AD=-A1B7 328 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 9/2
1 DEDQUCTIVE SYNTHESIS OF THE UNIFICATION ALGORITHM, (U}
i JUN 81 Z MANNA» R wWALDINGER NUUUl“'?b'C—OﬁQ'I
¥ UNCLASSIFIED STAN=CS=-81-855

0 00
L
=

L2 e e o

- Y]

' /n /[' / '
) r= s [e
¢ June B8 lEVEl chorFN/of;:NCS-SI-BSS

‘. ‘ S
i S S

t

3 '

M

R

%

“r

2

/ }

““Deductive Synthesis of the Unification Algorithm

by

j I

- 7
.+ 7ohar/{Manna

/ Riclmrd"\\’aldinger
/

i

Rescarch sponsored in nart by

Office of Naval Research
National Science Foundation
Air Force Office of Scientific Resecarch

! /// /I ‘/"/ . Y. - -\

VAV R
Department of Computer Science

Stanford University

Stanford, CA 94305 D l I(:

ELECTE
NOV 17 1981

v"./

b

ST

D

P
]
)
RN
‘.’_\‘
~
~<
.
A Y

DISTRIBUTION STATEMENT &

Approved for public release;
Distribution Unlimited

PN [APV PUIPIRL - _ ~.oyg'2- A%

——

, Acce: ,..1 &l' !

ot ..' x

f mT1e i

ek

?et e o on Cd.e

& J-) ll sention o
DEDUCTIVE SYNTHESIS OF THE Iy

|
|
|

i UNIFICATION ALGORITHM PR o
2 ‘ . i
i | H ! ’ ;
i . Zohar Manna Richard Waldinger | i ;

i Computer Science Department Artificial Intelligence Center

f ‘ Stanford University SRI International

and
Applied Mathematics Department
Weizmann Institute

PGP v 12

ABSTRACT

““The deductive approach is a formal program-construction method in which the derivation
of a program from a given specification is regarded as a theorem-proving task. To construct a
program whose output satisfies the conditions of the specification, we prove a theorem stating the
existence of such an output. The proof is restricted to be sufficiently constructive so that a programn
computing the desired output can be extracted directly from the proof. The program we obtain
is applicative and may consist of several mutually recursive procedures. The proof constitutes a
:] demonstration of the correctness of this program.

-To exhibit the full power of the deductive approach, we apply it to a nontrivial example —
the synthesis of a unification algorithm. Unification is the process of finding a common instance
of two expressions. Algorithms to perform unification have been central to many theorem-proving
systems and some programming-language processors.

: 1 The task of deriving a unification algorithm automatically is beyond the power of existing
program-synthesis systems. In this paper, we use the deductive approach to derive an algorithm
¥ from a simple, high-level specification of the unification task. We will identify some of the
capabilities required of a theorem-pr ./ing system to perform this derivation automatically.

\

i

This paper will appear in Automatic Program Construction (G. Guiho, ed.), NATO Scientific
3 Series, D. Reidel Pub. Co., Dordrecht, Holland, 1981.

The research was supported in part by the National Science Foundation under Grants MCS-

¥ 78-02591 and MCS-79-09495, in part by the Office of Naval Research under Contracts N00014-75-

i C-0816 and N00014-76-C-0687, and in part by the Air Force Office of Scientific Research under
Contract AFOSRR-81-0014.

e

- 1 —"

DISTRIBUTION STATEMENT A |

Approved for public release]
3 Distribution Unlumted

AT~ e BT T T e . s re———— L - Vs w4 Teals e s o o

‘ INTRODUCTION

In an earlier paper (Manna and Waldinger [1980]) we describe a deductive approach to program
synthesis. In this approach, program synthesis is regarded as a theorem-proving task: Given a high-
level specification of the purpose of the program, we prove a theorem that establishes the existence
of an output satisfying this specification. The proof is restricted to be sufficiently constructive so
that the desired program can be extracted directly. This approach is the direct descendant of the
technique applied, e.g., by Green [1969] and by Waldinger and Lee [1969].

In the earlier paper, we only applied the technique to very simple examples. In this paper, we
consider a somewhat more difficult task: the synthesis of a unification algorithm.

Unification is the process of finding a common instance of two expressions. If such an instance N
exists, the algorithm is to produce a substitution that will yield that instance when applied to
either of the expressions. If no common instance exists, the algorithm is to produce a special
symbol indicating this situation. The first unification algorithm appeared in Herbrand's [1930]
thesis, but the procedure did not come to widespread attention until it was rediscovered by Prawitz
[1960] and employed by Robinson [1965] in his resolution principle for automatic theorem proving.
Since then, the algorithm has been used not only for resolution theorem proving but also in many
nonresolution theorem provers (see Bledsoe {1977]) and some programming-language processors
(e.g., PLANNER, see Hewitt [1971] or PROLOG, see Warren et al. [1977) or Colmerauer et al.
[1979)).

Because of its importance in theorem proving and other applications, some effort has gone
into the design of efficient unification algorithms (e.g., Martelli and Montanari [1976]; Paterson i
and Wegman [1978]) and the extension of the algorithm to more complex logical theories (e.g., |
higher-order logic, Huet [1975]; associative and commutative theories, Stickel [1975], Livesay et al. 1
[1979)).

The unification algorithm was the subject of partial verification cfforts (e.g., Waldinger and
Levitt [1974)) and an example of automatic debugging (von Henke and Luckham [1974]). An early
attempt to synthesize such a program appeared in Manna and Waldinger [1975]. Nevertheless, no
complete automatic synthesis, or even verification, of the algorithm has been completed by any
system.

The derivation presented in this paper depends on the formulation of a theory of expressions
and substitutions. Intuitive observations about these objects can then be expressed and proved
within the theory. In this paper, we set down, without proof, those results neccessary for the
derivation. A full presentation of the theory of exprcisions and substitutions is included in our
forthcoming book (Manna and Waldinger [1982}).

The proof on which the derivation is based is presented in full. A summary of those aspects
of the deductive approach necessary to understand the derivation is included. Although this proof
can be expressed in the deductive tableau formalism of our [1980] paper, it is given here informally. *
We do not attempt to describe strategies under which the proof could be generated automatically. |

2 {

However, afterwards we consider what capabilities would be required of a theorem-proving system
to discover such a proof.

THE DEDUCTIVE APPROACH

The specification of a program allows us to express the purpose of the desired program without
indicating an algorithm by which that purpose is to be achieved. In general, we are considering
the synthesis of programs whose specifications have the form

f(a) & find z such that R(a, 2)
where P(a).

Here, a denotes the input of the desired program and z denotes its output. The input condition
P(a) expresses the class of legal inputs to which the program is expected to apply. The output
condition R(a, z) describes the relation the output 2 is intended to satisfy.

For example, to specify a program to compute the integer square-root of a nonnegative integer
n, we would write

sqrt(n) & find z such that
integer(z) and z2 < n < (z+1)?
where integer(n) and 0 < n.

A specification of the above form describes an applicative program, one that yields an output
but produces no side effccts. To derive a program from such a specification, we attempt to prove
a theorem of the form

(Va)(32)[if Pla) then R(a,z)).

This theorem states that, for every input a, there exists an output z satisfying the output condi-
tion, provided that the input satisfies the input condition. The proof of this theoremm must be
constructive, in the sense that, in proving the existence of a satisfactory output 2, it must tell us
how to find such an output. From this proof, a program to compute z can be extracted.

WELL-FOUNDED INDUCTION

The formation of repetitive program constructs in the deductive approach depends on the
application of the principle of mathematical induction. The induction principle we use is the
principle of “well-founded induction,” which applies to a wide variety of mathematical structures
and results in the formation of a recursive procedure in the program being constructed. Before we
can present the induction principle, we must introduce the notion of a “well-founded ordering.”

Definition: If > is a relation over a set S, we will say that > satisfics the decreasing sequence
condition if there are no infinite decreasing sequences z,,z3,z3, ... of elements of S; i.e.,

3

AT |

there are no sequences such that

Ty > Ty > T3 ..

For example, the ordinary “greater-than” relation > over the nonnegative integers satisfies ,
the decreasing sequence condition. The same relation over all the integers does not.

Definition: If > is a relation over a set S, we will say that > is a well-founded ordering and S is
a well-founded set under this ordering if J

e > is transitive and

e > satisfies the decreasing sequence condition.

We will regard y < z as synonymous with z > y.

For example, the following are all well-founded orderings:

e The > relation over the nonnegative integers
e The subset relation over the finite sets

o The subtree relation over the finite trees.

The principle of well-founded induction may be expressed as follows:

Let > be a well-founded ordering over a set S. Then
to prove that a statement @(a) is true for all clements a of S,
consider an arbitrary element a of S,
assume the induction hypothesis
(Vz)[if = < a then Q(z)]
and prove that the conclusion
Qla)

then follows.

When we are applying the well-founded induction principle in a program-synthesis context,
we may use the following special form: ‘

Let > be a well-founded ordering over a set S. To construct a program f satisfying the
specification

f(a) & find z such that R(a, 2)
where P(a),

L T

where the inputs a belong to a well-founded set, consider an arbitrary input ¢, assume the
induction hypothesis

if z<a
(V)| then if P(z)
then R(z, f(z))

and then prove the conclusion

(32)R(a, 2).

