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PREFACE

This report is the first draft of what we hope will eventually be

a comprehensive treatise on the theory and calculation of B-MP coupling to

systems located in the source region.

There has been a strong tendency for many years to rely on computer

codcs for EMP Coup)lnlin, calculations. We have noticed that computer codes

built in the absence of theoretical understanding almost always give the

wrong answer for the right problem. even though they may give the right

answer ' for the Wrong problec. Source-region coupling, ,eing only a little

more d:ifficult subject than lBiP env'ronments, is quite amenable to

theoretical anal'ysis, and the present report show, Low such analysis can be

carried out for some important examples.

We hope to add to thi.s report over the next fow years. More

examples are needed. A ploblem rot discussed in the present report is the

effect: of breakdown in air (e.g., rnuclear lightning) and in the soil on

coupled currents. There are reasonable prospects that sufficient progress

will be made on these problems in the next year or so that they can be

Included. [urther , experience with real systems such as NIX and LoAI)S may show

U:4 other problems that need analysis. We therefore hope that the copies otf

this report will not be bound so tightly that they cannot be suppilemented by

revisions and further cha;pters.

...
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CHAPTER 1

INTRODUCTION AND BASIC EQUATIONS

1 .1 INTRODUCTION

A nuclear explosion on or near the air-ground interface produces

a large electromagnetic pulse (EMP). The princil)al source of the EMP is

the current of Compton re,:Dil electrons resulting from collisions of gamma

rays with the electrons in air molecules. The Compton current is signifi-

cant out to distances of several kilometers from megaton explosions. Within

this source reýio',, the air conductivity, associated with secondary

ionization produced by the Compton electrons, has a strong influence on the

fields generated. Tle presence of a conducting ground also hais a strong
influepce.

Calculations of the coupling of electrouagnetic energy into systemto

located within the source region must take into account the exi-tence of the

gwmia rays, the Comptorn current, and the zii•r conductivity, as well as the

fields. Thus source region coupling is more complicated than frcc-fiell

cuj1ij•, where only the fields need to be colnsidered. Nevertheless, a

useful approximate theory of source region coupling can be constructed, and

this report presents the theory for coupling to somc simple but pract ic.1liy

relevant system geomctries. The theory will hopefully be extended to other

geometries as needs arise.

The Coupling theory presented here closely parallels the theory

of source-region EMP environments developed previouslyN by this author

9
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(References 1-2 to 1-4). The latter theory was imroortant in that it:

* gave the first predictions of general EMP environments;

* showed what parameters EMP depends on;

* showed how to build competent computer codes for more detailed

predictions-;

* provided accuracy tests for the codes.

vhe goals and uses of the theory of source-region coupling are similar:

0 to make approximate predictions of coupled currents and

voltages, especially in regimes where present computer

codes are not valid;

* to test computer codes and show how to improve them;

* to provide understanding of coupling and how it depends on

parameters;

* to allow other scientists to judge the correctness of

coupling predictions.

It is thus hoped that this report will be useful to a variety of

readers, from engineers faced with the task of making predictions for actual

systems to scientists who need or wish to judge the adequacy of our under-

standing of the phenomena and of methods for making predictions. Ir this

connection, a particular reader may be more interested in some sections of

this report and less; interested in others. We have tried, however, to make

all of the report readable for the entire spectrum of likely readers.

"1.2 MAXWELL'S EQUATIONS

'1The material media that we shall be dealin u with most commonly, air

and ,soi 1 , ar eent a.•., lv non-magnetic; that is, the magnetic permeabi I ity

has thlue"11 I ti appropriate to free space. Both media are generally

10



conductive, and the soil has a dielectric permittivity substantiall~y dif-

ferent from £,0, the free space value.

The two time-dependent Maxwell equations are then

aE -+ 111

- + .1 X (1-2)
at

2 -where is the magnetic field (webers/mn E is the electric field
* 2

(volts/rn), and J* is the current density (amps/in ).It is clear that these

|4.

values are given and if J is specified. From these initial values we canl

feeuains aremsufficientetoscarryvthe.fed owr n iei nta

evaluate the right-hand sides of Equations 1-1 and 1-2, which then tell us

how E and B will change in the next infinitesimal time interval 6t.

From thle new valucs of F, and B we can re-evalualte thle right-hand sides

and advance thle fields another 6t, and so on. This, in fact, is Ilrecisely'
low numerical solutions of Maxwell's equations are obtained (the spatialj

dervatvesin he urlopeatins re lsoevaluated in finite difference

f orm) .J

Note that the relation of cause and effect in this way of looking

at Mxwc 11 s iqtionS iS different from What most Of US were taught,

p~artiCUlarly for Equat ion 1-1. The picture just given is that the value of'

V x~ F determines hlow B will change in the next infinitesimal tline

intervalI, whereas thle tradlitional1 picture is that a changing 11 generates

(inductively) a solenoidal Fi, i e. , an E, with finite cuirl. F ither

picture givs the smeic iesult, namely that the right- and left-hand sides

ire equals , and we do not actually netd to decaide which side causes the

other. However, thle new picture, which is the one generally Used by physicists,

makes it casicer to understand fhow timne-dependent so itions avc lye.

how umeicalsoltion ofMaxell' eqatios ae otaind (he satil 1

derivaives irthe cr..o..ation areas ew uted i fiit dffrec
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There are Vwo other Maxwell equations,

V B = 0, (1-3)

V (cE) p , (1-4)

where p is the charge density. It would appear from the foregoing discus-

sion that these equations are not needed in advancing the fields in time.

Such is indeed the case, for taking the divergence of Equation 1-1 gives

V - (Vx6) = 0 (1-5)

(The divergence of the curl of any field vanishes.) This equation says

that, ift Equation 1-1 is satisfied, V 3B will be independent of time at

all points In space. Thus if V • B vanishes everywhere initially, then

the solution of Equation 1-1 will have V 0 everywhere at all times.

Therefore Equation 1-3 needs only to be imposed as a condition on the initial

magnetic field. If the initial magnetic field vanishes, Equation 1-3 is

satisfied.

To understand the role of Equation 1-4, take the divergence of

Equation 1-2, and obtain

(V.,-l) = V J (1-o)

Now the conservation of charge, which .is a well verified law of nature,

states that

t - V . (1-7)

Subtra cting Equation 1-7 from Equation 1-6 gives

,iVt (V L-1) ) = o (1..8)

Thus it follows from lEquation 1-2 that, if the quantity in parentheses

vanishes everywhere initially, it will vanish everywhere at all times.

12
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Therefore Equation 1-4 also needs only to be imposed as a condition on the

initial E and p. If E and p both van:ish initially, Equation 1-4

is satisfied. I
4 ÷ 4!

If B, E and p all vanish initially, we need only concern ourselves

with Equations 1-1 and 1-2. Note that these equations do not contain p

at all; p need riot be calculated. If p is desired, it can be found by

time integration of r:'4uation 1-7.

Note that Maxwell's equations and the conservation of charge,

Equation 1-7, are linear in the variables J, p, E and B. Thus if current

density J1 produces P1, I1 and B1 and J2 pioduces p2 " E2 andB
1 2 2-' 1. 2then current density 1 + J2 will produce p1 + P2 ) EI + E2 and B1 + 132We have assumed here that c (and p of course) is the same ir all cases.

This linearity is somewhat restricted in practice when IT depends on H,

as we shall see.

1.3 SOURCE AND CONDUCTION CURRENTS

In lIMP problems the current density is made 0up of two parts. First,

tl:.Ie is the source current sr of Conpton rOco].il electr ons produced by
the flux of' gamlma rays, which is the source of the WWiP. Second, there is

the conduction current J associated with the flow of low-energy electrons
c

and ions induced by the electric field. The total current is the sum

,I = J + J (1-9)5 c

Tihe Compton current is formed by recoi I electrons that have start-

ing energies of: the order of I MeV. Thcsu electrons are stopped, in

material media, by inelastic collisions with the media atoms. In air, the

stopping range of the recoi. 1 electrons is a few meters. Therefore, if the

electric ftield 1: is less than about 105 V/111, the effect of this field oi

13



range will be small and may be neglected. If the field were 106 V/m, the

range would be substantially affected by the field. The magnetic field B

deflects the recoil electrons. The deflection will be small if the Larmor

radius is long compared with the stopping range. The Larmor radius is a few
-3 2meters when B is about 20 gauss = 2 x 10 webers/m2. Thus for magnetic

fields of this size or larger the deflection will be substantial.

In many applications the fields are less than the critical values

just given. In these cases we may assume that Js depends only on the gamma

flux and is independent of the fields. In cases where the fields are higher,

we shall estimate corrections to J due to the fields.S

In soil, the recoil electron range is only a few millimeters (soil

is about 10 times more dense than air) . Here the fields are never large

enough to affect the Compton curreAt. Gamma rays are attenuated by a factor

e in 15 to 20 cm of soil. Hence the Compton current is appreciable only in

the top meter or two of the ground.

The conduction current is generally well approximated, in both air

and soil, by Ohm's law,
-* c
J = a, (1-10)

where o(mhos/m) is the conductivity. In a r, (Y depends somewhat on !,

making Maxwell's equations nonlinear. We can usually choose an F-independent

value of a which over-estimates coupling effects, Since the air conductivity

results from ionization produced by the Compton recoil ;l-':.trons, CY depends

on time and posi.tion. In the ground, u is independent of li, except at very

high fields where breakdown occurs. It is also little affected by ionization,

except at very high dose rates. It may be assumed independent of time and

position, but it does depend on the frequency of the driving E-field (as
dues al so c). These points will be discussed in detail in later sections

14



1.4 A STANDARD FORM FOR MAXWELL'S EQUATIONS

We shall write the dielectric permittivitY in terms of the value

C for free space,

S=Cr0 0 -i

where Er is the relative permittivity. If we also make use of Equations 1-9

and 1-10, the Maxwell Equation 1-2 becomes

S -÷ -* oTF + B V 13 . (1-12)

it is convenient t.o replace c'0 and p O by two other parameters, namely

the speed of light in vacuum,

C i ; 10 8 II/see (1-13)

and the impedance of free space,

z_ - 120'n ,• 377 ohms , (1-14)

These equat i.ons can be solved for p 0 and c

z0 /c , c" t/cZo ' (1-15)

lnaser't i g these express .i ons in Equati on 12 gives

7 D-t Z J= - Z 01O , + cV x l) (1-16)
0 Dt - )s 0

Eivery term in this equation now has the dimens ilons volt /m" ; note that c11

is tihe electric field of a waI\e in vactuum, as fol lows from liquati.o0 1-1.

In the remai.nder of this relport we sh.all drop tlie. subsuisc __ r on

; wi 11 always mean the relative permittivity. Thus our1, standard form

for Maxwell's equations is

15



ýB
- - 7V x B ,(1-17)

- =• - >. .+
cDt O s 7OE + cV x B

We note here also the relation between the current I(arnps) in a wire and

the static magnetic field B1 encircling it at radius r,

2TrrB = %I : Zo1/c or I 2'rrrcB /Z 0  (1-J9)

Finally, note that

Z 0  /27r 60 ohms (1-20)

REFERENCES FOR CHAPTER 1

1-1. For general background in electromagnetic theory, see Stratton, J.A.,
"Electromagnetic Theory," McGraw-Hill Book Company, New York, 1941.

1-2. Longmire, C. L., "Close-in EM Effects Lectures," LAMS-3072 and 3073,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1964
(Unpublished).

1-3. Longmire, C. I.., "Theory of the EMP From Nuclear Surface Bursts,"
LANC-R-8, Los Alamos Nuclear Corporation, Los Alamos, New Mexico, 1970.

1-4. L.ongmire, C. L., "On the Elrctromagnetic Pulse Produced by Nuclear
Explosions," IEEE Trans. on Ant. and Prop., Vol. AP-26, No. 1, p. 3
(January 1 978T.

i1



7M

CHAPTER 2

THE IMPEDANCE OF SOILS

2.1 THE RC MODEL

Scott2-1 measured the conductivity and permittivity of many
6samples of soil over the frequency range 102 to 10 lIz. Hle noticed that

the results correlated quite well with the water content of the soil. lie

made mathematical fits to his ay and a results as functions of frequency

and water content. In making these fits, lie made no attempt to ensure that

0T(w) and a(w) bear the relation to each other required by causality.

Longmire and Longley noticed that Scott's fits could be refitted

very well by assuming that between opposite faces of the soil sample there

is an RC network of the type shown in Figure 2-1. In this network, 1/R9

represents the zero-frequency conductivity, C represents the infiniti-.

frequency dielectric constant, and the other branches account for the change

in a and c with frequency. A good fit was obtained with one such branch

for each decade in frequency covered, with the time constant Ri Ci of the

relevant branch chosen equal to the reciprocal of the median u) in that

°.1 -1 - -cC
0 J C3  C4

0 R ~2 3 R 4  1

Figure 2-1. Network representing soil impedance.

17
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4,

decade, i.e., (R.C.) = 2'0rfi, where f. is the frequency at the lower

end of the decade in question. Thus the products R1 C1  were chosen

arbitrarily, to cover the frequency range uniformly. The ratios R. /C. and

C. were then chosen to fit Scott's c curve. Only one parameter, R0 ,

was then left to fit the a curve, but it was found that a good fit to a

was obtained. Furthermore, it was noticed that changing the fit for a

soil of different water content was accomplished by scaling all of the

resistors, except Ro, by the same factor and leaving the capacitors unchanged.

Longmire and Smith2-3 used these results, and data at higher frequencies,

to make a "universal impedance function" of soils over the frequency range

102 to 10H8 Hz.

2.2 THE SOIL ADMITTANCE

The Maxwell Equation 1-18 for fields varywing as eJ (j2 U 1)

takes the form

rjl = - Z J + cV x I , (2-1)

where

ZU + . (meters) (2-2)

In Equation 2-1 the conduction and displacement currents have been combined

into tne term on the left. If we define the admitto nce Y (n of init

volume of soi. 1by the relation between total F-driven current , and i'

= YEj (2-3)

then obviotusly

2 Y y r = , 4 jwcr 0  (2-4)

The dimensions of Y are mhos/meter, ,'hilc those of ia are (meters)

We shall call q the relative admittance.

18
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The admittance of tile RC network is

+ J + jwn (2-5)L JwR C

The real and imaginary parts of Y are related to I and rh by iquation

2-4. Defining RC rates 13 by

(Rl ) , (2-0)
n nn 11

Reference 3 fits Scott's data hy the formul a

o-() + + +£ (17)

I0lere o is the zero-firequency conductivity, ,. is the Iii Iii to- frequca'cy

eClative )iet'mittivity, F0 is the permittivity of free space in MKS units,

the an are a fixed set of rates,

= 21 (lo)"-1 sec 12-8)

and the a are a set of dimensionless fit coetff'icintuts. 1or soil counta i. I

iiag' 10 p)er'ce'nt water by voI[ltme the fit pirameters are given in kable 2- 1

For this fit tile relative permlitt ivity and coa'Jaactivity ara

13 a

I. : ! + aa' I I (n/V})

12 =l 1(+{-1fi ,

n-- 1 + {(,1/V• }II

It Call hc e se n I.' deca'ea ses wh i I C i laca''a!:CS With i ICI'e'S i 1a0, V 1''( 1J1l'I I VC Y

of'[1h11d 0 :1 'L-ui 11- as fnait ti 11 C" VreqLaeIcIC\ ar1 gi ve), i VC i :iýr, es 2-.

amid 2-3. Hilaa'c 2-1 shows how 0 () V'ri .es with wt;tcl, coalit at aalld also

V U. t tI a s. IcuI ' Factor 0\' WhIIi LII thL r1 at S I. I'5 I Ia e Il at i I i d f r

LII'lea'eaa1t Wat LeI co0l (ut

.19
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Figure 2-4. Frequency scale factor F and zero frequency

conductivity -, fromi Scott's results.
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Table 2-I. Fit parameters for soil containing 10 percent
water by volume.

Cy 8 x 10 mho/m . = 5 (relative)

n an n an n an

1 3.40(6) 6 1.33(2) 11 9.80(-l)

2 2.74(5) 7 2.72(1) 12 3.92(-l)

3 2.58(4) 8 1.25(l) 13 1 73(-l)

4 3.38(3) 9 4.80(0)

5 5.26(2) 10 2.17(0)I 8
This fit is expected to be good for frequencies between 104 and 10 Hz

for a wide range of water contents. The author has never seen any data that

cannot be fitted reasonably well by this model by adjusting only the assumed

water content and the value of a0  (to a value that may be different from

that indicated by Figure 2-4).

The fit for the relative admittance is, according to Equations 2-4

and 2-7,

13 j /cr Zo0 G 0 + -Co+ - y a ,jW/ (2-11)

n=1 n i-+ a /r n

2.3 CAUSALi'rY AND REALITY

The requirement of causality is that the current must vanish until

a field is applied. For example, let E(t) be

E(t)= 0 t < 0
(2-12)

E(t) E0e-Yt t L 0 (Y = real, positive)
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The Fourier transform of E is

S(12-Wtd0
E(wo) I- E(t)e-l d C ( t (2-11)

f jW

The current density in the frequency domain is then

E0

J (w) = Y (o) " .i' (2-14)

and in the time domain

1 Y %, 7 e C a ~
J (t) = jwt d."t d (2-15)

For t < 0, the integration contour can be extended to enclose the negative

imaginary half plane. The factor 1/(y+fj) has a pole at = jy. If
YQw) has no poles in the negative imaginary half plane, the integral will

vanish as required, for t < 0. Inspection of Equation 2-7 shows that the

poles of Y are at s = onae in the positive imaginary half plane, Thus

causality is satisfied. The generclly required relation between a, physical

,(t and i•ata is t hey muast iform1e the real and i onagoinary parts ofe a
complex function wvhich. when analyticalily continued from the real wJ axis

into the negative imaginary half plane, has no poles there. Any RC network

provides this property. Rusonances in ., and K. could he accommodated by

adding inductances, but it appears that none are needed.

The fWo that the electric field Ei(t) and the current density

Qlt) are re.al functions of time places another condition on the admittance

Y ,.) and the relal ive aumittanco I(,). tOr general real H(t), Equation 2-13

shows that the comlex conj ugate HO*(W) is related to lHi) by

I!*(,1 = HIM( .. 2 1•

The same relation holds between .1*(;,.) and ,J( ). Since

Y'N,) *= H) /1(,H ) (2-17)

24



it ful lows that Y and rn also obey the reahity condition

Y*((.•) = g(*(-) ,
(2-18)

•* (i) ~ n(-Cu)

From quat tions 2-2 and 2-4, it then follo that

o(-(0) = a(w) , -(-.) = C (W) . (2-19)

2.4 EXVONENTIALLY RISING FIELD

In the early part of the I.MiP the electric field l ises approximately

exponentially to a level fairly near the peak field,
c~t

li(t) -E 0 at (2-20)

l121nce it is useful to Cvaluate t- for the case in which .iw is replaced

by 'X. One obtains thu real expression,

13

0y + c£ el + a (2-21),n=: oI +P1

A gratph of C, as a function of: (. for the 10 percent water soil

is shown in Vi gure 2-5. The s..ame ftigtwre shows the real and imaginary partrs

of ni s a tunct ion of' wi for the oscillatory case. Note that while

there is no simple relation betwe en nl(fx and i r (w) and tIi (w,) , except

that contained in iqua t i.on 2-11 , i I(,.) is not far from the sum of t r(w)
and n ((.H) for W =x. (Ac'rally, ri (a) is a little less than the sum..

We shall cal I the case graphed in Figure 2-5 our standard soil

25
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2.5 TIME DOMAIN TREATMENT

Refe'rence 2 showed how to treat frequency-dependent media in the

time domain, Write the total E-driven current that flows into the network

as the sum of the currents in its branches,

C . -+ -5+ + (2.-22)
0 n

where

t

J - fJfndt) /RnCn

t

(C -f ndt) . (2-23)

Comparison of Equation 2-5 with the fit. formula (2-7) establishes the relations

1 an
C : : 0 , , C = an (2-24)

Thus E1quations 2-22 and 2-23 can be written as

Z j (y 4. ZOG(o1 : + , (2-25)
0n

t

1) -I•dZ 1! - , dt (2-20•)

I nserting Z JI. f or IIE in Equn ti.on 2-1), we can take that equn ti.on back
t.o the ti.nc domaiin , with the r'es It

C, t = - Zo(.J+o F+ + cV x I. (2-2/)

C t 0- - SQ(05 o11

This is the t i 1e1- d oai 1 tform otF tIe 1' axwe l1 eqtm t i.on (1 - 18) for thie freqenLcy' -

depeindent medium.d The ,I are to he ohtaiined From uIn ittion 2-26, whi.ch can

27
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bo converted into a differential equation, if desired, by differenti.ting

it with respect to t.

The fact that J is a vector mcans that Equation 2-26 must be

solved for each non-vanishilng component of 13. In a strat~i[ed medium, the

paraitllores (0 , cc' and the al Could have diffeorelit values for different

directions.
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CHAPTER 3

SOURCE REGION ENVIRONMENTS

3.1 INTRODUCTION

A complete discussion of lIMP environments is beyond the scope of

this report. Theoretical discussions are gi.ven :in References 1-2 to 1-4, and

many detailed colllputCVr-based calcLlations have b)eeon made, Access to mutich eOF

the available information is control led by such U.S. Government agencies as
the Defense Nuclear Agency and the Air Force Weapons Laboratory, The

Govern'nent normal ly provides EMIM environment specifications for systems itspollso,'.•

Io.1' tile purposes of this report, it will be necessary to know Only0)

Lhu gllen 'aV lFettures of the M1MP envLronment, sochII as the order of' magnitude

of r'iv times, ampl1itudes, and decay tines, and approximate relatiohs between

(Wrptor ilrr'nt, air conductivity, and the fields. These will be presented

in this cl;Iptor. Predictio urs OF COtIlj inag to actaal systems should use

Civ I ronrrent s supp . ed I)>' the SMpn sOa i ng agency.

WihLie it should not be assumed that tile environments hypothesized

.n this chapter are precisely correct for any particular real case, they are

repr'esertativ e, in crIide approxirat on, of those that minight e 01 observed at a

pi.nt on or near tile ground surfface at a distance of' 500 mreters from a 1

rrregatoon explosison at tile ground surface or wit hiln a few to: ls of rreters above

tire surface.
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3.2 THE GAMMA FLUX

Figure 3-1 shows a gamma flux as a function of time, which will be

used as an example in later sections of this report. The quantity graphed

is actually the dose rate delivered to air, and the relation between dose

rate and the actual flux F of gamma energy isY

MMeV 13 6rads
F 2 x 10 (3-1)
Y1 m2sec sec

The average energy of the gammas is about 2 MeV per photon, although the

total spectrum covers the range from a fraction of 1 MeV to many MeV.

The time indicated in Figure 3-1 is actually retarded time, i.e.,

the time origin is set when gammas first begin to arrive at the observer's

position. The time for gammas to travel 500 meters is 1.67 microseconds,

since the speed of light is 300 m/ws.

In a crude approximation, the gamma flux is collimated in the

radial direction from the burst point (the point of the nuclear explosion).

In the case assumed here, the flux is approximately horizontal. Due to

scattering and finite source size, the actual angular distribution of the

gammas covers several tens of degrees around the radial direction.

Figuire 3-1 indicates what sources are responsible for various

parts of the gamma flux. The ,[rom!pt1 gammas are emitted by the nuclear

device itself. Air inelastic gammas are made in inelastic collisions of

energetic neutrons, emitted by the device, with the nuclei of air atoms.

G;round capture gmmmas are produced when neutrons are captured in the ground

near the burst point. Air capture gammas are produced later when neutrons

are captured in the air. Fission product gammas are emitted over long times

by the nuclear fragments resulting from fission of uranium or plutonium.

Of these sources, only the prompt gammas have effectively a poi.nt source;

the others ori.ginate in volumes with dimensions of the order of a few

30
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hundred meters. Figure 3-1 has been drawn as if each of the sources, except

the Prompt and fission product gammas, w--re a decaying exponential. Note

that thle doses from each of thle sources are about equ~al, since the sources

with lower dose rates last longer inl time.

The rise of the prompt gamma flux has beenl chos en exponlential

intimei, i.e. , 

I
1) =Ae0"t ,(3 -2)

where A is a constant and a has been taken as

2 X 1(0 sec . -)

'[he exponent i.al forilm iLs Crudeliy re[Yres nta t I'v e , anld is cony en .1 cut for Cal-

cii Iation !.W. The VU1a he of (% chosenl is Ill the correct ranlge , hut Shou ld not

be taken as e ither' an upper or a lower hound onl actiiii valuesc.

3.3 THlE COMPTON CURRENT

6(1111 ln ray tralvel ing) thirough ma1"tter, coil ido occus ioiia I y' wi~th altomilc

electrons, knocking, thle electron enrl pol ly1) folrward and scattoer i u the photon.,

[The me1anl free pa tb of. thle gammilas Ill all' for' theseo Comq~toni sca-I-t ,tery In co I I ; i.ons

I s a feow hun11dred me1ters . Thle reco i I electronls, wh I ci have inlit iaI l enrgi es

of' aIbOut I NeV , 11iove 1ip01 'd~l% 11n average of' a few iliet er I'S lcore, 5(01)1)i iig

Thfus a steady 1'11uX Of'gma i 11A produ1ce a stteady HUY 1:i of ) recoil1

ci ectronls , inl the sameic directionl, of) aIhohlt I polrcent of' the gammall f luix, T[he

\ ill Sec IlSecc

holds-- approx ima tely inl air (an1d inl other medi a Of low atomlic. iiumherol ,Such as

so i 1 ) over thle gmiliiii enlergy' ranlge of, i literest: hŽre . From Fbqu"t ionls 3-1 an1d

3-1 , an1d thle char11ge of' an1 electron, onle canl deduce an a1pprox imuite re I at io

for tIR' Com[pton- currenUlt J,.i i(yI Ithe Source of, Dll)
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2 so!

o im ii tetime of a r eco i elcI tron1 (betfuore s topp lang) i s abou t 108second

ill real time11, and about 10() second inl retarded time (tile electron moves
forwar'd at about 0.9 oil thle spccd of light) . Thus thle steady-state relat ion

P(3-5) is va lid when the changes inl 6 inl perlods of 109 second tire small

compared with .'Iiscondit ion is fairly well1 sat.isfi'ed 1by the dose rate

11n F igurie 3-1. Tlbe' Compt on current den sit y g raphed il n Pi~gu ro 3-2 .Is obtai ned

lioili Equati lou 3-5.

3.4 THE /\IR CONDUCTIVITY

Bach Comptona roco ii celect ron , In s I owl. g down , produ(ces; about

1 I0 pal., of a' secondary ci cct runs and positiv.1ve ions , whl .ch make the, a i. v

01 ect. V.! c1. I ly conduIct. 11) .g ,The rate ot' product I iloI* a !on 1. m'at ia oi 1 -, (1 r'eel k

1 )V0j)OVt I 01111 to thet dJosO ralte,

S(li9\i?,11ýi) 2 x 10" ()-0))

'Thu t're ci ect iuus , b~ecause at" the ir small I nas s, retsponld ma ul'e qaIlik Iy thail

lolls to uppi lied electric ticids , anld are thet dam )I mintlt can~t u'Ihuito'S to the

aii ..o''2iduict.ivi t> at' (a 1 11) thi ins. Itawcvvei, thilt, oect i'aiis gra'dual ly attach

thmevsto () I ciii es, [aim 111 the 11egt ic !eoin 0. 'the' raýte a

a)I "Iat taIhclunit per, electronl Is5 about

aH I 10 sec "I, (3i-)

inl sea- level. at Ii. '[has t~he density' N ot' free, electrons" saItisfites thle

ý) N
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If the dose rate rises exponentially, as in lEquation 3-2, the solution is

N(/electrons ..... 2 x 1015 D (3-9)e 3 a + aa +a
in

On the other hand, if the dose rate changes little in periods of 10 8

second,

S 7
N V-1 2 x 1 l0 . (3-10)

e a

This equation is obtained from (3-9) by setting a 0.

