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SUMMARY

This paper introduces probabilistic choice to synchronous

parallel machine modois; in particular parallel RAMs. The power of

probabilistic choice in parallel computations is illustrated by O(log n)

time algorithms for connectivity and recognizing bipartite graphs and

O(log n)j time algorithms for tes'ting if a graph has a perfect matching,

testing in time 0(n) irreducibility of polynomials

over finite fields. We characterize the computational complexity of time,

space, and processor bounded probabilistic parallel RAMs in terms-of

the computational complexity of probabilistic sequential RAMs. We show

that parallelism uniformly speeds up time bounded probabilistic, sequential

RAM computations by nearly a quadratic factor. We also show that

probabilistic choice can be eliminated from parallel computations by

introducing nonuniformity
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1. INTRODUCTION

ProbabiZietic choice is the use of randomly chosen moves in an otherwise

deterministic computation given a fixed input. The introduction of probabi-

listic choice in sequential computations leads to considerable improvement to

the computational complexity of various number theoretic problems [Berlekamp,

70], [Rabin, 74], [Solovay and Strassen, 77], [Adleman, Manders, and Miller,

7S], [Rabin, 80], [Zippel, 79] to combinatorial problems on graphs and

matroids [Lov'asz, 80], to testing polynomial identities [Schwartz, 80], and

testing program equivalence [Ibarra and Moran, 80].

Recently, [Rabin, 80], [Lehman and Rabin, 80],[Francez and Rodeh, 80],

[(eif and Spirakis, 81 and 82] have utilized probabilistic choice in

synchronization algorithms for asynchronous multiprocesses systems.

This paper investigates the use of probabilistic choice in synchronous

paraZleZ machines. We present a pair of simulation results (Theorems 4.1

and 4.2) which relate probabilistic sequential and probabilistic parallel

computations on RAMs. By parallel simulation of previously known probabilistic

sequential algorithms [Aleliunas, et al., 79], our Theorem 4.1 immediately

yields as corollaries the fastest known parallel algorithms for a variety

of combinatorial problems such as an O(log n) time test if there exists a path

between two vertices of a undirected graph and an O(log n) time test if

graph is bipartite. Both these probabilistic parallel algorithms use

O(n3 log n) processors. Previously the fastest known parallel algorithm

for these problems required 0(log2n) [Csanky, 76].
2

We give O(log n) time probabilistic P-RAM algorithms for testing if

a graph of n vertices has a perfect matching, and an 0(n) time

test if a polynomial of degree 0(n) has a
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root over GF(p n). (Also, recently [Reischuk, 81] has shown that a

probabilistic parallel RAM can sort in time O(log n) with O(n)

processors.)

We have an interesting theoretical result (Theorem 5) for speeding

up a log-cost (unit-cost, respectively) probabilistic sequential RAM

computation of time T(n), by simulation on a probabilistic parallel RAM

in log-cost time O(T(n)I /2log T(n)) (in unit-cost time O(T(n)(log T(n))

log(T (n)I(r))) , respectively, where I(n) is the maximum integer

operated upon the simulated unit-cost probabilistic RAM). Previously,

[Dymond, 80] pgoved a quadratic speedup of deterministic multitape Turing

machines; however he considered the simulation of neither probabilistic

machines nor RAMs.

[Adleman, 78] has previously proved that probabilistic choice can be

eliminated in sequential computations if there is no error of acceptance.

Theorem 6 of Section 6 proves that probabilistic choice can be eliminated

from probabilistic parallel RAMs with both errors of acceptance and errors of

rejection by introducing nonuniformity, with some increase of time and

processor bounds which may be traded off. This implies there exists non-

uniform deterministic parallel RAMs which can in unit-cost time O(log n)
2

test if a graph of n vertices is connected, and in time O(log n) test

if a graph of n vertices has a perfect matching, and in time O(n)

test if a polynomial of degree O(n) has a root in GY (pn

boo
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2. DEFINITIONS OF PROBABILISTIC MACHINES

2.1 bstract Machine Types

Before describing our probabilistic parallel machines, it in useful to

define probabilistic (and also deterministic and nondeterministic) machine

types abstractly, without reference to the particular details of operation

of the machines.