In other words, we consider an arbitrary input a, and find an output z satisfying the given
specification, under the following induction hypothesis: the program f(z) we are trying to construct
will satisfy the specification for all inputs z that are less than a in the well-founded ordering,.

Application of the induction hypothesis during a proof will cause a recursive call f(z) to appear
in the program being constructed. The condition P(z) will ensure that the input z of the recursive
call will be a legal input; i.e., it will satisfy the given input condition. The condition z < a will
ensure that the new recursive call cannot result in an infinite computation.

£-EXPRESSIONS

In this section, we define a class of /-expressions that will contain not only the expressions but
also nested lists of expressions formed from a given alphabet.

e the alphabet
Suppose that S is an alphabet of symbols, consisting of three disjoint sets:
C: the constants
X: the variables, and
F: the function symbols.

Together, the constants and variables will be referred to as the atoms of S. With each function
symbol of F' is associated a unique positive integer, called its arify, indicating how many arguments
the function takes.

® generation rules

The expressions of S are constructed by repeated application of the following generation rules:

Any constant of C is an expression;

Any variable of X is an expression;

If f is a function symbol (of arity n)

and £ is a list of expressions (of length n)
. then the result of applying f to the expressions in £,
denoted by f e £, is an expression.

The £-expressions of S are constructed by repeated application of the following generation
rules:

The empty list {] is an £-expression;

Any expression is an £-expression;

If s is an £-expression
and m is a list of {-expressions

then the result of inserting s before the first element of m,
denoted by s o m, is an L-expression.

Note that if m = [m1,m,, ...,m,] then som is the list of £-expressions informally denoted
by [s,mi,maz, ..., ma].

e untqueness properties

We assume that each £-expression can only be produced in a unique way from the above rules.
This assumption is expressed by the following properties:

cHzx
cH feol
27 et

if fel=fol
then f=f" and t=1¢ -

c#(]
c#som
z#|]
z#som

fet#]]
fel#som

ny

Note thatif £=[£,,4;, ...,¢,] then fel istheexpression informally denoted by f(£y,%a, ...,2).

i [#s0m

if som=som'
i then s=s' and m =m'

for all constants c, variables z, function symbols f and f’ (of arity n and n', respectively), lists
of expressions £ and € (of length n and n’, respectively), £-expressions s and s’, and lists of
L-expressions m and m’.

e the occurs-in relation

We will say that an f-expression s occurs in an £-expression s/, denoted by

s <s or s ¥>s,
if 5 is a subexpression of s'; we will say that s occurs properly in s', denoted by

s <s'" or s ¥»s

if s occurs in s’ but is distinct from s’. We will abbreviate

'} /
nots <s' as s Ad,
/ ')
not s Xs' as s A¢,

and so forth. Formally, these relations are defined by the following properties:

s<s'" ifandonlyif s <s or s=3s' (paftiality)
s Aa (atom)
s A(] (empty)
s <(fel) ifandonlyif s ¢ (application)
8 <(s'om) ifandonlyif s <s' or s <m (insertion)

for all atoms a, function symbols f (of arity n), lists of expressions £ (of length n), £-expressions s
and s', and lists of £-expressions m.

We assume as part of its definition that the occurs-in relation is well-founded. This is a way
of expressing formally that all the £-expressions are finite. It follows that the relation is irreflexive,
ie.,

s As (irreflezivity)
for all L-expressions s.

The definition implies the following component properties of ~:

L<fel

s <€<som

f . m <som

e — et e,
[P

for every function symbol f (of arity n), list of expressions £ (of length n), £-expression s, and list X
of £-expressions m.

e the vars function

The value of vars(s) is the set of variables that occur in the ¢-expression s. Formally, we

deine
vars(c) = {} (constant) “
vars(z) = {z} - (variable) |
vars({]) = {} (empty)
vars(f o £) = vars(f) . (application)
vars(s o m) = vars(s) U vars(m) (insertion)

for all constants ¢, variables z, function symbols f (of arity n), lists of expressions £ (of length n),
L-expressions s, and lists of £-cxpressions m.

Now let us state a proposition relating the occurs-in refation with the vars function.

Proposition (variables): For every variable y and £-expression s,

y € vars(s) ifandonlyif y <s.

In other words, the elements of vars(s) are indeed those variables that occur in s. The proof is by
well-founded induction over the occurs-in relation itself.

SUBSTITUTIONS

Substitution is the operation of replacing certain variables of an £-expression by other expres-
sions. We begin by giving an informal exposition of substitutions; subsequently, we give a formal
treatment of the same notion.

Informally, we will represent a substitution § as a set of replacements

- 0= {z1¢€1,22¢ €3, ..., Tn —en},

where z1, 3, ..., Z, are distinct variables in X and ey, €3, ..., €, are expressions such that .1
e; 7 z;. Thus, replacements of the form z + z are excluded from substitutions, and substitutions
of the form {z « e, z «— ¢’} are not allowed.

If z, — e, is a replacement in the substitution 8, we will refer to z, as the variable and e, as
the ezpression of the replacement. We will denote by

dom(0) : the set of variables {z,2z2, ...,Zs}
affected by the substitution 8,

called the domain of 4, and
range(d) : the set of variables that occur in g, €2, ..., or €q,

called the range of 9.

i The result s «# of applying such a substitution & to an f-expression s is obtained by simul-
; taneously replacing every instance of the variables z;, z3, ..., and z, by the corresponding
expressions ey, €3, ..., and e,.

For cxample, if 8 is the substitution

{I - f(y): Y g(a, Z)},

then
dom(8) = {z,y},
range(0) = {y,z};
furthermore, if s is the £-expression
[z, [9(a,2), y1],
then the result s « 8 of applying 6 to s is
[f(v), [9(a, £(1)), gla,2)]]-

Note that the replacements are performed simultaneously: thus, the variable y in f(y) above was
| not replaced by g(a, z) even though 0 contains a replacement y « g(a, 2).

i Let us be more precise: suppose that § is an alphabet consisting of the constants C, the
variables X, and the function symbols F, as before.

e generation rules

The substitutions are constructed by repeated application of the following generation rules.
B! We define the domain and range sets for each substitution at the same time.

! e The empty substitution { } is a substitution,

9

Mo e,

o dom({}) ={},
o range({}) = {}

If 4 is a substitution,

z is a variable not in dom(9),

and e is an expression distinct from z,
then

e the result of adding the replacement z « e to the substitution 4,

denoted by (z « e) o 4, is also a substitution,
e dom((z «—)0 8) = {z}Udom(d),
o range((z « €) o f) = vars(e) U range(0).

Note that if § = {z, « e;,z2 — €3, ...

,In + €n} then (£ « e) o @ is the substitution informally

denoted by {z «— e,y «— €y, ...,Zn — €,}. Furthermore,

dom((z « €) 0 8) = {z,z4, ...

yTn}

range((z — €) 0 8) = vars(e)Uvars(er)U ... Uvars(es).

We call o the addition function for substitutions.

Substitutions do not have uniqueness properties: we may regard two substitutions as equal
even though they have been constructed in different ways. We will say that two substitutions are
equal if they have the same effect when applied to an arbitrary £-expression. But first let us define
more precisely what we mean by applying a substitution to an f-expression.

e the apply function

If 8 is a substitution, and s is an {-expression, then the apply function s«8 is defined to satisfy

the following properties:
se{}=s
cef=c

za((z—e)olf)=¢e

ye((z—eob)=y=d if z5#y

et =1
(fel)<0=fo(t=0)

(som)«fd = (s«f)o(m«df)

(empty substitution)
(constant)
(same variable)

(distinct variable)

(empty list)

(application)

(insertion)

for all substitutions 4, constants c, variables = and y, expressions e, function symbols f (of arity
n), lists of expressions £ (of length n), L-expressions s, and lists of £-expressions m.

10

T T

Note that, in the same variable and distinct variable properties, we do not require that z and
e be distinct or that z & dom(8) even though these are conditions on the generation rules for
substitutions. This means that (z «— e) o § is defined in these cases.

Let us now introduce a simple property relating £-expressions and substitutions.
Proposition (monotonicity): For all £-expressions s and s’ and substitutions 8,

(a) if s <s’' then s« <s' <4,

(b) if s <5’ then s«f <" 4.

In other words, the subexpression and proper subexpression relations are maintained after the
application of a substitution.

e agreement and equality

We will say that two substitutions #; and 0, agree on an £-expression s if
s4f, = saf,.
Now we can define the notion of equality for substitutions. We will say that two substitutions
#; and 8, are equal, denoted by 6; == 0,, if they agree on all f-expressions; i.e.,

0, = 0,
if and only if
5«20, = s«8,; for all £-expressions s.
We assume that the only substitutions are those that have been constructed by a finite
number of applications of the generation rules; it follows that any substitution 8 is a finite set

of replacements and that the sets dom(f) and range(6) are finite sets of variables. This finiteness
can be expressed formally by an appropriate induction principle over the substitutions.

o characterization of domain and range
Let us state two propositions that characterize the domain and range of a substitution.
Proposition (domain): For every substitution # and variable z,

z € dom(0) if and only if z <0 # 2.

