
SECUrITy CLASSIFICA"l0N OF 1TN kF 1'h~eri Ownu En Ie r..d

~~T 81 -08526p-. 4q'7&

FEILPASN-0?-01-80 to 06-30-81-

Philip J. Hayes

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

i ~~Carnegie-Mellon University 612;20,A

SBoiling AFB DC 20332 13.
11, 4. MONITORING AGENCY NAME 8 ADDRESS I I ileen fro m Cont 1I in Office) IS. SECURITY CLASS. Cot this report)

UNCLASSIFIED

Approved for' public release; distribution unlimited.

1S. SUPPLEMENTARY NOTES-=

19. KEY WORDS (Continue on rtevrsi, sidt, it nece~ssary and identify by block number) -I

applied natural language, flexible parsing, bottom-up parsing, friendly

L&IJ interfaces, construction-specific. parsing, multi-strategy parsing

20. ABSTRACT (Continue on rev'erse, side It necesserv and identify by block number)

C.3 The work reported falls into two distinct phases. In the first phase, the
___ implementation of the FlexP parser was completed according to the design

described in last year's annual report, and was evaluated through use in a
gracefully interacting interface. This application showed: that FlexP was
able to parse both grammatical and ungrammatical imput according to a simple
grammar of pattern-matching rewrite rules, that the bottom-up approach of
Flexi' was helpful in the case of ungrammatical imput, and that a grammar suita e *. I
for use by FlexP could be defined in terms natural to the domain of interacti -

DD 1jAN3 1473UNCLASSIFIED .

SECUPIT f CLASSIFICATION OF THIS PAGE (
14

len Datim Entered)

XV

___ ___..._ __ __ __"A -"mr .---

-I.-

SECURITY CLASSIFICATION OF THIl GC(Whn Data Entered) .__ _

ITE+? ,CONTINUED:
leX intertawee. However, the experimental use of FlexP also made it clear

that FlexP had certain problems, largely due to the uniform nature of its
F,. grammar.

t:si- In the second phase, the set of design choices on which FlexP was based was re-
viewed to determine if it was possible to resolve the problems that FlcxP had w:Lh-
out also loring the desirable aspects of its performance. This review led to the
replacement of a single parsing strategy based on linear pattern matching with
an approach based on multiple construction-specific parsing strategies. This W

t : approach was evaluated in a preliminary way through the ccnstruction of two
small parsers, CASPAR and DYPAR, and was found to show considerable promise.
Accordingly, design based on the same approach was begun for a more complete
parser for restricted domain natural languages, and for a parser oriented
towards an artificial command languate of the type common in interactive user
interfaces.

• j

-NTI S P•7 '...c.i '

P :.

...................
'.- .' -' " -' -.-4-.

Wit
I

p A, ~ A

UNCLASSIFIED
SECURITY CL.ASSIFICATION OF THIS PAGE(Whon Data Entered)

•{ '~~~~~~~~~~~~~~~......... ,.......,.- ;."..... .?.'.:....---..,.,..--7. , . '. -' - .- .. •,

•.~ ~ ~ ~ ~ ~ ~ ~ 7 --- 7...--7...7•... -- ".t ,., '.
S,.. •.. . • ,. .. .•. . .•. •. •' . 'IZ

"fa;)lo of Co: :tznls
1. Research Objectives 2

2. Status of the Research Effort 3
2.1. Ov,2rview 3 .1
2.2. C(.,mpletion and Evaluation of FlexP 4

2.3. Experiments with a Multi-Strategy Approach to Parsing 7

2.4. Non-Parsing Advantages of a Construction-Specific Approach 9

2.5. Further Applications of the Construction-Specific Approach 12

3. Publications 13

4. Professional Personnel 13

5. Interactions 14

Approved for pul~ic releo I
(istribution l ... '"4!

81 12 29 040
• t,• • • , ,' . -

5;___________________.!

