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trailing edge for the flow. With this model, the slip line boundaries create
. an exponential damped sinusoidal relaxation of the disturbances as compared
3 to algebraic decay for analogous unconfined flows. A similar observation
applies to wind tunnel far fields. The nonlinear case differs from the lin-
ear one in that the amplitude of the downstream propagated disturbance in-
teracts nonlinearly with the near field in the former case. For these wall
jets, acceleration to criticality is accomplished by stream tube contrac-
tions and throats induced by upstream influence of the turning. In the co-
| flowingscase, selection rules defining various jet flow regimes in terms gf
thesjet transonic similarity parameter and pressure level are given. Condi-
tions are prescribed which define the penetration length for supersonic d?g— .
turbances downstream from the exit as well as the location of the throats in
the jet. The criticality of the flow far downstream is al<c quantified in
terms of these parameters.

‘ Models are described for‘fhé‘comp]ete problem for a tangentially blown

‘ airfoil in incompressible and transonic flow. An important feature of these
configurations is the foregoing wall jet structures. A systematic theory
based on matched asymptotic expansions for the fine structure of the jets
away from their exits is developed which shows that in a small deflection
approximation the pressure jumps associated with Spence's theory prevail,
even if the flow is rotational and compressible. Furthermore, the asympto-
tic developments provided allow further systematic refinements in which

the effects of initial skewness and vorticity inaccessible to other theories
can be assessed. A study of the trailing edge region of the blown airfoil
problem reveals that for finite trailing edge angles, the dividing stream-
line leaves tangent to the higher stagnation side if upper and lower stag-
nation pressure are unequal. If these pressures are equal, the dividing
streamline leaves along the bisector. Computational results based on an
inviscid model reveal that significant enhancements of 1ifting pressures

are possible with tangential blowing on transonic airfoils. Comparisons

with experiment indicate the need for refinements incorporating wave inter-
) action phenomena near the jet exit as well as viscous interaction processes
i in the downstream portion of the wall iet. Based on this requirement, a
finite difference module has been developed which characterizes the develop-
ment of blown laminar boundary layers and wakes in the transonic regime.

i Solutions arising from this phase are being utilized to quantify not only

{ viscous interaction effects over blown airfoils, but also the degree of

‘ delay in shock-induced separation achievable with slot injection. Sub-

| stantial downstream movement in the shock-induced separation point has

f been inexpensively quantified with the computational procedure as compared

§ to experimental methods. The viscous studies show also that the propulsive

‘g
3
&
3
3
N:

wake.gene(ated by blowing gives a nearly Gaussian normalized velocity
profile, in spite of a lack of self similarity which occurs in submerged
and self-propelled cases. This result is of significance to assessment

of net thrust in experimental simulations and theoretical far field .
modeling.
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SUMMARY

A study of transonic wall jets and tangentially blown wings has been
performed by using asymptotic and computational methods. For the portion of the
effort dealing with wall jets, both submerged and coflowing cases have been
investigated. For the submerged configurations, the nature of the decay process
for disturbances emanating from the jet exit has been examined. In this
analysis, the Kutta condition on the nozzle rim can be satisfied merely by
requiring streamwise continuity of the potential across the rim as a trailing
edge for the flow. With this model, the siip line boundaries create an
exponential damped sinusoidal relaxation of the disturbances as compared to
algebraic decay for analogous unconfined flows. A similar observation applies
to wind tunnel far fields. The nonlinear case differs from the linear one in
that the amplitude of the downstream propagated disturbance interacts
nonlinearly with the near field in the former case. For these wall jets,
acceleration to criticality is accomplished by stream tube contractions and
throats induced by upstiream influence of the turning. In the coflowing case,
selection rules defining various jet flow regimes in terms of the jet transonic
similarity parameter and pressure level are given. Conditions are prescribed
which define the penetration length for supersonic disturbances downstream from
the exit as weli as the location of the throats in the jet. The criticality of
the flow far downstream is also quantified in terms of these parameters.

Models are described for the complete problem for a tangentially blown
airfoil in incompressible and transonic flow. An important feature of these
configurations is the foregoing wall jet structures. A systematic theory based
on matched asymptotic expansions for the fine structure of the jets away from
their exits is developed which shows that, in a small deflection approximation,
the pressure jumps associated with Spence's theory prevail, even if the flow is
rotational and compressible., Furthermore, the asymptotic developments provided
allow further systematic refinements in which the effects of initial skewness
and vorticity inaccessible to other theories can be assessed, A study of the
trailing edge region of the blown airfoil problem reveals that for finite
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]
; trailing edge angles, the dividing streamline leaves tangent to the higher
o stagnation side if upper and lower stagnation pressures are unequal. If these
o prassures are equal, the dividing streamiine leaves along the bisector,
Y
£ Computational results based on an inviscid model reveal that significant

enhancements of 1ifting pressures are possible with tangential blowing on
transonic airfoils. Comparisons with experiment indicate the need for
refinements incorporating wave interaction phenomena near the jet exit as well

| as viscous interaction processes in the downstream portion of the wall jet,

| Based on this requirement, a finite difference module has been developed which
3 ; characterizes the development of blown laminar boundary layers and wakes in the
. | transonic regime, Solutions arising from this phase are being utilized to

| quantify not only viscous interaction effects over blown airfoils, but also the
degree of delay in shock induced separation achievable with slot injection.
Substantial downstream movement in the shock-induced separation point has been
inexpensively quantified with the computational procedure as compared to
experimental methods, The viscous studies show also that the propulsive wake
generated by blowing gives a nearly Gaussian normalized velocity profile, in
spite of a lack of self similarity which occurs in submerged and self-propelled
cases. This result is of significance for assessment of net thrust in

R MR L T
14

' experimental simulations and theoretical far field modeling.
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o NOMENCLATURE

Characteristic submerged jet height

Slip line deflection, b coefficient in boundary layer momentum
equation

Density ratio pg/p in boundary layer, chord length

Jet exit height in physical plane

wall and airfoil shape function, similarity factor for stream
function

Jet displacement function

Metric coefficient

Unit vector in Cartesian x direction

Unt vector in Cartesian y direction

o
- a O

i B g

-

L, . .
%@mﬂmﬁmﬂmﬂﬂ Ao o
>

v, AR e A 3 T

B Gy ~ T

1 Ratio of kinetic energy per unit mass to freestream stagnation
; enthalpy

f my 1 = integer, coefficients in boundary layer momentum equation
: Perturbation pressure, Fourier transform variable

Velocity vector

Speed, dynamic pressure

Polar radius

Arc length along airfoil or wall

Velocity component in x direction

#  Velocity perturbation about freestream
Velocity component in y direction
Complex velocity

T L0 Oy o

-

v
-

X ¥ < © =

Cartesian or curvilinear coordinate in freestream direction or
along parallel to wall

>

Cartesian coordinate in freestream direction
y Cartesian or curvilinear coordinate normal to freestream or to

wall
Cartesian coordinate normal to freestream direction
b4 Complex variable

3
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Peak velocity parameter, constant in empirical fit for external
pressure in wake region, constant in nose shape

Constant in empirical fit of external pressure in wake region,
constant in nose shape

Blowing coefficient

Chapman constant

Far field constant

Lift coefficient

Pressure coefficient

Reduced exit height

Normalized stagnation enthalpy ratio

Wall slope function, complex potential

Green's function, reduced jet velocity function, pressure gradient
parameter, E'

Heaviside function, stagnation enthalpy

Jet momentum efflux

Transonic small disturbance parameter

Wall length

Mach number, moment of momentum

Freestream Mach number

Number of supersonic points

Pressure

Radius of curvature, reflection coefficients

Reynolds number

Stip line implicit function for shape

Karman Guderley operator

Freestream velocity

Typical flow quantity

Angle of attack, reflection coefficient

/MZ-T, Prandtl Glauert factor, angle between dividing streamline
and tangent to lower surface

Specific heat ratio
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Subscripts
e

u
L
J
FF
SL

Refers to edge of boundary layer
Upper

Lower

Jdet

Far field

Slot

Freestream

Component in £ direction
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5  Characteristic flow defiection ?
6* Displacement thickness
€ Eddy viscosity !
C Boundary layer similarity coordinate
n Dummy coordinate in y direction, intermediate variable, :
curvilinear coordinate normal to wall
) Momentum thickness, polar angle
A Mach number ratio appearing in reflection coefficient
u Viscosity
uy 1 =1,2,3 quantities appearing in energy equation
v Trailing edge angle
E Dummy coordinate in x direction, curvilinear coordinate along
parallels to wall
p Density 3
T Characteristic slope of jet free boundaries i
¢ Perturbation velocity potzntial in external flow :
¥ Stream function
2 w Coflowing jet overpressure parameter, angle becween dividing
35 streamline and upper surface, vorticity
% A Laplacian
%% Circulation
) Reduced velccity potential
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n Component in n direction
0 Zeroth order quantity
First order quantity

Superscripts

+ Above dividing streamline
- Below dividing streamline

Special Symbols

< > Average

L1 Jump
— Overbar, refers to average of quantity under it,
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1,0 INTRODUCTION

Tangential blowing to avoid the effects of separation on airfoils and to
produce supercirculation 1ift enhancement has received extensive consideration
at low speeds. A natural application of these capabilities to current tactical
requirements associated with runway denial and ship dispersal is of great mili-
tary interest. These scenarios strongly suggest the value of V/STOL capability.
Predictive models for the aerodynamic characteristics of jet-flapped and upper
surface blown wings associated with this application have been primarily addressed
through Tinearized surface singularity and conformal mapping methods.1‘4 Sys-
tematic and mathematically consistent procedures integrating viscous effects in
such a calculation have received only limited attention, and appear not to have
addressed the question of the necessary blowing requirements to avoid
separation.

At transonic speeds, tangential blowing has been proposed as a means of
mitigating the adverse aerodynamic consequences of shock boundary layer
interaction. In particular, the quest for high maneuverability in this Mach
number range suggests enhanced buffet-free 1ift through supercirculation and jet
momentum effects. Quantification of these gains as well as others associated
with such non-aeronautical applications as circulation controlled rotors,
diffusers, convective film cooling, and chemical laser aerodynamic windows requires
further knowledge of the structure of the associated wall jets and the nonlinear
interaction with the surrounding flow.

Toward obtaining theoretical models which could describe these phenomena,
ONR has had a research program, "Transonic Wall Jets and Upper Surface Blown
Wings,"” underway since January 1976. During the course of this
investigation, analytical and computational procedures have been utilized to
gain further insight into tangentially blown airfoil flows. The work has
encompassed detailed investigations of the wall jets and their relationship to
the aerodynamic augmentation of the blown airfoils., By contrast to the surface
singularity procedures utilized in the other early studies of blown wings, the
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‘3 effort to be described has utilized computational methods which are capable of

ﬁ% b handling nonlinear phenomena and viscous interactions that occur in the transonic

% ‘ regime in a mathematically consistent manner,

§ This report summarizes these studies and provides recommendations

§ § for future research. 1t is based on a number of papers which have been

g ? disseminated®-7 in connection with the contract and other resul*s which will be -
% : published in the open literature in the future. The first portion of this

=

report summarizes the early work of the contract dealing with transonic wall
jets. In subsequent sections, a study of inviscid phenomena over incompressible
and transonic blown wings is provided. Later portions describe recent work

% in viscous effects dealing with delay of separation and the structure

b of wakes downstream of propulsive wings.

horaroods

8
C3471A/jbs




‘l Rockwell International

Science Center

S65055.21FK
2.0 A STUDY OF INVISCID SUBMERGED TRANSONIC WALL JETS

An essential element of the flow field over propulsive wings such
as those employing upper surface biowing is transonic wall jets. In such
phenomena, a transonic primary flow or wall jet entrains an ambient or coflowing
stream through turbulent mixing processes.

Existing models for such wall jets stress the incompressible treatment
of these phenomena using eddy viscosity and energy methods. Correspondingly,
there is a need for simulations that include the effects of nonlinearities, mixed
flow, and wave interactions on the development of the wall pressure
distributions and overall augmentation forces.

Previous investigations of related phenomena are limited to the
treatment of inviscid shockiess free jets, and include the work of Chap1ygin,8
Frank],g and Guder]ey]o, all of which employ hodograph methods. To study shock
development and mixed flow phenomena, we have applied modern relaxation methods
to treat arbitrary jet exit velocity distributions and assess the influence of

an adjacent wall boundary.

In this section, the computational model will be discussed from
analytical and numerical viewpoints regarding nonlinear inviscid phenomena. In
analogy to unbounded cases such as airfoil flows, the far field is employed to
condition the numerical problem and provide useful information about the decay
of disturbances. Both free and wall jets are discussed for several examples
illustrating various features of this class of flows.

2.1 Formulation

Referring to the physical configuration depicted in Fig. 1, a jet is
shown exhausting from the exit OC bounded by the wall 0Q and a mixing layer
which has been idealized as the slip line CB. This approximation neglects
turbulent diffusion processes in the study of wave interactions with the shear
layer, but these phenomena can be incorporated in later refinements.
Furthermore, it will be assumed that wall and jet turning angles are small. 1In

9
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contrast to the usual jet formulations, 11 which an upstream cowl shape is
specified, or stagnatfon conditifons are a'ssumed,s'12 this analysis will treat a
specified exit Mach number distribution. Additional assumptions are
irrotationality and subsonic conditions infinitely far downstream. The methods
applied here can be generalized to cases where these restrictions are not
present, Finite length walls 0Q are considered in keeping with relevance to
upper surface blown wings and other propulsive 1ift devices.

Returning to Fig. 1, the equations of slip lines $;(x,y), Sp(x,y), and
the wall boundary B(x,y) are assumed as

CB: S; = y-d - 86(x) =0

QA: 52 y - 6G2(X) = 0

0Q: B=y -6f(x) =0

where § is a characteristic flow deflection parameter, In a small disturbance
limit, inwhich the scaled jet exit height D = d61/3, the wall length L, and the
transonic similarity parameter K = (1 - Mz)/az/3 are held fixed, & +» 0, the
asymptotic expansions of the velocity, pressure P, and density p are*

4 (xyiMaidu) = [0+ 623 (x,13K,0,0) + 2T + Lsey + .. (1.1a)

plo, 21+ 63 + ... (1.1c)

lie

where the subscript « signifies conditions at x = =, ¢ is the perturbation
potential, P_ is the ambient pressure, U = aM, az YP_/o_ - o  is the
density, a_ is the speed of sound, 4 is the flow velocity, and the scaled
coordirate Y = 51/3y is also fixed in the limit. If a further transformation is
introduced in which y = /K Y, a boundary value problem can be formulated for the
case of an elliptic far field. The region can be considered as the rectangular
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*Equations are numbered consecutively from the beginning of each section.