In the presence of an electric field E, the free electrons drift

through the air at an average speed v which is roughly proportional to I!,

+v = .~e (3-11)

The electron mobi ity p is of the order of magnitude

0. in 1 volt(eec m '(-:

in sea-level air. Actually , 11 depends significantly on E, because of

Joule heating of the electrons, and a better expression, over the range

3 x 10 < : - 3 Y 10 , is

l1e C .5 , I;* = 3 x Ij V/n . (3-13)

Thc clectrical conductivity ,o is the ratio of the conduction

current density .1 to 1. Fromt the equations above and the electron

charge c, the electronic conductivity can he deduced as

o0 N .8 x 10W 11ho/111 (3-14)

After the peak of the dose rate, (i should be set equal to zero here.

At late times, the air conductivity is dominated by positive and

neigative ions, because they di.sappear more slowly than electrons. The

equation governing the positive ion density N+ is

35
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I ere N is tile densi~ty of negative ions (01) etc. , and h i s thle mutual1

neutraliizat ion coefficient for posi tive and negative ions . The value of b 4

isi - 12

-s 2 iN / (3- 1(

At late times, most of the e1ectrons that have been produced are attached

to e ,, so that Nd N T iTe sonlution of Equat ion 3-15 is such thal the

two termis on the right-hand side iearly balance, and @Ns /dt is s ot: I

complIared wi-th either of these terms, so that

N n N+n11777 (3-17)

The mobiltv or the ions is about

-4 n V
. 2.5 < 10 () ---- (3-18)

rhe ion conductivity can then be deduced as

MOO 20 < 10 h nho/mn (3-19)

Comlparison of this result with lquation 3-14 with q O, I = lk*, shows

that , and o are equal when 1) k107 rads/sec.

The electronic and ionic conductivities and the total conductivity

are graphed in Figure 3-3. For the electronic conductivity, tF has been set

equal to IP*, so that the result is indicative rather than precise,

especially at early t nmes when H will be larger than I*.
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3.5 SCALING WITH DISTANCE

The gamma flux of Figure 3-1 is crudely representative for an

observer at 500 meters from a 1 megaton burst near the ground surface. For

othei yields ,y and distances r, the gamma flux scales roughly as

2- (3 -20 )
S2

r

Here X is the effective mean free path of the gammas in air; a representative

valuc in sea-level air is

S-- 300 meters . (3-21)

According to Section 3.3, the Compton current density has the same

scaling as D. The scaling of the air conductivity is less simple; a

scales as D, while a. scales as %. At early times, a is dominant at

most distances of interest in this report.

[ 3.6 THE RADIAL E FOR SPHERICAL SYMMETRY

The Compton current J and the air conductivity a are approxi-

mately independent of angle about the burst point, The presence of the

ground destroys complete spherical symmetry, of course. However, for

observers above the ground, e.g. , at power line hiights, the effect of the

ground on the fields will not occur immediately, but will be delayed by the

finite speed of light and, more importantly, by the diffusion time of fields

through the conducting air between ground and elevated observer. It is

therefore useful to examine the solution of Maxwell's Equations 1-17 and 1-18

for the case of radial Js and spherical symimetry in Js and u. Note

that = 1 in the air.

The fields I and -A start from zero. Integrating Equation 1-18

Sover a smiall time interval will give, by integration of J a radial and

38
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spherically symmetric E. The curl of such an E vanishes, so that

r integration of Equation 1-17 leaves B = 0. Thus the V x ý term in
4-

Equation 1-18 remains equal to zero, and E remains radial and spherically

symmetrical. The vector signs may be dropped and Equation 1-18 becomes

I ZOJs - ZoE . (3-22)

Note that this equation contains no spatial derivatives: E is determined

at each point by the local J and a.

At sufficiently early times J and Y are small and E1 will bes

small, and aL will be negligible compared with .Js. In this time frame

L ý C Z /Jsdt .(.3-23)

If J rises as exp(ft), E, will also, and

cZ 0
E - J (3-24)U s

In this time frame, it can bk. sai.d that J.3 is charging up the capacitance

of space (cZ 0 = i/ 0).

Eventual ly YiE will become comparable with Js' if the dose rate
s

is large enough. In this case the Rl:/ t term can be neglected in liquation

3-22, giving the approximate solution

,1

- _ E - . (3-25)

This equation defines the saturated field 1;, which is such that conduction

current cancels Compton current. Since ,1 and u arc both proportional
s

to I) (at early tnimes) , they tend to rise and fall together, so tiat 1: is

almost constant aftor saturatiion is reached. T'hu'.V l1/'7)t is i ndeed sma 1.
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The value of: can be determined From Eiquations 3-5, 3-14, ands
3-25. 'rh" resu1t comes out directly as

4/a +
5 x 10 -1- -) -

W.ith the value of 1I1 given in Equation 3-13, this result becomes

2 x) 2 0I0L (3-20)

Thus , if saturation OCCurS drinit lg the exponent i.a I rise i n the s amp le glamma

flux wi.th a 2 W I0), the peak 1: will be

10 V/1 . (3-27)

Ilowever', after the peak in the fatanail fux (t (, a1d11

1: 1• 2 .< l)1 V/ i( -2 )

At late times, when the il conductivity is doml.innt, 1: falls rolghly "s
IFj) h1owever , by this tiIe the effect of the grotd asymetlly

he Felt. Figure 3-.1 shows IE(t) for the .iai plo case, niegI.ectilig the ground

effect altogether. Not.c that the peak 1: occurs beflore the peaks in I)1a mid
,J

5

The questioii as to dhet.her or when k reaches the saturated value

call be answered by comparing the Calpacitively-ti liited field o01 FqUttion 3-23

or 3-24 with IUs. '['bias saturation will occur drnai ng the eXponent iaI rise if

cZ J
I .. I ; = I' l(X• s s ;

o r i f:

"" × 10 ifiho/ni (3-29

in the example, Figure 3-3 sh'ows that this occurs well before the peak a.

Satuarat i oia i:s 1ilauch aas iea' to reach afer, i" the peCAk of the gaailllaa flux.
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'Fhe dIffusion time of ground- ialdt-ed fields to elevatetd observers

will be discussed in Section 3.9.

3.7 FIELDS GENERATED BY AIR-GROUND ASY1IMETIRY

TIhe i'ad Lai H of Section 3.6 -is gem. rited everywhere in thle air

In thle beginnin11g, H owever, thle ground, D6111" :usual I y (but not always) a1

better conductor than the Liii, shorts out tile riad hld 11 applieid to It. A

Current flow., InI thle ground, mid th~is (:urreflt i ndocos a horizonta I magnet ic

field, III thle direction perlpeldiculL: 1 to the app lied raliii 11 (1 .e. , In the

a zi~muthal di rection around thle burst point) , and hiot'zonital and voert ical

electr'ic fields . '1h1 lInduced hor izontal E -fi~eld approximately cruice Is the

app I . d radial 1: at thle ground sur face, n, thle usual sy'st em of spherical

polIar Coo rd inat es w i.th r me1asu red fr om thle bors t poIin t, 0 measured from11

thle V ert.i.calI , and (1 thle a zimu11tha I angle, thle flu Id Components p rek ent a me )

H), ,and IIq . ['eIndunlced f i.e hs p)ropagate away fr'omu tiuci po int a I'

generat ionu, through thle Coniducting11 airl and s-oilI

A det a lIed exposit .ilonaf the gLroun~d- in1duced Oields is pu0'S!1 hi0 (sue

Re ferences 1 -2 to 1-4) but Ieng thy , and w ill not be g iv en here . Qual IItlt at iV V

tiider stanldhi.g call b)0 h ad b)y recog ii zi rig three phases . '['he wayo occurs
;It C I y' t iIQ; mswhenI tile ai1r conduc~tIV1tyl 1S I img i ) g iVh o, sima I IIti

phase the ground- i duiced flueids propagate through thle allr rather freely,

hut with Somic attenuuat.ion d11e t~o the mall oduIct lvi ty. 130cau1,SC thle

rad ial 1 pi e to thle gr11ound aIppeairs to move oultward w ith thle Speed~ Of

light (thle speed Of the g ailma Flu x)I, the g round Induced F ie 1ds radi.ate c h i ef 1 \

outward in a Small aniguiLi , zone' (inl () ) just above the grud T[he 1Ic Ieds

a cpredo~llminat ly I1: and [3 ,and they have tile relation 1: C B

appr'op)r iate for a voe t i. a lly pa I ar i z ed transverse wayve propaguat in ig a lOng thle

ground . 1: i s sma I11 at. tile g round , hult r ises to thle radi a] 11 of Sec t ion

3.0 'Iat thle upper~l edge) of. the1 small anguila r .,one. Foir a gaimma flux r isintg

its o xp ((xt) k Iit ad 13, rise first as exp (aIt) , thenl as, exp il'I) where
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cx' is a small fraction of ca, and then as exp(cat/2), the differences being

due to the effects of air conductivity between the burst point and the

observer. The last time dependence is the most important, since it goes with

tile largest field amplitudes.

The wave phase ends and the diffusion phase begins when a reaches

the value indicated in Equation 3-29, This is the time when tile radial E

saturates (without ground effects) and also tile time when tile conduction

current exceeds the dIsplacement current. Iii the dlffus'.on phase the term

DlE/c)t can be dropped from th1e Maxwell HEquation 1-18. The two lEquations 1-17

and 1.-18 then def ine a di ffusion problem liIke that in the weli-known skin

etfect, as will. be discussed in Section 3.9. True wav,' propagation ceases,

duo to conductivity. 13(1) cont.inues to Increase as exp(1xt/2) and U.
docreases as exp (-(,Xt/2), Er is limi.ted, at the ground surface, by the

fini.to grc'ind conductivity, and is nowhere greater than 1: The ground-

indluced fi.'elds di ffluse up Into tile air until thley' can go no further, i.e.,

untIl the ski.n depth In the air is complaiable with the raditus I. frolm the

bur:St.

When the d.1f i"uslon is complete, the quasi.stat.1c phase begins. In

th.; phase , tile deposi.tion of cha.rge by the Compton current is balallced by

removal of charge by the conduction ctirr'ent drivIen by the static electric

field. The electric field is thIns derivable from a potelntil a ,1,

1 - V( (V x 0) , (3 -3()

and the conservation of charge, lqamition 1-7, becomes

V (. T - iV " 0 *(3-31)

WVith A aind y given, thi.! eqUatioll deteml'l1ines (1, from which F, can he

computed. The magnetic f i.e1d i s then determnnilned hy the static formn of

E(huat ion 1-18,
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z
13 ... (J +Oli) , (3-32)

The ftields in the quasi static phase are not exactly static, of course, hut
the clanges are so slow that the time derivat'.ive terms in Maxwell's equations

are sm111 compared with other terms. The correct fields at each t ine are

near tha stat iC soIlati. on For the ins Uantaneous *J and aI. The approoximate
s

solutiln of: l.qunl ttionls 3-31 and 3-32 will. be discussed in Section 3.12.

One addi.tional point must he m1ade regardidli, the difft'usion phase,
At. posLtions sufLf KIQcutIy close to the hurst, the leak air conducti.vi.t.)' 0a
exceeds the ground conducttivi.t~y ?. Siorie so i S . conducti.vltlas ar'e UsuNaly

not much greater thaln aholut 10 10ho/m1, tili.s is true in the case ot Figure
3-3. ThiCs coIdl i ion pod if i Qs the di tH.ion I ol)1l)l iiM to 0oS0, ext-ent:. When
a• > > : '. I11 right (lowIM to the grotiiid Sill'I faCe. III additiOil, the

Comiipton curi.'ent in the top Iay'r of1 the ground (the to1 ) ha IC matI'r or 0so)

becomes an i.mliportant soulrce Of ieClds, Us Will he di(scus.sed in Sect: ion 3-11.

girure 3-5 shows the l'i.ILds in the alit' .!ust nhovo the gi'ound as

funct ions of, t ine. These fie Ids are cons.i stunt w i th the sourcess in the
cxaiilqll e discHý,;U.d iln this Chapter. Although the)y have not been ol)ta•wi, d in
detailed calcallation:;, they will stiff ice for oitii dave lopmient (t" sourice- retgion

Omll)l i1rig, t hl() rv .

In the emla ini ,ig sections otf this chapter, soiliawha t: movre datnailad

di scussions of' the phases are given. In readin;g these sections, it will he
usscful to rel far to IFigutre 3-5! tio' i lltist rt:ion of the eatiiures deduced o(r
stated.
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3.8 THE WAVE PHASE

At early times the effect of the air conductivity is either

negligible or small. At these times the ground-induced fields are well

represented by outgoing spherical waves. While both outgoing and ingoing

waves are geelrated by tile Compton current (in the presence of the ground

asymmetry), the fact that tthe Compton current moves outward with the speed

of 1ight , iiii.intainiing approximate paMse wiith outgoing ENM waves, causesC

the outgo.ig waves to be bui.lt uii to amplitudes much larger than those oF

the i1ngoing waves. Tihe effect of thle air conductivity is to attenuate tile

outgoing waves to some degree. In the wave phase, the air' conduct ivity is

genle'a Ily small coptijnr'ed with thle ground conductivity, and in first order

the ground may be regarded as a perfect conductor. The f"initeness of the

g)round conduct ivitty leads to some addl.t loulna Litt enuclt ion of the outgoing
Waves. I

Thu relation between k and 1I and the attenuition of' the out.-

going waves can be understood by consisderhing plane waves in it conducting

medi .1111, On the assiIIIl)t i.o that 1ý and 1i have the foorms

-•,? = -' J1"0 ). , (3'-33)

(wt .- 3

where 1i CB0 are constants denoting amp itude and p11 0 z11V t ion, l:j1at ions

1-17 anad 1-18 become , fo)r freely plropalgating wanves (,is:()

0 B k x 1 , (3 -3,4)

cU kz ck

C r~oss ing k hinto (3-35) and uts ingi (3-34). to el imin •,te, k 1× 1, 0 11dc( c - -"Z o°)l•( - ek x: B kl0

-. 3-3()
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The initial condition (1-3) becomes, for the present case,

* ~ 0.

(It is necessary here to use the initial condition since the assumed fields

are oscillatory at all times, rather than starting from zero.) Thercfore

2 Z 0o o
k - - k2 (- , (3-37)

where k Is det'i.ned as the propagation constant i.n the b)sence of conductivity',

k - (3-38Z

liquat ion 3-37 indicates that For non-vanishing cy, Vw.1.11 be complex, with

real and Imaginary parts k , and ki

k 1~ + kjl

As will be seen in Sect ion 3. 10, Hiquation 3-37 does not require that the
directions of k and be the same. If they' are ar1bitratily chosen

to be the same , so that

• a-.~k , (3-40)

where n is a real unit vector and k is a complex number, then lqtat.i on

3-37 allows a to be a rbitrary) but determines k,

k = k I - j . (3-41)
YT k

When the magn.ittude of the imagi nary term i.n the radi cal is smaall compared

with uni. ty, this solatLon iis approx-hiamtely

z a
k R k -. (3-42)

1. n the a i r L 1, a nd the a t te ua t i oni _lenth I is independent of frcqueacy,

i. 'I•' 4



9, 2/Z (air) (3-43)

The directions of l13 and are mutuI ally orthogona I , with x B

in the direction of n. From Equation 3-34 it follows that tile complex

amplItUdS Of 10 and B10 are related by

(B , (-0 (5-44)

2 Y-k ()

Si nco the Inaghlginry term hore has been as suiiied to be small compared with

tin ity , the magnitudes or 10 and B0 are 1,0lated alpproximately by
0 -0

Ili0 1% 1 , I,(3-45)

dOi In airj

In tile earliest part of tile wave phase, ( is negligible every-

where, Iln this case, the fields will rise as e(:,t i.tf the Compton current

J1 does; hence the name (L wave phase for this regime. The ground-i induced

fields are I:() and 3 in the splherical coordinates indicated in Fi.gure

3-(). Olad thes0eC Iei eId s ar'c produced by the short inlg out of Pl at the

groulld surf:.ICeC.

The exponentiaI rise of the I'elds ceases wlien the atte nualtionl

heco mes imLportant anywhere. S i ncc ( is largest very near the nu clear

dev.ice, attenuati.on first 1ecomes important at I, = rO the radius of the

device itself. The transition occurs when the attenuation length Q

becomes lss than 10, i.e., when

oc O -- 2 (3-4o)
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z

r
0 r

AirBurst Point */Ground Y'

Figure 3-6. Cartesian and spherical coordinates. The x,y
plane is the air-ground interface.

This condition is reached very early in the rise, and it is 'difficult toI, detect the a. wave phase at appreciable distances from the explosion.

Let an observer bc located at radiuls r >> r(~ If r is niot

too large, attenuiation will eventual ly become important at this distanice.

At most distances of interest, the dominant variation of (5 with distanlce

(at constant retarded time) comes from the factor c,/ in Equatimn 3--Q1.

i.The time of A-saturation at the observer is dtef-ined as that when Z
becomes less than AX, i . e , wheni

2 _5,

U (r) L: 2 x 10' mho/m at r .(3-47 )
z0X

The condition (3-46) is also calicl X -satu~ration at r 0 * Between the

retarded times at which the conditions ('--40) and (3-47) are reached, the

fields at r rise roughly as o Ie , where al is a small fraction of (A.*

After A-saturation at the observer, the fields 13 and B
at/2 arise as e ,pr~ovided J sis still rising as e .This dependenice

conitinues until Ya reaches the value indicated by Equation 3-29, which is

called a.*saturation, and is the condi tion that conduction current exceed

displacement current.
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The end of the wave phase occurs, for a given observer, at the

time of c-saturation at his location. During the entire wave phase, the

relation (3-45) holds between E and B These fields are confined

chiefly to a layer of air just above the ground, with thickness 6 of the

order of a few meters. At the onset of cu-saturation

6 -•c,. (3-48)

and the fields are

cB P m -: :s (3-49)

Here E is the saturated field defined in Section 3.6.
s

3.9 THE DIFFUSION PHASE

The diffusion phase begins when the air conductivit)' reaches the value

given by Equation 3-29, and in it the displocement current is negligilble in the

air. The dominant fields are 1: and 1. 3 :r is near the saturated field

Is except in a 1 -yc r just above the ground, and B1 is appreciable only in

this layer. In this thin layer it is convenient to use the Cartesian coordin-
ates indicated in Figure 3-6. For an observer located on ori near the y axis,

the y-direction is approximately tho same as the r-direction and the x-di rection

is approximately the same as the -4,-direction . The distance above the ground
is z. NMaxwc IIs iEquat ioils 1-17 and 1-18 become, tfoi this case

- - (- { 3 - S { )
)t '

Z{31:, - (,J C(3-51 }r r 3

Subst i tlt i ng I! from thie second equat ion in to the ftisrt giJves

f z z) 2
r

... . ..... . . ...



This is a type of diffusion equation for the magnetic field. The first

term on the right-hand side is the source, for without it B• = 0 would

be a solution. Both J and a are approximately independent of z in
r

the air, so the source exists only at the ground surface, where a changes

from air to ground, and in the top 10 to 30 cm of the ground, where J r

falls rapidly due to attenuation of the gamma flux in the ground. If the

ground conductivity is large compared with the air conductivity, most of the

source occurs at the ground surface.

The total magnetic flux 5 per radial meter,

°J= f B dz ,(3-53)

produced by the source can be found by integrating Equation 3-52 over z.
Since B and ýB /@z vanish deep in the air and ground and J /a vanishes

r
deep in the grouad,

r =-E (3-54)

air

Thus

t

s - fEdt ' (3-55)

t

where .i is the flux at the time t of the beginning of the diffusions s

phase (u.-saturation) . (Note that B and .F are negat i ve-, i . e. , B, runs

clockwise around the burst point.)

In the air the source term vanishes and a is (roughly) independent

of z. Thus Equation 3-52 becomes

- B
_ c (3-5o6)3t ()c c z"



This equation governis the diffuIsion of B upI into the air. The solution-

i.s (JualitativolIy different during thle exponential rise and after thle peak

of the gamma flux. Durinig the rise, let uIS try thle assumption that

B 0- (3-57)

whecre ~3is a constant to lbe determined. Equation .3-56 theni determines

thle z-dependence,

B -z16

where thle skin depth 6 is

6 = J C7(3-59)

u~ t_ iit/
Since u increases as e , 6 decressdrnih rise as eo The

amp j)iitutie of B ,p can be est ima ted f rom 6 and thle total flux

Bor B z-/6 .(3-00)

Since F i s constanlt du~ringl thle exponeIntial rise of the gamma fl1ux,

Equat ioni 3-S5 ind icat es that ( )i icreases only ii near 1 wi th time , or-

sl ow ly compared with thle exponient ia I inicrease of 1/6 . ThuIs approl-X~Imat ci)'

Compari1son w ith LqIUat' i on 3-5- shows that

Note that in, writing Fquat ion 3-6(1, we neglected thle fluox ill thle

ground. TPhi s i~s permi ssic i hskldetitilebO~l ismall, co11mpared

ground conlductivity is large compare-d With thle a111 conduIct iVi tV. "Ihe case';
ill hi~ t~i:;C01dit~lldoes not110d %.'i1 1h c iS LsSd i Sect ion 3. 11.



After the peak in the gamma flux, o falls and the skin depth

increases. Note that Equation 3-56 can be brought to simpler appearance

by changing the time variable to 1 defined by

t
dT cdt I cdt (3-63)

'~0 -, 0t P

where t is the time of the peak. Equation 3-56 then becomes
p

(3-64)

Solutions of this equation can be found as functions of the similarity

variab I z/ 'VP?. Thus the skin depth is

1)116f(f(3-05)

t 0

The amplitude of 13,) call again be estimated from E{quations 3-55 and 3-6(0.

ligure 3-4 shows that 1i , after falling about one decade from its

peak, is then almost constant for several decades in ti me. During most of

this interval, Equattion 3-55 becomes

t 1E t (3-06)s

F igure 3-3 shows that, to a crude approximation, o can be written over the

same time interval as

t
c(It) a (3-67)

p t

where the subscript p) indicates pe;Ak valuties . With this approxi'nation, the

skin depth becomes

5
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2 1/2( ct2 )(-8

Sp2Zapt

From Equation 3-60, the estimate of B is

CyZ • 1/2

Bq) • ES(• Pp) (3-69)

Thus B is roughly constant in time in the diffusion phase after the peak

of the gamnma flux.

As stated before, Er tends to be small at the ground surface and
r

rises to E1 at heights of a few skin depths. If the ground conductivity
s

0 is not very large compared with the air conductivity (aY then E atg r
the surface is given approximately by

- + a 77 . (3-70)

a g

This formulae comes from considering the impedances of air and soil within

one skin depth from the surface. The return conduction current that would

flow in one skin depth in the air, if the ground were not present, is shared

with one skin depth in the ground.

The field 1: would be small in the diffusion phase if it were

not for the effect of the magnetic field 13 on the Compton current. The

Compton electrons are turned upwards, away from the ground by the magnetic
forc on hem For133 2

force on them. I-or B, greater than about 10 Weber/m = 10 gauss, the

resulting J is comparable with J . A roughly static field E thenr
arises, of sufficient magnitude to drive a conduction current cancelling

Jo' Thus 1:0 is comparable with Es, provided B is as large as indicated

above.
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3.10 FIELDS IN THE GROUND AT EARLY TIMES

Cables and other components of systems are often buried at depths

of one to a few meters in the ground. It is therefore important to see how

fields propagate in the ground. The assumption of oscillatory fields of

the form (3-33) leads to Equation 3-37, which can also be wri" Len as

6W'Wk' .c C- jz 0 (3-71)

The factor in parentheses here is -jtl, where ri is the relati.ve admittance

of the soil defined in Chapter 2. Figure 2-5 shows that at the higher

frequencies of interest, neither the real or imaginary part of rl is

negligible.

The fields in the ground can be related to the magnetic field 13

at the surface, discussed in previous sections. Over distances of only

several meters, B ;t the surface can be regarded as a function only of

t _ r; i.e., except for time delay, B• is the same at different r. Thus

the radial phase velocity of all Fourier components of B, is c, so that

the component with frequency w has radial wave number

k w /c . (3-72)r

Since k has the two components k and k , and since k in the groundr 'Z r
must match that of B1 at the surface, Hquation 3-71 determines kz as

±k = (c-i) - j P. . (3-73)
z C w7

Thus k is complex, so that the waves attenuate as they propagate downward
z

in the ground.

The fact that k is comp lox while k is real means that theZ r

real and imaginary parts of k do not have the same direction. '[he

dispersion relation (3-71) does not force real and imaginary parts to be
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parallel, i..e., phase planes and amplitude planes need not be parallel,

Equation 3-71 determines one Cartesian component of k if the other

com:iponents are specified.

Thu real and imaginary parts of kz are plotted as the points in

Figure 3-7 as a function of w for our standard soil, for which the relative

admittance was graphed in Figure 2-5. Messier (ReFerence 3-1) noticed that

a remarkably good fit to soi.1 propagation constants is obtained by the
simple f~ormula

+ -(-74)z c z) o c

The curves in Figure 3-6 represent the real and imnaginary parts of thi.s

form11uloa, which obviously has the same limits for low and high asI

Equation 3-73. The values of r., and o0 used in the fii.t are

U, = 6.5 , o0 = 8 x 10 inho/m . (3-75)

Note that u0 has thie same value as in Table 2-1, whereas q, has been

adjusted sl ightly to gi.ve a better Plit over the range 10 3 a (,) n 109 sec-1

I" the magnetic field B (t") at the ground surface is reprosented

by its Fourier transfEorm B a(), then B in the ground at depth z (taken

positive) is obtained by propagating each frequency component with its k,

B Wt (w•)exp[j (w~t-k Q110 (3-70I1lB l(z t) = ?') jB (wICI i( tk d ( 3-7( )

If Messi.er's approximation for k, is used, this equation can be written as

B13(z't. = - Ba(i expjjwt' - F d (3-77)

where
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Figure 3-8. Magnetic field as a function of time for impulse
field at ground surface.
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Figure 3-9. Magnetic field as a function of depth for impulse
field at ground surface, at various times. Zm is
maximum depth reached by speed of light in medium,
6 is skin depth.
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6(t) - 4ct (3-82)

Zo 0 -

and the maximum depth reachable by waves in the ground in time t

z(t) = ct/V -c 1 , (3-83)

With these definitions, tquation 3-80 can be written as

B (zt) z6 OXp- (z/6) (3-84)
zVt (1 / L (1 -I-)
i1 1n

'I'his formula contains two characteristic lengths, and so i s not graphable as

a single curve. The two lengths 6 and z are equal when

41(c o-1)8
ct = - z 7. 3 11 or v sý 2.43 x 10.8 see (3-85)

0 0

For smaller t, z < 6, and for larger t, z > 6. The numerical values here
III III

arc from IEquat~ion 3-75 For Mossier's fit. Figure 3-9 show (z,t) for

zm 6 5, 6, and 26, correi;ponding to t = 0.01, 2.43, and 9.72 x 10- 8
11 2

second. Also shown is the limiting case for z >> 6. In this presentation

cvidencc o17 propagation, as contrasted wi.th diffusion, practi callly disappears

by the thine z > 26.

