boattail or flare. GSoume cf these sections may be omitted. Each piecewise
continuous se¢ction is divided into n (currently 40) increments. This defines
points where the pressure is to be caiculated. Tangents are drawn to the body
at these points and extended until intercections with neighboring tangents are
found. Thus, the body is replaced by a circumscribed body of linear segments.
On a pointed or truncnated nose the first tangency point is at the origin. On a
conic-section blunt nose, the first tangency point is determined by a match with
2 modified Newconisn pressure distribution. If the first section of the nose
is a pointed cone, obviously no subdivision is necessary.

The pressure coefficient distribution is assumed to be represented as

Cp = (Cp)a=0 - A sin 20 cos O + (I cos? 6 + A sin? 6) sin 2 a/2 (N

where A, T', and A can be represented as

1 oC
-3 552 y (8)
a=0, 6=0

>
n

—
]

a2¢
= ( a—°,,2> , and 9)

a=0, 6=0

[ d%C

A=\a—a22 (10)

>a=0,9=n/2
From second-order shock-expansion theory, which neglects incoming characteristics
at the body surface and muakes other approximations for the outgoing characteris-

tic equations, one may show that when (Cp) the A, ', and A variations on a

a=0’
straight line segment are given by the same functional form

Y=Y, + (2 -Y)e", and (11)

10

—




S
| o ) =0 . (12)
\C, = Cha)

a=0
Bere s is the distance along the linear segment, subscript 2 refers to the value

at the beginning of the segment, and subscript a refers to an asymptotic value.

Slopes are discentinuous across a segment junction. Jump conditions across a
slope discontinuity are obtained from Prandtl-Meyer isentropic relations and
higher derivatives thereof. Pressure coefficient values just after a corner can
thus be related to values just before a ccrner (indicated by the subscript 1).
Asymptotic values are given by an approximate cone solution for positive values
of local & and free stream Mach number. The pressure gradient jump at a corner
is given by a relation from Reference 12.

For negative values of ¢, (Cpa)u=0 is assumed to be zero and the remain-
ing asymptotic values of the pressure functions are given by a blend of slender

body and hypersonic approximations at free stream Mach numbers.

For a blunt body, the initial values of the p ‘sure coefficients are ob-
tained by evaluation of Equation (2) and its derivatives at the match point.
The match point is where the local Mach number is 1.1 as determined by a com-
bination of Equation (2), evaluated at o = 0, and the isentropic pressure rela-
tion. For a pointed body or truncated body the initial values of the pressure
functions are obtained £from the approximate cone solution evaluated at e, at
the free stream Mach number. For the truncated flat face, the average pressure
is again assumed to be .9 of the stagnation value. Values at the tangency point
and at the end of the segment are obtained from Equations (11) and (12) for the

pressure functions.

Once the pressure distribution is determined, CA is obtained from

C-8fLRR' ). .+ B g Za]d” (13)
A- O pa=0 4 sin X .

11
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2.1.1.1.2 FRICTION AXIAL FORCE

The—boundary layer on the surface of an open-end cylinder is analogous to

that on a flat plate of the same length. The model used here is that of Van

Driest (Reference 13) and is given in detail in Reference 1. A portion of the

forward part of the plate is assumed to be laminar.
based on body length is chosen as 10® (Reference 1).

The friction axial force coefficient is g%ven as

Car = |OF TRy

/
“Sp Rye (1_._328 _

where

Sb is the body surface area in calibers, and

R"" Cec ]| Ryr 2 Bne
UNC

A critical Reynolds number

(14)

RNL and RNC are Reynolds number and critical Reynolds number, respectively,

based on body length.

For RNL

c

< Ryeo
4 1.328

— s

AF = 7 Sp _{EEE

from the well-known Blasius flat plate solution. C

(15)

F andé CFC are friction co-

efficients obtained at the Reynolds number and critical Reynolds number, respec-

tively. In general, CF is given by

dl/]’CF - log Cp = dg

where
dy = .55723 [sin”! (¢y) + sin™! (/T /T, ,
d = log Ry - 1.26 log (T /T,) ,
_ 2A% - B
Cy = —=——
(B2 + 4A%)
Cy = B

(B2 + 4a2)%

12

(16)
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2 \%
Mm

A = 1-_1
2 7T T !
w/T,
-1
1+ L= m2
B = — - 1, and
w/T
> ]

= -1 2
T /Te=1+.9 L2wz

Equation (16) is solved twice by a Newton-~Raphson iteration algorithm for
the input RNL and RNL = RNC'

2.1.1.1.3 ROTATING BAND AXIAL FORCE COEFFICIENT

The band height, H, is assumed to be much less than the band width. The
band is also assumed to be far back on a constant cross section afterbod? in

i
1

fully developed turbulent flow.

h
i
'
)
i

Then

Cagp = AC, (M) H/.01 (17)

where H is the band height in calibers and ACA (M) is a table lookup axial force

coefficient for a band .01 caliber in height.

2.1.1.1.4 BASE AXIAL FORCE

It is assumed that the boattail or flare is located after a relatively long
afterbody so that the approaching external flow is at free stream conditions.

The mean base pressure, then, is a function of boattail length, shape, and

final diameter. The model adapted in Reference 1 is

- 3
Cap = CPAB M,,1) (RB/Rref) (18)

where CP (M,,1) is the axial pressure coefficient for a cylinder without a
boattail.

For a flare, the model used is

C,p = =C

AB -

(65,M,) (Ry/R
Pyg B B

ref

13
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Here, Fref is the constant radius of the afterbody and R

B is the base radius.

CAB (GB’Mm) is the average base force coefficient from experimental data for

a constant flare angle (0 < GB < 15°). Analysis of the available data leads to.

the conclusion that Equation (18) is approximately valid ai higher supersonic

Mach numpbers and invalid at other Mach numbers except for very cmall boattail
angles.

At angle-of-attack, an incremental value is added. The expression is based
on data from Reference 14. '

ACyp, = (.64930 - .0028334,) (Ry/R_ .)° (20)

Here o is the angle-of-attack in radians. Note that the equation has been re-
vised from that given ir Reference 1
flares, (RB/R

alone case.

to fit the duta more accurately. For
ref)2 is used in Equatinn (20). Equation (2C) is valid for ths body
In the section on lifting surface and interference aerodynamics,
Equation (20) is veplaced by a different expression.
coefficient is given by CAB + ACABA‘

The tota: base axial force

2.1.1.2 NORMAL FORCE AND PITCHING MOMENT

The body normal force is broken down into inviscid and viscous crossilow
contributions. Moment centers are defined with respect to the nose.
length is the bcdy reference diameter.
center.

Reference

The final moment is about the moment

2.1.1.2.1 INVISCID NORMAL FORCE

2.1.1.2.1 % SUBSONIC AND TRANSONIC FLOW (M < 1.2). In Reference 1, Cy and C

. - f s a
are assumed to be contributed by a linear s'perposition of ccmpoue:t pargs oi the

body. Each component i35 assumed to be independent of the other. The nose normal

force is predicted om a fit of the cone alone data of Reference . Tue center

of pressure prediction is given by slender body theory. The afterbody CN is
given as a table lookup function of afterbody length and free stream Mach nunBer.

14
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Both CN and xcp are given by the transonic small disturbance theur, of Refer-
ence 15. 7 For low Mach numbers, CN is predicted from a limited data correlation.
For low Mach numbers, the xcé predgction is assumed to be che same as for tran-

sonic flow.

The boattail Cy is based on limited data correlation where Cy /11
. . . . . o
- (RB/Rref)zl is fitted as a function of IM&-I'. X, is also given by a slender

body theory estimate. The correlation functional form is based on slénder body
theory. a

This combination of methods is necessitated by the lack of a theoretical
and experimental data base.

The approcach of Raference 16, which was evaluated in some detail in Refer-
ence 4, was intended to improve the predictive capability in transonic fluw
Complete generality obviously is not possible. The nose was assumed to be .a

blunted tangent ogive. The boattail was assumed tc be coniczl.

The individual body part contributions are superimposed linearly; Howeve~,
the individual contributions are assumed to be functions of all body parameters
such as nose spherical radius, nose length, afterbody length, and boattail augle.
The data base for CN and CIn is generated by solving the Euler equations‘at 1°
angle of attack, Un?ortunate?y, the size of the data base was not large enouph

to properly represent this limited model. Perts of the data base wer> also
suspect as to accuracy, in particular the boattail contribut_on at all Mach num-

bers and the CN prediction at supersonic Mach nurbers.
o
For each individual part, CN cr Cm are fittod to a jnadratic [avlor .-rries

functional form for four Mach nufibers (?75, .9, .95, 1.7). 15~fit ccefficiunts

are invalved in the Tayior series in four geometii~ p-~rameter:. For each Mach

number, the Taylor series for the nose, the afterbody, aud .5, 1., anc¢ 1.5 cali~
ber boattail lengths are used. The zero length (zero contrioution), .5, 1., aund
1.5 caliber estimates ure wsed to provide data for a four-point Lagran;: fit for
the boattail contribution. At M = .6, the indiviaual tsdy past contributiuns
are given by the model from Reference 1. A five-point Lagringe fit in M yields

the final compoaent part contributicns in tke ramge .6 < 4 < 1.2. For M < .6,

- . - e - co-
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the prediction is given by the older model. The data at M, = 1.2 have been re-
placed by a fit to a large set of data generated by the supersonic small dis-

turbance Van Dyke potential model of Reference 17.

8 (urrently either of the two models is an input option. For afterbody
r3f"'tv lexgths i more than 5.0 calibers, the older model is used since the data base

ot the more recent model is limited to an afterbody of 5.0 calibers.

E A

. e

2.1.1.2.1.2 LOW SUFERSONIC FLOW (1.2 < Mou < Mz). A line doublet distribution
on the 2xis p.-rmits a solution of the first-order linear crossflow equation. A

bounuary laver thickness based on flat plzte theory is added to the original body

TR R A LT

SR it

before the crossflow equation i sclved. As iudicated in the section on axial
force prediction, Cp is based on a "hybrid" combination of first-order crossflow
veloclity and second-order axial flow velocity. The pitching moment about the

nose and the normal force are then given by

L n
CN = - g Jf {: c (x, 8) R cos® d6 dX and, (21)
c = & jJL/I1 §C(x 8) R cosd de dX. ' (22)
m n 0

2.1.1.2.1.3 ~1Gh SUPERSONIC FLOW (M_ > M,j. The basic model has been given in
the corresponding section on axial force prediction where CN and Cm may be given

in terms of the pressu:+ coefficient as

L

CN = 4 sin 24 /. R A dx ., and (23) ;
.0 :-yi

L _ 5 %

C,=~-&4sin2 [ XRAGK . (24) !
¢

g

2.1.1.2.2 VISCOUS CROSSFLOW MODEL

e

The model of Allen and Perkins (Reference :?) is used and is given in con-

densed form in Reference 1. The theory is analogous to sleader body theory in

16
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that che normal force loading is assumed to be given for a local two-dimensional

cylinder exposed to the crossflow velocity, V_ sir a.

An incremental normal force coefficient is then given as !

AC,

L
. 4 T(IL) [2 [ RCy (M, siaa) dx]sin2 « P

0

kil o

= éﬂﬁ&l Cye (M, sin @) Sp sin a . (25)

where Cdc is an infinite cylinder crossflow drag coefficient given by a table
lookup interpolation. Fully developed turbulence independent of crossflow
Reynolds number is assumed. n is a finite lengta correction factor which is

given by a table lookup interpolation, and Sp is the planform area in calibers.

Similarly the incremental moment about the nose is given as

el i b ool k)

= .4 (2
ACm =-5NnCy xp sin® o (26)

; a3

where xp is the center of the planform area.

e el

2.1.2 LIFTING SURFACES AND INTERFERENCE AERODYNAMICS

Again, complete generality of geometry is not possible. The basic fin plan-
form is assumed to be a trapezoid with root and tip edges parallel to the free
stream. No camber is considered. Either planar or cruciform combinations of
fins are considered. Two sets of inline lifting surfaces are considered in the

most general case. Longitudinal control deflections of all movable surfaces are

i e A BN 5 2 s, ol

assumed. In addition to the individual fin geometry, the location of the fin

apex and a mean body diameter are given as input data.

The fin cross section can be a modified double wedge or biconvex. Leading

| and trailing edges may be blunted cylindrically and independently normal to the

{
2
4
!
i
3

A R I SO Y
e oL

edges. Each piecewise continuous segment of a fin cross section .s assumed to

be similar. Figure 3 shows a typical fin planform.

B
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Figure 3. Fin Planform Geometry for a Blunted
Modified Wedge Cross Section

Planform parameters shown which are needed to describe the modified wedge

are Y1’ b, Cr, Ct’ Cr;’ and cr2° For a blunted biconvex section, Crl and Cr2 are
not needed. All dimensions are in feet. The x and y are local coordinates.
From the geometry,

b/2 tany +C_-C

tan y‘ = 572

The values of Yz and Ys depend on the cross-section parameters. The dashed
lines are the traces where the cylindrical bluntings meet inclined planes of the
wedge. A root cross section for a modified wedge 1s shown in Figure 4. The

slope is continuous whevre the cylindrical blunting meets the inclined plane.

e, e, __‘
== >

Figure 4, Fin Root Cross Section
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Each of the five segments shown is piecewise similar with linear taper in y. In
Figure 4, the radii appear as segments of ellipses. The required cross section
geometry inputs are tr’ tt’ Porr Pryr Pgyo and Pyt where tt is the tip thickness,
Por is the root leading edge radius, Per is root trailing edge thickness, and Pot
and Pyy are similar parameters for the tip. For a biconvex cross section tt’

Poes and Py aTE computed.
From the planform geometry,
b/2 tan y; + Ct; - Crl
tan 72 = 572 . (28)

Here, C, is obtained from geometry of a plane perpendicular to the leading edge

ty :
at the tip and the assumption of piecewise similarity. 3

Ct1 = [tt/Z cos 6; = Pot (1 - sin 6;))/(sin &1 cos yl) (29)

The angle &, is the angle of inclination of the forward plane in a cross section

perpendicular to the leading edge and is given by

sin 6, = - B +VB2 +C : (30)

(A L

where
p,. (C. cos y=¢ )
B = Ezzr 1 4= , and (31)
L . 2
_5 * (Cl‘1 cos Y1 plr)
and
t"r’ .
A Y
C = - 4 ir ) (32)
I - 2
Z + (Crl cos Yl pzr)
Using a similar analysis, ,
b/2 tany +C_~C i
- 4 ra t2 33
tan Ya b/2 . ( ) b
i
where Ct2 is given by equations similar to Equations {29) through (32) using the g
subscript "g".
i
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For the biconvex case,

Pgt = Pgy Ct/cr ’ (34)
t, =t Ct/Cr , and (35)
Pre = Py Cp/Cp - (36)

Equations (34) through (36) follow from the requirement of piecewise simjilarity.

2.1.2.1 AXIAL FORCE

Axial force components are broken down into a linear superposition of wave
friction and base components for each fin, In addition, the tail affects the
incremental base axial force given by Equation (20). The total axial force for
fins is given by the sum of the forces per fin times the number of fins (2 or 4
assumed per set). The canard and tail fin set forces are added. The only inter-
ference is the incremental base force due to the tail (four fins only). In addi=
tion, the fin normal forces in the presence of a body in the case of a fin de-
flection have component CNF(B) sin 6F contributions to the axial force. The
angle 6F is the fin control deflection.

2.1,2.1.1 WAVE AXIAL FORCE

2.1.2.1.1.1 LOW SUPERIONIC FLOW (1.05 < M, < MR)' The transonic wave axial
force is a simple lirvur Zecay to zero from the value at M, = 1.05 given hy the
model presented here.

The basic model equation is the first order linear potential model which
was applied to ine first order lift and drag problem for the body-alone case.

