
AO-AI08 649 NAVAL RESEARCH LAB WASHINGTON DC F/0 9/2
A-7E SOFTWARE MODULE GUIDE.(U)
cDC al e 8 BRITTON, D L PARNAS

UNCLASSIF lED N L-MR'402NL

EhhmIIEEEEEIIEE

L-
W2 112.

* ~ ~11111125 jl 4 Jl[

MICROCOPY RESOLUTION TEST CI-ART

NATIONAL BUREAU Of STANDARDS- 963-A

fvf

rrr.

A I4

SECURITY CLASSIFICATION OF THIS PAGE ttn,.n Dat* En:.I.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCCSSION NO. 3- RECIPIENT'S CATALOG NUMBER

NRL Memorandum Report 4702 .- "

4. TIi TLC (And Subtitle) S.TYPE OF REPORT & PERIOD COVERED

Interim report on continuing

A-7E SOFTWARE MODULE GUIDE NRL problem.
6. PErRFORMING 046. REPORT NUMBEfR

7. AUTHOR(*, S . CONTRACT ON GRANT NUMBER(@)

K. H. Bitton and D. L. Parnas

1. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKARE[A A WORK UJNIT NUMBlERS

Naval Research Laboratory 62721N; SF21242101;
Washington, DC 20375 75-0106-0-2

It. CCPLOLI , OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Research Laboratory Dcm. 8, 1981
Washington, DC 20375 35

i4. MONITORING AGENCY NAME A ADDORESS(If dillont from Controlling Office) IS. SECURITY CLASS. (o1 fale tehs I
_UNCLASSIFIED

IS@. OECL ASSI FICA TION/DOWNGRAoqNo
SCm4EULIE

1. OISTRIBUTION STATEMENT (of tal Ropoti)

Approved for public release; distribution unlimited.

I7. DISTRIBUTION STATEMENT (of Ite abotrect entered In Block 20. It dli tont fI,. Repot)

l0. SUPPLEMENTARY NOTES

I9. KEY WOROS (Colntnue on reveree .Id* I neceeary and identify by block number)

Specifications Modules
Real time systems Information hiding
Software documentation Avionics software
Abstract interfaces

20. AISTRACT (C.nna .,....... a*.i nec.s aid id., ip by block number)
This document describes the basic organization of NRL's version of the A-7E onboard flight software.

The report describes a structure in which modules have been designed in accordance with the Informa-
tion Hiding Principle. Because of the large number of modules that result when this principle is applied,
the modules are arranged in a hierarchy. The hierarchy should simplify the task of a maintenance pro-
grammer assigned to make a specific modification. The document also describes the principles used in
the design of the software. It is intended to be useful both as a guide to the A-7E software and as a
model for those developing other software systems.

DO N 1473 EoITION OF I NOv6 I OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIICATION OF THIS PAGE (M9Ie% Des Nwed)

P.

10.

TABLE OF CONTENTS

I Introduction 6

Purpose* 6

Prerequisite Knowledge6. 6

organization o . . . 6

-III Background 7

The A-7E Software Structures . 0 . 0 0 . . 7

Goals of the A-7E Module Structure. 7

Design Principle 8

Module Description.......o 9

Module Initialization. o

Future Additions to Modules................ 9

Treatment of Undesired Events 0. .. 0. .. 10

III A-7E Module Structure........ o11

A: Top-levelDecomposition. 1.1

A:l Hardware-hiding Module..... 11

A:2 Behavior-hiding Module o o. 11

A:3 Software Decision Module.......... 11

B: Second-Level Decomposition................ 13

B:l Hardware-Hiding Module Decomposition 13

B:l.1 Extended Computer Module. . .. 13

B:1.2 Device Interface Module. 13
For

B:2 Behavior-Hiding Module Decomposition . . . o 14 A&

B:2.1 Function Driver Module.. 14' ':

B:2.2 Shared Services Module . . . o o . 0 -15

M'

