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ABSTRACT

A research program, comprising both analytical and

experimental tasks, has been pursued with the objective of
examining the influence of biaxial applied loads on the
mechanical behavior of bodies containing cracks. /

Under the analytical part of this program, a general
fracture mechanics analysis was performed to examine the
influence of biaxial applied loads on the mechanical state
of the body. The geometries examined were the single crack
and two coplanar cracks with an arbitrary orientation and
the cracked shear panel. It was found that the biaxial
loads influenced all aspects of the mechanical state of the
body, with the exception of the stress intensity factor for
a crack oriented parallel to the biaxial load. The extent
and nature of the biaxial effect on the crack-tip stress
field, stress intensity factor, angle of initial crack
extension, crack-tip displacements, elastic strain energy,
fracture load and fatigue crack growth rates are all pre-"
sented in this report.

The experimental part of this program involved
developing a biaxial test facility',,and performing a con-
siderable number of photoelastic, -fracture ,toughness, and
fatigue crack growth rate experimentsi. Confirmation of
the analytical predictions was obtained for the biaxial
effects on the crack-tip stress field, the angle of initial
crack extension, the fracture load, and the fatigue crack
growth rates. The biaxial loads were seen to influence
all of these parameters in varying degreesI and a consider-
able amount of experimental data is include4 in the
report.
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SECTION 1

INTRODUCTION

Ever since the seminal research of Griffith into the

nature of the fracture of solids in early 1920, the opinion

of many associated with the materials science and fracture

mechanics communities has been that loads applied parallel to

an existing crack (in addition to the tensile load perpendi-

cular to it) have no effect on fracture behavior. This idea

was first advanced by Griffith himself in postulating his

well known criterion for the onset of crack instability (12,

13]. The mathematical or analytical justification for such

an assertion can be shown to be lacking however, and has been

a source of controversy over the years [48].

Apparent corroboration of this idea of the unimportance

of loads applied parallel to a crack (in a biaxial load situ-

ation) appeared to come some thirty-five years later, when

Irwin introduced the crack-tip elastic stress intensity fac-

tor approach to fracture mechanics [49,50]. Irwin's deriva-

tion of the singular one-term series approximations for the

elastic stress in the neighborhood of the crack-tip, utilized

Westergaard's form for the solution of the problem of a biax-

ially loaded plane infinite sheet with a central horizontal

crack [51]. Westergaard's solution, however, incorrectly

omitted a term containing the horizontal load parameter, (i.e.,

the second term of the right side of Eq. (2.11) of this report).

Consequently, in Irwin's subsequent series representations of



the stress field near the crack-tip, no manifestation of the

presence of the horizontal load could possibly appear. How-

ever, Irwin seemed to understand the significance or importance

o!5 loads parallel to the crack, because he added a constant

but unspecified term, a Ox, to his expression for the x-direction

stress component near the crack-tip, [SO]. It is now under-

stood that this term corresponds to the second, non-singular,

term of Eq. (2.24) 1 of this report.

Thus two analytical errors, with the latter one accidently

having the effect of masking the presence of the earlier one,

led to a general misunderstanding of the significance of the

biaxial load effect. This situation still persists. Now

that fragments of contradictory experimental data have begun

to appear, during the last five to ten years, the need to

clarify this question is apparent.

This research effort addresses itself to this problem,

that is, to the question of the presence, or lack of presence,

of the effect of load biaxiality on fracture or on fracture

related behavior. It attempts to examine the problem

systematically and in detail, utilizing specially designed

experiments where possible to check on the validity of the

analytical findings. The experiments were performed on

materials that are used extensively in aircraft structures.

-2-



PART I

S.ANALYSIS

When a cracked body is subjected to forces that act

parallel to the plane of the crack (iii addition to the ten-

sile forces applied perpendicular to it), any influence that

the parallel loads may have on the fracture behavior of the

body should, if present, manifest itself in several different

ways. Moreover, if the biaxial load effect exists and is

significant, it must obviously affect the mechanical state of

that region of the body in close proximity to the crack tip.

Investigation of the problem should therefore direct initial

emphasis on illuminating the possible relation of load bi-

axiality on those aspects of fracture that can be observed

experimentally. These would include crack-tip shear iso-

chromatics, which may be seen photoelastically, the angle of

initial crack extension, which may be observed directly, as

can the rate at which fatigue crack growth takes place under

cyclic normal loads at varying states of load biaxiality.

The critical value of the normal tensile load, that is, the

fracture load, can also be measured at different ievels of

load biaxiality, which suggests that the analysis should

zoncern itself with this facet of the problem as well.

The irfinite sheet geometry was chosen for the theoret-

ical part of the investigation beciuse exact solutions for

several cracked-body geometries are known, thereby permitting

( derivation of specific results that give explicit demonstration

-3-



of the effects of the load applied parillel to the plane of

the c rack. Although experiments must be performed on test

specimens that have finite dimensions, analysis based upon

i~nfinite body geometry can be useful, nevertheless, because

it can serve as a prototype that provides, at the very least,

valuable information of an insightful and qualitative nature.

-4-



SECTION 2

STRESS AND DISPLACEMENT IN THE VICINITY OF rHE CRACK TIP

In the linear theory of isotropic elastic solids irn

which body forces are neglected, the plane problem of statics

is reduced to a boundary value problem for the biharmonic

stress function. The same problem can also be formulated

equiv-,lently in terms of a pair of analytic functions, ý and

Q, of the complex variable z-x~iy-re , which uniquely specify

the plane stress and displacement components by means of the

following relations 111:

t + tyy -a2($z) + -T7T]
- *2it - 2[•:de

tyy txx xy M2t( + 7(:) - ¢(z)1 (2,1)

* iuyl = KO(z) - w(i) (z-1)T-z7 ,

where the overbi.r designates zomplex conjugation and

(Z) at P (-)dz, w(z) f fn(z) . (2.2)

When for a given boundary value problem, that is, for a given

applied load anc crackied body geometry, the functions D and

il are determined, then the stress and displacements, and all

other mechanical quantities expressed in terms of them, are

determinable from Eqs. (2.1) and (2.2).

2.1 SINGLE CRACK

The plane components of the stress tensor referred to

the pair of coordinate systems shown in Fig. 1 are related

( : by expressions

-5-J
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t tx+ 2itxy e21(tA t A 2itxy)

Se 2i (tA ty - 2it' ) (2.3)xx xy

and

t + t t A + (2.4)yy xx yy xx

The boundary condition along the exterior boundary of the

plane infinite body having an inclined interior crack geometry

(cf. Fig. 1) is specified to be

t~y(®• - a , txx •) " ko , ty(a) " 0 , (2.5)

yy Xxxx

which can be expressed relative to the (x-y) coordinate

system by means of Eqs. (2.3) and (2.4) as

t() 2 -(l+k) - !(l-k)cos2ct

tx(•) - (l~k) + S(l-k)cos2& (2.6)

t (00) M T(l-k)sin2oLxy

Along the interior (crack) boundary

t yy(X,O) - t xy(x,O) 0 , Ixi<lal. (2.7)

The solution to the boundary value problem posed by Eqs.

(2.5)-(2.7) has the form (2]

n~zz2. -7 h + B (2.8)
wherZ a

where
1 (2A+B) - .[le 2iot + k(l~e 2ioL]

*Ba j(l-k)e 2'iQ

-6-



From Eqs. (2.2), (2.8) and (2.9), it follows that

a ai(le2iQ)÷k(le2i!) -a2)4*(1-k)e2 . .

T 1- 2 2 .~ (2.10)
W(z)

When the crack has a horizontal orientation, a-rr/2, the

above expressions reduce 4.o

Cz a-a
()2Ja2 T(lk) (2.11)n(z.

and } * 2a( 2 a (1-k)z . (2.12)

Expression of the stress and displacement components in

the immediate vicinity of the crack tip is facilitated by the

following coordinate transformation (cf. Fig. 2)

z - a a i8 a reie , (2.13)

relative to which $(z)-'4(•) may be shown to have the power

series representation

a (Ta) C 2i( 3i ()a ii (1-k)e i '(~)0 .-......

(ra) + ,(1-k)e ic, + 0 (2.14)

in which

C (l-e 2ic + k(l+e 2ia .

However

-7-



a - (1+k)-(1-k)cos2a-i(l-k)sin2 (

(2. 1S)

-½(K1-iK 2 )

where

K -iK2 ".alim2((.r) (z'a) .(z (2.16)

is the complex elastic stress intensity factor [3,4]. The

equivalence of expressions (2.15) and (2.16) can be shown by

direct calculation of the limit Eq. (2.16) with ý as given by

Eq. (2.8). Thus

K -iK.,2
() 1 . 4(1-k)e2i( (2.17)2 (27)• a

and for O<Ic/aI=(r/a)<<l, we have the following series

approximations for 0 and Q taken to order (r/a)½:

_. K1 iK2 -i7I - e(2(r) t l-k) ei (2.18)

2ý2(~ (21tr)~

Similarly, a series expansion for O(c) has the form

w c (K-iK 2 )C + T(l-k)la)eO

which can be approximated by

(K-iK) ee T(-k) e (2.20)

when O<l/al - (r/a)<<l. )

-8



I.I

4, The stress and displacement components near the crack tip

are thus obtainable from Eqs. (2.1), (2.18) and (2.20), where

in Eq. (2.1) z and I are replaced by 4 and Z, with the results

K1  e K2  8 03 1
tos Cinsin sin

S (2iTr) (2 2r

+ a7(l-k)cos2a

try (2fr) Cos Tnr--O s (2.21)

t (2i•r)' ''1 (2 wir) c

K1  0 38 K 2  ~ i~~

+ i-T " Trcos(i+2Co )+scos ( -+c)-2sinOsin2c]÷(K41)a coI2a.

(2.22)
uy ••-"j Cs n"- (K-+l)csi ÷ osiT (K-•)÷Csin

"+(1'k)" a rr(sin(2-'8).Ksin(2x+8)-2sin8cOs2a]+(icl)a cosin2j

In the above expressions the elastic stress intensity factor

K1 and K2 have, from Eq. (2.15), the explicit forms

K1 2 Ik)- (l-k)cos 2a]

(2.23)

K2  a() (1-k)sin2a

. 9-



The variation of K1 and K2 with the angle of crack inclination,

a, and the biaxial load factor, k, are shown in Figures 3 and

4.

For the crack with a horizontal orientation, ---Tr/2,

Eqs. (2.21)-(2.23) become

tx .2r)cos'(1-sin sin ý-(1-k)a ..K1  8 .8 380
XX (21rr) 1 2 2

yy (2Trr) ( i i (2.24)

tx K2 1) sin-t cosi cos ,

xy (2 7Tr) 22 2

and

u-= Tv(2- cos-[12l(K'-l)+sin26] ( S-k) +l)or cos8 + a]

(2.25)
Uy /sin!g (+ 1) "cOs2, + 8( r sinO

where

K1  a (Tra), K2  0 (2.26)

From examination of the power series representations

given by Eqs. (2.14) and (2.19) for •(P) and 0(ý), respectively,

it is observed that the biaxial load factor, k, appears as a

coefficient in only the second term of the expansions. Con-

sequently, in order to take proper account of the presence of

the horizontal load in the approximate expressions for the

elastic crack-tip stress and displacements, a two-term

-10-
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approximation of the series expansions for V and pmust be

employed, as shown by, Eqs. (2.17) or (.2.18) and (C2.19) or

(2.20). This gives rise.to the a(l-kjcos2a contribution to

"Eqs. (2.21)i and' `24 antd thesecond 1i'nes of the Eqs.

(2.22) and (2.2S)., contributions which do not appear in the

..usual expression. of these equations i.h the fracture mechanics*.

-literature. When the"•crack~is inclined the horizontal load

will also effect K1 and K2 , i.e.., will also appear in the co-

..efficient of the first term of the-series expansions, while

for ýhe horizontal crack orientation K is independent of ka

and K2 =0.

It is also noted that the customary expressions for the

displacements (which consist of only the first lines of Eqs.

(2.22) and (2.25))predict zero displacements Eor the crack

ends which, from physical considerations alone, must be in-

correct. According to Eq. (2.22)

(-k)(•+l)aa •cos 2a (2.27)U l =O 81 [sin 2 a( .7

r-0

whereas for the crack with a horizontal orientation
(Uxa _- 1-k) (K÷l)•a

(ux) r-0 8u (uy) = 0 (2.28)

a=Tr/2 a=72

showing that the crack tips move horizontally out (away from

the center) for horizontal tensile loads, k>l, and move hori-

zontally in for tensile loads, O<k<l, and compressive loads,

k<O.

M -11-
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The equations obtained above show explicitly how in

situations of biaxial load application along the exteriol,*

boundary of the body, the usual approximation for the stress

and displacements in the vicinity of the crack tip by means

of only the first term of the series expansions of the func-

tions representing them is, in general, inadequate,: because

it exc'ludes in part, if not entirely*, the presence of the

horizontal load ka in its representation of the mechanical

state of the crack tip region.

Referred to the polar coordinates at the crack tip (cf.

Fig. 2) the plane elastic strain energy density (per unit

volume) at any point can be determined by,

4ro) = 2 L xx ax yy ay xy;y + a x)]

.[. sin(+u' y sine (

A7 ar c7 tyy ar a
+ tx(aux sine'+U- -,cO:+' o .'xy ar , 8 r .r° a r . (2.29 ..

By means of Eqs. (2.21), -(2.22),-and (2.29) the strain energy

density in the immediate Vicinity, of the crack tip is given

by (2,S]1

I:

For the horizontally oriented crack the presence of the

horizontal load ko appears only through the second term
of the series expansions.

r W



12 r-2sin P (-K)0 s-in 2  + (K1

2+ I~i7e 8 i61~. losin 2f - r4t 2 - n3 e K9)i26

K12 8s.2 -6sin9..42Sin..48-2)InS -6 (K-5)sin3 y+2 (~~i
l6P1TVL 2 2- 2

+ K

2[cos-t $(Ksin-1) 6s'in +(8- 2)s~S-f8(ts ia- (-K i
4Ii (2irr) 2 2 2)

+ 2sin

Ki(l-k)aFin- s2.

4pj (2Trr)

22a

+K 1) [ co s Za- s 42 as if4a] (2.30)

Were one to calculate i from a quadratic representation

entirely in terms of tht plane stress components, i.e:.,

1 2 + 2 +'v ~2 VŽt*

S(txx+ty + *T- xy E xx tyy

and use Eqs. (2.21) with the o(1-k)ccs2cx term omitted, then

the resulting expression for ip would have the form

1 1 1(6)+c 2K2F2 (8)+cl2K1 2F 12()

-13-
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which is the expression used in Sih's strain energy density2

theory [6] . A comparison of this approximation with Eq. (2.30)

shiws that the last three terms of (2.30), which stem from

tepresence of the non-singular contribution a(l-k)cos 2a

to Eqs.. r2.21) and thle second line contributions to the

displacement equations (2.22), are necessary addi~tiona&l terms

which cannot be ignored if proper account is to be taken of

the effect-of the horizontal load ka on the local (crack tip)

elastic strain-energy density.

'or the horizontal crack Eq. (2.30) reduces to

) .,/T I, r 2

a'a 
Y

(231
3P P

The local elastic strain energy rate fran arbitrarily

malI circular r'egion -of unj.t: t1Kic.kness centered at th& crack

tip w ith raýdiusi r.,-h"e <a/ <Ii banda h

ae rivat ive wilth respect to, t he crack sir.eo of the inte~gral

wh3 ch, upon ut i.1 i44ion o- Eqs. ~3 0) ani 22),yed

T~ 2- lk) (I ýk)cos 2 at[+2(K,+2) (1k)2sif2 az

(2,32)
~ 2c*Hr

-. 4-



The variation cf (aT/aa) with crack angle and load biaxiality

is shown in Fig. S for a value of v=0.30 and (roia)=0.07.

