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* fThis work was supported in part by the National Science
Foundation Grant NSF-MCS79-21024 and the Office of Naval
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ABSTRACT

We introduce a new random structure generalizing matroids. The

random independence systems (RIS) allow us to develop general
techniques for solving hard combinatorial optimization problems with

random inputs. We describe a randomized algorithm for efficiently

constructing an independent set of fixed size in an instance of a

random independence system. We provide a general method of analysis

of the performance of this algorithm, which allows us to derive bounds

on the mean, variance and all the moments of the time cumplexity of

the algorithm.
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l. 'Introduction

i In a classic paper "On the Abstract Properties of lLinear Dependence"
: of 1935, Whitney provided a set of axioms for a structure called here a
Whitney matrotd. Matroid theory (see [Tutte, 1971], (Lawler, 1976]) has

applications tc a wide class of combinatorial optimization problems:

where we wish to construct a maximal object (a maximum independent set)

satisfving a monotone property.

We introduce in this paper (Section 2) the random independerce

8ystem (RIS) which is applicable to a more general class of combinatorial
optimization problems with random inputs. We define some natural notions,
such as "maximal with a given probability." Properties of random indepen=-
dence systems such as the existence of an independent set of given
cardinality (with probability 1), the relationship between RIS and Whitney
matroids and properties of intersections of RIS are discussed in a
companion paper [Reif, Spirakis, 8l] (see alto Section 2 of a previous
draft of this paper, [Reif, Spirakis, 80]). In that paper we describe a
nonconstructive proof technique for determining (with probability 1) the
existence of an independent set of given cardinality or given weight in an
instance of a random independence system.

In this paper, we develop a randomized algorithm, the extension-
rotation (E- R} algorithm, for efficiently constructing an independent
set of-a given size h0 in an instance of an RIS. Given an independent
set I of size less than ho, we attempt to extend I (by adding a new

randoin element e to I) or else attempt to rotate 1 (by deleting an
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eslenment e' of I and adding the new element e). The use of a rotation
operation first appeared in Posa's [1976] existence proof for a Hamiltonian
path in an undirected random graph of density O(login)/n). ([Karp, 1976)
and (Angluin and Valiant, 1979) consider random algorithms with extensions
and rotations.

The introduction of the rotation operation seems necessary for
certain independence systems, since the greedy algorithm (which utilizes
only extensions) may have arbitrarjly bad performance (see [Korte,
Hausmann, 78]). We show that the probability density of the number of
rotation steps between successive extensions is upper and lower bounded
by gecmetric density functions. From these bounds we derive sufficient
conditions (a lower bound on the element density) for the E-R algorithm
to succeed, with Qrbitrarily high probability. Also, we can derive bounds
on the probability density function of the total number of steps, and from
these density functions derive bounds on the mean, variance and all the
moments of the time complexity of the algorithm. Thus we have a general
method for analysis of the performance of the random extension-rotation
algorithm. We view this as the most significant contribution of the paper.

We also give some applicetions to random graphs Gn P (see

L2

Section 2.3 and [Erdos and Spencer, 1974]).

Pl Construct a Hamiltonian path in Gq P’

= a,

rl' For a graph H of fixed size, construct a .ubgraph
of Gn b homeomorphic to HR.

P2 (onstruct a perfect matching in Gn p’
*

p2' Construct a perfect matching in a random bipartite graph

B .
n,p

(Note that P1l' is a generalization of Pl.)
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The randomized E-R algorithm is applicable to Pl, P2 and P2' (and
we have an efficient transformagion from instances of Fl' to instances of
Pl).

The results of our general method for analysis of the extension-
rotation algorithm yield lower bounds for the edge density p to give
probability of sucéess 1-n"* for a>l. Previously [ErdSs and Rényi,
1959] hgye consideréd Pl ard [Posa, 1976) considers Pl for undirected
graphs. [Angluin and Valiant, 1979) con#idet Pl and P2 for directed
graphs. They derive similar results for a different random graph model
Gn.N and their results hold for Gn.p only under certain conditions as
n=+®,

Our general method also yields significant mew results for these

applications, such as tight bounds (within a constant multiple) on the

mean and variance of the randomized algorithm's time complexity.

2. Definitions of Random Independence Svstems and Their Structure

2.1 Definitions of Random Independence Svstems

Let E Dbe a set and let 4 be a family of subsets of E. Llet p
be a real number (the glement'’s density) cn the interval ([0,1). ‘The
triple M= (E, 4,p) is a (uniform) random independence system (RIS).
(Nonuniform random independence systems and weighted random independence
systems are defined in [Reif, Spirakis, 1981]). We will frequently write
(E,Z.,1) as (E, 4). M=(E, £,p) is a proper random independence system

it
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Intuitively, J may be considered a property on subsets of E which is

trivially satisfied (by axiom Al) and monotone decreasing (by axiom A2).

Let (E,J) be a Whitney matroid (a matroid as defined by [Whitney, 1932])

if it satisfies Al, A2 and the additional axiom

A} For any sets A,A'€E g of cardinality h,h+1 respectively,
3e€A'-A such that AlU{e}€].

2.2 Instances of Random Independence Systems

An instance of a random independence system M= (E.g.p) is a pair

No - (EO. go) where

(1) EOEE is derived by independently choosing each e€E with

probability p.
[e-E, |

(13) g ={1€g/1<E }.
0 o 'E°| .
Note that the probability of My, is p (1-p) . Clearly, any

instance M_= (Eo.jo) of a proper RIS satisfies axioms Al and A2.

0
(Hence, any instance of a proper RIS is an independence g;stém, as defined

in [Rorte and Hausmann, 1978].)

A set ACE, is independent in M if rAcf, and dependent other-

0 0
wise. An independent set IGJO is maximum in My if there does not
exist an I' €7, such that |1'] > |1]. Let the rawk of M, be the

cardinality of a maximum independent set. IEJO is maximal in M, if

there does not exist an I'€g, such that I'SI. A minimal dependent

set of My (a eircuit) has no proper subset which is dependent in Mg -

For any ACE, let the rank of A n M, be the maximum cardinality of

any independent subset of A, It follows from a result of [Korte,

Hausmann, 1978] that for any instance Mo of a proper RIS there exists an

integer k and k matroids of which the instance Mo is an intersection.
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2.3 Examples of Random Independence Systems

ASs an example of an RIS, let Q be a property on graphs and let
Gn.p be a random undirected graph. (Examples can be given for directed
graphs also. For sake of simplicity hore we give only examples for random
undirected graphs.) The random graph Gn. P is a random variable whose
instances are graphs with vertices V= {1,2,...,n} and each edge chosen
independently with probability p from the set E={{u,v}/u,v are
distinct vertices of V}. Let M=(E,J,p) be the (uniform) RIS with E
as above and J={I1CE/Q(V,I)holds}, Then any instance My = (Bgo Z )
of M corresponds to an instance (V.EO) of the random graph Gn. p
and JO contains precisely those edge sets IC Eo such that the property
Q holds for subgraph (Vv,I). Note that M is a proper RIS if the
graph property Q is

(V) trivtally sattsfied, i.e., Q holds for the graph with no

edges and

(2) decreasing monotone: Q(G)=Q(G') for all subgraphs G' of G.