5:3 Software Decision Module Decomposition 15

B:3.1 Application Data Type Module 15

B:3.2 Physical Model Module* 16

B:3.3 Data Banker Module16

B:3.4 System Generation Module. 18

B:3.5 Softvare Utility Module 18

B:3.6 Resource Monitor Module... 18

C: Third-Level Decomposition... 19

C:l.1 Extended Computer Module Decomposition 19

C:1.1.1 Data Type Module 19

C:1.1.2 Data Structure Module 19

C:1.1.3 Input/Output Module 19

C:lol.4 Computer State Module 19

C:1.1.5 Parallelism Control Moduleo 19

C:1.1.6 Sequence Control Module20

C:1.1.7 Diagnostics Module (Restricted). 20

C:1.1.8 Virtual Memory Module (Hidden) 20

C:1.1.9 Interrupt Handler Module (Hidden) 20

iv

C:1.2 Device Interface Module Decomposition 21

C:1.2.1 Air Data Computer 21

C:l.2.2 Angle of Attack Sensor 0 21

C:1.2.3 Audible Signal Device 21

C:1.2.4 Computer Fail Device o.. . 21

C:1.2.5 Doppler Radar Set. 21

C:1.2.6 Flight information Displays 21

C:1.2.7 Forward Looking Radar21

C:1.2.8 Head-Up Display 21

C:1.2.9 Inertial Measurement Set 21

C.:1.2.10 Panel0. 21

C:1.2.11 Projected Map Display Set. 21

C:1.2.12 Radar Altimeter 21

C:1.2.13 Shipboard Inertial Navigation System . . . 22

C:1.2.14 Slew Control 22

C:1.2.15 Switch Bank 22

C:1.2.16 TACAN 22

C:1.2.17 Visual Indicators22

C:1.2.18 Waypoint Information System22

C:1.2.19 Weapon Characteristics 22

C:1.2.20 Weapon Release System 22

C:1.2.21 Weight on Gear. 22

Cv

C:2.l Function Driver Module Decomposition 23

C:2.1.1 Air Data Computer Functions 23

C:2.1.2 Audible Signal Functions 23

C:2.1.3 Computer Fail Signal Functions 23

C:2.1.4 Doppler Radar Functions 23

C:2.1.5 Flight Information Display Functions . . . 23

C:2.1.6 Forward Looking Radar Functions 23

C:2.1.7 Head-Up Display Functions23

C:2.1.8 Inertial Measurement Set Functions 23

C:2.1.9 Panel Functions. 23

C:2.1.10 Projected Map Display Set Functions., 24

C:2.1.11 SINS Functions. 24

C:2.1.12 Visual Indicator Functions. 24

C:2.1.13 Weapon Release Functions...24

C:2.l.14 Ground Test Functions 24

C:2.2 Shared Services Module Decomposition.24

C:2.2.1 Mode Determination Module 24

C:2.2.2 Stage Director Module 24

C:2.2.3 Shared Subroutine Module.25

C:2.2.4 System Value Module # 25

C:2.2.5 Panel I/0 Support Module. 25

C:2.2.6 Diagnostic I/0 Support Module.25

C:2.2.7 Event Tailoring Module. 26

vi

A- .1-

C:3.1 Application Data Type Module Decomposition 26

C:3.1.1 System Data Type Module 26

C:3.1.2 Shared Data Type Module .. *.. 26

C:3.1.3 Local Data Type Module26

C:3.2 Physical Model Module Decomposition. o 27

C:3.2.1 Earth Model Module 27

~.jC:3.2.2 Aircraft Motion Module 27

C:3.2.3 Spatial Relations Module. 27

C:3.2.4 Human Factors Module 27

C:3.2.5 Weapon Behavior Module. 27

C:3.2.6 Target Behavior Module27

C:3.2.7 Filter Behavior Module *.. .. 27

C:3.3 Data Banker Module 28

C:3.4 System Generation Module Decomposition 28

C:3.4.1 System Generation Parameter Module .. 28

C:3.4.2 Module Version Selection Module 28

C:3.4.3 Subset Selection Module... 28

C:3.4.4 Support Software Module. 28

C:3.5 Software Utility Module 29

C:3.6 Resource Monitor Module. 29

IV. References... 30

V. Glossary31

vii

A-7E SOFTWARE MODULE GUIDE
I. INTRODUCTION

PURPOSE

The A-7E Module Guide describes the module structure of the A-7E flight
software produced by the Naval Research Laboratory. It provides an

orientation for software engineers who are new to the A-7E system, explains
the principles used to design the structure, and shows how responsibilities
are allocated among the major modules.

This guide is intended to lead a reader to the module that implements a
particular aspect of the system. It states the criteria used to assign a
particular responsibility to a module and arranges the modules in such a way
that a reader can find the information relevant to his purpose without
searching through unrelated documentation.

The module guide should be read before any other design documentation for
the NRL A-7E software, because the guide defines the scope and contents of the
individual design documents.

This guide describes and prescribes the module structure. Changes in the
structure will be promulgated as changes to this document. Changes are not
official until they appear in that form. This guide is a rationalization of
the structure, not a description of the design process that led to it.

PREREQUISITE KNOWLEDGE

Readers are assumed to be familiar with the terminology and organization
of Software Requirements for the A-7E Aircraft [11, which will be referred to
as "the requirements document". They should have a general idea of the
functions performed by the A-7E flight software, know something about avionics
computers such as the IBM 4 PI TC-2, and be familiar with the types of
hardware devices that are connected to such computers. These are described in
adequate detail in the requirements document.

ORGANIZATION

Section II gives the background for the design. It states 1) the goals
that motivated the module design decisions presented in this document; 2) the
basic principles on which the design is based; and 3) the relationship
between the module structure and two other structures of the NRL A-7E software.

Section III, the main body of the document, presents a hierarchical
decomposition of the software into top-level, second-level, and third-level
modules. The modules at each level are components of modules of the next
higher level.

Terms, such as "module", that are used with a special meaning in NRL's
A-7E design, are defined in the glossary. Readers who are not familiar with
the NRL A-7E project's terminology should study the glossary before reading

further.

Manuscedpt submitted October 23. 1981.1 1

S. '- . . -, , . a. - . j

11. BACKGROUND

THE A-7E SOFTWARE STRUCTURES

A structural description of a software system shovs the program's
decomposition into parts and the relations between those parts. A-7E
programers must be concerned with three structures: (a) the module structure,
(b) the uses structure, and (c) the process structure. This section contrasts
these structures.

(a) A module is a work assignment for a programmer or programmer team.
Each module consists of a group of closely related programs. The
module structure is the decomposition of the program into modules and
tFe assumptions that the team responsible for each module is allowed
to make about the other modules.

(b) In the uses structure the components are programs, i.e., not modules
but parts of modules; the relation is "requires the presence of".
The uses structure determines the executable subsets of the software
[8]. Guidelines for the design of the A-7E uses structure are given
in [15].

(c) The process structure is a decomposition of the run-time activities

of the system into units known as processes. Processes are not
programs; there is no simple relation between modules and processes.
The implementation of some modules may include one or more processes,
and any process may invoke programs in several modules. Guidelines
for the A-7E process design are given in [7].

The rest of this document describes the module structure.

GOALS OF THE A-7E MODULE STRUCTURE

The overall goal of the decomposition into modules is reduction of
software cost by allowing modules to be designed and revised independently.
Specific goals of the module decomposition are:

(a) each module's structure should be simple enough that it can be
understood fully;

(b) it should be possible to change the implementation of one module
without knowledge of the implementation of other modules and without
affecting the behavior of other modules;

(c) the ease of making a change in the design should bear a reasonable
relationship to the likelihood of the change being needed; it should
be possible to make likely changes without changing any module
interfaces; less likely changes may involve interface changes, but
only for modules that are small and not widely used. Only very
unlikely changes should require changes in the interfaces of widely
used modules;

2

*L *-r- Ora" * ~

(d) it should be possible to make a major software change as a set of

independent changes to individual modules, i.e., except for interface

changes, programers changing the individual modules should not need

to communicate. If the interfaces of the modules are not revised, it

should be possible to run and test any combination of old and new

module versions.

As a consequence of the goals above, the A-7E software is composed of many

small modules. They have been organized into a tree-structured hierarchy;

each nonterminal node in the tree represents a module that is composed of the

modules represented by its descendents. The hierarchy is intended to achieve
the following additional goals:

(e) A software engineer should be able to understand the responsibility

of a module without understanding the module's internal design.

(f) A reader with a well defined concern should easily be able to
identify the relevant modules without studying irrelevant modules.

This implies that the reader be able to distinguish relevant modules
from irrelevant modules without looking at their components.

DESIGN PRINCIPLE

The A-7E module structure is based on the decomposition criteria known as
information hiding [2]. According to this principle, system details that are
likely to change independently should be the secrets of separate modules; the

only assumptions that should appear in the interfaces between modules are
those that are considered unlikely to change. Every data structure is private

to one module; it may be directly accessed by one or more programs within the
module but not by programs outside the module. Any other program that

requires information stored in a module's data structures must obtain it by
calling module programs.