For the horizontal crack Eq. (2.32) simplifies to

(a" mr i0/ [(2,L-Kl) _G o)½ I1.. ic-7)( -k) (2.33)

2.2 TWO COLLINEAR CRACKS

For the double collinear crack geometry shown by Fig. 6,

the exterior boundary conditions are specified by Eqs. (2.6),

whereas along the interior crack boundaries

t (yx,)Ut (xy{x,o)= 0, IaI<IxI<Ibl . (2.34)

The solution is given by the sectionally holomorphic

functions [7]
n(z)¢z) = A~2"

S() zA(z 2-B) ; C (2.3S)

rZ(Z-az)(z
2 -[b "

O ), 2 .- AB J dz C z

z 2

W(z) f ) z -b~Y ( (z-a ) (z -b2

(2.36)

where

A - (l-e2i )+k(l+e

B - b2 [E(p)/F(p)] b 2 x(p), p2 -l-a 2/b 2  (2.37)

C - -�(l-k)e 2 i•

, .'• "!' .:•J:•......'..."."." .. ". ....___ _ __ _



Note that in the limit as a-O the complete elliptic integrals

E(p)1l, F(p)-- and the above expressions reduce to the solution

(2.8) and (2.10) for a single crack of length 2b.

In establishing the structure of the functions 0 and i

near the ends of the cuts, because of the geometrical symmetry,

only one cut need be examined, say the one along the positive

x-axis. Consider first a circular region Rb enclosing the

end of the crack at z-b, with radius sufficiently small so

as to exclude the point z-a, (cf. Fig. 7). Equation (2.35)

can be rearranged to the form

•(z)2)]

1 [ Az2  AB C

(z) (z-b)½ (z+b) (z½ 2 2 (z+b "z 2_a

fb(z)

where fb(z), representing the terms appearing within the

bracket, is clearly analytic for all points z in Rb. A

similar argument can be made for all points of a circular

region Ra enclosing the end of the cut at zoa, while excluding

the point at zab, merely by interchanging b with a in the

above expression. Designating the ends of the cut by z-z.

j-l,2, so that zl-a and z 2 -b, the above arguments can be

jointly stated as

•(D z) fj (z)
" ; C, j-1,2Q(Z)1 (z-zj)

1

S~-16-
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where the functions f. (z) are analytic for all points z of

the regions Rj, thus allowing the series representations

f (Z) _ aj +~~~~ 8i (z _z.) + aj(z-_zj)2.). . . . . .
0.z 1 2

in which the coefficients aJ include the constants A and B.n
Thus in the vicinity of the end points z. of the cracks the

structure of 0 and Q have the form

D(z) 3j/
0 • + ÷+ S )3/2 C

,( )( z ': j ) IJ- . . . . . . . . . *

0 C + O(Iz-z.1½) zjeRj, j-1,2. (2.38)(:z.z )½ 3.3 .

Equations for the elastic stress and displacements in

"-he crack-tip region can now be expressed in the standard

form. This may be accomplished most economically by intro-

du tion of a pair of polar coordinate systems originating at

, ends of the crack by writing z-z jre ie, with the stipulation

that, at the end z 2 -b the angle e is to be measured counter

clockwise from the real axis, whereas at the end zl-a it is to

be taken clockwise. Accordingly, from Eqs. (2.1) and (2.38)

÷ + = -4Re(- e ie/2 4Re C + O(r½)tyy txx

i - -i/2 i -1
tyy t + 2itxy e + 2i- e sin6 (2.39)

+ 4Re C + O(r).

Consistent with standard notation, the coefficient 33 can be0

expressed in the form of a complex elastic stress intensity

factor as

-17-
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1 ( K2 - (2.40)

Equati as (2.39) and (2.40) then yield the characteristic forms

i -iKl 0 s(1" in sin) Ki1  sin (2+cos ose)
xx (2rr) o (2 -r)

+ a(l-k)cos2a.

cos1f~ +sin sin + sin"T CosI cosT (2.41)tyy (•~
ty (2Trr) 2 (2Trr)

2 (2r k5y sin-) o- osr'
for zeR., j-1,2.

At the inner and outer ends of the cut, respectively,

K j = K - Kl(a) =Kj - KI2 2 Kl(b)

K2jj K2,1  K2 (a) ,K2j - K2 2 B K2 (b) . (2.42)

Considering the manner in which angle e is defined, Eqs. (2.38)

and (2.40) afford explicit determination of the stress intensity

factors according to the relations

i (K lj -iK 2 j) ) lim E2(27r)½(Zz .½(z], (2.42a)

(K j -iKzj )j- 2

from which

K(a) 2a(b -a 2

Kz(a) .2ab2 a 2 )½ (l-k)sin2a (2.43)

2 -18-



and

Kl(b) a b [(1+k)-(l-k)cos2oL]12 (b2-a2)

K2(b . • b[1-X(p)]
K2(b) a2)- (1-k)sin2a (2.44)

2( 2(bz-a )

for O<a<b. The variation of KI(a)/K 1 (b) and K2 (a)/K 2 (b) with

crack spacing is shown in Fig. 8. When the distance between

the cracks is the equivalent of the crack length, interaction

of the inner crack-tip stress fields is just about negligible,

Kl(a) and K2 (a) being only two percent greater than Kl(b) and

K2 (b). For crack spacing at about three tenths the crack

length or less, the stress intensity at the inner crack ends

increase rapidly relative to the outer ends.

For horizontally oriented cracks,

K (a) j7a bXp-4
a(b -a)

K (b) = £(ib) . b l'-(p)] (2.45)1 (b2 -a2)

K2 (a) K2 (b) = 0

independent of the load biaxiality.

From Eqs. (2.1), (2.2) and (2.38), O(z) and w(z) can be

represented by the series

ý(Z)

25 (Z-ZC) Cz + O(Iz-z I3/2)
/(Z) (c2.46)

2$r e C z eie + 1 + Or3/2

-19-



Substitution of Eqs. (2.46), (2.38) and (2.40) into (2.1)3

yields the following expressions for the displacements com-

ponents in the immediate vicinity of the ends of the cracks:

ux WL K Cos TY (K-lsn ÷sin 7 ÷l)÷co

+ !(K+J)z cosZa-rsinesin2a÷ rI o

(2.47)u K•l<)sn[!÷) 2] 2

4a : ,.61L1
P~ T

where jml,2 and z1 a, z2-b.

The same comments that were made for the single crack

concerning the presence of the horizontal load ko in the

approximations for the crack tip region stress and displace-

ments, apply verbatim for the double crack geometry, as Eqs.

(2.37), (2.38), (2.41)-(2.47) indicate.

2.3 SHEAR PANEL

The centrally cracked sheet subject to pure shear along

the outer boundary (cf. Fig. 9)
t'y(-)-0, txx(.*)-0, t'y (-O) c (2. 48)

yy xy

relative to the (x'- y') coordinate system, can be transformed

to a biaxial boundary condition

tyy(-)=-Tsin 2 8, txx (-)=sin2S, txy (-)-Tcos2 $ (2.49)

relative to the (x-y) coordinate system. The boundary con-

dition along the interior crack boundary is specified by Eq. (2.7)

-20-



The solution to the above problem is given by (8]

i, z2 a2 (2SO

so that

i-re (Z.Sl)

Relative to the polar coordinate system at the crack tip

z-a-a=re i (cf. Fig. 2), 0 has the power series expansion

1 i-2i$3 1 i( 2)'() 3( . ........

K -(K +1 - r*T ea -2i + .... .S2)

where by means of Eqs. (2.16) and (2.50)

KI-iK2 . -i-Ora) e2i . (2..53)

Thus for Q<f;/aI-(r/a)<<l, up to terms of order (r/a) , the

stress functions become, (analogous to Eqs. (2.18)),

2 a K1 iK 2 e-i(6/2) * 2ire2zi (2.54)
2S C (2Tr)½ e 31 .( . 4

Similarly, for ý(c) and w(c) up to terms of order (r/a)3/2

(analogous to Eqs. (2.20)),

• (Kl~iK2 )()- e(/2) iT(a le+1 e (2.55)

The elastic stress and displacement in the vicinity of

the crack tip follow from Eqs. (2.1), (2.54) and (2.55) as

-21-



-j KO~ 2s 2 36t cos.1-sin sin"- ni sin 2+cos os +2!sinO
tXX 2Tr) (2wr)

and
2] 7 () T"7

4 4.( (*ic.) (rcos~ea)sin28- (•*53)rsin~cos28]
(2.s()

2t K 2
u.a Co)sin .(K-1+)cSi 2e]_ s kr) osL.(l-c)4CS i-.

+ -!-[(K+1) (rcose+a)cos2B+(K-S)rsinesin2S]

where from Eq. (2.53)

K1"-T(wa) sin28 , K2-r(ra) cos28 , (2.58)

It will be instructive to again focus attention on the

•second tdrm of the series expansion approximations given by

Eqs. (2.54) and (2.55), which lead to the 2rsin3 contribution

to Eqs. (2.$6) for the stress, and to the second lines of E.qs.

(2.57) for the displacement. As for the biaxially loaded

cracked bodies, failure to retain these terms in the series

approximations for the crack tip stress and displacement can
lead to significant error in describing the mechanical state

about the crack tip. For example, for the displacements at
the tip of the inclined crack

-22-



x T(i•l)a sin28

,YIrfO

4a cos20 (2.S9)

which according to the usual one-term series approximation

should be zero.

-23-



SECTION 3

ISOSTATS FOR MAXIMUM SHEAR STRESS

The maximum shear stress at any point of a body in plane

stress or plane strain is determined by

2 1 2 + 2 (3.1)
m 4 yy-xX) txy

3.1 SINGLE CRACK

For the maximum shear stress near the tip of the inclined

crack Eq. (2.21) may be substituted into Eq. (3.1) with the'.'

result

2 r 2s in2+ K (4-3sinOe)+4K Ksincos',lim 8I 2 in + K .. ,

(l--k)cos2a sin~sin, . . sinecosi-+2 sin•(2rrr)½ 2( lr

2

With the crack horizontally oriented, the maximum shear.. ..

stress becomes

lr2 • 1  
2sin 2 ,__.. --.- ssin sin 3 _.(1-k)+ (1-k) (3.3)

()a T/2 8OIl 2 (2irr)

If the customary singular approximation for stress were

employed in Eq. (3.1), i.e.:, Eq. (2.21) without the a(l-k)cos2a

contribution, only the first: line of Eq. (3.2) would appear

for the inclined crack and only the first term of (3.3) would "

appear for the horizontal crack. Designating the latter by

(ml ~rK= 8sin 2 6 , (3.4)

-24-



2 2
where. K1 =u 2ra it is seen that the effect of the horizontal

load ke on the maximum shear stress disappears entirely. The,

ratio, of Eq. (3.3) to Eq. (3.4),
sT_• h. in 2 8+4 -k)(• sinesin. . 2(l'k )2

()sine, .,- a- r/ 2 r i s"'-

gives a measure of the.error for the maximum shear st.tess that

is associated with use of Eq. (3.4). The ratio given by Eq.

(3,5) is plotted,'in Fig. 10 along:the radial 'line e=20 0 .

Equation (3.2) together with Eq. (2.23) can be rearranged

to the following more convenient form for the purposes of

drawing lines of constant maximum shear stress near the crack

tip.

~(Tm2'[ (l[k) cos2 a2}(r)

+ )j (l-k)cos21-(l-k) Zcos2 2  F1 (e)+ (1-k) sin4j F (6)
4 (2)31a '•2 (a

r2- 2 2 2 1 F 2 i 21*10

- L(1+k) 2(lk )cos2a+(1-k) Cos 2cjF3 () (1-k) ..cz F(e

+[(-2sn~-(-) si-a Se 0, (3.6)

where

F1 (e)-sinesint- F4 (6)=(4-3sin 6)

Fz(6)-sin~cos!-÷2sin9 FS(3)sin~cosl (3.7)

"F3 (e)-sin 26

For a'-n/2, Eqs. (3.6) reduce to

-2S-
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12 7 lk sinesin -sin2euo. (3.8)

The pronounced effect that the load biaxiality has on the

maximum shear stress near the crack tip is shown in Figures

11-13. It is observed in Fig. 11 that as the load. biaxiality

passes from tension-tension to Uniaxial, tension..to tension-

compression, the extent of high level shear about the-end of. '

the crack increases appreciably, Moreover, since plastic

yield is strongly influei ed by the "mfaximu'n shear s-tress (c.f...'

the yield conditions of Tresca and Mises,) the plastic yield

region about the crack tip should show.a similar pattern of

variation with load biaxiality, that is, should increase in

size as load biaxiality 'varies from tension-tension to tension-

compression.

3.2 TWO COLLINEAR CRACKS

Equation (2.41) combined with Eq. (3.1) produces exactly

the same form for the square of the maximum shear stress as

Eq. (3.2) for the single crack, except that K1 and K2 in (3.2)

is now replaced by K1I and K23 as defined by Eq. (2.42) and

(2.43). When these expressions for the stress intensity

factors are explicitly introduced, the equation defining the

isostats of maximum shear stress, analogous to Eq. (3.6),

becomes

-26-



2

..÷ .-.Lj.C (l.k 2 )cos2a--(1-k.) 2 cos. 2 "a F. .n .(1-k) .
I ,2 )1[ lzssnztJF 2 (e)jF.

...--Lp (l+kcos2a*.(l-k) o 2 ]F (6)

2l sin22t~F(~k o 2 sin4c]F (G)I 0, j-1,2, (3*9)

where

Ll(p) P b.LI"p)P)] (3.10)
a(b -a ) (b -a

and the F k-l,2,.... 5 are as defined by Eq. (3.7). Figures.

14-16 give an indication of the variation of the normalized

maximum shear stress with load biaxiality for cracks of uniJ.

length inclined at a=45° and spaced at 2a-0.20.

3.3 SHEAR PANEL

For the cracked shear panel the maximum shear stress near
the crack tip is determined from Eqs. (2.56) and (3.1) as

- Tsin28l - sinesin--+ ( (sin cos-,+÷2 sin- sin2$.L(2wr)• •(27r)½~ ~

(3.11)

Again, if the customary singular approximation for the stress

were used in Eq.(3.1), i.e., Eq. (2.56) without the 2Tsin2B

contribution, the result would be only the first line of Eq.

(3.11). Designating the first line of Eq. (3.11) by Tm,

-27-



...... ..... ..

-.. 2 .

2' 2., 22 2
[ sin e+K2 (4-3sin26)+4KiKjsin6cos- G,.. .2

a measure of the error involved by the use of Eq. '(3.12)*.rather

than. Eq. (3.11) is: provided by . .

"c•.s2.3 Sin6si3 n )- sin2$sin8sin-

22
(T-m*\ =1.[3(I"] sin2$sin'n2+cot2.fcos2$(•4_3s.in,,O)4cos2$lsinO~cosT ,.

• . _ .. f..
m1

8 2 , (3. 3)-8 sin 6 -cot 22a(4-3sin e)-4cot23sinecos.-•1

which is illustrated by Fig. 17.

Equation (3.11), in which KI and K2 are given by Eq. (2.58),

can be written as

2 2 m ~ 12

- 1 2aF 3(8)+cos 2aF,(8)-4sin2Scos2ýF5 (6) 0 , (3.14)

...where the Fk(6), k-1,2,...,5,, are as defined by Eq. (3.7). .

Equation (3 14) may be used to draw isostats of normalized

maximum shear stress as shown in Fig. 13.

-28-
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SECTION 4

ANGLE OF INITIAL CRACK EXTENSION

The maximum tensile stress criterion may be used to obtain

an estimate of the angle at which a crack extension will begin

to take place. Although the criterion itself cannot be considered

to be wholly satisfactory, it nevertheless has been shown to

offer resonably good correlations with experimental data under

tensile loading f9,10] , and can serve as a means of demonstrating

the influence of load biaxiality on the direction of crack

extension.

Designating e0 as the angle which locates the tangent to

the direction of initial crack extension, the criterion predicts

crack extension along the radial line normal to the direction

of the maximum tensile stress or, equivalently, along the dir-

ection parallel to the plane upon which the tangential stress

component tee attains maximum value. A mathematical statement

of the criterion requires that at some arbitrarily small radial

distance O<r 0<<l from the crack tip, the angle of crack exten-

sion is determined by simultaneous satisfaction of the con-

ditions:

atree(ro,eO) a tee(ro,eO)
tee(ro,80)>O, -e o, ae2 <0 (4.1)

The unspecified radial dimension r 0 is necessitated by the

singular nature of the stress at the crack tip and introduces,

thereby, a small measure of arbitrariness in the predictions.

It should also be observed that no elastic material parameters

appear in the equations for stress in the plane theory of

-29-
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linear elasticity (neglecting body force), consequently, the

above criterion predicts the same angles for all materials.