That is, the domain is the set of all variables affected by the substitution.
11

Proposition (range). For every substitution ¢ and variable y,

there exists a variable z such that

y € range(d) if and only if z € dom(f) and y € vars(z <f) |

That is, the range is the set of all variables that may be introduced by a substitution.

Let us now introduce the notion of the composition of two substitutions.

COMPOSITION OF SUBSTITUTION
We define the composition 0 & 8’ of two substitutions § and 8’ to be the substitution satisfying
the following property:
59(000)=(s«0)=f

for all £-expressions s. In other words, applying the composition 8 ¢ ¢’ to an f-expression is the
same as applying 0 first, and then applying ¢’ to the result.

For example, if

0 = {z ~ f(y)}

0 = {y — g(a,z), z ~ b}
and

s = h(z,y, 2),
then

s<8=h(f(y) v, 2)
and

3400 0)=(sal)f = h(f(g(ax z)), 9(a, z), z)'

It follows from the definition that composition has the following properties:

bo{)=29 (right empty)
{}ob=19 (left empty)
(8; © 85) 0 03 =8, © (83 © 63) (associativity)

for any substitutions 4, 8y, 03, and ;. Because ¢ is associative, we may write expressions of form
(01 © 83) © 03 and 8, © (02 O 03) as 6, © 83 O 03 without fear of ambiguity.

' 12

{
:
k

o

SYNTACTIC CATEGORIES

We will regard constants, variables, expressions, and lists as being of distinct “syntactic
categories.”

Definition: Let S be an arbitrary alphabet. Then the syntactic categories of the L-expressions of
S are the following five sets:

o the set C of constants,
e the set X of variables,
e the set consisting of the empty list (],

e the set of functional expressions of form f e £,
where f is a function symbol (of arity n)
and £ is a list of expressions (of length n).

e the set of nonempty lists of form t o m,
where t is an {-expression and m is a list of £-expressions.

By the uniqueness properties of f-expressions, every f-expression belongs to precisely one
syntactic category. The power of a substitution to change the syntactic category of an £-expression
is severely limited by the following observation:

Proposition (syntactic category). For any substitution § and £-expression s,

(a) if sis not a variable
then s and s« are in the same syntactic category.

(b) if e is an expression
then e <@ is an expression.

Note that it is not necessarily true that, if s is a variable, then s« 8 is also a variable; it may
be a constant or a functional expression. However, the converse is true:

Corollary: For any substitution ¢ and f-expression s,

if s <9 is a variable
then s is also a variable.

13

oy Py

P st e

THE AGREEMENT PROPOSITION AND ITS CONSEQUENCES

The following proposition has many useful consequences:
Proposition (agreement). For all substitutions 8 and 6’ and £-expressions s, we have

sef = s<f.
if and only if

for every z, if z € vars(s) then z 49 = z < ¢,

In other words, two substitutions agree on an f-expression precisely when they agree on all the
variables of the £-expression.

An immediate consequence of this proposition tells what happens when all the variables of an
£-expression are unchanged by a substitution:

Corollary (invariance): Tor every substitution # and £-expression s,
sef =3
if and only if
vars(s) " dom(0) = {}.
In other words, a substitution has no effect on an f-expression precisely when no variable in the

domain of the substitution actually occurs in the £-expression. The proof depends on taking ¢’ to
be the empty substitution {} in the Agreement Proposition.

Corollary (replacement invariance). For every £-expression s, expression e, and variable z,

if z @ vars(s)
then s« {z — ¢} = 3.

In other words, applying a single replacement to an £-expression has no effect if the variable of the

replacement does not occur in the £-expression.

Another consequence of the Agreement Proposition gives a useful characterization of the
equality between substitutions. We have defined two substitutions to be equal if they agree on
all £-expressions. In fact it suffices to show that they agree on all variables:

Proposition (equality): For all substitutions § and ¢’, we have

06=2¢

14

if and only if

for every variable z, 140 = z <« ¢,

According to this proposition, to prove equality between substitutions it suffices to show that
they agree on all variables. In fact, it suffices to consider only variables in their domains:

Corollary (equality): For all substitutions and #’, we have

for every variable z,
if z € dom{8)Udom(#')| ifand onlyif 6 =4¢".
then 7948 =z ¢’

The following proposition relates the addition and composition functions:

Proposition (addition-composition). For every substitution 8, variable z, and expression e,
(z—~eab)of=(z+—e)00.

The proof relies on the Equality Proposition.

o the subtraction function

We denote by § — z the substitution that has no effect on the variable z, but that agrees with
0 on all other variables. Formally, we define § — z by the following properties:

el —z)=12 .
y<s(0—z)=y<eld if 254y

for all substitutions § and variables z and y. It follows (by the Domain Proposition) that
z ¢ dom(f — z)

for all substitutions ¢ and variables z and y.

Proposition (subtraction): For any variable z, expression e, and substitution 8, where z Ae ,i.e.,
z & vars(e), we have

ee(d — 1) =ewl.

The following proposition enables us to break down a substitution into its component replace-
ments:

Proposition (decomposition): For every substitution § and variable z,

0= (z+ zab)o(0— 1)

15

SET THEORETIC PROPERTIES OF SUBSTITUTIONS

In this section, we give some properties that relate the domain and range of a substitution
with the variables of the £-expressions.

Proposition (variable elimination): For any {-expression s, substitution 8, and variable y,

if y € dom(?)} and y ¢ range(9)
then y ¢ vars(s «0).

Thus, if a variable occurs in the domain of a substitution but not in its range, then the substitution
will remove that variable from any £-expression in which it occurs.

Proposition (variable introduction). For any f-expression s, substitution 8, and variable y,

il y € vars(s<90) |
then y € range(8) or y € vars(s),

ie.,

vars(s48) C range(8) U vars(s).

In other words, if a variable occurs in an £-expression after a substitution, then it was introduced
by the substitution or it occurred in the f-expression originally,

UNIFIERS

Suppose that s and s’ are £-expressions and @ is a substitution of some alphabet S of constants,
variables, and function symbols. We will say that 6 is a untfier of s and &’ if

saf) = 5 <.

Ezample: If
s = g(z, 2)
and

&' = g(y, /(v))

then the substitution

0={zey 2z fl)}

16

is a unifier, because

s<0 =5 <0 =gy, [(v))
Note that 8 is not the only unifier of s and &’; e.g.,
A={zb ye—b z+ f(b)}
is a unifier, because
sk =s'<ax=g(b, f(b));
also,
p={y—z z+ f(z)}

is a unifier, because,

sep=ys"ap=g(z, f(z)). B

Not all pairs of ¢-expressions have a unifier. For example, there is no unifier for
s = g(a,b)
and
s’ = ¢g(z,).
For, the result of applying any substitution 8 to g(a,b) will be the expression
g(a,b)

itself, in which the arguments are distinct. On the other hand, the result of applying 8 to g(z, z)
will be an expression of form

g(e, e),

in which the arguments are identical. These two results can never be the same.

Two £-expressions will be said to be unifiable if they have (at least one) unifier. Thus, ¢(z, z)
and g(y, f(y)) are unifiable, but g(a,b) and ¢(z, z) are not.

The following propositions characterize the unifiers for different categories of £-expressions.

Proposition (application unifier): For any function symbol f (of arity n) and lists £ and £ (of
length n), we have

X is a unifier of fefand fe?
17

if and only if

X is a unifier of £ and ¢'.

Proposition (insertion unifier). For any f-expressions ¢ and ¢’ and lists of expressions m and m/,
\ is a unifier of tom and ¢’ o’
if and only if

X\ is a uanifier of ¢t and ¢
and
X is a unifier of m and m/'.

GENERALITY

We will say that a substitution § is more general than a substitution X, denoted by 6 > g.n X
or A =gen 0, if there exists some substitution i such that

A=2686019.

In this case, we will also say that \ is an instance of 8.

Fzample:
The substitution
0 = {y — b}
is more general than the substitution
A= {z+a,ye b},
i.e., 0 > en X, because (taking ¢ to be {z « a} in the definition)
A=100 {z « a}.
In other words, X\ is an instance of 8. 3
Note that, according to our terminology, a substitution is always more general than itself, t.e.,
0 >gen 8 (reflezivity)
for every substitution 4. Also, the empty substitution is more general than any substitution, t.e.,
{} Zgen 0 (empty)

for every substitution @.

MOST-GENERAL UNIFIERS

We have observed that there may be several distinct unifiers for a given pair of £-expressions.

In fact, any instance of a unifier is also a unifier.

Proposition (instance of a unifier): For all substitutions 8 and X and f-expressions s and s,

if 8 is a unifier of s and ¢’
and 8 >g.n X
then X\ is a unifier of 5 and §'.

Definition: A substitution 0 is a most-general unifier of two ¢-expressions s and s’ if

e Jis a unifier of s and §’; t.e.,
saf = 3’ 49,

and

e J is more genera) than any other unifier of s and s'; i.e.,
if sal = 5" 4l
then 8 >,.n, X
for any substitution X.