Let M be a fixed machine. A configuration of m is a finite string

I over a fixed finite alphabet describing the current state and storage

contents of M. Let -f be the set of configurations of M. Let V
A-

be the set of accepting configurations of M. Let E be the finite input

alphabet of M. Given an input string WE E*, let 10 ( )EC. be the

corresponding initiaZ oonfiguration of M. Lot I- CJ. xJ be the next

move reZation for M1I for each I E , NEXT(I) - {I' I I-- I'} is the set of

possible configurations derived from I by a single move of 1. (We assume

there is no next move from an accepting configuration.) In a norsdeterminietic

machine, any I' ENEXT(I) &ay be chosen nondeterministically. In a

probabiZsitio machine, each IV C4EXT(1) is chosen with equal probability,

independently of previous and succeeding choices. In a deterministic machine

N, INEXT(I)I1l for all E o.

Given a fixed input string WE E*, a computation sequenoc of M is a

maximal length sequence of configurations I0, Ip ... such that I0 - I0 (W)

and I i- Ii for i-1,2,... . The computation sequence is accepting if

it is finite and the last configuration is accepting. In a deterministic or

nondeterministic machine, M accepts w iff there exists an accepting

computation sequence from 10 (W). In a probabilistic machine, M aocepts w
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iff Prob(COMP(w) in accepting) ' 1/2, where COMP(w) is a random

computation sequence from I (0) (generated by random next moves as defined

above). Let the Z~aguage aooeptedby M be L(M) - {WEE*IM accepts wi.

2.2 Error Restricted Probabilistic Machines

Let M be a probabilistic machine which accepts language L(M). Let

the acooeptanoe 2r.O CA((n) and the rejeotion erm o c £R(n) be the minimum

functions such that for all n00, WEEn,

(i) if wL (M) then

Prob{COMP(w) is accepting) CA (n)

(ii) If WE L(M) then

Prob{COMP(w) is not accepting) c R(n).

Note that by definition C A(n) 1/2 and cR (n)141/2.

For deterministic or nondeterministic machines M, M' let MfM' iU

L(M) -L(MQ). For two probabilistic machines M, M', let M'M1 have both

thea same error of acceptance and the same error of rejection.

Let M be a BP-probabiZ[is tic machin, if there exists a constant

C< 1/2 such that for all n >0, £;max(CA(n),cR(n)). Thus a BP-probabilistic

machine has a constant upper bound, which is less than 1/2, on errors of

acceptance and rejection.

Let M be a R-probabiZietic machine if there exists a constant

C< 1/2 such that for all n >0, E> C (n), and M never has an accepting

computation on any input string WE E*- L(M).

4
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2.3 Probabilistic Sequential Machines

A nondeterministic Turing machine may be made a probabiZiatio uring

maohine by allowing next moves to be chosen randomly with equal probability,

as described in Sec. 2.1. See (Simon, 15] for a discussion of probabilistic

Turing machines with unrestricted errors and see [Adlemen, 78] for some

results for R-probabilistic Turing machines. [Bennett and Gill, 813

discuss these and various other classes of probabilistic Turing machines.

Our principal sequential machine model is the probabilistic Random

Access Machine (RAM), which is defined here similarly to [Aho, Hopcroft and

Ullman, 741, except we allow the RAM probabilistic choice. A pr'obabiZiatio

RAM consists of

(1) an infinite sequence of memory locations m0,m1 ,... each of which

are indexed by and contain a nonnegative integer

(2) a fixed set of registers R each of which contains a nonnegative

integer

(3) a probabilistic finite state control which allows the following

operations:

(a) for any registers rl,r 2 C R, Zoad (or read) the contents of r

into (or from, respectively) the contents of global memory

location mi, where i is the current contents of register r 2"

(b) for any registers r 1 ,r 2 ,r 3 E R, apply an addition, subtraction,

multiplication, or division operation on the contents of

registers r 1,r 2 and load the result into register ry3

(Note: we round noninteger rationale to the next lower integer. Also, we

substitute 0 for the result of a subtraction which is negPutive.)