I instead of Bý, Er at the surface (or 1: ) is specified as

Iir(t) or r, (w) the same formulae can be used to obtain IF (or Fj )
ra ra r

at depth. Thus these fields are also broadened in time and decreased in

amplitude with increasing depth.

The determination of 13(pIir and Ez at the surface must be

accompplished by solving Maxwell's equations in the air and ground

s i.multaneously. The analysis of this section does not avoid that work,

but only explains the relation of the fields in the ground to those at the

surface. The analytical method developed here could be used to determine

60



the ground fields if the ground conductivity were always large compared

with the air conductivity. In this case, B (t) could be determined by
a

solving Maxwell's equations in the air over perfectly conducting ground.

Next, B could be found in the ground by the methods of this section,

and E and L determined from B It is more convenient to obtain
r z

the fields by use of the finite-differerce codes LEMP-SUBL.

3.11 EFFECT OF COMPTON CURRENT IN THE GROUND

The attenuation length of the gamma rays in soil is about

X - 0.2 m (3-86)
g

The relation of this length to that in air, [Equation 3-21, Is determined
, 3

by the density of soil., about 2 gm/cm , as compared with that of air, about

1.23 x 1.0 gm/cm . It is clear that any gammas observed in the ground at

appreciaable distances from the burst must have traveled mostly through the

air and entered the ground only near the point of observation. If the

burst were on a flat surface and there were no air scattering, the prompt

gamma flux would i drop to zero at the air-ground interface. Gammas scattered

in the air can enter the pround, but arrive with a t ime delay corresponding

to their longer path. Shince the prompt pul-;e is only a few t imes 10 8

second in width, scattered paths that are longer by more than about 10 meters

than the di rect path do not contribute to the prompt pulse at distance.

Only gammas scattered through small angles can contribute, and the number

of these is only about 5 percent of the unscattered gammas during the

prompt pulse. Thus for a burst on a flat surface, the gamma flux drops by

a factor of about 20 at the air-ground interface and decays further to

negli-gible Values in depths of the order of 10 cm. Since the ratio of Compton

current density to gamma flux is approxim ately independent of material and

de, nsi.ty (see Elquation 3-4), the total Compton current in the ground is equal

to that in only about 10/20 = 0.5 cm of air above the surface. The Compton

current in the ground is neg igiglbe during the prompt pulso for a burst on

a flat Surface.
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If the burst is above the surface, or if the surface is curved and

is exposed to line of sight from the burst at the observer, unscattered

gammas can enter the ground. If the angle between the line of sight and

the surface tangent is •, as in Figure 3-10, then the Compton current

density in the ground attenuates with depth approximately as

÷ ÷ -l I/d
is = J so. o (3-87)

where

d =X sini = 0.2 siný i . (3-88)K g
Here is the Compton current density in the air-ground interface. The

so
current density is (approximately) continuous across the interface, but
decays in the ground in a depth d.

The Compton current in the ground is important when the air

conductivity exceeds the grou d conductivity. At distances of interest, this

happens only during the prompt pulse. In this case, the electric field in

the air is limited by

Line of Sight From Burst
'1) z

Surface

4X
xs

Figure 3-10. Geometry and coordinates for ground field
analysis.
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E •E -
S 0

s
a

15 (3-89)S2 x 105 V/rn

In the ground, if E reached the value J /Og, it would be larger than thats g
in the air. The field in the ground does not generally reach this value,

because the return conduction current flows over a thickness of one skin

depth 6 of soil, and 6 is usually larger than d.

The fields produced in the ground can be calculated exactly for

a gaimma flux rising as exp(at), as is done in Ref-rence 3-2, under the

assumption that a >> a so that the air can be regarded as a perfecta g
conductor. The results of that calculation are summnarized briefly here.

The relative admittance rio)(m -1) has been defined in Section

2.2, and Figure 2-5 shows rq(a) for our standard soil. The a ual

admittance Y = n/Z 0 (mho/m) . The skin depth in the soil is

6 = -• 0.4 m . (3-90)

The numerical value here is for the example presented in this chapter.

If the conduction current returned on the same paths followed by

the Compton current, the electric field in the ground would be

E -- zj (3-91)
zo s

Instead of this relation, Reference 3-2 shows that the maximum horizontal

component F, in the ground is
y

Z0 d-
Ii _ - - -( 9 2

ym r1 _ sO " d2  (3-92)

where ,Jsy is the y component of the Compton current density at the surface.

This value is reached at depth d in the ground; E (0 at the surface in
Y
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this model (large air conductivity) because the field produced in the

air was neglected. (One could add 1F (air).) The Factor d-/S6 i n
Lquation 3-92 comes from two sources. One factor d/6 comes from the

fact that the return current flows over depth 6 while the Compton current

flows over depth d < 6. The other factor comes from the proximity of

the Compton current to the highly conducting air. By using lEquation 3-89

to relate H to the saturated field iE in the air and lEquations 3-88y

and 3-90, Lquation 3-92 can he written

lI s a; ' • z 2 sin~pemosp
'1sy c g (s-a)

5si JoSIE (example) .

In the example, the peak (5 was used from Figure 3-.3. The maxinmum value of

sin 2 $cos$ is about 0.36, at 63J 03°.

The maximum value of Hi in the ground occurs just below the

surface, and is

'7

Zi11 0z s I I

I 3-9.)'.
n 19sinf ul (exanmple)5

Skin depth spreading does not reduce the vertical conduict ion current dens ity'

or F . This large F, decays in the depth d.

The magnetic Field B (--B ) is reversed from the tusuaIl direction
x {

near the surface, because most of the Cormpton current in the ground returns

as conduction current in the air. The valuie of B at the surface isx

20

Bxi) c- d syl = A g s Si inycoslp

- X 10 i sin :cost Weber/rlr- (example)
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Iln the example the peak current density was used from Figure 3-2. rhi5 result

ma, be compared with the field prm cd t.y the air current at the ground
sur]Pface,

- ''o 3 y 0J 5 cs

,2. 2 × l)- 3 cosýp lWeber/m 2  kexamplej . S (3-96)

The field B decays in depth d in the ground , and changes sign again
x

due to return conduct ion cuMrrCnt flowing below the Colipton Current.

IWhen the air ccnductivitv falls below the ground conductivity,

after the peak, J soon becomes larger than kS , and the ground currenta g

and fields are ala in dominated by sources in the air.

Two cautions should 00 noted regarding the results oF this section.

First, the peak F estimated iln Equation 3-94 is in a range that might

lead to breakdown in the soi . Second, the peak dose rate in the example

i.; s .. jenti , high th;at it might increase the conductivity, of the top

IaLN" "f the ground. Not much can be said with certainty about the

p1rohability of occurrence of either of these effects; experi iments with

relevant soil aamples arc needed. Both effects could be expected to rco.ult

in a decrease in the fields at greater depths in the ground, but relv ng on

tt, i, expectat ion Iiighl I)e risky.

Attention was first called to the iimportance of the grould

C:omplJton currents byI' R R. Schaefer !'id W. R

3.12 THE QUASISTATIC PHASE

As stated in Suction 3. !, .th, ,!.sistati- phase beg ins when th('

skinl depth inl the a il r bcomesc as ;I i: s alowed by the spherical geometry,

ie., when exceeds the di.stancc r from the burst point,
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6> r. (3-97)

The approximation (3-67) for cJ(t) is representative if the time origin is

suitably chosen, as in Figure 3-3. In that case (our usual example)

U= 0.5 mho/m , t p 6 x 10 sec (3-98)

Equation 3-68 then gives the skin depth

6 3.6 x 106 t (example) (3-99)

With r 500 meters, the quasistatic phase begins at

-4t = 1.4 x 10 sec (3-100)

Figure 3-3 shows that ion conductivity is beginning to be significant at

this time. Over most of the quasistatic phase, ion conductivity is

dominant.

It was shown in Reference 1-2 that a fair approximation to the

solution of the governing Equation 3-31 for the quasistatic phase is obtained
by taking the potential function ¢ to be a function of () alone. Thus
the predominant electric field is E'0 ; the electric field lines are approxi-

mately circular about the burst point as center. The fields E0  and B

can be deduced from this model and the conservation of charge, Equation

3-31. If we assume iL. << 1:0, this - juation beo,ucs (on writing the

divergence operator in spherical coorlinates)

rn •O sinOoF = -J s . .'-r s (3-101)
rs0n s) ~r

Since is approximately independent of( 0 and since the distance scaling,

of .J is approximately that in Equat ion 3-20, thi-.i eqmation can be written

0 -s s
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or

-sin0E - -E sin. (3-102)

a

Integrating on 0 gives

J
r s

sin0E@ - (1-cos@)

so that

J J

r s 1-cosO . r s t a
= X a sin - X- tan 2 (3-103)

In order for the fields to be static, we must have V x E 0, which implies

1r rE = 0 or E -1/r (3-104)r ý-r 00

Comparison of this result with Equation 3-103 shows that we must have

1 (3-105)

r

If the conductivity were mostly electronic J /s would be independent of

r. However, when the conductivity is ionic, a -- N , and the condition

3-105 becomes

-r/2X
- 2 or re - constant

r

This relationship is not accurately valid, but oile may compute the following

nlUmbers:

x r/X= 0.5, 1, 2, 4, 5,

-x12
xe = 0.39, 0.61, 0.74, 0.54, 0.41

It can be said that the relation is valid to 130 percent over the range from

r= 0.5X to SX. In much of the quasistatic phase, the hard gammas from

air capture are strong contributors, for which the effective , (including

build up) is about 400 meters. Thus the model is iustified over the range
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r = 0.2 to 2 kim. Hardening of the gamma spectrum with distance make the

relation 3-104 more accurately satisfied, since X increases with distance.

Thus Elquation 3-103 gives reasonably good values for l 0  over the range

indicated.

Photographs of large yield nuclear explosions show lightning-like
-39

discharges developing in the time frame from 10-3 to 3 x IR - second

(Reference 3-3). The discharges rose from sharp objects (antennas) on the

ground, and followed quite closely the 0-.direction. The inference that they

were driven by the quasistatic electric field is hard to resist. The

growth rate of the discharges contains information on the magni-tude of

the electric field, but analysis of the data is not complete at this writing.

The magnetic field can be found from Equation 3-32. The r-component

of this equation is

sn B' (3-10S)rsin0 DO0 4 cs

This equation has the same form as Equation 3-103, and the same integration

procedure leads to

z0 0 0
B04 = -j rJ tan %-=nj . (3-107)

The time dependence of I: and B1 can be deduced from Equations

3-103 and 3--107. 10  is independent of time until the conductivitv becomes

ionic, then falls as #-. B falls as J throughout the entire

quasistatic pha.s

The radial field E at the ground can be found from the conditionr

that the entire Compton current passing out through the hemisphere at radius

r must return in the ground. The radial dependence of F is compllicatedr
by' a rather complex current flow pattern in the ground, and the time dependence
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if affected by the fact that diffusion persists longer in the ground than

in the air. Once diffusion is completed, the time dependence of Er atr

the ground is the same as that of J . D)iffusion takes about 3.5 x 10-3
s

second at r = 500 meters.
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CHAPTER 4

COUPLING TO SHORT BURIED CABLES

4.1 INTRODUCTION

Ground-based systems hardened to blast often have electrical

conductors buried at depths of one to a few meters in the ground for

mechanical rrotection. Burial also affords some protection from liMP, but

by no means total protection since the fields penetrate to these depths

without strong attenuation, especially in the lower frequency components.

It is useful to distinguish two categories of buried cables, The category

considered in this chapter includes cables shorter than a few hundred meters,

i.e., one gamma-ray absorption length in air. For such cables the liMP

[ fields may be assumed to have roughly constant amplitude along the length

over the cable with a speed determined by the angle X between the cable

run and the radial direction from the nuclear burst. (See Figure 4-1.)

The phase speed v is

Cable Track on Surface

D =Burial Depth

Figure 4-1. Geometry of burst and cable run.
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v c/cosx C cOSXeCOSXa . (4-1)

In case the burst is above the surface, the angle X is made up from two

angles, the elevation angle Xe of the burst point as seen from the cable,

and the azimuthal angle Xa in the ground plane. The horizontal EMP

electric field E at the wire, under the assumptions of constant amplitude
ii-

and constant phase speed, has the form

zE E (t -,) , (4-2)
h h V

where z is the distance along the wire (not the vertical coordinate). The

field component of interest is that parallel to the cable, which is related

to the horizontal field E in the projected radial direction from thepr
burst by

Eh =cOSXar (4-3)

The cable is most strongly driven when Xa = 0, arid since the location of the

burst will not usually be predictable, this case should be assumed.

If Eh is Fourier analyzed in terms of waves of the form

exp[jrwt-kz)], then Equation 4-2 leads to the result that k is deteimined

by w•,

k .. cosx (4-4)v c

The fact that v _ c means that the EMP sweeps over the cables

faster than free signals can propagate along it. Since also C of the soil

is considerably greater than unity, the EMP sweep speed is considerably

greater than the free signal speed. In particular, signals arising from
effects at the cable ends arrive at most points along the cable with

significant delay after the EMP arrives. It is therefore useful to calculate

first the response of the cable ignoring end effects, i.e., as if the cable

were infinitely long. This problem is taken up in Section 4.2.
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The other category of cables includes those that are so long that

the EMP environment cannot be assumed to have constant amplitude over the

length of the cable. This category is discussed in Chapter 5.

Some of the buried cables of interest will be of multi-wire type.

However, these will generally have an outer conducting sheath to shield the

wires from EMP, lightning or other electrical interference. The conducting

sheath will generally be covered by an insulating sheath for protection

against corrosion of the (metallic) conducting sheath. In this chapter, only

the insulator and the outermost conductor will be considered. Transfer

coupling from the outer conductor to internal wires, if any, is a separable

problem, at least approximately. The cable geometry is defined by Figure

4-2. The conductor is drawn as a hollow cylindrical shell of thickness d,

but it could be a solid cylinder. The electrical conductivity of the

conductor is generally much larger, by a factor of the order of 10I, than

that of the soil. Thus the conductor has the same resistance per unit

length as a cylinder of soil with radius of the order 10 to 10 times larger

than a 1 , depending on the thickness d. The relative permittivity of the

Conductor a r"-

Insulatbr,

, , 0

Soil , 2 G2

Figure 4-2. Definition of cabli parameters and
cylindrical p~rameters.
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insulator is a little larger than unity, rl 2 being typical. The

conductivity of the insulator, typically very small compared with that of
soil, may be enhanced by the gamma radiation penetrating to the burial
depth. The peak gamma induced conductivity may be as high as 10-i6nho/m,

and is time dependent (proportional to the dose rate), The analysis of

this chapter will treat (I as constant, but will estimate the importance1
of gamma-induced conductivity. The soil parameters c 2  and 02 will be

treated as independent of time but frequency dependent.

The presence of the air, with its time-varying conductivity, affects

the coupling to the cable. The analysis here will first assume that the

soil extends to infl.'nitty in all directions, and then show how the presence

of the air can be taken into account in an approximate way. In addition,

the wire initially will be assumed to have perfect conductivity.

4.2 PERFECTLY CONDUCTING WIRE IN INFINITE SOIL

LMP envi.ronments arc calculated without wires present. Let thu

Fourier' component of the environmental electric tield parallel to the wire

axis, at the position of the axis, wich frequency W be

I.h( ) = 10(C•) xpj j ((.I~t-kz) ](4-5)

Ilere k is specitfied b)y Lquation 4-4. The total parallel electric field

must vanish at the wire surface. A current I flows in the wire, such that the

additional fields produced by I have a parallel electric field canceling

the applied I1MPI field.

The lNMP electric field has components both parallel and perpendicular

to the wi.re axis. The perpendicular component causes the wire to polarize,

with positive charge appearing on one side and equal negative charge on the

opposite side. The currents involved in this polari.zation are small when

the wire diameter is small compared with the wavelengths in the I.hPI, a
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condition which is generally well satisfied. Further, these currents do not

flow along the wire, so are of no consequence for equipment connected

to the wire. The EMP field of importance is the component of the electric

field parallel to the wire axis, and the variation of this field around the

circumference of the wire is negligible.

The usual cylindrical coordinates r, 0, z, right handed in that

order and indicated in Figure 4-2, are convenient for the problem at hand.

The field components associated with the wire current are Er, E and B,

and they are all independent of 0. Maxwell's Equations 1-17 and 1-18

become, for fields with t and z dependence given by Equation 4-5,

jwBo = jkEr + -E , (4-6)

TIEr = jkcB, (4-7)

c

rEz r r ' rB (4-8)

where (u() is the relative admittance introduced in Section 2.2. Equation

4-7 can be used to express Er in terms of 13)

k c B (4-9)
r =1

Use of this result in Equation 4-6 allows expression of B1 in terms of

E

BE =(4-10)
0 c 2 r'

where K is defined by

K -(( -E + k2) (4-11)
c

From the definition of ri, Equation 2-2, this becomes
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L

K jW (4-12)c c 0

2 w2 Cy 12.3= [(C-cos x)(-) j Z0 c,. I/ (4-13)

In the second line k has been evaluated by Equation 4-4. The choice of

sign of the square root here will always be taken such that K would be

real and positive if a vanished. Thus the imaginary part of K is

negative for w > 0.

Using Equation 4-10 in Equation 4-8 gives a differential equation

for E

3EIz 2

Kr r-=- 2E 4-14)

The solutions of this equation are Bessel functions of order zero, J0(Kr),

Y0 (Kr). (See Reference 4-1.) The value of K is different in insulator

and soil. Let K 1 apply to the insulator, K 2  to the soil. In the soil,

the field E produced by the wire current should approach zero at large
z

r. This requires the combination of J and Y01

L: A J (K 2 r) - jY (K2 r)E All(K 2r) A (4-1S)

where A is an arbitrary constant. Equation 4-10 then gives B0  in the

soI,

n 2A ri ,A
cO p (K 2r) - jYl(K 2r)] "C 1-1(K 2r) (4-16)

0 K2 121 2 K212

[n the :insulator, the solution contains two arbitrary constants B and

C:

, BJ0(jKr) + CY0 (Klr) (4-17)

10 -- IlBJl(Klr) + CYI(Klr)] (4-18-1
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The constants A, B and C are determined by the requirements that [E'

cancel the applied field F0 at r = aI and that F and Be both be

continuous at r a2 .

If the two continuity conditions are written out first, they can

be solved for the ratios B/A and C/A, with the results:

11 Y - 1I Y
15 0Y1 1 c Co_ 1 (!1'-- = o - -- .o = )(4-19)

A IV' A

In these expressions, 1! and II1 are evaluated at K2 a2 , and JO' YO J
0 1 02 2'

"and Y are evaluated at La2 . The factor G is

G; Z (4-20)
K2 111

and IV is the Wronskian 2I
Y y 1Y° = - 2 4-21)

0 1 1 0 1, a 2

The condit ion that 1: cancel iE at r = a can be written asz 0
I0 B C al

-- .J1 (Kla 1 ) + Y Yo(K 1a (4-22)

Since B/A and C/A are known, this equation determines A, and Eqaauation

4-19 then determines 13 and C, which completes the solution.

The total current in the wire is related to the value of B0

at r = a by Equation 1-19, which becomes

aOn1  [ 1 j (Klal ) + C- Y al) (4-23)
A Z K A 1 1 1 A 1 1 1

The impedance Z of the wire is defined as
w

Zw(H) F l 0 (,))/I (1w) ohms/Ineter (4-24)

By use of the result ohbtained above, Z can be found to be
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0 1 0, 1- 1 1 0)\0  1 ()~~Ci~Q ()
%q =ira 1r (11 3 -Gil J )y*+Ui\' -CII Y)j

I lore II and II are evaluated at K a? J .j1 0 and Y IatKIa

and the asterisks indicate evaluat ion ,at K 1a 1 not Complex conjutgat ion.

The func~tion., II1 and 11~ are defined in Equations 4-15 and 4-16.

j4.3 SMALL RADIUS APPROXIMATION FOR WIRE IMPEDANCE

The exact express ion for the wire impedance, Fliuat ion .1-25 , is

Ilk

difficult to deal with, a~tltou~gh it canl be evalu1.ated nume11rically . Reference

4-1 qiVeS qu1-ite accurate polynomial. approximations for thle v'arious Bessel

functions useful for numerical work . I lowever , it 11s f-ortu~nate that thle

arguent of all1 Of thle Bessel funct ion'. are sumal1 in cases of interest in

g.)

this report . The rgesO)t a egument is K0 a . For a = 10Yo, • 10 , 0 .0

(see Figures 2-2 and 2-3), Equation 4-13 gives 1K1 ýý 11InI. If the

radius a=0.01 111, then IK~a1 I 0.11. Vor =10~, IK.ý,a'Ij ;ý 01.-) , and
a2

for sma. 11 oer w, thle argument I s even smaller. Thus it is reasonlable to expect
that the small - argument expa-nslions of-, thie Bessel functions may yield a sufo-

fient I0 and1 accurate evaIlIuateido Of t . Those xpa10 are I at11

24 x I(x) + 0 x (x)= 2 - + 1(x 2'

where y ifnis thle Eu 1e1r-Maschoron i coistani t ,

h = 1.781 e s o (.1-27)

By using theso expals ion; ald taokg i care to Collect all nei' thle terms o

owest order 2i2 nd -25, Equation -he reduced to
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F 2 2 1
.(W) 2 r n(4-28)

yK2 a2  2 I 2

This formula holds for any tc, real or complex, provided IUJ

is not so large that the arguments of the Bessel functions are no longer

small. We shall test the accuracy of the formula ir. the Laplace domain

rather than the Fourier domain, i.e., for exponentially rising applied

fields of the form

Eh(a) = E0 (a)exp[at - Zz] (4-29)

The assumption of constant amplitude and phase speed, Equation 4-2, now
implIies

m = p licos. (4-30)

v C

Comparison of Equations 4-29 and 4-30 with Equations 4-5 and 4-4 respectively

shows that tie formula h can be written in the Laplace domain by making the

replacements

4-31)

k -. ' ..

Then the med ia parameters become

rl = Z 0o(a) + (- t(X) (4-32)

t< .. . - K "(43C

Thus the replacement

K .K , (3-34)

should also be made in the formulae. FpIat ions 4-12 and 4-13 become
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K [ --(C - 12 (4-35)

[(C-cos2 l2 X) Z 2 ] 1/2 
.(4-36)

The exact formula for Zw, Equation 4-25, could now be rewritten in terms

of the m-difiea .->el functions (Bessel functions of imaginary argument),

but -e shall leave it as it stands. It is convenient, however, to evaluate

Lije small radius approximation in terms of the Laplace domain parameters.

Making the replacements indicated above in Equation 4-28 leads to the totally

real result
-2 .-2

w(a[ 2  2 + )'n •n . (4-37)

2 Y2 yK2 a 2  1 1

To test the accurac/ of the smail radius approximation, we have

numerically evaluated both Equations 4-25 and 4-37 for the following cable

and soil parameters:

a1 0. 5 cm a = 1 .0 cm , cosX = 1
(4-38)

C 2 , i 1 0 , £ = 10 , a2 = 0.01 mho/m

The computed results are shown in Table 4-1. The accuracy is quite adequate

up to the highest frequencies of interest.

Table 4-1. Comparison of exact formula and small radius approxi-
mation for Z w(a), for perfectly conducting wire.

a Exact Approximation Error Skin Depth

108 sec-I 89.21 ohms/m 89.17 ohms/m 0.04 % 0.74 m

3 x 108 213.1 212.6 0.2 0.31

109 506.7 498.8 1.6 0.16
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For " ýc cal application of our results, note that an EMP field
8 -l1 5 "

that rises with x = 10 sec to a peak of about 10 V/m would drive a

current of about 10 A in this wire at the peak of the EMP. The current

will continue to rise after the peak, for the impedance is mostly inductive,

as will be seen in later sections of this report. Note that wire resistance

is negligible compared with the computed impedance, at these frequencies.

In use of the Laplace domain results, it should be noted that

G (a) and c(a) in Equation 4-32 are not the same as C-(w) and c(w),

unless o and a are independent of frequency. Equation 2-21 gives

n(a) directly for universal soils, and Figure 2-5 gives il(a) for our
standard soil (10 percent water content).

It should also be noted that the proximity of the conducting air

to the cable has not yet been included in the analysis. The effect of the
8 -air pro, nity is not large for a 10 sec and burial depths of 1 aetor

or more. After the peak, the air proximity will have a larger effect,

enhancing the current during that period in which the air conductivity is

larger than the ground admittance I/Z0.

The quantities 2/yK2  'n Equalion 4-28 and 2/y- 2 in EIquation

4-37 are the skin depths in the soil; they give a measure of the depth of

pCnetration of the wire-induced fields into the sci.]. The skin depth is

compei cx in Fourier domain, in which case its magnitude indicates the depth

of l)enetrat Lonr. It is real in the Laplace domain, and values are given

ill Table 4-'-
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4.4 THE TRANSFER FACTORS

In addition to the wire current, it is useful to be able to predict
the radial fields E in the insulator and the voltage across the insulator.

r
Formulae for these quantities can be obtained from Equations 4-9 and the

fact that, when the small-argument approximation of the Bessel functions

is valid,

ZOI

B 0 0 27ro (4-39)

This is the static approximation, Equation 1-19, and is valid near the

wire. The result for E is, in the Fourier domain, Ir

E ~jk Z
r 2rrr • 0(4-40)

w

and in the Laplace domain,

Zo
Er() = 2rrr (() T(a)E(a) (4-41)r 2ITýrq Z 0 0w

The name transfer factor will be used for the factors T multiplying F0

in these equati.ons. They are dimensionless. According to Equations 4-4 and

4-30 for the sweepi.ng UMNI, they are

T (W) - (/ - °- Z (4-42)

l(•) = (a/c)c 0O
2'irrrl Z

In an insulaht ing materiala, = 0, bo th of these formulae sim)l i fy to

, 2, s Z_(4-44)
2-1 rr: Z

w
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In all of the expressions for T, the appropriate 1, Z and c is to bew

used, i.e., ri(w) or n(ct), etc.

Table 4-2 gives the values of T for the example (4-38) and for

points r in the insulator just outside r = a1 (T), and in the soil just

outside r = a(T 2 ). It is seen that Er will be much larger than the

applied E0 , and that the transfer factors are larger at lower frequency.

Indeed, the radial fields are in the breakdown range.

The voltage V across the insulator is obtained by integrating

T from a1 to a2. Thus

V = TVE 0 , (4-45)

where
T c__s_ Z0 a2

TV %ns 0 -n (4-46)
v 27r Z a1

The dimensions of T are meters. T is also given in Table 4-2 for

the same example.

The field transfer factor T i3 smaller for wires of larger radius,
as indicated by IEquations 4-42 to 4-44. ZW decreases as the radius

iincreases, but only logari.thmicly.