2(

1. When people use language spontaneously, they often do not adhere strictly to commonly
accepted standards of grammaticality. The primary objective of this project is to develop
flexible computer parsing techniques which can deal with the various kinds of
ungrammaticalities that arise, both on the lexical and the phrase level. The kinds of
ungrammaticality we wish to deal with include -it the lexical level:

* misspelt words

* novel words whose role can be inferred from context

e erroneous segmentation between words (arising from the omission of spaces, or
the inclusion of spurious spaces or punctuation)

* lexical items which are entered in one form and then changed to another

and at the phrase level: .

e input which is broken off and then restarted

* interjected words and phrases

• omitted or substituted words and phrases

* fragmentary or otherwise elliptical input

e agreement failure

* idioms

2. The design space for parsers is very large. We aim to develop a set of design choices
which will result in parsers well suited to our primary goal. The design choices we are
currently using are listed below. The second one is different from the corresponding
choice in our original proposal and previous report. The difference reflects our
experience with the earlier choice as explained in the body of this report.

" bottom-up rather than top-down parsing, except in certain situations in which top-

down prediction is highly constraining

"" use of several different parsing strategies, each tailored to a particular type of
construction, and selected between on a dynamic basis

* provision for the suspension and later resumption of a partial parse at a non-
adjacent part of the input string

3. We i-tend to develop flexible parsing techniques in the context of interfaces to interactive
computer systems. We are working with two types of interface language:

a. limited-domain natural Ianguaqes, i.e... lan , eswi!,li. the .syot,'V 'Q e4 possibly a

L~r't-.- ' "1 • .l

wvr1THE'•V ,J. :: .. :S
Chief, T~ch nie.~d Information Division

- - 4. - -..• - '.." - ---

3

sAv.t::.. otr n:(tLiral . but h. 1 1. a iticS i.rO Ilkilited to tho'ý,, Lo)f (lh
interactive system being interfaced to,

b, more restrictive artificial languages of the sort currently found in computer
interfaces

Later, we intend to investigate how easily the techniques developed for these kinds of
languages can be transferred to more general natural language.

4. We intend to investigate formalisms for specifying domain-dependent grammars in a
convenient way for both of the types of language mentioned above.

2. Status of the Research Effort r]

2.1. Overview

Our work during the past year fell into two distin: Z phases. In the first part of the year, we

completed the implementation of the FlexP parser according to the design described in last year's

annual report, and evaluated it through use in a gracefully interacting interface developed under

other support. This application showed:

*that FlexP was able to parse both grammatical and ungrammaticai input according to a
simple grammar of pattern-matching rewrite rules,

" that the bottom-up approach of FlexP was helpful in the case of ungrammatical input,

" and that a grammar suitable for use by FRexP could be defined in terms natural to the

domain of interaction of the interface.

However, the experimental use of FlexP also made it clear that FlexP had certain problems, largely

due to the uniform nature of its grammar. These problems caused FlexP to parse some

ungrammatical input inefficiently, and in other cases to generate an unnecessarily large number of

alternative interpretations of ungrammatical input.

In the second part of the year, based on the experience gained through the implementation and use

of FlexP, we reviewed the set of design choices on which FlexP was based to determine if it was

possible to resolve the problems that FlaxP had without also losing the desirable aspects of its

performance. This review led us to replace the design choice of a single parsing strategy based on

linear pattern matching with an approach based on multiple parsing strategies, one for each

construction class ol the language being parsed, wih the strategies bein. selected between on a

dynamic-basis. This multi-strategy, construction-specific approach was evaluated in a preliminary

way through the construction of two small parsers. CASPAR and DYPAR, and was found to show

gI• __

-.- * . .- - -totc

4 (

I - ,~~con- I:1 r;Wlo *-orliso. A! ria;Ild iN' - \ 6ihi oh '~an~ ~hU ;-i ~itwi a1,.j.tt

more complete, parser based on th'e same approach.

In this second phase of the year's work, we also applied the multi-strategy, construction-specific

approach to parsing the input for a revised gracefully interacting interface being constructed under

the same funding as the one mentioned above. This work has led to the design of a parser based ot

the same principles as CASPAR and DYPAR, but oriented towards an artificial command language of

the type common in interactive user interfaces, rather thaii restricted domain natural languages of the

typea G A 2 , F ,.R, and dle:xP are dcsiJnod to parse.

H

2.2. Completion and Evoluation of FlexP

The design for FlexP and its rationale'were described in last year's annual report and in more detail

in6 . The implementation that we completed in the first phase of this year's work was in all important .
respects faithful to that design, Therefore, to avoid redundancy, this report wil; only summarize FlexP

and concentrate instead on its evaluation.

