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ABSTRACT

A research program, comprising both analytical and
experimental tasks, has been pursusd with the objective of
examining the influence of biaxial applied loads on the
mechanical behavior of bodies containing cracks.

Under the analytical part of this program,.dvgeneral
fracture mechanics analysis was performed to examine the
influence of biaxial applied loads on the mechanical state
of the body. The geometries examined were the single crack
and two coplanar cracks with an arbitrary orientation and
the cracked shear panel. It was found that the biaxial
loads influenced all aspects of the mechanical state of the
body, with the exception of the stress intensity factor for
a crack oriented parallel to the biaxial load. The extent
and nature of the biaxial effect on the crack-tip stress
field, stress intensity factor, angle of initial crack
extension, crack-tip displacements, elastic strain energy,
fracture load and fatigue crack growth rates are all pre-° /
sented in this report.

The experimental part of this program involved
developing a biaxial test faciiit?}and~perf0rmini a con-
siderable number of photoelastic, Eracture\toughness, and
fatigue crack growth rate experiﬁéﬁt{;' Confirmation of
the analytical predictions was obtained for the biaxial
effects on the crack-tip stress field, the angle of initial
crack extension, the fracture load, and the fatigue crack
growth rates. The biaxial loads were seen to influence
all of these parameters in varying degrees, and a consider-
able amount of experimental data is includé@ in the
report, - _ i
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SECTION 1
INTRODUCTION

Ever since the seminal research of Griffith into the
nature of the fracture of solids in early 1920, the opinion
of4many associated with the materials science and fracture
mechanics communities has been that loads applied parallel to
én existing crack (in addition to the tensile load perpendi-
cular to it) have no effect on fracture behavior. This idea
was first advanced by Griffith himself in postulating his
well known criterion for the onset of crack instability [12,
13]. The mathematical or énalytical justification for such
an assertion can be shown to be lacking however, and has been
a source of controversy over the years [48].

Apparent corroboration of this idea of the unimportance
of loads applied parallel to a crack (in a biaxial load situ-

ation) appeared to come some thirty-five years later, when

- Irwin introduced the crack-tip elastic stress intensity fac-

tor approach to fracture mechanics [49,50). Irwin's deriva-

"tion of the singular one-term series approximations for the

eiastic stress in the neighborhood of the crack-tip,'utilized
Wes;e;gaard's form for the solution of the problem of a biax-
ially luaded plane infinite sheet with a central horizontal
crack“[Sl]. Westergaard's solution, however, incorrectly

omitted a term containing the horizontal load parameter, (i.e.,

the second term of the right side of Eq. (2.11) of this report).

Consequently, in Irwin's subsequent series representations of

e

. -y
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the stress field near the crack-tip, no manifestation of the
presence of the horizontal load could possibly appear. How-
ever, Irwin seemed to understand the significance or importance
0f loads parallel to the crack, because he added a constant

but unspecified term, Thx? TO his expression for the x-direction
stress component near the crack-tip, [50]. It is now under-
stood that this term corresponds to the second, non-singular,
term of Eq. (2.24)1 of this report.

Thus two analytical errors, with the latter one accidently
having the effect of masking the presence of the earlier one,
led to a general misunderstanding of the significance of the
biaxial load effect. This situation still persists. Now
that fragments of contradictory experimental data have begun
to appear, during the last five to ten years, the need to
clarify this question is apparent.

This research effort addresses itself to this problem,
that is, to the question of the presence, or lack of presence,
of the effect of load biaxiality on fracture or on fracture
related behavior. It attempts to examine the problem
systematically and in detail, utilizing specially designed
experiments where possible to check on the validity of the
analytical findings. The experiments were performed on

materials that are used extensively in aircraft structures.
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PART 1
ANALYSIS

When a cracked body is subjected to forces that act
parallel to the plane of the crack (in addition to the ten-
sile forces applied perpendicular to it), any influencq that
the parallel loads may have on the fracture behavior of the
body should, if present, manifest itself in several different
ways. Moreover, if the biaxial load effect exists and is
significant, it must obviously affect the mechanical state of
that region of the body in close proximity to the crack tip.
Investigation of the problem should therefore direéf initial
emphasis on illuminating the possible relation of load bi-
axiality on those aspects of fracture that can be observed
experimentally. These wou'd include crack-tip shear iso-
chromatics, which may be seen photoelastically, the angle of
initial crack extension, which may be observed directly, as
can the rvrate at which fatigue crack growth takes place under
cyclic normal loads at varying states of load biaxiality.

The critical value of the normal tensile load, that is, the
fracture load, can also be measured at different ievels of
load biaxiality, which suggests that the analysis should
concern itself with this facet of the problem as well.

The irfinite sheet geometry was chosen for the theoret-
ical part of the investigation becruse exact solutions for
several cracked-body geometries are known, thereby permitting

derivation of specific results that give explicit demonstration




of the effects of the load applied parallel to the plane of
the crack. Although experiments must be pertformed on test
specimens that have finite dimensions, analysis based upon
infinite body geometry can be useful, neyertheless, because
it can serve as a prototype that provides, at the very least,

valuable information of an insightful and qualitative nature.
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SECTION 2
STRESS AND DISPLACEMENT IN THE VICINITY OF THE CRACK TIP

In the linear theory of isotropic elastic solids in
which body forces are neglected, the plane problem of statics
is reduced to a boundary value problem for the biharmonic
stress function. The same problem can also be formulated
equivnrlentiy in terms of a pair of analytic functions, % and
Q, of the complex variable z-x+iy-reie, which uniquely specify
the plane stress and displacement components by means of the
following relations [1]:

tex * Tyy = 200(z) LI}
tyy * tee * 20t = 20T ¢ T@) - e(2)) (2.1)

Zulug *+ lugl = xe(z) - w(z) - (2-2)%(2) ,

where the overbir designates complex conjugation and

¢ (z) -=f¢(:)dz, wlz) =fQ(z)dz . (2.2)

When for a ziven boundary value problem, that is, for a given
applied load anc¢ cracked body geometry, the functions ¢ and
i are determined, then the stress and displacements, and all

other mechanical Quantities expressed in terms of them, are

determinable from Eqs. (2.1) and (2.2).

2.1 SINGLE CRACK

The plane components of the stress tensor referred to

the pair of coordinate systems shown in Fig. 1 are related

by expressions

s




Y = T

*

2i8

- . » - - * - »
tyy txx + thxy s e (tyy Cex 21txy)
R T M IR
XX Yy Xy
and
rl + rd
tyy * Tex * byy * o Teg

B S e i e ekl s oo S oo o

(2.3)

(2.4)

The boundary condition along the exterior boundary of the

plane infinite body having an inclined interior crack geometry

(cf. Fig. 1) is specified to be

(=} =0, t: (=) = ko ,

tyy

which can be expressed relative to the (x-y) coordinate

system by means of Eqs. (2.3) and (2.4) as

v.-),y(w) - %(1+k) - -g-(l-k)cosza

tey(®) = %(1+1<) + 52’-(1-k)cos2a

o« = g - i
txy( ) z(1 k)sinZao .
Along the interior (crack) boundary

tyy(xno) = txy(xso) =0 ’ |XI<|8|-

The solution to the boundary value problem posed by Egs.

(2.5)-(2.7) has the form [2]
$(z)
Q(z2) *

where

lzasp) = %[(1-e2"‘°‘) . k(1+e2m)]

lp = -Za-kett®

tey(®) =0,

(2.5)

(2.6)

(2.7)

(2.8)

R
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From Eqs. (2.2), (2.8) and (2.9), it follows that

$(2) : . ‘ .
. %\[(1-e2‘°‘)+k(1+e2“‘)](zz-az)"*(l-k)e‘”: . (2.10)
w(z)

When the crack has a horizontal orientation, a=n/2, the

above expressions reduce *o

o(z)~
= gz -
—r7 + 7U-K) (2.11)
a(z) | 2(z°-a%) "3
and
®(z) ‘
- ,‘_{-(:Z-alz)Li P F-K)z . (2.12)
w(z) )

Expression of the stress and displacement components in
the immediate vicinity of the crack tip is facilitated by the
tollowing coordinate transformation (cf. Fig. 2)

2 -a=_ .= reie , (2.13)
relative to which ¢(z)+¢(3;) may be shown to have the power

series representation
TGO A gz?“ Zia<’>0 3(;)"
¢ ot -~ + l‘k = + T s s e .
(2 (2m) T \a (1-k)e a T\a l

3 . Y
= ag(mra g + E(l‘k)EZIQ +* 0 .C. 2.14
(2ng) ¢4 2 . ( )

in which

C = (1-e33% 4 k(1ve?ldy,

However

'
i e ot e 4 e




b ; :
g(na)°C % Ellgli[(l+k)'(l-k)cosZa-i(l-k)sinZa]

(2.15)
= 3K~ 1Kp)
where
K, -iK, = éiz[z(zw)“(z-a)%¢(zﬂ | (2.16)

is the compiex elastic stress intensity factor (3,4]. The
equivalence of expressions (2.15) and (2.16) can be shown by
direct calculation of the limit Eq. (2.16) with ¢ as given by
Eq. (2.8). Thus

K,-iK : iy
S S Jq. 2ia |, #[%
ORI SRR (UL o(a) : (2.17)

and for 0<|g/a|=(r/a)<<l, we have the following series

approximations for ¢ and Q taken to order (r/a)%:

A PR
s 171% B b B 2ia
o t e1-k)e : (2.18)
20(2) (2rr)® 2

Similarly, a series expansion for ¢(Z) has the form
) Y 2ia 1 3/2
. ga(2)ic|(z (1-kK)e 4 1
¢(‘1) (E) + (2) C (a) + ?(&) - LI T N S YU T ]

i ”s 3/2
- (Kl-ix2>(§%) + %?(1-k)(1+§)e“1“.+ 0(5) : (2.19)

a
which can be approximated by

¢ (%) . {8 .

 il\s i8 .
S (Kl-iKz)(f%) e (Z)f %?(1-k)(§1§2—-) e2ie (2.20)
w(Z)

when 0<|g/a| = (r/a)<<l1.

1 e eti——
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The stress and displacement components near the crack tip
are thus obtainable from Eqs. (2.1), (2.18) and (2.20), where

in Eq. (2.1) z and Z are replaced by g and T, with the results

(24
L L

(2nr)

K K
< I;;%;g cos 2 (1 sinfsinse) -——l—g sin%(?+cos%cos%?)

+ g(l-k)cos2a

K K,
= 1 8 ;8.5 38
vy eyt 12 (1*“"7““7) m’imi SR

(24
[ ]

t., ® ———gkl sine cos? cos3E + -——;;K cosd (1 sins smse)
Xy (2nr) z H z 27r) 2 T
and
K k% K el
Uy = 1%(%%) uosf[ (K-l)+$1nze]+1%(f%) sin%[%(n+l)+coszg]

f

r{cos (8+2a)*kcos (9-2a)-2sindsin2a) *(x*1)a ccha}

Su
(2.22)
K Y K )
uy 2 :%(%%) sin%[%(n+1)-coszg]+ 7%(%%) cosf[ =(1-k)+sin f]
+(l;k)o r(sin(2x-8)+csin(2a+8)-2sinfcos2a]+(x+l)a sin2a

In the above expressions the elastic stress intensity factor

K1 and X, have, from Eq. (2.15), the explicit forms

iy
K, = ﬂ-’%l-[(uk)-(l-k)cosm]

(2.23)

)k
K, = 23 (1-k)sin2a




The variation of K1 and K2 with the angle of crack inclination,

o, and the biaxial load factor, k, are shown in Figurei 3 and

4.

For the crack with a horizontal orientation, a=n/2,
Eqs. (2.21)-(2.23) become
K

x ?;_l;g cos%(l-sin%sin%ﬁ)-(l-k)o
(27nr

ct
n

K

3 1 e( .6, 39)
toy cosx|l+singsins-
Yy (27r) 2 2 2 (2.24)
t o, = -—El—r sind cos? cos3d
p>1 H
xy (27r)* 2 2 2
and
‘ el 6] (1-%) (x+1)
z _1(r 8l .. in28 1. (1-k) (x+1)a
u, m (Zn) COSZ_Z(K 1)+sin 7 T [r cosf® + a]
| (2.25)
K ;i - - k ( )
x LI sind|l cene28 1, (1K) (3-K)0 .
Y T 3 (Tﬁ) /5}“2_2(K+1) cos 2J+ T r sin® ,
where
Kl. = ocﬁa)?__’. Kz =:0 . (2.26)

From ekaminationAbf the power series representations
given by Eqs. (2.14) and (2.19) for 9(z) and ¢(z), respectively,
it is observed that the biéxial load factor, k, appears as a
coefficient in only the second term of the expansions. Con-
sequently, in order to take propér account of the presence of
the horizontal load in the approiimate expressions for the

elastic crack-tip stress and displacements, a two-term

-10-
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app;oximgtion\of the-serieé eipansi&ﬁs for ¢}aﬁd’¢"qésﬁ-be
empfdyEd,:EsishoanbyJqu. (2.17)'Qr (2:18) and Céiié)for 
(5{20)' 5Th15'gives rise to the o(l-k}coséa‘ébhtfibUtion to
AﬁEqs. (2.21)] and (2124) ), “and to the’ ‘second "1ines of the Egs.
(2. 22) and (2 25), contrlbutlons whlch do not appear 1n the

f_usual‘expre551on_q£ these;gquatlons in the fraqqgre ‘mechanics.

' literature.  When the “¢rack'is inclined the horizdéntal load

willualso effect“K1 and‘KZ, i.e., will alsp'appear‘in the co-
-;efficient of ‘the first term of the‘seriés‘éi?anéibns, while
for ;he horlzontal crack orientation K1 is ihdependent of ko
and K2=0 | | -

It is also noted that the cuétomary ekpréssions for ;he
displacements (which consist of only the first lines of Egs.
(2.22) and (2.25))predict zero displacéments for'thé crack
ends which, from physical considerations alone, must be in-
correct. According to Eq. (2.22)

u

X
s (1-k)(k+1l)oa fcos 2a
u 8u sin 2a (2.27)
Y ’
=0
whereas for the crack with a horizontal orientation
s (1-kK)(x+*l)aa = ,
(ux)rﬂo 81.1 ’ (uy)r=0 0 y 4-.28)
a=m/2 a=1m/2

showing that the crack tips move horizontally out (away from
the center) for horizontal tensile loads, k>1, and move hori-
zontally in for tensile loads, 0<k<l, and compressive loads,

k<0.

-11-
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The equations obtained above show expliqitly how _in
situations of biaxial load-apbiécation along the exterios
boundary of the body, the usual approximation for the sffess
and displacements in the vicinity of the cratk‘tip b} means
of only the first term of the series expansions of the func-

tions representlng them 1s, in general, 1nadequate,_because

it excludes in part, if not entlrely* the presence of the
horizontal load ko in its representatlon of the ‘mechanical
state of the crack tip region.

| Referred to the polar coordinates at the crack tip (cf.
Fig. 2) the plane elastic strain energy density (per unit
volume) at any point can be determined by

au du eu du
Y Uy )J
v(r,8) Z[txx 5X tyy 3y oty ( 3y 7?%

Ju du au ou A
- 1 ( X X siné »( g cose>'
5 [XX —.--ar cosf8- _,5._.. _.__..) - t)’y _..X. sme_..._Z.

or

bu 3u duy o duy oo\
+ txy(' X slne X cos#H” S+ 'y'cose#;_x slne)] (’.zg)ma"-' L

or .89 T er 7T 69 T
By means of Eqs. (2. 21), ( 22) and (2. 29) the straln energv
density in the 1mmedlate v1c1n1ty of the crack t1p is given :

by [2,5]

* For the horizontally oriented crack the presence of the

horizontal load ko appears only through the second term
of the series expanqlons.v
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Stﬁr [-2sin4 3+ §34Kj,sin2 3+ (K‘l)]:

e
ue

2 - _

K .
T d 9 8 8
o+ T L851n7?-851n5?-1051n5 +1651n42+251n3 +(K 9)51n~?+2]'“

1
l6umy 2

[ .
Ly e Sy
" A3 T e e R . St e

+ 1zssin9%-256s1n7§£15251n5%¢245153%] |

."'Kl(l-'k);[ S D - sein2essi 9] Lo
+ cos={(k-~ - sinlZ+8sindZ Y cos2a-
dugemry? L ThsinTrisinTyy cest

+ Zsin%{4(z¢2)sin4g*(11—sx)sin2%+(K-S)}sin"2§J“

ot —z—fe—-g [sin%{-(k+3)-8sin4g¥1O§in2% fcos 2o,
4u(2mr)™ A\ S

+ Zcos—{Z(K 3)51n47+(1 1r)sln%7§(x+1) }%}?UZQ]; }
2

Were one to catculatc P from a quadratic represeqtatlon
entirely in terms of the plane stress components, i.e.,

2 1+v 2 v

v o= ff (txx y) E ty " F texlyy
and use Eqs. (2.21) with the o(l-k)ces2a term omitted, then

the resulting expression for i would have the form

o, 2
( ¥ F c KIF (6)%¢,K5F, (8)+c, le Fl,(8),

-13-

a2 S R
f - iéﬁlﬁ'[(K+l)c0532a-siﬁ2@sin4@] o A".'(2130)

8

s

N ( T .‘4f ,

|

2[ e{ 6451n9%+17831n76+(8m ZS)sxnsf 6(&#5)s;pdg+2(91§)sin2

St G

gl

il
b

O e




- which is the expression used in Sih's strain energy density
theory [6]. A comparison of this approximation with Eq. (2.30)
shews that the last three terms of (2.30), which stem from

- the presence of the non-singular contribution ¢(l-k)cos 2a
to Egs. ‘f2 21) and the second line con:ributions to the
'd1splacement equat1ons (2.22), are necessary addltlonal terms

iwhlgh ‘cannot be ignored if proper account is to be. taken of

'fthe effect~o£ the Horizontal load ko on the local (crack tip)

, ~elastic strain energy density.