Table 4-2. Transfer factors for the example (4-38).

a T T2 Tv

108 sec-1 67.2 3.2 0.233 meters

3 x 108 28.2 2.1 0.098

9
109 11.8 1.1 0.041
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4.5 R, L EQUIVALENT CIRCUIT OF THE WIRE IMPEDANCE

During the rise of the EMP, the Laplace domain form of the wire

impedance can be used directly to calculate the wire current and radial

electric field. After the peak in the EMP, this simple procedure is not

applicable. Fourier transform techniques are applicable: transform the

applied field to the w domain, use Z (w) to calculate I(w), and invertw
to find I(t). While this procedure is straightforward, it is time

consuming, and the analyst tends to lose contact with the numbers and

confidence in the results. This occurs especially since the whole process

is usually left in the hands of computational technicians, who may have

little feel for electromagnetics.

An alternative approach is to continue to use analytical techniques

to construct a simple, approximate method that can be applied directly in

the time domain. In this section an R,L circuit will be dcvised, which

has the same impedance Z w, to good accuracy, as the actual wirc.

At low frequencies the impedance Zw, calculated for a perfectly

conducting wire, becomes so small that the finite resistance of the wire is

not negligible. We therefore add to Z the resistance RwO (ohms/meter)
ww

o1' the outer conducclor of the cable. RwO may depend on Frequency , as it

will. if the thickness d of the outer conductor is more than a skiin depth

n it. Most commonly this will not he the case at those low freq'inc ice"

for which Rw% is significant compared with Zw. We shall tre;it Rw%V w 0
as inudepeildent of trequcnLy, and take 'it to he the d.c. resistance of the

outer conlductor.

A convenieot equi iv1a1 ent Cik'tlilt would have the 'onrm shown il

I.gore 4-3, for then the cui rren t il lea ch branchl con Uld be com1pured sepa r;.M y

and the total cable cuIrrent obtai ned by ,ddhi g the birnlnch currenlts. ince

1hw adiiii ttance o F the network is most et. 1 1 y wr it- en, it is des irr to l) l il e

tlhe it to the wi re adhlltt llnce Y
w,
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R1  R2  R3  Rm
E 0(t) L 3 Lm

2 3 m

Figure 4-3. Equivalent R,L circuit to fit cable
impedance.

R +Z -Yw R jWl, (4-47)
w n= 1 Rn n

This equation can also be written

In gn (4-48)

n=l I1

whore

g = l/R , = R /L (4-49)
n n1 n1 n

The fit can be made by first choosing arbitrarily a set of I s, spaoed

one decade apart, say. The go are then determined by requiring Equation

4-48 to hold exactly at a set of u) 's, e.g., W = Y1 )%2' ý3' "... in which gives

a set of In linear equnti.ons to solve for the In (l:antities gn'

The Ftit can be made either in the Laplace or Fourier domain. In

"the LapI ace dolna in, both s ides of lIquat ion 4-48 are real . In the Fourier

domain oere can fit, say, the imaginary (inductive) part of: Y (w) . The

real (resisti.vo) part should then fit aitonmaticallly, since both sides of:

lquation 4-48 ar'o anal)'tic itunCtiMens. The fit wi.l l not b0 exact, of COuISe,

"it lrequencies betwell the fit points.
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Lavery (Reference 4-2) used this technique to fit the admittance

of a cable with parameters

a= 0.5 cm , a 2  1.0 cm , d = 0.05 cm , cosX 1,

C =2 2=0 , awo = 1.129 x 10 3 ohm/In, n (4-50)
1 ' 1 wo

imbedded in our standard soil. The B3 chosen were
l1~n

fn 5 × 1 0 +n , n = 1 to 7 (4-51)
n

The real and imaginary parts of Y (w) and of the fit are graphed in
2 qFigure 4-4 for 10 (1 W ; 109 sec It is seen that the fit is quite

accurate, except for the real part at W . 108. Mis discrepancy could be

removed by adding higher 0 Is, but we shall not depend on the fit at these
n

high frequencies. The values of gn' , and L for the fit are given in

'Table 4-3. In this table, an entry a(b) means a X 10 . The zero

frequency conductance G0  and the infinite frequency inductance L of

the network are

Table 4-3. Fit parameters for the example (4-50) in

standard soil.

n 9n (rn/ohm) Rn (ohm/m) Ln (henry/m)

1 8.439(2) 1.185(-3) 2.370(-6)

2 2.137(1) 4.679(-2) 9.359(-6)

3 1.306(0) 7.657(-1) 1.531(-5)

4 1.972(-I) 5.071(0) 1.014(-5)

5 2.684(-2) 3.726(1) 7.452(-6)

6 5.002(-3) 1.999(2) 3. 998(-6)

7 1.258(-3) 7.949(2) 1.590(-6)
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3J

Go= gn 8.668 x 10" mho-m R 4i/Rwo-,
n ~(4 -52)

L (Egn1n)- = 5.862 x 10 henry/mrn nn

The admittance in the Laplace domain is

m g
Yw(a) •nl• 1+c/q(4-53)

w n=l 1 + aýf

Figure 4-5 compares Y (u) with the fit for the example (4-50).
w

th
The current in the n branch of the network can be computed by

solving the differential equation

dI
ndt+ R nI n E o(t),

or
dI

+ In n gnE (t). (4-54)

The solution of this equation is
t

(t-t t f )t
1() nt 0 (tO) n n E 0 (t')dt' (4-58)

t
0

This: solution allows for an arbitrary initial current I (tOJ at thenI
starting ti.me t 0 , in case it is convenient to approximate 10 (t) by

different analytical forms in different time periods. For example, a

sovnewhvt crude but useful approximation to the early-ti-me part of the

horizontal electric fiield (see Figure 4-6) is

F0 (t? , lite for t < 0 ,

-Yt (4-50)
= l! e for t > 0

ki
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a~t

(a) The function f e'~ t, <t0 for the case y 1/
- Yt >

1.00

0.1d

0.01

-.0 -3 -2 1 0 1 2

(b) The function f 2e~lt e e2(t t<o0, for the case y x

2(. -Yt -- 2ait
Tc-ye --I- e t >0,

Figure 4-6. Somie simple analytic approximations for the EMP.
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Here E is the maximum value, achieved at t 0.. If E is chosen

somewhat lrethnthe actual peak field, the form (4-56) will bound the

actual field, and the computed current will therefore bound the actual

current.

For the form (4-56), the current for t < 0 can be calculated

directly from Y (a)

at
I(t) =Y (ct)E e for t < 0 .(4-57)w In

For this purpose, either the original Y (a) or the fit to it may be used.
w

At t =0 = to, there is already a current flowing in the wire, and the
_ _________

part of this current flowing in the n thbranch is

1 (0) 1n III

n(0a)r (4-58)

From Equation 4-55, the n~ current for It > 0 is easily calculated to be

12At g 13 -t
I (t) =e n1 (0 ) +.n (e-Yt~e n ~(-9

actall n ter heeiY hudapoc

The apparent singularity in the second tr eei hudapoc

acual does not occur, as the oxponientials also cancel in the limit

y -UI AI Summing I (t) over n1 gives the result, for t > 0,

g 11 n
I (t)=ay) 1: 4~.---- -- Y (y) 1 (4-00)

mZ~(a--A (y- ) w IIIn n 61

hfere Y ( Ly is Y (a) evaluaited at aY = -y.
W w

TIhe Form (4- 56) hais ;a discontinuity ini- slop~e -it i~ts peak, whichl

gives it more hight-frequency contenit thani the true 1:M11. A fuiictionl with

ad i.sconithilnutty i.Ti slope 111! as a our i~ei t ransh'o rm wh i ch f'all s off no fast or
2

thanl 1l/w at large w , whereais thle trais f'orm of' tho true MIN1
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(which has all derivatives continuous) falls off faster than any finite power

of w. rhe form can be improved easily by adding other exponentials. For

example, the form

Eo(t) E(2e 2et) 00 Em -
i (4-61)

m Em2•- e •y -e t > 0,
o'eYt -c-y , at

has maximum value rE at t = 0 and zero slope there, as is easily verified.

This function is graphed in Figure 4-6 for the case y = u/2. The function

has discontinuous second derivative, and its Fourier transform falls as 1/W 3

at large w. It is possible, with the rise and decay rates o. and y

fixed in the first exponentials on each line, to vary the constants in the

last two exponentials and the coefficients of all terms in such a way that

continuity is maintained through the fourth derivative. If the Nth derivative
N~l

shows the first discontinuity, the Fourier transform falls as 1/w

asymptotically. The algebra determining the coefficients becomes quite

complicated for the very smooth forms. Use of the simple forms bounds the

high-frequency content.

The current for the form (4-61) can he written down by applying

lquations 4-57 and 4-59 to each of the exponential terms. In this way,

all l)ut the final summing of the terms can be done analytically. Alternatively,

the differential Eqrration 4-54 or the integral in lquation 4-55 can he solved

or evaluated numerically. Ii.ther approach gives a fast and quiitc accurate

way of caIculat ing the cable current.

Note that the transfer factor for the .insulating layer, Equation

4-44, disllays no frequency dependence except in the factor 'I'l To. ed re

on including thle d.c. wire resistance, it is possilie to write

9)



Zo0coSx F 0
E - 0 OX E

r 2rxc Rwo + Z

Zocosx
- 2ir- I , (insulator) (4-62)

and the la line here holds in either frequency or time domains. Calcula-

tion of I therefore imediately yi.elds E in the insulator.r
Unfortunately, this is not true for E in the soil. At lower

r
frequencics, where ri is approximately constant,

r 21ivr cs 9 tsoil, near wire) (4-63)

At high frequencies where c rather than 5 domina tes ti aI c does

not vary strongly with frequency, Equation 4-62 appli.es approximmately In the

soil near the wire.

4.6 THE TIME-VARYING INDUCTANCE MODEL

The method developed in Secti on 4.5, while transparent and accurate,

still requires a considerable amount oft calculation. A simpler method is

desirable, even Jf it is less acculrate. Such a mcthod exists for the typo

of applied 'iiold s fouind iln INMP envi ronmenlis.

Tihe expres';ion (4-281 for Z can be simplif'ied by maki.ig some

approxil mat i oils lEqiuitioon 4-11 shows that, if the k" term i s dropped

22

.. - • .i " 4 6 1)

Nlow, the k' termi coutriblutes the te~rmi-co.•"x, in li'1iiat ion 4-13. In the

So ' i , co. ,( 1< 1i, ) imure thian about I0 pero c,,it of F , ti-rei'e I ( 0. In the

.uiisl ator , dco.nl~piu, co"~ < iake; a bij,.'er percen itage changl e. 'he login thi

fcL' • r In .a I 'a ) i :;11 ,kl v nmu11ch siall ,I .r thai the ] "ogal ithrn for th. sniI

9?



term, so that the insulator term is not very important. However, if a is
2

negligible in the insulator, K /n is still simple, and can be retained.

The apprcximate form of Z is
w

Zw~ a [•--- nt jYKa)2 1 - 1 coX n A11] . ('4-65)

11

(Note that Rn(-j) = -jrr/2.) This expression gives an impedance which is

too large, but not by more than about (0 percent.

If the logarithm in Equation 4-65 were independent of frequency

and real, it would represent the impedance of a pure inductance. If K2

is written in terms of its magnitude and phase,

K2 = IK2ej (4-66)
2 21

it is clear from Equation 4-13 that • varies between zero and 7f/4;

(1) approaches zero when the dielectric term is dominant and approaches

ir/4 when the conductivity term is dominant. On separating real and

imaginary parts, Z becomes
w

0  [- .I _ ,- ( •K (4-67)

iW 21fc K2 ia. C1 21c 2

The absolute value on the factor w in the real term is demanded, for
negative w, by the reality condition, Z*(w) = Z (-w), and can also of course

be derived from the properties of the Bessel functions by carrying through

the analysis for negative oj. The second term is resistive and leads to

energy dissipation. If the soil is a good dielectric, 0 -+ 0, and the

energy is radiated away. If the soil is a good conductor, (P - 'n/4, and

the energy is dissipated in Joule heating of the soil.
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compredThe magnitude of the resistive term is generally fairly small
compredwith the first or inductive term. The first logarithm is typically

between 3 and 12 in cases of interest, whereas -4)ranges between
2

77/2 and IT/4. Dropping the resistive term should increase the calculated

current and pr~ovide an upper bound. We shall drop it, and compare calculated

results with those obtained from the more accurate equivalent circuit method.

In terms of the inductance L of the wire,

Z V jwL K a (4-68)

and

1'

r Note th t

zo 1%

2'rc= 2)<10 Henrr./meter (4-70)

The inductance depends on IK2 1, but only quite slowly because of the

logarithm. Thus an approximate fit to IK2  would be adequate. According

to Equation 4-64,i

I K j. (4-71)1

A good fit to is given by

J1Tj1s;ý P00c+ \IZCa 0  (4-72)I

Eor our standard soil, the exact evaluationi of NTTand this appruximationi

yield the results:

Wo =lc1 1 1 106 10~ 1O

exact 1.76 1.77 1c79 1.82 2.04 2.90 5.94n (4-73)

approximate =p1.74 1.75 1.78 1.87 2.15 3.03 5.82r
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The approximation is within 5 perce. , .-xact result over tile entire

range. Therefore, a good fit to 2,'• .

E- 2 . _ (4-74)
2 c- (V + V c/a)

The quantity 6 defined here is the skin depth in the soil for the present

cylindric-al problem. In terms of 6, the inductance is

.. a k [. .n ( (4-75)
2 1 1

Because of the logarithm, the inductance changes only slowly with

frequency. For the example (4-50), Equation 4-75 gives the results:

W = 103 104 10 5 106 107 108 10 9 sec-1

6 = 353 ill 34.5 1.0.4 2.86 0.641 0.105 meters'(4-76)

L = 2.16 1.93 1,70 1.46 1.20 0.90 0.54 pH/m.

The relation between the applied EO(wl) and the current I (w);

including now the wire re.sistance R can be written

jw () ] L- EO() - RwO 1 (4-77)

The exceedingly slow vari-ition of L ((A) suggests that it might be a

reasorably good approx.mation to regard L(w) as constant in inverting this

equation to the time domain. It would appear appropriate to use the value

of 1, For that range of (o which gives the dominant contribution to the

integral oF E0o (w)xp(jwkt) over w, i.e., to the inverse Fourier transform

of Equation 4-77. Since the exponential here oscillates rapidly with (1i

when ut >> i, the "'.pp-ropriate range of a) is

t 1 l/t , (4-78)

unless I (t•) varies rapidly with w. The latter possibility depends on
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the choice of the time origin. The EM1P Eo(t) varies rapidly with t

initially, and then iiore and more slowqlv at later and later times. If the

time origin is chosen at that: time when E0 (t) is changing most rapidly,

then Eo(w) will not vary rapidly with w. For example, the form (4-56)

for Eo(t) has the Fourier transform

0 m (y+jw) ((X-je•) (4-79)

However, if the time origin were shifted to time to, then Fo 0(w) would

acquire a multiplicative factor exp(-JwtQ). Thus, rapid variation is
avoided by choosing the time origin as stated. We agree to make this

choice, and use Equation 4-78 (otherwise we would choose w ,z i/ (t-to))

The suggested approximate time domain equation is there:ore

-d- [ Lt(t)I(t)] II (t) - RI , (4A-80)

where L (t) is given by Equation 4-75 with 6 evaluated from ElquatiIon

4-74 and 4-78, i.e.,

i; 6 ,-• ' (4-81)oo t!

ThisIS rescriptilon would have difficulty if used at t= O. Hlowever, the

1:M1 has a fi~nite rise ti~me t r, whi~ch For the expmoential rtso model I~s

It - 1/(x. Thus in using Equation 4-81, t should be set equal to
t r=9 r)% t = 1/0, if t < t ,(4-82)

r

_•!.and the time origi~n Should be chosenl SO that t =tr when the. rise rate

begins to fall Signi~ficantly below ax. Obviously, this prescriptioi. is

somewhat i~mprec~ise at early, times. Note, hiow(,ve-r that qui~te accurate

,evaluation of tie current during the rise of the app~lied field can be had

:} ~by uising the form (4-1;0) or, better, the f'orm (4-61) and the L~aplace domain

,}•i mlpedance. For the latter form, the, curreont is
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1(t) C1m Z (-) Z(2Wt• e for t < 0 (4-83)

Lavery (Reference 4-2) has tested the approximate equations against

the equivalent circuit model of Section 4.5 for the applied field

E (t) 0 for t < 0 (
(4-84)

= Ea(0Y yt-e t) for t > 0,

for which the equivalent circuit equations can be solved analytically. The

cable example (4-50) was used, with a = 10 sec In Equation 4-81, t

was set equal to the larger of t and 108 seconds. Equation 4-80 was

integrated numerically for several values of y as indicated in Figure 4-7,
which compares the currents computed by the two tie Pods.Thcoarsn

shows that the varying inductance approximation is qui.e good.

Although Equation 4-80 was integrated numerically in this example

to show how good the approximation is, the current can obviously be estillited

by crude integration of the equation over blocks of time in each of which

l( (t) and L(t) are regarded as constant. Note that the decay time L/R

is of the order milliseconds.

Our choice of putti.ng L (t) inside the time derivative in Equation

4-80 instead of outside was somewhat arbitrary, mathematically. The choice
made gi~ves better agreement with the acctuately calculated currents for

the shorter driving pulses. If 1, were put outside, the current would not

decrease immediateIy after the short pulse, but would decay only on the time

scale L/RO a 10 second. Putt ing 1, under the time derivative gives back

some of the dissipation associated with the real part of Y (w) , through the
term I dL/dt. Since dL/dt is positive this term has the effect of a

reo' i stance.
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Figure 4-7. Comparison of currents calculated from R,I. equivalent circuit
(curves) and from time-varying inductance model (points),
for the appl-i.d field of Equation 4-84. The values of -y are
indicated.
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4.7 FREELY PROPAGATING SOLUTIONS

The analysis thus far has considered only the particular solutioi

of Maxwell's equations, or that part driven by the applied field. The

equations also allow freely propagating solutions, and these are needed to

satisfy conditions at the end oi' the cable. The freely propagating solutions

exp(j (wt-kz)) occur for w and k such that

Z n- 0 ,(4-85)w

so that a current I can exist without an applied field. Thus k is no

longer determined by Equation 4-4, but for each w is chosen to make Z
vanish.

Zw is given by Equation 4-28, and Equation 4-11 gives

4.- (4-86)

For arbitrary k and w. Ignoring the dependence -)f the logarithm on

k (through K2 ) allows solution of Equati.on 4-85 for k 2 , with the result

2 - 0 (6/a 2 ) 4 (in(2 /a) (1-87)k2 = " J - I--, (4-87)

Zin(a21a) + 0

where the skin depth 6 for propagation is complex,

6 = 2/yjK2
2

Since K2 a nd 6 depend on k (see Equation 4-12) , Equation 4-87 has to

be solved by iteration for accurate results, in general.

For to < 106 sec and when the conductivity of the insulator

is indeed small (true except in case of high ra-diatiop oxposure), the first

st.-:p in the iteration gives approximately correct results. 'he first step

puts k 2 = 0 in the calculation of r12 and 6, For o) < i0 6 the dielectric

part of tn can be neglected and
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rrw

K (4-89G)
200

so that

6 2• -6 (4-90)
Inl-y-Z 0ow/c

0 )

[[ror is the magnitude of .',. "Thus

2 4

The ratio of the r's is

Il jC W:0/c '

•2 zo(Y 0

For the evumple (4-50) at s ter0 i1n(6 /a 7.t, din(at/a1 o= 0 -6937

•,and il1q, 12 •' j/450. The second term ill the denominator of' Equation 4-87

can he neglected, with the r0:;5lt I

2 2 Qn((S /a 1)
"k (1 m 1 (4-91)

Th'i.s rest!.t verifi.es that it was proper to neglect k- in c U1 clii 1 i K.

Since P'.i ((S H/a ) is considerably larger 1 han ir/4, tile square root can he

calculated aipproximately, giving the formula for k,

k 47 10 ~1 - -C /c.!
C P'l (LI,/al 1 6~/

T'he im~iginary pi-rt of k gives the attenuation of tihe prolpagatinig wave.

lFor large u), the soluti~on far, k,, lEquatinn 4-87, s11oLdIL be

i.terated by putting this value of k hack into the formula (liquation 4-86)

fO1' K1 , arid so on. For accuracy, the full q should of course be used,

instead ot Z .00 Figure 4-8 Thows the real and imagiinary parts of k fo r

100



101

.100 1 ITI
- -2
10-

wk

.0 1

o 11

G JI

0-6 3.L 4 5 6 7 9.L
10101 01 01

w or (x (sec1)I

Figure 4-8. Cabl e propagation constants. Solid curves, r'eal and imaginary
parts kr and ki as functions of u. Short dashed curves, the
same from the approximate Equation 4-92. Points, T(',.); note
that this is virtually the same as kr(wd). L~ong dashed curve,
ratio of phase sreed to speed of liqht.
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the example (4-50), aloTg with results from the approximate formula Equation

4-92.

In the Laplace domain, one looks for freely propagating solutions

of the form

I exp(cc-z)) , (4-93)

where • is again determined for given c by requiring that Z = 0.
W

For this case, Equation 4-87 becomes

Zn(6/a2) +n(a2/a
2 CA 2 (4-94)
Zji(a2/ + -- 9.n(6/a2 .

2 )72 2"

The skin depth is

6 2/y-K , (4-95)

aid gnris to be found from Equation 4-33 or 4-35. Again, iterative solution
is gene~rally required. The r,'s in these equations are of course 1(cfl.

Figure 4-8 also shows 1ý(a) ./'

As in Section 4.4, E, can he relaited to tile current I for tile

freel1y propagating solutions. By the same procedure it is found that

jkZ
I (w) , (4-9o)

r -2, 1 r T

I! (•• ... .. I (C') {4 97)
r " 2'rrn rl

The voltage V across the insulator (o assumed negli.gible) is found by

integrating the:e expressions on r. The result is

kZ0
V = 2 'rr(w),0/c

21 (
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V

V(a) - 2Trcci/C Zn a I(a) (4-99)

Note that the sign of V depends on the sign of k or •, i.e., it is

different for solutions propagating to right and left. The factors

multiplying I in these equations are analogous to the characteristic

impedance Z of a coaxial transmission line. In the present case, the
c

outer conductor (the soil) does not have perfect conductivity, and there

are significant electric fields in it out to radii of the order of 6.

4.8 THE END CONDITIONS: OPEN CIRCUIT

*rhe F'reely' propagating solutions are added to the driven solution

to satisfy conditions at the end of the wire. The easiest case to analyze

i s that in which the end of the wire is insulated from the soi 1, i.e. , the

case of open circuit. If the driven and freely propagating currents are

denoted by Id and I respectively, the end condition is then that

d (4-100)

VThe driven current is determined by the applied electric field, and propagating

currents are then led into the ends to cancel the driven current at thos,

po i nts. The propagating current., propalatte along the wire, mod idifying the

total current and fields as they go. They eventually reach the opposite

end from their origin. At that time, additional propagating currents are

fed into the ends to cancel the outgoing propagating currents. The

analysis here is the same as in normal transmission line analy sis.

Th is analysis is not exact. While the propagatil ,, solution can

cancel the wire current of the driven sol ution, it does not ,:ancel the fields

of the latter in detail. The valuvs of k, and therefore of >,, are

different for the driven mnd propagat ng ,,)lutions for a givyen frequency.

Hlence the radial distlrilbution 01 fields is not the same. Cance llat i on o f
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the currents means that the B0  fields, which are given for hoth solutions

by Equation 4 39 near the wire (out to about one skin depth) , will a 1 so

cancel approximately. However, as will be seen shortly, the fields F 1 are• r

substantially different for the driven and propagated solutions, and comc

nowhere near canceling. It is reasonable to expect an adjustment of the

radial electric field over a region of the size of one skin depth near the
end of the wire.

1-quation 4-9 relates E r to B0 . Since B1 is approximatel1 the

same for driven and propagated solutions, given Equation 4-100, out to about

one skin depth, the difference in 1i comes from the difference in k. For
r

the driveon solution, kd is given by -quatioin 4-4. For the propagating

solutions, k is given by qt'Uation 4-87, or for lower frequencies by thep
approximate Equation 4-9.2. It i s seen t-hat k is typically several tilmesP
k . Thus EI is several times lr.

rl I) ru

The adjustment of" Ir involves propagating solutions witht hi gher
r

radial modes. Ihe k for these modes is again found by requiring . )

but this time the exact Elquation 4-25 must be used instead oft the apl-roxiimate

liquation .1-28 resulting from the small argulment expalnsiOn. 'l.hese solutions

decay rapidly with di stance away from the wire end, and carry little current

so that lEquation 4-100 remains approximately correct. Their ro e is,

roughly, to remove Ir t'ro11 the soil and increase I n i: the insulator

near the end of the wire. They are important, thereflore, inl considerations

of insulator breakdown at the wire end. The total solution depends also

on the structure of' wire and insulation at the end. The field across the

insulhat ion can 1e reduced by connecting the end of. the wire to :I larger

conducting sphere wh'ich is also in sulated from the soil. No detai I ed

solu1" iols were available at t he ti z; of writing of this report.

The radial field in the instiulator is at least as lart,,e as the

values indicated by Iqtlotionv .1-9o or 4-97. With the allrox imatioi !squition

,4-.92 f~or k, theseC C, uation' Iec'ome,, inl th4 insulator,
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A measure of the importance of the fields in the soil to those in

the insulator is given by the ratio of the radial voltage drop V = f)E drr

in the two regions. On taking B0  l/r, Equation 4-9 lcads to

soil 1 9•n(S/a2 )
(4-102;Vi 1. r]2 1(a2/a1

This ratio was sho.xi, to be small for w < 106 in Section 4.7. It is graphed

as a function of Laplace domain frequency n Figure 4-9 for our usual example,

which shows that it is always considerably less than unity. It i - to be

expected that the increase in B in the insulator due to adjustment ofr

fields near the wire end is by a factor 1 + (V soil /Vins), which is not largc.

The phase speed of propagation along the cablo i s (k is the real

part of k)

v = or (1-103)Sk r

This speed is considerably less than c , as shown by Equa t ion 1)2. bThe

ratio v,/c is uraphed in Figure 4-8.

The maximum value of the current at the center of the cable ,i I I

usually occLlr, for EMIM drive, just before the propagated siinals arrive

from. the two ends. Attenuation and dispersion of the propag.-ted signal-s

must be taken into account. An approximate way of treating thi s is developed

in the following section.
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Fi-,ure 4-9. Ratio of the radial voltage drops in the soil
and in the insulator for the propagating solution
in the Laplace domain, as a function of frequency.
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4.9 ATTENUATION AND DISPERSION

The factor exp(-jkz) determines how the signal propagates along

the cable. In order to estimate the effects of attenuation and dispersion,

an analytic approximation to k(w)) is needed. Figure 4-8 shows that the

real part k can be fitted quite well, over a few decades of w about
r

any point, by a power law. In choosing a fit, care must be taken to maintain

the reality and causality conditions (see Section 2.3). A satisfactory

approximat:ion is

jk : a(jw)p, (4-104)

where the power p and the factor a are both real constants. For then

the complex conjugate of jk is

[jk(w)]* = jk(-w) ,(4-105)

and reality is guaranteed. Causality requires that jk be analytic in the

negative imaginary half of the complex w plane. The function 4-104 is

analytic in any region that does not enclose the origin. A cut along the

imaginary axis from w = 0 to w j- prevents encircling the origin.

pie path of integration in any Fourier inversions must then pass below the

origin, as in Figure 4-l0a.