FlexP is intended to parsn correctly ;nput that corresponds to a fixed grammar, and alsu to deal

with input that deviates from that grammar by erring along certain classes of common

ungrammaticalities. Because of these goals, the parser is based on the combination of two uniform

parsing strategies: bottom-up paising and pattern-matching. The choice of a bottom-up rather than

a top-down strategy was derived from our need to recognize isolated sentence fragments, rather than

complete sentences, and to detect restarts and continuations after interjections. However, since

completely bottom-up strategies lead to the consideration of an unnecessary number of potentially

spurious alternatives in correct input, the algorithm used allowed some of the economies of top, down

parsing for non-deviant input. Technically speaking, this made the parser left-corner rather than

bottom-up. We chose to use a grammar of linear patterns rather than, say, a transition network for

three reasons: 1) Pattein-matching meshes well with bottom-up parsing by allowinI lookup of a

pattern from the presence in theý inp~t Of a1, Of its cons3titeýnts. 2) Patteln-inatchilq facilitates

recognition of utterances, with omissions and substitutions when patterns are recognized on the basis

of partial matches, 3) Pattern-matchirig is necessary for the recognition of idiomatic phrases. More

6details of the justifications for these choices can be found in

FlexP has been tested extensively in conjunction with a gracefully interacting interface to an

electronic mail system1 . "Gracefully interacting" means that the interface appears friendly,

supportive, and robust to its user. In particular, graceful interaction requires the system to tolerate

-- -. ""- ,' - "•,t.,,,-p ..- -, ,,-> "" i i

- - - - - - - - - - - - -- - - - - - .,. -. ,

5

ir;rnor input er cr,; and typos, s% a I1-.. 21 sn-,r is an import•rt c-cn('ponent of such an i•turfacc.

While FlexP performed this task adequately, problems of efficiency and of unnecessary ambiguity

showed up through this experimentation - examples are given below. The problems that arose are

rooted in the incompatibility between the uniform nature of the pattern-matching rewrite rule grammar

representation used by FlexP and the kinds of flexible parsing strategies required to deal with the

inherently non-uniform nature of some language constructions. In particular:

* Different elements in the pattern of a single grammar rule can serve radically different
functions and/or exhibit different ease of recognition. Hence, an efficient parsing

rstrategy ...C uld ract to thir z..pptrent absence, for instance, in quite dilferent ways. ,

SThe representation of a single unified construction at the language level may require

several linear patterns at the grammar level, making it impossible to treat that
construction with the integrity required for adequate flexible parsing.

The second problem is directly related to the use of a pattern-matching qrammar, but the first would

arise with any uniformly represented grammar applied by a uniform parsing strategy.

For our example application, these problems manifested themselves most markedly by the

presence of case constructions in the input language. Consider, for example, the following noun

phrase with a typical postnominal case frame:

the messages from Smith about ADA pragmas dated later than Saturday.

The phrase has three cases marked by "from", "about", and "dated later than". This type of phrase

is actually used in FlexP's current grammar, and the basic pattern used to recognize descriptions of

messages is:

<?determiner *MessageAdj MessageHead *,essageCase>

which says that a message description is an optional (?) determiner, followed by an arbitrary number

() of message adjectives followed by a message head word (i.e. a word meaning "message"),

followed by an arbitrary number of message cases. In the example, "the" is the determiner, there are V
no message adjectives, "messacas" is the message head word, and there are three message cases:

"from Smith", "about ADA pragmas", and "dated later than". Because each case has more than one

component, each must be recognized by a separate pattern:

(%from Person>
<%about Subject><%since Date>

Here % means anything, in the same word class, "dated later than", for instance, is equivalent to

"since" for this purpose.