-7-

A unit cost RAM in charged 1 step for each of the above operations; a

tog-oOst RAM is charged rlog(x+2 )1 steps for each of the above operations

which are on integers of size x.

We assume a binary input alphabet {0,11. Given an input string

wE {o,1}*, each memory location ml 1 initially contains the i-th bit of

w for l1i4 IwI, mn containu 2, and all other memory locations and

registers are initially 0. The memory location to ,... ,mn are read-only,

and cannot be loaded into. Also, we assume the finite control has

distinguished initia•Z and accepting states. A configuration is accepting

if the machine is in the accepting state. The probabilistic RAM accepts

input w if with probability > 1/2 a random computation sequence is

accepting. The probabilistic RAM has time bound T(n) (apace bound s(n),

integer bound I(n)) if on all inputs of length n and accepting

computation sequences, the machine takes ( T(n) steps (uses 1 S(n) space,

operates on integers IC I (n), respectively). Note that we have defined steps

differently for unit-cost and log-cost RAMs. Furthermore, i4 log-cost RAM

(unit-cost RAM, respectively) is charged log(x+2) (1, respectively) units

of space for each noninput memory location and register utilized in an

accepting computation, where x is the largest integer stored in that

memory location or register.

2.4 Probabilistic Parallel RAMs

Our principle parallel machine model is the Parallel Random Access

Machine (P-RAM), similar to that defined in [Fortune and Wyllie, 78] and

[Wyllie, 79). However, we allow these machines probabilistic choice.

Initially, given an input string wE {0,1}*, a probabilistic P-RAM consists

of a single probabilistic RAN initialized as defined in 2.3, with an
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additional operation: fork which allows the original RAM to create a new

"clone" RAM sharing the same memory, with copies of the original RAM's

registers with the same contents, with an identical finite state control,

and initialized at some given state. Any new RAMs may also create new RAMs

by the fork operations. All these RAMs operate synchronously with the

original RAM. Furthermore, their probabilistic choices are assumed to be

independent. RAMs are allowed to simultaneously read the same memory

location. However, if two distinct RAMs simultaneously load into the same

memory contents, then the entire computation of the P-RAM fai.s. If on a

particular computation sequence the original RAM enters its accept state

and there have been no such simultaneous memory load conflicts then this

computation sequence is considered to be accepting. The probabilistic

P-RAM accepts an input string wE {0,1}* if with probability > 1/2 a

random computation sequence is accepting. (See 2.2 for definitions of

errors of acceptance and rejection.) The probabilistic P-RAM has time

bound T(n) (space bound S (n), integer bound I (n), processor bound P(n))

if on all inputs of length n and accepting computation sequences, the

machine taken T(n) steps, (uses < S(n) space, operates on integers

< I(n), uses P(n) processors, respectively). Note that space and time

are charged in units depending on whether the machine is unit-cost or

log-cost as defined in 2.3.
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3. SOME FAST PROBABILISTIC PARALLEL ALGORITHMS

This section describes some time efficient algorithms for probabilistic

P-RAMs which we easily derive by parallelizing known probabilistic

sequential algorithms. (Section 4 gives a uniform method for parallelizing

any probabilistic sequential algorithm.) All the algorithms described here

are R-probabiZistic: with rejection error < 1/2 (and no errors of acceptance)

if the probabilistic trials are made twice.

THEOREM 3.1. There are unit-cost R-probabilistic P-RAMs with time bound

O(log n) and processor bound O(n3 logn),which given a graph G with n

vertices,

(a) can test if G has a path between two given vertices, and

(b) can also test if G is bipartite.

Proof. [Aleliuneas, et al., 79] give for these problems R-probabi-

listic sequential algorithms which can be implemented on a probabilistic

RAM in O(1) space (using integers size < n2 for representing edges)and

O(n 3) time. Our probabilistic parallel algorithms are derived immediately

by applying Theorem 4.1. 1

Note that the fastest known deterministic P-RAM algorithm for testing

connectivity requires O(log n)2 time and O(n 5) processors [Csanky, 76].

THEOREM 3.2. A unit-cost R-probabilistic P-RAM with time bound

2O(log n) and processor bound O(n) can test if a graph of n vertices

has a perfect matching.

