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1. Introduction

Two separate themes from the Computer Vision literature come together in this paper: the use of rota-

tinnally symmetric operators, and the idea that several modules of visual perception require that the "most

conservative" solution that meets a given set of boundary conditions be computed. The two themes are

combined in an investigation of which operator to use in the interpolation of smooth surfaces from one-

dimensional boundary constraints. Such constraints arise naturally in a variety of visual problems.

In the next section we revicw the role of rotationally symmetric operators in Computer Vision, and we

derive conditions which linear and quadratic forms in the first and second directional derivatives must satisfy

in order to be rotationally symmetric. We then rIAscuss the idea that vision is a conservative process, citing

examples from both figure perception and sccne analysis. The "most conservative" solution is modelled using

the calculus of variations to find the minimum function that satisfies a given performance index. A major

problem associated with the use of the calculus of variations is guaranteeing the existence of an minimum

function (see for example Courant and Hilbert 1953, p.173). A theorem of Grimson(1981, theorem 2) proves

that a sufficient condition for the existence of a minimum is that the performance index should be a seminorm

on the space of functions. The condition is not necessary. For example, Horn(1981) has determined the curve

that minimizes t.e in'egral square curvature subject to tangency conditions at the end points; the performance

index is not a seminorm.

Grimson(1981) notes that many intuitively plausible performance indices based on mean and Gaussian
curva!.ure are not seminorms, but that the square L.aplacian fx + 2f•,fo -- f2  and the quadratic variation

f2 2.T 2.1 +Y f,, are. We show here that an), quadraticfonn in f•, fv, and fou is a seminorm.

To further constrain the choice of performance index in the infinite set of quadratic forms, we require

in addition that the quadratic form should be rotationally symmetric. We prove that there are essentially two

different choices: the sqt,'..re Laplacian and the quadratic variation. All the remaining possibilities are linear

combinations, that is, form a vector space with these two as a basis.

To choose between the square I.aplacian and the quadratic variation, \we consider their respective Fuler
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conditions and natural boundary conditions (Courant and Hilbert, 1953). The Euler conditions are identical,

but the natural boundary conditions, which are derived from the statics of a deformed thin plate, favor the

quadratic variation since they offer tighter constraint in this case.

2. Rotationally symmetric operators in vision

A major concern of Computer Vision is the isolation of constraints that combine with the information

provided in the image to yield an interpretation. Early work on polyhedra (Clowes 1971, Huffman 1971,

Mackworth 1973, Waltz 1972, Sugihara 1978, 1981, Kanade 1981) focussed upon the discovery of constraints

deriving from the image forming process, constraints that relate image fragments, like junctions and lines, to

their scene counterparts, vertices and edges. As Computcr Vision turned its attention away from plane-faced

objects to the natural world, other constraints were required. Often the constraints expressed some facet of the

intuitive notion of "smoothness" and did so in a way that supported useful computations (Strat 1979, Brooks

1979, Ikeuchi and Horn 1981, Woodham 1978, Horn and Schunck 1981). Recently, smoothness and image

forming have been combined using differential geometry (Grimson 1981, Witkin 1981, Binford 1981).

One constraint that is usually implicit, but is occasi-nally made explicit, expresses the idea that perceptual

processes are often* approximately isotropic. It seems that humans usually do not show strong directional

preferences when detecting edges, motion, or reflectance boundaries. We seem to be equally adept at per-

ceiving the layout and orientation of a visible surface regardless of its orientation relative to the view vector.

Llllman(1976) arz-¢- for an explicit isotropy constraint in his work on subjective contours (see also Knuth

1979).

Processes that are isotropic arc naturally computed by rotationally symmetric operators, since the values

they return are unaffected by the coordinate system chosen for the image. Conversely, rotationally symmetric

operators compute isotropic information. As we shall see. many operators that have been proposed for vision

are not rotationally symmetric but dircctionally selective. Some authors have, however, proposed rotationally

symmciric operators, particularly for early visual processing. )

'.,
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Precise definitions of rotational symmetry for functions. operazors (or functionals), and, by specialization,

matrices are given in the following section. In the rest of this section we assume that the definitions are already

understood.

Some kinds of blurring in an image formiiag system can be approximated by convolution with a

Gaussian. The rotationally syjmmetric Gaussian can be defined by:

G(r) 1 W02 ,-r2

2 2expt02).

Pratt(1978) presents several techniques, such as convolution with the generalized inverse of the blur

function, for restoring the image. (see for example, his figures 14.2.1, 14.3.2).

The Laplacian A = +x + fVU is well known to be rotationally symmetrict and its use has been proposed

several times in Computer Vision and Image Processing. If an image is blurred in 3 way that can be ap-

proximately modelled by passing the image through a system with a Gaussian point spread funiction, then it -!

can be sharpened by subtracting a multiple of its Laplaci• a (Rosentfld and Kak 1976, p.184, Prewitt 1970, p.

107). Pratt(1978, figure 17.4.5) illustrates the use of the Laplacian for enhancing the edges in an image.

Weska, Dyer and Roscnfeld(1976) note that convolving a step edge with a Laplacian operator gives rise to

a pulse pair: a negative pulse at the transition from the lower plateau to the edge, and a positive pulse at the

transition from the edge to the upper plateau (see also Horn 1974, Marr and Hi!dreth 1980). They suggested

that the image intensities at the locations of the positive and negative pulses could be used to set thresholds to

use in segmenting the image into regions.

