

AEDC-TSR-80-V60

HYPERVELOCITY TRACK TESTS OF THE NASA GALILEO PROBE HEATSHIELD

A. M. Adams ARO, Inc.

December 1980

Period Covered: October 14, 1980 through November 24, 1980

Approved for public release; distribution unlimited.

DER FILE COPY

JTIC LECTE DEC 3 1 1981 D

ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

Jack I. Scatt

JOSH L. SCOTT, Capt, USAF Test Director, VKF Division Deputy for Operations

Approved for publication:

÷.

FOR THE COMMANDER

John M. Ran

VJohn M. Rampy, Assistant Deputy Aerospace Flight Dynamics Testing Deputy for Operations

UNCLASSIFIED

L

74

* *

Ţ

I I P

 \bigcirc

		BEFORE COMPLETING FORM
	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AEDC-TSR-80-V60	1/1 P-A-101	<u>k 12</u>
HYPERVELOCITY TRACK TESTS OF THE	NASA GALILEO	5. TYPE OF REPORT & PERIOD COVERED Final Report, 14 October - 24 November 1980
PROBE REATSHIELD		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(s)	·	. CONTRACT OR GRANT NUMBER(S)
A. M. Adams, ARO, Inc., a Sverd Corporation Company	Irup	
PERFORMING ORGANIZATION NAME AND ADDRES	ss	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Arnold Engineering Development	Center	001503
Arnold Air Force Station TN 3	7380	921EU7
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
NASA/Ames Research Center		December 1980
Moffett Field, CA 94035		13. NUMBER OF PAGES
		14
- MONITORING AGENCY NAME & ADDRESS(II differ	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of the obstract entere	id in Black 20, il dillorent ird	n Repori)
DISTRIBUTION STATEMENT (of the abstract entere SUPPLEMENTARY NOVES VAVANABLE in Befense Technical KEY WORDS (Continue on reverse side if necessary of Ablation test Model recovery Argon	d in Block 20, il dillorent tra <u>Information Conte</u> and Identify by block number)	n Report)
DISTRIBUTION STATEMENT (of the abstract entere SUPPLEMENTARY NOTES AVAILABLE in Befense Technical REY WORDS (Continue on reverse side if necessary of Ablation test Model recovery Argon ABSTRACT (Continue on reverse side if necessary of Ablation test Model recovery Argon Tests were conducted in a hypern ablative characteristics of the Galileo Probe. Data were obtain ranging from 15,850 fps to 17,99 through an argon environment. intact. Measurements were made temperature. A description of the is presented herein. 1 JAN 73 1473 EDITION OF 1 NOV 65 15 0050	Information Conte Information Conte and Identify by block number) velocity track fac heatshield materined from eight sho 50 fps. Six of the The test required of the model velo the test unit, test	The Report)

CONTENTS

I

.

- 0

 \bigcap

]

I

(_..

		Page No.
	NOMENCLATURE	, i
1.0	INTRODUCTION	. 1
2.0	APPARATUS	, 1
	2.1 TEST FACILITY. 2.2 TEST MODELS. 2.3 ARGON ENVIRONMENT. 2.4 INSTRUMENTATION.	1 2 2 2
3.0	TEST DESCRIPTION	. 2
	3.1 TEST PROCEDURE AND CONDITIONS. 3.2 DATA REDUCTION. 3.3 DATA UNCERTAINTY.	2 3 3
4.0	DATA PACKAGE PRESENTATION	. 3
5.0	REFERENCES	. 4
	ILLUSTRATIONS	
FIGU	RE	
1. 2.	Hypervelocity Track G Model Drawing	5 6
	TABLES	
TABL	<u>E</u>	
1. 2. 3.	Test Equipment Setup Test Summary Uncertainty in Test Parameters	7 8 9
	APPENDIX	
A.	Representative Data Obtailled	10
Table Figure	A-1 Velocity and Position History A-1 In-Flight Surface Temperature Data	17 12

NOMENCLATURE

B Bias contribution to uncertainty

Pd Pressure in downrange portion of the range

Pu Pressure in uprange portion of the range

S Precision index

t₉₅ 95th percentile point for the two-tailed Student's "t" distribution

U Total uncertainty

V₁ Range entrance velocity

Anacasion For NTIS GRALI DTIC TAB Unannounced Justification By. Distribution/ Availability Codes Avail and/or Dist Special

ŧ

1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC) at the request of the National Aeronautics and Space Administration (NASA/Ames Research Center) under Program Element 921E07, Control Number 9E07-00-0. The NASA project sponsor was Mr. Chul Park. The NASA project monitor was Mr. Charles DeRose. The results of the test program were obtained by ARO, Inc., AEDC Group (a Sverdrup Corporation Company), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Number V41G-02.