*
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Proof. Let G- (V,E) be a simple graph with vertices V={l,...,nJ.

Lovasz, 80] gives a probabilistic sequential algorithm which chooses an

Nn 0 (I) and constructs a symmetric nxn iatrix B=B, , where for l i,j <n

(a) B is a random element of {1,...,N} if i< j and (i,j)EE.
- ij

(b) Bij=-Bj. if i>j and (i,j) 9E.

(c) Bij. 0 otherwise.

If the determinant of B is not 0 then G has a perfect matching.

If the determinate of B is 0, then for N sufficiently large, G

has a perfect matching with probability < 1/2. The parallel matrix

inversion algorithm of [Csanky, 76] can be used to compute the determinant

in time O(log n)2 and O(n ) on a P-RAM. 0

_________
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THEORE4 3.3. A unit-cost R-probabiZistic P-RAm with O(:n + (log(nm))2

time bound and O(n+m) processor bound can test if a polynomial f(x)

of degree m has a root in GF(pn), where p is a fixed prime.

Proof. We parallelize the probabilistic algorithm of [Rabin, 80]

(which generalized and proved validity for a previous algorithm of

[Berlekamp, 70] for GF(p)). (This algorithm can be implemented

on a unit-cost probabilistic sequential RAM in time O(n 2m)). First,

compute f (x) =GCD(f(x),xPn - -). If f (x) -I then f(x) has no roots

over GF(p ). Otherwise, choose a random anE{0,l,...,pn-l} and nompute
f 6 (x) =GCD(f 1 (x),(x+6) (pnl_) /2). Let d.1 d6 be the degrees of polynomials

f 1 (x), f 6 (x) respectively. If 0< d6 < d1  then f(x) has a root in

GF(pn) (in this case f(x) has factor f (x) if 2d d 1 and factor

fI(x)/f 6 (x) if 2d6 > d1), and otherwise f(x) is irreducible in GF(pn)

with probability ) 1/2. The required polynomial GCD computations can be done
2

by a unit-cost P-RAM 0(log(nm)) time and 0(n+m) processors by using the

shuffle-exchange network of (Stone, 71] to compute the convolutions

required for the polynomial GCD algorithm of [Aho, Hopcroft, and Ullman, 74].

The exponentiations can be computed in 0(n) parallel time by repeated

exponentiation. 0

(Note that the fastest known deterministic sequential algorithms

[Adleman, 80) and [Adleman and Odlyzko, 81] for testing

nif a polynomial of degree n has a root over GF(pn)

require time O(log n)IOg(lOg(lOg n These algorithms be speed-up by

our Theorem 5 to O(log n)1/2 log(log(log(n)))+l parallel time on a

deterministic P-RAM, but the resulting parallel algorithms remain very

s.ow in comparison to those provided by Theorems 3.3.
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THEOREM 3.4. A unit-cost R-probabiZistic P-RAM with time bound

O(log n) and processor bound O(n2 /log n) given n xn integer matrices

A, B, C can test A'B#C.

Proof. Choose a random column vector xE {-i,i}n and test

A(Bx) Cx. This test can be done by a probabilistic P-RAM within time

O(log n) and processor bound O(n 2/log n) by forming n/log n binary

trees of processors, each of size 2n and depth O(log n), and pipelining

the required dot products. [Freivalds, 79] shows that if A.B #C then

Prob{A(Bx) =Cx} ' 1/2. 3

Note that the naive algorithm for testing A*B #C in time O(log n)

on a deterministic P-RAM requires at L<ast n 3/log n processors.

I
- . -- ,.i''--. * .
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4. SIMULATION RESULTS BETWEEN PROBABILISTIC RAMs AND PROPABILIS'IC P .RAMs

(Fortune and Wyllie, 78] and [Wyllie, 79] characterize the computa-

tional complexity of their deterministic P-RAMs in terms of the corplexity

cf deterministic complexity classes. It is the aim of this section to do

the same for our probabilistic P-RAMs. Our simulation methods are similar,

except for the use of probabilistic choice to insure the probability of

errors of acceptance and rejection are preserved.

