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seawater, Specimens of the composite or of bronze were electrically
coupled to anode zinc in seawater at flow velocities of O and 10 meters
per second for up to 270 days. The composite did not cause a signi-
ficantly different current demand than bronze on the zinc sacrificial
cathodic protection system, It was noted that this represents a worst
case condition for the composite, since the specimens were deliberately
prepared wirh the graphite-fiber ends exposed on the test surface,
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S \\ ARSTRACT

="~ This study was designed to juantify the cathodic
efficiency of a graphite fiber reinforced epoxy
laminated composite material by comparing the amount
of zinc consumption from a sacrificial-anode cathodic
protection system on the composite with the consump-
tion due to nickel-aluminum bronze in seawater, Spe-
cimens of the composite or of bronze were electrically
coupled to anode zinc in seawater at flow velocities
of 0 and 10 meters per second for up to 270 days,

The composite did not cause a significantly differeut
current demand than bronze on the zinc sacrificial
cathodic protection system. It was noted that this
represents a worst-case condition for th: composite,
since the specimens were deliberately prepared with the
graphite-fiber ends exposed on the test surface, .

ADMINISTRATIVE INFORMATION
This work was conducted as part of an independent exploratory development pro-

gram of the David W. Taylor Naval Ship Research and Development Center. It was

conducted under Program Element 62766N, Task Area ZF 664 12001, Work Unit 1-2823-516,

INTRODUCTION

Continuous graphite fiber reinforced epoxy laminated composites are one of
several advanced composite materials which hold promise for a variety of applica-
tions in the marine enviromment, Noteworthy advantages tuat are inherent in these
materials and not readily identifigble with marine grade alloys include corrosion
resistance, high strength, high stiffness, low weight, and ease of fabrication into
complex structures, With the exception of the graphite-fiber epoxy cowposite
materials, most other fiber-reinforced composites are considered to he electrically
nonconductive, Bulk graphite is, however, a material which has a noble potential
and extremely high polarization resistance in seawater, making it an effective
cathode. Thus, coupling bulk graphite elcctrically to any common metallic struc-
tural material in seawater would cause accelerated corrosion of that material,
This severe condition is somewhat mitigated in the graphite-fiber organic matrix
composite in that the matrix provides electrical insulation to those composite
surfaces which do not have exposed graphite-fiber ends, thus decreasing the effec-

tive wetted area of the graphite, This study is designed to quantify the cathodic
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efficiency of the laminated composite material by comparing the amount of zinc
consumption from a sacrificial-anode cathodic protection system on the composite

E : with the consumption on a material such as nickel-aluminum bronce which is

commonly used in a seawater environment.

MATERIALS
The graphite-epoxy composite specimens used in this evaluation were prepared

from a 6.,4-mm thick by 300-mm wide by 460-mm long laminate which was fabricated at
The specimens were cut to size with a diemond wet wheel., The speci- ),

B Ao (4 & itk d

the Center,
men face exposed to seawater was ground with a belt sander until graphite fibers
The composite

The fiber

i ki i

were exposed, thus remcving the insulating epoxy surface layer.

laminate itself consisted of a lay-up construction having 43 plies.
direction of each ply was either 0° or :45° as shown in the following laminate for-

G £t

wd b bk ]

mula

(03/¢45)4/65/(+45103)4

Total

4
z
[
H
£

[}

three plies in 0° direction followed by one ply in the +5°

where (03/i45)4
direction and one ply in -45°direction; sequence is repeated

il e a1 ol imernat s 3

four times,

) = three plies in 0° direction located at mid-thickness of laminate

: 3
b and being common to the mirror image of laminate,

# Fpset gy

(;%5/03)4 = mirror image of (03/th5)h,

full number of plies shown in laminate formula, 43 in this case.

