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PREFACE

»
This report is the first draft of what we hope will cventually be
a comprechensive treuatise on the theory and calculation of EMP coupling to
systems located in the source reglon.
There has becen u strong tendency for many years to rely on computer f
codes ftor EMP coupling calculations. We have noticed that computer codes 3
built in the absence of theoretical understanding almoust always give the ,

wrong answer for the right problem. cven though they may give the right }
answer for the wrong problewm. Source-region coupling, being only a little ?;
more difficult subject than LMP env ronments, is guite amenable to Ig
theoretical analysis, and the prescent report shows Low such analysis can be jP
carricd out for some important exmmmples, g%
]
We hope to add to this repeort over the next foew yecars. BMore i
examples are neceded, A problem rot discussed in the present report is the ji
i ceffect of brealdown in air fe.g., nuclear lightning) and in the soil on !%
t'. coupled currents. lhere are reasonable prospects that sufficient progress ?i
' will be made on these problems in the next ycar or so that they can be %E
included. Further, experience with real systems such as MX und LoADS may show ;i
us other problems that need analysis, We therefore hope that the copies of };
this report will not be bound so tightly that they cannot be supplemented by ‘L
revisions and further chapters. ;;
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_ CHAPTER 1
; INTRODUCTION AND BASIC EQUATIONS

1.1 INTRODUCTION

A nuclear explesion on or near the air-ground interface produces

a largé electromagnetic pulse (EMP). The principal source of the EMP is

the current of Compton re-:5il electrons resulting from collisions of gamma
rays with the clectrons in air molecules. The Compton current is signifi-
cant out to distances of several kilometers from megaton explosions. Within

i this source repion, the air conductivity, associated with secondory

ionization produced by the Compton electrons, has a strong influence on the
i fields generated. The presence of a conducting ground also has a strong

influenrce. !

§ Calculations of the coupling of electromagnetic energy into systems

located within the source region must take into account the exictence of the
gamma rays, the Compton current, and the air conductivity, s well as the

EMP fields. Thus source region coupling is more complicated than free-ficll ;

coupling, where only the fields need to be considered. Nevertheless, a

uscful approximate theory of source region coupling can be constructed, and

this report presents the theory for coupling to some simple but practically

relevant system geometries. The thcory will hopefully be extended to other

peometries as necds arise. :

The coupling theory presented here closely parallels the theory

of source-region EMP environments developed previously by this author
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(References 1-2 to 1-4). The latter theory was important in that it:

e gave the first predictions of general EMP environments;

) showed what parameters EMP depends on;

. showed how to build competent computer codes for more detailed
predictions;

° provided accuracy tests for the codes.

The goals and uses of the theory of source-region coupling are similar:

° to make approximate predictions of coupled currents and
voltages, especially in regimes where present computer

codes are not valid;
. to test computer codes and show how to improve them;

° to provide understanding of coupling and how it depends on

parameters;

. to allow other scientists to judge the correctness of

coupling predictions.,

It is thus hoped that this report will be useful to a varicty of
readers, from engineers faced with the task of making predictions for actual
systems to scientists who need or wish to judge the adequacy of our under-
standing of the phenomena and of methods for making predictions. In this
connection, a particular reader may be nore interested in some scctions of
this report and less interested in others. We have tried, however, to make

all of the report readable for the entire spectrum of likely readers.

1.2 MAXWELL 'S EQUATIONS

The material media that we shall be dealing with most commonly, air

and soil, are ecesentially non-magnetic; that is, the magnetic permeability

has the valuc i appropriate to free space. Both wmedia are gencrally

10
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é conductive, and the soil has a dielectric permittivity substantially dif-
? ferent from €., the free space value.

The two time-dependent Maxwell equations are then
i >
. BuxiE, (1-1)
3E + 1 ;
] €22 =.-J+-—-VxTB, (1-2)
: t H
f 0

where B is the magnetic field (webers/mz), t is the electric field

(volts/m), and J is the current density (amps/mz). It is clear that these

3~y

equations are sufficient to carry the ficlds forward in time if initial

values are given and if J s specified. From these initial values we can
Q‘ evaluate the right-hand sides of Equations 1-1 and 1-2, which then tell us 1
how E and B will change in the next infinitesimal time interval 6t. 3
b From the new values of E and B we can re-evaluate the right-hand sides
and advance the fields another §t, and so on. This, in fact, is jrecisely 1

how numerical solutions of Maxwell's equations are obtained (the sputial

derivatives in the curl operations are also cvaluated in finite difference

é form) . g
Note that the relation of cause and cffect in this way of looking
] at Maxwell's cquations is different from what most of us were tuught,
. particularly for Equation 1-1. The picture just given is that the vualue of f
iy

'> . . . . v .« 0
Y = I determines how B will change in the next infinitesimal time

o . ) . . . . _')
3 intervul, whereas the traditional picture is that a changing B generates

(inductively) a solenoidal E, i.e., an ﬁ with finite curl. Either

picturce gives the same result, namely that the right- and left-hand sides

are cqual, and we do not actually need to decide which side causes the

other. However, the new picture, which is the one generally used by physicists,

makes it casicr to understund how time-dependent solutions evclve. |

1
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There are two other Maxwell equations,

i
!
e m s B St R Gl k5 e S a1+ mmrr ij

V. -B=20, (1-3)
o ;
Vo o(eE) = p , (1-4) 1
where p is the charge density. It would appear from the foregoing discus- é
. ; . . : |
sion that these equations are not needed in advancing the fields in time. :

Such is indeed the casc, for taking the divergence of Equation 1-1 gives
S B = -V ) =0, (1-5)

(The divergence of the curl of any field vanishes.) This cquation says

that, if Equation 1-1 is satistied, V - ﬁ will be independent of time at

all points 1n space. Thus if V B vanishes everywhere initially, then

the solution of Equation 1-1 will have V - B =0 everywhere at 211 times.
Therefore Bquation 1-3 needs only to be imposed as a condition on the initial
magnetic field. 1f the initial magnetic ficld vanishes, Bquation 1-3 is

satisfied.

To understand the role of Equation 1-4, tuke the divergence of

Bquation 1-2, and obtain

i

) > :
o (Verl) = - Vg (1-0)

s
Now the conservation of charge, which is a well verified law of nature,
states that

Wy, (1-7)

subtracting Equation 1-7 from Equation 1-0 gives

J W o
;)—t (VerE=p) = 0 . (1-8)

Thus it follows from Equation 1-2 that, if the quantity in parenthesoes

vanishes everywhere initially, it will vanish everywhere at all times,

12
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Therefore Equation 1-4 alsu needs only to be imposed as a condition on the
s > . . s .

initial E and p. If E and p both vanish initially, Equation 1-4

is satisfied.

If ﬁ, ﬁ and p all vanish initially, we need only concern ourselves
with Equations 1-1 and 1-2. Note that these equations do not contain o
at all; p nced not be calculated. If p 1is desired, it can be found by

time integration of Fquation 1-7.

Note that Maxwell's equations aud the conservation of charge,

. y . . > > s
Equation 1-7, arec lincar in the variables , P, B and B. Thus if current

S N3

density 31 produces P El and 31, and JZ produces p,, EZ’ and EZ’
ity Te . will produce Bov . Cand Be B
then current density ot J2 will produce P+ Py L1 + LZ and Bl + Bz.

We have assumed here that ¢ (and Hg of course) is the same ir all cascs.
. . . . . . . * >

This lincurity is somewhat restricted in practice when J depends on E,

us we shall sze.

1.3 SOURCE AND CONDUCTION CURRENTS

In EMP problems the current density is made up of two parts. First,
thore is the source current 7g of Compton recoil electrons produced by
the flux of gamma rays, which is the source of the EMP,  Sccond, therc is
the conduction current JC associated with the flow of low-cnergy clectrons

and ions induced by the electric field. The total current is the sum

o > -+
= ¢
J .JS + JC . (1-9)

The Compton current is formed by recoil clectrons that have start-
ing energies of the order of 1 MeV. ‘Thesce clectrons are stopped, in
material media, by inclastic collisions with the media atoms, In air, the
stopping range of the recoil electrons is a few meters. Therefore, if the

C
clectric field E is less than about 107 v/m, the cffect of this field on

13
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range will be small and may be neglected. If the field were 106 V/m, the
range would be substantially affected by the field. The magnetic field B
deflects the recoil electrons. The deflection will be smail if the Larmor
radius is long compared with the stopping range. The Larmor radius is a few

3

meters when B is about 20 gauss = 2 x 10~ wcbers/mz. Thus for magnetic

fields of this size or larger the deflection will be substantial.

In many applications the fields are less than the critical values
just given. 1In these cases we may assume that JS depends only on the gamma
flux and is independent of the fields. 1In cases where the fields are higher,

we shall estimate corrections to JS due to the fields.

In soil, the recoil electron range is only a few millimeters (soil
is about 103 times more dense than air). Here the fields are never large
cnough to affect the Compton curreat. Gamma rays are attenuated by a factor
¢ in 15 to 20 cm of soil. Hence the Compton current is appreciable only in

the top meter or two of the ground.

The conduction current is generally well approximated, in both air

and soil, by Ohm's law,

- .
J, =0k, (1-10)

where o(mhos/m) is the conductivity. In air, o depends somewhat on i,

making Maxwell's cquations nonlinear. We can usuually choose an L-independent

value of o which over-estimates coupling effects. Since the air conductivity

results from ionization produced by the Compton recoil olectrons, o depends
on time and position. In the ground, ¢ is independent of L, cxcept at very
high fieclds where breakdown occurs. [t is also little affected by ionization,
except at very high dose rates. It may be assumed independent of time and
position, but it does depend on the frequency of the driving E-ficld (as

does also ©).  These points will be discussed in detuail in later scctions.
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1.4 A STANDARD FORM FOR MAXWELL'S EQUATIONS

We shall write the dielectric permittivity in terms of the value
for free space,

€= E.E) » (1-11)

[

0

where €. is the relative permittivity. If we also make use of Equations 1-9

and 1-10, the Maxwell Equation 1-2 becomes

R | T SR )
&reo 3t JS OFE + UO VB, (1-12)

It is convenicent to replace € and Hy by two other parameters, nuamely

the speed of light in vacuum,

e o= L A3 108 m/secc , (1-13)
Hofo

and the lmpedance of free space,

"o
2y = | & 120m = 377 ohms (1-14)
0 €4

These equations can be solved for Mo and €y
Wy = LO/C y £y = l/cZO . (1-18)
Inserting these expressions in Equation 12 gives

[ o
l" g)_l i

=720 - Zot+ eV x B (1-16)
R T | ST ) R : B

2
Every term in this cquation now has the dimensions volt/m™; note that ¢B

is the olectric field of a wave in vacuum, as follows from Hquation 1-1.
In the remainder of this report we shall drop the subscript r

P
for Maxwell's cquations is

15

ot will always mean the relative permittivity. Thus our standard form

et i aen SR
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-é—fz - VxBE s (1—17)
: _ - = ’ 3 :

—C— 'a—t' = - Zods - 7OOE + cV x B ., (1—18)

We note here also the relation between the current I{amps) in a wire and

the static magnetic field Be encircling it at radius r,

2ﬂrBe = uOI = ZOI/c or I = 2'rrche/ZO . (1-19)

Finally, note that

ZO/ZW =~ 120m/2m = 60 chms . (1-20)

REFERENCES FOR CHAPTER 1
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1-2.
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CHAPTER 2
THE IMPEDANCE OF SOILS

2. THE RC MODEL

Scott?! measured the conductivity and permittivity of many
samples of soil over the frequency range 102 to 106 Hz. He noticed that
the results correlated quite well with the water content of the soil. e
made mathematical fits to his o and € results as functions of frequency
and water content. In making these fits, he made no attempt to ensure that

(W) and €(w) bear the relation to each other required by causality.

Longmire and Longley?~? noticed that Scott's fits could be refitted
very well by assuming that betwcen opposite faces of the soil sample there
is an RC network of the type shown in Figure 2-1. 1In this network, l/R0
represcents the zero-frequency conductivity, C_ represents the infinitc-
frequency dielectric constant, and the other branches account for the chuange
in ¢ and € with frequency. A good {it was obtained with one such branch
for cach decade in frequency covered, with the time constant Rici of the

relevant branch chosen equal to the reciprocal of the median w in that

Figure 2-1. Network representing soil impedance.
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decade, i.e., (Rici)-] = \[ﬁ; ani, where fj is the frequency at the lower .
end of the decade in question. Thus the products R;C, were chosen

arbitrarily, to cover the frequency range uniformly. The ratios Ri/Cj and

C, were then chosen to fit Scott's ¢ curve. Only one parameter, RO’ :

was then left to fit the o curve, but it was found that a good fit to o
] was obtained. Furthermore, it was noticed that changing the fit for a
soil of different water content was accomplished by scaling all of the

resistors, except RO’ by the same factor and lecaving the capacitors unchanged.

Longmire and Smith?-?

used these results, and data at higher frequencies,
to make a "universal impedonce function'" of soils over the frequency range

10 to 108 1z,

2.2 THE SOIL ADMITTANCE
The Maxwell Equation 1-18 for fieclds varying as IWt (32 = -~ 1)
takes the form
rﬂ? = - szs oV x B , {2-1)
where
- i {.kg": tors _1 2.0
NS Zgu o+ jo-g (meters) Co. (2-2)

In Lquation 2-1 the conduction and displacement currents have been combined

. into tne term on the left. If we define the admittance Y(w) of unit
- . , . ' *
volume of soil by the relation hetween total E-driven current 5F and B
e > .
Jp = YE (2-3)

then obviously

- 7 G _l.]. - 4 WEe e
n==2,Y , Y = 5 U Jweey (2-4)
0

The dimensions of Y  are mhos/meter, whilc those of n arc (metors)_l.

We shall call n the relative admittuance.
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: The admittance of the RC network is
2
; 1 jwC
i ST FN S S S o 2-5
r Vo= ety 2 TR (-5
A U n T nTn
i The real and imaginary parts of Y are related to o and ¢ by Equation y
L 2-4, Defining RC rates Bn by i
h’
: Bz (kG (2-0)
\ n n'n ’ Vo
fd |*§
2 .. . . .
; Reference 3 fits Scott's data by the formulu 'i
f, 13 jwe h
) Y= 0.+ jwc e+ Y a -~—--—-~-~Q—-—— (2-7) o
! y TR ‘ P ‘ - ’,
: ( 0o 1 Jm/Gn -
| :
g llere o, is the zero-frequency conductivity, « = is the infinite-frequency i
‘ . . s . . . | 4
i vrelative permittivity, £y 1s the permittivity of free space in MKS units, ;
] ]
; the Gn arce o fixed set of rates, .
; .
E: n-1 - i
F po= 10" see™ (2-8) -
g and the ag o area set of dimensionless it coelficients.  Vor soll contain. '
f ing 10 percent water by volume the it parameters are piven in Table 2-1.
g
: For this it the relative permittivity and conductivity are
\ 13 ay
) D D R (2-9)
. n=t 1+ (w/h )"
n

i “/
] 15 a o w™ /R

NS Ll (2-10)

n=l 1 + (n\/[".n)w

It can be scen that + decereases while o increases with incrcasing frequoencey,
Graphs of  +  and RPN functions of froquency are piven in Fipgures 2-.0

and 2-3. Figure 2-4 shows how ¢ viaries with water content, and also :
pives the scale factor Fooby which the rates b must be maltiplied tor

diftforent water content,
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Table 2-1. Fit parameters for soil containing 10 percent
water by volume.

3

6, = 8 x 1077 mho/m e =5 (relative)

n a
n an an n n

1 3.40(6) 6 1.33(2) 11 9.80(-1)
2 2.74(5) 7 2.72(0) 12 3.92(-1)
) 131 73(-1)

(
4 3.38(3) 9 4.80(C)
(

5 5.26(2) 10 2.17

This fit is erpected to be good for frequencies between 102 and 108 Hz
for a wide range of water contents. The author has never seen any data that
cannot be fitted reasonably well by this model by adjusting only the assumed
water content and the value of © (to a value that may be different from

0
that indicated by Figure 2-4).

The fit for the relative admittance is, according to Equations 2-4
and 2-7,
jw/c

13
_ sW - . -
n = ZOQO tlDE,* gg% a T jw/Bn , (2-11)

2.3 CAUSALI™Y AND REALITY
The requirement of causality is that the current must vanish until
a field is applied. For example, let E(t) be

E(t) =0 ) t <0,

E(t) = Lge’"  t 20 . (Y= real, positive)

kﬁ.ﬁc el e A M A i+ e e o o e
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? The Fourier transform of L is
:
{ o .
: jwt Ey
i N N = . .
: {w) = E(t)e = e ———, 2-13
! b (w) f (et = e (2-13)
?’1 -
; The current density in the frequency domain is then
P
§ :
@ "0
. Jw) = Y(w) ——, 2-14
; @) = Y0 7 (2-14)
t and in the time domain i
P §
{ 1 r EO jwt
: J( = ‘ el ¢ iw . 2-15
() = o f\ @) 7 e dw (2-15)
- f
] For t < O, the integration contour can be extended to enclose the negative
4 imaginary half plane. ‘The factor 1/(y+jw) has a pole at w = jy. If
Y(w) has no poles in the ncgative imaginary half planc, the integral will
. vianish as required, for t < 0. Iaspection of Equation 2-7 shows that the
1 N . . - . . 0
: poles of Y are at w = )Bn. in the positive imaginary half plane. Thus
causality is satistficd. The generually required relation between a physical
4 3 and AL is that they must form the real and imaginary parts of a
F - . . . . . .
3 complex function which. when analytically continued from the real w axis
{ into the negative imaginary halt plane, huas no poles there, Any RC network

provides this property.  Resonances in o and . could be accommodated by

adding inductuances, but it appears that none are neceded.

The fact that the electric fiecld E(t) and the current density
J(tj are real functions of time places another condition on the admittance
Y} and the relative auwmittance n(a). For general real E(t), Equation 2-13

shows that the comvlex conjugate E*(w) is related to E(w) by

E*(o) = Li(-a) . (2-16)
The same relation holds between J*¥e)  and J(w). Since
Y(u) = J)/E(e) (2-17)
24
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it follows that Y

and

Y*() = Y(-w)

n*(w; = n(-w)

8]

From Lquations 2-2 and 2-4,

¢.4

In the early part of the LMP the electric field 1ises approximately

O(~w) =

O (w)

STvrTEmOAaTSE T W

it then follom

*

’ E('(U) =

EX-ONENTIALLY RISING FIELD

also obey the reality condition

that

£ (w)

exponentially to a level fairly ncar the peak field,

Henece

by . One

>

is shown in
of n as a

there 15 no

that contained in Equation 2-11, n(m)

and ni(m)

LE(t) ~ I

ot

OC

it is usceful to evaluate

n  for the case in which

obtains the real expression,

graph of n
figure 2-5,

function of

simple relation between

for w = 1,

ias

The =ame figure shows the reual and imaginary puarts

W

(Acrually,

4

13
4+
n=1

function of

ale

o

U e
nl+ OL/Bn

for the 10 percent water soil

for the oscillatory casc.

na)

n ()

and

is a

.
'

()

Jw

(2-18)

(2-19)

(2-20)

is replaced

(2-21)

Note that while

and

i(m), exeept

is not far from the sum of nr(m)

little less than the sum.)

We shall call the case graphed in lgurc 2-5 our standard soil.
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2.5 TIME DOMAIN TREATMENT

Reference 2 showed how to treat frequency-dependent media in the
time domain. Write the total E-driven current that flows into the network

as the sum of the currents in its branches,

3 B
jﬁ = G Tt Rt 2_ jﬁ s (2-22)
0 n
where
t
> 1 [ :
I (B - c Jndt)/Rn
ne
t
- >
= L -2
Bn((,nl. fJndt) . (2-23)
=00

Comparison of Bquation 2-5 with the fit formula (2-7) establishes the relutions

e e A : = L 9
C, = € s it 9 ) Cn =48 = (2-24)
0 0
Thus Equations 2-22 and 2-23 can be written uas
» = ')'[k » >
Toa 2 e T . ) 9.
Lol = o gt 2ol ¢ 2, ‘IL? o (2-25)
ll t
oL .L‘.L o i 9.9
.Jn = Bn(cZ I f.Jndt> . (2~206)
() - (X}
Inserting ZOjF for nﬁ in lquation 2-1}, we can take that cquation buck
to the time domain, with the result
Yoo D1 > r
@ gl - N - 5 v oy
Tre - Z()(_JS+()OI:+2‘T.JH) eV x B (2-27)

This is the time-domain form of the Maxwell cquation (1-18) for the frequency-

H H } . . N . - .
dependent medium,  The Jn arce to be obtained from Equation 2-26, which cuan
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be converted into a differential equation, if desired, by differentiating

it with respect to t.

The fact that 3“ is o vector mecans that Equuation 2-26 must be
solved for cuch non-vanishing component of ﬁ. In a stratified wedium, the
» parameters Ty B and the a4, could have different values for different

directions.
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CHAPTER 3
SOURCE REGION ENVIRONMENTS

3.1 INTRODUCTION

A complete discussion of EMP cnvironments is beyond the scope of
this report,  Theoretical discussions are given in References 1-2 to 1-4, and
many detailed computer-basced calculations have been made.  Access to wmuch of
the available information is controlled by such U.S. Government agenclos as
the Defense Nucelear Agency and the Adr Forcee Weapons Luboratory. The
Government normally provides EMP environment specificutions for systoms it

sponsars,

For the purposes of this report, it will be necessury to know only
the gepernl features of the EMP enviromment, such uas the order of mugnitude
of risc times, amplitudes, and decay times, and approximate relations between
Coapton carrent, alr conductivity, and the ficlds., These will be presented
in this chapter. Predictions of coupling to actual systems should usce

environments supplied by the sponsoring agency.

While it should not be assumed that the enviromments hypothesized
in this chapter are precisely correct for any particular real case, they arce
representative, in crude approximation, of those that might be observed ut a
point on or necar the ground surface at a distance of 500 meters from a 1
megaton explosion ac the ground surface or within a few tens of meters above

the surface.
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i 3.2 THE GAMMA FLUX

i Figure 3-1 shows a gamma flux as a function of time, which will be

! used as an example in later sections of this report. The quantity graphed

e e e+ - .

is actually the dose rate delivered to air, and the relation between dose

rate and the actual flux FY of gamma energy is

e

ST AT -

(Y—:}Mﬂ) ro2 % 100 D (Fadsy (3-1)

F
sec
Y mfsec

‘ The average energy of the gammas is about 2 MeV per photon, although the

A total spectrum covers the range from a fraction of 1 MeV to many MeV.

e e e e e e * e =
— h )

e et o0, e

The time indicated in Figure 3-1 is actually retarded time, i.c.,

¥ the time origin is set when gammas first begin to arrive at the obscrver's

i position. The time for gammas to travel 500 meters is 1.67 microseconds,

———

" since the speed of light is 300 m/us,

In a crude approximation, the gamma flux is collimated in the
: radial direction from the burst point (the point of the nuclear cxplosion).
i [n the case assumed here, the flux is approximately horizontal. Due to
scattering and finite source size, the actual angular distribution of the

gammas covers scveral tens of degrees around the radial direction.

w . Figure 3-1 indicates what sources arc responsible for various
parts of the gamma flux. The prompt gammas are emitted by the nuclear

device itself. Air inelastic gammas arc made in inclastic collisions of

) energetic ncutrons, emitted by the device, with the nuclei of air atoms.

Ground capture gammas arc produced when neutrons are captured in the ground

near the burst point. Air capture gammas arc produced later when neutrons

arc captured in the air. Fission product gammas arc emitted over long times

by the nuclear fragments resulting from fission of uranium or plutonium,
Of these sources, only the prompt gammas have cffectively a point source;

the others originate in volumes with dimensions of the order of a few

30
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hundred meters. Figure 3-1 has been drawn as if each of the sources, cxcept
the prompt and fission product gammas, wire a decaying exponential. Note
that the doses from each of the sources arce about cqual, since the sources

with lower dose rates lust longer in time.

The risc of the prompt gumma flux has been chosen exponential

in time, i.e.,

h o= At (3-2)

where A is o constant and o  has boen taken as

@ = 2% 108 st (3-3)

The exponential form is crudely representative, and Is convenlent for cul-
culations, The value of o chosen 1s in the correct range, but should not

be taken as elther an upper or a lower bound on actunl values.
3.3 THE COMPTON CURRENT

Guma rays truveling through matter collide oceasionally with atomic
clectrons, knocking the clectron generally forward and scattering the photon,
The mean free path of the gammas in alr for these Compton scattering collislons
is a few hundred meters. The recoil electrons, which have initial energies
of about | MeV, move forward an average ot a fow meters before stopping.

Thus o steady (lux of gommas will produce o steady flux FU ol recoll
electrons, in the same dirvection, of ubont | percent of the gamma flux,  The

relation

m-sec m-soc

i (“3-9-‘;}333‘:“) ~ 0,000 <Y_;M9M> , (3-4)

holds approximately in alr (and in other media of low atomic mumber, such as
soil) over the gamma enerpy range of interest here.,  From Eguations 3-4 and
3-1, and the charge of an clectron, one can deduce an approximate relation

for the Compton current density J o (the source of IMP),

b}

32

— LT L e e s
e SRRV I RIRIETICE. Js-3 JLYEL, JTEY SRS SRR X O,

DAY SN P SOV OTWTI I ekl

S ek iiaia e ol b i e o o s mia e o s T, S T v g B R

e

T e




3"
!
L
J (ﬂ‘l’—b-) ~2x 1078 n(’ﬁfl-i) . (3-5)
4 m2 sec
The lifetime of a recoil electron (before stopping) is ubout 10"% second i
in real time, and about 1()-9 second in retuarded time (the electron moves
forward at about 0.9 of the speed of light). Thus the steady-state relation
4 (3-5) is valid when the changes in D in periods of 10_9 second are small
‘i compared with D. This condition is fairly well sutisficd by the dose rate
in Plgure 3-1. The Compton current density graphed in Figure 3-2 is obtained |
. from Lguation 3-5, ?
|
3.4 THE AIR CONDUCTIVITY ‘
j
; ach Compton recoll electron, in slowlng down, produces about
; 5ox 1()4 pualrs of secondary clectrons und positive lons, which make the alr
: cloctricully conducting, The ruate of production of lonization is dirvectly
! proportionul to the dose rate,
5(.'1.011.,.11“_i_!;-:) w2 1010 (Jiu.d.s_) , (3-0)
lnﬁsoc sed
The free clectrons, because of thelr small mass, respond more quickly than
ions to upplled electric fields, and arce the dominant contributors to the
air conductivity at carly tlmes. However, the clectrons gradually attach
| themselves to ”2 molecules, forming the negative ion U:. The rate
i1' of attachment per clectron Is about
: a o+ lox lOHsou—l , (3-7)
j, in sea-level air, Thus the density NC of free electrons sutisfiles the
; equation
!r,‘ G)NQ ‘ ' ]
; yp T S - “Ne . {35-8)
3
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If the dose rate rises exponentially, as in Equation 3-2, the solution is

Ng(electrons) = S & 2 x 10!° D _ | (3-9)

3 + O a+ o
m

On the other hand, if the dose rate changes little in periods of 10-8

second,

N, &5~ 2 X 10’ b, (3-10)

©in

This equation is obtained from (3-9) by setting o = 0.

In the presence of an electric field E, the free electrons drift

through the air at an average speed v which is roughly proportional to

v 18 3-11

Vo= k. (3-11)
The clectron mobility My is of the order of mugnitude

How 0.3 Mvelt (3-12)

c see” m -
in sca-level air., Actually, o depends significantly on [, beccause of
Joule heating of the clectrons, and a better expression, over the range
5% 10% <1< 3% 107, is

. Jik . ) 4
Mo * 0.25 i , E* = 3 x 107 V/m . (3-13)

The clectrical conductivity o is the ratio of the conduction
current density Jc to E. From the cquations above and the clectron

charge 2, the clectronic conductivity can bhe deduced as

v
- ; ke

o o =Noen = 0.8 % 10 A -—lL~ }%ﬁxnho/m . (3-14)
e ¢ ¢ 4 + LIV L

After the peak of the dose rate, o should be set equal to zero here.