4.1 Simulation of a Probabilistic RAM by a Probabilistic P-RAM

THEOREM 4.1. Let m be a probabii8tic RAM with oonstructibZe time

bound T(n).)n, apace bound s(n)> log n, and integer bound I(n). Then

there is a probabiZistic P-RAM M' such that M•M' (see 2.2 for definition

of the equivaZence reZation w); if M is unit-coat then m' has unit-cos8t

time bound O(S(n)log I(n) +log T(n)), and processor bound O(I(n) S(n)T(n));

if m is Zog-cost then m' has Zog-cost time bound O(s(n)+ 1o9r T(O)2

and processor bound 0(4S(n)T(n)).

(Note: Theorem 4.1 gives a speed-up for unit-cost RAMs only if

S (n) log I (n) <T (n), Theorem 5.1 provides a uniform quadratic speed-up even

if S(n)-T(n).)

Proof. Fix some input string we En and let 10 () be the initial

configuration of M. Let i be the set of configurations of M with

space S(n). Let p - I (T(n) + 1). Let each IE C and each t,

0(t4T(n) be encoded as a distinct integer i-<I,t>, where 1(i~p.

We can assume that the encoding and its decoding are computed in O(log p)

steps on a P-RAM.

_ •wj, ••~~~~~~~~~~~~~~..... ........,..., _.•.•.......•m'a•1L•5--.-..........."... - •"'" '-..........................
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Our simulating probabilistic P-RAM M' will begin by a series of fork

operations yielding RAMs Ml,...#MP. Each RAMM iI le~i~p, has a local

register ri and an associated global memory location NEXTi which is

initialized as follows: suppose i-<It> then if I has any immediate

successor I', let Mi randomly choose some such I' and load <I,t+l>

into NEXT and otherwise if I has no successors then let M load i
i

into NEXT After this initialization, each Mei for l1i4p,

synchronously:

(1) loads the contents of NEXT into register ri where j is the

contents of NEXTi, and

(2) then loads NEXTi with the contents of ri.

This is repeated rlog pl times. We can assume <I0 (w),O>-1 and M1 is

the original RAM of M'. We let m' enter the accepting state (so M'

accepts) if NEXT 1 ever contains integer <It> where I is an accepting

configuration of M.

If M' accepts on a particular computation, then there must be a

sequence of memory locations NEXT<I >,0,..., NEXT<It.I,t-.> is initialized

to <Ii,#>,...,<I ,t> where 1 -I, I0 M 10 .It is an accepting

computation sequence of M, and t4 T(n). Thus the memory essentially forms

a path from NEXT<z0,0> to NEXT<It~t> decreases by a factor of 1/2. Thus

after rlog pi iterations, NEXT<l0 0> contains <It,t>.

Suppose I0,11,... is an execution sequence of M, derived from a

particular sequence of probabilistic choices p. Suppose also that the RAMs

of M' make a sequence of probabilistic choices p' such that M<1t4t>

initially loads NEXT< t,t> with <It+ ,t+l> for t- 0,l,...,T(n) -1.

Then M errors on acceptance (rejection, respectively) of w when making

____ __________ __
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probabilistic choices p iff M' errors on acceptance (rejection,

respectively) of W when making probabilistic choices p'. Since p and

p, are chosen randomly, it follows that MmN'. if N is unit-cost

8(n)1.01 ( T(n)S ; so if M' is also considered to be unit-cost the time

and space bound is 0(log p) -0 (S (n) log I (n) + log T(n)) and the processor

bound is~n p.(1n (() n)
bound is p wO(1 nWSnT(n)). If M is log-cost 2 2S(n)4

2
so if MI' is also considered to be log-cost its time bound is 0(log p) -

O(S(n) +log T(n)) and processor bound is p-0(4 T(n)).

4.2 Simulation of a Probabilistic P-RAM by Probabilistic RAM

THEOREM 4.2. Let m be a p'obabiZietio P-RAm with time bound T(n),

spaoe bound S (n), and prooessor bound P (n). Then there is a probabi•astic

RAM m4' hith space bound 0(S(n) +P(n)) such that Mow M'. Furthemore, if

M is unit-cost then 14' has unit-cost -i~me bound 0(T(n)P(n))s and if M4

is tog-oost then m' has Zog-cOst time bound O(T(n) P(n)log P(n)).

