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ABSTRACT-

We introduce a new random structure generalizing matroids. The

random independence systems (RIS) allow us to develop general

techniques for solving hard combinatorial optimization problems with

random inputs. We describe a randomized algorithm for efficiently

constructing an independent set of fixed size in an instance of a

random independence system. We provide a general method of analysis

of the performance of this algorithm, which allows us to derive bounds

on the mean, variance ane all the moments of the time complexity of

the algorithm.
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ABSTR~ACT

we introduce a new random structure generalizing matroids. The

rarndom independence systemsa (RIS) allow us to develop general 7it

techniques for solving hard combinatorial optimization problems wt

random inputs. We describe a randomized algorithm for efficiently

constructing an independent set of fixed size in an instance of a

random independence system. we provide a general method of analysis

of the performance of this algorithm, which allows us to derive bovinds

U on the mean, variance and all the moments of the time cuomplexity of

the algorithm. *



1. Introduction

In a classic paper "On the Abstract Properties of Linear Dependence"

of 1935, Whitney provided a set of axioms for a structure called here a

Whitney matroid. Matroid theory (see [Tutte, 19711, (Lawler, 19761) has

applicatlons to a wide class of combinatorial optimization problems:

where we wish to construct a maximal object (a maximum independent set) I
satisfying a monotone property.

We introduce in this paper (Section 2) the random independenr•e

8yatem (RIS) which is applicable to a more general class of combinatorial I

optimization problems with random inputs. We define some natural notions,

such as "maximal with a given probability." Properties of random indepen-

dence systems much as the existence of an independent set of given

cardinality (with probability 1), the relationship between RIS and Whitney

matroids and properties of inersection8 of RIS are discussed in a

companion paper [Reif, Spirakis, 81] (see al~o Section 2 of a previous•

draft of this paper, [Reif, Spirakis, 80]). In -hat paper we describe a

noncol8tructive proof technique for determining (with probability 1) the

existence of an independent set of given cardinality or given weight in an

instance of a random independence system.

In this paper, we develop a randomized algorithm, the extension- i

rotation (E-R) algorithm, for efficiently constructing an independent

set of a given size h0 in an instance of an RIS. Given an independent

set I of size less than h0 , we attempt to extend I (by adding a new

random element e to I) or else attempt to rotate I (by deleting an
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element a' of I and adding the now element a). The use of a rotation

operation first appeared in Posa's (1976] existence proof for a Hamniltonian

path in an undirected random graph of density O(log(n)/n). (Karp, 19761

and [Angluin and Valiant, 19791 consider random algorithms with extensions

and rotations.

The introduction of the rotation operation seems necessary for

certain independence systems, since the greedy algorithm (which utilizes

only extensions) may have arbitrarily bad performance (see [Korte,

L Hausmann, 78)). We show that the probability density of the number of

rotation steps between successive extensions is upper and lower boundedA

tA:A
by geometric density functions. From these bounds we derive sufficient

conditions (a lower bound on the element density) for the E- R algorithm

to succeed, with arbitrarily high probability. Also, we can derive bounds

on the probability density function of the total number of steps, and from

these density functions derive bounds on the mean, variance and all the

moments of the time complexity of the algorithm. Thus we have a aenercZl

method for analyaie of the performance of the random extension-rotation

algorithm. We view this as the most signilficant contribution of the paper.

we also give some applications to random graphs G (see

n n T

Section 2.3 and [Erd~s and Spencer. 1974]).

Pi Construct a Hamiltonian path in

ph l InFor a graph H of fixed size, construct a aubgraph
of G n p homeomorphic to H.

PI ('onstruct a perfect matching in G

P21 Construct a perfect watching in a random bipartite graph
B
nip

(Note that P11 is a generalization of P1.)
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The randomized E-R algorithm is applicable to P1, P2 and P2' (and

we have an efficient transformation from instances of Fl' to instances of

P1).

The results of our general method for analysis of the extension-

rotation algorithm yield lower bounds for the edge density p to give

probability of success I-n-O for a> 1. Previously [Erdos and Rinyi,

19593 have considered PI and [Posa, 19763 considers P1 for undirected

graphs. (Angluin and Valiant, 19791 consider P1 and P2 for directed

graphs. They derive similar results for a different random graph model

G and their results hold for G only under certain conditions as
n,N n,p

Our general method also yields significant neW results for these

applications, such as tt'jht bounds (within a constant multiple) on the

mean and variance of the randomized algorithm's time complexity.

2. Definitions of Random Independence sstemsand Their Structure

2.1 Definitions of Random Independence Systems

Let E be a set and let I be a family of subsets of E. Let p

be a real number (the eZement'8 density) on the interval Q0,1]. The

triple M - (E, Y,p) is a (uniform) random independence s9sterq (RIS).

(Nonuniform random independence systems and weighted random independence

systems are defined in [Reif, Spirakis, 1981]). We will frequently write

(E,.$,) as (E,j). M- (E, J,p) is a proper random independence system

if

Al

A2 A E AA' CA-A' Ef7
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intuitively. O may be considered a property on subsets of % which is

triviaZZy satisfied (by axiom Al) and monotone deoreasing (by axiom A2).

Let (E,,) be a Whitney at'roid (a matroid as defined by twhitney, 19321)

if it satisfies Al, A2 and the additional axiom

A A3 For any sets A,A'fES of cardinallty h,h+ I respectively,
"SeEA'-A such that AU{e1ES.

2.2 Instances of Random Independence SystemS.

An instance of a random independence system M (E,J.p) is a pair

M0  4 0O.) where

(i) E0 CE is derived by independently choosing each eE E with

probability p.

(ii) e0" 16 7/1 Co ....- IoE0  JE-E0 1

Note that the prob2bility of M is p (l-p) . Clearly, any
0

instance Mon (E040) of a proper RIS satisfies axioms Al and A2.

(Hence, any instance of a proper PIS is an indcpendenoes•s..-n, as defined

in rKorte and Hausmann, 1978].)

A set ACE 0  is independent in M0  if AC•_ and dependent other-

wise. An independent set I E 0  is maximum in m0  if there does notCIO 0
exist an I' E 0  such that I1'I >11I. Let the rank of M0 be the

cardinality of a maximum independent set. I f0 is maximarZn M0 if

there does not exist an I' IE 0 such that I' 1I. A minimaI depDenzdent

8ct of 0 M (a circuit) has no proper subset which is dependent in M0 .

For any AcE0  let the rank of A in m be the maximu=u ca-dinality of
0 0

any independent subset of A. It follows from a result of [Korte,

Hausmann, 19781 that for any instance M0 of a proper RIS there exists an

integer k and k matroids of which the instance M0 is an intersection.

S -. -.... . . . -.........--. . ... ...-.- ---. -.. .



,.3 Examples of Random Independence Systems

As an example of an RIS, let Q be a property on graphs and let

a be a random undirected graph. (Examples can be given for directed
graphs also. For sake of simplicity h•er we give only¥ examples for random -

undirected graphs.) The random graph G is a random ý'ariable whosenop

instances are graphs with vertices V-{ ,2,...,n) and each edge chosen

independently with probability p from the set E-{{u,v)/u.v are

distinct vertices of V). Let M- (Eelp) be the (uniform) RIS with E.

as above and 9-{ICE/Q(V,1)holds). Then any instance M0= (E0 ,Jg0 )

of M corresponds to an instance (V,E0 ) of the random graph Gn p

and contains precisely those edge sets ICE such that the propertyCro-0
Q holds for subgraph (V,I). Note that M is a proper RIS if the

graph property Q is
(1) t•*:••a•y aatisfid, i.e., Q holds for the graph with no

edges and "

(2) decreasing monotone: Q(G) .Q(G') for all subgraphs G' of G.