A series expansion for the tangential stress component

tee can be shown to have the following form (31 (up to terms

of order (r))

tee AAr)lBl(s in~sin §.)4B a(3cos~c e )2 +B sin2 6 (4.2)

where the stress t, the function A(r) and the coefficients

B1 , B2 , B3 , are defined below for each particular load-crack

geometry. Insertion of Eq.(4.2) into the conditions (4.1)

leads to the set of requirements

0r s 3e 0  0 3O +B .2

A(ro) B i1sin~2 +sin-1+-J+B2 [3cos-T+cOs- -J ]B 3 sin2e 0

A(r 0 )[B1[3cos80- -3B2 sine4+4B sin-60 os80 M 0 (4.3)

eogi 260,+ coseo 29cos +2B cs26o0
A(r 0 ) BS 1 sin 2-7 B2 22Bos >0

which, when satisfied collectively, determine the crack exten-

sion angle e 0.

4.1 SINGLE CRACK

For the single inclined crack the undefined quantities

appearing in Eqs. (4.2) and (4.3) are as follows:

tua

BI= (k-3)sinacosa

B 2 k+(l-k)sin 2a )
B3u (l-k)cos2a
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S A summary of the variation of the angle of crack extension, 80o,

with crack inclination, a, and load biaxiality, k, is shown

by Fig. 19, for which the arbitrary value of r 0 was chosen

such that (a/r 0 )'0.01.

4.2 TWO COLLINEAR CRACKS

For the collinear cracks, the undefined quantities

become

tuO

A(r)=A. (r)'L. (p), j-i,2

A1 (r)=l , o l L (P,)= ab 2 .)a 2)

121 a(b -a

A,(r)1= 1 w• , L2(p)__ b[ -X p ]

- 7 r (b -a )

Bl (k-3)sinacosa

B2 .k+(l-k)sin2a

B3= (1-k)cos2a

a~) 0. 01

Figures Zu and &.i illustrate the variation of crack extension

angle with load biaxiality and inclination of the cracks.

Figure 20 is for t .nner crack tip zl a and Fig. 21 for the

outer crack tip z 2 ýo. The crack spacing was taken at 2a-0.20.

According to Fig. 20, the inner crack ends, although closely

spaced, will not extend along their original directions to join

together when the cracks are inclined, except under equal

-31-
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tension-tension biaxial load, k-1, or when the cracks are

horizontal, c=n/2, and ks2.

4.3 SHEAR PANEL

For the cracked shear panel, the undefined quantities

become

t*T

A (r) = I _(a) I h

Bla3cos26

B 2=sin23

B3 .2B2

The variation of crack extension angle with crack orientation

is shown in Fig. 22, along with experimental data for 7075

and 2024 aluminum alloys reported by Liu [11].
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SECTION 5

DISPLACEMENT OF THE CRACK BORDER, COLLINEAR CRACKS

The components of displacement for the points defining

the borders of either one of the inclined collinear cracks can

be determined using Eq. (2.36) for p(z) and w(z) in Eq. (2.1)3

for the points along the x-axis for which a<x<b. Approaching

the crack from the positive side one obtains*

where

T(x) - x2 dx + 1 bE)--! K-a)(x2  )½

a [ (x -a 2 (x 2 b)]

(5.2)

X(x) -fx dx 2= F (4,p)
a [(x2-a )(x -b ]

F(ý,p) and E(0,p) are the elliptic integrals of the first and

second kind, respectively, with modulus p. Substitution of

Eqs. (5.2) and (2.37) into (5.1) gives for the displacement

components along the positive border of the cut

Approaching the cut from the negative side, it may be shown that

•( )x = - ()(x), W() x - ()x
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u(÷ (x,O0) - (1k (-lb (,) - - -X(ý,.:)F(¢p) sin2a

- (K+I) x cos 2a

A (p [(k

- (l-k)cos2c]- (K÷l) (1-k)xsin2ac

For horizontally oriented cracks ux+ ux H u), a

with this understanding

u (x,O) - - a (1-k) (K41) Xx 81 (S.4)

.u (xO) - --= (- l. - 1] [ _ .

In the limit a-O leaving a single crack of length 2b, ux remains

the same and Eq. (5.4)2 reduces to

U ( , ) - -I (K-1) (b2_ x 2)½.5uy,) 4

which coincides with the result obtained from the single crack

solution. Equation (5.4)2 for the double crack, and Eq. (S.S)

for the single crack, are shown in Fig. 23, each plotted for a

crack of unit length, illustrating the effect of the presence

of the second crack on the uy component of the crack border

displacement for a crack spacing 2a-0.2. The influence of the

horizontal load ka on the crack border displacements is evident

from the above equations.

)-4
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SECTION 6

GRIFFITH CRACK INSTABILITY CRITERION

The criterion for fracture introduced by Griffith initially

in 1921 [12], and restated in 1924 [13], is expressed as follows:

"The fundamental conception of the new theory
is this. Just as in a liquid, so in a solid the
bounding surfaces possess a surface tension which
implies the existence of a corresponding amount of
potential energy. If owing to the action of a stress
a crack is formed, or a pre-existing crack is caused
to extend, therefore, a quantity of energy proportion-
al to the area of the new surface must be added, and
the condition that this shall be possible is that such
addition of energy shall take place without any in-
crease in the total potential energy of the system.
This means that the increase of potential energy due
to the surface of the crack must be balanced by the
decrease in the potential of the strain energy and
the applied forces."

The total potential energy of the system is stipulated to

be a maximum at the point of incipient fracture (unstable crack

extension), or

dP (6.1)

at the onset of crack instability. When applied to an elastic-

ally deformed body with an existing crack of length (a), the

total potential energy of the system consists of the elastic

potential energy, V, and the crack surface energy, r,

P - v + r ,(6.2)

where

V f t .tkejdV-(fTkukdA+fbkukd), j,kal.,2,3 (6.3)
R R

and

U fI t ke dV (6.4)
R
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is the elastic strain energy of the body, which is subjected

to the body force bk and the surface traction Tk applied over

the region R bound by the surface S. By virtue of Clapeyron's

theorem (141 however,

f TkukdA +f bkukdV - 2U, (6.S)

S R

allowing the total potential energy of the system to be

equivalentl.y expressed as

P a r - U , (6.6)

with the corresponding condition for crack instability

a-(ru) - 0. (6.7)

Since Griffith assumes the surface energy r to be a linear

function of the crack surface area multiplied by a constant

surface energy density, y, application of the fracture cri-

terion is reduced to determining dU/da, the derivative of the

elastic strain energy of the entire body with respect to the

crack dimension.
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SECTION 7

4 ELASTIC STRAIN ENERGY DERIVATIVE

An estimation of the load that must be applied sufficient

to cause an existing crack in a structure to become unstable,

that is, to suddenly propagate and cause, thereby, complete

separation of the body, can be obtained from application of

Griffith's fracture criterion. As indicated in the previous

section, all that is necessary in order to apply the criterion

is knowledge of the rate at which the elastic strain energy

of the body changes with extension of the crack size, i.e., a

calculation of the derivative

lim (i--U\ dU
(a'-a)-0 \a7-aiJ a" ' (7.1)

in which U and U' represent the elastic strain energy of the

body having the crack lengths (2a) and (2a'), respectively, and

where the crack length difference Aa-a'-a is arbitrarily small.

In the case of two collinear cracks, an assumption must

be made at the outset as to which of the crack tips is first

anticipated to extend. It would appear on the basis of the

ratio of the crack-tip stress intensity factors at the inner

and outer crack ends, Fig. 8, that for relatively closely

spaced cracks, crack growth should be expected first at the

inner crack ends. Thus, corresponding to the strain energies

U and U' are the initial and extended crack lengths (b-a) and

(b-a')-b-(a-Aa), respectively, from which

S(b-a2)-(b-a)Ui [ UTa-U ] dU (7.2)
(b-b'37(b- a) - T-
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Consider the plane body with a single-horizontally

oriented crack, (2a), and: let R.,designateo ail' arbitrary. reglion

of the plane bound by the; arbitrary simple closed curves 'C,

C2 that enclose the crac'k (cf... Fig.. 24),. For -t h,9 pane. body

with horizontally 'reedofinacracks, (b- a): th e r-egion

Ris bound by three arbitrary, SIiisipl'e-.closed cuvs, Ck- lU

that enclose. both crac'ks'-(cft.'Fg 5.U~'-*9

The differe*nce o.Cf e1l~l'st.i~c str~i erg (per unit: thicdk- .:

ness) of the region' R"of *the 'body havi~ng'.,i.incrýemental-l'y,, d-iffer-

ing crack sites is: ý' ''

U(R) U U(R) rf (tei -t 'e J ,k=J.1,2. (.3)ff 2.: j.k. j k., j kjkd

From *t h e, lnear elIa st.lc c on stfu t ive relat'io'n-s

ek (lv k r 6. (7.4):ýjklZjE

thefollo'wing-i ieitiyis easily e'st.blished

Jk jk _:'.jk-6 T' tAX)(Ijke). (t't'j jk) kjk' %

which 'allows',Eqj. (7.3) to, begvnthe equivalent expressions

U'(R-UR aJJt+t.,k(e' ke~k j',k1 '2, '(7.06-

IR

Either expression (7.6) or (7.7) can be used in perf~orm~ing

the differetitiatio'n indicated in Eqs. (7.11 and (7.2).
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Momentarily wrtn t k +tjk=tjk' Ojk jk ej k an

U~Uk U k. , k the first,.of the equivalent expressions, Eq. (7.6),

'may' then b e -written as.

IJR-U(R) t eJJ jk kA

all* au ' u~ 3 y

~ff.. t.~tXa ax)

The open set of points deiigthe'domain of the mathematical

anaJyis whichcnit of the ,,4,tenO.'e!d cmlxpae with the

*poinits. Re (z)= x <a def iningý the cra ck removed (or fcr the two

collinear cracks with the points' Ja]-<Re.(z)-I xI<I bI removed),

*is. amultiply connected 'domain, a~s may be seen by recourse to

storographic projection' o6f the' extende~d cut complex plane onto

th e Riemann spheite (). thus 'upýon application Green's theorem

for the mult~iply conn-3ted domain. ['161,, t aken in conjunction

with t Ihe equations .'of: e q'uii'1b r. um and the assumption of zero

body force, tke mutil integral g iven in Eq. (7.8) over the

region'R may be, trainsformed into- the following sum of line

in.ýýegrals, about the bouhiding contours Ck
Nk

UA(R)-U(R)- 2 j ([ u * +txy U*yjd tyyuy+txyux d) (7.9)

k1Ck

or

*J J(R)-U (R) ~~(t,+t )u. )+(t' +t y(U'-Uy)Jdy

k

A [t+t> ~ (~y )+ (tA+t, (uxx) dx (7. 10)
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where N=2 for the. single, crack,, and Np3 fo r: pieul-ti1*p~le- :c~rc

geometries.

The boundary ýcontoufrs-Ck are, arb i~trary, ec they M~

be chosen to6 fa c1..iit a te computigtioin. The outer bo6und a*ry, 1

may be, ta~ken. to.:'be a...ircle qepntered .at -.the oring~n with an

arbitrary radius r. suffici'er~t-y. large, s: .o as.-.*tc aI Iow the,

circle to completely enclos'ýe the crack (or:racks) Te

f ir st; 0'f the ýsum of line integrals in Eq'. (7,.110) then has the-

circular ine6 inte'gral' form.. . .

[uR+) )UU-u (t 1r .)' )],u-u)(n6¾c(7)-u1)1cos

The inner boundary (or bo~undarie~s) of the re g ion R~ can be takený

to coincide with the 'boundary of the extinded Crac.-k (or.cracks).

Accordingly, the second, of the sum of~ lin_ý intiegral:s iAýEq~ '(7.10)

will involve'4A ine ti7 n alo~ng the, x-directioh onlIy, and- thus

leave the reduce'd form

[uR)-U(R) j (ty+t y)(u'uy)( 4*)(tV,-u )dx' (7. 12)

2C2

foe~ the single' cracPd g~jpwetry: a-id

f for tbhe mul tip 1` crack geiometry.
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71' SINGLE CRACK

Further eva~luation o th lieintegrals of Eqs. (7..11)

and. (7T. 1.2) requires exp r es sion s ortestress- and displace-

men~j hih cn ~ otaiedfro' qs. (2.'11), (2.12) and (2.1),.

The result, exprressed in serie~s form, is as follows:

(~ ~~Iv (q.2 os2# sine sin3el

4
I .~ co~s48,- sin6 si'nSe]+........

5" 6 2sine sin361

(7.,14)

r) 4. cos4e.+ sine sinse] .+ . . . .

xy a sine .cos3e 6 (a.)4sine cosS8

0+ (4)(3si26esinsoe

=Y {{D(+k)+-3])r csie( )(±)csesn

+ ~ (3s(Knlsin3O-3sn cos~e] +

2 .. . . . .. .

u d!(c(~k)(l3k]r in+(2),( +1-41-]in



-~~~ - --------

a~ + aaAat~ +t a 2k =-j o - 2sine. Fin 3 exx x x
r0

yy y c+ sie si n3O e(.16)
r

0

ra 4 a ,
0I

+t a2a+a,) 3 (a1 ca4 Liin

sine cos26 + sine'j'i cosSe
~L ra~ r0 sn+

0 0

and

u ~ fja~ 'Sne sin2e -(~LCO's ei ..

