LA D

SECURITY CLASSIFICA™ION OF Tw AGE ‘When Data Entered) -

~ __"REPORT DOCUMENTATION PAGE BEFORE, CONLITING FORM o

AFOSRTR. 81 -0852 A pacdbie

A. TITLE (and Subtitle)

t

$. TYPE OF REPORT & PERQD ZOVERED
Annual
" 07-01-80 to 06-30-81

6. PERFORMING ORG. REFORT NUMBER

FLEXIBLE PARSING- °

——

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Directorate of Mathematzcal & Inforration Sciences
. s o . o October 12, 1981

Air Force Office of Scientific Rescarch '3. NUMBER CF PAGES

Bolling AFB DU 20332 13

14. MONITORING AGENCY NAME 8 ADORESS(if different from Contpélling Oflice) 15, SECURITY CLASS, (of this report)

b - e 4 3
Philip J. Hayes F49620-79-C-0143

: Raj Reddy

m 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK 3

AREA & WORK UNIT NUMBERS 5

c Carnegie-Mellon University 61102F; 2304/A2 é
5000 Forbes Ave., Pittsburgh, Pa. 15213 E

' ' 1. CONTROLLING OQ7FFICE NAME AND ADDRESS 12, REPQRT DATE z

Q

<0

e i bl

TS

, \ UNCLASSIFIED]
182 DECL ASSIFICATION DOWNGRADING i
SCHEOULE ﬁ‘

16. DISTRIBUTION STATEMENT (af this Roport)

P Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMERNT (oi the aastract entered i Block 20, il different from Report)

piiiAl s,

4 A o e sy S <o BB 1

i
i
4
3
1
]

1

3 H < ,
3 - Yot
B 18. SUPPLEMENTARY NQTES

Shon

4

% 19. KEY WORDS (Continue on reverse stde il necessary and identity by block number) - ‘ E
S applied natural language, flexible parsing, bottom-up parsing, friendly ;.
wl interfaces, construction-specific parsing, multi~strategy parsing \ !
| | el i
20. ABSTRACT (Continue on raverse side If necoesssry and identily by block number) w o :

[S] The work reported falls into two distinct phases. In the first phase, the -
E implementation of the FlexP parser was completed according to the design -
described in last year's annual report, and was evaluated through use in a N
gracefully interacting interface. This application showed: that FilexP was F :

able to parse both grammatical and ungrammatical imput according to a simple -‘_;:._)

grammar of pattern-matching rewrite rules, that the bottom-up approach of - g

FlexP was helpful in the case of ungrammat ical imput, and that a grammar suitaple 4 i

) for use by FlexP could be defined in terms natural to the domain of interac tig‘n i

i F ORM e e 1
\DD vaan7s 1473 uncLASSTFIED H S 2Ty 9] b

SECUPITr CLASSIFICATION OF THIS PAGE (When Datn Entered)

s

VTR W AT Ao ST e —— e
R T m‘vﬁ}'-%: N R AL AT (-8

- it Vead
SECURITY CLASSIFICATION OF THI® GE(When Data Entared)

ITE 20,, CONTINUED:
o é%a'intef ve. However, the experimental use of FlexP also made it clcar

that FlexP had certain problems, largely due to the uniform nature of its
grammar.

In the second phase, the set of design choices on which FlexP was based was re-
viewed to determine if it was possible to resolve the problems that FlexP had wijth-
out also® loring the desirable aspects of its performance. This review led to t
replacement of a single parsing strategy based on linear pattern matching with
an approach based on multiple construction-specific parsing strategies. This
approach was evaluated in a preliminary way through the ccnstruction of two
small parsers, CASPAR and DYPAR, and was found to show considerable promise.
Accordingly, design based on the same appreach was begun for a more complete
parser for restricted domain natural languages, and for a parser oriented
towards an artificial command languate of the type common in interactive user
interfaces.

