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FOREWORD

F This woL.zk was undertaken to provide a design. tool for use in estimating the

aerodynamics of tactical weapons. Rapid estimation of these aerodynamics will

then allow one to predict performance or conduct static/dynamic stability analy-

sis in the preliminary and intermediate design stages in an efficient and reason-

ably acccurate narner. Prior to the development of this technology over the past

10 years, aerodynamics were calculated by hand using design charts, wind tunnel

data, empiric.l methods.. or just "engineering experience." It is hoped that this

methodology has helped to lend an improved process for generating aerodyaamics.

Support for the work war provided by the following sponsors: The Naval Sea

Systems Command under the Surface-Launched Weapons Aerodynamics and Structures

Block Program, the Naval Air Systems Command under the Strike Warfare Weaponry/

Aerodynamics/Structures Technology Block, the U.S. Army Missile Command under

Project No. IL162303A214, and ýhe Office of Naval Research under Project No. I
SF41411.

Major procurement contracts, from the above funds were let to North Carolina

State University, Nielsen Engineering and Research, Inc., and Lockheed Missiles

and Space Co., Inc. Minor contracts were let to General Electric, Armament Sys-

tem Dept. , Burlington, Vt.; COMPRO of Fredericksburg, Va.; and EG&G of Rockville,.! Md.

This report was reviewed and approved by Mr. C. A. Fisher, Head, Weapon

Dynamics Division (K20).

Release y:

R. T. RY JR, Head
. . : . Strategic Systems Department
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1. INTRODUCTION

In the design of any airframe, there is a need to estimate the aerodynamic

characteristics of the body in flight. During the preliminary or conceptual de-

sign phase, design changes necessitate the revision of the preliminary estimates

each time a change is made. To meet this need, the Navy (Army support in 1977)

undertook in 1971 the development of a computer code which would be able to pre- I
dict the aerodynamic coefficients of a wide variety of configurations rapidly,

inexpensively, and with relatively good accuracy. The code was developed in

phases with preliminary versions of the code being published in 1972, 1974, and

1977 (see References '., 2, and 3, respectively). These versions were for the

body alone static aerodynamics, wing-body-tail. static 3erodynamiLs, and dynamic

derivatives, respectively. Applicable Mach number and angle-of-attack ranges

were 0 < Mm < 2.5 and 0 < a < stall, respectively. The final version of this

code, simply referred to as the Aeroprediction Code, was completed i~n late 1981.

This version of the code extended the Mach number range to 6 and aa,1.e-of-attack

to 1800. However, wing-body aerodynamics can only be computed to a = 450. Above

= 450, body alone aerodynamics are generated. Theoretical documentation of

this last version of the code is given in Reference 4. The code has been devel-

oped to handle a general class of axisymmetric, wing-body-tail configurations

(this does not include inlets or base flow). The general approach in the code

; development has been to combine existing and newly developed computational meth-

ods into a single computer program. The basic method, described in more detail

in Section 2, is that of component superposition where the body alone, lifting

surface ilone, and interferenice contributions are added to obtain the total con-

figuration aerodynamics.

The purpose of this rep,,L is twofold: 1) to provide a brief summary of the

methods used i" the Code, end 2) to provide represepLative design, charts which

have been generated by the u•c. of Lne Aeroprediction Colde and which can be used

for prelimin3ry lesign eimates or data comparison. Section 2 provides the sum-

mary cf the predictlo:- methoda. The acthnds are outlined in sufficient detail so

ANLAý



)I that •ne familiar with aerodynamic theory will probably not need to seek further

detail in the earlier works. However, many of the intermediate steps and data

tables used in the Code are not presented. Section 3 provides a comparison of

the theory in the Code and experimental data for a number of representative

i configurations which will provide the users of both the Code and the design

charts a feel for the overall accuracy of the predictions. There are also sec-

tions discussing the design of projectiles and missiles to achieve optimum per-

!Ij• formance. Section 4 presents a limited number of design charts which can be used

by the designer to obtain an estimate of the aerodynamic coefficients f~r a

variety of configuration components. The chief purpose of the charts is to show

the trends in the coefficients which result from changes in a configuration

component. The charts in many cases represent reproductions or extensions of

charts provided in earlier works, which are shown both for comparison and to
i., provide new data. The charts presented by no means represent the full range of

application of the Aeroprediction Code. Time and funds would not allow a com-

plete examination of the effects of' varying geometric parameters. The user may

wish to conduc:t additional paiaametric analyses within the applicable limits of

the Code.

.
iK
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2. METHODS OF ANALYSIS

The basic approach is that of component linear superposition. Body alone,

lifting surface alone, and interference aerodynamic contributions are combined

into total configuration aerodynamics. No inlet or plume effects are considered.

The general. approach has been to combine existing and newly developed ap-
proximate computational methods into a single program to compute aerodynamics.

Computational times required for the estimate oZ static and dynamic aerodynamic

coefficients for a body-tail-canard configuration, which is the most complex

configuration considered, are in Central Processing Unit (CPU) seconds on the
CDC 6700 computer as opposed to minutes or hours required for more detailed

physical and numerical models. The accuracy obtained, however, is compatible

with that required for preliminary or intermediate design estimates.

2.1 STATIC AERODYNAMICS

2.1.1 BODY ALONE AERODYNAMICS

b Complete generality of body configuration is not possible. The basic ge-

ometry for the most complex configuration considered is shown in Figure 1. The

body is axisymmetric.

CANARD

i \i

BOAITAIL""iNOSE "-- AFTERBODY--.----. OR
FLARE

M• Figure 1. General Body Geometry

3



The nose may be pointed, spherically blunted, or truncated. For the

spherically blunted case, the origin of coordinates is where the spherical cap

joins the rest of the nose. Note that _ is a coordinate from the nose tip. The

nose may also consist of two piecewise continuous sections in addition to a pos-

sible spherical cap. AL high supersonic Mach numbers, the spherical cap may be

generalized to a conic section curve. The afterbody consists of a constant

radius section. The boattail or flare may be a conical frustrum or a curved

section. A rotating band for a projectile can also be included.

The reference area is associated with a refereiuce body diameter for all

aerodynamic coefficients. The diameter must be that at the end )f the nose.

2.1.1.1 AXIAL FORCE

Axial force components are biroken down into linear superposition of wave or

pressure force, friction force, rotating band force, and base force.

2.1.1.1.1 WAVE OR PRESSURE AXIAL FORCE

The wave or pressure axial force is def.ned as the forebody axial force due

to normal stress or pressure. In the subsonic-transonic flow region, the fore-

body surface pressur2s are affected by boundary layer separation at the nose-

afterbody junctions, at the end of the body, and on a steep boattail.

2.1.1.1.1.1 SUBSONIC AND TRANSONIC FLOW (MO < 1.2). Currently the w&ve axial
t urce is assumed to be contributed by the nose and the boattail in a linear

superposition. For bodies with long afterbodies, the nose and boattail drag are
essentially uncoupled. In other words, the nose axial force does not depend on

boattail parameters and afterbody length (subsonic Mach numbers), and the boat-

tail axial force does not depend on nose parameters and afterbody length. In
reality, the boattail axial force and base force are coupled for subsonic Mach

numbers, even for long afterbodies.

Complete generality of solution would require a solution of small dis-

turbance potential, full potential, or Euler model equations. Computational

times are prohibitive even fcr the simplest small disturbance model.

4



For the nose axial force, the approach is to utilize computational axial

force coefficient data and experimental data for a nose followed by a long after-

body in a table lookup manner. Reference 5 indicates that the nose axial force

coefficient is shape dependent. The family of tangent ogives and conical noses

approximate the boundaries of the envelope of shapes of interest.

The nose axial pressure or wave drag force coelficient is given by a linear

iAterpolation between a blunted ogive value and a blunted cone value.

=~~~~ CoNLM)(R' - RS) + 2CANC(CS, I RD AN ea ti + R

Details and evaluation of the prediction are given in Reference 4.

C is the tangent ogive value and C is the shar e value. R' is the
ANO ANC 0

slope at x = 0 and R is the slope at the nose-afterboC, .4action. When Rs is

zero, the ogive value is obtained, and, when R R the cone value is obtained.

S is the cone angle associated with RS.

The value for C R N ) is obtained from a table lookup interpola-

tion routine for blunted tangent ogive noses with long after-bodies. Tabular

Svalues are obtained from solutions of the full potential equation and a model of

the Euler equations. The original computational method reported in Reference 6

obtains a solution of the Euler equations model by an implicit time asymptotic

method. Computational accuracy from Reference 6 for shorter nose lengths was

deemed to be insufficient. Hence, the full potential model of Reference 7 was

used to update the table. The potential model data transmitted by G. Kuhn of

NEAR, Inc. are unpublished. Discrete values of M. ace .8, .95, 1.05, and 1.2.
R values are spaced in .05 increments from 0 to .5. LN values range from .75 to

5. For values below MO = .8, CAN0 is decayed quadratically from the value at

MO = .8 to 0 at Mw = .5.

The CAC tabular values were obtained by integrating pressure data for

pointed cone-cylinders from Reference 8 and blending these data with values from

the classical Taylor-Maccoll solutions. CAC values are decayed to a finite

value asymptote below M = .5. Reference 9 indicates that the effect of blunting

is not significant for bluntness as great as RN .4 for pointed conical noses

5
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below shock attachment Mach numbers. tabular values are in 50 increments

ranging from 0' to 200. M. tabular values are .5, .7, .8, .95, 1.05, and 1.2.

The boattail axial force model is reported in Reference 1. For supersonic

Mach numbers close to 1.0, Reference 10 gives an approximate solution of the

small disturbance potential equation on a boattail which follows a long after-

bcdy. For Mach numbers below 1.05, the boattail drag is decayed to 0.0 in a

linear manner at M., .95 from the value at M., 1.05.

2.1.1.1.1.2 LOW SUPERSONIC MACH NUMBERS (1.2 < Moo M. M£ is a Mach number

separating low supersonic inviscid computations from high supersonic computations

for the body alone components for static coefficient prediction. M£ is a program

input between 2 and 3.5 which is dictated by the limits of the small disturbance

models used for the low supersonic Mach number flow region.

Detailed theory and evaluation for this section are given in Reference 1.

For pointed bodies, the basic model is the Van Dyke second-order perturbation

solution of the potential equation (Reference 11). The full nonlinear poten-

tial equation can be separated into an axial flow nonlinear problem and a linear

nonconstant coefficient (constants depend on an axial solution) crossflow problem

when the angle of attack is small (150 or less).

First-order linear solutions are obtained by neglecting all nonlinear terms

for the axial flow and crossflow problems. The first-order axial flow problem is
solved by superposing axial source solutions in integral form. The source

strength distribution is esLimaLed by a piecewise selcond-order Tay-lo-r series

representation. The classical Khrmhn-Moore source distribution is first-order

piecewise linear. Van Dyke estimates the highest order nonlinear terms using the

first-order solution. Thus a solution of the nonlinear axial flow problem is

obtained by a second-order iteration or perturbation. The second-order partial

%I
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differential equation has the same linear terms a-d is nonhomogeneons. An ap-

proximete closed form particular solution was found by Van Dyke to the same order

of acctiracy as the nonlinear terms retained. The second-order homogeneous solu-

tion is solved using a piecewise second-, der axial source distribution.

To be consistent, the crossflow solution contributes terms of order sin2 a

to the axial force coefficient. However, the Code uses the full nonlinear pres-

sure coefficient relation. The crossflow solution contributc-I a term of order

sin a to the normal force. The crossflow solation will be discussed in the sec-
i~i'•'tion on rormal force cr lift at zero angle of attack. Only a first--order linear

crossflow solution is considered in the "hybrid" model.

Thus far, the discussion has dealt with a pointed body solution. The origin

of the supersonic axial source and doublet distributions coincide with x 0.

The perturbation solution is limited by the requirement that the Mach angle be

greater than the maximum body slope. In the Code, the requirement is that the

maximum body slope be 1?3s than .95 of the slope of the M~ach angle for poiated

bodies.i !i
For a spherically blunted body the slope exceeds the Mach angle slope on

part of the sphere. A modified Newtonian pressure distribution is matched with

the perturbation theory at some point on the sphere. The modified Newtonian

pressure distribution is given as

C = C sin2 6 (2)
p po

sin 6= sin & cos a - cos & cos 6 sin a (3)

where

6 is the azimuthal angle from the leeside,

& is the angle associated with the body slcpe, and

C is the stagnation pressure coefficient behind a normal shock.po

The method for matching pressure distribution and for selecting the origin

of the source distribution is complex. In order to improve the recompres3ion

7



prc(icted at higher Mach numbers La the neighborhood of the sphere-body junc-

tion, the 1tose shape was modified as shown in Figure 2.

V

W, EO

,, __ _ _ __ _ _ __ _ _ __ _ _ _ I
41,; o

Figure 2. Spherically Blunted Nose Geometry

The tangent to the body at the origin of coordiaates is extendej, and a

perpendicular is dropped from the origin to point t. For low supersonic flow

.I• the spherical nose cap is replaced by a sphere and a conical frustrum recom-

pression ramp. The effective sphere radius is then RNE = R0 cos &0 as opposed

to the one shown in Figure 1 where RN = R0/cos &O.

The perturbation solution starts at point S. The point s initially is

chosen wherethe surface tangent angle is 27.50. An additional requirement is
that

:',iF tan p < R (4)

where

F is an input to the code of about .95, and

p is the Mach wave angle.

If Equation (4) is not satisfied, then the effective free stream Mach anh,, i.

cut back to the point where F tan p = RL. If tan (27.51) < R;, then s coincides

A (;I*



with t. The origin for the source or doublet distribL'tion, st, is obtained by

extending a tangent from s to the axis at st. Thus, the perturbation solution

starts as a cone solution and marches from a down the body. The modified New-

tonian solution starts at the stagnation point. On seven meridian planes of con-

stant 6 (00, 300, 600, ... , 1800), an intersection between the two distributicns

is sought. If no intersection is obtained, then a pressure discontinuity is

allowed at s. However, even if there is an intersection, there is a pressure

slope discontinuity. The Newtonian pressure distribution is used u~pstream of the

point of intersection. The perturbation solution is used downstream of the

intersection.

For the truncated body case (Figure 1 with a flat nose), a pseudo sphere

is used to provide a solution at -the spherical cap-body junction. The "hybrid"

solution begins at point s and continues down the body. Loads are not in-

tegrated on the pseudo sphere. No pressure intersection is required. On the

flat face, the mean pressure is assumed to be .9 of the stagnation value.

Once the C distribution is obtained from the "hybrid" model, the axial
p

force coefficient is given by

CA 8/n C (-X,O) RR'd6d~x.(5
0 0 p

Dimensions here are in calibers. C is given by the full nonlinear isentropic
p

Bernoulli relation.

A lower limit criterion for M is~ given approximately by

.95 tan P >R'ma

For a spherically blunted body, R' is for the part of the body downstream of

the spherical cap. Numerical stability and accuracy is degraded for blunt bodies

as the Mach number increases.

2.1.1.1.1.3 HIGH SUPERSONIC FLOW (M. > M ) Detailed theory and evaluation for

this section is given in Reference 4. The method used is based on a modification

of that given in Reference 12.

9



The body in Figure 1 consists cf piecewise continuous elements. Thz first

element is a conic section of the form

R2 -2Cx + Bx. (6)

The remainder of the body consists of two nose sections, an afterbody, and

a boattail or flare. Some rcf these sections may be omitted. Each piecewise

continuous section is divided into n (currently 40) increments. This defines

points where the pressure is to be calculated. Tangents are drawn to the body

at these points and extrnded tutil intersections with neighboring tangents are

fouiid. Thus, the body is replaced by a circumscribed body of linear segments.

On a pointed or trunctited nose the first tangericy point is at the origin. On a

conic-section blunt riose, the first tangency point is determined by a match with

a modified NewconiAn pressure distribution. If the first section of the nose
is a pointed cone, obviously no subdivision is necessary.

The pressure coefficient distribution is assumed to be represented as

Cp = (Cp)a=0 - A sin 2a cos 0 + (r cos 2 O+Asin2 8) sin 2c/2 (7)

where A, r, and A can be represented as

A = pu /• 0 = (8 )8a
8C \ U=~01 =0

(82C\
-1----I , and (9)r )0=0, 0=0

/82C)
(10)

-a =/ ,),a=o,0=n/2

From second-order shock-expansion theory, which neglects incoming characteristics

at the body surface and makes other approximations for the outgoing characteris-

tic equations, one may show that when (C )a=O, the A, r, and A' variations on a
p

straight line segment are given by the same functional form

Y Y + (Y2 " Y en , and (11)

10



___=0__ (12)

S(C -
'C2 - pa)a=O

Here s is the distance along the linear segment, subscript 2 refers to the value

at the beginning of the segment, and subscript a refers to an asymptotic value.