Proof. The simulating probabilistic RAM will have only 5 registers;

the first register of M' will store an integer p giving the total

number of RAMs currently being executed, and the second register of M'

will store an integer designating the RAM currently being simulated; the

other 3 registers of M' will be used for arithmetic operations and

indirect addressing of memory locations. Suppose each RAM of M has r

registers. The registers of the simulated RAMs of M will be stored in a

special block of memory locations, which is increased by r + I on every

fork operation. The simulation of X' by M is straightforward; on each

move of M, M' must simulate a move by each of the currently active RAMs

of N. This requires O(P(n)) steps if M' is unit-cost, and O(P(n)log P(n))



st~eps if M4' in log-cost. By storing two copies of the memory of M, it

is easy to detect simultaneous load conflicts. MI' is allowed to enter its

accepting state just when the original RAM of M4 enters its accepting staAe

and there are no simultaneous load conflicts. Since the probabilistic

choices taken by the individual probabilistic RAMs are assumed to be inde-

pendent, and the simulating probabilistic RAM M4' takes independent

probabilistic choices, the probability of errors of acceptance and rejection

of M4 and M4' are identical, so 14~14'.0



-*1 -17-

5. PAALL3L &P3D.-UP OF PROBABILISTIC RAMs

TREOlU4 5.1. Let m be a probabilist-o Mm wlith oonestrotibZ. time

bound T(n) ;n and integer bouw," z(n). Then thee is a probabilZstic

P-RAN N' euoh that NmN' and if m io unit-ooet then m' has unit-ooet

time bound O(T(n) (log T(n))log(T(n)I(n))) 11 2  and if m is Zog-oost then

m' has Zog.ooet time bound O(T(n)'log T(n)).

Proof. Let wE {O,1)* be on input string of length n.

There is t constant c;01 such that N has at most c choicec for

next moves at each step. Thus the choices can be represented by a

sequence PM P 0"'*PT(n)-l where pt C{1,...,c}. The parallel simulation

of M by m' begins by probabilistically choosing pO,..T(n)l in

O(log T(n)) parallel time, knd storing these choices in distinct memory

locations.

The fundamental idea (previously used in [Hopcroft, Pa',l, and Valiant,

75] and [Dymond, dO] for spec--up of 4eterministic Turing machines) is to

partition the T(n) st3;s into consecutiv3 intervals of length L,

1 L (T(n) to be determined below. 4

Let q be the rwumer of states in the finite controle of N . Suppose

in the following that M is unit-cort. Then M can read from and load

into at most 3L registers and veory locations within a time interval A.

of •ength L. FurthWrmore, we can encode by a positive integer

(res q(T(n)I(n)) the current state and the contents and addresses of the

registers and memory locations read from (or loaded into) during A.

(If N is log-cost, N can read from and load into at most 3L bitr of

registers and memory locations with a time interval A of length L. Thus

3L
we can encode this by a positive integer <r, where r- q(T(n)4) in the

case N is log-cost.)
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Let m. rT(n)/L1l- 2. For each t-0,L,2L...,.N, the simulating N'

constructs in global memory a table PREDICTt which given a positive

integer L( r encoding a possible state of N and contents and addresses

of all registers and remory locations to be read during time interval

A .'{t't+l...,t+L-l) PREDICTt(i) is a positive integer 4 r encodingt

the contents and addresses of all registers and memory locations to L

loaded into during At using the predetermined choice sequence

,+,..Opp tW. However, let PRECICTt() -0 if this choice sequence

requires reading a register or memory location whose contents are not defined

by 1, or if the contents of a register or memory location are provided by

i but are not read from. These tables can be constructed in parallel by

N' in time O(L+log r).

T(n) distinguished global memory locations of NI are used .to store

the contents of the memory of M. Also, a special register is used to store

the state of the finite control of M. These are initialized as in the

initial configuration of M. The simulation of N by M' will then

proceed sequentially in H phases, each corresponding to a time into:val

At, for t-0,L,2L,...,HL.