Applying this principle is not always easy. It is an attempt to minimize

the expected cost of software and requires that the designer estimate the
likelihood of changes. Such estimate& are based on past experience, and may

re4uire knowledge of the application area, as well as an understanding of

hardware and software technology.

In a few cases information that is likely to change must be communicated

between modules. To reduce the cost of software changes, use of some modules

or portions of a module interface, may be restricted. Restricted interfaces
are indicated by "R)" in the documentation. Often the existence of certain
smaller modules is itself a secret of a larger module. In a few cases, we
have mentioned such modules in this document in order to clearly specify where
certain functions are performed. Those modules are referred to as hiddden

modules and indicated by "(H)" in the documentation.

__i I

MODULE DESCRIPTION

Three ways to describe a module structure based on information-hiding are:
(1) by the roles played by the individual modules in the overall system
operation; Tf-by the secrets associated with each module; and (3) by the
facilities provided by each module. This document describes the module
structure by characterizing each module's secrets. Where useful, we also
include a brief description of the role of the module. The description of
facilities is relegated to the module specifications (e.g. [3]).

For some modules we find it useful to distinguish between a
primary secret, which is hidden information that was specified to the software
designer, and a secondary secret, which refers to implementation decisions
made by the designer when implementing the module designed to hide the primarysecret.

Although we have attempted to make the decomposition rules as precise as
possible, the possibility of future changes in technology makes some of the
boundaries fuzzy. Some sections point out fuzzy areas and discuss additional
information used to resolve ambiguities.

MODULE INITIALIZATION

Every module in the A-7E software can contain variables that must be given
initial values when the computer is turned on. Each module contains a program
for initialization, (denoted +module ID INIT+), that will be called when power
up occurs. There will be a main initiaTization program that is invoked at
power up. It will invoke the INIT programs for the three top-level modules.
The INIT program for a module will call the INIT programs for each of its
submodules. These programs will be executed, sequentially, before any of the
parallel processes begin to execute.

FUTURE ADDITIONS TO MODULES

It is often the case that a particular version of the system may not need
features of a module that are likely to be needed in other versions. Where we
have identified features that may be needed in future versions but are not
needed in the initial version, they are included in the module interface
descriptions but it is noted that they will not be needed in the initial
version. The programmer can use this information about likely future
additions to design his software for easier extension [8].

4

" '- -

TREATMENT OF UNDESIRED EVENTS

Development versions of all modules will check for and report undesired
events (UEs). Each module interface description contains a list of possible
UEs. In general, such a list should constitute a classification of all the
things that might go wrong. It should include hardware errors, software
errors and errors caused by the using program. However, much of the UE
detection and correction must be removed from the production version of the
system because of space limitations. In the NRL A-7E context, conditions that
must be handled by the initial production version will not be considered UEs.
For a more complete discussion of UEs see (9].

The remainder of this report provides a top-down overview of the module
structure.

5

- ~' .7t

III. A-7E MODULE STRUCTURE

A: TOP-LEVEL DECOMPOSITION

The software system consists of the three modules described below.

A:1 HARDWARE-HIDING MODULE

The Hardware-Hiding Module includes the programs that need to be changed
if any part of the hardware is replaced by a new unit with a different

hardware/software interface but with the same general capabilities. This
module implements virtual hardware that is used by the rest of the software.
The primary secrets of this module are the hardware/software interfaces

described in chapters I and 2 of the requirements document. The secondary
secrets of this module are the data structures and algorithms used to

implement the virtual hardware.

A:2 BEHAVIOR-HIDING MODULE

The Behavior-Hiding Module includes programs that need to be changed if

there are changes in the sections of r! requirements document that describe
the required behavior (chapters 3 and . ihe content of those sections is
the primary secret of this module. These programs determine the values to be
sent to the virtual output devices provided by the Hardware-Hiding Module.

A:3 SOFTWARE DECISION MODULE

The Software Decision Module hides software design decisions that are
based upon mathematical theorems, physical facts, and programming
considerations such as algorithmic efficiency and accuracy. The secrets of
this module are not described in the requirements document. This module
differs from the'-ther modules in that both the secrets and the interfaces are
determined by software designers. Changes in these modules are more likely to
be motivated by a desire to improve performance than by externally imposed
changes.

66

Notes on the top-level decomposition:

Fuzziness in the above classifications is unavoidable for the following
reasons:

(a) The line between requirements definition and software design has been
determined in part by decisions made when the requirements documents
are written; for example, weapon trajectory models may be chosen by
system analysts and specified in the requirements document, or they
may be left to the discretion of the software designers.

(b) The line between hardware characteristics and software design may
vary. Hardware can be built to perform some of the services
currently performed by the software; consequently, certain modules
can be viewed either as modules that hide hardware characteristics or
as modules that hide software design decisions.

(c) Changes in the hardware or in the behavior of the system or its users
may make a software design decision less appropriate.

(d) All software modules include software design decisions; changes in
any module may be motivated by efficiency or accuracy considerations.

To reduce the fuzziness, we have based our decomposition on the current
requirements document. In particular,

(a) The line between requirements and software design is defined by our
requirements document. When the requirements document specifies an
algorithm, we do not consider the design of the algorithm to be a
software design decision. If the requirements document only states
requirements that the algorithm must meet, we consider the program
that implements that algorithm to be part of a Software Decision
Module.

(b) The line between hardware characteristics and software design is
based on estimates of the likelihood of future changes. For example,
if it is reasonably likely that future hardware will implement a
particular facility, the software module that implements that
facility is classified as a hardware-hiding module; otherwise, the
module is considered a software design module. In most cases we have
taken a conservative stance; the design is based on the assumption
that drastic changes are less likely than evolutionary changes.

(c) A module is included in the Software Decision Module only if it would
remain correct, albeit less efficient, when there are changes in the
requirements document.

(d) A module will be included in the software decision category only if

its secrets do not include information documented in the software
requirements document.

*
7

B: SECOND LEVEL DECOMPOSITION

B:l HARDWARE-HIDING MODULE DECOMPOSITION:

The Hardware Hiding Module comprises two modules.

B:1.1 EXTENDED COMPUTER MODULE

The Extended Computer Module hides those characte,,istics of the

hardware/software interface of the avionics computer that we consider likely
to change if the computer is modified or replaced.