Slopes are discontinuous across a segment junction. Jump conditions across a

slope discontinuity are obtained from Prandtl-Meyer isentropic relations and

higher derivatives thereof. Pressure coefficient values just after a corner can

thus be related to values just before a corner (indicated by the subscript 1).

Asymptotic values are given by an approximate cone solution for positive values

of local & and free stream Mach number. The pressure gradient jump at a corner

•',l is given by a relation from Reference 12.

For negative values of S, (C ) is assumed to be zero and the remain-
V ~pa ci=0

ing asymptotic values of the pressure functions are given by a blend of slender

body and hypersonic approximations at free stream Mach numbers.

For a blunt body, the initial values of the 1, ,sure coefficients are ob-

tained by evaluation of Equation (2) and its derivatives at the match point.

The match point is where the local Mach number is 1.1 as determined by a com-

bination of Equation (2), evaluated at a = 0, and the isentropic pressure rela-

tion. For a pointed body or truncated body the initial values of the pressurejJ! functions are obtained from the approximate cone solution evaluated at o at

the free stream Mach number. For the truncated flat face, the average pressure

is again assumed to be .9 of the stagnation value. Values at the tangency point

, and at the end of the segment are obtained from Equations (11) and (12) for the

pressure functions.

Once the pressure distribution is determined, CA is obtained from

i~•CA= L 8 0 R f+A-.n 2 a. d (13)
RR' [(Cpfo+'+si di(3

111
A f 4
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2.1.1.1.2 FRICTION AXIAL FORCE

The-bowidary layer on the surface of an open-end cylinder is analogous to

that on a flat plate of the same length. The model used here is that of Van

Driest (Reference 13) and is given in detail in Reference 1. A portion of the
forward part of the plate is assumed to be laminar. A critical Reynolds number

based on body length is chosezn as 106 (Reference 1).

The friction axial force coefficient is given as

4SbF C [F+ CF JRNL RNC (14)

R FC)

where
• Sb is the body surface area in calibers, and

and RNC are Reynolds number and critical Reynolds number, respectively,

based on body length.

For RNL < RNC,

4 1.328 (15)
CAF b - -- ( 5

1RL

from the well-known Blasius flat plate solution. CF and CFC are friction co-

efficients obtained at the Reynolds number and critical Reynolds number, respec-

tively. In general, CF is given by

dj/ log CF = d2  (16)

where
d= .55723 [sin" (C1 ) + sin- (C2 )]/ITw/T,

d2 0log RNL - 1.26 log (Tw/T0)

2A - B

(B2  + B )

C2 =
2(B + 4A2)

12
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A =T/T

('2 
T

I + r-1 MW2

B 2IT -1, andW/T

Tw/T 1 + . 9 M-12

Equation (16) is solved twice by a Newton-Raphson iteration algorithm for

the input RNL and RNL = RNC.

2.1.1.1.3 ROTATING BAND AXIAL FORCE COEFFICIENT

The band height, H, is assumed to be much less than the band width. The

band is also assumed to be far back on a constant cross section afterbody in

fully developed turbulent flow.

Then

CARB = CA (Mm) H/.01 (17)

where H is the band height in calibers and ACA (Ma) is a table lookup axial force

coefficient for a band .01 caliber in height.

2.1.1.1.4 BASE AXIAL FORCE

It is assumed that the boattail or flare is located after a relatively long

afterbody so that the approaching external flow is at free stream conditions.

The mean base pressure, then, is a function of boattail length, shape, and

final diameter. The model adapted in Reference I is

C -C (M, 1) (RB/Rref) 3  (18)

'j,

where C 00 (H,l) is the axial pressure coefficient for a cylinder without a
AB

boL~ttail.

For a flare, the model used is

-C e BBM) (RR/R )2 (19)

13



dere, Fr is the constant radius of the afterbody and R is the base radius.

CA(OB (,M 0 ) is the average base force coefficient from experimental data for1AB
a constant flare angle (0 < 0B < 150). Analysis of the available data leads to

the conclusion that Equation (18) is approximately valid ai higher supersonic

Mach numDers and invalid at other Mach numbers except for very small boattail

angles.

At angle-of-attack, an incremental value is added. The expression is based

on data from Reference 14.
ACA (.6493 - .002833Mw) (RB!Rf)(

Here a is the angle-of-attack in radians. Note that the equation has been xe-

vised from that given in Reference 1 to fit the data more a,.curately. For

flares, (RB/Rref) is used in Equation (20). Equation (20) is valid for thz body

alone case. In the section on lifting surface and interference aerodynamics,

Equation (20) is replaced by a different expression. The total base axial force

coefficient is given by CAB + ACABA.

2.1.1.2 NORMAL FORCE AND PITCHING MOMENT

The body normal force is broken down into inviscid and viscous cross)low

contributions. Moment centers are defined with respect to the nose. Reference

length is the body reference diameter. The final moment is about the i.oment

center.

2.1.1.2.1 INVISCID NORMAL FORCE

2.1.1.2.1 . SUBSONIC AND TRANSONIC FLOW (P! < 1.2). In Reference 1, CN and Cj

are assumed to be contributed by a linear '.perposition of ccmporne.it pards of tbh

body. Each component 43 assumed to be independent of the other. The nose normal

force is predicted om a fit of the cone alone data of Reference 0. Li'e center

of pressure prediction is given by slender body theory. The afterbody CN is

given as a table lookup function of afterbody length and free stream Mach number.

14
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Both CN and xcp are given by the transonic small disturbance theurý of Refer-

ence 15. For low Mach numbers, CN is predicted from a limited data correlation.

For low Mach numbers, the x prediction is assumed to be Lhe -.ame as for tran-cp
sonic flow.

The boattail CN is based on limited data correlation where CN /[1

- (RB/Rref) 21 is fitteg as a function of fIM-1I. x c, is also given by a slender

body theory estimate. The correlation functional form is based on sleiider body

theory.

This combination of methods is necessitated by the lack of a th.ioretical

and experimental data base.

The approach of Reference 16, which was evaluated in some detail in Refer-

ence 4, was intended to improve the predictive capability in transonic fu1.

Complete generality obviously is not possible. The nose was assumed to be a

blunted tangent ogive. The boattail was assumed tc be conical.

The individual body part contributions are superimposed linearly. However,

the individual contributions are assumed to be functions of all body parameters
such as nose spherical radius, nose length, afterbody length, and'Ooattal an-wle.

The data base for CN and C is generated by solving the Euler equations at 1l

angle of attack. Unyortunate~y, the size of the data base was not large eaoueh

to properly represent this limited model. Pý;rts o- the data bai;e wer.? also

suspect as to accuracy, in particular the boattail contribut-on at all Mach num-

bers ani the CN prediction at supersonic Maýh nu'rbers.

For each individual part, CN or Cm are fitt._2d to a juadratic fa-,lor _v--.ies .functional Corm for four Mach numbers (.75, .9, .95, 1.2). 15-fit cceffici~ncns

are involved in the Taylor series in four geomettirc p-4retera . For eech Mach

"number, the Taylor series for tae nose, the afterbody, aaid .5, 1., and 1.5 ca2,t-

ber boattail lengths are used. The zero length (zero contrioution), .5, 1., and (

1.5 caliber estimates zre used to provide data for a four-point Lagrani'2 fit for

the boattail contribution. At .6, the indivioiual Lrady pait contributins
2, are givvn by the model from Reference 1. A five-poinc Lagrangc 'fit in M., yields

the final compoaent part contributions in the range .6 < < 1.2. For

15
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the prediction is given by the older model. The data at M= 1.2 have been re-

placed by a fit to a large set of data generated by the supersonic small dis-
tulrbance Var, Dyke potential model of Reference 17. :•

Currently either of the two models is an input option. For afterbody

1e4gths ..1- more than 5.0 calibers, the older model is used since the data base

tor the more recent model is limited to an afterbody of 5.0 calibers.

2,1.1.2.1.2 LOW SUPERSONIC FLOW (1.2 < M. Me). A line doublet distribution
(in the axia p.-rmits a solution of the first-order linear crossflow equation. A

boundary layer thickness based on flat plate theory is added to the original body

before the crossflow equation ie solved. As iudicated in the section on axial

force prediction, C is basel on a '"hybrid" combination of first-order crossflowA p
viLocity and second-order axial flow velocity. The pitching moment about the

r.)& e and the noirmal force are then given by

L n
CN ff (x, 0) R eose dO dZ and, (21)

S8 01 C (x, O) R cosO dO dr. (22)

S Gh SUPERSONIC FLOW > M The basic model has been given in

the corresponding section on axial force prediction where C and C may be gi-ven
N m

in terms of the pressu,-' coefficient as

•,• L

C 4 sin 2a. R A dx and (23) I
k ~N

C 4 sin 2a RAdx . (24)
•.mI- . (

2.1.1.2.2 VISCOUS CROSSFLOW MODEL

The model of Allen and Perkins (Reference .... ) is used and is given in con-.

densed form in Reference 1. The theory is analogous to s.eaider body tLbory in

16
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that •he normal force loading is assumed to be given for a local two-dimensional

cylinder exposed to the crossflow velocity, V. siir a.

An incremental normal force coefficient is then given as

ACN 4_(L) 2 R Cd (M@ s~a o) dx sin2 a

= 4 -- )-*dc (M• sin U) S sin2 a (25)
dc P

where Cdc is an infinite cylinder crossflow drag coefficient given by a table

lookup interpolation. Fully developed turbulence independent of crossflow

Reynolds number is assumed. ' is a finite lengthi correction factor which is

given by a table lookup interpolation, and S is the planform area in calibers.
p

Similarly the incremental moment about the nose is given as

AC - Cdx sin of (26)

where x is the center of the planform area.
P

2.1.2 LIFTING SURFACES AND INTERFERENCE AERODYNAMICS

Again, complete generality of geometry is not possible. The basic fin plan-

form is assumed to be a trapezoid with root and tip edges parallel to the free

stream. No camber is considered. Either planar or cruciform combinations of

fins are considered. Two sets of inline lifting surfaces are considered in the

most general case. Longitudinal control deflections of all movable surfaces are

assumed. In addition to the individual fin geometry, the location of the fin

apex and a mean body diameter are given as input data.

The fin cross section can be a modified double wedge or biconvex. Leading

and trailing edges may be blunted cylindrically and independently normal to the

edges. Each piecewise continuous segment of a fin cross section ..s assumed to

be rimilar. Figure 3 shows a typical fin planform.

17
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Figure 3. Fin Planform Geometry for a Blunted
Modified Wedge Cross Section

Planform parameters shown which are needed to describe the modified wedge

are y b, Cr, Ct, Crl, and Cr2. For a blunted biconvex section, CrI and Cr2 are

not needed. All dimensions are in feet. The x and y are local coordinates.

From the geometry,

b/2 tany + Ct -C
tan y b r (27)

The values of y and y depend on the cross-section parameters. The dashed

lines are the traces where the cylindrical bluntings meet inclined planes of the

wedge. A root cross section for a modified wedge is shown in Figure 4. The

slope is continuous where the cylindrical blunting meets the inclined plane.

2

Figure 4. Fin Root Cross Section

18
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Each of the five segments shown is piecewise similar with linear taper in y. In

Figure 4, the radii appear as segments of ellipses. The required cross section

geometry inputs are tr , ~r' tr' ,pt, and Ptt where tt is the tip thickness,

P2r is the root leading edge radius, ptr is root trailing edge thickness, and Pit
and ptt are similar parameters for the tip. For a biconvex cross section tt,

Pit, and ptt are computed.

From the planform geometry,
b/2 tan 11 + C t " Cr ,

tany = b/2 (28)

Here, C t is obtained from geometry of a plane perpendicular to the leading edge

at the tip and the assumption of piecewise similarity.

Ct, = [t /2 cos 61 - pit (1 - sin 8 1)]/(sin 6 1 cos (29)

The angle 61 is the angle of inclination of the forward plane in a cross section

perpendicular to the leading edge and is given by

sin 6, = -B + 4B2 + C (30)

where

PA r (Cri cos )B tz~r and (31)

r--4 + (C cos ¥ )2

and t2

r 24 Pkt
C= . (32)

S+ (CCos )2

Using a similar analysis,

b/2tany+ C -Ctantn¥ • t (33)

tan =3 b/2 (

where C is given by equations similar to Equations (29) through (32) using the
t 2

subscript "2"

19
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For the biconvex case,

Pt Ct/Cr (34)

tt tr Ct/Cr , and (35)

Ptt = Ptr Ct/Cr (36)

Equations (34) through (36) follow from the requirement of piecewise similarity.

2.1.2.1 AXIAL FORCE

Axial force components are broken down into a linear superposition of wave

friction and base components for each fin. In addition, the tail affects the
incremental base axial force given by Equation (20). The total axial force for

fins is given by the aum of the forces per fin times the number of fins (2 or 4
assumed per set). The canard and tail fin set forces are added. The only inter-
ference is the incremental base force due to the tail (four fins only). In addi- -•

tion, the fin normal forces in the presence of a body in the case of a fin de-

flection have component C sin 6 contributions to the axial force. The

angle 6F is the fin control deflection.

2.1.2.1.1 WAVE AXIAL FORCE

2.1.2.1.1,1 LOW SUPERS.ONIC FLOW (1.05 < M M). The transonic wave axial

force is a simple lir,,;r dLay to zero from the value at M. = 1.05 given by the
!I model presented here.

The basic model equation is the first order linear potential model which

was applied to ;ne fitst order lift and drag problem for the body-alone case.
-I

p2  
-" 0 (37)

"I,' where

, is the disturbance potential,

x, y lie in the plane of the free stream velocity vector, and

z is up.
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The boundary conditions are applied at z 0 and the spanwise contributions are

neglected. A source distribution in the x,y plane is used to satisfy the dif-
ferential equation. Application of the limit as z = ± 0 determines the source
distribution strength as a local solution in analogy with slender body theory.

Thua, for the lift or drag problem,

1(x y (±0) f d+

a

where a, the hyberoolic influence region upstream, is defined by

X-t)2 - p2 (y-n)2  0

For the drag problem,

w(a, n) I t a~, n)

where t is the thickness distribution. From similarity, the slope distribution

is the same in every chord plane for every piecewise continous part of the cross
atsection. For the biconvex case, L (x/c) is continuous. For the modified wedge,is discontinuous. The integration region is bounded by the projection of

8x

the upstream Mach cone onto the x,y plane and its intersection with the leading

edge and side edges of the planform consisting of two fins placed together. No
intersection of the opposite side is considered. The numerical method of Refer-

ence 2 superimposes basic solutions for constant slope regions.

The C (x,y) distribution is given by

C (x,y) -2 - (39)p ax
Note that this is the pressure coefficient for a 0, 6F = . For a subsonic

generator (lines associated with angles y ,y ,yy ), C has an integrable singu-

larity.

For the blunted leading edge case, a modified Newtonian distribution is

assumed to apply from the stagnation point to the end of the cylindrical section.

The pressure coefficient, Cp, is then discontinuo'is at this "match" point. ThepIthin wing theory is used from the forward junction to any similar junction with a

21
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trailing edge radius. It is assumed that separation occurs after the rear cylin-

der-airfoil junction and that no contribution to wave axial force occurs past

this junction. The fin base force is considered later.

Once L is obtained, the wave axial force coefficient for a single fin is
P

given by b/2 ytan y + C(y)

W= t CJ (xfy) L dxdy (40)CAW Sref3

Here C(y) is the local chord. For the wing alone case S is the planform area

for two fins. OtheLwise,

nD
2

Sref 4

Note that, for y < 0 or y < 0, the planform is modified so that y = 10 or
3 4 3

y = 10. For such a planform, the resultant axial force is highe-r than for the
4

given planform. For greater detail, see Reference 2.

2.1.2.1.1.2 TRANSONIC FLOW (Mm < 1.05). A linear decay from the value at N

1.05 to zero at 1l. = .85 is assumed such that

CAW = 5 CAW(M = 1 . 0 5 ) (Mo- .85), .85 < MW < 1.05 . (41)

= AW 0 for MN < .85

2.1.2.1.1.3 HIGH SUPERSONIC FLOW (M. > M2 ). The theory used to determine the

lifting surface properties is given and evaluated in Reference 4. The theory

used to determine the pressure is based on two-dimensional supersonic flow prop-

erties. At a given point on the surface, the slope of the surface relative to

the undisturbed free stream i- determined first. If this angle makes a compres-

sion surface, the pressure is calculated from oblique shock theory using the in-

clination angle. If the angle indicates an expansion surface, the pressure is

calculated from Prandtl-Neyer theory. There is no spanwise variation of the

pressure distribution. For blunt leading or trailing edges, a Newtonian distribu-

V.-• tion is assumed as before.
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The axial force is given by an equation similar to Equation (40). How-

ever, in this case the lift and drag problems are solved simultaneously. Th: A

single fin axial force is given by

b/2 C(y) + ytan y

CAW = p t) dxdy (42)

0 ytan y

where U and L refer to upper and lower surface values, respectively.