N
\

sl ort, i el i

Accesaion

NTIS 7Y !
DRIC TN v

Vs, s

E
4

Slhtlidoi *2 ool

UNCLASSIFIED
SECURITY CL ASSIFICATION OF THIS PAGE(When Data Entered)

..

. R
PR Y
-

ey [. e %
A, TR LTI e R g TPRE .-“\""' i-"""-&-,_tf":: Lk;.

h

Tunle of Contonts

1. Research Objcctives 2
2. Status of the Research Effort 3
2.1. Ovarview 3
¢ 2.2. Cumpletion and Evaluation of FlexP 4
f 2.3. £xperiments with a Multi-Strategy Approach to Parsing 7
E 2.4. Non-Parsing Advantages of a Construction-Specific Approach 9 |
‘ 2.5, Further Applications of the Construction-Specific Approach 12
3. Publications 13 |
4. Professional Personnel 13 ;
5. Interactions 14 :
i
b

Approved for puhlic relenaet
aistribution Lull,.l‘.;‘it od.

81 12 29 040

ey A0 g el N, 44007 M| RT T S S £ S G s

. . R T T o
L rm s e b s G e i 8 L D Tl

i 1. When people use language spontaneously, they often do not adhere strictly to commonly
accepted standards of grammaticality. The primary objective of this project is to develop
¢ flexible computer parsing techniques which can deal with the various kinds of
. ungrammaticalities that arise, both on the lexical and the phrase level. The kinds of
b : i . ungrammaticality we wish to deal with include 1t the lexical level:

¢ misspelt words

¢ novel words whose role can be inferred from context

e s s

¥ e erroneous segmentation between words (arising from the omission of spaces, or
the inclusion of spurious spaces or punctuation) b

o lexical items which are entered in one form and then changed to another

£ ‘and at the phrase level:

e input which is broken off and then restarted
' inieriected words and phrases

o omitted or substituted words and phrases

+ fragmentary or otherwise elliptical input

e agreement failure

e idioms

3

i
3
%
i
a

B ko

2. The design space for parsers is very lurge. We aim to develop a set of design choices
which will result in parsers well suited to our primary goal. The design choices we are
currently using are listed below. The second one is difterent from the corresponding
choice in our original proposal and previous report. The difference reflects our
experience with the earlier choice as explained in the body of this report.

S ey

o bottom-up rather than top-down parsing, except in certain situatidns in which top-
down prediction is highly constraining - L

e use of several dilferent parsing strategies, each tailored to a particular type of
construction, and selected between on a dynamic basis

el e

e provision for the suspension and later resumption of a partial parse at a non-
adjacent part of the input string

3. We intend to develop flexible parsing techniques in the context of interfaces to interactive
computer systems. We are working with two types of interface language:

a. limited-domain natural languages, i.e. languiges with. the syntax, eé«{possibly a g

1

1
tegen e oo
[IR .
2
. e
SN L ‘

PR
[RN

Poeprale bl o TRLLL
CNATTHEN J. ‘s{_."‘.. AN
Chie?, Technical Inforwation Division)

NPT TR T P .o . iyl wovos

P T T e
R AT

e

subzo.t nh) 'n:uuml lenguaga, but whess szamantics are binited to thowo of the
interactive system being intertaced to.

b. more restrictive artificial languages of the sort currently found in computer
interfaces

Later, we intend to investigate how easily the tachniques developed for these kinds of
languages can be transferred to more general natural language.

4. We intend to investigate formalisms tor specifying domain-dependent grammars in a
convenient way for both of the types of languaga mentioned above.

2. Status of the Research Effort

2.1. Overview

Our work during the pést year fell into twu distinzt phases. In the flirst part of the year, we
cémpletcd the implementation of the FlexP parser according to the design described in last year's
annual report, and evaluated it through use n a gracefully interacting interface devéloped uncder
other support. This application shower:)

o that FlexP was able to parse both grammatical and ungrammaticai input accordmg to a
simple grammar of pattern-matching rewrite rules,

-

¢ that the bottom-up approach of FlexP was helpful in the case of ungrammatical input,

e and that a grammar suitable for use by FlexP could be defined in terms natural to the
domain of interaction of the interface.
However, the experimental use of FlexP also made it clear that FlexP had certain problems, largely
due to¢ the uniform nature of its grammar. These problems caused FlexP to purse some
ungrammatical input inefficiently, and in other cases to generate an unnecessarily large number of

alternative interpretations of ungrammatical input.