We list some graph properties and the corresponding RIS below.
Pi (Hamiltonian paths)

Given a graph G= (V,E), a simple path is a path of edges in E
containing no cycles, and it is a Hamilionian path if it contains every
vertex of V. frhe property of a “"simple path" in a ruandom graph does not
yield a proper RIS, since a simple path must be connected (violating
axiom A2). However, we can define a proper RIS such that any independent
set of cardinality |V| -1 is a Hamiltonian path. We give both

formulations here:
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Formulation as a non-proper RIS:' Let M= (E, Z,p) be the RIS where
J is the set of all simple paths in the complete graph (V,E). Fix an
inatance MO- (BO.JO) of M. Thén (V.EO) has the same probability in

randem graph Gn as in M and Jo is the set of all simple paths in
’

P

(V.BO) .

Formulation as a proper RIS: Let M= (E, ,p) be the RIS with E

as above and = {1CE/(V,I) consists of a set of disjoint simple paths}.

Clearly M satisfies axioms Al, A2. Fix an instance Mo (Bo. jo)
of M. Then (V.Eo) has the same probability in G, P as in M and
[}
jo has as elements all different sets of disjoint simple paths in E,.

In both formulations, if M_ has an independent set IE]O such

0
that III =n-1 then (V,I) is a Hamiltonian line in (V,E).

P2 Perfect matchings

An edge matching of a graph is a set of vertex disjoint edges, and
is perfect if every vertex appears in some edge of the matching. To
formulate the "perfect matching" problem as an RIS, we assume a complete
graph G= (V,E) with 2n vertices.

M= (E, /,p) where Z={ICE/1 i=a matching}.

Let MO- (Eo. ﬂo) be an instance of M, Then Mo has a perfect matching
if there is an IEJO such that III =n. The property of “"matching" in a
random graph G2n.p yields a proper RIS, since if I is a matching then
every I'cI is a matching.

p2' Bipartite matching

In the following let v1=={1.....n}. V2=fn+l....,2n} be disjoint

vertex sets of equal cardinality, and let E= {{u,v}/u€vl,v€vz}.

}
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A bipartite graph B= (V) UV, ,Ey)  has vertex set V, UV, and edge

set E.CE. B is complete if E,=E. A random bipartite graph B

0 0

n,p
has instances which are bipartite graphs (V1 UVZ'EO) where each edge

of Eo is chosen from E with probability p.
aAn (edge) matching of bipartite graph (V, UV,.EQ) is a set of

vertex @isjoint edges ICE and is rerfect if every vertex of VlUV2

0
appears in some edge of I. The bipartite perfect matching problem is
formulated as a proper RIS by assuminé a complete bipartite graph

B= (VIUVZ'E) . Let M=(E, Z,p) where g={ICE/T is a (bipartite)
matching}. Let MO be an instance of M. MO has a perfect matching
if there is an ~I€go such that |I]|=n.

3, The E-R Algorithm for Constructing Independent Setes

in this section we describe an efficient algorithm for constructing
an independent set of fixed size from an instance of a random independence
system. This E-R algorithm is a generalization of random graph algo-
rithms which have appeared in [Posa, 1976], [Karp, 1976}, and [Angluin
and Valiant; 1979]. 1In Section 5 we develop a general method of
analysis of the E-R algorithm which provides:

(i) Sufficieut conditions for successful termination with

o

probability l—IEl 0

for any fixed sufficiently large o:o>l.
(ii) Upper and lower bounds on the probability density of the time
cost of the E-R algorithm, from which the mean, variance and

all the moments of the time cost may be derived.
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Section 4 gives a simplified discussion of that analysis, which is
intended to aid the reader's intuition and lead to the more thoroucgh

analysis of Section 5.

Let M= (Eo,jo) be an instance of the random independence system
M= (E, #£,p). We wish to construct an independent set éf size h0> 0.

For any independent set I€J ), let &(I)= {e€ EolI U {e} €jo}.
Note that if ¢&(I) ¥ @ then we may extend I by chousing an e€ &(I)
and substituting IU {e} for I.

Also, for any independent set IEJO, let R(1) ={e€ E0|I U {el EOV,O
put 3e'€I with IU{e}- {e'}Ejo}. If QR(1) # @, we may rotate I
by choosing an e € R(I) and some appropriate e'€I and substituting
1U{el-{e'}€F) for I.

Actually, in the algorithm below, we choose a rarndom element

e € &(I) U R(I) and first attempt to extend I Dby e, and else rotate I

by e. We call é&(I) the extension set of I and @R(I) the rotation

set of 1.

3.1 The E-R Algorithm

INPUT: An instance MO= (EO, go) of a random independence system

M= (E, Z,p) and integer h0>0.

INITIALIZATION: I<+@; T+O0

WHILE [I|<h; DO
BEGIN
IF &,(1) Uk, (1) = @ THEN FAIL
choose some random e€é"T(I) J .‘.‘ﬁ’T(I)
IF e€€,(1) THEN EXTEND: I+1U{el

elakal @M#wm—w sl
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ELSE BEGIN
choose e'€I with (IU{e})-{e'}Ejo
ROTATE: I+1IU {e} - {e'}

END
T+«T+1
En*Ep )~ {e}
END

RETURN (I).

We define the sets:

&0 = {e€r |1uleleg ),
R (1) = {eEETlIU{e}gjo , but Fe'€I with IU{e}-{e'}E(yo}

as "macros" which are expanded in-line within the E-R algorithm.

For the problem of perfect matchings in random graphs Gn p the

L}

extension and rotation sets are defined us follows: Let MO= (Eo,jo)

be an instance of the matching RIS and Ich). Then

&(I) = {e€E- I|the vertices of e are distributed from the
' vertices of I}
and
R(1) = {e€E-I|one vertex of e is an element of E~1I}.

For the bipartite perfect matching problem in bipartite random
graphs (Vl,Vz,p) with |V1| = I*Izl =n, the extension and rotation sets
are defined as follows: Let MO= (Eo,jo) be an instance of the

bipartite matching RIS and let I€jo. Let Vi(I) = set of vertices in

Vi which are incident to edges in I, for i=1,2. Fix a uEVl-Vl(I) .

Then
é.(1) = {{u,v}E€ EO/VQVZ(I)}

R, (1) = {{u,v}€ EO/VEVZ(I) }.

In case of an edge e selected from .QPT(I) , the rotation is done as

follows: Let e'={u',v} be the (unique) edge of I such that e',e

" )
ATy sk s i
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(in the E-R algorithm) have v as a common vertex in vz. Delete e'
from I, add e to I and then set u to u',

For the Hamiltonian line problem in random graphs we have

(1) Fror the formulation as a non-proper RIS:

Let 16]0 be a non-maximal simple path. We let V(I) be the

vertices of I and let ENDS(I) be the vertices of I of valence < 2.