We list some graph properties and the corresponding RIS below.

.(Hamiltonian paths)

Given a graph G- (V,E), a siple path is a path of edges in V

containing no cycles, and it is a Hai7'tonian path if it contains every

vertex of V. The property of a "simple path" in a rendom graph does not

yield a proper RIS, since a simple path must be connected (violating

axiom A2). However, we can define a proper RIS such that any independent

set of cardinality IVI -1 is a Hamiltonian path. We give both

formulations here:

~~~~~~~~~ ...... .... :. . ... ..":"'- '-• ••••'•--. 
-" .•••.•••. :::...•.. .-:•
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Formulation as a non-proper RIS:" Let M- (z, ,p) be the SIS where

Sin the set of all simple paths in the complete graph (Vol). FiX an

instance M- (EO, 4o) of M. Then (VE 0 ) has the same probability in

random graph G as in M and of in the set of all simple paths in
n,p A

(V3ON)

Formulation as a proper RISE Let Ma (E,lf,p) be the RIS with E

as above and X-{IcE/(V,I) consists of a set of disjoint simple paths).
.-A

Clearly M satisfies axioms Al, A2. Fix an instance Mc40 CE0, SOf)

of M. Then (V3Ol) has the same probability in G as in M and
0 nop

has as elements all different sets of disjoint simple paths in EA. .

In both formulations, if M0 has an independent set I 70 such

that III-n-1 then (Vl) is a Hamiltonian line in (V,E).

P2 Perfect matchings

An edge matching of a graph is a set of vertex disjoint edges, and A

is perfect if every vertex appears in some edge of the matching. To

formulate the "perfect matching" problem as an RIS, we assume a complete

graph G =(V,E) with 2n vertices.
M• (E,•.p) where if {ICE/I I a matching}.

Let M 0O (E0,,f0) be an instance of m. Then m0 has a perfect matching

if there is an IE0 such that III ann. The property of "matching" in a

random graph G2 n yields a proper RIS, since if I is a matching then
2'p

every I'aI is a matching.

P2' Bipartite matching

In the following let V ={l...,n), V {n+l,...,2n} be disjoint
1 2

vertex sets of equal cardinality, and let E= {{u,vl/uEV ,vl V2} E I
! •1
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A bipartite graph B= (v 1 UV2 ,E0 ) has vertex set V U V and edge
I 2EO1 2

set E0 .CE. B is complete if E0 =E. A random bipartite graph Bn•p0- n, p .

has instances which are bipartite graphs (V1 U V2 E0 ) where each edge

of E0 is chosen from E with probability p.

An (edge) matching of bipartite graph (V1 UV2 ,E0 ) is a set of

vertex disjoint edges ICE 0  and is perfect if every vertex of V1 U V2

appears in some edge of I. The bipartite perfect matching problem is

formulated as a proper RIS by assuming a complete bipartite graph

B= (VIUV2 ,E). Let M= (E,f,p) where g={I CE/I is a (bipartite)

matching}. Let M be an instance of M. M has a perfect matching ;A
0 0

if there is an IE 0  such that III =n.

3. The E-R Algorithm for Constructing Independent Sets A

In this section we describe an efficient algorithm for constructing

an independent set of fixed size from an instance of a random independence[- system. This E-R algorithm is a generalization of random graph algo-

rithms which have appeared in [Posa, 1976], [Karp, 1976], and [Angluin

and Valiant, 1979]. In Section 5 we develop a general method of I
analysis of the E-R algorithm which provides:

(i) Sufficient conditions for successful termination with
-0

probability 1- 1EJ for any fixed sufficiently large a > 1.

(ii) Upper and lower bounds on the probability density of the time

cost of the E-R algorithm, from which the mean, variance and

all the moments of the time cost may be derived.

. . . . .. . . . . . . . . . . .--.
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Section 4 gives a simplified discussion of that analysis, which is

intended to aid the reader's intuition and lead to the more thorough

analysis of section 5.

Let M0 =(E be an instance of the random independence system

Mw (E, ,,p). We wish to construct an independent set of size h > 0.

For any independent set I Ef 0 , let *(I) ={eE E0 IIU{e)•O}-.)

Note that if 4(I) 0 0 then we may extend I by choosing an e 1 E (I)

and substituting I U {e} for I.

Also, for any independent set I EO' let R(I) ={eEEOIIU {e}?0-

but Be'EI with IU{e}- {e'1}EA 0 . If R(I) 0 0, we may rotate I

by choosing an e E R(I) and some appropriate e' E• and substituting

I U {e) - {e'} E A0 for I.

Actually, in the algorithm below, we choose a random element

e E (I) U R(I) and first attempt to extend I by e, and else rotate I

by e. We call 9(I) the extension set of I and W(I) the rotation

set of I.

3.1 The E-R Algorithm

INPUT: An instance M0 = (E0 , 9'0) of a random Independence system

M= (E, f,9 p) and integer h > 0.

INITIALIZATION: I 4- 0; T + 0O

WHILE III< ho DO

BEGIN
IF el- (I)1) X •(1) = THEN FAIL

choose some random e E 6T (i) U 6? (i)
T T

IF e E (1) THEN EXTEND: 14-1U {e}

4
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ELSE BEGIN

choose e' E I with (IU {e}) - I}Ej,

ROTATE: I-IU {e}- {ie}

END

E ÷ E -{e}
T T-1

END

RETURN (I).

We define the sets:

gT(I) ={eET {e}E,1O},
TT

= {eEETIU {e}l ,0 , but Be' Ei with IU{e}- {e'}EN0}

as "macros" which are expanded in-line within the E-R algorithm.

For the problem of perfect matchings in random graphs G the
n,p

extension and rotation sets are defined As follows: Let M0 =(E

be an instance of the matching RIS and I E 0 . Then

e.(I)= {e E E - I the vertices of e are distributed from the
vertices of i}

and
() = {eEE-IIone vertex of e is an element of E-I}.

For the bipartite perfect matching problem in bipartite random

graphs (VlV 2 ,p) with IVlI= I' -n, the extension and rotation sets

are defined as follows: Let MO= (E0 ,)j0) be an instance of the

bipartite matching RIS and let I E Let V. (I) = set of vertices in
CYO2.

V. which are incident to edges in I, for i=l,2. Fix a uEV -V (1).

Then

T {{u,v}IE 0/v1V 2 (I)}

•T(I) = {{u,v}EE /vEV (I)}.T 0 2

In case of an edge e selected from R T (I), the rotation is done as

follows: Let e'-{u',v} be the (unique) edge of I such that e',e

L. tM'ZtZ~ .................................... a............ .
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(in the E-R algorithm) have v as a common vertex in V2 . Delete e'

from I, add e to I and then set u to u'.

For the Hamiltonian line problem in random graphs we have

(1) For the formulation as a non-proper RIS:

Let IE•0 be a non-maximal simple path. We let V(I) be the

vertices of I and let ENDSM(I be the vertices of I of valence < 2.

Then the extension set is C(I) = {eEE 0 -Ile-{u,v), uEENDS(I),

vEV- q(I)}. The rotation set is &(I) = {eEE-I-4(I)0 e={u,v},

u EENDS(I), vEV(I) - ENDS(1)}.
(2) For the formulation as a proper RIS:

Let IE Q be a set of disjoint simple paths which is not

maximum. Let V(I and ENDS(I be as in (1). Then the extension set -

i %I)= {eEE 0 -Ile={u,v}, uEENDS(I), vEV-V(I)}

U {e E 0 - IlIe={u,v}, uEENDS(I), vEENDS(I) -

and u,v are in different paths of I}.

The rotation set is

9(I) = {eEE-I-&(I)Je={u,v}

and (uEENDS(I), vEV(I)-ENDS(I)) or

(u,vEENDS(I') for some path I'cI))

[Korte, Hausmann, 1978] proved that the greedy algorithm performs as

follows in any independence system M = (E,J). Let I be the output of

the greedy and Iax the maximum (in cardinality) independent set of M.

If M can be written as an intersection of k matroids, then A

II Ig Ii i/k. For the matching problem, k= 2. For the (proper) RIS

formulation of the Hamiltonian line problem, k= 3. Note that the E-R

algorithm has at least as good performance as the greedy algorithm.

......
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As we show in the analysis, if the probability p of the RIS is

bigger than a certain value, then rotation succeeds with probability one

in finding short augmentation sequences in a random instance of the RIS.

Even as a heuristic, E-R constructs bigger maximal independent sets

than greedy and has the same worst-case time complexity if a rotation

element can be always found in fixed time.
--A

3.2 Parameters of the E-R Algorithm

We wish to analyze the E-R algorithm relative to the "time" index

T, which is incremented on each iteration of the algorithm. Note that

each "unit .ime" step from T to T +1 may include

(i) a constant number of arithmetic and set operations

(ii) an emptiness test for 9 MI iJfl MI

(iii) choice of a random element of or. )
T

(iv) choice of a "rotation" element e' E I such that if

eECr(I) then IU{e}-{e'IE0.

(Of course in the applications of Section 5 on a particular machine

model such as a RAM, we must determine bounds on the number of machine

instructions per "unit time steps" of the algorithm.)

Let H be the size of the independent set I on exit (either by

successful termination or by failure). For each h=l,2,...,H let Th

be the value of T just after I is extended from size h-1 to size

h. Also, let To =0 and let Th= JE0I for h= H+'l,...,h 0 . Note that

H and the T are random variables which are fixed only for a given
h

execution of the algorithm E-R on a given instance M of the RIS M.

.Fix some constant 0> 1. For each t-0,1,...,JEI let C (h),
t

C (h) , )~(h),) (h) be f unctions of domain 0 h h and range 16,11.t t t 0



We require that for a class do of executions of the Algorithm E-R

with total probability > 1- IEIa,

(i) (III) 4 r{extension of I on step t

(dt(I) U&t (1) i e0 and given an execution in , Ao

tt

t t (III).

Noe th t 1 (h) Prft(h) are . (1)ton given tan excetfrecution s info

tt

A

Also let Pabove (s t infora)* (1s- t (h))
tt

and v i(h) -il Uh -wherE (h))h
't.. t

A

Note that P t(h), P t(h)' are functions such that except for executions of

the E-R algorithm with total measure <~ IEK.

Pt (Ii1)< Vr~rotition of I on step Ptl (III).

The above (somewhat informal) statements can be related t the

random variable -Th -where h -III by-

"extension of I on step t" I "Th+1 = t + 1i

"rotation of I on step t" T -Th+1 > t + l"

"Vt (1i) UR ( ') = 0" -Th Ii:; ""

Note that the functions C (h), t (h), Xt(h), At(h) can always be
t t t t

trivially defined:

'~h =(h) h) 0 , Ct(h) =t(h) 1

t t t t

so they satisfy the above restrictions. In practice, of course, we wish

Et(h) - ct(h) I and It(h)- Xt(h) I

to be minimal, so that the analysis techniques of Section 5 yield

tight bounds on the time complexity of the E-R algorithm. In our graph
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applications tight C (h), C (h), X (h), (h) are obtained in Sectionst t t t

6 and 7 for matchings and Hamiltonian line problems.

4. A Simplified Probabilistic Analysis of the E-R Algorithm

We de4cribe here a very simplified probabilistic analysis of the

E-R algorithm. A much more accurate analysis follows in the next

section.

The extension probability is defined as the conditional

Prob{a random e, chosen from 4r (1) UT (I),
belongs to * T(I) }

and is equal to the ratio C(T,I) = x/x+y), given that 4TF(I) =x,
F F(1) = y.

TT

The definition above, suggests that if there are numbers Xin,

xmax. Ymin' Ymax (generally depending on III such that for some a> 1

Prob{x 14F(1) 1 4x and y lipy()~min T max Yminm T(1) Ymax

is

S1- IE (1- ).

then
minma

CT(h x C(T,I) C max = CT(h)
T () max + ymax xmin + Ymin

with probability )1- IEI-', and we can use these bounds to analyze the

E-R algorithm.

The existence of nontrivial xmin' XmaxD ymin Ymax depends on

both the instance of the random independence system given as input to
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the algorithm and on the particular random execution of the E-R

algorithm on that instance. Hence, 1 -IEI"' is the total probability

of a class of "good" executions on a class of "good" input instances.

Let h be the cardinality of I and N be the biggest III for

any such set in J. Suppose we could show that property M*) is satisfied

with such numbers so that both x /(x and x /(x + )
that/(mm max +Ymax Xmax/ mmn Ymi

are approximately equal to I-h/N. Then the behavior of the E--R

algorithm would be modelled by the Markov process of Figure 1, where

the numbers in the circles are the possible III. Thus, we would have

transition probabilities

h

Prob{I I Ih+l at T+I/ I I h at TI 1- N

(Note that, with the above assumption, this extension probability does

not depend on the time T). J1
A
I

Let p(Th) be the Prob{algorithhm E-R achieves an independent set

I of size h At time T}. We get by inspection

p(Th) = p(T-l,h-l1)l- --h I+ p(T-l,h) -N N

and

p:0,0) = 1

The solution of the above recursion would give the joint probability

density of T and h and, consequently, we could easily derive the

mean ~rfor h=N. by

T (T, N)Or
T=O

Let uh -mean time the algorithm stays at size i., before extending. By

known properties of Markov processes, we have

I W• i.