2 - - =
B ¢xx ¢'yy ¢z.z 0 (37)
where
¢ is the disturbance potential,

X, ¥y lie in the plane of the free stream velocity vector, and

z is up.
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The boundary conditions are upplied at z = 0 and the spanwise contributions are
neglected. A source distribution in the x,y plane is used to satisfy the dif-
ferential equation. Application of the limit as z = & 0 determines the source

distribution strength as a local solution in analogy with slender body theory.
Thus, for the lift or drag problem,

0(x,y,40) = & 1 (€, n) df dn (38)
" .[.[1(,:-;)2-52(,:-:1)2

where 0, the hyberoolic influence region upstream, is defined by
(x-§)2 - B2 (y-n)2 =0.
For the drag problem,

wig, M) = ¢ 3 &, )

where t is the thickness distribution. From similarity, the slope distribution
is the same in every chord plane for every piecewise continous part of the cross
section. For the biconvex case, g& (x/c) is continuous. For the modified wedge,
g& is discontinuous. The integration region is bounded by the projection of
the upstream Mach cone onto the x,y plane and its intersection with the leading
edge and side edges of the planform consisting of two fins placed tLogether. No
intersection of the opposite side is considered. The numerical method of Refer-

ence 2 superimposes basic solutions for constant slope regions,
The Cp (x,y) distribution is given by
= .20
c, (x,y) = - 250 (39)

Note that this is the pressure coefficient for o = 0, 6F = 0. For a subsonic

generator (lines associated with angles yl,yz,ya,y4), Cp has an integrable singu-
larity,

For the blunted leading edge case, a modified Newtonian distribution is
assumed to apply from the stagnation point to the end of the cylindrical section.
The pressure coefficient, Cp, is then discontinuous at this '"match" point. The

thin wing theory is used from the forward junction to any similar junction with a
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trailing edge radius. It is assumed that separation occurs after the rear cylin-
der-airfoil junction and that no contribution to wave axial force occurs past

this junction. The fin base torce is considered later.

Once Lp is obtained, the wave axial force coefficient for & single fin is

given by b/2 ytan y + C(y)
1

= 1 ot
CAw =3 Cp (x,vy) E™ dxdy . (40)

ref

0 ytan Yy
1

Here C(y) is the local chord. For the wing alcne case Sref is the planform area
for two fins. Otheiwise,

_ np?
Seet = 4

Note that, for y < 0 or y < 0, the planform is modified so that y = 1° or
3 4 3
Y = 1°, For such a planform, the resultant axial force is higher than for the

4
given planform. For greater detail, see Reference 2.

2.1.2.1.1.2 TRANSONIC FLOW (M_ < 1.05). A linear decay from the value at M_ =

1.05 to zero at H“ = ,85 is assumed such that

Caw = 5 Cawr=1.05) (Moo = 1830 -85 < M, < 1.05 . (41)

Caw

0 for M_ < .85 .

2.1.2.1.1.3 HIGH SUPERSONIC FLOW (Mm > MQ). The theory used to determine the
lifting surface proparties is given and evaluated in Reference 4. The theory
used to determine the pressure is based on two-dimensional supersonic flow prop-
erties. At a given point on the surface, the slope of the surface relative to
the undisturbed free stream i~ determined first. If this angle makes a compres-
sion surface, the pressure is calculated from oblique shock theory using the in-
clination angle. If the angle indicates an expansion surface, the pressure is
calculated from Prandtl-Meyer theory. There is no spanwise variation of the 3
pressure distribution. For blunt leading or trailing edges, a Newtonian distribu- ' ;

tion is assumed as before.
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The axial force is given by an equation similar to Equation (40). How-

ever, in this case the 1lift and drag problems are solved simultaneously. The
single fin axial force is given by

C(y) + ytan y
ot
Cpey pU + C ) dxdy (£2)
ytan y

where U and L refer to upper and lower sursface values, respectively.

2.1.2.1.2 SKIN FRICTION AXIAL FORCE

The model here is essentially the same as for the body alone case. For a
single fin,

Cpp = ~— | + fyc (1,328 Cpc (43)
R
ref RNL NC

wvhere
Sw = b(Cr + Ct)/Z and is the wetted area for a single fin.

Here, RNC is 5 x 105 and RNL is based on the mean aerodynamic chord

3 3
L, o)

C=2/3 (Ci : C";) . (44)

From flat plate subsonic strip theory, the fin X, lies on the quarter chord
where C = C.

2.1.2.1.3 TRAILING EDGE SEPARATION FORCE

The model is based on the base pressure for flow over a two-dimensional or
semi-infinite (in spanwise direction) flat plate. This pressure is given by a

table lookup interpolation function of Mach number. For a single fin,

AB = T35 [Ppp * Pyl

23

' s : Ny et - . . b
FUCRS S L L . - ot

TR

» 1 et oiTe w3
s b e e’ e 0 Tomasia i e ok T im0

GO 5 3"

Sviod e MR e




2.1.2.1.4 EFFECT OF A FIN ON THE BASE DRAG OF THE BOGY

In this case, Equation (20) is replaced by
ACABA = [a (.0035 - .01 xAFT) + CpB (Mm) (tr/Cr

- .leFT)] (RB/R )3 . (46)

ref

The last part of Equation (46) is dropped for tr/cr < 'leFT where Xapr 18 the

distance from the base to the root trailing edge divided by the root chord. For
. 2 . : -y .

flares, \RB/Rref) is used in Equation (46).

2.1.2.2 LIFT AND PITCHING MOMENT

Lift contributions are broken down by the component superposition principal.
Here, for the wing alone, which consists of two fins placed together, wing load-

ing is considered first. Subsequently, interference effects are considered.

2.1.2.2.1 SUBSONIC FLOW (0 < M_ < .8)

Equation (37) applies again. The well-known Gothert rule transforms the
equation to Laplaces equation for subsonic Mach numbers. From the well-known
solution for two-dimensional incompressible flow over a cylinder, a bound cir-
culation may be added to the solution. The circulation contributes the lift. An
integral representation of the three-dimensional vector may be obtained by de-
fining a vector potential. The vector potential satisfies a vector Poisson equa-
tion. This leads to the well-known analogy with the Biot-Savart law for electro-
magnetic theory. A Kutta condition is applied at the trailing edge to remove the
indeterminancy. After much manipulation and application of boundary conditions,

it may be shown (References 19 and 20) that

i ) ; b/2 *TEy(y) AC_, (Xy,¥)
Btanamxpa= 57 P 5
RSV X (-¥)
LE, (y)
x. - X
1+ " dX dY (47)

(xy - X2+ (y - )2 | 0
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= - = R = - M2
A Cho = Coro = Cpuo = 2¥gr B =V1 - K2 (48)

and

A Cpo is the differential pressure coefficient loading, and
Yo is the streamwise circulation per unit length.

The outer integral requires a Mangler principal-value treatment (Reference 20).

Here, X, and Xo are the stretched dimensions x/B8, X/B. The pressure coefficient
d.fferential is given by

AC_ . = BAC
po = PA%,
where the subscript O refers to the analogous M_ = 0 case. The compressibility
parameter B cancels when ACpo is substituted into Equation (47).

Equation (47) is first transformed to dimensionless variables

%o " *pg, (V) , %o = xg (1) (49)
YR ) mxy, ) ST xo oy 0 and
TEO LEO TEO LEO
- I §
= g¥§ » 1= 572 - (50)

Substituting Equations (49) and (50) into Equation (47) yields
1 1 c 1
= - , N)d|d
a(x,y) = = L (Eﬁﬂ%z[j; ac, (€, n) K(§, n) £] n (51)

C(n) = xTEo (Y) - xLEO (Y) y and (52)

where

x, ~ X
K(E,n) = 1 + 990 —_— (53)
(x0 - xo)2 + (y - Y)2

Equation (53) is discontinuous in XO at x, when Y = y. When Xo < X0 K =2,
When Xo > Xy K = 0. a(x,y) = o for the static lifting problem. ACp is given
by an approximating function with undetermined coefficients. Equation (51) is
evaluated once for each of the coefficients (method of collocation). The coef-
ficients are obtained by matrix inversion.
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An assumed functional form (see Reference 21) is given as

n m
' a0, (6m = X 3 a0y (6 nphy (D) (54)
where 1
n - ¢
oy o |5 1 - i ¥ (55)
b, (&) =\[f Ei‘/ -~ '1'1'1@ — and
k#i 1 K :

n
» ﬂ.(lnl 'Ingl)
= /l-lﬂJ 24] (56)
» ' 8j(n) - ] In I n —
1 ALY m(n, =|n,l)
i : 2#j i3l = Il

The interpolation pivot points, (§i, §k), are given by

51 = % )1 - cos [E%%irlfll] s, i=1,2, ..., m. (57

Values of Xy chordwise location where the boundary conditions are applied, are
X, = 1- §i, r=1,2, ...mi=m=-r+1, (58)

The interpolation points, n,, are given by the n zeros of the Jacobi polynomial

s e S S i e - kil iR o SeHiea i

J
& et 2 (2m+22+1)! qﬁ
uing) =0 = go JIE {'ﬂ} IR IRV (59)
: The boundary condition points Cs’ s =1, 2,... n are the same as the n.,. The
?- bcundary conditions are thus evaluated at a set of n x m prints (Xr’ Cs) r=1,
3‘ 2,... mjy s =1, 2,...,n. The functional form for AC_ contains the leading edge ;
5 singularity for a two-dimensional flat plate, satisfies the Kutta conditicn :
?é (ACp = 0) at the trailing edge, and satisfies the tip loading condition (ACp = 0).
A The program is coded effectively as m = 3 and n = 8. However, four n points

are chosen for n > 0 and four points are chosen for n < 0. Two functions aie

thus needed for ACP, one for n > 0 and one for n < 0. For the lifting problem,
&
ACp (gi, nj) is even valued in n. '
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The normal force and pitching moment (xcg = 0) coefficients are given by

b/2 _ytan yl + C(y)

C, = =2 AC_(x, y) dxdy , and (60)
N Sref 4
0 ytan Yl
b/2  ytan y1 + C(y)
R ' -
Cm =-3 c f (x + x Cref) Adexdy (61)
ref "ref 0

tan
y Y1

where X is the location of the wing apex from the origin in calibers. For the

wing alope case, x = 0 and cref = C as given in Equation (44), and Sref is the

planform area for two fins,

2.1.2.2.2 LOW SUPERSONIC FLOW (1.2 < M_ < Mg )
e

The Mach number, M2 , separates low supersonic computations from high super-
sonic computations for the wing static and dynamic lifting and interference aero-
dynamics. M2 is 1 program input chosen as high as practical for the thin wing
theory applica%ion (usually 4.0 < M2 < 5.0) as this provides a better comparison
with inviscid lift and moment co&fficient data than the strip theory.

The basic solution of Equation (37) for a thin wing is given by

-3 1 " w(k, n)dE dn
o=+ = (62)
n '['lﬁri)z-Bz(y-n)z

where
w(€, n) = ~ o on the wing only.

In this case, the area of influence, 0, contains points which are not on the
wing. For points off the wing, w(§, n) is not zero as was the case for the sym-

metric axial force problem.

The leading edge may be supersonic or subsonic. The trailing edge is
restricted to the supersonic case. If the trailing edge is subsonic, the
input Mach number is increased so that the trailing edge is slightly super-
sonic. The swept-forward trailing edge case presents no problems. Again no

influence of an opposite half wing tip is assumed; the Mach number is increased
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for those low-aspect ratio planforms where this occurs.
explanation and evaluation, see Reference 2.

For a more detailed

The supersonic leading edge case is the simplest.
lineated.

Three subcases are de-

Figure 5 indicates Case 1 when the Mach lines from the apex and leading edge
at the tip do¢ not intersecct. For this case, three zones bounded by the x axis,
right Mach line from the root apex, and left Mach line from the tip apex are
defined. The regions are desiznated as 1, 2, and 3. Typical 0 areas of in-
tegration are bounded by corresp¢ iding numerals 1, 2, and 3.
area of influence is determired by the method of Evvard and Krasilchikova (Refer-
encc 20). For explicit ACp relations, see Ruference 2.

=~ s DIVIDING MACH _LINES

FCRREGIONS (1), . ()

o= = «= MACH LINES

3
e
~ 1
\ X \ \ 3
\ / \ /7 N\
/o N\
v \ \®/\’\ AN ;
VN /\

Figure 5. Supersenic Leading Edge Flat Plate Planform, €ase 1
M, = 2)

®

A second supersonic leading edge situation, Case 2, is shown in Figure 6,
Here the two Mach lines intersect and tine root chord apex Mach line intersects
the trailing edge. M, is lower fe: this case.
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Figure 6. Supersonic Leading Edge Flat Plate Planform,
Case 2 (M, = 1.%)

Four zow>s are obtained this time, as indicated in Figure 6.

1. Figure 7 (Case 3), the apex Mach line intersects the side edge. Only

the integration area for zone 5 is shown this time. 1In this case,
i AC_ = (AC - (AC )s.
. o ( p)z ( p)s
(ACp)s refers to an equivalent integration tip region contribution. The approach

taken in Reference 2 seems to be more complex.

The approach for the subsonic leading edge case is much more complex than
the supersonic leading edge case. Figure 8 indicates the regions of ini2rest and

integration influence region.

For the case of Figure 8, no part of the side or leading edge is supersonic.
Here, w is unknown between the planform and the apex Mach lines. Fer region 1,
the solution is given by transforming Equation (37) in conical flow variables to

a two~dimensional Laplace equation in a cross section perpendicular to the Mach
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ccne from the apex. For points in region 2, an additional tip solution must be

added to cancel lift off the wing. The AC_ relations are given in Reference 2.

2.1.2.2.3 TRANSONIT FLOW (.8 < M_ < 1.2)

Thickness effects are neglected for the subsonic and supersonic flow

The approach taken in transonic flow is the same as that in DATCOM
(Reference 22). Details are also given in Reference 2.

reg.mes.

A linear interpolation in a table of CN values is used. At h = .8 and
M, = 1.2, CN is computed using the subsonic 8nd low supersonic models. Three
additional Mich numbers are then computed: be, Ma = be + .07, and Mb = nfb
+ .14 whzre be, the force break Mach number, is obtained by a table lookup in-
terpolation. First, a force break Mach number, (be)o, for an equivalent rec-
tangular planform is obtained as a table lookup function of t/C and aspect ratio.
The thickness t is taken at the mean aerodynamic chord C given by Equation (44).
Thea, be is obtained as a table lookup function of (be)o and the sweep of the
mid-chord !'ine, 71/2. Next, CN at be, Ma’ and Mb are computed where the the-
yretical vaiue of C, at be is Tirst given from lifting line theory as

N
(Cx dgpy = - 2RUR) % (63)
a 2 + [AR?(B? + tan? Yyp) * 4]
wthere
AR is the aspect ratio, and
5 Y
Then, (CN )
o fb
Ve = Cn st fq;')'f—b; ' (64)

The rstio in Equation (64) is given as a table lookup function of t/C and aspect

, - .
catio. Then (CNa)a and (CNa)b are given as

(CNa)a = (1 - Ka) (CNa)fb ’ and (65)

e i, L AT R i A < A a4 - o A 1 . M il
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(Cy Jy = (1 =K (C) (66)
N,’b b’ “N, fb

where Ka is given as a table lookup function of t/C and AR and Kb is given as a
table lookup function of t/C. The final value of CN is obtained by a linear
interpolation in a table of the five values which have Been computed.

The xcp is given by a linear interpolation between the value at M_ = .8 and
the value at M = 1.2.
2.1.2.2.4 HIGH SUPERSONIC FLOW (Mon > Mz )
e

The tangent wedge method has been previously outiined in connection with the

wing wave axial force. For lifting properties, defined in terms of CpU and C L
one obtains:

b/2 ytan y 1+c (y)

(23
1

(C., - C_,,) dxdy , and (67)
NS oL " Spu '

0 ytan yl

b/2 ytan y +C(y)

Cm = - ref f f (x +xC ef)(c pU) axdy . (68)

0 ytan Y,

2.1.2.3 INTERFERENCE LIFT

The total lift as given by component buildup is discussed rather extensively
in Reference 2. For M > M2 , interference is not considered. For M < M2 , in-
terference factors are obtaified from slender body with certain correction faltors
taking into abcaunt canard and body vortex wakes as well as lifting surface

proximity to the body base. Compressibility corrections are also made.