Combining the above proposition and definition, we see that the unifiers of two £-expressions
are precisely the instances of a most-general unifier.

Corollary (most-general unifier): For all substitutions § and) and £-expressions s and &/,

6 is a most general unifier of s and &'

if and only if

A is a unifier of 5 and &'
if and only if
0 > gen X

Ezample:

We have seen that the two £-expressions

8 = g(z, 2)

and

8 = g(y, f(v))

e e e e - - -

have many unifiers; e.g.,

0={zo—y,zo~f(y)},
X'-':{:t'—b:y"‘b;“'-"_.f(b)}:a'nd

p={y 1z, z+ fz)}

It turns out that 4 is a most-general unifier of s and s’. In particular, is more general than
X and p, because

=00 {y — b}
and

p=00{y =z}

The unifier X is not most-general. In particular, X is not more general than 0; i.e.,
£ NOY
for any substitucion . For instance,
Te4f =y
but (by the definition of composition and the constant property of the apply function)

114()\0‘!/)) = (I‘X)iip: bayp = b?é Y.

Most-general unifiers are not unique; for example, the above substitution p is also a most-
general unifier of s and s'. In particular, p is more general than § and), because

0=p0{z+y}
and

X =po {z + b}.

The following proposition concerns the unifiers of a variable and an expression:
Proposition (variable unifier): For any variable z and expression e such that z 4 e, we have

{z « e} is a most-general unifier of z and e.

20

We include the proof of this proposition, because it is not straightforward, and because it may
be regarded as an integral part of the synthesis of the unification algorithm.

Proof:

It suffices to show (by the Most-General Unifier Corollary) that, for an arbitrary substitution
A,

X is a unifier of z and e
if and only if
{I — e} tqen A,

i.e. (by the dcfinition of the generality relation > g.n),

ZTeak=¢ca\
if and only if
XA = {z « e} © * for some substitution *.

On the one hand, if
A= {z—e}o N
for some substitution *, then

zeh = ze({z—e}oN\)
= (ze{z —e})a)*

by the definition of composition

= eca)*
by the same-variable property of the apply function,

and
ead = ea({z—e}ar?)
= (e< {z ~ e})d)*
by the definition of composition
= e« X‘
by the Replacement Invariance Corollary, because = ¢ vars(e).
In short,

Ta\=e@\,

On the other hand, suppose !,
I
1

i

Te)=eal,

Then

A = (z~zeN)o(A—1)
by the Decomposition Proposition

= (ze~—eer)o(A~—2)
by our supposition that z e\ = e 4

= (z+ eea(A —z}Jo(A —z)
by the Subtraction Proposition, because z Ae

= {z+e}ON—12)
by the Addition-Composition Proposition.

Therefore, if * is taken to be A — z, we have
) A={z—e}o)

as we had intended.

This concludes the proof. 1§

IDEMPOTENT SUBSTITUTIONS

We will say that a substitution ¢ is idempotent if it has the special property that

6=20¢0.

Ezample:

The substitution
0= {z +~ f(y)}
* is idempotent, because

6060 ={z+ fy)} o {z« flv)}
= {z +~ f{y)}

=40.

On the other hand,

¢ = {z — J(z)}

is not idempotent, because

¢$0¢ ={z+ f(z)} o {z — f(z)} X
= {z « f(f(2))}
#¢. 1

The property of idempotence is characterized by the following proposition.

Proposition (idempotence). A substitution is idempotent if and only if its domain and range are
disjoint; i.e.,

6 =000 ifandonlyif dom(8)Nrange(d)= {},

for all substitutions 4.
MOST-GENERAL IDEMPOTENT UNIFIERS

Let us return to the example from the beginning of this section,

Ezample:
We have seen that the two f-expressions
s = g(z, 2)
and
s = 9y, S(v))

have among their most-general unifiers the substitutions

0= {z+y, z+ f(y)}

p={y+ z, 2 — f(z)}.

Both of these substitutions happen to be idempotent, i.e.,

=000 and p=p0p.

vt

However, not all most-general unifiers are idempotent.
For instance, the substitution
p={ze 2z 2 f(2), y— 2}
also turns out to be a most-general unifier of s and s'. It is a unifier, because
s4¢ = g(z,f(2)) = s'«9.
It is more general than the most-general unifier 8, because

0 =¢o {2z y}

But ¢ is not idempotent, because

z € {z,y,2} = dom(¢) !
and
z € {2} = range(¢);

therefore

dom(¢) Nrange(¢) = {2} # {},

and hence (by the Idempotence Proposition) ¢ is not idempotent. @

Most-general, idempotent unifiers have some properties we will find useful.

Proposition (most-general, idempotent unifier): 1f 8 is a unifier of two £-expressions s and s’, then

@ is most-general and idempotent

if and only if

for every unifier X of s and s/, X =00\

Proposition (domain and range): If 8 is a most-general, idempotent unificr of two £-expressions s
and s', then

(a) dom(8) C vars(s)U vars(s')

(b) range(d) C wvars(s)U vars(s’).

In other words, the only variables that may appear in 0 are those that occur in s or §',

24

T BT AN W e T ST

THE UNIFICATION ALGORITHM

A unification algorithm is a procedure for finding a most-general, idempotent unifier for two
£-expressions, if any unifiers exist at all. Otherwise, it produces a special symbol ni{, which is
assumd to be distinct from any substitution.

The specification for the unification algorithm may be expressed as follows:

unify(s, s') ¢ find 0 such that
f is a most-general, idempotent unifier of s and s’ and
0 # nil
or
s and s’ are not unifiable and
§ = nil

for all Z-expressions s and s'.
L. . R

According to the deductive approach, then, we must prove the existence of an output 8
satisfying this specification; i.e., we prove the following theorem:

0 is a most-general, idempotent unifier of s and s’ and
0 #£ nil
(vs)¥s)(30)| or

s and &' are not unifiable and

0 = nil
In other words,

[s 40 = s’ <0 and (9 is a unifier)]
(YVM)if saX = s"«X then 0 >4eq A\ and (0 is most-general)
=008 and (0 is idempotent)

(Vs)(Vs')(20)| 0 # nil

or
(YX)[s <X # s' «)\] and (s and s’ are not unifiable)
16 = nil]

This theorem will also establish that if two £-expressions are unifiable, they have a most-general,
idempotent unifier.

Before we give the proof of the theorem, let us look ahead at the program we will ultimately
extract from the proof. For clarity, we present the program as a set of properties of the unify
function; actually the deductive approach will produce the corresponding LISP-like applicative
program. Of course, these properties will not be available to us during the proof.

25

' e o general

e constant

e variable

o function

For all £-expressions s and s’:
unify(s,s’) = {} ifs=3s (same)

unify(s, s’) = nal (distinct)
if s and s’ are nonvariables in distinct syntactic categories.

For all constants ¢ and ¢':

unify(c,) = nil ifc#d (distinct)

For all variables z, expressions e, and lists of £-expressions m:
unify(z, €) = {z + e} ifz Ke (not-in, left)

unify(e, z) = {z + e} (not-m, right)
if £ £ e and e is not a variable

unify(z, e) = unify(e, z) = nil ifz <e (in)
unify(z, m) = unify(m, z) = nil (list)

For all function symbols f and f’ (of arities n and n’, respuctively)
and all lists of expressions £ and & (of lengths n and n’', respec-

tively):
unify(f o £, f' o ') = unify(L, ') it f=[(same)
unify(f o ¢, ' e ¥} = nil if f#f (distinct)

26

o list

For all f-expressions t and ¢’ and all lists of £-expressions m and m”:

let 8,4 = unify(t, t')
if ghd = nil

then unify{t om, t' o m’) = nal (no)
else let 8, = unify(m 40,4, m' 4854)
if 8y = nil
then unify(t om, t' o m') = nil (yes-no)
else unify(tom, t' om’) = 04 © Oy (yes-yes)

In expressing Lthe list properties, we have used the notation

let z =a
P(z)

as an abbreviation for
P(a).

The virtue of this notation is that if P{z) has many instances of z and if a is a lengthy expression,
we would be required to rewritc a many times in writing ’(a). Thus, without this abbreviation,
the final equality above would read

unifyt om,t' om') = unify(t, t') © unify(m «unify(t, t'), m’ «unify(t, t')).

In the list properties, we have given separate names for the three equalities, for easy reference.
The no property corresponds to the case that 0pq = nil, the yes-no property to the case that
Bna 7% nil and 8, = nil, and the yes-yes property to the case that 0,4 7 nil and 0y # nil.

Now let us examine a proof of the theorem, to see how the above program can be constructed.

The proof is by well-founded induction over an ordering <, between pairs (s, s') of £-
expressions. Rather than choose this ordering in advance, we will proceed with the proof, under
the assumption that a satisfactory well-founded ordering can be defined. Afterwards, the proof
will motivate the definition of an appropriate ordering < yn-

For two arbitrary {-expressions s and s/, we want to find an output 8 that will satisfy the

specification for s and s’. In other words, we want to prove the conclusion

s« = s «af and]

(YA)if saX = s <X then 0 >4,)] and
§=000 and
P(s,s'): (30)]9 # nil
or
(YN\)[s e\ 7# s’ <)\ and
10 = nil |

27

We will be happy if 0 satisfies either of the two disjuncts in this desired conclusion.