In the second part of the year, based on the experience gained through the implementation and use
of FlexP, we reviewed the set of design choices on which FlexP was based to determine if it was
possible to resclve the problems that FlexP had without also losing the desirzble aspects of its
performance. This review led us to replace the design choice of a single parsing strategy based on
linear pattern matching with an approach basecd on multiple parsing strategies, ore for each
construction class of the language being parsed, with the stratagies being selected between on a
dynamic -Basis. This multi-strategy, construclion-specific approach was evaluated in a preliminary

way through the construction of two small parsers. CASPAR and DYPAR, and was found to show

i i i

bt R o i

RN 1 NI TP C N

ALY L

sl

i 155, otz 2 Ll a8

LML b bt emd e e

T T

can. uiermble promise. We ktond 1o codn uowsth e Cpproach shircugh the Gonruction of aterger,

more complcete, parser based on the same approach.

In this second phase of the year's work, we also applied the multi-sirategy, construction.-specific
approach to parsing the input tor a revised gracefully interacting interface being constructed under
the same funding as the one mentioned above. This work has led to the design of a parser based on
the same principles as CASPAR and DYPAR, but oriented towards an artificial command language of
the type common in interactive user interfaces, rather than restricted domain natural languages of the

type CASPAR, DVIPAR, and i lexP are designed to parse.

2.2. Cempletion and Evaluation of FlexP

The design for FlexP and its rationale'were described in last vear's annual report and in more detail
inf. The impiementation that we completed in the first phase of this year's work was in all important
respects faithful to that design. Theretfore, to avoid redundancy, this report wili only summarize FlexP

and concentrate instead on its evaluation.

FlexP is intended to parsa correctly input that corresponds to a fixed grammar, and alsu (o deal
with input that' deviates from that grammar by erring along certain classes of common
ungrammaticalities. Because of these goals, the parser is based on the combination of two uniform
parsing strategies: bottdm-up parsing and pattern-matching. The choice of a bottom-up rather than
a top-down strategy was derived from our need to recognize isolated sentence fragments, rather than
complete sentences, and to detect restarts and continuations alter interjections. However, since
completely bottom-up straiegies lead to the consideration of an unnecessary number of potentially
spurious alternatives in correct input, the algorithm used allowed some of the cconomies of top- down
parsing for non-deviant input. Technically speaking, this made the parser left-corner rather than
bottom-up. We chose to use a grammar of linear patterns rather than, say, a transition netwaork for
three reasons: 1) Pattein-matching meshas well with bottom-up parsing by allowing lockup of a
pattern from the presence in the input of any of its constituants. 2) Pattern-iatching facilitates
recognition of utterances. with omissions and suhstituti_ons when pauterns are recognized on the basis
of partial matches. 3) Paltern-matching is necessary for the recognition of idiomatic phrases. More

details of the justifications for these choices can be found in®,

FlexP has been tested extensively in conrjunction with a gracefully inleracting interface to an
electronic mail system'. "Gracefully interacting” means that the intertace appears Triendly,

supportive, and robust to its user. In particular, graceful interaction requires the system to tolerate

B L S TR TR C

s . e st sl .

ool paid e tb o

Pk

ninor input encrs and typos, 0 Al aviz pacser s an importast camponent of such an mterface,
While FlexP performed this task adequately, problems of efficiency and of unnecessary ambiguity
showed up through this experimentation - examples are given below. The problems that arose are
rooted in the incompatibility between the uniform nature of the pattern-matching rewrite ruie grammar
representation vsed by FlexP and the kinds of flexible parsing strateuies required to deal with the
inherently non-uniform nature of some language constructions. In particular:

o Dilterent elements in the pattern of a single grammar rule can serve radically ditferent

functions and/or exhibit different ease of recognition. Hence, an efficient parsing
strategy should react to their cpparent absence, for instance, in quite difierent ways.