3 in esln 4e -O36 siecs>.........

~~~a ~ ma be take aritaily6 3sal nd aprachs erointh

limit process. Substitutio~n of Eqs. (7.16) and (7.1L7)*into

Eq. (7.11) leaves
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="(l)-UjR)CI -f ' 4aAa[k(sine sin26 cos2 -2

i -~(7.18')

+ K+l sin2e - cos26 sin291 +aAa Hn(6;k) dO.
n=1

The functions Hn(e;k), n-1,2,3,..., appearing in the integrand

are products of and sums of sine and cosine functions, which

are finite for -ir5e.<. In addition, the sequence of positive

constants {(a/r 0 )2n approaches zero monotonically as n-÷.

Accordingly for each n and -7re.<n, it is always possible to

find''numbers M and N such that the bound functions H (e;k)_ n

satisfy fHl(e;k)+ ..... . Hn(O;k)I<M for any n>N. It follows

from the Dirichlet test for convergence [17] that the infinite

series appearing in the integrand of Eq. (7.18) converges

uniformly for all -n!ýe-ý. The order of integration with

summation in Eq. (7.18) may therefore be interchanged, allow-

ing it to be reduced to

[.(:R)-U (R)] a [r( +V k(2-K) + K + 2] Aa

2 ~ 2n Tr
+ 8a1 f Hn(O;k)d6 . (7.19)

n-i -r

For the infinite sheet geometry, the outer boundary contour

C1 of R must approach infinity. In the limit as r 0 - the

infinite series appearing in Eq. (7.19) converges to the value zero, i.e.
.== /a 2n IT" 2, a4*

lr i-' (a ~2f H1T kd, 1im a'_L H (k) \) H*k+...0
r -0 0 r nl -rr0ro , rk 0  2(k) ......

(7.20)
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because each of the quantities H*(k), from the integratedn
bound functions Hn(e;k), is a finite number and r 0 >a.

In Eq. (7.12) C2 represents the crack border with crack size

2a or 2a'-2(a+Aa). Along the cut IxI<jai, y-0, the stress free

surfaces require tryytxy=O. Likewise for the extended crack jxI<la+Aal,

y-o, t' -t' 0. From Eqs. (7.14) and (7.15) it is clear that along y-0

and lxi<jal, txynUym0. Because of the symmetry of tyy relative to

the crack plane t(+)-t-),- whereas for the displacements in the y-
yy yyy

direction u'(+)--u The positive and negative superscripts
y y

designate the opposite faces of the crack. With these considerations

in mind, Eq. (7.12) can be reduced to

"(R)-U(R) -- 4 dx. (7.21)

a

By means of Eqs. (2.11), (2.12) and (2.1),

" 2 -t I Oax(x -a ) (7.22)[ yy] y=0
x>a

ru'l( ) (2a~a-(x 2a 2) , (7.23)Uy] y-0 4
x<a (a+a)

so that

"(R)-U(R) C -x+l /- x x-a= " C2! - Za 2- x d
2 a

S -7ra(l v) (<+1) Aa. (7.24)2E"

The change of the elastic strain energy with change of

crack dimension for the infinite plane body can be obtained

by substitution of Eqs. (7.19), (7.20) and (7.23) in the
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limits (a'-a)-Aa-O and ro÷0:

/ 2
dU lirn (U-U) lim [rU(R)-U(R)] Cka-a (a'-a)÷O-ka-'-a/ Aa-0O1 Aa

r k-i

2E [.~~. k(2 - +K+21 2E (Kl (7.25)

ar2 Ira (l+v) [l+k (22 K)]
= 2E

The derivation of Eq. (7.25) proceeded from the first of

the two equivalent expressions, Eqs. (7.6) and (7.7), for the

strain energy difference. A calculation beginning with Eq.

(7.7) instead, involves only a difference in signs for the

terms appearing in the integrands of the line integrals of

Eq. (7.12). In place of terms such as (t' +t )(uA-u ) therexx xx x x
now appears (t'x-t x)(u•+u ), and so on. Stress sums are re-xx xx x x

placed by stress differences, while displacemnt differences

are replaced by displacement sums. The remaining part of the

calculation is identical in every respect to the one above.

The result is the same, although the contributing terms are

slightly different, i.e.,

dU a2Tra (l+V) rk (2 K + a 7aý+)(K+l)U"-a 2E Z

- E 1 +k(2-K)J (7.26)

The first term of the first line is the contribution from the

outer circular boundary C1 in the limit as ro0 ÷, while the

( . second is from the integral about the boundary C2 when it

coincides with the crack boundary.
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If one r.-an imagine crack extension during which the

outer boundary of the body remains fixed (a so-called 'fixed-

grips' condition), then the displacement differences (u'-U

(u'-Uy) are zero along the outer boundary and the contribution
yy

to the strain energy difference from the integration about the

outer boundary C1 vanishes. This leaves only the second term

of the second line of Eq. (7.25) for the strain energy

derivative, which comes from the line integra.ion about the

crack border boundary C2 , i.e.,

- (K+l) < 0, for (K+l) > 0.

fixed
grips

The elastic strain energy of the body decreases if a crack

extends under 'fixed-grips', and its rate of decrease is

independent of the load biaxiality.

If one can imagine crack extension during which the

tractions along the outer boundary of the body remain un-

changed (a so-called 'dead-load' condition), then the traction

differences (t'xtxx), (t,-ty) are zero along the outer

boundary and the contribution to the strain energy difference

from the integration about the outer boundary C1 vanishes.

This leaves only the second term of the first line of Eq. (7.26)

for the strain energy derivative, which also comes from the

line integration about the crack border boundary C2, i.e.,

(dU a 2 7a (1v (K÷l) > 0, for (K+l) > 0.

dead 2E

load
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The elastic strain energy of the body increases if a crack

extends under 'dead-load', and its rate of increase is in-

dependent of the load biaxiality.

These two quantities, opposite in sign but identical in

magnitude, are, to within a factor of two, what is often

identified in the literature as Irwin's "strain energy re-

lease rate" G [18].

The right side of Eq. (7.25) expressing the strain energy

derivative dU/da can be viewed as a continuous function of the

crack size, F(a;o, k, K), with a, k and K (or v) assuming the

iole of parameters. It is apparent from the form of Eq. (7.25)

that for any crack size, a, and applied load, a, the values

assumed by the strain energy derivative may be positive or

negative or 7ero, depending on the values of the parameters k

and K. The latter occurs when

(i+v)/(I-3v) , for plane stress

k -2 (7.27)

1/(l-4v) , for plane strain.

Since Griffith's fracture criterion requires solving for the

extreme value of the potential energy by setting dP/da -

d(r-U)/da = 0, the vanishing of one of the two contributions

entering into this expression renders the calculation meaning-

less. Therefore, for the condition given by Eq. (7.27)

Griffith's crack instability criterion is inapplicable.
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7.2 TWO COLLINEAR CRACKS

Because of the symmetry of the applied loads and the

crack geometry relative to the x-axis (horizontally oriented

cracks, c-r/2) Ecjs. (2.1) may be shown (3,19] to simplify to

txx= Re($(z))- y Iv (2'I(z)) + S

t yy Re(2,(z))+ y Im (20'(z)) - S (7.28)

txy -y Re (2"(z))

and

21uu - (K-i) Re(ý(z)) - y Im (2€(z)) + S x
(7.29)

21Uy = (K+1) Im(o(z)) - y Im (2((z)) - S y.

The constant S is required by boundary conditions (2.6) to

have the value

S a(l-k) . (7.30)

Equations (2.35)-(2.37) and (7.28)-(7.30) lead to the

following series expansions for the stress and displacement

components

2 [{2k + N(X) b (cos26 - 2sine sin3e)

r

* 3M(A) cos4e - sine sinSe) *(.0.)]
+ 3M{• b4 cos4e - sine sin5e +÷06)

r

txy * a[(X) sine cos3e ÷ lt(x) -"" sine cosse4+ -6
r r

4 48-

r r

2 . 6

Ai

t c;N(X)b sne cs38+ p3(X)b sie csse 0



and

ux 4 r (l+k)+k-3 r cose÷N(X)k1 sinesin2e- ( cos)
[2 (KL r (S

+1NI(X)b .K-1\ /b 6 )]+ 7.-•(3sinesin46- (-)cos38) + 0(r

Uy a [' K (l+k)+1-3k)r sine+N(X)!!i(( K7 l sine-sinecos2

+ I -M(X)--. sin3e-3sinecos46 +-6 (7.32)

where r>b and

N(X) i[(a/b) 2 + 1 - 2X.(p)]

M(X) " [(a/b)4 2 / 3 (a/b) 2  1 I /+(14 a-2 "b(2 ) (/3 Z- X ([- -# p) . (7.33)

Since the crack size increment (Aa) is arbitrarily small,

2terms of order (Aa) and higher may be ignored in writing

jk tjk ' a (Aa)
j ,kn1,2

uk uk + LA 1 (Aa)

which in conjunction with Eqs. (7.31) and (7.32) lead to the

following expressions for the integrand of the line integral

in Eq. (7.11) along the circle CI, r-r:

( .
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(t;4t~).a ~k4[u)~ +! (Aa)]-7 (cos2e-2sinesin3e)

+ 3[M(X)4. (,a)] b' (ýcos4eieis> b6 )~

AN M(2 A ]b (cs -4sinesin~e) r
00

IAN bie2 o~ (.4
tx+txynofl[N(X) - (Aa) -7 (to s2+snsn

(X 4 1 (Aa). sin cos~esensn +ý6

r00

and

u IN(A)b (sine sine -!ZI..' se

I\UUm 0 (b6)si

+ ýL (Aa)-7.(3sinO i4 cse

U au (AL a) b ((K+1\41)ine - sine cos2e) (7.35)

1AM 04 /ftKi . 1Nb6 \1
Z.- - Aa) -7 V1-r-sin3e-33inecos4e,+ 0 -

The above expression, when substituted into Eq. (7.11),

gAive
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(R)- Uf(R) -k[sin6 cose sin2e -( cos e]

+2 sin2 sin8 cos2] LaN (Aa)

*(Aa) (~-)2 Tn (e;F(p),1E(p),k) de (7.36)
n-i

The functions T n(e;F(p),E(p),k) include products of sine and
cosine functions and of the complete elliptic integ-als. As
such they are bound function for O<a<b and -nseir. It may be

shown that derivatives of N(X) and M(X), which involve the
elliptic integrals, again produce elliptic integrals, and are,
therefore, also bound quantities for O<a<b. Accordingly, by
the same argument given in Section (7.1), the series converges

uniformly on the interval [-7r,rl] and it follows that

[U"t- a!--bk(2-K) +K+2] A-N (Aa)['(R)-U(R)lC = --b2 t 2] AN (a

IV IC17 Aa(7.36a)
a2b2  b2n.t

a 2--- b22 T (O;F(p),E~p)k) de
n-i -U'

In the limit ro0- the infinite series appearing in the above

equation converges to zero, i.e.,

lira 00 2n -f 6;')' ~ýkdr 0 -+ .. \r 0lIJ Tn(0;FP)'EP)hkJd 6

n-l -r

(7.37)

ro r 0., T1 (Y p)2 p),k) ,E(p),k) .... ,...... 0
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VVInth~'~~ ln '4.riteý i,'f s. '(7 17) 1 ne
ause uith'' ''inA.

cra~~~~'ks. F~~~orni' the etinded'cak tehu ryCniis'o

In~~ ý.th nner

'-~~~'-"~ Cufae reui ha t' the Wt.'Aa1<

whij,e Aifo the unxt,.edcirac s ,=t '0 for aIIx<b].~

flec.As~e o0 sy~nmetriy. cohsIsie~rations u5fr x1.aF

u "'.,,~&) and z t-` , Cb sfeti , q j 7. 2 ' tAy b

reduced to',.

'a y Ply, .dx=-My

The ,cr'ack--tip exp.ressiorts; Eq-, ('.2. 41)2 and' (2.47)7 may be

.*employed to evaluate -Eq. (7.38) -since the interval of inte-

grationz is o veLr .the- crac'k-tip region. Thus for the-stress

just ahead of th e unex'tende`d crack-tip

[t yyl rit ,(a) (7.3 9)

while for the displacement just beyond the extended crack tip

(u I K,(a') (K+l) at(.0

where K1 (a')=K 1 (a-ta). Evaluation of Eq. (7.38) can now

proceed to give
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VSubs'titution. of Eqs. (7. 36)', (7.37) and (7.41) in.to Eq.

(7.2) in the limits a s (b-a*)t(b-a) or Aa-O_ and r yields

drn Um -U lrn R)_____

(b a >(b -a) (7-a 37 iT - Aa-"O Aa k

L-+O

ak(2-K)+K2] "Al4 .(7. 42Z

By means-of the following derivative formulas

dF.(p) =+ 1 (a) ~ ,.I

da E(p) ap)

ap

a dEp + [ab6E (p) - (p)] 74 )

an te efnigEqs. (2.371) and (.31,it follows that

From Eq. (2.43)1, where ct=T/2, and Eq. (7.44) it is seen that,

2 2 [Xp)-a/b22 2 , Tb 2  X
2 2 2 2 U2 ~. Na )K1(a) ~afl-(a/b) I . . (.S

Consequently, substitution of Eqs. (7.44) and (7.45) into Eq.

(7.42) leaves

dU + ~rb2 2
!L- + 27Z[+(-~ Xp-ab (7.46)

da 4 ji a(l-(a/b) 2

It will be recalled that calculation of Eq,. (7.46) pro-

ceeded from the first of the two equivalent expressions (7.6)

and (7.7). Were the derivation to have followed from Eq. (7.7)

instead of Eq. (7.6), the only difference would involve the
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signs appe~aring in the integrands' of th e linie i~ntegrals. in.
Eq 7.,.lO0) ý,In pl-ace of. t'erms uha t4')uu)o~

ýWoud have`U**) p i~ -.4 ndson ie.,: the str es s ~u
~4-e epla&~ ~ stes dfcrences and. thdi plceet.

'd. te'rences by Adi-s p..aqemnent sum$-. T~e rem arin. in g part of the:

.. cal~culation ýwoul1 -be si m lar, In eve ry respec) with. -the ite.3u'.t

in 'pl ace 'of, q 7.~.ioe~ h thi ~bndwt

a (7.144 and 7 .4 5) Eq. C.7.46 is r~eprdu ced.

As<i tecas'e :vntesnlecak h derivat.Ave

dU/a gvenby q.(7.46) m`y x'be positi~ve or negativeo eo

depeniding on the va!ues of the, p ar am p ieter..s k and K. 'The lte

possibility occurs when the lo.ad b ia xi41i6'y, has' the. values

.,gie by Eq. (7.27), and- f or Which. -Grif fith scra~ck instabSility

cri'terisi) becomes meaningless.

7.3+ HEAR PANEL'

For' thbe cracked shear parnel~ (f Fig.ý 9), the strain

enr#ergy' d4.ff erence expr. .sed- by Eq.' (--.10) for the bound region

R shown by Fig. 26, may be reduced to
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U-(R.)U(R)in[U-(R)-U(R)1C + U'(R)-U(R)lC

- f+t +(t~2 +t u;1)d (7.4'Y

(2.51) + an (2.1) aregivntb

y2 Icse2iesnesn~ rfre

(a)

bounday(C sincsid~e~cs2sn$ wihtebreso( h rc.2y

t =112osi23+( .)[2((oesin~se~sin~e)cos23

and4

+2.cos6-2insine~sn2]+-55-a~



rsi-nOcos2?3+co s6s inz)

I a2
T --({(+1) SIne+2s inecOS2 6TOS2'

r a2  (7..49)
= U fir- {ý-) cOse4r ~

~2 s ine6s i'1 eltcot23,- {c1s~e2'ieo~ jn

whelre -he,'faiiwtjon f 9 , and are sieancosine!

Cicto o h'e Yari'Aý1 'a,'t~ aamtr 3
Fromt sqs (74) !ma e seen that-when terms of higher

odrin the a-vbi~rtrril,.y smal~l increment of crac:k exeSion

a. are ign'or6d, the~n along. th e 'c ir~cula r boundary C1

2~ ~ r s ,:. i~ o. 6o 20
0

jcoS2' 2'Z n,-3+f

(t+t~ I2 cin 2 3'+-2(s-Jnecos3es.in2e)cos2's

(2sinesin3e+cosze)sin2$83+f (8;3)0(.. ~ (.0

t' + Tf2coszs. 2 Y..... -cos2e+2sinesin3O)cos23xy xy r2
0

+2sin~cos3esin23I +f x(e3 (
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while from Eqs. (7.49)"1I 0I
u .UK a .•a i) sin -2sinecos2 Cos 2S

+(K•-I)cosB+2sinesin2e sin2 8]gx (e;$)O(4)I

(7.51)
(U'.Uy)4Iar [<(<-l)cose-2sin~sin26)cos28

- ro

-((K+l)sine+2sinecos2 )sin28 +gy (e;$)O()

Substitution of Eqs. (7.50) and (7.51) into the first of the

line integrals of Eq. (7.47) yields

[U(R)-U(R)]C1 T 2- f {a.Aa[K+sin 28-cos2 e

7iT

(sn2 2-cos422)(2cos26sin 2e+sin 2e2)+sin43 (7.52)

n
+sin43(2sin26sin2e-½sin4e)]+a. AaF -L) Gn(6;B)}de

.. ... The functions Gn (8;3) are sums and products of sine and

cosine functions, so that, as before, the series may be

shown to converge uniformly over [-7r,7]. Thus

1 2 2 A 0 2n 7O(R)-U(R) 7a 2K'Aa+i a" Gn(6;a)d , (7.53)
' UR) C iT T- n-P 0 ~

where it is clear that after term by term integration, the

resulting infinite sum of bound quantities will converge to

zero as r
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-ron0 a ]2n Gn (6; )de - 0 . (7.54)
Trj

Because the crack extension increment Aa is arbitrarily

small, the second of the integrals of Eq. (7.47) can be

evaluated using Eqs. (2.56), (2.57) and (2.58). These give

[t;) .- ¢/ sin23, txy e-0 - cos23 (7.55)

rzx rux

for the unextended crack, and

Z - T~týisin2$(K+LL a

r- (Aa-x)

+ (K 1l)(x+a)cos2B

(7.56)

+() T = V7-TaiT-6Wc o s 2 (K+1l) FA 17
r=(Aa-x)

+ -L (K+l)(x+a)sin28

for the extended crack. The second integral of Eq. (7.47)

thus gives
S.. 2 Aai

U'(R)-U(R) - T a <+1)f dx
0

(7. 57)
T 2ira(i+1l).

4w

The change of elastic strain energy with change of

crack size for the infinite cracked shear panel is obtained

from Eqs. (7.1), (7. 53), (7. 54) and (7. 57) in the limits

r 0 -® and ýa-O, with the result that
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da 4P 2 K 4p K (7. 53)

It is noted that for K-1, or for v-i in plane stress, or

for v-½ in plane strain, dU/da-O.

r
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SECTION 8

4 ALTERNATIVE CALCULATION OF THE ELASTIC

STRAIN ENERGY DERIVATIVE

A determination of the elastic strain energy derivative,

dU/da, can be approached in a somewhat different manner, th.at

is, by calculating the strain energy, U, of the entire cracked

body first, and then obtaining its change with respect to the

crack dimension by a formal differentiation..

Referring to Fig. (24) for the single crack, Fig. (2S)

for the collinear cracks, and Fig. (26) for the shear panel,

the elastic strain energy (per unit thickness) of the region

R is specified by

U(R) = x + Dy x t y-,. + -!yZ)Jdxdy. (8.1)
tf [xxx-~ tyy ay xy ay ;

R

Integration over the plane region can be transformed into

line integrations about the boundary curves Ck by application

of Green's theorem as discussed in the previous section:

N
U(R) - 1 u +tIuy]dy-[tyuy+tyuxIdx) (8.2)

where N-2 for the single crack and N-3 for two collinear

cracks. Again, the arbitrary outer boundary C1 can be taken

to be a circle of arbitrarily large radius r 0 , while the

inner boundary (or boundaries) may be taken to coincide with

the crack borders. For the single crack and shear panel

geometries such choices will give

U(R) - I1 + 12 (8.3)
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ri , ~. f [txU +~t xuy cose + (t )yuy+tXyul] s ined (8.4)

12 U +. t [tu + jdx 0 ,(8.S5)

and

U (R) I,. + 2I+ 13 (8.6)

I, Eq.- (8. 4)

+2 - t(f + txyux]dx =0 (8.8)

C 2  C 3

for the collinear crack geometry. The integrals I., about

the crack borders vanish because of the stress free crack

boundary conditions.

8.1 SINGLE CRACK

Utilizing Eqs. (7.14) and (7.15) along the circle r-ro$

Eq. (8.4) gives

11 6j Iro F(e;k)+a2G(B;k)+a 2l ra), H n(6;k) I de ,(8.9)

- 7r

in which

F(e;k)-k[K(1+k).k-3]cos 26[lk)13)]i 2

G(8 ;k)a/Ikfsinecosesin2e.4,. (ic-l)cos 81

+ (K(l+k)+(1-3k)1cos36cosesin e+[(K.1)..2cos2ejsin2 e

"+ 1 [((1k)+(k-3)][cs62sie 3 cs2e

"+ !(Ic(+k)+(1..3k)][cos2e+q2sinesin3eIsin 2e

"+ [K(l+k)+ (k-3)cocs3in .2
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and the functions Hn (8;k), n-l,2,3... which are products and

sums of sine and cosine functions, are bound over the interval

-rse<-. The infinite series in the integrand of Eq. (8.9)

is similar in form to the series appearing in the integrand

of Eq. (7.18), and may be proved to converge unilormly over

the interval of integration by the same argument. Consequently,

integration of the first two terms of tile integrand followed

by interchange of the order of integration with summation of

the series leaves
CY2 T2 91V 2 2'a r 0(lv 2 a Tra Ri+V)

I, 8E (il+l)k +2(c-3)k+K+l + -l4E *+k(2 -)

8E 7.L~ )I H n(B;k)d6 (8.10)
n-aI - T

The infinite series in Eq. (8.10) vanishes in the limit r 0 -•

in the same manner as shown by Eq. (7.20).