1 Total =
i
This particular construction represents certain structural requirements wherein the 3
0°-oriented fibers provide axial~load transfer capability in the principal loading ]
* E
direction while the *45° fibers provide torsional stiffness. A low modulus HTS :

graphite continuous fiber reinforcement, supplied as a prepregged 300-mm wide tape

- R o
: was used to construct the laminate. The prepregged matrix was a 177 °C curing epoxy

*HTS = high tensile strength grapliite fiber; tensile strengta = 2240 MPa;
tensile modulus = 2,34 x 105 Mpa,

A Y e g e - ems - e
. T e
Ty~ gt

e S U Y 5




Elkood

i

P TR T

T ST T e

CERRTITEUEI S

i
£

T, VA TS T ST

TS oy

i il
<

BRI

PRI |

ot g

C— e PR, - R c — ~———— g et e e ——
. . Il - e - A nih el Gy red ne aaEG oyl

eystem commonly found in the aerospace industry. A vacuum bag autoclaving pro-
cedure, including the cure schedule, is given in Figure 1 and illustrates the
fabrication process used,

The nickel-aluminum bronze used in this study was purchased to Military Speci-
fication MIL-B-21230., This material had a nominal composition of 4-5.5 Ni,
8.5-11,0 Al, 4-5 Fe, 3,5-max Mn, with the balance being copper. The zinc was pur-
chagsed as a nominal 23-1b sacrificial anode and is the standard anode grade used
in U.S. Navy shipboard cathodic protection systems, Specimens were rough-cut from
blocks and machined to final dimensions, Holes were drilled partially through the

dry sides of specimens of both materials to facilitate electrical connection,

EXPERIMENTAL PROCEDURE

Specimens of either the graphite-epoxy composite or the nickel-aluminum
bronze (19.4 cmz) were cslectrically coupled to one-fourth size specimens of zinc
(4.8 cmz) and exposed to nat.ral seawater flowing at about 0 m/s or at 10 m/s for
31, 120, or 270-days duration. Uncoupled control specimens of all materials were
also exposed at similar velocities and durations., These exposures were conducted
in the Basil Flow Cells (Polarization Cells) at the LaQue Center for Corrosion
Technology in Wrightsville Beach, NC. This apvaratus is designed to mount speci-
mens 30-mm long by 73-mm wide by 6-mm thick, with one surface of each specimen
facing a second spacimen across a 6-mm-wide water channel, For this test the zinc
specimens were 30-mm long by 18-mm wide by 6-mm thick, and nonmetallic spacers
were used to fill the remaining space for flow continuity. Electrical connection
was made tc the specimens on the back surfaces, which remained dry. Each cell had
a salt-bridge arrangement to allow monitoring of corrosion potentials with a
silver/silver chloride (Ag/AgCl) reference half-cell. Galvanic current between
the covpled specimens could be monitored using a zero-resistance ammetcor. Couple
currents and potentials and potentials of control specimens were monitored daily,
except weekends, during the exposure, Seawater temperature was recorded nine
times daily, At the conclusion of the exposures, all specimens were towel-dried,
welght loss determined gravimetrically, and specimen appearance recorded. In
addition, periodic reweighings of all graphite-epoxy specimens were performed to
determine the amount of moisture absorbed in the epoxy and the rate of its subse-

quent evaporation.
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specimens exposed for longer durations, Otherwise, the graphite-epoxy specimens

3 RESULTS AND DISCUSSION

1 EXPERIMENTAL PROBLEMS i
j Several difficulties were encountered during the exposures, Twice the zinc '?
E ’ specimens coupled to graphite epoxy were corroded sufficiently to require replace~ x
é' i ment. The first of these replacements took place after 32 days of the 120-day A
g. exposure at 10 m/s. During replacement, the first zinc was lost as it was being ;
§ removed, Thus, the total zinc weighc loss for this couple could not be accurately L
é determined., Tre other replacament occurred after 83 days of the 270-day exposure E
é‘ at 0 m/s and occurred without incident. At this time it was discovered that the 1
? electrical contact between the zinc and the nickel-aluminum bronze specimen in the ?
é. 270-day exposuie at O m/s had not been made. Although this was then corrected the i
E' “"couple" was actually not electrically connected for the first 83 days of the test. g
g Potential and current data for this couple are therefore not reyorted during %
% this period, é
: SPECIMEN APPEARANCE E
é After 30-days exposure the wetted surface of the coupled graphite-epoxy speci- £
§ mens were covered with a thin whitish deposit, probably a calcareous deposit,