Suppose at the start of the phase corresponding to interval At, m'

is currently storing (as described above) the configuration I of M,

where 10,Zle... ,t is the sequence of configurations of X induced

from I =-I0 () by the choice sequence O'cl'"''t- chosen by N' at

the start of the simulation. Then there is a unique sequence of configura-

tions ItZt+l'.*. It+L induced by the predetermined choice sequence

ptPt+,,...,pt+Ll. "Hence there is a unique it, l(i(r, such that

PRUDIC (it) pi0 and it encodes contents of registers and memory locations

...... .. .
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consistent with Its PM•XCTt(it) is encoded and is ued to update the

memory of N' to store the configuration I * After the phase

associated with time interval ý, N' simulates N step by step sequentially for

t- (IXl)L,(H+)L+l,...,T(n). Let the original RAN of N' enter the

accepting state if the simulated N does. Since the choice sequence

is chosen randomly by N', it induces a random coriputation

sequence of N from 0 (W), so NON'.

In the ase N is unit-cost, we let N' be unit-cost. The unit-

cost time for initialisation and computation of the PREZCT tables is

O(L+log r) - O(L log(T(n)Z(n))). The unit-cost time for each phase is

O(loglog r) = O(log(L log(T(n)l(n)))) since encoding and decoding of

elements of the PREDICT tables is done in prallel. There are < T(n)/L

phases. Thus the total unit-cost time is

O(L log(T(n)I(n))) + (T(n)/L)O(log(L log(T(n)l(n)))) + L

- O(T(n) (log T(n))log(T(n)ra(n))) 1/2

for

Lu (T(n) (log T(n))/log(T(n)I(n)))1/
2 .

In the case N is log-cost, we similarly let N' be log-cost. To

allow for O(loglog r) parallel log-cost time access of the PREDICT tables,

the log r bits of each element of a PREMDCT table must be stored in

distict contiguous imemry locations, instead of a single memory location.

The log-oost time for initialisation and computation of the PREDICT tables is

O(L+log r) + O(L log T(n)). The log-cost time for each phase is

0(loglog r) - O(log(L log T(n)))). Thus the total log-cost time is

O(L log(T(n))) + (T(n)/L)log(L log T(n))) + L - O(T(n)lalog T(n))

"for

L T T(n) 3 '



-20-

6. ESLNZNATION OF PROUAULXBTXC CNOICE XN PARALLEL COIWUTAT)ZON

Let K be a (uniform) probabilistic P-MMN with time bound T(n) and

processor bound P(n). Let I (n) be the maxima number of probabilistic

choices made by all the PRIMs of N on any input of length n. (Note that

Z(n) CT(n)P(n)). Let CA(n),C R(n) be the acceptance and rejection error

functions for N, and let C(n) maax( A(n)OCR(n)). Also, let

X (n) a (l+2n) /logAl/ (4Cu(n) (-C (n)))). We assume C (n) c 1/2 so X(n) is f inite.

The following theorem states that we can eliminate the probabilistic

choice in N by introducing nonuwnoifty with advOe bound A(n): i.e..

we allow the nonuniform P-RAN to have in the initial configuration for each

input length n ; 0, a distinguished sequence of A(n) memory locations

each initialised to either 0 or I and fixed for all inputs of length n.

THEOREM 6. For wW T (n), 1 T (n) 4 X (n), t•em is a det.zwinietio

nonunifeor P-p MN w hich aocepts L(M) with time bound O(T(n) ¶ (n) +

log(,(n)/¶(n))), processor bound O(P(n))(n) /-r(n)), and advioe bound

O(X(n)Z(n)).

Notes Thus to eliminate probabilistic choice we have a trade-off

between an increase in time bounds and an increase in processor bounds.

However, if C (n) decreases exponentially, then neither the time bound nor

the processor bound are asymptotically increased.

Theorem 6 will be proved as follows: first we show that we can

eliminate probabilistic choice from N if £ (n) is sufficiently malls

then we show how to make E(n) sufficiently small.

We can as&ue a constant ck) 1 such that K has W c€(n) choices of

moves next fro. any configuration. Fix some input length n O 0. A parallel



*oeooe *qaof p Is of the form p%,...,e(n)..l where

for i-O,1,...,#(n)-l. Le T(f) be all choice sequences of length T(n).