Several authors have noted the relative insensitivity of human perception tc small intensity gradients

(Herskovits and Binford 1970, Marr 1976, Marr and Hildreth 1980, McCann eL al. 1974). They have noted

that the effect can be explained by assuming that the vision system uses operators approximating second 4'

derivatives. 'his so-called lateral inhibition effect seems to be performed by center surround operators in

the retina (see for example Richter and Ullman 1980). The Laplacian is a rotationally symmetric second
t A proor or thiý, is given in Section 3 below.

.-q•,0
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differential operator, and an attractive candidate to perform lateral inhibition.

The use of the Laplacian for edge detection was proposed by Horn(1974) in a study of the determination

of lightness. Following Land and McCann(1971), Horn restricted attention to images of planes colored with

patches of uniform reflectance or color. Within a patch, grey level variations are due to small variations

in illumination, and they are smooth compared to the abrupt changes between patches. The conventional

approach to detecting significant changes in intensity had been to note that the gradient of the image is

small within a region, but is infinite across a reflectance boundary between regions. For a particular image

tesselation and quantization of grey levels, the gradient is always finite. It is usually much larger, however, at

a reflectance boundary than it is within a region. Horn(1974) rejected using the gradient since "the first partial

derivatives are directional and thus unsuitable since they will for example completely eliminate evidence of

edges running in a direction parallel to their direction of differentiation." The Laplacian is the lowest order

linear combination of derivatives that is rotationally symmetric. A reflectance boundary can be detectedby the

paired positive and negative peaks on either side of the boundary, and localized by noting the position where --

the I2placian crosses zero between the peaksl.

Marr and Hildreth(1980) have proposed that edges are detected in the human visual system by ar

operator that approximates AG, where A is the Laplacian, and G is a rotationally symmetric Gaussian. We

shall show in the next section that the applicatiun of a rotationally symmetric operator, such as the Laplacian,

to a rotationally symmetric fincti)n, such as the Gaussian, is itself rotationally symmetric. It follows that the

Marr-lIildreth operator is rotationally symmetric. M:,rr and Hildreth note that intensity changes occur at a

number of scales and are often superimposed. They suggest that an image should be smoothed by a number

of ba)ndpass filters to isolate the changes at a particular range of scales. The Gaussian is chosen as the filter to

optimiue localization of changes in both the spatial and frequency domains.

Wc noted above that the Gaussian and the Laplaciau have figured prominently in early visual processing

"1Thc (i.ws',ian has mostly been used to approximate the point spread function corresponding to the blurring of

S, Inii• ,,10 for more on the diiý.tmýtion betwceen deImct'oh .i ,d Iocalai ion of an intcasity changce.

ik
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a point source. Marr and Hildreth deliberately introduce Gaussian blurring. They further note that AG can be

approximated by a difference of Gaussians, Gi - G2 Nishihara and Larson(1981) note that the difference of

Gaussians is to be preferred on grounds of efficiency. Macleod(1972) proposes an edge detection operator that

is the difference of two Gaussians. However, no analysis of its performance is given, and no indication is given

that the operator approximati.d a low-pass filtered second derivative.

Regarding the use of the Laplacian, Marr and Hildreth do not seem to make isotropy an explicit con-

straint on edge detection. Instead, Hildreth(1980,page 13) notes that "a number of practical considerations,

which will be illuminated in the discussion of the implementation, suggested that the ... operators not be

directional". Suppose instead that directional operators are used. The simplest algorithm for edge detection

has two stages. First, the image is convolved with the directional operators in "sufficiently many" directions.

Second, the outputs are combined to determine the orientation and extent of intensity changes. Regarding

the first stage, both Marr and Hildreth(1980, page 193) and Hildreth(1980, page 40) claim that the cost of

convolving the image with a "sufficient" number of operators is excessive. They show that a single rotationally 1

symmetric operator (the L.aplacian) gives precisely the same results if a condition called "linear variation"

holds. Regarding the second stage, Hildreth(1980, page 36) observes that edges in a direction close to that of

the mask are elongated in the direction of the mask. She also notes that operators at several onentations give

significant responses tc any given edge, and that combining the responses is non-trivial.

There are two essentially different issues here that need to be clearly separated. Intensity changes first

have to be detected and then localized as a set of "feature prints" marking the position of the change in the W,

image, and characteristics of the corresponding edge. 11,-; dtection of feature points is inherently isotropic,

as Horn(1974) noted. The feature points have then to be combined to produce descriptions of edl e segments.

Edge segments are clearly directional, indeed a central problem concerns the determination of the direction of

an edge in an image. The computation of rich descriptions ot edge segments is, as Hlildrcth notes, not at all I

easy. Marr's(1976) original Primal Sketch work was almost entirely concerned with it. Biniaird(1981) discusses

the application of directional operators to compute the directionaiity of an edge. 7

MVI
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The Gaussian and Laplacian are not the only rotationally symmetric operators that have been proposed

in computer vision. Prcwitt(1970, p. 107) observes that "derivatives of all ordc~s can be used to form isotroplk

nonlinear differential operators, provided that derivatives of odd order appear only in even functions. The

simplest of these... is the squared gradient", namely V. V, where V is the column vector

Earlier in the same article, Prewitt(1970, p. 85) suggests that "the Hankel transformation enters naturally

in the analysis of systems with isotropic point spread functions and greatly facilitates restoration." The sugges-

tion does not appear to have been investigated in computer vision.

We noted earlier that an important aspect of modelling perception is the isolation of constraints which

capture some facet of smoothness. Horn and Schunck(1981) consider the determination of optical flow fields

and note that "if every point of the brightness pattern can move independently, there is little hope of recover- )

ing the velocities". One way to express the additional constraint of smoothness is to minimize the integral of

,he performance index

2 + U)+ V2+ )

where u and v are the x and y components of the optical flow, and subscripts denote partial differentiation.