References to equations in other sections provide the section number of
the referenced equation.
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- )
, domain shown in Fig. 2, corresponding to transfers of the boundary conditions to
; the appropriate undisturbed streamlines allowed by the small disturbance
Ly .. . , X . \
- limit. Dropping the tildes, the following small disturbance equation holds
§ inside 0QABCO )
&
4 2, 2. 2,2 2
& 8¢ = (7/ax™ + 3%/ay%)¢ = (y+1)(au"/ax)/2K , (u = ¢) (1.2)
g
% : where we define function U and ¢ such that
I
\‘ u(x,y) = ﬁs(x9)’)
15 ¢(X,y) = ¢(X9Y) .
|
| Invoking continuity of pressure and flow tangency along the slip lines, we have
, with a z D/K
¢(x,a) = 0 (1.3a)
¢y(x,a) = Gi(x) »y 0 < X< o (1.3b)
|
’ o(x,0) = C1 , L<X<ow (1.3c)
|
; ¢y(x,0) = Gé(x) s LEX<ow (1.3d)
{
|
‘ where the constant Cl is to be computed by iteration. In this approximation,
the s1ip Tines are therefore not truly free, the unknown functions G% being
computed from tho solution by a simple differentiation, The remaining boundary
conditions are
¢y(x,0) = f'(x) = F(x) ,0<x«<lL (1.3e)
| 8,00,) = h(y}) = H(Y) | (1.3f)
12
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Equation (1.3f) is representative of the initial exit velocity profile which
conceivably is determined by the upstream duct contour and stagnation pressure.

2.2 Far Field

To complete the formulation of the problem for subsonic conditions far
downstream, the asymptotic behavior is derived in this section. On introducing a
Green's function G, satisfying homogeneous Dirichlet conditions on QA and CB and
homogeneous Neumann conditions on OC and AB in Fig. 2 with

aG = 8§(P,Q) = &(x-2)s(y-n)

where Q(z,n) is the source point and P is the field point, Green's theorem
applied to the region 0QABCO gives the following integrodifferential equation
for ¢

© a
I = %%l % dg é G(x,y;g,n)(auzlaﬁ)dn
L

- 36 .
12 = 'é 4’(5!0) an (Xsy,E,n)dE

N 736 .
I; = €, { 3 (Xa¥3E,0)dg
a
I, = [ h(n)6(x,y;0,n)dn .
0
The quantity G may be obtained from the cosine transform where

0

[ G cospx dx

fep.}
]
(o]

20
G == é G cospx dp .
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The subsidiary equations for G are
2
d°G 2 dG dG dG
- p°G = &(y-n)cospg =>[ ] z ( ) - ( )
:1;2 -.ayFn ay-¥=n+ ayy=n-
= cospg (B}, = (6), . -(6), =0
G(ps05€,n) = G(p,asg,m) =0
implying that
. sinhp{(n-a) sinhpy cospg
_ Sinhpy sinhp(y-a) cospg > . (1,4b)

p sinhpa 4

Equations (1.4) can be inverted by a treatment of appropriate contour
versions for the inversion integrais, initially, without the cospt factor and,
subsequently including it, using the shift theorem. To obtain convergence and
exponential decay of the integranu, the appropriate closure for the contour is a
large semicircie |p| = R, R + =, with Im p % 0 for x % 0. Summing the residues
at the poles p = nwi, n = (sgnx)(1,2,3,...), gives the following final
expression for G:

o - - - '-
-G = } n 1sin nay sin non {e Ra(x+g) ¢ g X El} (1.5)
a = n/a

Equation (1.5) is valid for y 2 n, x 2 £, and can be summed as the integral of a
geometric series giving

T b s e e e o

[TECIR Y TRWO YY"V P 8

B BT AW
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216 = S{a(x+£),alnty)) + S(a(x+£),aln-y))

- S(alx-Elsalnty)) - S(alx~€],aln-y))

= G =‘%; on [1-c05a(n-x)secha(x+g)J < [l-cosa(nzy)secha(x-g)] (1.5')

T-cosa{nty)secha{x+g) 1-cosa{n+y)secha(x-£)
where
S(A,B) = z n~leMcosng - -gn|1-e”|
1
= --% zn(1-2e'AcosB + e'ZA]
zzA+ 1B

An inspection of these formulas reveals that G is exponentially small as x + =,
and is logarithmically singular at the source point, as anticipated.

Based on (1.5), the dominant term of the asymptotic expansion of I} as
X + » is given by the formula

e 1L gmaxgin o (g X 2
I1 * g e sinay [ sinandn [ u®sinhqgde (1.6)
0 0

where in the evaluation,* the contribution of the simple pole of GE vanishes,
and integrals of the form

a o0
[Tan [ e Elee,n)e
0 0

a

[ éwe'“(x*ﬁ)f(a,n)dg (1.7)

*The upper limit of the inner integral can be interpreted as « to within terms

of higher order involving e”® as x » =, This interpretation is made in
Eq. (1.8).
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arise. The multiplication by u? of the asymptotic expansion represented by

%
) (1.5) as x + » and its subsequent integration with respect to £ formally gives a
§ development dominated by these integrals. Writing the inner integral of the
Y ) first of (1.7) as
; [ e = @ e rlinids + %) e (s
; X
\& and if the e"2X factor of the first integral on the left-hand side is indicative
n of the behavior of ¢ as x + «, then u? and f are e?(e‘Z“E) in this limit, If u?
; and f are bounded on the range of integration, the first integral converges and
- the second is e?(e'zax) as x + », The second integral in (1.7) requires nc such
b decomposition and is also convergent; hence, (1.6) follows. Evaluating the
remaining integrals and using (1.5) and (1.5'), the final expression for the far-
field is
9 o % 0pp = Cy(1-Y%) + CFFe'x*sinnY* + 0@y as x » w (1.8a)
where
s D ey [ x2
; Cep = lm(é sinnY dY[f) ¢, (£,Y)sinhgxdg
; : . 2K fDH(Y)sin Y*dY + 2 fLa( 0)coshg*d 2C.sinh L* (1.8b)
1 : T} T /K 0 & §hdE - 2y *
vl
x* = m/D/K, g% = wg/OVK , L* = 2l/O/K , Y* = Y/D .
§» 2.3 Numerical Analysis
g@ The numerical procedure is similar to one first deveioped by
gﬁ Murmanl3 and extended by Jamesonl4 and Bailey and Ballhaus, !5 Briefly, the
%ﬁi transonic potential equation in divergence form is discretized by using central
B
V‘g i
E
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" differences when the equation is elliptic, and backward differences when it is
- hyperbolic. Thus, we may write
;) * +1 2 ]
ol (ke - 332 45) + (oy)y
4
il ‘Y+1 2 - 2
g (L) (K(og541/90%i-172) = "7 (8xiw1/27%xi-172) /P f
! |
o +1 .2 2
S + i (Ko y 7270 -372) = 7 (Oxic1y2%%i-372) )P
v
-
+ (¢Y3+1/2 - QYj-l/Z)/qj (2.1)
} 4
v (%% %7
= (QeugdfK - 5= {5 * . :
; i+1/2 i-1/2 :
+ + o+
| [°i+1‘°i 8951 ]
x -
; Pis1/2P1 PiPicyy2

;
] - 1[K i l;_1<°i“”i-1 . °i-1‘°i-2)]
; - Pisiyz Piasge

-
L]

(2.2)

* ¢ + + + + ¢+
) [°i'°i-1 °i-1‘°i-2] Lath  %7%a
9394172 93%-1/2 ¥

Pis172Pi  PiPi-3/2

where the missing subscript is j when only i's are present and i when only j's

esent. For example . = &, ,and §. Z . :,.« Als
are prese 0 ple, &; 4 ¢1_1’J ¢J+1 01’J+1 o,
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Pp= (Xgpq - Xg2 a5 = (Vg = V54072

b

A

- Y

Xio1 ” Xie2 Y-1727 Y57 Yia

i
=]
—be
1
w
~
~n

Py = % - %44 %172 = Yiel - V3

T A LA L

and

LA EaT 2l

0 if the point (xi,Yj) is elliptic

: ¥y =
] 1 if the point (xi,Yj) is hyperbolic

el b e AT A I e O il il AR S B e b SN T A A SR

1€ one defines

V. = K _ﬂ("m S A I °1-1>
! ¢ \ Pis1y2 Pi.1/2

e

then

0 if VC, > 0

i

. s
d00 1 if VCi <0 .

Here, the iterations are viewed as steps in pseudotime with ot (NEW) and o (OLD)

values, In addition,

*

_°_1__=¢+,< 1,1 _°,<__1_._
Pi-i/2Pi ~ '\PiPi-172 PiPi-3y2 T\ PiPi_3/2
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These definitions guarantee that the linearized difference algorithm satisfies
the von Neumann stability criterion. (See Jameson]4 for the proof.)

Overrelaxation is employed in the elliptic region (ui j*©
only. First, define

ui_l,j= 0)

= I/Pipi_l/z N 93 H l/pipi+1/2 s

[
|

and

Then, the elliptic difference expression in Eq. (2.2) given by
+ + +
Y17t %70
PisazePi PiPiay2

_ + o
=805y - 8%t 8305y

is replaced by
: te,/ (1-1/w) +
el¢i_1 - ¢.iez w - ¢.ie2 - (1] e3¢i+1
where u is the overrelaxation parameter, i.e., 1 < w ¢ 2. Note that if ¢ =1,

there is no change between the two expressions.

To improve stability near the sonic points, especially if a
discontinuous wall ooundary condition is being considered, it was found
necessary, as in Bailey and Ba]lhaus,15 to add to Eq. (2.1) the term

+ +

eat .. (05 - o) - (05 ) - 95 _;)
X, =X xt 2

iTi-1 (x1 - xi-l)

where ¢ is chosen to be in the range 0 < ¢ < .5.
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Boundary Conditions

The boundary conditions ¢(x,D) = 0 and oY(x,O) = f'(x) may be
incorporated into the numerical scheme by using the same techniques described
in Murman and Cole.]6 Discussed first will be the boundary condition at the
jet exit x = 0, which may be one of two types: (A) subsonic at the jet exit,
or (B) partially or completely supersonic at the jet exit. The far field
boundary condition will be treated later.

(A) Subsonic at the Jet Exit

Here the boundary condition is
OX(O,Y) = H(Y) 0<Y<D
where
K - (y+1)H(Y) > 0 for 0<Y<D .,
In this case, let X172 = 0, Xy = X2 ® Ax/2, Mg = 0, and W = 03

it is also required that Xo = X = Ax. Then, the derivatives in Eqgs. (2.1)
and (2.2) become

1,2 2
[K[°x3/2 - %a72) -7 (8 - °x1/2)]/‘”‘

P
o R 2l O VP °x1/2)“°x3/2 - °x1/2]/“"

- ¥ J%(% + H(Y)>][¢2;:1 - H(Y)]/Ax :
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" (B) Partially or Completely Supersonic at the Jet Exit
.

= i For this case, two boundary conditions are required at x = 0; namely,
% |
rg l 0, (0,Y) = H(Y) 0<Y«<D

b i
% ! and
I

: ¢(0,Y) = g(Y) for Y ¢ [0,0]

. % where

1

K - (y+1)H(Y) <0 .

For all points Y ¢ [0,D] in which K - (y+1)H(Y) > 0, g(Y) need not
exist,

If a point (x],Yj) is elliptic, the discretization given in case (A)
is used. On the other hand, if (x],Yj) is hyperbolic, it is assumed that the

grid may be extended to the left by 4x/2, and that Xg = 0, X_q = -Ax/2, and
QOj = ®(0,Yj) = g(Yj).

Using Taylor's tneorem,

¢

g

-l’j = @OJ - AX@X(O:YJ)/Z = g(YJ) - AXH(YJ,)/Z

.
.

These values for ¢n; and ¢ _; : may now be substituted into Eq. (2.2) in the
OJ "1 »J

normal way, and line relaxation may be applied to the first column of unknowns
along x = X1e

The far field boundary conditions given by Eq. (1.8) contain two
unknown constants, C1 and Cgp, which must be determined in an iterative
fashion. The basic technique holds Cpp fixed while C; changes until the
solution converges. Then, Cre is updated by evaluating the integrals in
Eq. (1.8b), and the procedure is repeated until CFF also converges. In order to
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determine C], the mesh network is swept from left to right by using line
relaxation, After the potential is computed on the 1ine x = L, extrapolation
of the interior points yields &(L,0) = °L‘ If it is assumed only that ¢ is
continuous at x = L, then C] = ¢(L,0) = &(x,0) for x > L, which guarantees
that ox(x,o) =0 for x > L.

Singular Behavior Near Wall Trailing Edge

It is physically plausible that a Kutta condition given by

oy (L=50) = ¢, (L+,0) = O (3)
is satisfied by the solution for trailing edge neighborhoods in unmixed flow.
Because of (3), the nonlinear term in (1.2) can be assumed negligible, and ¢ is
locally harmonic in the scaled variables. let

z=x*+dy , x*¥=x-1

g =argz , r zmod 2

w(z) = u(x*,y) - iv(x*,y) = complex velocity
where

U=dpw 5 V=6 .

If the boundary conditions are locally linearized near the point z = 0,
then

v(x*,0) » F(LY 2w , Xx*4+0 (4a)
u(x*,0) = 0 s X*D> 0 (4b)
23
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To dominant order, a sufficient condition to satisfy (3) and (4) near the origin
is that w has the following branch point behavior

w=1i(w+B8/Z) as z+0 , (0<6<m) (5)

where B is a real constant to be determined by matching with the outer nonlinear
solutions. Equation (5) implies that

$ - ¢L 2 -wy ‘%‘BFB/Z

sin3e/2 . (6)
Several examples to be discussed indicate that the approach described previously,
in which ¢ is maintained continuous at the wall trailing edge, gives numericai
solutions that satisfy the Kutta condition (3). However, a rigorous proof that
this is an implication of the algorithm has not been attempted. A similar
procedure has been used by Krupp17 to satisfy the Kutta condition in the

solution of the transonic small disturbance lifting airfoil problem,

2.4 Results and Discussion

In addition to the assumptions given in the Introduction, the analysis
previously described is not directly applicable to choked flows where upstream
and downstream conditions are decoupled., Sonic zones comprising the entire
vertical dimensicn of the flow field are thereby excluded. However, the
foregoing methods can be extended to handle such cases.

A number of examples will now be considered. For these cases, the
associated wall displacement functions and exit velocity distributions H(Y) are
given in Table 1. For moust of these cases, K is unity and D will take on this
value for the remainder of this paper.