 _-For the horizontal crack Eq. (2.30) reduces to

: . o2,
(w)h/nzv Sur [ 251n4%+(3 ) 51n2-+(r 1)

Aff’iff”*”,'.j”.‘{‘(I?ky(%F),CQS%{(K-l)+8$in4%~6sin2%;]

. (1-k)2(K+L102
3u o

(2.31)
The local elasti¢ strain energy rate for an afbitrarily
~mall cxrcular region of un:t thlukness cente.ed at the crack
tip with radlus rG, where 0<r. /a<<1 is obtalned as the

de*'va*xve w:th respect to. the crack size of the integral

Y = j Jr vfx 8)rd: de ,
'V'?::"whagh, upon ut111 ation of Eqs. (ﬁ.SO) and (2 23), ylelds

dzw Ty
ro 2
- YRT [(ZK 1) (I*L) (1 k)cosZai4Z(K*2)(1 k) sin Za}

-

P
3

=

Qr
o

P |
ii}}-El(zﬂ) !3(5x 7)[(1+k) - k)cosZa]c054a+(6x+l)(1 k)sanZa

IO, R 0 MRS AN es s o ot 4

-

- (2.32)

1

e RN AU TS ER I IEE TV RO b TR TN R e

i

1
4)%;




The variation ¢f (8¥/8a) with crack angle and load biaxiality
is shown iﬁ Fig. § for a value of v=0.30 and (rO/a)-0.07.

For the horizontal crack Eq. (2.32) simplifies to

O'ZTTT T !S
avY . of ., .. [Fo) 16(5¢-7)(1-k) ,
B, - ey -(R) Beppem] e

2.2 TWO COLLINEAR CRACKS

For the double collinear crack geometry shown by Fig. 6,
the exterior boundary conditions are specified by Eqs. (2.6},

Whereas élong the interior crack boundaries
txi(x,d)"txy(x,0)= 0, taj<|x|<|b] . (2.34)

‘The solution is given by the sectionally holomorphic

functions [7])

¢(z) 2
} - A(z"-B) s C

(2.35)
6(2) [(z°-a%) (z2-p%))
#(2) } 2y . |
- AJ[ z Cz - A%/. z : Cz
o(2) ((z2-a%) (D1 ((2-a%) (TP
(2.36)
where
A=21q- 2ia +k(1+ 2ia
ry e J*k(1l+e® ™)
B = b%(E(P)/F(P)] = b%a(p), pi=1-a%/b’ (2.37)

C = -%-o(rk)e“Ot
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Note that in the limit as a-=0 the complete elliptic integrals §
E(p)~1l, F(p)+» and the above expressions reduce to the solution
(2.8) and (2.10) for a single crack of length 2b.
In establishing the structure of the functions ¢ and
near the ends of the cuts, because of the geometrical symmetry,
only one cut need be examined, say the one along the positive
x-axis. Consider first a circular region Rb enclosing the
end of the crack at z=b, with radius sufficiently small so
as to exclude the point z=a, (cf. Fig. 7). Equation (2.35)

can be rearranged to the form

¢(z)

- : [ Azt AB ]; c
ay| @)t LEemtaiaft o @ tt-ah
£,(2)
2 - §C,
(z-b)?

where fb(z), representing the terms appearing within the
bracket, is clearly analytic for all points z in Ry. A
similar argument can be made for all points of a circular
region Ra enclosing the end of the cut at z=a, while excluding
the point at z=b, merely by interchanging b with a in the
above expression. Designating the ends of the cut by z=zj,
j=1,2, so that z,%a and zz-b, the above arguments can be

jointly stated as

d(z) £.(2)
= ——J——-g i oc, j=1,2
Q(2z) (z-2;)
j
-16-

l

- e

e e

| L




where the functions fj(z) are analytic for all points z of

the regions R thus allowing the series representations

j 1
£5(2) = By * e{(z-zj) . er(z-zJ.)2 T,

in which the coefficients B% include the constants A and B.

Thus in the vicinity of the end points z. of the cracks the

J
structure of ¢ and Q@ have the form

¢ (z) 8 . .
= gz )t e B )Y :C
(z-2;)° J J
G(z) ]

)
=2z o(lz-zj|") , zjeR;, 3=1,2. (2.38)

(z-zj);2 J

Equations for the elastic stress and displacements in
“he crack-tip region can now be expressed in the standard
form. This may be accomplished most economically by intro-
du tion of a pair of polar coordinate systems originating at:
"+ ends of the crack by writing z-zj=reie, with the stipulation
that, at the end zz-b the angle 6 is to be measured counter

clockwise from the real axis, whereas at the end z.=a it is to

1
be taken clockwise. Accordingly, from Eqs. (2.1) and (2.38)
3 i6/2 »
= -1 -
Bvy T Exx 4Re(;§ € ) 4Re C + 0(r ™)

el -8)) . gl -;38
t -t + 2it = -ﬁiL—Q)e ie/2 Zi—g e %sinsg (2.39)

Yy = xx Xy R .

+ 4Re C + 0(r?).
Consistent with standard notation, the coefficient Bo can be
expressed in the form of a complex elastic stress intensity

factor as

-17-

-




§ 0t i (xy - i%py) - (2.40)
Equati us (2.39) and (2.40) then vield the characteristic forms

. Ky ;] 38 K23 38
txx = -(—2—1;5-;‘- cos:—(l s1n-2-51n ) m 51n7(2+c052-cos )

+ g(l-k)cos2a .

. 5 ofi i 0. 30 Kai .6 8 . 38
tyy H m c057(1+51n'2-51n-2-)+ (—Z-EJ)“E siny cosy cos> . (2.41)
t ., ¥ ——Elig sind cosd cos3f + ——Eglg cosd (1 -sind 51n36)
XY (gmr) 777 2 (2n1) 7 H 2

for zst, j=1,2.

At the inner and outer ends of the cut, respectively,

K1y = Ky = K@) Ky = Ky 2 Ky ()
Kyj * Ky TKp(8) Ky = Kyy = Kp(b) (2.42)

Considering the manner in which angle 0 is defined, Eqs. (2.38)
and (2.40) afford explicit determination of the stress intensity

factors according to the relations
i(K - iK .) .
1j 2] i=1{ lim

Z"ZJ-
K, .-iK .)

from which

[Z(Zn)%(z-zj)%Q(z)] , - (2.42a)

c/—'[b Agp) a ]
Za(b -a )ﬁ

Kl(a) = [(1+k)-(1-k)cos2a]

c/?E[bZA(p)-a%l
Za(b2_32)§' (1-k)sinZa (2.43)

K,(a) =

wtd”

-18-
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and

Ky (b) = 915§~9§l:%l§ll [(1+k)- (1-k)cos2a]

2(b“-a®)

o VB bl1-A(p)] ; -
K,(b) = 2 (1-k)sin2a (2.44)
2 2(b-a%) A

for O0<a<b. The variation cf’Ki(a)/Kl(b) and Kz(a)/Kz(b) with
crack spacihg is shown in Fig. 8. When the distance'between
the cracks is the equivalent of the crack length, interaction
of the inner crack-tip stress fields is just about negligible,

Kl(a) and Kz(a) being only two percent greater than Kl(b) and

VKz(b). For crack spacing at about three tenths the crack

length or less, the stress intensity at the inner crack ends
increase rapidly relative to the outer ends.
For horizontally oriented cracks,

K (a) = g(ra) ib “A(p)-a ]
a(b2 azj%

K (b) = 0("b) b[l X(P)J (2.45)
(b%-a%)"

Kz(a) = Kz(b) = 0
independent of the load biaxiality.

From Egqs. (2.1), (2.2) and (2.38), ¢(z) and w(z) can be

represented by the series

¢ (z) .
= 28220 * 2+ 0(J2z-24 %)

w(z) (2.46)
= ZE'%r!’eie/2 + Czj(% el & 1) + O(rS/Z)

-19-
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where j=1,2 and 218,
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Substitution of Eqs. (2.46), (2.38) and (2.40) into (2.1)3
vields the following expressions for the displacements com-

ponents in the immediate vicinity of the ends of the cracks:
Kife ' o[t 26 %25 (r V', oL 29
U, # 'El(TF) cosz 5(:-1)+sin z *'ﬁl(?F sin? I(K*l)+cos ?]

"LT——l[ (K*l)zjcosZa-rsinesinZa*%r)xcos(e+2a)+cos(6-2a)d

(2.47)
4 2
( 5 s1n§[7(n+l) -¢cos 7] +——l(f?)’cos%[%(1-x)+sin %]

[%(K+l)zjsin2a-rsinec052a+%r’Ksin(2a+e)+sin(2a-9)u .

C

"
Lx
k=4 |

Q
-p;—»
=

7:’

zz'b.

The same comments that were made for the single crack
concerning the presence of the horizontal load ko in the
approximations for the crack tip region stress and displace-
ments, apply verbatim for the double crack geometry, as Eqs.

2.37), (2.38), (2.41)-(2.47) indicate.

3

2.3 SHEAR PANEL

The centrally cracked sheet subject to pure shear along

" the outer boundary (cf. Fig. 9)

yy(°°) 0, teg(®)=0, ey (2)=T (2.48)

relative to the (x“- y°) coordinate system, can be transformed

to a biaxial boundary condition

Yy(w)= tsin28, txx(m)=rsin26, txy(“)'TCOSZB (2.49)

relative to the (x-y) coordinate system. The boundary con-

dition along the interior crack boundary is specified by Eq. (2.7) }

-20-
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The solution to the above problem is given by [é]

$(2)
1. -2i8 2 -

= -xite IS + 1 , (2.50)

Q(Z) 2. ((Z -a ) )
so that

¢ (z) ‘

. -u}ire‘“‘s[(zz-az)’s 3 z] . (2.51)
w(2)

Relative to the polar coordinate system at the crack tip

z-a-c=rele (cf. Fig. 2), ¢ has the power series expansion

e -k 0 iy
3(z) = -pire f18 -J;Q{(g) - (2)*(5) + %(g) S ...}
(2)
K,-iK . th
= 1 2 + liTe'ZlB + 0(5. ) , (2.52)
20215)% 2 0

where by means of Eqs. (2.16) and (2.50)
K -iK, = -it(ra)%e %18 (2.53)
Thus for 0<|g/al=(r/a)<<l, up to terms of order (r/a)%, the

stress functions become, (analogous to Eqs. (2.18)),

t

2¢(‘)} Ki-1Ky  i(e/2) .2i8
s —~— e + ite . (2.54)
2(%) (27r)

Similarly, for ¢(z) and w(z) up to terms of order (t'/a):’/2
(analogous to Eqs. (2.20)),

(2], : T i(8/2),1, i6,.) -2i8
w(c)}= (Kl-lkz)(f%) ell )tflra(gel +1)e e (2.55)

The elastic stress and displacement in the vicinity of

’

the crack tip follow from Eqs. (2.1), (2.54) and (2.55) as
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i K -

3




K K

tex & r;;%;r cosf(l sxnisin1r) (Zw:) szn%(Z*cos—cos%g) +2tsinf
Ky g 36) K 8 . 8 . 30
‘yy & ___-§.cos§(1+sxnysinz ) sxnf cos— c051r (2.56)
N oe e 38, K 8 (1. cin cin38
txy E;;:Tg siny cos 3 coss= + ?;;;;E cosr(] siny 51n1r)

and

A b
K : 2 K 2
< 8|1 ._“8 : 1
u, @ T}({%) cosf[?(x-1)+51n 7]*7%(5%) 51n%[0(n*1)+cos %]

+ ft[(x+1)(rcose+a)sin26-(K*S)rsinecoszel

(2.57)
3 4
K 2.1 K 2
s 1(r . of1 i o, 2(r 8l1,,. ]
uy TT(TF) 51n2[f(x+1) cos 7]+L‘(7;) cosz[ (1-x)+*+sin 2]
+ ft[(m+1)(rcose+a)c0523+(K-S)rsinesinZB] ,
where from Eq. (2.53)
K, = -t(ra)%sin28 Kz-r(na)*coszs : (2.58)

It will be instructive to again focus attention on the

'second térm of the series expansion approximations given by

Eqs. (2.54) and (2.55), which lead to the 2tsin8 contribution
to Eqs. (2.56) for the stress, and to the second lines of Egs.
(2.57) for the displacement. As for the biaxially loaded
cracked bodies, failure tc retain these terms in the series
approximations for the crack tip stress and displacement can
lead to significant error in describing the mechanical state
about the crack tip. For example, for the displacements at

the tip of the inclined crack

.
L




sin2g
cos2B

; (2.59)

u

x s I(x+l)a
0

u

Y)r=0

which according to the usual one-term series approximation

should be zero.
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SECTION 3
ISOSTATS FOR MAXIMUM SHEAR STRESS

The maximum shear stress at .any point of a body in plane a
stress or plane strain is determined by

2.1 - 2, 42 | .
T 4(tyy txx) + txy . “ . 7_ = (3.1)

3.1 SINGLE CRACK
For the maximum shear stress near the tip of the inclined

crack Eq. (2.21) may be substituted into Eq. (3.1) with the" o

result
2 2 1 2.2 2y zeinl : 8
Ty = g;;[x sin“6 + K2 (4-3sin e)+4K1K251necosz]
1 Ky 39, %2 508
- 50(1-k)cos2a| —=—— sinesinirf————rr(sin6c057r+251n7‘4
: (27r)d (2nr)? ST
- %a(l-k)cosZa] . . ;'(3u2)5*
With the crack horizontally oriented, the maximumﬁéheann .
stress becomes ) o Sl
(TZ) s Ly 2657, 11 sineéiﬁi%(l-k)ﬁz(1-k)2’ '”(3' 3
myars2 87T 2(21r) R a

If the customary singular approximation for stress wéré‘
employed in Eq. (3.1), i.e., Eq. (2.21) without the o(1-k)cos2a
contribution, only the first line of Eq. (3.2) would appear

for the inclined crack and ocnly the first term of (3.3) would

appear for the horizontal crack. Designating the latter by

*? D S S -
<"m)],ﬁ/2 == Kk, sinfe (3.4)
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where-K12=02wa,-1t is. seen- that the etfect of the horizontal

load ko on rhe maxlmum :hear stress d1sappears entlrely. The.

ratlo‘of Eq (3 3) to Eq. (3 4)

R b ‘
T\ [(:)51n28+4(1 ki ) 51n651n§2+4(1 -k) ]1
(——;) - —— , (3.5)
m o (3) siné :
a=T/2 - r) -

‘gives a measure of the error for the maximum shear sttess that

is associated with use of Eq. (3.4). The ratio given by Eq.

'(5.51 is plottadfinaFig. 10 along: the radial 'line 8=20°,

"Equation'fs.Z) tbgether withvK (2.23) can be rearranged
to the follow1ng more convenient form for the purpases of

'draW1ng lines of constant maxlmum shear stress near the crack

tip. A
{(1&)2;[ (l-k)c052a]2}(£)
¢l 2 a
+ (1 k Jcos2a-(1- k) cos Za]F (6)+ [(1 k) 51n4a]F (6)}( )
4(2)1

_ %?{[F1+k)2_2(l_kz)coszd+(1-k)2c0522a]F3(65+[(l-k)zsinZZQ]F4(6)

+[4(_1-k2)sin2a-2(1-k)zsin4'd]Fs(e)} =0, (3.6)
where A

F.(68)=sin@sins F, (8)=(4-3sin%8)
1 7 4
F.(6)=sin6cos2+2sind F.(8)=sinocosd (3.7)
2 Z F3 s\ 2 '
F.(8)=sin?
3 sin“g

For a=n/2, Eqs. (3.6) reduce to
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The prcnounced effect that the load b1ax1a11ty has on the‘:
maximum shear stress near the crack t1p is shown in Flgures:

11-13, It is observed in Fig 11 that as the load biaxiality

passes from ten51on ten51on tO un1ax1al tensmn tO ten51on~~ R

£

compression, the extent of hlgh level shear about the end of
the crack increases apprec1ab1y. Moreover, 51nce plastlc H
yield is strongly 1nf1uexfed by the maxlmum shear stress (c f
the yield conditions of Tres;a and ‘Mises,) the plastlc yleld
region about the crack t1p should show a 51m11ar pattern ot
variation with load blax1a11ty, that 15, should 1ncrease in
size as load biaxiality’ varlee fromltenslon-tens1on to tension-

compression.

5.2 TWO COLLINEAR CRACKS
Equatlon (2.41) comb1ned w1th Eq. (3.1) produces exactly
the same form for the square of the maximum shear stress as

Eq. (3.2) for the single crack, except that K, and K2 in (3.2)

1

is now replaced by K and K,. as defined by Eq. (2.42) and
2]

1j
(2.43). When these expressions for the stress intensity
factors are explicitly introduced, the equation defining the
isostats of maximum shear stress, analogous to Eq. (3.6),

becomes
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- ,‘fi Lg(g;{[(1+k)%;osZa*gl-k)ZCésgzélFs(e)

+[(1-k)zsin22q]F4(e)+[(1-k2)sinza-ilékl-sin4a1F5(ey}'=‘o, j=1,2,  (5.9) .

where

: b“X -a brl-X ’
L,(p) = — , L,(p) = -i——-éR%L , (3.10)
157 a Sah)E 2 (b%-a%)* o
and the'Fk(b), k=1,2,...,5 are as defined by Eq. (3.7). Figure;'

14-16 give an indication of the variation of the normalized

[ ug 2

. . . . . Sy -
maximum shear stress with load biaxiality for cracks of uni.” A S

length inclined at a=459 and spaced at 2a=0.20.

3.3  SHEAR PANEL
~ For the cracked shear panel the maximum shear stress near }”-lC%ﬁl
the crack tip is determined from Eqs. (2.56) and (3.1) as

25 1

m 8nr[Klzsi“29*K22(4-351n29)+4K1Kzsinecos%]

K

K -
. 1 . .38 2 . 38 . 8 .
- tsin28 sinf@sin==+ ,(sxnecos +251n—)+151n26].