2.1.2.3.1 LIFTING SURFACE-BODY INTERFERENCE

The first problem to be considered is that of an undeflected lifting sur-

face-body combination at aagle-of-attack. For the cowbination, the lift is given
by
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CF

Kc = Kgery) * Kpep) * Kp

Kger) = Lpery / Ly o
KF(B) = LF(B) / LF , and
Kg = 1g / Ly

L b ity o i S ik

and where

LF is the 1lift of the fin alone (2 fins placed togather),

LB(F) ie lift on the body due to the presence £ the fins,

3
i
1

LF(B) is the lift on the fin in the presence of a bo.ly,

LB is the body alone 1lift,

LB and LF are predicted from the theories already described, and

KB(F) and KF(B) are given by slender body theory (see Reference 23).

Figure 9 shows a triangular fin and body combination planform view.

b TR

71
hy ‘

<

e it A st aties )kl I ot it i L

Figure 9. Triangular Fin and Body Combination

Slender fin-body theory (radial distance small from the axis) shows that the
lift problem solution is given by a local solution of Laplaces equation in the

cross flow plane. Solution of Laplaces equation is readily obtained with the

R B S R R St S CINE I Pt i i
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aid of the Joukowski and Swartz-Christoffel transformations. R is a mean local
radius.

The resulting vertical loading coefficients are given in terms of g%, %i, R,
Y, and y. Integration over the individual wing and body planform areas gives

1 132
Ke(B) = 7R [ e : ) n/2 - gﬁ_%,AQ_ cin” (_ 2/ )

n(A=1)2 AT+ 1
. .
(A - K)]: W(A), and (74)
T2
- 1\2 _ -
KB(F) = (1 + K> KF(B) = B(A) (75)
where
A= b/2_+ R
R

If the trailing edge remains straight or swept forward, the results in
Equations (74) and (75) apply. However, for the swept forward trailing edges,
KF(B) and KB(F) are zero if the pressure loading is integrated to the trailing
edge. The argument given in Reference 23 is that the planform beyond where y
is a maximum contributes nothing to the loading since the forward downwash
cancels the angle-of-attack loading on the rear. Therefore, the triangular
planform results are assumed to hold for the trapezcidal planform.

For the swept back trailing edge in Figure 10, the solid boundaries for

the cross section are d.fferent downstream from the root trailing edge. In
Y

A Ce

b/2
Y1 / byi2 l

6/79 »)

ﬁ’x
|,
|—aC —

Figure 10. Swept Back Trailing Edge Fin and Body Combinatiop
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Reference 2 the following modifications are made:
Kppy =B (A) G, and (76)
1+ (W (A) - 1)6 (77)

Kp(B)

. C
- = r
G b/2 tan Yl + Ct ) (78)

! When B(A) = 0, W(A) = 1, the large aspect ratio limits are obtained. The G =1
‘ limit corresponds to straight or swept forward t.ailing edges. The case when
ﬁ‘ b/2 tan ¥y < Cr < b/2 tan Y, + Ct needs additional investigation. For this case,
: the cross sections are the same up to the root trailing edge as that for which

?, Equations (74) and (75) were derived. The forward downwash would then cancel
the rear planform loading. For the case when Cr < b/2 tan Yy G might be re-
- placed by .
L (bl)/z + R
G : S ———— .
b/2 + R
In addition, there is a lift contribution by a finite control deflection

Sxree) = *remy v OF (79)

The potential problem in the crossflow plane (o = 0) consists of a uniform down-

it e N b e R i 2 il |- R s T i

wash on the lifting surface in an undisturbed far-flow field (see Reference 23).
In addition, - i
i

Cxper) = (Bpepy - kpemy (cNa)F Op

e
1]

(W(A) = AA)) (Cy Dy b - (80)
e
f An explicit relationship for kF(B) is given in Reference 2. For a swept trail-

T

- ing edge a correction is made as before:
; 5 kF(B) =1+ [A() =-1) G, and (81)

Equation (75) for B is used for subsonic Mach numbers and Mach numbers up to
when the Mach line from the leading edge of the tip does not intersect the body
section perpendicular to the root chord. Figure 11 illustrates three pessible
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REGION OF INFLUENCE
. OF WING ON BODY
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. NO AFTERBODY (X gy =0)
ol
‘ Figure 11. Determination of KB(F) for High "Aspect-Ratio
: Range at Supersonic Speeds
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subcases. In this case, the body loading area is redefined by the crosshatching.

The criteria for this case is given by

4

g

i

2C %

B > —35 - tany . (83) 3
| %

|

For the no-afterbody case, BNA is a function of Cr/ﬂ. For BD > Cr (the Mach

line from the root chord leading edge intersects the end of the body), Cr/B B

is set equal to D. Subcases for the no after body case are subsonic and super-

sonic leading edges. Subsonic leading edge values of BIA are given for the
T infinite afterbody value case of XppT" The short afterbody computation of BSA '
T - 4
. is given by the linear interpolation where (xAFT Cr < DB): ﬁ
L .
e :
; {B,, - B.,1] :
P - IA NA 4
o Bsa = - Xa¥1 Cr * Bya (84) ]
. bp .
: 2.1.2.3.2 WING-TAIL INTERFERENCE 3
o, Thus far only body-lifting surface interferences have been considered. An 3
} additional interference is given by vortex effects of the canard or wing on the i
tail. \

; A single-line vortex is assumed to be shed from each canard panel. The
2 vortex strength relationship and effective lateral location are obtained from the
i wing loading distribution given by slender wing-body theory.
: assumed to be aligned with the free stream velocity.
to be at the quarter chord.

The vortices are

o fiat ol !

The canard hinge is assumed
This is enough information to adequately define the

eae

vortex locations at the tail.

!
E The negative lift coefficient due to the downwash
‘ of the canard shed vortex on the tail is given by
|

Cnrewy © (CNu)w (CNG)T [Ky(py sin @ :

i '« R.) /S
| + sin 5. ] r 1 7T < W ) : (85)
;1{ e ¥ on R (£, - &) Sref

Here, the W subscript refers to the wing or canard, the T subscript refers 1

i
to the tail, fw is the span location of the panel vortex obtained trom slender p
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body theory, and iT is the tail incerference factor also obtained frum slender

body theory. The crossflow potential problem for the tail-body combination con-

o kit e S, il SRR, 55005 RIS i A B . M55 A e S I Tt R e i SR

sists of the solution for two point vortices of a given strength and location in

£ an undisturbed flow field. b& is the tail half-span (including the body radius).

In Reference 2 an expression is given for a negative lift on the tail

.
ea = g L R T

due to body shed vorticity. This is neglected in the current version of the
program.

The normal force coefficient can now be written as :
v C = Cxp * {[KW(B) * KB(w)] o [kW(B) * kB(W)] 6w}'(CNa)w
¥ 4.{[1(1,(3) + KB(T)] o+ [kT(B) + kBm] by }(CN )

o
* Cyrovy
=C

n ¥ Cxwes) * Cvew) t Cnree) T Gvem t Syvrewy (86) |
At subsonic Mach numbers (M, < .8), the center of pressure for CNW(B)’ and
CNB(W) are assumed to be at the wing alone center of pressure. For C

NT(V)’ ;
— . . !
CNT(B)’ and CNB(T)’ the xcp are assumed to coincide with the tail alone X5 :

‘ For supersonic flow CNB(W) and CNB(T)’ the xcp values are assumed to be .
N given by the centroid of the areas in Figure 11. At transonic speeds the center ;

of pressure values are given by linear interpolation between the values at
Mo =1.2and M =M

=]

fb’

2.1.3 HIGH ANGLE-OF-ATTACK AERODYNAMICS

The current approach is empirically based on, and is an adaption of, the
method described in Reference 24.

st e MR RN

The range of input parameters fur a cruciform configuration is limited to:

o 1. .8 <M_ < 3.0

o 2., Angle-of-attack 0° to 180° for isolated components (roll angle 0°) and
0° to 45° for body-tail combinations at arbitrary roll angles from 0°to 180°;

g e T

!
l
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3. Tail: trapezoidal planform, side edges parallel to the body centerline;
A. Leading edge sweep angle: 0° to 70°;
B. Taper ratio: 0 to 1;
C. Aspect ratio (two panels): .5 to 2.0;
D. Trailing edge straight and parallel to end of body;
4. Nose length (pointed tangent ogive): 1.5 to 3.5 calibers;
5. Cylindrical afterbody: 6 to 18 calibers;
6. Total span-to-diameter ratio (two fins): 1 to 3.33.

The roll definition and positive fin load orientation are shown in Fig-

ure 12. Note that 8 is measured from the windward side.

RN L0 T L mkin Tt
T e b el o TN ik

3
Cnre 1
1
Co
‘CnTy .
6 :
Voosina "’
2
i
b
;
Figure 12. Roll Angle and Fin Load Definitions (Looking Forward) %

The axial force coefficient is assumed to be contributed entirely by the body.

R . SR

The total normal force coefficient is given by

CN = CNB + [(CNT1 + CNTS) sin 6 + (CNT2 + CNT4) cos 0] ST/S

+ 1

ref
BT (87)
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where CNTi are rthe individval fin loads in the presence of the body and other

fins, and IBT is the tail-to-body carryover normal force coerfficient (i.e.,

The longitudinal center of pressure from the nose for the entire configura-
tion is given by

Xep = {"cps Cyp * [sin 6 (xcppy Cnpy * Xepra Cyra)

+ cos © (x c

epT2 Snv2 ¥ Xepra “Nra?] S1/8rer * Ipr xcpi}/cN (88)

where

xup values are given in culibers,
xCpB is the body alone xcp,

Xcphi 2T€ the individual tail xcp values in the presence of the body and
other fins, and

xCpI is the center of pressure for the carryover load.

1f rne neglecis the small body frictional roll coefficieut and the tail

. carryover onto the body, one can estimate the static¢ roll coefficient as

4
- .l, @ : 2 o5 . 1
¢, = Z,uT/Sref P> Cypy Sin [(i i -.1) n/2] [1
+h/D Ky /DD (89)
Netails of the functional forms are given in Reference 24,
2.2 DYNAMIC DERIVATIVES
Dynamic derivative prediciion is for emuli angles-of~-attack (a 0) only.

2.2.1 BODY ALONE

2.2.1.1 ROLL DAMPING AND BODY MAGNUS MOMENT

These coefficients are givenr espirically. The data base is configuration

limited. Coefficient Mach numbar dependence was 0 < M, < 5. An asymptote is

40
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3 assutied at M_ = 5. Geometric parameters eantering the empirical functional form

R T

are the tctal lengtn, center of moments location, and boattail length, 31l in
I calibers. The boattail length is limited to 1.5 calibers for the Magnus moment
%é' coafficient computation. The Magnus moment coefficient Cnpu is computed at 1°
E,. and 5% angles~of-attack. Magnus moment coufficients are not estimated for bodies
o with lifting surfaces.

2.2.1.2 PITCH DAMPING COEFFICIENT

‘The original prediction used the empirical prcdiction. The method described
in References 25 and 26 was intended to improve the Cmq + Cm& prediction. Evalu-
ation of the method is given in Reference 4., Restrictions are:

(1) Initial cylindrical radius for 'a spherically blunted or trun-

cated body is limited to less than .25 calibers.

{2) Contribution of afterbody and boattail or flare are neglected

S ot
g -

at higher Mach numbers.

In subsonic flow, Cmq + Cm& is given by a relation based on slender body

.= 2 Z . 2
Coe ¥ Cua 4 (.77 + .23 M2) (LN.77 + .23 M2 xcg) . (90)

my
Here, L is the total length in calibers, and xvg is the center of m~ment location

theory:

PR aindtaR T Bl

from the nose in calibers.

Hypersonic (embedded Newtonian) flow approximations are applied . cve a

certain Mach number M = M* associated with an effective hypersonic - : s rity

SRR et P

parameter of .4 such that

M* = .4 csc 6% 91) 1
-1/ 1 ,
0% = tan = (92)
2L
N
41
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If M% < 1.5, then M* = 1.5 is chosen. For 1 < M, < M¥ a linear inter-
polation is used where

TN

P

ME - My, ;

Cmq Yl TWTT (Cmq * Cpg) M, =1 B

]

M, -1 1

+ e (€ 4 C_2) . - (93) !

M 1 “"mq ma” M = M¥ ,

; B!

| 5

e For M, > M*, a direct apylication of a modified Newtonian pressure dis- ,

“ribution at o = 0 for the pitchirg motion gives 3

i 3

1

. Ly C _C, (x=-x_ +RR')?RR 4

C Cozoe 14 N po Y cg

'i Coq * Cpg = - 16 fo — By dx . (94) j

?~ ]

- Note that for a spherically blunted body the contribution of the spherical cap j

| i

f is neglected. The stagnatiur pressure coefficient, Cpo’ behind a bow shock is !

, i approximated for large Mach numbers as ;

{ _Yyt3 1.5 1

-. i

o and CY is given as H

L ]

‘ 1.01 + 1.31 [log (10 M, sin €)177/3 )u_ sin e > .4 !
CY = (90)

‘1.625 MUo sin & < .4 .

The Lockheed Missiles and Space Company (LMSC) model was assumed to be able
to replace the empirical method for the body-alone pitch damping coefficient.
Since the IMSC jprediction neglects the effects of afterbody and boatfail at

P SRR AT VTSR

{
i
r
; supersonic Mach numbers, the empirical method often predicts better values for
!
|

pitch damping. For this reason and because of other limitations for bodies with

lifting surfaces, the pitch damping prediction method is currently an input
option to the code.

The LMSC body-alone algorithm was extensively evaluated by R. Whyte in Ref- 1
erence 27. A conclusion reached in Reference 27 is that the LMSC algorithm is
adequate for most applications. For certain nose-afterbody configurations with

the xCg located forward, poor results were obtained when compared with data at ,i

e

B 42
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supersonic Mach numbers. The code was modified for these cases. When the value
of Cm predicted is less negative than that predicted by the empirical method and

not within 75 percent of the empirical value, the empirical wvalue is chose:

2.2.2 LIFTING SURFACE DYNAMIC DERIVATIVES

The rolling rate is assumed small and, hence, Masgnus moment is neglected.
2.2.2.1 ROLL DAMPING

2.2.2.1.1 SUBSONIC FLOM (0 < M_ < .8)

Equation 51 is agaia applicable.. The effactive anglz-of-attack is given by
a(x,y) = %X. In this case, the resultant (‘Acr)p obtained by matrix inversion is

odd-valued in n.

With (ACp)p = ('El:)p p/Vy, Czp is given as

pCrefp ' -
Cop = G/ mv, o)

where Crefp is b for the wing-alone case. Usitig the definitiou in Equation (97)

one obtains

t
> pyvtany +C@y)
C, = - —— f f y(BC)_ dxdy . (98)
P S C2 PP
ref “refp 0 ytan yl

Note that the planform considered is that obtained by extending the leading and

trailing edges to the body centerline. b' is the total span.

2.2.2.1.2 LOW SUPERSONIC FLOW (1.2 < M_ < Mz )
e
The approach used for the static lift problem is applicable here. In this

case, w (£, n) = - gﬂ is not a constant.
[+ ]

The approach for subsonic and supersonic leading edges is similar to that

used for the static Jift ,roblem. Specific relationships for (ACP)P - P/V, (KE;)P

43

;
;
X
N U
>
ﬁ
3
X

. i iR S s g :

St o2 il .

Wpris, .




are given in Reference 3. The modified pianform considered for subsonic flow is
used again.

2.2.2.1.3 TRANSONIC FLOW (.8 < M, < 1.2)

An empirical approach is taken here. It is assumed that the Czp variation

is similar to that for CN such that
a
(Cy )
Lig
(Cgdy = (Cg) Ty (99)
LM, M e (Cy )M
a ref

This is somewhat simiiar to the approach of Reference 28. Equation (99) is used

with M ¢ = -8 to establish C‘q'p at M = .933. Equation (99) is then used again
“% to establish C2p at M

1.067 with Mref = 1.2. Interference corrections are
.8, .933, 1.06., and 1.2 as explained later. The C‘Qp
for the body is added to the lifting surface contributions for the above Mach

made for each fin at M°°

numbers. The final total CRp value at M_ is given by a four-point Lagrange in-
terpolation.

2.2.2.1.4 HIGH SUPERSONIC FLOW (M°° > M2 )
e
: At higher Mach numbers, where ¥_ > M2 , the potential model for determining

the lifting surface roll damping is assumed®to be invalid.