¢ The representation of a single unified construction at the language level may require
several linear patterns at lhe_a grammar level, making it impossible to treat that
construction with the integrity required for adequate flexible parsing.
The second problem is directly related to the use of a pattern-matching grammar, but the first would
arise with any uniformly represented grammar applied by a unitorm parsing strategy.

For our example application, these problems manifesied themselves most markedly by the

presence of case constructions in the input language. Consider, for example, the following noun
phrasg with a typical postnominal case frame:

the messages from Smith about ADA pragmas dated later than Saturday.
The phrase has three cases marked by "from", "about", and "dated later than". This type of phrase

is actually used in FlexP's current grammar, and the basic pattern used to recognize descriptions of
messages is:

<{?determiner *MessageAdj MessageHead *MessageCase>
which says that a message description is an optional (?) determiner, followed by an arbitraty number
(*) of message adjectives followed by a message head word (i.e. a word meaning "message"),
followed by an arbitrary number of message cases. In the example, "the" is the determiner, there are
no message adjectives, "messages” is the message head word, and there are three message cases:
"from Smith", "about ADA pragmas", and "dated later than". Because each case has more than one

component, each must be recognized by a separate pattern:

<%from Person>
<%about Subject>
<%since Date>

Here % means anything in the same word class, "dated later than", for instance, is equivalent to
"since" for this purpose.

These patterns for 'message descriptions illustrate the two problems mentioned above: the

elements of the casze patterns have radically different functions - the first elements are case markers,

Tt el chomatbhe

i, Lo e aitasnls

Ladvibiin b, o el ushbL e o st 0. ok

v w

T T 00y e g

and the seeoned elameints are ha actual subconceits for the cace, Also, a single consiiuchion at the

language level is spread over several patterns in the grammar. This has two undesirable
consequences for the parsing process - inefficiency and the generation of unnecessary ambiguities.

First, let us examine how inefficiency arises. Because the parser has no information ahout the
relationship between the cases and the top-level pattern (other than that the results of the case
patterns match the last elemant in the top-level pattern), several powerful, but specialized, strategies
for dealing with (regular or irregular) case constructions cannot be employed with a resulting loss of
parsing efficiency. For in'stance.vsince case indicators are typically much more restricted in range of
expression, and therefore mucﬁ sasier to recognize than their corresponding subconcepts, a
plausible strategy for a parser that "knows" about case constructions is to scan input for the case
indicators, and then parse the associated subconcepts top-down. This strategy is particularly
valuable if one of the subconcepts is malformed or of uncertain form, such as the subject case in our
example. Neither "ADA" nor "pragmas” is likely to be in the vocabulary of our system, so the only
way the end of the subject field can be detected is by the preaence of the case indicator "from" which
follows it. However, FlexP cannot distinguish case indicators from case fillers - both are just elements
in d pattern with exactly the same computational status. Hence it cannot use this strategy and

inefficiency resuits.

The second consequence of the general problems mcntioned abave is the generation of
unnacessary alternative parses. For instance, it an object type can appear in more than one slot of a
case frame, and a case indicator for such an object is omitted on input, then a parser dealing with
case constructions in an integrated way may be able to resoive the potential ambiguity using
information from what other cases in the case frame are filled, while a unitorm strategy would
naturally tend to generate all the ambiguous alternatives, and this certainly was the case for FlexP. A
specific example arises in the case of: -

the messages Jones to Smith
Here, there are two relationships between Persons and Messages - sender and recipient. Since Smith
is marked as the recipient, an integrated case strategy can tell that Jones must fill the other
relationship, whereas i“lexP because of its uniform strategy would get the Smith relation right, but flag

an ambiguous relation for Jones.