Wall pressure distributions for the convex ramp comprising Case 1 are shown
in Fig. 3 for K= 1 and K - 1.46. By interpreting these results as distributions for
different final M_'s downstream but with the same §, the decrease in M_ leads to
upstream motion of the terminating shock but a preservation of the shock strength.
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$ Table 1. Wall Jet Cases
Case f = Well Shape Function H{Y) Remarks
-’ 1 f=62:0 ,0<¢x<1 L = 3.8 for this and all
2 other cases
= -(1-x) » 1ex<2 .075
= 3-2x y 2<¢x <L 0<VYcl
2 fzfy--f
3 f= fy=0 » 0 x <l Has discontinuous slope
at x = 1
= [x21e2(L1)(1-x)1/2L L, 1exct
4 f = f4 =0 , 0 < x ¢l Has refiex curvature on
curved ramp portion
:.l_qg:-_l). cosl(_x:_ll-l’]<x<[_
[X) L-1 ]
5 | £z = x? yOcxciM=1 0cYc1/2|6=020m0cYc1/?
= 1-2x s, lexc2 =0, 1/2<¢Y¥<1
= .3 , 2<¢x<L
i
|
|
i-
't
£
#
§
&
2
_:jg‘,
3
5
% 25
13 C3471A/jbs
i
%
'%
il
e T T TPUPS P = AT




| I T s i £ i Bk 2SS A b G SR LRI AR O 4 BT i rac P s d s B 0 B 2 * darboric -~ - s b wull

« 7 . -

*331RULPJO A
[1eM pazL|BwJou = 'y *gp°T = ) pue T = ¥ 40y [lem Buole saunssasd ¢ *614 ”T

X

()87 9°¢ ¢’¢ 8°¢ ve 0°¢ 0°1 2’1 8°0 v 0 0°0 . !
T T | I 1 1 T T | 0°6-

I

- N [

\ v_.n._UlI.l I..O.Ql

3 97 i

SC5055.21FR
/7

"lo'"lll...l.l.lllll.o.o

e Ch e e K

1
{ e g ) e R,
¥ N ¥ é.yvﬂ&.m.mnm
1

sowr STy e SR MRS B Lol

- b, V4 o "2




,...
ke ‘.j.r

R
13
L 4
»
~i

W

e

’l' Rockwell International

Science Center

SC5055.21FR

There is a smooth acceleration to critical conditions with the location of the
sonic line established at the curvature discontinuity, x = 1, These calcula-
tions, which are typical of the other cases, cost approximately $60 on the
Berkeley 7600 and ran 15-30 CP seconds. Figure 4 shows a close-up of the
pressures near the trailing edge, The dashed line has a slope proportional to
/x*, appropriate to the singular behavior given by Eqs. (5) and (6) and the Kutta
condition (3). Isobars shown in Fig. 5 are consistent with these remarks and
demonstrate the satisfaction of homogeneous pressure boundary conditions on the
slip lines. Because of the weakness of the singularity, e.g., ¢y, ~ r=1/2 a5

r + 0, special numerical treatments such as those of Woods18 were not used.

.

R P IR S

. In Figs. 6 and 7, rapid decay of the disturbances is indicated. The

i relaxation length for this decay from (1.8b) with D = K = 1, is n. This
exponential decay is typical of flows confined by jet boundaries and is much
more potent than for bodies in unbounded fields. Qualitatively similar effects
have been discussed by Murman,19 and Pinzola and Lo%0 in connection with tunnel
wall interference on transonic airfoils. The distinction between confined and
unconfined flows can be appreciated by an interpretation of the exponential
series due to (1.5) arising in the far field developments dominated by (1.8).
Because of linearity of the far field, this series is directly related to
expansions occurring in analogous incompressibie flow problems, in which a
singularity is reflected between frze pressure boundaries. This yields an imdge
f development in which the strengths alternate in sign to satisfy the slip line
condition.* Thus, the relaxation to uniform conditions downstream, which must be
consistent with homogeneous conditions on the slip lines, produces a more rapid
decay than found in unconfined flows.

2

*Such a series can be summed by recognizing that it is a partial fraction ex-
pansion of a hyperbolic function which is exponentially small as x + «, con-
sistent with developments such as (1.8a).

NN
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Isobars for Case 1.

Fig. 5
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In Figs. 8a and 8b, the upper and lower slip lines obtained from inte-
gration of (1.3b) and (1.3d) are given for Case 1. It is evident from Fig. 8a
that the curved surface in this approximation turns the flow so that the streams
are parallel for x+», It is evident from Fig. 8b that in the near field, this
is not quite the case. Asymptotic parallelism can be established for subsonic
conditions far downstream by integration of the small disturbance continuity
equation, Thus

1

(x) - Gi(x) Fdi({ (ku(x,Y) - L1 u?)ay (7)

Gy 2 7

1

and, since u= c7(e'x*), this expression shows that G:(x) + G.
1 2

Equation (7) can also be obtained by differentiating (1.8a) with respect to Y

(x) as x » o,

and using (1.3b) and (1.3d). For the case of a free jet with a symmetrical exit
Mach number profile function H, i.e., H(Y-1/2) = H(1/2-Y), G} = -G, and the
divergence theorem or integration of (7) between x = 0 and = gives the displace-
ment of the jet infinitely downstream as

1
8(=) = 3 <KH(Y) -Gt H2>dY (8)

o

o,

it
where Gy(0) = 0 has been used,

Insight into the mechanisms causing acceleration to supercriticality
can be obtained tiom the flow direction field for Case 1 shown in Fig, 9. For
clarity, all isocline siopes have been magnified by a factor of 100, and only
the entrance section 0 < x < 1 is depicted., The expansion around the curved
ramp on the interval 1 < x < 2 leads to upstream influence in the subsonic
region which turns most of the fiow downward upstream of x = 1, producing
throats and acceleration due to the stream tube contraction required by the zero
slope boundary condition in that regicn. Also indicated is the "ballooning” due
to the singularity occurring at (0,1), the top point of the jet exit station,

In contradistinction to the trailiny edge where u » 0, local linearization
cannot be used to characterize the {low behavior in this region, and some local
x4 (y/x®) where

similarity solution must be sought, presumably of the forn ¢
a and 3 are exponents to be determined.
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v By contrast, the concave shape shown in Fig. 10 produces the antici-
% pated compressive deceleration, which is also depicted in Fig. 11.
4 . The effect of a slope discontinuity is indicated in Fig. 12. It is
3‘ evident that the numerical method accurately locates the initiation of the sonic
ﬁ line at the point (1,0) where the flow is "tripped" to criticality by the

acceleration singularity at this locdtion. In most other respects, the pressure
distribution is similar to that for Case 1.

o .\,&um%

In Fig. 13, the effect of a reflex curvature in accelerating the recom-
. pression process is shown., As refated to comparable turning and wall deflection
N treated in Case 1, the strength of the terminating shock is considerably in-
creased, as is the magnitude of the pressures near the trailing edge.

The effect of mixed flow conditions at the exit is shown in Figs. 14-16.

Here, the function H as well as ¢(0,Y) comprise the Cauchy data needed to
properly pose the hyperbolic portion of the initial manifold. Since the verti-
cal velocity ¢Y(0,Y) can be derived as a tangential differentiation, the Cauchy
data connotes specification of the additional velocity component for supersonic
portions of the jet exit station. Figure 16 indicates that in addition to the

! usual terminating shock, the transition from hyperbolic to elliptic flow occurs
across a weak shock emanating from the specified u discontinuity at (0,1/2).

e s b e

In Fig. 17, the behavior of centerline pressures for various free jet
cases is shown. The monotone subcritical behavior exhibited hy these nonlinear
cases has not vet been corroborated by rigorous proof based on the boundary

subsonic flow, this property is obvious from the maximum modulus theorem, It
should be noted that in the free jet problem discussed here, specified mass

flow, pressure ratio, and final Mach number M _ uniquely determine §, the scale

|
] value problem with subsonic exit and downstream conditions. For lineariz_d
\ parameter for the jet displacement,

For a validation, a comparison of numerical and Prandti-Glauert free jet
; solutions for u(x,1/2) for H = 0.35 and K = 10 is shown in Fig, 18, whare the

i analytical solution obtained either from suamed eigenfunction expansions or
transforms is:

geesonsy e

.

35
| C3471A/jbs

B

2ol GATARYEL o

) B SRR o 4 DR B AR S P WS I S 2 T RS LARATES N RO KN PRI SRR e L A Sl R fE ) TR




.

*93BULPJO ||BM pazZijewdou = €y ‘Z s JOy ||eM Buoie Saunssald O *6i4

36

& ov 9°¢ AR 8°¢ v 0°¢ 9°1 2’1 80 v°0 0°0
S T T T ] T T T T I
w0
w0
B
(=]
72
, 02
/
/7
L /7
/ -—
7/
\\
e \\ i O m
/7
/
- y -—
\\
, 4 .
- \\ - O Q
. ’ dn
" /7 J -
N /
. } ] ) | | 1 1 1 1 0°¢
Y
w». %
4
g
”@ g\,:?{#{flvi T ! . : CRRTaey e ¥ },Jiw&g LT oY FONPE TR

. r ! x
,aﬁéi ...‘..xﬁi.fﬁéﬁﬁ\.ﬁhm?.. ..J .
7&.%& s e e e - - P ~ . — . -




*2 9seq J40j 87plUns aJnssadd 11 *biLyg

Science Center

$C5055.21FR

.4 0°1-1
%!
8°0--

9°0- -

37

%
\
I3 (A -
" 1 c Hl
& i
v, v
3 - #
¥l
¥
L 4 ¥,
f
[ . N >
. L. . 3 P y —
Pie A ¥ b T Wy " . 0 L -
CHOA= 1 4 e f TLe Lt PO P R e S T S T

TPRE Ak




SC5055.21FR

*231BULPJO | |BM pPBZL|(PWJIOU = N“— ‘¢ ase) Joj [|em Buole saunssadd 21 °Hid

v 9'¢ 2t 8¢ be 0°¢ 9°1 2’1 80 p0 00
_ _ 1 _ _ _ _ _

T |
b lw.Nl
b IQ.NI
- IO.NI
u /I..III/ —9°1-
- //// —2'1-
— mwulnl.l.nl :l:l:l,/ Hw |
— N 8°0-
LANET JINOS —- —
| n_u —y°0-
. . . - . . . . - 0.0
- [ i

CIRTR e P PR R

e B a gl £ NP N

SR AR X N AT AL B

38




FEITRONIRLOTIR S oW AT, o sty g aoom s gt s v

R e

RETTY BTk 1] L T VErwsre e

*31RULPAO |1 BM PIZL|BWAOU = f ‘p 8se) 4oy (lem Buoie sasnssaud €1 64

R S AU e ST T ST

E ot
m X
QO 9« . .
o = 0y 9°¢
g o T

m % -
0 I - -

Q

(%]

T

|
} .
i
H -
— D
™
i
!
i .
S
F— —
, L T Q lo.H
P
.r» - %-l' .
. d

»

PTG R i..ﬂ.wﬁ%ﬁws&m&,ﬁl., ol st
Lo 22N e v
< Cliviwids

, . R . ..
- i b 2l Yoo TN Db o T

attde 2. . -




e

S L L ate

SC5055.21FR

*330ULPJO |lBM paz|[ewJou = Sy

‘(21x2 38l oLuossadns A|jeiLjued) G ase) Joj |[em Buo|e sadnssaud 1 *6i4

9°¢ '€

0°¢ 91 g1 8°0 70 00

| |

R | 1 ] )

===00

K g BT R L

Tl I .

40

-~




H
.
4
i
t
1
H
¥
¥
S
a8
R
s .
Y
M
¥
%
boas
» o
| T

Rockwell International

Science Center

N

SC5055.21FR

¢ 01
01
9°04

80~

AT YRR A AEFY TR Y T T R O ML R AT T NS R TR A PR BAT VMO |

‘G 9SB) JOy Bdeyuns sunssadd G *6Hiy

41

ey

« s X § Aw g o . .

I T A LTy e
~
i

1

Prr——



SC5055.21FR

P LR Ty

*G 8se) J0J S4NO3LOD yoep 91 b4

I

\_\/\/wﬁ\\ 11 0

S e o BRI s oy
M P -




< a2t A
“_Q*“u; * - 4*':4_. * -

o T ——— ~
W

| ’l‘ Rockwell International
' !
% ’l Science Center
[ o

SC5055.21FR
13
:
¢
Ao
)
3
?
-0.7v | 1 l | |
0.0 05 10 15 2.0 25 3.0
} X
i Fig. 17 Centerline pressures for a transonic free jet for various pressure

ratios and similarity parameters, K,

a3




[ —E R A it

o p——

X
o 69 09 6¢¢ 06 &V OV ¢¢ 0¢€ 62 02 61 01 S0 00
= OO —— 00°0
3 10
—20°
—€0°
Ilg.
[ and
dg < <
S
18.
—10°
— faj1apng-uewaey — |ealswnN v —180°
| Hene|9-jipuedd - |ednhjeuy o 60°
| _ _ _ _ [ _ [ ! _ 01°0
o . . Tatat g £ g I TS T L - TR — - —: _r




TR TR A o

IV
e R i BT A T A A & 6 1

an T .‘; * - }a‘ - - *
’L Rockwell International
Science Center
SC5055.21FR

24, -1 siny!

u = — tan = ——r (52)
T . 1
sinhx
WE  coshx! + cosy’ .
V= - —2n + YT (9b)
T coshx' - cosy
and

= n¥ .

=
"
=
=
~
-
=|

[
1}

The slight discrepancies shown in Fig, 18 presumably derive from the small
nonlinear effect associated with the finite K value and from truncation erro~s of
the discretizations which are only approximately second order for a non-uniform
¢lliptic mesh, The associated universal slip line curve is obtained from tha
foliowing integral of (gb)

m -(2n+1
R L 1+ x(2ne1)e 20X X ctnn!(coshx) (10)
-9

(2n+1)2

whera the daggers have been dropped. Equation (10) has the following 1imiting

behavior
G, (x)
1 2 1 .2
w = .n_z{-xgnx +<-?:- 1q4+1) X + & (x )} as x + 0
Gl(x) -X

’ 1 4 -2%
_.m(__=.2.__n_2.e + ¢ (xe ) as X » w

and is plotted in Fig. 19. The asymptotic half width thus checks that given by
(8) when the nonlinear second term in the integral is omitted.
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3.0 INVISCID MODEL FOR UPPER SURFACE BLOWING

In the previous section, a submerged jet problem related to tangential
Elowing was studied. Actually, the jet structure investigated in this connec-
tion can be realized only approximately for large values of the jet momentum
flux. For more moderate values, it is necessary to account for interaction with
the e.ternal stream, This implies that a coflowirg rather than subwerged jet
must be considered adjacent to the wall and that the associated perturbations of
flow external to the jet be treated.