These patterns for message descriptions illustrate the two problems mentioned above: the

elements of the ca3e patterns have radically diffeient funCtiOns - the first elements are case markers,

6

,Ilnd th. .:ii:l ,! .•;eit o i II') d . "tual subcon"e;; ifor the cZC,., A•,,o, a s ltn oldc coin;io uctiOn at the

language level is spread over several patterns in the grammar. This has two undesirable

consequences for the parsing process.- inefficiency and the generation of unnecessary ambiguities,

j First, let us examine how inefficiency arises. Because the parser has no information about the

relationship between the cases and the top-level pattern (other than that the results of the case

patterns match the last element in the top-level pattern), several powerful, but specialized, strategies

for dealing with (regular or irregular) case constructions cannot be employed with a resulting loss of

parsing efficiency. For instance, since case indicators are typically much more restricted in range of

expression, and therefore much easier to recognize than their corresponding subconcepts, a

plausible strategy for a parser that "knows" about case constructiors is to -,can input for the case

indicators, and then parse the associated subconcepts top-down. This strategy is particularly

valuable if one of the subconcepts is malformed or of uncertain form, such as the subject case in our

example. Neither "ADA" nor "pragmias" is likely to be in the vocabulary of our system, so the only

way the end of the subject field can be detected is by the preaence of the case indicator "from" which

follows it. However, FlexP cannot distinguish case indicators from case fillers - both are just elements

in a pattern with exactly the same computational status. Hence it cannot use this strategy and

inefficiency results.

The second consequence of the general problems mentioned above is the generation of

unnecessary alternative parses. For instance, if an object type can appear in more than one slot of a

case frame, and a case indicator for such an object is omitted on input, then a parser dealing with
case constructions in an integrated way may be able to resolve the potential ambiguity using A

information from what other cases in the case frame are filled, while a uniform strategy would
naturally tend to generate all the ambiguous alternatives, and this certainly was the case for FlexP. A

specific example arises in the case of: I

the m: ajsJones to Smith
Here, there are two relationships between Persons and Messages - sender and recipient. Since Smith

is marked as the recipient, an integrated case strategy can tell that Jones must fill the other

relationship, whereas FlexP because of its uniform strategy would get the Smith relation right, but flag

San ambiguous relation for Jones.

Examples like these forced us to the conclusion that parsing case constructions efficiently and

unambigutously in a flexible manner demands parsing techniques Specific to case constructions. In

turn, this'caused us to review our design decision to use a uniform grammar based on linear patterns,

which does not lend itself to such construction-specific parsing techniques. Since similar arguments

A I
iLi

- • .:•.•.• •-.•.••.-._• -.. -:- . ,... • . -- . -... . -..... _- t

7

ndmber of different parsing strategies suggested itself.

2.3. Experiments with a Multi-Stratogy Approach to Parsing

Parsing using several different construction-specific strategies is a novel approach, so instead of

trying to implement a full-scale parser immediately, we decided to try out the ideas in two simplified

parscrs, CASPAR and DYPAR. CASPAR was designed to show tha suitability of construction specific

techniques for ungrammatical input, while DYPAR served as a vehicle to investigate the coniiol

problems of coordinating several distinct parsing strategies. We describe both of them briefly below.

Further details can be found in5 .

CASPAR was designed to use som of the insights about the flexible parsing of case constructions

mentioned in the previous section. To keep things as simple as possible, CASPAR was designed only

to recognize simple imperative verb phrases, i.e. imperative verbs followed by a sequence of noun

phrases possibly marked by prepositions. Examples for an interface to a data base keeping track of

course-registration at a university include:

cancel fmath 24 7
enroll Jim Campbell in English .24
transfer student 5518 from Economics 101 to Business Administration 111

Such constructions are classic examples of case constructions; the verb or command is the central

concept, and the noun phrascs or arguments are its cases. Considered as surface cases, the

command arguments are either marked by preposition, or unmarked and identified by position, such

as the position of direct object in the examples above.

In line with the construction-specific approach, CASPAR was given two quite distinct parsing

strategies:

e A strategy to identify the appropriate case frame and activale its case markers and filler-
patterns to daul with the rest of the input utterance.

* A strategy to recognize individual constituent case fillers and markers, including the verb,

noun phrases in the role of case fillers, and prepositions in the role of case markers.

The first of these strategies is dominant in the sense that it decides where in the input the second,

more detailed, recognizer should be applied and what it should try to recognize when it is applied.

The second strategy is a simple linear pattern matcher. This is just what is needed for verbs,

prepositions, and simple object descriptions such as those in the examples above.