[(ZWr)g T (2nr)? Z 2

(3.11) i
Again, if the customary singular approximation for the stress
were used in Eq. (3.1), i.e., Eq. (2.56) without the 2tsin2®8

contribution, the result would be only the first line of Eq.

. v e e e e e e e e

(3.11). Designating the first line of Eq. (3.11) by T;, -m)
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. L 1, 2,2
A - T ,Bﬂr[Kl sin

6+K, (4- 351n e)+4K K751necos%] ;L_'IS,IZ)

a,measuréwof'the;e;ror 1nvolved by the'useqqf Eq. (3 12) ‘Tather

" than Eq. (3.11) is‘proéided by -

Vi 2 \ 1% ros’S(51nes1n7r+251nf) 51n2351n651n36 .
: .JB) =1-[32(l)]
- T; - a 51n2651nze+cot23c0528(4-331n?6)~4c052851n6cosg ,

il — O
sin“6+cot”“28(4-3sin e)~4cotZBsinecosf .
~which is illustrated by Fig. 17. |

Equation (3.11), in which K1 and K2 are given by Eq. (2.58),

can be written as

m ’ . r\_ 1 2 N es %
- +sin?R 5)-EE;§. sin ZgFl(e)-51nZBc0523F2(e) (5)
- %gsin228F3(9)+COSZZBF4(9)“4Sin23COSZBF5(6)} = 0, (3.14)

where the\Fk(e), k=1,2,...,5, are as defined by Eg. (3.7).
Equation {3 14) may be used to draw isostats of normalized.

maximum shear stress as shown in Fig. 18,

-3?15 _ : : S : -28-
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SECTION 4
ANGLE OF INITIAL CRACK EXTENSION

The maximum tensile stress criterion may be used to obtain
an e§timate of the angle at which a crack extension will begin
to take place. Although the criterion itself cannot be considered
to be wholly satisfactory, it nevertheless has been shown to
offer rescnably good correlations with experimental data under
tensile loading [9,10), and can serve as a means of demonstrating

the influence of load biaxiality on the direction of crack

" . extension.

oa e LIE e e e S

Designating 6, as the angle which locates the tangent to

the direction of initial crack extension, the criterion predicts

crack extension along the radial line normal to the direction

of the maximum tensile stress or, equivalently, along the dir-

ection pardllel to the plane upon which the tangential stress

component tee attains maximum value. A mathematical statement

of the criterion requires that ét some arbitrarily small radial
distance 0<r0<<1 from the crack tip, the angle of crack exten-
sion is determined by simultaneous satisfaction of the con-
ditions:

tos(Tg289)>0, itz-gi(ro’eo)’o» az—tg-e-(r"'eo)w. (4.1)

a6

The unspecified radial dimension ry is necessitated by the
singular nature of the stress at the crack tip and introduces,
thereby, a small measure of arbitrariness in the predictions.

It should also be observed that no elastic material parameters

appear in the equations for stress in the plane theory of

-29-
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linear elasticity (neglecting body force), consequently, the
above criterion predicts the same angles for all materials.
A series expansion for the tangential stress component

tgg can be shown to have the following form [3] (up to terms
%
of order (g) )

Lo

s . o, .. 38 8 38 .2
< A(r) Bl(51n7*51n1r)+B2(Scosf+cos7r) +8351n

) (4.2)
where the stress t, the function A(r) and the coefficients
Bl’ BZ’ BS’ are defined below for each particular load-crack

geometry. Insertion of Eq.(4.2) into the conditions (4.1)

leads to the set of requirements

) 60 ‘ 360 60 360] .2
A(ro){B1 51n7r+51n—?- +B2[3cosir+cos +8351n 6,>0

2 0
, . . 99
A(ro){Bl 3coseo-1 -33251neo +48351n7rc0560 = () (4.3)
0 6 G )
, Yol 2%, 0f, . 2°0
A(ro) B,sin—- [Qsm > /:l+B2cos—2 [6 9cos T]}+2B3c05260> 0

which, when satisfied collectively, determine the crack exten-

sion angle eo.

4.1 SINGLE CRACK

For the single inclined crack the undefined quantities
appearing in Eqs. (4.2) and (4.3) are as follows:

t=0

RGO
Bl=(k-3)sinacosa
Bz'k+(l-k)sin2a
Bs'(l-k)c052a
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A summary of the variation of the angle of crack extension, 60,
with crack inclination, a, and load biaxiality, k, is shown
by Fig. 19, for which the arbitrary value of r, was chosen

such that (a/ro)?0.0l.

4,2 TWO COLLINEAR CRACKS
For the collinear cracks, the undefined quantities
become
t=g
A(r)=A; (r)'_Lj (P), j=1,2
2

WAL b2 (p) -
Al(r)-{g(%)} ,  Ly(p)= ——5217—1;3(1) " ";‘
0| MO

(b“-a“)*

Bl=(k-3)sihacosa
B2=k+(1-k)sin2a

B3=(1-k)c052a

(B () o

Figures 2uU and .1 illustrate the variation of crack extension
angle with load biaxiality and inclination of the cracks.
Figure 20 is for t. - .nner crack tip z,=a and Fig. 21 for the
outer crack tip 2,40, The crack spacing was taken at 2a=0.20.
According to Fig. 20, the inner crack ends, although closely
spaced, will not extend along their original directions to join

together when the cracks are inclined, except under equal

[P




tension-tension biaxial load, k=1, or when the cracks are

horizontal, a=n/2, and ks2.

4.3 SHEAR PANEL

For the cracked shear panel, the undefined quantities

become

t=T

o]

31’3C0526

Bz=sin26

(ri)= 0.01.
0

The variation of crack extension angle with crack orientation

is shown in Fig. 22, along with experimental data for 7075

and 2024 aluminum alloys reported by Liu [1l1].

-32-

n—rh

AT SIS B W IS g WA KT S e B I AR IS By S e Tk TE




g

s .

e i e s = £ T A et At e aae - - - Lt s g Py el A 4 s T

| SECTION 5
DISPLACEMENT OF THE CRACK BORDER, COLLINEAR CRACKS

The components of displacement for the points defining
the borders of either one of the inclined collinear cracks can
be determined using Eq. (2.36) for ¢(z) and w(z) in Eq. (2.1)3
for the points along the x-axis for which a<x<b. Approaching

the crack from the positive side one obtains?®

ZM[P£+)(x,0)+iu§+)(x,0)]= (K~1)A[W(+)(x)-BX(+)(x)]-(K+1)Cx,
(5.1)

where

X 2
¥(x) = X dx = LIbE(s,p)-1 (0%-x%) (x2-a%)} ¥
;/. [(XA_az)(xz_bz);q 1‘ X l

(5.2)

X dx 1
X(x) = T = F (¢,p)
af (-a (<t e 1B

F(¢,p) and E(¢,p) are the elliptic integrals of the first and
second kind, respectively, with modulus p. Substitution of
Eqs. (5.2) and (2.37) into (5.1) gives for the displacement

components along the positive border of the cut

*
Approaching the cut from the negative side, it may be shown that

vl = vy, xOey = xM

P

S




2 2\ 4 v
= ul" (x,002-501-K) {(wl)b[&(mp)-ﬁ( [(;‘2—) 1][1(%) ]> -A(r:)F(mp}]éinZa

- (k*l) x cos Za:

CTE I T

: 2 2N\ i y
u\,(*)(x,o)--gg{(n--l)b[5c¢.p)-§<[(§“) ][1(%)]> -A(p)m,p)]um) - |

- (1-k)cos2a] - (k+1) (1-k)xsin2a ; .

For horizontally oriented cracks uﬁ*)-ui'), u;+)--u§-), and

with this understanding

U (X,0) = -g= (1-k) (x*1) x (5.4)

&‘ 0, (x,0) =~ (x-1)bE0,p)-E <[(§)21] [1-(§)z]>!’-x(p)l=(¢.p) .

In the limit a-+0 leaving a single crack of length 2b, U, remains
the same and Eq. (5.4)2 reduces to

u, (x,0) = & (k-1) (b2-x®)T | (5.5)

which coincides with the result obtained from the single crack
solution. Equation (5.4)2 for the double crack, and Eq. (5.5)
for the single crack, are shown in Fig. 23, each plotted for a

crack of unit length, illustrating the effect of the presence

»

of the second crack on the uy component of the crack border
displacement for a crack spacing 2a=0.2. The influence of the
horizontal load ko on the crack border displacements is evident

from the above equations.
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SECTION 6
GRIFFITH CRACK INSTABILITY CRITERION

The criterion for fracture introduced by Griffith initially
in 1921 [12], and restated in 1924 [13], is expressed as follows:

"The fundamental conception of the new theory
is this. Just as in a liquid, so in a solid the
bounding surfaces possess a surface tension which
implies the existence of a corresponding amount of
potential energy. If owing to the action of a stress
a crack is formed, or a pre-existing crack is caused
to extend, therefore, a quantity of energy proportion-
al to the area of the new surface must be added, and
the condition that this shall be possible is that such
addition of energy shall take place without any in-
crease in the total potential energy of the systen.
This means that the increase of potential energy due
to the surface of the crack must be balanced by the
decrease in the potential of the strain energy and
the applied forces."

The total potential energy of the system is stipulated to
be a maximum at the point of incipient fracture (unstable crack

extension), or

gg = 0 (6.1)

at the onset of crack instability., When applied to an elastic-
ally deformed body with an existing crack of length (a), the
total potential energy of the system consists of the elastic

potential energy, V, and the crack surface energy, T,

P=V+T, (6.2)
where
= l - 3 =
v f,ztjkejkdv (kaude+fbkude) . j,k=1,2,3  (6.3)
R S R
and
- 1
R

'
PR R W PR

T




is the elastic strain energy of the body, which is subjected

to the body force bk and the surface traction Tk applied over

i.‘.wn;» '

the region R bound by the surface S. By virtue of Clapeyron's

theorem [14] however,
kaude +f bkude = 2U, (6.5)
S R

allowing the total potential energy of the system to be
equivalent.y expressed as

P=T--0U , (6.6)
with the corresponding condition for crack instability

a‘%(r--u) = 0. 6.7)
Since Griffith assumes the surface energy I to be a linear
function of the crack surface area multiplied by a constant
surface energy density, vy, application of the fracture cri-
terion 1is reduced to determining dU/da, the derivative of the

elastic strain energy of the entire body with respect to the

crack dimension.
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SECTION 7
ELASTIC STRAIN ENERGY DERIVATIVE

An estimation of the load that must be applied sufficient
to cause an existing crack in a structure to become unstable,
that is, to suddenly propagate and cause, thereby, complete
separation of the body, can be obtained from application of
Griffith's fracture criterion. As indicated in the previous
section, all that is necessary in order to apply the criterion
is knowledge of the rate at which the elastic strain energy
of the body changes with extension of the crack size, i.e., a

calculation of the derivative

1im fus-u). du
(a*-2)+0 (?“a‘) da (7.1)

in which U and U® represent the elastic strain energy of the
body having the crack lengths (2a) and (2a“), respectively, and
where the crack length difference Aa=a“-a is arbitrarily small.
In the case of two collinear cracks, an assumption must
be made at the outset as to which of the crack tips is first
anticipated to extend. It would appear on the basis of the
ratio of the crack-tip stress intensity factors at the inner
and outer crack ends, Fig. 8, that for relatively closely
spaced cracks, crack growth should be expected first at the
inner crack ends. Thus, corresponding to the strain energies
U and U” are the initial and extended crack lengths (b-a) and

(b-a”)=b-(a-4a), respectively, from which

lim u--u - 4dU (7.2)
(b-a”)~(b-a) | (b-a")-(b-a) da )

T et e e A R R e
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Consider the plane body with a Single-horizontally e
oriented crack, (2a), and let R d951gnate an’ arbltrary regaon
of the plane bound. by the arbltrary 51mp1e closed curves Cl,l

C2 that enclose the crack (cf-AFlg,:Z4).h For the plane body

[ l

with horizontally orlented colllnear“cracks, (b a), the reglon
R is bound by three arbltrary 51mp1e closed curves,'tk k=1, 2 3,

that enclose both cracks:(cfqulg Y

The dlfference of eldstlc straln energy (per unlt thlck““
ness) of the reglon R of the body hav1ng 1ncremental]y dlffer-

ing crack lees is, 5?71“?*t;thﬁ.

U (R) - U(RJ jjf b it Jk)cm . SkeLz G

From the 11near elastlc constltutlve relatlors

Jk ,E th F 9.1 e oo S S (ray

the folloW1ng 1dewt1ty JS eaellf establlshed

-jkejk;.;:jtgjk (£t iR o) T (tak"tnk)(ejk 0.0 (18)

A

: ;1which"allowshE§. (7 3j to be’ glxen the equivalent expre551ons

Coy N S T

- UJ(R)'U(R) - -;(_[/‘\tjk k) (eJk'e k)dA y ..'J"k’lyz,\ ‘(7-6) :

R

o

9T

U‘(R)-ULR) 3-"(th ka(ejk k)dA . Jhk=1,2. 'f‘1(7.?)

,Elther expresqlon (7. 6) or (7.7) can be used in performing
the dlfferentnatlon 1nd1catea in Eqs. (7.1} and (7.2).
~38-
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Momentarily writing tjk+tjk tjk’ ejk ejk ejk , and

ui-hkéﬁie;:tﬁe?fifet of the equivalent expressions, Eq. (7.6),

;may then be wrltten as

S du, Ju ‘
71(]2 xx ax yy""é% t;y‘(\\ ey "—3%) i dxdy. (7.8)

rThe open set of p01nt¢ def1n1ng the domaln of the mathematical
- analy51s Wthh con51sts of the extended complex plane with the
jp01nts Re( )= xl<a def¢n1ng the crack removed (or fcr the two
ecolllnear cracks w1th the p01nts la|<Re(z)=lxl<|b| removed),

'1s a multlnly conneéted domaln, as may be seen by recourse to

sterographme prOJectlon of the extended cut complex plane onto

the Riemann sphere.[15}~t Tth upon appllcatlon Green's theorem

.for the multlply connected domaln [16], taken in conjunction

w1th the equatlons of equllubr*um and the assumption of zero
body foree, tbe nultlp;e 1ntegra1 clven in Eq. (7.8) over the
region R may be trandformed 1nto'*he following sum of line

i

1ntegrals about the boundlng contours Cy

u- (R) U(RA)-- ¢<[ 2 uls xy y]dy [tyyuy teyU x]dx) . (7.9)

or

k=1

- ucR)=-Zg6[ e (e ) (55, oy

_
l_ ¥y yy)(”y'uy) (tyy xy)(u,}‘ux)de; ,  (7.10)
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']c1rcular llne 1ntegra1 form L ”If, %

where N=2 for the_single,crackﬂéhé‘Né},fpffﬁﬁksmuiiiﬁle-trﬁegff N

geometries. S A

The boundar) contours Ck’are arbltrarv ‘ance they mgv ;m‘

be chosen to facil ltate COmputatlon The outer boundary,,Cl;jﬁf"

may be taken to be a. c1rcle ce:tered at the orlg‘n w1th an‘

;arb1trary radlus roﬁ

_”Juff1c1ent1y lorge so as to allow the

M \

c1rcle to completely enclose the crack (or *racks) he

‘flrs: of the sum. of 11ne 1ntegral=71n Ea (7 10) then has the

L O
IS

[U “(R) -'U(R?.:]Cl *Sfrd,f { [(t;x*'txx)(u;-ux)*'(t; )(u ] cos6

T . , o rﬁ?o
o ‘

[(tyy yy)(u “u ) (tx}’ X)’)(u )] ls‘ine}i'd"e_;'-_, - (711)

r=r0
The iuner boundary {or boundarles) of the reglon Q can be taken

to coincide with thu boundary ot he extended Frdck (or cracks)
y

3 i f":

will 1nvolve!1ntegrat10n alqng the X- dlre”tlon only, and thus

leave the reduced form L v

v

[U (R)- U(P)J »-3‘15{( yy yy’(u -u )+(f;y+txy)gq;-ux)}dx'f(7.12)

for the single‘crack g ome fry“ aﬁd*u

|. (R) U(R‘ _‘ “-—(¢ {(ty}, ),..)(u), uy) (t *t, 3(ux-ux):dx (7.13)
_ x

Cy

for the multlple crack geometry

a0

TNt

. ) RS ’ N . . ’ -
S T PN, A At R A T S R E i S inn 1 il
. fl Ve )

: Accordxngly, the secnnd of the sum of 11nA 1ntegra1s in’ Eq‘ f7h10),.ﬂ“a
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”“"”§ﬂi  SI\GLE CRALK

Further evaluat1on of the 11ne integrals of Eqs. (7 11)

7ﬂfand (7 1’) requlres expxess;ons for the stress and d1sp1ace-'”

ot

'Vment, WhICh can bé obtalned frmm Eqs (2.11), (2.12) and (2. 1)

'The result, expressed in- Ser*eJ form, is as follows:

J S (o L'ff27f;fff?:' S
U"';?txx=f'7;2k +:(§)~[9gi2§ji %sine:$in3e]

K SIERTHINEN f'

{ ‘ 4 T ) .
| ¥ 3(1) [4 cos46 - sind SinSOl+ ....i.... }'
Lyy 5 A7) leoszs iné sin .
: +~§¢F)upz‘cos4e_+ sin® sind9)}+ ......... - e
‘:’ . ‘2. A | 4
tmy T;O{L%)“ﬁine cos36 + % (%) siné cosse + ...,ﬁ} . L z"
o ST RS _ ST
vaad "
0’1' ' 2 1
u, = o33 K(1+k)+k 3r cose+( )[31n651n26 (———)cosﬁ]
g ]J ‘& &« .
. 1/a%\. . 5:- . <-1 : . oy
+ I(—g)[3§1n651n4e | COS38]* i L
r. S , S (7.15)
u, = 4L K(l+k)+(1-3k)‘]r sing+ i-z—)[<5t£.-c0529] ine
y )3 v =/ 3 sin
1/a%) 1 .
+ Z(;?) [7(K+1)51n36 - 3sind cosd48] + ........ } R

fbr (a/})<l.