Avionics computers differ greatly in their hardware/software interfaces
and in the capabilities that are implemented directly in the hardware. For
example, some avionics computers include a hardware approximation of real
numbers, while others perform approximate real number operations by a
programmed sequence of fixed-point operations. Some avionics systems include
a single processor; some systems provide several processors. The Extended
Computer provides an instruction set that can be implemented efficiently on
most avionics computers. This instruction set includes the operations on
application-independent data types, sequence control operations, and general
I/O operations.

The primary secrets of the Extended Computer are: the number of
processors, the instruction set of the computer, and the computer's capacity
for performing concurrent operations.

The structure of the Extended Computer Module is given in section C:1.1.
Specifications for Extended Computer submodules are given in [4].

B:1.2 DEVICE INTERFACE MODULE

The Device Interface Module hides the characteristics of the peripheral
devices that are considered likely to change. Each device might be replaced
by an improved device capable of accomplishing the same tasks. Replacement
devices differ widely in their hardware/software interfaces. For example, all
angle-of-attack sensors measure angle-of-attack, but they differ in input
format, timing, and the amount of noise in the data.

The Device Interface Module provides virtual devices to be used by the
rest of the software. The virtual devices do not necessarily correspond to

physical devices because all of the hardware providing a capability is not
necessarily in one physical unit. Further, there are some capabilities of a
physical unit that are likely to change independently of others; it is

advantageous to hide characteristics that may change independently in
different modules.

8

.. . .4- I-- , -, .

The primary secrets of the Device Interface Module are those
characteristics of the present devices documented in the requirements document
and not likely to be be shared by replacement devices.

The structure of the Device Interface Module is given in section C:1.2.

Specifications for Device Interface submodules are given in [31.

Notes on the Hardware-Hiding Module Decomposition

Our distinction between computer and device is based on the current
hardware and is the one made in the requirements document. Information that
applies to more than one device is considered a secret of the Extended
Computer; information that is only relevant to one device is a secret of a
Device Interface Module. For example, there is an analog to digital converter
that is used for communicating with several devices; it is hidden by the
Extended Computer although it could be viewed as an external device. As
another example, there are special outputs for testing the 1/0 channels; they
are not associated with a single device. These too are hidden by the Extended
Computer.

If all the hardware were replaced simultaneously, there might be a
significant shift in responsibilities between computer and devices. In
systems like the A-7E such changes are unusual; the replacement of individual
devices or the replacement of the computer alone is more likely. Our design
is based on the expectation that this pattern of replacement will continue to
hold.

B:2 BEHAVIOR-HIDING MODULE DECOMPOSITION:

The Behavior Hiding Module consists of 2 modules: a Function Driver (FD)
Module supported by a Shared Services (SS) Module.

B:2.1 FUNCTION DRIVER MODULE

The Function Driver Module consists of a set of individual modules called
Function Drivers; each Function Driver is the sole controller of a set of
closely related outputs. The outputs are either part of a virtual device or
provided by the Extended Computer for test purposes. The primary secrets of
the Function Driver Module are the rules determining the values of these
outputs.

The structure of the Function Driver Module is given in section C:2.1.
Specifications for the Function Driver Module are found in [9].

Ii

Mon
49

~ ~*. * -.ka

B:2.2 SHARED SERVICES MODULE

Because all the Function Drivers control systems in the same aircraft,
some aspects of the behavior are common to several Function Drivers. We
expect that if there is a change in that aspect of the behavior, it will
affect all of the functions that share it. Consequently we have identified a
set of modules, each of which hides an aspect of the behavior that applies to
two or more of the outputs.

The structure of the Shared Services Module is found in section C:2.2.
Specifications for the Shared Services Module are found in [10].

Notes on the Behavior-Hiding Module structure

Because users of the documentation cannot be expected to know which
aspects of a function's behavior are shared, the documentation for the

Function Driver Modules will include a reference to the Shared Services
Modules that it uses. A maintenance programmer should always begin his
inquiry with the appropriate function driver. He will be directed to the
Shared Services Modules when appropriate.

B:3 SOFTWARE DECISION MODULE DECOMPOSITION

The Software Decision Module has been divided into (1) the Application
Data Type Module, which hides the implementation of certain variables, (2) the
Physical Model Module, which hides algorithms that simulate physical
phenomena, (3) the Data Banker Module, which hides the data-updating policies,
(4) the System Generation Module, which hides decisions that are postponed
until system generation time, (5) the Software Utility Module, which hides
algorithms that are used in several other modules, and (6) the Resource
Monitor Module, which hides the synchronization needed for resources that are
shared by several processes.

B:3.1 APPLICATION DATA TYPE MODULE

The Application Data Type Module supplements the data types provided by
the Extended Computer Module with data types that are particularly useful for
avionics applications and do not require a computer dependent implementation.

These data types are implemented using the data types provided by the Extended
Computer; variables of those types are used just as if the types were built
into the Extended Computer.

The secrets of the Application Data Type Module are the data

representation used in the variables and the programs used to implement
operations on those Oariables. These variables can be used without
consideration of units. Where necessary, the modules provide conversion
operators, which deliver or accept real values in specified units.

10

Run-time efficiency considerations sometimes dictate that an

implementation of an application data type be based on a secret of another

module. In that case, the data type will be specified in the Application Data

Type Module documentation, but the implementation will be described in the
documentation of the other module. The Application Data Type Module
documentation will contain the appropriate references in such cases.

The structure of the Application Data Type Module is given in section

C:3.1. Specifications for these modules may be found in (11].

5:3.2 PHYSICAL MODEL MODULE

The software requires estimates of quantities that cannot be measured
directly but can be computed from observables using models of the physical
world. The primary secrets of the Physical Model Module are the physical

models; the secondary secrets are the computer implementations of those
models.

The structure of the Physical Model Module is given in section C:3.2.

Interface specifications are found in [131.

B:3.3 DATA BANKER MODULE

Most data are produced by one module and consumed by another. In many
cases, the consumers should receive a value as up-to-date as practical. The
Data Banker Module acts as a "middleman" and determines when new values for

these data are computed. The Data Banker obtains values from producers;
consumer programs obtain data from Data Banker access programs. The producer
and consumers of a particular datum can be written without knowing whether or

not the Data Banker stores the value or when a stored value is updated. In

most cases, neither the producer nor the consumer need be modified if the
updating policy changes.

The Data Banker is not used if consumers require specific members of the

sequence of values computed by the producer or if they require values
associated with a specific time such as the moment when an event occurs.

There are very few instances of this in the A-7E software.