While CASPAR was constructed in as simple a'way as possible, the flexibility and robustness that

Li

L b . ' -. ,: , • ... • . ., " " -• '" ,•:" ""• • :• ''• • •"•.•' • •• " " i ! J i:• ' ; ' ••: :' - "• ,-•-' " •

• ' 8

ir obcr t zý [:-I:. ~ I~~i or th c tv. n i i t t o 11 t:I101or"I ty p'~-;. it

recognizes (case and fixed-order linear patterns) is quite striking. The types of grammatical deviation

that can be dealt with alone or in combination include:

* Unexpected and unrecognizable (to the system) interjections as in:

tS rQ rS enroll if you don't mind student 24 76 it) I think Economics 247.

Smissing case markers:

enroll Jim Campbell Economics 247.

. out of order cases:

In F,:onomics 24 7 Jim Campbell enroll. I
=ambiguous cases:

transfer Jim Campbell Economics 24 7 English 332.

Moreover, the construction-specific approach of CASPAR allowed it to deal with all these kinds of j
ambiguity wVithout the inefficiencies and unnecessary ambiguities that arose with FlexP as described

in the previous section.

While CASPAR concentrated on dealing with ungrammaticality through construction-specific

strategies, our other experimental parser, DYPAR, concentrated on the control problems involved in

combining several different parsing strategies. DYPAR has a Kornel control module to select the

appropriate parsing strategy as a function of the expected input structure, plus three parsing
strategies to select among, each with its own grammatical and/or semantic knowledge encodings,

and global data structures to share information. These threo strategies are: I
* A context-free semantic grammar component, grouping domain information into

hierarchical semantic categories useful in classifying individual words and phrases in the
input language.

A partial pattern match component, represented as pattern-action rules. The patterns
may contain individual words, semantic categories (from the semantic grammar), wild

cards, optional constituents. register assignment and register reference. This, method
enables the semantic gra'marr non-terminal c',tgories to be applied in a much more
effective context-sensitive mann.r than in a pure context-free grammar recognizer.

9Equivalence transformations map domain-depondent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and scaantic
categories that would otherwise be needed. It a phrase-structure can be expressed in
several different ways, while retaining the same meanuing, it is clearly beneficial to iiist
map it into canonical form, rather than being lorced to include all possible variants in
every context where that constituent could occur.

These three strategies were combined into a single parser through the use of an applicative

.- '
.• t

* - -. , ,.- . • .. ,•, • •- .,,-. r . . . * *-•--.• . - - • • • .. . , . .

cGnd.ot'I-1 -actinn cychl in which ail in.•iciinJ rules V'. re allov'.-, to file U1i 1:-clh . 1 ilO-.ve-d

these three quite distinct types of strategy to work effectively together.

2.4. Non-Parsing Advantages of a Construction-Specific Approach

Besides showing the promise of a multi-strategy construction-specific approach to parsing for both

grammatical and ungrammatical input, our experiments with CASPAR and DYPAR also showed the

approach had other advantages, not directly involved in parsing. In particular, the approach made it

straightforward to produce localized representations of unavoidable ambiguity, thus enhancing

interaction with the user to resolve the ambiguity, In addition, the approach allows task-specific

languages, defined in terms natural to the domain, to be used by the parser without a time-consuming

compilation phase, thus significantly enhancing the language development process, The remainder

of this section expands on these points. Further details can be found in4

-If a flexible parser being used as part of an interactive system cannot correct ungrammatical input

with reasonable certainty, then the system user must be involved in the resolution of the difficulty

Exoerience with our first flexible parser, FlexP, suggested that the way requests for clarification in
such situations are phrased makes a big difference in the ease and accuracy with which the user can

correct his errors, and that the user is helped most by a request focusing as tightly as possible on the

exact source and nature, of the difficulty. As the following examples show, this type of-focused

interaction was very dilficult to arrange with FlexP, bUt was straightforward usiny the construction-

specific approach of CASPAR.

The following input is typical for the electronic mail system interface' with which FlexP was

extensively used:
the messages from Fred Smith that arrived after Jon 5

The fact that this is not a complete sentence in FlexP's grammar causes no problem. The only real
difficulty conies from "Jon", which should presumably be either "Jun" or "Jan", FlexP's spelling

corrector can come to the same conclusion, so the output contains two complete parses which are

passed onto the next stage of the mail system interface. The first of these parses looks like:

10

[D escril)p Liunt)f: ;Iets;aqle
Sender: [DescriptiouLf: Person

FirstName: fred
Surname: smith

]
AfterDate. [DescriptionOf: Date

Month: january
DaO'OfMonth: 5

]

This schematized property list style of representation should be interpreted in the obvious way.