As our induction hypothesis, we assume that the program unify(r, 7’) we are trying to construct
will satisfy its specification for all inputs r and 7 such that the pair (r, 7’} is strictly less than (s, s')
in the selected ordering < .. In other words, we assume

if {r, ') <un (s, §')

[r « unify(r,r') = r' aunify(r, ') and

(VX)[if v <X == r' «aX then unify(r,r') >g4en \] and
unify(r, ') = unify(r,7') © unify(r,r') and

then |unify(r, »') # nil

or
(VX)[r «X £ r' a4)] and
Lunify(r, r') = nil)

for all £-expressions r and 7/,

The proof distinguishes between several cases, corresponding to the properties of the apply
function «. At the end of each case we will give the property of the unify function provided by the
proof. Together, these properties constitute the final program.

GENERAL CASES

Case (same). s = s'.
Then any substitution 4 is a unifier, i.e.,

sef = s «f.

o To find a unifier that is most-general, i.e., such that
(YA)[if saX=s"a) then 8 >gepn N,

we note that (in this case) any substitution \ satisfies the antecedent s «\ = s’ «\. Therefore, 0
must have the property that

¢ tgen A
for any substitution \. The empty property of the most-general relation > .y, t.c.,
{} deﬂ X

for any substitution X, suggests that, in this case, to satisfy the first disjunct of the desired
conclusion P(s, s'), 0 can be taken to be the empty substitution {}.

28

e The empty substitution {} is idempotent, i.e.,

! (}={o{}h

by either of the empty properties of composition.

e We ignore the final requirement, that {} £ nil, because any substitution is distinct from nil.

Therefore, the empty substitution {} is a most-general, idempotent unificr of s and s', and
satisfies the first disjunct of the desired conclusion P(s, s') in this case.

untfy(s, s') = {} if s=¢

Case (distinct): s and s’ are nonvariables of distinct syntactic categories.

Then we can show that s and s’ are not unifiable, i.e.
e\ % 5 e,

for any substitution \. For, let A be an arbitrary substitution. Recall that, because s and s’ are
not variables, we have (by the Syntactic Categories Proposition) that

s < is in the same syntactic category as s,

s’ 4\ is in the same syntactic category as &/,
and therefore

s« X and s’ <) are in distinct syntactic categories.
Hence,

seX # s a);
i.e., s and s’ are not unifiable.

It follows that, in this case, we can satisfy the second disjunct of the desired conclusion P(s, s')
by taking 8 to be nil.

unify(s, 8') = nil

if s and s’ arc nonvariables of distinct syntactic catcgories

29

CONSTANT CASE

Case (distinct): s and s' are distinct constants ¢ and ¢ respectively.

Then we can show that ¢ and ¢’ are not unifiable, t.e.,
cel FE ' aX

for any substitution X. For, let X be an arbitrary substitution. Then (by the constant property of
the apply function),

cal=c
and
ca\=/.
But, since ¢ 7 ¢/,
cal F#c a);
i.e., c and ¢’ are not unifiable.

It follows that, in this case, we can satisfy the second disjunct of the desired conclusion P(c, ¢)
by taking @ to be nil.

Fmify(c, c') = nil if cs#¢

VARIABLE CASES

Case (not-in, left): s is a variable z, s’ is an expression e, and z Xe.

o We want to find a most-general unifier of z and e. However, by the Variable Unifier Proposition,
{z + e} is a most-general unifier of z and e. This suggests taking

6 to be {z ~ e}.

e We also want § = {z ~ e} to be idempotent, i.e., that
{z —e}o{z e} ={z+ ¢}

We show the equivalent condition (by the Idempotence Proposition) that

dom({z — e})Nrange({z « e}) = {}.
30

We have (from the definition of the domain and range),
dom({z « e}) = {z} and
range({z ~— e}} = vars(e).

Because z Ae, i.e. (by the Variables Proposition) z & vars(e), we have
dom({z «— e})Nrange({z « e}) = {z} Nvars(e) = {},

as we wanted to show.

We have suceceded in showing that {z « e} is a most-general, idempotent unifier in this case.

[unify(m,e) = {z « e} if z Xe

Case (not-in, right): s is an cxpression e, s is a variable z, not x < ¢, and e is not a variable.

As in the previous case, we find that {z « e} is a most-general, idempotent unifier of e and z.
The condition that the first argument e is not a variable is not required in the proof; it is inicluded
because the possibility that s and s’ are both variables is covered by the previous case.

unify(e, z) = {z + e} if = Zeand e is not a variable

Case (in): s is a variable z, s’ is an expression e, and z <e.
3 »

In this case, we can show that x and e are not unifiable. For, let A be an arbitrary substitution.
Because 2 < e, we have (by the Monotonicity Proposition)

Te4X\ < ea)
and hence (by the trreflezivity of <)
e\ # eel

Therefore, z and e are not unifiable and we can satisfy the second disjunct of the desired conclusion
P(z, €) by taking 8 to be nil.

The symmetric case, in which s is an expression e, s’ is a variable z, and z < ¢, is treated
similarly,

untfy(z, e) = unifyle, z) = nil if z<e

31

i

. In this case, we can show that z and m are not unifiable. For, let X\ be an arbitrary substitution.
z Then (by the Syntactic Categories Proposition), z « X\ is an expression but m <) is a list of ¢
expressions; hence (by the disjointness of the syntactic categorics)

4 Case (list): s is a variable z and s’ is a list of £-expressions m.
{
3

Tl # ma);

i.e., £ and m are not unifiable. Therefore, we can satisfy the second disjunct of the desired
conclusion P(z,m) by taking 0 to be nil. !

The symmetric case, in which s is a list of £-expressions m and s’ is a variable z, is treated
similarly.

unify(z, m) = unify(m, z) = nil

FUNCTIONAL CASES

Case(same): s and s’ are functional expressions f e £ and f' e £, respectively, where f = f’.

Recall that (in this case) we are attempting to prove the conclusion
P(fet fol)

1.e., we want to find an output 4 such that

(fel)ad=(fol')el and
(YN)if (fol)ah=(fol)aX\ then § >g4en \] and
0=2000 and
0 # nil
or

(VIS ©) ax # (£ o &) <)] and

0 = nil.

NN

This reduces (by the Application Unifier Proposition), to finding an output ¢ such that

(#) Laf={ <0 and
(YN)[if LaX =t <X then 0 >yen \]| and
=000 and :
0 # nil
or

(VA)[t e\ # £ «)\] and
32

r_ e e re———

8 = nil.

Recall that we have assumed as our induction hypothesis that (in this case)

P(r,r'): if (r, ¥') <un{fol, fol) ;
[r wunify(r,r’') = r’ «unify(r,r') and]
(YN)[if raX ="« then unify(r,r’) > gen A| and
unify(r,r’') = unify(r,r’) © unify(r,r') and
then |unify(r, r') # nil

or
(VX)[r <X 5£ r' 4] and
L unify(r,r') = nil |

for all £-expressions 7 and 7',

The required condition () and consequent of the induction hypothesis are identical if we take
7 to be £, »' to be £, and # to be unify(¢,£'). Therefore, we can satisfy the conclusion if we can
establish the appropriate instance of the induction hypothesis’s antecedent, t.e.,

(£, &) <un{fol, fob). (application ordering)

The well-founded ordering <., will be chosen subsequently. Assuming it will satisfy this condition,
we have found that the desired conclusion P(f e ¢, f e £') in this case is satisfied if we take 6 to be

unify(L, #).

unify(f e 2, [’ o &) = unify(¢,) it f=f

Case (distinct): s and s’ are functional expressions f e £ and f’ e &, respectively, where f 7 f'.

In this case, we can show that fef and f/e ¢ are not unifiable. For any arbitrary substitution
X\, we have (by the application property of the apply function)

(Fel)ax = fe(la))

and
(f'ef)ax = fo(€a)).

Because f and f’ are distinct, we have (by the uniqueness properties of £-expressions),
fe(tad) % fo(taN),

and hence

(fol)ar 3£ (fel)al.

33

Thus, f e £ and f/ e £ are not unifiable,

Therefore, we can satisfy the second disjunct of the desired conclusion, in this case, if we take
@ to be nil.

unify(fol, flol)=nil il f5£f

LIST CASES

In all of the list cases, s and s’ are nonempty lists tom and t’ o m’, respectively, where t
and ¢’ are f-expressions and m and m’ are lists of £-expressions.

Recall that (in the list cases) we are attempting to prove the conclusion
P{tom, t' om');
t.e., we want to find an output 8 such that
(tom)ef = (t' om’)«8 and

(YN)[if (tom)eX = (t' om')«\ then 0 >4en \] and
=000 and
8 £ nil

. or

(YN)[(t o m) X F# (' om') a)\] and
8 = nil.