Figure 4-8 shows that the exponent p is just slightly less than

unity. Thus q, defined as

q - 1 - p , (.1-10 )

is a small number, of the order 0.05 to 0.1.

Ekquation 4-104 can also be written, for wo on the positive real

axis,
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Path of
Integration II

-(x, ... • •-j.-..

a. Normal Integration Contour b. Folded Contour

Figure 4-10. Cut and integration path in complex
w plane.

k a-q = a,)exp(j 2)

- aw'lrcos(,-) - jsiln(- ) 1 (4-107)
2V

-a•~l j Mrl (for q << 1)

This shows the relation of' the real and .i mUg i nary part.; of k. The closer ,

p is to unit)', the smaller is the 'ati.o of k. to kc , which explai'i-s the,
Ir

shape of the K- curve iln i-guro 4 -8. If we choose to fit the k rve

in the viicinity of some frequency (1, where k = k0, then the constant a

is

a / l (4-1081
0 0

Let an imlpu1 sO cur rent b0 iijOected at t. 0 into the end of the

Cal,'1e0, which is at z = 0. T1he Four ier transform of the i mpuilse function

is unity. The signal at t,z is then

1 08



C-0

i,(t,z) -21 T f exp[jwt - az(jw)0 1P]dw (4-109)

The integral here is difficult to evaluate exactly, but it can be estimated

by the method of stationary phase (or saddle point). The argument of the

exponential is stationary when

arg t - paz(jw)-= 0 , (4-110)

or at

I/q
j• 0st ( t-( -I )

This point is on the negative imag inury axis (w -j x real number), so that

the :integration contour can be deformed to pass through it. The value of

the argument at the stationary point is

i1/q p/Cj
St ( I@z - t2•

= ( t-- [1 , = . _z)(1 -q) /q
t(ýLaz)//1[ q- a az (III- (4-112)

Thl second derivative of tye argument is

Da 2 2 - 1+q)
2... arg . arg =- qpaz(jw) (4-113)'0.•2 a (jwa)-

e t at, hesttionary t g4es

'" = - qpaz( (-1

In tho Vicinity of the stationaof point, w =wt S(-,st

arg a nH','0 + 5 arg'' (&0iJ). (4-115)~0 2 0
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Thus the exponential in Equation 4-109 is real and decaying if the path of

integration passes horizontally (6w real) through the stationary point.

The estimate of I. is then
im

/ f __ (l+q)/2q (1-q)/qI. (t'z) • - ') exp['qaz(Paz) ( . (4-116)
1M 2Tr qpaz tt

Since (1-q)/q is a large number (P 10 to 20), the exponential

here makes I very small until t is large enough to make the argument

of the exponential near unity. For larger t, the factor t"(1+q) 2 q makes

I decrease rapidly again. Thus the original impulse function is spread

out over a short time about that time that makes the argument of the

exponential equal to unity.

The form of Equation 4-116 can be simplified by calling the argtt-

ment of the exponential -u , i.e.,
(Il-q)/2(j

( •)z qa (4-117)

Note then that

S1 1 . z -) (l+ q ) /2'.j
Cmrsonto - 2 (4-118)

Comparison of this expression with Equation '4..116 shows that

I }Du -12
lir. = - e (4-119)

Now, the response I of the cable to a unit step function is related to

I. by
t

I (tz) = J Ii (t,z)dt",' ~st ' "

0 .

= d-tl (4-120)

u(tz)
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Note that t = corresponds to u 0 0, so that

(I z '2 f \f -f du =(4-121)st. . _
0

Actually, I (-,z) should equal unity. The factor i/Y-2p s 0.73 is not
St

far from unity, but our estimate is not entirely accurate. It will be

shown below that the error comes at late times after most of the pulse has

arrived at the point z. For the present we proceed with the formulae as

they stand.

The integral in Equation 4-120 attains half of its final value at

about u 1./2, and it can be said that the signal arrives at the correspond-

inig time. This time can be evaluated from Equation 4-117, which gives the

arrival time

ta = p(4q) /p(az)1/p (4-122)

If a is evaluated from the reference values k and woO' Equation 4-108,

this result becomes

0V-ta q/p1 (4-1.23)

where v0 is tile phase speed at the reference values,

V W a k (4-124)

Equation 4-123 shows that the arrival time increases faster than z/v0 with

increasing z; this comes from attenuation of the higher frequencies with

increasing z.

The rate of rise of the signal at the arrival time can be esti.-

mated from Equation 4-119:

I l l1-
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•ii

rise rate 1 ( - q--)e " : t 1/4
a

S0.62 "- - .(4-125)

qta

The rise time t is the ratio of the final value toi the rise rate,

I,1
t r 1.14 a t (4-126)

Thus t is a small fraction of t
r a

Equations 4-128 and 4-125 have a very simple and useful interpreta-

tion, from which they could have been foreseen. Firs., noto thot noi Spec:ific

choice of w0 and k0 has been made, except that they go together. Thus

in Equation 4-123, k can be set equal to any value of kr (th,.. reai part

of k) if v0  is set equal to the phase speed v, going with k . The

equation can then be written

.z (pp/qaqkr )q/p(417ta = v*b (~1/l .kz l/(4-127)
a1 v ~ r

Now,
p1P/q = (1-q)p)/l ýj e-p) (q << 1

For 0.9 < p < 0.95, 4o-) is quite close to Ir/2 (within 3 percent). Next,

note that according to Equation 4-107,

"2q rI k. . (4-128)

Thus Equation 4-127 is equivalent to
)q/1P

t= (k.z) (4-129)

The interpretation is now clear: find that wl, from Figure 4-8 for

example, for which

ki(()) = 1 ; (4-130)
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the arriva time is then

t a = Z/v b(WI) (4-131)

The interpretation of the rise rate, Equation 4-125 is equally

si.mple. The value of kr for the case (4-130) is

kr(W) = 2ki/'I~q

= 2/'Irqz . (4-132) 1
The frequency going with kr(Wl) is

Sv k = 2v /irqz

2 '
- ,irqta (4-133)

'Itqt

Now 2/Ir 0.64, quite close to the factor 0.62 Vj in Equstion 4-125. Thus

the rise rate of the signal at z is equal to that frequency (w) for
whichl tile- attenuation is e.

These results hold for a step function input current. Figure 4-7

shows that short EM pulses produce step-like currents, but with fi!,..tC rise

rates. The rise rate at z cannot be faster than that at the inplt. Lorg'

1,M pulses produce ramp--likc currents. The response of the cable to a ramp

iLs the time integral of tile step-function response. The arrival time for a

ramp is essentially the same as for a step function. The rise time of the

step corresponds co the time for the ramp to acquire its filnal slope.

The failure of Ist to reach unity, Equation 4-121, comes from

the fact that the expansion of the argument, lEquation 4-115, is not accurate

at late times. For t > 0, the integral in Equation 4-109 can be evaluated

by folding the contour of integration about the cut as in Figure 4-10b.

The result is
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I. • *** C:: - • : -;, =• • ,: . •, a • . .• • .-. -, C• , ,•-. ,C•. .. . *C ...- *•-•,: • 9•. . .•..

-- i) fe e .;in[sin(q•r)azsP]ds (4-134."

im T

0

For large t, most of the contribution to rhis integral comes from small
ps, so that the functions of s can be replaced by the first terms in

their power series expansions. '"his for large t,

00

iz) 1 fe tsin(qr)azsPdsSim~tz I e-

qaz (p 4 -/t (t large) (4-135)

This result shows that the impulse response falls to zero somewhat more

slowly at late times than was indicated by Equation 4-116. This explains
why the time integral of U*quation. 4-116 did not quite reach unity. The
behavior of Ist is sketched in ligure 4-11. The current rises rapidly

at t near ta but not qui.te to unity. The final rise to unity takes

a few t 's.
a

0.-73---

,,I
st

01
t
a

Figure 4-11. Shape of the step function response.
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A CHAPTER 5

COUPLING TO LONG BURIED CABLES; AN EXAM~'PLE

5.1 INTRODUCTION

III this chapter the theory a U Chapter 4 will be extendod to buL e-1d

wircs that are long enlough that the amplitude Of thle LiMl) changes approc Iabhi>

ovemT thle length Of thle Wive . InI most OF thiis Chapter, attentio isl.j g iVelI

'to LI IN1a it I cli' CXLIlIlp 10e, numeI1 y thIut O F aI buried p1ower illne which triae

Fat a burie1d fLICi Iity . 'inl Order to ImnXiM~I Z thle couLd Jag11, thle nutC1,- lea 'huSt

i,; assumned to occur directly onl the power li inc, at a dis;tanlce of' 1 k ilomet er

f7rom1 the' FaICiiity. T he geomeItry .is sketched ill FI gure 5-1.

T[he air in the fireball :i..s very hlot, With temperaIture's inl thle Vlange

ILUt 10 eV, aind is thi'erefiore thermall'ya olia.1 Til* e' elvetri'c al cot2ouctiv 2ty ill2

the f~iriebal 1.is Ill excess of 10 4 mh1o/Iiioet.ei The f~iriebal 11s aI Veriy good

c onduc tor c'e mpai.~'ed with thle Soil and with I tile a i ' out side thle f i reba 1 T[he

rald.ituS R Of' thle i '11-0),11 I eie sWith timeI aS

R (meteis) ýý130(0 t 2 /5N 1 /5(1

wihere t is5 the th im .i l se:ondLS and Y i 5 tile ) CI d I igll ~l T) I S

fýo uIT LII' is Valid iOi' t -'- 0 1/I second.

BL'iii' led CI po 1111CM typ)iQ I eI i>- 11aVe LQI ct I'd I "Ihot' wV 1ie SlIi'I'Oil1nd cd

h'V i 11511 [LitOil, tilei Nl welppd With se;veral1 Vetili'll CoildlICtOi'5 WhilCiih i'lV

Lap[)~i'O maIIItel>' at gi'ounid potentialt.L O{'t CII !IL prt 111)' conlduct ing [p1last ic

shceatil priotects tile I'et(II'll w Iil'C Ii'OII11 CO'2'i'0 Oii b)' t le SOil. We 111 sh ll L lssom

dhat the r'Ltili'wil~ WI ~ r'Lie ll ci ecti Icni conita~ct with thec soil , anid take the



Fireball

Air

____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ Ground

Power Line

Facility

Figure 5-1. Geometry of burst, power line and facility.

resstace f*thc return wires to ho

0.3 mu liohm111/m1eter .(5 -2)

The inutegralI of' the raditul 1111) C1 c!t riC 11 c d inl thle ground1L between

the firebal .111ad tile fac Iility would be ofý thle Order oý 1 to 10 liegav' its , if'

the powyer I11n0 were not present. After a period of7 inluctive 1limi tat ion of I
Current inl thle Wire, this voltaj!e appears partliy betwecii the wi~rc and tho

fi rebalIl at one end, and partly between thle w~ire and thle fnci lit)' at thle

other end. It is likely that these voltages are large enoughl to drive arc,;

between the wire and the fireb~al I and between the wire and the facility

wallIS,. It is aSS1.me1d I e1re thalt the latter are rein-forced concrete, and

ha0ve a IW ow lMpedaiC e to dims ta nt groun11d . The 1 I-CIMrb 11 , which 1 s n c1 Coitac t

wvi t 11 thle 50 i I , a I so has a1 lowv impedance to di1 sta it gl'roun1d . The current i ni

thle wvire .is limited, after thle inductive phase, by these two im1pedanlces. It

is l i kely alIso that thev so il will break down inl the v icinilty of* the w ire

a 1 omg its lenlgi:hI, reduc inmg to somle extent thle Vol tage and Current doll veredL

to thle facility.

Thle question as to whether ground shock dest roys thle power li ne is

imima te rialI . There is no shock wave out~side the fireball (ait the t imes of-

interest liere) , so the power 1line must be intact at thle fireball rad ins. I f th le

poe li ne i s opened at somme poinit unldernecath the f i reba 11, the arc Canl st ill

strike miour its edge.
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5.2 THE DRIVING ELECIRIC FIELD

Figure 5-2 sbows a, crude representation of the time and radiuus

dependen)cc of the radial electric field in tile ground within a few meters of

the surface, The times 'T labeling the curves are retarued times,

.= t .- .(5-s1
C

Actual calculated fields do not fall precisely exponentiiallv with distance,

but. the representation shown is not a bart one. lihc fields given are most

appropriate for a few ioegaton explosion over soil of c'onductivity' (at low

frequency j R

1 0 Z 10 mhoimtctr. (5-t .,;

The ends of the curves ;are pliced at tile fireball radius oL,:.aýined from

Equation 5- I with Y = M TI'.

'File behavior of' tie field c' i be uderstood front tle theolr, pre-

sented ill .hte 3. At early tiles t ile it' conductivity i., larger tha1n the
soil Conduct~ivity, ,Io the radial electric field is ipproximately equal to
thie saturate.Žd ,iliLd .J/o(air), which varies littlI with distance 011t to I

kilemeter. At late times, in the qalsistatic phase, the Compton ,lr,•re;

'ass in g eut IZI'ds through the hcm spChere ot radius r in the aIr rcCt"1, ,,s .S
candtIct ion currCcitt t h1 r'uli the hem i sob"hre of rad ius r in the g.,n nid , so

It ha .../I.:, I/ '"( ..r" 5

Th is formIT in IdI c;1 t 1, thait . 1 -- luid fall b about a tCictor of 10 betwec-,1

Sr - 30W and n(ic ete r's (t " 30 t ers), ,ill gIrcllleitt with the ctl'c ;at
-- I

I(I second. At iaterTIed ilaL ti'lls, the curves can be tmiid;rstood by

Li5stimin 1 tnat the (oiptou current %sithltl one ski ill deClth il the air returns

as conductiont cilt're;t withlln0 one :-kin dopth in the rlOmi.it
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The fields of Figure 5-2 are represented analyticaly by the formuli.

E (r,t) =(t - r-)e- 'S-6)
r C

Here 6' is a. function only of retarded time. The parameter 0 is -.'oD

independent of time, because the slope cf the curves in Figure 5-2 v,,aries.
From the slopes we obtain the foilowing table:

t 1 -5 -4, -3 0-2

tO= 10!10 set)
-i • (5-7)

= 0.007 0.0012 0.0034 0.005o 4 0.0079 mi

It is seen that B changes only slowly with time.

If B is regarded as independent of time, then the Fouriev expa'nsion

of E (r~t) contains terms of the form

E j (wt-kz)(5 8

where

k j (5-9)c

Note that the horizontal coordinate ;along thii Iolvor line) is now callod

z, in order not to confuse it with the cyvlindrical coordinate r of Chapter 4.

5.3 THE WIRE IMDEDANCE

The impedance of the power I in.ý to driving fields of the type of

Equation 5-8 is given by Equation 4-28. Tho absence of an insulating layer

in the present case can be accounted for by putt Lirg a1 = 2 The impedance

is thenw

Z0 r--, (Pi T

w : ,IK 2 a2  2 (5- 12)
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The quantity K2 is given by Equation 4-11, which with Eqpuation 5-9 becomes

J -Wrl2(-
-. - - (•f- j•)' , 5- t

where the relative soil admittance is

r Z (,o 'i: . - .. (5-12)

In deriviny ., the time-varying inductancc model in Section 4.6, we

showed that the second (k') term on the right in liquati on 5-11 , with (),

was small compared with the firvst term and could be neglected . 'Ii! s approxi -

mation must now be reexamined Writ ing cut l;JUatiol; 5-11 gives

2 - , (c-U) .j (z0• 2 l (5-13)

c - c o~ - 2~1ý)-

The cont r ibut ions of the k term are ev ident. F rst. there is the termn

-1 I11 the factor L - 1, which can be neglected as in Section 4.0. Second,

there is the torn-, -2,' in the factor 7O( - 2f,. Now Z 0.377 while

2f-, < 0.016; th.i, 2 F cani also be neglectcd. Finally, there is the term

1"'hi; term is negl igible if

c U

N- - ' • skin depth (5-14)

1hus the tiwe-vnr.% ing inductance model is still valid if the distance of dif-

fLusion of fields :11I oiw the wire is small compared with the distance 1/I

ill ,l'i i ch tne amp. i t ide of the drivin g fieldI varics apipreciably. In the time

dcnmail, the inducta!nc. IMIodel is va1 idi IoI, times

t . ..... - - sec ill present example (5-151
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12

I, order to find an approximate evaluation of Zw, iv. is necessary
2

to evaluate both the factor K2 /1,2 and the log-trithm in Equation 5-10.

For the log term, the variation of which is not sensitive, we take

2 ,
'(K 2 1a 2  a2

where L is given by Equations 4-74 or 4-81 if Equation 5-15 is satisfied, and

=1.1 for t > . (,-17)

For the factor K•/fl 2 , note that the neglOct ion, in hqt-ation 5-13, of -1

co1mpared with c and of -2(1 compared with Z o is equivalent to writing

Equation 5-11 as

-K~----2 c

or

2K2 2 2

fl 2  c T 2  c ZO0)

The second form here rccognizes the do:,iinance of Z o over Cwz/c at late

times when the P 2 term is significant.

With these result,; and with the inclusion of thie resistance P,0

of' the wire, the lipedan-:e of the wire can be written

Zw() = + 1 RwO - R (5-19

where

i0 (S
L - n (u-. ! lenry/meter , (5-20)

and
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2
11 = • £n(-) ohm/meter

13 2-1T0 a2 (5-1

As in Section 4.6, tVe time domain equation for the wire current I is

d [l,(t) I (t)] E(t) - [R 11 (t) I I (5-22)ai- "-" - [ wo-'

Noteo that the resistance R• represents a negative resistance, which

accounts fur the increase in current at a given z due to larger driving

field at smaller z. The e-folding time of the current due to this negative

resistance .s

L 1 a)
.(5-.3.

4 -4
For the example considered in this chapter, T -1 0 second at t 10 second.

Thus diffusion along the wire accounts for most of the increase in current

aftcr t = 10-4 socol1d.

The solution of Equation 5-22 can be written in terms of integrals.
Let

t tIf R "Io RO
g (t) f-- " L idt ' f r)- ]dr' (5-24)

00

'rhenl Equat~ion 5-.22 can be wr~i~tten ns

_£_I ~ ~ ~ 0- [Lgtt~~) =-g(t)
Lit

:•'Ind tile Solution of: this equation1 .Is

t
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5A4 DIFFUSION ALONG THE WIRE

The physical origin of the term R I is made clearer by writing
13R _

I= LI = 1LI (5-26)

Now it was assumed in Equation 5-6 that the dependence of the driving fi-ld

on z and t is 64'(t - z/c)e-Bz, and it was shown above that the dependence

of V oIL z produces negligible effects when, as in the case of interest

here, the wire is in electrical contact with the soil. Thus the essential

depe.,-ndence of E on z is e , and I will have the same dependence,

apart from end effects which are considered below. Threref,)re,

so that Equation 5-22 is' equivalent to

___)2 [IlI] . (5-28)

Th'is diffusi on euatl:. on shows explicitly that the magnetic flux Li per

uni.t length oi" wire di. ifuses along the Ivire, and Jis v ai,.1 for amy dependocii:-C

OF1: 011 nZ, 11ot JUst eXI)Onentials.

Equtntion 5-28 can be derived d~irectly from Maxwell's e(uati ons ot'0

the 'present case. These are, in the cylindritical coordinates of' r:Ki1ure ',-2,

a 0 '1z 11l-% - 9.1. , (5-29)

•)5-30pi) G:r -= .- .- ... (5-3())
9z

191
S 130 . (5-31)
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In the last two equat ions the displacement current has been neglected, a

good approximation i.n most soils eXCCpt at the highest freq(uencies or

very early times. Using Equation 5-30 in Equation 5-29 gives

DB a 13- DB0
a 0 a z 1._ "•

+ -- -*(5-32)

Let the fields indicated here be those due to the current in the wire, not

including the incident fields applied to the wire. Then B0 and Ez vani sh

at sufficiently large r. Integrating Elquation 5-32 over r from the radius

a2  of the wire to large r yields

- + (5-33)T-f z 2 p0• D ý2'

where q) is the magnetic. fclux po c un11t length of' wi. .I' the w. re were

perifect 1:y conducting, then F z (a,) = I! (the app ) jed 'ie. d) ; for si st. Ic e

The 171X q i~ s est.i.1ated Iy ass u-i fill, that B0  is the flield of thn current

I out to the ski.n depth s,

ia (S- 35)

Wil", ~ ~ ~ :: 1:II il ( I

When lquations 5-34 and 5-35 are used in lual tmitln S-33, the result i ; liqttion

5-28. Th:i.s deiwivati on does not g ive the formula for (s, wh[ich comies only

fr1"oml1 the complete solution of the equat:ions developed hi previouis sections.

The coinpIcte solution also makes clearer the effects of' app roxi maLtions made.

5.5 TERMINATION CONDITIONS /1

Ir: order to determin ie a soluti on of Equat i on 5-28 Cor a wi re of

finite lengt1h an additional 0 qM ti mi on is needed at each end of' the w i re. Thi is
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equat ion call be obtaitiel b" ~into f1''ting E(,Iatirtfl-t overA r4~ 4%o a½,no

6. Tilo reOsult i.s

p)oV -t 2. [LI] (5-36)

where6

V = fhdr ,(5-37)

is thec Voltage betweenl thle end o-f the wivre and distoat ground assail iated with

tile current 1I 1 dinth wir;ie. V dCoes no0t inlChide the Lincidelt electric

f-.1iel. UsuaLlly, V '.;! relaIted to I by a simple impodance, which at all

It:bUt thle earlie1st t ies10. IS Well approximateýd by a resistance. If thle fueil ity

1in E gixre 5-1. is a pproxiniated as a cond uc ting Sphere of rad ins a 1!i..ts

restsr" 'Lance to d is'toilii groun IS

(.. »j -t)(-38)

I'luc 1ac icr 2 lherie comles froum tie fact I hlat thle fie i I Lty i1s located near V Llie

i'Uc:of-, thle semli -iiifini.te soilI me1d .l.Un1. T[he IeSI.1tH01CC 017 t.hle ftil'eb)i 11 toc

d staout:- grouind !.S that of. a disc of rdi'ls itb

L1 41' 11o
If 1-11Q10,lod ICSJ StUMCP iS de`Signa1,ted b)y R~ (= 0 or Rf) ,thenl the relationI'V = I1R5L (5-40)

wh ero 1- i the Cirrenct 1 ~ Out Of' thle wi' P iint() tilt soil . Comb i Iii 31g

this eqIMIat0 inWith Ec(L1lniti OiS-36 yielohs the"- terinlijiiti on condjli'tionl

- LI j .(-1

Zii
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I!.

5.6 METHOD OF SOLUTION OF THE EQUATIONS

The flux function has been defined (by Equation 5-35) as
-"L(t)(z,t) (5-42)

Here L is given by Esuation 5-20, with 6(t) given by Equation 4-81 or

Equation 5-17; the t iln 65(t) is really the retarded time, or time

after the arrival of the driving field at the position z. The difference

between using real time or retarded time in the rest of the equations was

shown in Section 5.3 to be negligiblo. We therefore think of t as retarded

timci in the romainder oF this chapter.

In terms of q), the differential Equation 5-28 and the end con-
dition 5..,1 a.re

'J~lR IwO 2 + - 4-)...( - 3

. (t)+ at right-hand end
D + (5-44)(t)4 at light-hand end .

lere the tactors C o je defined by

,". ( ) . ... .•. .. ,(5- • .".)

wvi~th t1. applope .kite load r'is . stance I R at each end. The positive direction

of' I and i s to the i ght.

Thes e equations ca3 n be sOI Ved quite read i 1>' by f i ni te-d i f'ference

mothods, ilowoevcc, approximotao !-o tiOiIons can aliso be found analytic8liy)

and these aWCe to:(tot• 'O pry !ovi.d. ig toders Landing and 'shecks on the I n i'te-
I:i f'ercon,,e Ž ",o1 ts6
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The first step in the analytical solution is to eliminatc the

term R wP/ by defining

g 1 (t) f ~dt' (S5-46)

0

P and letting

e (5-47)

Then Equation 5-43 becomes

Dq) g, (t) D2q(548

-. +1 (5-48)

Z27

E~jL t-i0l1; 5 114 re 0ft 1,11CIM11,01d OXCQ'pt th,,lt (1) is r pla ed y q

A. ll~ l~ O7. .7 S7IV..~ I:lllt! l 5-48,~4 S~ j c to.... tLh....



Strictly' speaiki zip this; pVOC-edure- iS V,1iki 011> -H I>:it'1 ks U COIISnt ý. 11low-

ever , Iiqua ti.on 5-51 i s aiplvroxIInla te I y c orrect i~ F I hog 1,11 s oluwI w i L~ 1 t. i II

which we as suzile. T'hen .1 4 . (t s do4. fioud by'

t
11:

the' Whitit1Oll or 1(l.izt i~l 5--Si h;

5.7 HIOMOGENEOUS SOLUTIONS

collVivel iclit 'to (2ledoiillic1'1c S~llcu VoinhIici) wP

'1'Ilcnlh (-(Illat 101i )CoOll- s hi p I y'

1 5-501)

WiI~~l'Lm m% lPL huc i glit (SIy pI li i ve lcollQst~lSilit: . Tis woul he' i wdet u

1101110',2 5II O S IOltl ioll' to Ni'dl) [ oaiM IA V II'(UltiClIV 'WIL t i WoIIId Ii P l5l l

l~ltii' l'll 1.(,: lsl ;Il tp ,It Id to 11:1 I I 1ie [ t I (111' V 1 % ilt 1 (1 tiW11 N~' C HW ,
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At ech)I (Mid oft clie w!re we shoaild Choo0Se thaLt Sol Lit i-On thalt

decays Id. th hicrnc '~s i Hg1) d l.StiaIC _intto theC wId reL ThuIs It theC 0ndLS O)f tlIeC

w Ire ry the soi.ati oii go .1 ag as c we have theý relatilon betweenl IP and

100q) at rih t. l- hanid ond

~fj 110 11) ait If. ft -bau1d end

I t WiV11'll turn ot. thalt. oll1)' t~hO ea. Iý Jt1OIt betweenQI ijL tn C/ 1t the I d

o[ the wirc .i ý is eeded to CaI ~lea Qat ti11 totl1 Cu1,reO~t at tIIQ enId of1 the C'wi IT

at thloqe t1imeS be fore d i I'fLIS1) C1oa can occur over the ealt 11-e IC ength of' theL Wi. re

A~t en iy' I:hc , h'qult. iol s -53 im iid I ues tha t ,wi .11 vary Illore

like a powe'r of the t .1 me LUa,1 OXIM1onelt.ill)'. 110letOIcl.t. WOUld he ISOC'III Ito

IV]I c re II i s i ~)5I .t i Ve, co~ll t~lit.. SiteII SOl it-iM(IS 11-0 C0CIIV(eI)I f.Ht I)' C OMOt

by) k,1) ip(2cc trowflIUiA)'l ol' the I. Oille V111-hiI IIIC 1.11 l~iu(I1't1 So 5-111 It S esi

shiowni that, thu eet~ o IIOwo Solution, a pIroPr late to the rl'Ilgt -handk enld

01' tile WiI'U, ill t lIt IAla)hI CC' LIOIIliW 1 iS

/3(,)' ((;) ' ,(5 -15 9

WIIVC ts ;I 'ItI rb 1i til 1,I ry 111vW c Oi ( 1o theC [al 1 1 :IIcL va' I, ;11 10 s, 'Illi s

hilnc t ll oi1s 1 I[Xed by) 1:(11111 v 1oil 5 -58, At 00 ' fI (s) inust be the ILapifcC'

(500

TIhL h~1pltcc t rauts roilul of C p~ Cili 11C hOlOtl~ld~ I))' Ilu til k11,t I' det ' 1 vat i VC Of

FbImi t ion 5- 59. At: Y



•kr,~~in ie .. ... . =,•.