Eight tests were conducted in the Hypervelocity Track \hat{v} , von Karman Gas Dynamics Facility (VKF), AEDC, from October 14, 1980 through November 24, 1980. The objective of the test program was to launch and recover the carbon phenolic heatshield model after flight through an argon atmosphere.

A copy of the final data package for this test program has been transmitted to NASA/Ames, the sponsor of the test program. Requests for copies of the data should be addressed to NASA/ARC, Entry Technology Branch, Mail Stop 229-4, Moffett Field, CA 94035. A copy of the final data package is on file on microfilm at AEDC.

Presented in this report are descriptions of the test unit, including instrumentation, test procedure, data reduction technique, and data quality estimates. Sample experimental data are presented in the Appendix.

2.0 APPARATUS

2.1 TEST FACILITY

The VKF Hypervelocity Track G is described in detail in Ref. 1. The test facility consists of a launcher, a 1000-ft-long tank equipped with a track to guide the test projectile, and a recovery tube to recover the model after testing. A schematic of the test facility is shown in Fig. 1.

The launcher used was a 2.5-in.-caliber, two-stage, light gas gun approximately 150 ft long. The test chamber consists of a 10-ft-diam tank, 1000 ft long, which is divided into three sections. Each section can be maintained at any desired ambient pressure from one atmosphere down to a few millimeters of mercury. For these tests an argon environment was provided in the test chamber. The track, which consists of four rails inside a 7-in.-ID steel tube, guides the test model through the test chamber and into the recovery tube.

In the recovery tube, the test model energy is dissipated in the compression of a gas. The components of the recovery system are (1) a **30-ft** section of converging rails to "guide" the projectile into the recovery tube, and (2) a 500-ft recovery tube composed of an assembly of 10-ft sections of 2.5-in.-ID by 4.5-in.-OD stainless steel tubing. The initial 50 ft of recovery tube extends into the test environment tank and is attached to the converging rail section.

2.2 TEST MODELS

The model design used for these tests is shown in Fig. 2. The nosetips were fabricated from a carbon phenolic 20^o dixie-cup layup material. The model is comprised of an aluminum core, a Lexan[®] base, a heatshield, and the nosetip.

In addition to bonding with BA2112 epoxy, the nosetip specimens were mechanically anchored to the model body by four carbon-carbon pins placed 90° apart. The four pins were machined flush with the nosetip surface. The purpose of the carbon-carbon pins was to enhance the probability of nosetip recovery.

2.3 ARGON ENVIRONMENT

This test required an argon environment at 50 to 300 torr in the uprange section of the range for six of the eight shots. Air contamination of the argon environment was required to be less than 4 percent by volume. In order to provide this environment, the range was evacuated to approximately one torr of air and then filled to the desired pressure with argon. In order to insure the proper argon environment, gas samples were taken prior to each shot.

2.4 INSTRUMENTATION

The instrumentation used in this test included ten X-ray stations and six laser stations. These stations provided the necessary in-flight side view pictures, so that the nosetip characteristics could be monitored during flight. At three of the laser stations, oblique views were used to provide better nosetip surface viewpoints. Data from the X-ray and event time recording systems were used to determine the model position, orientation, and velocity.

Other instrumentation used on this test includes image-converter camera systems at various locations along the track. These cameras view the model nosetip from almost head-on and record the brightness temperature distribution on the nosetip. These camera installations are calibrated so that surface temperature distributions can be obtained from these photographs. Test environmental conditions at test time were measured by the pressure and temperature measurement systems. Table 1 lists the instrumentation locations used for these tests.

3.0 TEST DESCRIPTION

3.1 TEST PROCEDURE AND CONDITIONS

The test conditions for all shots are given in Table 2.

Prior to the launching of the model, the complete model assembly was dimensionally inspected. This procedure established the pretest nosetip configuration.

The model is accelerated to the desired velocity by the two-stage launcher and enters the blast tank. The function of the blast tank is to separate and contain the muzzle gases and prevent them from entering the range tank. The blast tank is separated from the range tank by a quick-operating valve which closes behind the model.

The test environment of interest is encountered in the uprange section of the range. In this test the test environment is that of argon. Throughout the flight, characteristics of the nosetip are monitored photographically.

The model then enters the downrange section of the range. The uprange and downrange sections are separated by a quick-acting valve so that a pressure differential can be maintained when desired.

At the end of the downrange section the model enters the recovery tube. The recovery tube is charged with staged pressures so that the model can be non-destructively decelerated to a stop. The recovery tube terminates into a tapered rail section which mechanically arrests the model and allows the nosetip to be recovered intact.