11

Some of the updating policies that can be implemented in the Data Banker
are described in the following table, which indicates whether or not the Data
Banker stores a copy of the item and when a new value is computed.

Name Storage When new value produced

on demand: No Whenever a consumer requests the value

periodic: Yes Periodically. Consumers get the most
recently stored value.

event driven: Yes Whenever the data banker is notified,
by the occurrence of an event, that
the value may have changed. Consumers
get the most recently stored value.

conditional: Yes Whenever a consumer requests the
value, provided certain conditions are
true. Otherwise, a previously stored
value is delivered.

producer fed: Yes Determined by the producer, which
calls an access routine from the data
banker to store a value. Consumers
get the most recently stored value.

The choice among these and other updating policies should be based on the
consumers' accuracy requirements, how often consumers require the value, the
maximum wait that consumers can accept, how often the value changes, and the
cost of producing a new value. Since the decision is not based on coding
details of either consumer or producer, it is usually not necessary to rewrite
a Data Banker Module when producer or consumer change.

The Data Banker is used regardless of the frequency of the updates; for
example, it provides values of data received through the panel, even though
they are rarely updated. The Data Banker is used as long as consumer and
producer are separate modules, even when they are both submodules of a larger
module.

Specifications of the interface to the Data Banker Module can be found in
[6).

12

S4 p . .

B:3.4 SYSTEM GENERATION MODULE

The primary secrets of the System Generation Module are decisions that are

postponed until system-generation time. These include the values of system
generation parameters and the choice among alternative implementations of a
module. The secondary secrets of the System Generation Module are the method
used to generate a machine-executable form of the code and the representation
of the postponed decisions. Most of the programs in this module do not run on
the on-board computer; they run on the computer used to generate the code for
the on-board system.

The structure of the System Generation Module is given in section C:3.4.
Specifications for the System Generation Modules may be found in [14).

B:3.5 SOFTWARE UTILITY MODULE

The primary secrets of this module are the algorithms implementing comon
software functions such as start process, and mathematical functions such as
square-root and logarithm.

B:3.6 RESOURCE MONITOR MODULE

The primary secrets of this module are the synchronization algorithms used
to provide orderly access to shared resources such as devices and data
structures. Programs from these modules are used within modules that provide
virtual resources.

13

*Jill

'7 -. -

C: THIRD-LEVEL DECOMPOSITION

C:l.1 EXTENDED COMPUTER MODULE DECOMPOSITION

C:1.l.l DATA TYPE MODULE

The Data Type Module implements variables and operators for real numbers,
time periods, and bit strings. The data representations and data manipulation
instructions built into the computer hardware are the primary secret of this
module.

C:1.1.2 DATA STRUCTURE MODULE

The Data Structure Module allows user programs to create arrays of EC
variables and to access elements witb5i them. The representation of these
arrays in physical memory and the it'ementztion of array access operations
are the secrets of this module.

C:1.1.3 INPUT/OUTPUT MODULE

The Input/Output Module transmitt bit strings to and from peripheral
devices without any interpretat4 on ak the values. The computer instructions
available to transmit and receive bitstrings are the primary secret of this
module.

C:1.1.4 COMPUTER STATE MODULE

The Computer State Module keeps track of the current state of the Extended
Computer, which can be either operating, off, or failed, and signals relevant
state changes to user programs. The primary secret is the way that the
hardware detects and causes state changes. After the EC has been properly
initialized, this module signals the event that starts the initialization for
the rest of the software.

C:1.1.5 PARALLELISM CONTROL MODULE

The virtual computer provided by the Extended Computer Module executes a
set of processes in parallel. The Parallelism Control Module determines the
rate of progress of processes, given the constraints imposed by
synchronization operations and by the timing parameters in the process
definitions. The synchronization operations and scheduler are part of this
module.

The number of processors and the mechanism for process switching are the
* primary secrets of this module. The representation of processes, allocation

policy for the processors, and the algorithms implementing synchronization
*operations are secondary secrets.

14

. . . .I I [, __ l~ m ,- -

C:1.1.6 SEQUENCE CONTROL MODULE

The Sequence Control Module determines the order of statement execution
within a process. It provides an instruction that permits loops and
conditional selection among alternative code sections; it also provides
subprogram invocation and timing mechanisms.

The primary secrets of this module are the sequence control and timer
mechanisms of the actual computer.

C:1.1.7 DIAGNOSTICS MODULE (R)

The Diagnostics Module provides diagnostic programs to test the interrupt
hardware, the I/O hardware, and the memory. Use of this module is restricted
because the information it returns may reveal secrets of the Extended
Computer, i.e., programs that use it may have to be revised if the avionics
computer is replaced by another computer.

C:1.1.8 VIRTUAL MEMORY MODULE (H)

The Virtual Memory Module presents a uniformly addressable virtual memory
to the other Extended Computer submodules, allowing them to use virtual
addresses for both data and subprograms. The primary secrets of the Virtual
Memory Module are the hardware addressing methods for data and instructions in
real memory; differences in the way that different areas of memory are
addressed are hidden. The secondary secrets of the module are the policy for
allocating real memory to virtual addresses and the programs that translate
from virtual address references to real instruction sequences.

This module is invisible to Extended Computer users; the Extended Computer
offers a "typed" memory instead of a memory consisting of general-purpose
words. The memory provided by the Virtual Memory Module can contain both
program and data, but the Extended Computer has no operations that allow
access to programs as data.

C:1.1.9 INTERRUPT HANDLER MODULE (H)

The Interrupt Handler Module is responsible for responding to external
interrupts, interpreting them, and reporting them; to user programs, an
interrupt event looks like any other event signalled by the software. As a
result, users are not aware of either interrupts or the Interrupt Handler
Module.

The primary secrets of this Module are the way that the hardware behaves
when an interrupt occurs, the mapping between hardware interrupts and events
signalled by the software, and the method used to identify the source of the
interrupt. The secondary secret is the mechanism for translating hardware
interrupts into software events.

15

C:l.2 DEVICE INTERFACE MODULE DECOMPOSITION

The following table describes the Device Interface submodules (DIMs)and
their secrets. The phrase "How to read.. " is intended to be interpreted
quite liberally, e.g., it includes device-dependent corrections, filtering and
any other actions that may be necessary to determine the physical value from
the device input. All of the DIMs hide the procedures for testing the device
that they control.

Section Virtual Device Secret: How to

C:1.2.1 AIR DATA COMPUTER read barometric altitude, true
airspeed, and Mach number.

