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THE CAVITY Q FOR ERGODIC EIGENMODES

We consider here the problem of calculating the Q of a very overmoded, (wavelength < < cavity

size) irregularly shaped resonant cavity due to absorption of the electromagnetic radiation at the walls.

We assume further that the volume inside the cavity can be either vacuum, or else partially filled with

anisotropic inhomogeneous dielectric or plasma. Both the scale length of the dielectric and the radius

of curvature of the walls are assumed much larger than the radiation wavelength. However, near the

cavity walls, a vacuum is assumed. Our main interest here is in applications concerning magnetically

confined plasmas. For instance consider a tokamalk containing a hot plasma which radiates at the cyclo-

tron frequency and its harmonics. An important issue is how much of this cyclotron radiation is

absorbed by the walls and how much is reabsorbed by the plasma. Generally this can be calculated with

a ray tracing code where many rays are followed and the absorbtion and emission are calculated along

each ray path. However if the plasma is optically thin, as it would be at the higher harmonics, and if

the reflection coefficient at the wall is near unity the rays would have to be followed for long dis'ances

before one could see how much energy is deposited in the wall. -

SIn this paper we utilize the ergodic theorem to calculate the wall absorbtion for the case where the

wave makes many bounces and before it is absorbed. If the local dispersion relation is

- F(k. r) (1)
where the F is real, the ray equations

dr - F d k OF (2)
dt ik' dt Or

are relevant. It is evident from Eqs. (2) that the ray equations are a Hamiltonian system for which

F(,_r) plays the role of the Hamiltonian, and (k,r) are momenta and coordinate variables. Thus

Eqs. (2) are subject to the same phenomena of ergodicity onset and ergodic motions of other Hamil-

tonian systems. Here we consider the case where the solution to Eqs. (2) is ergodic'. 2 with F the only
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constant of the motion of the ray equations. (We note that even in plasma devices, such as tokamaks,

where the plasma has a high degree of toroidal symmetry, the conducting walls surrounding the plasma

commonly have corrugations and are partly composed of baffels and limiters. Thus this ergodicity

assumption is probably well-justified for waves which experience reflections from the walls.) In the case

of ergodic ray motions it is expected that the time average over the motion of a wavepacket can be

obtained by a phase space average

urn 7-' fo RU~tW, r(f)dt -fdik fdIrf~k,r) gQr0 (3)

where g is any function of k and r and f is the microcanonical distribution

f(k,r) - 8(w - F(k ,Z)) {ff dk dr8 (1 - F(kr))I. (4)

On the basis of (4), it is expected that for an eigenmode with resonant frequency w the wave energy

density in k,r is given by 3

W(k.4.. W(k, t_]) d" 8 (w - F(k,r)) (5)

if the solution of the ray equations is ergodic. This is analogous to the microcanonical ensemble in sta-

tistical mechanics where all phase space points on the energy surface (analogous to the constant

F(kr) surface) are equally likely. In writing Eqs. (4) and (5) we have in mind a cavity filled with a

magnetized plasma or anisotropic dielectric. Also we consider only electromagnetic waves which pro-

pagate freely from the vacuum into the plasma and visa versa. In this case the two polarizations of

plane electromagnetic waves propagating in a given direction, with given frequency are, in general,

non-degenerate. That is they have different values of & I. Thus the dispersion relation w - F(k. r)

will possess these two solutions. Hence in this case, Eq. (5) automatically gives the distribution of
J!

energy in the two polarizations. In the case of an unmagnetized plasma, isotropic dielectric or vacuum,

the two independent polarizations are degenerate, that is, they have the same value of I k 1. In this

case we supplement Eq. (5) with the information that both polarizations are equally likcly. One expects

that Eq. (5) holds in the limit of k - oo; however, it is not yet known how good Eq. (5) is for finite k.