.= ', f(s) l1!/sn+l/2 (5-61)

D" • y=O

Comparing Equations 5-60 and 5-6t ma•es it clear that in the time domain

3A )) .Iy=O h. tn-l/2 (5-62)
(t 5 -62

Thus the relation between P and ip/3z at the right-hand end, for power

law time dependellce, is

D '! (5 . (5 -63 )

S(n - ;-) !

At the left-hand end, a minus sign should be inserted in thi!s equat ion.

Figture 5-3 contains a griph of the ratio of fac orials that occurs in

Equation 5-63.

The time dependence of ' Equat ion U.-5 3, will rarely be pure'ly

'exonential or purely power law, However, the relation between qp and

2)/•'/)z is not very scnsit:ive to thc precise form of the time dependence.

For eXamp)le, the exponent ial funcCion U is tangent to varying power

laws at varvying? times. Since

S (t+t) ts.< c• ,., (I+s(St) ,(S-64)

fl111d1

(t+46t) "1 t (1 + 1- 6t) , (5-65)

it .h; clear that at t0i1C t thIc exponential is tangent to I power law with

n st or s n/t (5-66)

IF in the e:d rel at ioI, 5-57 for exponencials we make the replacement s n/t,

we o!1.a in tile approx.imlt(C powver law resullt
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Thccre :;s pOtted inl Figure 5 -3 are ý- which 1s to be co.1pared with thle

rat io of faCtol-ia Js Of' Lquat ioti 5-63. It i~s Seen tlint t roat ing the

expenenlt inaI case hy power law fiLts at vari~ous times I cads to oni v ii smal 11

orror.

a~W weShni 11 wr itc tile re 1a t.i on between q) at Iid i/ s

whO V.e the0 p1 us, s i C.11 iS fee t~hc right -hand end , thle. iiiu qg i,; for the

1 c t T 'he fo rmIul~ac for- A r I-

'ii0/ for tie

Not", thalt 1 /A i s aipproxhima t.elk tile is taihe d~-i lsed a 1long tile wvire.

5.3SOUT ION OF THE TERJ'IN-AT ION COtNDI- ION
FOR EARLY TIflES

At th: iiir' i iently early that. thle di ffusion1 d~istanice. I ,'A is
s ýa om nr -(!w th tI cnco'th1 o f th]Ie w i Ie thle co I It r i IuMt ion 0 11 0ft, Q lie

liomogeý, noon01s so 1 tt 1 01. a t Co d %Vi t h1 th l1 ef t -h1a nil ell( j to t he. I' 1 x ait tilie

t iOn con1ditionl liina1t ien 5-45 is thenl relat ively simple.'iI, t',VI1" u'-Itwted

(1tquat ion 55 For' the', pmu't (I'l O Lt~l t') ýt t ( -1"i -ldi -ldw

finid thepoe li1'. ~(t ) '.ppropriate for cach Va'1lue Of C et. q ( t b

the Value of thle 1-ight --hand homlog[ene ous sojut on, inlc mdiw ;IIIa arh itriar

constanIlt mit I t.~ pl ic wil i Chi i s aL-;o,'bed i Iit( q, . h t hon II n i d er 1, 1e to tal I

sol tt ioV

...... . .. .



, -- 70)

The -- derivative of at the riight-harid end i.,

•qT"" + , (5-71j

where, from "n 4 -1 5-5 0,

S-) 25 (5-72)

Mad, from Equation 5--68,

IIPr At~r 5 -7.

The termination condition 5-44 then becomes

R + Aq) (5-71

This e.yuat:i on can be solved for -cr, with the result

r kA +
-' _____r 4> (5-73;

The tLIX Y is thenl2  from F(lmjtio9 ; 5-70,

*l~' A + IF.. It "lk,

F A
and the cur-rent i nto t h t irminaiit ion i s

1 =1 ( ' '~ ' 5-77")

At the left-lind ,nd, A -A and

"--.-") p1 (P (left--hand end) ( 5-781

It would r t 'Lin 5-7" that Tcould Ch:c ,

;it t inces ,hlc ,' le.;, t:Ljun ' Or i wheCTn the(' di .'fusinn di ;talc , i.\
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exceeds the decay length 1/hS of the driving eiectric field. No change

of sign occurs because A approaches B at these times. Equat ions 5-53

and 5-52 show that

¢2 r•exp/• t), (5-79)

when r3t/i oc >> I or 'hea the diffusion distance Vt/po >> Thus

at th-se times 2 is approximately exponential in t with s i B / 0o0,

and from Lqu'ition 5-69,

A (5-l0)

The factor A-3 in Equation 5-78 becomies small as 2 becomes large

(exponentially), and the result for -T is net cl•br.

in order to resolve the uncertainty, it is necessary to examine

Equation 5-78 more carefully in the Laplace domain, since 2 is not exactly

exponential in time. In the Laplace domain, the equation

='(• = . - •2(s) ' (5-81)
OlDS + r

0'

is correct p1 ovldcd q2 (s) is propeO3y evaluated. This can b, achieved

from the Laplacv transform of Equation 5-51, which is

9

(5-82)

ihere 1(s) is thc !aplace transform of the function

t (t) 4-(t) (5-.83)

Thw solittion of liquation 5-"82 i;

$ (s) - .• 1:() , (5-84)

a;11 lquation 5-SI be-Comes
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0 (\ F(s) (5-85)

Note that the factor - ,which tended to zero in the previous

analysis, has canceled out of the equation.

The inversion of Equation 5-85 to the tin;.ý domain car bc dolic

approximately for those times at which the diffusion distance is largerI

than l/i3, where Equation 5-78 is insuffL~ient. At these times

can be neglected compared with ~.In practical cases r, is comparable

to (~or larger, so that can also be neglected compared with

Then Y~S

-(s F(S)

which leads immediately to

T 9

The Current at the left-hand end i:

whiere R is the load resistance at the left-hand end. According to Equation

5-49, 4f(t)/13 is the integral of tVie electric field along the wire, or total

'vol Cage. Mos-t of the voltage drop occurs near the left-hand end. The current

iS appr)1oximIate] y'.u (o the voltage J~rop divided by the load resi stance.

in the time Frame assume6 in this paragraph.

At the right-1.;rnd end, Eqjuation 5-76 contains no such cancellations.

This eqUation is correct un1t~i 1 iffuIsIio fic'III the lef1t-h md e nd cami reachi the

right-hand end.
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5.9 QUASISTATIC SOLUTION AT LATE TIMES

At Late times the end effects gencrated ait each end call sI ffuse

to the o..m enci, and this interaction of the end effects mu-st be taken

into account. T this We retulrn to the general equations forq,

1Equations 5-43 and 5-44 , andt go to the 1 iffit inl Which d iffuIs1ion is rap1id

compared With the timeI t . Sinicc E varies mor-e and more slowly'a timle

increases, the term Dý/ýt in Equation 5-43 becomes small comnpared with other
terms, anld culn be negi (Zted inl first Order. This ji'OCedLOre Y'i lds; the

static solution alpprolr)riate ý.o the E3 and L at each time. We, ti~erefore

need to solve the (xjIuation

whercl' the (.10an1t ity y h's defined b.Y

2'n~Rui% 1 (5 -89)

We agaIn SC theC frii!1 of' Equation 5- 19 for 1:, and c-hoose the origin of' the

z Coordinate to he at the left-hand enld Of- theL w i re. Le.t d be the. di-stance

From the f ireha i1.11 edge to the facil1ity , Or l engt h Of wir ie x pa s c to the

f~ielId 1:.

The gene i'a 1 s'a 1 t ionl a f~ Fjunt i on 5-88 i s

p ~ >C ~z (5 -90)

S -Y

wher-e C nld C~ are' a Itnr'Const ant.; which Caii btc chosenl to sat is f)

the end conldit iohs.. , quat ioil 5--i . These en1d Cond iton ni015ar
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-ýl yd yd -(d .Yd ~yd4(3e ye (:1 A. ye (22 (,jL C 1c I

'Thelsc equa t. ios (-anl ho solved for C1  and C-)) with tile resitl ts

Q+Y) (-(3 e - ( +(') (C -ý)e u y 5- 2

1. 2

luain -,asafunoit jun ofl z. Ihl f'luxes q) and (Il at, the leFt

and r ight-hand ends can1 be evluaILted d e~ ,W~i th tile VOeS'Uti t

-- Y 2,Y U2 Y) -k 4.y e 2y (,I 2'-/ c, 1 -)
K yI

~~ 2 Y) (1wye (;--Y) (%Y)e_ . Y 9 + ]/. 11 i5 ()I
( ad , ae i nt..rch-lallgedl and (ý Is repiticed by ;o, 1S I 1-coli I O 1) Iv

~mjL~ '11lle expl,~i ('MS I02 I! deived above ar iCairl ~y ctipiii-Ie i * i tiil th

resul ts ;irc not casy' tuo v1 .ia. z owver, cOllS (lorable !' imp iificat ionl

occur"s for' a ct! sO ldL i s Of piact.c1 e . IlipoaltoLeC Tinis case 2is

fl3d '-> I , YdI `-ý I ,y << ~, > 5

MIhen these coiid it i ow 1101d., t~l'VIII collt'. 212 mc, N flctOl' c caal he droppod

ai d -t 2 a'~lpp x im. t !ile

13;7



-y Z- , y- 
(5____-96).

can be made. Then q) (z) can be shiom, to be

z X + (5)7

IwhC(C we have do-I'inod the ''extrapolat ioa 1 engths''

x lt x ;

The boundary Conid itions (5-44) aite cqui vn i cnt to t.he stat eient t hat 'if'

is Xtrap() lated w~it-1 Constant slope to n d istance IA., or I /~ beyond I
thc ends of, thle wi re thle extriapo in ted q) must vaniiish, [IIqL~lt i on 5-97
3atisfies this extrapo)l~ation conditijou approxhUuat~oly, At z = d + x

V.a11i1T0us ill the )))!) roxlma11t 1.on that 0 i~s neg]. igible . At z -xv I he

exA!tp~rIoIated value of, 0 i S 1 4- i~X so that the brticket vanishes!

teri'is inl thle bracket. 15 shil;l ili l:1goi'e 5-4, along, with1 thle shape of (z

The V,1LC Of iecIC1" l I V 11t-11d C10 i

.1 fix X1, + I,),\5-99

Wiler ) i's th tel ,rl~fl iol ve5 t n t o' - lt.ilec L'ight-hand e d. Not:,. ;ignln

t.hat r('M !!. is c tLVotal. vol tilea pj 11i. aIong thu. w ixe

5. 10 APPLICATION or FORMULAE TO EXAMPLL

110 zipro111)X 0101\ tin etho V dv101oned 11101'~ JS plI)I11d in1 thi~s Section

to the exampile decllu~ed inl thil cluiptel'. The pI)1trilmetei's of* thil .- mpI arc,
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-l+ x.

N - Linear Term

e- F)Z 
I

0d

Figure 5-4. Sketch showing relation of exponential and '
linear terms in Equation 5-97, extrapolation
lengths and flux pj(z).

wvire iresistarlicc = 0. 3 ohims/kmi

ground coiiduc t IVity (Y 0 o 10 1-011

groltiid p)Clill'tt vi ty Cme 10

ra(1;i s of wI ie ma1.) 0.01 111 54;0

ICSitaac ,fac3.li~t y to d . s taunt ground R, !10 ohms Is
di stance f-rom(I buri'st. pol1 t Wu f'acl3.1.t y =10001)11;

d~i-Miii clectrit.IcIi old g.ivCI by I i.gtiiV -2

FrMm theCSe 11ipUt j)l1WIamte-rs the der~ived puanmetor s cal culIa ted at the m te

t lin1es are li sted :hi) thle Tabl 1 e5-101 . 111i th .i table , 0 1., Ca Ital cui ated f~roml

the 51lopQ of' tile curves in VFigure S-2. The skIin dolpt~h 6 1Comles f

Fliquat ion d'19-, wh I cli takes inlto aIccounit a pprOX m1a tel y the fr1equency'a va 3at ionl

of* o -iid c For typical solls. I;(li-it 10!) 5-17 dlct oim.ines "S. ' The sma 11cr1

o fý i and 61) is ulsed ln liquat-ion 5-20 to determldine thle inductance L..

T[he rca .l-stance i k F between thle Fr e ball an11 ( di at ant girounld cOHC o ,1 01om

FIliutitiot. 5-39, with thie ;,i rebal Ic'I u a~ read of~f Figuev5-. h

I aga vthinkiL der iva tie I liC ad colle froml Equationl 5-4S, and tho

oxt. lapo l-it io Oi congt Xb a x ad x, C ome !.rifl, Equlat ionl 5-98.
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10 I, 0.7 1.2 3.4 5.4 7.9

61i 24.0 51.3 307 990 5150)

6,,i 1600 933 329 2n7 142

2n 7.80 9.12 10.33 9.9d 9.50

:> 2'1.,S 6.92 2.0 1.99 1.:;1

I4t) 2601 633 1520

124 145 hIn 118 1521t

'Ilec next Mop ~im toM1 ca lculIate the expon'enth aruet g M and

( ), u e1.ned by 5iLn It:ioilm S-4'l6 aind 5- 52 - It is cliu Fro EaI H qua tin 5 t - .17

5418 and 5 -.5 tha lit hese argumiinents neied to he en i en at ed neetirate I O onl w~hvie

vuc:prpkintc to th poio: I to ~ . <10 Huod qain54 i/ ve,

S0.15 at t 10'~ 1.5 at t, 10 s~ec

littil I on ')-Io0j II!li i is hw r ani ai(Iqwiu m .ppvaro ion upIOi to I i. sove F Ul

;Qwtition 5-52 it con he seen tha1. (t Qt rvacho.s Whe valuInunitytIt
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With J." read from the Table 5-101 , trial and Orrur leads to t I p~

ýQCcolld as the t iwcihol g2  11011a 1-li t y'. A s implI ' ie f I11,1 VOI rap cs ethll

Ž wi.t h in 20( paerceant i.11 the t 'ine :intwwa'l 1'rm 4 x~ I 0-' to I (I) s c'cojid i s

10

ill (1LC-I'O to Ca tet1,i atC t.11 t'a i'ly'-t ilal t'LiN.%'l't at. theV t'1))ht- h:.i111d endo

th 1~i (ILI.It 1 011 IS, O bOV~l CrmFgr 5-2:s~ uxIL4: I tr id hluatioii5 f. 'the hur I i

pa hiat .''i plisread on'HV .111cie F'lure' 5-5 il 1sineeth ~-'i
-i'awn throulgh themi 'This ý,Ilrvu is tdhen mult ipliod hy ep m-,j n the.

1USitilt' is Miphdad lIItegra~t.'L Jinmer lea ii>', y i.Q1Ilj, 01 ng he togr'a

C11v !flwl :111a111N, this cu v CUPV I muliti pl.ieId by' x ( '. , x I to y' (id ( t

All 01' theseOpe'l~ 01)II-1' Call beC Ldori gnaphiea I Iy uiid wi thr the tird ol' aIpcc

The i xt steji Is to appl) Iy t-hu cil.I coildil l 'i, F(Itit ! oil 5-7,0, to(

11 * lil Io (ii I vt c r in 1.iw t -I I, FfHIM 1 C to C ' 1 VI t.a 1 vu A %v ';.t i o

HICe VOIIV! IlL' C I rut' I)CAW't' 11 ;1F(' dat ri'iri ined-, A Isl than enI CL e'L4 lit(te 1'ron1

I: Io V Q5 -3 ;nd IIa VIt I Ii on I -09 ,NeXt , OILh ' F;tel Al/ Al' is eva I ia I d

"duid P. is LIOI' t i'll ii'd fl-0n FIUIpat i on 5-70 . Vi' m naI>', th l' il-ri'Lllt 1 1 s

cnIC .i In e tila d fro(I 1:n lI~llnt 1 oil 5 -7/7, 'i'L( iiI i' 01t1l H ned 111 t IIc':;L' Opera'It M) is
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10~'- 1- 1-03

t (second)

Figurp 5-.5. Quantities; in the early timei solution.
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tsoc 10- 60 10 -

110. 65 0.65it 1 .0 3.0

12) 0.96 0. 96 1.12 1 .8

A, in0. 034 0.0107 0.00410 0.0037 (5- 105)

0.()(A(' o82 0.6"8 0.731 0.81

V -SOc/11i 0.016 0,062 0.27 3. 04

I, Amps 1.02 >1 10, 3.4 X 10~ 1 .30 x 10 1.43 x 10)

Thie wi l1 y- thIe CLI.J'eilt Cuiliptitod here .15 graphod 1.11 ['igo e S-6 . It

beg is to( I' J. SC XI)oIH2lt .1i 11y , dkIe to d IHIM.l 'u 101n ii on the wIV-C I' ,t HbOu 10

Mvoflid , its uxIUctud.

The late-timmie u, 01' qUIL~SiSti~t IC tIj))I-0X~iIminItiumi io01 the Currenl~t Is

8 iVenl b)' liqumlit ioll 5-99. 111 thiat Uqimmtloim, e,; is the eloetric field at the

ft rhbi1I end Of. the wi wid di ts, Ulu distance from the Fl reba II dge to

the faci iIt), whi1ch -I s read fromi Vigtn'e 5-2. AlIt of' the other param'ietelm.s

.1mm ijIqatwtlon 5-99 ho~ve heeim Clcii cm ated, above, The nummi1hers aore

t , "i ~ -

0" V/iii I .7 x In 8,8 x 10 0.5 X Hr-(~(5 - 1lIC,)
d , in 9( 901 745S

I , Amps I .97 x~ WO5 7.9 x 10' 5.6 x 10 3

Thi' s qm0:1 I s:t1t ICucrrent Is ni so gryiphod ill Fi gure 5 -0, where it

mini ited) CorrInit a lfter t, 1.3 X 10) seconds at about the s;amie t line

tl~wmt the cam'I ','-tI1 ueCLurremint beCome1s Lxpomienlt 1 n I Thiiis reLsui t m1a)' se-eml

5111pm T1 S O. ' t int'III to J- I into) thlt oxI)oientital pha~se i's the t Iime to (Ii I..

Nue: di HtMIii 1 /1" 3001niti ( :It 10- seconid), andi th is timue is
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Ct oi/ 2  10- second (5-107)

The time to diffuse a distance d is

t • bd 2 j lo-3 second , (5-108)

so that one might have expected the quasistatic phase to start only at 10 3

second. Hlowcver, because the driving field is much larger at the left-hand

end, only a small part of the left-hand end effect needs to diffuse to the

right-hand end to make a noticeable effect there.

The actual. current is estimated by joining the early-time and

quasistatic currents smoothly, as indicated by the dashed curve in "Figure

5-6. Note, however, that in the decade between ILI and 10- second,

where the peak current occurs, the q-xasistati, aplproximation has not beea

shown to be reliable. A better treatment of the diffusion of the left-hand

end effect is needed. Such a treatment could be devised.

Note that the energy delivered into the assumed .10-ohm load at. thle
8

facility is of the order of 10 ,Joules. This explains the extensi\ ,

electrical damage that occurred in bunkers that had long wires going into

them in the early days of nuclear testing.
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CHAPTER 6

COUPLING TO OVERHEAD LINES

6.1 INTRODUCTION

Ground-based systems often employ overhead lines for power instead

of buried lines as they are substantially cheaper to build than buried

lines. These lines are not intended to operate after an attack, as they are

relatively easily damaged by air blast. Hlowever, their presence can result in

large EMP signals which are generated along their length and transmitted

to equipment which does have a post-attack survivability requirement.

Overhead power lines often consist of a set oC several wires carrying power

and a neutral wire elevated above the rest which is periodically grol,'ded

for protection against lightning-for simpli city in this section we will

discuss coupling to a single line located at a height of 10 meters above

the ground.

Two features complicate the theory of coupling to overhead lines

compared to buried lines.

1. The conductivity of the medium surrounding tl'e wire var iCs

as a fuac t ion of both time and distance [Froia the hbrst.

2. Ilho boundaries of the wir_0e and the ground--ai.r interface do

not fit as coor, linat , surfaces in a system where the lie lmholtz

equat ion

(V"-k-) 0 , (k 1)

is separable. The Lapla:ce equation in the two triansverse
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dimensions (where the 7 axis is pam' 1 ~el to the wire)

S 0, (6-2)

is separable in bipolar coordinate&,. and we will exploit t

this feature iii deriving transnission line equations suitable

for late-time calculations.

The discussionl Of current on the overhead line syst~em breaks

naturally Into 'two phy-;ical regimes-the first of th-cse encoinp~isse:-- early

t~imes when thle skin depth in the air is less than thle height of the wikre over

thle ground. In this regimfe we Can c-alculate the electromagnetic fieldJs

about the wire iii cylindrical coordinats centered on che wir axis and

ignore thle effects of thle ground. This regime if, further subdivided into

two phases depending on whether the displacement current is gre~ater than

the conduction current in the air or vrice-versa. Ini analogy toC thd dscs

sian of surface-burst NIMP, we will1 call the first of these the wave phose

and -thle second the early ciiffusil.--i phase. in the: sc cend regime, which we

iil 11all . the late-diffIs-ion p~hase, the ski ý depth i~n the l'i r is larger than

the hei ijlW of' the 1line and it ispossible to derive a set of tra.nsmissionl line

equit ions for the current onl the overhead 1 ino. Thso three phases will

be treated in separate sect ions, of' this chapter.

6.2 WAVE. PHASE

In this iection we derive thle current onl the overhead w ire ,it _irlyv

tlilies whecn the di splacement cur~rent is much great~er than theW 7onduct ion

curr ellt in the air. Neglect ing the field denp-1ndence. of thle aiir Conduct ivity,
we can separate thle electromagnetic filcdsL into inCident4 anld scaýjtter~ed

pa r ts . For examplpie the el ectric field parai ici1 to the w eoriented for

conenincealong thle z axis, is

14?



I l

total in, scattered (6-3)
Ez Z Z

Tile i.cident field is. calculated without including the presence of the wire

(but including tile effect of tile air-ground interface). Tile scattered field

obeys homogenous Maxwell's equatioas (without the Compton current). The

effect of the w'_re is incorporated by setting the sum of the sc,'ttered and

incident electrik fields (the total field) equal to zero at the surface of

the wire. We will only be concerned with the response of the wire to that

pIrtioji of the incident electric ficid parý!Ilel to the wire axis; the

portion which lits in the plane perpendicular to the wire axis results in

a polarization of the wire across its width which is inconsequential for

system surv.1vability. We will also ignore the variation in the parallel

component of the incident electric field across the wire as the width of

the wire is much smaller thin the spatial variatiun of this field. In the

wave phzise, where

->> Z ' (6-4)

rLquations 1-17 and 1-18 for the scattered field around the wire are

. V x -6-51

bt
I 1 :.. (66)

,The c. . ... of., the imci .ent. electric field p:,rallel to the wire -t a heiglht

10 meters above the ground varies at early timcs as

i llk Lt(t-ZzcosX/C)linz =cosxi: (,)c (6•-7)

where X is the anole between the radial from the "ii.:st and the cable,, as

shown in Figurc 4-1 U i0(z) vari es slowly as a fuinction 01 distnce along

the line--the variation results fr:ln aztenuation of gammns rind thc 1r2

decrease from a point source. If we assume that the scattered fields have

the same variation in z and t and ignore the siow variat ion of 1',0 il
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z, Maxwell's equations become

a/B0 = OC•osX U z (68

0 c rB-. (6-8)
ai

e-E = cosXB0, (6-9)
C r

c E.z r ýr Be(-0

Eliminating Er and B we arrive at the following equation for EF

2 2 1 E
X s r = r z (6-11)

2 z ,rC

for which the solution vani.shing at large r is

•- K r--•-ii-•(6-12)

where K0  is :i modified (hyperbolic) Bessel function of the second kind.

Since 1: 1- -IC at r = az z

= - ne1 'KO (rtcsinX/c)

z z K0 (aisinx/c(

As K0  behaves for large argument as

'it - •
K ÷ ,e , (6-14)

we associate the distance

csinx (6-15)

with a skin depth about the wire. The magnetic field can be obtained from

S3~ E
" 2 72

casin Xb =+

+ .,ic (rKtsinx/c)+{ = S 1 snxF~ (0-16)
c z Ko(aaxsinX/c)
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The current on the wire is given by

I = Br(a) (6-17)
0

For the usual case where

<< (6-18)

we can use the small argument limits of the Bessel functions

K0(•) "• - Zn -2- , y 1.781 , (6-19)

K (6,-20)

so

in in )
2 k-6-21)I2

'l'h s equation is sim iLi r to tie equat ion gove )r, :iu. the ri so 11

current in an inductor where

Lz 1 ine (6-22)

with

0~ 2 (2c )
L sin X ln (yasix c (6-23)

The only unusual term in the equation for the inductance is the sin 2 x

which is do to the buil.dup of propagating waves near the wire.

We now return to the examinat i.on of our assumption thaIt the

electromagnetic fields near the wire have the samte ',patia] and tenporal

variation as the local incident electr.ic field. This ia5 sulliption will he

invalid when X is sufficiently sm.ll that th, variation of I' (z) hecomes
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important and currents at a given position are strongly influenced by the

stronger electric fields nearer the source. Consider the geometry of

Figure 6-1. The time difference of arrival between currents gencrated at

the observer locetion 0 and currents generated at C and propagating to

0 is

A,
At -- (1-cosX) , (6-24)

C

so that wh•,,l1 the condJuct:vity is small anu therm is liittle attenuution of

propagatiing fields near the wire, we can iptnore the variation of 0 in z

as long as

1(-cs×) >> _ (6-25)
C I0 8z

everywhere along the li eh. Whn,- the burst is sulf:iciently cic:,;e to the line

that either this conditlon or the condition that the skin depth is smol.1er

th"Il the height of the line

Az

Figure 6-i. Geometry used itn calculation of limits of
validity of Equation 6-21.
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0.

fII

c (6-26)

is violated, the situation becomes substant:ially more compl:icated. The

case of a short wire high above the ground with the burst located oi. the

wire axis is calculated in Reference 6-1; for a long, wire with the hurst
near i:hei wirC .;1Xis, the prsneOf tiCe finlite, gr'oundI colduct~ivity beconles .

:[ importan't and this case has nol: boon ca lculated.

6.3 EARLY DIFFUSION PHASE
II

At most loca t-ions, cl, se t.o the burst, the vising conduct:ivity will .

cause the conduct ion1 cur.rent to vise above the displa'Cement cI:rrt nt [i

this sectiOn, WeO will calcuilatU t:he wiJe' current wheln

z c> > (6-27)U c

Flollowing the doriviation of Reference 6-2. The current on the wire g enerated

during thill phase should simply be added to the curren1t on the wi.re at the

end ofe th", wave phase a1,; long as the skin depth .is smaller than the wave

h1,as e s kill delth (Iquat ion 6- 15) . Ignoring the diislp.lacoement current,. and

'iassum:[ilg that the fie lds Vary only as a function of retarded time from the

"burst

t' = t - zcosx/c . (6-28)

Maxwell I's equations become

t 0 . .t Dr (6-29)

z( ': sX t (6-30)

z 0 1: L rB' (6-31)
(.z 1 )r 0
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which can be combined into a single equation for 3U

C rB (6-32)

D)roppilig the sccond term in parenthesis on th.2 left, hand side of (6-32) by

virtue of (6-27), u:ing the tact thot c/Z 0  1/ip 0 and expanding the right-

haml side we obtain

D2B 1. 3130 1',B D13()

.2 2 0 D (6-33)

DT. r

Cha•,g~i~ng t(; tile s'nl~ed varialaes

I• la , (;'-34)

t) ti

whe.)e t, 1.s dthhl.g tite t the ond of the wave phase, we lesve

13) D~ I ;Bo B DBo
. 2 D R - t " __= -_.F ' (6-36)

snb~ject to the boea: ond i~tions.