3.2 DATA REDUCTION

The model velocity history is obtained from the timing data recorded during the shot combined with the known instrumentation locations. Once the velocity history is known, other quantities of interest (e.g., drag coefficient, model ballistic coefficient, and average velocity) are computed.

The ablation characteristics of the nosetip, in this test, were to be determined by NASA/Ames.

3.3 DATA UNCERTAINTY

Measurement uncertainty is a combination of bias and precision errors defined as (Ref. 2):

$$U = \pm (B + tq_5S)$$

where B is the bias limit, S is the sample standard deviation, and t_{95} is the 95th percentile point for the two-tailed student's "t" distribution , and depends on the sample size.

Estimates of the measured data uncertainties for this test are given in Table 3.

4.0 DATA PACKAGE PRESENTATION

The final data package for this project was prepared under separate cover. The package presents the data summarizing the test conditions and test results, including the test setup, test article information, and trajectory data. Pretest model photographs and prints of in-flight X-ray and laser photographs, along with nosetip surface temperature data, were transmitted to NASA/Ames during the test program. Recovered test specimens were returned to NASA/Ames at the conclusion of the test program. Sample data are included in the Appendix of this report.

and the second second with the second of the second

5.0 REFERENCES

 \mathbb{C}

I

- Test Facilities Handbook (Eleventh Edition), "von Karman Gas Gas Dynamics Facility, Vol. 3," Arnold Engineering Development Center, June 1979.
- Abernathy, R. B. and Thompson, J. W., Jr., "Handbook of Uncertainty in Gas Turbine Measurements," AEDC-TR-73-5, February 1973.

Ċ

. (Ĉ

Ċ

.

Ľ

l

l

Sum 2 1

and the second second

Equipmen	t Designation			Equipment Location
Range Reference	Laser	X-Ray	<u>IC</u>	Distance from Range Entrance, ft
Launcher Exit				-48.15
		X-A	-	-42.61
		Х-В		-27.61
Range Entrance (OOV] & OOV 2)				0.0
((X-1		2.55
	L -2			52.86
		X-2		54.17
			IC-4	94.63
		X-7		150.92
		X-10		220,92
	L-11		IC-11	232,98
007-3				305.15
		X-15		312,67
		X-18		377.8
)			IC-20	395.3
	L-19			398.11
		X-23		472.67
		X-28		577.80
			1C-29	591.48
ν.	L-29			598,11
		X-34		697.8
	L-35			721.36
		X-40		817,80
	L-41			841.35
Recovery Tube Entrance				875.24
QOV-4				920.21

TABLE 1. TEST EQUIPMENT SETUP

. .

QOV = Quick-Operating Valve IC = Image-Converter Camera

1

0

(.

. . .

TABLE 2. TEST SUMMARY

J

l^C

Ċ

1

			in recovery			in launch		
Remarks			Failed			Failed		
Nosetip Recovery	Yes	Yes	No	Yes	Yes	No	Yes	Yes
	(air)	(atr)	(air)	(air)	(air)	(air)	(air)	(air)
Pd (torr	9 8	150	49	200	100	301	300	300
	(ar)	(AR)	(AR)	(AR)	(air)	('AR')	(AR)	(air)
Pu (torr)	104	152.	54	203	100	302	300	299
Vi (fɛs)	15 . 850	17,020	17,950	17,750	17,450	17,800	17,620	17,820
Model No.	6450	6494	6495	6496	6497	6498	6499	6500
Shot No.	5457	5471	5472	5473	5474	5475	5476	5477