Along the circle C1 with r=r,, it follows from Eqs. (7.14)
and (7.15) that
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if—%ﬁggcosze - 2sin6.sin38] . - ST ,f S

t
v
+.
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Ta
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B
=
+

B SR J(a "j\d Aal[ﬁ cos48 - Sind sihse]»é B RN LT
GO 'V§":" "ﬁl.“"“ V."‘-'. e 'L;:-, "“'-ﬂ . ‘:‘l . 0‘ o . el St ' . . ) , - e (‘ REREAR A ‘_‘::l‘::.‘,-

ST e "*”“”'2 2 o SRR D
B - ' ‘ Aa T |
l= g 52 + L—-—%——l cosze + 2siné 51n36 S (7416 . o

_ YY YY ' ' e [ » , _] I (7 :“),i : SR
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Note that in the atove expr3551ons terms to order (Aa) nd

‘nigher are Qmitted. Th;s entalls ﬁc 1055 of accurauy because : ~ f ?
‘Aa mdy be taken érbitrarlly small,‘gnd approaches zero in the
limit process. Substitution of Eqs. (7.16) and (7.17) into

Eq. (7.11) leaves ' : : A‘y

. el s beime s
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2 pm
[U‘(R)-U(R)]Cla%-%E ’4aAa[k(sin9 sin26 cosH -(E%l)cosze)
-7

(7.18]

e 2n
k+1)_ . 2 . 2 a .
+<—7-)51n 8 - cos26 sin“8] + aAaZ (FE) Hn(e,k)‘de .

n=1

The functions Hn(e;k), n=1,2,3,..., appearing in the integrand

‘ave products of and sums of sine and cosine functions, which

‘aré finite for -m<6<m. In addition, the sequence of positive

. constants {(a/ro)zn} approaches zero monotonically as n-e.

Accordingly for each n and -ws<6sm, it is always possible to
find ‘numbers M and N such that the bound functions Hn(e;k)
satisfy |H1(6;k)+ ceee. * Hn(e;k)l<M for any n>N. It follows

ffom the Dirichlet test for convergence [17] that the infinite

‘series appearing in the integrand of Eq. (7.18) converges

uniformly.for all -wsosw, The order of integration with

sumﬁation'in Eq. (7.18) may therefore be interchanged, allow-

ing it to be reduced to

f 2
--[U'_(R)-U(R)]C1 = Q_Eééill [k(2-x) + k+ 2] A2

2

2 n pm
g~ ada a .
. —STZ (r_o.) f H (9;k)d6 . (7.19)

n=1 -
For the infinite sheet geometry, the outer boundary contour

<y of R must approach infinity. In the 1limit as ry>e the

infinite series appearing in Eq. (7.19) converges to the value zero, 1i.e.

: - 2n o 2 4
lim a. . - Tim a * a_ * u
o™ % Z (ro) /Hn(e'k)de r()“‘{(ro) Hl(k)+(ro) Hz(k)h””} ’

n=1 -7

(7.20)
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because each of the quantities H:(k), from the integrated
bound furnctions Hn(e;k), is a finite number and r,>a.
In Eq. (7.12) Czrepresents the crack border with crack size
2a or 2a“=2(a+Aa). Along the cut |x|<|a|, y=0, the stress free
surfaces require tyy*gwﬁo. Likewise for the extended crack |x|<|a+Aa],
y=0, t;y'g&?O.From Eqs. (7.14) and (7.15) it is clear that aloqg y=0
and [x{<]al, txy.uy’o' Because of the symmetry of t . relative to

Yy

the crack plane t§;)-t§;), whereas for the displacements in the y-

. . - + PR e . N . . o
direction uy( )=-uy( ). The positive and negative superscripts
designate the opposite faces of the crack. With these considerations

in mind, Eq. (7.12) can be reduced to

a+la
< (R - a - 1.(+) . ~(*)
{U (R) U(R)]CZ [ Zty}’ uy dx. (7.21)
a
By means of Eqs. (2.11), (2.12) and (2.1),
- 2 427" 7.22
[t),yly=0 ox(x“-a") ; (7.22)
X>a
b
tuglyag - 2ktl) f2apa-(x%-a?)1 1 (7.23)
x<a(a+la) 4u
so that
3
2 a+la N
[U‘(R)-U(R)]C .. 9 £|<+1)/ $2aAaTLx2 a )l o 4«
2 =¥ x -a
a
2
- L gmala (erl) (7.24)

The change of the elastic strain energy with change of
crack dimension for the infinite plane body can be obtained

by substitution of Eqs. (7.19), (7.20) and (7.23) in the

R W e £ ;e - T [T S R

.
e e




limits (a“-a)=Aa~+0 and Ty e

2
du . lim Uu-u), 1lim [U”(R)-U(R)]
da (a’-a)+0(a‘-a) Aa=+0 :E: Aa Ck

r0+w k=1

2 2

= ZTaLLTV) 1 (2-) wee2) - TTRLAIY (ap) (7.25)
2

- 2T (1vk (2-0))

The derivation of Eq. (7.25) proceeded from the first of
the two equivalent expressions, Egqs. (7.6) and (7.7), for the
strain energy difference. A calculation beginning with Eq.
(7.7) instead, involves only a difference in signs for the
terms appearing in the integrands of the line integrals of
Eq. (7.12). In place of terms such as (t;x+txx)(u;-ux) there
now appears (t;x-txx)(u£+ux), and so on. Stress sums are re-
placed by stress differences, while displacemnt differences
are replaced by displacement sums. The remaining part of the
calculation is identical in every respect to the one above.
The result is the same, although the contributing terms are

slightly different, i.e.,

2

+ 2 +
%g - 9 n;!l V) [k(Z'K)'K} + g ma(l+v (k+1)
2
= na§1+v! [1+k(2-g)] . (7.26)

The first term of the first line is the contribution from the
outer circular boundary C1 in the limit as Ty while the
( . second is from the integral about the boundary C2 when it

coincides with the crack boundary.
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If one can imagine crack extension during which the
outer boundary of the body remains fixed (a so-called 'fixed-
grips' condition)}, then the displacement differences (u;-ux),
(u§;uy) are zero along the outer boundary and the contribution
to the strain energy difference from the integration about the
outer Boundary C1 vanishes. This leaves only the second term
of the second line of Eq. (7.25) for the sﬁrain energy

derivative, which comes from the line integra.ion about the

crack border boundary CZ’ i.e.,

(%g) = °2"§ L29) (c+1) < 0, for (x*1) > 0.
flged

grips
The elastic strain energy of the body decreasss if a crack
extends under 'fixed-grips', and its rate of decréase is
independent of the load biaxiality.

If one can imagine crack extension during which the
tractions along the outer boundary of the body remain un-
changed (a so-called 'dead-lcad' condition), then the traction
differences (t;x-txx), (t;y-tyy) are zero along the outer
boundary and the contribution to the strain energy difference
from the integration about the outer boundary C1 vanishes.
This leaves onl)y the second term of the first line of Eq. (7.26)
for the strain energy derivative, which also comes from the

line integration about the crack border boundary CZ’ i.e.,

2
(gg) . z_lgéliil (x+1) > 0, for (k+1) > 0.
dead

load
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The elastic strain energy of the body increases if a crack
extends under 'dead-load', and its rate of increase is in-
dependent of the load biaxiality.

' These two quantities, opposite in sign but identical in
magnitude, are, to within a factor of two, what is often
identified in the literature as Irwin's '"'strain energy re-
lease rate'" G [18].

The right side of Eq. (7.25) expressing the strain energy
derivative dU/da can be viewed as a continuous function of the
crack size, F(aj;o, k, ¥), with o, k and « (or v) assuming the
role of parameters. It is apparent from theﬁform of Eq. (7.25)
that for any crack size, a, and applied load, o, the values
assumed by the strain energy derivative may be positive or
negative or zerc, depending on the values of the parameters k

and «. The latter occurs when

(1+v)/(1-3v) , for plane stress
K-2 (7.27)
1/(1-4v) , for plane strain.
Since Griffith's fracture criterion requires solving for the
extreme value of the potential energy by setting dP/da =
d(r-U)/da = 0, the vanishing of one of the two contributions
entering into this expression renders the calculation meaning-
less. Therefore, for the condition given by Eq. (7.27)

Griffith's crack instability criterion is inapplicable.
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7.2 TWO COLLINEAR CRACKS
Because of the symmetry of the upplied loads and the
crack geometry relative to the x-axis (horizontally oriented

cracks, a=n/2) Lys. {2.1) may be shown {3,19] to simplify to

t.. = Re(2¢(z)) -~y In (2¢°(2)) + S

XX
tyy = Re(20(2)) +y Im (20°(2)) - S (7.28)
txy = -y Re (2¢7(z2))

and

2uu. = («-1) Re(4¢(z)) - y Im (28(z)) + S x
X (7.29)
Zuuy = (k+1) Im(¢(2)) -~ ¥y Im (2¢(2)) - S y.

The constant S is required by boundary conditions (2.6) to

have the value

S = -

o=

og(l-k) . (7.30)

Equations (2.35)-(2.37) and (7.28)-(7.30) lead to the
following series expansions for the stress and displacement
components

2
* = .O_ - - i i 3
®xx Z[Zk + N(A) ;7 (cos26 2sin® sin38)

4 6\
« 3M(A) EI (% cosdd - sind sinSS)+O(E€)J
r

r

2

o’

tyy * %[2 + N() (cos28 + 2sin® sin3e) (7.31)

"

b (1 b0
+ 3IM(X) —3-(z-cos4e + sinf sinséo +0(—3)
r

T
2 3 b4 b5
sin6 cos38 + iM(A) ;T sin€ cos56 + 0(:3)] ,

o

tx)’ = O[N()\)

"

e R g it L T e e




and

2 -
u, = 3‘-3-[ (K(l+k)+k S)r cose+N(>\)-—(s1nesmze (—-7-1-)c056>

4 o
+ % M(A)ET(3SinGSin49'(Eél)cos39) + 0(23)]
-~ r‘ r

2
uy, = -f—[ (K(l+k)+l 3k)r 91n9+NU\)b ((%A)Sine-sinecosze)

6
1 K+l b
M(A)—g( )51n36 3sinéco 4e)+0(—§)] (7.32)

where r>b and

N(A) =ifa/B)% + 1 - 2x(p)]

2,2 1
M(A) = [(a/b)4 e 25wyt ey - 4/3(33§9—)A(p)J . (7.33)

Since the crack size increment (4a) is arbitrarily small,

terms of order (Aa)2 and higher may be ignored in writing

-

= _A.t_
tjk tjk + AaJk (aa)
j.k=1,2

ug *ou t gek (da)

?
which in conjunction with Eqs. (7.31) and (7.32) lead to the
following expressions for the integrand of the line integral

in Eq. (7.11) along the circle Cl, rary’




-

Pulfengy.

- ap Yaoloke|nenyed AN Aa)bz (cos26-251n8sin36)
txxtxxc“ N{ 7Aa( -T 0 sinfésin

To

+3 M(A)*‘%% (Aa) b (zcos4e smesmse) PE)%
. : r T
0 - : 0

Ll AN b2
(t);y+tyy)'022+ bN(>\)+-2- vy (4a) i (cos26+2sin6sin30)

-ro
I 164 (1 o b
+ 3 M(A)+— (Aa) 3C0s46+s5infsin56 }+
T\3 6
(7.34)
(x)' y)-og [N(A) + Y (Aa)]—z- sin® cos38
To
4 6
3 M b . b
+ fIEW()\) My (Aa)];a- siné cos56 + 0(;6)%
0 0
and :
‘)
(u;-ux) = f_u;% (Aa) T (sin® sinze -(%)cose)
+ 1 oM ( Aa)b4(3sine sinde - (%L ces3g) + 0 b®
4 da ] 2 ' N
0 0
“u = 2)AN (Aa) b—z. kil sing - sin® cos2g (7.35)
Uy Yy 4u)da T, "2 )
b4 6
+ %% ( da) —3-(( l)smse 3.‘1necos4e)+ O(E'S')g
To
The

give

above expression, when substituted into Eq. (7.11),
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2,2 pT .
[U‘(R)-U(R)]C1 - ET%‘ {k[sine cosf sin2e -(573)00526]

-
. (.<+1) .2 L2 AN
=7-Jsin®6 - sin®e cos2e| Z= (4a)
= b 2n
o (F) 1, ermamale L g
n=1

The functions T,(8F(p),E(p),k) include products of sine and
cosine functions and of the complete elliptic integ=als., As
such they are bound function for 0O<a<b and -msesr. It may be
shown that derivatives of N(A) and M(A), which involve the
elliptic integrals, again produce elliptic integrals, and are,
therefore, also bound quantities for O<a<b. Accordingly, by
the same argument given in Section (7.1), the series converges

uniformly on the interval [-m,7] and it follows that

2,2
’ ! = g mb - + + éﬁ
[U (R)-L(R)]Cl ?r-{k(z K) K 2] Aa (aa) 7360
L] a
™

2,2 = 2n
+ 9—% (Aa)z (%) f T,(8:F(p),E(p)k) de .

n=] -T
In the limit ry+e the infinite series appearing in the ahove

equation converges to zero, i.e.,

: > 2n por
lim b . PN
ro-pao z : (r_o') / Tn(e,F(p),E\p) »k)}de

n=] -
(7.37)

: 2 4
‘rlolﬂ (;%) Tl*(F(p),E(p).k) +(;b3) TZ*(F(p),E(p),k)+......... =0




RS T e g e

Tl fgratlon is over the cragk tip reglon.

RO MR A A A T X ST LT A

"75$Becavse of symmetr“
,(+)a ,( ){xﬁ
X uY .

T

R A

[Umcm] et o
'i, S ‘,eA,czfgs>”

ba,

i

ROR: 5 5;;;“' ( ) (+\ R
;yyApy;l%%‘vi/.- u, s de "‘(7.38)
R X L

,QThe crack t1p expre<s1ous Eq,, (4 41)2 and (2 47)7 may be

employed to evaluate Eq

N

1ust ahead of the unextended crnck t1p

K, (a)

(t _
(2nt)%

] -

r=t
8=0

Yy

(7 38). alnce the 1nterva1 of inte-

Thus for the stress

",

(7.39)

while for the displacement just beyond the extended crack tip

K (a")

3

(u,] =
Y r=pa-t 2u
O=m
where Kl(a‘)=K1(a-Aa).

proceed to give

[U‘(R)-U(R)]C2+C3 -

R R R e s

(k+1) .
(Q%FE) (7.40)

Evaluation of Eq. (7.38) can now

K, (a)K, (a-4a) (k+1)
1 1 - Aa. (7.41) Y

du !
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' T(7 2) in the limits as (b-a®)+(b- a) or Aa*O, and ro*n, ylelds‘f‘if;f“”

Substitution-of Eqs. (7.36); (7.37) and (7.41) into Eq.. °

]
kS

cquy lim §vne eyl lim oA [U%(R)-U(R)]c.
i\ d,af (-b---av.‘)-f_‘(b-a){(B-a’ )= (b-a) } Aa+0 2 » Aa ~k
S } | r0+m =1 |
= —""_ [k (2 K) +K+2] = 1 ( ) L—-—l e : (7. 42')

i S e

"By means of the follow1ng derlvatlve rormulas

.

Yy A -
gg(?,)j + ;i—z (E(P) (%) CF(p)] g

4E(P) = ﬁ—-%— (B(p) - F(@). , . (7.43)

and the defining Eqs. (2.37) and (7 33)1, it follows that

. . 2lAP)- (a/b)l
a(l-(a/b)*]

AN (A) L
dn (7:44)

From Eq. (2.43),, where o=n/2, and Eq. (7.44) it is seen thét.
1 ,

2
2 2.2 4.
kF(a) = ofmp? L2(R)-(a/b)] ., 9 7b ga(M) (7.45)

af1-(a/b)*] 2 da
Consequently, substitution of Eqs. (7.44) and (7.45) into Eq.
(7.42) leaves |

2
2,12
QU o b 2 ID% k(20 L2LRI(27D) o (7.46)
al1-(a/b)"]

It will be recalled that calculation of Ea. (7.46) pro-
ceeded from the first of the two equivalent expressions (7.6)
and (7.7). Were the derivation to have followed from Eq. (7.7)

instead of Eq. (7.6), the only difference would involve the
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B Y

;e "f ;-'i,e e;51gn5 appearlng 1n the 1ntegrands of the llne 1ntegrals.in. .é

' o i’"'*~;Eq; (7 10) In place of berms such as . (t “x)Cu :u~) OAE: ’
§51;;i¥?2f3WOuid have}(t )(u u ) and so on, 1.,. .the stressEEﬁﬁs )
i‘“;;ﬁi{eyare replaced_by stress dlffe*ences and the dlsplacemenkf:lA, . |
fiieifrwf'f:?d'f‘efences by dlspaaeemehf sumS The remalnlng part of the E
L 4'#calculatlon wculd be: 51m113r 1n everv'respecf w1th the reau t .

%E(A) + K (d) !K*l!"

,1K5 Kl

i place of Eq (7 42) mwever when thl_;}"

.E"qc' K

4é\ and {7 45), Ed. (7 46) i5s reprodured

As ln the caSe w1tnﬁthe 51ngle crack, t“e derlvatlve o

*__ . , _;l dU/da g1ven by Eq (7 46) may be pOSlthE OT negative Or ZGTO’

Vdependlng on rhe va ues of the parameters k nnd K. The latter

p0551b111ty occurs wren the load blaxlallty has the values g

Awglven by Eq. (7. 27), and for whzeh arifflth S .crack 1nstab111ty

1

crlterxon beromes meanlngless

7:3 SHEAR PANEL e - LT

For the cracked shear panel

9), the strain

(TllO)‘fer‘the bound region

{~f£. Fig.
'energy di fference exp*ozsed b, Eq.