R• the next stage of the interface has access to other contextual information which allows it

conclude that one or other of these parses was what was intended, then it can proceed to fulfill the

user's request. Otherwise it has little choice but to ask a question involving paraphrases of each of

the ambiguous interpretations, such as:

Do you mean:
1. the messages from Fred Smith that arrived after January 5
2. the messages from Fred Smith that arrived after June 5

Because it is not focused on the source of theerror, this question gives the user very little help in
seeing where the problem with his input actually lies.

One straightforward sQlUtion to the problem is to augjment the output language with a special

ambiguity representation. The output from our example might look like:

[DescriptionOf: Message
Sender: [DescriptionOf: Person

FirstName: fred
Surname: smith

I
AfterDate: [DescriptionOf: Date

Month: [DescriptionOf: AmbiguitySet
Choices: (january june).

DayOfMonth: 5

]H

This representation is exactly like the one above except that the Month slot is filled by an

AmbiguitySet record. This record allows the ambiguity between january and june to be confined to

the month slot where it belongs rather than expanding to an ambiguity of the entire input as in the first

approach we discussed. By expressing the ambiguity set as a disjunction, it would be straightforward

to generate from this representation a much more focused request for clarification such as:

Do you mean the messages from Fred Smith that arrived after January or June 5?

2" :. . . iVll•

S~11

However, this approach only works if tho imhbiquily corresponds to an entire slot filler. Suppose,
for example, that instead of mistyping the month, the user omitted or so completely garbled the

preposition "from" that the parser effectively saw:

the messages Fred Smith that arrived after Jan 5

In the grammar used by FlexP for this particular application, the connection between Fred Smith and

the message could have been expressed only by "from", "to", or "copied to" (or synonyms thereof).

To represent the ambiguity, FlexP generates three complete parses isomorphic to the first output

example above, except that sender is replaced by Recipient and CC in the second and third parses

respectively. Again, this form of representation does not allow the system to ask r. focutsed question

about the source of the ambiguity. The previous solution is not applicable because the ambiguity lies

in the structure of the parser output rather than at one of its terminal nodes. Using a case notation, it

is not permissible, to put an "AmbiguitySet" in place of one of the deep case markers. To localize

such ambiguities and avoid duplicate representation of unambiguous parts of the input, it is

necessary to employ a representation like the one we designed for CASPAR.

[Desc.riptionOf: Message
AmbiguousSlots: (

[PossibleSlots: (Sender Recipient CC)
SlotFiller: [DescriptionOf: Person

riirstName: fred
Surname: smith

)
AfterDate: [DescriptionOf: Date

Month- janur.ry
DayOfMonth.: 5

This example CASPAR output is similar to the two given previously, but instead of .1aving a Sender

slot, it has an AmbiguousSlots ulot. The filler of this slot is a list of records, each of which specifies a

SlotFiller and a list of PossibleSlots. The SlotFiller is a stnrcture that would normally be the filler of a

slot in the top-level description (of a mess'age in this case), but the parser has been unable to

determine exactly which high r-level slot it should fit into; the possibilities are given in PossibleSlots.

With this representation, it is now -traightforward to conftruct a directed question such as:

Do you mean the messages froin, to, or copied to Fred Smith that arrived after January 5?

The adoption of such representations for ambiguity has profound implications for the parsing

strategies employed by any par -, at tries to produce them. For each type of construction that such

a parser can encounter,, the parser must ',nc(w" abuut all the structural ambiguities that the

construction can give rise to, and must be prepared to detect and encode appropriately such

•". " ",-.-.....-......-.... - T - .*.T-,.-'--I• '•T ' '•'rr--:.T•.- ' .-.:' .•I;,-'-"--..-",'• ,= ,,.•',:,- • -.

Z A_,__.......

* - .(

12

ambigtuities when they arise. Constrt wtion sVXJi:fic parsing techrniques as ueod in CASPAR fit this

requirement perfectly. Each construction-specific parsing strategy can encode detailed information

about the types of structural ambiguity possible with that construction and incorporate the specific

information necessary to detect and represent these ambiguities.