Then the extension set is &(I) = {e€E0-1|e= {u,v}, u€ENDS(I),

vEV-v(I)}. The rotation set is @R(I) = {e€E-I—&(I)|e={u,v},

u € ENDS(I), vEV(I) - ENDS(I)}.

(2) For the formulation as a proper RISt

Let IGJO be a set of disjoint simple paths which is not

maximum, Let V(I) and ENDS(I) be as in (1). Then the extension set
is
&(1) = {eEEO-I|e={u,v}, W€ ENDS(I), VEV-V(I)}
U {e6E0-1|e={u,v}, u € ENDS (1), v € ENDS(I)
and u,v are in different paths of 1I} .

The rotation set is

R(I) = {e€E-I-&(I)]e={u,v}
and {(u€ ENDS(I), vEV(I) - ENDS(I)) or

(u,vEENDS(I') for some path I'€I)} .

[Korte, Hausmann, 1978] proved that the greedy algorithm performs as
follows in agry independence system M= (E,j). Let Ig be the output of

the greedy and Imax the maximum (in cardinality) independent set of M.

If M can be written as an intersection of Kk matroids, then

z}i IIgl 2 |Imax|/k' For the matching problem, k=2. For the (proper) RIS

formulation of the Hamiltonian line problem, k=3. Note that the E-R

algorithm has at least as good performance as the greedy algorithm.
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As we show in the analysis, if the probability p of the RIS is
bigger tbhan a certain value, then rotation succeeds with probability one
in finding short augmentation sequences in a random instance of the RIS,
Even as a heuristic, E-R constructs bigger maximal ijadependent sets

than greedy and has the same worst-case time complexity if a rotation

element can be always found in fixed time.

3.2 Parameters of the E~-R Algorithm

We wish to analyze the E-R algorithm relative to the “"time" index

T, which is incremented on each iteration of the algorithm. Note that

each "unit .ime" step from T to T+1 may include

(i) a constant number of arithmetic and set operations
(ii) an emptiness test for QT(I) UQT(I)
(iii) choice of a random element of ¢FT(I)
(iv) choice of a "rotation" element e'€I such that if
e€R (1) then IU {e} = {e'} €Fy-
5 on a particular machine

(Of course in the applications of Section

model such as a RAM, we must determine bounds on the number of machine

instructions per "unit time steps" of the algorithm.)

Let H be the size of the independent set I on exit (either by

successful termination or by failure). For each h=1,2,...,H let 'I‘h

be the value of T 3just after I is extended from size h-1 to size

h. Also, let T0=0 and let Th=|E0| for h=H+l,...,ho. Note that

H and the '1‘h are random variables which are fixed only for a given

execution of the algorithm E-R
- Fix some constant o> 1, For each t=0,l,...,IE| let Et(h) ’

et(h) ’ )‘t(h)' it(h) be functions of domain 0<h<ho and range

3
- |
A
¥
g

. A
st by

At o o i

on a given instance Mo of the RIS M.

[0,11.
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We require that for a class .,do of executions of the Algorithm E-R

ol o

with total probability 21- |E|™%,
(i) et(|1|)<§r{extension of I on step t .
:l“""ét(n UQC(I) ¥@ and given an execution in ulo}
. <€¢(III) . |
(ii) )\t(|I|)‘g\<A1?;x"{é_'£:(I;-)-U$t(I) = @|given an execution in .,40}

8,

-:;I:l;)i.,,'
Also let p;(h) = (\l -it(h))'(l - Et(h))
and Bm = (- xtmb NEETNOIR
Note that p; (n, at(:h)“: ai'et functions such that except for executions of
the E-R algorithm with total measure € IEI-G,
pt(llr) <'P1r{r-=otl;'\‘tion of I on step t}<6t(|1|) .
The above (sémewhat .informal) statements can be related t the

random variable T, ‘where h=|1| by:

h

externszon‘ of I on step t" e Th+l =t+1l
"rotation of I on step t" e "'rh+1 > t+1"
ngt(I) U@t(l) = g" e "Th = l;:g' L
Note that the functions et(h), Et(h) ' )‘t(h), A, (h) can always be

trivially defined:

€ () = A (n) =0, €, (h) = X _(h) =1

so they satisfy the above restrictions. 1In practice, of course, we wish

]Et(h) e (] and R ) -2 ]

to be minimal, so that the analysis technigues of Section 5 yield

tight bounds on the time complexity of the E-R algorithm. In our graph
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applications tight Et(h)' Et(h), )\t(h). xt(h) are obtained in Sections

6 and 7 for matchings and Hamiltonian line problems.

4. A simplified Probabilistic Analysis of the E-R Algorithm

We describe here a very simplified probabilistic analysis of the
E~R algorithm. A much more accurate analysis follows in the next
section.

The extension probability is defined as the conditional

prob{a random e, chosen from €, (1) VR (D),
belongs to &, (1)}

and is equal to the ratio €(T,I) = x/k+y) given that é’T(I) =X,

QT(I) =y.
The definition above, suggests that if there are numbers xmin'

X ax’ ymin’ ymax (generally depending on III such that for some a>1

Prob{xmin< |¢5’T(I) l <x ., and m1n< |.§? (n <y . }
is

>1-|g|™® ()
then

*min Xmax ~
ET(h) ;—_"'T_< e(T,I) < ;(—_:‘—Y_—. = ET(h)
max ‘max min “min

with probability #1 - IEI-a, and we can use these bounds to analyze the
E~-R algorithm.
The existence of nontrivial Xnin’ xmax' ymin' ymax depends on

both the instunce of the random independence systemgiven as input to

aFiad anen
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the algorithm and on the particular random execution of the E-R
algorithm on that instance. Hence, 1- |!:|°°' is the tctal probability
of a class of "good" executions on a class of "good" input instances.

Let h be the cardinality of I and N be the biggest |I| for
any such set in JL Suppose we could show that property (*) is satisfied
with such numbers so that both xmin/(xmax'*y ) and x /(xmini-ymin)

max max
are approximately equal t¢ 1-h/N. Then the behavior of the E-R

-&.x.MMMMéLMnlmumm,..lu_‘ul:mﬁ-ﬁm cuniii ik R

kel

algorithm would be modelled by the Markov process of Figure 1, where
the numbers in the circles are the possible |I|. Thus, we would have

transition probabilities _%
Prob{|I|=h+1 at T+1/|1|=h at T} = 1-3 .

(Note that, with the above assumption, this extension probability does

not depend on the time T).
Let p(T,h) be the Prob{algcrithm E-R achieves an independent set

I of size h at time T}. We get by inspection

h-1

p({T,h) = p(T-l,h-l)(l—T)+ p(T-l,h)-%

bl il i1

and

o

p:0,0) = 1 3
The solution of the above recursion would give the joint probability
density of T and h and, consequently, we could easily derive the
mean T for h=N_ by

T = I’(T)N)'.P . ';

T=0

Let ﬁh-mean time the algorithm stays at size 1, before extending. By

known properties of Markov processes, we have




>
|
i g

3 €+t = N
h = 1-h/N N-h

¥

Thug the mean time of execution of E-R before success is bounded by

N s

R e e

T = Uy +eecdu 41

TIATK gy

T ——

< N(l+%+---+%)+l = O(N log N) .