R shown by-Flg. 26, may be reduced to

e

BT A e R SRR A A T AR T N FAIF LTS 4 T

e e e e

v
<
H
1
H
i
' (
i

e ——



{ UT(R)-URI=IU"(R)-URIT g+ [U°(R)-UR)I

{'.'A;f L 1 ) ' . N .
o = 7:[: {thx+txx)(ux ux)+(txy+;xy)(uy uy)] cosH

=
rro

[(tyy Eyy) (uymuy)* (tyy Y)(u;'ux)]rsro}SInefode.

avta | L e

£ () - () (9), m) T

4jp < yy Uy TtryUx T)dx | ~;§{: o
a S i

when the outer boundary Cl‘ls again- a c1rcle, and the 1nner }ﬁ?”“ﬂ“““
boundary C2 c01nc1des with the borders of the crack |

The stress and displacement, obtained trom Eqs (q.SO),

\ ” (2.51) and (2.1), are given by

N o
txx=%$25in23+(%) [-2(sinecos39+sin26)coszg' j fﬁ?lz

. 4 '
*2(cosZS-ZsinesinSG)sinZS]+fx(e;8)0(31>$
T

' )’}’ 7{ 251n28+(r)2[ZsinOCOSSBCOSZB .
| | g\, AR
L -(251n651n36+c0528)51n261+fy(9;8)0(;I)£'ﬂf.%,f*ff?”“
i 2\ 2 o )
txy=732c°528+(?) [(cosze-251n651n36)c9528
4
-ZsinecossesinZBJ+fxy(9;3)0(%z)§

and

g e e e S OSBRI 1T




(S A oL

o : Lo = 73 r(sinbcos23+cosfsinlp) o

IJ'

£ (e+1) siner2s inucos281cas 23

+
&pé

(7 4:)

3’ +251n651n28}co
;ftay(e /a'ﬁi i'. o

, ?;JWhere rhe funCt’Oﬂ f

Lt

fi;é and.gy are sine and cosine

jf:;;gﬁfﬁa‘ﬁ’functlons of the varlabie e.and the parameter B _H;

"gﬂf;fﬂi,{g ,; Prom Eqs f7 40) 1t may be seen that when terms ot hlghern“
o ;order 1n the arbltraraly small 1ncrement of crack extenSLOn

 &"_-‘f_Aa are 1gnored ‘then along Lhe c1rcu1ar boundary C

} - B lliT@Jw:"m
f7",i"'i~{5tf; (ty yy )Y) {Z;fnggrm :1”

._[Zsineco§3099$2&;¢

-.'..t,_(ciOSZ‘e -2818Y5in2g) +£ (638) 0(9-;{)} o
Lo e v ‘ - . ;
T e R LR el . . S A . 0

(thfgxx)*r Zsin23+f——74-*[Z(sinecpsse-Sinze)coszs
. e A o . .

Tr

e N o o . f.4\) . (7.50)
‘ f(Zﬂinesén39+c0526)si323}+fx(e;3)0(&1)}. A o
B o Cor 0 .

| S G t S

'(féy*txy)'r{2c0528+§;%éi[(cosze+25inesin36)c0528 :
0

2siné 23] +f__( <a4)

+2sin6cos30sin23) + 8;8)0 .

AR |




arat L % e G

oo

while from Eqs. (7.49)

- T arla . .
(u_-u )=——{ [<(»<+1)51ne-251n6c0526> cos 28
X “x’ 4u ry

3

+<(|<-1)cose+2sinesin26> sin2 B]'fgx(e; B)O(E-g)}
r
0
(7.51)

B AT . .
(u -u )=L{§-— [<(o<-1)cose-251n651nZE>coszB
Yy Tyl 4w ). Ty

3
- <(»<+1) sin6+25in6c0526> sin2 B]-'-gy(e; B)O(é-z)}

To
Substitution of Eqs. (7.50) and (7.51) into the first of the
line integrals of Eq. (7.47) yields
2 Tr

[U"(R)-UR) ], = %Ef {a-da[x+sin%6-cos’e

1 -

+ (sin®28-co0s%28) (2cos20sin’8+sin226)+sind3 (7.52)
© 2n
+sin4B(Zsinzesinze-lﬁsin%)]+a°AaZ (}9‘—) Gn(e;B)}de .
=1 ' 0

The functions Gn(e;B) are sums and products of sine and
cosine functions, so that, as before, the series may be

shown to converge uniformly over [-w,m]. Thus

) ' rzna TZa o) a 2N T
[U (R)-U(R)]cla 0 ZK-Aa+Tu_.AanZ’1<;a) f Gn(e;B)dS , (7.53)

-
where it is clear that after term by term integration, the
resulting infinite sum of bound quantities will converge to

zero as TO*W:
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li - a |20 "
Lim }E; (;—) G (8;8)do > 0 . (7.54)
To™" n= 0 ‘

-T
Because the crack extension increment Aa is arbitrarily
small, the second of the integrals of Eq. (7.47) can be

evaluated using Eqs. (2.56), (2.57) and (2.58). These give

c+)] .. 1A [ +)] V3
t - —— sinl8, t =N ® —— CO0s28 (7.55)
[yy S"g X Xy 3.2 'zx

for the unextended crack, and

A (*) . . I/r(a*da)sin2B(k+1) [da-x
Yy o= A 5T
r=(4a-Xx)
+ ft (k+1) (x*+a)cos28
7 (7.506)
u- () . tvm(a*ba)cos2B(x+1l) [Aa-x
X g=m 2u 2u
r=(4a-x)

+ fﬁ (x+1) (x+a)sin28

for the extended crack. The second integral of Eq. (7.47)

thus gives

Aa
2
- e - Ta(xk+l da-x
[U (R)-ucR)]c7 ——2(3—1_/ YEX ax
N 0

=z - MoAa

4y

(7.57)

The change of elastic strain energy with change of
crack size for the infinite cracked shear panel is obtained
from Eqs. (7.1), (7.53), (7.54) and (7.57) in the limits

Ty and Aa~0, with the result that
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du , T ma . I°rma . I'ma .
—_— (2K) (x+1) N (x-1) . (7.

da du dy
It is noted that for k=1, or for v=1 in plane stress, or

for v=)% in plane strain, dU/da=0.
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SECTION 8

ALTERNATIVE CALCULATION OF THE ELASTIC
STRAIN ENERGY DERIVATIVE

A Jetermination of the elastic strain energy derivative,
dU/da, can be approached in a somewhat different manner, that
is, by calculating the strain energy, U, of the entire cracked
body first, and then obtaining its change with respect to the
crack dimension by a formal differentiation"

Referring to Fig. (24) for the single crack, Fig. (25)
for the collinear cracks, and Fig. (26) for the shear panel,
the elastic strain energy (per unit thickness) of the region

R is specified by

u 3u au au
_ 1 X y Buy z]
U(R) 2_/:/‘[1:}0(_5?- + tyy 5y + tX)’( 3y + 3}() dxdy. (8.1)
R

Integration over the plane region can be transformed into
line integrations about the boundary curves Ck by application

of Green's theorem as discussed in the previous section:

U(R) = —Z ¢ byt yYy ldy - [t),y y txy x]dx) (8.2)

where N=2 for the single crack and N=3 for two collinear
cracks. Again, the arBitrary outer bpoundary Cl can be taken
to be a circle of arbitrarily large radius Ty, while the
inner boundary (or boundaries) may be taken to coincide with
the crack borders. For the single crack and shear panel

geometries such choices will give

UR) = I, + I, (8.3)
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I / {[txxux txyuy cose + [tyy . xy ] Tsme de (8.4)
o 0
1, = -1 (to,u, *+ t_u_ ]dx = 0 (8.5)
2 2 yy-y xy X ’ )
and
U(R) = I + I2 + I3 (8.6)
I, = Eq. (8.4)

- %(¢ + ¢) [tyyuy + txyux]dx =0 (8.8)
€ G

for the collinear crack geometry. The integrals I, about
the crack borders vanish because of the stress free crack

boundary conditions.

8.1 SINGLE CRACK
Utilizing Eqs. (7.14) and (7.15) along the circle rery,
Eq. (8.4) gives

2 " o Zn
Il=-l%-ﬁ-f:rSP(e;k)mZG(e;k)*-azz (;a—) H (8:k) : de , (8.9)
L n=l 0

in which
F(:k) =k [k (1+k)*+k-3]cos 20+ [k (1+k)* (1-3k) Isin’e
G(e;k)tZk[sinecosesinze-% (K'I)COSZG]
+ [k (1+k)*(1-3k) ]cos36cos8sin®6+ [ (k+1)-2c0s26]sin26
+ %[K(1+k)+(k~3)][cosZe-ZsinesinSG]cosze
+ $0e(1+k)*+(1-3k) ] [cos20+2s in8sin36 |sin2e

+ [K(1+k)*(k~3)]cosec05365in29 ,
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and the functions Hn(e;k), n=1,2,3... which are products and
sums of sine and cosine functions, are bound over the interval
-msé<m. The infinite series in the integrand of Eq. (8.9)

is similar in form to the series appearing in the integrand

of Eq. (7.18), and may be proved to converge uniiormly over

the interval of integration by the same argument. Consequently,

integration of the first two terms of tiie integrand followed
by interchange of the order of integration with summation of

the series leaves

cznr2(1+v)

2_ 2
om— [(K+1)k2*2(K-3)k*K*l]+ 9—3%311131[1+k(2-<ﬂ
22, 2 2n 7
g"a“ (1+v a .
+‘_Té_')'z:(?3) /Hn(e,k)de . (8.10)
n=1

The infinite series in Eq. (8.10) vanishes in the limit Ty>e
in the same manner as shown by Eq. (7.20).

By means of Eqs. (8.3)-(8.5) and Eq. (8.10), the elastic
strain energy for the entire infinite body is obtained in the
limit Ty

. lim
u ro-hce (Il) * 12 i

with the result

U = UO + AU, (8.11)
where
2.2
. linm ryo T(1+v) 5

U0 rgve { 3T ((k+1) (1+k“)+2k(k-3)]

and (8.12)
ozna2 1+v
AU = “"Ii-;‘(—')' [1+k(2-k) ]
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The first term, Ug» which is independent of the crack dimen-
sion, represents the strain energy of the infinite non-cracked
body with boundary tractions applied as in Fig. 1. The second
term, which includes the crack dimension, indicates that the
elastic strain energy of an infinite sheet of unit thickness
containing a centrally located line crack is different from
that of a continuous sheet by the amount AU. It is, therefore,
often referred to in the literature as the energy of the

crack. Formal differentiation of Eqs. (8.11) and (8.12) with

respect to the crack dimension gives

2
%g - é% (UO*AU) = 2_1%§£121 [1+k(2-x)] , - (8.13)

which concides with Eq. (7.25).

It should be noted that for equal tension-tension loads,
k=1, 4U given by Eq. (8.12) is identical to Griffith's result
of 1921 [12], and to Swedlow's calculation in 1965 [20]. For
uniaxial load, k=0, Eq. (8.12) reduces to the expression

obtained by Wolf [21].

8.2 TWO COLLINEAR CRACKS

Substitution of Eqs. (7.31) and (7.32) into (8.7) produces
2n '

2 T ®
n'f%i‘_/;’rgF(e;k)+N(A)bZG(e;k)+bZZl:(.r‘20_) Hn(e;x(p),k) de ,  (8.14)
n!

in which
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2

F(8:k) = k{x(1+k)+(k-3)]cos®0+[x(l+k)+(1-3k)}sin’es

2k [(sinfsin28 - Lﬁ%ll cose]cose+[m(1+k)+(1-3k)]cosecos3esin26

. %[K(1+k)+(k-3)][cosZG-Zsinesin361c0526+[(K*l)-ZCOSZB]sinze

G(9;k)

+ %[K(1+k)+(l-3k)][cosze+25inesin36]sin26

+[k(1+k)* (k-3) ]cos6cos30sin’e

The functions Hn(e;k(p),k) are products and sums of sine and
cosine i1unctions and the complete elliptic integrals, and

are bound functions over -w<6sm and 0O<a<b. The infinite series
in Eq. (8.14) is similar in form to the series appearing in

Eq. (7.36), and may therefore be proved to converge uniformly
over the interval of integration by the same argument. Con-
sequently, integration of the first two terms of the integrand
followed by interchange of the order of integration with

summation of the series leaves

22
g nr 2,2
I gl (c+ 1) kP2 (ke 3) kel ]+ 2P N () (14K (204) )
2,2 = 2n
+ % /;Z (rl’a) Ho(e;a(p),k) do . (8.15)
- n=1

The infinite series in Eq. (8.15) vanishes in the limit as
Ty in the same manner as shown by Eq. (7.37).

By means of Eqs. (8.6)-(8.8), Eq. (8.14) and Eq. (8.15%),
the elastic strain energy for the infinite body follows in

the limit as ro>e:
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giving
U=u, e, (8.16) 3
where |
lim °2"ré 2
Ug R e e [(k+1)k* + 2(k-3)k *+ & + 1]
and (8.17)

2.2 |
AU = 2—%%— NCAY[L + k(2-%)] .

In these expression U0 and AU have the same interpretation

as given in Section 8.1 for the single cruck. In the limit
as a+0, leaving a single crack of length 2b, N(A)+1 and AU
assumes the value appropriate to a single crack, i.e., Eq.
(8.12)2. For crack lengths (b-a)=2 held fixed while the
crack spacing 2a+», leaving the infinite body without cracks,

N(A)=0 and U=U A formal differentiation of Eqs. (8.16) and

0.
(8.17), utilizing Eq. (7.44), reproduces Eq. (7.46)

du . d g nb [A(p)-(a/b ) |
== -— (U +AU) = + ——=[1+k(2-k)) . (8.18)
da da af[l-(a/b)

8.3 SHEAR PANEL
Substitution of Eqs. (7.48) and (7.49), with rer,, into

Eq. (8.4) gives

2 il
- I 2 2 R
I v / [ro(cos 28+sin“28)

T (8.19)
) jr.F(e 3) + a }[:( ) Gn(e;s)] de

n=1
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~ products and powers of sine and cosine functlons

where
F(8;8)=(1-4cos%28)sin>26- (4sin’Bcosa B

+2c0526+1)cos 8= 2(251n651n36+51nd651n48)+K

and Gn(e,s), n=1,2,..., represent functions composed of

tion of the first two terms of Eq.,(S,lQ}\leaves“"

Tznré 22 2 2 e

2n e
= TTA - Ia, 2 :.jL“} e ra- : o
Lo ¢ S (k-1)e 4u-]f *"1(t6)( G (9;8)de " . (8.

1 n=l
The infinite sum in Eq. (8. 20), as- in Eq. (7.15), converges
uniformly over -mwsf6sw b) the same argument glven previously.

Thus upon interchange of integration and summation, it

follows that in the limit r s

r1-l>2{ 22( ) f G (e:;s)d_a}
Ctim | 2f 8\ ooy v (2 6t g -
..;.Tro*m 3: ‘i."(')' 1t ) ‘r—o‘) 2( Jro..

. . .
since each of the numbers Gn(B) are bound quantities.

From Egs. (8.3)-(8.5), Eq. (8.20) and Eq. (8.21), the
elastic strain energy for the infinite cracked shear panel "

is determined in the limit as‘r0+mr

0. lim
v rp*> (Il) Ry
from which

U= U, + AU , (8.22)
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T T T T T T T Ty

whefe :
o 2

R L2 ,
DAY T Y ‘
T - »llm‘, 0 ) -

- I 2 21‘ - A e
U= R (k-1) L

(8.23)

oL
Ko

“Formal differentiation of Eqs. (3.22) and (8.23) recovers

CEq. (7.56)i

AJ}T}“. 2 s
du , d- . I ma
da T Up + a0 . Tdn

k1) . (5.24)
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SECTION 9
FRACTURE LOAD

The tensile load necessary to cause onset of crack in-

stability (fast crack propagation) according to the Griffith

crack -instability - criterion may be determined from Eq. (6.7).

The surface energy -of the crack (per unit thickness) is
assumed to be équal to a constant surface energy density, v,

multiplied by the. surface area of the crack.

[ = 4ya . (9.1)

9.1 SINGLE CRACK

For the single (horizontally oriented) crack, Eqs. (7.25),

(9.1) and (6.7) lead to the critical applied tensile stress

values
1.
=) 8EY 1 2
O‘c ’n’a [(3V'1)R+T1"’VT]} plane stress
and (9.2)
8EY 1 s
UC = {ﬂa(f+v) [(4\)‘1)1(*1]; plane strain.

The variation of the fracture load with load biaxiality and
Pnisson's ratio for plane stress and plane strain is shown
by Figs. 27 and 28. Referring to Fig. 27, for Poisson ratio

values v<1/3, o. increases with increasing load biaxiality,

c
while for values greater than one-third it decreases as the
load increases. In the range of values 0.3<v<0.4, which en-
compasses most structural materials, the biaxial effect on

the fracture load, while present, is rather small for the k

variation -1sks<1,
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For values of k equal to those given by Eq. (7.27), the
unbound value for R indicated by Eq. (9.2) should not be
interpreted as meaning that these equations predict an
infinite fracture stress. As remarked in Section 7, for
the plane infinite centrally-cracked body at these particular
4va1ues of the load biaxiality, dU/da is zero and Griffith's

fracture criterion becomes inapplicable.

9.2 TWO COLLINEAR CRACKS

For the (horizontally oriented) collinear cracks, Egs.
(7.46), (9.1) and (6.7) give
2 Y '
c =dall-(a/b)°1} )16uy 1 : (9.3)
o A(p)-(a/b)z WbZ* [1+k(2-«))

The variation of O with load biaxiality k in the case of
plane stress is shown by Fig. 29. For materials with Ppisson’s
ratio less than one-third, the breaking stress must be in-
creased as tensile loads of increasing magnitude are applied
rarallel to the cracks. This trend is reversed when the
Poisson's ratio value is greater than one-third. The curves
shown in Fig. 29 for the multiple-crack are very similar to
those determined for the single crack, i.e., Fig. 27. The
comments given above concerning load biaxiality values at
k=1/(x-2) for the single crack, apply in the same way for
the collinear cracks.