% Uncoupled specimens of this same material did not have this deposit, nor did any _
|

: appeared unaifected by the exposure,
-
. General attack on the nickel-aluminum bronze specimens was present only on
Localized corrosion at the

St

e

) the uncoupled control specimens exposed at 10 m/s,
4 fixturing points was experienced on uncoupled specimens exposed for 120 and 270

days. Minor localized corrosion also occurred on the specimen "coupled" for 270

days, but this corrosion likely occurred during the first 83 days of exposure when
It was obvious from specimen appearance

the specimen was inadvertently uncoupled,
that the nickel-aluminum bronze experienced less corrosion when cathodically prc~ ;

tected by coupling to zinc,
The appearance of the zinc control specimens is shown in Figure 2 and the

The amount of corrosion appears to increase with

coupled specimens in Figure 3,
Coupling of the specimens also increased

increasing exposure duration or velocity.
visible corrosion, as would be expected if the zinc were cathodically protecting
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the other materials., The morphology of the zinc corroasion was varied, ranging

from general attack to localized pitting.

WEIGHT LOSS
Results of the weight-loss measurements on the zinc specimens are presented

in the first part of Table 1. The weight loss of zinc increases with increasing

velocity or exposure duration.
cating the sacrificial nature of the zinc in the couple,
loss between zincs coupled to graphite-epoxy and those coupled to nickel-aluminum

Weight loss also increases upon coupling, indi-
The difference in weight

bronze are small compared to the effect of coupling in general, and the bronze

tended to cause slightly more weight loss than the cowposite., Thus, both cathode

materials have similar effects on the zinc corrosion., 1In the 120-day exposure at

10 m/s the weight loss of one specimen was not available and had to be estimated

from the galvanic current. Given this fact, agreement is good., In the 270-day

exposure, tne nickel-aluminum bronze specimen was uncoupled for the early part of
the exposure, thus invalidating the data from this specimen. In this case no

comparison is possible,

Table 1 also presents weight-loss data for nickel-aluminum bronze. Weight

loss of uncoupled specimens increased with increasing exposure, velocity, and

duration. With the exception of the "coupled" 270-day exposure, coupling of the

specimens to zinc reduced the weight loss to a fairly uniform value which was

independent of exposure duration or velocity. Thus, the majority of the small

amount of corrosion of the bronze occurred during the first 31 .days of exposure,.

The nickel-aluminum bronze was therefore being cathodically protected by the

sacrificial corrosion of the zinc.
The graphite-epoxy specimens gained weight during testing due to water

absorption and buildup of calcareous deposits, This will be discussed in detail

later,

POTENTIALS
Potential data for all couples and control specimens 1s summarized statisti-

cally in Table 2 and plotted iu Figures 4 through 7, Figures 4 and 5 are for

uncoupled control specimens at flow velocities of 0 and 10 m/s, respectively,
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TABLE 1 - CORROSION OF METAL SPECIMENS

EXposute _Meight Loss of Zinc (g) Weight Luss of Nickels
Dusation Velocity Coupled to Coupled to Aluminum Bronze (g)
(days) (m/8) |Uncoupléd | Nickel-Aluminum G 2?: Epox U 1 CoupIh& to
ays Bronze rap e=-Epoxy ncoupled Zinc
31 ~0 0,137 0.348 0.296 C.087 0,044
10 1.362 12,861 10.918 0.600 0,045
120 ~0 0,513 1,540 1.417 0.184 0.054
10 2,082 7.882 4.123*% + 1,409 | 0.561 0,039
270 ~0 1,732 2,016 0.624%*% + 1 600 0,273 0,130%%

*Specimen lost during replacement after 32 days. Value reported was calculated
by integrating the galvanic current over the first 32 days of test and applying

Faraday's Law,
**Specimen uncoupled for first 83 days,

***Specimen replaced after 83 days,

Values for anode zinc stabilized quickly to around -1000 mV versus Ag/AgCl at 0 w/s
and to around -1050 mV at 10 m/s. Potentials for the nickel-aluminum bronze were
quite erratic for the first 30 to 60 days but eventually stabilized to around
=100 mV at either velocity, The potentials for graphite-epoxy were very noble,
stabilizing to about +300 mV after 20-days exposure at either velocity. A slight
electropositive drift in the graphite-cpoxy potential continued throughout the
270-day expusure period. All of the control specimen potentials were within the
range reported elsewhere* on similar materials,

Potentials of the couples at 0 and 10 m/s flow are nlotted in Figures 6 and 7,
respectively, The couple potentials under low flow conditions stabilized immedi-
ately whereas, under high flow conditions, 30 days were required for stabilization.