1

Note that in most of the applications, N= IEIB with 0<B<1l.

The ahove T was produced by the assumption of a “"good" class of

BRI Gy s

inputs and executions. 1In a bad case, the algorithm will fall or stop

after time at most |E|, hence

TR

Tyoray S T3~ le|™® + |el-|E|™

AT

L e ¥

and since Qa>1 we get as |E|=® that
]

T € O(N leg N) .

total

This is the phenomenon gpproximctely followed in the E-R algorithm.
However, in general the extension probabilities depend also.on time
(the next section takes this “cpendence into account).

In applications in random graphs Gﬂ'p {(where usvally I is a

of edges) we note that T is equal to the number of edges examined

set

T, and h is equal to the number of edges successfully extending I

by
by T. Hence, the number of deleted edges by T is T-h and this |

has to be less than or equal to the number § of edges from each vertex

of I to all other vertices of 1 (since, as we shall prove for graph

applications, we only delete edges whose vertices stay in 1I). The

average § is ph(h+l) and the average T-h 1is <itota1—h' By the

of h,

above, in order for the algorithm to achieve the maximum size N




(h+1)/N
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we have

-

T -N € pN(N+1)

total

or edge probability
p? 0(35%}32) .

So, we see that an edge probability of at least 0O(log N/N) is necessary
for the E-R algorithm to work in graph problems, The constants of
multiplication for particular cases follow from the exact analysis given

in Sectlon 5 and also in Sections 6 and 7.

5. Rigorous Probabilistic Analysis of the E-R Algorithm

We fix an RIS M= (E, Z,p) throughout this section, and consider a

input tc the E-R algorithm, All

n

random instaace (BO,¢ﬂb) given a
our applications of Sections 6 and 7 satisfy the following mono-
tonictty restrictions:

Rl et(h). €,.(h) are monotonically decreasing with h but
increasing with t.

R2 At(h). it(h)' are monotonically increasing with h and t.

Intuitively, assume that the conditional probability of extension
decreases with h=|I| and that the probobility of failure increases

as I grows and as the elements of Eo are exhausted.

5.1 Sufficient Conditions for Success with High Likelihood

Note that if Q is predicate and A an event on which Q is

predicated, we let Prob{Q/A} to denote the conditional probability of

Q@ given that A holds,
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Our goal here is to derive sufficient conditions such that for any

fixed sufficiently large uo> 1,
-Qo
Pr{i=n,} 3 1- ||

(i.e., the E-R algorithm succeeds in constructing an independent set of

-Q,
size h. with probability 21- |E| O) .

0
Assuning the above restrictions Rl, R2, we can derive bounds for

EXT = Pr{H>h|H>h. t-'rh. t'=7T + -1 and given an execution in

h h+l
“‘0}
PROPOSITION 5.1.
[Eol-t+1
- 1-p,,(h)
e -, - < ExXT,
1-p,, (h)
. IEO|-t+1
A 1-p, (h)
<E, (1= (- ~
1-po,(h)

Unfortunately, we found that a direct derivation of Pr{Haho} by

use of Proposition 5.1 is intractable, because of the stubborn

appearance of the random variables T in the conditional probabilities.

h

(Thus Proposition 5.1, as stated, is never used in our analysis of the

E-R algorithm.)

To bound the random variable Eo, we may use the fcllowing known
fact:

o ) y OVl
LEMMA 5.1. If M +ts an RIS (E, /,p) and (Eo,jo) 18 a random

ingtanee of M, then

3
2
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probip|E| (1-8) € |E | SplE[ (1481} 31 - |2~

vhers

6a log |E
B B = PIE ‘

O

Proof. Recall that the elements of E, are chosen from E with

3 fixed probability p. Then this Lemma follows from the Chernoff bounds:
S e %

( ,f )pku -0 & 7K € exp(~B%|E|p/3)

k=[(1+8) [E|p]

L(1-8) |E|p) -
= (lil)pxu-p)!ﬂl *<exp(-82[E|p/2)

k=0

The following two conditions in conjunction imply
Proh{R=h }31 - (1+c)|e|™®
0 0 '
Cl For some fixed tos tl""’th

0
kt(h) - At(h) = 0 for 0<h<h° and 0<t<th.

0
N .

-Q
Prob{rho<:ho<|Eo]}>l-c0|5| » for some ¢ >1,

Note that Cl does not suffice to imply anything about Pr{Hsho}

since we may frequently fail if the time t exceeds th. ¥

5.2 Verification of Condition C2

We now asswme that condirions Rl, R2 and Cl #ave been verified for
O'tl""'th and derive bounds on the critical p which insures é
condition C2 is satisfied.

some t

e
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To verify €2, we require upper and lower bounds on the distribution
of steps between extensions. Llet g¢(x,q)=qfl -q)“ be the gecmetric
density funotion. Let o, be the class of executions of algorithm E-R

with probability 1- |E|™®, which were used in the definition of the

et(h).
Also, let S be the condition

" - "
Ty Stpe t=Ty < |E,| and given an execution in .

LEMMA 5.2.

Crax M n
= g(x.et (h)) < Prob{Th+1-Th-x+1|S}
e, (h) h
- .
< €rax (N

et(h)n g(x,et(h))

Proof. By conditions Cl and monotonicity rastriction Rl,

pt(h) = (1- Et(h)) < 1- eTh(h)

<
for O0€h h, and Th<t<tn.

t+x-1

P‘{Thﬂ'Th=x+1|5}<5t+x(h) k:lt By (1)

A x
< €t+x(h) (- et(h))

"

g (h)
t4x x
< et(h) st(h)(l—et(h)) .

The lower bound derivation is similar.
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We now derive bounds on the steps between extensions. For

h=0,...,h0 and t:=0,...,t:h let fSt(h)=t-1AX(h,h') where
: -0
e smuell™
h' = |log \l-e (h)) + — log(l-t»:t (h)) -1
*n €, (h) h
t
and let
. e, (h) (1-|E]™) .
.5t(h) = log|l-~ e (M) log(l-et (h)) .
t h
LEMMA 5.3.

; -7 <3 < = -2lgl™®
pr{§_(h) €T, Th\dt(h)hhﬂ\tml,t T, }>1 3|el™ .

Proof. Recall that Pr{given an instance in udb}?].-lEl-a by
definition.