Examples like these forced us to the conclusion that parsing case constructions efficiently and
unambiguously in a flexible manner demands parsing techniques specific to case constructions. In
turn, this‘caused us to review our design decision to use a uniform grammar based on linear patterns,

which does not lend itself to such construction-specific parsing techniques. Since similar arguments

it

sl

it i

o efldtovsc. cini baommist Lo iptrse

AR LS Bt LA

Rk L Lhk Ak S A

LA L o) Lo (1 [K WA 100

S

CE NS NN s o o e

can bo made asiunst o o uedorn oo oo ectho s, the idea of dos ooy apoes 0 beocd on

namber of different parsing strategies suggested itself.

2.3. Expeariments with a Multi-Strategy Approach tc; Parsing

Parsing using several different construction-specilic strategics is a novel approach, so instead of
trying to implement a full-scale parser imimediately, we decided to try out the ideas in two simplified
narsers, CASPAR and DYPAR. CASPAR was designad to show tha suitability of construction specific
techiniques for ungrammatical input, while DYPAR served as a vehicle to investigate the coniiol
problems of coordinating severai distinct parsing strategies. We describe botit of lhém briefly below,
Further details can be found in®,

CASPAR was designed to use som: of the insights about the flexible parsing of case constructions
mentioned in the previous section. To keep things as simple as possible, CASPAR was designed only
to recognize simple imperative verb phrases, i.e. imperative verbs follcwed by a sequence of noun
phrases possibly marked by prepositions. Examples for an interface to a data base keeping track of

course-registration at a university include:

cancel-math 247
enroll Jim Campbell in English 224 .)
transfer student 5518 trom Economics 101 to Business Administration 111

Such constructions are classic examples of case constructions; the verb or command is the central
concept, and the noun phrascs or arguments are its cases. Considered as surface cases, the
command arguments are either marked by preposition, or unmarked and identified by position, such

as the position of direct object in the examples above.

In line with the construction-specific approach, CASPAR was given two quite distinct parsing
strategies:

e A strateqgy to identily the appropriate case frame and activale its case markers and filler-
patterns to deal with the rest of the input utterance.

e A struiegy to recognize individual constituent case fillers and markers, including the verb,
noun phrases in the role of case fillers, and prepositions in the role of case markers.
The first of these strategies is dominant in the sense that it decides whete in the input the second,
more detailed, recognizer should be applied and what it should try to recognize when it is applied.
The second strategy is a simple linear pattern matcher. This is just what is needed for verbs,

prepositions, and simple object descriptions such as those in the examples above.

While CASPAR was constructed in as simple a’'way as possible, the flexibility and robustness that

R N ;-fﬁ'fi:gé; i

I L et b s s o

Ly i

coare o, L by providiig o et S anag sieadaones tor the too o ent construction types o
recognizes (case and lixed-order linear patterns) is quite striking. The types of grammatical deviation

that can be dealt with alone or in combination include:

e Unexpected and unrecognizable (to the system) interjections as in:

tStQ S enroll if you don't mind student 2476 in | think Economics 247.

¢ missing case markers:

enroll Jim Campbell Economics 247.

¢ out of order cases:
In Fconomics 247 Jim Campbell enroll.

e ambiguous cases:

transter Jim Campbell Economics 247 English 332.

Moreover, the construction-specitic approach of CASPAR allowed it to deal with all these kinds of

ambiguity without the inefficiencies and unnecessary ambiguities that arose with FlexP as described
in the previoué section.

While CASPAR concentrated on dealing with ungrammaticality through construc'tion-specific
strategies, our other experimental parser, DYPAR, concentrated on the control problems involved in
combining saveral different parsing stratogies. DYPAR has a Kernel contro! module to select the
appropriate parsing strategy as a function of the expected input structure, plus three parsing
strategies to select among, cach with its own grammatical and/or semantic knowtedge encodings,
and global data structures to share information. These thrae strategies are:

¢ A context-free semantic grammar component, grouping domain information into
hierarchical semantic categories useful in classilying individual words and phrasas in the
input language.