We shall show in the next section that this operator is rotationally symmetric. In many simple situations the

smoothness constraint is significantly wrong only at occ!uding boundaries.

We conclude this review of the use of rotationally symmetric operators in vision with Grimson'41981)

woi k on gurface interpolation. As); " will be the focus of Section 5, our remarks will be brief. The Marr-Poggio

dicory ol human stereo vision yields the di'varity (scaled depth) at matched edge points that are computed

by the M :irr-1Hildrcth approach described aibovc. The disparity map is as sparse as the set of matched edge

Iohints, Ahcreas human perception is of smootlh surfaces passing through the given disparity points. Crimson )

. "4
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(1981) interpolates a smooth surface from the given set of edge points by a local parallel algorithm that applies

a rotationally symmetric operator to minimize the quadratic variation introduced above.

3. Conditions for rotational symmetry

A function *:2 " R is rotationally symmetric if its polar form is only dependent on radial distance

r - (x2 + y2) and not on direction 4. - tan- I. Clearly, a function is rotationally symmetric if and only

if it can be represented as a function of (x2 + y2)i. An alternative definition can be given that is often more

convenient for functions, and that can be generalized to operators. A function is rotationally symmetric if and

only if it yields the saree value under an arbitrary rotation of coordinates

An anticlockwise rotation from one set of image coordinates (:, y) to another (X, Y) is effected by a

rotation matrix:

[X] = (::O sin 4.3 (0)
L- sin 0, coo 01JLY1 (0)

For convenience, we shall denote coo 4, by c and sin 4 by a. To simplify notation, we shall not make

explicit the dependence of the rotation matrix R on the angle 0. A function f is rotationally symmetric if and

only if the untransformed version f(z, y) is equal a the transformed version f(X, Y). We shall occasionally

find it useful to borrow the mathematical shorthand that equates a function f(X, Y) with a function of a single

vector argument f(R[z, Y]T).

Example I. The function f(z, y) = (z2 + y2) is rotationalhy symmetric:

Af(X, Y) ((-c + ws) 2 + (Ye - a)2)

(Z2 + Y')

.A(z , tly).

S O Examplk I. The function f2(z, y) x y is not rotationally symmetric:
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Sy coos2+ 2 &in 2#,

and so h(X, Y) = A(x, y) only when 4 =- 0 or w.

We can extend the definition of rotational symmetry to operators

O:(R2 ,... R) ,... (R2 ,_, 2).

An operator 0 is rotationally symmetric if O(f) is a rotationally symmetric function, for all functions

f:R2 -4R.

Example 3. The function produced by the operator 01, defined by

,(h)(AX, Y) e- ,V

is rotationally symmetric if and only if f is. In general then, the operator 01 is not rotationally symmetric.

However, the Gaussian is a rotationally symmetric operator as it combines examples 1 and 3.

Most of the operators of interest in computer vision are combinations of the first and second directional

dcrivatives A, i, -, i , and A- We need to determine the effect of a coordinate rotation on these

directional derivatives. By the chain rule,

SOX a0 + 0Y a

Cj- - 8-Y

Similarly,

L 9
i =8-+
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It follows that

[w= RTf ]

where T denotes matrix transpose. Since R is a rotation matrix, its transpose equals its Inverse, so

Operators in general, and differential operators in particulUx, depend upon the choice of coordinate

frame. To make the dependence of the differential operator on the choice of coordinate frame explicit, we

introduce the notation

With this notation, equation (1) becomes O )

V(Xy) = RV(x,•), (2)

where V(,,,) is the c~lumn vector

Proposition 1. Linear combinations of& and are not rotationally syn.metric.

Proof. Any linear form in the first directional derivatives ha&, the form

'I'he condition for rotational symmetry is
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[I /A]V(X,y) =[ /L]V(,,V).

By equation (2),

u• J]Vcx,y) IN [ 4]RV(,,V),

and so the linear differential operator is rotationally symmetric if and only if

so that [, 1] -s an eigenvector of R. The eigenvalues of R are c + is and c - is. So there are no real

eigenvectoi, unless 4 is a multiple of w. Since the condition is not satisfied for all 4', no linear combination is

rotationally symmetric. I

The same style of analysis can be applied to other combinations of first derivatives such as the operator

T-.o2(f) = ±1+ .

It is easy to show that (2(X,Y) is not equal to 0 2(z,,), for example when • -

In section 2, we referred to an operator proposed by Prewitt(1970), namely

(,,)2+(0)2

that is, the vector dot product

More generally. wc often consider quadratic differential expressions such as

- - .-- xv*+

i-_ _
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Such an expression is called a quadraticform if the matrix is symmetric, that is --- tP. By equation 1,

V(xy) -RV(=,),

so that

VT,')MV(z,Y) = VTY)MV(X,Y),

if and only if

_ °

RTMR - M,

where R is an arbitrary rotation matrix, and

Since the transpose RT of a rotation matrix R is the inverse of R, a quadratic form is rotationally

symmetric if and only ij the corresponding matrix M commutes with all rotation matrices. We will refer to

matrices M having this property as being rotationally symmetr'c.

Lemma 1. A 2 by 2 matrix is rotationally symmetric if and only if it has the form

Proof. We requireRM = MR for all rotation matricesf, that is

. Y
SiN.
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Expanding, and equating terms, this holds if and only if

-U +V O

Alternatively, only the operations of scaling by a constant k and multiplication by a rotation matrix R'

commute with all rotation matrices in iwo dimensions So M = kR for some scale factor k and some rotation

matrix R'41

Proposition 2. Up to scaling, the only rotationally symmetric quadratic form in & and j is • V(z,v).