At late times, the air conductivity is dominated by positive and

negative ions, because they disappear more slowly than electrons.  The

cquation governing the positive ion density N, is

35
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T TR

=5 - bNN . (3-15)
4+ -

Here N 1s the density of negative ilons (O, cte.), and b is the mutual
neutralization cocfficient for positive and negative ions. The value of b
is

-12 3 . .
b 2> 10 m/sec . (3-10)

At late times, most of the clectrons that have been produced are attached
to 0,, so that N_ &N . The solution of Lyuation 3-15 is such that the

two terms on the right-hand side ncarly balance, and oN, /ot is sma

comparcd with cither of these terms, so that
N_RN Vs/b . (3-17)

The mobil oty of the tons is about

Woow 2.5 < otV (3-18)
i secem '

Fhe ion conductivity can then be deduced as
- 9 0 i
gy 3N+0Hj 2.5 <10 " ND mho/m . (3-19)
Comparison of this result with Equation 3-14 with o = 0, £ = *, shows

: 7
that ok and vLodre cqual when D w107 rads/scc.

The electronic and lonic conductivities and the total conductivity
are praphed in Figure 3-3. For the electronic conductivity, 1B has been set
cquitl to  E*, so that the result is indicative rather than precise,

especially at carly times when B owili be larger than ¥,
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3.5 SCALING WITH DiSTANCE

The gamma flux of Figure 3-1 is crudely representative for an

observer at 500 meters from a 1 megatoun burst near the ground surface. For

other yields # and distances v, the gamma tlux scales roughly as

» -r/A

D~y T . (3-20) \
g 1
Here A 1is the cffective mean free path of the gammas in air; a representative }

. valuc in sea-level air is
E A = 300 meters . (3-21) !1
!4
According to Section 3.3, the Compton current density has the same s
P scaling as D. The scaling of the air conductivity is less simple; 9, E
? scales as b, while 0.1 scales as \[Bi At early times, Ou is dominant at |
most distances of interest in this report. ,
.'
3.6 THE RADIAL E FOR SPHERICAL SYMMETRY h
.‘
% The Compton current JS and the air conductivity o are approxi- ;
: mately independent of angle about the burst point. The presence of the f
ground destroys complete spherical symmetry, of course. lHowever, for ﬁ
observers above the ground, c¢.g., at power line heights, the cffect of the ,
sround on the fields will not occur immediately, but will be delayed by the ?
finite speed of light and, more importantly, by the diffusion time of ficlds I
through the conducting air betwcen ground and elevated observer. It is i

therefore useful to examine the solution of Maxwell's Equations 1-17 and 1-18
- . —> - .
for the case of radial JS and spherical symmetry in Jq and J. Note

that < =1 in the air.

The fields T and B  start from zero. Integrating lLquation 1-18

. . . . . . I .
over a small time interval will give, by integration of Jq, a radial and
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spherically symmetric E. The curl of such an E vanishes, so that
integration of Equation 1-17 leaves B =0. Thus the V x B term in
Equation 1-18 remains equal to zero, and E remains radial and spherically

symmetrical. The vector signs may be dropped and Equation 1-18 becomes

1 9E _
E'a—t = = ZOJS - ZOOE . (3—22)

Note that this equation contains no spatial derivatives: E 1is determined

at each point by the local Jg and 0.

At sufficiently ecarly times Jg and ¢ arc small and B will be

small, and ol will be negligible comparcd with Js' In this time frame
L ore cZO stdt . {3-23)
If JS rises as exp(at), £ will also, and
Br-—2J (3-24)

In this time framec, it can bLe said that JS is charging up the capacitunce

> { =
of space “CZO 1/80).

Eventually oF will become comparable with Jg, if the dosce rate
is large enough. In this case the 3L/9t term can be neglected in Equation

3-22, giving the approximate solution
Bo=--22F | (3-25)

This cquation defines the saturated field ES, which its such that conduction

current cancels Compton current. Since Jq and ¢ arc both proportional
to D (at carly times), they tend to risc and fall together, so that B is

almost constant after saturaticn is reached. Thus 9E/9t  is indend small.

e R e e o o
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The value of hg cuan he determined from Equuations 3-5, 3-14, and

3-25. The result comes out dircctly as

L 2.5 % 104<Lf— .
) 10
With the value of E* given in Lquation 3-13, this result becomes
2
l".,(y—) w2 107 (f‘-ui--g-) . (3-20)
s\ 108

Thus, LT saturation occurs during the exponential rise in the sample gamma

flux with o = 2 » 108, the peak 1 will be

4 5
Hg L8 2 10t Vim (3-27)

flowever, af'ter the peak in the gamma flux o = 0, and

B 2 < l()'1 V/m o, (3-28)

At late times, when the ion conductivity is dominant, “s falls roughly os
\ﬁ:: flowever, by this time the efffect of the ground asymmetry wiil usuully
be felt., Tigure 3-4 shows B(t) fFor the sample case, neglecting the ground
cffect altogether, Note that the peak 1 occurs before the peaks in N and
J o

b

The question as to whether or when I reaches the saturated value

)

can be answered by comparing the capacitively-limited ield of Lquation 3-23

or 3-24 with Ly Thus saturation will occur during the exponential risce if

|Lf" R |f{.§| ,
o s S 0
or if
. - -3
U .:(I/CL()ﬁJ 2 x 10 7 mho/m , {3-29)

in the example, Figure 3-3 shows that this occurs well before the peak o,

Saturation is much casicer to reach af'ter the peak of the gamma flux.,
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The diffusion time of ground-iaduced fields to elevated observers

% will be discussed in Section 3.9,

E 3.7 FIELDS GENERATED BY AIR-GROUND ASY'METRY

N

f' The radial I of Section 3.6 is gentvated cverywhere in the alr
§~ in the beginning. llowever, the ground, pcing usually (but not always) a

better conductor than the alr, shorts out the vudicl B appliced to it. A

current flows in the ground, and this curreat indaces a horizontul magnetic

; ficld, in the direction perpendiculsr to the applied radial B (i.e., in the '
I/" 1 ¢ [ ; .
; azimuthal direction around the burst point), and horizontal and verticual r
\ clectric fields. Tho induced horizontul B-fleld approximately cancels the ;

applicd radiul I at the ground surface., In the usual system of spherical

; polar coordinates with r measured from the burst point, 0 meusured from
the vertical, and ¢ the azimuthal angle, the fleld components present are
By, B

0° and B¢‘ The Induced fields propagate away from thelr point of

generation, through the conducting air and soil,

A detailed exposition of the ground-induced Flelds is possible (sce

LB R s NS

References 1-2 to 1-4) but lengthy, and will not be given here. Qualitative

on S

understanding can be had by recognizing three phases.  The wave phasce occurs
at carly times when the air conductivity is neglipgible or small. In this
phase the ground-induced fieids propagate through the air rather treely,

* : but with some attenuation due to the small conductivity. Becuuse the

' radial Iapplied to the ground appears to move outward with the speed of

light (the speed of the gamma flux), the ground induced ficlds radiate chiefly

outward in o small angular zone {in 0) just above the ground, ‘The ields

_.L_~“.\.,
-
et s e ST e M S e o it it it A B il SN | T

are predominantly Ey and B¢, and they have the relation I ~ ¢B
{

0 )
appropriate for a vertically polarized transverse wave propagating Llong the R
ground. “r is small at the ground, but rises to the radial E of Section 3
3.0 at the upper edge of the small angular zone. For a gamma {lux rising ﬁ
as o explat), H” and B” rise first as  exp(oat), then as  exp(a't)  where ;
*
42 ;
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o' is a small fraction of a, and then ss exp(at/2), the differences being
due to the effects of air conductivity between the burst point and the
observer., ‘The last time dependence is the most important, since it goes with

the lurgest field amplitudes.

The wave phasce ends and the diffusion phuse begins when o reuaches

the value indicated in Bquation 3-29. This 1s the time when the radial E
saturates (without ground offects) and also the time when the conduction
current exceeds the displacement current. In the diffusion phase the term
9li/¢dt cun be dropped from the Maxwell lquation 1-18, The two Equations 1-17
and 1-18 then define a diffusion problem like that in the weli-known skin
effect, as will be discussed in Scctlon 3.9, ‘l'rue wave propagation ceasces,
due to conductivity. B¢ continues to increase as exp(at/2) and L
decreuses as  exp(~at/2) . “r is limited, at the ground surface, by the
finito greund conductivity, und is nowhere greutor than “5‘ The ground-
induced fields diffuse up into the air until they can go no further, i.e.,
until the skin depth in the uir is compurable with the radius  r {from the

burst,

When the diffusion is complete, the quasistatic phase begins, In
this phase, the deposition of charge by the Compton current is balanced by
removal of charge by the conduction current driven by the stutic eclectric
Field. The clectric field is thus derivable from a potential b,

> > o i
B o= - Vo (Vx5 =0), (3-30)
and the conservation of charge, Lquation 1-7, hecomes

v o (.TH_ - oY) = 0 . (3-31)

. - : . . . . \ *
With jq and o pgiven, this cquation determines ¢, from which ©I can be
computed.  The magnetic field is then determined by the static form of

Pquation 1-18,

43
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. -+ 0 >
= .l ! 5232
vV x B R (JS+O|.) . (5-32)

4

The fields in the quasistatic phuse ure not exuactly static, of course, but
the changes arc so slow that the time derivative terms in Maxwell's cquations
are small compared with other terms., The correct fields at cach time are
near the static solution for the instantuancous jq and o,  The approximate

solution of liquations 3-31 and 3-32 will be discussed in Section 3.12.

One additional point must be made reparding the diffusion phase,
At positions sufficiently close to the burst, the peak air conductivity 9,
exceads the ground conductivity Oy Since soll conductivities are usually
not much greater than about 10'2 mho/m, tils is true in the case of Figure
-5 This condition podifies the diffusion problem to some extent. When
LIS ng, “r L'HS right down to the ground surface, In addition, the
Compton current in the top layer of the ground (the top half meter or so)

becomes an importunt source of ficlds, us will be discussed in Section 3-11.

Figure 3-5 shows the flelds in the air just above the ground as
functions ol time.  These fields are consistent with the sources in the
example discussed in this chapter.  Although they have not been obtained in
detailed caleutations, they will sufff'ice for our development of source-region

coupling theory,

fn the remaining scections of this chapter, somewhat more detailed
discussions of the phases are given,  In reading these sections, it will be
useful to refer to Figure 3-5 for illustration of the i'catures deduced or

stataod.
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3.8 THE WAVE PHASE

At early times the ceffect of the air conductivity is either
negligible or small, At these times the ground-induced fields are well
represented by outgoing sphericual waves. While both outgoing and ingolng
waves are gencerated by the Compton current (in the presence of the ground
asymmetry), the fact that the Compton current moves outward with the speed
of light, maintaining approximate phase with outgoing M waves, causes
the outgoing waves to be built up to amplitudes much larger thun those of
the ingoing waves. The effect of the alr conductivity is to attenuate the
outgoing waves to some degree. In the wave phuse, the air conductivity is
yonerally small compured with the ground conductivity, und in first order
the ground may be regarvded as a perfect conductor. Tho Finiteness of the
pround conductivity leads to some additional attenuation of the outgoing
waves,

X > . .
The relatlon between B oand B and the attenuation of tho out-
going waves can be understood by considering plane waves in a conducting

. W ¥ N
medium,  On the assumption that I and B have the forms

Jlwt-K-1)

I S
EB = (1;0,150)0 , (%-33)

) g )' v . [ ] . v
whore “O’BO are constants denoting amplitude and potarization, liquations

1-17 and 1-18 become, for freely propagating waves (J§=0),

- " }l - s

(uBO = k X hU ) (35-31)
Wz ol e - ek x B -35°
(C JA()U)I,() ck % B() . (3-35)

-y , e - - ,
Crossing k  into (3-35) and using (3-34) to climinate k x hn leads to:

Wt - oL T e (Tuk
C‘ { CV - .'1.,()0)“() = k U\XB())
>y T A .
= - K(KB,) o+ (1\-1\)150 . (3-30)
46
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|
{ The initial condition (1-3) becomes, for the present case, ]
b |
K TN - .
: k B() 0. i
? (It is neccessary here to use the initial condition since the assumed fields ,a
2 are oscillatory at all times, rather than starting from zero.) Thercfore i
[ N
' 2.0 .
'Y > 2 0 4y
IR . = R R L 3_'
'L"' . ‘
: whero k0 is defined as the propagation constant in the absence of conductivity, o
p !
L.
?‘ ko= YT W (3-58) 3
! 0" U Shith) L
L 1
; . a . C o > . .
; Lquation 3-37 indicates thuat for non-vanishing o, k will be complex, with o
> > o
: real und Imaginary parts kr und ki'
g > or > . .
: k =k + jk, . (3-39) ‘
a3 1‘ 1 t i
E As wlll be secen in Secetion 3,10, Hquation 3-37 does not require thuat the
' . RS ¢ > . . .
i directions of kr and ki he the same. [f they are arbitrarily chosen
to be the same, so that
o [
k = nk , (3-40)
>
where no ds a real unit vector and Kk is a complex number, then Equation
>
3-37 allows n  to be arbitrary but determines k,
; \/ Z“U
» kK = k() | B (3-41)
: Yk
: 0
r‘
i When the magnitude of the imaginary term in the radical is small compared
? with unity, this solution is approximately
’ ZO()
S S T 3-42
komik, - Y (3-42)

In the air, ¢ = 1, and the attenuation length £ is independent of frequency,

47

o i . .. L adGiana ke oty a0 el (PRI T IS
Ly on | VA A it A e e ARt e ket Y eI €008 ok b SR Al 7 O AL A




3 b= 2/20 . (aiv) (3-43)
>\‘ o . . I S e > . rd R4
/ I'he directions of hU,BU and n dare wutually orthogonal, with “O X BO
" Y

in the direction of n. From lquation 3-34 it follows that the complex
é amplitudes of EO and EO arc related by

ZOO
By~ VT (1—j —»~~~~) Ly (5-44)
ZZVEkO

Since the imaginary term here has been assumed to be small compared with

unity, the magnitudes of | and B, arce related approximuately by
R

, 0 0
' ¢
' [l g2 By
t s (3-45)

g m'clno\ in air .
!
4 In the carliest part of the wave phase, 0 is negligible cevery-
' . - . . at . .

where. In this cuase, the fields will rise as ¢ if the Compton current
. J, does; hence the name o wave phase for this regime. The ground-induced
. ¢
E fields are B, und 3 in the spherical coordinates indicated in Figure

() (I)
3-0, and these ficelds are produced by the shorting out of l‘,1 at the

)

ground surfuace.

The exponential rise of the ficlds ceases when the attenuation
becomes important anywhere. Since o is largest very near the nuclear
device, attenustion first becomes important at r = Ty the radius of the
device itself. The transition occurs when the attenuation length ¢

heconmes less than v i.o., when

0’

) 2 :
o(r ) N ( 3-4 ())
0 20T
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Figure 3-6. Cartesian and spherical coordinates. The x,y
plane is the air-ground interface.

This condition is reached very early in the risc, and it is difficult to

detect the o wave phase at appreciable distances from the explosion.

o Tk A aal

Let an observer be located at radius r >> T, If r is not
‘ too large, attenuation will cventually become important at this distunce.
At most distances of interest, the dominant variation of o with distance
. . . . -r/h . .
F (at constant retarded time) comes from the factor ¢ r/A in Equation 3+20.
E, The time of A-saturation at the obscrver is defined as that when ¢
: becomes less than A, i.e., when :
i {
. {
1 2 -5 . ;
, o(r) = /-2 % 10 ¥ mho/m at r . (3-47) L
ZO>\ |
|
. The condition (3-46) is also callcl A-satvration at o Between the i
i
|
|

retarded times at which the conditions (%-46) and (3-47) are rcached, the

. . o't . . . .
ficlds at r rise roughly as ¢ , where o' is a small fraction of «.

After A-saturation at the observer, the ficlds EO and B¢

. at/2
Tisc as ¢

. . . < s ot .
, provided Jg is still rising as ¢ . This dependence
continues until ¢ reaches the value indicated by Equation 3-29, which is
called w-saturation, and is the condition that conduction current cxcced

displacement current.
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The end of the wave phase occurs, for a given observer, at the

time of a-saturation at

his location. During the entire wave phase, the

relation (3-45) holds between E, and B,. These fields are confined

9 ¢

chiefly to a layer of air just above the ground, with thickness & of the

order of a few meters.

' § ~ ¢/
and the fields are
CB¢ R ho

At the onset of c-saturation

(3-48)

M-l (3-49)

lere ES is the saturated field defined in Section 3.6.

3.9

THE DIFFUSION PHASE

The diffusion phase begins when the air conductivity recaches the value

given by Equation 3-29, and in it the displuocement current is negligible in the

air. T

he dominant ficids are Hr and B Hr is near the saturated ficld

¢

Eg except in a leyer just above the ground, and B is appreciable only in

b

this layer. In this thin layer it is convenient to use the Cartesian coordin-

ates indicated in Figure 3-6. Vor an observer located on or near the y axis,

the y-dircction is approximately the same as the r-direction and the x-dircction

is approximately the same as the -d-divection. The distance above the ground

is z.

Maxwell's Equations 1-17 and 1-18 become, for this case

aB ok
oy .

_ \t_f = (3-50)
33¢

i I . 3-5

=7y “olp T ¢ a2 (5-51)

Substituting “r from the sccond cquation into the first pives

0B, (Jr) e 1-bp¢

i Wz 0 Oz

3t T 0z

.
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This is a type of diffusion equation for the magnetic field. The first

{ term on the right-hand side is the source, for without it B¢ = 0 would
' be a solution. Both Jr and o0 are approximateiy independent of z in
the air, so the source exists only at the ground surface, where O changes

from air to ground, and in the top 10 to 30 cm of the ground, where Jr

falls rapidly due to attenuation of the gamma flux in the ground. If the

ground conductivity is large compared with the air conductivity, most of the t

source occurs at the ground surface.

PRET Sk

The total magnetic flux .# per radial meter,

F= | Bdz, (3-53) 1

produced by the source can be found by integrating Equation 3-52 over z.

Since B¢ and an/az vanish deep in the air and ground and Jr/o vanishes }
deep in the grouad, i
!
S ]
' Q.4 ( r) . :
F' —— = —_— = - : N '5
] ot ol . Ls ) (3-54) %
3 air i
’;(’. . "
) l'hus }
t |
() = A - fl":'dt , (3-55) ]
3 S i
t, |
5 K
where .#.  is the flux at the time tg of the beginning of the diffusion j
N i3 3
phase (w-saturation). (Note that B¢ and .# are negative, i.e., Bm rTuns ]
N
clockwise around the burst point.) ?
i
. . . _i
In the air the source term vanishes and ¢ is (roughly) independent ‘
of z. Thus Equation 3-52 becomes ‘
3 371
JB “B ;
N (3-56)
ot K] 2 3
0" 9z

5
-
g s A * : i
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This equation governs the diffusion of B¢ up into the air. The solution

is qualitatively different during the exponential rise and ufter the peak

of the gamma flux. During the risc, let us try the assumption that

.-‘ B, ~clt (3-57)
: ¢
;b where B 1is a constant to be determined. Equation 3-56 then determines ¢
L the z-dependence, .
iy
L -2/8 v e
g B ~c 7 R {3-5%1
K G
¢ where the skin depth & s !
|3 b
‘- 4
b C 1 ‘
: § = /;———— = \/——~~~ . (3-59) |
) a 1.0b !
; 40 B lo $ 1
‘ 1
» . . ot . . -at/2 .
2 Since o increases as ¢ o, O decreases during the rise as ¢ . The H
amplitude of B¢ can be estimated from § and the total flux
X B(bﬁ SN 2N or BJ) ~ G AS (3-60)
; Since Eg is constant during the cxponential rise of the gamma flux,
3 Equation 3-55 indicates that (-).# increcases only lincarly with time, or ¥
a . ‘
q slowly compared with the exponential increase of 1/6. Thus approximately »
at/l . 52
B ~ 0 N (J "()] ) M
ke H
!
Compuarison with Lguation 3-57 shows that {
:
2¢ 2 - 1
P) ~ (:_ S \/_—y--—,‘:-’-t = T—O'(T (J-();’) S‘
- “0 o )
]
Notc that in writing Equation 3-60, we neglected the flux in the 1
ground. This is permissible if the skin depth in the ground is small compared !
Ly
with that in the air (so that the pround contains little flux), or if the w
ground conductivity is large compared with the air conductivity. The casc !

in which this condition does not hold will be discussed in Section 3.11.

e a5 et




After the peak in the gamma flux, ¢ falls and the skin depth

increases, Note that Lquation 3-56 can be brought to simpler appearance

by changing the time variable to T defined by
¢
| ar = &t T = [Ldt (3-63)
! Z .0 ’ ! ’ o
: 0 o 240
’b P
ii where tp is the time of the peak. Equation 3-56 then becomes
. 3B, 32B¢
?' —éT— = ———2— . (.‘)-()4)
] 3.
b
& Solutions of this cquation can be found as functions of the similarity %
ﬁ‘ variable z/¥T. Thus the skin depth is ii
t s
: 1/2 ? %
. 6w VT = (f ;g—t—) . (3-65) s
4.0 i
: 0 3
p y
f The amplitude of B$ can again be estimated from Equations 3-55 and 3-060. 1
? Figure 3-4 shows that ES, after falling ubout once decade from its 1
- peak, is then almost constant for sceveral decades in time. During most of i
s 1
E this interval, Equation 3-55 becomes {
: FU) - it (3-06) :
8 3
ﬁ' Figure 3-3% shows that, to a crude approximation, v can be written over the ;
s . . 3
3 same time interval as ;
! |
] t !
) R Y 3-67 i
a(t) ~ ﬂ) ra (3-67)

where the subscript p o indicates peak values. With this approximation, the

skin depth becomes
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D 2 1/2
8 = (22 ot ‘ (3-68)
0pp

@ From Equation 3-60, the estimate of B, is

: ¢
f 2z 0.t \1/2
_—_ (J..p_p_)

¢ S c

Thus B¢ is roughly constant in time in the diffusion phase aftcr the neak

(3-69)

of the gamma flux.

As stated before, Er tends to be small at the ground surface and
rises to ES at heights of a few skin depths. If the ground conductivity
! Og is not very large comparced with the air conductivity Oys then Er at
the surfacc is given approximately by

. m-:afr:—:a;;us : (3-70)
d g
This formulae comes from considering the impedances of air and soil within
onc skin depth from the surface. The return conduction current that would
flow in one skin depth in the air, if the ground were not present, is shared

with one skin depth in the ground.

The ficld “O would be small in the diffusion phase if it were
not for the cffect of the magnetic ficld B¢ on the Compton current. The J
Compton clectrons arc turned upwards, away from the ground by the magnetic
force on them. lor B¢ greater than about 10—3 Weber/m2 = 10 gauss, the i

resulting J8 is comparable with Jr' A roughly static fiecld EG then

arises, of sufficient magnitude to drive a conduction current cancelling
JO' Thus ”G is comparable with Lg, provided B¢ is as large as indicated

above.
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3.10 FIELDS IN THE GROUND AT EARLY TIMES

Cables and other components of systems are often buried at depths
of one to a few meters in the ground. It is therefore important to see how
fields propagate in the ground. The assumption of oscillatory fields of

the form (3-33) leads to Equation 3-37, which can also be wri-cen as

K= 2 (5 - iz0) (3-71)

C

The factor in parcntheses here is  -jn, where n 1is the relative admittance
of the soil defined in Chapter 2. Figure 2-5 shows that at the higher
frequencies of interest, ncither the recal or imaginary part of n  is

negligible.

The ficlds in the ground can be related to the magnetic field B¢
at the surface, discussed in previous sections. Over distances of only
severdal meters, B¢ ot the surface can be regarded as a function only of

t - Eﬁ i.e., except for time delay, B¢ is the same at different r. Thus
the radial phase velocity of all Fourier components of B¢ is ¢, so that

the component with frequency w has radial wave number

kr = w/c . (3-72)

. b ] 1
Since k has the two components k| and k_, and since kr in the ground

must match that of B, at the surface, liquation 3-71 determines kZ as

¢
" ZOOC
ikz = o (e-1) - i = (3-73)

Thus kZ is complex, so that the waves attenuate as they propagate downward

in the ground.
The fact that kZ is complex while kr is real means that the

. . A . . .
real and imaginary purts of Kk do not have the same direction. The

dispersion relation (3-71) does not force real and imaginary parts to be
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parallel, i.c., phasc planes and amplitude plancs neced not be parallel.
-4 ] N 4 [ . > .o
liquation 3-71 determines one Cartesian component of k if the other

couponents are specified.

The real and imaginary parts of kz are plotted as the points in
p Figure 3-7 as u function of w for our standard soil, for which the relative
‘ aditittance was graphed in Pigure 2-5., Messier (Reference 3-1) noticed that
a remarkably good fit to soil propagation constants is obtained by the

simple formula
tk, = \fe - 1%+ \/-jzooo < (3-74)

The curves in Figure 3-6 represent the real and imaginary parts of this
formulae, which obviously has the same limits for low und high w as

Lquation 3-73. 'The values of ¢ = and Jy used in the fit are

Co= 0.5 ) 00 = 8 X 10_5 mho/m . (3-75)

Note that UO has the same value as in Table 2-1, whercas ¢ has been
(

. . . - 3 ) -1
adjusted sliphtly to give a better £fit over the range 107 = w 0 107 see .

[ the magnetic ficld B¢(t) at the ground surface is represented

by its Fourier transform Bq(m), then B¢ in the ground at depth = (taken

positive) is obtained by propagating cach frequency component with its  k ,

— o0 ;
; |
J . - ;

i B, (z,t) = ~¥ B (w)expl)jmwt-k_)|dw . (3-76) 5
3 ] 2n a * Z ]
. wx) j
! Lf Messier's approximation for k_ is used, this equation can be written as ;
‘n‘l (P 8] : ,
j : |
[ B,(z,t) =‘%;~/ B (wyexp|jwt' - ¥ JjoT Jdw , (3-77)

; (b B -—th) d i “
¢ ;
b where N
9 :
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t'h o=t - T

1]

1 » ,]‘1 EOO - 1 Z/C N (3“‘78)
and

'l‘

i

2 -
5 ZDOOZ /¢ . (3-79)

The appearance of t' in the integral has the result that the onset of the
field at depth z 1is delayed by the time T1 after onset at 2z = 0. T

1
is the time for the highest frequencies to propagate a distance z in the
verticul direction. (The actual phase propagation direction is not vertical,
but is in the direction corresponding to the components kr’ kzr')

The radical in the exponentiual in Lquation 3-77 gives a diffusive
spreuading in time, in addition to the delay. This can be seen if B“(t)
is taken as an impulse function at t = 0, for which Bu(m) = 1, Evaluation
of the integral then gives

1 3/2
= 4 (,*gd) xp (-1,/4t") (3-80)
B¢(z,t) = VrﬁTz AT exp (-T,/4t . : )

It can be scen that the time integral of this function is unity, independent
2

of T, A graph of TZB¢ is presented in Figure 3-8. Since TZ ~ 2",

the dimpulse function aut 2z = 0 is broadened into a longer and lower pulsc

with increasing z. Vor our standard soil
-8 2
T, = 1.01 x 10~ u7scc . (3-81)

Thus at 1 meter depth, the impulse responsc is a pulse of approximatcely 1()_8

second duration. For arbitrary Bo(t), the responsc at depth = can be

cbtained by folding Bo(t) with the impulse response.

[t is also instructive to cxamine the z-dependence of the impulse
response (3-80) for fixed t. For this purpose it 1s convenient to define
4 skin depth
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3-8. Magnetic field as a function of time for impulse

field at ground surface.
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0.5

Figure 3-9. Magnetic field as a function of depth for impulse
is

z/8

field at ground surface, at various times.
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maximum depth reached by speed of 1ight in medjum,

§ is skin depth.
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6(t) = , (3-82)
2000
and the maximum depth rcachable by waves in the ground in time t
z (t) = ct/Ye - 1. (3-83)
With these definitions, Bquation 3-80 can be written uas
§ §)°
By(z,t) = -1 Zé-»%ﬁ exp |- —(?L%—--J . (3-84)
VEG (1---) (1-2) :
m m

This formula contuins two characteristic lengths, and so is not graphable as
i single curve. The two lengths ¢ and 2, are equul when
4(cm—1)

et = —g—— 7.3 m , or v & 2,43 X 10_8 scee . (3-85)

yANe}

070
For smaller t, 2 < §, and for larger t, Z > §. The numerical values here
are from lLquation 3-75 for Messier's fit. [Pigure 3-9 shows tB¢(z,t) for

1 . . , -8

2, = %-é, §, and 2§, corresponding to t = 0.0l1, 2.43, and 9,72 X 10
sccond. Also shown is the limiting casc for 2 >> 8, 1In this presentation
evidence of propagation, as contrasted with diffusion, practically disappears

by the time 2, > 28,

If instcad of By, “r at the surface (or HZ) is specificed uas
Hrq(t) or Uru(m) the same formulac can be usced to obtain “r (or £)

at depth. Thus these ficlds arc also broadencd in time and decreased in

amplitude with increasing depth,

The determination of B¢, “r and EZ at the surface must be
accomplished by solving Maxwell's cquations in the air and ground
simultancously. The analysis of this scction does not avoid that work,
but only cxplains the relation of the ficlds in the ground to those at the

surface. The analytical method developed here could be used to determine
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the ground fields if the ground conductivity were always large compared
with the air conductivity. 1In this case, B (t) could be determined by
solving Maxwell's cquations in the air overdperfectly conducting ground.
Next, B¢ could be found in the ground by the methods of this section,
and “r and Ez determined from B¢. It is more convenient tc obtain
the ficlds by usc of the finite-differerce codes LEMP-SUBL.