C:1.2.2 ANGLE OF ATTACK SENSOR read angle of attack.

C:1.2.3 AUDIBLE SIGNAL DEVICE cause an audible tone in the cockpit to
be on, off, or beeping.

C:1.2.4 COMPUTER FAIL DEVICE signal computer failure to the pilot
and several devices.

C:1.2.5 DOPPLER RADAR SET read ground speed and drift angle.

C:1.2.6 FLIGHT INFORMATION DISPLAYS display an azimuth and an elevation
displacement, two points on a circle
relative to a fixed reference point,
and an unsigned decimal number.

C:1.2.7 FORWARD LOOKING RADAR measure slant range distance to a point
on the ground;
display a point on a radar screen.

C:1.2.8 HEAD-UP DISPLAY display symbols in the pilot's field of
vision.

C:1.2.9 INERTIAL MEASUREMENT SET measure aircraft attitude, heading, and
velocity;
adjust the orientation of the platform
axes.

C:1.2.10 PANEL display and accept information in the
form of digits and letters.

C:1.2.11 PROJECTED MAP DISPLAY SET position and orient a map display.

C:1.2.12 RADAR ALTIMETER read the altitude of the aircraft above
local ground or water level.

16

Section Virtual Device Secret: How to . . .

C:1.2.13 SHIPBOARD INERTIAL read the position, attitude and
NAVIGATION SYSTEM velocity of a nearby ship carrying SINS

transmission equipment.

C:1.2.14 SLEW CONTROL read data from a device indicating a

two dimensional displacement from an
origin.

C:1.2.15 SWITCH BANK read the positions of all switches that
do not affect other hardware devices.

C:1.2.16 TACAN read bearing and slant range to a TACAN
station.

C:1.2.17 VISUAL INDICATORS cause visible indicators to be on,
blinking or off.

C:1.2.18 WAYPOINT INFORMATION SYSTEM read received data giving the positions
of waypoints.

C:1.2.19 WEAPON CHARACTERISTICS determine specific characteristics of
various weapon types.

C:1.2.20 WEAPON RELEASE SYSTEM ascertain weapon release actions the
pilot has requested;
cause weapons to be prepared and
released.

C:1.2.21 WEIGHT ON GEAR tell if the plane is resting on the
landing gear.

1

C:2.1 FUNCTION DRIVER MODULE DECOMPOSITION

The following table describes the Function Driver submodules and their
secrets.

Section Function Driver Secret

C:2.1.1 AIR DATA COMPUTER FUNCTIONS What must be done to initialize
the virtual Air Data Computer.

C:2.1.2 AUDIBLE SIGNAL FUNCTIONS When the audible signal should be
on, off, or beeping.

C:2.1.3 COMPUTER FAIL SIGNAL FUNCTIONS When to signal computer failure.

C:2.1.4 DOPPLER RADAR FUNCTIONS When to start and stop the Doppler
Radar.

C:2.1.5 FLIGHT INFORMATION DISPLAY What information should be
FUNCTIONS displayed.

C:2.1.6 FORWARD LOOKING RADAR FUNCTIONS What the current FLR mode should
be.
Where to position the cursors in
the PLR display.
Where to aim the FLR.

C:2.1.7 HEAD-UP DISPLAY FUNCTIONS Where the movable HUD symbols
should be placed.

Whether a HUD symbol should be on,
off or blinking.

What information should be
displayed on the fixed-position
displays.

C:2.1.8 INERTIAL MEASUREMENT SET Rules determining the scale to be
FUNCTIONS used for the IMS velocity

measurements.
When to initialize the velocity

measurements.
Row much to rotate the IMS for
alignment.

C:2.1.9 PANEL FUNCTIONS What information should be
displayed on panel windows.
When the enter light should be

turned on.

i

18

A6*

Section Function Driver Secret

C:2.l.10 PROJECTED MAP DISPLAY SET What geographical location should
FUNCTIONS be displayed on the map.

How the map should be oriented.
Where the map indicators should be

positioned.

C:2.1.11 SINS FUNCTIONS When to start and stop SINS
reception.

C:2.1.12 VISUAL INDICATOR FUNCTIONS When the visual indicators should
be on, off, or blinking.

C:2.1.13 WEAPON RELEASE FUNCTIONS When to prepare and release a
Weapon.

C:2.1.14 GROUND TEST FUNCTIONS When and how to use the EC test
outputs.

C:2.2 SHARED SERVICES MODULE DECOMPOSITION

The Shared Services Module comprises the following modules.

C:2.2.1 MODE DETERMINATION MODULE

The Mode Determination Module determines system modes (as defined in the
requirements document). It signals the occurrence of mode transitions and
makes the identity of the current modes available. The primary secrets of the
Mode Determination Module are the mode transition tables in the requirements
document.

C:2.2.2 STAGE DIRECTOR MODULE

In some modes, the system sequences through stages; in each stage the
program is trying to achieve a goal and the end of each stage is marked by the
achievement of that goal. Whether or not a goal has been achieved is
determined by the program itself, rather than by an external event. Although
many of the stages occur in several modes, the modes differ in the definition
of the goals and the sequence of stages.

There are stage directors for each of the alignment modes and for the
ground test mode. The primary secret of each Stage Director Module is the
sequence of stages and the predicates that determine when a stage transition

4i occurs. The behavior required in the individual stages is a secret of
Function Driver submodules, but the rules determining when to proceed from one
stage to the next are hidden in the Stage Director Module.

19

C:2.2.3 SHARED SUBROUTINE MODULE

The Shared Subroutine Modules hide parts of the function definitions that
are shared, perhaps with some modification, by several functions. Where, in
our judgment, the sharing is not a coincidence and a change in one function
driver is likely to be accompanied by a similar change in the others, the
routines have been included in the Shared Subroutine module to avoid
duplication of code and documentation. In some cases, we have made sharing
possible by parameterization.

C:2.2.4 SYSTEM VALUE MODULE

A System Value submodule computes a set of values, some of which are used
by more than one Function Driver. The secrets of a System Value submodule are
the rules in the requirements that define the values that it computes. The

shared rules in the requirements specify such things as 1) selection among
several alternative sources, 2) applying filters to values produced by other
modules, or 3) imposing limits on a value calculated elsewhere.

This module may include a value that is only used in one Function Driver
if the rule used to calculate that value is the same as that used to calculate

other shared values.

Each System Value submodule is also responsible for signaling events that
are defined in terms of the values it computes.

