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SUMMARY i

The performance of the WRELADS laser airborne depth
sounder has been assessed in North Queensland coastal
waters from Townsville to Torres Strait. This was
achieved by recording water turbidity and maximum sounding
depth in the aircraft along the flight path. The
parameter used in the aerial survey as a measure of water
turbidity was related to beam attenuation coefficient
measured from a boat in a joint aircraft and boat trial.
Data relating the statistical distribution of turbidity to
water depth werp obtained and compared with the observed
performance characteristic in order to indicate the
proportion of Queensland coastal waters suitable for
sounding with an airborne laser sounder.
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I. I0TRODUCTION

The laser airborne depth sounder (WRELADS) being developed at the
Defence Research Centre Salisbury to assist the Royal Australian Navy in its
task of charting Australian coastal waters, is described by Clegg and
Penny(ref.1). The results of trials in the development program have been
reported by Abbot et al(refs.2,3).

The performance of the depth sounder is limited by the turbidity of the water
beneath the aircraftthrough which the laser pulse must travel. The influence
of water turbidity on the maximum depth that can be measured by the system has
been studied experimentally by Phillips(ref.4) during a joint aircraft and
boat trial. The water turbidity was characte.-Ased by the beam attenuation
coefficient, which was derived from measuremeuts made with a transmissometer
lowered into the water from a boat. The maximum measurable depth in a given
type of water, called the extinction depth, ,was estimated from return signals
recorded by the WRELADS system in the aircrait.

The need for a boat to work in conjunctioct with the aircraft imposed a severe
limitation oL, the amount of data that could be collected and hence the
reliability of the performance characteristic derived from the experiments.
In an effort to overcome the limitations. imposed by the need for a 3aoat, an
attempt was made to determine water turbidity from the aircraft during a trial
in June 1980. This joint aircraft and boat trial, carried out in
St Vincent Gulf in South Australia, shows that water turbidity can be related
to the shape of the backscatter sigtnal under certain circumstances. The
results of this trial are described by Phillips et al(ref.5).

In this report, techniques for measuring water turbidity from an aircraft are
studied more carefully and used in an aerial survey of Queensland coastal
waters from Townsville to Torres Strait. The results of this extensive survey
allow the depth sounding performance of the WRELADS system to be specified
over a wide range of water turbidity.

2. MEASUREMENT OF WATER TURBIDITY IN SITU

Water turbidity is due to the two primary processes of absorption and
scattering. The beam attenuation coefficient, which is the sum of the
attenuation and scattering coefficients, can be derived from measurements made
with a water transmissometer. Such measurements have formed the basis of
previous studies of water turbidity(refs.4,5). However, there is good reason
to believe that the performance of the laser depth sounding system is more
closely related to the diffuse attenuation coefficient K. For this reason the
relationship between the diffuse and beam attenuation coefficients were
investigated experimentally.

2.1 Beam attenuation coefficient

The beam attenuation coefficient is an intrinsic parameter of the water,
that is, it depends on neither the ambient lighting conditions nor on the
design of the instrument used to measure it. As a parameter used to
describe water turbidity it has several advantages. Firstly, measurements
performed by different people at different places and times can be directly
compared. Secondly, mezsurements can be made both at night and during the
day. Thirdly, it has :j precise definition and can be used in theoretical
modelling. Fourthly, 4t can be derived from a single measurement with a
suitable instrument.

The beam attenuation co.efficient is an exclusive measure of turbidity in
the sense that it excludes from consideration all absorbed and scattered
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light. It therefore provides a measure of te amount of direct. light
palssing through a section of water. However, the laser depth sounder makes
tuse of all the I ight transmitted to the sea bed and back to the surface,
whether it is scattered or not. Consequently, the beam attenuation
coefficient is not the most appropriate measure of turbidity for describing
the performance of the depth sounding system.

The measurements of beam attenuation coefficient given in this report were

derived from measurements of water transmittance made with the
transmissometer described by Woodcock(ref.6). The instrument maintains a
constant lamp brightness so that the water transmittance can be determined
from a single reading.

2.2 Diffuse attenuation coefficient

The diffuse attenuation coefficient is not strictly an intrinsic property
of the water. It describes the attenuation with depth of the downward
irradiance within the water, which depends on the angular distribution of
the downwelling light. Different values of the diffuse attenuation j
coefficient can occur in the same water, depending on whether the ambient
light is dominated by directional sunlight or by diffuse skylight.