By the Insertion Unifier Proposition, this decomposes into finding @ such that

(») (1) ted =1t'«0 and (head unifier)
(2) m<8 =m'<0 and (tadl unifier)
f (t A=V !
(3) (W¥N) :{le(noom>)< N (tomf)<X and (most-generality)
_gen
(4) =000 and (tdempotence)
(5) 0 # nil (nonnil)
or
(6) (VA)taX# t'aX or maX # m'/ 4] and (ununifiability)
(1) 0 =nil. (nit)
; ; The separate conditions of () are numbered for future reference. We attempt to establish conditions

(1) to (5) or, alternatively, conditions (6) and (7).
. Recall that we have assumed as our induction hypothesis (in this case)
P(r,r'): if (r,7') <un (tom, t' om) |
34

[r @ unify(r, ') = r’ «unify(r,r') and 1
(YA)if raXx =1"aX then unify(r,r’) > 4en \] and
unify(r, ') = unify(r,r') © unify(r,r') and

then |uwnify(r,r’) 5 nil

or
(YA){r «X\ 54 r' a)\] and
L unify(r, ') = nil

for all £-expressions r and r’.

Let us compare this induction hypothesis with our required conclusion (*). A natural approach
would be to observe that one of the first two conditions, say the tail unifier condition (2),

maf =m' <4,
is identical to the condition that
r aunify(r,r') = r’ «aunify(r,r'),

asserted in our induction hypothesis, if we take » to be m, v’ to be m’, and 0 to be unify(m,m’).
However, we still would have to show the head unifier condition (1),

tef =1t <0,
te.,
t @ unify(m, m') = t' «unify(m, m’).

But this condition is not necessarily true: a unifier of m and m’ need not be a unifier of ¢ and ¢’.
Therefore, we would fail to prove the condition.

An attempt to do the same for the head unifier condition (1),
teld =t <0,

would fail for the same reason; these two required conditions are symmetric.

A less straightforward approach is to observe that one of the first two conditions, say the tail
unifier condition (2),

mef = m' <,
is also equivalent to the same condition of the induction hypothesis
r aunify(r, r') = r’ aunify(r, ')

under a more complex substitution than we considered earlier.

35

proof of the tail unifier condition (2):
Recall the definition of the composition of substitutions
m* ‘(ahd <o 9;[) = (m* - 9;,4) afy

for all £-expressions m* and substitutions 8,4 and 8y. (We have renamed the variables to reflect
how we intend to use them.)

Applying this equality to the left-hand side of our required condition

mef =m'«<f

(taking m* to be m and 0 to be 8,40 9,1) we obtain the condition
(mabhpa) a0y = m' 4(0,4 C0y).

Applying the same equality to the right-hand side (taking m* to be m'} yields the condition
(m<8hg) 20y = (m' «0,4) <l

This condition is identical to the condition in our induction hypothesis
raunify(r, r') = r' «unify(r, r’)

if we take r to be m 40,4, r' to be m’ 48,4, and 8;; to be unify(m 40,4, m' «0,,).

Let us retain the abbreviation 8, for the term unify(m<f,,4, m’'«8,4). Thus, the above match
has suggested taking

¢ to be 0400y,
where

0y is unify(m 40,4, m' «0,)
and 8,4 is any substitution.

Let us rewrite the induction hypothesis for this case, making the substitutions suggested by
the above match:

if (m<0ha, m' 40py) <un{tom, t' om’)

[(m 40hq) 40y = (M’ 40,4) <0y and T
(V)\)[lj (m<0hd)) = (m’ <0hd)< \ then 0y > gen)\l and
0y =0,00, and

then |Ou 7 nil

or
(YN)[(m < 0na) <X 7 (m' €0,4) <)) and
[0y = nil J

36

We will refer to this as the tail induction hypothesis.
To apply this tail induction hypothesis, we must establish

o the antecedent

(8) (m abhy, m' 4bpy) <yn (tom, t'om'), (tail ordering)

to ensure that the consequent of the tail induction hypothesis will be true;

o the condition

(9) 8y # nal, (tatl nonnil)

to ensure that the second disjunct of the consequent of the tail induction hypothesis will
be false, so that the first disjunct must be true.

Regardless of the choice of 0,,, this will establish the tail unifier condition (2) of the required
conclusion (). We must also establish the head unifier condition (1), the most-generality condition
(3), and the idempotence condition (4), where @ is taken to be 8p,4 O 0. We know 854 © 0y will
satisfy the nonnil condition {5), since any substitution is distinct from nil. In cases where we
fail to establish one or more of these conditions, we can alternatively attempt to establish the

ununifiability condition (6) and the nil condition (7) of the required conclusion (#), taking ¢ to be
nil.

proof of the head unifier condition (1):

|
|
We consider these conditions onc by one, but not in the given order. . !
|
|
We must, find a substitution 8,4 such that 8,4 ¢ 0,; is a unifier of ¢t and ¢/; i.e., that t

t<(9h4 [e 0,,) =t 1(0;,,4 Lo 0u),

or, equivalently (by the definition of composition), that

(t 40nqg) 40y = (t' 4 0nq) <0y.

It thus suffices to find 8,4 such that
talyy =1t b4

We observe that the above condition is identical to the condition that
r <unify(r, r') = r’ «unify{r, '),

asserted in our induction hypothesis, if we take r to be ¢, 7’ to be t' and €14 to be unify(t, t'). We
retain the abbreviation

0,.., is unify(t, t').

37

Let us rewrite the induction hypothesis for this case, making the substitutions suggested by
the above match:

if {t, t) <yn{tom, t'om')
[t 40pq == t' 40rq and 1
(YX)[tf t «X =t/ aX then Ong > gen N\ and
£ia = 04,40 Oprq and
then {Ona 7 nil

or
(VA)[taX £ t' a)\] and
Ona = nil |

We will refer to this as the head induction hypothesis.

To apply this head induction hypothesis, we must establish

o the antecedent ‘7
{t, 'Y <yn {tom, t'om’), (head ordering)
. to ensure that the consequent of the head induction hypothesis will be true. !

e the condition

Ora £ nil (head nonnil)

to ensure that the second disjunct of the consequent of the head induction hypothesis will
be false, so that the first disjunct must be true.

As usual, we defer discussion of the head ordering condition, that

o e g ~

(t, '} <un {tom, t' om'),

until we have accumulated all such conditions, so that we can define an ordering <,, to satisiy
them all at once.

AT

The head nonnil condition 8,4 7 nil is not necessarily true: ¢ and ' need not be unifiable.
Let us now consider the alternate possibility.

Case(no): 0pq = nil.

Then, by our head induction hypothesis, ¢ and ¢’ are not unifiable; i.e.,

tak F#ta)

38

for all substitutions . Therefore, we can satisfy th. ununifiability condition (6) and the nil
condition (7) of the required conclusion (*), in this case, by taking 8 to be nil.

Funi]y(t om, t' om') = nil if 0pq = nil

Case: Ongq 7 nil.

That is, unify(t, t’) # nil. In this case, our head induction hypothesis establishes that fnq
is indeed a most-general, idempotent unifier of ¢t and t’, and thercfore the head unificr condition
(1) is satisfied. It remains to show the tail ordering condition (8) and the tail nonnil condition (9);
these conditions ensure that we can apply ihe tail induction hypothesis to establish the tail unifier
condition (2) of the required conclusion (). It also remains to show the original mosi generality
condition (3} and idempotence condition (4). As usual, we assume that we can establish the tail
ordering condition (8), and defer its proof.

proof of the tail nonnil condition (9):

The condition that 8, 7 nil, i.e., unify{m «0,,, m' «0,4) 7 nil, is not necessarily true:
m <0,y and m’' 48,4 need not be unifiable. Let us consider the alternate possibility.

Subcase (yes-no): 6, = nil.

That is, unify(m «0py, m' <0y4) = nil. Then, by our tail induction Lypothesis {where r and
r’ were taken to be m«0,; and m' <, , resvectively), m <8,4 and ' 40,4 arc not unifiable,
te.,

(m «0pq) X £ (m' 40pq)a),

for all substitutions A. We establish, in this case, the ununifiabilaty condition (6), that (WX){t«X 3£
t' «h or maX £ m'«)|. For suppose, to the contrary, that, for some substitution X,

tah =1t <)\,
t.e., \ is a unifier of ¢ and ¢/, and
mal = m' a),

f.e., \ is a unifier of m and m’.

Because X is a unifier of ¢ and ¢/, and because 8,4 is 2 most-general, idempotent unifier of ¢
and t/, we have (by the Most-General, Idempotent Unifier Proposition)

AN = 0pqaO N

39

Hence, because X is a unifier of m and m/, i.e., m<X\ = m' <)\, we have
ma(fpqg O N) = m' «(0,40)),
or equivalently (by the definition of composition)
(mebhg)ax = (m' 40,q) <.
t.e., » is a unifier of m <0,y and m'«6,,. But this contradicts our earlier finding, that m «f,4

and m’ « @4 are not unifiable. Hence, the ununifiability condition (6) is established and, in this
case, we can establish the required conclusion () by taking 6 to be nil.

@zify(t om, t' om’) == nil il 6rq4 7~ nil and 0y = nil

Subcase (yes-yes): 0, % nil.