C:2.2.5 PANEL I/O SUPPORT MODULE

The Panel I/O Support Module provides formatting services for the Function
Drivers that display and accept data through the panel. The primary secrets
are the required data display and input formats. This module will not be the
one that hides the hardware/software interface of a particular panel; it will
hide characteristics of the virtual panel created by the Device Interface
Module, providing a more convenient interface. This module also signals
events about panel operations.

C:2.2.6 DIAGNOSTIC I/O SUPPORT MODULE (R)

The Diagnostic I/O Support Module contains the programs that convert
hardware-dependent diagnostic information to the format required for display
on one of the virtual devices provided by the Device Interface Modules. The
primary secrets of this module are how to get the information to be displayed
and the format in which it is to be displayed. This module may have to be
changed if either the hardware supplying the information or the format
requirements change.

20

4.~~-0 Awl'. .* ~

C:2.2.7 EVENT TAILORING MODULE

This module contains programs that detect and signal changes in conditions
that appear in the definitions of the behavior-hiding modules. Although the
values that determine these conditions may be computed in other modules, the
exact definitions of the conditions may change if the requirements change.
These modules may be thought of as tailoring the generally applicable
(requirements independent) events and access programs provided by other
modules to the specific needs of the current requirements. The other modules
can be implemented without any knowledge that these events are of
significance. The primary secrets of these modules are the definitions of the
events of interest.

C:3.1 APPLICATION DATA TYPE MODULE DECOMPOSITION

The Application Data Type Module is divided into three submodules.

C:3.1.1 SYSTEM DATA TYPE MODULE

The System Data Type Module implements variables of the following widely
used types: accelerations, angles, angular rates, character literals,
densities, Mach values, distances, pressures, and, speeds. These modules may
be used to implement types with restricted ranges or special interpretations
(e.g., angle is used to represent latitude).

C:3.1.2 SHARED DATA TYPE MODULE

The shared data types are data types that are used in a few modules. For
example, the indicator control data type is introduced in the Device Interface
Module in order to communicate the three possible states of an indicator (on,
off and blinking) to several virtual devices.

C:3.1.3 LOCAL DATA TYPE MODULE

The local data types are the data types that were introduced in the
interface definitions of another module.

21 Li

I,- *..'

C:3.2 PHYSICAL MODEL MODULE DECOMPOSITION

The Physcical Model Module comprises the seven modules described below.

C:3.2.1 EARTH MODEL MODULE

The Earth Model Module hides models of the earth and its atmosphere. This
set of models includes models of local gravity, the curvature of the earth,

pressure at sea level, magnetic variation, the local terrain, the rotation of
the earth, coriolis force, and atmospheric density.

C:3.2.2 AIRCRAFT MOTION MODULE

The Aircraft Motion Module hides models of the aircraft's motion. They are
used to calculate aircraft position, velocity and attitude from observable
inputs.

C:3.2.3 SPATIAL RELATIONS MODULE

The Spatial Relations Module contains models of three-dimensional space.
These models are used to perform coordinate transformations as well as angle
and distance calculations.

C:3.2.4 HUMAN FACTORS MODULE

The Human Factors Module is based on models of pilot reaction time and
perception of simulated continuous motion. The models determine the update
frequency appropriate for symbols on a display.

C:3.2.5 WEAPON BEHAVIOR MODULE

The Weapon Behavior Module contains models used to predict weapon behavior

after release.

C:3.2.6 TARGET BEHAVIOR MODULE

The Target Behavior Module contains models used to predict target
behavior, such as whether it is stationary or moving.

C:3.2.7 FILTER BEHAVIOR MODULE

The Filter Behavior Module contains digital models of physical filters.
They can be used by other programs to filter potentially noisy data.

22

C:3.3 DATA BANKER MODULE

The decomposition of the Data Banker into submodules is hidden from user

programs, which should not be sensitive to changes in its internal structure.

C:3.4 SYSTEM GENERATION MODULE DECOMPOSITION

C:3.4.1 SYSTEM GENERATION PARAMETER MODULE

The System Generation Parameter Module provides values for all the system
generation parameters defined in other modules, including those specified in
module interfaces and those defined in the module implementations. There is a
submodule of the System Generation Parameter Module for each module in the
rest of the system; each of these submodules is in turn composed of an

external parameter submodule and an internal parameter submodule. External
parameters of a module are available to other modules; internal parameters are
secrets of the module. The primary secrets of this module are the values of
the parameters for a particular version of the system.

C:3.4.2 MODULE VERSION SELECTION MODULE

This module stores alternative implementations of each module. It allows

a user to indicate which alternative(s) should be chosen for each module. If
the module implements an abstract data type, a different alternative may be
specified for each variable of that type. The secret of this module is the
library structure used to store the various versions of the modules and the
procedures for inserting the selected implementation in the code.

C:3.4.3 SUBSET SELECTION MODULE

This module selects subsets of each module in order to assemble a desired
subset version of the system. Its primary secret is the "Uses" relation; the

secondary secrets are the representation of the relation and the algorithms

used to select the programs that will be included in the resulting system.

C:3.4.4 SUPPORT SOFTWARE MODULE

The Support Software Module includes additional software required to

generate and check out a running system, including a macroprocessor, a
simulator, an assembler, and communications software.

23

C:3.5 SOFTWARE UTILITY MODULE

This module provides common software services needed by other modules.
The primary secrets are the algorithms that use of Extended Computer and
Application Data Type facilities to start and stop a process, signal a value
change, and check to make sure a value is between prescribed bounds. A

service is also provided to signal when the conjunction or disjunction of two
conditions becomes true or false, given the adjunct conditions.

Mathematical services include exponentiation, logarithm, maximum, minimum,
and absolute value functions.

This module will be expected to grow as we recognize useful utilities.
Programmers are required to submit descriptions of useful utilities for
inclusion in this module as a change to this document. However, the complete
list of approved utilities will be maintained as an appendix to this document.

C:3.6 RESOURCE MONITOR MODULE

A resource monitor module will be designed for every resource (data

structure or device) that will be accessed by more than one process. The
monitor will enforce the protocol that has been adopted for shared use of that
resource. All accesses to the shared resource will be made by calls to
monitor access routines.

Acknowledgements

P. C. Clements' efforts have led to substantial improvements in the
structure described in this document and to substantial clarifications in the
writing. Comments on earlier drafts by B. Amlicke, S. Bouchard, L. Chmura, H.

Elovitz, C. Heitmeyer, R. Krutar, D. Weiss, and 3. Shore were very helpful.