In Fig. 20a, a schematic of an upper surface blown airfoil is shown
embedded in a transonic flow, with a supersonic wall jet tangentially injected

along its upper surface. Tne inviscid problem for this configuration is
formulated in Fig. 20b, based on a heuristic generalization of the jet flap model
of Ref, 21. Conditions across the jet and jet-wake are not indicated. Relevant
to this formulation, we will discuss certain aspects of the coflowing jet flow
which are pertinent to establishing the appropriate boundary conditions for the
external flow., We will also treat other properties that have significance for
non-aeronautical applications in addition to the present cne,

Censidering the coflowing wall jet, we divide its coasideration into
reginas such as Re’ RTE’ and domains outside of these neighborhoods on and off
the airfoil, The latter domains ire inviscid boundary layers with a structure
consistent with a balance solely between pressure and centrifugal forces. A
systematic asvmptotic theory for the fine structure of these layers is given in
Section 3.2.1. 1In other sections and Refs. 5-7, properties of R, and Ryc are
discussed., For these regions, the effects of streamwise acceleraiion and wave
interaction phanomena controlled by a length scale of the order of the jet
thickness signmificantly alter this balance. To shed light on the transition of
these axial hcundary iayers to the other zones, Section 3.1 treats an “inner"
problem associited with the coflowing wall jet relevant to the matching of the
regtons R, and Kyp to the jet, wake, and external flow. Section 3.1.1 also
discusses selection rules to define the nature of the mixed flow structures that
can arise in the wall jet. Numerical studies illustrating these structures
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USB global small disturbance formulation,

Te3K] = [K - {ytl)e dey, + og5e
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which produce significant spikes observed in blown transonic airfoil pressure
distributions are provided subsequently in Section 3.1.3. In Section 3.2.2,
other aspects are discussed relevant to Ryp and the formulation for the global
description for the blown airfoil problem., Results are given for typical cases
in later portions of this repnrt,

3.1 Coflowing Transonic Wall Jets - An "Inner" Problem

In Fig. 2la, the apprapriate formulation of a problem in which the re-
gions R, and Ryp are merged in the tangentially blown jet region of Fig. 20a is
shown, As indicated previously, we are concerned with the transition of these
regions in which streamwice gradients are important to other regions which are
dominated by gradients normal to the jet. For the former, we note that for
sypersonic and trarsonic portions near the jet exit, the characteristic longitu-

dinal scale is of the order of the wavelength of the ;eflected wave pattern from

the slip lines. To treat the longitudinal scales properly, a KG limit, which in
the notation of Fig., 20 has (xTE - xe)/54/3, x/54/3, [y - sbg(x)]/s,

e

average of the square of the exit Mach number distribution, and M_ is the freestream

value of the Mach number, In this formulation, a new excess prassure ratio
parameter arises naturally, which is given by

Pe
- 1
w = ——273—“ , fixed in the KG limit
I

where P_ is the freestream ambient static pressure and P, is the corresponding
static value at the jet exit. Essentially, the approximation of slightly
different velocities between the jet and external flow is used to study
important flow features. In practical applications at transonic speeds, this
could be realized with nearly choked blowing nozzles.

The formulation shown in Fig., 21a can be derived in the usual way by
substituting the appropriate asymptotic expansions for the velocity potential
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K. = (1 - Mg)/62/3, K=(1 - Mi)/52/3 fixed as 6+0, is utilized. Here, Mg is the

A Rt A8t e, SR S S s ."I“
Mu%ﬁ i

P L T

AL Sk A

R SO YAV MR Y o A S ¢ AT R DP R




$€5055.21FR

Cemsv T e i 2 D e L b aa e e acmdny e s o dia n a e o

~fJoayy auedquwaw uryy - uoibas 33p  qle *Hi4

LR T e T

AR, A x4 X
Q O = ﬁ m = 9 lg)' 3 D
AXV.&D = >.6 = %Qa 0 = %%9
N
A < N
NOLLYINWEOd [ [ L% X4%x),"q = Ko = M
JONVEUNLSIQ TTVWS
Y8079 HLIM ONIHILVW NGIOI¥ 3903 HNITIVYL/LIXI 130 HLIM ONIHOLWH
"0 « § ST POXE3 .0 ) Cx -y Ay L PorZp(rahy - 11 = [afelL o
w suyorje|nuwJoy uoLbas abpa but|iedy 3ILxd PP BILS ‘B4
r ]
O = mee._._- >. - \A,a XQJ
£ E (£)s = (A0
Amhxv_an === me AMV: Ax.qu. Amxv_aw = me
_ 0 ¥ +Aux - X) w =¢ - -
IR N L A 5
U Xv. 3 =
o= (Pl T. \h\l o
X on
IWIHIY INVHGWINW e — e — T (°x), 4 =
— A [ f
NIHL HLIM ONIHOLVW "y xZ =0 -0 _
3L, N A A ga_ ., n
(3)," = 24 %0 _I 0 - Dol ‘ 0" -5
:
¥
LR e e S L FEREMPL M . e i )

N -




~
e

e oo

R R TR TR O

= f&'ﬁ:l‘

TR

, ~
b 2SO T N W

‘l‘ Fockwell International

Science Center

SC5055.21FR

into the full potential, and energy equations and the boundary conditions. On
the boundaries of the cowl B'V' and CV, the latter involve tangency or v.e

flow. On the slip 1ines C'U' and CU, they involve continuity of pressure and
vertical velocity. At the jet exit, Dirichlet or Neumann conditions are
specified if the exit is subsonic. If the exit is supersonic, Cauchy data

are required. This model provides a means for studying the coupling of the
external and internal flows and for understanding the role of this interaction
on the development of the flow on the rear portion of the airfoil. Extension to
axially symmetric cases also appears feasible. Intrinsic in the formulation is
the representation of the internal and external flows by separate perturbation
potentials ¢ and ¢, respectively. The appropriate asymptotic expansions for each

are:

JET

—_— ¢

<+ 85(E,9) v e (1)

o

©
.
]

exact jet potential

p
R =x/6"3, 5 = (y - o, ()6, kg = (1= 623, = (- 1)6P?

-]

fixed as &+0

Ue = average velocity at jet exit

BLENDING LAYERS (IMMEDIATELY ABOVE AND BELOW JET)

$
U.B_= X + 62¢(-X-,y) 4+ o0 (3)

2/3

X, ¥, K= {1 - Mi)/é , w fixed as &0

U = freestream velocity in external flow
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EXTERNAL FLOW
Yext 2/3. ..
T X + 8770(x,y) + eeo (4)
X,y = 51/3y, K, w fixed as §-0

If ¢ represents the velocity potential in any of the three regions delineated

above, the velocity § is given by ve. On the cow! surfaces and the slip lines
denoted generically as S(x,y) = 0, we have

d+vs=0

as the tangency boundary condition. In connection with the slip lines, note
that GbE(X) = 54/3Eg(§). Moreover, the perturbation pressures for the jet and

b]ending layer are, respectively:
JET

P,
._‘]. = 1 - Y52/3P(i’y) + oo (Sa)
Pe J

where P, is the mean pressure at the jet exit,

BLENDING LAYER

p
T)g =1 - Y52/3pB(i,_-y.) 4+ eooe (Sb)

where P_ is the ambient pressure in the freestream.

EXTERNAL FLOW

+—=1- 6?30 3) + een . (5¢)

52
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By virtue of pressure compatibility on the slip lines, the relation

i T %Y (6)

holds along the slip lines B8'U' and CU in Fig., 2la, which upon tangential inte-
gration yields the relations indicated. The constants C, and C, are similar to
circulations and are obtained from the difference of the potentials at the
trailing edges B' and C. The trailing edge behavior and jet turning angle are
obtained from (6) and the compatihility relations w& = ¢9 on the slip lines.
Local nonuniformities occur at the trailing edges which are anticipated as weak
singularities. “Inner inner" expansions for these would require the solution of
the full potential equations in these neighborhoods.

To complete the specification of the problem, a far field dFF is neces-
sary. This function should have the property that it asymptoticaily matches
with the outer flow on the boundary of the region Re' A procedure which pro-
vides the necessary nonlinear feedbacks with the near field of the problem in
Fig. 21a involves the asymptotic solution of a relevant integrodifferential
equation, A heuristic far field derivation in anticipation of this more satis-
fying approach is described in the next section,

MATCHING OF EXIT/TRAILING EDGE REGION WITH EXTERNAL FLOW

Because of the anticipated jump in the vertical velocity at the trail-
ing edge associated with a jet flap or USB, we assert that the inner limit of
the external flow solution which is assumed to be locally harmonic in strained
variables in that neighborhood has a logarithmic singularity in the complex per-
turbation velocity, To simplify the discussion, we consider matching in the
cortext of a jet flap (x, = xtg) for the present. Generalization to more com-
plicated USB cases should present no major new difficulties, As a consequence
of the logarithmic singularity assertion, the complex potential behaves like
z log z, as z+0, where z = x + i/K y in the vicinity of the trailing edges as

53
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f 2 they appear in the external formulation.” Accordingly, in the notation of (6),
’ ey
t ; we assume that
St
% A $ = A{X ]OgF-/-K—yé}+ cee (7)
é E . where A is a constant, Rl 2y Kyz, and § = tan~} 1§~l . In a corresponding
g
§ | manner, we assert that the outer limit of the blending layer solution for ¢
% associated with the expansion (3) is given by
it
; ptalklog 7 - /Ky B} + eee (8)
N
- where a is another constant.
X For matching, we introduce intermediate variables X and Yn given by:
F ‘ X y
X_ % —pa . = — fixed a
with
s3 £« 1
W 5§ << n << 573
1
g where the << sign signifies "order of."
z In the intermediate 1imit (9) which implies that
X = r‘;Xs + 0
j = a0
n
*For near critical trailing edges this assumption is invalid.
54
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the variables and various terms appearing in (7) and (8) have the following

appearance
= 1/3
- /Ky 6
5 = tan~} Xy, tan™* -———X—'l——— (10a)
X & £
= 1/3
~ YK ny &
6 = tan"1 Ky > tan'1 — (10b)
X £,

£2x2  p2y2 i
log F - log \/ﬁi F—— (10c)
68 3 62 ,

log \/;sz + K52/3n2y§ . (10d)

On the basis of a comparison of the various elements in Eqs. (10), we find by
virtue of (7) and (8) that the perturbation potentials in b.th regions compare
reughly as follows, where the <=> indicates asymptotic correspondence:

log r

62/3¢ <=> 62¢ + %6 (oo &) X (11)

1/3 ;
previding the limit is taken as 3§g__ fixed = constant = ) as §s0. More i

precisely, if the external and inner flow solutions are written in terms of
intermediate variables, we obtain the following correspondence:

55
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2/3 ST I TV 3 ¥

- As®/“lex, Yog veZxZ + KiZgZyZ - /K gy 6} i
. 4 £ n n 3
& |
3 2
¢ £EX v 4
5 => 5% 5 PRI TRZEyT - & g Ay 3 }
" {=> 5"a 557? log /EZXE + Kaée yn -3 log 5] - VK ad7§ yne ;
%2 EX _ 3
L 7 4
?‘ +—3' ((5 Tog 6) ?‘7':? . (12) %

The last term is a compensation term added to achieve matching. Presumably, an
internediate solution could be developed to eiliminate this rather foreign look-
ing entity whose physical significance is not well understood at this time.
Aside from this rather minor difficulty, the result contained in (12) demon-
strates that a numerical solution of the problem in Fig. 2la will match with the
solution of a global jet flap prcblem near the trailing edge providing A = a and
the far field for the former is given in accord with (12),

IRIRY. 0 K ST ARIENT L X RL 0 5 v

“THIN DOMAIN" SPENCE REGION

Another matching is required downstream of the trailing edge, involving
the confluence of the wavelike region and the "Spence" zone where pressure anc
centrifugal forces equilibrate. This regime is reached in the limit of x,y
fixed as ¢+0 and leads to the "thin domain" problem shown in Fig, 21lb., Here,
the streamwise derivatives are negligible in the dominant approximation,
Matching with the external flow takes place by "patching" across the slip line
with the boundary conditions of compatible normal velocity and pressure as shown
in the figure., The inner limit of the thin layer solution represents the jet
far field of the problem associated with Fig. 2la.

SRR SRS R I 5 v e

3.1.1 A Basic Transonic Coflow Problem

Many of the fundamental ideas associated with the problem depicted in
Fig. 21b are contained in the unit problem shown in Fig., 22. Here, a jet of ve-
locity U, exhausts into a coflowing stream with a freestream velocity U. A

56
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major simplification over the problem given in Fig. 21a is now that the cowl PBO
is a flat plate internally and externally as well as the bottom wall surface LSR.
Moreover, the lower cowl boundary VC in Fig, 2la is replaced by an infinite wall
y = -1 in Fig, 22 for this idealization., We assume that conditions are known at
| some exit station AB, which couldbeat x = -= in the coordinate system indicated,
and could correspond to a settling chamber location. Note in this connection
that a far field analysis indicates that as station AB tends to x = -w, the
assumed Neumann condition is asymptotically egquivalent to a homogeneous

q ‘ Dirichlet one. In particular, with the problem for ¢ based on Fig. 22, a far

1 field representation, obtained from an iterative solution procedure regarding the
| nonlinear term of the Karman Guderley equation as a weak forcing term, is

BRI A IR RS S AT

/R A2 203 VR

?(X,y) = A, e cos my + o (y+1)X e € cos 2ny
1 &

2 2ax/¥K 27x/VK
+ A2 ——ili%%%— e Ev A e € Cos 21Y + .ue
1 k] 2
8 Ke

asS X +» ==

Defining the average of a flow quantity g at the station x = x, as

0
<g(xy.y)> = average of g at x = x_ = {f’(xo’Y) dy

7

we have in particular, using the foregoing asymptotic solution specialized to

Xo = 1’
2 -2z/YK
2 (y+1) = e
<¢(‘1,y)> = A e .
1 8 K 3/2

e

Moreover, we find that

@ (-1yD = 72 <ol-1y)>
e

3 58
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An interpretation of the constant A appearing in the foregoing
expressions is obtained by using Green's theorem to derive a nonlinear integro-

s

differential equation for ¢. From the formulation of Fig. 22, it is possible to
. evaluate the boundary terms on the boundaries of the rectanqular domain AB and
PR, The appropriate integral theorem is

0 0 w0
+1 2
b= %y /) Lo 6] - {mG€¢€dsdn
1 ® ¢ . X - C
- ;-é b'(¢) an sinh EQ—E—_QL dg + 5 x

where

o

Ot s

C = w/‘Y.

Approximation of this expressien for x » t », with interrelaticonships between
b{») and ¢ %o be derived subseauently, is consistent with the asymptotic
expansion of ¢ for x » -» previousiy given and the result

where the partial integration boundary term in the first integral of the Green's
theorem expression dominates the double integral and is approximately ¢ ch/Z as

X + », and the contribution of the lower Yimit vaniches., This change in signs
is of decisive importance in obtaining the desired upstream and downstream
boundary conditions. Furthermore, the Green's theorem expressiun shows that

R

A - 7};({ b'(g) e de

i.e., Al is a moment of the source distribution associated witn the deflected
slip line.

N

SRS T P prmrsd
PR e ;
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Returning to the configuration at pand, we note that in some sense,
this system is a simple idealization of an inviscid ejector. A sketch of a
wind tunnel realizaticn is also shown in Fig. 22. An analytical/computational
solution has been developed to study this problem, with the objective of
addressing the following issues associated with the problem of Fig. 21b:

1.  Under what circumstances is the jet far field supersonic if the
initial conditions are subsonic?

2. What is the degree of downstream penetration of an initially
supersonic jet, i.e., how long is the supersonic region?

3. For (2), how do the parameters K, Ka» w and y affect the penetra-
tion Yength and the relaxation and decay of the complex nonlinear
wave interaction process to uniform conditions?

4, Under what circumstances does a throat arise in the jet?

5. Are any of the ideas associated with the one dimensional flow
theory of under- and over-expanded plumes applicable to delineate
the varicus flow regimes in this two-dimensional context?