Proof. A quadratic form in S and j has the form

V ,T  r , (3)

To be r,)tationally symmetric, as well as symmetric (so that it is a quadratic form), Lemma 1 implies that

-A 0.

It follows that the matrix in equation (3) is )J2l 1

The operator f,2 + f2 is commonly used as a measure of the contrast across an intensity change. Notice

that other popular measures of the contrast, such as (f- + fY)2, (f - fY)2 or IIaf, + 1Ifull are not rotationally

symmetric, and therefore respond differently to edges in different directions (see Rosenfeld and Kak 1976,

p279 ).

We now consider linear and quadratic forms in •, , , and -. It is convenient to niot assume

All for the developments that follow.

'The first task is to find a matrix R* so that ")

.•.p.
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It

R (4)

The (i, j) element of the matrix R t will be denoted by rij. Applying the chain rule as before, but this

time to relate the second derivatives in (X, Y) to those in (z, y), we find that the four by four matrix R* can be

written in the form

R=[,RT r2,RT]

rL2RT "2RT].()

Definition 1. (ben Israel and Greville 1974, page 41)I-etA = [a,.] and B - [bij] be m by m and n by n

matrices respectively. The mn by mn matrix A ® B. called the Kroneckerproduct of A and B, is defined by

multiplying each element a(i, j) of A by the matrix B, to form the block matrix

at IB oiaB a. 8 A

a2jB a22B ... aB

Larni aIU2B ... amB J

With this notation,

--1R' ---RT ®RI,

so that

¶ RecaIl the definilion of the matrix I from equation (0).

_ 1
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'C2 _SC -Sc S2

SC C 2 -812 _W

'= c 2  ... * c(7)
ac *.8.2 C2  -SC

S2 &c C C2 j

Note that the elements of A ® B are naturally indexed by 4-tuples:

(A ®9 B),, a= b

We state without proof a number of simple properties of the ® operation. They are essentially

straightforward consequenc,.s of the properties of ordinary multiplication, and are stated without proof.

Proposition 3
(i) (A®B)T=AT®BT

(ii) (A ®B)-' A-' ®B-'
(uis) (A®B)(&C=A®(B(&C)

For the remainder of the paper, we restrict attention to the application of® to R and its transpose.

Proposition 4. The rotationally symmetric linear combinations of ,, , and * are linear

combinations of the Laplacian A = 6 + o, and the smoothness measure -

Proof. Let the linear combination be

JA V

Folohwing the proorof Proposition 1. the condition for rotational symmetry is

I]R IR IN fl

.- S.5 'f 1
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for all rotation matrices R and the corresponding rotation angle 4. Expanding RT ® RT by equation (7), we

find

"*C2 '-_&C --&< 812

41¢ C2 -- a2 -- &C

&CI -- 42 C 2 -- Be

, 2 Be &C C2

so that

"__R2 _8C -_SC 2

8C -- 82 _-,12 --&K

1C I =r] o o 0 01.1V 8 -K 2 _82 -K410

.2 &C 8C -- 2

It follows that

"--2a2 -2sc -2ac 2.2 1
2ac -2s2 -U2 -. 2c

-C A+, o o0 01 [o 0 0 01.
S0 0 0 0

.0 0 0

The determinant of the upper left 2 by 2 submatrix is

(4,# + 4a2 C2) 4,&2

Since this is not zero for all angles 0, )N - t and +s v are both zero. A basis for the infinite set of

linear comb-nations satisfying these conditions is provided by setting X and j equal to one, which proves the

Proposition. 1

Before turning to quadratic forms, analogous to Proposition (2), we define a projection, operator on
t

S ( I? R7 ® j7T that makes explicit the assumption fu - 4,z.

- -- .- ~ .:----~-----------*--
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Definition 2. Let D [dj] be a 4 by 4 matrix. The projection of D is the 3 by 3 matrix D*:

dl K(2 + d13) d14

(d2, + d3l) (d22 + 032 + d23 + d33) (024 + 434)

S(d4 2 +d43) d44 ]
That is, the second and third columns as well as the second and third rows are combined by addition.

Proposition 5.

[a b b cJD[a b b ]rT

is equivalent to

[a b c]D* a b ci"',

where D* is the projection ofD.

The proof is by equating terms, and is omitted. We now give the main result of this section,

Proposition 6. The rotationally symmetric quadratic forms in -1 8"' ' and A form a vector

space. If = - the matrices associated with the rotationally symmetric quadratic forms project to 3 by

3 matrices of the form

0 2a 0

It follows that the rotationally symmetric quadratic forms that satisfy • = form a vector space

that has die quadratic variation, (')02 + 2( + (U)Iand the square l.aplacian, (QA + as a

basis.

Proof. Since the matrix in a quadratic form is defined to be symmetric, a quadratic form in b, ,

- and e can be written

- -X it- - -
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"S

where A and C are symmetric 2 by 2 matrices, and B is 2 by 2. As usual, the quauratic form is rotationally

symmetric if and only if

RT ® RT [ B B RT]
C TC

where R is an arbitrary rotation matrix. It follows thai

CRT &R B1 AB][CRT 8R1

4s-&RT ARj TsRT cR ,

and hence that

CRTA + SRTBT CTRB + DRTC 1R cART sABR R A4tT + cBRT 1
--&RTA + cRTBT -SRTB + cJ Jy3TRT -- SCRT *BTRT + CCRTJ

cFxuating submatriccs, we find that for all rotation angles •

c(RTA -- ART) + S(RTBT + BRT) - 0, (8)

C(RTC C- RT) _- (BTRT + RTB) - 0, (9)
a(CRT - RTA) + c(RTBT - BTRT) - 0, (10)

S(RTC ART) + c(RTB - BRT) 0. (11)