To gain some idea of the influence of the crack spacing
on the breaking load, b can be assumed to be fixed with the

value b=1, so that the pair of cracks have the tixed lengths
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£=(1-a). The corresponding critical normal tensile load for

a single crack of length (l-a) is

v (2 \* f 16uy 1 i |
9 (1‘2) { T TR0 ' (9.4)
The ratio
I la(l-a)(1-a%)]"
=% = T (8.5)
o (2)*{A(p)-a*]

provides a measure of the degree to which the body is weak-
ened by the presence of the second crack. The variation of
Eq. (9.5) with the ratio of the distance between the cracks
to the crack length, i.e., p=(2a/%), is shown in Fig. 30,
from which the following important observation can be made:
As the spacing between the collinear cracks approaches four
times the individual crack length, the critical load for the
doubly-cracked body is just about the same as the critical
load of the body with a single crack of the same length.
Thus a pair of widely spaced collinear cracks in a relatively
large body behave, with respect to instability, as if the
body contained only a single crack having the length of one
of the collinear cracks.

The critical load for collinear cracks, each of length
L=(1-a), can be compared to the critical load for a single

crack having the greater length, 2=2>2(l-a), by the ratio

o .24k
=% - “‘(——z—{akl(p? DG , (9.6)
Cc -a
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c.f. Fig. 31. For cracks relatively closely spaced, the
critical normal tensile load necessary to cause the inner

crack ends to extend and join exceeds the critical load for

the resulting longer crack. Fracture of the collinear cracks

will therefore proceed in two stages: The inner crack ends
will extend first to join up forming the larger single crack,
whereupon the sustained load level will be sufficient to
cause the second stage, onset of fracture from the ends of
the newly formed single crack. From these observations the
assumption of crack instability for the doubly-cracked body

in terms of initial extension of the inner crack ends is

justified.

9.3 SHEAR PANEL
The critical applied tensile stress for the cracked

shear panel has, by virtue of Eqs, (7.58), (9.1) and (6.7),

the value

b
8EY
c ma(l+v) (x-1) ’ (9.7)

o

which is seen to be independent of the angle of crack
orientation. Note that for «=1, or equivalently, for v=1l
in plane stress or v=% in plane strain, dU/da=0 and the
above expression is meaningless, that is, Griffith's crack

instability hypothosis is no longer applicable.
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SECTION 10

EFFECT OF LOAD BIAXIALITY ON
FATIGUE CRACK GROWTH RATES

The phenomenon of crack formation and the subsequent
incremental extension of such cracks under repeated or cyclic
load application until catastrophic fracture ensﬁes, may be
usefully thought of as three hypothetically distinct or
separate physical events: (i) micro-crack nucleation, ter-
minated by the appearance of macro-cracks, followed by (ii)
crack 'propagation' (which is here taken to mean very minute
incremental crack extensions caused by cyclic load application),
and finally at the critical crack size (iii) onset of rapid
crack propagation to fracture. This somewhat artificial
division has proven to be fruitful, nevertheless, because it
allows frr the introduction of fracture mechanics concepts
that have been able to correlate a wide range of fatigue
crack growth experimental data appropriate to category (ii)

semi-empirically, in a more or less satisfactory manner.

10.1 SEMI-EMPIRICAL FATIGUE CRACK PROPAGATION LAWS

According to the generally accepted micro Sstructural
theory concerning fatigue crack development and growth, the
basic mechanism of crack nucleation and crack extension under
cyclic load is cyclic slip (micro-plasticity), with slip bands
(multiple slip planes). Crystalline slip results from the
motions of dislocation which are generated by the action of

shear stresses along potential slip planes. Fatigue micro
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crack nucleation, which leads to the development of a
macroscopic crack by coalesence of many micro-cracks, and
the subsequent propagation of this crack under continued
cyclic load application, appears, therefore, to be intimately
related to the extent of plastic deformation that developes
around the crack tip.

This realization has served as the physical basis for
the development of a variety of semi-empirical fatigue
crack propagation laws, evolving ultimately into the widely
used form [22-26]

g = BLakp" (10.1)

where (a) is the current crack length, N the number of load

cycles and AK1=(K1) '(Kl)min’ a measure of the applied load

max
range. On a log-log graph this relation plots as a straight
line

n %§ = nB + n 2n(8K) , (10.2)

for which B represents the AK.=1 intercept and n the slope

1
of the straight line. Relation (10.1) has been shown to
correlate a broad range of fatigue crack growth data in the
moderate to high AK1 range, where the data was obtained mostly
from tests performed on center cracked sheets (with horizontal

crack orientation) cycled in uniaxial tension between (Kl)
(¥

max

and (K =0, that is, for the load ratio R= 1)min/(K

1)min l)max=

g_ .
min =0,
/cmax 0
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Over the full range of crack growth rates, however,
‘ranging from 10'3 to 10-9 inches per load cycle, fatigue
crack growth rates are not observed to fall along a straight
line (ct. Fig. 32). At the higher load levels, as the fatigue
-crack approaches the critical c¢rack size, the increment of
crack growth per cycle of load increases causing an upward
inflection away from the straight line, and characterizes
the passage from the fatigue crack propagation stage of |
category (ii) to the fast fracture stage of category (iii).
Here as the curve asymptotically approaches the upper vertical
line (da/dN)+«. At the lower end, the downward inflection
from the straight line represents progressively smaller
crack growth increments per lcad cycle, so small as to be
considered negligible, i.e., (da/dN)=0, The asymptotic
approach to the lower vertical line is therefore interpfeted
as defining a fatigue threshold value, AKO, below which
fatigue crack propagation cannot take place [27].

To take account of the frequently observed effect of
the load ratio, R, on the growth rates, [28], as well as to
incorporate the departure from linearity of the upper end of
the growth rate curve, Eq. (10.1) may be modified in the

manner proposed by Forman [29]
C(AKl)m

da
N T (1-R)K -8k, ' (10-3)

where the parameters C and m are determined in the same way

as the parameters B and n of Eq. (10.1). As (K K

-
l)max c’
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indicating the onset of fast fracture, the denominator of
(10.3) approaches zero and (da/dN)+», The deviation from
linearity at both ends of the spectrum of fatigue crack
growth rate can be accounted for by the form proposed by

Hartman and Schijve [301}.

m
. C(AEI'AKO) , (10.4)
(1-R)K_- oK,

da

According to this expression, as the value of the load range
AKl approaches the lower limit or fatigue threshold value,
AKy (da/dN)+0. This is represented in Fig. 32 by the
asymptotic approach to the vertical at negligibly small

crack growth rates approximating (da/dN)=0.

10.2 EFFECT OF LOAD BIAXILITY
Any survey of the large body of existing fatigue crack

growth data identifies many factors that can possibly effect

fatigue crack propagation [28, 31]. These may be grouped

into the following broad categories:

(i) Geometry - including crack size, shape and orientation,

specimen thickness and relative size.

(ii) Loading - including load magnitude, max-min. load ratio,
biaxiality, sequence, cyclic frequency.

(iii) Material Properties - including the elastic modulus,
uniaxial yield and ultimate stresses, cyclic
stress-strain properties.

(iv) Environment,
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Such a large number of possibilities probably explains
why for any given one of them,one almost invariably encounters
conflicting experimental data. Some of the factors no doubt
must mitigate, or entirely nullify, their effects on fatigue
crack growth rate when considered jointly. Without the
benefit of a comprehensive rational theory of fatigue crack
propagation that can explicitly account for many of these
factors and, thereby, provide a basis for weighing their relative
contributing effects, development of a full understanding of
fatigue crack phenomena must continually entail partial
understanding and accompanying confusion.

With respect to the influence that load biaxiality might
have on fatigue crack propagation, qualitatively important
insiyhts and expectations may be gotten from the information
provided in the previous sections. >The belief that the elas-
tic stress intensity factor K1 (assuming here a horizontal
crack orientation) is sufficient to completely determine the
stress about the crack-tip, is shown by equations (2.24)
and (3.3) to be incorrect in situations where loads are bi-
axially applied., Figure 11 demonstrates the pronounced
effect that the horizontal load gk has on the intensity and
spatial distribution of the maximum shear stress which, in
turn, must cause a qualitatively similar pattern of dependence
on ok of the plastic deformation around the tip of the crack.
Thus, the pattern of variation of the lines of maximum shear

stress with increasing tension-tension load hiaxiality implies
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correspondingly reduced plastic deformation and, therefore,
a correspondingly reduced fatigue crack growth rate.
Equation (9.2)1 and Fig. 27 indicate that for materials
with a Poisson ratio in the vicinity of 0.30, the fracture
stress o increases approximately linearly with increase of
tensile load biaxiality in the load range -1<k<2.5. The
plane stress fracture toughness for a horizontally oriented
center-cracked sheet of finite width should therefore also

show a similar dependency on k, i.e.,

Kc(k)=oc(k)(na)*f(a/w)a[oc(0)+sk1(na)*f(a/w) (10.5)

where 8 is the slope of the gL Vs. k curve of Fig. 27 and
f(a/w) is the correction factor for the finite width, w, of
the test specimen. A similar argument can be made for the
plane strain fracture toughness %ﬁ\based on Eq. (9.2)2 and
Fig. 28. The semi-empirical expressions (10.3)-(10.5) thus
appear to indicate that an increase in the tensile load
biaxiality should cause a reduction of the fatigue crack
growth rate relative to the growth rate for uniaxially cycled
load.

The reduced crack-tip plasticity associated with
increasing tension-tension load biaxiality might possibly
diminish the effect of crack closure that is believed to
accompany crack propagation through cycically loaded and

unloaded plastically deformed recions [27)]). Any such miti-

gation or lessening of their effect would have the consequence’
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of increasing the crack growth rate, offsetting thereby, to
some extent, the anticipated crack growth rate decrease with

horizontal tensile load increase indicated above.
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PART II. EXPERIMENT

The agenda for the experimental part of the research
program was determined by selection of those tests that could
provide directly measureable, or observeable, information on
the influence of load biaxiality on conditions near the
crack-tip and on fracture. The tests that were performed
involved crack-tip photoelasticity, measurements of angles of
initial crack exvension, fracture load and fatigue crack
propagation rates, all under varying levels of hori:contal

load application.
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SECTION 11

)

1. DEVELOPMENT OF THE BIAXIAL TEST FACILITY

To be able to perform the indicated tests, it was
necessary at the outset to design and assemble a biaxial
test specimen, and a testing system compatible with it.
Several of the more important features of this part of the

test program are described initially.

11.1 SPECIMEN DESIGN
The preliminary biaxial test specimen design was based
upon a specimen configuration developed by Radon and co-
workers, (32}, which was shown to provide a relatively large
uniform stress field for the given specimen §ize. Several
other designs, [33-37), were also examined, which suggested
several minor changes in the preliminary desigﬁp A photo-
elastic study was employed to ensure that the design would
be adequate to provide the desired uniform stress field
through out a large central portion of the center cracked
" specimen over a wide range of the biaxial load ratio. The
specimen configuration that was finally adopted is shown
in Fig. 33. A second large specimen was also designed in
the event that a larger working area became necessary. This
alternate design is shown in Fig, 34. It was also noted from
this initial photoelastic study that the biaxiality of the
applied load has a clearly observeable effect on the crack-

tip stress field that is in qualitative agreement with the
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predictions of the inalysis. These results will be pre- .

sented and discussed in a following section. -k
It was also necessary to design and purchase (or

fabricate) grips to interface between the test system and

the specimen. The specially designed grips that were pur-

chased performed satisfactorily throughout the testing

program,

11.2 TEST SYSTEM DEVELOPMENT

The second phase involved designing a biaxial test
system, which was comprised of an existing MTS testing system
of 100 kips capacity as the vertical axis, a portable test
frame of 50 kip capacity as the horizontal axis, and a control
system capable of controlling both axis. Since only twoc
independent actuators were planned for this test system
(rather than four), the center of the test specimen would
not remain stationary but would move in response to the
motion of each actuator. In order to prevent this motion
from introducing side loads on the specimen, the horizontal
axis was suspended in its working position by elastic ropes.
In this manner the test frame could move relatively freely
with the center of the specimen. However, the motion of the
frame under rapid fatigue loading conditions could introduce
dynamic loads which would be transmitted to the specimen.
The magnitudes of these loads were calculated for the ex-
pected worst case conditions and were found to be small

enough to be neglected. ')
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The test system design incorporated considerable
versatility so that a wide range of tests could be per-
formed. The control system purchased as part of the second

channel (horizontal axis) was designed and connected so that

it could control both actuators for applying phased static ?A

or cyclic loads, with the phase angle readily adjustable to

any desired value. Since the specimen could serve as a load "

[T R

pg;h between the two control channels, a specially designed
péir éf service manifolds was incorporated into the syst a,
effectively eliminating 'cross-talk'" between the channels.
These service manifolds also permit completely independent
operation of the two channels so that different types of load
programs could be applied to each channel. For exaﬁple, a
randomly varying cyclic load could be applied to oﬁe axis
while a constant amplitude fatigue load or a static load
could be applied to the other. The two systems could also
be operated independently when biaxial tests were not being
performed.

In order that the horizontal axis be lightweight and
relatively easy to manage, the horizontal load frame was
designed and manufactured from aluminum structural sections
and high-strength aluminum plates., The load framz design
was completed and the components were fabricated in the
school machine shop. The assembled test system weighed
less than 1000 pounds, of which the actuator alone weighed

approximately 600 pounds. After assembly of the horizontal
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test system, this system was operated for a brief check-out periocd~%

J

and then interconnected with the existing test system. The
combined system was then checked out and found to operate
as designed. A schematic drawing of the combined test

system is seen in Fig. 335, and pPhotographs of the completed

system are shown in Fig. 36,
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SECTION 12

EFFECT OF BIAXIAL LOADS ON THE CRACK-TIP
ISOCHROMATIC PATTERNS

As the biaxial test specimen design and the biaxial
test system was being developed, an initial photoelastic
study was performed for the purpose of: (1) examining |
photoelastically several aspects of the test ‘pecimen design,
and (2) providing preliminary information about the possible
effects of biaxial load on the crack-tip stress field.

The photoelastic study sought to answer several ques-
tions that ccncerned important details needed to complete
the design of the test specimen, The first parameter
examined was the radius of the fillet between two adjacent
load tangs. Initial biaxial specimen designs developed
by other researchers employed large circular radii or hyper-
bolic curves between the load tangs. Consequently, a large
radius was employed initially for the first photoelastic
specimens. In this series of experiments it was seen that
the biaxial forces did have a significant effect on the crack-
tip isochromatic pattern, however, the quantitative agreement
between the theoretically predicted isochromatic patterns
and the photoelastic results was not very good. Subsequent
study showed that the large fillet radius introduced inter-

actions between the stresses parallel and perpendicular to
the crack. Other studies (38) have confirmed this condition,

and have also shown that there was significant nonuniformity
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of the stress field along the width of the tang. Additional
studies by other researchers have been made into the effects
of different geometrical details at the intersection of two
adjacent tangs [39]. The effects of different, small radii,
and of undercutting were examined and it was c¢oncluded that
employing a small fillet, as in Fig. 33,'provided the
optimum configuration in the intersection region.

The second parameter examined was the crack length-to-
specimen width (a/w) ratio. The biaxial photoelastic speci-
mens were fabricated initially with small crack lengths and
after photoelastic examination, the cracks were extended
and subsequent photoelastic examinations performed. The
results of these studies showed that the extent of the biaxial
effect was not altered by changes in the (@/w) ratio. As ex-
pected, the crack-tip stress fields were affected by the
(a/w) ratio, with the fringe patterns increasing in size as
the crack length was increased. However, the effect of load
biaxiality on the fringe patterns was not significantly
affected by changes in the (a/w) ratio,

The third parameter to be studied was the crack-tip

"fadius, with two different notch radii, and a natural crack

empldyed in the study. The notch radii were filed using
screw-head files of different.radii, while the natural

crack was produced by means of a razor blade. As with the
(@/w) study, it was determined that the sharpness of the crack-

tip radius had a significant effect on the crack-tip stress
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fields. However, the magnitude of the load biaxiality
effect was not measurably influenced by variation of the
crack-tip radius.

Since the effects of several important test parameters
were shown to have insignificant interaction with the pre-
sence of the horizontal loads, a study of the biaxial load
effects on the crack-tip maximum shcar stress was then per-
formed. The most extensive data were taken from one of the
early photoelastic specimens having an (u/w) ratio of approxi-
mately 0.5, a natural crack-tip, and a large fillet radius.
The variation of the lines of maximum shear stress with load
biaxiality indicated by the analysis of Section 3.1, and
summarized in Fig. 11, provides a basis for comparison be-
tween the theoretically predicted pattcrns and the photo-
elastically observed patterns. The observed patterns are
shown in Fig. 37 for k=0, 0.5 and 1.0, A comparison of
Figs. 11 and 37 show good agreement for the angular shift in
the stress protfiles, and careful measurements confirmed
the agreement. The change in the size of the isostatic
loops with increasing tensile load biaxiality agreed with
the predicted pattern, although the magnitudes did not
initially correlatec very well. However, when 4 correction
factor appropriate to the large fillet radius was applied,

the sizes of the isostatic loops and the associated stress

intensity factors agreed much more clcselv with the theoretical

predictions.
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SECTION 13
FRACTURE TESTING OF SPECIMENS WITH HCRIZONTAL CRACKS

Upon completion of the test system development, test
specimen design and photoelastic verification, the fracture
testing program was initiated. It was determined that three
initial test series would be performed and approximately forty
specimens were prepared for testing. Two of the test series
were performed on 7075-T6 aluminum, 0.063 inch thick, with
the center slot oriented perpendicular to the rolling direc-
tion for one series and parallel to the rolling direction for
the other. The material chosen for the third test series
was 0.25 inch thick plexiglass, because its material pro-
perties were quite different from 7075-T6.