By means of Eqs. (8.3)-(8.5) and Eq. (8.10), the elastic

strain energy for the entire infinite body is obtained in the

limit r 0-•:
U lim( I + I

U - r2o I 2

with the result

U = 0 + AU, (8.I1)

where
U0 r-•-im r2a2r(l+v)8

= [ 0 ((OK+I)(l+k 2 )+2k(K-3)]

and (8.12)

AU = [_(+v) flk(2-K)]
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The first term, U0, which is independent of the crack dimen-

sion, represents the strain energy of the infinite non-cracked

body with boundary tractions applied as in Fig. 1. The second

term, which include3 the crack dimension, indicates that the

elastic strain energy of an infinite sheet of unit thickness

containing a centrally located line crack is different from

that of a continuous sheet by the amount AU. It is, therefore,

often referred to in the literature as the energy of the

crack. Formal differentiation of Eqs. (8.11) and (8.12) with

respect to the crack dimension gives

dU = d (Uo+AU) V a'"k(2-K)] , (8.'13)

which concides with Eq. (7.25).

It should be noted that for equal tension-tension loads,

k=l, 4U given b- Eq. (8.12) is identical to Griffith's result

of 1921 [12], and to Swedlow's calculation in 1965 [20]. For

uniaxial load, k-0, Eq. (8.12) reduces to the expression

obtained by Wolf [21].

8.2 TWO COLLINEAR CRACKS

Substitution of Eqs. (7.31) and (7.32) into (8.7) produces

1•. 2 7r 2 n2,7( 2n i
I2Jr2F(e;k)÷N(X)b2G(e;k)+b _L) Hn(e;;Mp),k) Ide (8.14)

'n-n r

in which

-3
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2 2F(e;k) k(K(l+k)÷(k-3)]cos e[(K(l+k)÷(l-3k) ]sin 8

G(e~k) -2k[sinesin2e - (Ki cos og[(~)(l3)cscs i2e22

+ -[K(l~k)+(k-3)][cos28-2sinesin38]cos2et[(K÷l)-2cosZ8]sin 
"

+ -[K(l+kJ+(1-3k)][cos2e+2sin6sin3e]sin2
22

+[K(l+k)+(k-3)]cos8cos3esin 28
The functions H-n (6;X(p),k) are products and sums of sine and

cosine iunctions and the complete elliptic integrals, and

are bound functions over -7rc=er and O<a<b. The infinite series

in Eq. (8.14) is similar in form to the series appearing in

Eq. (7.36), and may therefore be proved to converge uniformly

over the interval of integration by the same argument. Con-

sequently, integration of the first two terms of the integrand

followed by interchange of the order of integration with

summation of the series leaves

22 22a lIr 0  2÷aTr

I1 a t[(K+l)k +2(K-3)k+K+l] + 8"-( )

+ k br0 Hn(e;x(p),k) de . (8.15)
"I n=l

The infinite series in Eq. (8.15) vanishes in the limit as

r 0 -Co in the same manner as shown by Eq. (7.37).

By means of Eqs. (8.6)-(8.8), Eq. (8.14) and Eq. (8.15),

the elastic strain energy for the infinite body follows in

the limit as r -00:

U - lim I + I + I
r 0  1) 2 3
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giving

U oU 0 •u , (8.16) J

where

U imr0  [(K+l)k 2 + 2(K-3)k K 11U0

and (8.17)
I AU 8ua2b N(X)[I + k(2-K)]

In these expression U0 and &U have the same interpretation

as given in Section 8.1 for the single crack. In the limit

as a-•0, leaving a single crack of length 2b, N(X)-*l and AU

assumes the value appropriate to a single crack, i.e., Eq.

(8.12)2. For crack lengths (b-a)-Z held fixed while the

crack spacing 2a--, leaving the infinite body without cracks,

N(')-'-0 and U-U0. A formal differentiation of Eqs. (8.16) and

(8.17), utilizing Eq. (7.44), reproduces Eq. (7.46)
q 2

dU .d a(U b 4,2 XT(b)-2 )2(a2b)2]
da dU (Uo0+AU) "+ 41 (- (a/-)2] . (8.18)

8.3 SHEAR PANEL

Substitution of Eqs. (7.43) and (7.49), with r-r 0 , into

Eq. (8.4) gives

2  
Tr

I1 11 f r0(cos228+sin22B)
"iT (8.19)

F(e;3) + rnd6S÷n 1a G n(0 -L )dI
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where

F(8;ý)=(1-4cos 22)sin 2 26-(4sin2ecos4.

+2cos 2 1)cos2e-2 (2sinesin3e6sin4esin4 3)+K

and Gn(e;a), n-l,2,..., represent functions composed of

products and powers of sine and .cosine functions. Integra-

tion of the first two terms of Eq. (8,l9);,-leaves

2.2Trr0  22 2=2 r a\ 2 n
,,. 2 ,7 14 1,r ,

-Tr n.l '

The infinite sum in:Eq. (8.20), as. 14 Eqý. (7.15), converges

uniformly over -7rs65•r by'the same argument given previously.

Thus upon interchange of integration and summation, it

follows that in. the...1ir'nit r0

iim 2 (a )nf7T }
ro0 r0

n=' i -

(8.21)

m a C*

a ]}
, -ro* L r01 rI • 0 Z • ''

since each of the numbers G* ($) are bound quantities.nI
From Eqs. (8.3)-(8,S), Eq. (8.20) and Eq. (8.21), the

elastic strain energy for the infinite cracked shear panel

is determined in the limit as r0

U li (I) + 12

from which

U = 0 + AU , (8.22)
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where

~nd T1Ta2 (8.23)

FormalI differenitiation of Eq-. (.2 n 82) r c v r

E.(7.56):

dU _ T 2ra2 .
Ta i U --- Ki (8.24)
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SECTION 9

FRACTURE LOAD

The tensile load necessary to cause onset of crack in-

stability (fast crack propagation) according to the Griffith

crack instability}criterion may be determined from Eq. (6.7).

The surface energy of the crack (per unit thickness) is

assumed to be equal to a constant surface energy density, y,

multiplied by the surface area of the crack.

f 4ya (9.1)

9.1 SINGLE CRACK

For the single (horizontally oriented) crack, Eqs. (7.25),

(9.1) and (6.7) lead to the critical applied tensile stress

values

8c E [1 ÷) plane stress

and (9.2)

a ta I+) [(4- l)kl plane strain.

The variation of the fracture load with load biaxiality and

Poisson's ratio for plane stress and plane strain is shown

by Figs. 27 and 28. Referring to Fig. 27, for Poisson ratio

values v<1/3, cc increases with increasing load biaxiality,

while for values greater than one-third it decreases as the

load increases. In the range of values 0.3<v<0.4, which en-

compasses most structural materials, the biaxial effect on

the fracture load, while present, is rather small for the k

variation -lskil.
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For values of k equal to those given by Eq. (7.27), the

unbound value for a indicated by Eq. (9.2) should not bec

interpreted as meaning that these equations predict an

infinite fracture stress. As remarked in Section 7, for

the plane infinite centrally-cracked body at these particular

values of the load biaxiality, dU/da is zero and Griffith's

fracture criterion becomes inapplicable.

9.2 TWO COLLINEAR CRACKS

For the (horizontally oriented) collinear cracks, Eqs.

(7.46), (9.1) and (6.7) give

= {a[l-(a/b) 2 1} I1 6wy k1 IJ(9.3)

c X(p)-(a/b) • 2rb I

The variation of ac with load biaxiality k in the case of

plane stress is shown by Fig. 29. For materials with Poisson's

ratio less than one-third, the breaking stress must be in-

creased as tensile loads of increasing magnitude are applied

parallel to the cracks. This trend is reversed when the

Poisson's ratio value is greater than one-third. The curves

shown in Fig. 29 for the multiple-crack are very similar to

those determined for the single crack, i.e., Fig. 27. The

comments given above concerning load biaxiality values at

k-l/(K-2)for the single crack, apply in the same way for

the collinear cracks.

To gain some idea of the influence of the crack spacing

on the breaking load, b can be assumed to be fixed with the

value b-1, so that the pair of cracks have the fixed lengths
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Z=(l-a). The corresponding critical normal tensile load for

a single crack of length (1-a) is

a l} ½ I-16 (9.4)

The ratio

aC .[a(1-a)(1-a2 ½
a*l2 (9.5)

c (2) tX(p)-a

provides a measure of the degree to which the body is weak-

ened by the presence of the second crack. The variation of

Eq. (9.5) with the ratio of the distance between the cracks

to the crack length, i.e., p-(2a/k), is shown in Fig. 30,

from which the following important observation can be made:

As the spacing between the collinear cracks approaches four

times the individual crack length, the critical load for the

doubly-cracked body is just about the same as the critical

load of the body with a single crack of the same length.

Thus a pair of widely spaced collinear cracks in a relatively

large body behave, with respect to instability, as if the

body contained only a single crack having the length of one

of the collinear cracks.

The critical load for collinear cracks, each of length

Z-(l-a), can be compared to the critical load for a single

crack having the greater length, Z=2>2(l-a), by the ratio

ac { a(l-a2 }0
(1 (9.6)

-c X(p)-a
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c.f. Fig. 31. For cracks relatively closely spaced, the

critical normal tensile load necessary to cause the inner

crack ends to extend and join exceeds the critical load for

the resulting longer crack. Fracture of the collinear cracks

will therefore proceed in two stages: The inner crack ends

will extend first to join up forming the larger single crack,

whereupon the sustained load level will be sufficient to

cause the second stage, onset of fracture from the ends of

the newly formed single crack. From these observations the

assuwption of crack instability for the doubly-cracked body

in terms of initial extension of the inner crack ends is

justified.

9.3 SHEAR PANEL

The critical applied tensile stress for the cracked

shear panel has, by virtue of Eqs. (7.58), (9.1) and (6.7),

the value

cc ~~8EY(97I lTa(i•v) (K-l)Ij ' (9.7)

which is seen to be independent of the angle of crack

orientation. Note that for <=l, or equivalently, for v-1

in plane stress or v½ý in plane strain, dU/da-0 and the

above expression is meaningless, that is, Griffith's crack

instability hypothosis is no longer applicable.
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SECTION 10

EFFECT OF LOAD BIAXIALITY ON

FATIGUE CRACK GROWTH RATE.S

The phenomenon of crack formation and the subsequen~t

incremental extension of such cracks under repeated or cyclic

load application until catastrophic fracture ensues, may be

usefully tho~ught of as three hypothetically distinct or

separate physical events: (i) micro-crack nucleation, ter-

minated by the appearance of macro-cracks, followed by (ii)

crack 'propagation' (which is here taken to mean very minute

incremental crack extensions caused by cyclic load application),

and finally at the critical crack size (iii) onset of rapid

crack propagation to fracture. This somewhat artificial

division has proven to be fruitful, nevertheless, because it

allows f~r the introduction of fracture mechanics concepts

that have been able to correlate a wide range of fatigue

crack growth experimental data appropriate to category (ii)

semi-empirically, in a more or less satisfactory manner,

10.1 SEMI-EMPIRICAL FATIGUE CRACK PROPAGATION LAWS

According to the generally accepted micro structural

theory concerning fatigue crack development and growth, the

basic mechanism of crack nucleation and crack extension under

cyclic load is cyclic slip (micro-plasticity), with slip bands

(multiple slip planes). Crystalline slip results from the

motions of dislocation which are generated by the action of

( shear stresses along potential slip planes. Fatigue micro
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crack nucleation, which leads to the development of a

macroscopic crack by coalesence of many micro-cracks, and

the subsequent propagation of this crack under continued

cyclic load application, appears, therefore, to be intimately

related to the extent of plastic deformation that developes

around the crack tip.

This realization has served as the physical basis for

the development of a variety of semi-empirical fatigue

crack propagation laws, evolving ultimately into the widely

used form [22-26]

da nB(AKn

where (a) is the current crack length, N the number of load

cycles and AKlM(Ki)max-(Ki)min, a measure of the applied load

range. On a log-log graph this relation plots as a straight

line

Zn dN ZnB + n ,n(AKI) (10.2)

for which B represents the AK1 MI intercept and n the slope

of the straight line. Relation (10.1) has been shown to

correlate a broad range of fatigue crack growth data in the

moderate to high AK1 range, where the data was obtained mostly

from tests performed on center cracked sheets (with horizontal

crack orientation) cycled in uniaxial tension between (Kl)max

and (K1 )min'O, that is, for the load ratio 9-(Kl)min/(K 1 max

Gmin/amax m0.
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Over the full range of crack growth rates, however,

ranging from 10 to 10 inches per load cycle, fatigue

crack growth rates are not observed to fall along a straight

line (cf. Fig. 32). At the higher load levels, as the fatigue

crack approaches the critical crack size, the increment of

crack growth per cycle of load increases causing an upward

inflection away from the straight line, and characterizes

the passage from the fatigue crack propagation stage of

category (ii) to the fast fracture stage of category (iii).

Here as the curve asymptotically approaches the upper vertical

line (da/dN)-÷. At the lower end, the downward inflection

from the straight line represents progressively smaller

crack growth increments per lcad cycle, so small as to be

considered negligible, i.e., (da/dN)ý0. The asymptotic

approach to the lower vertical line is therefore interpreted

as defining a fatigue threshold value, AK0 , below which

fatigue crack propagation cannot take place [27].

To take account of the frequently observed effect of

the load ratio, I, on the growth rates, [28], as well as to

incorporate the departure from linearity of the upper end of

the growth rate curve, Eq. (10.1) may be modified in the

manner proposed by Forman [29]

da CAK,)m (10.3)
(1 (7))K -_AK

c 1

where the parameters C and m are determined in the same way

as the parameters B and n of Eq. (10.1). As (K1 )+max•Kc,
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indicating the onset of fast fracture, the denominator of

(10.3) approaches zero and (da/dN)--. The deviation from

linearity at both ends of the spectrum of fatigue crack

growth rate can be accounted for by the form proposed by

Hartman and Schijve [301.

da C(AK1 -AK 0 ) m(10.4)
(1-K) Kc-AK 1

According to this expression, as the value of the load range
AK1 approaches the lower limit or fatigue threshold value,

AK0 , (da/dN)-0. This is represented in Fig. 32 by the

asymptotic approach to the vertical at negligibly small

crack growth rates approximating (da/dN)0.

10.2 EFFECT OF LOAD BIAXILITY

Any survey of the large body of existing fatigue crack

growth data identifies many factors that can possibly effect

fatigue crack propagation [28, 31]. These may be grouped

into the following broad categories:

(i) Geometry - including crack size, shape and orientation,

specimen thickness and relative size.

(ii) Loading - including load magnitude, max-min. load ratio,

biaxiality, sequence, cyclic frequency.

(iii) Material Properties - including the elastic modulus,

uniaxial yield and ultimate stresses, cyclic

stress-strain properties.

(iv) Environment.
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Such a large number of possibilities probably explains

why for any given one of them,one almost invariably encounters

conflicting experimental data. Some of the factors no doubt

must mitigate, or entirely nullify, their effects on fatigue

crack growth rate when considered jointly. Without the

benefit of a comprehensive rational theory of fatigue crack

propagation that can explicitly account for many of these

factors and, therebyprovide a basis for weighing their relative

contributing effects, development of a full understanding of

fatigue crack phenomena must continually entail partial

understanding and accompanying confusion.

With respect to the influence that load biaxiality might

have on fatigue crack propagation, qualitatively important

insilghts and expectations may be gotten from the information

provided in the previous sections. The belief that the elas-

tic stress intensity factor K1 (assuming here a horizontal

crack orientation) is sufficient to completely determine the

stress about the crack-tip, is shown by equations (2.Z4)

and (3.3) to be incorrect in situations where loads are bi-

axially applied. Figure 11 demonstrates the pronounced

effect that the horizontal load ak has on the intensity and

spatial distributi~on of the maximum shear stress which, in

turn, must cause a qualitatively similar pattern of dependence

on ak of the plastic deformation around the tip of the crack.

Thus, the pattern of variation of the lines of maximum shear

stress with increasing tension-tension load hiaxiality implies
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correspondingly reduced plastic deformation and, therefore,

a correspondingly reduced fatigue crack growth rate.

Equation (9.2)1 and Fig. 27 indicate that for materials

with a Poisson ratio in the vicinity of 0.30, the fracture

stress ac increases approximately linearly with increase of

tensile load biaxiality in the load range -l<k<2.S. The

plane stress fracture toughness for a horizontally oriented

center-cracked sheet of finite width should therefore also

show a similar dependency on k, i.e.,

Kc(k)=CC (k)(7Ta) f(a/w)-[ac(0)÷ k](Ta)½f(a/w) (10.5)

where B is the slope of the ac vs. k curve of Fig. 27 and

f(a/w) is the correction factor for the finite width, w, of

the test specimen. A similar argument can be made for the

plane strain fracture toughness K based on Eq. (9.2)2 and
IC

Fig. 28. The semi-empirical expressions (10.3)-(10.5) thus

appear to indicate that an increase in the tensile load

biaxiality should cause a reduction of the fatigue crack

growth rate relative to the growth rate for uniaxially cycled

load.

The reduced crack-tip plasticity associated with

increasing tension-tension load biaxiality might possibly

diminish the effect of crack closure that is believed to

accompany crack propagation through cycically loaded and

unloaded plastically deformed regions [27]. Any such miti-

gation or lessening of their effect would have the consequence
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of increasing the crack growth rate, offsetting thereby, to