2.1.2.1.2 SKIN FRICTION AXIAL FORCE

The model here is essentially the same as for the body alone case. For a

single fin,

wSRNC1.2
C = - - - C (43)

S' Iref RNL 1

where Sref C C

S Sw b(C r + Ct )/2 and is the wetted area for a single fin.

Here, I is 5 x 105 and RNL is based on the mean aerodynamic chord

C3 C3t r)
::: •C2 - C2
::t, r

i"JFrom flat plate subsonic strip theory, the fin x cp lies on the quarter chord

Ii"! where C C.

2.1.2.1.3 TRAILING EDGE SEPARATION FORCE

The model is based on the base pressure for flow over a two-dimensional or

semi-infinite (in spanwise direction) flat plate. This pressure is given by a

table lookup interpolation function of Mach niumber. For a single fin,

C AB 2 Sfref tr tt (45)
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2.1.2.1.4 EFFECT OF A FIN ON THE BASE DRAG OF THE BODY

In this case, Equation (20) is replaced by

ACABA = (a (.0035 - .01 xAT) + C (M) (t /Cr

- .Xl•T)] (RB/R f) 3 
. (46)

The last part of Equation (46) is dropped for t /C .lx where x is the
r r- AFTwe AFT

distance from the base to the root trailing edge divided by the root chord. For

flares, (R /R )2 is used in Equation (46).
B ref

2.1.2.2 LIFT AND PITCHING MOMENT

Lift contributions are broken down by the component superposition principal.

Here, for the wing alone, which consists of two fins placed together, wing load-

ing is considered first. Subsequently, interference effects are considered.

2.1.2.2.1 SUBSONIC FLOW (0 < Mw < .8)

Equation (37) applies again. The well-known G~thert rule transforms the

equation to Laplaces equation for subsonic Mach numbers. From the well-known 'I

solution for two-dimensional incompressible flow over a cylinder, a bound cir-

culation may be added to the solution. The circulation contributes the lift. An

integral representation of the three-dimensional vector may be obtained by de-

fining a vector potential. The vector potential satisfies a vector Poisson equa-

tion. This leads to the well-known analogy with the Biot-Savart law for electro-

magnetic theory. A Kutta condition is applied at the trailing edge to remove the

indeterminancy. After much manipulation and application of boundary conditions,

it may be shown (References 19 and 20) that

I ab/2 axLfTEo(y) AC0 (X0oY)
tan a 8 f -b/2 o(Y-Y)4

-b/2 LE0 (y)

F Xo - 10
I + 0dXdY (47)

(x 0 _ X )2 + (y y)2 0
0 0 (
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where

AC %C C 2y0, 4 (48)

and

A C is the differential pressure coefficient loading, and

Y is the streamwise circulation per unit length.
The outer integral requires a Mangler principal-value treatment (Reference 20).

Here, x0 and X0 are the stretched dimensions x/5, X/5. The pressure coefficient
'A d-.fe'ential is given by

ACpo = 5AC

"where the subscript 0 refers to the analogous M.o= 0 case. The compressibility

parameter ý cancels when AC is substituted into Equation (47).

Equation (47) is first transformed to dimensionless variables

"x X XLE (y) XO XLEo (Y)
X TEL(y) E ( ' = " T(Y) - XIE y ,and

0 0 - 0

y -Y 
(50)

b/2 ' l-b/2 "(0

Substituting Equations (49) and (50) into Equation (47) yields

(xy) (cia q) K(t, n)d dn (51)

where
C(n) = XTE0 (Y) -XLE0 (Y) , and (52)

x 0 0X
E(5,)s 1+ (53)

(x 0 - Xo) 2 + (y - y)2

Equation (53) is discontinuous in X0 at % 0 when Y y. When X0 < x0, 2
When X0 > Xo, K = 0. u(x,y) = a for the static lifting problem. AC is givenp
by an approximating function with undetermined coefficients, Equation (51) is
evaluated once for each of the coefficients (method of collocation). The coef-
ficients are obtained by matrix inversion.
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An assumed functional form (see Reference 21) is given as

n m

AC (•, r) = • AC (tit qj)hi(O)gj(') (54)j=l i=I

where

i m an (55) imI
n "

n

n (I and1n~

The interpolation pivot points, (ti, tk)' are given by

2m - 1 1

Values of X r chordwise location where the boundary conditions are applied, are

=I - it r = 1p 2, ... m, i = m - r + 1 (58)

The interpolation points, nip are given by the n zeros of the Jacobi polynomial

n (2m+29+1)!:0o L AT (m[i) 2, (m+, 2m+) (59)

The boundary condition soints s = 1, 2,... n are the same as the The

boundary conditions are thus evaluated at a set of n x m p~ints (xr s r =I

2,.... m; s = 1, 2,. n. The functional form for AC contains the leading edge

Psingularity for a two-dimensional flat plate, satisfies the Kutta conditia n

(AC = 0) at the trailing edge, and satisfies the tip loading condition (AC = 0),

P PThe program is coded effectively as m = 3 and n 8. However, four t points

are chosen for n > 0 and four points are chosen for n < 0. Two fpnctions ai .

thus needed for AC , one for r > 0 and one for r < 0. For the lifting problem,
P

ACp (i' q.) is even valued in r.
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The normal force and pitching moment (x 0) coefficients are given by
cg

b/2 ytan y + C(y)
21

C= 2 f f AC (x, y) dxdy ,and (60)CN ffSref JOta P
re fo ytan Y

b/2 ytan y + C(y)

C 2 (x + x C AC dxdy (61)
Cm Sref C ref f ref p

0 ytan 'y

where x is the location of the wing apex from the or.,%in in calibers. For the

wing alone case, x = 0 and Cref C as given in Equation (44), and Sref is the

planform area for two fins.

2.1.2.2.2 LOW SUPERSONIC FLOW (1.2 _ M < M )
e

The Mach number, M, , separates low supersonic computations from high super-
sonic computations for t~e wing static and dynamic lifting and interference aero-

dynamics. M2  is 3 program input chosen as high as practical for the thin wing

theory application (usually 4.0 < M£ < 5.0) as this provides a better comparison
e

with inviscid lift and moment coefficient data than the strip theory.

The basic solution of Equation (37) for a thin wing is given by

f j w(Q, _)dL dn (62)n = ~ Jfl(;:.)2.p2(y~n)2

where

w(t, n) = - a on the wing only.

In this case, the area of influence, a, contains points which are not on the

wing. For points off the wing, w(t, r) is not zero as was the case for the sym-

metric axial force problem.

The leading edge may be supersonic or subsonic. The trailing edge is

restricted to the supersonic case. If the trailing edge is subsonic, the

input Mach number is increased so that the trailing edge is slightly super-

sonic. The swept-forward trailing edge case presents no problems. Again no

influence of an opposite half wing tip is assumed; the Mach number is increased
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for those low-aspect ratio planforms where this occurs. For a more detailed

explanation and evaluation, see Reference 2.

The supersonic leading edge case is the simplest. Three subcases are de-
lineated.

Figure 5 indicates Case 1 when the Mach lines from the apex and leading edge
at the tip do not intersect. For this case, three zones bounded by the x axis ,
right Mach line from the root apex, and left Mach line from the tip apex are
defined. The regions are designated as 1, 2, and 3. Typical a areas of in-
togration are bounded by corresptiding numerals 1, 2, and 3. For region 3, the a
area-of influence is determined by the method of Evvard and Krasilchikova (Refer-
encc 20). For explicit AC relations, see Ruference 2.

p

DIVIDING MACH LINES2 F1OR REGIONS ®, ® ."

t\2 . . ... MACH LINES

3I 12
) " i

X

F'gure 5. Supersonic Leading Edge Flat Plate Planform, Case 1
(MO,= 2)

A second supersonic leading edge situation, Case 2, is shown in Figure 6.Here the two Mach lines intersect and the root chord apex Mach line intersects
the trailing edý,e. M•is lower fe- this case.
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x4

Figure 6. Supersonic Leading Edge Flat Plate Planform,
Case 2 (M. = 1.5)

Four zo7,--s are obtained this time, as indicated in Figure 6.

lIA Figure 7 (Case 3), the apex Mach line intersects the side edge. Only

the integration area for zone 5 is shown this time. In this case,

K = C )2 - (ACep )•.

(ACp)5 refers to an equivalent integration tip region contribution. The approach
taken in Reference 2 seems to be more complex. A

The approach for the subsonic leading edge case is much more complex than

the supersonic leading edge case. Figure 8 indicates the regions of interest and

integration influence region. J

For the case of Figure 8, no part of the side or leading edge is supersonic.

Here, w is unknown between the planform and the apex Mach lines. For region i,

the solution is given by transforming Equation (37) in conical flow variables to

a two-dimensional Laplace equation in a cross section perpendicular to the Mach

29 j



L DIVIDING MACH LINES
FOR REGIONS -5I

44
Figure 7. Supersunic Leading Edge Flat Plate Planform, *

MAC0e N . .

LINE 1 -MAj!H

00 . LINE

j MCH
4 LINE

Figure 8 Suosonic Leading Edge Flat Plate Plariform4(M. 1. 2)
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c-ne from the apex. For points in region 2, an additional tip solution must be

added to cancel lift off the wing. The AC relations are given in Reference 2.p

2.1.2.2.3 TRANSONIC FLOW (.8 < Moo < 1.2)

Thickness effectý. are neglected for the subsonic and supersonic flow

reg~mes. The approach taken in transonic flow is the same as that in DATCOM

(Referenice 22). Details are also given in Reference 2.

A linear interpolation in a table of CN values is used. At 1 = .8 and

,M '- 112, CN is computed using the subsonic and low supersonic models. Three

additional Mýich numbers are then computed: Mfb, M Mfb .07, andMb

+ .14 where Mfb, the force break Mach number, is obtained by a table lookup in-

terpolation. First, a force break Mach number, (Mfb)o, for an equivalent rec-

tangular planform is obtained as a table lookup function of t/C and aspect ratio.

The thickness t is taken at the mean aerodynamic chord C given by Equation (44).

nhea. M is obtained as a table lookup function of (Mfb)o and the sweep of the

mid-chord 'ine, Y1/ 2 " Next, C N at Mfb,gv Ma, and nMb are computed where the the-

)retical vaiue of C at M is first given from lifting line theory as

2(CN)fbt ) - (63)

•!i~ a 2 + [AR'(B 2 + tan2  12)+ 4)i '

J,• ;Aere

AR is the aspect ratio, and

IThlen, (C

a fb"(CN )fb = (C N fbt (64)

The rfitio in Equation (64) is given as a table lookup function of t/C and aspect

catio. Then (CN)a and (CNa)b are given as

(CN) a (I -Ka) (CN )fb ,and (65)
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(CN ~b -(-Kb) (CN fb (66)

where K is given as a table lookup function of t/c and AR and Kb is given as a
a

table lookup function of t/C. The final value of CN is obtained by a linear
interpolation in a table of the five values which have geen computed.

The xc is given by a linear interpolation between the value at If,= .8 and

the value at M = 1.2.

2.1.2.2.4 HIGH SUPERSONIC FLOW (M. > M• )
e

The tangent wedge method has been previously outlined in connection with the

wing wave axial force. For lifting properties, defined in terms of C and C

one obtains:

b/2 ytan y +C(y)

CN S ref f f (CpL - pU dxdy ,and (67)

0 ytan yr

r r b/2 ytan y +C(y)
.i,:,.{ Cm= re2Cf (x + C re)(Cp- CpU dxdy .(68)

0 ytan yi

2.1.2.3 INTERFERENCE LIFT

The total lift as given by component buildup is discussed rather extensively

in Reference 2. For _4 > M, , interference is not considered. For M. <_ M , in-
e

terference factors are obtaiiued from slender body with certain correction factors

taking ipto account canard and, body vortex wakes as well as lifting surface

proximity to the body base. Compressibility corrections are also made.

2.1.2.3.1 LIFTING SURFACE-BODY INTERFERENCE

The first problem to be considered is that of an undeflected lifting sur-

face-body combination at aagle-of-attack. For the com1bination, the lift is given

by
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LC KC LF (69)

whe re
K C K B(F) K F(B) KB (70)

K =LB(F) / LF , (71)

KF(B) = LF(B) / LF and (72)

K=L (73)B B/ LF A

and where

Y." is the lift of the fin alone (2 fins placed together),

LB(F) is lift on the body due to the presence Jf th*t fins,

L is the lift on the fin in the presence of a boly,

LB is the body alone lift,

LB and LF are predicted from the theories already described, and

XB(F) and KF(B) are given by slender body theory (see Reference 23).

Figure 9 shows a triangular fin and body combination planform view.

YY

Figure 9. Triangular Fin and Body Combination

Slender fin-body theory (radial distance small from the axis) shows that the

lift problem solution is given by a local solution of Laplaces equation in the

cross flow plane. Solution of Laplaces equation is readily obtained with the
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aid of the Joukowski and Swartz-Christoffel transformations. R is a mean local

radius.
dR d R-

The resulting vertical loading coefficients are given in terms of ddx dx' A I
Y, and y. Integration over the individual wing and body planform areas gives

KF(B)>CA.TY [(n/2, A~) sin1(j.-f

- (A - W(A), and (74) 1
K =Ii + 1 B(A) (75)

where

A = b +

If the trailing edge remains straight or swept forward, the results in

Equations (74) and (75) apply. However, for the swept forward traili'Ig edges,

K and KB(F) are zero if the pressure loading is integrated to the trailing

" edge. The argument given in Reference 23 is that the planform beyond where y

Sis a maximum contributes nothing to the loading since the forward downwash

cancels the angle-of-attack loading on the rear. Therefore, the triangular 4

planform results are assumed to hold for the trapezoidal planform.

For the swept back trailing edge in Figure 10, the solid boundaries for

the cross section are different downstream from the root trailing edge. In

YI

}' b12

Figure 10. Swept Back Trailing Edge Fin and Body Combination
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Reference 2 the following modifications are made:

KB(F) B (A) G ,and (76)

K = 1+(W (A) - l)G (77)F(B) +

where
CG=r (78)

b/2 tanrI +C (t

When B(A) = 0, W(A) = I, the large aspect ratio limits are obtained. The G = 1
limit corresponds to straight or swept forward t.'ailing edges. The case when

b/2 tan < Cr < b/2 tan y, + Ct needs additional investigation. For this case,
the cross sections are the same up to the root trailing edge as that for which

Equations (74) and (75) were derived. The forward downwash would then cancel

the rear planform loading. For the case when Cr < b/2 tan yl, G might be re-

placed by
(b 1 )/2 + R

G o = ... "
b/2 + R

In addition, thete is a lift contribution by a finite control deflection

CNF(B) = kF(B) (CNa F 6 F (79)

The potential problem in the crosaflow plane (a 0) consists of a uniform down-

wash on the lifting surface in an undisturbed far-flow field (see Reference 23).

In addition,

CNB(F) 7(KF(B) -AkF(B)) (CNa)F 6 F

: (W(A) - A(A)) (CN )F 6F (80)

An explicit relationship for kF) is given in Reference 2. For a swept trail-

F(B) (81)

k(F= [W(A) - A(A)] G (82)

Equation (75) for B is used for subsonic Mach numbers and Mach numbers up to

when the Mach line from the leading edge of the tip does not intersect the body

section perpendicular to the root chord. Figure 11 illustrates three possible
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XAFr Cr

SHORT AFTERBODY \

REGION OF INFLUENCE
OF WING ON BODY

INFINIE AFTERBODY (XAFT Cr > Dir)

II

-!Vol
NO AFTERBODY (XAFT -0

Figure 11. Determination of KB(F) for High'Aspect-Ratio

Range at Supersonic Speeds
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subcases. In this case, the body loading area is redefined by the crosshatching.

The criteria for this case is given by

2C
r

P> r .- tan y. (83)

For the no-afterbody case, BNA is a function of C/r. For >D ) Cr (the Mach

line from the root chord leading edge intersects the end of the body), Cr/•
r

is set equal to D. Subcases for the no after body case are subsonic and super-

sonic leading edges. Subsonic leading edge values of BIA are given for the

infinite afterbody value case of XAFT' The short afterbody computation of BSA

is given by the linear interpolation where (XAFT Cr <

B B BIIA - NAl•

SA [B B AFT C+B (84) N

2.1.2.3.2 WING-TAIL INTERFERENCE

Thus far only body-lifting surface interferences have been considered. An

additional interference is given by vortex effects of the canard or wing on the

tail. A single-line vortex is assumed to be shed from each canard panel. The

vortex strength relationship and effective lateral location are obtained from the

wing loading distribution given by slender wing-body theory. The vortices are

assumed to be aligned with the free stream velocity. The canard hinge is assumed

to be at the quarter chord. This is enough information to adequately define the

vortex locations at the tail. The negative lift coefficient due to the downwash

of the canard shed vortex on the tail is given by

•cNQ)NTT N W N [KWc.., v)R((Sw) (B)5)

V ST (bw 'T

Here, the W subscript refers to the wing or canard, the T subscript refers

to the tail, f is the span location of the panel vortex obtained trom slender
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body theory, and iT is the tail incerference factor also obtained from slender

body theory. The crossflow potential problem for the tail-body combination con-

sists of the solution for two point vortices of a given strength and location in

an undisturbed flow field. b' is the tail half-span (including the bod, radius).T

In Reference 2 an expression is given for a negative lift, on the tail

due to body shed vorticity. This is neglected in the current version of the

program.