3. M EFFECT OF COMPTON CURRENT IN THE GROUND

The attenuation length of the gamma rays in soil is about

Kg ~0.2m . (3-80)

The relation of this length to that in air, LEquation 3-21, is determined

by the density of soil, about 2 gm/cms, as compured with that of air, uabout
1.23 x 10-5 gm/cm3. It is clear that any gammas observed in the ground at
appreciable distances from the burst must have traveled mostly through the
air and entered the ground only necar the point of observation., 1f the

burst werce on a flat surface and there were no air scattering, the prompt
gamma flux would drop to zero at the air-ground interface. Gammas scattered
in the air can enter the pround, but arvive with a time delay corresponding
to their longer path., Since the prompt pulse is only a few times 10—8

sccond in width, scattered paths that are longer by more thun about 10 meters
than the direct path do not contribute to the prompt pulse at distance.

Only gammas scatterced through small angles can contribute, and the number

of these is only uabout 5 percent of the unscattered gammas during the

prompt pulse. Thus for a burst on a flat surface, the gamma flux drops by

a4 factor of about 20 at the air-ground interface and decays further to
negligible values in depths of the order of 10 em. Since the ratio of Compton
current density to gamma flux is approximately independent of material and
density (sec Lquation 3-4), the total Compton current in the ground is equal
to that in only about 10/20 = 0.5 em of alr above the surface. The Compton
current in the ground is negligible during the prompt pulse for a burst on

a flat surfuace.
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If the burst is above the surface, or if the surface is curved and
is exposed to line of sight from the burst at the observer, unscattered
gammas can enter the ground. If the angle between the line of sight and
the surface tangent is ¢, as in Figure 3-10, then the Compton current

density in the ground attenuates with depth approximately as

3, = jsoe-|2|/d , (3-87)
where

d = Agsinw = 0.2 sing m ., (3-88)
Here J is the Compton current density in the air-ground interface. The

s0
current density is (approximately) continuous across the interface, but

decays in the ground in a depth d.

The Compton current in the ground is important when the air
conductivity exceeds the grou 4 conductivity. At distances of interest, this
happens only during the prompt pulse. In this case, the electric field in

the air is limited by

Line of Sight From Burst
z

4\

| Ly Surface

Figure 3-10. Geometry and coordinates for ground field
analysis.
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5 (3-89)
&2 %X 107 V/m .
In the ground, if E reached the value Js/og, it would be larger than that
in the air. The field in the ground does not generally reach this valuc,
because the return conduction current flows over a thickness of one skin

depth & of soil, and & 1is usually larger than d.

The fields preduced in the ground can be calculated exactly for
a gamma flux rising as exp(ot), as is done in Ref=rence 3-2, under the
assumption that 9, >> Og so that the air can be regarded as a perfect

conductor. The results of that calculation are summarized briefly here.

The relative admittance nou)(m'l) has been defined in Section
2.2, and Figure 2-5 shows n{a) for our standard soil. The a wual
admittance Y = n/Z0 (mho/m). The skin depth in the soil is

S 0.4 m . (3-90)
an

The numerical value here is for the example presented in this chapter.

If the conduction current returned on the same paths followed by

the Compton current, the electric field in the ground would be

ED- U (3-91)

Instead of this relation, Reference 3-2 shows that the maximum horizontal

component Ey in the ground is

1

2
d-
sQOy 62

) (3-92)

L a2 --JlJ
ym n

where JgOy is the y component of the Compton current density at the surface.

This value is recached at depth = d in the ground; Ey = {) at the surface in
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this model (large air conductivity) bevause the field produced in the

air was neglected. (One could add hq(uir).) The factor d:/(\2 in
Equation 3-92 comes from two sourcos.\ One fuactor d/8 comes from the

fact that the return current flows over depth & while the Compton current
flows over depth d < §. The other factor comes from the proximity of

the Compton current to the highly conducting air. By using Ljquation 3-89
to relate Hy to the saturated ficld iy o in the air and Equations 3-88
and 3-90, hLquation 3-92 can be written

e @
<

- A2 .2 )
RO S 0%
s7a%0 . sin“{ycosy ,

va \
) (3-93)

2
Y SSin“wcosqu (example) . ‘

In the example, the peak g, was used from Figure 3-3.  The maximum value of

[t

. 2 . )
sin“yPcosy is about 0.36, at P = 63°,

The maximum value of L in the ground occurs just below the

P4

surface, and is

0 ="
. a .
: ) S e A
l:m nooso0c Is 1 sing )

{3-94)
u‘l9sinWKq {example) . ‘

Skin depth spreading does not reduce the vertical conduction current density
or I . This large B, decays in the depth d.
The magnetic field B\(=—Bb) is reversced from the usual direction
" { .
near the surface, because most of the Compton current in the ground returns

as conduction current in the air. The value of B‘ at the surface is

0 o |
Bxu'” E‘dszO = UUX“JSOSIHWLOSw ) ’
(3-95)
3 B
T l()"-"sin'.pc()}'di} Wchor/nl“ (Cx“ml)lo) . $
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In the example the peak current density was used from Figure 3-2. This result

may be compared with the ficeld pre coed Ly the air current at the ground

surface,

; B oo S o - < ) .
i; x0a 0%’ sy0 "o CICITE I
‘ (3-96)

-3 2 $ s
< 2.2 X 10 “cosyp Weber/m texample) . )

The field B‘ decays in depth d  in the ground, and changes sign again

; due to return conduction current flowing below the Compton current.
2
L
¢ When the air conductivity falls below the ground conductivity, :
3 3
g after the peak, 6q soon becomes larger than Gg’ and the ground current
f and ficlds arce again dominated by sources in the air.
1 Two cautious should ve noted regarding the results of this scction.
: First, the peak E_  estimated in Equation 3-94 is in a range that might

o

lead to breakdown in the soil. Second, the peak dose rate in the example
i+ sufliviently high thut it might increase the conductivity of the top

laye  ~F the ground. Not much can be said with certainty about the

) probability of occurrence of ecither of these effects; experiments with
' relevant soil samples arce needed.  Both effects could be expected to result !

in a decrease in the fields at greater depths in the ground, but rely ng on

b i e

this coxpectation might be risky.

Attention was first called to the importance of the ground

d Compton currents by R, R. sSchaefer ond W. R. Crahon.

? 3.12 THE QUASISTATIC PHASE

As stated in Section 5.7, the auesistatic phase begins when the
shin depth in the air becomes as lusgs as allowed by the spherical geometry,

1.o., when o exceeds the distance v from the hurst point,
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E § »r. (3-97)

f

! The approximation (3-67) for o(t) is representative if the time origin is

suitably chosen, as in Figure 3-3. In that case (our usual example)

Up = 0.5 mho/m s tp A6 X 10-8 sec . (3-98)

TR B e
.

Equation 3-68 then gives the skin depth

3 § ~3.6 x 10°t (cxample) . (3-99)
\“.
k.
. With r ~ 500 meters, the quasistatic phase begins at
: Y.
2 t = 1.4 %10 sec . (3-100)
‘ Figure 3-3 shows that ion conductivity is beginning to be significant at
: this time. Over most of the quasistatic phase, ion conductivity is
3 ,
¢ dominant.
i It was shown in Reference 1-2 that a fair approximation to the
} solution of the governing Equation 3-31 for the quasistatic phase is obtained
1 by taking the potential function ¢ to be a function of © alone. Thus
; the predominant electric field is EO; the clectric field lines are approxi-
} . . .
' mately circular about the burst point as center. The fields he and B¢
can be deduced from this model and the conservation of charge, lquation _
5-31. If we assunme Er << “O’ this (uation becomes (on writing the ?
: divergence operator in spherical cooriinates)
1 . . 1 2 < i
: LI RSP T LA I 5410
: b sin OIO v s 5 o5 ]s (3-101) ,
: T }
Since o is approximately independent of 0 and since the distance scaling .
of Jq is approximately that in Bguation 3-20, this ecquation can be written g
| |
b 0 COFE = _‘v 3
TSinn ar SHWRG T 5T :
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or

9 Js
N ?? sinf . (3-102)

coae U T
36 SiMWEg = X

Integrating on 0 gives

J
i —E_Ej_ - <
SlneEe el (l-cosf) ,
so that
. r s l-cosb® _r s 6 .
B =X T s AT M7 (3-10%)

In order for the fields to be static, we must have V X E = 0, which implies

9 rE. = 0 or E. ~1/r . (3-104)

1
T 9r 0 S

Comparison of this result with Equation 3-103 shows that we must have

JS 1
s ~:;§-. (3-105)
[f the conductivity were mostly electronic JS/O would be independent of
r. However, when the conductivity is ionic, 0 ~ VTT:, and the condition
3-105 becomes ‘

1 -r/2A
——— e~ , Or re /2 a: constant
2

This relationship is not accuratecly valid, but opre may compute the following

numbers:

X = I‘/>\=0.5, l, 2) 49 5)

-x/2
Xe = 0.39, 0.61, 0.74, 0.54, 0.41

It can be said that the relation is valid to *30 percent over the range from
r = 0.5% to 5A. In much of the quasistatic phase, the hard gammas from
air capture are strong contributors, for which the effective M  (including

build up} is about 400 meters. Thus the model is justified over the range

67

e -

P

A el i - i ol P A

e A

o
i
i




SR R

TET AR LT RS

r = 0.2 to 2 km. [llardening of the gamma spectrum with distance make the
relation 3-104 more accurately satisfied, since A increases with distance.
Thus Lquation 3-103 gives reasonably good values for EG over the range
indicated.

Photographs of large yield nuclear explosions show lightning-iike
discharges developing in the time frame from 10-3 to 3 X 10_2 second
(Reference 3-3). The discharges rose from sharp objects (antennas) on the
ground, and followed quite closely the O-~dircction. The inference that they
were driven by the quasistatic electric field is hard to resist. The
growth ratc of the discharges contains information on the magnitude of

the clectric ficld, but analysis of the data is not complcte at this writing.

The magnetic field can be found from Lquation 3-32. The r-component

of this equation is
Z
S sindBy =~ . (3-105)
This equation has the same form as [quation 3-103, and the same integration
procedure leads to
Z

_0 e O ‘o, S 1o
B¢ = = rJStan 5 ( o= u“) . (3-107)

The time dependence of i, and B, can be deduced from Lquations

0 ¢
3-103 and 3-107. Ly is independent of time until the conductivity becomes
ionic, then falls as VJ%' B¢ falls as Jg throughout the entire

quasistatic phas

The radial field Er at the ground can be found from the condition
that the entire Compton current passing out through the hemisphere at radius
r must return in the ground. The radial dependence of “r is complicated

by a rather complex current flow pattern in the ground, and the time dependence
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if affected by the fact that diffusion persists longer in the ground than
in the air. Once diffusion is completed, the time dependence of Hr at
the ground is the same as that of Js' Diffusion takes about 3.5 X 1()—3

second at r = 500 meters.
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CHAPTER 4
COUPLING TO SHORT BURIED CABLES

4.1 INTRODUCTION

o Ground-based systems hardened to blast often have electrical

conductors buried at depths of one to a few meters in the ground for

mechanical protection. Burial also affords some protection from EMP, but

by no means total protection since the fields penetrate to these depths

E

% without strong attenuation, especially in the lower frequency components. §
F It is uscful to distinguish two categories of buried cables. The category i
g considered in this chapter includes cables shorter than a few hundred meters, d
k i.e., one gamma-ray absorption length in air. For such cables the EMP ]
% fields may be assumed to have roughly constant amplitude along the length ;

of the cable. The phase is not constant, for in general the EMP will sweep #
over the cable with a speed determined by the angle ¥ between the cable
run and the radial direction from the nuclear burst. (See Figure 4-1.) ]

The phase speed v is

Burst Point

s~

Cable Track on Surface

Air
Ground

ER O

D = Burial Depth

Figure 4-1. Geometry of burst and cable run.
70 1

AN

- .
RN PR O T IR T L W SR - P LM T Y U F RPN TUP ST ETTTY LT WA W R0 LAV ATV 1o TERTE R W] sy




t

TR e T

R R i >

t"!
:
b
x
:
Ve
‘
g
?

v = ¢/cosy , cosy = COSX COSX, - (4-1)

In case the burst is above the surface, the angle ¥ 1is made up from two
angles, the elevation angle Xe of the burst point as seen from the cable,
and the azimuthal angle Xg in the ground plane. The horizontal EMP
electric field E,_ at the wire, under the assumptions of constant amplitude

h
and constant phase speed, has the form

: = E 2L -
B, = B (t -5, (4-2)

where z 1is the distance along the wire (not the vertical coordinate). The
field component of interest is that parallel to the cable, which is related
to the horizontal field Epr in the projected radial divection from the

burst by

Eh = cosxaEpr . (4-3)

The cable is most strongly driven when Xq = 0, and since the location of the

burst will not usually be predictable, this case should be assumed.

If
exp[j fwt-kz)], then Equation 4-2 leads to the result that k 1is determined

Eh is Fourier analyzed in terms of waves of the form

by w,

cosy . (4-4)

The fact that v = c means that the EMP sweeps over the cables
faster than free signals can propagate along it. Since also €_ of the soil
is considerably greater than unity, the EMP sweep speed is considerably
greater than the free signal speed. In particular, signals arising from
effects at the cable ends arrive at most points along the cable with
significant delay after the EMP arrives. It is therefore useful to calculate
first the response of the cable ignoring end effects, i.e., as 1if the cable

were infinitely long. This problem is taken up in Section 4.2.
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The other category of cables includes those that are so long that
the EMP environment cannot be assumed to have constant amplitude over the

length of the cable. This category is discussed in Chapter 5.

Some of the buried cables of interest will be of multi-wire type.
However, these will generally have an outer conducting sheath to shield the
wires from EMP, lightning or other clectrical interference. The conducting
sheath will generally be covered by an insulating sheath for protection
against corrosion of the (metallic) conducting sheath. In this chapter, only
the insulator and the outermost conductor will be considered. Transfer
coupling from the outer conductor to internal wires, if any, is a separable
problem, at least approximately. The cable geometry is defined by TFigure
4-2. The conductor is drawn as a hollow cylindrical shell of thickness d,
but it could be a solid cylinder. The electrical conductivity of the
conductor is generally much larger, by a factor of the order of 1010, than

that of the soil. Thus the conductor has the same resistance per unit

length as a cylinder of soil with radius of the order 104 to 105 times larger

than as depending on the thickness d. The rclative permittivity of the
r
? A
Conductor e a
d a
, \/ el { & _ .
Insulator, é
10 9

Soil ,z;z, 9,

Figure 4-2. Definition of cabl¢ parameters and
cylindrical parameters.
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insulator is a little larger than unity, £, a2 being typical. The |

conductivity of the insulator, typically very small compared with that of

soil, may be enhanced by the gamma radiation penctrating to the burial
depth. The peak gamma induced conductivity may be as high as 10-6 mho/m,
) and is time dependent (proportional to the dese rate). The analysis of

this chapter will treat U, as constant, but will estimutc the importance

of gamma-induced conductivity. The soil parameters ¢, and OZ will be
trcated as independent of time but frequency dependent.

i The presence of the air, with its time-varying conductivity, affects
: the coupling to the cable. The analysis here will first assume that the

3 ) ; te . . . .

% soil extends to infinity in all dirccetions, and then show how the presence

of the air can be taken into account in an approximate way. In addition,

TR

the wire initially will be assumed to hiave perfect conductivity.

4.2 PERFECTLY CONDUCTING WIRE IN INFINITE SOIL

EMP environments arc calculated without wires present. Let the
Fouricr component of the environmentual electric ticld parallel to the wire

| axis, at the position of the axis, wich frequency w be

Ehﬂu) = Ho(w)cxplj(mt—kz)] . (4-5)

Here k  is specified by Lquation 4-4, The total parallel clectric ficld
. must vanish at the wire surface. A current 1 flows in the wire, such that the
additional fields produced by 1 have a parallel clectric field canceling

. the applied EMP ficld.

)
) The EMP clectric ficld has components both parallel and perpendicular

to the wire axis. The perpendicular component causes the wire to polarize,

with positive charge appearing on cone side and cqual negative charge on the
opposite side. The currents involved in this polarization are small when

the wire diameter is small compared with the wavelengths in the EMP, a
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condition which is generally well satisfied. Further, these currents do not
flow along the wire, so are of no consequence for equipment connected

to the wire. The EMP field of importance is the component of the electric
field parallel to the wire axis, and the variation of this field around the

circumference of the wire is negligible,

The usual cylindrical coordinates r, 0, z, right handed in that
order and indicated in Figure 4-2, are convenient for the problem at hand.
The field components associated with the wire current are Er’ EZ and Be,
and they are all independent of 6. Maxwell's Equations 1-17 and 1-18

become, for fields with t and 2z dependence given by Equation 4-5,

JwBe = jkEr + 5?'Ez , (4-6)
Nk, = jkeBy (4-7)
. ¢33 -
n{.z = F 57 rBe , (4-8)

where n(w) is the relative admittance introduced in Section 2.2. Equation
4-7 can be used to express Er in terms of B@’

. - ke N
Lr = Be . (4-9)

Use of this result in Equation 4-6 allows expression of BO in terms of

E_,

.
9

n 1 aEz
By = R (4-10)
wherc « is defined by
2 - jwn 2.
KT) = - (P KT (4-11)

From the definition of n, Equation 2-2, this becomes
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€= [2E -z - KV (4-12)
’P
- [(e-cos’) (D7 - jzo0 92 (4-13)

g In the second line k has been evaluated by Equation 4-4. The choice of
sign of the square root here will always be taken such that k would be
real and positive if o vanished. Thus the imaginary part of «k is

negative for w > 0,

Using Equation 4-10 in Equation 4-8 gives a differential equation
for E ,
z
'y OB 9
d 1 9 z 2., 5
—IT 3 T 37 - K EZ . 4—14) 2
The solutions of this equation are Besscl functions of order zero, JO(Kr), §
; YO(Kr). (See Reference 4-1.) The value of k is different in insulator T
g and soil. Let Kl apply to the insulator, K2 to the soil. 1In the soil,
? the field EZ produced by the wire current should approach zero at large y
4
g r. This requires the combination of Iy and YO’ %
- _
3 hz = A[JO(Kzr) - J\O(Kzr)] z AHO(KZr) ) (4-15) i
j where A is an arbitrary constant. Equation 4-10 then gives BG in the E
soil, §
. |
nzA n,A i
1 By = EE;-[JI(KZr) - JYI(Kzr)] : EE;—HI(Kzr) . (4-16) ;
i
% [n the insulator, the solution contains two arbitrary constants B and j
g C: i
EZ = BJO(Klr) + CYO(Klr) R (4-17) g
" _
BO = ‘6";;‘ [BJI(Kll‘) + (,Yl(Kll‘)] . (4-18]
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The constants A, B and C arc determined by the requirements that [

cancel the applied fiecld EO at r = a, and that E_ and Be both be

continuous at 1T = a2.

I[f the two continuity conditions are written out first, they can

be solved for the ratios B/A and C/A, with thc results:

. LY, - GILY 1.~ Gl
B iQilumﬁfﬂ}iﬁl C_ oty - Sy (4-19)
A W A W

In these expressions, ll0 and Hl are evaluated at Kzaz, and JO’ YO’ .Jl
and Yl are cvaluated at K1n7. The factor G 1is

-

RS
(1 = k—‘-{— N (4"20)
2"
and W is the Wronskian
NET Y, - J Y = - 2 (4-21)
I R U S ¢ 1Y U -
172

The condition that EZ cancel EO at r = a can be written as

i _
.08 . Cv e 4-22
AT R ol o Yoteag) (4-22)

Since B/A and C/A  are known, this cquation determines A, and Equation

4-19 then determines B and €, which completes the solution.

The total current in the wire is related to the value of B

0
at 1 = a, by bEquation 1-19, which becomes
2na.n .
! - ._.___.1,. .-l li e (_’_ 4 s 4.9
AT [A Jytaag + 3 \1“‘1“1)] : (4-23)
The impedance :w of the wire is defined as
Zw(m) = En(m)/l(m) ohms/meter . (4-24)

By use of the result obtained above, :v can be found to be
Y
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¢ Z K ll.)- I Y*-llY(‘\ J*
§ . 01 ( GH_J ) ( 0 1 )H1 0) 4oas)
W 2T - (1 J -GH J Y* Y. -GHLY : T
g apny |- (pd -G Iy gy, -Gy 0”1
: Here ¢ arc cvalug { N U . ' ¢ ! : a5
L ere ”0 ind ll1 are cvaluated at Koy ]0’ ]1’ \0 ind \1 at o Kjan;
{ and the asterisks indicate cvaluation at Ky, not complex conjugation.
i The functions “O and Hl arc defined in Equations 4-15 and 4-16.
(b
?- 4.3 SMALL RADIUS APPROXIMATION FOR WIRE IMPEDANCE
? The exact expression for the wire impedance, Lguation 1-25, is
y difficult to deul with, although it can be cvaluated numerically. Reference
i
b 4-1 gives quite accurate polynomial approximations for the various Besscl
E functions usetul for numerical work. However, it is fortupatc that the
) arguments of all of the Bessel functions are small in cascs of interest in
; this report. The largest argument is K 1 . o For wo= 107, £ a 10, ¢ 20,04
’ (see Figures 2-2 and 2-3), kLquation 4- 13 leo |K5l w11 m_l. 1f the
radius a2 = (.01 m, then leuzl = 0,11, For w = 1()8, !rfz:lzl ~ 0,013, and
? for smaller w, the argument is cven smaller. Thus it is reasonable to expect
4 that the small-argument expansions of the Bessel tunctions may vield a suf'- 3
i ficlently accurate cevaluation of :w' These expansions arce 1
. - . ,3 [ 1
! Jo) = 1 - ‘—1+ oixy () = N %( £ O(x)
3 - ’ (1-20) i
) “
Yo = 2o X -t e ot v = - 2 e S Y ot |
1 ot = N i A S S : :
% where v is the Buler-Mascheroni constant, :
t !
Y o= 1.781 ... . (1-27)
By using these cxpansions and taking carce to collect all of the terms of
lowest order, BEquation 4-25 can be reduced to
77
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Z,@) msef- 2 A I s 2 (4-28)
Nz Yo% S B

This formula holds for any w, real or complex, provided |u]
is not so large that the arguments of the Bessel functions are no longer
small. We shall test the accuracy of the formula ir the Laplace domain
rather than the Fourier domain, i.e., for exponentially rising applicd

fields of the form
E (o) = Ej(@)explat - k2] . (4-29)

The assumption of constant amplitude and phase speed, Equation 4-2, now

implies

X = %-= cosy . (4-30)

0iR

Comparison of Equations 4-29 and 4-30 with Equations 4-5 and 4-4 respectively

shows that the formulac can be written in the Laplace domain by making the

replacements

w > - jo o, }

4-31)
k> - 0%
Then the media paramecters become
n=2,0(n) + & e (o) (4-32)
0 ¢ ! :
2 : 2 ~2 )
K= - (%QA- K ) S (4-33)
Thus the replacement
K > - .]"z ’ (3—;4)

should also be made in the formulac. Equations 4-12 and 4-13 bhecome
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1/2
¥ [‘éﬁ (e L+ 20) - ?2] , (4-35)

[(e-coszx)(%)z 10 %]”2 . (4-36)

The exact formula for Zw, Equation 4-25, could now be rewritten in terms

of the mrdifiea  .sel functions (Bessel functions of imaginary argument),
hut we shall leave it as it stands. It is convenient, however, to eviluate
tihe small radius approximation in terms of the Laplace domain parameters.
Making the replacements indicated above in Equation 4-28 leads to the totally

real resuilt

7 % 0% a
z (@) ~ 5%[—3 in —2—+ Lg —2--] . (4-37)
i) ¥R a, A

To test the accuracy of the sma.l radius approximation, we have
numerically evaluated both Lquations 4-25 and 4-37 for the following cable

and soil parameters:

a

il
—
-

1 0.5 ecm 4y = 1.0 em , cosy .
(4-38)

0.01 mho/m .

El =2 , 0,=0 , €,=10 , 0«

The computed results are shown in Table 4-1. The accuracy is quite adequate

up to the highest frecguencies of interest.

Table 4-1. Comparison of exact formula and small radius approxi-
mation for Zw(u), for perfectiy conducting wire.

o Exact Approximation Error Skin Depth
108 sec'] 89.21 ohms/m 89.17 ohms/m  0.04 % 0.74 m
3x 105 213.] 212.6 0.2 0.31
9

10 5n6.7 498.8 1.6 0.16
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For » .« .cal application of our results, note that an EMP field
that rises with « = 108 sec_l to a peak of about 105 V/m would drive a

current of about 1()3 A 1n this wire at the peak of the EMP. The current

will continue to rise after the peak, for the impedance is mostly inductive,

as will be seen in later sections of this report. Note that wire resistance

is negligible compared with the computed impedance, at these frequencies.

In use of the Luplace domain results, it should be noted that
o(e) and ¢e(a) in Equation 4-32 are not the same as ¢(w) and €(w),
unless 0 and o arc independent of frequency. Equation 2-21 gives
n(a) directly for universal soils, and Figure 2-5 gives n(a) for our

standard soil (10 percent water content).

It should also be noted that the proximity of the conducting air
to the cable hus not yet been included in the analysis. The effect of the
alr pro. aity is not large for « &5108 s.ec_1 and burial depths of 1 meter
or more. After the peak, the air proximity will have a larger effect,
cnhancing the current during that period in which the air conductivity is

larger than the ground admittance w/Zoo

The quantities 2/Y|<2 in lLquation 4-28 and 2/Yﬁé in Lquation
4-37 arc the skin depths in the soil; they give a measurce of the depth of
penctration of the wire-induced fields into the scil. The skin depth is
complex in Fourier domain, in which case its magnitude indicates the depth
of penetration. It is real in the Laplace domain, and values arc given

in Table 4-"',
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4.4 THE TRANSFER FACTORS

In addition to the wire current, it is useful to be able to predict
the radial fields Er in the insulator and the voltage across the insulator.
Formulae for these quantities can be obtained from Equations 4-9 and the
fact that, when the small-argument approximation of the Bessel functions
is valid,

ZOI

By ™ Fire -

(4-39)

This is the static approximation, Equation 1-19, and is valid near the

wire. The result for Er is, in the Fourier domain,

. Z
: - _Jk_ 0 . : .
L) = 5 Z Eyw) = TWE (W) , (4-40)
and in the Laplacc domain,
B (o) = =X ‘o E (@) = T@)E. (o) (4-41)
r 21N Zw ‘0 0 ) '

The name transfer factor will be used for the factors T multiplying E

0
in these cquations. They are dimensionless. According to Equations 4-4 uand

4-30 for the sweeping CEMP, they arc

il/eicosy “o

. - _49
Fw) = 201N z ! (4-42)
W
T ((x ) = _g.___d'/ C_)_(E_O__X_S :A_Q_ (4-43)
: 21 Zw ) )

In an insulating material, o = 0, both of these formulac simplify to

Cosx_zo
" G 7 s

W
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In all of the expressions for T, the appropriate n, Zw and e 1is to be

used, i.e., n{w) or n((a), etc.

; Table 4-2 gives the values of T for the example (4-38) and for
points r in the insulator just outside r = al(Tl)’ and in the soil just

outside 1 = az(Tz). It is seen that Er will be much larger than the

applied EO’ and that the transfer factors are larger at lower frequency.

3 Indeed, the radial fields are in the breakdown range.

The voltage V across the insulator is obtained by integrating

: T from a, to a,. Thus

V!." 1 2 '«I"
: V=T E, (4-45) !
L where !
] Z a s
’ _ cosx 0 2 ) i
: Ty Zme 7 R (4-46)

i \ 1

i The dimensions of TV are meters. Tv is also given in Table 4-2 for

the same example.