In analogy with the static prediction for M > M2 , the strip loading is
assumed to be proportional to the local chord and distane from the centerline.

The loading is forced to zero at the tip in an elliptical manner. With these
assumptions,

vy ()
C2 = o refp n + 5\2 c(n)
P 41, = C—n— 1 -n?dn
0

b
2
> +212( >+ 13] (100)

- . e !
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- N(CN )
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where

—
=y
[}

=n/4 - (1 - A)/3,

=1/3 - (1 - A) n/16,

-
[
)

= n/16 - 2(1 - A)/15,

—
[~
[

and (CN )F is the strip theory value for two fins. This.approach was evaluated
in Refe¥ence 4.

2.2.2.2 PITCH DAMPING

The total pitch damping coefficient, Cmq + Cm&’ is made up of two terms.
The first term, Cmq’ is due to the rotational rate about the moment reference
axis, The second term is due to a downward translational acceleration, Q/Vm,

perpendicular to the body centerline.

The original method for low Mach numbers was based upon small disturbance
lifting theory (Reference 3). The method developed by LMSC as presented in
References 25 and 26 was intended to apply over the entire Mach number range at
o = 0. However, it is limited in lifting surface aspect ratio for low supersonic
flows and to one lifting surface. For this and other reasons, the rhoice of
methnd for pitch damping, as earlier indicated for body pitch damping, is a pro-
gram input. The LMSC method is based on slender wing-body methods in the sub-
sonic and low supersonic flow regime. At high Mach numbers, it is bascd uvpon
Newtonian embedded strip theory.

Even if the LMSC option is <chosen, the older computatiural escimate is
obtained first in the program flow and the newer estimate sabsejuently. The LMSC

model will be presented in the section on interference.

2.2.2.2.1 SUBSONIC FLOW (M, < .8)

Rotation about the moment center induces the following angle-of-attack on
the wing

a(x,y) = %— [x + cref (x - xcg)] . (101)

[ 4
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For the wing alone case, x = 0, Cref = ¢, and Xog is given C units. Otherwise,

¥ and x__ are in caliber units and C = D.
cg ref

(ACp)q = (KE;)Q q/V,, obtained by matrix igversion for the collocatioun ap-
proach of Equation (51), is an even-valued distribution in y. Note that the
second term in Equation (101) contributes an equivalent constant angle-of-attack
lift

The pitch damping coefficient, Cmq’ is defined as

c
c = 10 102
79 qCref ( )
2V,
Using the definition of Equation (102) one obtains for cmq:
yfan Y1 + C{y)
C =-4[ [ (x-x )] (—A—(.T_p-)(1 dxdy (103)
tan Y4
Y4
ref Cref

‘The planform is again extended through to the body centerline. Here, C_: is
assumed to be zero. A review of Reference 3 indicates that various methods are
available for estimating Cm&' However, the computational cost is incompatible

with the rapid estimates desired here and the additional accuracy unwarranted.

2.2.2.2.2 LOW SUPERSONIC FLOW (1.2 < Moo < Mg )
e
The Cmq problem proceeds as before:
' = -9 X =
w(€, n V. [E+cC ¢ (x gl - (104)

Specific relations for (ACp)q = (q/V,) (ZE;)Q are given in Reference 3 for the
variable part of w(§, n).

The vertical acceleration problem for a is an unsteady potential problem
which obeys the following equation for the perturbation potential:

__Q-(M2_1__2£ __$+2M°°§39;
x2

dy? 2 ot a, 9xdt

(105)
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where a_ is the free stream value of the speed of sound.

The boundary condition

for the dimensionless vertical velocity is

w(&, n) = - at .

(106)
Equation (106) may be rewritten as
, [ M3 M2¢
wi, n) =-a —E +t - —2— (107)

- The first term of Equation (107) has the form of the variable part of equa-
o tion (106). The form of Equation (107) suggests a solution of the form

L , M2 M2

- b=aft-—=% Vo, +a—0o,. (108)
- | B Ve B

Et\ On the surface ¢lz = -1, ¢22 = -x/V,. The first term of Equation (108) satis-

fies .ne differential Equation (105) and leads to the equation

' §_23’.1 = BZ 22_4’1 , (109)
{ dy? ax2

Thus it is seen that ¢; is the lifting potential with ¢ = 1. It is also seen

|
i
' that ¢, is the potential corresponding to the variable part of Cm with q = 1.
|

Qﬁ Equation (108) may be rewritten as
!
{

9 . M2x . M2
",‘ ¢ =aflt - 'ﬁ;‘;_ ¢(a=1) +a 'ﬁ"?: ¢(q=l) . (110)
| .

The equivalent of the Bernoulli relationship for the time dependent case is

W l+ %) - (v, l+%)
{.{ v, ¢t + ; + V1 = v: +
!

2
3%

= (111)

-l

Rk

Equation (111), evaluated at t = 0 from Equation (110) with the usual small

e

_— e . e o

] terms of 0(§¢ . 3¢) neglected, yields an estimate of (ACP)& as
b M2 4(0),_, M2x
4 (ac )y = & [ = (ac)) ooy - o=l = (8¢ )yey |- (112)
E‘ BZ Bva BZVm
£
|
.
§
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Explicit relations for (ACP)& =5 (ACP)& are given in Reference 3. Then, C ¢ is

o mo!
c b' .ytan y; + C(y)
2
Coa = ——'!%—— f / x +C ¢ (x - X, )l (AC )y dxdy  (113)
o _ref 0
v yta
V, 2 ”
Sref Cref
2.2.2.2.3 TRANSONIC FLOW (.8 < M_ < 1.2)
The approach taken is exactly the same as for Czp.
e
(Cmq + Cm&)M = (Cmq + Cm&)M ——(—C-N—j——— . (114)
o ref o Mref

Note that at M, = .8, Cm& = 0. At M°° = 1.2, Cm& # 0. The total C_+ C * for
the complete configuration includes a canard downwash onto the tail

term,
(Cm&)T(V)’ for Mm <1.2.

2.2.2.2.4 HIGH SUPERSONIC FLOW (M > Mz )

A simple strip theory model is considered here. Cm& is not considered.

+.
8(Cy ) b/2 .ytan y + C(y)
= - X - 2
“mq = cz 'c“(‘b ¥X) [ + (x - x,) C ¢l dxdy
0 ytan Y,
¢y ) -2 \
3 Cb (1+A)tan yl cg ‘:ﬁ;;;l“ cg
o 1 - ( C, RET >4 -<(u/2)t,an YL+ Cr)\
1 - 2Cr(1-;2 | Cref €8 Cref
btan y
1
- 4
* 7 Feg ' (115)

48

!
i

i . O S c urind

© e sl

RPN et =t

,i;
i
%
|

R T o i

b et




2.2.2.3 DYNAMIC DERIVATIVES FOR TOTAL CONFIGURATION

For roll and pitch damping, no interference is assumed for the high Mach
number range. The LMSC pitch damping will be presented separately here.

2.2.2.3.1 SUBSONIC AND LOW SUPERSONIC FLOW

It has already been noted that the lifting surface contribution was obtaiuned
for a planform consisting of an extension of the leading and trailing edges to
the body centerline.

An additional lifting surface interference is based on slender body theory
(see Reference 29). The lifting surface contribution in the presence of the body

is given in terms of a span to diameter ratio for Czp:

(Cyy)rp (5 >
T = £(55)- (116)
CgplB=0 2y

Here, however, (Czp)ﬁ=o is based on the modified planform. For a complete con-
figuration,
Cop = (Coplp + (Cprlyp * (Cpppg - (117)
A similar fin-body interference term for Cmq + Cm& is given as
€ +c . E\zy/-
mq mo ﬁ=0

At Mach numbers below 1.2 an additional Cm& term due to downwash lag from

the canard onto the tail (see Reference 23) is given as

- x D) acC
Ccg

2 (xcpT ) xgpw)(xcpT NT(V)
n® da

(119)

CasdT(v) =

For M°° > 1.2, (Cm&)T(V) = 0.

For a complete configuration Cmq + Cm& is given by

cC +¢C

mq mo (Cmq ¥ Cm&)B ¥ (Cmq ¥ Cm&)WB *(Cpg ¥ C .)TB

mq ma

* (Coidrovy
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2.2.2.3.2 TRANSONIC FLOW (.8 < M_ < 1.2)

The approach for C and Cmq + Cm& is the same. Values at Mw = .8, .933,

2p
1.067, and 1.2 for the complete configuration are used in a 4-point lagrange

interpolation to obtain total Cgp and Cm + Cm& at a given M .

q

2,2.2.3.3 LMSC WING-BODY PITCH DAMPING

For Mon < 1, slender wing-body theory is used where

W’ e\ 2
= = A AR
l(ma = 2/11 + AR B/4 + |1 +<Z—§> '

(1 + DT/bT)

(cmq +Cilp = (cmq +C g " (cmq +C g (121)
Note that this theory is for a body-tail configuration only.
ii (Cog ¥ Cng1B = -4<I}-r->2 (1-.23 §%) R 2382 - x__|'
- mq mo’ TB D ' T ) cg
- xn D+ C 2
r T rT - R -
@i‘ b\ 2 [x 2
N T te =
o ) 4<l')"> Kna LD~ Xcg C/D<1 Kma>] (122)
‘! where
!
A - c T bT )
% ¢ = 5 {1 '[(1 - Ap) - g tamyg|np, (123)
\j rT
":‘1} i} 1+ ZKT
: -
ﬂl 3(1 + AT)
Koy _
. % D + C c
| ey St S
,5T{ xte/D - D p * ¢/D ,
i‘," I
,‘ﬁ

-
At ~
-+
U‘lUl
-3
[y e
3z
L I L]
~—
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and AR is the modified planform aspect ratio obtained by extending the leading
and trailing edges tc the body centerline.

For supersonic flow, 1 < M 5\[1 + (ART/A)z, Equation (121) applies again.

e - <bT>2 Xte = 2
(mq+cm&)TB'-4 5/ Kna _D_'xcg'c/n 1-\1Kma>

Xp D+ Cop - %cg ;2
+]1 - - D (Cmq + Cm&)B . (128)
Xp © xcg

A maximum ART corresponds to'Vl + (ART/A)-2 = 2 or AR
ratio planforms the code reverts to the older theory.

For hypersonic flow, M, >'Vl + (ART/4)-2,

T < 2.31, For larger aspect

Com b oy [1+

(Cog * Cnadp = ~8/7 -%I 51 éi [‘_3—22 + 4 Bh (E% - a¥%) + 4/3 a¥?

- (1= Ap) (28%2 - 8/3 EXa¥ + a*z)] (129)

where
Xp D+ C ¢
gh = T - rT _ Xeg ° % _%I , (130)
C b
a¥ = % —]g-?- (1 - AT + QCTT tan Y>$ (131)
r

and f* is the dynamic pressure ratio across the bow shock and is defined as

1.0 Ky € 1.25
KN - 1.25
fir = 10 - Tmm 1.25 < KN 5_ 11 . (132)
K, > 11
17 N
51

O L i £ AR 2V VINTY] LY [ . ey P N ST, S
ek PRSP AV 5 i e« ST AL I T b e it et s el e et - b e S b B e




.';?A
b,
-

I

o

=

AT

e A LA T TR

23
L.
A

T I R

_ — bt

Lt e A

2.3 METHODS OF ANALYSIS SUMMARY

The body-alone static analysis methods are summarized in Figure 13.

The
Mach number region division points are nominally at M, = .8, 1.2, and M,Q or MP,

e
Methods for computing the wing~alone and interterence static aerodynamics

are given in Figure 14,

MACH
NUMBER Low HIGH
COMPONENT '\ REGION SUBSONIC TRANSONIC SUPERSONIC SUPERSONIC
SECOND-ORDER van |  SECOND-ORDER
EULER DaEOND.Of SHOCK-
NOSE WAVE DRAG - PLUS Moy EXPANSION PLUS
EMPIRICAL MODIFIED
NEWTONIAN NEATONTAN
, SECOND-ORDER
BOATTAIL WAVE DRAG - WU AND ACYOMA | 42 o000 OROER SHOCK.
N EXPANSION
SKIN FRICTION DRAG VAN DRIEST I}
| SKIN FRICTION ¢ ]
BASE DRAG EMPIRICAL
L — - —
INVISCID LIFT AND EMPIRICAL Pt TSIEN FIRST. SHoOND-ORBES
PITCHING MOMENT PLUS EMPIRICAL | ORDER CROSSFLOW | o0 ue 0N
VISCOUS LIFT AND
MTOHE LIFT AND. ALLEN AND PERKINS CROSSFLOW

. (3
Figure 13. Methods for Computing Body-Alone Static Aerodynamics
o MACH
NUMUER Low HiaH
COMPONENT \ REQION SUBSONIC TRANSONIC SUPERSONIC SUPERSONIC
INV'SCID LIFT AND LIFT'NG SURFACE SHOCK EXPANSION
PITCHING MOMENT | THEORY  EMPIRICAL | LINEAR THEORY STHIF THEORY
LINEAR THEORY,
WING-BODY INTERFERENCE z:f:gfé‘;“" THEORY AND SLENDER BODY -
o THEORY AND EMPIRICAL
_WING TAIL INTERFERENCE LINE VORTEX THEORY -
LINEAR THEORY 4 SHOGK EXPANSION + MODIFIED
WAVE DRAG EMPIRICAL MODIFIED NEWTONIAN NEWTONIAN STRIP THEORY
SKINFRICTIONDRAG | _ VAN DRIEST
TRAILING EDGE SEPARATION " -
oy ‘ A EMPIRICAL
BODY BASE PREBSURE DRAG ’ ) - T
CAUSLD BY TAIL FINS EMPIRICAL

Figure 14. Methods for Computing Wing-Alone
and Interference Static Aerodynamics
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Finally, the methods to compute the dynamic derivatives are summarized in
Figure 15. Input option refers to use of LMSC or other prediction methods for

Cmq + Cm& for body-alone or body-tail configurations.

MACH

NUMBER Low HIGH
COMPONENT \ REGION SUBSONIC TRANSONIC | SUPERSONIC | SUPERSONIC

EMPIRICAL
BOLY-ALONE PITCH {OR) ‘OR) {OR)
DAMPING MOMENT MOOIFIED SLENDER. | LINEAR EMBEDDED NE'VTONIAN |°*
BODY THEQRY INTERPOLATION | THEORY
WING AND LIFTING LINEAR STRIP
INTERFERENCE SURFACE EMPIRICAL THIN-WING S RGRY 3
ROLL DAMPING THEORY THEORY ]
BODY-ALONE X
MAGNUS MOMENT EMPIRICAL !
WING AND
INTERFERENCE ASSUMED ZERO
MAGNUS MUMENT :
BODY-ALONE ‘
ROLL DAMPING EMPIRICAL
MOMENT 7
SUPERSONIC EMBEDDED “
WING AND SR WING SLENDER-WING NEWTONIAN STRIP
INTERFERENCE THEORY THEORY
PITCH DAMPING (ORI {OR) {0R) (OR)
MOMENT e
LINEAR THIN. | STAIP
vtk EMPIRICAL WING THEORY | THEORY

* INPUT OPTION. MACH DIVISION POINTS ARE AT Mg, = 1 AND M, = M*.
M*i8 VARIABLE, BUT M* 218,

*¢ INPUT OPTION, MACH DIVISIONS AT M, = 1 AND A MACH NUMBER DEPENDENT ON ASPECT RATIO, My, =V 1+{AR,/4) *

Figure 15. Methods for Computing Dynamic Derivatives i

At high angles-of-attack, the body-alone or body-tail computations are

based on the empiricism of Reference 24. Only static derivaties are determined.

Computation times depend on configuration, code option, and Mach number. A
computation time can range from less than a second o between 30 seconds and a

minute per Mach number on the CDC 6700 computer.
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3. APPLICATIONS TO CURRENT DESIGNS

In this section, data are presented for a variety of complete configurations

of current interest. In most cases, experimental data are shown for comparison

with the theoretical predictions and an estimation made of the atcuracy of the

predictions. Both the static and dynamic coefficients are presented in many

cases.