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Thus the mean time of execution of E-R before success is bounded by

T UO+u +'4U 1 + 1

SN 1 + + + + 1- O(N log N)

Note that in most of the applications, Na IEIB with 0<B 1.

The above T was produced by the assumption of a "good" class of

inputs and executions. In a bad case, the algorithm will fail or stop

after time at most IEI, hence

toa ýT(l- lEla") + IEI.IEJIO

and since a>l we get as IEI"- that

total (O(Nlog N)

This is the phenomenon approximate;Z followed in the E-R algorithm.

However, in general the extension probabilities depend also on time

(the next section takes this 'npendence into account).

In applications in random gzaphs G (where usually I is an,p

set of edges) we note that T is equal to the number of edges examined

by T, and h is equal to the number of edges successfully extending I

by T. Hence, the number of deleted edges by T is T-h and this

has to be less than or equal to the number C of edges from each vertex

of I to all other vertizes of I (since, as we shall prove for graph

applications, we only delete edges whose vertices stay in I). The

average r is phlh+l) and the average T- h is < Ttotal - h. By the

above,, in order for the algorithm to achieve the maximum size N of h,

SI.

-- • .A .. , -.- - , , •. • - - .- . . ,. . •.
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we have

total N pN(N + 1)

or edge probability

p ;0 0 AJ

So, we see that an edge probability of at least O(log N/N) is necessary

for the E-R algorithm to work in graph problems. The conatants of

multiplication for particular cases follow from the exact analysis given

in Sect-on 5 and also in Sections 6 and 7.

5. Rigorous Probabilistic Analysis of the E-R Algorithm

We fix an RIS M- (E,,p) throughout this section, and consider a

random insta0e (E. ) given as input to the 'E-R algorithm. All

our applications of Sections 6 and 7 satisfy the following mono-

tonicity restrictions: .

Rl C t(h), et (h) are monotonically decreasing with h but
Increasing with t.

R2 X (h), Xt(h) are monotonically increasing with h and t.

Intuitively, assume that the conditionaL probabiZity of extension

decreases with h =III and that the probabiZity of faiZure increases

as I grows and as the elements of E are exhausted.

5.1 Sufficient Conditions for Success with High Likelihood

Note that if Q is predicate and A an event on which Q is

predicated, we let Prob{Q/A} to denote the conditional probability of

Q given that A holds.
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Our goal here is to derive sufficient conditions such that for any

fixed sufficiently large ao > 1,

Pr{H-h I-)E
0 0

(i.e., the E-P algorithm succeeds in constructing en independent set of

ize h0 with probability 01- -- •0).

Assuming the above restrictions Rl, R2, we can derive bounds for
A

EXTh Pr{H>hlHOh, t-T to and given an execution in

0

PROPOSITION 5.1.

- t, (h)[E [t

- W 1 ()

- 0t (h)4 Ct,(h)- (1- Xt(h)) . . . . .•
1 - Pt (h).

Unfortunately, we found that a direct derivation of Pr{H- h by
0

use of Proposition 5.1 is intractable, because of the stubborn

appearance of the random variables Th in the conditional probabilities.

(Thus Proposition 5.1, as stated, is never used in our analysis of the

E-R algorithm.)

To bound the random variable E0, we may use the following known

fact:

LMMA 5.1. If M is an• RIS (E, ,p) a (E 0 ,J 0 ) is a raaom

ins M•,:3c of N, r•lw

I.i
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Prabll E (-8)( IE •plE (1+8)l ;P 1- E•"

uhere

Proof. Recall that the elements of E are chosen from S with

fixed probability p. Then this Lemma follows from the Chernoff boundst

1E-1

k-r(l+8) Iplpi k pk(1-0) E exp(-B 2 EIp/3)

L(•B-) eEIP- (lEI) k tEbk( 21 EIp/ 2 )

k-O

The following two conditions in conjunction imply

I - (l + c0) IE 1-

Cl For some flxed to, t1 t... th
Ah

Xt(h) t(h) 0 for 04h h0  and OQt~th,

C2 Prob{Thotho< EO)})I- coIElc-. for some c >I.

Note that Cl does not suffice to imply anything about Pr{fH-h 0 I
since we may frequently fail if the time t exceeds th.

5.2 Verification of Condition C2

We now aeaewe that conditions Rl, R2 and cl ha~ve been v.erifie~d for

eome tottl,*...th and derive bounds on the critical p which insures

condition C2 is satisfied.
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To verify C2, we require upper and lower bounds on the distributionf
+_'

of steps between extensions. Let g(xq) q(l-q) be the ge6OmtEtO

denait•jy Awtion. Let do be the class of executions of algorithm --R

with probability 1- JE[ which were used in the definition of the

C (h).t

Also, let S be the condition

""h1T < tth# t-Th< JEOI and given an execution in Od0 ."

_ LEMWA 5.2.

S•t~~~xu h)_ x t )"-
t+X[ - - x,-() (h)) 1 Prob{Th ,-T x +1s}
£ h) \t l £t+x (h) s

Ah

gb) (h h
E (h)

t

Proof. By conditions C1 and monotonicity rastriction RI,

[

Pt(h) 0 (l-th)) l-CTh(h)

for 0<h,<h 0  and Th tItn,

t+x- 1

Pr{T -T =x+l 10<2 (h) n1 P(h)
h+l h t+X kk-t

4 C .~ (h) (1 - Ct(h) )

[t (h)1
t+ C th- t(h) (1- ct(h))

The lower bound derivation is similar. 0

• I
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We now derive bound.s o~n the steps between extensions. For :

h =o,...h and t=OD***Dth let 6St(h) =1.AX(h,h') where

= [~.Ch~ £th(h) (I-IEI )]

and le log [ -Cth) + (h)()

6~~~~~(h)~~~~~ h o l ~h(~Ea)I l(-~h) .I

th C (h

lo ht t(hh)

Proof. Recall that Pr{given an instance in jo}),l- IEK by

definition.A

it suffices to verify:

Pr{T -T 6'(h)IS) Pr{T -T =X+ 1 S}
h+1 h+l h

(h) 6(h)-lA

t(h) x=O

by Lemma 5.2

Ct4(h)l (h ( A C h)(h)
t

;0 A~ 1~ (lU - (h))6() by Rl

Ct

)'1- IEI- by elementary calculat-ions.
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Similarly, we can show:

PriTh. ~ThP 6(h) IS)>1 - IEK 0
h~l h

As a consequence of Lemma 5.3, we may use for 1 <h <h .40

and

:h-

to lower and upper bound the time complexity of algorithm E-R with

high probability. Let A (0) = AS(0) = 0.

Let B=pIEI(l+V6cz logIEj/-p-ET. By Lemma 5.1 B gives an upper

bound in the number of elements in an instance of M, which holds with

high probability.

THEOREM 5.1. If A (h) :ýt then
h

Prob{A (h) <Th< AS(h) 1 - a (h) Ea

where a (h) 3h (1 +r)+ I

with
(B-t

hr=
h

Proof. By Lemma 5.1,

Prob{1E; > B)< IEI

By Lemma 5.3,
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Prob{A (h) T ^(A h) IT t 1 - 3h -
h h h ~3II