6. If tbe streanwise scale of the reflections is 0(61/3), then the ex-
ternal flow sees a wavy wall boundary condition if the jet remains
supercritical, In this cdse, the pasic slip line shape is modulated
by corrugations inducea by wave reflections, and the relaxation
length of the interaction process may not be of 0(51/3). Are Poincare
1:mit process expansions of the type given in Eqs. (1) - (5)
adequate to treat the problem, or is "two-timing" required?

Guring this phase of the research, a partial answer to some of these questions
has bee~ obtained in connection with an integral mass conservation form of the
KG equation tor the flow in the jet, which is

60
C3471A/jbs




T B =
[’ S -

NIRRT 5 F

———
+

Y.
1

J éﬂ’{l{'} Sl e

c
Wt o H : . . .. b = o o ————

’L‘ Rockwell International

Science Center

SC5055.21FR

% T gk e, - XL 20 [ (13)
{1 Y{) "(e;"’zﬂ";); Pyy ("

1/3

4/3 57x), where X = § ~/“x, then the

If the jet slip line is given by y - §
tangency condition is

¢y(i,0) =b'(x) . (14)

Noting that B{0) = 0, (13) and (14) lead to the relation

0 s 2
B(w) = - [ (K5 - ‘Y-é—ﬁ" . Ay (15)
-1 X 90

Furthermore, if we assert that by and ¢y 0 as X » », then the slip linc
pressure condition

by (X50) = @2(x,0) - w/y (16)

implies if further, ambient pressure is achieved in the freestream, i.e.,
.;)-((X,O) + 0 a x » w, that

Pz > w/y as X + o (17)

at least on the jet boundary y = 0. 1f we continue this in the interval

-1 ¢y < 0, we note that it is a particular solution of the K.G. equation
satisfying the wall boundary condition ¢y(x,0) = 0, Such a solution represents
an asymptotic velocity distribution infinitely far downstream which is uniform
across the jet and is intuitively reasonable on physical grounds. By contrast
to the limit x + -», the second order exponentially small corrections for x + «
must he determined from the full K,G. egquation rather than a Prandtl Glauert
approximation, For critical conditions at this location
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Ke

ST (18)

5%

which is achieved by virtue of (17} when

T 2O Y

| 1
: Ko > 3 (19)

AR

if w =1, FEquation (17) with (15) implies that

Blo) =& { Fha- K} . (20)

Tables 2 and 3 as well as Figs. 23 and 24, summarize cases that can oc-
cur by virtue of the previo. “ormulas for K > 0. These cases are significant
for USB application. Here, x. denotes the streamwise position of the throat or
minimum area section of the jet. Only one configuration (Case V) exists for

w=0, For w=1and ¢ = -1, however, many configurations exist, and a diagram

delineating the various flow regimes is given in Fig. 23, Sketches of the cor-

responding jet shapes are given in Figs. 25 and 26. Note that Case V represents

a uniform flow for the jet which shears the external freestream, i.e., both

flows are uniform in this case, Also, the indicated expansion and contraction
Lo of the jet is consistent with one-dimensional reasoning for the various cases,
o Note, however, that the question of smooth, shockless decelerations and tie
realizability of these inviscid cases must be resolved through experiments and
other analyses which could assess the role of viscous entrainment along the
shear layer, Computational studies could illuminate the question regarding the
existence of shocks in the jets.

g SO o e

In related IRZD work, the case of Ke’ K + -« has been analyzed,
involving decay processes associated with radiation of the jet pressure field to

Ween b e

- .

the external coflow through transmitted waves. If M, and M_ denote jet oxit and

LRpRega—

freestream Mach numbers, respectively, then relaxation to uniform state takes
place through a wave train produced by auitiple wave reflections from the wall
and slip lina., For the NP downstream Mach diamond, the analytical solution of
this problem indicates that the wall {recsure Cp behaves like
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C3471A/3bs

L U
BV AT AP AT GRVEAN ™ TIPS Optrsr

1
(
¥




1

|

|
|
i
/m&xfu%mﬁwﬁ

N

S N e e i v

g

]
h
A

gl
i)

‘l‘ Rockwell International

Science Center
SC5055.21FR
TABLE 2 - OCCURRENCE OF CRITICAL CONDITIONS AND THROATS IN JET
(k> 0)
- (w = 1»0)
Streamwise
Position Mach Monotone
Case Jet Exit - of Throat No. Slipline
No. Supersonic? Range of K, b{w) {(x¢) at = Admissible? Remarks
+1 ~1
I NO 0 ( Ke ( Y )0 (. >1 m ¢x(.) - y
Pe > P_
Ia No K, = 3 0 <o 9! No
e Y
+ vl .
11 No %— <Kg ¢ L <0 < 1 Yo
11a No K - Xl <0 - a1 Yes
ey
1 No Xlek ca | - a Yes
Iv Yes . <K, <0 >0 0 >1 Yes v
v Yes and No - K, <. 0 - 21 Yes \Dx(-) = -y'l
Pe P
ws 6 L] 0
Pure stip flow
(No Perturbations)
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TABLE 3 - OCCURENCE OF CRITICAL CONDITIONS AND THROATS IN JET
(K> 0)
{w=-1)
Streamwise
Postition Mach Monotone
Case Jet Exit of Throat No. Slipline
No. w} Supersonic? | Range of ¥, 6(=) (x¢) at «» | Admissible? Remarks
vi -1 Yes - <Ky < l;-l- <0 - 3| Yes P la) = oyt
Pe 4 P°°
.. xl
Via Yes K = - <0 - 1 Yes
e Y
.t e o
Vil Yes — < Kg € ’EY_ <0 < <1 No
Vila Yes k- - XL -0 (e a No
e 2y
Vit Yes Sk <o >0 ¢o a No
Y e
villa Sonic K. >0 >0 0 1 Yes
IX No Ke >0 >0 0 <1 Yes
64
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. C, & - T {1 - (-1)" exp (-N log a)} as New (21) ;
¢ where %
it ) M2 B
& i - .52 LUMPED %
I .= _ REFLECTION " PRESSURE :
£ © S W B, COEFFICIENT * X~ 7T TWZ 83" RATIO }
g e M2 z e PARAMETER ‘
2 ;
’ p=/M-T , g =/M-T. 3
P i
) If ¢* is the perturbation potential in this process related to the exact §
; potential by the asymptotic expansion :

‘? U—e-é X + 5‘9*(X*’y) + 0(5 )

FOAN 7

for X* = x/6, ¥y = (y - sbz(x))/c, My» M fixed as 60, then ¥* satisfies an
initial boundary value problem for the supersonic Prandtl Glauert equation
giving the damped wave train solution

L= (x4 83) 2 -a) ™ [x* + g - (2n+1)8,]
* 0t - gd) () [¢* - 67 - Grvie ] (22)
n:

where

-

x>0
= {0 , X <0

‘. . H(x)

H
-
-

and 0< ac<l.

The problem of incompressible flow is also interesting. With a stight
change in normalizations, we have for this case

SN RN 5 e
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SOX(""O) =0
wy(x,O) = ¢y(x,0) =0, x<0
¢y(x,0) = ¢y(x,0) =b'(x), x>0
wy(x,-l) =0 "
# (:0) = € = =57

(x,0) ¢X(x,0) =c, x>0,

where p is the density, and P_ and U are the ambient pressure and freestream
velocity of the external flow. Cartesian coordinates similar to Fig. 22 are
used. Also, the jet pressure P is assumad to be siightly different from that of
the freestream measured by the parameter s in @ similar manner to that utilized
in the previous developments, i.e.,

=1+ ws

gl

with w = -1, 0 or 1, Furthermore, the slip line is given as y = sb(x), x > 0.

Correspondingly, we assume that the jet velocity Vj is expressed as
u.
D—J-=1+\)6 .

Finally, the external flow vector is represented as

% = (1 + s¢x)f + 6¢yf + (7(62)
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v and the jet is

%= (1 + 60,07 + c¢y3' + 059

¢

s where T and § are unit vectors in the x and y directions, respectively. As in

% the other speed regimes, two different potentials are needed because of the

Ei different Bernoulli constants in the jet and external flows. The homogeneous

? Neumann conditions at x = -» establishes a pressure level for the jet. The

- corresponding inhomogeneous Neumann condition at X = = is consistent with
. equilibration of the pressure to the ambient level of the external flow (P_).

- The aforementioned boundary value problam leads to the following

‘ singular integral equation for b'(x), when Green's function representations for ¢
} and ¢ are used in their respective domains of validity and the boundary

conditions are applied:

é b*(g){tanh (x-g) - i%g}dg = ¢(n __%)

which can be solved by weiner—Hopf,22 conformal mapping - Green's function
methods, or numerical procedures. This formulation can be used to check the
well -posedness of the transonic probiem and the appropriateness of the numerical

X1

procedures which we will now discuss.,

3.1.2 Basic Ideas for the Computational Solution of the Problem of Fig, 22

T s v Rt AR WY

Because of the nonlinearity of the flow problem represented in Fig. 22,

-

numerical methods must be used, The approach that has been implemented employed

a SLOR Murman-Cole type dependent difference scheme with Jameson damping, in
which the QP slip line pressure boundary condition is tangentially integrated to
give

#(X,0) = ¢(x,0) - % X+C , x>0 (23)
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where C = $(0,0) - ¢(0,0) is updated in successive sweeps, Equation (23) and
the relation

¢9(§,0) = q’j‘,(xoo) ’ x>0 s (24)

with the other boundary conditions indicated in the figure, define the numerical
problem, In this connection, a far field in the external field given by

vy = (/(r'l) 0 , as N N K¥© + (25)
is prescribed on the finitely large computational boundaries P'Q', Q'Q and QP.
Compatible with (25),

(P)-(-+m/y as X + »
which also is satisfied on the finite computational boundary PR. For ease of
calculation and programming logic, dummy matrix entries have been used in the

region LABP' in Fig. 22.

Details of Numerical Procedure

In some respects, the numerical procedure is similar to that discussed
in Ref, 5., Referring to the formulation in Fig. 22, for interior points, the
transonic potential equation for the jet region and external region in diver-
gence form is discretized by using central differences when the equation is ellip-
tic and backward differences when it is hyperbolic. Parabolic and shock point
operators are employed when required. Both the Neumann boundary conditions and
the subsonic and/or supersonic jet conditions are discretized as described in
Ref. 5. New to this problem are the interface conditions (24) and (25).
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The former can be written as
$(x,0) - ¢(x,0) = v(x - XITF) *Cppp (26)

Here, v = #1/y and CITF is a constant to be determined. The quantity XITF is the
x-coordinate of the cowl 1lip.

Since no mesh points are placed on the line y=1, CITF is determined by
extrapolation of ¢ from above and ¢ from below the slip line along x=xyyf.

Taus, CITF = ‘P(XITF,I) - V’(XITF’I)O

Equation (26) is inserted into the discretization of the operator ¢yy at

the first -~sh point atove the interface by replacing 8,31 by

¢5,5-1 = V%5 = Xppp) - eppp

Similarly, ¢y below the interface uses 4,5+1 replaced by i 541 * v(xj - XITF)
+ Cy7pe This type of differencing gquarantees that Eq. (26) is automatically
satisfied., The relaxation sweep is carried out as in Ref. & from upstream to
downstream, where homogeneous Dirichlet conditions are utilized in Station AB in

Fig. 22.

INITIAL PARAMETRIC WALL JET STUDIES

Prior to dealing with conditions (23) and (25), the implications of the
initial conditions and pressure gradients in the problem of Fig. 22 were
investigated in parametric studies that were conducted with an extended version
of our original submerged wall jet code described in previous sections. The
problem studied was in the previous notation:

‘l‘ Rockwell international
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[ \P;Ke] = [Ke - (Y+1)\0§]\0§§ + ‘pyy =0 :

b3

with 5
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gly)

¢, (0,y) = PHIXO

h(y) (specified for hyperbolic exits)

‘P(O’y)

]

x>0

v(iyo) G(i)

wy(x,-l) =0
with

as X + w

‘P(i,y) 2 ‘pFF(y) .

Note that in contrast to the formulation including Eqs. (23) and (24), which
involves the determination of the pressure on the slip line, the formulation
here assumes this variation.

Table 4 provides a tabulation for some of the cases run for this
problem where ¢cp was &éssumed to vanish for these studies. Comments on the

qualitative features of these examples are provided in this table,

From these studies, Figs., 27 and 28 illustrate typical results for
Ke = 0.1 for the effect of the initial velocity g(y) on penetration for a submerged
jet with ¢(X,0) = 0. Here, T = (cp)/(52/3), and Cx is the critical
pressure. For h = -1, the jet remains subcritical. For the h > 0 cases, it is
evident that the shock terminating the supersonic region wmoves progressively

further downstream with supercritically increasing exit velocity.

Figures 29 and 30 depict the effects of assigning a coflow pressure
gradient
‘P;((’\»O)
pressure

dlong the slip line vi(i,o) = 1 as compared to the subimerged jet case,
= 0, he former is crudely analogous to (23). It is evident that the
gradient has a dramatic influence in accelerating the flow and

This fact could affect the matching with the
Spence reqign for the problem of Fig., 2:a in the inherent assumption that the

prolonging the supersonic zone,

wave interaction zone there is (7(64/3).
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TABLE 4 - PARAMETRIC SUMMARY OF RUNS
[ case v, (0.y) +{(0,) o, (x41) o(x,1) 3 Noup, oy(x.o) Comments
1 1.0 0 0 0 0.1 686 0 Mostly elliptic, Exit hyperbolic,
far field elliptic,
2 J.1 0 0 0 0.1 118 0 Completely ellfiptic excepr jet
exit which is hyperbolic,
3 1.0 0 0 0 1073 764 | 0 Jet exit supereonic.
4 1.0 0 1.0 x 10‘3 2652 0 Mostly hyperbolic with elliptic
| far field.
5 1.¢ 0 1.0 x -10°3 2652 0 M55tly hyperbolic with elliptic
far field.
6 1.0 0 0 0 16-5 ol o
7 -1.0 - 0 ¢ 0.1 0 0 Completely elliptic.
8 1.0 0 0 0 0.1 1642 -2x,{(0,1) Larger supersouic region than
-2,(1,2)without wall,
.l 0.(2..)
i 9 2.0 0 0 0 0.1 1435 -2x,(0,1) Super-onic region smaller than
| -2.,(1.2)case with less blowing.
i 0,(2,m)
10 2.0 0 0 ] 0.1 1074 d Smaller supersonic region than
case with wail,
1t 1.0 0 0 0 0.1 1648 | -2x,(0,1) #(x,0) = €, in (3.8,6.2).
-2,(1,2) Field similar to Case 8 without
0,(2,3.8) slip line except for in (3.8,0).
12 0 ] 1.0 X -0.5 2838 0 Supersonic everywhere,
123 0 0 1.0 x -0.5 2838 C1,(3.8,6.2) ] Supersonic everwhere (with wall).
13 0 0 -1.0 -x -0.5 85 0.{0,3.8) Subsonic jet exit, Very small
C1,(3.8,6.2) | supersonic far fleld,
14 1] 0.25 y2 1.0 X -0.5 2810 0 Supersonic almost everywhere.
: 15 0 0.5 ¥ 1.0 % -0.5 2784 i) Supersonic almost everywhere.
{ 16 9 9 1.0 x 0.5 0 0 Supersonic everywhere.
17 0 - -1.0 -x 0.5 0 0 Subsonic everywhere,
I 18 Q C 0.5 0.5 x -0.5 2838 0 Supersonic everywhere,
2 19 0 0 -0.5 ~0.5 x -0.5 0 0 Subsonic everywhere,
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3.1.3 Results for Complete Problem

Applying the numerical procedure described previously to treat the
problem involving Eqs. (23) and (24), results were obtained for illustrative
cases. In this connection, a typical three-dimensional relief plot of Mach
number as a function of spatial coordinates x and y related to the formulation
in Fig. 22 is shown in Fig. 31, with y now measured from the bottom wall. In
the legend, recall that the quantity w is given by

p
w =<P§ - 1) /62/3

where P, is the jet static pressure, P_ is that of the freestream, and ¢2/3

is a
small parameter measuring the indicated excess pressure ratio. The quantity w
denotes a sign index which can be 1, -1, or zero. In addition, the parameters
Ko and Kj are defined as

k= (1-M)s%3 k= (- Wyt

J 3 w

For the case indicated in Fig. 31, w =1, Ke = 1, and Kj - X . In the code,
the jet exit potential ¢ (-1,y) was assumed zero. In contrast to the homogene-
ous Neumann conditions assumed in the derivation of Table 1, this procedure has
been justified in an earlier section of this report,

In spite of the finite location of the jet upstream boundary, the
results obtained are roughly compatible with those predicted in Table 1. Fig-
ure 31 shows a strong acceleration of the initially subsonic jet flow embedded
in a subsonic stream jet fleow due to choking associated with constriction of the
jet slip line (not shown). A terminating shock (supersonic to subsonic) forms.
giving sonic conditions infinitely far downstream.