"It suffices to verify:

8(n)-1
3 Pr{Th+l-Th=x+l|S}
.x=0

Pr{Th+ -7, <8(n) |s}

1

, Eesbona® §(n) -1

~ x
et(h) (1- et(h))

Et(h) x=0
by Lemma 5.2
€ 5.y o (h) . &
. Sl [1_ 0.2 (h))cs(n)]
(h) t
€¢
€. (h) . A
> = '[1- (1 - at(h))‘m‘)] by Rl
et(h)

2 1- IEI-Q by elementary calculations.
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Similarly, we can show:

Prir, ., - T, 28 [s}31-|g|™ . o

h+l

As a consequence of Lemma 5.3, we may use for 1<h<h0

h=-1
) Sy D

Ath) =
i=Q
and
. h-1
B = 3 83y,

i=0

to lower and upper bound the time complexity of algorithm E-R with

high probability. Let A(0) =A(0)=o0.

Let B=p|E|(1+V6a lIog [E[/P]E]. By Lemma 5.1 B gives an upper
bound in the number of elements in an instance of M, which holds with

high probability.
THEOREM 5.1. If A(h)< ty then
Prob{A(h) <Th<3(h) }121-am|e]™

where a(h) = 3h(l+x) +1

with
(B- th)

(th- A(h) - A(h))

Proof. By Lemma 5.1,
probi|E | > B} « le| ™",

By Lemma 5.3,
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A -0
prob{A(h) €T, <B(n) |r, < t)=1- 3n|E| .

Note that we may assume without loss of generality that th< B. By the
monotonicity condition R1l, we can show Pr{Th=k} is unimodular for

x€{0,1,...,]|E|]}. Thus

¢

Pr{Th>t0/|E0|<B}$Prob{Th<A(h) or A(h) <'rh|'rh-<th} «r € 3nr|E|".

But

Prob{r, >t }<prir, >t <B}+ |BI7°C (3nr+ 1) |E|T®

n| B!

So

Prob{Th <A(h) or A(h) < Th}
<prob{r, <A(h) or A(h)< Thlwhs £} +Probir, >t}

<a(h)|E|-a. u]

Note that Theorem 5.1 may be restated:

_ ‘E‘-O.(h)

If A&(n) €, then Prob{H>h}>1 where

h
log{(l-a(h))

ath) = a-'(—-—ﬁa—(]—}a—ﬁ—-)

Furthermore, if we wish

—ao
Prob{H>h }>1- |E|

for any given a_. sufficiently large then we find a minimal pOE (0,1)

0
such that the restrictions of Theorem 5.1 are satisfied and a0=a(h) .
(Note that if M= (E, /,p) proper random independence systemand (E,j)

has rank 2h, then such a Pqy always exists.)
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5.3 Bounds on the Probability Density Function of 'I‘h

We assume here the restrictions given in Theorem 5.1. Actually, we

have a much more general result, since we have from Lemma 5.2 bounds on

the probability density function of Th+1 - Th for he=l,... .ho -1l. By

the monotonicity restrictions R1l, for x==0,...,|El

' X

< probir, , -1, =x+ 1]A(n) <T, SA(h),Alh+1) (Th+l<A(h+1)}

1

n X
< €3 a1y -1 B (1= alh)

where

(h), g(h)

q(h) = )(h) .

= A

€A(n)

s -1

For 0

COROLILARY 5.1. h=0,...

€ah+1)-1 P

g (h)

. _ -a(h+l) o Cm =
g (x,q(h)) |E| \P:c{'.l‘h+l Th—x+l}

€8 (h+1) -1 P

~2{h+l)
q(h) [l

£ g(x,gq(h)) +

The Appendix gives the density function of a raudom variable which
is a sum of variables with distinct geometric distributions, and from
this and by the Lounds of Corollary 5.1, we have upper and lower bourds

on the probability density function of the sun:

k+1 k

- . R T
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THEOREM 5, 2.

where
o(h)
and
‘Kh
oth) =
and
' Gh =

12 L3 i b W bttt A b o i) oA 001

T

do in our applications in Sections

FOI‘ h=0'...'ho-l

h-1

. g g(x,4(i)) (1 - g™

i=0

n o)
k=0 g (k)

bl €p -1 W )

~ h=l h-2
v 2, 9(x,a(i)) (1-q(d))

i=0

>

el £ (ke1)-1 K
q (k)

td
1}
(=]

time cost or . lgorithm E-R.

© and

g(h) - h|g| @) ¢ prim, =x} <3(n) +n|g| (B

h-1 A~

n -—34d)
j=1 q(i) - q(j)
i)
h-1 .

n q(i)
4 afi) -q(3)
i=1
i3

Thus, if the restrictions of Theorem 5.1 are satisfied (as they
7) we can derive by

routine methods the mean, variance, and in general any moment of the
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6. Applications to Hamiltonian Paths and Subgraph Homeomorphism

Problems

6.1 Motivation and Previous Work

Posa [1976) proved a sufficient p=0(log n/n) for Hamiltoﬁian
paths in Gn.p' previously an open problem in Erdos and Spencer [1974].

Karp [1976]) observed that Posa's proof yields a polynomial time
algorithm fér constructing Hamiltonian paths in a random instance of
Gn,p' Angluin and Valiant [1979] then generalized this Posa-Karp
Algorithm to detect Hamiltonian paths in random directed graphs.

We can also extend the “osa-Karp Algorithm to the problem of

identifying certain classes of isomorphic subgraphs. Consider the

problem for a £ixed graph H and random graph Gn p:
’

I1s H homeomorphic toa subgraph of Gn p?
]

The answer to this problem is very useful for determining the prchability
of a property characterizable by forbidden subgraphs (e.g., Kuratowski's
[1971) forbidd:n subgraphs for planar graphs, Glover and Hyneke's [1975]
forbidden subgraphs for graphs imbedded onto the projective plane,
Lekkerkerker and Roland's [1962] forbidden subgraph characterization of
interval graphs). Erdos and Spencer [1974) determined the probability
that a random graph is planar by forbidden subgraprh methods, and Cohen,
Komlos and Mueller [1979]) found the probability that a random graph is
an interval graph by similar methods.

Actually, we can show that a large class of forbbiden subgraph
problems on random graphs can be efficiently reduced to the problem of

determining a Hamiltonian path. Suppose H is a graph

e e e ————— e
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with k edges. Given an instance GO of a random

graph Gn p we wish to construct a subgraph G' of Go such that G°

'
is homeomorphic to H. (See Figure 2).

We partition the edges of Gn,p into k Dblocks of cardinality
n/k, with each block corresponding to an edge of H . Choose these
blocks to so that they have a unique "joining vertex" in common just
in the case the-corresponding edges of H do. Such a partitioning
requires only linear time since k is constant. Then we test (by the
Posa-Karp Algorithm) if each block of the partitioning has a Hamiltonian
path between the "joining vertices" of the block. Each block is con-
sidered a randbm graph with edge probability p'=p/k. The application
of the Posa-Karp Algorithm then yields the required Hamiltonian paths

in each block with probability ?J.-n—d for any sufficiently large

a>1, if p>clk) 39-‘3;-’—’ and c(k) > k/2.

6.2 Analysis of the Posa-Karp Algorithm

We now give a detailed analysis of the Posa-Karp Algorithm for
detecting a Hamiltonian path in a random graph Gn P We follow the

’

analysis techniques developed in Section 5.