E

]

The ficld transfer facter T is smaller for wires of larger radius, L

as indicated by Equations 4-42 to 4-44, Zw decreases as the radius 1
increases, but only logarithmicly. 5
A

Table 4-2. Transfer factors for the example (4-38). ;

T T T 2

& 1 2 v ;

;

108 sec™! 67.2 3.2 0.233 meters |

8 ;

3 x 10 28.2 2.1 0.098 ¥

i

10° 1.8 1.1 0.083 j

d
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%_ 4.5 R, L EQUIVALENT CIRCUIT OF THE WIRE IMPEDANCE
!{(

During the rise of the EMP, the Laplace domain form of the wire
impedance can be used directly to calculate the wire current and radial
electric field. After the peak in the EMP, this simple procedure is not
applicable. Fourier transform techniques are applicable: transform the
applied field to the w domain, use Zw(w) to calculate I(w), and invert
to find I(t). While this procedure is straightforward, it is time

consuming, and the analyst tends to lose contact with the numbers and

confidence in the results. This occurs especially since the whole process
is usually left in the hands of computational technicians, who may have

! little feel for electromagnetics.

An alternative approach is to continuc to usc analytical techniques
to construct a simple, approximate method that can be applied directly in
the time domain. In this scction an R,L «circuit will be devised, which

g has the samec impedance Zw’ to good accuracy, as the actual wire.

At low frequencies the impedance 2, calculated for a perfectl
[ w
conducting wire, becomes so smuall that the finite resistance of the wire is

not negligible. We therefore add to Zw the resistance Rw0 (ohms/meter)

of the outer conductor of the cable. RwO may denend on frequency, as it

will if the thickness d  of the outer conductor is more than a skin depth
in it. Most commonly this will not be the case at those low freguenciers

for which an is significant comparcd with Zw' We shall treat RwO
as independent of frequency, and tuke it to be the d.e¢. resistance of the

outer conductor,

A convenient equivalent circuit would have the tform shown in 0
Figure 4-3, for then the current in cach branch could be computed :%op.'n':‘ﬂy
and the total cable current obtained by adding the branch currents., Since
the admittance of the network is mwost casily writeen, it is dosilm‘»to miake

the it to the wire admittance Yw’
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Figure 4-3. Equivalent R,L circuit to fit cable

impedance.
1 m
R +2 ~ 2 RTE le, ' (4-47)
w0 W n=1l ""n

This equation can also be written

m g
R T (a-12)

where
gn = 1/Rn s Bn = Rn/Ln . (4-49)

The fit can be made by first choosing arbitrarily a set of Bn'S, spaced
onc decade apart, say. The g, are then determined by requiring Equation
4-48 to hold cxactly at a sct of w's, c.g., W= Bl, 82, 63, ...Bm, which gives

4 set of m linear equations to solve for the m quuntitices g,

The fit cun be made cither in the Laplace or Fourier domain. In
the Laplace domain, both sides of Lguation 4-48 are rcal. In the Fouricer
domain, onc can fit, say, the imaginary (inductive) part of Yw(m). The
real (resistive) part should then fit automatically, since both sides of
Equation 4-48 arc analytic functions., The fit will not be exact, of course,

at frequencies between the it points,

o e = i

A
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Lavery (Reference 4-2) used this technique to fit the admittance
of a cable with parameters

a1 0.5cecm , a, =1.0cecm , d= 0.05 cm

2 , COSX = 1,)
-3 $ (4-50)
61 =2 Gl =0 |, RwO = 1,129 x 10 ohm/m ,
imbedded in our standard soil. The B] chosen were
B, =5 X o h 1 te7 . (4-51)

The real and imaginary parts of Yw(w) and of the fit are graphed in

. 9 ~ . S .
Figure 4-4 for 102 s w = 107 sec !, It is scen that the fit is quite

8 .
accurate, except for the real part at w = 10, This discrepancy could be

removed by adding higher Bn's, but we shall not depend on the fit at these

high frequencies. The values of g Rn and L_ for the fit arc given in

Table 4-3. In this table, an entry a(b) means a X th. The zero

frequency conductance GO and the infinite frequency inductance L = of

the network arc

Table 4-3. Fit parameters for the example (4-50) in
standard soil.

n gn(m/ohm) Rn(ohm/m) Ln(henry/m)

1 8.439(2) 1.185(-3) 2.370(-6)

2 2.137(1) 4.679(-2) 9.359(-6)

3 1.306(0) 7.657(-1) 1.531(-5)

4 1.972(-1) 5.071(0) 1.014(-5)

5 2.684(-2)  3.726(1) 7.452(-6)

6  5.002(-3)  1.999(2) 3.998(-6)

7 1.258(-3)  7.949(2) 1.590(-6)
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fit was made to

28.

The points are computed frem the R,L circuit fit.
w=10M*2, n =1 to 7.
are also very close to tne

This discrepancy could be
O
n

Vi
The R,L model values for
true values, except at
removed by adding R,L branches with higher rates

YWY‘

100

W (Sec-1)

and Y4

at the points

Y
w LwYog .

10

10

10

of cable admittance
The curves are computed from the
definition of Y, Equation 4-47, with Z, given by Equation
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(4-52)
L = (Z:gan)_l = 5.862 x 10—7 henry/m .‘
n
The admittance in the Laplace domain is
m &,
Y (@) ~ Y : (4-53)
W n=1 1+ o‘/Bn

Fignie 4-5 compares Yw(u) with the fit for the example (4-50).

The current in the nth branch of the network can be computed by
solving the differential equation

dIn
by e Rplg = Bplt) s
or
dIn
ot Baln = et (t)- (4-54)

The solution of this equation is
t

-3 (t-t ) -B..t B t!
1(t) = n 0 I (t;) + 8B e n fe n Lo (t)de' . (4-58)

i

This solution allows for an arbitrary initial current In(to) at the
starting time ty in cuse it is convenient to approximate Eo(t) by
different analytical forms in different time periods. For example, a
somewhort crude but useful apvroximation to the carly-time part of the
horizuntal eclectric fiecld (sce Figure 4-6) is

I ot

: Vo fOop “orT - < .
L”(t. nC for t 0 )

" (4-50)
= oYt 3

for t > 0
m
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Figure 4-5. Admittance Yy(o)

10

of cable as a function of «., The curve

is computed from the definition of Y, with Z, given by
Equation 4-37. The points are computed from the R,L circuit
fit to Yw-(m). The discrepancy between the curve and the

points at o > 108

with higher rates
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Here Em is the maximum value, achieved at t = 0.. If Em is chosen

somewhat larger than the actual penk field, the form (4-56) will bound the
" actual field, and the computed current will therefore bound the actual
current.

For the form (4-56), the current for t < 0 <can be calculated
directly from Yw(a),

I(t) = Y, (@E ¥ for t <0 . (4-57)
1
5 For this purpose, either the original Yw(a) or the fit to it may be used.
s . . . .
b At t =0 = tO’ there is already a current flowing in the wire, and the
i* part of this current flowing in the nth branch is k
- _ nom
"l. In(O) - 1 + u’/B ' (4 58) .
A n i
%; From Equation 4-55, the nth current for t > 0 1is easily calculated to be i
: -R t g B L -3t %
. n nn'm -yt n
; = I o — . = -
- In(t) e n(O) Bn oY (e e ). (4-59) 1
|
1 The apparent singularity in the sccond term here if <y should approach 1
9 ) o [
: Bn actually does not occur, as the cxponentials also cancel in the limit :
. {
F Y > Bn. Suinming Jn(t) over n gives the result, for t > 0, ;
g 8 C‘ n ‘Y( "
- = A W ,‘__D_.,r,_‘,__ _____ . - H \- y _F }
1(t) (u+y)Ln‘L‘ ERICETN 4 Yw( Y)me (4-60) .
n n n i
{
Here Yw(-Y) s Yw(a) evaluated at o = -y, }
!
|
The form (4-56) has a discontinuity in slope at its peuak, which i
gives it more high-frequency content than the true EMP, A function with g
A
a discontinuity in slope has a Fourier transform which falls off no faster i
than 1/m2 at large w, whereas the transform of the true EMP g
2
1
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(which has all derivatives continuous) falls off faster than any finite power
of w. The form can be improved easily by adding other exponentials. For

example, the form

I
58]
~
08
1
~
-
ct
A
O

>

Eo(t)

—zat)
—_—

]
/_\
leo
IQ
1
<
(a4
1
-

has maximum value Em at t = 0 and zero slope there, as is easily verified.
This function is graphed in Figure 4-6 for the case Y = o/2. The function
has discontinuous second derivative, and its Fourier transform falls as 1/w3
at large w. It is possible, with the rise and decay rates o and Y

fixed in the first exponentials on each line, to vary the constants in the
last two exponentials and the coefficients of all terms in such a way that
continuity is maintained through the fourth derivative. If the Nth derivative
shows the first discontinuity, the Fourier transform falls as 1/wN+1
asymptotically. The algebra determining thc coefficients becomes quite
complicated for the very smooth forms. Use of the simple forms bounds the

high-frequency content.

The current for the form (4-61) can be written down by applying
Equations 4-57 and 4-59 to cach of the cxponential terms. In this way,
all but the final summing of the terms can be done analytically. Alternatively,
the differential Bquation 4-54 or the integral in Equation 4-55 can be solved
or cvaluated numerically. LGither approach gives a fast and quite accurate

way of calculating the cuble current,

Note that the transfer factor for the insulating tayer, Equation
4-44, displays no frequency dependence except in the factor :w' Therefore,

on including the d.e. wire resistance, it is possible to write

9N

L i

JPCRIE SRR IE i P T T

PO




!

o Zocosx ho
‘T 2rre R .+ Z 7
w0 W
Zocosx
' = S U (insulator) (4-62)

and the la  line here holds in cither frequency or time domains. Calculu-
tion of 1 therefore imediately yields Er in the insulator.
Unfortunately, this is not true for Er in the soil. At lower

frequencies, where n is approximately constant,

o~ _.C.O.‘i&_. l alk L : 116 (47
i ™ 2nr00 <8¢ (s0il, near wire) (4-03)

At high frequencics where © rather than o dominates n and © does
not vary strongly with frequency, Lquation 4-62 applics approximatetly in the

soil ncar the wire.
4.6 THE TIME-VARYING INDUCTANCE MODEL

The method developed in Secction 4.5, while trunsparent und accurate,
still requires a considerable amount of calculation. A stmpler method is
desirable, even . f it is less accurate.  Such a wethod exists for the type

of applicd fields found in EMP cnvironments,

The expression (4-28) tor Zw can be simplificd by making some

2
approximations.  lquation 411 shows that, if the k% term is dropped

- e {4-064)

" »
Now, the k% term contributes the term-cos™y in Bquation 4-13,  In the

Y )
S04, cosT} 1w no more than about 10 percent of v, where o+ 10, In the

m~
g

insulator, dvovping  co2™y  makes a bigper percentage change.  The Togarithm

factor Pnlu,sag) s asually much smaller than the logarithm tor the sojl

9¢
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term, so that the insulator term is not very important. However, if o is
.. . . 2 . . . .
negligible in the insulator, «°/n 1is still simple, and can be retained.

The apprcximate form of Zw is

JwZ 2 a
2y = ’MTO [Qn(, i a ) * (1 B &%f_X)Qn 521 ' (4-65)
“he IYK, 1 1
(Note that n(-j) = -jn/2.) This expression gives an impedance which is

too large, but not by more than about 10 percent.

If the iogarithm in Equation 4-65 were independent of frequency

e dn

and real, it would represent the impedance of a pure inductance. If <y

is written in terms of its magnitude and phase,

€, = kyle™? (4-66)

3

it is clear from Equation 4-13 that ¢ varies betwcen zero and n/4;

¢ approaches zero when the dielectric term is dominant and approaches

e et i e Ao R i

/4 when the conductivity term is dominant. On scparating real and

imaginary parts, Zw becomes

JwZ 2, a | w
= 0 2 _cos"x “2 ﬂ_m»__(l ) ) }
Zw ~ 2mc [Qn 'Y~]K2 a, ¥ (1 c ) kn a ]+ e \3 ¢) . (4-67)

The absolute value on the factor w 1in the real term is demanded, for

negative w, by the reality condition, Za(w) = Zw(—w), and can also of course

¢ D b 3 AL e 5 _niBE

be derived from the properties of the Besscl functions by carrying through

the analysis for negative w. The second term is resistive and leads to

energy dissipation. 1f the soil is a good dielectric, ¢ =+ 0, and the

energy is radiated away. If the soil is a good conductor, ¢ -+ 7m/4, and

the cnergy is dissipated in Joule hecating of the soil.

93
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The magnitude of the resistive term is generally fairly small

compared with the first or inductive term. The first logarithm is typically

. . T
between 3 and 12 in cases of interest, whereas (E-- ¢) ranges between

/2 and /4. Dropping the resistive term should increase the calculated
current and provide an upper bound. We shall drop it, and compare calculated

results with those obtained from the more accurate equivalent circuit method.

In terms of the inductance L of the wire,

g 2, = juwL , (4-68)
:

y and

) Z 2 a

: _ %0 2 ) _ cos’y 2 .

{y L = 2 |}Ln (m + ( El )Q/D d1:| . ¢ 69)
E Note th t

L VA W

3 0 . 0., =7 ¢ , -

3 e S om s 2 % 10 ° Henr:/meter . (4-70)

The inductance depends on |K2|, but only quite slowly because of the
logarithm. Thus an approximate fit to |K2[ would be adequate. According

to Equation 4-64,

RN (4-71)

A good fit to ‘V[n2| is given by ;
W
,an| ~ \/em o VZOOO . (4-72)

For our standard soil, the exact cvaluation of 'V|n2| and this approeximation

PRIpICE S P= TN N DL L - T

4
yield the results: j

105 10 10 10 107 10® 10° i

H

W

i

cxact 1.76 1.77 1.79 1.82 2.04 2.90 5.94“(4-73)

[}

1.74 1.75 1.78 1.87

ro

approximate A5 3.03 5.82

o e B d ok s aa
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The approximation is within 5 perce., . ~1 ! ~xact result over the entire
range. Therefore, a goed €it to I,y o
§ 5 2 L.l (4-74)

vkl o (VE + Y2 0 .c/w)
< o 00

The quantity ¢ defined here is the skin depth in the soil for the present

cylindrical prublem. In terms of &, the inductance is

a

z \ 2
o0 [ 84 (12 03X _2] ]
L= 5 [zn e (12 LK) gn 2] (4-75)

2 1 1

Because of the logarithm, the inductance changes only slowly with

frequency. TFor the example (4-90), Equation 4-75 gives the results:

o4 -
w = 10 10 10°  10° 107 108 109 sec L

§ = 353 111 34.5 10.4 2.86 0.641 0.105 meters$(4—76)

L= 2.16 1.93 1,70 1.46 1.20  0.90 0.54 WH/m.

The relation between the applied Eo(w) and the current I(w),

including now the wire resistance can be written

RwO’

LoD T Y] « [ - -
JWILDYT (Y] Eo(w) RwOI . (4-77)

The exceedingly slow variition of L{(w) suggests that it might be a

reasor ably good approx .mation to regard L(w) 4s constant in inverting this
cquation to the time domain. Jt would appeur appropriate %o usc the value
of L for that range of w which gives the dominant contribution to the
integral of Eo(w)cxp(jwt) over w, i.c,, to the inversc Fourier transform
of Equation 4-77. Since the cxponential here oscillates rapidly with w

when wt >> 1, the »ppropriate range of w is
w1/t (4-78)

unless Eo(m) varies rapidly with w. The latter possibility depends on

95
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the choice of the time origin. The EMP Eo(t) varies rapidly with t
initially, and then wore and more slcwly at later and later times. If the
time origin is chosen at that time when Eo(t) is changing most rapidily,
then Eo(w) will not vary rapidly with w. For example, the form (4-56)
for Eo(t) has the Vourier transform

. . (},+'Y .

L (w) =L ———te | -79

O(U) m (y+jw) (o-jw) (4-79)
However, if the time origin were shifted to time tO’ then Eo(w) would
acquire a multiplicative factor exp(—jwto). Thus, rapid variation is
avoided by choosing the time origin as stated. We agrec to make this

choice, and use Equation 4-78 (otherwise we would choose w R:l/(t-to)).

The suggested approximate time domain equation is thercfore
az-[L(t)I(t)] = ho(t) - Rwol ) (4-80)

where L(t) is given by tiquation 4-75 with § evaluated from Equation

4-74 and 4-78, t.c.,

S oo d.l2ct ) (4-81)

This prescription would have difficulty if used at t = 0. llowever, the
EMP has o finlte risc time tr’ which for the exponential rise model is

t,~ 1/, Thus in using liquation 4-81, t should be set equal to

= = if < -82
t tr 1/q it t tr, (4-82)

and the time origin should be chosen so that t = t. when the risce rate
begins to fall significantly below «. Obviously, this prescription is
somewhat imprecise at carly times. Note, however that quite accurate
evaluation of the current during the rise of the applied field can be had
by using the form (4-56) or, better, the form (4-61) and the Laplace domain

impedance. For the latter form, the current is
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1(t) = Em (Zw(a) e - Zw(2a) e ) for t =0 . (4-83)

Lavery (Reference 4-2) has tested the approximate equations against

the oquivalent circuit model cf Section 4.5 for the applied field

]

E,(t) = 0 for t <0 )
. s (4-84)
-Yt~e_at) for t >0 ,

o e

for which the equivalent circuit equations can be solved analytically. The
cable example (4-50) was used, with o = 108 sec—l. In Equation 4-81, t
was sc¢t equal to the larger of t and 10_8 seconds. Equation 4-80 was
integrated numecrically for scveral values of Yy as indicated in Figure 4-7,
which compares the currents computed by the two methods. The comparison

shows that the varying inductance approximation is quitve good.

Although Lquation 4-80 was integrated numerically in this example
to show how good the approximation is, the current can obviously be estimated
by crude integration of the equation over blocks of time in cach of which
Ho(t) and  L{t) arc regarded as constant. Note that the decay time L/Rwo

is of the order milliseconds.

OQur choice of putting L(t) inside the time derivative in Equation
4-80 instead of outside was somewhat arbitrary, mathematically. The choice
made gives better agreement with the accurately caleulated currents for
the shorter driving pulses. [If 1L were put outside, the current would not
decrease immediately after the short pulse, but would decay only on the time
sciale L/Rwo R l()“3 sccond. DbPutting L under the time derivative gives back
some of the dissipation associated with the real part of Yw(m), through the
term IdL/dt. Since dL/dt  is positive this term has the effect of a

resistance.
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4.7

FREELY PROPAGATING SOLUTIONS

The analysis thus far has considered only the particular solution

of Maxwell's equations, or that part driven by the applied field. The

equations also allow freely propagating solutions, and these are needed to

satisfy conditions at the end ol the cable. The freely propagating solutions

~ axp(j (wt-kz)) occur for w and k such that

Zw =0, (4-85)

so that a current I cun exist without an applied field. Thus k is no

longer determined by Equation 4-4, but for each w is chosen to make Zw

venish.

Zw is given by Equation 4-28, and Equation 4-11 gives

2
K . wo, k© .
el Tt o (4-80)

for arbitrary k and w. Ignoring the dependence nf the logarithm on

k  (through KZ) allows solution of Equation 4-85 for k, with the result

where

Since

in(8/a,) + n(a,/a,)
Koe iy 2 A (4-87)
¢ 1 ”1
Qn(az/al) + ﬁ; Qn(é/uz)
the skin depth § for propagation is complex,
§ = 2/vjk, . (1-88)

K, and ¢ depend on k2 (sec Bquation 4-12), Equation 4-87 has to

be solved by iteration for accurate results, 1in general,

. 6 -) - . .
for w < 10" secc and when the conductivity of the insulator

is indeed small (truc except in casec of high radiatior ¢xposure), the {irst

stzp in the iteration gives approximately correct results. The first step

puts

part of n  can be neglected and

e sl AL ABUAR L 100 b STV B0 €k Bl 3 e e e 00 e YT i s 4 ) et il

k% = 0 in the calculation of Kk, and 6. For w < 10% the dielectric

<
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K,y ® -jZOOOw/c , (4-89) f
so that 1
k]
: V3 1
] 6 w2t = §, V-1 (4-90) |
: Y Vzooom/c '
e .
T*, Here Sm is the magnitudc of .6,f{Thus !
i ~\
{ 8 6m i L
: Qn(7~) = %n(~—) - = (4-91) %
42 ) 4 I
; The ratic of the n's 1is %
; i
A e . ':i
| RIS i !
"2 %%
: i
§ For the exuiple (4-50) at w = 106, Qn(&m/uz) 7.3, Qn(uo/al) = (0,693, i
r and 111/'17 ~ j/450. The second term in the denominator of Equation 4-87
2 can be neglected, with the result
é
- . o
‘ K- o (‘_‘)_)“ E(jiﬁ:}ﬂ_1«z’_ . (4-91)
| e %n(u7/ul) )

2]
This result verifies that it was proper to neglect k™ in calculaving k..

Since Rn(ﬁm/ul) is considerably larger than /4, the square root can be
calculated approximately, giving the formula for Kk, ~
/Qn(ﬁ /a 7 . ‘
0 m 1 in/8 '

( F2t \/ T o e s D U et el 4-02

k “1 ¢ ﬁn(uo/al) ( Qn(ém/ﬂl)) (d-9)

The imaginary pert of k  gives the attenuation of the propagating wave.

,
For large w, the solution for k%, Eyuatiou 4-87, should be
2
iterated by putting this value of k° hack into the formula (Equation 4-86)
for k,, and so on. For accuracy, the full n should of course be used,

instcad ot ZDOO' Figure 4--8 rhows the rcal and imaginary parts of k for
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Figure 4-8. Cable propagation constants. Solid curves, veal and imaginary
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same from the approximate Equation 4-92. Points, ®(t); note
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rativ of phase speed to speed of lignt.
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I s .
1 the example (4-50), along with results from the approximate formula Equation
;
F 4-92.

In the Laplace domain, one louks for freely propagating solutions

of the form

g -
" [ ~exp(ae-kz) , (4-93)
&- where ¥ is again determined for given « by requiring that 2 = 0.
5 W
3 For this case, Equation 4-87 becomes
g 2 .
P, )
: c 'l n :
‘ L c.) + — 2
,‘: n(a,/c:) o n(8/a,)
3 The skin depth is
- § = 2/Y'|Z'2 . (4-95)
E
and E, is to be found from Equation 4-33 or 4-35. Again, iterative solution
§ is generally required. The n's in these cquations are of course n(a). {3
: Figure 4-8 also shows K (n). }
;~ 1
] As in Scction 4.4, Er cun be reluted to the current 1 for the H
froely propagating solutions. By the same procedure it is found that ﬁ
jkz,,
: - 4-9
Lr(m) ST I (w) , (4-96) E
i
R‘zo f
: AR -1 . 4-97 !
Lr(a’ 2men L) ( ) ]

The voltage V  across the insulutor (0 assumed negligible) is found by

inteprating these expressions on r. The result is

Y e, Mt

kZO (u,)
) = et O = 4-9
Viw) ZHElm/C n i O (4-48)
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Vo) = b zn(az)

§EE;&7E' 57 I(a) . (4-99;
Note that the sign of V depends on the sign of k or X, i.e., it is
different for solutions propagating to right and left. The factors
imultiplying 1 in these equations are analogous to the characteristic
impedance ZC of a4 coaxial transmission line. In the present case, the
outer conductor (the soil) does not have perfect conductivity, and there

are significant electric fields in it out to radii of the order of 4.
4.8 THE END CONDITIONS: OPEN CIRCUIT

The freely propagating solutions are added to the driven solution
to satisfy conditions at the end of the wire. The easiest case to analyze
is that in which the end of the wire is insulated from the soil, i.e., the
case of open circuit. 1If the driven and freely propagating currents are

denoted by ld and IP respectively, the end condition is then that

=- 1y (4-100;

The driven current is determined by the applied clectric field, and propagating
currents are then fed into the ends to cancel the driven current at thoso
points. The propagating currents propagate along the wire, modifying the

total current and fields as they go. They eventually rcach the opposite

end from their origin. At that time, additional propagating currents arce

ted into the ends to cancel the outgoing propagating currents. The

analysis here is the suame as in normal transmission line analvsis.

This analysis is not exact. While the propagating solution can
cancel the wire current of the driven solution, it does not cancel the fields
of the latter in detail. The valuecs of k. and therefore of v, are
different for the driven and propagating solutions for a given frequency.

Hence the radial distribution of fields is not the same. Cancellation of
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the currents means that the Be fields, which arc given for both soluttons
by Equation 4 39 ncar the wirc (out to about onc skin depth), will also
cancel approximately. lowever, as will be seen shortly, the fields “r are
substantially different for the driven and propagated solutions, and comc
nowhere near canceling. It is reasonable to expect an adjustment of the
radial electric field over a region of the size of one skin depth near the

end of the wire.

Equation 4-9 relates Er to BO’ Since Be is approximately the
same for driven and propagated solutions, given Lquation 4-100, out to about
one skin depth, the difference in ﬁr comes from the difference in k. For
the driven solution, kd is given by Lquation 4-4. For the propuagating
solutions, kP is given by Equation 4-87, or for lower frequencics by the
approximate Lquation 4-92. Tt is scen that kp is typically scveral times
kd. Thus “rp is several times [

.
W1

The adiustment of “r involves propagating solutions with highen
radial modes. The k  for these modes is again found by requiring :w =0,
but this time the cxact Equation 4-25 must be used instcead of the approximate
Equation 4-28 resulting from the small argument cxpansion. These solutions
decay rapidly with distance away from the wire end, and carry little current
so that Lquation 4-100 remains approximately corvect. Their role is,

roughly, to remove “r from the soil and increasc “r in the insulator

near the end of the wire. They arc important, therefore, in considerations
of insulator breakdown at the wire end. The total solution depends also
on the structure of wire and insulation at the end. The field across the

insulation can be reduced by connecting the end of the wire to a lavger
conducting sphere which is also insulated from the soil. No detailec

solusions were available at the time of writing of this report.

The radial ficld in the insulator is at least as large as the
values indicated by Equations 1-906 or 1-97. With the approximation Equation

4-92 for k, these cquation: become, in the insulator,

B A0S =g e o

ob T =t ol




. LO jln((Sm/al) 5 .
£~ — - n 1 (4-16G1)
Toam Ve N @A)

A measuvre of the importance of the fields in the soil to thosc in
the insulator is given by the ratio of the radial voltage drop V = fﬁrdr

in the two regions. On taking BO ~ 1/r, Equation 4-9 leads to

/ .
Vooir My n(8/ay)

_S¢ PR R N (4-102;
. &n(a ’
Vins Ny nlay/ay)
This ratio was showr to be small for w = 106 in Section 4.7. 1t is graphed
as a function of Laplace domain frequency in Figure 4-9 for our usual example,
which shows that it is always considerably less than unity. It is to bhe
expected that the increase in Er in the insulator due to adjustment of

fields near the wire end is by a factor 1 + (V /V'1s)’ which is not large.

soil’ i1
The phase speed of propagation along the cable is (kr is the real

part of k)

= 2 oo Bt (4-103)

This speed is considerably less than ¢, as shown by Equation 1-92. The

ratio v,/c¢c is graphed in Figure 4-8.
@

The maxiaum value of the current at the center of the cabic will
usually occar, for EMP drive, just before the propagated sienals arrive
from the two ends. Attenuation and dispersion of the propagated signals

must be taken into account. An approximate way of treating this is developed

in the following section.
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Ratio of the radial voltage drops in the soil
and in the insulator for the propagating sclution
in the Laplace domain, as a function of frequency.
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4.9 ATTENUATION AND DISPERSION

The factor exp(-jkz) determines how the signal propagates along
the cable. In order to estimate the effects of attenuation and dispersion,
l an analytic approximation to k(w) is needed. Figure 4-8 shows that thc

real part kr can be fitted quite well, over a few decades of w about

any point, by a power law., In choosing a fit, care must be taken tv maintain

the reality and causality conditions (see Sectiocn 2.3). A satisfactory

ik

] approximation is

ik = a(Gw? (4-104)

X where the power p and the factor a are both real constants. For then

a

the complex conjugate of jk is

[k ]* = jk(-w) , (4-105)

and reality is guaranteed. Causality requires that jk be analytic in the

e

negative imaginary half of the complex « plane. The function 4-104 is
analytic in any region that does not enclose the origin. A cut along the
imaginary axis from w =0 to w = jo prevents encircling the origin.