Regardless of the material to which the zinc was coupled or the flow velocity, the

*LaQue, F,L, and G,L. Cox, "Some Observations of the Potentials of Metals and

Alloys in Seawater," Proc American Society Testing Materials, Vol, 40, p. 670 (1940).
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TABLE 2 - POTENTIALS AND CURRENTS OF
COUPLES AND CONTROLS

- 1
Nickel- .
Gr;p:ite- Aluminum Zinc Zinc/ Graphite-Epoxy Zn/Ni-Al-Br ‘
POXY | Bronze Potential* [Potential* [Current, mA|Potential*Current, mA
Potential>
Potential*
0 m/s
31-Day Test : .
1-31 Mean 266 ~228 ~1035 -1017 ' 0.29 1 =1007 0.30
Dev 38.2 27.1 7.0 13.6 0,07 26.5 0,16
L20-Day Test
1-31 Mean 274 -228 -1024 -984 0.93 ~985 0.96
Dev 54.6 35.7 19.1 21.8 0,61 25,4 0.70
32-120 Mean 334 =96 -991 -995 0.23 -983 0.26
Dev 20.8 11.4 8.2 18.3 0.10 16,8 0.10
1-120 Mean 296 -176 -1012 -989 0.66 -985 ~ 0.68
Dev 52.9 71,2 22,1 20.8 0.59 22,6 0.64
[270-Day Test
1-31 Mean 286 -187 -1028 -1006 1.47 - -
Dev 62.8 42,6 12,2 24 .8 4,00 - -
32-120 Mean 298 =170 -1013 -998 0.28 -1004 0.31
Dev 24,2 67.9 15.2 19.8 0,08 36.6 0.27
121-270 Mean 355 -92 -1001 ~994 0.08 ~982 0.10
Dev 16,0 12,4 14,0 9.3 0.03 14,2 0,02
1-120 Mean 293 -177 -1019 -1001 0.69 ~1005 1.78
Dev 41.3 60.6 16,0 21.9 2,38 35.8 6,04 ]
1-270 Mean 306 -158 -1016 ~-999 0.56 =392 0.9
) Dev 44,7 64,2 16.0 26,9 2,11 30,5 4.29
10 m/s
31-Day Test
1-31 Mean 291 -288 ~1043 -893 13.62 -915 13,65
Dev 24,1 13.4 8.2 85.6 5,52 83.3 7.08
120-Day Test
1-31 Mean 225 ~262 -1033 -1001 4,54 -960 7.71
Dev 84,0 ©29.3 15.5 44,7 4 .87 78.3 9.59
32-120 Mean 324 ~90 =-1047 -1031 0.78 -1039 0.92
Dev 20,5 6.3 8.3 7.9 0.52 8.7 0.49
1-120 Mean 262 -19; -1038 -1013 3.05 -990 5.00
Dev 81.6 86,6 14,7 38.2 4,19 12,2 8.09
_—
*mV versus silver/s chloride.
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couple potentials remained very close to the potentials for uncoupled zinc., Thas

indicates that the polarization resistance of the zinc was much lower than that of
% ! % the cathodic materials and, thus, the galvanic corrosion occurring on the zinc in ‘

all couples was cathode limited; i.e. the controlling reaction kinetics were
s ? those at the cathodic material, %

GALVANIC CURRENTS

TPERTR SOWE AT

Galvanic current data for all couples is summarized statistically in Table 2 i

and plotted in Figures 8 and 9 for flows of O and 10 m/s, respectively, Large

Lol

; variations in current occurred between couples of the same material at the same

velocity, Differences in currents between coupies containing nickel-aluminum

" e

% : : bronze and those containing graphite-epoxy were minimal by comparison. This is in