Step A: Formulation as an RIS

We will follow here the formulation as a ron-proper RIS (see 2.3,
Examples of RIS). The extension and rotation operations are described
in 3.1 of this paper. The formulation as a proper RIS (see 2.3, 3.1)
leads to a different algorithm than the algorithm proposed by Karp. A

similar analysis to the analysis presented in this chapter can show that

BT ST AT

i, U

i

fudit s a1

G it dlis! it o oeabilaieiid

2
3
i

i

Tl adid 10 vt bk e

bl

2 ol

RU LT [ KPR | WA Y

Al il L




Ly i

Figure 2

e i b

Altatlea adlint b

el

4 il

e MRl G .

sl

wastilliny abonss e lonhy wan




P YT

29

this new algorithm has the same performance and the same probability of
success as the Posa-Karp Algorithm,
Step B: Derivation of the Bownding Parameters: et(h). Et(h),

A, (h), Xt(h)

Let V be the set of n vertices of the random graph G Let

n,p’
(Eo.jo) be an instance of (E, #,p) given as input to the E-R
algorithm. Let I be an independent set of cardinality h, constructed

after t steps of the E-R algorithm. Recall

JT(I) = {eEEo/e={u,v},uE ENDS(I),vEV-V(D)]} ,

where V(I) is the vertex set of I. Thus, the structure of d‘T(I)
for a particular V(I) depends only on the input instance (EO.JO) .
The E-R algorithin does not look at any of these edges at times
T'€T, since if E-R examines an edge e at time T' then both

vertices of e stay permanently in V(1) for all T=2T'.

LEMMA 6.1. For every B, 0<B<1l and for any p>c}9-3—n with

c>0 we have
(1-8)2p(n-h) € lé’Tml € (1+8)2p(n=-h)

with probability
- (1 - %)szc/s
> l - 2n [
Proof. We have observed that IJT(I)l does not depend on the
random variable T of the algorithm. It only depends on |I| = h.

By definition of the Gn P model

[
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2(n-h)
) pju_p)ﬂn-h)-j .

prob{|€, (1) | =3} = (
3

The Lemma then follows by the Chernoff bclmnds.

By Lemma 6.1, the mean value of IGT(I)l is 2pin-h).

In the following lemma, |E|=n(n-1)/2

LEMMA 6.2. Let Emin=(1-8)2p(n-h) and me-(ne)zp(n-m with

0<B<l and p>c}_°5_2 where c>6/82. Then there 28 an a>1 such

that

< - -Q
Prob{E , < €, (1) | Epax] 2 1 |E|

i
for T=0,...,]E|.

Proof. By Lemma 1 we can get Q= Bzc/G so that a>1 if
c> 6/62.
In the following, we consider edges examined by the algorithm but

not added to I to be deleted.

LEMMA 6.3. Then the mean number of deleted edgee per vertex of 1

18 the same for every vE€V(I) and is equal to t/h-1.
Proof. Since the algoritim examines an edge at each time step

and since we got up to h edges at time t, the number of decleted

edges is t-h. These edges have their vertices in I (as previously

noted). So, it is enough to show that the mean number of visits of the

E-R algorithm to each vertex of I by t is the same. This follows

by symmetry and since the algorithm selects at random an edge e from

Hence we get that the

t“t(I) U»??t(I) before each extension or rotation.
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mean number of deleted edges per vertex of V(I) is t-h/h proving

the lemma. Note that this holds for any value of p. =]

COROLLARY 6.3, For any BE€ (0,1) there exist constants c>1/2
and a>1 such that if pPc L%?—n and m=number of deleted edges per

vertex of V(I) by time t<€0O(nlogn) then

(1-B) (-&- 1) <m< (1+8)t/h

with probability »1- |E|™°.

Proof., We will first observe that for any numbers k, A and

p)cl_gng_n with c¢22(A+k+1) we have

Prob{every vertex in Gn has 2k logn edges} » 1-0(n-A) .

14

To see this, if v is any node then the probability that v has
<k logn néiéhbcrs can be bounded by O(n‘A-l) by the Chernoff bounds.
The result follows by summing over the n choices of v (see also

Sociability Lemma of [Angluin, Valiant, 1979]).

We shall also utilize the bottleneck lemra [Angluin, Valiant, 1979]
which can be described as follows:

Let us have a rooted tree of depth m and uniform S-way branching.
Let Y be a set of paths from the root to certain of the leaves of the
tree. Let us color green all nodes in these paths. Assume that along
each path of Y there exist k nodes (called bottlenecks) such that
at the i-th such node the probability of drawing a green successor is
at most p;- Then,

BOTTLENECK LEMMA. The probability that a bottleneck will cut zur

random path to a green leaf is <pl'p2'...'pk.
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We can now complete the Proof of the Corollary: Let the tree
above be the tree of possible executions of E-R. Any vertex of I
visited less than (1-8)(t/h-1) times or more than (148)t/h times

can be considered as a bottleneck and this event would be bounded by

the sum of the probabilities
N =%, logn N =~k log n
(n- (1-B) (K- l)) + (n - (l+8)(g- l))

for all possible vertices, which is O(n‘a) for suitable values of k.O

LEMMA 6.4. For any BE€ (0,1) there are constants a>1 and

c=c(B,a) >0 such that
(1-8)2ph - (1+8) § € |, (D] € (1+8) 2ph—(§-1)(1-3)

ho.ds with probability »1- |E|™%.

Proof. Let Al be the number of edges from endpoints of I to

vertices of I at time t=0 ‘(V(I) is fixed here) and let A2 be

the number of edges deleted from the endpoints of I wup to time t.

Then Lﬁ;(1)|==Al-A2. By the Lemma 6.2 and Corollary 6.3 we get the

result,
Applying Property (*) at the beginning of Chapter 4 and
Lemmas 6.2, 6.4 we get that
- - ~ - +
Ct(h) - {n h)(t R) and Et(h) - (n h)(i g)
— (1~ - - ]
n(1+B) T (1-8) n(1-R) 3ph (1+3)

are bounds on the conditional extension probability of the E-R

algorithm:
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&, (|
eefh) < (& m [+ R () |

3 ct(h)

for executions in a class ""’0 of total probability 21 - |E|‘u.

Observe that

3¢, (h) 3€, (h) aEt(h) Bﬁt(h)
e 2% T 7% TR 0 e Tpt 0

so the monotonicity condition Rl is satisfied.

Note that Lemma 5.1 fixes B = v6a log|E|/|E|'p where |E|=n(n-1)/2.

Note also that since 2ph is the mean value of the number of edges from
the endpoints of I to the other vertices of I at the beginning of an
execution of E-R and since 2t/h is the mean number of deleted edges
from the endpoints of I by the time t, we must have (in order for E-R

not to stop at t) that

t/h € ph or t < ph2 .

For T=0(nlogn) and h=n-1 this again implies p# O(']-'-O%B) for the
E-R algorithm to be akle to construct a Hamiltonian line. (Compare
with the general statement at the end of Section 4.)