Given an input wC t0,n), a choice sequence In i8 (n) induces a comqutation

sequence of N. Let V(nW) - (PC-hRT(n) I (W CL(N) and N has an accepting

caputation sequence on Input w and choice sequence p) or (Wu LetN) and

N has a nonaccepting computation sequence on input w and choice sequence

0)).

LEMUI 6.1. If c (n) < 2"', then them is a detarmit•io nommiofm

P-Pm A wh,•ho aooepte L (m) wth time bound o (T(n)), prooe.sor bound

P(n) and aduio. bound 0(z(n)).

Proof. It suffices to show (*)

(') Eif 6(n) <27r then there exists soue choice sequence VE"Ty(n) such

that for all wE{0,1)On, p. CN (n)(w).

Our proof is by contradiction (and thus is not constructive). For

"each pERT(n) let f(p) -i{w {O0l1)iI0ET(n) M)1 and lot r IRT(n)l"

Suppose (*) does ro1t hold, so 2 n> f (0 ) for all P E 'IT (A) " Hnce

2n >, f f(p)

. - (r/ A(n))

tr

> 2;, a contradictton 0

LZMA 6. 2. POP any~ T (n) , IICT (n) 4 A(n) , thsereUa probabiUtisti

1-mM m' wa'h amoept. 1) Vmwt aoept~oi and rejection emm ti (n)

c; (n) Where mzax (n) , C(a)) <2"1, aed tiaw boed O(?(0T(n)n +log(A(a)/T (f)))

and pvoo.eov bound 0•(T(n)(n)/T(n)).
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Proof. Let WE {0,i1P be the input string, for some ný0. Our

probabilistic P-RAM M' will simulate M on input w a total of X(n)

times; these simulations will be done by rx(n)/T(n)1 groups of P(n)

probabilistic RAMs, with each group simulating M T(n) times. M' is

allowed to enter an accepting configuration only if M enters an

accepting configuration on at least X(n)/2 of the X(n) trials. (This

technique of determining the corsensus of a series of trials is due to

(Bennett and Gill, 81J.) The count of successful trials can be computed

in log(X(n)/T(n)) parallel time. The acceptance error of M' is

E•(n)n = •I.) X(~~_En)(n)-i

i=X (n)/2

< (4c(n) (l-E(n)))X(n)/ 2 by bounds of [Chernoff, 52] also given
in [Feller, 57]

< 2-n for given X(n) >2n/log(l/(4E(n)(l-C(n)))).

Also we can similarly show the error of rejection CR(n) 2-. Hence
, '(n) < -n

max(Eý(n),E(n))<2 as claimed. 0

Theorem 6 follows immediately by applying to Lemma I the probabilistic

P-RAM M' derived by Lemma 6.2.

By applying Theorem 6 to Theorems 3.1-3, we have:

COROLLARY 6.1. There exists unit-cost nonuniform deterministic P-RAMs

with time bound O(log n), processor and advice bound 0(n4log n), which

given a graph G with n vertices, can test (a) whether G has a path

between two given vertices and can also test (b) whether G is not

bipartite.
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COROLLARY 6.2. There exists a unit-cost nonuniform deterministic

P-RAM with time bound 0(log n) 2, processor and advice bound nO(l) which

can test if a graph of n vertices has a perfect matching.

COROLLARY 6.3. There exists unit-cost nonuniform deter-

ministic P-RAMs with time bound o(n) , processor and advice bound

O(n2) which can test:

Civen a poZynomial of degree 0(n), does it have a root in

GF(pn)?
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7. CONCLUSION

This paper has primarily considered the power of probabilistic choice

for parallel RAMs. Theorems 3.2-5 also hold for fixed connection parallel

networks with probabilistic processors. Theorems 4.1 and 4.2 can be

extended to similar simulation results for other probabilistic parallel

machines, such as the hardware modification machines (HMMs) of [Cook, 80]

augmented with probabilistic choice (see [Reif, 81]). Also Theorem 4

generalizes to other probabilistic parallel machines such as HMMs and

circuits with probabilistic choice.
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