In this respect, recent numerical experiments are of interest4 (typically A L -- 10 in these experiments

where L is a scale length). We shall be interested in applying Eq. (5) in cases where the wave experi-
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ences absorption at the conducting boundaries upon reflection. Under these circumstances, we require

the following two conditions for the validity of Eq. (5). Condition A: The wall absorption in following a

typical ray must be slow enough that the ray wanders over a representative region of the F(k.r) -r

constant surface before significant absorption takes place. Condition B: The dispersion relation F(k, r)

must not exhibit any resonances (i.e., solutions with k - oo). Condition B is necessary in order that

the integral in the denominator of Eq. (4) be finite.

We now calculate the damping o.' an ergodic eigenmode due to finite wall conductivity. The Q of

the cavity is defined as

w ff W ik rddr
Q PSI.. I2d2r (6)

where q, is the surface skin resistivity q s - (A 0o/2ob) /2, o is the wall conductivity which may be a

function of position on the wall, J, is the rms surface current density vector, and the integral, P), d2r,

is taken over the boundary of the cavity. Here we wish to calculate IJJ I,2 (and hence Q).

We recall that, by assumption, near the cavity walls the plasma density is zero. In this region

F(&,r) -I Ic, where cis the speed of light, and from Eq. (5) W(k,r) - 8 - li[c]. Thus, near

the walls, W(Qc.,r) is independent of _r and the direction of k. To treat th;s case we recall that )k << L

and consider a plame wave in vacuum which is incident on a plane conductor. We also assume, as men-

tioned previously, that in the vacuum region near the wall W(kr) is the same for each &.. the two

independent polarizations. Let & be the angle of incidence, and 6 the angle that the maSnetic field vec-

tor H makes with the plane of incidence. Then, from Maxwell's equations and the condition that E

tangential vanish, the current J, created by this plane wave is

i, - 2 H cos#a__ + 2 H sin# cos9G (7)

where q. and @ are unit vectors in the surface of the conductor, respectively perpendicular to and in the

plane of incidence. Averaging over 4 and the solid angle of thz. incident waves we have that

1 2,. ; f 4H 2(co02 • + sin 2ocos2 0)] (8)

g b:
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where dil - 2w sint dO, the integral over dil is from 0 - 0 to 0 - ir/2 (i.e., only over incident

waves), and H 2 may be related to the average energy dersity of the eigenmode in the vacuum near the

wall

vf 81, - _Il dk
IA " H ff W(k, r),dk dr -ffd (9)2 j j 8 6 - F(kr)] ikt

where V denotes the volume enclosed by the cavity. From Eq. (8), IJ, 11 - 4/3 H 2, Thus

Q " 16•' 3 2 ff 8I6 - F(kr)] dkdr. (10)

For vacuum, F(k,r) - ItkIc and Eq. (10) yields Q - (3p±to] [4Ti•)sd2r]-i where the two indepen-

dent polarizations have been taken into account.

Similar arguments to those above can be applied to Helmholtz equation in two dimensions (x and

y), V 2* + k4 - 0 with the eigenfunction zero on the boundary with the result that

< (4/N)2 > - k2f ,2dXdy / fdXdy, (01)

where 8/&q denotes the normal derivative, and <... > denotes the average over the boundary. This

expression has been checked in numerical experiments by McDonald and Manheimer5 using the model

of Ref. 6. Reasonable agreement was obtained, thus giving an indication of the correctness of our

approach. To obtain (11) consider a plane wave of amplitude j incident on a planar boundary where 0

- 0. This leads to a normal derivative of 4# at the boundary of amplitude 2' k cosO, where 0 is the

angle of incidence. Averaging (2j k cos0) 2 over 0 for incident waves (0 < 0 K, 7r/2) then yields Eq.

(I1).t

If the wave has non-zero damping rate y(k r) in the plasma then the cavity Q is (Q%,I + W ])-I

where Q, is the Q resulting from absorption in the plasma ani Q., is given by Eq. (10). Thus the frac-

tion of energy absorbed by the wall is Q.(Q. + Q,)-. The Q resultinj from the plasma losses is

Q," .p-(12)

4 'I
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where
2

Sf f d48( - .)

ff dA4r8(w - F(,))

This may be useful in calculating the amount of energy emitted by cyclotron radiation which is

absorbed by the wall in a thermonuclear fusion device.
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