Thin center slots were machined in all specimens and the
slot tips were subsequently sharpened to a tip radius of
0.003-0.005 inch by use of a screw head file. The 7075-TGC
specimens were tested with the slot tips in this condition
(no fatigue precracking) since prior uniaxial testing ex-
perience with this material indicated that subcritical crack
growth occurs prior to unstable fracture. With the existence
of subcritical crack growth, unstable fractures initiated
from the existing crack and, therefore, were not influenced
by the notch tip radius. 1In contrast, the plexiglass speci-
mens fractured in a manner apparently more brittle than the
7075-T6 specimens. It was anticipated that variations in

the crack tip radius could cause significant differences in
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the fracture behavior of the plexiglass. Consequently,

natural cracks were introduced into these specimens by press- 1;
ing the slot ends with a suitably reinforced razor blade.

The final crack length-to-specimen width ratio was between

0.4 and 0.5 for all of these tests,

Since 7075-T6 is a relatively brittle aluminum alloy it
was decided to perform two additional test series on 2024-T3
aluminum. The interest in performing the 2024-T3 tests was
based on two considerations. First, 2024-T3 is an important
material for aerospace applications, and it is often treated
as a prototype material for the 2xxx series of aluminum alloys.
Second, the additional ductility provided by 2024-T3 was
desirable because finite element calculations by others
suggest that the biaxial effect on fracture load is increased
with increased material plasticity. These specimens were made
according to the same design and were also machined from
0.063 inch sheets. A total of fifteen tests were performed
on 2024-T3, in which the starter slot was parallel to the
roll direction for seven tests and perpendicular to the roll
direction for eight tests.

In performing these fracture tests, ramp loads were
applied to the two perpendicular pairs of specimen tangs in
porportion to the desired biaxiality ratio, k. For the 7075-
T6 specimens the biaxiality ratios varied in the range
0<k<1l.8 and for the plexiglass specimens the range was

-0.5¢sk¢2.0. For the tests on 7075-T6 and 2024-T3 the loading
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was interrupted periodically for the purpose of recording

the loads and displacements on both axis with the use of a
datalogger. In addition. the loads and displacements per-
pendicular to the slot were recorded continucusly on an x-y
plotter. For the plexiglass tests the loading was not
interrupted, due to the time-rate effects associated with

this material. Only the loads and displacements perpendiculaf

to the crack were recorded on the plotter,

13.1 FRACTURE TEST RESULTS FOR 7075-T6

For the two 7075-T6 test series, the effect of load
biaxiality on the fracture load (perpendicular to the plane
of the starter slot) is seen in Figs., 38 and 39. The speci-
men thickness, B=0.063 in., was considered to be sufficiently
small to establish a plane stress situation. This assump-
tion was confirmed by the mode of fracture, in which the
fracture surfaces were oriented at 45° to the lateral sur-
face of the specimen (100 percent oblique fracture). For
both test series the critical fracture load increased 15-20
percent as k was increased from 0 to 1.8. Higher k values
could not be tested successfully, because the horizontal tabs
pulled off before unstable crack propagation, thus releasing
the biaxial constraint. Since the crack length and specimen
dimensions were identical for all specimens, the critical
stress and Kc values increase proportionally. The linear
regression fit to the data also showed the same increasing

trend in both test series, with the slope of the lines




exhibiting the same general uptrend. Poisson's ratio for this

material is approximately 0.30. For this value of Poisson's
ratio Fig. 27 predicts a small increase of the fracture load,
which is confirmed by the experimental results. The difference
in results between Figs. 38 and 39 is attributed to che aniso-

tropy introduced by the rolling process.

13.2 FRACTURE TEST RESULTS FOR PLEXIGLASS

The predicted variation of critical fracture load (or
ch) with k shown in Fig. 28 suggests that failure under
plane strain conditions (square fracture surfaces), combined
with values of Poisson's ratio greater than 0.25, should
produce the reverse trend of decreasing critical load (or
Ky) with increasing k. Therefore a test series was per-
formed on plexiglass specimens with B=0.25 in., a thickness
which was large enough to cause plane strain fracture,
Poisson's ratio for this material is high, 0.40<v<0.47,
so that in view of the test data trend obtained for the 7075
aluminum alloy, a definite decreasing trend in the ch data
would provide a strong confirmation of the results of the
theoretical analysis, The results of the plexiglass tests
are shown in Fig. 40, and do exhibit a trend of decreasing
fracture toughness with increasing load biaxiality. These
results are presented in terms of critical KI rather than
critical load since the length of the natural cracks was
not the same for all specimens. Although there was a greater
amount of scatter in this data, the linear regression confirms

the decreasing trend.
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Additional confirmation of the plexiglass data can be
found in the test results recently published by Radon, et al,
(40, 41), although they did not come to the same conclusion,
possibly due to the lack of a linesar regression analysis of
their data. The results of forty tests on polymethylmeth-
acrylate (PMMA), which is essentially the same material as
plexiglass, are shown in Fig. 41. The best £t straight line
was added to their reported data, and it is ieen that the two
test series agree remarkably well with regard tuv the magni-
tudes, the trends, (decreasing slopes), and the scatter in
the toughness values. Although the extent of test data re-
ported here is insufficient for definitive conclusions,
nevertheless, the qualitative agreement with the predicted
trends for both materials offers considerable evidence as
to the presence of biaxial load effects on the fracture

stresses and the associated K values,

13.3 FRACTURE TEST RESULTS FOR 2024-T3

In order to correlate as closely as possible with the
7075-T6 tests, one series of seven specimens was prepared
with the starter slot parallel to the rolling direction and
a second series of eight specimens was prepared with the
starter slot perpendicular to the rolling direction. The
specimen geometry, the slot length and notch tip radius and
the test procedure were the same as for the 7075-T6 tests.

The effect of the biaxiality ratio, k, on the fracture

load for 2024-T3 is shown in Figs. 42 and 43 for the starter
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slot oriented parallel and perpendicular respectively to the
rolling direction of the material. The behavior of these
two test series is clearly self consistent in that they both
display a peak in the c¢ritical fracture load corresponding
to k values around 0.5 to 0./5. The rate of variation of
critical load with k is greater in the range of 0<k<0.75 than
was evidenced by the 7075-T6 results, and sugggstsrthat the
increased biaxial effecflmay be due to the greater ductility
of the material. However, the reasons for the existence of
a peak value and subsequent decrease in critical load with
increasing k is not apparent. One possible explanation for
this behavior is that the increased ductility of the material
was responsible for the tangs parallel to the starter slot

to fail first, thus eliminating the biaxial constraint.

This behavior weculd lead to the prediction that, at the higher
k values, the breaking load would approach the result for
uniaxial tension, k=0, It is seen that both tests series do
display this type of behavior, with the exception of the test
at k=1.,25 in Fig. 42. There is some further experimental
evidence to support this type of hshavior, although these
observations need considerably more study before reliable
conclusions can be drawn. The difference in critical load

between the two test series is due to the anisotropy effect

and is of the same order of magnitude as the effect for 7075-
T6.
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SECTION 14
FRACTURE OF ANGLE-CRACKED SPECIMENS OF 7075-T6 ALUMINUM

Since a crack in a structure subjected to biaxial applied
loads will not normally be aligned with either of the princi-
pal loading directions, knowledge of biaxial load effects on
angle-cracked specimens is of considerable practical impor-
tance. The loads on “sth axis of the angle cracked specimens
must be considered because the loads on each axis can be re-
solved into components parallel and perpendicular to the
starter slot. The component perpendicular to the starter slot
represents the principal force causing fracture, while the
other component coincides with the horizontal (biaxial) load for
the flat crack geometry.

Two test series were performed on 7075-T6 aluminum sheets,
V0.063 in. thick, with the starter slot oriented 45 degrees to
either of the load axis. Four tests were performed in each
test series, with one test at each of the biaxiality ratios of
k=0, 0.25, 0.5 and 1.0. In one series the pfimary (1;rger
load) axis was aligned with the rolling direction, while for the other
the primary axis was perpendicular to the rolling direction.
Figure 44 shows the broken specimens from the equal biaxial

tests (k=1.0) for both test series, where the principal 1load

direction is indicited by the arrow.
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The specimen and starter slot were prepared in the same

manner as for the specimens having the starter slots oriented

perpendicular to the primary load axis. The same testing

procedure employed previously for the aluminum test series

was also followed for these tests. The load versus displace-

ment for the principal axis was plotted continuously on an
x-y recorder, and the loading ramp was interrupted periodi-

cally for the purpose of recording the load and displacement

values for each axis using a datalogger. The critical or
maximum load in the principal loading direction was also

recorded using a digital multimeter with memory capability.

According to the analysis of the angle-cracked specimen

given in Section 2, the opening-mode stress intensity factor

is given by [cf. Eq. (2.23)]

1
kK = 28 ((1+k)=(1-k)cos2al,
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corresponding to an infinite sheet geometry, where the angle
of crack inclination o is defined in Fig. 1. For these tests
a=459. In addition, a finite-width correction factor must be

appended to the above expression,which then becomes

K = 9L§ili(l+k)f(%) : (14.1)

If the critical value of the applied stress, obtained as
described above, is inserted into Eq. (14.1) K becomes the

plane-stress fracture toughness, Kc’ |
b’
oc(wa)

K. = > (1+k)f(%) . (14.2)

Since the a/w ratio was identical for all specimens, the value

of the finite-width correction factor was the same for all tests.

Conseguently the finite width correction factor had no influence

on the relative magnitudes and trend of the biaxial load effect.
Equation (14.2) shows the dependence of KC on k as being

linear. with the factor (1+k) increasing from one to two as

k is increased from zero to one. Therefore the KC value

would be expected to approximately double over the range of

k values employed in these tests. The test results shown in

Fig. 45 are in very good agreement with this predicted trend,

and offer a further confirmation of the analytical portion

of this work,
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SECTION 15
EFFECT OF BIAXIAL LOADS ON THE ANGLE
OF INITIAL CRACK EXTENSION

Another effect of load biaxiality on fracture behavior,
one which is directly measurable and can be compared with

the analytical predictions, is the influence of k on the angle

of initial crack extension. Theccalculations of this angle,

based on the maximum tensile stress criterion, are displayed
graphically in Fig. 19 for different orientations of the
crack (or starter slot). The fractured specimesn of all of
the test series were examined for comparison with the analyti-

cal predictions, and the results are presented in this section.

15.1 ANGLE OF INITIAL CRACK EXTENSION FOR THE ANGLE-CRACKED
SPECIMENS
The effect of applied load biaxiality on K. for the two
series of tests on 7075-T6 aluminum in which the starter slot
was oriented at 45° was discussed in the previous section.
The broken specimens from these tests were examined to
aetermine the angle of initial crack propagation for compari-
son with the analytical predictions contained in Fig. 19.
As noted in Section 13, the material from which these speci-
mens were made exhibited a measurable amount of anisotropy.
It was anticipated therefore that this could have some in-
fluence on the direction of initial crack extension. In
much the same manner that the average of the two test results

at each biaxiality ratio minimized the effect of material
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anisotropy on the Kc data shown in Fig. 45, the average of
the two angles of initial c¢rack extension for any k value
should provide a result relatively free of the material ani-
sotropy effects.

A good appreciation of the influence of material ani-
sotorpy on the angle of initial crack extension can be obtain-
ed from Fig. 44. The analytical predications indicate that,
for a=45° and k=1.0, the crack angle should not deviate from
the plane of the starter slot (90-0°). Figure 44 shows, how-
ever, that the cracks propagated at an angle of approximately
+25° from the starter slot toward the rolling direction. If
the angles measured from the two tests are averaged, they
approximately cancel =ach other leaving a net measured value
of approximately 60=3°. This procedure was followed for the
other three pairs of tests and the results of all eight
tests are summarized in Talle I. It is seen from this table
that the agreement between the predicted and measured values

of 89 is quite good, with the only significant deviation

being for k=0.S.

15.2 ANGLE OF INITIAL CRACK EXTENSION FOR HORIZONTALLY
SLOTTED 7075-T6 SPECIMENS
Additional comparison between the predicted and measured
values of initial cra;k propagation can be obtained from the
fracture test series discusséd in Section 13. For these
tests the biaxiality ratio was varied from zero to 1.8, with

a=90°. Examination of the predicted values of 60 (for a-90°)
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given in Fig. 19 shows that, at the higher positive values
of k the predicted values of eo begin to increase rapidly as
k exceeds values of three, and approach values of 869 to 90°
as k assumes values between five and nine. A greater accuracy
of prediction is difficult because of the very high slopes
(rates of change) of the curves at a=90°, About all that
can be certain is that the expected angle of initial crack
extension increases with increasing k.

A qualitative confirmation of the above statement can
be seen in Fig. 45, which shows the effect of increasing k on
the angle of initial crack extension {or the 7075-T6 specimens.
For these tests the starter slot was perpendicular to the
rolling direction. It is seen in Fig. 45a (k=0) that the
crack extended essentially parallel to the starter slot,
while in Fig. 44b (k=1.5) the angle of initial crack extension
had increased significantly. When k was further increased
to 1.8, it is seen in Fig. 44c that the <rack very quickly
changed orientation to become more normal to the direction

of maximum tensile stress.

15.3 ANGLE OF INITIAL CRACK EXTENSION FOR PLEXTGLASS SPECIMENS
Since the material anisotropy associated with the 7075-

T6 tests has some effect on the angle of initial crack ex-

tension (especially for a-90°). the plexiglass specimens

were also examined because they do not exhibit significant

anisotropy, and because higher k values could be employed in

the tests. A large number of tests were performed so that
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many specimens were available for the purpose of examining the
angle of initial crack extension. The results, however, for
any given k value were quite consistent, consequently, only
three of the typical results are presented in Fig, 46. The
broken specimen from test B20 (k=0) is shown in Fig. 46a,
where it is seen that the crack extended with'only slight
deviation from the plane of the starter slof. Fig,.46b shows
the broken test from test Bl7 (k=1.0), in which significant
deviation from the starter slot is evident. For test B19
(k=2.0), Fig. 46c shows that the deviation from the plane of
the starter slot is quite strong, as the crack attempts to
align .tself normal to the direction of maximum tensile stress.,
All of the plexiglass specimens exhibited similar tendencies
and confirm the qualitative agreement with the predicted

trend that was observed for the 7075-T6 specimens with
initially horizontal crack orientation. Additional observa-
tions of the angle of initial crack extension have been made
for PMMA by Leevers, Radon and Culver (42], who obtained

results in generally good agreement with those presented

here.
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SECTION 16
BIAXIAL FATIGUE CRACK GROWTH RATE TESTS

PSR T LR

Because of the importance of fatigue crack growth laws
in determining the residual life of structures and the re-
lative merits of many structural materials subjected to cyclic
loading, one of the objectives of this research program was
to examine the influence of biaxial loads on the fatigue
crack growth rates., Most fundamental studies of fatigue
crack growth under cyclic loading conditions [43] conclude
that the size of the crack-tip plastic zone is a critical
factor influencing the fatigue crack growth rates. Since
the present study has shown that increasing k values lead
to reduced crack-tip plastic zone sizes, it follows that
higher k values should cause reduced fatigue crack growth
rates,

Experimental data about the effect of load biaxiality
on fatigue crack growth rates are currently quite limited
and somewhat inconsistent in their ﬁssessment of biaxial

effects. Most test results reported in the literature were

/E )

min’ "max
although some exceptions have been reported. In tests con-

performed at zero or positive R values (R = F

ducted on a high strength aluminum alloy, RR58, Hopper and
Miller (44)] reported a decrease in fatigue crack growth rates
as k increased from -1.9 to 1.0. Kibler and Roberts ([35]
observed the same qualitative trend for 6061-T4 and T6

aluminum alloys as k was increased from 0 to 0.33. Leevers,
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Radon and Culver [45] reported fatigue crack growth rates

T
Yt

in PMMA to be reduced by a factor of two toc three as k in-
creased from 0 to 2.0. For all of the test results just
ci*ed the biaxial loads were in-phase cyclic loads.

On the other hand, a variation of the static lateral
load from k=0 to k=2.0 appeared to have little effect on the
fatigug crack growth rates of the more ductile PVC (pely-
vinylchloride)(45). Similarly, Liu, Allison, Dittmer and
Yamane, observed negligible effects on the crack growth rates
of 7075-T7351 and 2024-T351 aluminum alloys as k was varied
from -1.5 to 1.75 [46], while Pook and Holmes found little
lateral load effect on the growth rates of nickel alloy
plates as k was varied from 0 to 2.0 (47]). Because of the
lack of agreement between the results of these studies it
was considered desirable to perform some experiments to pro-

‘jde acditional data about the nature of biaxial effects.

16.1 BIAXIAL FATIGUE TESTING PROGRAM

In order to gain initial insight into the effect of
biaxial cyciic loads on the fatigue crack growth rates, a
preliminary testing program involving four specimens made
from thin sheets of 2024-T3 aluminum was initiated. For
these tests two specimens were tested with the starter slot
parallel to the rolling direction (k=0 and 1.0) and two were
tested with the starter slot perpendicular t> the rolling
direction (k=0 and 1.0). The specimens were made identical

to those for the static tests and the loads were varicd in
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a sinusoidal manner, with both axis loaded in phase. The
load ratio, R, was approximately zero for all four tests.
The test frequency was 12 Hz and, with the exception of the
first test, the crack growth measurements were made while
the test was running. An arbitrary initial cyclic load
level was imposed until the fatigue crack initiated from the
starter slot and the load level was then reduced until a

reasonable crack growth rate was obtained. This load level

was then maintained until the specimen fractured. The crack

size was recorded as a function of the number of cycles and
calculations were then made for the crack growth rate, %%,
as a function of the applied stress intensity range, AK.

The experimental results of fatigue crack growth rate,
plotted on logarithmic scale, versus AK is given in Figs.
48-51, in which each figure represents the test results for
one specimen. Thus Figs. 48 and 49 represent the data for
the two tests on 2024-T3 with the starter slot perpendicular
to the rolling direction and k equal to ) and 1.0 respectively.
It can be seen that there is a significant biaxial effect on
the fatigue crack growth rates, but determination of the
magnitude of the effect is difficult because of the scatter
in the data. The scatter was apparently due primarily to the
lack of experience in collecting fatigue crack growth data
on these biaxial specimens, since it was considerably re-
duced in subsequent tests.