Consider equation (10) or (11) when F) = q. Fuating terms, we find that

al j =C2

a2 = (12)

"012 -221

2

¶
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Similarly, equation (8) or (9) when @ = • yields

b11 + b22 0. (13)

Expanding equation (8) for general 4 yields

b1 l + a1 2 =0 , (14)

b22 = 0, (15)
b2l + b12 + 22 2- al I =0. (16)

Combining equations (12) through (16) we find that in order to be rotationally symmetric, the matrix

C2]
has the form

"Y 0--6 6 I

-l 6 0 -- 6 -- 7
[01 7 -P - 1

A matrix of this form projects to

0 2a 0

0 a+#

where a = b -- a and 1 = b12. It is easy to show that linear combinations of matrices of this form are

0l the same form, so that the rotationally symmetric quadratic forms constitute a vector space. Clearly, the

square ILaplacian and the quadratic variation, corresponding to the cases v - 1,,3 - 0 and a 0,1- 1

rc•pccti% Oly. fonn a basis41
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We show that the measure of smo ,hness of optical flow proposed by Horn and Schunck(1981) is rota-

tionally symmetric. Recall from section 2 that the measure is defined by the operator

S(,, V) = (U, + U') + (V! + VI).

We extend the Kronecker product operator & to vectors, and then show how to define S(u, v) in terms

of vector Kronecker products.

Definition 3. (a) Let js jai... a,] and & j [b1. .b,] be vectors. The Kronecker product of a and b is the

mn dimensional vector [albi. ..alb. a2b. .^nbn],

(b) By extension, ifD = [01.. .,.I is a v( tor of operators and ! = [Ii.. .f] is a vector of functions, the

K-onecker product of Q and L is the mn dimensional vector uf functions

. [odfi).. .i(fn).. .o- (1n)1.

The components u and v if uptical flow are functic;as of z, yj, and t. Recali tha , = [t &]'.
According to definition 1,

V lq ®1, i'T 6 Ou 0;v1

so that

S(U, v)V=("V() ®u V. ]), ( 9f~ ®U Vuj).

If the coord-nate frame is rotated through € by the matrix R, the optical flow components become Rju v]r.

The Horn-Schunck Treasure is rotationallysymmetric if and only if

(R R)T(R ®R) =14,

, I _ __

I . .. ...... _ _._ _ ., -. . , • • - .. ... .:...... . = ..- -• +,:.• -• ,•
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where 14 iNi the 4 by 4 identity matrix. The rotational symmetry Is a simple consequence of Proposition 3.

A rotat onally symmetric operator has the general Form

V( , )V, ® V® V ® V,...)

and its application to a rotationally symmetric function f(z, V0) has the fbrm

To see that this is rotationally symmetric, we rotate the coordinate frame to (X, Y) by a matrix R as before.

Since 0 and f are rotationally symmetric, all the occurences of R (including its Kronecker square, cube, and so

on) introduced by the frame change can be deleted. it follows that the application of a rotationally symmetric

cperator to a rotationally symmetric function is itself rotationally symmetric. In particular, the A(G) filters of

the Marr-Hildreth tneory of edge detection are rotationally symmetric.

4. Vision as a conservative process

The second theme of this paper is that a number of vision modules construct the most conservative inter-

pretation that is consistent with the given data. and that is subject to an appropriate set of suitably formulated

constraints. A major concern of Computer Vision has always been the isolation of constraints that enable the

interpretation of an image. Constraints embody observations about the way the world is, at least, most of the

time. Although such observations can be as specific as cataloging familiar figures and shapes, it has proved

,•ore fruitful to first uncover constraints that correspond to general observations that are widely applicable.

('Conslaints are used together with the data computed from the image to construct an interpretation. 'T'he

rercsculzaions of the information from the image and tie constraints determine, and are determined by.

the interpretation process. For example, early blocks world programs represented constraints as catalogs of

labelkings. an app•oach thal, led natturally to search processes fIr interpretation (Clowes 1971. Kanade 1981). )

S .. 0• :• : -. •., ... , .- • . " . .. .'-'• • ., ,, .• • -
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As Computer Vision has turned its attention to images of the natural world, constraints have concerned

the smoothness of surfaces and movement. The relationship to boundary value problems of physics and

mathematics suggests itself. The information computed from the image sets the boundary conditions, and the

constraints determine which (and whether a) solution to the boundary value problem is found. Horn(1974)

solved an instance of Poisson's problem using Green's functions to determine the lightness of an image.

Following a different approach, Ullman(1979a) studied the perception of apparent motion generated

by two successive frames consisting of isolated dots of equal intensity moving independently of each other.

Without constraint, all possible pairings, or "correspondences", of dots in the first frame with dots in the

second are equally likeiy. Ullman defined the "most likely" correspondence to be the one that minimized the

sum

where n is the number of dots in the first frame, m is the number of dots in the second frame, and xij is one if

the ith dot of the first frame Pa is paired with the jth dot of the second frame Q,, else zero. The weight qij is

the "cost" of pairing Pi with Q,, and might, for example, be related to the image distance between the paired

points. The problem of finding the minimal correspondei•ce is considered in terms of integer programming. If

correspondences are assumed to be covering mappings, the following linear constraints apply to the *jj:

Vi, I < i < n E Zij ,

and

Vj,l~j~in E x,3>1.
. • l<i-<n

Mollo



22

Ullman restricted the set of Q, that can be paired with Pi to those whose positions were close to Pi. Following

Arrow, Hurwicz, and Uzawa(1958), he set up the iterative scheme

11~ 1 J - 1i
tý+I = X14

The approach can be extended to mapy .'igs that are not one-one, as well as to continous motion. A major

problem with the approach is guaranteeing the convergence of the algorithm. This is determined largely by the

properties of the costs q.3 , but this was not investigated, aside from a comment on the empirical determination

of the qij (see also Ullman 1979b).