The normal force coefficient can now be written as

C CN + { [KWB) + KB~) a + [kW(B + kB~) (CN)

+ ý [ + K a + [kTB + kB(jT}CQ

+ CNT(V)

= CNB + C NW(B) + C NB(W) + C NT(B) + C NB(T) + C NT(V) .(86)

At subsonic Mach numbers (MO < .8), the center of pressure for CN(B), and
are CNBCNW() +CNB()+CT(B)+CN(T) CNTV) NW(B),

CNB(W) are assumed to be at the wing alone center of pressure. For C

C and C the x are assumed to coincide with the tail alone xc.
NT(B)' CNB(T)' cp cp

For supersonic flow CNB(W) and CNB(T), the Xcp values are assumed to be

given by the centroid of the areas in Figure 11. At transonic speeds the center

of pressure values are given by linear interpolation between the values at

M = 1.2 and M = M.

2.1.3 HIGH ANGLE-OF-ATTACK AERODYNAMICS

The current approach is empirically based on, and is an adaption of, the

method described in Reference 24.

The range of input parameters for a cruciform configuration is limited to:

1. .8 < Mw < 3.0;

2. Angle-of-attack 00 to 1800 for isolated components (roll angle 00) and

0* to 450 for body-tail combinations at arbitrary roll angles from O~to 1800;
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3. Tail: trapezoidal planform, side edges parallel to the body centerline;

A. Leading edge sweep angle: 00 to 700;

B. Taper ratio: 0 to 1;

C. Aspect ratio (two panels): .5 to 2.0;

D. Trailing edge straight and parallel to end of body;

4. Nose length (pointed tangent ogive): 1.5 to 3.5 calibers;

5. Cylindrical afterbody: 6 to 18 calibers;

6. Total span-to-diameter ratio (two fins)i 1 to 3,33.

The roll definitiun and positive fin load orientation are shown in Fig-
•[ !'ure 12. Note that 0 is measured from the windward side. •

CNNT,

',Vsina

Figure 12. Roll Angle and Fin Load Definitions (Looking Forward)

The axial force coefficient is assumed to be contributed entirely by the body.

The total normal force coefficient is given by

C, sin +( + c ose
CN =NB NT1 NT3 sin e + (CNT2 CNT4) COS ST/Sref

+ (87)
BT
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where CNT. are the individual fin loads in the presence of the body and other

fins, and I 4s the tail-to-body carryover normal force coefficient (i.e.,
BT

SNB(T).

The longitudinal center of pressure from the nose for the entire configura-
i) tion is given by i

Xcp = cpB CNB + (sin 6 (xcpT' CNT1 + XcpT3 CNT3)-p XCN+os i /x + I B/CN (88)
cos (XcpT2 CNT 2  XcpT4 '14T4)] ST/Sref

where

" values are given in calibers,

XcpB is the body alone xcp,

" are the individual tail x values ia the presence of the body and

other fins, and

x is the center of pressure for the carryover load.

if nne neglec'.s the small body frictional roll coefficieut and the tail

carryover onto the body, one can estimate the static roll coeflicient as

Ce 2 T ref NTiSi[k - i ") i)/2] [I

+ b/D .y b/2)] (89)

Details of the functional forms are given in Reference 24.

2.2 DYNAMIC DERIVATIVES

Dynamic derivative prediction is for omal., angles-of-attack (a 0) only.

2.2.1 BODY ALONE

2.2.1.1 ROLL DAMPING AND BODY MAGNUS I-OMCNT

These coefficients are givert e.::piricl•ly. The data base is configuration

limited. Coefficient Mach nurabor dependence was 0 < M < 5. An asymptote is
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assuMed at M = 5. Geometric parameters entering the empirical functional form

are the total length, center of moments location, and boattail length, All inj

calibers. The boattail length is limited to 1.5 calibers for the Magnus moment

coefficient computation. The Magnus moment coefficient C is computed at 10
npat

and 50 angles-of-attack. Magnus moment coefficients are not estimated for bodies

with lifting surfaces.

2.2.1.2 PITCH DAMPING COEFFICIENT

The original prediction used the empirical prcdiction. The method described

in References 25 and 26 was intended to improve the C + C prediction. Evalu-
mq m

.ation of the method is given in Reference 4. Rc:strictions are:

(1) Initial cylindrical radius for 'a spherically blunted or trun-

cited body is limited to less than .25 calibers.

.(2) Contribution of afterbody and boattiil or flhre are neglected

at higher Mach numbers.

In subsonic flow, Cmq + Cm& is given by a relation based on slender body

theory:i•2 X "c )2

C + Cm = - 4 (.77 + .23 M2 ) (L '77' +23 M! (90)
mq ma c- cg

Here, L is the total length in calibers, and xg is the center of mv•ment location

4" from the nose in calibers.

Hypersonic (embedded Newtonian) flow approximations are applied .cv- a

certain Mach number M1 M* associated with an effective hypersonic ,-rity

parameter of .4 such that

M " .4 csc 0* (91)

N e tan 2L)(92)
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If M* < 1.5, then M* = 1.5 is chosen. For 1 < M• < M* a linear inter-

polation is used where

M*- M•
C (C0mq +Cm& I- (Cmq + Cm&) M 1

M -1
+ 1 (Cmq + Cm&) Ma = M* (93)

For M. > M*, a direct apuiication of a modified Newtonian pressure dis-

.ribution at of 0 for the pitching motion gives

L C' Cy (x - xg + RR')RR
Cmq fN 0 1 + R'Z

Note that for a spherically blunted body the contribution of the spherical cap

is neglected. The stagnatiuv pressure coefficient, Cp, behind a bow shock is

approximated for large Mach numbers as

Cpo y+ + y -3 (95

and C is given as
Y

C¥ .01 + 1.31 [log (10 M. sin )] IMccsin e > n .4

The Lockheed Missiles and Space Company (LMSC) model was assumed to be able

to replace the empirical method for the body-alone pitch damping coefficient.

Since the LMSC 1'rediction neglects the effects of afterbody and boattail at

supersonic Mach numbers, the empirical method often predicts better values for

pitch damping. For this reason and because of other limitations for bodies with

lifting surfaces, the pitch damping prediction method is currently an input

option to the code.

The LMSC body-alone algorithm was extensively evaluatedby R. Whyte in Ref-

erence 27. A conclusion reached in Reference 27 is that the LMSC algorithm is

adequate for most applications. For certain nose-afterbody configurations with

the x located forward, poor results were obtained when compared with data at

cg
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supersonic Mach numbers. The code was modified for these cases. When the value

of C predicted is less negative than that predicted by the empirical method and
mq -

not within 75 percent of the empirical value, the empirical value is chosei.

2.2.2 LIFTING SURFACE DYNAMIC DERIVATIVES

The rolling rate is assumed small and, hence, Magnus moment is neglected.

2.2.2.1 ROLL DAMPING

2.2.'.1.1 SUBSONIC FLOW (0 < M - .8}

Equation S5 is again applicable-. The effeactive angle-of-attack is given by

ct(x,y) = -. In this c&se, the resultant (aC obtained by matrix inversion is
OO

odd-valued in q.

With (ACp) (AC)p p/V,, Cp is given as

C PCrefp (97)PIP = /2V2

where Crefp is b for the wing-alone case. Using the definitioni in Equation (97)

one obtains
,,•'],ib '

"" -ytany + C(y)

C 2N y(E) dxdy . (98)

ref refp y0 tan I

4 1

Note that the planform considered is that obtained hy extending the leading and

trailing edges to the body centerline. b' is the total span.

2.2.2.1.2 LOW SUPERSONIC FLOW (1.2 < Moo < M

Si• e

The approach used for the static lift problem is applicable here. In this

case, w (t, n) = is not a constant.

The approach for subsonic and supersonic leading edges is similar to that

used for the static lift ý.roblem. Specific relationships for (ACp )= p/VW (ACp)p
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are given in Reference 3. The modified planform considered for subsonic flow is
used again.

2.2.2.1.3 TrfANSONIC FLOW (.8 < i(, < 1.2)

An empirical approach is taken here. It is assumed that the C variation

is similar to that for CN such that

(CN

"(C•P)M (C)r (C a)Mr (99)

a ref

This is somewhat siwilar to the approach of Reference 28. Equation (99) is used

with M = .8 to establish C9p at M. .933. Equation (99) is then used again

to establish C at M• = 1.067 with M = 1.2. Interference corrections are
kp 00ref

made for each fin at M• = .8, .933, 1.06:, and 1.2 as explained later. The C

for the body is added to the lifting surface contributions for the above Mach

numbers. The final total C value at M is given by a four-point Lagrange in-

terpolation.

2.2.2.1.4 HIGH SUPERSONIC FLOW (Mo > Me )
e

At higher Mach numbers, where Mo> o , the potential model, for determining

the lifting surface roll damping is assumed eto be invalid.

In analogy with the static prediction for M• > M , the strip loading is

assumed to be proportional to the local chord and distance from the centerline.

"The loading is forced to zero at the tip in an elliptical manner. With these

assumptions,

- )c ) _

N:F1
41 I 2 C2 +I I0
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where

11 = n/4 - (1 -)/3,

12 = 1/3 - (1 - A) n/16,

13 = i/16 2(1 - X)/15,

and (CN )F is the strip theory value for two fins. This approach was evaluated

"in Reference 4.

2.2.2.2 PITCH DAMPING

The total pitch damping coefficient, C + Cm&, is made up of two terms.
mq m

L, The first term, Cmq, is due to the rotational rate about the moment reference

axis. The second term is due to a downward translational acceleration, w/V )

perpendicular to the body centerline.

The original method for low Mach numbers was based upon small disturbance

lifting theory (Reference 3). The method developed by LMSC as presented in

References 25 and 26 was intended to apply over the entire Mach number irange at

a = 0. However, it is limited in lifting surface aspect ratio for low supersonic

flows and to one lifting surface. For this and other reasons, the F:hoice of

method fo:r pitch damping, as earlier indicated for body pitch damping, is a pro-

gram input. The LMSC method is based on slender w4ng-body methods in the sub-

sonic and low supersonic flow regime. At high Mach numbers, it is baszd upon

Newtonian embedded strip theory.

Even if the LMSC option is chosen, the older computati..rai estimate is

obtained first in the program flow and the newer estimate subsequently. The LMSC

model will be presented in the section on interference.

2.2.2.2.1 SUBSONIC FLOW (M. < .8)

Rotation about the moment center induces the following angle-of-attack on

L •the wing

a(x,y)=- [x + ref (i- )I . (101)

iI,

* ref I 8..
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For the wing alone case, x = 0, C = C, and x is given C units. Otherwise,
ref cg

9 and x are in caliber units and C - D.
cg ref

(ACp) (E)C q/V,, obtained by matrix inversion for the collocation ap-

proach of Equation (51), is an even-valued distribution in y. Note that the

second term in Equation (101) contributes an equivalent constant angle-of-attack

lift.

The pitch damping coefficient, Cmq, is defined a3

C
=, m (102)

mq qCref

2VO,

L Using the definition of Equation (102) one obtains for C
mq

b' ytan yj + C(y)
[x +C ( x )] (AC-) dxdy (103)

,,' CJ;•, Sref ref

The planform is again extended through to the body centerline. Here, Cm& is

assumed to be zero. A review of Reference 3 indicates that various methods are

available for -estimating Cm&. However, the computational cost is incompatible

with the rapid estimates desired here and the additional accuracy unwarranted.

2.2.2.2.2 LOW SUPERSONIC FLOW (1.2 < M< M)

The Cmq problem proceeds as before:

w(, r) it + Cre (x - Xcg)] (104)

Specific relations for (AC) = (q/Vp) ( )q are given in Reference 3 for the

variable part of w(t, q).

The vertical acceleration problem for & is an unsteady potential problem

which obeys the following equation for the perturbation potential:

rax 
2 a t 2  am axat
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where a• is the free stream value of the speed of sound. The boundary condition

for the dimensionless vertical velocity ,s

w(t, n) = - Ot . (106)

Equation (106) may be rewritten as

= - ,2v) (107)

The first term of Equation (107) has the form of the variable part of equ3-

tion (106). The form of Equation (107) suggests a solution of the form

10 + 2 .(108)

On the surface =1z -1, 42z x/V0. The first term of Equation (108) satis-

fies 6ne differential Equation (105) and leads to the equation
B) = p2 22(L (109)

Thus it is seen that 4), is the lifting potential with a 1. It is also seen

that 4)2 is the potential corresponding to the variable part of C with q = 1.

Equation (108) may be rewritten as

(t, M2,,,:+ &- (110)

The equivalent of the Bernoulli relationship for the time dependent case is

_ _ _ _ _ _ __+___v_+ _ a2  a2

Y-1 + Y-1

Equation (111), evaluated at t = 0 from Equation (110) with the usual small

terms of 04•o neglected, yields an estimate of (ACp) as
pa

2(AC (AC) -)(AC (112)
P2 (p~=I P2V 00 pVm 0 p4
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Explicit relations for (ACp)& = (AEC)& are given in Reference 3. Then, C& is

foC b' Fytan y' + C(Y)

cmref 4 J Ix + Cref (ix cg) (pC ) dxdy (113)

fytan Y

Sref ref

2.2.2.2.3 TRANSONIC FLOW (.8 < Mo < 1.2)

The approach taken is exactly the same as for Cp.
(C N ) M

(C + Cm&) (C + C ( (114)
mq m% mq MO (

00ref otM
ref

Note that at M. = .8,Cmý = 0. At M= 1.2, Cm& 0. The total Cmq + Cm_ for

the complete configuration includes a canard downwash onto the tail term,

(Cm&)T(V), for M, < 1.2.

2.2.2.2.4 HIGH SUPERSONIC FLOW (M, > M) )Ae

A simple strip theory model is considered here. Cmý is not considered.

b/2 ytan y + C(y)

C 2- )C F ]df ( + x + 1 -
mq +Cx b( ý f Xg -cg ref

ref r

n ytan y

r Cref -

Sc 4 (U/2 )t y + C (115)

48

L



2.2.2.3 DYNAMIC DERIVATIVES FOR TOTAL CONFIGURATION

For roll and pitch damping, no interference is assumed for the high Mach

number range. The LMSC pitch damping will be presented separately here.

2.2.2.3.1 SUBSONIC AND LOW SUPERSONIC FLOW

It has already been noted that the lifting surface contribution was obtained

for a planform consisting of an extension of the leading and trailing edges to

the body centerline.

An additional lifting surface interference is based on slender body theory

(see Reference 29). The lifting surface contribution in the presence of the body

is given in terms of a span to diameter ratio for C2p

(Cp)= .
(CY).F (116)

=I=

Here, however, (Cp)b=0 is based on the modified planform. For a complete con-

figuration,

= (C¢p)B + (C~p)WB + (Cp)TB (117)

A similar fin-body interference term for C +q Cm is given as

(C +C*F D

Cmp + .C&F (118)

(Cmq + C M _ (2y

At Mach numbers below 1.2 an additional C term due to downwash lag from
ri mu

the canard onto the tail (see Reference 23) is given as

2 (xcpT X cpw)(XcpT xcgD) &CNT(V)
(Cm0-T(V) (119)

For Mo >. 1.2, (CmU)T(V) 0.

For a complete configuration C + Cm * is given by
C + C sgvnb'I Cm (mq mam

Cmq + C = (C + C•) + (C + C•) + (C + C•)mq a m a m q)B m)WB Cmq mTB

+ (Cm&)T(V) (120)
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2.2.2.3.2 TRANSONIC FLOW (.8 < Mo < 1.2)

The approach for C and C + C . is the sarae. Values at = .8, .933,
9p mq mot

1.067, and 1.2 for the complete configuration are used in a 4-point Lagrange

interpolation to obtain total C and C + Cmý at a given M .
mq mq

2.2.2.3.3 LMSC WING-BODY PITCH DAMPING

For M.,< 1, slender wing-body theory is used where

(Cmq + Cm)T = (Cmq + Cm&)TB - (Cmq +Cm) . (121)

Note that this theory is for a body-tail configuration only.

(Cmq + Cm)TB - (1-.23 12 ) LT . .23P. xcgJ

Dq M&)g- D./ T

4 whe re
C/D [rT D +T 2C 

2

=31 + 2XT) (124)

rT +rt r

x /D = - +- 
(1225)

ma = 2/ [+ /4 + (m ,) ] 
(126)

(I + T/bT)(

'IT (124)

(1 +DT /b T)
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and AR is the modified planform aspect ratio obtained by extending the leading

and trailing edges tc the body centerline.