Figure 32 depicts a fiow pattern associated with an initally supersonic
jet in a subsonic stream. The acceleration is smooth and isentropic. Both
figures vpify wave interaction regimes that can result in global modifications
of the flow field, resulting from a change in the Kutta condition wake structure
and interaction with the viscous wall jet on upper surface blown airfoils.

80
C3471A/jbs




P
‘ - . . <.
LN x“,‘-“ <% R

P o o _ ' o )

‘l Rc ckveell International

Science Center

$C5055.21FR

ettt £ A ‘@%fﬁr’ﬁ%

Py . TR

Pach Aot v s AR 1 rak

PN

[y

vﬁJf};~
%N
'»'52 Y o:oz A

R
0 0':289
'&0 () M%

Fig. 31 Mach number distribution for coflowing wall jet, case 2a, w = 1, K

OO ) 0?9" S
| . .;
":\"’.:’{"‘: ) '.’. y > 2
G =
RN !
Vo + i
'o‘o‘c’o’(’:“ 0 = :
R . :
'.:’ ” X 1 3;:
] oL (= > 3
i .. N §
. ’ — &
& ‘ %
R 9. - 3
| Y G
- ‘M*MT”’G’BZ‘[“;,};{) 060 680 08¢ g
i o't oit S0 .
4 HOVW :
¢
2
81
00 ’
by | ;

e - - - e - ﬁ'f TAGARI I W TR A \.i?!‘{ﬂﬁm_ R S A e g e M'J?-:";W .‘{G\[\"?" a“’ 2




—(l Feraen
|
| L] L] Hﬂ
W ay « . t°0- = "% ‘1
} =X ‘T =™ “qgp oased “33f ||em BulMO{j0D 404 UOLINGLJSLP Jaqunu yoew 2€ 614
m 0
! o,
i
i
% [+ 4
{5
i —
R o~
| 9 M
5 n
! =1 .
24 g
. Q
i v m
i
; ;
'
1
o
<0
Lo
1]
S 2
..u..w
(== o
ek
-
=
~
-
[
H
. 4
L
. ¥
i 4
r I'd 1
‘.. |
T T - R VIR,




"

LA SN

)

>
-

LR T AT

et e 7

A

R/ RS SR N

M
4 o o, A -
R g

- :&i“ - el
’l Rockwell International
Science Center
SC5055,21FR
3.2 Solution of Blown Airfoil Problem and Relevant Flow Structures

In this section, in contrast to the detailed jet studies previously
given, we change focus and concentrate on various formulations and analyses
which are intended as a critical assessment of different aspects of the jet flap
formulation given in Ref, 1 and its extension to USB for incompressible and
compressible flows. Whereas the previous discussions have concentrated on wall
jet flows relevant to the upper surface blown problem, this discussion will
treat other formulational issues. In particular, as a basis for the thin
airfoil and small disturbance models, the thin jet approximation is described in
Section 3.2.1 in terms of a systematic asymptotic expansion procedure for
incompressible flows. This study is used as a basis for obtaining boundary
conditions across the jet., The generalization of these developments to
compressible flow is straightforward and therefore not provided. Section 3.2.2
provides a discussion of the trailing edge region from the viewpoint of a
nonuniformity of the thin jet theory as well as the generalized Kutta condition
for USB. Inherent in this aspect is the geometry of the dividing streamline at
the trailing edge, which is a necessary condition for the determination of the
jet sheet free boundary. Arguments are provided to substantiate tangency to the
upper surface, providing the jet stagnation pressure is greater than that of the
external flow, Also indicated is how the small disturbance jet flap formulation
of Ref, 5 is modified with USB, Finally, Section 3.2.3 gives results from a
computational solution based on the inviscid small disturbance formulation
indicated in Fig. 20b., In this section, transonic USB airfoils are analyzed and
comparisons are made with experiment, Factors associated with the discrepancies
are considered and refinements are proposed to improve the realism of the model,
leading to the discussion of the viscous model given in Section 4,

3.2.1 Thin Jet Theory

As an essential ingredient of a small disturbance formulation, the jet
structure is developed in this section for purposes of specification of the
boundary conditions. In particular, it will be shown how the Spence theory of
Ref. 1 can be derived and refined from a systematic approximation procedure.
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Referring to Fig. 33, a section of the jet is shown. A curvilinear
coordinate system is embedded in the jet as indicated. The lines n = constant
are parallel to a reference line (the ¢ axis) which is the (flux) center line if
the jet is symmetric, or the wall for a wall jet case. In this coordinate
system, the lines £ = constant are normal to £ axis. In what follows, the
incompressible case will be discussed, The generalizations to compressible flow
are straightforward.

Within the indicated coordinate system, the exact equations of motion
are

Continuity

3 3 )
gl PNt 0 (27a)

g - Momentum
4, 39 9] q.9
& i 4 _ﬁ_nih_: -1 9P {
Rt San T a  aE 27e)
n - Momentum

q

3q g q2
_m —n__g3h__13P
F§ 3L * qn an 'ﬁé n p In (27¢)

where h, the metric coefficient when related to the differential arc length in

Cartesian (x,y) coordinates is
ax? + dy? = hz(E,n)dEZ + dn
h(g,n) = 1 - n/R(E)

with R(g) being the radius of curvature which is shown positive in Fig. 33.

2
(28)

To obtain an approximate incompressible set of equations prototypic of
the compressible case, the thin jet limit is considered, The characteristic jet
thickness is shown in Fig, 33, wher2 the jet boundary is denoted as n = tb(g).
The quantity t thus represents a characteristic slope of the jet free boundaries
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which is of the same order as the jet thickness in units of its radius of
i# curvature,

We now define a thin jet 1imit

= .

B

- | t + 0, £,n* = n/7 fixed (29)
-
% where the boundary layer coordinate n* is introducted to keep the jet slip lines
% , in view in the limit process. In (29), the appropriate representations to yield
‘ a nontrivial structure are
¥ q. (gt
- : = 7T Uo(ﬁ,n*) + "_T—Ul(Em*) toeee (30a)
r o oh s 3/2 (30b
U_ = yT V0 + 7T Vl + oo )
B py t g ees (30c)
2o 1 ¢
P

where U is some typical freestream velocity. The orders were selected to give
the "richest" possible set of equations and, consistent with this, produce
forcing terms in the equations for the second order quantities. These orders
are consistent with the massless momentum source mode of Spence].

Substitution of (30) in (27) and equating like orders gives the
following equations for the approximate quantities:

1Y X s

U, 3V )
0 0 _
T 0 (31a)
au u
0 0 _
2
u ap
0 0
T - (31c)
7 /
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u v
1 1.1 3
3Tt 3 TR (o) (32a)
u ou au au unsv du ap
1 1,.°¢ 0, .00 = ‘0 _Z0
Yoge tVoaFtae Wt 1 TR TR Yos T > (320)
2u U ap v v u2 *
oY1 1 0 0 Yo"
A T A 'Eah il |

The appropriate boundary conditions involve statements ragarding the
fact that the jet boundaries are streamlines and that the static pressure is
continuous across the slip lines. The upper and lower slip lines S, and S,=0
are given by

w
il
[

o

n - gle) - by (&)

1"
e

= 0+ dyle) + 1 (8)

w
|

where symmetry has been assumed to leading order.

Based o the foregoing discussion, the condition that jet boundaries S
are streamlines is

q.v5=0
where § = (qg,qn). Substitution of the expansions (30) into this relation gives:
VolEsbg) = by(€) uglEsby) (33a)

VolEsby) = -by(E) ug(g,-by) (33b)
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Vo(Esbg)b au
0 0°°0 0
Vl(Cst R N + b]bb —BT]T (E’bo) (Esbo) + ul(g’bo)b(‘)
avo
- bl ja-n‘i-‘ (Enbo) + bluo(ﬁybo) (33C)

Ju
P PR« [] —Q 1
v]_(g"bo) - R + blbo an* (Ev'bo) - ul(gn'bo)bo

av
0
+ bl W (E»"bo) - bluo(E»‘bo) . (33d)

The other conditions involving continuity of pressure are:

Péﬁz(e)
PolEsby) = ar-aml q,(€) (34a)
BPO
pl(Est) = - bl(ﬁ) 'a'n—* (Eabo) (34b)

where we assume for the present argument that the external pressure field Pézz
is prescribed, Similar pressure conditions hold for the lower slip line
boundary. 1If § is a characteristic flow deflection angle of the order tc the
airfoil thickness or angle of attack, then t << § has also been implicitly
assumed.,

Solutions

First Order Theory

th

We introduce the zero-"' order stream function given by

2&:.. a -
3 Vo 'a%f Yo

and employ the following transformation for the independent variables

(sn*) + (&59) (35)
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Under (35), the differential operators map as follows:

3.3 _ ., 3
3 3E 0 3y
3 .y o
n* - Yoy

su ou v

0 0 0 _
2 " Vosy tlYoay 0
U
5% =0
Jo__ap
R I

The general solution for Eqs. (36) is

= U0(¢)

(=
o
f

A
k(g) - ‘) dy'
Po = (&) - w5y éuo(w) ¥
Volesw) = b'(g) uyly) »

k(g) is the pressure on the centerline,

JErp—————————" EEES P
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(36a)
(36b)

(36¢)

(37a)
(37b)

(37¢)

The reference (centerline) condition

(vg(£,0) = 0) or the conditions at the edges of the jet (Eq. (33b)) show that

0
paraliel flow profile ug = f(n*) at £ = 0, we have

*

n
g = é f(n) dn .

Therefore, ug = f(n*(y)), and
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(£24) = K(2) - pre ['F (n*(4)) d
Polesw) = E"p_'("g)'é n*(v)) dy
1 2 .1 Lo
= k(g) - ¢ g fodn* = q (g} + ¢ f*f dn* (38c)
n

1
) 1 (g2
(k(g) = q, + ¢ r{*f dn*) .

Discussiori

Equations (38) describe a parallel flow je*., The total jump in
pressure across the jet from (38¢c) is

1
[og] = polesd) - PylEs-1) = - & I £2(n*) dnt (39)

which agrees with the Spence model. It should be noted that in contrast to the
latter, no assumption regarding irrotationality is required to obtain (39),
which is also in contrast to the results of previous workers. The radius of
curvature of the jet is approximately R upstream of the trailing edge, which in
turn is approximately given by that of the blown upper surface. Downstream of
the trailing edge, R is determined from applying (39) to the determination of
the flow outside of the jet. Upstream of the trailing edge, the wall pressure
is determined by (39), since R is known and is given by

2 1o
p(g,-1) = q () + g é fo(n*) dn* . (40)

In Ref. 6, the appropriate second order theory corresponding to the
expansions (30) are derived. Also indicated are various noruniformities that
can occur, such as those near the trailing edge. These reveal the need for other
expansions in the neighborhood of the nonuniformities.

Also in Ref. 6, a small deflection specialization of the previous thin
jet theory is considered. Therein, a systematic patching procedure is utilized,
employing a "blending layer" at a vertical distance of the order of the slip
line and airfoil deflection angle § as § + 0, The blending layer has been used
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to validate the usual Taylor's series transfer of boundary conditions employed

N to define the outer fiow. A treatment of similar blending layers is discussed
Eé )\ in Cole23 in connection with incompressible flows around unblown bodies of
5

revolution.

3.2,2 Trailing Edge Behavior

Incompressible Flows

Rl TN AR Y 2R

Defining the complex potential function as

N F(z) = ¢(x,y) + ip(x,y)

L where (x,y) is the local coordinate system shown in Fig., 34 and z = x+iy, the

1 local "corner flow" solution to within a dimensional multiplicative constant in
the lower external region A'0B where g and v are the dividing streamline and
trailing edge angles shown is given by

L £ o emin(rh)/8 juls (41)

which implies that the square of the resuitant velocity q is

|Pﬁ=q2~¥%'l) : (41°)

IR
RNt

The initial conditions for determination of the jet, which follow from the
requirement that the pressure and flow angle be continuous across the dividing

o e i Y
e

“e

. streamline near the trailing edge, were studied for incompressible flow.