¢ A partial patlern match component, represented as pattern-action rules. The patterns
may conin individual words, semantic categorias (from the semantic grammar), wild
cards, optional constituants, register assignment and register reference. This method
enables the semantic grammar non-terminal categories to be applied in a much more
effective context-sensitive manner than in a pure context-free grammar recognizer.

e Equivalence transformations map domain-dependent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and semantic
categories that would otherwise be needed. If a phrase-structure can be expressaed in
several different ways, while retaining the same meaning, it is clearly beneticial to iirst
map it into canonical form, rather than being torced to include all possible variants in
every context where that constituent could occur.

These three strategies were combined into a single parser through the use of an applicative

PR E T

- b b b

= T

3

ap i s e

MU Tl R

conusticn-action cycls i wich all naching rutes voore allow-+1 1o fue oo cach oycie. Tius allewad

these three quite distinct types of strategy to work elfectively together.

2.4. Non-Parsing Advantages of a Construction-Specific Approach

Besides showing the promise of a multi-strategy construction-specitic approach to parsing for both
grammatical and ungrammatical input, our experiments with CASPAR and DYPAR also showed the
approach had other advantages, nat directly involved in parsing. In particular, the approach made it
straightforward to produce localized representations of unavoidable ambiguity, thus enhancing
interaction with the user to resclve the ambiguity. In addition, the approach allows task-specitic
languages, defined in terms natural to the domain, to be used by the parser without a time-consuming
compilation phase, thus signiticantly enhancing the language development process. The remainder

of this section expands on these points. Further details can be found in*

1t a flexible parser being used as part of an interactive system cannot correct ungrammatical input
with reasonable certainty, then the system user must be involved in the resolution of the difficulty
Exnerience with our first flexible parser, FlexP, suggested that the way requests for clarification in
such situations are phrased makes a big difference in the ease and accuracy with which the user can
correct his errors, and that the user is helped most by a requgst focusing as tightly as poscible on the
exact source and nature of the difficulty. As the following examples show, this type of-focused
interaction was very diflicult to arrange with FlexP, but was straighttorward using the construction-

specific approach of CASPAR.

The following input is typical for the electronic mail system interface’ with which FlexP was

extensively used:
the messages from Fred Smith that arrived after Jon §

The fact that this is not a complete sentence in FlexP’s grammar causes no problem. The only real
difficulty comes from "Jon", which should presumably be either "Jun" or "Jan”. FlexP's spelling
corrector can come to the same conclusion, so the output contains two complete parsies which are

passed onto the next stage of the mail systerh interface. The lirst of these parses looks like:

ol L Al .oz

bz,

Lok

b S AR o By 1S

10

[Descriptionuf: ilessage .

Sender: {Descriptioudf: PFerson
FirstName: fred
Surname: smith

AfterDate. [DescriptionQf: Date
Month: january
DayOfMonth: 5§

]
]

This schematized property list style of representation should be interpreted in the abvious way.

Il the next stage of the interface has access to other contextual information which allows it
conclude that one or other of these parses was what was intended, then it can proceed to. fulfill the
user's request. Otherwise it has little choice but to ask a question involving paraphrases of each of
the ambiguous interpretations, such as: .

Do you mean:
1. the messages from Frad Smith that arrived alter January 5
2. the messages from Fred Smith that arrived after June 5

Because it is not focused on the source of the error, this question gives the user very little help in

seeing where the problem with his input actually lies.

One straightforward selution to the problem is to augment the ouiput language with a special

ambiguity representation. The output from our example might look like:

[PescriptionOf: Message

Sender: [DescriptionOf: Person
FirstName: fred -
Surname: smith

AfterDate: [DescriptionOf: Date
Month: [Description0f: AmbiguitySet
Choices: (january june).