Note that we may assume without loss of generality that t (B. By the
h

monotonicity condition RI, we can show Pr{T =k) is unimodular for
h

kE {0,1,...,IEI}. Thus

Pr{Th > t0/IEO 4 B} < Prob{Th < A(h) or A (h) < ThTh- tht r 4 3hr!EI -E

"But

Prob{Th >th > <Pr{Th >t hl IE0 <B} + IF!-04 (3hr+l)E1) E

So

Prob{T <A(h) or A(h) < Th
h hi

4Prob{T < A(h) or A(h)< TIT t + Prob{T > th}
h h h hh>t)

<a(h) IEI-. 0

Note that Theorem 5.1 may be restated:

If A(h) <th then Prob{H>-h}l - IE -E (h) where

h)log (l-a (h)) ) ii

Furthermore, if we wish

Prob{Hh ) 10 -IEI-0

for any given a sufficiently large then we find a minimal p E (0,1)

such that the restrictions of Theorem 5.1 are satisfied and c0 =a(h).

(Note that if M= (E, •,p) proper random independence system and (E,j)

has rank )1h then such a p0  always exists.)

•T.i.•",. .... ." .... ... .. . . .- • .... •, ,, - ,..-.. .. ' i, • •" _. ; ..• ..F• ... 0•
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5.3 Bounds on the Probability Density Function of Th

We assume here the restrictions given in Theorem 5.1. Actually, we

have a much more general result, since we have from Lemma 5.2 bounds on

the probability density function of Th+l- Th for h l,...,h0 1. By

the monotonicity restrictions RI, for x= 0, ... , IEl

•Alh~)-I h) (1 - qlh))X

SProb{T -T = x+ l1A(h)4T T A(h),A(h+l)4T • (h+l) }
h+l h h h+1

where

q(h) = cA(h) (h), q(h) EA (h)(h)

COROLLARY 5.1. For h=0,...,hO 1

• (~l)-1(h) g(x,q(h)) - IEI -x(h+l) -< Pr{Th+1 -T h=x +l1
q (h)

A l(h+l) -o (h) 1)

S(h) g(x,q(h)) + EI-o(h+l)
q(h)

The Appendix gives the density function of a random variable which

is a sum of variables with distinct geometric distributions, and from

this and by the bounds of Corollary 5.1, we have upper and lower bour..ds

on the probability density function of the sun:

h-i
Th Z Tk+l Tk

k=0



.. .. .... ....

25

THEOREM 5.2. For h=0,...,h0- 1

Q(h) - hi•4(h+i) ( Pr{T xh x Q(h) + hlE t(h+)

where

h-I ^ h-1 lih-2I

Q(h) = hi ^g)h-2 h-i ( qW
Si=O j=- q(i) -q(j)i#j

and

hh-i

h-i h-i

A h-ih-2 -i g(i)Q(h) wh i g g(x, q W) (1- q(i)h- TT~ i

hj=i q(i) -q(3)

and
A.

A h-i (e (k) .

k=O q(k)

Thus, if the restrictions of Theorem 5.1 are satisfied (as they

do in our applications in Sections 6 and 7) we can derive by

routine methods the mean, variance, and in general any moment of the

time cost oz !IXgorithm E-R. I

I
/i

[- --- ,~ ~*
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6. Applications to Hamiltonian Paths and Subgraph Homeomorphism

Problems

6.1 Motivation and Previous Work A
Posa 119761 proved a sufficient p- O(log n/n) for Hamiltonian

paths in G, previously an open problem in Erd*s and Spencer [19741.

Karp (1976] observed that Posa's proof yields a polynomial time I

algorithm for constructing Hamiltonian paths in a random instance of

Gn. Angluin and Valiant [1979] then generalized this Posa-Karp

Algorithm to detect Hamiltonian paths in random directed graphs.

We can also extend the 'osa-Karp Algorithm to the problem of

identifying certain classes of isomorphic subgraphs. Consider the

problem for a fixed graph H and random graph Gn=n,p

Is H homeornorphictoa subgraph of G ?n,p

The answer to this problem is very useful for determining the prcbability

of a property characterizable by forbidden subgraphs (e.g., Kuratowski's

[1971] forbidcen subgraphs for planar graphs, Glover and Hyneke's [1975]

forbidden subgraphs for graphs imbedded onto the projective plane,

Lekkerkerker and Roland's 119623 forbidden subgraph characterization of

interval graphs). Erdos and Spencer [1974] determined the probability

that a random graph is planar by forbidden subgraph methods, and Cohen,

Komlos and Mueller [1979] found the probability that a random graph is

an interval graph by similar methods.

Actually, we can show that a large class of forbbiden subgraph

problems on random grap-hscan be efficiently reduced to the problem of

determining a Hamiltonian path. Suppose H is a graph

i -
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with k edges. Given an instance G of a random
0

graph G we wish to construct a subgraph G' of G such that G'

is homeomorphic to H. (See Figure 2).

We partition the edges of G into k blocks of cardinalitynip

n/k, with each block corresponding to an edge of H . Choose these

blocks to so that they have a unique "joining vertex" in common just

in the case the corresponding edges of H do. Such a partitioning

requires only linear time since k is constant. Then we test (by the

Posa-Karp Algorithm) if each block of the partitioning has a Hamiltonian

path between the "joining vertices" of the block. Each block is con-

sidered a random graph with edge probability p' =p/k. The application

of the Posa-Karp Algorithm then yields the required Hamiltonian paths

in each block with probability •l -n for any sufficiently large

log n.a>l, if p>c(k) - and c(k) >k/2.
n

6.2 Analysis of the Posa-Karp Algorithm

We now give a detailed analysis of the Posa-Karp Algorithm for

detecting a Hamiltonian path in a random graph G We follow the

nip

analysis techniques developed in Section 5.

Step A: FormuZation as an RI.S

We will follow here the formulation as a non-proper RIS (see 2.3,

Examples of RIS). The extension and rotation operations are described

in 3.1 of this paper. The formulation as a proper RIS (see 2.3, 3.1)

leads to a different algorithm than the algorithm proposed by Karp. A

similar analysis to the analysis presented in this chapter can show that

!Z. ta . i n
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this new algorithm has the same performance and the same probability of

success as the Posa-Karp Algorithm.

Step B: Derivation of the Bonwding Parmeter8: c (h), ''(h),

X (h), t (h)

Let V be the set of n vertices of the random graph Gn. Let

(EoJ' 0 ) be an instance of (E, J,p) given as input to the E-R

algorithm. Let I be an independent set of cardinality h, constructed

after t steps of the E-R algorithm. Recall j
4T(I) = {eEE /e={u,v},uEENDS(I),vEV-V(I)) ,

.T 0

where V(I) is the vertex set of I. Thus, the structure of #T(I)
T

for a particular V(I) depends only on the input instance (E0  0) .

The E-R algorithin does not look at any of these edges at times

T' <T, since if E-R examines an edge e at time T' then both

vertices of e stay permanently in V(1) for all TT' .

LFEMA 6. 1. For every 8, 0 < 6 < 1 and for aný p ) c ! with
n