For supersonic flow, I < MC <_41 + (ART/4) 2 , Equation (121) applies again.

(Cmq Cm&)TB - D Kma -• - -Xcg

r (T D+CrT -2
+1 Dr - cg (C + Cm)B (128)

LxT Xcg

A maximum ART corresponds to 1 + (ART! 4 )-2 2 or ART < 2.31. For larger aspect

ratio planforms the code reverts to the older theory.

For hypersonic flow, M. > I + (ART! 4 )-2,

(Cmq + TB CrT bT f* I + T + 4 (•*-a*) + 4/3 a*2

-(1- T) 2 -8/3 t*a* + a*2) (129)

where

XT UT rT 1 rTD Xg 2 D (130)

C b
a x (I - T tan y (131)

and f* is the dynamic pressure ratio across the bow shock and is defined as

KN - 1.25< 1.25

V 10 12.669724 N

.17 KN > 11
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2.3 METHODS OF ANALYSIS SUMMARY mtosaesmaie nFgr 3 htThe body-alone sai nlssmtosaesmaie nFgr 3 h
Mach number region division points are nominally at M1 .8, 1.2, and MorM

e
Methods for computing the wing-alone and interterence static aerodynamics

are given in Figure 14.

7 MACH 1OPNN REULON SECONONRDE VAHSCNDGHE
COMONNT REION SUSOIC TRANSONIC SUPERSONIC SUPERSONIC

NOE AV DA ELE DK PLUS SHOCK.
NOS WAE DAGPLUS EXPANSION PLUS

EMPIRICAL MODIFIED MDFE
NEWTONIANNEOIA

SECOND-ORDER SECOND-ORDERBOATTAIL WAVE DRAG - WU AND AOYOMA VASHE _EP~~SOCK
SKIN FRICTION DRAGVADRETI

B3ASE DRAG EMPIRICAL

EULER OR WU1INVISCID LIFT AND EMPIRICAL AN QOA TSIEN FIRST- SECOND-ORDER
PITCHING MOMENT PLUS EOYMPeAL ORDER CROSSFLOW EXS NSONCK-

VISCOUS LIFT AND _____jSOK

PITCHING MOMENTI ALLEN AND PERKINS CHOSSFLOW

Figure 13. Methods for Computing Body-Alone Static Aerodynamics

NUMBER LOW HIGHCOMPONENT REGION SUBSONIr TRANSONIC SUPERSONIC SUPERSONIC

INV'SCID LIFT AND LIFT'NG SURFACEEMICALNARTOY
PITCHING MOMENT THEORY EMIIAL LNA THEORYSHCEXAIO

SLENDER BOYTHOY N LINEAR THEORY,
WIO-OD ITEFEENE EMPIRICAL SLENDER BODY

___________ THEORY ANYD EMPIRICAL
WINO-TAIL INTERFERENCE LINE VORTEX THEORY

WAVE DRAG - EMAPIRICAL LCINEAR TH-EORY4'___ SHOCK EXPANSION MO)IFILEb
________ MODIFIED NEWTONIAN NEWONIAN STRIP THEORY

SKIN FRICTION DRAG VAN DRIEST
N TRAILING EDGE SEPARATION

DRAG EMPIRICAL

BooY ASE PRESUR DRFAGIEPIIA
CýAUSL'ýBY TAIL FINSEMICA

Figure 14. Methods for Computing Wing-Alone
and Interference Static Aerodynamics
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Finally, the methods to compute the dynamic derivatives are summarized in

Figure 15. Input option refers to use of LMSC or other prediction methods for

Cmq + Cm& for body-alone or body-tail configurations.

NUMBER LOW HIGH
COMPONENT REGION SUBSONIC TRANSONIC SUPERSONIC SUPERSONIC

EMPIRICAL
BOIUY-ALONE PITCH - (OR) :OR) --(OR)-
DAMPING MOMENT MODIFIED SLENDER. LINEAR EMBEDDED NE•fTONIAN

"BODY THEORY INTERPOLATION THEORY

WING AND LIFTING LINEAR STRIP
INTERFERENCE SURFACE EMPIRICAL THIN-WING TRY

r•'L.' 'THEORY

ROLL DAMPING T1I4ORY THEORY

BODY.ALONEi:. OOY.•ONEEMPIRICAL
MAGNUS MOMENT

WINO AND
,pINTERFERENCE ASSUMED ZERO
MAGNUS MUMENT

BODY-ALONE
ROLL DAMPING EMPIRICAL
MOMENT

SUPERSONIC EMBEDDED' LENDER-WINGI
WING AND S SLENDER.WING NEWTONIAN STRIP
INTERFERENCE THEORY THEORY THEORY
PITCH DAMPING (OR)- (OR) I(OR)- - (OR)-
MOMENT LIFTING LINEAR THIN. STRIP

SURI-ACE EMPIRICAL WING THEORYI THEORY
THFR.,IN THEORY_ THEORY...

" INPUT OPTION. MACH DIVISION POINTS ARE AT M.- I AND M, - M.
M IS VARIABLE, BUT M' i1..

INPUT OPTION, MACH DIVISIONS AT M. 1 AND A MACH NUMBER DEPENDENT ON ASPECT RATIO, M, f1114-AW.-4)

Figure 15. Methods for Computing Dynamic Derivatives

At high angles-of-attack, the body-alone or body-tail computations are

based on the empiricism of Reference 24. Only static derivaties are determined.

"• Computation times depend on configuration, code option, and Mach number. A

computation time can range from less than a second Lo between 30 seconds and a

A. :minute per Mach number on the CDC 6700 computer.
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3. APPLICATIONS TO CURRENT DESIGNS

In this section, data are presented for a variety of complete configurations

of current interest. In most cases, experimental data are shown for comparison

with the theoretical predictions and an estimation made of the a,:curacy of the

predictions. Both the static and dynamic coefficients are presented in many

cases.

3.1 TACTICAL WEAPONS WITHOUT LIFTING SURPACES (BODY ALONE AERODYNAMICS)

many Since the aerodyaamic coefficients of, the individual body components and

many of the nose-afterbody shapes are presented in Section 4, the data presented

here are limited to complete, configurations. In Figures 16 through 20, the

static and dynamic aerodynamic coefficients are rresented for several spin-sta-

bilized projectiles. In Figure 16, the predicted characteristics of the basic

Army/Nrvy Spinner are shown. Ir gerAeral, the static aerodynamics, are predicted

reasonably well with the errcro generally stayin1g less than 10 percent throughout

the Marh number range. The dynamic derivative predictions, utiliziVg the empiri-

cal raethud (see Secti.on 2.2.1), are generally poor and ire of the right order-of-

magnitude only.

Fiaurz±s 17 and 18 give the estimated aerodynamic coefficients for a & inch

Rocket Assisted Projectile (PAP) and an Improved 5 inch/54 Projectile (Reference

30), respectively. The 5 inch RAP has a nose le-ngth -:f 9.5 callbers, a 2.2

caliber afterbody, a .5 caliber boattail, and a rotating band near the end of the

afterbody. The Improved round has a 2.75 cali.ber nose, a 1.45 caliber afterbody,

and a 1.0 caliber boattail. The Improved round employs a discarding rotating

band and therefore has no such protrusion. in flight. In bt,ýh of these cases,

there is good agreement with experimental dat obtained for the drag coefficient

throughout the Mach number range where data are available. Fair agreement was

achieved for the normal force and center-of-pressure loc4tion. For the 5 inch RAP

CN prediction, the agreement approaching M. 2.5 is very good, whereas at lower

Mach numbers the theory is consistently about 10 percent low. This is due in
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F

part to the inability of the inviscid theory to predict. the afterbody lift cor-

rectly at low supersonic Mach numbers. For the Improved round, the dynamic de-

rivatives' predictions are, in general, good. The LMSC methodology (Reference 25)

and the empirical predictions (both of which are available in the Aeroprediction

Code at the user's option) show good agreement for C + C • except in the high
mq me

transonic flow region, where the agreement is fair.

In these cases, MQ was generally set at M. 2.0 resulting in the use of

"the potential theory rather than the second-order shock expansion theory for

2.0. If Mk had been set at M = 2.5, the potential theory would have been

applied at this Mach number also, and the pcedictions at M., = 2.5 for CD and C N

"would have been considerably lower. This is a result of the Mach wave anglec

lying too close to the initial body slope.

Figures 19 and 20 present the aerodynamic coefficients for two Army shells,

the 175 mm M437 (Reference 31) and the 155 mm projectiles. Again, good agreement

is obtained for the drag coefficient, and fair agreement is achieved for the

normal force and center-of-pressure location.

Figures 21 and 22 illustrate the Code's capability to predict the aerody-

namics for blunt bodies and bodies with flares. In each case, it was necessary I

to modify the body geometry to be compatible with the second-order perturbation

theory used for low supersonic Mach number calculations. The hemispherical nose

on the 5.5 caliber hemisphere-cylinder body was modified to include a 0.1 caliber

conical frustrum with 6R = .01 at the aft end (LN remained constant). The re-

mainder of the body was described directly. The NASA flared-body nose was re-

placed by a sphere-cone-flare body. The spherical cap was allowable in this case

because of the slight slope of the afterbody prior to the flare. For the hemi-

sphere-cylinder, the drag predictions compare favorably with data (Reference 32)

but the C and xc predictions are "hit and miss," as shown in Figure 21. In

the case oV the flared body, a slight increase in the bluntness resulted when the

nose was changed to the spherical cap. As shown in Figure 22, the effect of this

change is particularly noticeable in the CA and CN predictions. The drag and

V normal force are overpredicted by as much as 15 percent in the low supersonic

region compared to data (Reference 33). The x: predictionz are within one-half

58

.................................... *'.!



0
80

0 x O
Luu

LO 0)L

1doX (SV'du:) r4

4-,

00

0I 
0

0 0

__________ to-lii
c~.J N qLuc)

aVt0

LUU

LL.

00

0'0

d413

L5

L~ vm-



'zw

00

0 6C

,~dol ~ 0 u

0 4

cwi

01

I I N

06

0 0



w
Lo U

2 LO
UAN

Oo

cc CL

C ~L L( ~ ~ ~ ~ L N 0N

0 0

12
'h

0 4)
N3O L0O~ 10)a

7-2-

00

61 
4Vir



rr. w-!ii0O

CC

020

1001
Mvtf I A M 4'

62u



caliber. Note the faired portion in the predictions in the range 2.0 < M < 3.0.

This "blending" region is a result of differences in the predictions between the

small perturbation theory and the second-order shock expansion theory. It is

well known that above Ml = 2.0 the perturbation theory begins to weaken. For

the blunt bodies, the theory does not hold at all. The second-order shock expan-

sion theory, on the other hand, is best applied in the high supersonic region.

In the majority of cases, its accuracy degrades rapidly below M = 3.0. To ac-

count for this difficulty and to eliminate the discontinuity in the predictions,
SI• a weighted fairing was used in this region.

Projectile Performance. In recent, years, there has been a renewed emphasis

on improving the design of projectiles. For the A/A defense role, the major con-

siderations are time of flight and accuracy. For surface-to-surface applica-

V,! tions, the usual concern is maximum range as well as accuracy.

It,- minimizing the time of flight, it is necessary to optimize the ballistic
coefficient, • W/C S (Reference 34). The importance of this parameter is

D ref
recognized in the following oequations for the velocity and time of flight as a

function of range:

an R=x ex [2n.. (133)
and

t expI 2ES R 1 (134)Vog L
p9 '2B x

The drag coefficient, C,), is assumed to be constant over the range of interest.

For increasing v.lues of P, the velocity increases and the time decreases (both

exponentially) for a given range, R.. One would at first feel that a maximum

value of P• would provide the best performance. However, when designing a round

for a given gun system, the muzzle velocity depends directly on the projectile
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weight. Usually the new design is replacing an old one IH the new weight is
less than the previous standard weight, the muzzle velocity for the new design
can be estimated by relating it to the muzzle energy.

m V2  M V2

o std o0td

or

0 = ( m =V (135)

std Ostd /

Equation (135) provides reasonably good estimates as long as the weight dif-

ference is not large. Further examination of Equations (133) and (134) reveals

that increasing the projectile weight may increase P but it also decreases Vo

The result is that for a given range and gun energy, an optimum value for0

exists which will result in the maximum velocity, V, at range, Rx, and a minimum

time of flight.

So far the discussion has centered on the projectile weight. Obviously, if

the drag is minimized, the velocity retardation is minimized and the performance
is optimized further. Therefore, a good approach to optimizing the projectile

performance is to first minimize the drag, then to determine the optimum P for
the range of interest. In the case of intercepting an air target, the range

selected might be the mrdl.an range over which intercept is desirable or it may be

the range at which maximum a&,>uracy or advantage is required.

The above procedure was used to optimize the performance of a 30 mm projec-

tile. The range of interest was 3.0 km. The performance and physical character-

istics of the standard projectile were known. Sample trajectory calculations

indicated the median Mach number to be about 3.0. An L/D ratio of 5.0 was se-

lected due to the total round length constraints and also to provide good sta-

bility. Generally, the higher the fineness ratio (L/D), the more difficult it is

to spin-stabilize the body. With these inputs, the optimum shape for minimum

drag could be determined. The Aeroprediction Code was then used to obtain the
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initial estimates of the aerodynamic coefficients for the design. Figure 23

shows the profile of the body and the predicted coefficients. The optimum shape

indicated has a 3.2 caliber nose and a 1.8 caliber boattail with a base diameter

of .7D It should be noted that the actual theoretical shape had a slight
ref'

curvature in the boattail near the afterbody-boattail juncture. Later, when

these projectiles were fabricated, the profile was approximated by a conical

boattail for ease in manufacturing. Comparison of the theory with the ballistic

range data obtained later showed good agreement in each case. As a result, the

predicted values could bc used with greater confidence throughout the Mach number

range to conduct a stability analysis.

Having determined the minimum drag profile, it was necessary to find the

optimum ballistic coefficient. Figure 24 shows the variation of tf with pro-

jectile weight for several ranges. The weight at which t is a minimum suggests

the optimum value for 6. NoLe that the optimum weight (and therefore 0) varies

with the range. The variation in 0 with the range can be visualized in Fig-

ure 25. Having determined the desired weight, it is then left to the designer to

determine the fuze weight (if any) and the interior cavity which would provide

the center-of-gravity location, polar (spin axis) inertia, and the transverse

(pitch axis) inertia for that weight which are necessary for the stability analy-

sis. The benefits achieved through shape optimization can be substantial. In

our sample case, reductions in the drag and time of flight were 34 percent and 32

percent, respectively, as compared to the standard design.

The stability requirements for projectile design are discussed in detail in

in Reference 34. Basically, the main concerns are the gyroscopic stability factor

12 2

S x p (136)
y m
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If!and the dynamic stability factor

D n

S LAN Rnp (137) i

.1 and thedynmi . s fthvablty fcor gadS r eemnd o atclrdsgC C -(C + Cm) 21 m .z

y q a x p

For dynamic flight stability, Sg > 1.0 and 0 < Sd < 2.0. In practice, good pro-

jectile detigns have, for standard atmosphere conditions at launch, S > 1.3
gmn

arid S '- 1.0. If the values of Sg and Sd are deternmine.6 for a particular design

to be outside of these ranges, it is generally easier from an aerodynamic stand-

point to look at ways tc vary the I /I ratio and the center-of-gravity location
x y

first to correct the problem. If the physical limitations render this approach

unsuccessful, then the basic exterior design must be changed, usually through

increasing the length of the cylindrical section of the body with corresponding

reductions in the boattail length or nose length. The gyroscopic stability of a

"spin-stabilized projectile usually itcreases after muzzle exit (at least until i
apogee). Therefore, it is most critical that adequate stability be obtained near A
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the muzzle. However, both S and S vary during the flight and should be ex-

9 Sd
amined throughout the trajectory to ensure the projectile will fulfill its mis-

sion. The values for these parameters for the 30 mm Optimal Projectile sample

case were S = 2.23 and S = 0.96 fnr standard atmospheric conditions at the
g d

muzzle. The value for Sd was determined based on thp ballistic range data since

the theory predicted C + CM& and C poorly in this case.

3.2 TACTICAL WEAPONS WITH LIFTING SURFACES

Figures 27 through 33 give the aerodynamic L•efficients for several missile

configurations with one or two sets of lifting surfaces. In each case, a fin

set is comprised of four fins in a cruciform arrangement.

In Figures 26 through 29, the aerodynamics for configurations with only one

set of lifting surfaces are shown. The first, Figure 26, is the Basic Finner

model, which has a 2.84 caliber conical nose and a total length of 10.0 calibers.