1 The path of integration in any Fourier inversions must then pass below the

] origin, as in Figure 4-10a.

e e o Sl et

I'igure 4-8 shows that the exponent p is just slightiy less than

L - unity. Thus q, defined as

q1-p, (4-106)

[P SV

is a small number, of the order 0.05 to 0.1,

Equation 4-104 can also be written, for w on the positive real

axis,
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kK = aj_qu = ampcxp(-j %;)

i

awl'[cos (59 - Jsin(do) (4-107)

&

aw’ |1 - Sgﬁ (for q << 1)

This shows the relation of the real and Imaginary parts of k. ‘The closer
pis to unity, the smaller is the vatio of ki te kr’ which cxplains the
shape of the ki cuarve in Figure 4-8. [If we choose to fit the kr curve
in the vicinity of some frequency w., where kr = k., then the constant a

0’ 0’

is

a0 s k P (4
q ko/wo . (4-108)
Let an impulsce current be injected at t = 0 into the end of the

cable, which is at 2z = 0., The Fourier transform of the impulse function

is unity. The signal at t,z is then
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: = o= expljwt - az{j -10¢

& Iim(t,z) T expljwt - az{jw)!]dw (4-109)
-0

i The integral here is difficult to evaluate exactly, but it can be cstimated
§ by the method of stutionary phase (or saddle point). The argument of the

exponential is stationary when

=t - paz(jm)_q =0,

or at

1/4

O - (baz
Ju=jo = 59

the integration contour can be deformed to pass through it.

the argument at the stationary point is

e T T e T LT

1/q p/q
arg = 4 (ESZ oy (2T
arg, t( il az( : )
o (1-q)/q
; = pazyldry oLy o gz
} t( : ) [1 pI qaz( ; )
: The second derivative of the argument is
; 5 .
’ 3 02 o= ()
T APR E - tmmesparg = - gpaz (jw) ,
o’ A(jw) ™

and cvaluation at the stationary point gives

(1+q)/q

urgg = - QP“Z(FIE)

In the vicinity of the stationary point, w = CI Sw

)
urga (Sw)~

£O]—

arg moarg o+
E‘I A.()

109

(4-110)

(4-111)

This point is on the negative imaginery axis (w = -j X real number), so that

The value of

(4-112)

{(4-113)

(4-114)

(4-115)
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?: Thus the exponential in Equation 4-109 is real and decaying if the path of
E integration passes horizontally (dw real) through the stationary point.

% The estimate of Iim is then

i

o (1+q)/2q (1-q)/q

( I, (t,2) mg%\/a-g% (282 exp[-qaz (2% ] . (4-116)
¥

%r Since (1-q)/q is a large number (= 10 to 20), the exponential

i‘ here makes I very small until t 1is large enough to make the argument

;L of the exponential near unity. For larger t, the factor t-(l+q)2q makes
& I decrease rapidly again. Thus the original impulse function is spread

; out over a short time about that time that makes the argument of the

exponential equal to unity.

The form of Equation 4-116 can be simplified by calling the argu-

. 2
ment of the exponential -u”®, i.e.,

.., (1=q)/24
Vaaz (25 : (4-117)

T Y T T

i

u(t,z)

Note then that

;?ﬁ,v‘_
et R

: iy
i Bt 2 Vaaz ~ t ' 3
| B
F’ Comparison of this cxpression with Equation 4-116 shows that 3
: i
- !
2 Ju -u . ] ‘
i R N P v : 119 :
F _ ]1m ot ¢ (4-119) i
; Now, the responsc ISt of the cable to a unit step function i$ related to 1
- |
lim by i
, t 1
] _ [ , _ ‘
, Doy (t,2) -j I, (t,2)dt ‘_;

| () (R el

3 2
U b 4
= ,[ﬁB .lac du . (4-120) g
u(t,z) '
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Note that t = « corresponds to u = 0, so that

22
- |2 -u . -
I, (%2) = ,/,npfe du = = (4-121)
0

Actually, Ist(m,z) should equal unity. The factor 1/V2Zp =~ 0.73 is not
far from unity, but our estimate is not entirely accurate. It will be
shown below that the error comes at late times after most of the pulse has
arrived at the point z. TFor the present we proceed with the formuilae as

they stand.

The integral in Equation 4-120 attains half of its final value at
about u = 1/2, and it can be said that the signal arrives at the correspond-
ing time. This time can be evaluated from Equation 4-117, which gives the

arrival vime

t, = Pl Prant/? (4-122)
It a 1is evaluated from the reference vulues kO and Wy iquation 4-108,
this result becomes

vt

Da p (4yqk z)q/p , (4-123)

z 0

where vy 1s the phase speed at the reference values,

VO = mo/ko . (4-124)

liquation 4-123 shows that the arrival time increases faster than z/v0 with
increasing z; this comes from attenuation of the higher frequencics with

increasing z.

The rate of risc of the signal at the arrival time can be esti-

mated from Lquation 4-119:

1

I i TSR R YIS TP PN EM
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ise rate ~ -2 duy -1/4 _ [2 (d-Q/q  -1/4
rise rate =~ D (- ) © = \Nip £ u e

~ 0.62 ggi . (4-125)
a

The rise time t. is the ratio of the final value tn the rise rate,

N .H.
t, w114 3t

p & * (4'120)

Thus tr is 4 small fraction of ta.

Equations 4-128 and 4-125 have a very simple and useful interpreta-
tion, from which they could have been foreseen. Firs., noce that no specific
choice of Wy and k0 has been made, cxcept that they go together. Thus
in Equation 4-123, k0 can be set equal to any value of kr (the reai part
ot k) if Vg is set equal to the phase speed v¢ going with kr’ The

cquation can then be written

£ =2 (P baqk 4 (4-127)
HE \% T
¢
Now,
U (g n e (g << 1)
P

For 0.9 < p < 0.95, de ¥ iy quite close to /2 (within 3 percent). Next,

note that according to Lquation 4-107,
Tk wk (4-128)
AL :

Thus liquation 4-127 is equivalent to

¢ =B (kiz)q/l’ . (4-129)

The interpretution is now clear: find that W, from Figure 4-8 for

example, for which

ki(ml)z =1 (4-130)
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the arrivo!l time is then
ta = z/v¢(w1) . (4-131)

The interpretation of the rise rate, Lquation 4-125 is equally
simple. The value of kr for the case (4-130) is

kr(wl)

2ki/Wq

2/mqz . (4-132)

The frequency going with kr(wl) is

w, = V¢kr = 2v¢/qu
- 2 — —
TN (4-133)

Now 2/ = 0.64, quite closc to the factor 0.62 Vp in Lguation 4-125. Thus
the rise rate of the signal at 2 is equual to that frequency W for
which the attenuation is e 1.

These results hold for a step function input current. Figure 4-7
shows that short EM pulses produce step-like currents, but with ficite rise
rates. The rise rate at z cannot be faster than that at the input. Lorg
FM pulses produce ramp-like currents. The response of the cable to a ramp
is the time integral of the step-function response. 'The arrival time for a
ramp is cssentially the same as for a step function. The risc time of the

step corresponds co the time for the ramp to acquire its final slope.

The failure of Ist to reach unity, Equation 4-121, comes from
the fact that the expansion of the argument, Lauation 4-115, is not accurate
at late times. For t > 0, the integral in Lquation 4-109 can be evaluated

by folding the contour of integration about the cut as in Figure 4-10b.

The result is
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-8 CoS aLs e s
J Iim(t,z) = Tlee te os (qm)azs s;ln[su.n(qﬂ)azsp]ds . (4-134>
£
3 0
!
; For large t, most of the contribution to this integral comes from small
g s, so that the functions of s? can be replaced by the first terms in
§ their power series expansions. Thns for large t,
3
Q' ©
- 1 \,1 -st . e
¢ ‘im(t'z) g fe sin(qmazs®ds
] G
I , WPl .
; 2 qaz(p!d/t (t lavge) . (4-135)
- This result shows that the impulse response falls to zero somewhat more
3 siowly at late timos thun was indicated by Equation 4-116. This explains
E why the time integral of tquation 4-116 did not quite reach unity. The
s bghavior of ISt is sketched in Iigure 4-11. The current rises rapidly
3 at t near tu‘ but not quite to unity. The finul rise to unity tuakes
r 3 ¢
: a fow tu s,
it
b,\:{
.
X

st

Figure 4-11. Shape of the step function response.
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CHAPTER 5
COUPLING TO LONG BURIED CABLES; AN EXAMPLE

5.1 INTRODUCTION

In this chapter the theory of Chapter 4 will be extended to buried

wires that are long cnough that the amplitude of the EMP changes appreciubly
over the length of the wlie. In most of this chapter, attention is given

to a porticular exumple, numely that of a buried power line which terminates

at a buried facility. in order to maximize the coupling, the nuclear burst

s assumed to occur directly on the power line, at a distance of' 1 kilometer !

from the fuclility, The geometry is skoetchod in Flgure 5-1.

The aly in the fireball is very hot, with temperatuves in the runge j
I to 10 ¢V, and is therefore thermally jondzed.  The electrical conductivity in
the fireball iIs in eoxcess of 1()':l mho/meter.  The fireball is a very pood
conductor compared with the soil and with the ailr outside the fireball, The

radius R of the fireball incrcases with time as

[0 [
Ri{meters) ~ 1300 tz/o\l/o , (5-1)

where t o 1s the time in seconds and Y is the yield in mepatons,  This

formula is valld for t < 0.1 Y1/3 second,

Buricd power lines typicully have o central "hot" wire surrovnded
by insulation, then wrapped with several veturn conductors which are
approximately at ground potential, Often o particlly conducting plastic
sheath protects the return wires from corrosion by the soil,  We shall assume

that the return wires are in clectrical contact with the soil, und take the
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Figure 5-1. Geometry of burst, power line and facility.

resistance of the return wires to be

P~ 0,3 milliohm/meter (5-2)

The integral of the rudiul EMP clectric ficld in the ground between
the firebull and the facility would be of the order o 1 to 10 mepavolts, if
the power line were not present. After a period of inluctive limitation of
current in the wire, this voltage appears partly between the wire and the
tireball at one end, and partly between the wire and the facility at the
other end, 1Tt is likely that these voltuages are large enough to drive arcas
between the wire and the fireball and between the wire and the facility
walls, 1t is assumed lere that the lutter are reinforced concrete, and
have a low impedance to distant ground. The firebull, which is in contact
with the soil, also has a low impedance to distant ground. The current in
the wire is limited, after the inductive phase, by these two impedances, Tt
is likely ulso that the soil will break down in the vicinity of the wire
along its lenpth, reducing to some extent the voltuge and current delivered

to the facility.

The question as to whether ground shock destroys the power line is

immaterial. There is no shock wave outside the fireball (at the times of

interest here), so the power line must be intact at the fireball radius., 1t the

power line is opened at some point underneath the fireball, the arc can still

strike near its codpe.
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‘ 5.2 THE DRIVING ELECTRIC FIELD

SrT e T

Figure 5-2 shows & crude representation of the time and radius
dependence of the radial eclectric field in the ground within a few meters of

the surface, The times T labeling the curves are retarued times,

. i -
T T 5-3%1
o (

S

Actuual cualculated fields do not fall precisely exponentially with distance,

bul the representation shown is not a bad one., ‘he fields given urc most

appropriate for a few wegaton explosion over soil of conductivity (at low . ;

frequency’ §

-3 : A [

] oy #1077 who/meter. (5-1) :

N

The ends of the curves arce pluced at the fireball radius ottained from
Lquation 5-1 with Y = & M,

e

3
: ‘fhe behavior of the tield c¢an be understood from the theory pre- %
3 sented in Chepter 3. At carly tvines the air conductivity is larger than the ;
. 5011 conductivity, and the radial electric field is ipproximately equal to '
f the saturated vicld J /o(airy, which varies little with distance out tn 1

2 kilemeter., At late times, in the quasistatic phase, the Compton current

passing cutwards through the hemisphere ot radius v in the air returns as

conduction current through the hemisphere of radius r  in the ground, so

that
oy Ll
B o] o e VA0

This formula indicotes that b spould full by about a factor of 1) between

ro= 300 and 600 meters [V
Rl

T = 107 second. At iatermediate tiues, the curves can be understoed by

= 300 meters), dn oagreement with the carve it

X e s el i R R R, % s el S M

assuming that the Compton current within one shin depth in the air returns

as conduction current within once ckin depth 1n the grouni.

17
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Radial! electric field in the ground as a function

of distance, for various retarded times.

Figure §5-2,
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The fields of Figure 5-2 are represented analyticaly by the formule

—~
wn
{
fox}
s

- 2 r, -Br
Er(r)t) - é(t = C)e

Here & 1is a function only of retarded time. The parameter £ 1is not
independent of time, because the slope c¢f the curves in Figure 5-2 varies.

From the slopes we obtain the foilowing table:

t = 1070 1077 10? 1673 107° sec
L G
8 = 0.007  0.0012  0.00%4  0.0054  0.0079 m

It is seen that R changes only slowly with time,

If B 1is regarded as independent of time, then the Fourie: expuansion

of Er(f;t) contains terms of the form

E o~ eJ(wt—kz) (5-8)

- ’
ra

where

:Itg-. ~-Q
k=--176. (5-9)

Note that the horizontal coordinate [along the nower line) is now called

z, in order not to confuse it with the cvlindrical coordinate r of Chapter 4,

5.3 THE WIRE IMPEDANCE

The impedance of the power lin2 to driving ficlds of the type of
Equation 5-8 is given by Equation 4-28. The dabsence of an insulating layer
in the present case can be accounted for by putting dy = A, The impedance

Z . 1s then

W
>
Z, K. .
- g 2 2 JTI
() ~ = [- .~ [ S Sl -
éw‘w’ 2 [ n. (fn YK, A 2)] ‘ (5-10)
2 22
119




P
:
:
The quuntity Ky is given by Equation 4-11, which with Equation 5-9 becomes
it
: 2 Wy 2
: Ry = e e (- B, (5-11)
3 where the relative soil admittance 1is
. Wi
r w0 =L, 5-
12 “0 1 P (5-12)

In deriving the time-varying inductance model in Section 4.6, we

. ,
; showed that the second (kK7) term on the right in Equation 5-11, with £ = 0,

wis small compared with the fivst term and could be neglected. Tris approxi-

e

mution must now be reexamined. Writing cut LEyuation 5-11 gives

ph st

il
LW I I R 13
5 {(e-10 + c (,Ou 21} BT (5-13)

] ¢

[ SO )

b
The contributions of the k© term are evident., First, there is the term

-1 in the factor o - 1, which can be neglected as in Section 4.6.  Second,

there is the term -2, in the Factor 2,0 - 28, Now 2.0 %= 0.377 while

0 “0

20 < 0,016, thus 26 can also be neglected. Finally, there is the term

N A
bl
-3, This term is negplipible if .
;
5 k
ERR A I y
¢ 0 §
ar, siuce Zv/c = p,, if
1 A

- > s~ sKin o deptho . (5-14)
| },l(}()l\.

Thus the tiwe-varyine inductance model is still valid if the distance of dif-

ot M e n T K ol

fusion of tields along the wire is small compared with the distance 1/f

.. . . !
in which the amplfitude of the dyiving field varies appreciably, In the time ;
. Ce i
demain, the inductimee mode) is valld for times

E
V) 2

a- -1 N ) -

t 7 =~ sev in present example . (5-1%)
p
§
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;

‘é,

;

%A In order to find an approximate evaluation of Zw’ it is necessary
) . . 2 . . .

i to evaluate both the factor Kz/n7 and the logarithm in Egration 5-10,

: For the log term, the variation of which is not sensitive, we take

|

2 2 $ .

; vk, o, ~ @, (5-16)

Y @ 2

!

£ where ¢ is given by Equations 4-74 or 4-81 if Ecuation 5-15 is satisfied, and
f

: U0

: 2

: § = L12 g ¢n 20, (5-173

b 8 B2

s For the factor Ké/nz, note that the neglection, in kquation 5-13, of -1
! cempared with ¢ and of -28 compared with 200 is cquivalent to writing
é Equation 5-11 as
7 " )
] a2 s
: 2 ’ £
4 4
3 or %
g Z |
: 2w B w gl ]
: S B A (5~18) |
E 12 ]2 ¢ O(_, !
3 . . . . !
: The sccond form here rccognizes the dowinance of Zoo over ww/¢ ot late :

times when the Bz term is significant.
i; |
- With these results and with the inclusion of the resistance R ;
! ot the wire, the lupedance of the wire can be written :
(, i
. ~ . = + - (5-19° '
} Lw()) Jwl RwO R“ s (5-19;

where

1
0 5 e
L = = &n{==) 'lenry/meter , (5-20)
2m a4,
i
and i
3
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1

;),

| R = B el hm/met 521
E R = Fng n(az) ohm/meter . (5-21)
f

As in Section 4.6, t'ie time domain equation for the wire current 1 is
d . = -
ta [L{t)Ict)] = E(t) - [RwO RB(t)]I . (5-22)

Note that the resistance RB represents a ncgative resistance, which
accounts for the increase in current at a given z due to larger driving
field at smaller z. The e~folding time of the current duc to this negative
resistance is

o
LMo .-
R (5-23)

RB BZ

. . . . -4 -4
For the cxample considered in this chapter, T = 10 7 second at t = 10 second,
Thus diffusion along the wire accounts for most of the increase in current

after t = 10_4 second,

The solution of Bquation 5-22 can be written in terms of integrals.,

i t
E Rg = Ryy ' B Ry
i g(t) = ———— dt! = f['—,~ - ——]dt' . (5-24)
| 0 0
f Then Equation §-22 can be written as
Lt ML) = i)
dt
and the solution of this cquation is
( t
g(t) o
2o et )y g .
I(t) LTt ¢ Beedt (5-25)
0
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5.4 DIFFUSION ALOMG THE WIKE

The physical origin of the term RBI is wade clearer by writing

R 2
LB .
RBI = 1 LI = UOO L1, (5-26)

Now it was assumed in Equation 5-6 that the dependence of the driving field
on z and t is &t - z/c)e—BZ, and it was shown above that the dependence
of & on z produces negligible effects when, as in the case of interes*
s in eclectrical contact with the soil, Thus the essentiul

-fAz

here, the wire i
dependence of £ on z dis e "7, und 1 will have the same dependence,

apart from end effects which are considered below. Therefore,

g%.c - B, (5-27)
so that Lquation 5-22 is cquivalent to

O [LI] = B = R T + - o [LI] 5-28)

gp (LI = 6= R, uod 3~f SR ¢

This diffusion cquation shows explicitly that the magnetic flux LI per
unit length of wire diffuses along the wire, and is valid for any dependenze

of LI on z, not just exponentials,

Lyuation 5-28 con be derived directly from Maxwell's cquations for

the present case. These are, in the ceylindrical coordinates of Figure 4-2,

oB obi JL
2 T

(5-29)

ETH T Tl
9
| B, )
].lOGlLr S YA {5-30)
1 .
UOULZ = ;‘* *(—'I‘ IBO . (-1-31)
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E In the last two equations the displacement current has been neglected, a
E pood approximation in most soils except at the highest frequencies or
§ very ecarly times, Using Equation 5-30 in Equation 5-29 gives
] .. 2
¢ BBG oL 1 07
| Eiailie T o (5-32)
} 0" 9z
g
b Let the fields indicated here be those due to the current in the wire, not
¢ ' . " . . . " , . /
h including the incident ficlds applied to the wire. Then By und E, vanish ]
! o . . . . .
; at sutficiently large r. Integrating Bquation 5-32 over v from the radius |
" y
i a, of the wire to large v yields !
f ‘f
n - Doll) 4 e Y 633 :
b ot by () * 5y (5-33)

8P 1
d where ¢ is the magnetic flux per unit length of wire. I the wire were ]
{ perfectly conducting, then HZ(“o) = - I (the applied field); for resistive ﬂ
4 wire, E
E'
Pfay) = o= B4 . H-31) )
“ 12(‘1.).) l RWO] (_ 1) ) ) ‘
y The flux ¢ is estimated by assuming that BO is the ficld of the current ,
3 .

I out to the s<kin depth 6,

6

i " Ir UO g
: oo ] f LN o N2y 1

r < i

O PPN NPT I P AE e 3

When Bquations 5-34 and 5-35 are used in Lquation 5-33, the result is Equation

|
5-28. This derivation does not give the formula for §, which comes only ;
from the complete solution of the cquations developed in previous sections, ;
The complete solution also mukes clearer the effects of approximations made. ;
5.5 TERMINATION CONDITIONS 'i

g

I order to determine a solution of Lquation 5-28 tor a wire of

finite lenpth, an additional cquation is neceded at cach end of the wire. This
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equation can be obtained by 1ategrating Lquation 5-30 over »r from a, to

§. The vesult is
. a 9 ...
MooV = - 5%—= -5y fL1] , (5-36)
where
§
Vo= Jrﬁrdr , (5-37)

r
is the voltage between the end of the wire and distant ground associated with
the current I in the wire; i.0., V does not include the incident electric
fleld. Usually, V dis related to I by a gimple impedance, which at all

but the carliest times is well approximated by a resistance., 11 the fucility

in Figure 5-1 is approximated as a conducting sphere of radius s its
resistance to Jdistune ground is
§
. dr 1 . .
R(' ~o2 /‘"2 ~ ZT“.H O, . (U »> :L_[.) ((‘1-38)
b Joqnrco f
e

Tne Factor 2 here comes from the fact that the fucillity is lecuted near the
sarface of the semi-infinite soil medivm,  The resistunce of the fireball to

destans ground s that of o disce of radius Ly

O
Rrb * du., 0
D}

(€ >> .

). {5-30)

If the load resistance is designated by R, (= Kk, or be), then the relation

between Vo oand 1 is

Vo= iR, (5-40)

where I s the current flowing out of the wire into thc soil. Combining

this cquation with Equation 5-36 yields the termination condition

ZﬂoRl
= e e L] (5-41)
()
‘]2
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] 5.6 METHOD OF SOLUTION OF THE EQUATIONS f
{ .
? The {lux function has been defined (by Equation 5-35) as \
* d(z,t) = L(t)I(z,t) . (5-42) |
%b llere L 1is given by Eguaiion 5-20, with §(t) given by Equation 4-81 or {
f: Equation 5-17; the t in §(t) is really the retarded time, or time
{ after the arrival of the driving field at the position 2z. The difference
: between using real time or retarded time in the rest of the cquations was
% shown in Sectioun 5.3 to be negligible., We therefore think of t as retarded
f time dn the remainder of this chapter.
] S | .
X In tevms of ¢, the differential Bquation 5-28 and the cend con-
; dition S5-41 are
)
: , R 2
| ¢ . w() 1 87¢ .
! T LI (5-43)
g ot L lﬂf- 822
! 1) .
0 PP Cr(t)¢ at right-hand end , )
; . (5-44)
' & 4 Cg(t)¢ at left-hand end . s
-, A
: Here the factors ¢ arce defined by
;’TII.)RI
(L) F et (5-15)
(=)
i,

with the appropriate load resistance Rl at cach end.  The positive direction

of ' and 1 is to the right,

These cquations can be solved quite readily by finite-difference
methods. ilowever, approximate solutions can also be found analyticaliy.

and these are ureful for providivg understanding and checks on the finite-

diffeorence resules,
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The first step in the analytical solution 1s to eliminate the
ternm Rw0¢/l by defining
“ R,
&m)=j}m;ﬁv, (5-46)
0
and letting
'81 (t)
¢ =e ¢ - (5-47)
Then EBquation 5-43 becomes
2, g (1) ) 32¢1
_—— = ! i ——— 5=
- © ke wo 2 (5-48)

0" 9z

Lquations 5-44 ure lef't unchanged eoxcept thut ¢ ds replaced by ¢1.

A zeneril method of solving liquation 5-48, subject to the end
conditions is: first, find a particulur solution of Equation 5-48 ignoring
the cud conditions; sccond, find solution« to the homogencous equation obtuined
by setting L = 0, again ignoring the end conditions; third, choose a linear
combination of the particular and homogencous solutions which satisfies the

cnd conditions.

e
¥4

e dt)e (5-49)
then a par jevlar solution of Lquation 5-48 can be found by assuming

By (2z,t) = ¢2(t)0-62 . (5-50)

Substitution of this Form leads to

db, g, (1) o2
C A AR A I
0
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Strictly speuking, this procedure is valid only if B3 is a constont,  How-
ever, Bquation 5-51 is approximately correct if B changes stowly with time,

which we assume.  Then if g (t) is defined by

ot 'y
l'l:"-
0 () = f B ) e, 4.52)
2 \ oo :
0
the solution of Lquation §-51 is
- t
8,(1)
¢, (L) = ¢~ uxp[glft') RTINS AL I T & AL TR S (5-53)

{)

This completes the particualar solution of Hquation 518,

5.7 HOMOGENEOUS SOLUTIONS

In Cinding solutions of the homogencous Torm of Byguaation 518, it s
t

convenient to redefine the space variable s

)
y = \/1an: . (5-0-1) .

Then the cquation becomes simply 3
N} H
i I . '
St (5-55)
oy

whoere we have desipnated the homopencous solution by in order to
distinguish it fron the particular solution ¢J. A very simple solution

[}

ol Bquation 5-55 is

L £

l,' B

. (5-50)

it

where s s an arbiteary positive constant,  This would be o useful
homogencous solution to add to the porticular solution +l ir 4}
increased eaponentially with time,  Fquation 5-53 indicotes that 5 and

«bl will incrvease approximately exponentially with time ac late times,
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At cach end of the wire, we should choose that solution thut
decayvs with inereasing distance into the wire, Thus at the ends of the
, . . . st \ ,
wire for the solution golng us ¢ 7, we have the relation between §  and

Np/oz,
wbom \ﬁumn il at ripght-hund end ,'
= owqf 810 P ot left-haud end . s

» it will turn ovut that only the rvelation between 1 and  9p/dz  at the end
' ol the wire is needed to caleulate the totul current at the end of the wire,

at those times before diffusion cun occur over the entirve length of the wire.

e S e N i T e SRR L

At envly Clmes, Bquotion 5-53 indicates that ¢, will vary wore

-

Fike a power of the time thun exponentlally. lence It would be usceful to

Find homogencous solutions ¢ sueh that

P, ys0) =t (5-58)
‘ where o is o positive constant,  Such solutions are couveniently found
: by Lapluce transform of the time variable In Bquation 5-55, 1t Qs cusily
shown that the peneral solution, appropriate to the right-hand end

of the wire, in the Luplace domain is

V:i— 3

T
e A ol m as ome —ali

‘ Pls,y) = I(s)e V07, (5-59)

i where  F(s)  is an arbitrary function of the Laplace varviable s, This

F function is Fixed by Lquation 5-58, Aty = 0, (s) must be the Laplace !
{ . . N '
; transform of t, ‘
E 3 st n+l |
g [(s) = [r"o“‘ dto= /st (5-060)

; 0

Y

|

The Laplace transtform of 0p/dy  can be found by taking the derivative of

BEquation 5-50, Aty = 0,
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5y [ Jt £4s8) = n!/s . (5-61)

Comparing Equations 5-60 and 5-6! makes it clear that in the time domain

(L) ot -1/

; . (5-62)
y y=0 (n - 50!

Thus the relation between ¢ and 9Y/doz at the right-hand end, for power

law time dependence, is

N _ n!

' --——-—-i-—-‘— }JOO'/t Y. (5-63)
(Il - '2") .

At the left-hand end, o minus sign should be inserted in this equation.
Houre 5-3 contains u graph of the ratio of factoriuls that occurs in

Equation 5-63.

The time dependence of ¢2, Lquation 5-53, will rarely be purely
exponential or purely power law, llowever, the relation between ¢ and

dY/dz  1s not very scnsitive to the precise form of the time dependence,
. . . . st .

For example, the exponential funccion ¢ is tangent Lo varving power
laws at varyving times. Since

S o Sty (5-064)
and
(erst) e+ ’tl sty (5-65)

it is clear that at time t  the exponential is tangent to & power law with

n = st or s = n/t o, 15-60)

T in the end relation 5-57 for exponentials we make the replacement s = n/t,

we obtain the approximate power law result
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. The eresses plotted in Figure 5-3 are yn, which is to be coapared with the

| ratio of factorials of Lguation 5-63, It is seen that treating the

f’ expenentiul vase by power law fits at various times leads to only a smali
error,

b

L We shall write tie relation between ¢ and  O¢/0z s

{1

4 1ol , 8

N L=t A (1), ~ o (5-08)

5 Y Jo

7

b L : . .