c > 0 we have

(I -e) 2p(n -h) ([@(1) (1 (+ S)2p (n -h)

with probabiZity

(1 05 (l) c/3
1I 2n.

Proof. We have observed that 16MT(I) does not depend on the

random variable T of the algorithm. It only depends on III =h.

By definition of the Gn,p model

? " . .... • " • -?= T,_. *•= "- -- :.. ' " - , , ". ..
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lift ~ ~~2 (n-h) p 1p nh-
Prob{1e (I) IJ - U - .)2(-)-

The Lemma then follows by the Chernoff bounds. 0

By Lemma 6.1, the mean value of l(1T(I)l is 2p'n-h).

In the following lemma, tEl- n(n-l)/2

LEMMA 6.2. Let E i (l-8)2p(n-h) and E -a(1+)2P(n-h) with
0<8<1 and POc logn where c>6/82. Then there is an a > 1 such

n

Prob{Ein 14FT (I) I < Eax I - jEI"•minn maa)

ST no...JEI.2

Proof. By Lemma 1 we can get ot- c/6 so that a> 1 if

c > 6/6 2  o

In the following, we consider edges examined by the algorithm but

not added to I to be deleted.

LEMMA 6.3. Then the mean number of deleted edges per vertex of I

is the swame for eziery vEv (I) and is equal to t/h- 1.

Proof. Since the algoritiun examines an edge at each time step

and since we got up to h edges at time t, the number of deleted

edges is t-h. These edges have their vertices in I (as pieviously

noted). So, it is enough to show that the mean number of visits of the

E-R algorithm to each vertex of I by t is the same. This follows

by symmetry and since the algorithm selects at random an edge e from

tF (1) UR. (I) before each extension or rotation. Hence we get that the
t t
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mean number of deleted edges per vertex of V(I) is t-h/h proving

the lemma. Note that this holds for any value of p. 0

COROLLARY 6.3. For any BE (0,1) there exist constants c >1/2
and > 1 such that if p)>c log n and m- number of deleted edges per

n

vertex of V(I) by time t O(nlog n) then

(1-)(- ) 1 4m (1+ )t/h

with probablZity ;s I E -!.

Proof. We will first observe that for any numbers k, A and

p c l:9nwith c>2(A~k+l) we haven

Problevery vertex in G has 0klogn edges} l-O(nA

To see this, if v is any node then the probability that v has
<k log n neighbors can be bounded by O(n-A-) by the Chernoff bounds.

' A,

The result follows by summing over the n choices of v (see also

Sociability Lemma of [Angluin, Valiant, 1979]).

We shall also utilize the bottleneck lem-a [Angluin, Valiant, 1979]

which can be described as follows:

Let us have a rooted tree of depth m and uniform S-way branching.

Let Y be a set of paths from the root to'certain of the leaves of the

tree. Let us color green all nodes in these paths. Assume that along

each path of Y there exist k nodes (called bottZenecks) such that

at the i-th such node the probability of drawing a green successor is

at most pi. Then,

BOTTLENECK LEMMA. The probabiZity that a bottZeneck will out our

random path to a green Zeaf is <P 2"P2 .. *k
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We can now complete the Proof of the Corollary: Let the tree

above be the tree of possible executions of E-R. Any vertex of I

visited less than (1-6) (t/h-l) times or more than (1+0)t/h times

can be considered as a bottleneck and this event would be bounded by

the sum of the probabilitieslog n< -klg
[(n. - )1-+ n - (1"0)

for all possible vertices, which is O(n for suitable values of k.0

LEMMA 6.4. For any 8E (0,1) there are con•stants at>I and r

cc(8,ca) >0 such that

(l-) 2ph- (1+$) t (1) (1+$) 2ph -
h t(

ho,,ds wit:h probiZi•.••ty ;01l- IEI-'. .

Proof. Let A be the number of edges from endpoints of I to

1

vertices of I at time t= 0 (V(I) is fixed here) and let A2  be
21

the number of edges deleted from the endpoints of I up to time t.

Then R (I) A A By the Lemma 6.2 and Corollary 6.3 we get the
t =A- 2 '

result.

Applying Property (*) at the beginning of Chapter 4 and

Lemmas 6.2, 6.4 we get that

(n-h) (1-tt) (n-h) (l+ý)
(h) (h)t n(l+) -i-8)t- (+)n1-) +B-)

are bounds on the conditional extension probability of the E-R

A algorithm:

. ...... . = . . . . .. . . . . . . . . .. .: . .. . : . " :; - . . . , . . . "' ÷ "'-MU M-:. ... -
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for executions in a class W0 of total probability )1- IEO. J
Observe that

Bc t (h) act (h) act (h) aC t (h)

> 0, Bh >0, th < 0 and h < 0(it at ah 8h

so the monotonicity condition R1 is satisfied.

Note that Lemma 5.1 fixes A ct logjEj/jEj-p where lEI =n(n-l)/2.

Note also that since 2ph is the mean value of the number of edges from

the endpoints of I to the other vertices of I at the beginning of an

execution of E-R and since 2t/h is the mean number of deleted edges

from the endpoints of I by the time t, we must have (in order for E-R

not to stop at t) that

t/h ph or t ph2

For T=O(nlogn) and h=n-i this again implies p)kO( for then :

E-R algorithm to be able to construct a Hamiltonian line. (Compare

with the general statement at the end of Section 4.)

Restriction R2 can be readily verified for it is obvious that

Prob{6* M U R (1)
t t

monotonically increases with t and h= III.

To satisfy condition C1 we set th 2 pnh(l-$). Then for executions K
in. and Ot4 th.

t t

a-------------------t,. ,'--u.. . .t..-.' •-- .-. . . . . - . . .
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Stop C: Ver'ifioation of C2

We now must verify condition C2 to insure the algorithm succeeds

with high probability. For simplicity, we proceed with the aaynptotio

n•Zycia ae n-c (although the techniques of Section 5 allow analysis

for any fixed n as well). Note that as n*®, BO so

C (h) , (h) n-"
TI-2ph

L so in the asymptotic case the bounding parameters are identical.

Also,

a(h) alog P.t logl(-E (h)) as n÷ , co
t

where

n(n-i) 1

We must determine

A (h+i) = A(h) + 6 M(h::• A(hi .

"Let

k
1 log n

We now show by induction on h that L M k hlogn where k= +k

LEPTA 6.5. Assume p) c log n Then (x) W k x log n, wheren
20,c

2 c and a is the constant appearing in 6t(h).

Proof. We have from the definition of A(h) that

h-1i=
~(h) = 6 (i)

i=O
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and A(0)=0. It follows that A(h) =A(h-l) + (h.)(h-1). Also from
+<

6t(h) '-a log nt log (l_•t (h) ) -
t

as n + 0 we get

6t~~-2 log~2  n
t (h) log(i- t (h))

as n- +.

Basis:

Since at 0 edges, E-R will increase the size of I with certainty

in the first attempt, we must have 6( (0) =1. Then A(M) =A(O) +

a-1)(0) =l<klogn for large n.

Induction Hypothesis:

Assume that for k- c and e.ll j in {0,l,...,x-l} it is

true that A(j) < kj logn.

Induction Step:

We have, by replacing 6 (x-l) (x-l) in the equation for A(x)

A(x) = A(x-l) + -2a log n

log1 2p(n-x+l)
log~l - 2pn-2L(x-l)/(x-l).

A

By the induction assumption we may substitute A(x-l) 1 (x-l) .k log n and

by using also p clog n/n we get by elementary manipulations that

"A(x) 4 k(x+x')log n

where

A
~,/ I
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xl ' = 2 ___/- - 1 a

l.og 12c- 2k1 I log 2k

But x20 for k - and x~n- 1 as assumed.2u ' + c

Thus ý(x) <kx log n. 13

Thus for C we hav A th) and we conclude that the

E-R algorithm outputs a Hamiltonian path with probability ;1- IEJ

where a0<(- 1/2.

Step D: Bounds on the Mean and Variance of Th

We have from Corollary 5.1 that

Prob{Th+ - Th= x + ) < hq (x,q(h)) + IEw-(h+l)

where

C^ (h)
S A(h+l)-l ad)

Sh q(h) and q(h) c A(h) (h)

This requires calculation of the lower bound A(h), which in this

application is trivial: A(h)= h. But shf i~i - k2 /kl) is constant for

p=e(log n/n). Also, for a (h+l) >0, IE1-1(h+l) -0 as lE .

D.a: Upper Bound on the Mean of Th for h 0 = n-i

h0
From the Lemma 6.5 we remark that the upper bound of the mean must

be <knlog n. To analytically derive a more tight bound, we have:

Sn- h n - h
n -l(h+l) <n k(h+l)log n

2ph p

(by the fact A(x) W< x log n).

,••.•.,•••:--,. ,..: % _•..¥•• a•, I • ••.._r•.,• • •:. . .. .....w..•
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So, we get

•(h+l) (h) ( kn h+1 uLsing pn; c log n)

2c h

So, "

(h) < -h(nhA(h+l)) _n n- h

A

C -J

q (h)
(

where

h
q (h) =1--hnn3

Let us define a constant

1!=k

Then A

q (h) -

Sh -- ~ h) =d'.

Then, from Corollary 5.1 and the Appendix we get (by taking means) that

mean(Th+1 T h l-q(h) = n hh - h h q(h)nh "

So n-i
n-i .

mean(Th0) = 0 mean(Th+(-1h) • af n dh

0 h=O f- d0

Sd' In log n -(n-1)].

I
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D.b: Lower Bounds on the Mean of TO
0

Again we do an asymptotic analysis as n-+. We have

li A (~l (h) = 2p (n-h)

A~h~)A (h+l)2pn h

1- h/n
1by ussing A(h) =h.1- (h+l)/2phn

Since pn clogn,

h•'h+l'• (h) Ct- n as n 4 •

Also,

£ (h) 1 - h/n 1s (h) A(hl _.

-11

q(h) (k_ h/-(_•2c)

with d= (i- k/2c)

By Corcllary 5.1 and Appendix

mean(T h+-T h s(h) f-q(h) • f(h)
h(h)

where

q(h) = 1- and f(h) = d(

SO,

n-i n-i
mean(T h mean(T h+-T) = h f(h) 4

h=O h=O

thenn- n-1

mean(Th > f(h) dh log n n-i -d
0 f d d d

..
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As n-1, the obtained lower and upper bounds are tight within a

constant factor

,'2 (- 2c- if - og /)
d- = c-k 2c-k} n

Thus,

COROLLARY

mean(Th) e(n log n) for" p n(2 -•
r0

D.C: Upper" Bounds on the Second M.oment of Th-

From the AppendixFm a2
mean(Y 2) = Dii- + r; i r 2 h

I i=l I
where Y is a sum of m truncated geometrics of parameters pi and

r. and
1 s+l 1

r. -1
1

n the truncation point, and

0

D = r. 0 Ti
I jiPi-Pj

In our case, p = q(h) =n-h/(n-l. So,

n-il
(i-p.)p~-n

and by noting that

rT3j-z = n-i-

S. .... . ..... ... ..~..-... . A . .. ...
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we get

D exp(i-n).Sn-i

By the Appendix

2=i / 2 3mean (Tn CM Di 2 /

n 2F n-i

Usin+gn) 3( + 2)Uintgralp cu 1- i/n for large n and replacing the above sum by an
intgrlwe get

mean(T 2 (n 3+ 5n 2+ 5n) C s n1.O
n-i exp(l) a -

By using the lower bound for the mean and the upper bound on the

k second moment we can get an upper bound on the variance as follows:

2 2
var(Tn) mean(T )-mean (T

n-i n-I n-i

So
var(Tn 1) • (n3+ 5n2+ 5n) - nlogn n-lld•

c 3 2 (n lgn n-i --n-i exp(l) ( d 2  2
dd d/

2
D.d: Lower Bounds on TnI

n-i

For the lower bound, we use pi q(i) =d(l-n) in the formula for

D.. Let
1

di (1- d) n-i
+n(l-d)

Then
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Di = B n (i 1-1 i

We can prove by an easy induction that BPexp(d(i-n)). So we get

2 n-i,mean(T n_1); u~i)

where
i -

u(i) = exp(d(i-n)) --r (-I)n-i Ain-i

and

2 3A.= -- +i 2
Pi Pi

2

I -
Smean(T n_ u ui) di - u(0)

:ff

A calculation of this integral gives us

mean (T2  > exp(-d)[ I d2n3 + )

A lower bound on var(Tn) follows immediately from our bounds on
n-i

2mean (T and mean(Tn) Hence,
i neanT n-i

LEMMA 6.6

_3 -d 3 n2 3 n3

3-d + (n) ' mean(T n c3 + O(2
4 n-I e

3
and var(Th) e e(n3), if exp(d)c is oonatant.

This completes the analysis of the Posa-Karp Algorithm.

". - -:7L .:_ ".'- ,,.-'•..- - .. '.- . - . ..... .. .. . . . .. .-....- :'" - -•o=' • • 7r • ,.... . . ... .. .l t
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7. Applications to Matchings

7.1 The E-R Algorithm for Matchinqs in Random Bipartite Graphs

Step A: Formulation as an RIS

We will follow here the formulation as an RIS given in 2.3

(Examples of RIS). The extension and rotation operations are described

in 3.1. Let G be an instance of the random graph Bn,p and let I

be an independent set of size h, obtained after t steps of the E-R

algorithm.

Step B: Derivation of the Bounding Parameters

By the definition of the rotation and extension, we note that as

soon as an edge e is examined by the algorithm, both its vertices

stay at I for subsequent time steps. Hence, IcFT(I)I follows the

same distribution (as in Lemma 6.1) with mean p(n-h) . Lemma

I also holds here (since it depends only on the cardinality of I)

and Corollary 6.3 can be proved by similar arguments. For p clog n/n

we get exactly the same values of XminD Xmaxl Ymin' Ymax and the same

asymptotic expressions for Et (h), E t(h).

Steps C and D:

.ne analysis is the same as in the corresponding steps of the

analysis of the Posa-Karp algorithm. So, we get:

If r >c log n/n, the alqorithm E-R constructs a perfect

matching I with III =n an the random bipartite graph Bn,p, in

average time mean(Tn) =O(nlog n), with probability of success i> 1- n

ct> . The constant c depends on u as in the Posa-Karp case. The

S... . . . -. . . . -... - - • .- - -. ... . .. .. .-
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2 3 3
second moment again satisfies mean(Tn) = O1n3), so var(Tn) = 8(n3).n n

7.2 The E-R Algorithm for Matchings in Random Graphs G

?reviously, Angluin and Valiant [1979) and Walkup [1977) have

described algorithms for detecting perfect matchings in a random graph

G with pOc(log n)/n. We now briefly sketch an analysis of the
2n~pw

performance of the extension-rotation algorithm for perfect matching.