-
PO

agreement with the conclusions from the weight-loss data presented earlier, Gal-

b adibiad

vanic currents were approximately five times greater at 10 m/s than at O m/s. This

i
et g
i

L o , d
P s AT

too agrees with the weight-loss data., Galvanic currents were steadily decreasing

i over at least the first 150 days of test and possibly throughout the entire 270-day

[ -

run, Thus, it is likely that exposures longer than 270 days in duration would

yield average corrosion rates lower than those in these exposures,

Galvanic current from each exposure was computer-integrated to obtain the

i total charge passed during the test, This was converted to weight loss by using
Faraday's law:

% I

electrochemical equivalent, grams/coulomb,

W= QE
3 i where W = weight loss, grams,

9 ; Q = total. charge passed, coulonbs, and
2 |

A : E -

A comparison of values of weight loss calculated in this manner with actual
measured weight loss is tabulated in Table 3 and plotted in Figure 10, The cor-
relation coefficient for this data is 0.991 and a least-square straight-line best-

fit cuive has a slope of 0,968, indicating that the zinc was operating at close to
} 100% electrochemical efficiency.
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TABLE 3 - COMPARISON OF MEASURED AND
CALCULATED WEIGHT LOSSES

Flow
Weight Loss of Calculated from | Actual
Days v?;?g;ty Zinc Coupled to Current (g) (g)
31 "o Graphite-Epoxy 0.258 0.296
Nickel-Aluminum Bronze 0.246 0,348
31 10 Graphite-Epoxy 12,288 10.918
Nickel-Aluminum Bronze 12.477 12,871
120 ~ 0 Graphite-Epoxy 1.417 1,417
Nickel-Aluminum Bronze 1.401 1.540
120 10 Graphite-Epoxy 1.387% 1.,409%*
Nickel-Aluminum Bronze 8.167 7.882
270 N0 Graphite-Epoxy 3.608 2,224
Nickel-Aluminum Bronze 2,927 2,016
*First 83 days of test excluded.
**Value for specimen exposed on day 84.

WATER PICKUP OF GRAPHITE-EPOXY

The graphite-epoxy specimens were towel-dried after exposure, and their weight
determined. The weight gains thus measured were due to water pickup of the epoxy
resin and buildup of calcareous deposits on the exposed surface. Weight gains of
15 to 70 mg (0.1 to 0.4% of the total specimen weight) were measured, The exact
value was neither a function of exposure duration nor of the presence or absence of
cathodic protection, The amount of water pickup was determined by allowing the
absorbed water to evaporate., This was doné by allowing the specimens to air-dry
for several thousand hours and monitoring loss of weight as a function of time. A
plot of weight decay versus time after removal from exposure is presented as Figure

11. The total weight loss over the period of measurement, which should be equal to

the water absorbed during exposure, ranged from 17 to 28 mg and was not a function of

exposure duration or cathodic protection (coupling to zinc). However, the rate of
the decay was interesting, With one exception, the rate of weight decav was great-

est over the first 100 hours for specimens with the shortest exposure and was least
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for specimens with the longest exposure, This could be due to an increase of depth

of pentration of water into the specimen with increasing exposure duration.

SUMMARY AND CONCLUSIONS

1. The graphite-epoxy specimens did not cause a significantly different cur-
rent demand on a zinc sacrificial cathodic protection system in seawater than did
nickel-aluminum bronze, This was true for exposure velocities of 0 and 10 m/s and
for durations up to 270 days and was verified by weight loss and current meas.re-
ments. Similar behavior was exhibited in short-tersm stepped-potential tests con-
ducted previously on similar materials.

2. It is probable that nickel-aluminum bronze components of a cathodically
protected structure in seawater could be replaced with graphite-epoxy without the
necessity for redesign of the cathodic protection system,

3, 1t should be noted that the graphite-epoxy composite presents a worst-
case condition in that the surfaces were made electrically uninsulated by grinding
off the insulating epoxy surface layer. Normally, the epoxy coating on these

su-faces would prevent the graphite fibers from exertine any significant demand on

the cathodic protection system.
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Figure 8 - Galvanic Current Data for Coupled Spacimens at Flow Velocity of O m/s
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