1 where the plus sign is for the right-hand end, the minus =ign is for the
lc¢lt.  The formulace for A are

I3

A \‘ S, o for H o~ OSt l
1 i
(5-69) &

n

,..;-.x.-.,.;

FOR EARLY TINES

;
b
%‘ n! l"""""" ‘
# S e e YA for ~
i i v HUO,L For ¢2 t .
% (n - )1 5
E . Note that  1/N is approximately the distance diffused along the wire. .
t [od ] el ] . CAC ) “
E 5.8 SOLUTION OF THE TERUINATION CONDITION
% . .
2 At times surticiently cavly thut the diffusion distance 1/A s
: small compared with the length of the wire the contribution of @O, { he .
3 homogeneous solutior associated with the left-hand endg, to the Flux at the

right-hand 2nd ir small and vice versa for Wr' The solution of the fermina-

tion condition Equation 5-45 is then relatively simple.  MHaving cvaluoted

fquation 5-55 For the part uclar solution ¢ (t) at the right-nand end, we

g T P TV NPT -3~ SRS oL S SUR

+
find the power nft) appropriate for ciach value of 1. et wx'(t ) be !
the value of the right-hand homogencous solution, including an arbitrary i

X
constant multiplicer which is absorbed into Wr. We then consider the total F

i
solution 4




]
E
]
b
3
E
3
A
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1
Py —‘n—J‘}A

s
4 .
); t ¢ i (5-70) !
3 Gy = Q5 + W {(5-7
: The z-derivative of @T at the right-hand end is
Z—)¢T ’
'
e = G R 5-71
3z ifl w.r ’ ( J
where, from Lquation 5-50,
1 3 3
¢)7 = - (3(b7 > (5"1.,)
and, from Equation 5-68,
wl{ =N (5-73) ‘
The termination condition 5-44 then becomes
- By A= - g [hyr ] (5-74)
This equation can be solved for wr’ with the result
‘ <
]
6 - f) !
th = oy . (5-75 ]
v TVA + 0 by 5-75)
r
The {lux $T is then, from Equation 5-70, X
{
A+ . ) - i
{M': (Kjf?“)dH (right-hand cnd) (5-70) §
!
and the current into the termination is ]
!
3
ool t) , - |
Iy I.."l l‘ r_ 7= H
1 = o l lﬁ. (5 ) i
At the left-hand oend, A ~ -A and Gp 7 Thgs B0 that
i v - 2 3 o - !
S Ewrain dr (left-hand end) (5-78" !
CA - :
i

Tt would appear from Equation 5-78 thut éT could chanye sign

[y

at times swhen A Dbecomes less than o, or when the diffusion distance 170\ ‘
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3 exceeds the decay length 1/P of the driving electric field, No change

) of sign occurs because A approaches B at these times. Equations 5-53
g and 5-52 show that

A

] 2

S

i by 7 exp(r s (5-79)
& B

[

L

2 . . . Iy :
when B't/uOO >> 1, cr whea the diffusion distunce Vtﬂhou >> 1/f. Thus

at these times ¢, 1s approximately exponential in t with s & B“/uoo,

e

and from Lguation 5-69,

N (5-80)

pine

5 s

The factor A-j in Equation 5-78 becomes small as ¢2 becomes large

(exponentially), and the resuli for ¢T is not claosr,

in order to resolve the uncertainty, it is necessary to examine

Equation 5-78 more carcfully in the Lapiace domain, since ¢, is not exactly

&

cxponential in time. In the Laplace domain, the equation

Vigos - B
bp(3) = = 9y (8)
\Jhoas + {£

(5-81)

is correct provided ¢2(s) is properly evaluated. This can bo achieved

from the Laplace transform of Lquation 5-51, which 1s

2
od = pfe) < g 82
J¢2 = '(s) UOU ¢2 . (5-82) )

vhere F(s) is the lLaplace transform of the function

gy (1)
Flt) % e PPriE(e) (5-83)
The solution of lLqguation 5-82 is
:
0, ;
(1)7(5) = __———"R—“-'?— I:(S‘) ’ (5—8‘1)
- U.0s -~ A7
¢ :

and Equoation 5-31 becomes
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Note that the factor \/uocs - B, which tended to zero in the previous

analysis, has canceled out of the equation.

dp(s) =

F(s) . (5-85)

The inversion of Equation 5-85 to the time domain cav be done
approximately for those times at which the diffusion distance is larger
than 1/8, where Lquation 5-78 is insufficient. At these times \/uoos
can be neglected compared with £. In practical cases Ly is comparable
to B or larger, so that \/uoos cuan also be neglected compared with cg'
Then

UOG
4p(8) ~ g L)

which leads immediately to

0 gl(t)
o (t) ~ B P(t)e . (5-86)
2

The current at the left-hand end irc

I{t) = ¢ ¢T/L

~ E(L)/BR (5-87)

where RL is the load resistance at the left-hand end. According to Equation
5-49, &(t)/R is the integral of the electric field along the wire, or total
voltage. Most of the voltage drop occurs near the left-hund end. The current
is approximately egual to the voltage Jrop divided by the load resistance

in the time frame assumed in this paragraph.
At the right-Land end, Equation 5-76 contains no such cancellations,

This equation is correct until diffusion from the left-hand end can reach the

right-hand end.
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5.9 QUASISTATIC SOLUTION AT LATE TIMES

At late times the end effects generated at cach end can diffuse
to the ovher ena, and this interaction of the end ceffects must be tuken
into account. I': o this we return to the general equations for ¢,
Fquations 5-43 and 5-44, and go to the limit in which diffusion is rapid
compared with the time t., Since B varies more and morc slowly us time
increases, the term 9¢/9t in Equation 5-43 Dbecomes small compuared with other
terms, aud cun be neglecsted in first order. This procedure yiclds the
static solution uppropriute to the E and L at cach time. We therefore

need to solve the equation

)

< 9
Z)"%) “-YTP = - L'.O()‘lj , (5-88)
J%

where the quantity vy is defined by

Y o= \/uoon07L

2
ZWORWO 1/2
(-———f— . (5-89)

We again use the form of Lquation 5-19 for @, and chooese the origin ol the
z coordinate to be at the left-hand end of the wire. Let d  be the distance
From the fivebalt cdge to the facility, or leppth of wire exposcad to the

ficld L,
The general solution of Iquation 5-88 is
' Y - .Yz -
o= ~;9-»—; [—o P CJO e ] s (5-90)

where Cl and G, arce arbitrary constants which can be chosen to satisfy

the end conditions, Lguation 5-44. These end conditions are
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po- YC, + ¥Cy = Lol-1 + Gy o+ C,l

l (5-91)
I J .-Bd - ..'Yd. . "Yd‘ - . A..\—Bd N \-.Yd o M 1Yd
%‘ Pu Yo Ll + Y LZ = gr[ ¢ + Llc t LZL 7.
g These cquations can be solved for Cl and  C,, with the results
" e Yo . oy
Cp o= (B (e e’ = (Gp-v) (6B e™™ /b, )
‘ C, o= [(6 o me ™ L e - Y0 | 5-92
’;‘ n = (",Q..VY)()]_‘—[))L = ({'Q,-H)(J]‘"Y)L ] ’ / (""-"‘)
, _ o ‘Y(l o oo \—Yd
‘:. l—) - ('Y2+Y) ((J.l,+Y)(' - ((-Ql Y) (‘Jl‘ .Y)(* ¢ )
g
g Whon C1 nd Cz have been evaluated, the flux ¢ can be caleulated rom
g' Hquntion'S-QU, as a funetion of 2. The tluxes ¢9 and ¢r ut the left
§ and ripht-hand ends can be evatuated directly, with the results
f
3 1 0(%“ )
) . Y - l . \ ""vl~ - .

é ¢y = "?i“””ﬁ'l(V-Y)(ﬁp+Y3t(d - \ﬁ+Y)(Cy‘Y)U Ty 3Y(“y‘“)0 (LJ/“ y (5-03)
2 ’ (e - Y
’
R e Tl “yd i

¢, = ""‘f,““'——fl'(f’H'Y)(Cy""Y)(‘Y (=) (G -Y)e AU DI VAUNPRR SRR Y

, 2y , : ,

Note that the brackets in thesce cquations transform into cach other when
6y and f, are interchanpged and [ Is vepiaced by -3, as 0s reauired by
symineiry.,

The expressions derived above are fairvly complicated and the
results arce not casy to visnnlize. llowever, considerable simplification

occurs for g cose that is of practical Importance.  This case is

Bd => 1y yd L,y << bg v Lpoe (5-95)

. . . . -
When these conditions hold, terms cont.ining a factor o can be dropped

and the approximatioen
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vz oo
e V% w )y Yz , (5-90)
; can be made. Then ¢(z) can be showr to be
.
g :
: 1.0 (1 8x,) (d+x_~2)
: , QT -Bz ) r
i " =5 RN I b e ——— 5.0
: o(2) 5 [ ¢ TN x ] ) (5-97)
3 3 % v
* |
a where we have defined the Yextrapolation Jengths"
3
] = 1/ = 1/r . 5-08
f _ Xg = Moy x = 1y (5-408)
by
3 The boundary conditions (5-44) are equlvalent to the stotement that if ¢
is extrapolated with constant slope to a distance l/gr or l/cy heyond
i the ends of the wire, the extrapolated ¢ must vanish, Equation 5-97
\ satisfies this extrapolation condition approximately. At 2z = d + Xy th
: vanishes in the spproxlmation that c-Bd is negligible, At u = =X the
4 (%" ~
] extrapolated value of ¢ B2 4s 1w BXg, 80 that the bracket vanlshes
X Cexuctly, A osketeh of the geometricul relation of the exponential and Jinear '
: terms in the bracket is shown in Flgure 5-4, along with the shape of  fi(z),
7
; The value of the current at the rvight-hand end Is
i
L ( " +4 )),' 1 o+ ",’ b
L(d) = OLd) o _2mge Llj 1Q.)~§“ = ,__l‘):g . (5-00) \
' . 2 ‘ X, o+ 3 S Hx,+) ' e ‘
| " QntL”)Ll 0 ‘r bRL 3¢ Xy \;) '
{
where Rl b thoe termination vesistance of the righi-hand end.  Noto apain ;
that &/ s the total voltage appliai along the wire. !
5.10 APPLICATION OF FORMULAE TO EXAMPLE i
]
{
;
The approximate theory developed above ds applied in this section 1

to the exumple defined in this chapter, The parameters of this oxample are,

in sunmary:
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Figure 5-4. Sketch showing relation of exponential and
Tinear terms in Equation 5-97, extrapolation
lengths and flux ¢(z).

wire resistunce = R = 0.3 ohms/km;
wi \

T
pground conductivity = o = 0y = 107" mho/m ;

ground permittlvity = ¢ = 10

w)

radius of wire = a, = 0,01 m ; >(5~1u0)

-

resistance, fucllity to distant ground = RF = 10 ohms;

distance from burst polnt to facllity = 1000 m;
driving elecetric field given by Figure 6-2

From these Input pacameters the derived purameters caleulated at the indivated
times are listed in the Table 5-101, Tn this table, f is calculated from

the slope of the curves in Figure 5-2, ‘The skin depth 61 comes from
Egquation 4-81, which takes into account approximetely the frequency vaviation
of o wd © Tfor typical soils, [Lquation 5-17 determines 8,. The smaller
of Sl and 62 is usoed in lquation 5-20 to determine the inductance L.

The resistunce be between the fircball and distant ground comes {rom
Bquatiorn 5-39, with the Tireball vadiuz ey read off Figure 5-2. The
Togarithmic derivatives Gy and ¢ come from Lquation 5-45, and the

i

extrapolation lengths Xy ane x, come frow Bquation 5-98,
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9 ;
) ]
I 1
- -5 -d -3 .2 *
t, sec 1070 1077 107 107> 10
10° ¢, wd 0.7 1.2 3.4 5.4 7.9 \
Sps 24,3 1.3 307 990 5160 \
S, om 1600 933 329 07 142
an (-2 7.80 9.12 10. 33 9,04 9.50
3 N
i 2
| I
: IR o) o) [§]8 4 ‘?
3 L, Ju1/m 1,50 1.82 2,07 1,99 1.9l >(:s-1m) |
3
: Ry, oS 20 10 0.3 2.5 1.0 !
] : !
j 3 “I » 3’ [0 s
) 10 C‘,, m 10,1 0.9 5.84 1.58 0,00 i
& |
1 S -
L 10” o n ! a1 6,0 Gl 6.3 0.0 i
) |
4 Ko M H 145 201 033 1520 / 1

j X, m 124 145 14 108 152

%
e
'- |
4 I
h e . . N
X he next step s to caleulate the cexponential avrgument:s ul(l) and k
| (), delined by Byuations 5-46 and 5-520 1t is clour from Bquations 5-17,
i 5-48 and 5-533 that these arpuments need to be eanleulated acceurately only when {
(. , . . -0, ;
E they arve not small comparad with unity, 1 we take o= 2,0 x 10701/ /m, o
! - ) , , .
; vitlue appropriate to the period 10 1 to 10 7 sceond, Equittion 5-40 gives !
;. i
q . - 10
). 5U(t) “~ N0t i
] ] , (5-102) !
F 0,10 ot s 10T, LS ot t o= 1007 see N
i ' . _ _ . oo i
B Pguntaon 5-1020 is theretore an adeguate approximation up to 167 see,  From
! dquation 5-52 it wan be seen that  w,(t)  reaches the value unity
approximately when E
, |
Bt 2 -0, 2 . i
LA SC) G S TN O VA KIS NI I S N O B4 L (5-103) ‘
RS 6 )
0 v
A
i
|
i)
Y
|
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With B read from the Table 5-101, trial and error lcads to t ¢~ Jl’!_'1

second as the time when g, nears unity. A simple formul:x representing

5

ro

et . . . . ~ -3 .
7 within 20 percent in the time interval from 4 %X 0O 7 to L0 7 scecond s

, .
S TRRV L

from which the result follows,

0 (L) ¥ 0,55 (et . 5.104)

10

In erder to caleuliate the carly-time current at the vipght. hand end
ol the wire, ¢d,(t) must next be evaluated from Eyuation §-53, 'The & in
that cquation is to be vead Irom Figure 5-2 at 1 kilometer from the burst

point,  The points rvead oft arve graphed In Fipuro 5-5 and o smooth curve is

deawn through them,  This curve is thoen multiplicd by exp(y,~p,), and the

]
result is praphed, and integrated numerically, yicelding the intepral
curve shown,  Finalley this curve is multiplied by eoxp(p,) to yiehd ¢, (),
ALL of these operations can be done gruphically and with the ald of a pecket

calewlator in o half hour nr so,

The next o step is to apply the end condicion, quation 5-70, to
obtain +T. To dotermine the foparithmic derivative A we use the power
Liw approximat ton in Bgquation 5-09,  From the slope of o in Fipure o0,
the values ol the power  nouare Jdetermined; A s then c:tfv\(lutawl f1rom
Frpare 5-3 and Bguation 5-09,  Next, the {actor (A+H)/(A+nry is cevaluated
and ¢T is devermined From Vguation 5-76.  PFinally, the corrent | s

caleutated from Lquation 5-77,  The mmbors obtained in these operations

a1es
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Quantities in the carly time solution.

Figure 5.5,
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» rw———— vr eliaiiio e d e reerrer e ,
Fw; .E . .
x

!
;1.
i
I
il
b
L
:
|
: |
- -5 - -
t, sec 10°¢ 1075 1074 3 % 1074 \
: n 0.65 0,65 1.0 5.0 "
n!/(n-1/2)! 0.96 0.96 1.12 1.8
A, w 0.034 0.0107 0.0040 0.0037 >(5-105)
P W
- (A+B)/ (A+,) 0.82 0.68 0,73 0.81
: wT, Vo oeosee/m 0,016 0.062 0.27 3,04
" .
1, Aups toz > 10t saa k1wt a0 x 10® 1,43 x 109/
)
' The early-time current computod here is graphed in Figure 5-0, It
: bepins to rlse exponentially, due to diffusion along the wire, at about 1()'4
g second, us expocted,
!
e The late-time, or quasistatic approximation for the current Is
g glven by Equation 5-99. In that cquatlion, & is tho electric ficld at the 9
H fiveball end of the wire, and d 1s the dlstance from the fireball odpe to j
i the fucillity, which Is read from Flpure $-2,  All of the other parameters 3
: ; . - 1
! In Bquation 5-99 have been caleulated above,  The numbers are: i
% t, soc¢ 1o~ 1073 1074 y
;I 4 ; . _3 1
{ ¢, V/m L7 % 10 8.8 x 10 0.5 x 10 !
“. (5-100) .
l‘ d, m 960 00 745
(J r- v
l L, Amps 197 % 107 7.9 x 107 5.0 x 107
3 \
' |
: This quasistatic current is also graphed in Figure 5-0, where it !
I
is seen that the quosistotic current is less than the carvly-time (inductively ,
Limited) current after t = 1.3 l()-/l scconds, at about the same time i
that the ecarlv-time current becomes oxponentiol, This resulbt may scem z
surprising,  The time to go into the exponential phase is the time to Jdif- %
ffuse a distance  1/1 - 300 meters (ot ln*d second), and this time is %
b
]
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t Rfuoo/Bz ~2 10-4 second . (5-107)
The time to diffuse a distance d 1is

-3
t = pOOd & 10 second , (5-108)

so that one might have expected the quasistatic phase to start only at 1()_3

second. lowever, because the driving field is much larger at the left-hand
end, only a small part of the left-hand end effect needs to diffuse to the

right-hand end to make a noticeable effect there,

The actual current is estimated by joining the early-time and
quasistatic currents smoothly, as indicated by the dashed curve in Figure
5-6. Note, however, that in the decade between 10_4 and 10—3 second,
where the peak current occurs, the quasistutic approximation has nut been
shown to be reliable. A bhetter treatment of the diffusion of the left-hand

end cffect 1s needed. Such a treatment could be devised.

Note that the enerpy delivered into the assumed 1U-ohm leoad at the
facility is of the order of 107 Joules. This explains the extensive
clectrical damage that occurred in bunkers that had long wires going into

them in the carly days of nuclear testing.
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CHAPTER 6
COUPLING TO OVERHEAD LINES

6.1 INTRODUCT ION

? Ground-based systems often employ overhead lines for power instead

of buried lines as they are substantially cheuaper to build than buried

? lines. These lincs are not intended to operate after un attack, as they arc

f rclatively easily damaged by air blast. llowever, their presence can result in ;
: large EMP signals which are generated along their length and transmitted x
3 to cquipment which does have a post-attack survivability requirement, h
{ Overhead power lines often consist of a set of scveral wires carrying power F
? and a ncutral wire elevated above the rest which is periodically grounded i
ﬂ for protection against lightning—for simplicity in this scction we will r
‘ discuss coupling to a single line located at a height of 10 meters above ﬂ
( the ground. @

e gt

Two featurcs complicate the theory of coupling to overhcad lines

—_—

compared to buricd lines.

1. The conductivity of the medium surrounding the wire varies

——
e e

as a function of both time and distance from the burst,

0]

The boundaries of the wire and the ground-air interface do

not it as coordinate surtaces in a system wherce the llelmhoits

e

equation

o,

(V2+k2)¢ = (0 (6-1)

is separable. The Lapluace equation in the two transverse

Sl eV an gag
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dimensions (where the 7 axis is parallel t¢ the wire)

"2 2

9 9 .
(“5* * *“?:)4’ =0 (6-2)
\ox” ay™

is separable in bipolar coordiunates and we will exploit
this feature in deriving transmission line equations suitable

for late-time calculations.

The discussion of current on the overhead line system breaks
naturally inte two physical regimes—the first of these encomp.asser early
times when the skin depth in the air is less than the height of the wire over
the ground. In this regime we can calculate the electromagnetic fields
about the wire 1n cylindrical coordinates centered on the wire axis and
ignore the effects of the ground. This regime is further subdivided into
two phases depending on whether the displacement current is greater than
the conduction current in the air or vice-versa. In analogy to the discus-
sion of surface-burst EMP, we will call the first of thesc the wave phuse
and the second the early diffusica phase. 1In the sccend regime, which we
will cail the late-diffusion pbase, the skin depth in the vir is iarger than
the height of the line and it i= possible to derive a set of transmission line
equations for the curreit on the overheud line. These threc phases will

be treated in scparate sections ot this chapter.

6.2 WAVE PHASE

In this scction we derive the current on the overhead wire at carly
times when the displacement current is much greater than the conduction
current in the air. Neglecting the fiecld dependence of the air conductivity,
we can scparate the electromagnetic fields into incident and scattered
parts. For exampie the clectric field parallel to the wire, oriented for

convenience along the < axis, is

. e ""7
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E;otai - E:nc . E:cattered _ (6-3)

The incident field is calculated without including the presence ot the wire
(but including the effect of the air-ground interface). The scattered field
obeys homogenous Maxwell's equatiouns (without the Compton current). The
effect of the wire 1s incorporated by setting the sum of the scatteved and
incident e¢lectric tields (the total field) equal to zerco at the surface of
the wire. We will only be concerned with the response of the wire to that
portion of the incident electric fieid parallel to the wire axis; the
portion which lics in the plane perpendicular to the wire axis results in

a polarization of the wire across its width which is inconsequential for
system survivability, We will also ignore the variation in the parallel
component of the incident electric f:ield ucross the wire as the width of
the wire i1s much smaller than the spatial variation of this field. 1In the

wave phase, where

(8]

= > z,0, (6-4)

[N

Fquations 1-17 and 1-18 for the scattered field around the wire are

g_*‘_vxl* (6-5)
>

1 Ji

L T‘c = eV x B, (6-0)

The cempeonent of the incident electric field prrallel to the wire st a height

1O meters above the ground varies at corly times as

.inc a(t-zcosx/c)

L = cosxﬁo(z)c s (6-7)

where y is the angle between the radial from the ducst and the cabkle, as
shown in Figurc 4-1. Ey(z) varies slowly as a function oi distance along
the line--the variation results from actenuation of gammas and the l/r2

decrease from a point source. 1f we assume that the scattered fields have

the same variation in z and t  and ignore the siow variation of “O in
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ki
5 z, Maxwell's equations become
E Qacosy aEz
% aBy = AR+ (6-8)
I
} a
‘ ° Er = ’lLObXBe ’ (6-9)
% 9— o) = C— -d—. -
¢ c LZ PP rBe . (6-10)
;_ Eliminating Er and BO we arrive at the following equation for RZ
.
i a’sin 1y O, 4
: QAN XE == 2, (6-11)
. 2 Z T 0 T
i ¢
E for which the solution vanishing at large r is
- .. . (rasii
E i~ k0(-»2;lg , (6-12)
é where KO is 1 modified (hyperbolic) Bessel function of the second kind,
f Since £ = - B¢ at v o=y
E Z pA
% o= - piNC Ko (rasiny/) (6-13)
$ ‘2 ‘z Ko(uusinx/c) v
‘ As KO behaves for large argument as
, /1r -¢ .

we associate the distance

C .
§ = ST (6-15)

with a skin depth about the wire. The magnetic field can be obtained from

. al
a%insz = b
$ LY oy
= + (_x. o;jn Finc _l.(_]:.g.lff"_l_n_x_{_c_)_
¢ X‘z K)(ausinx/c) ’
149




?
k
&
i
i The current on the wire is given by
E 21
g a
I = ——B,(a) . (6-17)
7 U )
. 0
) For the usual case where
)
»l.[‘ n << G s (6-18)
»
o we can use the small argument limits of the Bessel functions
:
5 { 3 [ - IE_. = ¢ ’ (
: K, (&) n , Y = 1.781 , (6-19)
: 0 2
K
L , 1 o
, K, (B) > =, (6-20)
: 1 3
s0
’ ine
i L
. S 'z , :
[ 8 e fgre e (6-21) k
w2 3 2
0" sin®y  xn (»‘“ﬂ*“- ¢
' Yaasiny ~
]
lhis equation is similur to the cquat ion governing the rise in F
g ' current in an inductor where ?
] 91 ir '
Ie 4' ]C .
‘ L= 1 -22
‘ 5t = Mz (6-22) Y
s
) .
2 with i
L o
i o . 2 2 }a
. c b
L= 52 sin?y an (5] | 6-23 :
21 X A0 \Yaasiny (6-23) i
l
, , , 2 i
The only unusual term in the equation for the inductance is the sin®y i
. . |
which is do to the buildup of propagnting waves ncar the wire. 'g
Cy
|
. . . . }
We new return to the examination of our assumption that the }
clectromagnetic fields near the wire have the same spatial and temporal ’?
variation as the locul incident clectric ficld. This assumption will be o
invalid when x is sufficiently smazll that the variation of UD(:) Lbecomes ‘
150
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important and currents at a given position are strongly influenced by the

stronger electric ficlds nearcr the source. Consider the geometry of

o e WIS

Figure 6-1., The time difference of arrival between currents generated at

the observer locection 0 und currents generated at € and propagating to

,

: 0 is

b A

E At = i;—(l-cosx) , (6-24)
ﬁ $0 that whep the conductavity is small and there is little attenustion of
}

propagating flelds near the wire, we can ignore the variation of EO in z

Rac-aie

as long as

C 1 Bﬁ()
2 (1-cosy) >> = s, (6-25)
¢ l;o 9z

everywhere along the line, When the burst is sufficiently clese to the line

that ecither this condition or the condition that the skin depth is smaller

than the height of the line

Figure 6-i. Geometl:y used in calculation of Timits of
validity of Equation 6-21.
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('-;5—17&2 h, (6-26)

AT

is violated, the situation becomes substantially more complicated, The

case of o short wire high abuve the ground with the burst locuted on the é
wire axis is calculuated in Reference 6-1; for a long wire with the burst f
near the wire.axis, the presence of the finite ground conductivity becomes ;
importan® and this case has not been caleulated, ﬁ
1 }=
ﬁ 6.3 EARLY DIFFUSION PHASE i
| {
4 ‘4
& At most locations close to the burst, the rising conductivity will .
2 cause the conduction cuvrent to rise abuve the displasement curront., In !
; this section, wo will calculate the wire current when
& w ﬁ
Z()O > o (6-27)
f following the derivation of Reference 6-2, The current on the wire generated
f during this phase should simply be added to the current on the wire at the
% end of the wave phase as long as the skin depth is smaller than the wave
phase skin depth (Equation 6-15)., lgnoring the dispilacement current, and
assuming that the fields vary only as a function of retarded time from the
burst
t' = t - zcosyx/c . (6-23)
Maxweli's equations become
; cosy My Oy
T BO ara s + 57 (6-29)
BBO
Z()()'l = COS8X TET (6-30)
20k, = e thy (6-31)
[N
i
'
i
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which can be combined into a single equation for By

. 2 9B
J cos”x 0) _ ¢ 9 1 9
't'@r”%x Mf‘zw"?fhr%‘ (6-32)

Dropping the sccond term in parenthesis on thz left-huand side of (6-32) by
virtue of (6-27), uzinp the fact thot c/ZO = l/'u0 and expanding the right-

hand side we obtedin

2
0B oB ! oB
0 1L 770 0 ‘
T YR Tt WY aE (6-33)
or r
Chintging to the senled variables
R=1v/a, (6-34)
t!
) 1 (‘ dt'”
veoa ) awy (0-35)
Lot ]
O tO
whore t6 is the time at the end of the wave phase, we heve
D78, ) 1‘ano ) By aB, (6-36)
o e Ml vl s
aR2 R IR R2 ot
subject to the boundury conditions,
L by = F(1) = -u.ac(t")L 1B (-37"
R (RBOJ -] = F(r) = UOJO(L )Linc(t ), (6-37)
lim BO = ()
R > o (6-38)

We first determine the Green's function G(R,rt-1') which is the magnetic
ficld resulting from an impulse in ¥ at T = t', Since Euuation 6-30
possesses translutional invariance in T, we exploit this fact by writing

G as a Fourier transform,

R Ly A B e L R o T R

G Tt e T

L mr | il
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]
1
. |
: G(R,t) = fG(R,w)e“*’Tdm , (6-39) |
f i)
) and the impulse function can be written 3
E{? NOK ElTr o Wy (6-40)
& |
t The equation for G(R,w) is 1
| :
; 2% . 196 (1 y |
FJ — + R5R " ('—2- + iw)CG = 0, (6-41)

oR R J

. which has the solution

L G(R,0) = G @) (VTOR) + 6, @)K, (VTHR) (6-42) ‘
B, ‘ B
i
‘ whero 1'1 and K] are wodified Bessel functions of the first and sccond .

kinds, In the Fourier domain, the boundary conditions on G imply

o
!
. . - . 1 . 1
J G, T, (YViw) - G, (K, (Viw) = - - R (6-43) !