5; Referring to Fig. 34, with the dividing streamline denoted as 0B, we signify the

%i trailing edge angle as v and the angle that OB makes with the upper surface A0 as w
%i and that with the lower surface as g. The details of this discussion are given

%? in Ref. 6 which shows that w = w and 8 < = is the only viable possibility if the

%é stagnation pressure PS above AOB is greater than that helow it, which is

A
e

signified by PB, where + and - superscripts signify conditions above and below
the slip line AQB, respectively, and 0 refers to stagnation conditions.
Denoting u as the flow speed along the slip line, Bernoulli impliies

o

PR

&

£k e
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H + 1/ 2Py - Po)
) z u = 5 *
i
% Here also, u™ = 0. These results quantify the slip.
% T If, on the other hand, PS < Pa, then w < = and g = « is the only
;% possibility with
! —
& . ) 2(Py - Pp)
£ v - 00 . -0 .

e

7 e

For a hypothetical case in which Pa 5 PS in a real physical flow (fluctuating
above and below equality), then a tri-stable configuration could evolve which
would oscillate between configurations in which the dividing streamline is tan-
gent to the upper and lower surface or bisects the trailing edge angle. Similar
arguments have been applied to treat the conditions of the stream sheet at the
trailing edge of unblown incompressible three-dimensional wings in Ref, 24.

o> ieenars g
SRR e SN
a

Nonuniformities of Second Order Approximations

From (41), we find that another nonuniformity associated with second
order solutions discussed in Ref, 6 is related to the following behavior

i -
: q ~ P(21/8)-3  ag r a0
i
_g where, we distinguish the following possibilities as ¢ » Erg
# (1) q)»=,8>5"0rv <y
) (i1) q' >0 ,8< % orv> X
& u ’ 3 3
%r
?4 ) (i1i) q' finite 20 , g =2%or y = 1
éf Gy ’ VT3 o
¥ . . . . . . .
§§ Case (i) is the most practical situation and will necessitate an inner solution
g? for the transition layer to join the wall and free jet flows. This aspect is
%g% discussed in Ref. 6., For the jet structure considered here, we briefly
§§§ investigate the vorticity which can be shown to be given by
s "\j
2 93
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= 1“3/2w0 + T-l/Zwl + +ee, where as an illustration, if uy = C, then,
u
=0
09 = 5% = 0
u
21 0 _ C _
O TS TR RO C constant # 0,

Because of the constant initial velocity profile, a non-zero vorticity is intrc-
duced by the body curvature. By contrast, a potential vortex over a circular
cylindrical surface would have had a linear initial profile to produce an

irrotational flow. Note for arbitrary initial profiles, uO(O,n*) = f{n*) and
thus, wy = f'(n*) # 0.

Compressible Trailing Edges

Consider again the configuration of Fig. 34,

Here we analyze first the
case where

+ -

With the usual isentropic r:lation

+

- Y=
= [1 +'lZl MZ] » (P" = static pressure cn upper side)

9

the local Mach number, M, can adjust in a continuous way, so that the flow
recompresses smoothly from B to 0. At 0, M is single valued = Ml and adjusts
itself such that the static pressure P* equals Pa, in accord with the isentropic
relation, assuming that the flow stagnates at 0 on the lower side. The only way
this can be realized is with the w > n and g < n arrangement. In some respects
the configuration resembles flow over a solid wall expansion corner. This gives
rise to an expansion fan interacting with a sonic iine from the corner. If the
solid configuration were representative of this flow with the free boundary siip
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1ine, compression waves would reflect off the sonic line and form a shock
envelope which would be necessary to recompress the flow from an overexpanded
value be'ow the critical PI to the Pé level, Additicral reflections can be
produccd from the upper slip Yine CD. This discontinuous transition leads to a
multivalued pressure at 0. The continuous and discontinuous processes are
illustrated schematically in Figs. 35b and 35c, respectively. In Fig. 35b, the
recompression takes place on the line 80. In Fig, 25c it occurs on 00'0"0Q"
signifying the confluznce of multiple states at 0, Here, the dashed line

element 0"0"' signifies a shock jump., Experimental data strongly suggests that

uuoin the incompressible case, the configuration with ¢ = » and g8 < n is the
me: - probable situation, Presumabiy, a more rigorous argument to support this
conjecture would rely on same sort of stability analysis. Specific criteria to
determine whether the discontinucus or continuous configuration occurs in a
given case is an opan question that could benefit from further study.

For Pa = Pa, tha dividing str.amline would again bisect the trailing

edge, since the flow in the immediate vicinity would be incompressible and the
reasoning in the previous section would apply. For the improbable case of
t ¢ Pa, the confiquration with w < n and g = = wculd be applicable as for the

0
incompressibie situation,

P

External Flow

For distances large compared to the jet width, the “ine structure of
the jet is important only insofar as it provides matching conaitions to the
irrotational “outer" flow field., In incompressible flow, this external outer
flow can be determined by thin airfoil theory. At transonic speeds, small
disturoance theory is appropriate for this region. Details of the asymptotic

matching procedure have been discussed for incompressible flow in Rei. 6. Based

on these developments and the earlier ones for thia jets in this paper, the

boundary sonditions for the outer flow in the incompressible and transonic c:-us

for the jet flap and upper surface blawing are now .ndicated,
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Jet Flap ’

Referring to Fig. 36, the equation of an airfoil can be given as

y = 8f(x)
and the jet is
y = 69(x)
where § is the thickness ratio of the airfoil, and f is the upper or lower surface

and involves the angle of attack which is assumed to be of the same order of
6. Considering a small disturbance approximation, we obtain

2
-l - gi%' 77 - 69"
o] e

Letting the "outer" 2xpansion pressure coefficient be represented as

ozt

P-P

T = )+ e

then by virtue of a gereralization of (39)
Cp(x,0)] = - C;9"(x) = - 2[4,] (42)
where
T
C; = <;f q2dn> /oUZ = 0(1) (43a)
j 1 E =

and ¢ is a perturbation potential.

Equation (42) is the relation used in conjunction with the jet tangency
boundary condition
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(43b)

¢y(x.0) = g'(x)

PR —

and the airfoil ‘boundary conditions to determine the external fiow field. These
relations coincide with the relations derived by Spence. They can be generalized for
transonic flow by placing the p inside the integrand in (43a).

Upper Surface Blowing
To treat conditions on the blown part of the airfoil, Eq. (42) can be

applied by approximating the radius R by (f")‘1 to obtain the wall pressures,
and by using the airfoil and jet boundary conditions to determine the upper slip

line jet pressures.

From the thin jet theory derived earlier, it can be seeh that rotation-
al flow produces the same pressure jumps across the jet in the dominant approxi-
mation as the irrotational Spence models. Correspondingly, it can be shown that ;
to within factors involving the density, qualitatively similar results are cb- |
tained for transonic flow. Another important aspect of the asymptotic represen-
tations derived here is that they lead to higher approximations for the struc-
ture of the jet and external flow which can be systematically obtained.

Finally, the analytical solutions described above in Ref., 6 allow the systematic
assessment of the effects of initial vorticity and skewness which are inacces-

sible to other theories,

3.2.3 Results and Discussion for Transonic Upper Surface Blowing

A successive line overrelaxation (SLOR) scheme within a Karman Guderley
framework has been used to compute the flow field over an upper surface blown
afrfoil. On the blown portion, the jump conditions across the jet are deter-
mined by the asymptotic results given in previous sections, i.e., Eqs. (42) and
(43b). Providing that the region is not too close to the jet exit or trailing
edge, the streamwise gradients can be neglected in the entropy and velocity com-
ponent parallel to the wall, Away from these regions, the pressure gradient
perpendicular to the streamlines :s balanced by centrifugal force, For the
region near the jet exit, these assumptions become invalid, Here, the scale of
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the gradients in the streamwise direction becomes important, principally due to
the influence of wave interactions with the slip line, Similar fine structures
occur near the trailing edge where the flow can stagnate on the unblown side,
depending on the ratio of the stagnation valuec above and below the dividing
streamline, For incompressible flow, the previcus sections have discussed the
tri-stable equilibrium at the trailing edge corresponding to the value of the
stagnation pressure ratio, which leads to the dividing streamline leaving tan-

‘ gent to the upper surface if this is greater than unity. Consistent with the
previous discussion, the appropriate generalization to transonic flow was as-
sumed also to be this arrangement for a single valued pressure without a shock
in that location., This assumption has been altered to assess the sensitivity of
o the flow to ke dividing streamline angle. 1In this connection, surface pres-

( sures for the dividing streamline bisecting the trailing edge angle (as it would
in incompressible flow) were compared with those for the tangent arrangement,

Based on these studies, significant differences are anticipated only for large
| incidences and trailing edge angles.

vV RS LA R R uRe Y

Typical results obtained from the computational model are shown in
Fig. 37 in which the flow over a thick airfoil designed at Rockwell's Columbus
Aircraft Division (CAD) was analyzed with the SLOR code. Here, the pressures
for various values of the blowing coefficient, Cj, are compared with those
L for the unblown case at a freestream Mach number M_ = 0.703 and angle of attack
’ a = 0° Substantial 1ift augmentation is evident for biowing. Also evident is
the associeted rearward motion of the shock with increased blowing and sectional
loading as if the incidence is increased.

Further parametric studies are provided in Fig. 38 which indicate the
effect of parallel displacement of the slot Xj (in units of the chord), on the
chordwise pressures. Three positions of the slot Xy = 0.5, 0.65, and 0.8 are
shown, No systematic trend in the blown pressures is exhibited on this airfoil
with downstream slot movement for fixed C;, Evident, however, is a slight in-
tensification of the terminating shock with slot downstream moticn although its
position remains unaltered., Despite the limitations of the model to describe
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the fine structure of the jet exit region, a small suction peak which has been
observed in experiments is exhibited in this vicinity for Xy = 0.5. In Fig. 39,
the corresponding increase in 1ift coefficient C| with slot downstream movement
is also shown, as is the increase in the size of the supersonic region.

L

g

R

vl

CT".?'

In Fig. 40, the increase of 1ift with blowing coefficient as well as
size of the supersonic region is quantified.

FALIBEL

Tests of the adequacy of the foregoing model to simulate realistic tran-
‘ sonic USB airfoil flows have been inhibited by the lack of suitable experimental
i data. Information exists only for highly three-dimensional configurations,
N ‘ large thickness, or incidence in ranges beyond the validity of the assumptions
N ‘ of smail disturbance theory, Another restriction is the unavailability of the
associated geometric data and flow diagnostics accompanying the tests. The
results of Yoshihara25 and his coworkers were useful in this connection and

A )

allowed us to compare the jet flap specialized version of the USB theory with
the data in Ref, 21. For the simulations described in this paper, tests per-
formed by N.C. Freeman at NPL on a USB modified 6% thick RAE 102 ajrfoil, and
described in Ref. 26, appear to have the most suitable results for comparison at
present. Unfortunately, the angle of attack associated with the NPL data is 6°,
which is marginal for the application of a small disturbance model.

ra

Figure 41 indicates comparisons of chordwise pressures for various
values of Cj. Also shown are schlierens, indicating the associated flow field
structure. Turning to the C;=0 results (Part (a)), massive shock induced sepa-
ration is indicated and is apparently initiated at the downstream 1imb of the
lambda shock on the upper surface., This is reflected in the classical erosion
F of the suction plateau and is responsible for the indicated disagreement between
& the inviscid computational results and the data., For these tests, nominal tan-
gential blowing with a slot height of 0.07% of the chord was used. The slot loca-
tion is 15% downstream of the nose., The Mach number M immediately above the slip

[

FaE T v AR e e T O R S

e
e

§ line at the slot is approximately 1.29 for both Cj's indicated. For Cj=0.017, the
% slot Mach number M, has been estimated as 1.79 and for cj=0.048, Me ~ 2,36,
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Fig. 40 Vvariation of CL and criticality of CAD USB airfoil with blowing
coefficient, M) = 0.703, a = 0°, x; = 0.65, N = number of supersonic
points.
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Comparison between theory and «xperiment in Part (b) of Fig. 41 indicates
? reduced discrepancies on the upper surfece associated with the limited separa-
tion. In Part (c), the agreement is correspondingly further improved.

To achieve adequate realism, it is important to discuss factors respon-

sible for the disagreements. One feature not captured by the USB simulation is

) the pressure spike at the slot location. Based on the slot size, the streamwise
scale for this phenomenon is at least an order of magnitude greater than the
characteristic wavelength of a Mach diamond pattern in the wall jet. These
fluctuations may not be resolvable with conventional pressure tap arrangements for
the thin slot employed in the tests. If a rough model of a coflowing inviscid
supersonic wall jet over a flat plate is used to describe the flow near the slot,

§ the approach to a final steady state may be damped oscillatory or monctone, depend-

: ing on whether the reflection coefficient R which is given by

_ Al
R=2p (44)
where
: A= Mg/M2g, , g=/MT-T , g+ /M

is respectively positive or negative.

PR
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The relaxation length L to achieve the downstream pressure in units of

%é the exit height is of the order of g¢n R, which can be approximately 5 to 50 in the
7; ) present case, depending on the accuracy of the estimate for Me' Note in this
connection that

M2

1 R<Ofor l<Mc—,and M <M w
E: Be e
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b R>0 for—<McM .
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For the submerged case, R » 1, (Me >> M), and the Prandtl periodic pattern is
obtaired, with no radiation of energy to the external flow.

These facts suggest that one factor that may be responsible for the
observed spike is the internal decay process in the jet. If transonic effects and
wall curvature are accounted for, the presence of "ballooning" and throats in the
jet may also be contributory. We have discussed such phenomena in connection with
submerged transonic wall jets in Ref. 5 and earlier in this report and have
reported analogous results for the coflowing case in previous sections. Selection
rutes in terms of M, and M for the existence of throats in the jet near field have
also been given previously and are based on an integral form of the Karman
Guderley eqtation. A rough sketch of the wave system that could explain the
spikes in Figs. 41b and 41c is shown in Fig. 42. Yet another phenomenon that would
have a similar wave pattern would be a slight upward motion of the jet due to
viscous mixing or a misalignment with the surface tangent at point A.