The values of diffuse attenuation coefficient given in this report were
derived from measurements of the downward illuminance in the water as a
function of depth, The measurements were made with a Lambda Licor sensor
kindly made available by the School of Biological Sciences in James Cook
University.

These measurements suffered from three problems. Firstly, the meter
measured illuminance, not spectral radiance. Therefore, although it was
most sensitive in the green region of the spectrum it was nevertheless not
confined to the laser wavelength of 532 rim. Secondly, on the day of the
trial the sky was partly covered with cloud and the ambient light varied
from direct sunlight to overcast conditions. This resulted ip variations
in the measured illuminance and hence uncertainty in the derived values of
K. Thirdly, the instrument was lowered over the side of the RAAF search
and rescue boat and the readings could at times have been influenced by the
boat's shadow.

The results of the simultaneous measurements of the diffuse and beam
attenuation coefficients are presented in figure 1. The open circles
represent the actual measurements and the line is a regression line through
those points. It can be seen that a linear relationship between the two
variables provides a good fit to the data. However, the regression
coefficients differ from those given in an NADC publication(ref.7).
Nevertheless, the differences between the two, sets of data are within the
errors associated with the two instruments.

Since both attenuation coefficients are affected by two independent
processes, namely absorption and scattering, the difference between US and
Australian data could be due to different water types, although the
available data are too limited to confirm that.

3. MEASUREMENT OF WATER TURBIDITY FROM AN AIRCRAFT

The attempt to measure water turbidity from an aircraft by measuring the
amplitude and attenuation of the backscatter signal from a pulsed laser
reported by Phillips et al(ref.5) was hindered by a number of errors. The
main errors resulted ;com inadequacies in the theoretical model used to
analyse the data when the water was either horizontally stratified or



-3- ERL-0192-TR

reldtively shallow.

The data obtained during the North Queensland trials in August 1980 should be
more accurate for the following reasons. Firstly, the aircraft and boat
measurements were alain made within a few minutes and within one hundred
metres of each other, thereby minimizing errors due to horizontal variation in
turbidity. Secondly, the water turbidity was oheerved to be vertically
layered and variations in the beam attenuation .oeificient were only a few
percent over the full range of water depth. Thiu y, the water was in general
deeper than that in South Australia and longer backscatter curves were
recorded.

3.1 Backscatter amplitude
The amplitude of the backscatter signal depends on the operating conditions

of the green receiving system. The conditions applicable to the results
presented in this report are as follows:

Filter Band Width 0.2 nm

Filter :emperature 240C

Polarizer Orientation Crossed

Photomultiplier Tube EMI 9813 KB, Ser.No. 12437

Photomultiplier Voltage 2100V

Photomultiplier Dynode Conditions constant gain

The backscatter signals were recorded by photographing several traces on an
oscilloscope using polaroid film. Points were subsequently read from the
photographs and subjected to the Megressior, analysis described in
reference 5. Once the regression coefficients were calculated the
amplitudes of the backscatter signal at the depths 1, 2 and 5.6 m were
calculated. In all cases the amplitude of the backscatter signal is given
as the voltage at the input to the Biomation Waveform Recorder.

The results of the analysis are presented in figure 2. It can be seen that
values of the beam attenuation coefficient range from about 0.5 to 6 mU.
The absence of data for relatively clear water was due to the strong winds
and rough seas experienced throughout the trial. The scatter of the data
is greatest at all depths when the turbidity exceeds 5 m-1.

The closest approximation to a linear relationship between backscatter
amplitude and beam attenuation coefficient occurs at a depth of I m. At
2 m depth the relationship appears to be linear until a beam attenuationf coefficient of 5 m-1 is is reached. However, at a depth of 5.6 m the
aplitude reaches a peak at about 3 m-1 and then falls again. The reason is
that the most turbid water attenuates the beam so rapidly that its
amplitude at 5.6 m depth is greatly reduced.

The line labelled "assu d calibration" was used to produce the data
reported in Section 3 The depth of 5.6 m was chosen becau.se it
corresponds to the f rst vertical division of the oscilloscope and
facilitates real time measurements in the aircraft when regression analysis
is not possible.
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3.2 Backscatter attenuation coefficient

The attenuation coefficient. of the backscatter envelope was derived from
the same regression analysis used to determine the backscatter amplitude.
The results are presented in figure 3. Substantial scatter is evident for
the data in the turbid water. The regression line shown in the figure
indicates that a linear relationship is again a good fit to the data,

It is noteworthy that the gradient of the backscatter attenuation
regression line is only one third of the gradient of the diffuse
attenuation coefficient line. In other words the backscatter envelope
decreases more slowly than would be expected fror diffuse attenuation.
Possibly, as the laser beam penetrates the water, it becomes more diffuse
and scatters a greater proportion of its light upwards to be recorded as
backscatter.