' Lim G ()T, (Y 1wR) + G, (K, (Y 1wR) = O , (6-44)

g.' R > w 1 l 2 1
The asymptotic limits ol the Bessel functions for large arguments are
1 (2) ~ S larg 2| < 3, (6-45)
1 ; 2
2nz
k,(z) ~ L (‘ml ,:ll‘u Z, < 3 (6-40)
] \}27 : 2’
50 if we choose the arpument of ¥Viw  su that

arp (Vv iw) = - g— w< 0, (6-47) -
arp(VYiw) = + i‘l w > 0 {t.-48) !
1
K
!
i
i
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(which will keep the integand on the same shect when we truansform buck to

1) G1 must vanish and

| 1 .
G,(w) = - (6-49)
2 2n VIG K, (VI)

Transforming back to the v domain

GIR . 1 dw l\1(-' W R e
Ry1) = e [ Em et S e (6-50)
< Viw !<()(VT(E)

-
The integrution can be transformed into one over positive veal values by
deforming the contour in the complex w  plane as shown in Figure 6-2, The
integrand has no singularities cxcept o branch point at the orvipin {rom
which we may run the branch cut along the + dw axis. As the Integrond
vanishes cxponentially for 1 > 0, R > 1 at large positive Imapinary o,
we may ignore the contribution fyom the axis Cz and “5' Neir the origin,

the integrand behaves as
fw

ﬂ’f”"" .—."‘.u
C,
/7 A CG
/ V4
C3 14 %5
[})

Figure G-2. TIntegration path for Green's function.
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cij 1
U oo =T (6-51)
" on (y Vim)
so that we may ignore the contribution from C‘, and the Green's function
is now
L dw  dor S (\FHUI‘
(;(R,'l) = -2—,? ":‘* - Q7 et e bk ) ((7“52)
. 1 K (V.mﬁ
(,.,)4'(.,.’ 0

10 . .
setting w = pe this cun be written

K. (1VP R K (-1 VDR
GER.T) = zﬁj AR TP 1 GYP R o o (0-5%)
Ll Ky (1Y) Ky (-1 ¥T)

lixprossing the modified Bessel functions ln terms of Hankel functions of rool

avpument s, this is equal to

[(8.9] l ‘ '2‘ ‘
Lo dp - “1( JvE T o e
HR,T) = et Foo .,!_"_,_ ] ol e

! s ngl (V) n( )(V")J
Further simplification is possible if we look at 1= 1 which will glve us

the magnetic field at the surface of the wire, Using the Wronskian

II“)(H)H(Z)( 1) - ll(()“(z)llm(z) = - ?‘é ) (6-55)
we obtain
..'”)
(6-506)

1y = 2 [0
RO Zf" n“)(v—)u“’w—)
0

Setting x = Yo end expressing the Hankel functions in terms of ordinary

Bessel functions

w 2
=TX
G(1,1) = -%fil;.- et (6-57)
n ) (x) + Y. (x)
; 0
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which is suitable for machine computation. It is found that a fit to G(1,R)

N “l L2 . '
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which 18 accurate to within 2 percent for all T is

: 1
; v = . 2\ * e L e
GOL,t) = 0.425 \fm T 1.3,

(6-58)
. Int + 5.1¢ s
G(1,7) = - SUNSEEE L > 1.3,
it o+ K04t + 10,23
The mugnetic ficld iy, in terms of G,
BO(R,T) =‘]'U(R,T-T')F(T')dT' , {0-50N
Yo
s0 that the current on the wire, obtuined {rom
1 = %ﬁﬁ‘u (a,t"y (6-6M0)
My 0
i
. ' b
is plven by {
v ;
,
1= 2ua” ] Gl,o-1") (T')Hilc(i')dw' . (6-61) i
AR
Yo 3
4
We have made a comparison between this accurate culculation and two ’
cimplified time-dependent inductance mogels where we merely set é
Rl
o1(t) f
L(t) === L, t - !
(t) “ogrd = by () (6-62) ;
Tfor the first model and
LT = b, (1) (6-03)
gt o ‘ine ’ '

as the second model. The second medel is analogous to that used in Chapter 4

(Equation 4-80) und Chapter & (ljuation 5-33) in that, in the absence of “inc'

the current on the wirce falls as the magnetic flux ¢ diffuses radially away

from the wire., (This c¢ffect Is absent in the first model.) The simple,
approximate forms of the air conductivity and the incident clectric field usad

in the comparison iarc
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5 ecxt
Einc = 1.57 x 107 - e
L+ ¢ 7
eat
J = 1,57 —Teoee mho/m
Bt
1 +¢
where
a =2 x 10° sect ,
0 -1

B = 2.4 X 10 scc s

so that the peak clectric field is 1()S volts/m and the peak conductivity is

1 who/m, ‘The inductance used in the compirison is

].i()

/ T
I, = T W \V wma‘/d) t < tpk s

v/m

o Mo
Pk

where tpk is the time at which the conductivity peaks.

logarithm for t < tok is the ratio ot the skin depth in the air to the

1

wire radius for an exponentially rising conductivicy,

2 \ S .
for t° tpk

as defined by the substitution (6-35) which gave risc to the dimensionless
T in the Green's funetion, The second term in this logarithm ensures

continuity off I, at tpk' The comparison shown” in Figure
the importance of includiug the reduction in the current dic to the diffusion of

mognetic flux away {vom the wire. (We have terminated the curves in ligure

0-3 when the =kin depth equals 10 meters.)
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L= %%-Qn .j~ dt o - >
' o(t)a” nUo(tpk)au“

is the square of the ratio of the skin depth to

inside the

the logarithm

the wire radius

emphasizes
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Figure 6-3. Comparison between Green's function and
simple models for early diffusion phase.
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At late times when the skin depth becomes larger than the wave
phase skin depth the wave phase current contribution to the total current
should be decreused according to

I ) =19 1Y

L 6-66
wave wave ’ ( )

0 . . 0 .
where Iwave is the current at the end of the wave phase and L7 is the

inductance calculated with the wave phase skin depth.

6.4 LATE DIFFUSION PHASE

In this section we will develop a model {for the late-time portion of
the diffusion phase when the skin depth in the oir is greater than the height
of the overhead line. Where the last two sections of this chapter have dealt
with local phenomena where the current on the line was only a function of the
time histories of the incident clectric field and conductivity at that pouint,
the current on the line at a given point in the late diffusion phase involves
the time historics of the conductivity and incident field at other locutions
on the line. We will assume a perfectly conducting ground in this section—
the effects of finite ground conductivity on low-frequency signals on overhead

lines was first investiguted by J. R. Carson in 1920 nad is reviewed in Sunde's

text (Reference 6-3).  The features of his theory which are relevant to us are
the two modifications to the inductance of an overhead line which result from
finite soil conductivity—the first of those is thaco the inductance is increasoed
by the skin depth in the ground. This wodification is less than a fuctor of
two change because the ratio of the line radius *o twice the heigit is less
than the ratio of twice the height to the skin depth.  (rhe reason we use
twice the heipght will be apparent shortly.) The second modification is that
there 1s a series resistance which results from the dififusion of energy into
the ground. At a tume of 1()”/l scconds, this scries resistunce is less than
]()_3 olms/m and valls as 1/t at later times. With this valuc., the series
resistance of the line is usually much less thun the termination resistance

represented by facilities (as in Chapter 5) if the burst to facility distance
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is less than a few kilometers. If it is not, numerical solutions o the
transmission line equations wit the «ffects of finite ground conductivity

may be performed.

The transmission line equations are derived by evaluating two
sets of integrals of Maxwell's cquations. Applying Stoke's theorem to (1-17)

for the scattered ficlds, we obtain
>
~ = . a0 ——. -R
‘{L ds Jr da SPOE 16 67)
where _¢ ds is the path enclosing the surface a.

I+ we apply this to the path shown in Figure 6-1 and designate

'/;Eds = V(z+862/2) , (6~-63)
/éuds = - EinCGz s (6-69)
G _ - )
2
BT ®3 ]
—ath
- 4 J
h &
Sz

Fiqure 5-4. integrativn path for derivation of
first transmission line equation.
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j;Eds = - V(z2-8z/2) , 16~70)
-
hf% « da = Luléz s (6-71)

so that V 1is the voltage between the line and ground and this defines the
inductance LO. jZEds is zerc as the scattieved field vanishes at the

surface ot the ground. As &z approaches zero

* 2 - Vv -8z / .8._v fG-"7

V(z+82/2) - V(z-62/2) I 62 = (6-72)
aild we obtain the transmission line equation

, ol v _ .

bo et oz T Biac (6-73)

The second transmission line cquation is derived by applying Stokes' thcorem

to (1-18), neglecting the uisplacement current

ZOO {[z Coda o= cfds . _Ii . (6-74)

-

U=ing the path shown in Fipure 6-5, we have

(S 2 \

Figure 6-5. TIntegration path for the derivation of
second transmission line equation.
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—Z—C—f—ﬁ « ds = - I(z+82/2) , (6-75)
0

1
¢ [, _ ooy
z—‘! B * ds = I(2z2-8z/2) , (6-76)
0

2
ofﬁ da = 820V (6-77)

wherc we have used (1-19) in (6-75) and (6-76) and (6-77) defines G. These
and (6-74) provide the second transmission line equation

Ll (6-78)

If the skin depth in the air and the scale length over which variations in
I and V occur along =z are much larger than the height of the wire then
the derivatives with respect to x and y are much larger than those with
respect to 7 and ¢t and we may make use of two-dimensional clectrostatic
and magnetostatic models to determine L, and G. The electric field is

0
defined as the gradient of a scalar potential

L= -9, (6-79)

(when the air conductivity is uniform in the plane perpendicular to the z
ux1s) and the magnetic field as the curl of the =z component of u vecteor

potential,

B=VxA | (6-80}

The requirements that ¥ tangential to conductors and B perpendicular to
conductors vanish ar~ set if ¢ and AZ ave constant on each cenducting

surface. In the air
V% = VA = 0, (b-81)

wherr the Laplacians are in the two dimensions perpendicular to =z, Tihese
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conditions can be met for o wire of radius a loecated a height h

ground plane by using bipolar coovdinates (sece Figurc 6¢-0)} (Referencc ¢-4),

The transformation to bipolar coordinates is givan by

h'sinh§
coshé + cosO

‘h'sin0
coshf + cos0

and Laplace's equation becomes

2 2 2 /.2
%% , 3°¢ . (coshE+cos0) (o ¢ o
3 AT .

32¢
= =~ + 2‘ =
3x~ 9y hte 1Y

The line £ =0 1is x =0, § = &O is a circle centered at

X

n
=
il
=
[}
c
ct
=
el

o Y0
with radius
a = ht' ¢csch £
L ' ¢sch "

The solution to our clectrostatics problem is

From (6-71) and {6-0&)

Lyl = Cabg
PR
| LJEO )
The norma) derivative of ¢ on E“ i
16"

above a

(6-82)

(6-83)

(6-84)

(6-85)

(0-80)
i
!
,‘?\l

(6-87) 3
¢
§

(G-88) 3
%
4

i

Y
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-
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h
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Figure 6-6. Coordinate system used for calculation of
3 inductance and conductance terms in trans-
4 mission line equations.
g
: coshf . + cos0
’ ) ”0 .
i S A ¢ -89
on h! 1° (6-89)
k:‘ N . ~ . . [N ”
- and the normal derivative of AZ is the sume with €, replaced by €,
GV can be found by integrating this around the wirc
21
. J oh'd0
GV = - | +— e
an cosh&o + cosl
0 (6-90)
= 4+ 3ﬂ0Cl N
so that
. 21na
G = 552
rJ
0 (6-91)
- c<ho__
C()sll']'(lx/zl)
A similar development of L” yiolds
L, = i(l r‘,osh'l(h/n) . (6-82)
0 2w
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if h/a is large, we can use

Ji -
cosh™ (h/a) > tn (2 . (6-93)
§
? The two transmission line equations may be combined to obtain
y 81 5 191 _ _
g Ly 5%~ 32 ¢ 97 = Bine - (6-94)

We will assume a simple form for the latc-time shunt conductance, that it is

separable in space and time and decreases exponentially in distance

G = f(t)e 2 , (6-95)

and we will examine an infinite line running from -« to +» in 2z.

- To determine the Green's function for the current on the line, we

examine the current which results from an incident electric field of the

3 form

? Eic = d(z—zo)é(t—to) R (6-96)
4 or

] ey 3% 3 oz G

t( Lnf(t) Pra R f(t)S(z-zO)(‘S(t-tO) , (6-97)

This cquation may be simplified by the substitution

du’ <
T o= qu‘r'i*.f—s‘j » (6-98)

{6-99)

N S
T Of(t) 51
. T

blt-ty) = 3{ $(1-1)

(6-100)
L
= iy Ty
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Equation 6-97 becomes

99 9 az 99 _ , _
LO 35T T 5% e "8z ° 6(Z-MO)6(T-TO) , (6-101)

which is invariant under twranslations in T, so that a frequency domain
technique such as a Laplace transform is a useful technique. The Laplace

transferm of Equation 6-101 is

3 uz 9
(SI..O - 55 @ 5.2_)5’ = 6(2-30) , (6-102)

where g(z,s) is the Laplace transform of @(z,t). The last equation can be

reduced to a variation of Bessel's equation by the substitution

-0z/2

y = e s (6-103)
él_i - (6-104)
and it becomes, for z # 20
"2 4sL. .
298 ag 0 z
A L N T 6-105
) 32 Y 3y 5= Y B (6-105)

The solution (in terms of z) of this is, from Reference 6-5,

B ~az/2 (2 - -az/2
g o= Clc, ll(fi Vbllo e )
(6-106)
-u3/2 2 —— -/
*Gye k(& VL, )
where Il and K1 are modi¥ied Bessel functions. We now need to determine
the values of Lﬁ and C2 to usc for z 2 2y to produce the discontinuity

in the spatial derivative of g and satisfy physical boundary conditions
as z >« As oz - -o the argument of the modified Bessel functions

become large. 11 ¥ is the argument, the Bessel functions behave as
£ g

p]
i
H
H
"
i
i




i

-

A
ks,

TRy Yy

=2t

A e 1 4 R

_—

, (6-107)

l\]_ ‘\l T o s (6-107%)
for large ¥ so we use the solution that causes smull currents for = -» - o,
or
o ~az/2 g2 ~az/2 .
v = (e (= VST ¢ ) -199
L. 5 kJ S Vs o © ; (6-109)
for z < 2, As 2 -~ + e, the argument of the modified Bessel functions '
becomes small, and they behave as .
'y
.
. by
IJ'. > % , (6-110) |
A
K, > L (6-111) ,
X |
where x is again the argument. At the present point in the derivation, we )
A
have no a priori justification for choosing the combination of ¢, and C, '
i “ .
for = > L Ultimately, we will fiud that the choice is determined by the |
termination resistance at large z. For the present, we set g for z o o i
equal to
.o~az/2 2 ~az/2 '
g = Coe Z (—V's'l, ° /) , (6-112)
1 1 \ee 0 :
and, after transforming back to the time domain, we will find that this cho.ce
is appropriate for an infinite termination resistance at large =z, We will
then determine the modification necessury for finite termination resistances,
which will involve a term proportional to K]. The solution of Lyuation 6-102
at - = 2y cun be determined by making the first derivative of ¢ discontinuous
at that point so that
el = all (6-113)
R g
0 0
A
i
4
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3 5 v ~0z
;. & b< _ 0 . .
Tl sl e U (6-114)
& .
] 0 “ 70

The devivatives of ¢ ore casily found with the use of the relations

and the solutions for g and g which satisfy Equation ¢-102 arc

d » :

I X 0T = X 0a (6~115)

] d . - wv o

; o DRLOOT = = XEGa (6-116)

i to be

iﬂz = - ¢, Vs ¢ %% (E Vsl e-uz/Z) (6-117)

;. dz ‘177N o\a MU '

; "

: < —— 02, (2 = -02/2

i = Gy VT o (2 VET T e ), (6-118)

{

:

. Y Ky (X1, (XD 0L/ 2 (6-119)
1” = - v " - B g ’ L §

7 sy Ry T () + Ky (xd 1y (xp) ' 4
3 . £y
| I B0 L) o5/ 2 (6-120) H
* <N KX TlXg) * R Xg) 1y (Xy) f
whero i

2 g -uz/2 , i

X =5 VSLO ¢ / . (6-121)

AR a2t

This can be simplified by using *he Wronskian

K GO L00 + F001 (x) = /X, (6-122

and the notation

o ‘m&wu—.u»W_...-...;..“w-««-.,.‘a.“-_.y«..“ .
v % ORI

1(':>z(\ e, =z Zo T2y
Af < 4..() u>: 0 ., =

so that

‘&
" LG AR a0 giraod i KA gl piret o ot RO
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o e i e e ikt i s - ) "g!

?«,
|
; ~a(z+2,)/2 -0z _/2 -~az /2 ;&
: =2 0 2 Y < _Zv i > i
2 g =ge Kl(a sLO e )Il(a' sk, e ). %
? (6-123) ;
. i
¢ It is possible to find the inverse Laplace transform of this function using it
P i
5 the tabuluated pair (Reference 6-6). 1
- i
y» ~ !
ﬁﬂ Y - K (dl/z 1/4 1/281/2)Iv(al/251/2_b1/251/2) , (6-124) i
b g
" }
)» CHiw |
/ 1 q i
: f = 2———{ f(b) 5 }
).‘_ ) I’
! (6-125) |
3 . 1 -(atb)/2t
\ BT L, ()
W
) . . . .
f The inverse transform of g is, substituting back to the time t as the
4 .
x‘ variable,
@ ~a(z+z,)/2 . t
f G = —1— -e—-—-——0 exps- i)_‘(e--dz_w az(’)/fudt' I
o tdt' l CI,2 ; f(t )’
= f(th ")
- t
). ‘ 0
I ) t

’ 2Ly —u(z+zo)/2/f __q_t_’_) (6-126)

2 f’(t')g ’ ’
I to _.

and the current distribution resulting from an arbitrary incident electric
ficld is
o

1(z,t) = j Az ert G2, bzt )0, (20,t0) (6-127)

-

The Green's function has two intercsting limits-—if we take the large

argument limit of the Bessel function we obtain

y
M i L AL . e s a .
: : : o e R e ‘.'4,a,aﬂi
iy el MM L R i : i ik
MANRETENVCHNORIIIE SIS IPCISFENS PR ML T L aleeatie u
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‘;r'i
A
:i
&
; . - 2 2
) ~C>'.(z+zo)/4 L -0z/2 0LZO/
i - 1 e 0 (C ~¢ 6 )
b G~y — = eXD ) . (6-128
: "y [ _at g2 | At
WJ TTEN tJ FeEn)
. 0 0
b
3 This reduces to the usual Green's function for diffusion in the limit
2
b 22y,
[ t >t
] 0
;
; The sccond limit results rrom taking the small argument limit of the Bessel
1 function and is
V N -0z |
s - + —-(
' L a(z 26 L (e B, l)
i ' 0 e d 0 N
] T et > exp)- n . (6-129]
o | [t de 2 [Tarr_
f{t") f(th)
ts t
. Ll. 0 p
q ) ]
k\ This limit of the Green's funcvon tells us how sourc2s within the source "
v rcpion at early times produce currents oucside the source region at late
% times., ¥ 24 is much smaller than =z and f({t) 1is such that
t t !
dt! f dt! ) i
re T >> e - () !
"[f'(t') ] 1‘(t') ) (6-130) 'i
t;)k tpk f
. )
then the cxponentiel factor in Equation 6-129 is small for ‘%
f 'uzn :
LOC
e 2 1, (6-131) }
2f dt' T |
a e
£(t") ;
pk g
or
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t 1/2
dt! 1
—— - 6
f LOG(ZO,t') N (6-132)
pk

The quantity on the left-hand side can be irterpreted as the skin depth at
the point 2, ut the time t and shows that the energy is trapped by the
Gair conductivity until the skin depth becomes greater than the conductivity
attenuat ion length  1/a, The time of the peak current can be calculated
directly from Equation 0-129, by setting the derivative cqual to zero, and

occurs when

t L 0 -«az

(e e )
dtt 0 . -
2./‘ FET - . (6-133)

(6
ty

The voltage on the powcr line may be determined by

. L gg  Calz+zg)/2 —uz -az, I
ve_Ltel 0D e” e exp)- S
G 9z 2 ) t 7 exl t
[[,_«1@'_‘ e
J Tn J T
t 0
0
i vt “
L -az -e(zzg)/2
< e T1 - e ln| ) (6-1340)

where the arguments of the Bessel functions are the same as in lLquation 6-126,

When we tuke the small argument limit of the Bessel functions and let z »

>

the tewin proportional to ]0 dominates as it is coastint in =z while the

iz /2 . et .o ; .
other term appiroaches zero as e i/ . The resuiting limit for V is
-az
L ) L ¢
) 0 1 o 0 .
V + = Ty T n ~1q-cxp Rl , (6-134D)
: e s
¢ i) Jore!
0 t
d G

S AT S L. e A AT e R i i ki i nB
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r
3
% and it shares with the current the property that it is small for
; t 1/2
: dt! 1
e <= ~135
z fr, GOt Sy (6-135)
: " 0 0
:'. Pk
X4 The peak of V occurs when
.
- az
: £ t 0 -az
‘ at| (aer P [ ae tole e ) (6-136)
(. dt fen | T FED 42 ’ L
] ‘o %o
g
3 which will be later than the peak of T for monotonically decreasing f(t),
f as the first term on the left-hand side is negative., The time integral of
3 . . . . . .
3 Equation 6-134b from ty to ® may be evaluated directly by substituting
4
; -0z
; Loe
\ = - , (6-137) '
: o2 dt!
( ' ") ‘
5 . »
; 0 !
: Le Y '€
F N Ep— EL ((-138)
(; X : 7P |
4 (12 —'d—-t—"——‘ :
b £(t") é
¢ Yo J ;
'l AP \-X = 0
‘, \ c My =1, (6-130)
] 0
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provided f(t) 1is monotonically decreasing. To summarize thec results of

our investigation so far, we have derived the Green's function appropriute

for an infinite line with an infinite termination impedance at 2z = + »
because the voltage {Equation 6-134b) approaches a constant valuc as z » @

and the current approaches zero. We have discovered the interesting fact

that the cnergy is trapped on the line whenever the Jocal skin depth is smaller
than the conductivity attenuation length 1/a. When the skin depth approaches
1/a, the incident electric field appears as a voltage across the line at large

values of 2z with a relatively narrow pulse and a time intcgral equal to

det = fdzfd-c B, . (6-140)
imc

If we look at the voltage and current at a large bur finite value of 2z we

find that the ratio between the two is

1

1 1 e ¥

ad (6-141)

f(}(z',t)dz'

”
L

1

We now want to determine the modifications needed to the Green's function
to represent a {inite termination resistance at large z.  This may bo
determined by examining the response of Lquation 6-94 to o step current at
large =z, Using the term proportional to C2 in Lquation 0-106, the
solution which results in a step function in time at t . current at 2

0 Q
and vanishes as z ~ - @ at {inite s 1is
- 2 - /2
T G RLy T
N . L e, e
](,Z,b) - S —(\2()/2 R __(.‘.'Z()/z ’ (() J‘-—’
¢ l\l((i SLO Q )

where we have used the facv that the Laplace transform of a step function is

/s, 1f we look at T for = < 2y We ean let g and expand the

Bessel function in the denominator as
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-0z, /2 N oz, /2
K (3 Viioe O %o 8o 07 (6-143)
1o 0 P
2VYskL
0
2 \/Lo o0/ 2y (2 a2y S
I(z,8) = = V- ¢ A](a- 5L e ), (6-144)

for which the .  .uce inverse is

-0z
Loe
T(z.,t) = expl- ———+—- 1. (6-145)
LT
o2 foart |
f(th)
t 0

Taking the spatial derivative of 1

| nrenel ~Q ) — -0z /2y

, L. e %%k (ZVET e az/ )

f{l - ¢ —‘i)_ O'e 0 7 (6-14’))
0z S —uzO/Z 2 :

=0z /4
AEE

if we now again let =z - + «@ so we take the small arpument iimit of K

0 1
ol 2LO “07 {2.V~?“- -0z/2 , .
52t e e KlE ey e ) (6-147)

The Laplace inverse ot this is

-0z -0z
a1 Lot e
5T T expl- ————} , (6-148)
R S S f:gt_'_
J ¥ v FEn
o £

wherc ‘c,J is the time of the applied current and the voltage resultiag frow
L

the step current is

i s Rl Sl 55 A e ke ot

16 A
Lo ‘ Loe )
- (“\')

IS N -14¢
; D - , (6-149)
weeey | aet l _lt_$
AR AN TR J fitn
y t

T e s e e




The phys. | aterpretation of the early time response is clavified by
exanining the time integral of V(z,t) from 0 to t. This integral is
simplified by the substitution
: L0e~uz
1 X, (6-150)
’“ 01‘2 _.c_l.t;_'.‘
f{t"
'CO b
:
Loe-az dt )
Y A
dX o 2 f(t) ) (6’151) ‘
OLZ t dt' 3
f(th) z
o K
%
and we obtain
Y
t Lo 3
0 [dx .-X ”
f - = o
Vdt 3 !ﬁ Y e j
t X :
%o 1
(6-152)
L [
0
= - B (X))
N
where ]
Loc—az
= e — _153"
XU = T s (6-153)
aZ _dt!
f.‘(tl) |
tO |
. . . B : - I
and El(v Vs the expenential inte, 1. For small X (large z) the limit |
of the exponential integral is :
Ly (X)) ~ - Wy y = 1.781 , (6-15) ‘;
50 ]
\
{
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L, YL,e %z
Vdt ~ —2 | —a— -
t o t
0 2f dt
J o£(")
t

= - Lo(z—zo) + 0,577 Lo/a ,

where =z

0
equals the exponential conductivity scale length
t 1/2
dr’ 21
e = —
J Loh(zo,t) a
to
Y

(6-155)

is defined by the edge of the source region where the skin depth

(6-156)

The late-time response can also be undevstocd in the same manner—rtor late

times and f decreusing sufficiently rapidly that

t )
dt! dt!
S ss kN
,ff(t*) ’ J e
cpk Pk

we are looking into a resistancce with the value
g

which 1is

(6-157)

(6-158)

(0-159)

R = - 1 !
I VI
and 0 is defined by Equation 6-156. To summarize the outer boundary

conditions, an observer at 2

looking back towards the source region sces the

inductance of the line between 2z and z, and a resistance at the cdpge

0
of the source region given by Equation 6-158.
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A couple of useful cases for which the time integrals of 1/f can
be annlytically evaluated are whern f Dbehaves as an exponenti=zzl function cor

as a power of t, If

G = Gae'o‘z‘B‘ , (6-160)
then
t
dt' _ 1 (eBt_CBtO)
f(t') G.B
Q
%o
(6-161)
Bt
e
A t >> t s
GOB 0
If we define z = 0 as the point where
(]1- 1/2 1
[ ()\Z t) = C[ ’ (GM]‘GZ)
[~eo
so that at ¢ = 0, z = 0 1is thc edge of the source region then
uz
(JO = 'L*E)'B . (6—16.‘))

The Green's function has a simple limit when 24 << 0, tO <0, z > 0, t >

-o{z+z,)-2Bt -az . ~fAt
G o~ L e 0 exps- c 0 l s (6-164)
L f )
0
which peaks at
Bt = - az, - &n2 , (6-165)

0
The voltage associated with % is, in the same limit

-azO-Bt -azo—ﬁt2
vV~ ¢ cxpl— e $ , (6-1606)
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which peaks at
Bt = - azg , (6-167)
witich is thc time that the edge of the source region defined by Equation

6-162 passes Zge The edge of the source region meves in the - z direction

at a uniform velocity
B
v = &- B (6—168)
and tae late-time resistance looking into the source region defined by Equation
6-158 is

BLO
R=—= . (6-169)

The sccond case is where the conductivity decreases as a power of t

G = Got'“c'““ , (6-170)

so that

t
Todee _ 1 n+l  n+l
m} I CAN CES DO (t -ty )
T
0 (6-171)
_-_E.].]_i]__._ T o t
(n+176,, AR

The edge of the source region, defined by

t ]1/:
dt 1 .
f"[, G| o (6-172)
J 0 i
0 :
is
2. n+1
.1 P / oot ) ) .
o= - e AN (6-173)
Q \(n+1)LUh0
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The 1limit of the Green's function for 1z >> z t >> t,, and (zo,to) deep

0’ 0
within the source region is

-0z

1) °L,G5 -a(zghz) (n+1)G,Lge 0)
G~ -——-:g*—':?——'*_n.*_z exp - 7 ntl ‘ s (6-174)
a’t” { ot )
which peaks when
I
'(n+l)L0G0e 0. n+l
t A A , (6-175)
207
The wvoltuge associated with % is
5 -0z
Vo~ ) LSy o 0, s ()G lye (6-176)
2, 1n+2 “P 2, n+] ’
ot ( ¢t s
which peaks at
-2 _.L
DL e QM
t = z . (6-177)
(n+2)u”

The edge of the source region moves in the - z direction at a decreasing
velocity
o4 ]

V = ra (6-178)

and, conscquentiy, the resistance represented by the source region is
decreasing
(n+l)LO
R e 6-179
ot ( 73
The results of this section and Section 6.3 can be summarized in the ciicuit
model shown in Figurce 0-7., The edge of the source repion is defined hy the

wint o ou where the lTocal skin depth equals the conductivity attenuation
! q ] { b
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Figure 6-7. Circuit model of scurce wegion
power line coupling.




length. To the left of this point, the current on the line is proportional

to the time integral of the electric field in the diffusion phase (plus the
wave phase current). The external circuit shown is composed of the voltage
source (VS) determined froum the Green's function, the resistance (RS) determined
from the solution looking back into the source region, and the external circuit
parameters LE’ VE and RE' LB is the line inductance between z and the
termination, VE is the applied electric field integrated over the same

region and RE is the line termination resistance.