The triangular airfoil, rectangular planform fins have AR = 2.0 and t/C = .08,

where C Dre and AR =Aspect Ratio. The geometry is representative of the data
base and can be modelled precisely in the Aeroprediction Code with the exception

of the blunt trailing edge for the fins. In the computer model, the trailing

edge was given a radius of t/2. As expected, the theoretical predictions match

the data (Reference 35) quite well, including the dynamic derivatives except in

the transonic region where the fin effects are underpredicted.

The next three examples can be classed as variations of the Basic Ffnner

configuration. Each has a tangent ogive nose, the Modified Basic Finner and

the Air Slew configurations having a 2.5 caliber nose and the TMX-2774 having

a 3.0 caliber nose. The Modified Basic Finner (Reference 36) and Air Slew

(AEDC) have an overall length of 10.0 calibera and a modified double-wedge air-

foil section fin of AR = 1.0, t/C = .036, Cr = 1.33D, X = .5, and yi = 530. The

leading edge (LE) and trailing edge (TE) bluntnesses are small. The Air Slew is

a scaled version of the Modified Basic Finner except for the fin bluntnesses.

For the Air Slew, the leading and trailing edges are sharp. The data for the

Modified Basic Finner at M = 2.5 and the Air Slew at M= 1.3 illustrate the

capabilities of the adapted Martin High Alpha empircial algorithm. Noting the
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small differences in the configurations, the Code predicts the respective trends

very well. The slope and magnitude of the CN predictions compare quite well

except at the higher Mach number and 200 < a < 40 *. In this region, the errors

range from 5 to 30 percent, reaching a maximua at a = 300. The x predictions
cp

shuw similar trends and are of the right order of magnitude nnly at M. = 2.5.

The negative trend in the CA prediction with increasing U is not supported by

the data.

The last of the body-tail configurations is the NASA TNX-2774 body (Figure

29) which is 13.06 calibers long with a .53 caliber, ý.2* boattail, and firs of

AR .84, t/C = .07, C = 1.9, k = .42, and yj = 62.90 (Reference 37). The LErI
and TE are sharp. The data include the effect :,f two strakes, 1800 apart, which

were not included in the model due to limits on the number of lifting surfaces

and the small aspect ratio. Iu this case, the CN and x predictions compare

well. Again, it should be pointed out that for small aspect ratios the influence

on the opposite half wing tip is neglected. Also, no interfererce effects are

considered at high supersonic Mach numbers. As a result, C and C mq Cmý pre-

dictions for small AR often behave erraticzLly. The peak in the curve for C is

representative of the problem and can be seen elsewhere.

Figures 30 through 32 present dat3 for configurations having two sets of

lifting surfaces. The large-winged (AR = 1.52) TMX-1751 configuration (Fig-

ure 30) incorporated body strakps which were included in the data but, as before,

were not included in the model (Reference 37). This partially accuunts for the

differences in CN und x . The agreement with data for the TMX-3070 (Figure 31)

is very good for CD and C N in spite of protrusions on t1.e actual model, includ-

ing a fin assembly sleeve (Reference 37). The prediction for x is fair to'!,r ~cp i

"poor, however, with arrors ranging from .15 calibers (1.0 percent of the distance

from the nose) to 4.9 calibers (35 pcecent). This is probably caused by an un-

detprediction of thr lift for the highly swepL cauards and errors in the pru-

dicted pressure distributions on the hemispherical nose noted earlier. Note

again the fluctuation in C due tc the lower AR Lail. The next example, in

Figure 32, is an illustration of probably the most complex configur,'ation which

can be handled by the Aeroprediction Code. The body i,: comprised C-f ,0 uph,•rical-

ly blunted 2,1 cal,,hr nose, a cylindrical afterbody, and an 8.90 boattail. The
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nose is divided into two distinct ogival nose sections. There are two sets of

swept lifting surfaces, each having different fin geometries and deflections.

The Aeroprediction Code provides data for the individual body components. The

data shown in the example are for the total configuration with a 50 canard de-

flection.

in the following example. In this case, the Aeroprediction Code was modified to

c3mpute the total sectional normal force coefficients along a missile body as a

ýgV function of Mach number and angle-of-attack. The results of the aerodynamic '
analysis were then used in a finite element structural analysis to predict struc-

tural integrity. The results of the analyses, shown in Figure 33, indicate that

structural f,iilure of the two configurations examined can occur during maneuver-

ing flight due to the large aerodynamic bending moment. Unpublished flight test

results confirmed the predictions.

*• 24,8 oat 0 :

"2,36 ic.l °-•I 30 dig CHAFF EXIT PORTS j

ALUMINUM TUBE

0,[4 IPOSSIBILITY OF FAILURE LE

So(a ALLOWABLE u 27.2 khl)

4.HOLE 3.HOLE
ANGLE CONFIGURATION CONFIGURATIns

0, ALT OF MACH SIMPLE FINITE
lkltl AWfACK NO. a• SIMPES 4 ELEMNIT

J ~~~(dog) itko) TE k@0 EEMN
METHOD METHOD

SEA LEVEL I 1' 2,6 -- ,. YES -74.4 YES
1s 10 2, -- "0.1 YES 46.4 YES

0.2 - a"1020 10 2. -40., YES -.37.4 YES

0l 2. 19 YS 35.4 YES
2.9 -2.0 NO -20.6 NO

-1.1 NO 17.0 NO

o, -H-H- - --- k------+- _,- i,+.-,-,
0 2 4 6 8 10 12 14 1 18 20 22 24 26

sBODY LENGTH ' al.l)

Figure 33. Structural Integrity Study Using
the Aeroprediction Code
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Missile rverT,'mance. Designing a missile for optimum performance is a very

complex procedur: with a number of tradeoffs and considerations. A few factors

which are considered include the velocity, range, time of flight, altitude,

launch angle, payload, maneuverability, responsiveness, lift-to-drag ratio, and

performance of the propulsion system. In contrast to the projectile performance

optimization where the ballistic coefficient plays an important role, a missile

design is typically optimized for one or moe of the factors listed. Moreover,

there are more options available to the aerodynamicist in achieving the perform-

ance goals due to the lifting surfaces. The Aeroprediction Code is ideal to

parametrically examine the aerodynamic factors affecting performance as a result

of its relative low cost and accuracy.

To illustrate, a typical design approach is outlined which can be used to

arrive at a preliminary surface launched missile design which satisfies the de-

sired performance objectives.

Initially the missile performance requirements must be established. The

specified requirements should include maximum and minimum range, missile

velocity, altitude ceiling, maneuverability (g's) required, and airframe time

constant. These requirements will usually be driven by the threat spectrum to

be engaged. The launch and payload weight and volume =onstraints may also be

specified due to the given launching tube or canister envelope. The maximum

range requirement can be driven by several factors including the fire control

radar detection range and the firing doctrine to be utilized. The minimum range

(must-kill range) is usually established by doctrine. In this example, the

missile is assumed to be launched from a square canister of specified length, L.

The payload is assumed to include the guidance electronics, radome, warhead, and

fuze. The average missile velocity is assumed to be in the M. = 3.0 range.

The maximum flight range for the missile is a function of the time history
Sof the missile velocity which in turn is the integral of the thrust and drag

alonig the flight path.
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The configuration sizing, therefore, involves design tradeoffs of the air-

frame drag and weight and the propulsion system thrust required to deliver the

payload to the maximum range with adequate intercept velocity and maneuver capa-

bility. Since additional missile weight adversely impacts the propulsion system,

flight performance, and packaging requirements, the designer generally desires to

determine the minimum launch weight to meet stated requirements.

The missile intercept speed affects several aspects of guidance, including:

the maximum allowable target crossing angle, which is a function of the target

speed; the seekers maximum look angle and the airframe angle-of-attack; the miss

distance, which tends to increase as the closing velocity increases due to re-

ceiver and seeker servo noise; and the missile guidance time constant, r * The

total missile guidance time constant is defined as the time from the initial

tracking loop input upon target acquisition to the time it takes the missile to

achieve approximately 63 percent of the desired rate-of-change of the flight path

angl, The missile guidance time constant can be approximated to first order

using the relation

S + T + T + N Ym Re (138)
g 1 F AF Vm RbJe

where

T, is the tracking loop time constant,

TF is the guidance filter time log,

T AF is the airframe tione constant,

N is the effective navigation ratio,

V is the missile closing velocity,
c

V is the missile average velocity,
m

a/y is the turning rate time constant, and

R is the radome boresight error slope.
be
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0 A low value of t is desirable in order to reduce miss distance sensitiv-
g

ity to target maneuver and provide adequate terminal accuracy under adverse con-

ditions. The adverse conditions such as electronic countermeasures or weather
result in a reduction in the range available for guidance. A useful criterion

for seeker end game performance is to allow a minimum of 10 T (10 guidance time

constants) to correct terminal heading error. It can be seen from the above re-

lation that decreases in and i, both of which decrease with increasing missile

velocity, decrease the total time constant. Also, limitations due to the battle-

space, which is the distance between the maximum and minimum ranges, and the fir-
ing octine(suh a a hoo-look-shoot doctrine) encourage the selection of a

high a missile vel.ocity as possible. However, the increase in the miss distance

as the closing velocity increases forces a compromise on the selection of the

desired missile velocity. In our example, an M1 3 missile velocity appears to

meet these restraints.

The sizing of the missile is a function of the propulsion type and capa-

bility, the type of aerodynamic control (or thrust control if used), and the

maneuverability (g's) required. The propulsion system selection is based on

altitude, thrust, and burn time requirements. Both simple boost and boost-

sustain motors should be examined and correlated with the missile weight to pro-

vide the required average or sustain velocity over the desired range.

The choice of the type of aerodynamic control is largely a tradeoff involv-

ing the location of the controlling surfaces on the body. Canards offer advan.-

tages in obtaining a quick response from the missile. However, canards arc

angle-of-attack limited and often lead to pitch and roll control problems due to

the interference of the shed vortices on the rear stabilizing surfaces. Wings,

,1. which must he larger to produce the same moment due to their closeness to the

center of gravity, have similar advantages arid disadvantages as canards. Tail

alone control has the advantages of lower overall weight and better pitch/roll

control due to the elimination of vortex interaction with vortices shed from

lifting surfaces located forward of the tail. It has the disadvantages of longer

missiie response time because the control force to rotate the maissile is opposite
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to the desired direction of travel and actuator packaging must be accomplished

acound the rocket motor. In this case, tail control is selected for the concep-

tual missile design. A jettisonable set of jet vane controls may be added in

order to implement the quick turn maneuver from the vertical when a vertical

launch system is utilized.

Having made the above choices, the missile diameter and fineness ratio

can he determined. Using an average overall packing density of .062 lb/in3,

relationships between the missile length, diameter, and weight for the body-

tail type configuration can be obtained as shown in Figure 34. Based on these

curves, an 8-inch diameter configuration apparently would best meet the length

and weight constraints shown.

5-in, DIA MISSILE FINENESS
••- / RATIO, 1/o

LAUNCHER /
LENGTH /

CONSTRAINT / /-7' . 25

-.in.

15

-- WEIGHTI/ /GOAL

"WL, LAUNCH WEIGHT - Ibs

Figure 34. Missile Physical Characteristics

Sufficient missile maneuverability is required in the terminal phase of

flight to compensate for guidance errors, heading error, and target maneuvers.

An estimate of the missile maneuverability, am, required to correct for guidance

errors due to noise and target maneuvers is provided by the relation

am> (3a + 8) g (139)
m 8
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where aT is the maneuvering target acceleration.

The miss distance due to initial heading error, HEo, is based on an average

missile acceleration, am) applied over time, tf, and is given by
)N (140)

mH= Vmt ( - tf/t ) o
0

where t ; 10 T and the initial missile acceleration (assuming no g saturation) I0 g
is:

NV
m t E (gt s). (141)am 0f

-9

For a 2.0 second guidance time, T .2, and N = 3, an initial HE of 100 can
8

be corrected and the miss distance eliminated providel the missile can achieve a

27 g maneuver.

Figure 35 shows the radome boresight error slope variation versus nose drag

coefficient for several nose shapes and fineness ratios. To minimize the bore-

sight error while achieving relatively low drag, a 2.25 caliber Von Karmin nose

contour is selected.

It is now possible to define the overall missile fineness ratio. For the

trimmed condition, it is necessary that the summation of the moments be zero

such that

Cma UTrim + C1A6 F 0 (142a)

or

Trim Cm f (142b)
ImY

Therefore, to obtain maximum maneuverability, it is desired to minimize the

total untrimmed pitching moment coefficient, Cma. Similarly,' the normal force

for the trimmed condition is

C =NNTrim = N aTrim +CN 6F (142c)
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H
Figure 35. Forebody Drag Coefficient vs Boresight Error Slope

for Various Shapes and Fineness Ratios

_j Since deflection of the tail surfaces produces a negative normal force tJ

achieve the desired angle-of-attack, it can be seen that the body untrimmed CN

required is greater than the trimmed condition. With this in mind, several tail

sizes and planforms were examined to obtain a first approximation of the tail

size and to estimate the negative normal force effect. Figure 36 shows the vari-

ation of the tail normal force due to deflection, CN6 , and the total configura-

tion pitching moment, Cmat for a hypothetical body versus taper ratio assuming a

diamond airfoil cross section. The optimum tail for maneuverabililty is that

which produces the least negative force with deflection and the minimum total

pitching moment. For this example, the optimum tail was that having a Ct/Cr

.364 resulti=g in a C 0.67 (deg based on the planform area, ST). If

the center of gravity of the total missile configuration after burnout is assumed

to be .54L from the nose tip, the normal force required versus angle-of-attack
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for configurations of varying L/D ratios can be determined. In this case, the

totl timmd N rquired for the required maneuver is 3.4 for a maximum angle-
of-attack of 180. This indicates that a body alone normal force coefficient of

4.0 must be obtained. This is possible with a L/D = 18 which was shown earlier

to also meet the length and weight constraints.

r The resulting preliminary missile configuration and the estimated aerody-

namic coefficients are shown in Figure 37 and 38. Using these data and the pro-
0 pulsion data, the missile performance can be predicted for various conditions.

V~l A typical trajectory is shown in Figure 39.
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Figure 36. Tail Normal Force and Pitching Moment Coefficient
vs Taper Ratio
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Figure 37. Example Missile Design
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4. AIDS TO DESIGNJ

As can be readily seen in the material of Section 2, a large number of

methods and data have been brought together into one computer program. The

of design modifications of various configuration components on the total con-

figuration aerodynamics and stability. Handbooks have been previously published

(References 5, 22, and 32) which have provided aids to the missile designer for

certain classes of configurations. In this section, a number of design chartsj

are presented which were generated using the Acroprediction Code for various con-

figuration components of both pointed and blunt bodies. These charts represent

k portions, reproductions, and extensions of the charts presented in these earlier

handbooks. The user is encouraged to compare the data presented with that of

the earlier works where possible. The basic desire of the authors is to show

the trend-, due to modifications in the design components which will guide the

designer in the preliminary design process. For body component parameters within .
the limits of the charts presented here, the reader can use the method of corn-
ponent superposition (i.e., to add up the various effects of each component) to

obtain the aerodynamics of the complete configuration.

4.1 BODY ALONE DESIGN

The atvrodynamic coefficients were determined for a large number of body

alone, axisymmetric shapes throughout the Mach number range. The characteristics

of the body components were varied systematically to establish the trends in the

aerodynamic coefficients. Particular attention was given to bodies with conical,

tangent-ogive, and secant-ogive nose contours as shown in Figure 40 because of

their primary interest to missile designers.

4.1.1 DRAG

As indicated in Section 2, the total drag of the body is the sum of the nose

wave drag, the skin-friction drag, the boattail wave drag, the base drag, and the

drgof protrusions, plus the crossflow contribution. In this section, data are
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Figure 40. Typicai Nose Contours (LN = 3.0 cal)

"presented for a 00. For moderate angles-of-attack, a cr")•sflow drag correction

is presented.

The nose wave drag is influenced primarily by nose shape, fineness ratio

(LN/D), and Mach number. The effect of these parameters on the wave drag in

supersonic flow is illustrated in Figure 41 for pointed bodies. In general,

the wave drag decreases for increasing nose fineness ratio and Mach number. Of

tie nose contours shown, the secant ogive is shown to provide the lowest wave

drag within the Mach number range 1.0 < M < 6.0. Earlier studies (References 5

and 38) have shown that the minimum wave drag for secant ogives for low super-

sonic Mach numbers (M < 2.5) is obtained by using a radius of curvature twice

that used for a tangent ogive of the same length. In this comparison, all of the

secant ogive profiles had a constant shoulder angle of 6.00. For low supersonic

Mach numbers (M• < 2.0) slender body theory predicts the minimum drag profile to

be the well-known Von Karman ogive. Newtonian theory predicts that the conical

nose shape would become the minimum drag profile as M= ÷ =. Therefore, in

general, the expected trend in supersonic flow is that for a given nose length

and diameter the minimum drag profile would vary slowly from the Von Karman

ogive to the secant ogive (with radius twice that of a tangent ogive) and then

to a conical nose shape as the Mach number increases. Although not shown, the
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Figure 41. Wave Drag Comparison for Pointed Bodies

power-law nose contours also closely follow these trends and may in some in-

stances exhibit lower drag than the secant ogive due to nose bluntness. For

example, the 6.00 (shoulder angle) secant ogive can be approximated by the two-
thirds power-law nose. As the Mach number increases, the power used to obtain

the low drag shape increases to a value of 1 which corresponds to the conical

shape.