3.1 TACTICAL WEAPONS WITHOUT LIFTING SURFACES (BODY ALONE AERODYNAMICS)

\

Since the aerodyuamic confficienﬁs of  the individual body components and
many of the nose-afterbcdy shapes are presented in Section 4, the data presented
here are limited to complete. configurations. In Figures 16 .through 20, the
static aud dynamic aerodynamic coefficients are presented for several spin-sta-

bilized projactiles. In Figure 16, the predicted characteristics of the basic

reasonably well with the errcrs generally staying less than 10 percent throughout
the Macrh number range. The dynamic derivative predictions, utilizipg the empiri-

cal method (see Section 2.2.1), are generally poor and are of the right order-of-
magnitude only.

Figurys 17 and 18 give the estimated aervdynamic coefficients for a & inch
Rocket Assisted Projectile (¥AP) and an Improved 5 inch/54 Projectile (Reference
30), respectively. The 5 inch RAP has a nose'lnngth of 2.5 calibers, a 2.2
caliber afterbody, a .5 caliber bosctail, and a rotéting band near the end of the
afterbody. The Improved round has a 2.75

cal.ber nose, 4 1.45 caliber afterbody,
and a 1.0 caliber boattail.

The Improved round employs a discarding rotating
band and therefore has no such protrusions in flight. In bath of thesea caszes,
there is good agreement with experimental dava obtained for the drag coefficient

throughout the Mach number rdnge where data asre availsble. Fair agreement was

achieved for the normal force and center-of-pressure locetion. For the 5 inch RAP

CN prediction, the agreement approaching M_ = 2.5 is very good, whereas at lower

Mah numbers the theory is consistently about 10 percent low. This is due in
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part to the inability of the inviscid theory to predict the afterbody lift cor-
rectly at low supersonic Mach numbers. ¥For the Improved round, the dynamic de-
rivatives' predictions are, in general, good. The LMSC methodolngy (Reference 25)

and the empirical predictions (both of which are available in the Aeroprediction

Code at the user's option) show good agreement for Cmq + Cm& except in the high

transonic flow region, where the agreement is fair,

In these cases, Mz was generally set at M_ = 2.0 resulting in the use of

the potential theory rather than the second-order shock expansion theory for

M, = 2.0. If M2 had been set at M_ = 2.5, the potential theory would have been

applied at this Mach number also, and the predictions at M_ = 2.5 for CD and CN
would have been considerably lower. This is a result of the Mach wave angle

lying too close to the initial body slope.

Figures 19 and 20 present the aerodynamic coefficients for two Army shells,

the 175 mm M437 (Reference 31) and the 155 mm projectiles. Again, guod agreement

is obtained for the drag coefficient, and fair agreement is achieved for the

normal force and center-of-pressure location.

7

Figures 21 and 22 illustrate the Code's capability to predict the aerody-
namics for blunt bodies and bodies with flares. In each case, it was necessary
to modify the body geometry to be compatible with the second-order perturbation
theory used for low supersonic Mach number calculations. The hemispherical nose
on the 5.5 caliber hemisphere-cylinder body was modified to include a 0.1 caliber
conical frustrum with AR = .01 at the aft end (LN remained constant). The re-
mainder of the body was described directly. The NASA flared-body nose was re-
placed by a snhere-cone-flare body. The spherical cap was allowable in this case

because of the slight slope of the afterbody prior to the flare. For the hemi-

srhere-cylinder, the drag predictions compare favorably with data (Reference 32)

but the CN and xCp predictions are "hit and miss," as shown in Figure 21. In

2 ]
Eagi o e i T s gl 2o T
RBC R S S Ee N T e . - S T
s - SRR gy e WEE e

the case of the flared body, a slight increase in the bluntness resulted when the

necse was changed to the spherical cap. As shown in Figure 22, the effect of this

change 1s particularly noticeable in the CA and CN predictions. The drag and

A A 5L s AT A i M ST B, - 008 ol oo _ e 3

normal force are overpredicted by as much as 15 pgrcent in the low supe:rsonic

region compared to data (Reference 33). The xcp predictionz are within one-half
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caliber. Note the faired portion in the predictions in the range 2.0 < M_ < 3.0.
This "blending" region is a result of differences in the predictions between the
small perturbation theory and the second-order shock expansion theory. It is
well known that above M, = 2.0 the perturbation theory begins to weaken. For
the blunt bodies, the theory does not hold at all. The second-order shock expan-
sion theory, on the other hand, is best applied in the high supersonic region.
In the majority of cases, its accuraty degrades rapidly below M_ = 3.0. To ac-
count for this difficulty and to eliminate the discontinuity in the predictions,
a weighted fairing was used in this region.

Projectile Performance. In reccnt years, there has been a renewed emphasis
on improving the design of projectiles. For the A/A defense role, the major con-
siderations are time of flight and accuracy. For surface-to-surface applica-

tions, the usual concern is maximum range as well as accuracy.

I minimizing the time of flight, it is necessary to optimize the ballistic
coefficient, B = W/C

recognized in the following ~quations for the velocity and time of flight as a

Dsref (Reference 34). The importance of this parameter is

function of range:

= -9—8
v Vo exp [ 28 Rx] (133)
and
- 2B P8 }
b Vopg €XP) 28 Rx ! (134)

The drag coefficient, CD, is assumed to be constant over the range of interest.
For increasing v.lues of B, the velocity increases and the time decreases (both
exponentially) for a given range, Rx' One would at first feel that a maximum
value of B would provide the best performance. However, when designing a round

for a given gun system, the muzzle velocity depends directly on the projectile

63

T Ty e I Y RGN SR




e o Sl e el L - -

P e

weight. Usually the new design is replacing an old one. If the new weight is
less than the previous standard weight, the muzzle velocity for the new design

can be estimated by relating it to the muzzle energy.

mVe=m Ve
0 o

std std

or

V =V <T§Eé\¥ =V (YEEQ)a (135)
o o m “ Vo W
std / std

Equation (135) provides reasonably good estimates as long as the weight dif-
ference is not large. Further examination of Equations (133) and (134) reveals

that increasing the projectile weight may increase B but it also decreases Vo.

it e KA

o

The result is that for a given range and gun energy, an optimum value for B

exists which will result in the maximum velocity, V, at range, Rx’ and a minimum
time of flight.

So far the discussion has centered on the projectile weight. Obviously, if
the drag is minimized, the velocity retardation is minimized and the performance
is optimized further. Therefore, a good approach to optimizing the projectile
performance 1s to first minimize the drag, then to determine the optimum B for
the range of interest. 1In the case of intercepting an air target, the range
selected might be the mrdian range over which intercept is desirable or it may be
the range at which waximum ac.-uracy or advantage is required.

The above procedure was used to vptimize the performance of a 30 mm projec-
tile. The range of interest was 3.0 km. The performance and physical character-
istics of the standard projectile were known. Sample trajectory calculations
indicated the median Mach number to be about 3.0. An L/D ratio of 5.0 was se-
lected due to the total round length constraints and also to provide good sta-
bility. Generally, the higher the fineness ratio (L/D), the more difficult it is
to spin-stabilize the body. With these inputs, the optimum shape for minimum

drag could be determined. The Aeroprediction Code was then used to obtain the
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initial estimates of the aerodynamic coefficients for the design. Figure 23

shows the profile of the body and the predicted coefficients. The optimum shape i
"indicated has a 3.2 caliber nose and a 1.8 caliber boattail with a base diameter
of ’7Dref' It should be noted that the actual theoretical shape had a slight
curvature in the boattail near the afterbody-boattail juncture. Later, when

these projectiles were fabricated, the profile was approximated by a conical

Vb B ol R

boattail for ease in manufacturing. Comparison of the theory with the ballistic .
range data obtained later showed good agreement in each case. As a result, the i
predicted values could be used with greater confidence throughout the Mach number
range to conduct a stability analysis.

Having determined the minimum drag profile, it was necessary to find the
optimum ballistic coefficient. Figure 24 shows the variation of ts with pro- k
jectile weight for several ranges. The weight at which tf is a minimum suggests
the optimum value for B. Note that the optimum weight (and therefore B) varies
with the range. The variation in P with the range can be visualized in Fig-
ure 25, Having determined the desired weight, it is then left to the designer to
determine the fuze weight (if any) and the interior cavity which would provide
the center-of-gravity location, polar (spin axis) inertia, and the transverse
(pitch axis) inertia for that weight which are necessary for the stability analy-
sis. The benefits achieved through shape optimization can be substantial. In
our sample case, reductions in the drag and time of flight were 34 percent and 32

percent, respectively, as compared to the standard design.

The stability requirements for projectile design are discussed in detail in

in Reference 34, Basically, the main concerns are the gyroscopic stability factor

12 2
_ X
Sg T 21 p Vv sDC_ (136)
Y o
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Figure 24. Time of Flight of an Optimum Drag Projectile vs Flight
Weight to Slant Ranges of 2.0 km, 3.0 km, and 4.0 km
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Figure 25. Minimum Time-of-Flight Ballistic Coefficient for a
30 mm Optimum Drag Projectiie

and the dynamic stability factor

mD2 R
2<CN -Gyt o G )
o pa

mD mD*
CNa CD 2T (Cm * Cm~) + 21x C2

(137)

v

y q a p
For dynamic flight stability, Sg > 1.0 and 0 < Sd < 2.0. In practice, good pro-
jectile designs have, for standard atmosphere conditions at launch, S > 1.3

in
and Sd &= 1.0. If the values of Sg and Sd are determineu for a particular design
to be outside of these ranges, it is generally easier from an aerodynamic stand-

point to look at ways tc vary the Ix/Iy ratio and the center-of-gravity location

first to correct the problem. If the physical limitations render this approach

unsuccessful, then the basic exterior design must be changed, usually through

increasing the length of the cylindrical section of the body with corresponding

reductions in the boattail length or nose length. The gvroscopic stability of a
spin-stabilized projectile usually iacreases after muzzle exit (at least until

apogee). Therefore, it is most critical that adequate stability be obtained near
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the muzzle. However, both S8 and Sd vary during the flight and should be ex-
amined throughout the trajectory to ensure the projectile will fulfill its mis-
sion. The values for these parameters for the 30 mm Optimal Projectile sample
case were S8 = 2.23 and Sd = 0.96 fnr standard atmospheric conditions at the
muzzle. The value for Sd was determined based on the ballistic range data since
the theory predicted Cmq + Cm& and Cnp poorly in this case.
o
3.2 TACTICAL WEAPONS WITH LIFTING SURFACES

Figures 27 through 33 give the aerodynamic crefficients for several missile
configurations with one or two sets of lifting surfaces. In each case, a fin

set is comprised of four fins in a cruciform arrangement.

In Figures 26 through 29, the aerodynamics for configurations with only one
set of lifting surfaces are shown. The first, Figure 26, is the Basic Finner
model, which has a 2.84 caliber conical nose and a total length of 10.0 calibers.
The triangular airfoil, rectangular planform fins have AR = 2.0 and t/C = .08,
where C = Dref and AR = Aspect Ratio. The geometry is representative of the data
base and can be modelled precisely in the Aeroprediction Code with the exception
cf the blunt trailing edge for the fins. In the computer model, the trailing
edge was given a radius of t/2. As expected, the theoretical predictions match
the data (Reference 35) quite well, including the dynamic derivatives except in

the transonic region where the fin effects are underpredicted.

The next three examples can be classed as variations of the Basic Finner
configuration. Each has a tangent ogive nose, the Modified Basic Finneé and
the Air Slew configurations having a 2.5 caliber nose and the TMX-2774 having
a 3.0 caliber nose. The Modified Basic Finner (Reference 36) and Air Slew
(AEDC) have an overall length of 10.0 calibers and a modified double-wedge air-
foil section fin of AR = 1.0, t/C = .036, Cr = 1.33D, A = .5, and y; = 53°., The
leading edge (LE) and trailing edge (TE) bluntnesses are small. The Air Slew is
a scaled version of the Modified Basic Finner except for the fin bluntnesses.
For the Air Slew, the leading and trailing edges are sharp. The data for the
Modified Basic Finner at M_ = 2.5 and the Air Slew at M_ = 1.3 illustrate the
capabilities of the adapted Martin High Alpha empircial algorithm. Noting the
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small differences in the configurations, the Code predicts the respective trends
very well. The slope and magnitude of the CN predictions compare quite well
except at the higher Mach number and 20° < o < 40°. In this region, the errors
range from 5 to 30 percent, reaching a maximwa at o = 30°. The X predictions
show similar trends and are of the right order of magnitude nnly at M_ = 2.5.

The negative trend in the CA prediction with increasing ¢ is not supported by
the data.

The last of the body-tail configurations is the NASA T™MX-2774 body (Figure
29) which is 13.06 calibers long with 2 .53 caliber, &.2° boattail, and firs of
AR = .84, t/C = .07, c. =19, A= .42, and y; = 62.9° (Reterence 57). The LE
and TE are sharp. The data include the effect of twe strakes, 180° apart, which
were not included in the model due to limits on the number of lifting surfaces
and the small aspect ratio. Iu this case, the C.N and xcp predictions vompare
well. Again, it should be pcinted out that for small aspect ratios the influence
on the opposite half wing tip is neglected. Also, no interfererce effects are
considered at high supersonic Mach numbers. As a result, czp and Cmq'+ Cm& pre-
dictions for small AR often behave erraticeily. The peak in the curve for Cﬂp is
representative of the problem and can be seen elsewhere.

Figures 30 through 32 present data fcr configurations having two sets of
lifting surfaces. The large-winged (AR = 1.52) TMX-1751 configuration (Fig-
ure 30) incorporated body strakes which were included in the data but, as before,
were not included in the model (Reference 37). This partially accounts for the
differences in CN and xcp. The agreement with data for the TMX-30G70 (Figure 31)
is very good for CD and CN in spite of protrusions on tke actual model, includ-
ing a fin assembly sleeved(Reference 37). The prediction for X, is fair to
poor, however, with a2rrors ranging from .15 calibers (1.0 percent of the distance
from the nose) to 4.9 calibers (35 percent). This is probably caused by an un-
derprediction of the 1i{t for the highly swept cavards and errors in the pre-
dicted pressure distributions on the hemispberical nose noted earlier. Note
again the fluctuation 1in CZp due tc the lower AR tail. The next example, in
Figure 32, is an illustration of probably the most complex configuration which
can be handled by the Aeroprediction Code. The body i: comprised ¢f « upherical-
ly blunted 2.1 calil:r nose, a cylindrical afterbody, and an 8.9° boattail. The

74

T

M TULTANT T YT LY IR T T IY LT AT




O R e D P R T

o ac

- a -~
S > WD> 52 40y TSLT XW)L Joy JulwLadxy pue Aioayjy jo vostaedwoy -g¢ Sunfiy 4

.

LSLL-XNL YSYN

dib “w W

«
=}

] W .M W S 4 £ r 4
¥ g 1+ b— t {
4 A A
% 00z- 7
.._. O H
-1 §.’ bwﬁv T 3‘ WW
+ o ,
Loop- 3 $oc w
os- Io i
] v L4 “mw “W o i
3 ! _M m S # 4 Z 5 4 B
— 4 } } L 3 v n N :
w I Y ] M 0 -— " t-00 37
o 1wo- To wom— § .
030N3¥3a3y ®x 310N £ 434) vava -~ M
~+ 51 g 3
towo +m o ;
\ 2 g .. :
N aucl o 0 - ,m
/ i ] - mm... ]
l/ b nd 8 ¢ K Ry R m.a W
=1

l
I
=4
&
——-
b o
r,"! e
e

] — L

SN . A

m.;ﬂ
w,
<
3
£
%
3
3
¥
2
°;
i




0/0€ X¥Wi 403 juauisadx3 pue Asody] jo uosrdedwo) Ig 2unbi4

w
«r
Lo
~N
™
410

+ oooz1-

00051 —

“W
£ Z 1
+——0

m__ 000 0 +

diL

3SON WOou4 oz-S00 St AHO3HL —

SH3AIVD 9T

3 a30N293338 O 0z (Z£ 334) Y1VA O h

X Dy 310N 4010 5 S0 o

m, ~ ~ |°0
r £y

3 —+51'0 ac

w, SE <072

P +0z0

t ; o

4 S¢0 Loy

TR VIS TR PR
i B
L e e —

T T ATV TS VY R PR

e ————— o m —— e = _—— e am P e | - ot

R ) S S L. o iiterzmosn
R S e T BT T B B e e i et b e o R




= e e T T F TR T B T T T T T A T T T e e e—p— -
B L i e <Pl s TSR i i S . : "

3LLSSLW YOUT 0§ E 40) SUOLJILPa4 [EDLFBI08y] “gg 2unbij

ooty ol oy

L7
.
+o
+o
+-
.
te
+o
e
>

)\AQ

e
T
'
i
i
¥
o

.§ = GUVNVI) T 08—

N 9 +
[
T
[ -]
{
4
1) mzmnmu et A L PR § Wy 1o 14 81

T‘
&
]

2 Ay

“N o
L4 € 4

¢ 14 £ r4 L ¥ £ z L
: i ' k M L —+ “ +-—1 00
di1 ISON WOWJ N w
SHIBNVI §T SCo- + oz tzo
G3ONIUIIH Px

10N

-

a4

+90 °
To <180

r/ ‘ — *.c
- 029 + ¢t L

+sto-

1/ %x

i

oL
B °Fl°| -+ s

S0°0- o




LR D i s T ISR,

nose is divided into two distinct ogival nose sections. There are two sets of
swept lifting surfaces, each having different fin geometries and deflections.
The Aeroprediction Code provides data for the individual body components. The

data shown in the example are for the total configuration with a 5° canard de-

flection.