Restriction R2 can be readily verified for it is obvious that
Prob{é’t(l) v .'?t(l) = ¢}

monotonically increases with t and h==|I|.

To satisfy condition Cl we set th==2pnh(l-8). Then for executions

in do and 0<t<th,

Gt(I) U.ﬁ’t(l) £o .

. .-v,=-<,,V"'U< P e ot e s g b
b il b dable Ll i
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Step C: Verification of C2

We now must verify condition C2 to insure the algorithm succeeds
with high probability. For simplicity, we proceed with the asymptotic
analycts a8 n-+= (although the techniques of Section 5 allow analysis

for any fixed n as well)., Note that as n=+®, B+0 so

A n=-h
et(h) ~ et(h) ~n__£_

2ph

s0 in the asymptotic case the bounding parameters are identical.

Also,

o log &

Tog(i-c (W) as n*e,

S,t(h) ~

where

2 = n{n-1)

-

We must determine

A(h+l) = A(h) + Gﬁ(h) (h) .

Let
k. = 2B
1 log n
~ 2(1)(1
We now show by induction on h that 4(h)€k hlogn where k, = g—.
2 2 20 +ky

LEMMA 6.5, Asswme p#c lc%—!‘- . Then A(x) €kx log n, where

20¢ . . . 2
k# o and o te the constant appearing in cSt(h) .

Proof. We have from the definition of &(h) that

At) = §a,.\ (1)
&5 Ali)

ot it .o ot i bl it v fmt
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and A(0) =0. It follows that A(h) =A4(h-1) +§3 (h-1). Also from

(h=1)

-0 log n
log(l-et(h))

St(h) o

as n*® we get

2 =20 log n
S, (h) Tog (1c, ()
as n-—+o,
Basis:

Since at 0 edges, E-R will increase the size of I with certainty
in the first attempt, we must have 33(0) (0) =1. Then Z&(l) =13(0) +

8a

=1<
A0) (0) =18Sklogn for large n,

Induction Hypothesis:

Assume that for k'?zi%s-é and 211 j in {0,1,...,%x-1} it is

true that A(3) €kj log n.

Induction Step:

We have, by replacing 58 (x-1) in the equation for E(x)

(x-1)

~200 log n
_ 2p (n-x+1) _
log (l 2pn=-2A(x-1)/ (x—l—))

By the induction assumption we may substitute A(x-1l) € (x-1)°*klogn and

B(x) = E(x-l) +

by using also p2clogn/n we get by elementary manipulations that

‘a(x) € k(x+x')log n

where

IR

I Lot i et e e i i s LAl s
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20./k 1

X' = .
log [2c-2k] = log [2S4X=1) 2k]
But x'<0 for k» ==2%- and x€n-1 as assumed
20+ ¢ *
Thus A(x) €k x log n. D
_ k + 20 N
Thus for c# 2= 1. e have A(h) <tn—l and we conclude that the

-a,
E-R algorithm outputs a Hamiltonian path with probability 21- |E| °

where 0.0 <a=-1/2.

Step D: Bounds on the Mean and Variance of Ty

We have from Corollary 5.1 that

prob{T , - T, =x+1}<8 a(x,q(n) + [E] (h+1)
where
€x (h)
N A(h+1)-1 -

This reqguires calculation of the lower bound A(n), which in this

application is trivial: A(h) =h. But sh~l/(l-k2/kl) is constant for

p=06(log n/n). Aalso, for a(h+l) >0, lEl—u(h+l)+0 as |E|->°°.

D.a: Upper Bound on the Mean of T, for h,y=n-1
0

From the Lemma 6.5 we remark that the upper bound of the mean must

be €knlogn. To analytically derive a more tight bound, we have:

€a . - (h) n-h g _n-h
A(h+1) o - Aht) _k(h+l)log n

2ph n 2ph

(by the fact g(x) €k x log n).

i et il ik 2 . Py M T
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So, we get

A n-h
€8 (h+1) (h) < .

2c

So,

where

=R~ 2

gth) =1 -

Let us define a constant

ar = .

Then R
Eﬂ(h+l)(h)

h q(h)

>
i

kn  h+l
n O —

h

{using
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pn#c log n)

Then, from Corollary 5.1 and the Appendix we get (by taking means) that

mean (T‘n+1 - Th) < S

So
n~1l

mean(Th )y = h;o mean(Th+l-Th) € d'f

0

1 -
a(h) n~h

) _ g4 B

€ d'[nlogn~ (n-1)] .

R

R 5
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D.b: Lower Bounds on the Mean of T,
0

Again we do an asymptotic analysis as

- 2p{n-h)
Cameny M T Ry
pn - ————
h
1-h/n , )
1- (h+1)/2phn ' by using A(h) =h.
Since pn#c logn,
£ (h) ~1-2 as  poo
Also, |
€ (h)
sy = ABD T -k 1
ah) (1-h/n) (1—-_)7/’2?)
1

with d= (1-%k/2¢) .

By Corcllary 5.1 and Appendix

mean(Th+l—Th) 2 s(h) l,\;g-(—h-)- 2 f(h)

n+®, We have

st I b 1100 e i i it oot A Sl i Ll i i T G N 1

q (h)
where
a(h) = d(l - }}::_) and £(h) n-zd {n-h)
4" (n-h)
So,
mean(T, ) 2 mean(T, . -T.) = £(h) .
h, =4 h+1  “h =
then el
mean('rh ) >f £(h) dh- £(0) > nlozgn _n-1 _ 1—2d
0 4 a a

0

N Coe e - b -
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As n=+®, the obtained lower and upper bounds are tight within a

constant factor

2 c 2¢ 2 log n
aa = c-k (2c-k) it p= G( n ) '
Thus,
COROLLARY
mean('rh ) = 08(nlogn) for p-= (}P—QLQ) .

0]

D.c: Upper Bourds on the Second Moment of T,
' 0

From the Appendix

m 2
2, 3h 2 3°h
mean(Y) = 3 p;Dfr; -+ x] 2]
i=1 i ari

where Y is ¢ sum of m truncated geometrics of parameters 12 and

ri and
s+l

< 4 -
h(ri) = - ’ s m no N

n, the truncation point, and

0
n -1 P.
Di = ri0 « N ;—?_—p—- .
AL T T3

In our case, By, = g(h) =n-h/(n-1:. So,

n-1 j-1\"1
(1- pi) (B—-—l) € exp(i-n)

and by noting that

ey L 4 gyie
g 371 T AT P
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we get

i
Di < ey exp(i-n).

By the Appendix

n-1

2 2 3

mean(T ) o 2 Di(—-z -2 2)
i=] P

n-1 .
i 2 3
< ): exp(i-n) m—(—z- - =+ 2) .