Step A: Formulation as 2'n RIS

We will follow the formuleation given in 2.3 and use the extension

and rotation as in 3.1.

Step B: Derivation of et (h), Et(h)

Let

a(h) = (n-h) (2n-2h-1)

a'(h) = 4ph(n-h)

2
ft(h) = t (n-h-i/2) (n-h)/n2:

ftl(h) ht(n-h)/n 2

Again, we may use symmetry arguments and Lemma 5.1 to bound the

cardinalities of (I) (1) and E0 for a class of executions

Swith probability 01- IEI-. Let h- 11.

For executions in

(l-B)a(h) ( 45t I)() + ft(h) ((l+a)a(h)

t

and

(1-B)a'(h) • I (I)l + f (h) • (1+8)a'(h)

Lei
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th " (l-8)(a(h) +a'(h)) -ft (h) -ft(h)

Then Itt(I•)+ LtOMI >0 for t th in executions of 0, verifying

condition Cl.

We may let

(l-8) a(h) ft(h)

t(l (a(h) + a' (h) -ft(h) -f (h)

(1+6)a(h) - f (h)
tC (h) td

so we have

t(h) ( dtI (h)

for executions in do-

By taking partial derivatives of C (h) with respect to t and
t

h, we can again show the monotonicity condition R1 is satisfied. It is

also obvious that monotonicity condition R2 holds.

As n-, the asymptotic bounds on the conditional extension

probability is again tight: C t(h) - (h). By the routine calculations,

described in Section 5, the reader may verify that A(n) (tn so the

E-R algorithm outpus a perfect matching with probability ) I- lEt- (n).

We also leave the reader to calculate tight bounds on the mean and

variance of Tn

2 3mean(Tn) (nlog n) and mean(T) =(n

by applying Corollary 5.1 (which bounds the probability density of

Th+- Th by geometric density functions) and using the formulas of the

Appendix to calculate the moments, as we did in the Hamiltonian path

applications.
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Angluin and Valiant 11979] show that each "unit time" step of

Algorithm E-R for this application requires e(log n) instructions

on a RAM machine. Thus, the above mean and variance bounds must be

multiplied by a constant multiple of log n and (log n)2

respectively.

Acknowledgments

We wish to thank Andy Langer, Allen Emerson, and Christos

Papadimitriou for their helpful suggestions on these topics.

fi

--

• i 4

77 77=ý



46

Bibliography

Angluin, D. and L. Valiant, "Fast probabilistic algorithms for
Hamiltonian circuits and matchings," J. Computer System Sciences,
18, 1979.

Cohen, J., J. KomloSs, and T. Mueller, "The probability of an interval
graph and why it matters," Proc. Symposia in Pure Mathematics, 34,

S•-1979.
Erdos, P. and A. Renyi, "On random graphs," Publicationes Mathematioac,

6, 1959, pp. 290-297.

Erdos, P. and A. Renyi, "On the evolution of random graphs, Pubi. math.
Inst. Hung. Acad. Sci., 5A, 1960, pp. 17-61. A

Erdos, P. and J. Spencer, Probabi•istic Methods in Combinatorics, Academic
Press, New York, 1974.

Feller, W., An Introduction to ProbabiZity Theory and Its AppZications,
Vol. 1, Third Edition, John Wiley and Sons, New York, 1968.

Grimmet, G.S. and C.J. McDiarmid, "On coloring random graphs," Math.
Proc. Camb. PhiZ. Soc., 77, 1975, pp. 313-324.

Glover, H. and J.P. Huneke, "Cubic irreducible graphs for the projective
plane," Discrete atJcz--.,., 13, 1975, pp. 341-355.

Karp, R.M., "The probabilistic analysis of some combinatorial search
algorithms," Algorithms and CoOZe_-;*tu: New Directions and Recent
Results, J.F. Traub, ed., Academic Press, New York, 1976, pp. 1-19.

Korte, R. and D. Hausmann, "An analysis of the greedy heuristic for
independence systems," Annals of Dscre-te Mathematics 2, 1978,
pp. 65-74.

Kuratowski, K., "Sur le probleme des courbes gauches en topologie,"
Fund. Alaeth. 15, 1930, pp. 217-283.

Lawler, E.L., Combinatoria-l ortirnicati"):: Networks and ?4atroids, Holt,
Rinehard and Winston, 1976.

Lekkerkerker, C.G. and J.C. Boland, "Representation of a finite graph
by a set of intervals on the real line," Fur-f. Math. Po"ska Akad.

Lueker, G.S., "Maximization on graphs with edge weights chosen fl Dm a
normal distribution," Pr'.•'. Tent;.: .4'.-?nt(u/. S:4 posiu'n on fheorý of
Comnput'ing, San Diego, California, 1978. A

LI.
.. . . . . . . . . . . . ............ -'---...--.,- .. .. "-- :,-:••.'i 'v'••-::" .. ''.•:.:' . ... :



4"7 7 .1'

47

Matula, D.W., "On the complete subgraphs of a random graph," Proc. 2nd
ChapeZ HiZ. Con:feeene on CoMa:oriZ Z 'ath. and lto AppZtica,-io,,
University of North Carolina, Chapel Hill, May 1970, ý-p. 356-369.

Papoulis, A., ProbabiZity, Random Varizblees, and Stochastic Processes,
McGraw-Hill, 1965.

Posa, L., "Hamiltonian circuits in random graphs," Discrete Mathematics,
14, 1976, pp. 359-364.

Reif, J.H. and P.G. Spirakis, "Random Independence Systems." to appear
in 1981, also appearing in preliminary form as the 2nd and 3rd
Chapter of "Random Matroids," STOC, 1980.

Tutte, W.T., Introduction to the Theory of x•atroids, American Elsevier,
New York, 1971.

Walkup, D.W., "On the expected value of a random assignment problem,"
draft, December, 1977.

Walkup, D.W,, "Matchings in random regular bipartite graphs," draft,
December, 1977.

Whitney, H., "On the abstract properties of linear dependence," Americ-n
J. Aat!hem"aics, 57, 1935, pp. 509-533.

I•

II
-•----= • -, .•, •-.• -•;•.. ....... .. ....... •-a•,, •" '• . .. : "•" •""':••'• r'•••-.*-:'-• •;•'•'w-' •• ,•• • -:.: 'r',,•l- i



APPENDIX

We consider a random variable Y which is a sum

Y X +... Xm
1m

of geometrically distributed variables X,...,Xm. This AppendixmI
provides formulas for the mean, variance and some low order moments of

Y.

For each i=l,...,m we assume X. tas truncated geometric
4

density with parameter pi E [0,i]. Let rim i-pi and

k9i(k) p Pri, k04,10,...,on

mi U0 else

The density function of X +X2  is for Ok<2nO,

k
g*g 2 (k) = 9 gl(j)g2 (k-j)

j=O0

PiP2 [ k+l k+l1]

Sp2-Pl[r -r J "

By applying induction, we derive the density function of

mY = Xi

iml

f(k) (g * ) )(k).

9 •ig(k~r.-i ri

j~i
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The t-th moment of Y is given by

S

mean(Yt ) - £ kt(g*,...,gm)(k)
k=O

when s =mn 0 *

Mean of Y:

m
mean(Y) = m nean(Xi)

i=1 I no
men( 1-r. (n i)

iean (Xii P (0i

Variance of Y:

mean(Y2) iD, r.i-- i 32
i=1

where
r. -141-

h(ri) = r. -1
1

n0-1 Pj
D. = r.

2. 1 j Pi

Asymptotic Analysis:

Note that as s- ÷

ah 1
3r. 22ri p.

ar2 P3 .2h .
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Fm

m e a n ( y 2 ) ( Y D i( 2 3 + 2 ) p i

.i

r;
I.:z
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