This section concludes with a brief note about language defircition. As we described in the last

annual report, FlexP had a language definition facility whch allowed the designer of a task-specific

V language to define the language without having to know the exact details of FlexP's grammar

formalism. This made it much easier to define such languages, but the fac;lity turned out to be

inconvenient to use in practice because of the time-consuming compilation phase necessary to

transform the language definition in domain terms into FlexP's patterr,-match rule formalism. This

was particularly inconvenient when a large number of relatively minor changes need to be made, as is

normal during language development.

For CASPAR, we implemented a similar language definition facility, but with one important

difference - instead of compiling the language definitions into a different formalism, we designed

CASPAR to interpret them directly. This made the language designer's job much easier, by letting

him make the many small changes that are always necessary in the course of developing a language,

without requiring him to go though a time-consuming compil.tion for each incremental change. The

reason that it was possible to do this with CASPAR, and not with FlexP, relates directly to the

construction-specific approach that CASPAR embodies - since the constructions CASPAR deals with

correspond directly to those that are natural to the domain, direct interpretation of a language

representation designed round these constructions was straightforward for CASPAR.

2.5. Further Applications of the Construction-Specific Approach

After reviewing the results of experiments with our twvo simple construction-specific multi-strategy

parsers, CASPAR and DYPAR, it seemed to us that the construction-specific approach was promising

enough to merit further investigation in the context of more powerful and realistic parsers.

Accordingly, towards the end of the contract period which is the subject of this report, we embarked

on the design of two new further parsers, which are intended to push the multi-stratogy approach

along two different dimensions.

The first of these new parsers, for which a preliminary design appears in and 2 , is intended to

"proceed further in the same direction as CASPAR and DYPAR, viz. in the direction of limited-domain

natural language parsing by construction-specific techniques. The most important issue to be

.A-

13

tackled in this parser is the coordination of a -number of diverse parsing techniques to produce an

efficient, robust, and reliable unified parser.

The second parser we are planning is an attempt'to apply these same construction-specific

techniques to kinguages of the type commonly used in interactive interfaces. Important issues here

involve the handling of positionally determined constituents, used much more widely in such

languages than in natural languages (,vhether restricted-domain or more general), and the

importance of efficiency - typical parsers for such languages, though not very flexible, are usually

very fast, and to provide a reasonable alternative, our flexible parser must be able to compete along

this dimension too. We expect work on both these parsers to continue through the remainder of this

year. 1

3. Publications
The first of the publications listed below discusses the interface project within which FlexP was

tested.

1. Ball, J. E. and Hayes, P. J. Representation of Task-Independent Knowledge in a Gracefully
Interacting User Interface. Proc. 1st Pnnual Meeting of the American Association for Artificial
Intelligence, Stanford University, Augu.'t, 1980, pp. 116-120.

2. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. Proc. of 19th
Annual Meeting of the Assoc. for Comput. Ling., Stanford University, June, 1981.

3. Hayes, P. J. and Carbonell, J. G. Multi.Strategy Parsing and its Role in Robust Man-Machine
Comi-nunication. Carnegie-Mellon University Computer Science Department, May, 1981.

4. Fla es P. J. Focused Interaction in Flexible Parsing. Proc. of 19th Annual Meeting of the Assoc.
for Con put. Ling., Stanford University, June, 1981.

5. Hayes, P. J. and Carbonell, J. G. Multi-Strategy Construction-Specific Parsing for Flexible Data
Base Query and Update. Proc. Seventh Int. Jt. Conf. on Artificial Intelligence, Univ. of British
Columbia, Vancouver, August, 1981, p1). 432-439.

6. Hayes, P. J. and Mouradian, G. V. Flexible Parsing. Proc. of 18th Annual Meeting of the Assoc. for
Comput. Ling., Philadelphia, June, 1980, pp. 97-103.

J

4. Professional Personnel

1. Philip J. Hayes
D Sc, 1977, "Some Association-Based Techniques for Lexical Disc-ibigUation by
Machine".

2. George V. Mouradian

.........-.. .

,•j . MMRT .. g

14

M Ph, 1978.

5. Interactions
Ongoing consultation with Dr. Jaime Carbonell, also a faculty member in the Computer Science

Department of Carnegie-Mellon University. but not funded under this contract,

A

_!

!I

!I

_ - --------.----- -. •