One limitation of Ullman's approach is that it is restricted to minimizing a known linear objective func-

tion that is subject to linear constraints. The method can be extended to constrained nonlinear programming

in which the goal is to minimize a known function f(x) subject to a set of equality and inequality constraints

of the form g,(x) <: 0. In general, however, criteria based on other than intuition need to be found for

selecting the function f to be minimized. To do this, one can apply the calculus of variations (see for example

Courant and Hilbert 1953, chapter IV). The familiar differential shows how to find a real valued parameter

that minimizes some function. The calculus of variation extends the differential calculus by showing how one

can determine a function f, which is subject to a given set of boundary conditions, and minimizes the integral

S= / f F(z, y, f, f ., fy, f, fey, ,yy)dzdy (17)

over a given region of integration Gt. The function F is called a "performance index" and generalizes the

notion of cost function associated with linear and nonlinear programming. In the next section we shall con-

sider the choice of a perfonnance index for interpolating smooth surfaces from one-dimensional boundary

conditions.
For simplieiiv of presentation, we resilict atlention) to functionq f of one or two variables x, y. )

S •,• ,'," - . .. .. .,., .... . •.. .. .. .. . ,' ., . , - ,• - . ., ., . .
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Associted with a variational problem of the form (17) is the Euler equation, which provides a necessary,

though by no means sufficient, condition which a function f must satisfy if it is to minimize the variational

integral 19(f). For the particular variational problem given in equation (17), the Euler equation is

-F- NFf. "+- -6F. -+- F "4-- 0. (18)

In the case that there is only a single dependent variable z, the partial derivatives are total and the Euler

equation becomes

d 1d2)

There are two important considerations associated with the use of the calculus of variations. First, unlike

the differential calculus, the existence of an extremrnum f* of the integral given in equation (17) cannot be taken

for granted. Courant and Hilbert(1953, p. 173) note that "a characteristic difficulty of the calculus of variations

is that problems which can be meaningfully formulated may not have solutions". Conditions for the existence

of a minimum have recently been proposed by Grimson(1981) and will be discussed in the next section.

Second, associated with any variational problem is a set of natural boundar' conditions which imposes a

necessary condition on any feasible solution to the Euler equation at the boundary. Courant and Hilbert(1953,

p. 211) note that "in general, we can, by adding boundary terms or boundary integrals essentially modify

the natural boundary conditions without altering the Euler equations". Determining the "most conservative"

solution means finding a performance index that guarantees the existence of an extremum function f* and

provides the tightest set of natural boundary conditions that are consistent with the given data.

The calculus of variations has recently been applied by a number of authors to interpolate plane and

space curves and surfaces. We review the applications in that order. First. florn(1981) has recently determined

the curve which passes through two specified points with specified orientation while minimizing

A..-'.i.. v ' . € ' •• ": .. . . . . . ...•• . '.•- . -, ' . . . n•



24

f / 2'd, (20)

where r. is the curvature and a is the arc length. This is the true shape of a spline used in "lofting" (Faux and

Pratt 1979,p. 228). In a thin beam, curvature is proportional to the bending moment. The total elastic energy

stored in a thin be.am is therefore proportional to the integral of the square of the curvature. Sioce the shape

taken on by a thin beam is the one which minimizes the internal strain energy, the curve that solves equation

(20) is called the "curve of least energy". The variational problem is to minimize

dx.

This aas the form of equation (17). Horn(IS,1, page 19) shows that the Euler equation is

where 0 is the angle between the tangent to the curve and the axis of symmetry. The solution to this

differential equation is an incomplete elliptic integral of the first kind. Brady, Grimson, and l.angridge(1980)

consider a "small angle" approximation to the curve of least energy, in which first derivatives can be ignored.

l'he performance index that they use is f2, for reasons that will become evident in the next section. They find

that in that case the solution is a cubic. Horn(1981,page 2) notes that the fact that a curve has near minimum

energy does not mean that it lies close to the curve of minimum energy. Note that the existence of the curve

of least energy is guaranteed as Horn has derived an analytical formula for it. Approximations to it. such as

Brady, Grimson, and Langridge's arc similarly guaranteed to exist.

lIka iow and rencnbaum(1981) investigate the problem of interpreting a line as the image ef a space curve

that is an occluding boundary. "Ilhey observe that the problem has two parts: (i) determining the tangent

vector t at each point on the space curve, and (ii) determining the surthce normal at each point, giveio that it is

covn;traincd to be orthogonal to the tangent.

I+
,I
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They suggest minimizing a performance index F that is a function of the curvature r. and the torsion r

(possibly together with their derivatives), and expresses a suitable notion of "smoothness". They first consider

uniformity of curvature as a measure of smoothness, that is F r- , 1, where a measures distance along

the space curve. They reject this measure on the grounds that ri. can be made arbitrarily small by "stretching

out the space curve so that it approaches a twisting straight line". To overcome this difficulty, they propose

that the space curve should also be "as planar as possible or, more precisely, that the integral of its torsion

should be minimized".

Barrow and Tenenbaum finally suggest finding the space curve that projects to the given image line and

minimizcs the performance index [, -)i2, where ý is the binormal. They report that an algorithm based on

their analysis produced the "correct 3-D interpretations for simple and closed curves, such as an ellipse, which

was interpreted as a circle". However, they note that the rate of convergence was slow and dependent on the

initial data. No consideration is given to the Euler equations, to the existence of an extremum given a line

drawing {x(s), y(s)), or to the natural boundary conditions associated with the performance index [.LrO)]2

F mpiricali evidence that the method works on a number of simple test cases is encouraging; but there is no

analysis of the scope of the method.