some extent, the anticipated crack growth rate decrease with

horizontal tensile load increase indicated above.
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PART II. EXPERIMENT

The agenda for the experimental part of the research

program was determined by selection of those tests that could

provide directly measureable, or observeable, information on

the influence of load biaxiality on conditions near the

crack-tip and on fracture. The tests that were performed

involved crack-tip photoelasticity, measurements of angles of

initial crack exvension, fracture load and fatigue crack

propagation rates, all under varying levels of horizontal

load application.

-79-



SECTION 11

DEVELOPMENT OF THE BIAXIAL TEST FACILITY

To be able to perform the indicated tests, it was

necessary at the outset to design and assemble a biaxial

test specimen, and a testing system compatible with it.

Several of the more important features of this part of the

test program are described initially.

11.1 SPECIMEN DESIGN

The preliminary biaxial test specimen design was based

upon a specimen configuration developed by Radon and co-

workers, (32], which was shown to provide a relatively large

uniform stress field for the given specimen size. Several

other designs, (33-371, were also examined, whi ch suggested

several mninor changes in the preliminary design. A photo-

elastic study was employed to ensure that the design would

be adequate to provide the desired uniform stress field

through out a large central portion of the center cracked

specimen over a wide range of the biaxial load ratio. The

specimen configuration that was finally adopted is shown

in Fig. 33. A second large specimen was also designed in

the event that a larger working area became necessary. This

alternate design is shown in Fig. 34. It was also noted from

this initial photoelastic study that the biaxiality of the

applied load has a clearly observeable effect on the crack-

tip stress field that is in qualitative agreement with the
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predictions of the analysis. These results will be pre- -

sented and discussed in a following section.

It was also necessary to design and purchase (or

fabricate) grips to interface between the test system and

the specimen. The specially designed grips that were pur-

chased performed satisfactorily throughout the testing

program.

11.2 TEST SYSTEM DEVELOPMENT

The second phase involved designing a biaxial test

system, which was comprised of an existing MTS testing system

of 100 kips capacity as the vertical axis, a portable test

frame of 50 kip capacity as the horizontal axis, and a control

system capable of controlling both axis. Since only two

independent actuators were planned for this test system

(rather than four), the center of the test specimen would[

not remain stationary but would move in response to the

motion of each actuator. In order to prevent this motion

from introducing side loads on the specimen, the horizontal

axis was suspended in its working position by elastic ropes.

In this manner the test frame could move relatively freely

with the center of the specimen. However, the motion of the

frame under rapid fatigue loading conditions could introduce

dynamic loads which would be transmitted to the specimen.

The magnitudes of these loads were calculated for the ex-

pected worst case conditions and were found to be small

enough to be neglected.
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The test system design incorporated considerable

versatility so that a wide range of tests could be per-

formed. The control system purchased as part of the second

channel (horizontal axis) was designed and connected so that

it could control both actuators for applying phased static

or cyclic loads, with the phase angle readily'adjustable to

any desired value. Since the specimen could serve as a load

path between the two control channels, a specially designed

pair of service manifolds was incorporated into the syst mn,

effectively eliminating "cross-talk" between the channels.

These service manifolds also permit completely independent

operation of the two channels so that different types of load

programs could be applied to each channel. For example, a

randomly varying cyclic load could be applied to one axis

while a constant amplitude fatigue load or a static load

could be applied to the other. The two systems could also

be operated independently when biaxial tests were not being

performed.

In order that the horizontal axis be lightweight and

relatively easy to manage, the horizontal load frame was

designed and manufactured from aluminum structural sections

and high-strength aluminum plates. The load frame design

was completed and the components were fabricated in the

school machine shop. The assembled test system weighed

less than 1000 pounds, of which the actuator alone weighed

approximately 600 pounds. After assembly of the horizontal
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test system, this system was operated for a brief check-out perioe'4
and then interconnected with the existing test system. The

combined system was then checked out and found to operate

as designed. A schematic drawing of the combined test

system is seen in Fig. 33, and photographs of the completed

system are shown in Fig. 36.
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SECTION 12

EFFECT OF BIAXIAL LOADS ON THE CRACK-TIP

ISOCHROMATIC PATTERNS

As the biaxial test specimen design and the biaxial

test system was being developed, an initial photoelastic

study was performed for the purpose of: (1) examining

photoelastically several aspects of the test -pecimen design,

and (2) providing preliminary information about the possible

effects of biaxial load on the crack-tip stress field.

The photoelastic study sought to answer several ques-

tions that ccncerned important details needed to complete

the design of the test specimen. The first parameter

examined was the radius of the fillet between two adjacent

load tangs. Initial biaxial specimen designs developed

by other researchers employed large circular radii or hyper-

bolic curves between the load tangs. Consequently, a large

radius was employed initially for the first photoelastic

specimens. In this series of experiments it was seen that

the biaxial forces did have a significant effect on the crack-

tip isochromatic pattern, however, the quantitative agreement

between the theoretically predicted isochromatic patterns

and the photoelastic results was not very good. Subsequent

study showed that the large fillet radius introduced inter-

actions between the stresses parallel and perpendicular to

the crack. Other studies (38] have confirmed this condition,

and have also shown that there was significant nonuniformity
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of the stress field along the width of' the tang. Additional il

studies by other researchers have been made into the effects

of different geometrical details at the intersection of two

adjacent tangs (39]. The effects of different, small radii,

and of undercutting were examined and it was concluded that

employing a small fillet, as in Fig. 33, provided the

optimum configuration in the intersection region.

The second parameter examined was the crack length-to-

specimen width (a/w) ratio. The biaxial photoelastic speci-

mens were fabricated initially with small crack lengths and

after photoelastic examination, the cracks were extended

and subsequent photoelastic examinations performed. The

results of these studies showed that the extent of the biaxial

effect was not altered by changes in the (a/w) ratio. As ex-

pected, the crack-tip stress fields were affected by the

(a/w) ratio, with the fringe patterns increasing in size as

the crack length was increased. However, the effect of load

biaxiality on the fringe patterns was not significantly

affected by changes in the (a/w) ra-io.

ru third parameter to be studied was the crack-tip

radius, with two different notch radii, and a natural crack

employed in the study. The notch radii were filed using

screw-head files of different.radii, while the natural

crack was produced by means of a iazor blade. As with the

(a/w) study, it was determined that the sharpness of the crack-

tip radius had a significant effect on the crack-tip stress _)
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fields. However, the magnitude of the load biaxiality

effect was not measurably influenced by variation of the

crack-tip radius.

Since the effects of several important test parameters

were shown to have insignificant interaction with the pre-

sence of the horizontal loads, a study of the biaxial load

effects on the crack-tip maximum shear stress was then per-

formed. The most extinsive data were taken from one of the

early photoelastic specimens having an (a/w)ratio of approxi-

mately O.S, a natural crack-tip, and a large fillet radius.

The variation of the lines of maximum shear stress with load

biaxiality indicated by the analysis of Section 3.1, and

summarized in Fig. 11, provides a basis for comparison be-

tween the theoretically predicted patterns and the photo-

elastically observed patterns. The observed patterns are

shown in Fig. 37 for k-O, 0.5 and 1.0. A comparison of

Figs. 11 and 37 show good agreement for the angular shift in

the stress profiles, and careful measurements confirmed

the agreement. The change in the size of the isostatic

loops with increasing tensile load biaxiality agreed with

the predicted pattern, although the magnitudes did not

initially correlate very well. However, when a correction

factor appropriate to the large fillet radius was applied,

the sizes of the isostatic loops and the associated stress

intensity factors agreed much more closely with the theoretical

predictions.
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SECTION 13

FRACTURE TESTING OF SPECIMENS WITH HORIZONTAL CRACKS

Upon completion of the test system development, test

specimen design and photoelastic verification, the fracture

testing program was initiated. It was determined that three

initial test series would be performed and approximately forty

specimens were prepared for testing. Two of the test series

were performed on 7075-T6 aluminum, 0.063 inch thick, with

the center slot oriented perpendicular to the rolling direc-

tion for one series and parallel to the rolling direction for

the other. The material chosen for the third test series

was 0.25 inch thick plexiglass, because its material pro-

perties were quite different from 7075-T6.

Thin center slots were machined in all specimens and the

slot tips were subsequently sharpened to a tip radius of

0.003-0.005 inch by use of a screw head file. The 7075-TC

specimens were tested with the slot tips in this condition

(no fatigue precracking) since prior uniaxial testing ex-

perience with this material indicated that subcritical crack

growth occurs prior to unstable fracture. With the existence

of subcritical crack growth, unstable fractures initiated

from the existing crack and, therefore, were not influenced

by the notch tip radius. In contrast, the plexiglass speci-

mens fractured in a manner apparently more brittle than the

7075-T6 specimens. It was anticipated that variations in

the crack tip radius could cause significant differences in
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the fracture behavior of the plexiglass. Consequently,

natural cracks were introduced into these specimens by press- Z

ing the slot ends with a suitably reinforced razor blade.

The final crack length-to-specimen width ratio wvas between

0.4 and 0.5 for all of thege tests.

Since 707S-T6 is a relatively brittle aluminum alloy it

was decided to perform two additional test series on 2024-T3

aluminum. The interest in performing the 2024-T3 tests was

based on two considerations. First, 2024-T3 is an important

material for aerospace applications, and it is often treated

as a prototype material for the 2xxx series of aluminum alloys.

Second, the additional ductility provided by 2024-T3 was

desirable because finite element calculations by others

suggest that the biaxial effect on fracture load is increased

with increased material plasticity. These specimens were made

according to the same design and were also machined from

0.063 inch sheets. A total of fifteen tests were performed

on 2024-T3, in which the starter slot was parallel to the

roll direction for seven tests and perpendicular to the roll

direction for eight tests.

In performing these fracture tests, ramp loads were

applied to the two perpendicular pairs of specimen tangs in

porportion to the desired biaxiality ratio, k. For the 7075-

T6 specimens the biaxiality ratios varied in the range

0'kOl.8 and for the plexiglass specimens the range was

-0.5k%2.0. For the tests on 7075-T6 and 2024-T3 the loading
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was interrupted periodically for the purpose of recording

the loads and displacements on both axis with the use of a

datalogger. In addition, the loads and displacements per-

pendicular to the slot were recorded continuously on an x-y

plotter. For the plexiglass tests the loading was not

interrupted, due to the time-rate effects associated with

this material. Only the loads and displacements perpendicular

to the crack were recorded on the plotter.

13.1 FRACTURE TEST RESULTS FOR 7075-T6

For the two 7075-T6 test series, the effect of load

biaxiality on the fracture load (perpendicular to the plane

of the starter slot) is seen in Figs. 38 and 39. The speci-

men thickness, BnO.063 in., was considered to be sufficiently

small to establish a plane stress situation. This assump-

tion was confirmed by the mode of fracture, in which the

fracture surfaces were oriented at 450 to the lateral sur-

face of the specimen (100 percent oblique fracture). For

both test series the critical fracture load increased 15-20

percent as k was increased from 0 to 1.8. Higher k values

could not be tested successfully, because the horizontal tabs

pulled off before unstable crack propagation, thus releasing

the biaxial constraint. Since the crack length and specimen

dimensions were identical for all specimens, the critical

stress and Kc values increase proportionally. The linear

regression fit to the data also showed the same increasing

( trend in both test series, with the slope of the lines

-89-

I __



exhibiting the same general uptrend. Poisson's ratio for this

material is approximately 0.30. For this value of Poisson's

ratio Fig. 27 predicts a small increase of the fracture load,

which is confirmed by the experimental results. The difference

in results between Figs. 38 and 39 is attributed to che, aniso-

tropy introduced by the rolling process.

13.2 FRACTURE TEST RESULTS FOR PLEXIGLASS

The predicted variation of critical fracture load (or

K1 C) with k shown in Fig. 28 suggests that failure under

plane strain conditions (square fracture surfaces), combined

with values of Poisson's ratio greater than 0.25, should

produce the reverse trend of decreasing critical load (or

Klc) with in:reasing k. Therefore a test series was per-

formed on plexiglass specimens with B=0.2S in., a thickness

which was large enough to cause plane strain fracture.

Poisson's ratio for this material is high, 0.40<v<0.47,

so that in view of the test data trend oItained for the 7075

aluminum alloy, a definite decreasing trend in the K data

would provide a strong confirmation of the results of the

theoretical analysis. The results of the plexiglass tests

are shown in Fig. 40, and do exhibit a trend of decreasing

fracture toughness with increasing load biaxiality. These

results are presented in terms of critical K1 rather than

critical load since the length of the natural cracks was

not the same for all specimens. Although there was a greater

amount of scatter in this data, the linear regression confirms

the decreasing trend.
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Additional confirmation of the plexiglass data can be

found in the test results recently published by Radon, et al,

40, 411, although they did not come to the same conclusion,

possibly due to the lack of a linear regression analysis of

their data. The results of forty tests on polymethylmeth-

acrylate (PMA), which is essentially the same material as

plaxiglass, are shown in Fig. 41. The best fit straight line

was added to their reported data, and it is seen that the two

test series agree remarkably well with regard to the magni-

tudes, the trends, (decreasing slopes), and the scatter in

the toughness values. Although the extent of test data re-

ported here is insufficient for definitive conclusions,

nevertheless, the qualitative agreement with the predicted

trends for both materials offers considerable evidence as

to the presence of biaxial load effects on the fracture

stresses and the associated K values.

13.3 FRACTURE TEST RESULTS FOR 2024-T3

In order to correlate as closely as possible with the

7075-T6 tests, one series of seven specimens was prepared

with the starter slot parallel to the rolling direction and

a second series of eight specimens was prepared with the

starter slot perpendicular to the rolling direction. The

specimen geometry, the slot length and notch tip radius and

the test procedure w'ere the same as for the 707S-T6 tests.

The effect of the biaxiality ratio, k, on the fracture

load for 2024-T3 is shown in Figs. 42 and 43 for the starter
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slot oriented parallel and perpendicular respectively to the

rolling direction of the material. The behavior of these

two test series is clearly self consistent in that they both

display a peak in the critical fracture load corresponding

to k values around 0.5 to 0.75. The rate of variation of

critical load with k is greater in the range of O<k<0.75 than