3.3 Relationship between backscatter amplitude and attenvation coefficient

Since both the backscatter amplitude and the backscatter attenuation
coefficient exhibit a linear dependence on the beam attenuation coefficient
they are expected to be linearly related to each other. Figure 4 shows
that the two backscatter parameters do indeed exhibit a linear relationship
within the experimental error.

This is a significant result because the two parameters are in principle
inaependent since they depend in different ways on the two independent
processes of absorption and scattering. The backscatter amplitude is
dependent only on scattering whereas the backscatter attenuation
coefficient is probably influenced more strongly by absorption than by
scattering. The linear relationship suggests that absorption and
scattering arc related in practice for the water types studied during these
experiments. It is still possible, however, that the relationship could be
different for other water types.

3.4 A survey of Queensland coastal waters

On 9 and 10 August 1980, the aircraft flew a long trial around
Cape York Peninsula following the route shown in figure 5. Along the
eastern coast the aircraft passed over many reefs, zigzagging from close to
the shore to the outer parts of the reef.

Throughout the flight ihe amplitude of the backscatter signal at 5.6 m
depth was recorded periodically by hand from the oscilloscope trace as

mentioned in Section 3.1. This made it possible to attempt for the first
time a large scale survey of turbidity in North Queensland coastal waters.
In the most turbid water, where the beam attenuation coefficient exceeded
about 3 m-1 the backscatter signal continued to grow in amplitude but the
decayed time was so short that the amplitude at 5.6 m began to fall. In
this region a subjective estimate of the turbidity was made.

The need for a subjective estimate arose becaute water with such a high
turbidity had not been anticipated and because the calibration experiment
that yielded data for figure 2 was performed only after the trial.

The most important result to emerge from this survey of turbidiq is that
the values ranged over two orders of magnitude, from 0.05 to 5.0 m I. The

garest water was encountered on the outer part cf the reef where the

water originated from the Pacific Ocean. The most turbid water was
observed in Torres Strait wVere the relatively shallow water was being
agitated strongly by a steady 35 kit wind that had blouet for several days.

-a -"•- • " I...•'', ••
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Thp importance of developing techniques for measuring water turbidity from
an aircraft can be seen from the vast area of water surveyed in a
relatively short time.

4. EFFECT OF WATER TURBIDITY ON LASER DEPTH SOUNDING PERFORMANCE

The performance of the WRELADS system may be specified in terms of the
extinction depth: the maximum depth that can be measured in water of a given
turbidity. A knowledge of the dependence of the extinction depth on the beam
attenuation coefficient allows two important predictions to be made. First,
if the water turbidity and approximate depth in a given region are known, then
it is possible to predict whether the WRELADS system can sound the depths
reliably. Second, if the return signal does not exhibit a bottom pulse theit
the minimum possible depth of the water at that point can be predicted.

4.1 Measurement of depth sounding performance characteristic

On the flight around Cape York Peninsula on 9 and 10 August 1980 estimates
of the extinction depth were made at every opportunity and the results are
presented in figure 6. It can be seen that extinction depths ranged froo
50 m in clear ocean water (eg in the vicinity of Ribbon Reef) to as little
as 3 m in the turbid waters of the Gulf of Carpentaria north of Weipa.

Along the return track south of Weipa no bottom reflections were detected
because the water was too turbid.

If the extinction. depth is inversely proportional to some effective

attenuation coefficient then a plot of the reciprocal of extinction depth
against beam attenuation coefficient should produce a linear trend. Such a
plot is showr in figure 7, together with the regression line through the
points. A considerable amount of scatter is evident for the more turbid

water, probably due to the difficulty in estimating from the aircraft both
the extinction depth and the beam attenuation coefficient. In the clearer
water, however, the points are grouped more closely and do indicate a
linear trend.

The same results are plotted again in figure 8 in a different
way - extinction depth is plotted against beam attenuation coefficient on a
.,Qgarithmic scale. The linear regression line from figure 7 is shown as a
Lorved performance characteristic. It can be seen that the system can
sound to a depth of about 50 m in the clearest ocean water, to about 30 m
in coastal water, and only about 4 m in the most turbid water encountered.