In the same paper, Barrow and Tenenbaum(1981) consider the interpolation of a smooth surface from

dep-Ž and local surface orientotion values at all points along the surface boundary. Their approach is to

"seek a technique that yields exact reconstructions for the special symmetric cases of spherical and cylindrical

1 surfakces, as well as intuitively reasonable reconstructions for other smooth surfaces." (Barrow and Tenenbaum

1981). They observe that if n is the surface normal of a cylinder, then the x and y components of the normal

n and a are linear functions of x and y, so long as the axis of the cylinder lies in the x - y plane. This

observation forms the basis of an algorithm to estimate the surface normal by least squares fitting of the

parameters of the partial derivatives of the normal. As before, no analysis is given of the Euler equation, the

natural boundary conditions, nor the convergence of their algorithm for different types of surface.

*11

- - I - II~ ''• " -": i
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5. A performance index for surface Interpolation.

In the review of the application of the calculus of variations to visual perception in the previous section

we drew attention to three important considerations. First, A!• Euler equations provide a necessary condition

on possible extremal functions. Second, the existence of an extremum cannot be taken for granted, even when

the minimization problem seems plausible on some grounds. Third, the natural boundary conditions impose

a necessary condition on any feasible solution to the Euler equation at the boundary. The most thorough

analysis of the second of these problems in Computer Vision, framed in the context of surface interpolation, is

due to Grimson(1981), who proves the following theorem.

Theorem (Grimson, see Rudin(1973)) Suppose there exists a complete semi-norm F on a space of func-

tions GJ, and that F satisfies the parallelogram law. Then, every non-empty closed convex set 9 C G7 contains a

unique element f* of minimal norm F(f"), up to possibly an element of the null space ofF.

A semi-norm F is a function V '-4 R+ from a vector space V to the positive real numbers that satisfies

F(v + w) <F(v) + F(w)

F(av) -a IoF(v).

Informally, a semi-norm is a generalization of the Euclidean metric, and provides a measure of a vector. The

second condition generalizes the triangle inequality, for example. The null space of the semi-norm F consists

of all those vectors tb that map to zero. Since

F(v + vo) = F(v),

any clement of the null space can be added to a vector of minimal norm to yield another vector of minimal

norm. Hence the qualifying phrase "unique ... up to possibly an element of the null space of F". The

parallelogram law states that

[F(v + tv)]' + F(v -- w)]' - 2iF(V)]2 + 2[Ffw)]1, , '
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for all vectors v, w. Finally, the semi-norm is complete if all Cauchy sequences converge. As is well known,

the elements of vector spaces can be functions. This enables Grimson to prove the following Corollary, that

guarantees the existence of an extremum function in calculus of variations "most conservative" interpolation

problems.

Corollary (Grimson 19k1). Let the set of known points be {(zi, Yi, J) I 1 < i < n}. Let GF be a vector

space of possible functions on R2 and let 6 be the subset of F that interpolates the known data. That is, for all

functions feg, f(&j, yi;) = ,. Let F be a complete semi-norm on 9 that satisfies the parallelogram law. Then

there exists a unique (up to the null space ofF) function f* that interpolates the data and has minimal norm.

In particular, if F is a performance index then there is a function f" that minimizes the integral

1U) f F.1

In short, if the conditions of the Corollary arc fulfilled, the existence of a "most conseivative" surface that

meets the boundary conditions is guaranteed. As we shall see, the condition of being a semi-norm is the most

restrictive required of the performance index. The conditions are sufficient to guarantee the existence of a

minimum, but they are not necessary. For example, r 2 is not a seminorml; nevertheless Horn's(1981) analysis

shows that there is a unique minimum. It is far from clear whether Barrow and Tenenbaum's(1981) analyses of

curve and surface interpolation have a guaranteed minimum in all cases. -i
Grimson notes that several intuitively plausible performance indices are not semi-norms. For example,

the two most popular measures of curvature are not. Suppose that r., and r.2 are the principal curvatures of

a surface(Faux and Pratt 1979, p. 111), then the Gaussian curvature re, is the product r.1&2 and the mean

curvature r,, is the sum r + i- . For a surface f(z, y),

hJU(f - 2.NO (I + +f2 +fl

. ¶ Which is why Brady, Grimson, and [angridge(1980) used the small angle approximation f2.

nw A



23

Since the curvatures can be negadtlv while a semi-nonn is required to be positive, it is necesary to

investigate

SJcdzd
Grimson(1981) observes that Pc2(af) - IaI'C(f because of the denominator. If f and fu are small, the

d,'nominator is approximately equal to one, and the numerator is a seminorm. Note that it is

L-Al, f 2Y.(21)

Grimson shows that the mean curvature P.m is also not a semi-norm for exactly the same reason. The

analogous small angle approximation is

v,)

( +, f = (+ 2,

the square Laplacian, which is a semi-norm. We find it convenient to denote the square Laplacian by Fl.

G rimson(1981) chooses the quadratiL :-riation

f!. + 24,,u + f4v,

on the grounds that its null space, consisting of all linear functions, is smaller thar che null space of the square

Laplacian. If we dcnote the quadratic variation by Fq, we see that the approximation to the Gaussian curvature

given in equation (21) is (Fl_.).