was evidenced by the 707S-T6 results, and suggests that the

increased biaxial effect may be due to the greater ductility :.

of the material. However, the reasons for the existence of

a peak value and subsequent decrease in critical load with

increasing k is not apparent. One possible explanation for

this behavior is that the increased ductility of the material

was responsible for the tangs parallel to the starter slot

to fail first, thus eliminating the biaxial constraint.

This behavior would lead to the prediction that, at the higher

k values, the breaking load would approach the result for

uniaxial tension, k-0. It is seen that both tests series do

display this type of behavior, with the exception of the te3t

at kal.25 in Fig. 42. There is some further experimental .1

evidence to support this type of behavior, although these

observations need considerably more study before reliable

conclusions can be drawn. The difference in critical load

between the two test series is due to the anisotropy effect A

and is of the same order of magnitude as the effect for 7075-

T6.
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SECTION 14

FRACTURE OF ANGLE-CRACKED SPECIMENS OF 7075-T6 ALUMINUM

Since a crack in a structure subjected to biaxial applied

loads will not normally be aligned with either of the princi-

pal loading directions, knowledge of biaxial load effects on

angle-cracked specimens is of considerable practical impor-

tance. The loads on 'oth axis of the angle cracked specimens

must be considered because the loads on each axis can be re-

solved into components parallel and perpendicular to the

starter slot. The component perpendicular to the starter slot

represents the principal force causing fracture, while the

other component coincides with the horizontal (biaxial) load for

the flat crack geometiy.

Two test series were performed on 7075-T6 aluminum sheets,

0.063 in. thick, with the starter slot oriented 45 degrees to

either of the load axis. Four tests were performed in each

test series, with one test at each of the biaxiality ratios of

k - 0, 0.25, 0.S and 1.0. In one series the primary (larger

load) axis was aligned with the rolling direction, while for the other

the primary axis was perpendicular to the rolling direction.

Figure 44 shows the broken specimens from the equal biaxial

tests (k-l.0) for both test series, where the principal load

direction is indicated by the arrow.

ii

.c • . • • .. ,• .... .... . . ... . . .. - , • . . . , . .. . ...



? .7 -
..

The specimen and starter slot were prepared in the same

manner as for the specimens having the starter slots oriented

perpendicular to the primary load axis. The same testing

procedure employed previously for the aluminum test series

was also followed for these tests. The load versus displace-

ment for the principal axis was plotted continuously on an

x-y recorder, and the loading ramp was interrupted periodi-

cally for the purpose of recording the load and displacement

values for each axis using a datalogger. The critical or

maximum load in the principal loading direction was also

recorded using a digital multimeter with memory capability.

"According to the analysis of the angle-cracked specimen

given in Section 2, the opening-mode stress intensity factor

is given by (cf. Eq. (2.23)]

Sd
½$

K a(-L.a)L [(l+k)u(l-k)cos2cl,
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corresponding to an infinite sheet geometry, where the angle

of crack inclination a is defined in Fig. 1. For these tests

a=45° In addition, a finite-width correction factor must be

appended to the above expression, which then becomes

K = a .L~)h(l+k)f() . (14.1)

If the critical value of the applied stress, obtained as

described above, is inserted into Eq. (14.1) K becomes the

plane-stress fracture toughness, Kc,

Kc = a 2 " (l+k)f( (14.2)

Since the a/w ratio was identical for all specimens, the value

of the finite-width correction factor was the same for all tests.

Consequently the finite width correction factor had no influence

on the relative magnitudes and trend of the biaxial load effect.

Equation (14.2) shows the dependence of Kc on k as being

linear, with the factor (l+k) increasing from one to two as

k is increased from zero to one. Therefore the Kc value

would be expected to approximately double over the range of

k values employed in these tests. The test results shown in

Fig. 45 are in very good agreement with this predicted trend,

and offer a further confirmation of the analytical portion

of this work.
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SECTION 15

EFFECT OF BIAXIAL LOADS ON THE ANGLE

OF INITIAL CRACK EXTENSION

Another effect of load biaxiality on fracture behavior,

one which is directly measurable and can be compared with

the analytical predictions, is the influence of k on the angle

of initial crack extension. The calculations of this angle,

based on the maximum tensile stress criterion, are displayed

graphically in Fig. 19 for different orientations of the

crack (or starter slot). The fractured specimesn of all of

the test series were examined for comparison with the analyti-

cal predictions, and the results are presented in this section.

15.1 ANGLE OF INITIAL CRACK EXTENSION FOR THE ANGLE-CRACKED

SPECIMENS

Phe effect of applied load biaxiality on Kc for the two

series of tests on 7075-T6 aluminum in which the starter slot

was oriented at 450 was discussed in the previous section.

The broken specimens from these tests were examined to

aetermine the angle of initial crack propagation for compari-

son with the analytical predictions contained in Fig. 19.

As noted in Section 13, the material from which these speci-

mens were made exhibited a measurable amount of anisotropy.

It was anticipated therefore that this could have some in-

fluence on the direction of initial crack extension. In

much the same manner that the average of the two test results

- • at each biaxiality ratio minimized the effect of material
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anisotropy on the K data shown in Fig. 45, the average of

the two angles of initial crack extension for any k value

should provide a result relatively free of the material ani-

sotropy effects.

A good appreciation of the influence of material ani-

sotorpy on the angle of initial crack extension can be obtain-

ed from Fig. 44. The analytical predications indicate that,

for a-45 0 and k-1.0, the crack angle should not deviate from

the plane of the starter slot (e0 0m). Figure 44 shows, how-

ever, that the cracks propagated at an angle of approximately

±250 from the starter slot toward the rolling direction. If

the angles measured from the two tests are averaged, they

approximately cancel each other leaving a net measured value

of approximately 60 -3. This procedure was followed for the

other three pairs of tests and the results of all eight

tests are summarized in Talle I. It is seen from this table

that the agreement between the predicted and measured values

of e0 is quite good, with the only significant deviation

being for k-0.5.

15.2 ANGLE OF INITIAL CRACK EXTENSION FOR HORIZONTALLY

SLOTTED 707S-T6 SPECIMENS

Additional comparison between the predicted and measured

values of initial crack propagation can be obtained from the

fracture test series discussed in Section 13. For these

tests the biaxiality ratio was varied from zero to 1.8, with0) 0
0-90°. Examination of the predicted values of e0 (for a=90°)..
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given in Fig. 19 sh-.ws that, at the higher positive values

of k the predicted values of 60 begin to increase rapidly as

k exceeds values of three, and approach values of OnoO to 900

as k assumes values between five and nine. A greater accuracy

of prediction is difficult because of the very high slopes

(rates of change) of the curves at at-90 -. About all that4

can be certain is that the expected angle of initial crack

extension increases with increasing k.

A qualitative confirmation of the above statement can

be seen in Fig. 4S, which shows the effect of increasing k on

the angle of initial crack extension for the 707S-T6 specimens.

For these tests the starter slot was perpendicular to the

rolling direction. It is seen in Fig. 45a (k-0) that the

crack extended essentially parallel to the starter slot,

while in Fig. 44b (k1I.S) the angle of initial crack extension

had increased significantly. When k was further increased

to 1.8, it is seen in Fig. 44c that the crack very quickly

changed orientation to become more normal to the direction

of maximum tensile stress.

1S.3 ANGLE OF INITIAL CRACK EXTENSION FOR PLEXIGLASS SPECIMENS

Since the material anisotropy associated with the 7075-

T6 tests has some effect on the angle of initial crack ex-

tension (especially for a=900 ), the plexiglass specimens

were also examined because they do not exhibit significant

anisotropy, and because higher k values could be employed in

the tests. A large number of tests were performed so that
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many specimens were available for the purpose of examining the

angle of initial crack extension. The results, however, for
any given k value were quite consistent, consequently, only

three of the typical results are presented in Fig., 46. The

broken specimen from test B20 (k-O) is shown in Fig. 46a,

where it is seen that the crack extended with only slight

deviation from the plane of the starter slot. Fig.46b shows

the broken test from test B17 (k-l.O), in which significant

deviation from the starter slot is evident. For test B19

(k=2.), Fig. 46c shows that the deviation from the plane of
the starter slot is quite strong, as the crack attempts to

align ,tself normal to the direction of maximum tensile stress.

All of the plexiglass specimens exhibited similar tendencies
and confirm the qualitative agreement with the predicted

trend that was observed for the 7075-T6 specimens with
initially horizontal crack orientation. Additional observa-
tions of the angle .of initial crack extension have been made
for PMMA by Leevers, Radon and Culver [42], who obtained

results in generally good agreement with those presented

here.

-99-

,~ ~ ~ ~ 4 * R ., R-• • . • .-. ..



SECTION 16

BIAXIAL FATIGUE CRACK GROWTH RATE TESTS

Because of the importance of fatigue crack growth laws

in determining the residual life of structures and the re-

lative merits of many structural materials subjected to cyclic

loading, one of the objectives of this research program was

to examine the influence of biaxial loads on the fatigue

crack growth rates. Most fundamental studies of fatigue

crack growth under cyclic loading conditions (43] conclude

that the size of the crack-tip plastic zone is a critical

factor influencing the fatigue crack growth rates. Since

the present study has shown that increasing k values lead

to reduced crack-tip plastic zone sizes, it follows that

higher k values should cause reduced fatigue crack growth

rates.

Experimental data about the effect of load biaxiality

on fatigue crack growth rates are currently quite limited

and somewhat inconsistent in their assessment of biaxial

effects. Most test results reported in the literature were

performed at zero or positive I values ( -min /Fmax)

although some exceptions have been reported. In tests con-

ducted on a high strength aluminum alloy, RRS8, Hopper and

Miller (44] reported a decrease in fatigue crack growth rates

as k increased from -1.0 to 1.0. Kibler and Roberts [35]

observed the same qualitative trend for 6061-T4 and T6

aluminum alloys as k was increased from 0 to 0.33. Leevers,
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Radon and Culver [45] reported fatigue crack growth rates

in PMMA to be reduced by a factor of two to three as k in-

creased from 0 to 2.0. For all of the test results just

ci'ed the biaxial loads were in-phase cyclic loads.

On the other hand, a variation of the static lateral

load from k-0 to ku2.0 appeared to have little effect on the

fatigue crack growth rates of the more ductile PVC (poly-

vinylchloride)[4S. Similarly, Liu, Allison, Dittmer and

Yamane, observed negligible effects on the crack growth rates

of 707S-T7351 and 2024-T3S1 aluminum alloys as k was varied

from -1.5 to 1.7S [461, while Pook and Holmes found little

lateral load effect on the growth rates of nickel alloy

plates as k was varied from 0 to 2.0 (471. Because of the

lack of agreement between the results of those studies it

was considered desirable co perform some experiments to pro-

'ide aditional data about the nature of biaxial effects.

16.1 BIAXIAL FATIGUE TESTING PROGRAM

In order to gain initial insight into the effect of

biaxial cyciic loads on the fatigue crack growth rates, a

preliminary testing program involving four specimens made

from thin sheets of 2024-T3 aluminum was initiated. For

these tests two specimens were tested with the starter slot

parallel to the rolling direction (k*O and 1.0) and two were

tested with the starter slot perpendicular t3 the rolling

direction (k*0 and 1.0). The specimens were made identical

to those for the static tests and the loads were varicd in
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a sinusoidal manner, with both axis loaded in phase. The

load ratio, R. was approximstely zero for all four tests.

The test frequency was 12 Hz and, with the exception of the

first test, the crack growth measurements were made while

the test was running. An arbitrary initial cyclic load

level was imposed until the fatigue crack initiated from the

starter slot and the load level was then reduced until a

reasonable crack growth rate was obtained. This load level

was then maintained until the specimen fractured. The crack

size was recorded as a function of the number of cycles and

calculations were then made for the crack growth rate, da

as a function of the applied stress intensity range, AX.

The experimental results of fatigue crack growth rate,

plotted on logarithmic scale, versus AX is given in Figs.

48-51, in which each figure represents the test results for

one specimen. Thus Figs. 48 and A9 represent the data for

the two tests on 2024-T3 with the startar slot perpendicular

to the rolling direction and k equal to 0 and 1.0 respectively.

It can be seen that there is a significant biaxial effect on

the fatigue crack growth rates, but determination of the

magnitude of the effect is difficult because of the scatter

in the data. The scatter was apparently due primarily to the

lack of experience in collecting fatigue crack growth data

on these biaxial specimens, s ince it was considerably re-

duced in subsequent tests.

(In order to obtain a better appreciation for the extent

of the biaxial effect, a few specific comparisons will alsoj
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be presented. In both pairs of tests, increasing the k vi.ue

from zero to 1.0 caused a significant reduction in the I
fatigue crack growth rates. For example, for the tests with

the starter slot parallel to the rolling direction, the crack

growth rates corresponding to the same value of AK were

approximately 1.8xl0" in/cycle for knO and 1.4x10"$ in/cycle

for k-l.0. From these results it is seen that the decrease

in fatigue crack growth rates was approximately 25 percent

for an increase in k from zero to 1.0. Thc other pair of

tests with the starter slot perpendicular to the rolling

direction exhibited a greater dependence of the fatigue

crack growth rates on k. For example the fatigue crack growth

rates corre3ponding to a fixed AI were approximately 4.24x0 5

in/cycle for k-0 and 2.OxlO in/cycle for kul.0, which re-

presents a change of 100 percent in the fatigue crack growth

rates. However, the procedure for taking crack growth measure-

ments foi. the k-O test was different from the kul.0 test in

that the test system was stopped while the measurements were

made. For all subsequent tests the crack growth measurements

were made while the test was running. A number of subsequent

tests were then performed for the purpose of obtaining addi-

tional data about the biaxial effects.

These data are presented in a different w&y in Figs. 52
daand S3, in which V is still represented on the ordinate

(vertical axis) but the half-crack length, a, is plotted on

the abscissa. The data shown in this manner for k-O and

1.0 illustrate quite clearly the biaxial effect. The number
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of data points have been reduced in these figures by averaging
several adjacent d values, and it is seen that the scatter

is reduced markedly.

The results of these four tests are also shown with da

plotted linearly on the ordinate and the half-crack length

plotted on the abscissa. The results are given in Figs. 54

and 55, and again exhibit the significant biaxial influence

already indicated. These results also show very effectively

the acceleration in fatigue crack growth rates that is

characteristic of these tests. Since these results could

be easily misinterpreted if different initial crack sizes

or different loads were employed in the testing program,

results similar to Figs. 54 and SS are not presented for the

subsequent tests.

16.2 BIAXIAL FATIGUE TESTS ON 7075-T6 ALUMINUM

The next test series that was performed was planned to

provide fatigue crack growth rate iata over a larger range

of k values. Thus, four additional tests were performed on

7075-T6 alumunim sheets, 0.063 in. thick, in which the starter

slots were parallel to the rolling direction. The starter

slots were also considerably shorter than for the prior

tests so that more data could be collected. Also for these

tests, after an initial set of data were taken at low crack

growth rates, the load was increased in several steps so

that a larger range of AK values could be examined. The

( • cyciic frequency for these tests was decreased from 15 to