One capability of the Code which has not yet been mentioned is illustrated
in the fallowing example. In this case, the Aeroprediction Code was modified to
compute the total sectional normal force coefficients along a missile body as a
function of Mach number and angle-of-attack. The results of the aerodynamic
analysis were then used in a finite element structural analysis to predict struc-
tural integrity. The results of the analyses, shown in Figure 33, indicate that
structural failure of the two configurations examined can occur during maneuver-
ing flight due to the large aerodynamic bending moment. Unpublished flight test

results confirmed the predictions.

s 24,8 cal >
—-l 2.38 cal V»’ﬁao dog GHAFF EXIT PORTS —i
< i @) 1/ by

| m—
ALUMINUM TUBE |

0.4 —r
POSSIBILITY OF FAILURE
{o ALLOWABLE « 27.2 ksi)
4.HOLE 3-HOLE
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Figure 33. Structural Integrity Study Using
the Aeroprediction Code
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Missile Mer*rrmance. Designing a missile for optimum performance is a very
complex procedur: with a number of tradeoffs and considerations. A few factors
g‘ which are considered include the velocity, range, time of flight, altitude,
?! launch angle, payload, maneuverability, responsiveness, lift-to-drag ratio, and
a performance of the propulsion system. In contrast to the projectile performance

optimization where the ballistic coefficient plays an important role, a missile
design is typically optimized for one or more of the factors listed. Moreover,
j; there are more options available to the aerodynamicist in achieving the perform-
h ance goals due to the lifting surfaces. The Aeroprediction Code is ideal to

i parametrically examine the aerodynamic factors affecting performance as a result
;; of its relative low cost and accuracy.

To illustrate, a typical design approach is outlined which can be used to
arrive at a preliminary surface launched missile design which satisfies the de-
sired performance objectives.

; Initially the missile performance requirements must be established. The
specified requirements should include maximum and minimum range, missile
velocity, altitude ceiling, maneuverability (g's) required, and airframe time
constant. These requirements will usually be driven by the threat spectrum to
be engaged. The launch and payload weight and volume ~onstraints may ulso be
specified due to the given launching tube or canister envelope. The maximum
range requirement can be driven by several factors including the fire control
radar detection range and the firing doctrine to be utilized. The minimum range
(must-kill range) is usually established by doctrine. In this example, the

: missile is assumed to be launched from a square canister of specified length, L.
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The payload is assumed to include the guidance electronics, radome, warhead, and

! fuze. The average missile velocity is assumed to be in the M = 3.0 range.

ﬂ: ''he maximum flight range for the missile is a function of the time history

of the missile velocity which in turn is the integral of the thrust and drag
i along the flight patb.
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The configuration sizing, therefore, involves design tradeoffs of the air-
frame drag and weight and the propulsion system thrust required to deliver the
payload to the maximum range with adequate intercept velocity and maneuver capa-
bility. Since additicnal missile weight adversely impacts the propulsion system,
flight performance, and packaging requirements, the designer generally desires to
determice the minimum launch weight to meet stated requirements.

The missile intercept speed affects several aspects of guidance, including:
the maximum allowable target crossing angle, which is a function of the target
speed; the seekers maximum look angle and the airframe angle-of-attack; the miss
distance, which tends to increase as the closing velocity increases due to re-
ceiver and seeker servo noise; and the missile guidance time constant, t . The
total missile guidance time constant is defined as the time from the initial
tracking loop input upon target acquisition to the time it takes the missile to
achieve approximately 63 percent of the desired rate-of-change of the flight path

angle, ?. The missile guidance time constant can be approximated to first order
using the relation

= Ve /a
rg-—t1+tF+tAF+N v <'>Rbe (138)

m\Yy
where

T, is the tracking loop time constant,
g is the guidance filter time log,

A is the airframe tiwe constant,

N is the effective navigation ratio,

VC is the missile closing velocity,

Vm is the missile average velocity,

a/& is the turning rate time constant, and

Rbe is the radome boresight error slope.
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A low value of tg is desirable in order to reduce miss distance sensitiv-
ity to target maneuver and provide adequate terminal accuracy under adverse con-
ditions, The adverse conditions such as electronic countermeasures or weather
result in a reduction in the range available for guidance. A useful criterion
for seeker end game performance is to allow a minimum of 10 tg (10 guidance time
constants) to correct terminal heading error. It can be seen from the above re-
lation that decreases in ;ﬁ and %, both of which decrease with increasing missile
velocity, decrease the total time constant. Also, limitations due to the battle-
space, which is the distance between the maximum and minimum ranges, and the fir-
ing doctrine (such as a shoot-look-shoot doctrine) encourage the selection of as
high a missile veiocity as possible. However, the increase in the miss distance
as the closing velocity increases forces a compromise on the selection of the
desired missile velocity. In our example? an M_ = 3 missile velocity appears to

meet these restraints.

The sizing of the missile is a function of the propulsion type and capa-
bility, the type of aerodynamic control (or thrust countrol if used), and the
maneuverability (g's) required. The propulsion system selection is based on
altitude, thrust, and burn time requirements. Both simple boost and boost-
sustain motors should be examined and correlated with the missile weight to pro~

vide the required average or sustain velocity over the desired range.

>

The choice of the type of aerodynamic control is largely a tradeoff involv-
ing the location of the controlling surfaces on the body. Canards offer advan-
tages in obtaining a quick response from the missile. However, canards are
angle-of-attack limited and often lead to pitch and roll control problems due to
the interference of the shed vortices on the rear stabilizing surfaces. Wings,
which must be larger to produce the same moment due to their closeness to the
center of gravity, have similar advantages and disadvantages as canards. Tail
alone control has the advantages of lower overall weight and better pitch/roll
control due to the elimination of vortex interaction with vortices shed from
liftiny surfaces located forward of the tail. It has the disadvantages of longer

missile response time because the control force to rotate the missile is opposite
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to the desired direction of travel and actuator packaging must be accomplished
around the rocket motor. In this case, tail control is selected for the concep-
tual missile design. A jettisonable set of jet vane controls may be added in
order to implement the quick turn maneuver from the vertical when a vertical

launch system is utilized.

Having wade the above choices, the missile diameter and fineness ratio
can be dectermined. Using an average overall packing density of .062 1b/in3,
relationships between the missile length, diameter, and weight for the body-
tail type configuration can be obtained as shown in Figure 34. Based on these
curves, an 8-inch diameter configuration apparently would best meet the length

o and weight constraints shown.

§-in. DIA MISSILE FINENESS

| 2 RATIO, 1,0
3 ‘ LAUNCHER // l
£ LENGTH
, CONSTRAINT / /rﬁ,;'; ®
T / - 20
.'g' MM%_ ,-’_-79-%._;15
-
u | 0
= /’ﬁ T 10,
é ~Z 7
H ” = = 5
: Z— WEIGHT
- - IV coaL

W, LAUNCH WEIGHT — Ibs
Figure 34. Missile Physical Characterisiics

Sufficient missile maneuverability is required in the terminal phase of

flight to compensate for guidance errors, heading error, and target maneuvers.

An estimate of the missile maneuverability, a required to correct for guidance

FeT e R
E i = Pt ot 5 3 st 2007 A
L ST e PR B By 7 e o E

errors due to noise and targel maneuvers is pruvided by the relation

a > (3aT + 8) g (139)
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where ap is the maneuvering target acceleration.

The miss distance due to initial hesding error, HEy,, is based on dn average

missile acceleration, a applied over time, t_, and is given by

£
_ o N
Mg = Vpto U tf/to) HE (140)

where t = 10 tg and the initial missile acceleration (assuming no g saturation)

is:

N Vm
g = e '
a toe HE | (g's). (141)
For a 2.0 necond guidance time, tg = ,2, and N = 3, an initial HE of 10° can
be corrected and the miss distance eliminated providel the missile can achieve a

27 g maneuver.

Figure 35 shows the radome boresight error slope variation versus nose drag
coefficient for several nose shapes and fineness ratios. To minimize the bore-
sight error while achieving relatively low drag, a 2.25 caliber Von Kdrmdn nose

contour is selected.

It is now possible to define the overall missile fineness ratio. For the
trimmed condition, it is necessary that the summation of the moments be zero
such that

my OTrim ¥ Cm6 6p = 0 (142a)
or C
I
O, = = — 18
Trim c f . (142b)
mol
Therefore, to obtain maximum maneuverability, it is desired to minimize the
total untrimmed pitching moment coefficient, Cma‘ Similarly, the no.mal force
for the trimmed condition is
c =C 6 (142¢)

a + C
NTrim Na Trim N6 F
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Figure 35. Forebody Drag Coefficient vs Boresight Error Slope

L o
I

for Various Shapes and Fineness Ratios

Since deflection of the tail surfaces produces a negative normal force tu i
achieve the desired angle-of-attack, it can be seen that the body untrimmed CN ‘

required is greater than the trimmed condition. With this in mind, several tail

Cail ekl

sizes and planforms were examined to obtain a first approximation of the tail ;
size and to estimate the negative normal force effect. Figure 36 shows the vari-

ation of the tail normal force due to deflection, CNG’ and the total configura- ;
tion pitching moment, Cma’ for a hypothetical body versus taper ratio assuming a
diamond airfoil cross section. The optimum tail for maneuverabililty is that k

which produces the least negative force with deflection and the minimum total F

pitching moment. For this example, the optimum tail was that having a Ct/cr =
1 .364 resulticg in a CNG = =0.67 (deg -1, based on the planform area, ST). If
the center of gravity of the total missile configuration after burnout is assumed

to be .54L from the nose tip, the normal force required versus angle-of-attack
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for configurations of varying L/D ratios can be determined. 1In this case, the
total trimmed CN required for the required maneuver is 3.4 for a maximum angle-
of-attack of 18°. This indicates that a body alone normal force coefficient of

4.0 must be obtained. This is possible with a L/D = 18 which was shown earlier
to also meet the length and weight constraints.

The resulting preliminary missile configuration and the estimated aerody-
namic coefficients are shown in Figure 37 and 38. Using these data and the pro-
pulsion data, the missile performance can be predicted for various conditions.
A typical trajectory is shown in Figure 39.
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Figure 37. Example Missile Design
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4. AIDS TO DESIGM

As can be readily seen in the material of Secticn 2, a large number of
methods and data have been brought together into one computer program. The
resulting configurational generality possible allows one to examine the effects
of design modifications of various configuration components on the total con-
figuration aerodynamics and stability. Handbooks have been previously published
(References 5, 22, and 32) which have provided aids to the missile designer for
certain classes of configurations. In this section, a number of design charts
are presented which were generated using the Aeroprediction Code for various con-
figuration components c¢f both pointed and blunt bodies. These charts represent
portions, reproductions, and extensions of the charts presented in these earlier
handbooks. The user is encouraged to compare the data presented with that of
the earlier works where possible. The basic desire of the authors is to show
the trends due to modifications in the design components which will guide the
designer in the preliminary design process. For body component parameters within
the limits of the charts presented here, the reader can use the method of com-
ponent superposition (i.e., to add up the various effects of each component) to

obtain the aerodynamics of the complete configuration.

4.1 BODY ALONE DESIGN

The acrodynamic coefficients were determined for a large number of body
alone, axisymmetric shapes throughout the Mach number range. The characteristics
of the body components were varied systematically to establish the trends in the
aerodynamic coefficients. Particular attention was given to becdies with conical,
tangent-ogive, and secant-ogive nose contours as shown in Figure 40 because of

their primary interest to missile designers.

4.1.1 DRAG

As indicated in Section 2, the total drag of the bhody is the sum of the nose
wave drag, the skin-friction drag, the boattail wave drag, the base drag, and the

drag of protrusions, plus the crossflow contribution. In this section, data are
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Figure 40. Typicai Nose Contours (LN = 3.0 cal)

presented for ¢ 0°., For moderate angles-of-attack, a crossflow drag correction

is presented.

The nose wave drag is influenced primarily by nose shape, fineness ratio
(LN/D)’ and Mach number. The effect of these parameters on the wave drag in
supersonic flow is illustrated in Figure 41 for pointed bodies. 1In general,
the wave drag decreases for increasing nose fineness ratio and Mach number. Of
the nose contours shown, the secant ogive is shown to provide the lowest wave
drag within the Mach number range 1.0 < Mm < 6.0. Earlier studies (References 5
and 38) have shown that the minimum wave drag for secant ogives for low super-
sonic Mach numbers (M°° < 2.5) is obtained by using a radius of curvature twice
that used for a tangent ogive of the same length. In this comparison, all of the
secant ogive profiles had a constant shoulder angle of 6.0°. For low supersonic
Mach numbers (M°° < 2.0) slender body theory predicts the minimum drag profile to
be the well-known Von Karman ogive. Newtonian theory predicts that the conical
nose shape would become the minimum drag profile as M ~» ®. Therefore, in
general, the expected trend in supersonic flow is that for a given nose length
and diameter the minimum drag profile would vary slowly from the Von Karman
ogive to the secant ogive (with radius twice that of a tangent ogive) and then

to a conical nose shape as the Mach number increases. Although not shown, the
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Figure 41. Wave Drag Comparison for Pointed Bodies

power-law nose contours also closely follow these trends and may in some in-
stances exhibit lower drag than the secant ogive due to nose bluntness. For
example, the 6.0° (shoulder angle) secant ogive can be approximated by the two-
thirds power-law nose. As the Mach number increases, the power used to obtain
the low drag shape increases to a value of 1 which corresponds to the conical
shape.

For a nose of fineness ratio of 3.0, the variation in the wave drag with
nose shape is shown in Figure 42. In this case, the more blunted tangent ogive
is shown to have the lower wave drag for M, = 1.0. For subonic Mach numbers, the
wave drag contribution is assumed to be zero for M, < .5. The exact point at
which the.wave drag disappears depends on the nose fineness ratio. This is il-
lustrated in Figure 43 which shows the transonic wave drag for various tangent

ogives,

The nose wave drag is also influenced by bluntness as shown in Figures 44
and 45 for cones. The data presented are for a 7.125° semi-angle truncated cone
with fineness ratio 4.0 when not blunted and for a 10° semi-angle spherically
capped cone. When adding the spherical cap or truncating the nose, the nose

length was reduced back to the point where the proper value for R, (the radius

N
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of the cap for the spherically capped cones) would be obtained while keeping
the slope of the conical frustrum constant. As can be seen, truncation alone
has a slightly greater effect than truncation with a spherical cap. Note,
however, that a portion of the difference can be attributed to the slightly
different nose lengths obtained in the two cases for the same bluntness ratio.
The dif€:  :it nose length results from both the different slopes and the smaller
bc'y r 4ius -t the point of tangency of the spherical cap. In either case,
bl 1t .., the nose up to RN/Rref = .1 has a negligible effect on the wave drag
(or on the other aerodynamic coefficients, as shown in the following subsec-
tions). Yurther increases in the bluntness ratio results in pronounced increases

in th: . .g

Ja vs:ry low fincness ratio pointed noses with little or no curvature, the
high tody slope miv result in a viscous separation drag at subsonic and transonic
Mach numbe s. Th's drag results from a separation bubble formed by flow detach-
ment at th.- nose tip due to strong adverse pressure gradients and reattachment
downstream, The pheromenon is somewhat Mach number dependent and is clearly
noticeable “cr M, < .8. [Its presence is apparent up to M < .95 or so depending
oa the one -rugle. Figure 46 shows the magnitude of the nose separation drag
for cones with and without afterbodies at subsonic speeds. The effect of the
nose separation bubble is noticeably reduced by the influence of the afterbody.
The effect of nose curvature is %o eliminate the adverse pressure gradients

and therefore the phenomenon does nct occur.