For a nose of fineness ratio of 3.0, the variation in the wave drag with
nose shape is shown in Figure 42. In this case, the more blunted tangent ogive

is shown to have the lower wave drag for M, = 3.0. For subonic Mach numbers, the
wave drag contribution is assumed to be zero for M= < .5. The exact point at

which the wave drag disappears depends on the nose fineness ratio. This is il-

lustrated in Figure 43 which shows the transonic wave drag for various tangent

ogives.

The nose wave drag is also influenced by bluntness as shown in Figures 44
and 45 for cones. The data presented are for a 7.1250 semi-angle truncated cone

with fineness ratio 4.0 when not blunted and for a 100 semi-angle spherically

capped cone. When adding the spherical cap or truncating the nose, the nose

length was reduced back to the point where the proper value for R (the radius

N
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Figure 42. Wave Drag Comparison for Pointed
Bodies (Nose Length 3.0 cal)
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Figure 43. Transonic Wave Drag of Tangent Ogives
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of the cap for the spherically capped cones) would be obtained while keeping

the slope of the conical frustrum constant. As can be seen, truncation alone

has a slightly greater effect than truncation with a spherical cap. Note,

however, that a portion of the difference can be attributed to the slightly

different nose lengths obtained in the two cases for the same bluntness ratio.

The difv' .at nose length results from both the different slopes and the smaller
Sbc'7 r 'ius ". the point of tangency of the spherical cap. In either case,

bl2 i .. , thc nose up to RN/Rref = .1 has a negligible effect on the wave drag

(or on the otber aerodynamic coefficients, as shown in the following subsec-

tions). Vurther increases in the bluntness ratio results in pronounced increases

in th i .', j

SOn v':ry lw finuness ratio pointed noses with little or no curvature, the

high b:)dy slope m'r result in a viscous separation drag at subsonic and transonic

Mach numbe •. Th-s drag results from a separation bubble formed by flow detach-

ment at th.- nose tip due to strong adverse pressure gradients and reattachment

¶ downstream. The pht.xomenon is somewhat Mach number dependent and is clearly

noticeable 'cr M. < .8. Its presence is apparent up to Mo. .95 or so depending

on Lhe -one •gle Figure 46 shows the magnitude of the nose separation drag

for coues with and without afterbodies at subsonic speeds. The effect of the

nose separation bubble is noticeably reduced by the influence of the afterbody.

The effect of nose curvature is to eliminate the adverse pressure gradients

and therefore the phenomenon does nct occur.

For angles-of-attack near zero, the contribution of cylindrical afterbodies
;I to the wave drag is assumed to be zero and thus no additional contribution to

v the wave drag occurs. Flares and boattails contribute positively to the wave

drag. Wave drag data for flares are presented in References 5 and 22, and the

reader is referred to these publications in these instances.

The wave drag of the boattail is primarily influenced by the boattail slope

or angle, the boattail length, Mach number, and the length of the preceding

afterbody as this affects the degree of pressure recovery on the afterbody and

subsequent expansion at the afterbody-boattail juncture. For short afterbodies

(L < 4.0 calibers), the pressure recovery and thus the boattail wave drag are

A
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Figure 46. Separation Pressure Drag on a Cone-Cylinder

also influenced by the nose shape (Reference 14), the influence generally becom-

ing stronger as the nose shoulder angle increases. In this study, the effects of

nose shape and afterbody length on the boattail were not examined. However, it

should be noted that the numerical marching technique used in the Aeroprediction

Code would allow one to examine these parameters, at least to the end of the

afterbody.

The wave drag coefficient for conical boattails in supersonic flow is given

in Figure 47. For a given boattail length, decreasing the base diameter in-

creases the boattail wave drag. However, as can be seen from Equation (136),

decreasing the base diameter also results in a lower base pressure. Therefore,

'an optimum configuration with respect to drag would balance these drag contri

butions. The overall decrease in total drag of a configuration can be strongly

influenced by the boattail design. This is illustrated clearly in Figure 48

which shows the variation in the total drag of a 10.5 caliber body having a 3.0

caliber tangent-ogive nose, a 6.0 caliber cylindrical afterbody, and a 1.5 cali-

"ber conical boattail with various base diameters. In subsonic flow, decreasing
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base diameter continues to decrease the total drag. In transonic and supersonic

flows, however, decreasing the base diameter to a ratio of DB/Dref = .4 or lower

results in an increase in the total drag. In supersonic flow, as the Mach number

increases, the influence of the base drag decreases rapidly, thus allowing larger

base diameters to achieve a minimum drag boattail design.

Many projectiles also retain rotating bands in flight. In the absence of

fraying, the drag increment due to a rotating band has been functionalized (Ref-

erence 1) and can be obtained by using Equation (17) and the curve shown in Fig-

ure 49. More recently, rotating bands have been designed for full-bore pro-

jectiles which discard upon muzzle exit, thus eliminating this drag contribution

and allowing for a cleaner shape.
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Figure 49. Rotating Band Drag - CA

For a > 0, additional drag results from the viscous crossflow velocity

(V = V sin a). For moderate angles-of-attack, one needs first to determine

the total normal force (as outlined in the following section beginning on page

98). Then, the total drag is

CD = CA cos a + CN sin a (143)

where

C = CD cos 2c. (144)
0

The skin friction component of the total drag is computed using Van Driest's

method as outlined in Section 2. The skin fricton drag is influenced primarily

by the Reynolds number, the heat transfer, the Mach number, and the point on the

body at which the boundary layer transitions from laminar to turbulent flow. For

the body alone, the boundary layer will generally be turbulent over roughly

r,10 percent of the body, depending on flow conditions and overall body length.

For very short bodies and for fins, the percentage will likely be much less.
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The calculation of the skin friction coefficient using Van Driest's method

is somewhat cumbersome. A rough approximation can be obtained by using the
simple formulation (from Reference 5):

SCF = -F Sref (145)

AI I
where

S is the wetted surface area,
w

Sre is the reference arc, and

CT is the skin friction coefficient determined from Figure 50 multiplied by

the factor 1.15 for a bod|y of revolution.

No attempt is made here to examine the trends for the base drag or the
various parameters affecting base drag in detail. Deviations in the base drag

could occur with variations in th5 nose shape, afterbody 'Length angle-of-attack,

Reynolds number (if sufficiently low), surf(5e temperature, and boattail shape.

However, the most common method to determint the base drag in the absence of aara

mass base flow (such as base bleed or rocket exhaust) is an empirical method

based on data for a long cylindrical afterbody and a fully turbulent boundary
layer ahead of the base (Reference 1) and adjusting for the presence of a boat-

tail. The relation for determining the base drag in this situation [using Equa-

tions (18) and (20) from Section 2)] is

CA= -CPB (RB/R e)3 (18)

ref A B e

where CF e f is determined from Figure 51.

For small angles-of-attack and low supersonic Maoh numbers, the relation

ACAB (-.6493ot - .002833M ) (RB/Rre~ (20)

can be used to adjust the base axial force.
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•'11
-, 4.1.2 NORMAL FORCE AND CENTER OF PRESSURE

At zero angle-of-attack, an axisymmetric body exhibits no normal force.

However, with even small increases in the angle-of-attack, the normal force

increases rapidly. The slope of the normal force curve (CN versus a), expressed

as the coefficient CN and its location of action (center of pressure, xcp) rela-
Ia

tive to the body center of gravity is of primary concern in assessing the stabil-

ity of a flight vehicle. Projectiles without lifting surfaces are generally

statically unstable and must be stabilized through gyroscopic means. For a

statically stable body, the xcp must be rearward of the x . This is often

achieved by placing lifting surfaces on the rearward portion of tie body. The

x location is more or less positioned depending on flight conditions and thecp
degree of manueverability desired.

The normal force derivative, CN, and the xcp for various nose-afterbody

combinations at zero angle-of-attack are given in Figures 52 through 57. The

data presented are for bodies with tangent-ogive, secant-ogive, and conical

nose shapes. The effect of nose length, afterbody length, and Mach number can be

readily assessed from these graphs. For P/LN > .9 (high supersonic flow), the

trends for the values of C Nand xc are quite consistent. Generally, for a
N_

given LN and Mach number, increasing afterbody length results in a corresponding.1N
increase in CN and a decrease in the xcp distance from the nose (in terms of the

percentage of0the total body length). Note that the data presented are for

a = 0 . As a result, for a tangent ogive-cylinder body and, to a lesser degree,

for the secant ogive-cylinder body, the data indicate that i~n increase in the

afterbody length beyond LA/LN = 3.0 does not significantly increase CN . This

would not necessarily be the case for higher angles-of-attack. The effects of

afterbody length and Mach number are more easily visualized in Figures 58

and 59 for L = 4.0 caliber tangent ogive-cylinder and cone-cylinder bodies.
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For increasing nose length or decreasing Mach number (P/LN decreasing),

C increases gradually to a maximum before falling off.

In the region P/LN > .9, the results shown compare favorably with those of

Reference 22. In the transunic and subsonic regions, the P/LN correlation does

not continue to hold. (This portion of the graph is shown for illustrative

purposes only and should not be used for data extraction.) Note that the pre-

dicted trend for CN , although not well defined, is for CN to decrease in each

case, as P/LN decreases below a value of 1.0, to a value of 2.2, which is about

10.0 percent above the slender body value.

For subsonic flow, the total inviscid normal force for a nose-cylinder body
is simply

CN = (CN + (CN )A (146)a NA

where the nose contribution is

(C N )N = C, tan P" + C2 0147) .

i and (C N )A is the afterbody contribution (Reference 1). ",e values for C, and :

C2 are given in Figure 60 and (CN )A is found from Figure 61. The angle 8* is

"{the nose shoulder angle at the nose-afterbody juncture. Slender body theory

Syields the x location for the nose in subsonic flow as

For the afterbody, it is suggested that one use Figure 62 taken from Reference 1.
SA simplified expression for the x for the total body is then

• , cp

cpN (C ) +CN( (149)
xcp =[(xcp )N N + N cp)NA (CN OA/N

ip t The effect of a boattail is to reduce the normal force and to shift the

total body xcp forward (Reference 5). The degree of effect is a function of the
P same parameters which were mentioned in rejard to the drag. The general behavior

of the boattail normal force is illustrated in Figure 63 (Reference 39). For
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supersonic flow, the trend is more easily seen in Figure 64. For a given Mach

number and base diameter, increasing the boattail length results in increasing
normal force losses. Increasing the base diameter or increasing the Mach number

has the opposite effect, resulting in a restoratiou of the normal force. Note

again that the Aeroprediction Code varies from the slender body theory value. In

this case, the boattail effect is underestimated by roughly 15 percent. Neither

theory has been verii.-d by a detailed comparison with experimental data. Thus,

the accuracy of these theories could not be determirttd. The location of the A

ceniter of pressure on a boattail '.s presented in Figure 65. Again, increasing

* 4 the boattail length for a given oase diameter and Mach number reduces the value

of x cp/LB eve though the xcp location relative to the afterbody-boattail

shoulder is iaoving rearward. If the nose-afterbody length is held constant, the
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increasing boattail length therefore causes a strong destabilizing trend. How-

ever, if the total body length is held constant, this destabilizing effect is

greatly reduced and in some cases eliminated.

When designing a boattail, one must avoid boattail angles sufficiently large

to cause flow separation at the shoulder. This is particularly the case for

conical boattails, whereas for ogival shapes a slightly greater boattail angle

(as determined by the local slope) can sometimes be tolerated. The angle at

which flow separation occurs can vary considerably, again depending on the local
flow conditions. For projectiles and other short bodies, separation appears

generally to occur for shoulder aigles of 60 to 100 or greater. However, on

boattails following long afterbodies, the flow has been known to remain attached

for shoulder angles up to 150.

For spinning bodies such as projectiles, one should also examine the effect

of boattail design on the Magnus force and Magnus moment. More is said concern-

ing these effects in the following paragraphs. For now, suffice it to say

that flight tests have shown that boattail design is important as far as the

Magnus force and moment are concerned, particularly in transonic flow.

The effects ol nose bluntness on the normal force and center of pressure

are shown in Figures 66 and 67 for spherically capped and truncated conical

noses. The data presented are for truncated 7.125* semi-vertex angle cones with

J a fineness ratio of 4.(i ca:,bers for no blunting (RN/RB = 0) and 100 spherically

capped cones. When adding the spherical cap or truncating the nose, the nose

length was reduced as previous., described in the drag paragraph. Overall,

blunting the nose up to a bluntness ratio of RN/Rref = .1 has a negligible effect

on C (see Figure 68) and a small effect on the xcp location. Theoretically,
the x location experiences an abrupt shift forward with initial blunting due to•).,the cp

truncation (as shown in Figure 69) which does not occur when the spherical cap is

added. This phenomenon has not been verified experimentally.

At a > 0, there is a nonlinear contribution to the normal force due to the

viscous crossflow velocity. The correction for angle-of-attack as given in

Reference 18 [and using Equations (25) and (26) from Section 2] is
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Mdc sin a) S sin2c (25)

:7, and

AC - C x sin a (26)
m n dc p

where fl and Cd are given in Figure 70, V
d

S is the planform area of the body in the plane of the body's longitudinal
p

axis, and

S is the reference area.

The center of pressure for the entire body is then j
C + AC

x m m (150)cp CN+CN +'

Equations 25, 26 and 145 do not account •nr any crossflow Reynolds number de-

pendence. A more detailed presentation on the effects of incidence is given in

Reference 18.
'.11

4.1.3 DYNAMIC AERODYNAMICS

The Roll Damping Coefficient for an axisymmetric body is the result of the

skin friction force tangential to the rolling axis. As indicated in Section 2,

this coefficient has been accurately predicted using the known values for a given

configuration and adjusting these values through the relation

C (Cp) L/L1  (151)

The data presented in Section 3 were thus obtained and can be similarly used if

desired to estimate the C4p values for additional configurations so long as the

comparison design is approximately the sa.re length.
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The Magnus force and Magnus moment are the results of boundary layer distor-

tion on a spinning body at angle-of-attack. Usually, empirical methods are used

to predict the magnitude of the Magnus coefficients. The Aeroprediction Code

does not take into account any variations in the nose shape or length, only the

total body length. It is assumed that the Magnus moment is also independent of

the boattail slope. Sample variations of the Magnus moment for bodies with and

without boattails are shown in Figures 71 and 72 which indicate that increasing

the body length and/or adding a boattail increases the Magnus moment. The

Magnus moment is not determined for bodies with lifting surfaces. For missiles,

this is not significant. For bombs, fin Magnus is important.

The pitch damping coefficient, Cmq + Cm., indicates the pitching moment
produced by rotational motion about the pitching axis and can be determined

theoretically as shown in Section 2 (Equations 90-96). Examples are given in

Section 3. The reader is referred to these sections for more information on
dthese methods.

The theory found in Reference 25 indicates that the pitch damping coeffi-

cient is strongly influenced by the nose length where the afterbody length is

less than 1.0 caliber in length. For afterbody lengths greater than 1.0 caliber,
the main parameter is the total body length. The influence of the boattail is

negligible as long as the length of the boattail is included in the total body

length when determining Cmq + Cm•. In general, increasing the nose length in

conjunction with very small afterbodies or increasing the total body length in-

creases C mq. The adaptation of the slender body theory in Reference 22 also

indicates that the increase in C + C . is proportional to the increase in the

magnitude of the pitching moment, C , and that, for configurations with very

long afterbodies (LA 4 o), the value of Cmq + Cm& approaches the value of -Cm'
Figure 73 illustrates the variation in C + C * with body length as predicted

by the method discussed in Reference 25.
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4.2 LIFTING SURFACES

A large number of wing alone cases (two fins together with total span, b, no

body present) were considered using the Aeroprediction Code. The majority of

cases represented rather simple planform shapes; i.e., diamond or biconvex air-

foil sections with a constant shape and thickness ratio along the span and sharp J

leading and trailing edges. Exact linear theory is applicable in these cases.

The results of the numerical solutions obtained by the Code are compared with the

analytical predictions of the linear theory. The numierical method used in the

Code can be applied over a wide range of airfoil shapes and planforms. Modified

d3uble wedge and biconvex airfoils with blunt leading and trailing edges and

tapered, swept fins with variable (but similar) airfoil sections and variable

thickness with span are also possible. However, no camber or twist is con-

sidered. Because of the large number of variations in geometry possible, the

examples which follow are generally limited to the simple planform shapes. The

reader is referred to Section 1 of this report and to Reference 2 for more de-

tails on the theory utilized in the Code.