That is, the tail nonnil condition (9}, that unify{m «8,,, m’' 48,4} # nil, is true. Let us again
retrace our steps, to see what we have established.

Since we have assumed the tail ordering condition (8), we know that the consequent of the tail
induction hypothesis is true (where r and r’ were taken to be m «48,4 and m’«6,q , respectively.)
Because (in this case), the tail nonnil condition (9) is true, we know that the second disjunct of the
consequent is false, and therefore that the first disjunct must be true. This implies that 8, is a
most-general, idempotent unifier of m «8,4 and m' 6,4, and hence (by applying the definition
of composition twice) that 8,40 0, is a unifier of m and m’. This establishes the tail unifier
condition (2), which was our reason for applying the tail induction hypothesis in the first place.

proof of the most-generality and idempotence conditions (3 and 4):
It still remains to show the most-generality condition (3),
(YA)if (tom)ed = (t om')«) then (0ha O 0u) > gen N
and the idempotence condition (4), that

0ra © 8y = (0rg © 041) ©(0na © bu).

For this purpose, it suffices (by the Most-General, Idempotent Unifier Proposition) to show
the single condition that
if tom)eah=(t'o m’)c)\]
then X = (0pa © 0u) O X

2

40

TS A B s Rt e e gy -

i.e. (by the Insertion Unifier Proposition),

if telx =1t 4\ and meak =m' <)\

(V2)
then \ = (ohd (o4 9;;) O

Suppose that X is an arbitrary substitution such that
tal =1t a)

and
mel=m' e,

We would like to show that then

A= (ahd < 0u) O

Because X is a unifier of ¢ and t', and because 0,4 is a most-general, idempotent unifier of ¢
and ¢/, we have (by the Most-General, Idempotent Unifier Proposition, again) that

A = 8,40\
Therefore, because m a X = m’ «\ we have
ma(0pqg O N) = m/ 4(0,q O),
i.e. (by the definition of composition),
(mafrg)ax = (m' <bz4)).

In other words, X\ is a unifier of m «8,4 and m' «6;,.

But then, because 8, is a most-general, idempotent unifier of m « 0,4 and m’ 48,4, we have
(by the Most-General, Idempotent Unifier Proposition, yet again) that

A= 0,40\
Therefore,

A= 0paON = 0440 (0O N = (0ha©) O .
In short, we obtain the condition,

A= (Oha 0 0u) O\,

that we wanted to show.

e

We conclude that 8,4 © 8, satisfies the most-generality condition (3) and the idempotence
condition (4) of the required conclusion (*), and thus in this case we are justified in taking 6 to be
bha © Ou.

unify{tom, t' o m’) = 0,4 0 Oy if Ong # nil and 8y F# nil

This concludes the final case.

THE ORDERING

We have deferred the choice of an ordering <., to satisfy the ordering conditions we have
accumulated during the proof. The choice of this ordering is not so well-motivated formally as the
other steps of this derivation. The ordering conditions to be satisfied by <, are as follows:

the epplication ordering condition
(6, £) <un (fol, fol),
the head ordering condition
(&, t') <un (tom, t! om'),
and the tail ordering condition
(m «bpy, m' 40y} <yn {tom, t'om’)

for all function symbols f, lists of expressions £ and £/, f-expressions ¢ and ¢/, and lists of £
expressions m and m/, where 8,4 7 nil, i.e., unify(t, t') # nil.

It would be natural to attempt to use as the definition of <., the subexpression ordering
on one of the two arguments. However, if we take <., to be, say, the ordering < on the first
argument, defined by

{r, ') <4 (s, §')
if and only if

r <s,

it will satisfy the first two of these conditions, and will satisfy the third condition in the case that
m<lpy = m. However, this ordering may fail to satisfy the third condition if m«8p4 7% m, because

m < 8,4 may no longer be a subexpression of ¢t o m, and may in fact be much larger. For example,
if

12

t' is g(a,y,b)

and

m is [f(z,z,2),

ml

is 2]
then

tom is [z, f(z,z,1)

om' is [g(a,y,b), 2]
In this case
Orna is {z + g(a,y,b)}

and

mel,y is [f(g(a,y,b), g(a,y,b), g(a,y,b))]

m'«0pq is [2].
Thus, m <« 0,4 is not a subexpression of {t o m.

In the case that m < 0,4 % m, however, it can be shown that the variables of m 48,4 and
m' « 0, are a proper subset of the variables of tom and t' e m’; ice,,

vars(m «0p4) U vars(m’ «8rg) C vars(t o m)U vars(t' om').

In other words, 8,4 removes variables from m and m’ without introducing any that are not in tom
or ¢/ om’. Thus, the ordering <,a,s, defined by

(T: ",) < vars (3, 3,)
if and only if

vars(r) U vars(r') C wvars(s)U vars(s'),
will satisfy the tail ordering condition in this case. Thus, in the above exaiaple,
vars(m «40,4) Uvars(m’ «8,4) = {y,2}

and

vars(t o m)Uvars(t' om’) = ({z,y,2},

43

and hence

(mab,y, m' 48,4) <yors {tom, t' om').

However, this ordering will fail to satisfy the first two conditions of <,,, and will also fail to
satisfy the third condition in the case that m «8,4 = m and m’ 8,4 = m'. For example (by the
application property of vars),

vars(€) = vars(f o £)

vars(€) = vars(f o #)
and hence

vars(€) U vars(€) = vars(f e £) Uvars(f o &),
ie.,

not [([,) <yars (f o, fol’)].

In other words, the first condition, (£, £/} <., (f e £, f), is never satisficd under the <yars
ordering.

The successful ordering <, is a lexicographic combination of these two orderings < ,q,s and
=, defined by the property

(r! r’) <un (31 sl)
if and only if

vars(r) Uvaers(r’) C wvars(s)U vars(s’)
or
vars(r) U vars(r’) = vars(s)Uvars(s’) and r <s.

e To see that, under this definition, the application ordering condition,
(€, &) <un({fol, fol),

is satisfied, note that (as we mentioned above)
vars(€) U vars(') = vars(f e £)Uvars(f e ¥')

and (by a component property of)

L<fel

Hence, by the definition of the ordering <., the application ordering condition is indeed satisfied.

e To sec that, under this definition, the head ordering condition,
(t, t') <un {tom, t' om'),
is satisfied, note that (by the insertion property of vars)
vars(t) C wvars(t)Uvars(m) = wvars(tom)
vars(t’) C wvars(t')Uvars(m’) = wvars(t' om’),
and hence
vars(t)U vars(t’) C wvars(tom)Uvars(t' o m’).
In case the inclusion is proper, i.e.,
vars(t)Uvars(t’) C wvars(t o m) U vars(t' o m’),
we have
(t, t') <yn (tom, t'om')
immediately. On the other hand, if the two sets are equal, i.e.,
vars(t) U vars(t!) = vars(t o m)U vars(t’ om'),
we note that (by a component property of)
t <tom.

Hence, by the definition of the ordering <., the head ordering condition is also satisfied in this
case.

e Finally, we must show that the tail ordering condition,
(m «0pq, m' 40pg) <un (tom, t' om'),

is satisfied, where 84 = unify(t, t') % nil. First, we have

vars(m «0,4) U vars(m' 40x4)

C wvars(m) U range(fnq) U vars(m’) U range(0nq)
by the Variable Introduction Proposition

= wvars(m)U vars(m') U range(0na)

N

vars(m) U vars(m’) U vars(t) U vars(t’)

45

i

by the Domain and Range Proposition,
because 8,4 is a most-general, idempotent unifier for ¢ and ¢’

= vars(t o m) U vars(t o m')
by the insertion property of vars

In short,

vars(m «0,4) U vars(m' 48,4) C vars(t o m) U vars(t’ o m').

By the definition of the ordering <,, , we must either show that this inclusion is proper, i.e.,
(%) vars(m «0,q) U vars(m’ 48,4) C wvars(t om)U vars(t o m’),
or show that

(*%) malyy < tom,

For this purpose, we distinguish between two subcases.

Subcase: m 404 = m.

Then (by a component property of <)

malyy = m < tom,

Subcase: m alpy % m.

In this case, we will show (x), that the inclusion is - uper, i.e.,

vars(m «0y4) U vars(m’ «8,4) C vars(t o m) U vars(t’ o m').

We have already shown the C inclusion; therefore, it suffices to show the existence of a variable 2z
such that

(1) 2 € wvars(tom)U vars(t' om’)
but
() z & vars(m <8,4) U vars(m’ «0y,).

First, because m « 0,4 # m, we know (by the Invariance Corollary) that

vars(m)N dom(fna) # {},

'(

1.e., there is a variable z such that
z € vars(m) '

and

z € dom(0nq).
We know (by the insertion property of vars) that

vars(m) C vars(t)Uvars(m) = vars(tom).

Then, because z € vars(m), we have the desired property (1),

z € wvars(t o m)U vars(t’ om’).