24

- -... . C -~A

IV. REFERENCES

[1] Heninger, K., Kallander, J., Parnas, D., and Shore, 3.; Software

Requirements for the A-7E Aircraft; NRL Memorandum Report 3876;
27 November 1978.

[2] Parnas, D.L.; "On the Criteria To Be Used in Decomposing Systems
into Modules"; Comm. ACH, Vol. 15, No. 12 (December 1972),
pp. 1053-1058.

[3] Parker, A., Heninger, K., Parnas, D., and Shore, J.; Abstract
Interface Specifications for the A-7E Device Interface Module;
NRL Memorandum Report 4385, 20 November 1980.

[4] Heninger, K., and Parnas, D.L.; Interface Specifications for the A-7
Extended Computer Module; in progress.

(5] Mode Determination documentation, to be published.

[6] Data Banker Documentation, to be published.

[7] Process Structure Documentation, to be published.

[8] Parnas, D.L.; "Designing Software For Extention and Contraction",
Proceedings of the 3rd International Conference on Software
Engineering'(0-12 May 1978), pp. 264-277.

[9] Parnas, D.L., and Wuerges, H.; "Response to Undesired Events in
Software Systems"; Proc. Second Int. Conf. Software Eng.,
pp. 437-446; 1976.

[10] Clements, P.C.; Function Specifications for the A-7E Function Driver
Module; NRL Memorandum Report 4658, October 1981.

(11] Clements, P.C.; Interface Specifications for the A-7E Shared

Services Module; draft in progress, 22 June 1981.

[12] Clements, P.C.; Abstract Interface Specifications for the A-7E
Application Data Type Module; draft in progress.

(131 Clements, P.C., and Parker, A.; Abstract Interface Specifications
for the A-7E Physical Models Module; draft in progress.

[14] System Generation Module documentation, to be published.

[15] Uses hierarchy documentation, to be published.

25

V. (LOSSARY

abstract interface an abstraction that represents more than one interface
(see interface, module interface); it consists of the
assumptions that are included in all of the interfaces

that it represents.

abstraction a description of a set of objects that applies equally
well to any one of them. Each object is an instance
of the abstraction.

access function see access program.

access program a program that may be called by programs outside of
the module to which it belongs. Most run-time
communication between modules is effected by
invocation of access programs. There are several
different sorts of access functions: some return
information to the caller, some change the state of
the module to which they belong, and some do both.

consumer a program that requires data produced by another
program.

event (1) change in a condition; (2) signal from a module to
its user programs indicating the occurrence of some
change within the module. Events resemble hardware
interrupts because they occur at unpredictable times
and are not synchronized with the control flow of user
programs. In the A-7E program, events will be
signalled to user programs using an event mechanism
(see below).

event mechanism a programming construct that allows processes to
communicate about the occurrence of events. Typical
operations provided include an operation to wait for a
particular event to occur and an operation to signal
that a particular event has occurred.

hidden submodule a submodule whose existence is part of the secret of
the parent module.

interface (1) between two programs: the assumptions that each
programmer needs to make about the other program in

order to demonstrate the correctness of his own
program.

(2) between a program and a device: assumptions about

the device that must be accounted for in the program
in order for the program to work as expected.

26

internal program a program that is not accessible to programs outside

the module; the existence of the internal program is
part of the secret of the module.

module a programing work assignment consisting of one or
more programs. A module may be divided into smaller
modules (submodules).

module facility the access programs and events provided by a module in
order to allow user programs to be independent of the
module secret. A complete description of a facility
is a specification of the module.

module hierarchy a hierarchy defined by the relation "contains" on
pairs of modules.

module implementation the algorithms, data structures, and programs that
satisfy the module specification.

module interface the set of assumptions that the authors of external
programs may make about the module. It includes
restrictions on the way that the module may be used.
In the A-7E software, modules communicate either by

one module using access programs from the other
module, or by one module being notified of an event

that was signalled by the other module. The interface
consists of assumptions about the availability of the
access programs, the syntax of the calls on the access
programs, the behavior of the access programs, and the

meaning of events. See also interface.

module secret see secret, module implementation

module specification a description of a module interface; see also module
facility.

module's structure the way that a software module is divided into
submodules and programs

primary secret the characteristics other than decisions by the module
designer that a module is intended to hide. See also

secondary secret

27* p Ii

process a subset of the run-time events of the system used as
administrative units in the run-time allocation of
processors. See also process definition

process definition the program that contols the sequence of actions by a
process.

producer a module that provides data for use by other
programs. A program that returns to its caller an
output parameter that is a function of the input that
the caller provided is not considered a data
producer. Examples of data producers include programs
that read values measured by sensors, or calculatephysical characteristics based on mathematical models.

program a named, machine executable, description of an
algorithm. The name may be used to invoke the
program's execution. A program may include a
description (declaration) of the data structures that
it uses; it may invoke other programs and refer to
data structures that have been described in other
programs. See also subprogram, process definition.

required function used in the sense of (1]. Each requirements function
is the determination of the value of a specific,
closely related set of output values. The system
performs all of its requirements functions when it
properly determines the value of all of its outputs.

secondary secret software design decisions made to implement the
abstraction that hides the primary secret.

secret the facts about the module that are not included in
its interface; i.e., assumptions that user programs
are not allowed to make about the module. The
correctness of programs in other modules must not
depend on those facts. The secrets tell how the
module's specification has been satisfied. See also
module specification, primary secret, secondary secret.

submodule any module that is a component of a higher level
module.

subprogram a subprogram is a program that can be invoked by
another program. A subprogram may be either a
subroutine or a macro.

sysgen parameters a symbol used as a placeholder for values that will be
supplied just before a system is generated.

28

'a .:- . *; * i

undesired event (US) a run-time event that the designers hope will not
occur. Production versions of the A-7E program are
written on the assumption that they do not occur.

undesired event assumptions about what constitutes improper use of a
assumption module by user programs, e.g., calling an access

program with parameters of the wrong type.

use, uses Program A uses program B if there must be a correct
version of B present for A to run correctly. A
program uses a module if it uses at least one program
from that module. A module uses another module if at

least one program uses that module.

user programs all programs that use programs from a module but are
not part of that module. The term "user" is relative
to the module being discussed.

virtual computer a computer-like set of instructions implemented, at
least in part, by software.

virtual machine see virtual computer.

visible subnodules submodules whose existence is visible to user programs.

1 29
I - - .a .I '. - ..

IIDATE

1 LMEi