DayOfMonth: &

]
]

This representation is exactly like the one above except that the Month slot is filled by an
AmbiguitySet record. This record allows the ambiguity between january and june to be confined to
the month slot where it belongs rather than expanding to an ambiguity of the entire input as in the first
approach we discussed. By expressing the ambiguity set as a disjunction, it would be straightforward
to generate from this representation a much more focused request for clarification such as:

Do you mean the messages trom Fred Smith that arrived after January or June 5?

P L B e S e B,

EFTIE R TIIY. % AT

b Sk, e .

it LSRN e 1 oo st

1"

Haowever, this approach only works it tha ambiguily corresponds ta an entive slot filler. Suppose,
for example, that instead of mistyping the month, the user omittéd or so completely garbled the
preposition "from" that the parser effectively saw:

the messages Fred Sm('rh that arrived after Jan §
I the grammar used by FlexP for this particular application, the connection between Fred Smith and
the message could have been expressed only by "from", "to", or "copied to" (or synonyms thereof).
Tb represent the ambiguity, _FlexP generates threz complete parses isomorphic to the first output
example above, except that Sender is replaced by Recipient and CC in the second and third parses
" respectively. Again, this form of representation does not allow the system to ask & focused question
about the sou‘rce of the ambiguity. The previous solution is not applicable because the ambiguity lies
in the structure of the parser ovtput rather than at one of its terminal nodes. Using a case notation, it
is not permissibl_ga, to put an "AmbiguitySet" in place of one of the deep case markers. To localize
such ‘ambiguities and avoid duplicate representation of unambiguous parts of the input, it is
necessary to employ a representation like the one we designed for CASPAF.

[DescriptionOf: Message
AmhiguousStots: (
[PossibleSlots: (Sender Recipient CC)
SltotfFiller: [DescriptionOf: Person
FirstName: fred
Surname: smith

.]
]

:)
AfterDate: [DescriptionOf: Date
Month: janucry
DayOfMonth: 5
1

]

This example CASPAR output is similar to the two given previously, but instead of naving a Sender
slot, it has an AmbiguousSlots clot. The filler of this slot is a list of records, each of which specifies a
SlotFiller and a list of PossibleSlots. The SlotFiller is a structure that would no'rmally be the tiller of a
slot in the top-level description (of a message in this case), but the parser has been unable to
determine exactly which highzar-level slot it should fit into; the possibilities are given in PossibleSlots.
With this representation, it is now straightforward to construct a directed question such as:

Do you mean the messages fron, to, or copied to Fred Simith that arrived alter January 5?

The adoption of such representations for ambiguity has profound implications for the parsing
strategies employed by any par - . :at tries to produce them. For each type of construction that such

a parser can encounter, the parser must '«ncw" about all the structural ambiguities that the

construction can give rise to. and must be prepared to detect and encode appropriately such

iy i

bt i

. o it
A iz s o a.i

1t anthod s i S0 Al b

A CTRI IR AT

bt il or AL

[ERRINCITS

el i faditijs v

ez,

T B

T
-
.
—~

17 LR

12

ambiguities when they arise. Construction-spacific parsing techniques as used in CASPAR it this
requirement perfectly. Each construction-specific parsing strategy can encode detailed information

about the types of structural ambiguity possible with that construction and incorporate the specific

information necessary to detect and represent these ambiguities.

4 This section concludes with a brief nate about language defiriition. As we described in the last ‘%
3 annual report, FlexP had a language definition facility wh'ch allowed the designer of a task-specific 3
language to define the language without having to know the exact details of FlexP's grammar
S formalism. This made it much éasier to define such languagas, but the facdity turned out to be

inconvenient to use in practice because of the time-consuming compilation phase necessary to

transform the language definition in domain terms into FlexP’s patterr-match rule formalism. This
was particularly inconvenient when a large number of relatively minor changes need to be made, as is