- - -

Table 3. Uncertainty in Test Parameters

1

,

Ć

Ć

1

	Preciaia	EL INN		Tichcaute Diad	3	(0 + t _{ac} 0)	at y				•
Parameter Beelgnatten	Percent of Antheoding	in 12.00	Presion Degree of	Tercant of Tercant	Under of Manager	Percent of Percent	le staf Sepasta sel	j	Type af Neseuring Device	Type of Recording Bevice	Hrthwd of Bysten Calibratien
Range Pressure	- 		0	-9		en +1		100 t č	Precision variable capacitive transducer	Remie null reading meter	Comparinon with secondary wtandard
Model Velocity	± 0.0011		70	± 9.0034		± 0.0946		15000 1 19000 191	Calculated from distance-time data		
Range Teanerature		* 0.90	8	·	±0.10		t 1. B	100 F 100 F 100 F	Therancoupl e	Nul tiprint ätripchart Brrvanical jamler	Cranariana slib Recondery slaudard
Model Weight		± 1.0			0		-2.042	400 400 400	Laboratory pan scale	Handwritten from reale	Comparinon with Bocondary standard
Spocimen Veight		± 0.0012	30		0		1 0.0021	to 20 20 20	Laboratory pan scale	Mandwritten from accle	Comparinow with mecondary standard
Distance Bornrange		± 0.0014	Ş		± 0.010		1 0.0188	to 140 140	X-Ray shadowgraphs	Photographic film	ท กหุย หมศชy
Time Intervals	0.0002	± 1x 10 ⁻⁷	100		•	± 0.0001	± 2X 10 ⁻⁷	to 0.080 860	24-bit counter	Modcomp computer	Comparianon with primary standard
Brightwens Temperature (Gen 1 System)		* 40	•		t 25		1 130	1600 to 1100 Der K	Photopyrometer	Photographic film	Comparison with secondary standard
Brightness Temperature (Gen 11 Byaten)		\$ +1	•		32 + 1		- 130	1400 to 2000 Deg K	Photopyrometer .	Photographic film	Comparison with secondary wiendard

(1) Listed bias estimates vere assumed except for brightness temperatures.

•

APPENDIX A

REPRESENTATIVE DATA OBTAINED

(

The representative data shown include a sample position and velocity history (Table A-1). Figure A-1 shows a typical nosetip in-flight temperature distribution. Figure A-1 (a) shows the isothermal contours and the locations of the vertical and horizontal temperature scans which are shown respectively as Figure A-1 (b) and (c).

FINAL TIME 7.0000-02 TINT- 5.32440 02056. A 96LTA TIME-1.40000-035CC. INITIAL COMPITIONSI NEIGHT-S. SADOD DEGRAMS PINT-1.033- DETORN BASE DIANETER= 2,50000 00145; DAAG COEFA+ 8.46380-61

INITIAL VELOCITY- 1.50500 84 CONSTANT BRAG COEFF

1848 TON8

VCL 71./SEC. 1.585900 01	1,572700-04- 1,572670 44 1,568600 04	1.564550 04 1.556520 04 1.556510 04	-1.552530-04- 1.548560 04 1.544620 04	1.532990 84 1.532990 84 1.532990 84	
0157 F1.	9.165070-01- 9.742620 01	7.863880 61 9.448490 61 1.1888900 61	1,256550-02- 1,11100 02 1,566660 02	1.075190 08 1.075190 08 2.026070 08 2.182160 08	2.035000 02 2.639710 08 2.639710 08 2.4791470 08 2.942853 02 2.942853 02
1146 56C.				20-C01001111	1,560035-92 ,666655-92 1,764060-62 1,966600-62 1,966600-92 1,966600-92 1,966600-92 1,966600-92

Table A-1.

Velocity and Position History

SECOND LEVEL CONDENTINGI PI- 9.92000 01

• VELOCITY 1.50730 04 8848 586*ff* ÷ 8.41389-61

			•									•																																						
	Ę	:	:	:		Ş	:		:	:	ť	1	:	1								5	:		:	:	:		54		4		:	:	\$:	:	1	::	: :	53					3	-	:	:	1
-13 -13									679	510	6 • D	610	140	480	022		970		5							2					3		Ş	2	ŝ	3	220	2	23	2	Ż		195	240			110	10	22	ļ
											594.	113.		. 474										NG T		3				967.		IE	57.	121.	124	. 422	• • 29	1.						192			5		16.)
					53				20	2	2	1.1	-	68	4		33															2	2			**	2					:2	3				2		-	Ī
5.3		22								2		3	•10	380	250	2	3		Ş	Ì			2			2		23		9	2	20	8	93	Ĩ	2	2	2						35	2	ğ	Ž	2	2	Ĩ
5												į	. 842		127	204	151.		724											320			130	Ĩ	136	12	220							450		2	20			i zi
			ÿr		9 C		2			e : N	*	1	* ~	•	2	3	2 5	2-5	2		10							97 11 0		2	2-1	-	2.1	Ň	Ĭ	ية م									•	J	а <u>N</u>		N. (Ì
¥.:		ļ		ļ					j.			ĩ	Ĭ	Ĩ,	I SUL	I C I	Ĩ		104	1040	ļ				Ī					L.	Ţ	Ş	ž	ž	Ĭ	ļ	ŝ	k,					k	ż	Ā	ł	ž	Š		Ī
25													170	270	374	110	5701	67.01	170	0.20										ž	970	1010	Ĭ	270								1765	270	No.	į		E Z			
·	1		-		. .			5	5	5		-		è	-	-	-					•		-		ō.,		h	-				-		-										-	4	•	e	•	Ş.

where the second sec

and at the set