For angles-of-attack near zero, the contribution of cylindrical afterbodies
to the wave drag is assumed to be zero and thus no additional contribution to
the wave drag occurs. Flares and boattails contribute positively to the wave
drag. Wave drag data for flares are presented in References 5 and 22, and the

reader is referred to these publications in these instances.

The wave drag of the boattail is primarily influenced by the boattail slope
or angle, the boattail length, Mach number, and the length of the preceding
afterbody as this affects the degree of pressure recovery on the afterbody and
subsequent expansion at the afterbody-boattail juncture. For short afterbodies

(LA < 4.0 calibers), the pressure recovery and thus the boattail wave drag are
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also influenced by the nose shape (Reference 14), the influence generally becom-
ing stronger as the nose shoulder angle increases. In this study, the effects of
nose shape and afterbody length on the boattail were not examined. However, it

should be noted that the numerical marching technique used in the Aeroprediction

N P

Code would allow one to examine these parameters, at least to the end of the
afterbody.

S

The wave drag coefficient for conical boattails in supersonic flow is given
in Figure 47. For a given boattail length, decreasing the base diameter in-

creases the boattail wave drag. However, as can be seen from Equation (136),

decreasing the base diameter also resul*s in a lower base pressure. Therefore,

an optimum configuration with respect to drag would balance these drag contri-

AT R T 3 ' e SN
RS AR R A e < S s i, o d PSRN
et Llan ] Tl

butions. The overall decrease in total drag of a configuration can be strongly
{ intluenced by the boattail design. This is illustrated clearly in Figure 48
which shows the variation in the total drag of a 10.5 caliber body having a 3.0

caliber tangent-ogive nose, a 6.0 caliber cylindrical afterbody, and a 1.5 cali-
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ber conical boattail with various base diameters. In subsonic flow, decreasing
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base diameter continues to decrease the total drag. In transonic and supersonic
flows, however, decreasing the base diameter to a ratio of DB/Dref = .4 or lower
results in an increase in the total drag. In supersonic flow, as the Mach number
increases, the influence of the base drag decreases rapidly, thus allowing larger

base diameters to achieve a minimum drag boattail design.

Many projectiles also retain rotating bands in flight. 1In the absence of
fraying, the drag increment due to a rotating band has been functionalized (Ref-
erence 1) and can be obtained by using Equation (17) and the curve shown in Fig-
ure 49. More recently, rotating bands have been designed for full-bore pro-
jectiles which discard upon muzzle exit, thus eliminating this drag contribution

and allowing for a cleaner shape.
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For o« > 0, additional drag results from the viscous crossflow velocity
(V = V sin a). For moderate angles-of-attack, one needs first to determine

the total normal force (as outlined in the following section beginning on page

98). Then, the total drag is

C (143)

D CA cos J + CN sin

where

2
A CDo cos“d. (144)

c

The skin friction component of the total drag is computed using Van Driest's
method as outlined in Section 2. The skin fricton drag is influenced primarily
by the Reynolds number, the heat transfer, the Mach number, and the point on the
body at which the boundary layer transitions from laminar to turbulent flow. For
the body alone, the boundary layer will generally be turbulent over roughly
90 percent of the body, depending on flow conditions and overall body length. !

For very short bodies and for fins, the percentage will likely be much less.

) |




The calculation of the skin friction coefficient using Van Driest's method
is somewhat cumbersome. A rough approximation can be obtained by using the

simple formulation (from Reference 5):

. W
c, =¢ 3 (145)

where
Sw is the wetted surface area,

5 is the reference arc, and

ref

C, is the skin friction coefficient determined from Figure 50 multiplied by

F
the factor 1.15 for a body of revolution.

No attempt is made here to examine the trends for the base drag or the
various parameters affecting base drag in detail. Deviations in the base drag
could occur with variations in the nose shape, afterbody length, angle-of-attack,
Reynolds number (if sufficiently low), surfere temperature, and boattail shape.

However, the most common method to determine the base drag in the absence of any

mass base flow (such as base bleed or rocket exhaust) is an empirical method
based on data for a long cylindrical afterbody and a fully turbulent boundary
layer ahead of the base (Reference 1) and adjusting for the presence of a boat- )
tail, The relation for determining the base drag in this situaticn [using Equa-

tions (138) and (20) from Section 2)] is

N PP L,

- . v 3
C = -C (RB/Rref) (18)

AB PBA

e

where CP is determined from Figure 51.
BA ;
f

For small angles-of-attack and low supersonic Mach numbers, the relation

3

— o - 3
AC,py = (-.64930 - .0028334,) (Rg/R () (20)

can be used to adjust the base axial force.
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4.1.2 NORMAL FORCE AND CENTER OF PRESSURE

At zero angle-of-attack, an axisymmetric body exhibits no normal force.
However, with even small increases in the angle-of-attack, the normal force
increases rapidly. The slope of the normal force curve (C versus (), expressed
as the coefficient CN and its location of action (center of pressure, X ) rela-
tive to the body centlr of gravity is of primary concern in assessing the stabil-
ity of a flight vehicle. Projectiles without lifting surfaces are generally
statically unstable and must be stabilized through gyroscopic means. For a
statically stable body, the xcp must be rearward of the xcg‘ This is often
achieved by placing lifting surfaces on the rearward portion of the body. The
X location is more or less positioned depending on flight conditions and the

cp
degree of manueverability desired.

The normal force derivative, CN', and the xcp for various nose-afterbody
combinations at zero angle-of-attackaare given in Figures 52 through 57. The
data presented are for bodies with tangent-ogive, secant-ogive, and conical
nose shapes. The effect of nose length, afterbody length, and Mach number can be
readily assessed from these graphs. For ﬁ/LN > .9 (high oupersonic flow),
trends for the values of CN and xcp are quite consistent. Generally, for a
given LN and Mach number, ingreasing afterbody length results in a corresponding
increase in CN and a decrease in the X, distance from the nose (in terms of the
percentage of“the total body length). Note that the data presented are for

= 0°. As a result, for a tangent ogive-cylinder body and, to a lesser degree,
for the secant ogive~cylinder body, the data indicate that an increase in the
afterbody length beyond LA/LN = 3.0 does not significantly increase CN . This
would not necessarily be the case for higher angles-of-attack. The effects of
afterbody length and Mach number are more easily visualized in Figures 58

and 59 for LN = 4.0 caliber tangent ogive-cylinder and cone-cylinder bodies.
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For increasing nose length or decreasing Mach number (B/LN decreasing),

N increases gradually to a maximum before falling off.
o

C

In the region ﬁ/LN > .9, the results shown compare favorably with those of
Reference 22. 1In the transonic and subsonic regiomns, the EILN correlation does
not continue to hold. (This portion of the graph is shown for illustrative
purposes only and should not be used for data extraction.) Note that the pre-
dicted trend for CN , although not well defined, is for CN to decrease in each
case, as S/LN decredses below a value of 1.0, to a value of” 2.2, which is about
10.0 percent above the slender body value,

For subsonic flow, the total inviscid normal force for a nose-cylinder body
is simply

c = (C, ), *+ (Cy ) (146)
Na Na N Na A
where the nose contribution is

(Cy )y = C1 tan &% + Cp (147)
o

and (CN )A is the afterbody contribution (Reference 1). e wvalues for C; and
C, are given in Figure 60 and (CN )A is found from Figure 61. The angle 6&* is
the nose shoulder angle at the %ose-afterbody juncture. Slender body theory
yields the xCp location for the nose in subsonic flow as

(Vol)N

(x_ ), =L . (148)
cp’N N Sref

For the afterbody, it is suggested that one use Figure 62 taken from Reference 1.
A simplified expression for the xcp for the total body is then
Xep = 10t )y (G Dy + (xopdyy (B D170 (149)
o o Vi
The effect of a buattail is to reduce the normal force and to shift the
total body xCp forward (Reference 5). The degree of effect is a function of the

same parameters which were mentioned in regard to the drag. The general behavior

of the boattail normal force is illustrated in Figure 63 (Reference 39). For
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o

supersonic flow, the trend is more easily seen in Figure 64. For a given Mach
number and base diameter, increasing the boattail length results in increasing
normal force losses. Increasing the base diameter or increasing the Mach number
has Lhe opposite effect, resulting in a restoratiou of the normal force. Note
again that the Aeroprediction Code varies from the slender body theory value. In
this case, the boattail effect is underestimated by roughly 15 percent. Neither
theory has been verif.~d by a detailed comparison with experimental data. Thus,
the accuracy of these theories could not be determir~d. The location of the
ceuter of pressure on a boattail 's presented in Figure 65. Again, increasing
the boattail length for a giver oase diameter and Mach number reduces the value
of xcp/LB even though the xCp location relative to the afterbody-boattail

shoulder is iwoving rearward. If the nose-afterbody length is held constant, the
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increasing boattail length therefore causes a strong destabilizing trend. How-

ever, if the total body length is held constant, this destabilizing effect is
greatly reduced and in some cases eliminated.

When designing a boattail, one must avoid boattail angles sufticiently large
to cause flow separation at the shoulder. This is particularly the case for
conical boattails, whereas for ogival shapes a slightly greater boattail angle
(as determined by the local slope) can sometimes be tolerated. The angle at
which flow separation occurs can vary considerably, again depending on the local
flow conditions. For projectiles and other short bodies, separation appears
generally to occur for shoulder augles of 6° to 10° or greater. However, on

boattails following long afterbodies, the flow has been known to remain attached
for shoulder angles up to 15°.

For spinning bodies such as projectiles, one should also examine the effect
of boattail design on the Magnus force and Magnus moment. More is said concern-
ing these effects 1in the following paragraphs. For now, suffice it to say
that flight tests have shown that boattail design is important as far as the
Magnus force and moment are concerned, particularly in transonic flow.

The effects oi nose bluntness on the normal force and center of pressure
are shown in Figures 6b and 67 for spherically capped and truncated conical
noses. The data presented are for truncated 7.125° semi-vertex angle cones with
a fineness ratio of 4.0 caiibers for no blunting (RN/RB = 0) and 10° sphericsally
capped cones. When adding the spherical cap or truncating the nose, the nose
length was reduced as previous:, described in the drag paragraph. Overall,
blunting the nose up to a bluntness ratio of RN/Rref = .1 has a negligible effect
on CN (see Figure 68) and a small effect on the xCp location. Theoretically,
the xcp location experiences an abrupt shift forward with initial blunting due to
truncation (as shown in Figure 69) which does not occur when the spherical cap is

added. This phenomenon has not been verified experimentally.

At o > 0, there is a nonlinear contribution to the normal force due to the
viscous crossflow velocity. The correction for angle-of-attack as given in
Reference 18 [and using Equations (25) and (26) from Section 2] is
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Figure 66. Normal Force for Blunt 10° Cones -
Sperically Capped to Shorter Length
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4n(L -
ACN = *ﬂ%—l CdC (Mm sin @) Sp sin%a (25)
and
. ;2
ACm = - Cdc xp sin“qg (26)

where n and Cd are given in Figure 70,
c

Sp is the planform area of the body in the plane of the body's longitudinal

axis, and
Sref is the reference area.
The center of pressure for the entire body is then
Cm + ACm

cp = - CN + ACN

X (150)

Equations 25, 26 and 145 do not account ¢~r any crossflow Reynolds number de-

pendence. A more detailed presentation on the effects of incidence is given in
Reference 18,

4,1.3 DYNAMIC AERODYNAMICS

The Roll Damping Coefficient for an axisymmetric body is the result of the

skin friction force tangential to the rolling axis. As indicated in Section 2,

this coefficient har been accurately predicted using the known values for a given

configuration and adjusting these values through the relation
Cop = <C2")1 L/Ly. (151)

The data presented in Section 3 were thus obtained and can be similarly used if

desired to estimate the Cﬂp values for additional configurations so long as the

comparison design is approximately the same length.
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The Magnus force and Magnus moment ar« the results of boundary layer distor=
tion on a spinning body at angle-of-attack. Usually, empirical methods are used
to predict the magnitude of the Magnus coefficients. The Aeroprediction Code
does not take into account any variations in the nose shape or length, only the
total body length. It is assumed that the Magnus moment is also independent of
the boattail slope. Sample variations of the Magnus moment for bodies with and
without boattails are shown in Figures 71 and 72 which indicate that increasing
the body length and/or adding a boattail increases the Magnus moment. The
Magnus moment is not determined for bodies with lifting surfaces. For missiles,

this is not significant. For bombs, fin Magnus is important.

The pitch damping coefficient, + C +, indicates the pitching moment

C

mq md’

produced by rotational motion about the pitching axis and can be determined
theoretically as shown in Section 2 (Equations 90-96). Examples are given in
Section 3. The reader is referred to these sections for more information on

these methods.

The theory found in Reference 25 indicates that the pitch damping coeffi-
cient is strongly influenced by the nose length where the afterbody length is
less than 1.0 caliber in length. For afterbody lengths greater than 1.0 caliber,
the main parameter is the total body length. The influence of the boattail is
negligible as long as the length of the boattail is included in the total body
length when determining Cmq + Cm&' In general, increasing the nose length in
conjunction with very small afterbodies or increasing the total body length in-
creases Cmq‘ The adaptation of the slender body theory in Reference 22 also
indicates that the increase in Cmq + Cm& is proportional to the increase in the
magnitude of the pitching moment, Cm , and that, for configurations with very

, o
long afterbodies (LA » ®»), the value “of Cm + Cm& approaches the value of “Coa’

q
Figure 73 illustrates the variation in Cmq + Cm& with body length as predicted

by the method discussed in Reference 25.
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4.2 LIFTING SURFACES

A large number of wing alone cases (two fins together with total span, b, no
body present) were considered using the Aeroprediction Code. The majority of
vases represented rather simple planform shapes; i.e., diamond or bicoavex air-
foil sections with a constant shape and thickness ratio along the span and sharp
leading and trailing edges. Exact linear theory is applicable in these cases.
The results of the numerical solutions obtained by the Code are compared with the
analytical predictions of the linear theory. The numerical method used in the
Code can be applied over a wide range of airfoil shapes and planforms. Modified
double wedge and biconvex airfoils with blunt leading and trailing edges and
tapered, swept fins with variable (but similar) airfoil sections and variable

thickness with span are also possible. However, no camber or twist is con-

sidered. Because of the large number of variations in geometry possible, the

k fl
;
1
:
4

examples which follow are generally limited to the simple planform shapes. The

reader is referred to Section 1 of this report and to Reference 2 for more de-

tails on the theory utilized in the Code.

4.2.1 DRAG

s in S R i

The drag of a single fin is generally small compared to that of the total
configuration. As the number of fins increases, the drag contribution of the

lifting surfaces can become quite significant, although rarely deminant. Geome-

trical factors which are predominant in affecting the drag are aspect ratio,
thickness ratio, bluntness of leading and trailing edges, leading edge sweep

angle, and airfoil shape.

Reference 2 contsins several examples which compare the numerical results
for the two-dimensional pressure coefficient with that of the exact linear
theory. The comparisons verify the accuracy of the numerical method for both

the chordwise and spanwise distributions.