The assumption that the local current deep within the source region
is determined solely by the time integral of the electric field is modified

slightly by the expansion of the fireball., As the fireball grows, it

pushes most of the magnetic field on its powerline ahead of it. The

. practical effect of this is small because the magnetic rclaxation distance

in the ionized air ahead of the fireball is substantially larger than the

fireball radius.

6.5 APPLICATION OF FORMULAE TO EXAMPLE

In this section we apply the approximate theory of Scction 6.4 to

determine the late-time curvents at a shelter. The parameters of the example
are the same as that of Section 5.10 except that the line is at a height of

10 meters above the surface of the carth. The small line resistance (0.3

milliohms/m) is ignored. The air conductivity as s functlon of range at
various times i1s shown in Figure 6-8. This conductivity was calculated
with gamma fluxes of Chapter 3 scaled up to represent a 3 MI' burst—the
conductivity resulting from device X rays and lonization causca by the
elastic scattering of neutrons off air nuclei was ignored. The first step

in the calculation was to determine the point where
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dt 1
= , (6-180)
J uoo(z,t) az

0
which is (6-172) with the fact that

LOG(z,t) = uoo(z,t) ) {6-181)

To do this we assure that o varies locally as

g =t M™%, (6-182)

n 1is evaluated as o function of time from Figure 6-8, and we first assume

u ~ 200 mcters_l. a(z,t) 1is then evaluuated from

Otzt

G(Z:t) = (n+1)u_0‘ .

{6-183)
Since o 1is a function of distance this formula is iterated until we [ind
the point where (6-183) is satisfied. One iteration suffices as o i1s a
weak function of distance, if we use the o from the lust time step us the
initial value in (6-183). The velocity of the edpe of the source region is
eviluated from [6-178). After the edge of the source region reaches the

firchall radius, Vq +$ zero and R is the sum of R or and the

R.
s s b
10 ohm termination resistance. The time integral of the incident clectric
ficld is evaluated from the curves at the appropriate ranges in Figure
0-9. and
t
Vs = vs‘/‘ Lde? (6-181)
0

VF 1s the spatial integral of the clectric field outside the source rvepion
and \/,l is the sum of Vq and VF' LF is the inductance outside the
source region; we have included the effects of this inductance in the cal-
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culation of the current in an iterative manner. An initial gucss at the

shelter current is made by

The resistance associated with Ly,

(we have assumed that the overhead line extends sufficiently far into the
fireball to result in a low resistance between the line and the fireball) i
is calculated and added to R, and the current is recalculated as I,. As
the difference between I, and I, is always less than about 30 percent,
it is not necessary to iterate further. These operations are summarized

in Table 6-1 and the resulting current is plotted in Figure 6-10. The peak
current occurs somewhat earlier and is larger than that shown in I'igure 5-6.
This results primarily from the air conductivity being smaller than the
ground conductivity at most ranges so that the large electric fields necar

the source are seen at an carlier time. i
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CHAPTER 7
COUPLING TO SHORT VERTICAL CONDUCTORS

7.1 INTRODUCTION

Systems that are hardened to source-region EMP from surface or
near-surface nuclear explosions, and to the accompanying blast effects, are
unlikely to usc above-ground vertical antennas for mission-critical
functions. llowever, such antennas and other vertical conductors may be
present as part of non-survivable subsystems that serve peacetime functions.
Examples are communications antennas for maintenance and security operations,
light poles, ectc. It is necessary to know what currents will be collected
by such structures under EMP conditions and whether these vcurrents can get

into the parts of the system that are required to survive.

It is likely that such structures will be no more than about 10
meters in height and no more than 0.3 meters in diameter. Thus the incident
vertical electric field can be taken as uniform around the circumference.
Usually, the conductor will be thin to gamma roys, but we shall include
the case in which it is not. The conductor may or may not be grounded at
its base, but since it is not 1llkely to be hardened to EMP, an arc to ground
may form anyway. TFor the purposes of this chapter we shall assume that the
basc of the structure is in electricul contact with soil; the impedaace of
this connection is includel in the analysis. One would hope that a wire
does not run from the structurc into any shielded enclosure containing missionu-
critical electronic equipment. The current flowing into such wires could
be calculated, usually as a perturbation, if the specifics of their connection

were known.
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% 7.2 DRIVING FIFLD AND SKIN DEFTHS

?

3 We shall use the vertical field Eq : upher i _gure 3-5 as an

cxample in this chapter. That field is appropri.te at the ground-air

surface. We need to discuss how Eq depends on height abecve the surface.

This discussion uses ideas contained in Sections 3.8 and 3.9.

At the onset of a-saturation at the location of our conductor,

Ee extends into the air to a height (Equation 3-49)

6E & ¢/o ~ 1.5 meters (example) . (7-1)

This is the time when E8 reaches its peak value. Previous to this time
(in the period of A-saturation) Ee has been rising as eut/2

3 has been decreasing., The current in the conductor at ground level cannot

, and 6E !

be appreciably affected by the field at heights greater than 2c/a. Thus,

for times before the peak of Eg» it is a modest overestimate to assume that

the driving ficld is independeat of height up to 6F. \

)

4 After the onset of o-saturation, E@ extends up to the conductivity-
: determined skin depth 63 in the air. 1In this (diffusion) phuse also, the

{ conductor current at ground level cannot depend on the field at heights

] gr2ater thar Sa' Thus again only a modest overestimate is made by regarding

) By as indeperdent of height up to Rd. LEventually, the incident Eq is

inceed independent o’ height, at least up to 10 meters. We shall repard

it as constant in height at all time-, over that range of heights which can

affect the current at the basec.

RPRURNEIR S 7 S SN RN SRYRRS SR B RIESES L ApE

A composite forncila for this height is

¢

¢/0 when g < g0
a / 0 3

l/VLlOOOL when €0 < g« OP , (7-2)

—_—r ot 1/2
A b D LA TN 19] after peak o
(n+l)u00 Upt atp
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}
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The first linc here 1s appropriare up to the time of the peak in L

phase in which displacement current exceeds conduction current.,

RO RV TR TSI Y R TRRTCRE PATNRR FIRTR TSI T € 4 s 3y en Tt e

0 the

The second

line is appropriatc from this time up to the time of the peak in o. The

third line is appropriate after o

tion that © falls as t . The power n

n = [Qn(Op/O)]/[Qn(t/tp)] ,

where

has peaked, aprd is based on the assump-

is determined by

(7-3)

c = o(t) and op = O(tp). The value of n varics somewhat with t.

It can be seen that Equation 7-2 provides continuous values of

IS

is graphed in Figure 7-1. Tor this case, o = 2 X lO8
We sece from TFigure 7-1 that Ga reaches 10
sccond. As will be scen, the coupling to a conductor

on whether Gu is smaller or greater than h.
7.3 INDUCTIVELY LIMITED CURRENT

The current in the conductor is limited, in
times, by both inductive and capacitive reactance and
air and ground. We shall first calculate the current

limitation alone. This calculation assumes that

is perfectly conducting, and that the driving ficld E

height.  The current |
d -
5 (LD = 10 .
The inductance I, per unit length is

"o
2

" $
o0 a, henry
L= sy L+ 9 ey 0

192

Gq. For the conductivity of Figure 3-3, the Ga computed from fiquation 7-2

= 2 x 10'7)

“

-1
see .

meters at t = 2 X l()_6

of height h  depends

varying degrees at various
by resistunce in both

based on inductive

h >> Gq, that the ground

<

0 is independent of

in the conductor is determined by the equation

{(7-4)

(7-5)
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Here a is the radius of the conductor. The argument of the logarithm has

been written so as to cover the possibility that 6a may be less than a.

We shall treat two examples, with a = 2 cm and 10 cm. The inductance fer

: these two cases is oraphed in Figure 7-1.

Before a~-saturation, L is constant and E  rises exponcntially
eut/z

as . In this phase,

I(t) =

2 _ ‘
= Ee(t) . (7-6)

For the two conductors chosen as examples,

%;—= 87 ohms/m , a =2 cm ,
(7-7)
= 55 ohms/m , a = 10 cm .
At the time of a-saturation, Ee reaches its peak value and is no longer ;
rising cxponeatially. Use of the puak value of Ee from Figure 3-5 would f
give an underestimate of the current at this time. Usc of the exponentially
extrapolated value of EO’ i.e., Ee = cB¢, will give an overestimate. We

choose the latter, setting

@
Ly (peuk) = 2 x 107 V/m (7-8)

Thus the currents at this time are

e e TR T T TR T

I(x-sat.) 2.3 % 103 Amp , a

1}
i

2 em o, I

3 ‘ (7-9)
3.6 X 10" Amp , a

1
1

10 em

s Al vk

e Scanou s SRR S e

In Figure 3-5, o-saturation occurs at 1.8 X 10‘8 second. Accord-

. . . . . ot .
ing to PFigure 3-3, o0 continues to rise exponentially (as e ) until about

-8 - . .
5 x 10 ° sccond, then changes much more slowly. The incrcase in o causes

the decrease in inductance shown in Figure 7-1. During this period of

decreasing inductance it is not correct to keep L inside the time derivative

in Equation 7-4, as we shall now explain.
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The magnetic flux @ c¢ircling the conductor is determined by

integrating the Maxwell equation

(7-10)

over r from the radius a of the conductor to large distances. (In this

equation E 1is the electric field parallel to the conductor and B is the

magnetic field circling the conductor).

o¢ 3
5‘{ = 'é’Edel‘ = EOO-E('d)

where E,

Integration over r yields

= Ee s (7-11)

is the electric field at large distances and E(a) = 0 is the

field at the conductor surface (resistance of conductor neglected). E_ is

the Ee

of the burst coordinate system, Equation 7-11 would be the

same as Equation 7-4 if we define the inductance by the Bquation ¢ = LI,

The inductance defined by Equation 7-5 assumes that B ~ I/r out to

T = o4+ 61 and then falls rapidly. That assumption is not correct when the

conductivity increases rapidly with time. In this case, muagnetic flux pro-

duced in a given time interval 1/a is frozen in place shortly afterwawd

by the increcasing conductivity. The additional flux produced in the next

time interval is distributed only over
the second line of Equation 7-2, Thus
depth applies only to the increment in

and all previously established current

the decreased skin depth yiven by
the inductance defined using this skin
current in the next time interval,

is frozen in, i.e., does not change

appreciably. Therefore, in the time period from a-siaturation to the time

5 x 1070

be replaced by

sccond when o stops increasing exponentially, Lquation 7-4 should

(7-12)

In the time period indicated here, the ratio HO/L does not

change much for either of our example conductors. Average values are

e
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f; HU/L = 1,5 % 10" Amp/sec , a = 2 ¢cm ,
i 11 (7-13)
é = 2,9 x 107 Amp/sec , a = 10 cm .
g The Increasce in current in this time period is thercfore
v 3
| AT = 4.8 > 10" Amp , a =2 cem ,
§ 5 (7-14)
= C ' a—— .
35 9.3 x 107 Amp , a 10 em
2
¥ . .
? Equation -4 would have given a larger increuse in current in this
; time period, since thot »quation can be written as
}
: N & .
dl 0 1dL L7 -15)
' - = e - o, —a
: at L T L dt "
. During the period after o peaks, in which L inecrcases, this cquation )
‘ y
g would yicld smaller currents than Bquation 7-12. Which equation should we !
3 usc in this time period? We argue as follows. The Flux poing with the current
‘ 1
: at the time of a-saturation, Equation 7-9, is frozen in over radii up to j
¢ - . G . . -7
] 61 = 1.5 meters and will not diffusce appreciably until t = 2 X 10 ° second %
2 | : \ . . .
! when & aguain reaches that value; that part of the current will remain X
3 . - . . - ‘
b constant,  We add to this constant current one halft of A, BEquation 714, /
b A
E’ The other hulf of Al is associaved (we sayv) with flux distributed only up |
3 !
4 to 6q(min) = 0,09 meters, and this tlux diffuses immediately, together with {
! o . . -8 . i
* additional flux produced by “0 after t = 5 x 10 7 scceond.  For this |
part of the current Equation 7-1 is appropriate.  Thus the current has
. two parts, for which, until t = 2 % 107" sccond, }
BN i
ll = constant = 4.7 X 107 Amp , a = 2 ¢cm i
3 (7-10) ;
: = 8.2 x 107 Amp , a = 10 cm , !
I 1
: and E
4oy = n (7-17) ‘
dt 2 AV ! “
! - -8
where, at t = 5 % |0 seconmd,
196
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: I, =5 =24 x10" Anp , a=2cm, 1
- o (7'18)
= 4,0 % 107 Amp , a = 10 cm . $
Hand integration of Bquation 7-17 in three steps yields for the total current:
) t=5x100 7x10% 1x107 2x107 sec )
iy {
', 1 =7.1 8.5 8.4 9.6 KA, a = 2 ¢m ‘ (7-19)
; I = 12.8 15.9 14.3 15.3 KA, a = 10 ¢m
f The currents are graphed as & function of time in Figure 7-2.
. - -7 . . e .
?. After t = 2 x 10 second, ull of the flux diffuses, and Equation
g' 7-2 is appropriate., Since EO is approximately constant in this period,
: that equation yields
i
: = (), + -t.)E5 -20
: LI (LI)l (t tl)IO (7-20)
? where the subscript 1 indicates evaluation aut t = 2 X 10-7 second,
ﬁ Currents calculated from this equation are used to cxtend the curves in
) Figure 7-2 out to 1()_S second,
% 7.4 FFFFCT OF GROUND TERMINATION
i
ﬂ In considering the effect of a finitely conducting ground terminag. -
; i
o tion of the vertical conductor, it is important to understand that the j
3 current carried by the conductor is cexactly cqual to the current (conduction !
; . . . . I
k and displacement) removed from the surrounding maedium due to the prescence il
i of the conductor. This follows from the fuct that the magnetic field at ;
i ;
: distances appreciably larger than the skin depth is unatfected by the '
5 presence of the conductor; hence the net change in current over an ared ’
-
y comparable with HGZ must vanish by Stokes' thcorem, {i
il
1

The flow of (the change in) current in the ground must therefore

be as sketched in Figures 7-3a and 7-3b for the cases in which the air

197
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Figure 7-3. Current flow patterns in air and ground
near conductor.

conductivity 9, is less or greater than the ground conductivity Og' This

figurc has been drawn for the case in which the conductor extends to a depth

2 B e M A

d > 6g into the ground. The resistances in the ground termination are

estimated uas

i

' i

1 da i

Ry = grg g Il + 9, (8, > 8 <d), (7-21) )
£ 8 1

1 ig_ 3

Ry = s 1+ B, (6, <8 <) (7-22) 1
g g 5

|

At late times, the condition 61 > 6g >d > a is likely to hold. In this
case an estimate of Rt is a

a

$
| 1

i d d 1
Re = 754 [Qn(EQ +1- qu NI 3
£ g g g £
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In the time period before w-sgavuration, the conductor

- at/2 . .
expoenentially as e . In this period,

current riscs

:‘Z,‘ = ¢/ S o=

. 0

. (7-21

o - 3 -1 ) -3 .

With o = 2 x 10° sec and o= 1.6 x 107 mho/m (10 percent water soil
= S

at {requency 1.0 % 107 11z, sce Lhapter 2) we obtain

du = 1.5m, ég = 0.7 m . {(7-25)

Bquation 7-21 gives

R, = 61l ohms , a = 2 ¢m , )
‘ (7-20)
= 39 ohms , a = 10 cm . s

Now according to Bquation 7-7, the inductive reactance ot o length & = 1.5

t
moters of the conductor ts 130 and 82 ohms in the two cases.  Thus the
currcent befere w-saturation will be reduced by o factor of about

130 82

0w er <O T g o Lol

in both casces because of the termination resistance.

Byt = 5 < jo~" second, the risce time o« (e-folding time) of the

conductor carrent has increased to about

-5 -
T v 2,6 % 1077 second (7-28)

. ( . . < -2
At frequency 1/2a1 - 6 x 100 Hz, Chapter 2 gives & = 3 < 10 7 mho/m,

and

(7-29)

As desceribed in Scecetion 7.3, the magnetic tlux in the air is distributed over

iorange of radii (Kq's) From 0,09 to 1.5 meters,  The geometric mean gives
S 0,37 meter, Equation 7-22 then pives the termination resistance
a
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Rt = 39 ohms , a =2 c¢cm ,
\ {7-30)
; = 24 ohms , a = 10 cm
; At éq = (.37 meter, the inductance of a length 61 of the conductor is
' LS, = 0.22 ul , a : 2 cm, I
. (7-31)
E, = (.11 wil , a = 10 cm . ‘
i The relaxation time of the current into the ground is
3
!
; LS
: a - S =8
: ® = 0.56 % 10 sec , a4 = 2c¢m ,
. t (7-32)
-8
= 0.46 x 10 " sec , a = 10 cm .
g because this relaxation time is short compared with the rise time 1 of

'
. . . - -8 g
the base of the conductor at times in the neighborhood of 5 x 1077 second.

the conductor currcnt, most of the conductor current .ndicated in ligure 7-2 ;

3 A
g will flow in the air just above the ground rather than in the ground. The i ]
z o

3 ~ . - -~ . . 3
3 fraction of the current flowing in the ground is about €!
, X

: o § o . ¢

: gy B (0.013)(1.3) 0.10 (7-33) {

1. - < - . . AR u

] ad +0 8 0.0169 + (0.45(0.37) ’

‘ g g a a ,‘:

Thus the ground termination resistance substantially reduces the current in ;

If the ground surfuace is covered by a conducting shect or counter poisce,

g - the current in Figure 7-2 is correct.

aringd st " an

7.5 RESISTIVELY ILIMITED CURRENT

Section 7.4 has shown that resistance of the ground tcermination

e A ia e e om e i e i L SR

affects the current at the basc of the conductor at quice carly times,

As the air conductivity falls (Figure 3-3), resistance in the air will also
limit the current. In this scction, we shall ignore inductive cffects and

calculate the current as in ua static problem. It is helpful to distinguish




between two phases, according to whether the skin depth 6a in the air is

less or larger than the height h of the conductor.
First Phase: éa < h.

The vertical eclectric field E6 is not just a static field; the
curl of E does not vanish at early times since, as shown by Figure 3-5,
B¢ changes rapidly with time before t = 10-7 second. llowever, that does
not matter for the conductor response, which depends only on the vertical
electric field. The same Ee at the position of the (thin) conductor, even
it it were derivable from a potential, would produce the same current in
the conductor. We can therefore, for the convenience of familiarity, think
in terms of a voltage V(z),

z
V(z) = J[}b(:')d:' ) (7-34)
0

where z  is the distance above the ground surfuce,

In the diffusion phase (which begins at a-saturation), Ee extends
onl» ip to the skin depth 6u iabove the ground; above that height the
electric field is approximately radial from the burst point. Thus V(z)
has the z-dependence indicated in Figure 7-da.  The maximum voltage Vm
is about

~ES

Vin ¥ Egoy (7-35)

where EQ is the field just above the ground.

If we imagine the conductor to be opened just above the ground, as
in Figure 7-4b, to what voltage will the conductor come? Remember that
the conductor is in a cenlducting medium. Because curvents in the conductor
are limited by diffusion in this medium, the lower end of the opened

conductor cannot be affected by conditions existing at heights much greater
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Figure 7-4. Potential function and open circuited
conductor.

than Ga. We conclude therefore that the open-circuit voltage of the

conductor is about

V0 R Vm/2 ® Eeéu/Z . (7-36)

1f we now reconncct the conductor to its ground end, a current

will flow across the junction. The magnitude of thi. current will be

I = VO/(R1+Rt) s (7-37)

where Ri is the "internal" resistance of the source of VO and Rt is the

ground termination resistarce. Rt has been estimated by Lquations 7-21, 22
and 23, An c¢stimate of Ri is

S
Ry = ﬁ— i1+ Y (7-38)

e

This is the resistance between a conductor of radius a, length 61 and

[

distant points in a medium of conductivity o_.
c¢ond Phase: 61 > h.

[¢

In this phase the open-circuit voltage is about
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1, ~ | 2 -3¢
2 VO Loh/_ , (7-39)
f and the reconnected current is
=V '+R') . -
I VO/(Rl*Rt) (7-40)
> The internal resistance here is modified by replacing 61 with h, i.c.,
t %
i 1 h . }
N Vo e — -
i Ri 2ng h Qn(u) ’ (7-41)
and the termination resistance is

; R = o (Y (h>d>6) (7-42)
L t 20 S a’ >’ g’
! g8 !
1 d d 1 h . 1
: = —— [fn(=) + N . —— > 4§ i
4 g [ “(u) L 8§ 210 O Qn(é ), (b (g > ‘
i 8 8 FUY s ,
¢ (7-43) b
| |
1 : d d . !
- = gt [0 =+ 1 - S o> h o> . 7 1
; 2mo d [ i h] ’ ((g v d) (7-44)
P #
i The estimates piven here are continuous between the three regimes of 6 .
’
b
i Let us caleulate the resistively limited current for our two

f examples, choosing the heights and depths :
: h=3m,ds=1m for a=2um,

) (7-45)

o = 10m, d=1wm for a=10cm. !
!

¢ The skin depth Gw in the air has been graphed in Figures 7-1. For the soil !
1 ) 4
, we take ug = (1,01 mho/meter and ‘
. 2 t! , ’
/ o= (0.7 m)™ + - =, (7-40)

: £ (TR ;
3 - 0w \
: !
: whore ;
{ t' =t - 2 x 1077 see . (7-47)

;

i .04




=

1
i
! ¥
b
1
L.
:
b
¢ This estimate of 6g is continuous with the value in the exponential phase
|
| given by Equation 7-25, 6g is also graphed in Figure 7-1.
The first phase, 6a < h, ends at
-7 .
\ tl = 3,7 x 10 " sece for a=2c¢m, I
» . (7-48)
! R 5
l = 2.0 x 10 ~ sec for a =10 cm . i
! 3
! In this phase VO is given by EBquation 7-3G and R.l by Bquation 7-38. These ﬂ
\ quantities are graphed in Figure 7-5, where they are also extended into the "
! second phase, Sw > h, by use of Lquations 7-39 and 7-41, E
’ :
p P
? For the terminution resistance, we sce that 6 is greater than /
£ §
% the assumed d  at almost all times of interest, and that Gg > §, in most 1
! of the first phiase (when Gq < h)., Since Lquations 7-21, 22, 23 do not apply ;
; in this casce, we need another estimate of Rt for the case h > Gq, &g > 6q,
A t L
S >, This is

i 1 d. .
{ Rt = -275;5 QII(“‘) N (6'1 < d) N (7'-49)

[$

1 d d N
2{;(}27] [Q.Il(""l~) + 1 - })-] , (LS” > d) . (7-5M

]
[t
¥

-

From Figure 7-1 we sce¢ that Gu exceeds d after t o= 1.0 x 1077

second.,

Before this time, Bquation 7-149 pives Rt' From this time until 1

1
(Bquation 7-187, Rt is given by Bquation 7-50. After t Rt is given by
| Bquation 7-44, Rt is also graphed in Pigure 7-5 for the two conductors,

i In computing Ri at times hefore a-saturation in Figure 7-5, we
!

e e e 2 Pl R s Tt Rl 5 it P AL i

have replaced o by

.

SN in Bquations 7-38 and 7-41, since the displace-

ment current is larger than the conduction curvent in that phase,  lHence

the current is limited by capacitive reactance rather than by irir resistance
in that phase. Note that the capacitive reactance is real for exponentially

: rising ficeld, and is approximiately constant. i

e
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Figure 7~5. Open circuit voltage Vg of two vertical conductors:
(2) 2 cm radius, 3 m high; (10) 10 cm radius, 10 m high.
Source resistance Ry and termination resistance Ry
for the two conductors.
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The resistively (and capacitvely) limited currents calculated
from Equations 7-37 and 7-40 are graphed in Figure 7-2, for the two conductor
radii ond for both perfectly and imperfectly conducting ground. It is seen
that thesc currents are substantially smaller at all times than the
inductively limited current. For the examples considered, inductive
reactance is small at all times comparced with resistunce or capacitive

reactance. The correct current T can be vstimated from the equation

I~ IRIL/(IR+IL) R (7-51)

where IR and II arc the resistively and inductively limited currents.

I 1is only a little less than IR in our exaples, The sign of the current

is such that electrons flow down the conductor into the ground.
7.6 COMPTON CURRENT COLLECTION

If the conductor provides appreciable attenuation of the gamma rays,
the Compton current emerging from its back side will be less than that entering
its front side. Thus the conductor collects negative charge due to gamma

"
attenuation.  Gummua attenuation lengths are of the order of 30 grams/cm”.

It the conductor is mude of high-utomic-number material, then the
ratio of Compton electron flux to pamma flux coming out of the conductor is
smaller than the ratio going in, provided the conductor is an electron range
in thickness. Compton electron ranges are of the order of 0.3 grams/cmz
in air and aluminum, but arc smaller (due to nuclear scattering) in high Z
materials. Most conductors will be thicker than un electron range. An iron
conductor collects about 30 percent of the Compton current striking it, even

without the gamma attcnuation effect.
Let us assume that our 10 em radius conductor is an aluminum pipe

(density p = 2.7 grum/cms) with wall thickness D = 1/4 inch = 0.0 cm., Its

. . . 2.
average projected thickness in grams/cm™ is then
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2
m™p = 5.1 gram/cm” ., (7-52)

«

; The fraction of Compton current collected, due to gamma attenuation, is
f =1 - exp(-m/30) = 0,16 . (7-53)

The total Compton current collected in a height of the pipe equal to the

smaller (61,h) of 61 und h o is

[

1 1 = ZFJ"u(GW,h) s (7-54)

é. where Js is the Compton current density, which we take from Figure 3-2.

. The current computed from Bquation 7-54 1s also graphed in Figure 7-2. Note

I that it is small comparced with the other currents, except for a short period of
time for the resistvely limited currents into lmperfectly conducting ground.
Actually, the current IH affects the resistvely limited current. Since

the impedance of the Compton current source is very lurge, the current into

the ground is given by

f

, . VO . IsR'

4
R Rt R, + Rt
\ {7-55)
R,
= ] [ ,
R
R s R l Rt
B |
{ whoere lR is the resistively limited current caleulated in Section 7.5 We ‘
- see from Figure 7-5 that the ratio Ri/(Rj+Rt) is small (. 0.1) in the !
: ¢
time period in which I exceeds IR' Thus the collected Compton current )

L : i
g makes little difference for our aluminum conductor. If the pipe were made ‘
\ i
r of dron,  and Ig would be about four times larger than for aluminum, ,
X R i
1 7.7 NUCLEAR LIGHTNING

It is likely that a discharge would form in the air at the upper end

of the conductors in our examples, and grow upwards. Such dischuarpges were

208




obscrved in severul large yi:ld nuclear tests. The theory of this "nuclear

lightning' is currently under development at MRC (by J. Gilbert, R. Gardner,

M. lirese, and C, Longmire). It is believed that the currents in these

v
v

. . . 4
discharges reach peak values of several times 10 amperes, much larger

than the resistively limited currents of Fipure 7-2 becausce of the increuascd

-

height of the discharges., These helghts werce observed to reuach severul hundred

meters in the willisccond time frame. The authors hope to add a chapter on

nuclear lightning to this veport when the theory is Firmly established.
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