DR

D (RB ) 1 F('t) = .-I *( ),i (t ') , 37)

B= 0

I0i inc
R• (6-38)

'We first determine the Green's t'uiction G(R,-r-TI) which is t me Iagnetic

field resultilng from an impul so ih I" at '1 ' . Since lEquation 6-36

possesse.s translational invariance -in r, we exploit this fact by writinig

G, as a Fourier transform.
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G(R,,r) = fG(R,eiwcWT du) (6-39)

and the inpulse function can be written
00

2n f'--T o1Jrm.(6-40) .

Ihc equat ion for 2 C (R,:w) .i.s

Z1{2 R @11 (6.41)

which has the solutJ_,4

G;ic, G (.l I V1(iz• ) + r,( M Kl(VII-A ) , (6-42")

t.,he'c. I1I and K 1 are modified B~essel functions, of the, fh'st and second

kinlds. III the Fouri'er domain, the bounldary condition~s oil G; iml~ Jy ,

C(w () I (w)K - (6-43)

1y GI C;:[o;•) c;: ;2 ( wi)) K ( iR) = 0 t (6.-44)

Tlhe asy]lltot l C Iic liits o f' the1 13CSS I fi llct~i~o ill for 1 ,11ge1C "I .u mle nlt s are

Il(Z) arg z (6-45)

kI (z) 'ý, .-T,'z

SO it fc %V oos? C1 thO tlU argmemIlt 0"f VF1 (7 SU that

ar ( 1w) = l m< 0 (0-47)

ar,( = +- 7 , ( -48
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(whilch will keel) the integ..and on thie same sheet when we transfor.m huck to
-L G1  mu~st vanishi ando

G M

Transforming back to thie T domatin

C (R,'t) =75:r11 f . (0 50

The intogrut ion can be 11asolm' 1nt yei oe1 si ve ral valc b y (~O

d efo mi.-ii-ng theo contour In the Comple W Xt p101e as S 5hown) .1,11 F i.gu'e 6-2. Thle

In1t egranIIId haIS 11o sXIJ n~g u ~.~ sec2) bvanch p :oilat at the O rig in flrom

whichl we. may mun theo 1.,ln'ac~i cot along.1 tho 4. -1w ax is .As the Intog rand

vanishes c xponent iall1y Foi 't 0, R > I Lit l.ur~ge p s i.tiv I ye I 11mugi aY'

we may Ignov L110h cant ribut ion firom the ax is C., a11 Cd Neari the orI. gill

the integr~and b~ehaves as

C2

C C
/ / 5

C 3  C

C4

Figur~e 6-2. Tntegration path for, Green's function.



so ha w IW~ 1guveth C fltribt~io f1 romi C I! h 1e1' fiutIol

6 - 502

'C C: V'

setin pe :10 th I C'I1 be. writ tell

K. (1 -17 I K (i itW)'

0 Ko 0'.V' Y~- T)

lixj)Cs s.l 1pg the 11mod.. 'I.N ed ljussu ciFuncLi~on-s hi UteCrms of' I toinke I funct !oilns o c

a t'gullieoit s, this. i.S evtw to

f AII
RVUrthe S1111)1j ii lent 011 'LS I~ss~ L hifei' we look at I whic h will gi~ve us,

theIIC U11ýIgILiC Vi eili at. the SurIf-ice of itho wi~re. Uls I Hg, tho, )rouiskilin

01( 1 'z

we obtt1i-

CJ(l,) L~'~1  (o-56)

S utt1 lo p x VT7) ,:1nd Cxfpress:1og, the I laike 1 function i H1.n t ors of' ord :i a'

1W. ;cl functlons

' x I2
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wh ch i:; suitable Ifor mach0.ne computation. It i tfound that a fit Lo ((I,R)

which iS actLI'ate to with:in 2 percmit for all T is

= 0.425 + T < 1.3 , -3),
(; ~II + 5. 10 ..

t', (I,",) + 5.16 -u > 1.3,Q,l,~t . 1 ,64kitn' + 10.23

Thle naI gnelCtt f ieL L i.S, ill O I (0 ,

SO thait tilie cu'r),ent OR t 110 lU jt~h(d 11ol

I B0 (at' (6 - 60)

f,,gie , by , jL- ;( ,L-'. ')('fhi ('t) ' r' .(6,-M )•

We have made a coi], i soln betreol this; ccurate calcu1ation und (w()

1 n.1))i e' d thilme-depoiadellt inlductaincc: 'id 1,0( wh1ore We meey st

fo L iL first modelI and

VJ 1 ) = U'r!!, (a. t'), (0-0O')]

-is thc second modetI. The second ode1 RiOL 5 nlgost hat used inl Chapter 4
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iEuto 4-0 an Chapte Fy (Ljaio -3 ntat nteasne)

tiecr en on tve wl~loire fallsrasol [th e magn t~ic ; flxc ifusae s ra dalto and .woi

"fo tilep wi riod t'1h in-dpeudet is abdtent.llo iiil thereirst merelyTh simle

apprximth e formst ofdte airndutv adteicdnteeti il

in tile scodmpaioden Are cn oe s nilOl t htuednChpr4

(Eqatin 480)andChater5 (!-lation57 3)i ht ntieasneo



- .. m -.. . .. .r.. ............... ....... . ..... - - j
I

a tm

L Ci 1.57 x 10 v /II

+

at

u mho/J .

where

. =2 x 10 sec

2.4 x 10' sue-A

50 -1

so that tic peak clec.tr:ic field is 105 volts/m and the peak conduct:ivity is

1 1nho/m. The inductance used in the comparison is

F p k ~

S I•° f p C ('t ) 1 1 -T t k c,)

tk

wh~ere t pk is the time at which-J tile conduILctivity peaks. Tile ter11 inlside tile

logar i.thin for t < t is tile ratio of the skin depth in the air to the

wire radius for ain oxpolentialt y rising conduct.vi£cy. 'Inside the logarithml

For t > tpk is tile square of tile ratio of the skin depth to the wire radius

as lefiAnod by the substitution (6-35) wh'ich gave rise to the dimensionless

1 I il tile Grcenl's funl'tion: The second term in this logarithm ensure.O

continuity of i, at t pk The compari son shown' in F1)gure 6-3 emphas.i:: es

the importance of includin.g the redluction in tile current due to the diffiusion of

mIgnietic flux away from the wire. (We have terminated the curves in I igure

6.-3 when tile 'tkill depth e1Iult s 10 met ers.)
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Figure 6-3. Comparison between Green's function and

simple models for early diffusion phase.
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At late times when the skin depth becomes larger than the wave

phase skin depth thc wave phase current contribution to the total1 current.

should be decreased according to

I (t) 1.(t) I~ L0  (6-6 6)
wavewalle

where T is the Current at the enid 01' the w~ave phase and. 1, i thecwave
inductance calculated with the wave phase skin depth.

6.4 LATE DIFFUSION PH-ASL

In this section we will develop a ii-.odel for the lute-time portioni ol'

thle di ffLusion phase when the skin depth in the air is greater than the hei ght

of thle overhead line. Where the last two sectLions Of this chapllterý have dealt

wI th local phcnomena where the current oil the line weas O!1 1y a. func tioli of' thle

time histories of the incident electric field and c-onduct ivity at that ponlt,

the current on the line at a given poinit inl thle. late diff-usionl phase inivolve:;.

the t ime histories of the conductivIty an~d inc ident fi~eld at Other locat ions.L

Onl the line. We Wil1la;~n a p~erfectly conducting ground inl this sectimio-

theC effects Of finite ground conductivi ty Onl low-frequency signaols Inovlma

lines was first investigated by .J. R. Cairson iii 1926 -nod is rev jewed .i i Stmode s

text. (Reference 6-3) . 'I'le features of his tli,.ory which are r'd eva ut to uls are

the two iiodi fiýat ionis to thle i nductance of' an overhead l ine wh .ki 'C. reslt frau11

finlite So~il conduIct i vity-theC first Of the1se i .-i tha C the ndctnc is inlcreased

by' the ,;kinl depth in the ground. 'Phi s i1odifiC:1t:i oil is 1 cSq than1 a1 faýctor Of

two CIIZ0nr11e beCauLse thle ratio Of' thle line radius ý a twice 1h1 he ight i s less

than 0lc, 1-atu of twice thle, he ight to the. skill depth. (The reasonl we ;ise

twiýcC thle he iguht. wil1 be a)pa renit Short1). ) Tihc s econd nodIificat ion is~ t Lit

there Is a scries resistance which results from the di f'us ion of' energy, inJto

t:he ground . At a t lioe of' 10) scod t ill s ser ie C~S i st, nc e i S I cs- ha 1111

I (W llohms/ and 1;I; is as l/t at later timles, Withi this value,4ý the s;i' res

resisjýtan1ce Of' the line i S uu 1.1 ;l y 111-11,1 h lss t haa the terM i nlt ionl re si 't';inc e

represented by f*ar iiit i s (,,s inl C11hul)ter' 5) if 1.11 b)LIii';t to taZC iiit)- di stMIC-

16n, i.~&~k~.a. A,,~'~k'l.,~ ,,t



I
is less than a few kilometers. if it is not, numerical solutions o2 the

transmission line equations wit the cffects of finite ground conductivity

may be performed.

The transmission line equations are derived by evaluating two

sets of integrals of Maxw;ell Is equations. Applyi:g Stoke's theorem to (1-17)

for the scattered fields, we obtain

f E ds fda (6-,7)

where (is is the path enclosing the surface a.

Ti7 we apply this to the path shown in Figu-'e 6-i and designate

iEds V(z+6z/2) , (6-68)

1, E. z , (6-69)

o 2

3 0

.' 4

Figuro 6-4. irltP ý,patior, path for derivation of
first transmission line equation.
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3Eds - V(z-6z/2) , ý6-70)

JB da = LIZ , (6-71)

so that V is the voltage between the line ani ground and this defines the

inductance LO. f 4 Eds is zero as the scattred field vanishes at the

surface Gf the ground. As 6z approaches zero

V(z+6z/2) - \(z-6z/2) 6z . (6-72) 1
Sz'

and we obtain the transnmission line equation

D1 + V= U (6-73)

The second transmission line equattion is derived by applying Stokes! theorem

to (1-18), neglecting the ,tisplacement current

Zo (V dE J; c ds -B (6-74)

rb
1!ing the pat.h shown1 in Figure 6-5, wo have

2 1

(S -

Figure 6-5. Integration path for the derivation of
second transmission line equation.
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c

II
lB d•.s - I(z÷6z/2) , (6-75)

z0J
1

C- ds = I(z-6z/2) , (6-76)

2

a E .da = 6zCV , (6-77)

whe.c we have used (1-19) in (6-75) and (6-76) and (6-77) defines G, These

and (6-74) provide the second transmfission line equation

= - GV (6-78)

If the skin depth in the air and the scale length over which variations in

I and V occur along z are much larger than the height of the wire then

the derivatives with respect to x and y are much larger 'han those with

lespect to - and ct and we may make use of two-dimensional electrostatic

and magnetostatic models to determine L and G. The electric f.eld is0
def:ined as the gradiont of a scalar potential

E =- (6-79)

ýwhen the air conductivity is uniform in the plane per~endmlcular to the z

ax.Ls) and the magnetic fi.eld as the curl of the z cormponent of a vector

potential,

1l = V x A (6-80)

The requirements that E tangenti.al to conductors and 13 perpendicular to

conductors vanish ar- set if p and A -Ce constant on ea,.7h conducting
z

surface. In the air

9 9 I

wherr- Ohe Lap acians are in the zwo dimensions perpendicular to z T1ese
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conditions can be met focr a Nire of radius a lo'ated a height h above a

ground plane by) usinjg bipolar coorid-inates (sce Figure 6-6) (Reference ~.)

The transformation to bipolar coorcUinates is given by

h Isin0
Y -ý (6-83)cosita + cose

anid L ipi' 'e s ecjuaition becomecs

2q) _ P (cosht§+cosO 2__2

/ (6-84)

Thle Iline c 0 io x = (3, = is a circ~le centered at

x 11h = ih, cothl 1, y ~ '(6-85)

With raldLius

a h,' CscIh (6)-86.)

'1I hOsl~tit Io o our eci ctrostati cs problem i.-..-87

A

1-roin (0-71) and (6-t8)

2~~( -((8 8.)

V C

TIhe niol-m I) dc i a v, or)I



._,,,-rr" . ... .. .... .. .... ......-.. . . . . . . . . . . . .

x

=0

Figure 6-6. Coordinate system used for calculation of
inductance and conductance terms in trans-
mission line equations.

cosht0 + coS0'0
__ -- h C1 , (6-89J)

and the normal derivative of A is the same with C1  replaced by C>,

GV can be found by integrating this around the wi rc

21.T

GIV oh'dO

al +0 11 +'fr<3
0. 0

so that

G 2j
0() (6-91)i

2-1.
cosh-1 (h1/a)

A s.imli lar devclopmclnt of LO Y I lds

.1 -)c <;o/a) - ---i--.i..--....".---.--

L0 2'2)--- t6., )
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if h/a is large, we can use

cosh -1(hl/a) ÷ :) . (6-93)
a

The two transmission iLne equations may be combined to obtain

L£31 - _. DI = (6-94)
L t 9z G 9z inc

We will assume a simple form for the late-time shunt conductance, that it is

separable in space and time and decreases exponentially in distance

G = f(t)e -U, (6-95)

and we will examine an infinite line running from -• to +co in z.

To determine the Green's function for the current on the line, we

examine the current which results from an incident electric field of the

form

Ei =5(Z-)6(t-t 0 ) , (6-96)

OIL"

r cf (t) D- a z D-= f(t)5(z-zo)6(t-t) (6-97)
L F~t) - 0 0yz

This equation may be simpli.fied by the substitution

t~t
T ~ l (6-9S)

tk

9 dv a
ýCt "It ýT.

(6-99)
1 3

6 (t-t 0 j-- (T -T 0 )

-Tit)• ( (z-T)



ftf

Equation 6-97 becomes

h0 y- - e -3Z = 3(z-z 0 )6(Tr-T0 ) (6-101)

which is invariant under translations in 'r, so that a frequency domain

technique such as a Laplace transform is a useful technique. The Laplace

transform of Equation 6-101 is

SL0 - e---.e g = 6(z-z 0 ) , (6-102)

where g(z,s) is the Laplace transform of f(z,t) . The last equation can be

reduced to a variation of Bessel's cquation by the substitutiov

-cUz/2
y = e , (6-103)

-- (x = (6-1I04)
dz

and i.t becomes, for z z,

2 Dg24SLo2
y ot gV g :0 (6-105)

The solution (in terms of z) of this is, from Reference 6-5,

(0-106)= 1-:" 2 % - a _/2 )

Ce K / 2 K1
'2U 0

whe."e 1I and K1  are modified Bessel functions. We now need to determine

the values of C1 and C to use for z z to produce the discontinuity

in the spatial derivative of g and satisfy physical boupidary conditions

as z -• ± '. As z -, -.• the argument of the modified Bcssel functions

become largc. tF X is the argument, the ,cssel functions behave as
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Scx
(0-107)

for large X SO we use the solution that causes snal I currents for z -. o,

or

""t- -aCl4) (s-10

for z < z 0 . As z . + •,, the argument of th(; modified Bessel functtions ,

becomes s.mall, and they- behave as

I -,X. (6 iIo)!
i 2I ,

where X is again the argument. At the present point in the derivation, we

have no a priori justification for choosing the combination of C, and C

for > z Ultimately, we will find that the choice is determined by the

term i nation resistance at large z. For the present, we set . for - 0

equal to

g:. . -•/ • ecxz/2,
= '..e T �1 , (0-112)

and, after transforming back to Lhe time domain, we will find that this cho.cC

is appropriate Foor an infinite terminat-ion resistance at large W We will

then determine the modificalt ion necessa ry for finite termination resistances,

which will involve a term p ioportional to K]. The solution of Equation 6-102

at z = z( can be determi ned by nmak.i ng the first derivative of g d iscont innous

at that point so that

4.g<I.. = ,>K , (6-11.3)
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0 --- (6--1 4')(Az z 0  (1z Z0

The do. i~vat ives of g Lire easily' fOlund wV~ito thle ISC 01' thle re~t ionIs

d X I X (6 -11,6)

to 1)e

(I z (1 VSO CI I Y7 0 ~ 2) (6-117)

dg< 0 -(XZ -7,-az/' 2 ) (61)

and~ the so)lucit[iLs fo r g>, and g. wh Ichb sati~sfy Equ~tilOn 6-102 are

-sL()KTI (x()* Y') Wo z2 (-II

K1~~~ KXI(X (x0  I(X (X()1_) (x()) /

(xQ -(6 - 12 0)

whore,

X~~5L -z/2 'rnsir 6-121')

TPhis can he !i-imp I .i jed b~y usMing t-,. iw oska

K1  (x)1 () F0 x W 1(X6)22

an1d tile nlotit ion

i z > Z() Z 2%

so that
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= Xa(Z4Zo)/2 -cz /2 -cz>/2

(6-123)S1;

It is possible to find the inverse Laplace transform of this function using

the tabulated pair (Reference 6-6).

1K\),l/2 112+1/2 1/21 a/, (6-14) 11 ,

f K(a s +b s 2)IVl 2 s1 1 b1 1 S1 (612)

c'+i°°

21 f est(s)ds

(6-125)
- I - (a+b) /2t (a-b)

A' The inverse transform of g is, substituting back to the time t as the

variable,

-U0le 0 )/L0 .a t t
a. d expi-1 +

to

t
S2L - a.(z+z )/ 2 fdI-(t, (616

x1 1 .- e •]ti)(6-126)

C4 t o .

and the current distribution resulting from an arbitrary i£cident electric

field is

"ft
I(z't) = z0 dt0 ",q(z't;z01 to0 :inc(oito0) , (6-127)

The Grcen's function has two interesting limits-if we take the large

argument linmit of the Bessel function we obtair,
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5 ij

"-C;.(Z+Zo) 14 L0 (e-_'2• i/2 2

I e_ -128exp . (6-128)

fdt')dt

•0%/OJ•dt f ) ot to.1 f (tt

This rieduces to the usual Green's function for diffusion in the limit

z -11z

t --. to

The second limit results from taking the small argument limit of the Bessel

function and is

LO 0e - exp• .~ (6-129)

a• dt (I , 2 f ' rd ý
ff(t') 'i)

Lt 
to

This limit of the Green's funct-'.on tells us how sourcýs within the source

region at early times piroduce current~s outside the source region at late

times. .J f z_ Is much smaller than z and f(t) is such that

t t
d,.,-(Try >>. -,t), (6,-130)t Jt f ( t'

tk
k. )k

•I then the exponential factor in Equation (--129 is sma.ll for

-cc0
LoeI
S> 1 (6-131)Stdt,

U•ft'?

t
+p k

or

17 1



t dt' 11 i
1 1t 'z )~ • -- ( 0 - 1 3 2 )

pk

The quantity on tile left-hand side can be irterpreted as the skin depth at

tile point z0 at the time t and shows that the energy is trapped by the
air conductivity until the skin depth becomes greater than the conductivity

attenuat ion length 1/cx. The time of the peak current can be calculated

dLirec'tly from EquaItion 6-129, by setting the derivative equal to zero, aad

OCLurs when

t L - CZo-zS/d' Lo(e +ie )
2- (0 - 133)

f f(t')•
to

The volta:ve on tile power I inc may be determined by

L az -adZ+z 0 )/2 U~ + x

17?1

I V G .z 2 f.(t) [ft - S
•. dt Lidt

-( t -j) , f f t '

t o.

%V1101- t-11-1 :!rgu ets1101 . of' thc Bessel functions airc the same as in lEquation 6-12 0.

'4 ~~When ive LAke tihe small arglumnt, limlit of' tile Bes,-el functions and lot z "i

),thec te•'m 1propol'tional to I0 dominates as it is co-Ast',nit in z while tihe

odici,~ ~ ~ ~ The pý,ahszroa ,1 resulting limi~t fur V i s

+ C 1ecxI (()- 1341))

St . 2 dt A
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and it shares with the current the property that it is small for

-t~ -I 1/2(,.ls

ftk l~("(Xo,t) (Y'c

The peak of V occurs when

2dt L0 (e +e
dtf (tt -f d-is,-136)

t o J t 0
which will be later than the peak of I for mionotonically, dec.reasing f (t),1
as the first term on the left-hand side is negative. The time integral of i
Equation 6-1341) from t 0 to I may ib evaluated directly by substituting

Xt (6-137)
t

2 f dt;

to

T-FO

ScfJc-Xdx 1 (0-139)

~. A ~ 0



provided f(t) is monotonically decreasing. To summarize the results of

our investigation so far, we have deilved the Green's function appropriate

for an infinite line with an infinite termination impedance at z .-. +

because the voltage (Equation 6-134b) approaches a constant valuc as z z o

and the current approaches zero. We have discovered the interesting fact

that the energy is trapped on the line whenever the local skin depth is smaller

than the conductivity attenuation length ]/a. When ,'ie -,kin depth approaches

1/a, the incident electric field appears as a voltage across the line at large

values of z with a relatively narrow pulse and a time integral equal. to

fvdt = fdzfdt Ei. (6-140)

If we look at the voltage and current at a large but finite value of z we

find that the ratio between the two is

-- -- f(t)e

I• (6-14i1
= .,(z',t)dz1

z

We now want to determine the in-odif.i cat ions needed to the Green's function

to represent a fi,,:ite termination resistance at larg;e z. Ti. may 1;h

determined by examining the response of Cquation 6-94 to a step current al

large z. Using the term proportional to C2 in Equation 6-106, the

solution which results in a step functi-on iin time at t current. at z00
and vanishes as z + - • at finite s is

-AZ 2 - !

l(z,s) = - - ___/_ _ .--- o/ , (6..-112)
s -%" "11 (2 0

where we have used tihe faec: that the Laplace transform of a step 'll nt tin s

1/s. If we look at I for z: < z w, we Call let . .I and expalnd the

BessA ' functiOu ;A thc denominator as

'1 74
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1-2ctz 0/21ý I UZ 0o12
K1 O e (6-143)

2

I(z,s) = a ýS C--e K1 e- (6-14C

fur whif.h the . .,ce inverse is

I(z,t) = exp -dL-- ( (6-145)
< f~t')

t1

Taking the spatial d~eriv.tive of Y

Qz/, ',. (6-146)b-7 = + g -z,,7-2-. (2 .-a. Zo D/

e K1( 77 0 c

i.f we now again let z + -c so we take the rmeall ,rgumerlt limit of K1
0 14

*+ 2 Ccf.ZK(Ivo:---- e) (6-147)

The Laplace inverse of this is

-(Y.Z - (1Z

T Loe Loe
-- exp)- (6-148)

t t0 0

where t is the nc1 of the applied current ard the voltige icsultiag from

thc step current is

V "

(7 •%z

L UeL0 0 ~ez

-t -. e p .. . (6-149)
t ~tJ• t) ft <• /ff(tflS

to

..) .0....



The phy, itorpretation of the early time response is cia,'ified by

examining the time integral of V(z,t) ftom 0 to t. This integral is

simpilified by the substitution

L 00
r. , (6-15()

dt,

toj f(t')
-CC

0 e dtdx X (6-151)
2] f(t) '2 f t dt,

and we obtain

tL

dt' - Lo. -X

to X0

(6-152)
Lo0I . E1 (xo)

where

LoC-( ,Z

X 0 t (6-1, 53)

2f dt

to

aid Fl(V i.s the expal~enti.ai i nte, '1. For s1ll X0  (large Z) the lim.it

of: the e-7Kpo11e2nti1a integr-al is

}:](x ) - n(Yv')) y = 1.781 (0-15,1)
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0.v WWI.. .... . . . .

t [dt -• kn

eqal teexofnta conuctvit scllnt

+i Ct

]12 ft!• to2 3o Ti•)(6-.l56•

T lat,
Cl t U

•:=-Lo(Z-Zo) + 0.577 LO/cc

d' i6-156)Li 0oG(z,),t) a Y

The late-time response can also be unde'stocd in the same manner-for late
times and f deýcre;asing sufficiently rapidly that

St to
[ ]Jt >> f at, (6-157)

Sff(t') f(t')

t k. p~k

•;,tic are looking into a resistance with the value

1 70

dt,

t pk

which is

dz0

and z( sdfndb ~uto -5.To summarize the, outer boundary

condi.tionis, all Observer at zlooking back towards the source reg.ion sees the

induIctanIce of the line betweeii z and z0( and a resistance at the edge

of' the sojircc region given Iby Equpation 6-1,58.
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A couple of useful cases for which the time integrals of 1/f can

be analytically evaluated are when. f behaves as an exponential function or

as a power of t. If

G Ge (6-160)

then

1 3
f. dt' 1 (e1 t 0)

tOl
0 (6-161)

St >> to
G0

If we define z =0 as the point where

c0 11/ 1 (6-162)

C 0

so that at 'L 0, z -: 0 is thc edge of the source region then

20.

G0 -LO - (6-163)
0

The Green's function has a simple limit when z << t < {, z >> 0, t >> to
Ck -0: + )-2Pit U 0- ýo-tl

W, - z+zL - 2 , (6-164)

whi.ch peaks at

(t = -Z n2 (6-165)

The volt age assoc iated with '6' is, .il the smeC I mit

V -' C eXpI- e , G (0-166)
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II

which pcaks at

a. z0 (6-167)

whiich is thc time that -he edge of the source region defined by Equation

6-162 passes z The edge of the source region moves in the - z direction

at a uniform velocity

v (6-168)

and the late-time resistance looking into the source region defined by Equation

6-158 is

a=-d (6-169)

The second case is where the conductivity decreases as a power of t

sGo1thate-'Z , (6-170)

soa that

Sdt' 1 (tl+l+ .n+1_(. -to
f(t') (n])G01) 0

(6-171)

l tt >> to

The edge of the source region, defined by)'

dt i (U-172)

0

i s

Z Z1 ( t0 (6-173)
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The limit of the Green's function for z >> z» , t >> t and (zo,t 0 ) deep

within the source region is
-az0

(n+1) 2 L0G e -a(z 0) +oG ( 0 L (17;q • exp = (2 n+1 ' ( -174) ic3 t2n +2 e", 2 (
at I, atn 1

which peaks when

((n+l)LoGoe

tQ= i(6-175)

The voltage associated with '7 is

(+1) 2 L 0 G (Z (n+ 1) Go0 L 0 -az 0

V 2tn+2 e exp'- I 2(6-176)

which peaks at

(11411) L oG e- !)•-f1+
v loiy(_. . c / 

(6-177)
\ n+2 u 1)

The edge of the source region move:- in the - z direction at a decreasing
Velocity

n+•T ,(6-178)

ais
and, conseqtuentiy, -tile resis;tance relpreseilted by tihe source region is

decrteasilng.

t +6- 17 1

The re tts eOf" t hi!: .!Ct ionl anld Sect ion 60. 3 can be sulnma ri z ed in the cil(cilt

model sholw ill Figure 06-7. '['lie edge, o' the sourice region is defined by thV

11i nt . h te local ski.n depth equals the conductivity attc.uation
s

I ,
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Figure 6-7. Circ-.it model of source -egion
power line coupling.



length. To the left of this point, the current on the line is proportional

to the time integral of the electric field in the diffusion phase (plus the

wave phase current). The external circuit showm is composed of the voltage

source (Vs) determined from the Green's function, the resistance (Rs) determined

from the solution looking back into the source region, and the external circuit

parameters L. V and R L is the line inductance between z and the

termination, V is the applied electric field integrated over the same

region and R[ is the line termination resistance.