normal during language development,

TITRARTTRII, i

For CASPAR, we implemented a similar Ianguaée definition facility, but with one important
difference - instead of compiling the language definitions into a different formalism, we designed _
CASPAR to interpret them directly. This made the language deéigner‘s job much easier, by letting l
him make the many small changes that are always necessary in the course of developing a language, 4
without requiring him to go though a time-consuming compilation for each incremental change. The
reason that it was possible to do this with CASPAR, and not witﬁ FlexP, relates directly to the
construction-specific approach that CASPAR embodies - since the constructions CASPAR deals with
correspond directly to those that are natural to the domain, direct interpretation of a language
representation designed round these constructions was straightforward for CASPAR.

2.5. Further Applications of the Construction-Specific Approach

After reviewing the results of experiments with our two simple construction-specific muiti-strategy
parsers, CASPAR and DYPAR, it seemed to us that the construction-specific approach was promising
enough to merit further investigation in the context of more powerful and realistic parsers.
Accordingly, towards the end of the contraét period which is the subject of this report; we embarked
on the design of two new further parsers, which are intended to push the muilti-strategy approach

along two different dimensions.

The first of these new parsers, for which a preliminary design appears ind and?, is intended to
proceed further in the same direction as CASPAR and DYPAR, viz. in the direction of limited-domain

natural language parsing by construction-specific techniques. The most important issue to be

[P

P

13

tackled in this parser is the coordination of.a number of diverse parsing techniques to produce an

efficient, robust, and reliable unified parser.

The second parser we are planning is an attempt'to apply these same construction-specific
techniques to languages of the type commonly used in interactive interfaces. Important issues here
involve the handling of positionally determined constituents, used much more widely in such
languages than in natural languages (whether restricted-domain or mbre general), and the
importance of efficiency - typical parsers for such languages, though not very flexible, are usually
very fast, and to provide a reasonable alternative, our flexibie parser must be able to compete along
this dimension too. We expect work on bath these parsers to continue through the reméin‘der of this

year.

3. Publications

The first of the publications listed below discusses the interface project within which FlexP was
tested.
1. Ball, J. E. and Hayes, P. J. Representation of Task-Independent Knowledge in a Gracefully

Interacting User Interface. Proc. 1st #nnual Meeting of the American Assocnatlon for Artificial
Intelligence, Stanford University, August, 1980, pp. 116-120.

2. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. Proc. of 19th
Annual Mceting of the Assoc. for Comput. Ling., Stanford University, June, 1981.

3. Hayes, P. J. and Carbonell, J. G. Muiti-Strategy Parsing and its Role in Robust Man-Machine
Com "wunication. Carnegie-Mellon University Computer Science Department, May, 1981.

4. Hayes P.J. Focused Interaction in Flexible Parsing. Proc. of 19th Annual Meeting of the Assoc.
tor Con put. Ling., Stanford University, June, 1981,

5. Hayes, P. J. and Carbonell, J. G. Multi-Strategy Construction-Specific Parsing for Flexible Data
Base Query and Update. Proc. Seventh Int. Jt. Conf. on Artificial Intelligence, Univ. of British
Columbia, Vancouver, August, 1981, pp. 432-439.

6. Hayes, P. J. and Mouradian, G. V. Flexible Parsing. Proc. of 18th Annual Meeting of the Assoc. for
Comput. Ling., Philadelphia, June, 1980, pp. 97-103.

4. Professional Personnel
1. Philip J. Hayes
D Sc, 1977, "Some Association-Based Techniques for Lexical Discmbiguation by
Machine",

2. George V. Mouradian

3
F
3

ol b g

e 0B o

b e ks

PR 1113 M

Pt e

BTG RliLiA L i i,

RN TPAAT T

14
M Ph, 1978.
5. Interactions
Ongoing consultation with Dr. Jaime Carbonell, also a faculty member in the Computer Science
Department of Carnegie-Mellon University. but ni.t funded under this contract.
3 j
1 |

boladin ga bt ol

e STB e e S

il et 4 AGURE o L oo