In order to obtain a better appreciation for the extent

of the biaxial effect, a few specific comparisons will also

-102-




- orr T P

be presented. In both pairs of tests, increasing the k vaiue
from zero to 1.0 caused a significant reduction in the
fatigue crack growth rates. For example, for the tests with
the starter slot parallel to the rolling direction, the crack
growth rates corresponding to the same value of AK were
approximately 1.8x10"° in/cycle for k=0 and 1.4x10°° in/cycle
for k=1.0, From these results it is seen that the decrease
in fatigue crack growth rates was approximately 25 percent
for an increase in k from zero tc 1.0. Thc other pair of
tests with the starter slot perpendicular te the rolling
direction exhibited a greater dependence of the fatigue

crack growth rates on k. For éxample the fatigue crack growth

rates corresponding to a fixed AK were approximately 4.2x10°°

in/cycle for k=0 and 2.0x10°5

in/cycle for k~1.0, which re-
presents a change of 100 percent in the fatigue crack growth
rates. However, the procedure for taking crack growth measure-
ments fox;the k-OStest was different from the k=1.0 test in
that the test system was stopped while the measurements were
made. For all subsequent tests the crack growth measurements
were made while the test was running. A number of subsequent
tests were then performed for the purpose of obtaining addi-
tional data about the biaxial effects,

These data are presented in a different way in Figs. 52
and 53, in which %ﬁ is still represented on the ordinate
(vertical axis) but the half-crack length, a, is plotted on

the abscissa. The data shown in this manner for k=0 and

1.0 illustrate quite clearly the biaxial effect. The number
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of data points have been reduced in these figures by averaging
several adjacent %ﬁ values, and it is seen that the scatter
is reduced markedly.

The results of these four tests are also shown with %ﬁ
plotted linearly on the ordinate and the half-crack length
plotted on the abscissa. The results are given in Figs. 54
and 55, and again exhibit the significant biaxial influence
already indicated. These results also show very effectively
the acceleration in fatigue crack growth rates that»is
characteristic of these tests. Since these results could
be easily misinterpreted if different initial crack sizes
or different loads were employed in the testing program,

results similar to Figs. 54 and 55 are not presented for the

subsequent tests,

16.2 BIAXTAL FATIGUE TESTS ON 7075-T6 ALUMINUM

The next test seriesathat was performed was planned to
provide fatigue crack groﬁth rate data over a larger rdnge
of k values. Thus, four additional tests were performed on
7075-T6 alumunim sheets, 0.063 in. thick, in which the starter
slots ware parallel to the rolling direction. The starter
slots were also considerably shorter than for the prior
tests so that more data could be collected. Also for these
tests, after an initial set of data were taken at low crack
growth rates, the load was increased in several steps so
that a larger range of AK values could be examined. The

cyciic frequency for these tests was decreased from 15 to
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10 Hz as the test progressed and the crack growth rates in-
creased. The K value was 0.1 for all four tests,

The effects of load biaxiality on the fatigue crack
growth rates, %ﬁ, as a function of AK for the four hiaxiali-
ties, k=0, 0.5, 1.7 end 1.5 are shown in Figs., 56-59, It is

seen from these figures that the data points exhibited re-

ascnable scatter and that a biaxial effect is clearly evident.
As a measure of the effect of load biaxiality, the fatigue crack

growth rstes for all four tests at two selected values of AK are given

in Table II. The results at both values of AK exhibited a definite

biaxial effect, although the primary effect seems to have
occurred between k=0 and 0.5. Because of the scatter that is
usually associated with fatigue crack.growth rate testing,
the primary conclusion from.these data is that, although

there is a clear biaxial effect, the trend in the variation

of %ﬁ with k will need additional testing before it is clearly

understood. The results for the‘firs; three tests, k=0, 0,5

and 1.0 have been combined into;ane plot as shown in-Fig. &0,

~where AK has also beén pldttéd on a'logarithmic scale. The

test:for k=1.5 was not included because of the very limited
amount of data that had been collected before the specimen
failed by breaking one of the tangs parallel to the starter
slot. The very strong biaxial effect is more evident in this
figure, althoﬁgh the close ggreement between the results for
k=0.5 and 1.0 is difficult to interpret.

A different presentation of these results is also given

in Fig. 61. In this figure, the half-crack length, a, is
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plotted on the ordinate using a linear scale and AK is
plotted linearly on the abscissa. This presentation also

illustrates clearly the magnitude of the biaxial effect on

the fatigue crack growth rates.

16.3 BIAXIAL FATIGUE TESTS ON 2024-T3 ALUMINUM

Since it was considered likely that accurate fatigue
crack growth rates are more difficult to obtain in more
brittle materials, three additionalﬁtests were preformed on
2024T-3 aluminum with biaxiality ratios of 0, 0.5 and 1.0.
The starter slots were parallel to the rolling direction and
R=0.1 for all three tests. The same general procedures estab-
lished in the previous tests were followed for these tests
also. The results of the crack growth rates as a function
of AK for the three k values are give: in Figs. 62-64, where
these data have been plotted on semi-log paper. The same
data were also plotted in Figs. 65-67 on a log-log plot
which, as was seen in the 7075-T6 results, tends to make the
biaxial effect less apparenct. Again for direct comparison
purposes, the values of %% as a function of k are given in
the Table III. The AK values of 10 and 40 ksiv/in provided a
large range of values for additional comparison purposes.
It is seen in these results that a significant biaxial effect
exists, although the magnitude of the effect is apﬁroximately
30 percent, rather than a factor of 10 as exhibited for the
7075-T6 data. Also the limited differences between the values

for k=0.5 and 1.0 render interpretation difficult. The
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closeness of the k=0.5 and 1.0 values for both alloys "is a e

matter that can only be a subject for speculation with the

limited data that are available,
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PART III. CONCLUSIONS
SECTION 17
SUMMARY AND CONCLUSIONS

The plane problem of linear elasto-statics is a boundary
value problem for the solution of the biharmonic partial
differential equation that must, in addition, satisfy given
conditioﬁs of stress or displacement that are prescribed on
the boundaries of the body. This problem can be reformulated
into one of finding a pair of analytic functions ¢(z) and Q(z)
of the complex variable, 2z, that must satisfy the same pre-
scribed conditions of boundary stress or displacement, Once
these functions have been determined, the problem may be
considered to be solved because all of the quantities that
define the mechanical state of the elastic body are derivable
from ¢ and Q.

For the boundary value problem represented by the biaxially
loaded infinite sheet with an inclined centrally located crack,
[cf. Fig. 1], the solution functions ¢ and Q2 are given by Eqs.
(2.8) and (2.9). For the horizontally oriented crack they
are given by Eq. (2.11), while for the pair of collinear
cracks, by Eqs. (2.35) and (2.37). 1In all of these expressions
for ¢ and @, both of the boundary load parameters, ¢ and k,
appear, as they must, if ¢ and Q are to represent solutions of
a boundary value problem. Consequently it follows directly
from Eqs. (2.1) and (2.2) that the stress, displacement, strain,

maximum shear stress and the strain energy density at every
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point of the body must, likewise, show dependency on the
biaxial load parameter, k. The same must also be true of
integrals of these quantities, yielding the elastic strain
energy and the elastic potential energy of the entire body.
When the elastic strain energy of the body is differentiated
with respect to the crack size, the resulting defivative
representing the change of the elastic strain energy with in-
creasing crack size, must also exhibit a dependence on the
horizontal load parameter, k, when the body is biaxially
loaded. Since every quantity defining the mechanical state
of the cracked body is thus shown to be influenced by the
presence of the horizontal load, the conclusion that the
fracture behavior of the body must also be so influenced is
inescapable. These conclusions, which are here drawn from
general considerations only, are clearly illustrated by the
extensive analytical results appearing in the body of the
report, and by the gxperimental data that is presented,

which quantitatively and qualitatively confirm the findings

of the analysis.

Stress and Displacement Near the Crack-Tip

The expressions for the elastic stress and displacement
in the immediate vicinity of the crack tip when properly
derived, will show a dependence on the horizontal load para-
meter, k. Examination of the series expansions ot the
solution functions ¢, & (and also for ¢ ,w) reveal that a

two-term approximation of the infinite series representations 'j}
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is necessary if proper account of the presence of the horizon-

tal load is to be reflected in the crack-tip stress and dis-
placement approximations, (e.g., Eqs. (2.17), (2.19), (2.21)-
(2.23) for the inclined crack, Eqs. (2.24)-(2.26) for the
horizontal c¢rack, and Eqs. (2.41)-(2.47) for the pair of
collinear cracks].

When the crack is horizontal, the sec’ id term of the
series expansion of ¢ is the only term of the expansion that
includes the parameter k. Consequently, the usual one-term
(singular) approximation for the crack-tip stress, and also
for the displacement, is incapable of incorporating the
presence of the horizontal load, ko, in a biaxial load situa-

tion for this crack geometry.

Maximum Shear Stress Near The Crack Tip

The maximum shear stress about the crack tip is shown
to be strongly influenced b, the presence of load applied
parallel to the crack (c.f. Eqé. (3.1),(3;8)]. ‘The predicted
pattern of variation of the maximum shear stress contours
with load biaxiality, Fig. 11, is confirmed by the photo-
elastic maximum shear stress isochromatics that were obtained
for the biaxial load range 0sk<l1.0, shown by Fig, 37.

Because of the relation between maximum shear stress and
plastic yield, the plastic yield region about the crack tip
should show a qualitatively similar pattern of variation with
load biaxiality to that shown by Fig. 11, that is, as the

horizontal load varies from tension to compression the extent
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of the plastic yield region about the crack tip should in-
crease. (This predicted effect has been observed from the
finite-element (NASTRAN) elastic-plastic calculations con-
ducted by Liu and Dittmer [52] for a biaxially loaded

cruciform shaped specimen.)

Angle of Initial Crack Extension

Utilizing the maximum tensile stvress criterion, the
influence of load biaxiality on the angle of initial crack
extension was calculated for different orientations of the
¢rack, with the results summarized in Fig. 19. Test results
for cracks initially horizontal are shown in Fig. 46. These
photographs show clearly the pattern of turning of the angle
of initial crack extension with increasing horizontal tensile
load, in qualitative agreement with the predicted trend shown
in Fig. 19 at a=mn/2. For the crack inclined at a-4S°, c.f.
Fig. 44, the measured angles of initial crack extension are in

generally good agreement with the prddicted vilues, summarized

in Table I.

Fracture Load and Fracture Toughness

A calculation of the theoretical fracture stress, Teo
based upon Griffith's crack instability hypothesis, shows

the critical stress to be dependent on both the load biaxiality,
and the Poisson ratio of the material, c.f. Eqs. (9.2) and
(9.3), and Figures 27, 28 and 29. 1In the case of plane stress,

for materials with Poisson ratio less than one-third, the
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breaking stress increases with increasing horizontal tensile

bbb

N load. However for values of Poisson ratio greater than one-
third, this trend is reversed. A similar patter of variation
holds for plane strain.

The results of fracture tests performed on 7075-T6 alum-
inum with Poisson ratio about 0.30, and plexiglass with Poisson
ratio about 0.40-0,45, are shown in Figures 38 thru 40. Add-
itional fracture test data on PMMA specimens (similar to
plexiglass) that were obtained elsewhere are shown in Fig. 41.

\ These test results confirm, qualitatively, the predicted

influence of the Poisson ratio on the pattern of variation of

; the critical stress with variation of the horizontal load.
Plane stress fracture toughness tests for determination

% of KC values, on 7075-T6 aluminum sheets with the crack in-
clined at 45° and the horizontal load parameter-varying
between 0sk<1.0, show a pronounced dependence on the load

; : biaxiality. The predicted variation of K. with k, given by

Eq. (14.2), which shows Kc as approximately doubling in value

in a linear manner as k varies from zero to one, is in ex-

cellent agreement with the experimental data given in Fig. 45.

Fatigue Crack Growth Rates

The reduction of the rate of fatigue crack growth with
increase of the horizontal load, which is implied by the de-
‘ crease in size of the crack-tip plastic zone for such biaxial
load variation, is demonstrated by the experimental data given

in Figures 48 through 67, and in Tables II and III. These

,—~
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results are consistent with the generally accepted view that
the size or extent of the nlastic yield region at the crack
tip is a major factor in influencing fatigue crack growth
rates. The reduction of the crack growth rate as k was varied
from 0.0 to 0.5 was observed to be much greater than the re-
duction in rate tha:¢ accompanied the change of k from 0.5 to
1,0. At this time no explanation for this surprising differ-

ence can be offered.
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SECTION 18
RECOMMENDATIONS FOR FURTHER RESEARCH

Although a considerable amount of research effort has by

now been directed toward examining the effects of biaxial

applied loads on the fracture characteristics of materials,

many facets of this effect have yet to be clarified and

fully understood. A number of suggestions for further research

in this area which appear to be important are indicated below.

1.

A finite-element analysis that would take this particu-
lar specimen geometry into consideration should be per-
formed. This analysis would serve to provide more
accurate correlations between the anlytical and experi-
mental results. Such an analysis should also lead to
further clarification of some of the observed trends in
some of the experimental results, such as the interactions
between Poisson's ratio and load biaxiality on the
fracture strength.

The finite-element analysis should be extended to include
elastic-plastic material behavior and subcritical crack
growth., An analysis of this kind should provide a
greater appreciation of biaxial load effects on crack-
tip plasticity, and its consequent effect on the fracture
characteristics. The subcritical crack growth capability
of the finite element analysis would also serve to pro-
vide more information for comparison with the experi-

mentally-observed angles of initial crack extension.
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The interaction between Foisson's ratio and load biaxility
and their influence on the fracture strength should be h |
examined further. The reversal of trend of the fracture load, !
G.» Versus k, observed for aluminum and plexiglass needs to
be examined in more detail under both plane stress and
plane strain conditions,

Fracture tests should be performed on specimens contain-

ing two collinear cracks since no tests of this type have
been performed. It would be desirable to perform tests
with horizontal starter slots as well as with the starter
slots at an angle.

More fatigue crack growth tests need to be conducted to

examine in mo.e det~il the biaxial effects on %ﬁ in the

range 0<k<1.0, since nearly all of the biaxial effect

that was observed in the GWU tests occurred as k was

increased from zero to 0.5. These test results should

also be examined and used, in conjunction with existing

data, to formulate modifications to existing semi-empirical

fatigue crack growth rate laws that would explicitly in-

clude k as a factor. At present it appears that the

dependence on k of %ﬁ would be highly nonlinear.

Additional angle-cracked tests should be performed so

that crack orientation angles other than a=45° and 90°

could be studied. These results would have considerable !
practical significance since actual cracks in biaxially-

loaded structures (such as pressure vessels, etc) will
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not normally be aligned with the principal loading
directions.,

A wider range of structural materials, including titanium
and steel alloys, should be tested in order to determine
quantitatively the relevance of the biaxial effect on
these structurally important materials. Such tests

could provide for greater variations in important
variables such as crack-tip plasticity, subcritical

crack growth énd‘plane stress versus planevstrain con-

ditions, within the context of a biaxial loading situation.
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TABLE 1 Comparison of Predicted ahd Measured Values for

a
G ek ol

the Angle of Initial Crack Extension for Angle-
Cracked Specimens

BIAXIALITY RATIO 8, (predicted)’ 9, (measured) i
(degrees) (degrees) ?
K =0 -52 -48 :
k = 0.25 -46 -44 i
k= 0.5 -41 -27
k = 1.0 -0 -3

Determined from Fig. 19 for a=45°, Estimated accuracy
2 degrees except for k=0.25, which was obtained by

interpolation.
Determined by averaging the measured. values of each

pair of specimens having the same values of k.. Estimated

accuracy *3 degrees.
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TABLE II Effect of Biaxial Loads or the Fatigue Crack
Growth Rates of 7075-T6 Aluminum

Biaxiality Ratio gﬁ(in/cycle)

AK = 7ksivin AK = 10ksivin

kK = 0 3x10°° 9x10°°>

6 6

k -~ 0.5 3x10° 6.5x10

6 6

k=1.0  3x10° 9%x10"

6

5

k = 1.5 3.5x10° 3x10°
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i TABLE III  Effect of Biaxial Loads on the Fatigue Crack oo
Growth Rates fo 2024-T3 Aluminum | j

” b

Biaxiality Ratio %%(in/cycle) i é

L)

AK = 10ksivin AK = 40ksivin

N
kK = 0 1.9x10° 8 1.3x10°4
|
, kK = 0.5 1.5x10° 8 1.0x10"%
k =1.0 ) 1.4x10° 9 1.1x10"%
|
|
; |
' |
(
f |
i -123-




O S B S A N

-
Y'A ) ‘
— oty | [
+
[t =
=i 8 HF'--
' >
ko —>- e KO
e~ -th
— SN
|
el R T — l-d-—-J
1 v v v vy
o
Fig. 1. Inclined interior crack geometry.
.\
i (;g Fig. 2. Polar coordinate system at the crack tip.
i 2
E
i
é«—-nnuu-n-u~q—~v~ L T P A T

i

e w0

PR

g g




'-%x?i;?- st - — —— e RN, - —
-
-~
i
.
% - a
~
—
g
(o))
Fig. 3. Stress intensity factor K, for the inclined
crack geometry.
'y h-'
_ 34
- 4
)
E
s ! <
\N Ky
?\‘I 3 "l
3
) -
Fig. 4. Stress intensity factor K, for the inclined
crack geometry.
. e s s e

W ,
!

<o

B IR,

ks e o

e e




F
-
;

T T e e s ¢

5.

Local elastic strain energy rate.
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Fig. 26. Bound region enclosing the crack.
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for 2024-T3, k = 0.
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Fig. 66. Fatigue crack growth rate versus AK (logarithmic scale)
, for 2024-T3, k = 0.5,
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Fig. 67. Fatigue crack growth rate versus AK (logarithmic scale)
for 2024-T3, k = 1.0,
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