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10 Hz as the test progressed and the crack growth rates in- 3
creased. The • v41ue was 0.1 for all four tests.

The effects of load biaxiality on the fatigue crack
da"'

growth rates, d, as a function of AK for the four blaxiali-

ties, k-O, 0.S, 1.1 end 1.5 are shown in Figs. S6-59. It is

seen from these figures that the data points exhibited re-

asonable scatter and that a biaxial effect is clearly evident.

As a measure of the effect of load biaxiality, the fatigue crack

growth rats for all four tests at two selected values of 4K are given p

in Table II. The results at both values of 4K exhibited a dofitite t

biaxial effect, although the primary effect seems to have

occurred between k=O and O.S. Because of the scatter that is

usually associated with fatigue crack growth rate testing,.

the primary conclusion from these data is that, although

there is a clear biaxial effect, the trend in the variation

of with k will need additional testing before it is clearly

understood. rhe results for the first three tests, k=O, 0,5

and 1.0 have been combined into one plot as shown in....Fig..O0,

where AK has also been plotted on a logarithmic scale. The

test for k-l.$ was not included because of the very limited

amount of data that had been collected before the specimen

failed by breaking one of the tangs parallel to the starter

slot. The very strong biaxial effect is more evident in this

figure, although the close agreement between the results for

kO.S and 1.0 is difficult to interpret.

A different presentation of these results is also given

in Fig. 61. In this figure, the half-crack length, a, is
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plotted on the ordinate using a linear scale and AK is

plotted linearly on the abscissa. This presentation also

illustrates clearly the magnitude of the biaxial effect on

the fatigue crack growth rates.

16.3 BIAXIAL FATIGUE TESTS ON 2024-T3 ALUMINUM

Since it was considered likely that accurate fatigue

crack growth rates are more difficult to obtain in more

brittle materials, three additional tests were preformed on

2024T-3 aluminum with biaxiality ratios of 0, 0.5 and 1.0.

The starter slots were parallel to the rollinzg direction and

T=0.1 for all three tests. The same general procedures estab-

lished in the previous tests were followed for these tests

also. The results of the crack growth rates as a function

of AK for the three k values are givei in Figs. 62-64, where

these data have been plotted on semi-log paper. The same

data were also plotted in Figs. 65-67 on a log-log plot

which, as was seen in the 7075-T6 results, tends to make the

biaxial effect less apparent. Again for direct comparison

purposes, the values of daas a function of k are given in

the Table III. The AK values of 10 and 40 ksiy'"ii provided a

large range of values for additional comparison purposes.

It is seen in these results that a significant biaxial effect

* exists, although the magnitude of the effect is approximately

30 percent, rather than a factor of 10 as exhibited for the

7075-T6 data. Also the limited differences between the values

for k=0.5 and 1.0 render interpretation difficult. The
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closeness of the k-0.5 and 1.0 value.,, for both alloys *is a •ij
matter that can only be a subject for speculation with the

limited data that are available.

)!
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PART III. CONCLUSIONS

4 SECTION 17

SUMMARY AND CONCLUSIONS

The plane problem of linear elasto-statics is a boundary

value problem for the solution of the biharmonic partial

differential equation that must, in addition, satisfy given

conditions of stress or displacement that are prescribed on

the boundaries of the body. This problem can be reformulated

into one of finding a pair of analytic functions O(z) and 4(z)

of the complex variable, z, that must satisfy the same pre-

scribed conditions of boundary stress or displacement. Once

these functions have been determined, the problem may be

considered to be solved because all of the quantities that

define the mechanical state of the elastic body are derivable

from 0 and Q.

For the boundary value problem represented by the biaxially

loaded infinite sheet with an inclined centrally located crack,

(cf. Fig. 1), the solution functions 0 and s2 are given by Eqs.

(2.8) and (2.9). For the horizontally oriented crack they

are given by Eq. (2.11), while for the pair of collinear

cracks, by Eqs. (2.35) and (2.37). In all of these expressions

for P and 0, both of the boundary load parameters, a and k,

appear, as they must, if 0 and 0 are to represent solutions of

a boundary value problem. Consequently it follows directly

from Eqs. (2.1) and (2.2) that the stress, displacement, strain,

( * maximum shear stress and the strain energy density at every
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point of the body must, likewise, show dependency on the

biaxial load parameter, k. The same must also be trtue of

integrals of these quantities, yielding the elastic strain

energy and the elastic potential energy of the entire body.

When the elastic strain energy of the body is differentiated

with respect to the crack size, the resulting derivative

representing the change of the elastic strain energy diith in-

creasing crack size, must also exhibit a dependence on '!he

horizontal load parameter, k, when the body is biaxially

loaded. Since every quantity defining the mechanical state

of the cracked body is thus shown to be influenced by the

presence of the horizontal load, the conclusion that the

fracture behavior of the body must also be so influenced is

inescapable. These conclusions, which are here drawn from

general considorations only, are clearly illustrated by the

extensive analytical results appearing in the body of the

report, and by the experimental data that i~s presented,

which quantitatively and qualitatively confirm the findings

of the analysis.

Stress and Displacement Near the Crack-Tip

The expressions for the elastic stress and displacement

in the immediate vicinity of the crack tip when properly

derived, will show a dependence on the horizontal load para-

meter, k. Examination of the series expansions of the

solution functions cV, 0' (and also for O ,w) reveal that a

two-term approximation of the infinite series representations
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is necessary if proper account of the presence of the horizon-

tal load is to be reflected in the crack-tip stress and dis-

placement approximations, [e.g., Eqs. (2.17), (2.19), (2.21)-

(2.23) for the inclined crack, Eqs. (2.24)-(2.26) for the

horizontal crack, and Eqs. (2.41)-(2.47) for the pair of

collinear cracks].

When the crack is horizontal, the scc, d term of the

series expansion of I is the only term of the expansion that

includes the parameter k. Consequently, the usual one-term

(singular) approximation for the crack-tip stress, and also

for the displacement, is incapable of incorporating the

presence of the horizontal load, ka, in a biaxial load situa-

tion for this crack geometry.

Maximum Shear Stress Near The Crack Tip

The maximum shear stress about the crack tip is shown

to be strongly influenced b, the presence of load applied

parallel to the crack [c.f. Eqs. (3.1),(3.8)). The predicted

pattern of variation of the maximum shear stress contours

with load biaxiality, Fig. 11, is confirmed by the photo-

elastic maximum shear stress isochromatics that were obtained

for the biaxial load range Oskil.0, shown by Fig. 37.

Because of the relation between maximum shear stress and

plastic yield, the plastic yield region about the crack tip

should show a qualitatively similar pattern of variation with

load biaxiality to that shown by Fig. 11, that is, as the

horizontal load varies from tension to compression the extent
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of the plastic yield region about the crack tip should in-

crease. (This predicted effect has been observed from the

finite-element (NASTRAN) elastic-plastic calculations con-

ducted by Liu and Dittmer [S2] for a biaxially loaded

cruciform shaped specimen.)

Anile of Initial Crack Extension

Utilizing the maximum tensile stress criterion, the

influence of load biaxiality on the angle of initial crack

extension was calculated for different orientations of the

crack, with the results summarized in Fig. 19. Test results

for cracks initially horizontal are shown in Fig. 46. These

photographs show clearly the pattern of turning of the angle

of initial crack extension with increasing horizontal tensile

load, in qualitative agreement with the predicted trend shown

in Fig. 19 at c-n/2. For the crack inclined at •a450 , c.f.

Fig. 44, the measured angles of initial crack extension are in

generally good agreement with the prcdicted values, rummarized

in Table I.

Fracture Load and Fracture Toughness

A calculation of the theoretical fracture stress, ac'

based upon Griffith's crack instability hypothesis, shows

the critical stress to be dependent on both the load biaxiality,

and the Poisson ratio of the material, c.f. Eqs. (9.2) and

(9.3), and Figures 27, 28 and 29. In the case of plane stress,

for materials with Poisson ratio less than one-third, the
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breaking stress increases with increasing horizontal tensile

load. However for values of Poisson ratio greater than one-

third, this trend is reversed. A similar patter of variation

holds for plane strain.

The results of fracture tests performed on 7075-T6 alum-

inum with Poisson ratio about 0.30, and plexiglass with Poisson

ratio about 0.40-0.4S, are shown in Figures 38 thru 40. Add-

itional fracture test data on PMMA specimens (similar to

plexiglass) that were obtained elsewhere are shown in Fig. 41.

These test results confirm, qualitatively, the predicted

influence of the Poisson ratio on the pattern of variation of

'the critical stress with variation of the horizontal load.

Plane stress fracture toughness tests for determination

of K values, on 7075-T6 aluminum sheets with the crack in-c

clined at 4S0 and the horizontal load parameter varying

between Okel.0, show a pronounced dependence on the load

biaxiality. The predicted variation of Kc with k, given by

Eq. (14.2), which shows Kc as approximately doubling in value

in a linear manner as k varies from zero to one, is in ex-

cellent agreement with the experimental data given in Fig. 45.

Fatigue Crack Growth Rates

The reduction of the rate of fatigue crack growth with

increase of the horizontal load, which is implied by the de-

crease in size of the crack-tip plastic zone for such biaxial

load variation, is demonstrated by the experimental data given

in Figures 48 through 67, and in Tables II and III. These
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results are consistent with the generally accepted view that

the size or extent of the rlastic yield region at the crack

tip is a major factor in influencing fatigue crack growth

rates. The reduction of the crack growth rate as k was varied

from 0.0 to 0.5 was observed to be much greater than the re-

duction in rate thaý accompanied the change of k from 0.5 to

1.0. At this time no explanation for this surprising differ-

ence can be offered.
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SECTION 18

RECOMMENDATIONS FOR FURTHER RESEARCH

Although a considerable amount of research effort has by

now been directed toward examining the effects of biaxial

applied loads on the fracture characteristics of materials,

many facets of this effect have yet to be clarified and

fully understood. A number of suggestions for further research

in this area which appear to be important are indicated below.

1. A finite-element analysis that would take this particu-

lar specimen geometry into consideration should be per-

formed. This analysis would serve to provide more

accurate correlations between the anlytical and experi-

mental results. Such an analysis should also lead to

further clarification of some of the observed trends in

some of the experimental results, such as the interactions

between Poisson's ratio and load biaxiality on the

fracture strength.

2. The finite-element analysis should be extended to include

elastic-plastic material behavior and subcritical crack

growth. An analysis of this kind should provide a

greater appreciation of biaxial load effects on crack-

tip plasticity, and its consequent effect on the fracture

characteristics. The subcritical crack growth capability

of the finite element analysis would also serve to pro- -

vide more information for comparison with the experi-

mentally-observed angles of initial crack extension.
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3. The interaction between foisson's ratio and load biaxility

and their influence on the fracture strength should be

examined further. The reversal of trend of the fracture load,

cc, versus k, observed for aluminum and plexiglass needs to

be examined in more detail under both plane stress and

plane strain conditions.

4. Fracture tests should be performed on specimens contain-

ing two collinear cracks since no tests of this type have

been performed. It would be desirable to perform tests

with horizontal starter slots as well as with the starter

slots at an angle.

5. More fatigue crack growth tests need to be conducted to

da
examine in moAe det-il the biaxial effects on in the

range O<k<l.0, since nearly all of the biaxial effect

that was observed in the GWU tests occurred as k was

increased from zero to 0.S. These test results should

also be examined and used, in conjunction with existing

data, to formulate modifications to existing semi-empirical

fatigue crack growth rate laws that would explicitly in-

clude k as a factor. At present it appears that the

dadependence on k of a would be highly nonlinear.

6. Additional angle-cracked tests should be performed so

that crack orientation angles other than a=45 0 and 900

could be .tudied. These results would have considerable

practical significance since actual cracks in biaxially-

loaded structures (such as pressure vessels, etc) will .)
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not normally be aligned with the principal loading

directions.*

7. A wider range of structural materials, including titanium

and steel alloys, should be tested in order to determine

quantitatively the relevance of the biaxial effect on

these structurally important materials. Such tests

could provide for greater variations in important

variables such as crack-tip plasticity, subcritical

crack growth and plane stress versus plane strain con-

ditions, within the context of a biaxial loading situation.
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TABLE I Comparison of Predicted and Measured Values for
the Angle of Initial Crack Extension for Angle-
Cracked Specimens

2BIAXIALITY RATIO 80 (predicted)l 0(measured)
(degrees) (degrees)

k = 0 -52 -48

k - 0.25 -46 -44

k - 0.5 -41 -27

k a 1.0 - 0 -3

0
1. Determined from Fig. 19 for a=45°. Estimated accuracy

±2 degrees except for k=0.25, which was obtained by

interpolation.

2. Determined by averaging the measured values of each

pair of specimens having the same values of k., Estimated

accuracy ±3 degrees.
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TABLE II Effect of Biaxial Loads or. the Fatigue Crack

Growth Rates of 707S-T6 A:uminum

Biaxiality Ratio d(in/cycle)

AK- 7ksi /1T AK- lOksi iv-3

k = 0 3x10 5  9xO" 5

k 0.5 3x10 6  6.5xlQ-6

k = 1.0 3x10" 6  9x10" 6

k = 1.5 3.5xi0"6  3x10 5

X

*1.
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TABLE III Effect of Biaxial Loads on the Fatigue Crack
Growth Rates fo 2024-T3 Aluminum

da

Biaxiality Ratio T-•(in/cycle)

.K -10ksi /i,- AK - 40ksi /41

k 0 1.9x10-6  l.3x10-4

k = 0.5 l.SxlO6  1.0x10 4

k - 1.0 1.4x10 6  l.lxl0 4

-123-
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Fig. 1. Inclined interior crack geometry.

Fig. 2. Polar coordinate system at the crack tip.\-!.___
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Fig. 3. Stress intensity factor K1 for the inclined

crack geometry.
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Fig. 4. Stress intensity factor K2 for the inclinedcrack geometry.
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Fig. 9. Cracked shear panel.
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Fig. 27. Critical stress variation with load biaxiality and Poisson ratio
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Figure 35. Biaxial test system.
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Fig. 36. Photographs of biaxial test system.



44:4

0

4- 0

ton

04



CLI

~ ~ -Go

CV)

(sql) '4



,q

Fi c C!

'S'

Ooo~

.2-

,0 cc

'C V)

(sq I



LOI

to

* to
LL

IIq

fuP N 94niLunoi



00

In-I

x 0~

Cm 00

4.0

(4 .LMW OLN 05U8n.



12000 h
-~11000

rZ2

10000

9000 , I
0 0.4 0.8 1.2 1.6 2.0

LOAD BIAXIALITY k

Fig. 42. Critical fracture load for 2024-T3 sheets as a
function of load biaxiality. Crack parallel to
the rolling direction.
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Fig. 43. Critical fracture load for 2024-T3 sheets as a
function of load biaxiality. Crack perpendicular
to rolling direction.
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(a) Principal axis perpendicular to rolling direction.

04~

(b) Principal axis parallel to roling direction.

Fig. 44. Photographs of fractured angle-crack specimens
i made of 7075-T6 aluminum, 0.063"1 thick, k =1.0.
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, Fig. 46. Fracture paths of three biaxial test specimens

of 7075-T6. Crack perpendicular to the roll
direction.
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(a) k=0 (b) k= 1.0

(c) k = 2.0

Fig. 47. Photographs of fractured plexiglass specimens
showing variations in the angle of initial crack
extension.
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