The assumption that the local current deep within the source region

is determined solely by the time integral of the electric field is modified

slightly by the expansion of the fireball. As the fireball grows, it

pushes most of the magnetic field on its powerline ahead of it. The

practical effect of this is small because the magnetic relaxation, distance

in the ionized air ahead of the fireball is substantially larger than the I
fireball radius.

6.5 APPLICATION OF FORMULAE TO EXAMPLE

In this section we apply the approximate theory of Section 6.4 to

determine the late-time currents at a shelter. The parameters of the examl)]e

a-c the same as that of Section 5.10 except that the line is at a height of

10 meters above the surface of the earth. The small line resistance (0.3I

miilliohms/m) is ignored. The air conductivity as a function of range at
various times is shown in Figure 6-8. This conductivity was calculated

with gamma fluxes of Chapter 3 scaled up to represent a 3 MT burst--the

conductivity resulting from device X rays and ionization causeo by the

elastic scattering of neutrons off air nuclei, was ignored. The first step

in the calculation was to determine the point where

I ~ ~.
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aa.

S•o°J(Z t) a2 '

0

which is (6-172) with the fact that

LoG(z,t) = 11oO(Zt) . (6-181)

Tu do this we assur.e that a varies locally as

-t i -aZ (6-182)

n is evaluated as a function of time from Figure 6-8, and we first assume

-1
u 200 meters . a(z,t) is then evaluated from

c2t

o(z,t) - (A+lIQ (6-183)

Since a is a function of distance this formula is iterated until we find

the point where (6-183) is satisfied. One iteration suffices as ca is a

weak function of distance, if we use the a from the last time step as the

ninitial value in (6-183). The velocity of the edge of the source region is

ewvluated from (6-178). After the edge of the source region reaches the11 1;'-,h SU f R, Rf adbil
fireball radius, V Is zero and sR istie sum of R or Rand thef b
10 ohm termination resistance. The time aitegral of the incident cloctr ic

field is evaluated from the curves at the appropriate ranAges in Fi ure

0-9. and

t "
suc oin (6-1v4)

0

V is tile spatial integral of the electric fiehl outside the soulrce relion

and V, i.s the sum of V nlnd V i is the inductan ce outs ide0 tihe

source" region; we have included the effects of this inductMnce il the cal-
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Figure 6-9. Early time radial electric
fields at various ranges.
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culation of the current in an iterative manner. An initial guess at the

shelter current is made by

SI = V t/R . (6-185)

The resistance associated with LE

L 31i:,.x- • E • 1
B 1t (6-186)
19?

(we have assumed that the overhead line extends sufficiently far into the

fireball to result in a low resistance between the line and the fireball)

is calculated and added to R and the current is recalculated as I2 As

the difference between I] and 12 is always less than about 30 percent,

it is not necessary to iterate further. These operations are summarized

in Table 6-1 and the resulting current is plotted in Figure 6-10. The peak

current occurs somewhat earlier and is larger than that shown in figure 5-6.

This results primarily from the ai', conductivity being smaller than the

ground conductivity at most. ranges so that the large electric fields near

the source are seen at an earlier time.
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CHAPTER 7

COUPLING TO SHORT VERTICAL CONDUCTORS

7.1 INTRODUCTION

Systems that are hardened to source-region EMP from surface or

near-surface nuclear explosions, and to the accompanying blast effects, are

unlikely to use above-ground vertical antennas for mission-critical

functions. However, such antennas and other vertical conductors may be

piesent as part of non-survivable subsystems that serve peacetime functions.

Examples are communications antennas for maintenance and security operations,

light poles, etc. It is necessary to know what currents will be collected

by such structures under EMP conditions and whether these currents can get

into the parts of the system that are required to survive.

It is likely that such structures will be no more than about 10

meters in height and no more than 0.3 meters in diameter. Thus the incident

vertical elctric field can be taken as uniform around the circumference.

Usually, the conductor will be thin to gamma roys, but we shall mnclude

the case in which it is not. The conductor may or may not be grounded at

its base, but since it is not l:kely to be hardened Ito EMP, an arc to ground

may foim anyway. For the purposes of this chapter we shall assume that the

base of the structure is in electrical contact with soil; the impeda~ice of

this connection is includei in the analysis. One would hope that a wire

does not run from the structure into any shielded enclosure containing mission-

critical electronic equipment. The current flowing into such wires could

he calculated, usually as a perturbation, itf the specifics of their connect imn

were known.
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7.2 DRIVING FIELD AND SKIN DEPTHS

We shall use the vertical field EB .phc. i .gure 3-5 as an

example in this chapter. That field is appropri. te at the ground-air

surface. We need to discuss how E% depends on height abcve the surface.

This discussion uses ideas contained in Sections 3,8 and 3.9.

At the onset of a-saturation at the location of our conductor,

E extends into the air to a height (Equation 3-49)

E F c/h ; 1.5 meters (example) (7-1)

This is the time when E0 reaches its peak value. Previous to this time

(in the period of X-saturation) E0  has becn rising as e t/2 , and 6

has been decreaising. The current in the conductor at ground level cannot

be appreciably affected by the field at heights greater than 2c/h. Thus,

for times before the peak of L4, it is a modest overestimate to assume that

the driving field is independent of hei]ht up to 6"

After the onset of a-saturation, 1@ extends up to the conductivity-

determined skin depth 6 in the air. In this (diffusion) phase also, the

conductor current at ground level zannot depend on the field at heights

gi ?ater thar 5 . Thus again only a modest overestimate is made by regardini,
a

10 as indepep.dent of height up to a Eventually, the incident E is0 a
indeed independent o' height, at least up to 10 meters. We shalt regard

it as cinstant in height at all time,. over that range of heights which caa

affect the current at the base.

A composite forn,ýila for this height is

a = c/a wmien (i < c0 aa 0'

= 1/ V,'Ga when Ca < G < 0 )0

- 1 + after peak o(nl)po0• opt (1 t 1)
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The first line here is approlr-1-,'C up to the time of the peak in EH, tz e
phase in which displacement current exceeds conduction current. The second :

line .is aplrpriate from this time up to the time of the peak in o. The
th-Ird line is approp~riate after oj has peaked, ai!d_ is based Onl the assump11-
tion that u falls as --mined by

n " [n(o/o)]/[Zn(t/tl)i , (7-3)

where a a (t) and o = o(tp). The value of n varies somewhat with t. ,

It can be seen that E[quation 7-2 provides continuous values of

6 . For the conductivity' of Figure 3-3, the 6, computed from Equation 7-2
a = a 8 -1

is graphed in Figure 7-1. For this case, a= 2 X 10 sec .eH

l -6 !
We see from Figure 7-1 that 6 reaches 10 meters at t 2 x 10

a
second. As will be seen, the couplinig to a conductor of height li depends

on whether 6 is smaller or greater than h.a

7.3 INDUCTIVELY LIMITED CURRENT

'[he current in the conductor is limited, in varying degrees at variotus

times, by both indiictive and capacitive reactance and b)' res istance in both

air and ground. We shall first calculate the current based on inductive

I in itat ion alone. This calculation assuLm11es that hi >> 6 a, that the ground

is perfectly conducting, and that the diriving field 1:0 is independent of

he i.ght. I'lie current I in the conductor is determined by the equat ion

- (LI) = t (7-4"W

The inductance I, per on it length :i.s

16 11) 10 -14- -- Qn(l + .) meter ' -= 2 x 10(7) (7-5)

l2O
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Here a is the radius of the conductor. The argument of the logarithm has

been written so as to cover the possibility that 6 may be less than a.a
We shall treat two examples, with a = 2 cm and 10 cm. The inductance fcr

these two cases is graphed in Figure 7-1.

Before a-saturation, L is constant and E rises exponentially
as eat/2 In this phase,

I (t) 2 E (t) (7-6)

For the two conductors chosen as examples,

kL 87 ohms/m , a = 2 cm,T = a /(7-7)

- 55 ohms/m , a = 10 cm .

At the time of a-saturation, E reaches its peak value and is no longer

rising exponentially. Use of' the pteak value of L% from Figure 3-5 would

give an underestimate of the current at this time. Use of the exponentially

extrapolated value of E0, i.e., E1 = cBl, will give an overestimate. We

choose the latter, setting

E%(peak) = 2 x 105 V/n . (7-8)

Thus the currents at this time are

I(a-sat.) = 2.3 x 103 Amp , a 2 cm

- 3.6 x 103 Amp , a = 10 cm .(7

In Figure 3-5, a-saturation occLlrs at 1.8 x 10 second. Accord-
eat) •

ing to Figuic 3-3, aY continues to rise exponentially (as e ) until about

S x 10- second, then changes much more slowly. The increase in a causes ½

the decrease in inductance shown in Figure 7-1. [Juring this period of

decreasing inductance it is not correct to keep L inside the time derivative

in Equation 7-4, as we shall now explain.
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The magnetic flux • circling the conductor is determined by

integrating the Maxwell equation

3-- - D E1 (7-10)

over r from the radius a of the conductor to large distances. (In this

equation E is the electric field parallel to the conductor and B is the

magnetic field circling the conductor). Integration over r yields

f- Bdr = Ej-E (a) E0 , (7-11)

where E., is the electric field at large distances and E(a) = 0 is the

field at the conductor surface (resistance of conductor neglected).. E is

the E0  of the burst coordinate system. Equation 7-11 would be the

same as Equation 7-4 if we define the inductance by the Equation 4 = LI.

The inductance defined by Equation 7-5 assumes that B 3 I/r out to

r = a + 6a and then falls rapidly. That assumption is not correct when the

conductivity increases rapidly with time. In this case, magnetic flux pro-

duced in a given time intervwl 1/n is frozen in place shortly afterward

by the increasing conductivity. The add itonal flux produced in tile next

time interval is distributed only over the decreased skin depth given by

tile second line of Equation 7-2. Thus the inductance defined using this skin

depth applies only to tile increment in current in the next time interval,

and all previously established current is frozen in, L.e., does not change

appreciably. Therefore, in the time period from (-saturation to the time

5 x 10 second when a stops :increasing exponentially, IEquation 7-4 should

be replaced by

dl E0
dt L (7-12)

In the time period indicated here, the ratio E%!/I, does not

change much for either of our example conductors. Average Values are
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Ii L =1.5x iol Amp/sec , a = 2 cm
U (7 -13)

-2.9 X ~10l1 Amlp/sec , a =10 Cml

Tlt'lo. nrCase inl CUrren~t ill this timeI peCriod iS the~refore

Al = 4 .8 >x -IP Amp , a = 2cm,

= 9. 3 x 10') Amp , a = 10 cm .(-1

FajUat ion "-, WOO Id haVe g i yen a largei' inucrease inl ciii lent iii thi s
time period , S .i!LiC that :.-qua t ion cait1 be wr'it ten as

Lit L (It

~lurinig the peCriod after 0 p)caks, inl wh~i c L ncraest h is equlationl

wouIld yield sma I icr culrren1ts thall 1qua~t~i on 7-112. V~hCh etiat ion should we

Ilsc inl this. t illc period'? IV:, argue1 aIS F1 lows . T(he IluX. go:i ug, with theC currenit

'it the time Of Ct-Satulrat ionl, EqoaZt.i on 7-9, is frozen1 ill over' L11). u to
-7I 1. S) mleters anld wvill not d.i ffusO aIppreciably nutl 1l t. 2 x 1(0 Second

when l gai reaches that vatInc ; that part of' the currcot will remain

Cons tanut . IVO add to t his Constant cuirre'n t one half of Al , FI Iquat ion .. 1

TIhe other hal F of' Al is associated (we Say) with flux di stri buted on1i% 11up

to 6 (iii1in) = 01. 09 me1ters , and t hi s f 1 x d i f Fu1Ses mml1Cd iat ely , togeCthe iW1i t h

add Li t.i onaIN i. J1X p~rodcedIC b))' P a F t r t = x 10 seconid. Fo r t hi s

par't Of' theC cu11rrent F(Iqtiat io -'I is appropriateklL. Thus the currenit has

two pa"its , f'oW r iviiCl, Ultint ti 2 X 10 'seconld,

I Constant = .7 W ' Amp , a 2 cmn

= 8 . 2 x 10(' Amp , ai 1i cmi

wheci, at t -5x Ii)- sccoiid
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-'I .x 105 Amp, a = 2 cmi,
(7-18)

,1.6 x 10' Amp, a = 10 cm.7

H1amn intogratioon of: Equation 7-17 ill three steps yields for the total current:

t = 5 x 10-8 7 x 10-8 1 x 10- 2 x 10-7 see

I = 7.1 8.5 8.,1 9.6 KA, a = 2 cm (7-19)

I = 12.8 15.9 14.3 15.3 KA, a = 10 cm

The currents are graphed as a function of time in Figure 7-2.

After t = 2 x 10-7 second, all of the flux diffuses, and Equation

7-2 is appropriate. Since 1 is aP)rox.imately constant in thi s period ,
that equation yields

LI = (LI)i + (t-t.)0 (7-20)

-7
where tile subscript i indicates evaluation at t = 2 x 10 second,

Currents calculated from this equation arc used to extend the curves in

Figure 7-2 out to 10 second

7.4 FFFFCT OF GROUND TERMINATION

In consieiring the ciffct of a fin itely conduct i ,ii ground tcrm i Iii

t.iion of the verti cal conductor, it is important to uniiderstand that tile
current carri ed bV the conductor is exactly equal to the current (conduction

aid d i sllace~ment) removed I'corll tile surround ing mledi urn due to tile prescncC

of the conductor. '['hiis follows from tile fact that the magnetic field at
distances appreciably larger than the skin depth is una fected by tile

j):cence of' tile coIIducto r; lence, tihe 1t cliange iln current ov'er an a;1101

COiiil'alle with t m 6 Iiiust vanish by Stokes' theoruem.a

The fNow of' (tihe c ha igC ill) cur rout il tile ground must therefore

he as sketched in Figures 7-3a and 7-31 foi' the cases in which the air
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Figure 7-2. Currents at base of conductor. IL, inductively limited
current; IR, resistively limited current; IRO, resistively
limited current with perfectly conducting ground; Is,
Compton current collected by aluminum pipe conductor.
Number in parentheses is radius of conductor in cm.
Conductor (2) is 3 In high, conductor (10) is 10 nm high.
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Figure 7-3. Current flow patterns in air and ground
near conductor.

conductivity aa is less or greater than the ground conductivity a. This

figure has been drawn for the case in which the conductor extends to a depth

d > 6 into the ground. The resistances in the ground termination are
g

estimated as

1 6,~

t= 2 •T-- n -) ' ( 6 a > 6  < d) (7-21)
ggg

6

Rt -2 Z•n(l + --Z 6 a) , 6 g < d) (7-22)
g g

At late times, the condition 6 > 6 > d > a is likely to hold. In thisa g

case an estimate of R is
t

I [ an( a - ] + I Zn a (7-23)Rt =2• o-d
g g g g
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In the ti me period before ( a-SImit ion , the conductor ctI?'r'cnt ris c s
at/2

e.\ponentia:ly as e . In this period,

C/U 7,

with = 2 X 10 sec-I and a 1.6 > 10- 3 nho/n (10 percent water soil

ait fr'equency V 1.U 10 lHz, s~e Chapjteor 2) we obtain

6 1.5 m , 6 = 0.7 in (7-25)

l4uiat ion 7-21 gives

R 0 = 61 ohms , a - 2 cm , -

= 9. ohms La = 10 cm .

Now .ccordi n to lqtiation 7-7, the inductive reactalhce oW a lu ngth 6 1.5

meters of the conductor Ls 130 and 82 ohms in the two cases. Thus the

current before u-sat urati on will be reduced by a factor of Ubout

131) 82
_ = 0.8 , (727)

1() + 61 " 82 + 39

in both cases because of the termination resistance.

my t - 5 < 10(-8 second the rise time t {e- foldig t time) of thec

coniduictor" cturreIIt has increased to about

I T - 2 x 10) second {7-28)

At rr{'qu.ncv I/2i , X 10 II1 , C:ht apter 2 gives g = 1.3 1 l)}- 1 mho/11/,

a rid

p - " .S in . 17-29)

As described in Suction -. 3, the magnietic flux in the air is distribiutted over

a range of radii , 'A.as) From1 (1.09 to 1.5 meters. The geometric mean gives

0).37 mucter. E It i 1 7-22 then g,,ives the te mination resistanc



R 39 ohms a = 2 cm
(7-30)

= 24 ohms , a = 10 cm

At 6 = 6.37 meter, the inductance of a length 6 of the conductor is
a1 a

L6 = 0.22 ljll, a Z cm )a (7-31)

0.11 pil , a = 10 cm . 7

The relaxation t inc of the current into the ground is

L6 (8
a 0.6 -8

R 0.56 x 0 sec , a = 2 cmat (7-32)

-8]= 0.46 x 10 sec , a = 10 cm1.

because this relaxation time is short compared with the rise time T of

the conductor current, most of the conductor current mndicated in Figure 7-2

will flow in the air just above the ground rather than in the ground. The

fraction of the current flowtJug in the gromnd is allout

.g _( 0 . 0 1 S) ( 1 . 3 ) 0 1 , .o 96 + oy a 0.0109 + (0.4)(0.37) =0 !).r -3

Thus tile ground termiltat-ion rbsistmnce substantially reduces tile curren01t ill

the base of the conductor at tiimes inl the neighiborhooI of ; x 10 secoid .

If the grollld srfaCe is covered by a conducting shellL or counter poise,
the current in Figure 7-2 is correct.

7.5 RESISTIVELY UIMITEDE CURRENT

Section 7 .4 has shown that resistance of the ground termi nat ioll

affects the cLrrent at the base of the conductor at quite early times.

As the air conductivity falls (Figure 3-3) , resistance in the air will also

limit the current. In this section, we shall ignore inductive effects and

calIculte the current as inl a static problem. It is helpful to d isti n,•ish

-0 1. .. .. . .....



between two phases, according to whether the skin depth 6 in the air isa

less or larger than the height h of the conductor.

First Phase: 6 < h.
a

The vertical electric field is not just a static field; the

curl of E does not vanish at early times since, as shown by Figure 3-5,

B changes rapidly with time before t = 10- second. However, that does

not matter for the conductor response, which depends only on the vertical

electric field. The same E0 at the position of the (thin) conductor, even

if it w,•re derivable from a potential, would produce the same current in

the conductor. We can therefore, for the convenience of familiarity, tt;!nk

in torms of a voltage V(z),
z

V(z) = fL 0 (zt)dz, (7-34)

f0"
where z is the distance above the ground surface.

In the diffusion phase (which begins at a-saturation), U" extends

on, 1•1) to the skin depth 6S above the ground; above that height the
a

electric field is approximately radial from the burst point. Thus V(z)

ha:; the z-dependence indicated in F: gure 7-4a. The maxi mum voltage Vm

i s about

V1  L0 6a (7E30)

where l1: is the field just above the ground.

I f we imaginC the conduc tor to be opened just above the ground, as

in Figtire 7-41), to what voltage will the conductor come? Remember that

the conductor is in a coriucting medium. Because currents in the conductor

are limited by diffusion in this mcdium, the lower end of the opened

conductor cannot bC aff'ecte. by condition:s existing at heights mucch greater

021).. . .......
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Figure 7-4. Potential function and open circuited
conductor.

than 6a. We conclude therefore that the open-circuit voltage of thea
conductor is about

V0 ; V /2 1 E06a/2 (7-36)

If we now reconnect the conductor to its ground end, a current

will flow across the junction. The magnitude of thi.; current will be

I = V(/(Zi+Rt) (7-37)

where R. is the "internal" resistance- of the source of V and R is th1,2
10 t

ground termination resistar..e. R has been estimated by Equations -21, 22

and 23. An estimate of R. is1

I a
Ri - 2____- in(I + -) (7-38)I a a

This is the resistance between a conductor of radius a, length 6 anda

distant points in a medium of conductivity o0.

aa
'cond Phase: 6 > h1.

In this phase the open-circuit voltage is about
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I.,

V0  1 ~oh/2 , (7-39)

and the reconnected current is

I = V /(R'+R') (7-40)0 1t

The internal resistance here is modified by replacing 6 with h, i C.

M x= 1 (7-41)

1 T

and the terminat ion resistance is

L.2n.) ,(i> d > 6),(7-12)igg g'11o 9

1. _+ 1- + (h > 6 > d)2.1ru d "I7(- 2'no 6•'

8 (7--3~)

d (.I > h > d) (7-.h4)
.1fC) d 1 - 1 h

I'hc C.t i iiiatcs given here are cOnt.il nuous between the three rug imes of 6

Let us c•alculate the resistivel 1.imited currlent far our twO
CV11IIIlI S, ChOOS i lt thV he~ight.S NMI depjths,-

h 3 i7 , d --- i for a = 2 cm
(7-45)

1 (1m, d = I II for r1 1= ell).

Thc skill depth 6 in the air has been graphed in F! gures 7-1. 1 aor the soil

wr t,ike o 0 (1.(01 ,iiho/iiiet U' adL

((1.7 1,,• (7-46)

t t 2 x 10 sec (7-17)
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This estimate of 6 is continuous with the value in the exponential phaseg
given by Equation 7-25. 6 is also graphed in Figure -- 1.

g

The first plase, 6 < hi, ends ata

S3.7 x 10-7 sec for a = 2 cm , (
t-6

2.0 x 106 sec for a = 10 cm .I I
in this phase V is given by Equation 7-36 and Ri by Equation 7-38. These

0) 1

quant ities are graphed in Figure 7-5, where thoy are also extended into the

second phase, 6 > h, by use of Equations 7-39 and 7-4i.

F'or the termination resistance, we see that 6 is greater than9
tile assumed d at almost all times of interest, and that 6S > 6 in most

g aof: tile first ph"Ise (whenl CS <. h) ,Since lHquat~ions 7-21 , 22,•' 23 do not apply
ain thils case, we need another estimate of Rt for tihe case h > > 6

6 > d. Th'is is

d , < d i , (7-4 9)Rt -27rcy d .(a
g

2 l .d ad__ (6+ > d) (7-50)2'iru• Li 6•(]
Sg a

ow F~igur'e 7-1 we se t hI.t 6a e(Xceeds di a ftc r t I .6 x 10 second.

Bfefore this time, i(quation 7-49 gi\ves Rt. From thlls time lintil I t

(lFquation 7-18), R iven by Equation 7-50. After tI, KR is givel bhy

EIiqution 7-44. R is ailso graphed in l igure 7-5 t-or the Mo condu, ctors.
t

II complit i ng R. at times hetfore a-saturation ill 1:jgore 7-5, we

have repklaced 1 y xL~, .ill iIquatuions 7-38 and 7-11, s ince the di splace-

ment.t currenit is l:11rger thain the coIductiOil current ill tlht AIIhase. Ilence

the ctlrreilt is I liited dby capac iti ve reactatnce, rather than In' air resist ;:ic e

il that plhase. Note that the capacitive reactance is real I•mr expoulelitially

risin),, field, auici is apIproxi mately constanlt.

.,.03
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Figure 7-5. Open circuit voltage V0  of two vertical conductors:
(2) 2 cm radius, 3 in high; (10) 10 cm radius, 10 mn high.
Source resistance Ri and termniration resistance Rt
fur the two conductors.
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The resistively (and capacitvely) limited currents calculated

from Equations 7-37 and 7-40 are graphed in Figure 7-2, for the two conductor
radii and for both perfectly and imperfectly conducting ground. It is seen

that these currents are substantially smaller at all times than the

inductively limited current. For the examples considered, inductive

reactance is small at all. times comparod with resistance or capacitive

reactance. The correct current I can be estimated from the equation

I ' R'L 1 ('R+'L) , (7-Si)

where IR and I, are the resistively and inductively lim:ited currents.

I is only a li t t1 e less than I ill our examples. The sign of the current

is such that electrons flow down the conductor into the ground.

7.6 COMPTON CURRENT COLLECTION

If the conductor provides appreciable attenuation of the gaumma rays,

tile ComIptOn current emerging from its back side will be less than that entering

its front side. Thus the conductor collects negative charge due to gamma

attenuation. Gamma attenuation lengths are of the order of 30 grams/vcml

I' the conductor is made of high-atomic-number material, then the

rat:io of' Compton electron flux to glamma flux coming out of the conductor is

smaller than the ratio going in, provided the conductor is an electron range

in thickness. Compton electron ranges are of the order of 0.3 grams/cm2

in air and aluminum, but are smaller (due to nuclear scattering) in hLgh Z

materials. Most conductors will be thicker than an electron range. An Jiron

conductor collects about 30 percent of the Compton current striking it, even

without the gamma attenuation effect.

Let us a:ssume that our 10 cm radius conductor is an aI umnillnuni pipe

(denis ity p 2.7 gram/cm' ) with wall thickness I) = 1/4 inch 0.6 c11. Its

average projected thickness in grams/cm2 is thele
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m- 2na -'Pp 5.1 gram/cm 2 (7-52)

The fraction of Compton current collected, due to gamma attenuation, is

f 1--' - exp(-m/30) - 0.16 . (7-53)

The total Compton current collected in a height of the pipe equal to the

smaller (6 ,h) of 6 and h1 is

I 2= 1 S a(6 ah) , (7-54)

where J :is the Comlpton current density, which we take from Figure 5-2.SI
The current computed From EIquation 7-54 is also graphed in Figure 7-2. Note

that it is small compared with the other currents, except for a short period of

time for the res.ist\,ely limited currents into imperfectly conducting ground.

Actually, the current I affects the resistvely limited current. Since

the impedance or the Compton current source is very large, the current into
the ground is given by'

V I R.

I = +

4(, tt
= I + IS s Ri+ t

where I is the resistively limited current calculated in Section 7.5 We

see From Figure 7-5 that the ratio RIi /.(Ri +l :is small (- (0.1) in the

time period in which I exceeds I. Thus the collected Compton current

makes little difference for our alumnintm conductor. If the pipe were made

or i ron, f and I would he about four times larger than for al umli num.

7.7 NUCLEAR LIGHTNING

It is likely that a discharge would form in the air at the upper end

or the conductors in our examples, and grow upwards. Such discharges were
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observed in several large yj, Id nuclear tests. The theory of this "nuclear

lightning" is currently under development at IRC (by J.. Gilbert, R. Gardner,

N. Frese, and C. Longmire) . It is believed that the currents in these

discharges reach peak values of several times 10 amperes, much larger

than the resistively limited currents of Figure 7-2 because of the increased
height of the discharges. These heights were observed to reach several hundred

meters in the millisecond time frame. The authors hope to add a chapter on

nuclear lightning to thids report when the theory is firmly establ ished.
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