M G2 23 e o . e B ST £ I O

Figures 74 and 75 show the wave drag coefficients for rectangular 2nd delta
planform fins with sharp LE and TE for transonic speeds. The wavc drag is as-

sumed to decay linearly from M_'=1.05 to zero at M, = 0.85. In general, for
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Figure 75. Wave Drag Coefficient of a Double-Wedge Delta and Rectangular
Biconvex Fins at Transonic Speeds
constant thickness with span, which is the case here, and zero sweep angle, the
wave drag coefficient based on the planform area does not change with increasing
span. The area which is an exception to this rule is 1.0 < M < 1.2. Tn this
flow region, the effect of increasing the aspect ratio is to increase the wave

drag coefficient. Thickness effects are also shown to be present.

Figures 76 and 77 compare the supersonic wave drag predictions of the two
theories for modified double-wedge and biconvex-planform fins, respectively, with
various sweep angles, y, and constant chord length. The agreement is very favor-
able. It can be seen that the wave drag increases with thickness but decreases
with an increasing sweep angle. Figures 76 and 77 apply for fins of moderate
aspect ratios and moderate supersonic Mach numbers. For higher values of these
parameters for rectangular fins with diamond airfoil sections, one can use Fig-
ure 78, which is an extension of the curve for AR tan y = 0 in Figure 76. One
should note that the drag can change significantly with sweep depending on

whether the leading edge is subsonic (lie5~forwarqu9f“the Mach wave line) or

supersonic (lies entirely rearward of the Mach wave line). Referénce '5- shows.

supersonic wave drag predictions using the linear theory for fins with various
taper ratios. Also shown in Reference 5 are form factors which can be applied to

a variety of airfoil shapes to adjust the drag prediction of the diamond airfoil
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to obtain the drag for a fin with a similar aspect ratio, chord length, and Mach
number. As one would expect, in general, the greater the initial slope on the

airfoil for a given thickness ratio, the greater the wave drag contribution.

The base pressure of the fin, referred to as the trailing edge separation
drag, is similar to the three-dimensional phenomenon which occurs on the body.
The pressure in the.rear of the fin is that of a two-dimensional rearward facing
step. Experimental results (Reference 40) for fins with no TE slope are shown in
Figure 79. The data have been extrapolated for M, < 1.1 based on the general
shape of the three-dimensional base pressure curve. The base pressure on one fin

can be adjusted for TE taper (varying bluntness) by Equation (44) in Section 2.

The position of the fin with respect to the base on the body can also affect
the base pressure (of the body). Also, the geometric fin parameters which de-

termine the extent of this effect are the aspect ratio, thickness ratio, prefile
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Figure 79. Two-dimansional Base Pressure Coefficient

or shape, sweepback angle, and number of fins. The effect of thickness is shown
in Figure 80 which indicates that the effect increases with an increasing thick-
ness ratio for a given Mach number. The other geometric parameters were not
examined., The distance or location of the fin upstream from the base at which
the fins no longer affect the base pressure varies linearly with t/C, as shown in
Figure 81 (Reference 41). The change in base pressure is assumed to vary linear-
ly from a maximum when the TE of the fin is flush with the base to zero at the
distance indicated. Fins extending downstream of the base are assumed to have
the same effect as those that are flush with the base.

The LE bluntness effect on the drag was also examined. The trends for
several Mach numbers are shown in Figure 87 for a biconvex airfuil. Bluntness is

seen to have a larger effect at the high supersonic Mach numbers. However, the
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effect at the lower supersonic Mach numbers is shown to indicate a stronger de-

pendence on the LE radius. The exact linear theory does not hold in these cases.

The reader is referred to Section 2 for a discussion of the skin friction
drag component.

4.2.2 LIFT

For subsonic speeds, the only contributon to the lift or normel force is
o assumed to be due to the angle-of-attack. The procedure in this instance (as
f‘. shown in Section 2) is to determine the normal force and X, for a similar wing

of aspect ratio BAR at Mach number zero and angle-of-attack, Bo. The variation

{ of CN for a diamond airfoil in subsonic flow is given in Figure 83. For tran-
;’l sonic glow, the relation

i Cy = (1=-ac) 2nAR : (152)
a/fb 2 + [ARZ (B2 + tanzyg) + 4]

is used to compute the 1lift curve slope at the force break Mach number and at
intermediate Mach numbers, Ma and Mb (defined in Section 2). The force breuak
Mach number is assumed to represent the point at which the flow transitions from
subsonic to transonic flow. The force break Mach number varies with aspect ratio
and thickness as shown in Figure 84-A. The factor, ac, is a correction factor to
the lifting line theory to account for the decrease in the lift curve slope for
thick fins as a function of thickness. The variation of this factor is shown in
Figure 84-B at M, = Ma and Figure 84-C at M, = Mb. The further determination of

CN in transonic flow is outlined in Section 2.
o

Figures 85 through 94 show the variation in CN and xcp as a function of AR,
t/C, and Mach number for a rectangular fin with shagp LE and TE for transonic and
supersonic flows. Although shown as a function of the transonic similarity
parameters, these curves were extended to show the decreasing effect of the
aspect ratio. For the rectangular fin, the effect of AR is not considered for
high supersonic Mach numbers where strip theory is used, although some small
effect is noticed in the xcp location. The effect of fin thickness in this

region is thus more clearly seen. For M > 3.0, increased thickness is shown to
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result in increased CN and a forward shift in the xcp location. For low super-
sonic Mach numbers, the effects of AR and Y are assumed to dominate the vsria-
tion in CN and xCp and thus the effect of thickness on lift is not considered.

The transofiic predictions compare well with the experimental data correlations
given in Reference 5.

Variations in the CN and xcp with LE sweep angle, Yig? and taper are shown
in Figures 95 and 96, regpectively. Generally, the 1lift curve slope effect is

more noticeable in the low supersonic flow region for the subsonic LE case
(YLE < M) than when the LE is supersonic (YLE > ). (The cases shown here are
for unswept TE. The Code can also be used for cases with TE sweep but, as these :
trends are similar, the reader is referred to R ference 5 for more detailed
charts produced using exact linear theory.) Generally, the lift curve slope is
reduced with increasing Vg for a given taper ratio, A, (increasing AR), and
de-reased with increasing A for a given YiE (decreasing AR). In supersonic flow,
changes in Yig for a given A and Mach number have very little effect on the xcp
location as a function of the root chord, while increasing A results in a forward )
movement in xcp. The effect of thickness was discussed in the rectangular fin 1
case and that discussion also applies here.

For complete configurations, the presence of a body with the fin causes
interference effects on both the lift and the center of pressure. The inter-
ference lift is ccomposed of three parts: the lift of the fin due to the presence
of the body, the lift of the body due to the presence of the fin, and the vortex
lift on the tail due to vortices shed by a wing or other forward-located lifting
surface. The methods to determine these effects are discussed in detail iu Sec-
tion 2. The equations for summarizing the coefficients for the individual body
components to obtain the coefficients for the total configuration including the

interference effects are also g ven in Section 2,
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APO

Parameter in equation for skin friction
Aspect ratio (bZ/ST)

Speed of sound (ft/sec)

Missile acceleration during maneuver (g's)
Target acceleration during maneuver (g's)

Parameter in equation for skin friction, 1ift interference
parameter

Lift interference parameter, infinite afterbody

Lift interference parameter, no afterbody

Lift interference parameter, short afterbody

Span of two fine (excluding body) (ft)

Local chord length (ft)

Mean aerodynamic chord (ft)

Axial force coefficient

Base axial force coefficient

Increment in base force coefficient due to angle-of-attack
Forebody axial force coefficient

Axial force due to skin friction

Pressure (or wave) axial force coefficient

Nose separation drag coefficient

Axial force coefficient due to presence of a rotating band
Wing axial force coefficient

Drag coefficient in wind axes

Zero angle-of-attack drag coefficient
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de Infinite cylinder crossflow drag coefficient é

Cpr Cg Friction coefficient . ,g

CFC Friction coefficient at critical Reynolds number g

Co Roll moment coefficient ?

4

C‘Qp Roll damping coefficient [8C2/3(pD/2V)] (rad-l) %

C, Pitching moment coefficient é

§

Cmq + Cm& Pitch damping coefficient {(l/quD) {[amy/a(qn/2V)] + é

[2H, /3 (3D/2V) 1} (rad™h) )

Cm Pitching moment coefficient derivative i

a Ll

k

Cm Pitching moment coefficient derivative due to fin deflec- [

] tion, & -

F ‘l ]

’

CN Normal force coefficient 43

|

i

C\B Body-alone normal force coefficient |4

|

o Cy Normal force coefficient correction for interference due to 1 :
5 B(F) body in presence of a fin C
L -
1 CN Normal force coefficient correction for interference due to f
p F(B) fin in presence of a body :
fg CNTi Isolated jth fin (in presence of the body) normal force %
3% coefficient (cruciform configuration) '
qu CNT(V) Tail normal force coefficient correction for canard shed 1
(A vortex ‘i
o o
%,' CN(TOT)’ CN(B+T) Body-tail total normal force coefficient at small o and high .
Eg% o, respectively i
ot !
%i; Cy Normal force coefficient derivative ]
v . |
h 1
i Cn Magnus moment coefficient derivative {(l/quD)[32Mz/8(pD/2V)da]} 3
! pa (rad’l) o
Cp Pressure coefficient 1

1

%

:
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C L’ C U Pressure coefficients for lower and upper surfaces of the i

4 . s "

¢ P wing, respectively ;y

. i3

Cp Base pressure coefficient ¢

BA

Cr Fin root chord (ft) 3

7

C: Distance from wing root leading edge to first surface dis- ]

1 continuity downstr -m, parallel to freestream (ft) {4

A ) , , 4
L Cr Distance from wing 1ot trailing edge to first surface dis- |
G 2 continuity upstream narallel to freestream (ft) :
! i
- c Fin tip chord (ft) 4
b t 12
b Ct Distance from wing tip leading edge to first surface dis- ;é
? _ 1 continuity downstream, parallel to freestream (ft) 5§
v 1
i 1 Co Distance from wing tip trailing edge to first surface dis- i
o 2 continuity upstream, parallel to freestream (ft) | 5
i ﬁ
C; Parameter in equations fcr skin friction, transonic nose 'é

normal force i

Cq Parameter in equations for skin friction, transonic nose 4

normal fo.ce ; i

CY Constant in determining pitch damping coefficient ;

1

CG Center of gravity i

| D Body reference diameter (ft) ;

b D Mean body diameter {
) i
f i Dc’ Dw Mean body diameter near a canard and tail, respectively j
2 c

. l
jﬂg d; Parameter in equation for skin friction é
,-.{':,.'; . -
E%j dg Parameter in equation for skin friction {
§ } F Mach wave angle proportionality factor )
;o £, Spanwise location of panel vortex ]
; ' £ Dynamic pressure ratio across & bow shock ]
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ST

=

g Acceleration due to gravity (ft/sec?)

H Rotating band height above body (cal)

HEO Initial héading error (rad)

IBT Body-tail normal force coefficient interference
ISP Specific impulse (sec)

Iy Body polar inertia (slug-ft?)

IY Body transverse (pitch axis) inertia (slug-ft2)
it Tail interference factor

K Hypersonic similarity parameter

Kgs Ker Kpepyo

Interference parameters

Kre) ¥B(r)’ *r(B)
L Body length (cal)

Lengths of afterbody, boattail, and nose, respectively (cal)
Body alone 1lift

Interference 1lift

tombination lift of wing plus body

Fin alone lift

Comparable body length

Mach number

Intermediate transonic Mach numbers

Force break Mach number

Mach number separating low supersonic and high supersonic
inviscid body alone and wing wave drag computations

Mach number separating low supersonic and high supersonic
inviscid lift and dynamic derivative computations
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M Mach number related to nose length used for interpolations
m Mass
- Miss distance due to heading errsr (meters)
N Effective navigation ratio
% P Roll rate (rad/sec)
;

q Pitch rate (rad/sec)

W,
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Q, Dynamic pressure
P

Body radius (cal)

i

¢ ST

- o1}

Mean local body radius (cal)

Rbe Radome boresight error

R, % 7o

e

Rody, nose spherical radius (cal)

z

Critical Reynolds number

o e,

é RNE Effective radius of spherical cap (cal)

‘? RNL Reynolds number based on body length ;
R, Body radius at base of sph:rical cap (cal) i
R6 Body s - ace slope at x=0 i
R’ Body surface slope at nose-afterbody junction 5

s
RX kange (ft)

Area (vnit?) §

g

Sb Body surface area (cal?) q

:i

, Sd Dynamic stability factor g

3 Sg Gyroscopic stability factor H

T )

g Sp Body longitudinal planform area (cal?) ;

4 :

L S Total planform area (ft2) ;
&
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Planform area for two tail fins (ft?)

Wetted area (ft?)

Distance along linear segment

Point on body at which perturbation solution begins

Origin of source or doublet distribution
Temperature (°R)

Thrust (1lb)

Wall temperature (°R)

Local thickness of lifting surface (ft)

Body surface match point for spherical cap (cal)

Time of flight (sec)

Total missile maneuver time constant
Lifting surface thickness at root (ft)
Lifting surface thickness at tip (ft)
Velocity (ft/sec)

Closing velocity (ft/sec)

Missile velocity (ft/sec)

Initial velocity (ft/sec)

Weight (1b)

Launch weight (Lb)

Perturbation velocity (ft/sec)

Stretched coordinate at which singularity exists

Body coordinate (parallel to body axis) or lifting surface

chordwise coordinate for fin only (cal)

Body coordinate including spherical cap (cal)
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AT T

(xcp)Ti
(xepdror

cpi

¥
Yi, Y2, Y3, Y4

YiE
A

Distance from tail trailing edge to base of body (cal)
Distance from nose to moment reference (cal)

Distances to fin apex for canard and tail, respectively,
from nose (cal)

Distance from moment reference to center of pressure (cal)
Body=-alone xcp from nose (cal)

Isolated ith

fin (cruciform configuration) Xep from nose (cul)
Total body-tail xcp from nose (cal)

Interference Xep from nose (cal)

Body planform area center location (cal)

Distance defined in Equation (125)

Stretched coordinate at which singularity exists, functional
parameter, radius coordinate

Spanwise distance on lifting surface (ft)
th

Spanwise location of center of pressure for isolated i~ fin

(ft)
Angle-of-attack (rad)

Compressibility similarity parameter,‘\}[ HZ -1 l

Second derivative of C_ with respect to a evaluated at
a=0, 6=0 P

Calorically perfect gas heat capacity ratio
Flight path angle of missile rate-of-change (deg/sec)
Streamwise circulation per unit length

Sweep angles for local surface discontinuities on a fin,
functional parameter (deg, rad)

Leading edge sweep angle of lifting surface (=y;) (deg, rad)

Incremental value, second derivative of C_ with respect to
o evaluated at a=0, 6=n/2 P
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Local body angle (rad)

Nose slope angle (rad)

Fin control deflection angle (deg)

Angle associated with body slope (rad)

Angle of nose-afterbody junction (rad)

Initial body surface angle following spherical cap (rad)
Crossflow drag proportionality factor, functional parameter
Azimuthal angle from the leeside, roll angle (rad)
Boattail or flare angle (deg)

Cone half angle (deg)

Equivalent cone angle for nose of given length (rad)

Parameter proportional to derivative of C_ with respect to
o for a=0, 6=0, functional variable

Ct/Cr

Mach wave angle, sin-1<é>

Functional parameter

Density (slug/ft®)

Root leading edge radius (cal)

Tip leading edge radius (cal)

Root trailing edge radius (cal)

Tip trailing edge radius (cal)

Area of influence on lifting surface, stress (psi)
Time (sec)

Airframe time constant

Guidance filter time lag constant
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Superscripts

Subscripts
A

a

RB
ref

std

S E SR U S * Sk

Total missile guidance time constant
Tracking loop time constant

Disturbance potential

Functional parameter

Differentiation with respect to x

Span including body

Afterbody
Asymptotic value
Base

Body

Conical value
Local

Nose

Ogival value
Pressure
Rotating band
Reference value
Standard value
Tail value

Wing

Wave drag component
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Stagnation value (when referring to pressure, except on %
pages 24-25 where it refers to the M_=0 case), value at a=0 3
(drag only) p

3
Values upstream and downstream from a body corner, ?
respectively »
Partial differential with respect to o (o>0) g
Freestream condition

Parameter in determination of Cmq + Cm& using LMSC method
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