4.2.1 DRAG

The drag of a single fin is generally small compared to that of the total

configuration. As the number of fins increases, the drag contribution of the

lifting surfaces can become quite significant, although rarely dominant. Geome-

trical factors which are predominant in affecting the drag are aspect ratio,

thickness ratio, bluttness of leading and trailing edges, leading edge sweep

angle, and airfoil shape.

Reference 2 contAins several examples which compare the numerical, results

for the two-dimensional pressure coefficient with that of the exact linear
V• theory. The comparisons verify the accuracy of the numerical method for both :

i4 •the cnordwise and spanwise distributions.

Figures 74 and 75 show the wave drag coefficients for rectangular -nd delta

planform fins with sharp LE and TE for transonic speeds. The wave drag is as-

sumed to decay linearly from M -= 1.05 to zero at M = 0.85. In general, for
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Figure 75. Wave Drag Coefficient of a Double-Wedge Delta and Rectangular
Biconvex Fins at Transonic Speeds

constant thickness with span, which is Lthe case here, and zero sweep angle, the

wave drag coefficient based on the planfform area does not change with increasing

span. The area which is an exception to this rule is 1.0 < Mo. < 1.2. .n this

flow region, the effect of increasing the aspect ratio is to increase the wave

drag coefficient. Thickness effects are also shown to be present.

Figures 76 and 77 compare the supersonic wave drag predictions of the two

theories for modified double-wedge and biconvex-planform fins, respectively, with

various sweep angles, y, and constant chord length. The agreement is very favor-

able. It can be seen that the wave drag increases with thickness but decreases

with an increasing sweep angle. Figures 76 and 77 apply for fins of moderate

aspect ratios and moderate supersonic Mach numbers. For higher values of these

parameters for rectangular fins with diamond airfoil sections, one can use Fig-

ure 78, which is an extension of the curve for AR tan y = 0 in Figure 76. One

should note that the drag can change significantly with sweep depending on

whether the leading edge is subsonic (lies forward of the Mach wave line) or

supersonic (lies entirely rearward of the Mach wave line). Reference 5-shows-

supersonic wave drag predictions using the linear theory for fins with various

taper ratios. Also shown in Reference 5 are form factors which can be applied to

a variety of airfoil shapes to adjust the drag prediction of the diamond airfoil
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to obtain the drag for a fin with a similar aspect ratio, chord length, and Mach

number. As one would expect, in general, the greater the initial slope on the

airfoil for a given thickness ratio, the greater the wave drag contribution.

The base pressure of the fin, referred to as the trailing edge separation

drag, is similar to the three-dimenslonal phenomenon which occurs on the body.

The pressure in the.rear of the fin is that of a two-dimensional rearward facing

step. Experimental results (Reference 40) for fins with no TE slope are shown in

Figure 79. The data have been extrapolated for MH < 1.1 based on the general

shape of the three-dimensional base pressure curve. The base pressure on one fin

can be adjusted for TE taper (varying bluntness) by Equation (44) in Section 2.

The position of the fin with respect to the base on the body can also affect
the base pressure (of the body). Also, the geometric fin parameters which de-

termine the extent of this effect are the aspect ratio, thickness ratio, profile
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or qhape, sweepback angle, and number of fins. The effect of thickness is shown

in Figure 80 which indicates that the effect increases with an increasing thick-

ness ratio for a given Mach number. The other geometric parameters were not

examined. The distance or location of the fin upstream from the base at which

the fins no longer affect the base pressure varies linearly with t/C, as shown in

Figure 81 (Reference 41). The change in base pressure is assumed to vary linear-

ly from a maximum when the TE of the fin is flush with the base to zero at the

distance indicated. Fins extending downstream of the base are assumed to have

the same effect as those that are flush with the base.

The LE bluntness effect on the drag was also examined. The trends for

several Mach numbers are shown in Figure 82 for a biconvex airfoil. Bluntness is

seen to have a larger effect at the high supersonic Mach numbers. However, the
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effect at the lower supersonic Mach numbers is shown to indicate a stronger de-

pendence on the LE radius. The exact linear theory does not hold in these cases.

The reader is referred to Section 2 for a discussion of the skin friction

drag component.

4.2.2 LIFT

For subsonic speeds, the only contributon to the lift or normal force is

assumed to be due to the angle-of-attack. The procedure in this instance (as

shown in Section 2) is to determine the normal force and x cp for a similar wing

of aspect ratio PAR at Mach number zero and angle-of-attack, Ou. The variation

of CN for a diamond airfoil in subsonic flow is given in Figure 83. For tran-

sonic hlow, the relation

1-ac 2AR(15)
Mac fb( ) 2 + [AR2 (p2 + tan2y,) + 4 St 2 T fc r

is used to compute the lift curve slope at the force break Mach number and at

intermediate Mach numbers, Ma and Mb (defined in Section 2). The force break

Mach number is assumed to represent the point at which the flow transitions from

tI.i~ subsonic to transonic flow. The force break Mach number varies with aspect ratio
and thickness as shown in Figure 84-A. The factor, ac, is a correction factor to

the lifting line theory to account for the decrease in the lift curve slope for

thick fins as a function of thickness. The variation of this factor is shown in

Figure 84-B at M• = Ma and Figure 84-C at M Mb. The further determination of

CN in transonic flow is outlined in Section 2.

Figures 85 through 94 show the variation in CN and xp as a function of AR,
N x

t/C, and Mach number for a rectangular fin with sharp LE and TE for transonic and

supersonic flows. Although shown as a function of the transonic similarity

parameters, these curves were extended to show the decreasing effect of the

aspect ratio. For the rectangular fin, the effect of AR is not considered for

high supersonic Mach numbers where strip theory is used, although some small

effect is noticed in the x location. The effect of fin thickness in this
cp

region is thus more clearly seen. For M• > 3.0, increased thickness is shown to
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result in increased CN and a forward shift in the x location. For low super-
N cp

sonic Mach numbers, the effects of AR and y are assumed to dominate the varia-

tion in C and x and thus the effect of thickness on lift is not considered.
N ~ cp

The transonic predictions compare well with the experimental data correlations

given in Reference 5.

Variations in the CN and Xcp with LE sweep angle, yLB, and taper are shown

in Figures 95 and 96, respectively. Generally, the lift curve slope effect is

more noticeable in the low supersonic flow region for the subsonic LE case

(YLE < P) than when the LE is supersonic (LE > p). (The cases shown here are

for unswept TE. The Code can also be used for cases with TE sweep but, as these

trends are similar, the reader is referred to P ierence 5 for more detailed

j i'ii charts produced using exact linear theory.) Generally, the lift curve slope is

reduced with increasing yLE for a given taper ratio, A, (increasing AR), and

de-reased with increasing X for a given YLE (decreasing AR). In supersonic flow,

changes in YLE for a given X and Mach number have very little effect on the xcr

location as a function of the root chord, while increasing A results in a forward

movement in x The effect of thickness was discussed in the rectangular fincp
case and that discussion also applies here.

For complete configurations, the presence of a body with the fin causes

interference effects on both the lift and the center of pressure. The inter-

ference lift is composed of three parts: the lift of the fin due to the presence

of the body, the lift of the body due to the presence of the fin, and the vortex

lift on the tail due to vortices shed by a wing or other forward-located lifting

surface. The methods to determine these effects are discussed in detail in Sec-

tion 2. The equations for summarizing the coefficients for the individual body

components to obtain the coefficients for the total configuration including the

interference effects are ilso g:ven in Section 2.
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A Parameter in equation for skin friction

AR Aspect ratio (b2 /S)

a Speed of sound (ft/sec)

ma Missile acceleration during maneuver (g's)
m

aT Target acceleration during maneuver (g's)

B Parameter in equation for skin friction, lift interference
BNA parameter

B1 Lift interference parameter, infinite afterbody•i'• t IA

BN Lift interference parameter, no afterbody

B',::'I BSA Lift interference parameter, short afterbody

b Span of two fins (excluding body) (ft)

C Local chord length (ft)

c Mean aerodynamic chord (ft)

C Axial force coefficient

CAB Base axial force coefficient

C ABA Increment in base force coefficient due to angle-of-attack

'I; Forebody axial force coefficient

,C Axial force due to skin friction

C CAP Pressure (or wave) axial force coefficient

CO Nose separation drag coefficient

C Axial force coefficient due to presence of a rotating band

CAW Wing axial force coefficient

CD Drag coefficient in wind axes

C Zero angle-of-attack drag coefficientSCD0

A-i
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C dc Infinite cylinder crossflow drag coefficient

CF Friction coefficient

CFC Friction coefficient at critical Reynolds number

CL Roll moment coefficient

C Roll damping coefficient [8C2 /3(pD/2V)] (rad 1 )

Cm Pitching moment coefficient

C + Cm Pitch damping coefficient .(i/q&SD) [OMy /8(qD/2V)] +

[am /8(&D/2V)ll (rad 1 )
y

C Pitching moment coefficient derivative
mi

C Pitching moment coefficient derivative due to fin deflec- i
m6  tion, 6F%

C N Normal force coefficient

CNB Body-alone normal force coefficient

CN Normal force coefficient correction for interference due to
B(F) body in presence of a fin

C Normal force coefficient correction for interference due to
"FCB) fin in presence of a body

Isolated i fin (in presence of the body) normal force
NTi coefficient (cruciform configuration)

NTVC Tail normal force coefficient correction for canard shed
vortex

C C Body-tail total normal force coefficient at small a and high
N(TOT)' CN(B+T) rsetvla, respectively

C Normal force coefficient derivative
N

C Magnus moment coefficient derivative {(I/q 0SD)[3 2 M /O(pD/2V)dY])
pa ~(rad-l

C Pressure coefficient

A-2
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W~UIW' 7 I!J 7 7" -~ -nn

C?1 2 CpU' Pressure coefficients for lower and upper surfaces of the

:" wing, respectively

C Base pressure coefficient

PBA

C Fin root chord (ft)
r

C Distance from wing root leading edge to first surface dis-
continuity downstr 'm, parallel to freestream (ft)

"•C Distance from wing iot trailing edge to first surface dis-
S2 continuity upstream qarallel to freestream (ft)

i C• Fin tip chord (ft)

Ct1  Distance from wing tip leading edge to first surface dis-
continuity downstream, parallel to freestream (ft)

Ct2  Distance from wing tip trailing edge to first surface dis-
Vý t2 continuity upstream, parallel to freestream (ft)

C1  Parameter in equations for skin friction, transonic nose
normal force

C2  Parameter in equations for skin friction, transonic nose
normal fo.ce

C Constant in determining pitch damping coefficient

CG Center of gravity

D Body reference diameter (ft)

D Mean body diameter

D D Mean body diameter near a canard and tail, respectively
w d!d, Parameter in equation for skin friction

d2 Parameter in equation for skin friction

F Mach wave angle proportionality factor

fw Spanwise location of panel vo.rtex

f* Dynamic pressure ratio across 4 bow shock

A-3



77' 77 121 L , e-

9 Acceleration due to gravity (ft/sec2 )

H Rotating band height above body (cal)

HE Initial heading error (rad) I
0

IBT Body-tail normal force coefficient interference

I Specific impulse (sec)

Ix Body polar inertia (slug-ft 2 )

Iy Body transverse (pitch axis) inertia (slug-ft 2 )

it Tail interference factortit
K Hypersonic similarity parameter

•"!!; KB KC, KB(F)' ,
, KInterference parameters

KF(B)' kB(F)' kF(B)

L Body length (cal)

LA, LB, LN Lengths of afterbody, boattail, and nose, respectively (cal)

""BA Body alone lift

L/\i L Interference lift
B(F), F(B)

LC CombinaLion lift of wing plus body

L F Fin alone lift

Ll Comparable body length.

M Mach number

Ma Mb Intermediate transonic Mach numbers

Mfb Force break Mach number

M£ Mach number separating low supersonic and high supersonic
inviscid body alone and wing wave drag computations

"Mg Mach number separating low supersonic and high supersonic
e inviscid lift and dynamic derivative computations

A-4
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SM* Mach number related to nose length used for interpolations

m Mass

mir Miss distance due to heading err,•r ("'eters)

N Effective navigation ratio

p Roll rate (rad/sec)

q Pitch rate (rad/sec)

qw Dynamic pressure

P Body radius (cal)

R Mean local body radius (cal)

R be Radome boresight error

N Body, nose spherical radius (cal)

%C Critical Reynolds number
RN Effective radius of spherical cap (cal)

R Reynolds number based on body length

R Body radiuT at base of sphirical cap (cal)

RA Body s "ace slope at x=O

R Body surface slope At nose-afterbody junction
S

RX Range (ft)

7. Area (unit 2 )

Sb Body surface area (cal 2 )

Sd Dynamic stability factor

S Gyroscopic stability factor

S Body longitudinal planform area (cal 2 )
S~p

ST Total planform area (ft 2 )

A-5
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II

SW Planform area for two tail fins (ft2 )

S Wetted area (ft 2 )
w

s Distance along linear segment

s iuint on body at which perturbation solution begins

st Origin of source or doublet distribution

T Temperature (OR)

TR Thrust (lb)

T Wall temperature (OR)w

t Local thickness of lifting surface (ft)

t Body surface match point for spherical cap (cal)

tf Time of flight (sec)

t Total missile maneuver time constant

t Lifting surface thickness at root (ft)
r

t Lifting surface thickness at tip (ft)

V Velocity (ft/sec)

Vc Closing velocity (ft/sec)

Vg Missile velocity (ft/sec)
m

V0  Initial velocity (ft/sec)

4'. W Weight (lb)

WL Launch weight (Lb)

w Perturbation velocity (ft/sec)

X Stretched coordinate at which singularity exists

x Body coordinate (parallel to body axis) or lifting surface
chordwise coordinate for fin only (cal)

x Body coordinate including spherical cap (cal)

A-6
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XAFT Distance from tail trailing edge to base of body (cal)

x Distance from nose to moment reference (cal)r cg

xc' Xw Distances to fin apex for canard and tail, respectively,
from nose (cal)

Xcp Distance from moment reference to center of pressure (cal)

XpB Body-alone x from nose (cal)
cpB cp

(Xcp)Ti Isolated ith fin (cruciform configuration) Xcp from nose (cal)

(Xcp)TOT Total body-tail xcp from nose (cal)

x Interference x from nose (cal)
cpi cp

Xp Body planform area center location (cal)

Xte Distance defined in Equation (125)

Y Stretched coordinate at which singularity exists, functional
parameter, radius coordinate

y Spanwise distance on lifting surface (ft)

th
Ycpi Spanwise location of center of pressure for isolated i finYcpi (ft)

a Angle-of-attack (rad)

"Compressibility similarity parameter, ;-Wi - 11

r Second derivative of C with respect to a evaluated at
a=O, e=0 P

Y Calorically perfect gas heat capacity ratio

Sy Flight path angle of missile rate-of-change (deg/sec)

Y¥0 Streamwise circulation per unit length

Yi, Y2, Y3, Y4 Sweep angles for local surface discontinuities on a fin,
functional parameter (deg, rad)

YLE Leading edge sweep angle of lifting surface (=y1 ) (deg, rad)

Incremental value, second derivative of C with respect to
a evaluated at a=0, e=n/2 P

4.
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S6 Local body angle (rad)

Nose slope angle (rad)

" F Fin control deflection angle (deg)

Angle associated with body slope (rad)

Angle of nose-afterbody junction (rad)

Initial body surface angle following spherical cap (rad)I

Crossflow drag proportionality factor, functional parameter

. Azimuthal angle from the leeside, roll angle (rad) I
B Boattail or flare angle (deg)B

Co Cone half angle (deg)

O* Equivalent cone angle for nose of given length (rad)

A Parameter proportional to derivative of C with respect to
a for c=O, O=O, functional variable P

x t r

P,;,, pMach wave angle, sin

Functional parameter

p Density (slug/ft3)

Root leading edge radius (cal)

p'I PTip leading edge radius (cal)

' tr Root trailing edge radius (cal)

Tip trailing edge radius (cal)

CY Area of influence on lifting surface, stress (psi)

t" Time (sec)

T AF Airframe time constant

Guidance filter time lag constant

A-8
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Total missile guidance time constant

STj Tracking loop tizae constant

•*, * Disturbance potential

x Functional parameter

Superscripts

Differentiation with respect to x

Span including body

Subscripts

A Afterbody

a Asymptotic value

• B Base

b Body

C Conical value

Local

"1 i Nose

0 Ogival value

P Pressure

RB Rotating band

ref Reference value

std Standard value

"T Tail value

W Wing

w Wave drag component

A-9
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Subscripts (Cont 2

0 Stagnation value (when referring to pressure, ex,:ept on
pages 24-25 where it refers to the M,=O case), value at x=O
(drag only)

1, 2 Values upstream and downstream from a body corner,
respectively

a Partial differential with respect to 0 (a040)

Freestream condition

Parameter in determination of C + C using LMSC method

inq ma sn MCmto

t(i

II
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