4.2 Statistical distribution of turbidity with depth

An important question that needs to be answered is what percentage of coast
can be sounded by the WRELADS system. In other words, for water of a given
depth what percentage has a turbidity below that given by the WRELADS
performance characteristic.

One set of results obtained during a boat trial on 18 and 19 August 1980 is
shown in figure 9. The beam attenuation coefficients plotted were derived
from transmittance measurements at a depth of 2 m. Ideally the data should
have been obtained at a uniform oiurizontal density throughout a defined
region. However, that was not possible and the data were recorded at
regular intervals along the boat track which zigzagged from shallow to deep
water in order to cover a reasonable range of different water types. It can
be seen that the results fell into two groups. The water near the coast
was very turbid to a depth if about 15 m where it suddenly became much
clearer. From the boat this was seen as a distinct change in water
app-ýarince. The second type of water was associated with the off-
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shore Palm Isles where the water was much clearer. The high turbidity of
the coastal waters resulted from the strong winds and rough seas which
stirred up mud from the bottom. According to a post-graduate student at
the James Cook University, Mr Terry Walker the coastal water becomes much
clearer in cilm conditions. It is therefore probable, although not
established by the present results, that the coastal waters will be able to
be sounded with the WRELADS system in more favourable circumstances.

For comparison, the statistical distribution of turbidity with water depth
measured in South Australian waters is reproduced in figure 10, together
with the performance characteristic shown in figure 9. It is evident that
most of the South Australian waters sampled could be sounded with the
WRELADS system.

5. DISCUSSION

5.1 The Performance characteristic

The performance characteristic in figure 8 is the first one to be obtained
for the WRELADS II system. It indicates a better performance than that
determined for the WRELADS I system in 1977 (see figure 11).

The scatter of the data in figure 8 is no doubt due to the limitations of

the experimental technique. The estimation of extinction depth and the beam
attenuation coefficient from a rapidly changing wave form in real time must
be 3omewhat subjective. Furthermore, the depth of 5.6 m chosen for the
estimation of turbidity was subsequently shown to be unsuitable and the
data are rather sparse in shallow turbid water.

Now that the technique has been proved useful, a more accurate performance
characteristic should be obtainable by maintaining stricter control over
the experimental determination of the two parameters.

Should it be necessary to change the photomultiplier the absolute
calibration of the backscatter amplitude would be lost. It would therefore
be desirable to supply a small light pulse of constant amplitude to the
photocathode of the photomultiplier i.n order to calibrate the gain of the
system.

5.2 Distinguishing different types of turbidity

The linear relationship shown in figure 4 between the backscatter
attenuation coefficient and the amplitude of the backscatter envelope is a
significant result. Since the backscatter attenuation coefficient should
be strongly influenced by absorption in the water, whereas the backscatter
amplitude at the surface should be independent of absorption, the two
parameters are principle independent. The linear relationship observed
could be characteristic of the kind of matter contributing to the water
turbidity. During these trials the main contributor to the water turbidity
was the sediment agitated into suspension by wave action. At the location
of these measurements, the sediment is primarily clay and silt from the
Burdekin River carried northward along the coast according to Belperio
(ref.8). Future experiments in waters where other factors are the main
causes of turbidity could well reveal different relationships between these
two parameters.

Iw
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5.3 Performance characteristic at night

One night trial was flown in order to determine whether the performance
characteristic at night was different from that shown in figure 8 for
daytime operation. In clear water, where the performance is limited by
noise from background sunlight, it is expected that greater extinction
depths could be achieved at night. The few data points obtained duting the
night trial were close to the daytime performance characteristic in the
region of beam attenuation coefficient between 0.05 and 0.2. The failure
to achieve greater depth penetration is attributed to system noise.

5.4 Influence of meteorological conditions

Since the statistical distribution of turbidity with water depth (figure 9)
indicates that the majority of water sampled could not be sounded using theWRELADS system, the influence of meteorological conditions on water

turbidity needs further study. Favourable environmental conditions will
probably be needed for the WRELADS system to sound the most turbid coastal
regions.

6. CONCLUSION

It has been shown that useful measurements of water turbidity can be glade from
an aircraft. This provides a powerful technique for carrying out large scale
rapid surveys of water turbidity. It should now be possible to study the
influence of meteorological conditions on water turbidity so that the lattercan be predicted.

The results have yielded the first performance characteristic of the WRELADS
II system based on a large amount of data.
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