Next, because 8,4 is idempotent, we have (by Idempotence Proposition)
dom(frq) Nrange(fra) = {},
and, thus, because
z € dom(04),
we have
z & range(Ony).
It follows (by the Variable Elimination Proposition) that

z & vars(m «0,y)

2 ¢ vars(m' 40,y),
and hence
2 @ vars(m <0p4) U vars(m' «0,q).
This is the desired property (1t). We have thus established the proper inclusion

vars(m 40,4) U vars(m’ 40,4) C vars(t o m) U vars(t' o m').

In both subcases, we can conclude that .

(m «0pg, m' €8,4) <yp (tom, t' om).
47

«

oy

[N

Thus, the tail ordering condition for <,,, is satisfied.

This concludes the entire derivation proof. §

ALTERNATE DERIVATIONS

We have followed only one proof of the specification of the desired theorem. Had we followed
other proofs, different programs would have resulted. For example, in the list cases of the above
derivation, we first matched the tail unifier condition m<f = m'<0 against the induction hypothesis
(after applying the definition of composition); had we instead matched the symmetric head unifier
condition ¢t «f = t' 40, another proof would have been obtained, and the list cases of the resulting
program would have been as follows:

let 0:, = unify(m, m')
if 07, = nil
then unify(t o m, t' o m') = nil
else let 0:‘1 = unify(t 40:,, t’<9:,)
if 0, = nil
then unify(t o m, t' o m') = nil
else unify(tom, t' om’) = 0:, o 0:‘4.

This program will also satisfy the same specification as the original program but, because it
examines the list from right to left rather than left to right, it may produce a different most-general,
idempotent unifier.

In general, by exploring different branches of the proof tree, we may obtain families of different
unification algorithms analogous to the families of different sort programs obtained from a single
specification by Clark and Darlington [1980]. The particular derivation we obtained did not take
the efficiency of the final program into account. Other branches of the derivation tree lead to more
efficient unification algorithms.

AUTOMATION OF THE PROOF

Our primary objective in examining the above derivation in such detail is to consider the
computational pr requisites for discovering the proof automatically. Let us review the proof from
this point of view.

The first requirement of a theorem-proving system for program synthesis is that it be able
to prove theorems that contain existential quantifiers and that require mathematical induction.
Existential quantifiers are necess.-y to transform the specification into a theorem, and induction is
necessary to introduce repetitive constructs into the target program. Although resolution theorem
provers, say, can prove theorems with existential quantifiers, and sevcral theorem provers (e.g.,

48

Boyer and Moore [1975], Huet and Hullot [1980}) can do proofs by induction, it is rare to sce these
abilities combined.

The amount of knowledge about f-expressions and substitutions necessary to produce the
above proof is formidabie. If such knowledge were built into the system, the system would then
be specially tailored to this subject domain, and would loose generality. On the other hand, if the
knowledge were provided to the system as a set of axioms, the system would also need to know
how to use the knowledge efficiently.

Much of the derivation proof is fairly mechanical. At each stage, one must decide which
property to apply next, from a finite collection of legal next steps. However, certain steps are not
straightforward, and are motivated only by their ultimate success. For example, in the.list cases,
the straightforward use of the induction hypothesis failed, but the application of the definition of
composition allowed us to use the induction hypothesis in a more general way, and resulted in the
introduction of the composition 9,4 ¢ 0 in the final program.

In finding the well-founded ordering < .n, the usc of the sets vars(s) and vars(s’) of variables
in the f-expressions s and s’ was not suggested by the specification, which makes no reference to
this notion.

The idempotence condition # = # © § was included in the initial specification. This condition
played a vital part in the proof; however, the unification algorithm would be equally useful without
this property. Had the idempotence condition not been required initially, it or an equivalent
condition would have had to be invented and added to the specification in the middie of the proof.

Even with the idempotence condition provided, the proof seems somewhat morc difficult than
current theorem-provers can produce. Our hope is that studying hand derivations of this sort will
cnable us to improve the power of automatic systems.

INTERACTIVE SYNTHESIS

Although the above proof may be beyond the power of current automatic systems, a partially
interactive system could be used to produce it with known techniques. This approach requires
more human effort, but it still would convey many of the benefits of automatic synthesis:

e The person would provide those steps that require cleverness but the system would take care
of the routine details.

e Whatever mistakes the person might make, the system would not permit him to produce a
program that did not meet its specification.

o The program would be accompanied by a full proof of its correctness,

o The derivation could be retained, so that if the program needed modification, the appropriate
portions of the program could be updated without endangering its correctness.

19

. e The assumptions on which the correct operation of the program depends would be made
explicit.

Of course, for an interactive system to be successful, it would have to communicate in terms
the person would be able to understand.

ACKNOWLEDGMENTS

We would like to thank Yoni Malachai, Pierre Wolper, and Frank Yellin, for their careful
reading of the manuscript and their many suggestions; and Evelyn Eldridge-Diaz for her TEXing

of the paper.
REFERENCES
Bledsoe, W. W. {Aug. 1977], “Non-resolution theorem proving,” Artificial Intelligence Journal,

Vol. 9, No. 1, pp. 1-35.

Boyer, R. S. and J S. Moore [Jan. 1975}, “Proving theorems about LISP functions,” JACM,
. Vol. 22, No. 1, pp. 129-144.

Clark, K. and J. Darlington [Feb. 1980], “Algorithm classification through synthesis,” Computer
Journal, Vol. 23, No. 1, pp. 61-65. ﬂ

Colmerauer, A., H. Kanoui and M. van Caneghem (1979, “Etude et realisation d’un systeme
Prolog,” Internal Report, Groupe d’'Intelligence Artificielle, U.E.R. de Luminy, Université
: d’ Aix-Marseille II.

Green, C. C. [May 1969, “Application of theorem proving to problem solving,” Proceedings of
the International Joint Conference on Artificial Intelligence, Washington DC, pp. 219-239.

Herbrand, J. [1930], “Researches in the theory of demonstration,” in From Frege to Godel: a
source book in mathematical logic, 1879-1931 (J. Van Heijenoort, ed.), Harvard University
Press, Cambridge, MA, 1967, pp. 525-581.

Hewitt, C. [Apr. 1971], “Description and theorctical analysis (using schemata) of PLANNER:
A language for proving theorems and manipulating models in a robot,” ’h.D. thesis, MIT,
Cambridge, MA.

Huet, G. P. [June 1975], “A unification algorithm for typed \-calculus,” Theoretical Computer
. Science, Vol. 1, No. 1, pp. 27-57.

Huet, G. P. and J.-M. Hullot [Oct. 1980, “Proofs by induction in equational theories with
constructors,” Proceedings of Symposium on Foundations of Computer Scicnce, Syracuse,
NY, pp. 96-107. '

50 1

RPN - - TN T e et WAL A at ot 24

Livesay, M., J. Sickmann, P. Szabé and E. Unvericht [Feb. 1979], “Unification problems '
for combinations of associativity, commutativity, distributivity and idempotence axioms,”
Proceedings of the Fourth Workshop on Automated Deduction, Austin, Texas, pp. 175- . 1
184.

Manna, Z. and R. Waldinger [Summer 1975}, “Knowledge and reasoning in prograin synthesis,”
Artificial Intelligence Journal, Vol. 6, No. 2, pp. 175-208.

Manna, Z. and R. Waldinger [Jan. 1980], “A deductive approach to program synthesis,” ACM
Transactions on Programming Languages and Systems, Vol. 2, No. 1, pp. 92-121.

Manna, Z. and R. Waldinger [1982], Deductive Basis for Computer Programming, forthcoming,.

Martelli, A. and *J. Montanari [July 1976}, “Unification in linear time and space: a structured
presentation,” Internal Report, IEI, Pisa.

Paterson, M. S. and M. N. Wegman [April 1978], “Linear unification,” Journal of Computer
and Sritem Sciences, Vol. 16, No. 2, pp. 158-167.

Prawitz, D. {1960], “An improved proof procedure,” Theoria, Vol. 26, pp. 102-139.

Robinson, J. A. [Jan. 1965], “A machine-oriented logic based on the resolution principle”,
JACM, Vol. 12, No. 1, pp. 23-41.

Stickel, M. E. [Sept. 1975}, “A complete unification algorithm for associative-commutative
functions,” Proceedings of the Fourth International Joint Conference on Artificial Intelligence,
Thilisi, Georgia, USSR, pp. 71-76. f

Von Henke, F. W. and D. C. Luckham [April 1974], “A methodology for verifying programs,”
Proceedings of the International Conference on Reliable Software, L.os Angeles, CA, pp.
156-164.

Waldinger, R. J. and R. C. T. Lee [May 1969], “PROW: a step toward automatic pro-
gram writing,” Proceedings of the International Joint Confercnce on Artificial Intelligence,
Washington, DC, pp. 241-252.

Waldinger, R. J. and K. N. Levitt [1974], “Reasoning about programs,” Artificial Intelligence,
Vol. 5, pp. 235-316.

Warren, D., L. M. Pereira and F. Pereira [Aug 1977], “PROLOG - the language and its
implementation compared with LISP,” Proceedings of Symposium on Artificial Intelligence
and Programming Languages, SIGPLAN Notices (ACM), Vol. 12, No. 8, pp. 109-115.