Ilow shall we choose a performance index for surface interpolation, given that it has to satisfy the condi-

tions of the Corollary? We have exhibited three candidates, are there more? Notice first that each of the

seini-norms given above are quadratic forms in fa, ft, and fy,,. It is easy to show that any quadratic form

satisfics the scmi-norm and parallelogram conditions, and so therc is an infinite set of plausible semi-norms to )

¢'- "



use to find the "most conservative" interpolated surface. We need an extra condition, and the one we choose

is rotational symmetry, since we suppose that surface interpolation is an isotropic process. Proposition 6 of

section 3 shows that the rotationally symmetric quadratic tbrms in f+, f',, and 4v, form a vector space that

has the square Laplacian and the quadratic variation as a basis. The choice of which performance index to use

is thus efiectively reduced to the square Laplacian, the qu'dratic variation, and linear combinations of them.

How shall we choose between those two? In the light of our earlier discussion, two criteria suggest themselves:

the Euler equations and the natural boundary conditions.

Proposition 7. All rotationally symmetric quadratic forms lead to an identical Euler equation

&In=

Proof. We exploit the fact that the square Laplacian and the quadratic variation are a basis of the

rotationally symmetric quadratic forms.

a.Square Laplacian: The performance index is

F (f+

By equation (18) the Euler equation is

02 02
&2 +2(f. + f,)} + 2(+ f, ,)f}= 0,

that is

(A&)2 =0,

as required.

b.Quadratic variation: The Euler equation is
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2fac + 4fruz + 2f,•, -- 0

that is

(4f)2 = 0,

provided that f is continuous of fourth order.

c.Iinear combinations of F andFFq.: Linear combinations clearly give rise to the identical Euler equationsl

The gist of Proposition 7 is that there is no difference between Fq and PF in the interior away from the

boundary conditions. We can see the result of Proposition 7 in an alternztive interesting way. Recall that

F- = 2 )j ,)

is the semi-norm approximation to the Gaussian curvature (equation 21). The latter expression is an instance

of a divergence expression, and Courant and Hilbert(1953, p. 196) note "If the difference between the in-

tegrands of Lwo variational problems is a divergence expression, then the Euler equations and therefure the

families of extremals are identical for the two variational problems."

Since Fq and F, have identical Euler equations, we analyze their natural boundary conditions in order

to choose between them. We could approach this problem directly; but a more revealing route is available.

Courant and Hilbert(1953, p250) consider the statics of a thin place. In particular they determine the shape it

assumes for a given force p(s) along its boundary r and bending moments m(s) normal to its boundary.

Courant and Hilbert note that the energy stored in the plate is the integral of a quadratic form in the

principal curvatures c1 and K2 of the surface, a result which can be derived from noting that the elastic energy

stuoed in a thin strip (corresponding to any normal section) is proportional to the square curvature. It follows

that the stored energy is locally

S+ +.:K
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= ~i+ .2)2+ 2(P3 - )jt

-wc + 2(p - aKc
(Ft -Fq)

2

= #&Fj + (a1- P

where p u It follows that the energy stored in the thin plate is a convex linear combination of the

square Laplacian and the quadratic variation, which formally establishes its connection to the visual percep-

tual problem studied here. Observe that setting the weight pA 1= gives the square Laplacian, while setting it

equal t', / 'ro gives the quadratic variation. Note also that this expression for the stored energy makes use of

thc srrial angle approximation to the curvature used in equation 21.

Neond source of stored energy derives from the boundary conditions that are represented as a function

i pa) a. .,the boundary r' of the plate and a bending moment m(s) applied normal to the plate. Courant and

I lilbcrt(1953, p. 251) show that the natural boundary conditions associated with the plate are

-A~f + (I - IA)(f. 2,Z. + 2hf.y. + !y'2) = p(.)

+A (I -A p)(fz.zxx + f&A(zY,. + ZnY-) + fylyiiai") = r~)

that is

-Af + (1 - pA)([xy.JH[xy.jT) =p(B)

Af+ (I1- $A)4 ([XnYn H! jzy.i]T) =ms)

where!! is the Hessian matrix

Gladwcll and Wait(1979) quote version of this result due to Agmon(1965), that the biharmonic operator,

( ~which we showed was the natural boundary condition for the surface interpolation problem, has lDirichlet
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forms that are linear combinations of the square Laplacian and the quadratic variation. As an example of the

constraint, consider a straight line contour aligned with the z-axis. Then [; y.) = [1 0] and [s, 8o] = [0 1].

The natural boundary conditions reduce to

fi, + Z= s
fiv, + (2 - = m(s).

The constraint is tightest when IA is not equal to one. A similar result can be obtained for a straight line

contour inclined at an angle a to the x-axis. The first of the natural boundary conditions is

f25(Sin 2 a + 1A cos 2 a) + fVY(coa 2 a + JA sin 2 a) + (I - p) sin 2afv.

If 14 = I, there is no constraint from the cross derivative. If 1A is not equal to 1, at most one of the

terms can be zcro. Wc conclude that interpolation problems in which the small angle approximations used

throughout our analysis hold it is preferable to choose IA not equal to one, that is to say to not use the square

L.aplacian as a performance index. The quadratic variation is an obvious choice, but so are linear combinations

of the square Laplacian and the quadratic variation for which 1 is not equal to one. Grimson(1981) chooses

the quadratic variation since its null space is smaller than that of the square laplacian. This is a precise way

of saying that it imposes a tighter constraint. For example, the function f(z, y) = ty is in the null space of

thc square Laplacian but not in the null space of the quadratic variation. Since the quadratic variation has

the smallest null space among the linear combinations of the square Laplacian and quadratic variation, this

is an additional reason for choosing it. We ",ould further expect that any differences between the quadratic

variatioi, and the square Laplacian would saow up near the given boundary data but not in the interior, far

removed from the boundary. 'Ibis is what Grimson(1981) finds in a set of examples that compare surfaces

intwipolttcd using the quadi atic ý;aiation and the square Laplacian. 1
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