Using Py &« 1-i/n for large n and replacing the above sum by an

integral, we get

C

. exp(1) as n-=+>®

mean(Ti_l) L S (n3 + Sn2 + 5n)

By using the lower bound for the mean and the upper bound on the

second moment we can get an upper bound on the variance as follows:

2 2
var(Tn_l) = mean(Tn_l) - mean ('rn_l) .
So
c 3 2 1 -1 1-4d 2
Var(Tn_l)geTTi—)-(n +5n" 4+ 5n) - MZS_E_D____z_ .
P a a a
D.d: Lower Bounds on 'r:;_l
For the lower bound, we use pi=a(i) =d{l —-’1;) in the formula for
D.. Let
1

4 - n~1 n-1
= a1 - -
B 1+ nii-d (1 -4d) .

kil ’MML.,.JL ikl AL e
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i n-i
Di = B ~y (-1)

We can prove by an easy induction that B2 exp(d(i-n)). So we get

2 n-1
mean('rn_l) » 1;1 u(i)

where
. . i n-i
u(i) exp(d(i-n)) === (-1) A
and
2 3
Ai = 5 + 2
or n-1
mean('ri_l) P f u(i) di-u(0) .
i=l

A calculation of this integral gives us
2 3 2.3 1 3
mean(Tn_l) P exp(-d)[4 a’n” + (Zd - 7 ) n] .

A lower bound on var('!‘n_l) follows immediately from our bounds on

2
mean('rn_l) and mean(Tn_l). Hence,

LEMMA 6.6
3 -4 3 2 c 3 2
e 0 + Q(n) € mean(Tn_l) < oo 0(n)

and va‘r('l‘h ) = 9(n3), 1f exp(d)c <e constant.
o

This completes the analysis of the Posa-Karp Algorithm.
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7. Applications to Matchings

7.1 The E-R Algorithm for Matchings in Random Bipartite Graphs

Step A: Formulation as an RIS

We will follow here the formulation as an RIS given in 2.3
(Examples of R1S). The extension and rotation operations are described

in 3.1. Let G, be an instance of the random graph Bn p and let I
’

0
be an independent set of size h, obtained after t steps of the E-R

algorithm.

Step B: Derivation of the Bounding Parameters

By the definition of the rotation and extension, we note that as
soon as an edge e is examined by the algorithm, both its vertices
stay at I for subsequent time steps. Hence, !é&(I)l follows the
same distribution {(as in Lemma 6.1) with mean !é&(:\i==p(n—h). Lemma

1 also holds here (since it depends only on the cardinality of 1I)

and Corollary 6.3 can be proved by similar arguments. For p#clogn/n

y v Ypax and the same

we get exactl ame value . x .
g a y the same lues of xmln' max’ Ymin

asymptotic expressions for Et(h), Et(h).

Steps € and D:

.ne analysis is the same as in the corresponding steps of the
analysis of the Posa-Karp algorithm. So, we get:
If r™c log n/n, the algorithm E-R constructs a perfect
matching I with [I|=n an the random bipartite graph By, p’ in
-2

average time mean(Tn) =6(nlogn), with probability of success 21l-n

0>1. The constant ¢ depends on o ag in the Posa-Karp case. The
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second moment again satisfies mean('ri) = B(na) , SO var (‘I‘n) = 6(n3) .

7.2 The E-R Algorithm for Matchings in Random Graphs G2n p
’

b el i ittt kel it s oS

reviously, Angluin and valiant [1979) and Walkup [1977] have

i

described algorithms for detecting perfect matchings in a random graph

with p#c(log n)/n. We now briefly sketch an analysis of the

L e oy

G2n.p
performance of the extension-rotation algorithm for perfect matching.

!

i

Step A: Formulation as an RIS

dedli_pautif abaethe

il g

We will follow the formulation given in 2.3 and use the extension

and rotation as in 3.1.

“ TS N~

Step B: Dertvation of et(h), Et(h)

Let

(n=h) (2n-2h-1)

ath) =
a'(h) = dph(n-h)
£,(0) = t(n=h=1/2) (n-h)/n’ E
f":(h) = ht(n-h)/n2 . §
Again, we may use symmetry arguments and Lemma 5.1 to bound the }
cardinalities of &t(I), .?t(I) and !E0| for a class of executions
o, with probability #1l- IEI-Q. Let h=|1]. ‘
For executions in N i
(1-B)ath) € |6 (] + £,(n) € (Bl a(h)
and
(1-B)a'(h) < |.~Rt(1)| + £1(n) € (14B)a’(n) . i
Let
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£, = (Q-B)(ah)+a'th) ~f (h) -£:(h) .

Then Ié“t(I) | + l’Rt(I)l >0 for t<th in executions of ulo, verifying

condition Cl.

We may let
(1-B)a(h) - ft(h)

% WEEm e e S m - R ®

(1+B)a(h) ~ £, (h)

*n

Et(h) =

$0 we have
&, (1) | .

for executions in .nlo.

By taking partial derivatives of et(h) with respect to t and
h, we can again show the monotonicity condition Rl is satisfied. It is
also obvious that monotonicity condition R2 holds.

As n—+«, the asymptotic bounds on the conditional extension

probability is again tight: et(h) ~€t(h) . By the routine calculations,

described in Section 5, the reader may verifv that E(n) Stn, so the

. c s -
E-R algorithm outpus a perfect matching with probability =21- |E| (n) .

We also leave the reader to calculate tight bounds on the mean and

variance of Tn:

mean(Tn) = 8(nlogn) and mean('r:) = G(na)

by applying Corollary 5.1 (which bounds the probability density of
T -'I‘h by geometric density functions) and using the formulas of the

h+1
Appendix to calculate the moments, as we did in the Hamiltonian path

applications.
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Angluin and Valiant [1979] show that each "unit time" step of

Algorithm E-R for this application requires 6(log n) instructions

on a RAM machine. Thus, the above mean and variance bounds must be

maltiplied by a constant multiple of log n and (log n)z.

respectively.
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APPENDIX

We consider a random variable Y which is a sum

Y= X +... X
m

1

of geometrically distributed variables xl.....xm. This Appendix

provides formulas for the mean, variance and some low order moments of

Y.

For each i=1,.,..,m we assume xi r.as truncated geometric

density with parameter P, € [0,1]. Let r, = 1- Py and

k
gi(k) = piri, k'o,l,-.-.no

= 0 else
The density function of xl+x2 is for O<k<2no. - : ; a
gl*gz(k) =0 gl())gz(x-j) E

3

ik aladbaidid i e

FaP2 [ ka1 kel
P 1 2 '

By applying induction, we derive the density function of

m
Y o= X g
i=) !
f(k) = (gl*"'*gm)(k)




The t-th moment of Y is given by

g
t t
mean{¥ ) = Jéo k (91*...*gm)(k)

when s= mno.

Mean of VY:

m
mean (Y) = 2: mean(xi)
i=1l

r, ng
mean(xi) = E; 1- r, (nopi-kl)

Variance of Y:

m
2
mean(Y") = 5;% piDi T,
where
r:+l -1
h(ri) = r. -1
i
n -1 P.
Dl = rio n ET‘fﬁS'
j#L T1 73

Asymptotic Analysis:

Note that as s+«

oh 1
ri 2

Py
%, 1
ar2 3
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