Turning now to the discrepancy of the values shown on the rear surface
(downstream of 0.5¢) in Fig. 4lc, we note that in spite of the obvious elimination
of separation, a thick viscous wall jet is present, Downstream diffusion will
affect the applicatios of the Spence relation on the blown portion as well as the
shock jump. In view of the wall jet thickness shown on the schlierens, this
factor appears to ve more significant than shock obliqueness at its foot, A near
term refinement beiny implemented employs a coupled inviscid-viscous model which
uses second order Loundary layer corrections to the Spence boundary conditions
accounting for axial gradients of the displacement and momentum thickness. Once
these refinements are incorporated, systematic optimization among separation
suppression, wave drag minimization, and supercirculation control will be
possible, It is envisioned that the design techniques contained in Refs, 27-29

will augment this capapility by providing methods to modulate shock formation in
concert with the blowing etfects.
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Fig. 42 Inviscid wave pattern associated with slip line ballooning and jet
throat formation.
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S 4.0 VISCOUS EFFECTS

g
4 2
§ 4.1 Preliminary Remarks

; . A schematic of the blown airfoil is shown in Fig, '3, where the shaded ,
% region indicates the boundary layer and wake, P is the stagnition point, and S is i
§ the slot location. In the research performed, a computational model has been de-

; ‘ veloped to treat the wall jet, wakes, and houndary layers, which without loss of ;
f generality have been assumed laminar, For treatment of the latter, integral

\;. methods have been discarded due to their highly empirical nature, lack of con-
f sistency, and questionable applicability tc blowing cases. In fact, despite the

§ unavailability of general arcuracy criteria, it is well known that even for un-

g blown incompressible decelerating laminar flows in adverse pressure gradients,

30-32 produce results

integral methods such as those due to Pohlhausen and others
that are increasingly inaccurate as the separation point is approached. For pur-
poses of the present tangential injection study, this limitation is unacceptable, :
On the other hand, full elliptic Navier-Stokes solvers such as those employed by '
Diewert33 have not been selected at this time because of their lengthy computational

nature and associated need to resolve grid generation issues peculiar to the

present blowing problem. By contrast, we believe that the most appropriate model

is a zonal one, in which the inviscid region is treated by an iterative scheme such

as Murman-Cole SLOR or any of the more modern techniques, and the viscous regions

are treated by some parabolic solver such as Keller's box scheme.34 A somewhat more
sophisticated approach involving a parabolized or thin layer Navier-Stokes algorithm

represents a future direction for refinement. The utilization of a finite differ-

ence approach for the viscous layers avoids the need for assumption of velocity

profiles as in the integral methods., This is particularly crucial for tangential

injection that carries with it the possibility of multiple extrema, overshoots,

and exponential rather than algebraic decay of the wall jet velocity profile to

the freestream levels.
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Referring to Fig. 44, a viscous module has been developed to described

the boundary layers in Regions @ s @ s @, @, and theblown wall jet @ In
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a later section, preliminary results fora mecdule for region (:) will be dis-

cussed. Zones (::) and (::) are in the vicinity of the nose and are especially
important to treat properly in the small disturbance context of our effort., The

correct synthesis and treatment of the small disturbance singularity near the

stagnation point will be discussed and has important implications regarding the

boundary layer development in (:) and (::). Thus far, numerical investigations

suggest that the precise flow details in (:) and (:) are, however, not decicive
in their influence on the global structure of the field, in particular, the role

of blowing in delaying transonic separation,

On this basis, a rough model for the nose region combining the essential
features of incompressibie stagnation point flow, and further downstream, small

disturbance singular behavior, was impiemented. More precise simulations

involving asymptotic and computational matching of the aforementioned singular
solutioﬁ as an inner limit of the Karman Guderley outer flow and a full potential
flow over a parabolic nose appropriate to finite curvature airfoils have been
developed by K. Kusonose in a Ph.D, dissertation supervised by J.D. Cole.35

This solution is appropriate for a more accurate description of the inviscid edge

conditions of the boundary layer. A further refinement is to incorporate these

boundary conditions in a compressible viscous stagnation point flow matching with
the boundary layer.

4.2 Implementation and Results

By using the previously enumerated concepts, a laminar boundary layer module

has been constructed based on a generalization to tangential blowing of the box
method of Ref. 34. Results have been computed by coupling this element to the
inviscid framework previcusly discussed to provide a blown boundary layer
algorithm, Formulational details are given in the appendices. Specifically,
Appendix A delineates a laminar Tramework, in which the normal coordinate is
written as a Blasius like variable which is advantagecus in resolving the steep
gradients and treating the singular flow n=ar the nose. Appendix B describes
special procedurss implemented at the nose that are required to properly interface

with the smail disturbance inviscid part of the flow. In Appendix C, a derivation

of jump conditions across blown wakes according to matched asymptotic expansions
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L is given, These relations are of importance to future efforts on characterizing

i i; viscous modifications of the external flow.

v N

§ ‘ Briefly, for the results to be discussed, a finite difference algorithm

§ . based on the compressibie boundary layer egquations was used, Furthermore, a unity

b Prandtl number, Chapman gas with constant density viscosity product across the

§ boundary layer, and insulated wall was assumed. With these assumptions, an

integral of the energy equation implies that the stagnation enthalpy in units of
its value at the boundary layer edge, E, is a constant = 1 across this layer. The
momentum equation is thereby decoupled, Thermodynamic variables such as the
density in the layer can be calculated from the boundary layer assumption of
constant pressure across the layer and E = 1, These observations lead to the

s following momentum equation for the normalized velocity f' in units of its

’ boundary layer edge value:

TR

(STt

1yt L) 1) 4 f !
(bf")' + m ff* - m,f 2 4 m ¢ = ™o [f %;u - f-gil (1)

1 2 11 X

where the coefficients (defined in Appendix B) are related to the external
pressure gradient, primes refer to partial differentiation with respect to ¢, a
scaled Blasius coordinate in a direction perpendicular to the parallels to the

k) airfoil, The quantity x refers to the coordinate along the parallels as shown in
Fig. 44.

g Figure 45 depicts a NACA 0012 airfoil, with a smoothed small

~f disturbance SLOR chordwise pressure distribution on its upper surface for M, = 0.7

i and o = 3° as a basis of illustration; typical results, shown in Fig, 46,

. indicate the streamwise evolution of velocity profiles upstream of the slot and
uncorrected for viscous interaction effects on the external flow field. Despite
the rather severe adverse pressure gradients, particularly those associated with
the nose singularity, and their significant influence on the source term in the
momentum equations as the coefficients of the reduced form in the Blasius
variables, the box scheme is robust enough to treat such variations. For the case
at hand, the loss in fullness in the profile resulting from the adverse pressure
gradient is evident, Associated decreasing wall shear stress is also apparent,
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Regarding the influence of slot blowing, Fig. 47 shows evolution for the
same airfoil of the profiles downstream of a slot located at x* = 0.2 in which
(x*,y*) refer hereinafter to Cartesian coordinates erected at the mean camber line
in the usual way. For the examples selected, an initial parabolic slot profile
was utilized, in which the velocity function at the slot station x* = x; is given

by
4
u J*
w T f! (xs,c ) = - Alg c;d)r, » 0<g gy (2a)
g/ .
A = .[n.g-x_ = +
- “"‘2"‘ s 4 4 §d
td
and for the range of .* above the slot lip,
* * * * *

f|(xs+:C ) = f'(XS-,L; ) ’ Cd (g = (Zb)
where the solution which had been marched from upstream to the slot location is
assumed to have a continuous velocity component at the siot (excluding the
pathological case of shocks at the slot location),

From (2a),

Ar* *2
—§-—+A;d£,z-,0<;*<;d (3a)
3
i Acg
1 f(;d) = "'6_ . (3b) *

For more general slot profiles in which

*x % * *
frixgse ) = F'(g) , 0<g <gy ,

the blowing coefficient = CJ =-—Ji?—- » where J = momentum flux/unit span,
¢ = chord is given by Pl C
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i ‘,‘;‘ CJ =\/ ﬁé—é F'%°(c )dg ’ (4)
i «
> *
;’ where Re_ is the freestream Reynolds number based on the chord, and XsL is the
streamwise position of the slot in units of the chord. Actually, (4) is an
approximation to within terms of 0(52/3). In (4), the quantity g4 is given by:

i d /3 R
| T T e (5)

Xs

A DT e

i where d is the dimensional slot height and p is the mean density across the slot.

For the example indicated in Fig. 45, the slot was located at 20%

! chord, very close to the onset of separation, which occurred at 27.6% chord for
C this case. It should also be noted that the location of the shock which had

; 1 been slightly smoothed for purposes of initial checkout of the algorithm (which
' can handle non-smooth cases) is at about 23% chord. The characteristic diffu-
sion of the profile associated with mixing of the jet is evident in the figure.
More significant and not clearly indicated (but shown later), is the fact th::
the separation point has now been moved downstream to 79% chord. Other calcula-
tions show that with modest further increases in g4, separation can be complete-
1y eliminated, (Note in this context that the peak velocity for (2a) is Ac§/4.)

; In Ref, 36 the corresponding profile development for an "underblown"

% case, where the peak is less than the freestream value, is discussed., Relaxation
i to a conventional profile occurs as previously. However, this blowing
configuration actually results in premature separation, compared to the case

of no blowing, This is indicated in Fig., 48 where the effect of blowing on the
1 separation point location is shown. Despite the initially higher shear stress

’ at the slot in the underblown case g4 = 1, A = 2, the higher vorticity diffusion
and lower overall mementum in the layer leads to earlier separation which can be
seen as the leftmost solid circle in Fig., 48. This level should be related to
the unblown result shown in dashed lines in the same plot. Moreover, the case
tg = 2.65, A = 1, moves the separation point substantially downstream to almost
80% chord. Other cases are shown in Fig. 48, such as the one corresponding to
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the slot position at approximately 11% chord., This demonstrates the dramatic
role of the slot location and upstream boundary layer thickness in delaying

separation; where for the same slot height, the upstream slot location gives an
atmost trivial downstream movement of the separation location, in contrast to
the potent effect of the downstream slot position,

|

i The results of Fig, 48 can be replotted as in Fig. 49 to show the

l trends as a function of a momentum flux parameter which is proportional to Cj.

; By Eq. (3), )= (xSL/Re)ll2 A2¢3/30 for a parabolic profile. For the case at

hand, according to Fig. 39, an A2c3 = 200 represents a value sufficient to drive

| the separation point to the trailing edge. For Re = 106 and E)/p°° = 1, this
inplies that C, = 3 x 107>

T R L e F e, WRE v e

, a value that is surprisingly modest in view of the
ease in which laminar boundary layers separate and the typical turbulent values of
C, associated with transonic experiments. These values which are betweeen 0,01
and 0.1 are selected to be large enough to provide significant supercirculation
enhancements. Returning to the example calculated, Eq. (4) indicates that the
slot height d/c = 0.9 x 10'3, corresponding to a by ® 2.5. For the limited

number of cases run, there is a suggestion in Fig. 49 that the curves of Fig. 48
collapse to a single universal band of results. In view of the roles of the

pressure gradient, and the multiple extrema in the velocity profile, this
assertion must be regarded as tentative at best, pending more extensive
parametric studies., What is significant, however, is that for the first time,
the delay effect of tangential blowing on natural and shock induced separation
over transonic airfoils has been inexpensively quantified.
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5.0 WAKE STUDIES

5.1 Formulation

To obtain the wake structure, Eq. (1) of Section 4,2 is solved by using
"initial" conditions at the trailing edge from the boundary layer solutions
obtained with our parabolic solver upstream. In contrast to the no slip and
asymptotic conditions required to complete the formulation over the airfoil, the
wake requires the following conditions to be fulfilled:

£1(X,40) = 1 2 (1a)
x>1
£(x,0) = 0 s (1b)

where x=1 is the location of the trailing edge.

Note that the zero argument in (1b) is a consequence of Prandtl's
transposition theorem, where the boundary condition on the dividing streamline
can be replaced by those at any other convenient location, e.g., ¢=0.

With the Box Scheme, Eq. (1) gives a three point boundary value problem
for an inhomogeneous ordinary differential equation formulation based on the
parabolic partial differential Eq. (1) of Section 4.2. With pivoting strategies
to avoid singular matrices such as those developed by H.B. Keller, the iterative
inversion of the associated block matrices can be achieved to satisfy (ib)
directly. For coding expendiency, we have, however, elected to replace direct
satisfaction of (1b) by an iterative approach, in which we introduce an
eigenvalue y for which

fxy-=) = y(x) .

In our method, the quantity y is determined iteratively so that (1lb) is
satisfied,
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R Numerical Details
'é On the upper and lower surfaces of the airfoil we solve the momentum
- equation (Eq. (1) of cection 4.2) with boundary conditions
5 af ,(x,0) of , (x,2)
5 Fulxs0) = == 0, —n— =
;é and fz(x,O) = afz(x,o)/an = 0, afz(x,-w)/an = 1 on the upper and lower surfaces,
! respectively., For x = xyg, we form the vector
< t,(x)
, i
. F(x) ={ "
g ?,(x)

.

3 [N

el S

FUAMN

where ?u and ?2 are the discrete solution vectors obtained from solving the
momentum equation. For x > xyg, we continue to solve this equation with initial
conditions F(xTE) and boundary conditions F(x,-=) = y(x) as well as

af LR
Eﬁ(x"”) = an(x, y=1 .

Here, y(x) is selected in a Newton-like iterative scheme to ensure that
F(x,0) = 0, i.e.,

(n+1) _ _(n) F(x,0, (n)
Y =y "3 n
37100,
where the superscript is the iteration counter. In practice, we approximate the '

derivative by

(n) (n-1)
F F(x,0, - F{x,0,
Fxon ™) - 22 YY(n} . Y((:-IYY L

-

One computational difficulty encountered was that the initial condi-
tions F(xTE) were not smooth enough to guarantee convergence, Accordingly, a
spline least square smoothing algorithm was employed to obtain smoother starting
conditions,
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5.2 Parametric Studies

.

Using the formulation and computational procedure described in the
previous section, we performed a series of studies of the wake structure
behind a tangentially blown wake. A blown NACA 0012 airfoil at M_ = 0.7
and o = 3° was investigated, in which tangential blowing was introduced on the
lower as well as the upper surface at slots located at 21% chord. The pressure
distribution on the latter is shown in Fig. 45, Blowing on both surfaces was
required to maintain attached flow to the trailing edge in view of the adverse
pressure gradient associated with the (smoothed) shock recompression indicated
in Fig. 45,

In Fig. 50, a typical streamwise evolution of the velocity profile u/ug
downstream, including the trailing edge, is shown, where Ug = the external
velocity = U the freestream value. The slot height ;4 is expressed in terms of
the Blasius variable. If u, is the velocity at the boundary layer edge, the
peak velocity parameter A for a parabolic velocity profile at the slot where

_ u 2
A= i4 (Tnax at slot]/cd

was assigned the value 3, The other parameters for this case are indicated in
the caption of this figure. Diffusion to the symmetrical bell shaped profile is
evident in the figure, Actually, this shape was achieved as early as x = 5.96
for case 1 (not shuwn), In spite of the rapidity of this relaxation in view of
the considerable initial asymmetry, the viscous interaction process could be
sensitive to the details of streamwise profile evolution in the transition
phases,

In Fig. 51, the peak velocity (u/ue)max as well as displacement
thickness § and momentun thickness ¢, inunits of c//KE; where ¢ = airfoil chord
and Re_ = freestream Reynolds number, are shown. By contrast to the classical
submerged jet studied by Schlichting36 and Bick]ey37 for incompressible flows,
the momentum thickness in this coflowing case is strongly affected by the
external pressure gradient and has a significant decay for the first 3 chord
lengths downstream. Thereafter, this parameter remains almost constant as in
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Fig, 50 Streamwise evolution from trailing edge of wake velocity profiles for
NACA 0012 airfoil, M = 0.7, a = 3°, blown tangentially on upper and
Tower surfaces at siot position xq_ of 21% chord, peak velocity
parameter A = 3, normalized slot ﬁeight gy = 2.5.
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Fig. 51 Streamwise evolution from trailing edge of peak velocity and
displacement and momentum thicknesses for case of Figure 50.
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the submerged case, in spite of the external stream. (As an approximation to
obtain these results, the pressure coetficient Cp at the wake edge calculated
with an SLOR solution* has been extrapolated downstream by using a monomial

fit Cp = AxB.) Correspondingly, the displacement thickness relaxes to a similar
invariance more quickly, as indicated in Fig. 51.

It was of interest to compare the bell shape profile to an asymptotic
flat plate wake soiution. Strictly speaking, this comparison is ¢nly of valid-
ity when the reduced perturbation velocity is small, Although this is not the
case at the streamwise stations under consideration, we study here the extended

validity of this behavior, from the viewpoint of experimental and theoretical
interest,

Denoting the perturbation velocity (u - U)/U as u’, where U is the
freestream, we define ¢' and ¢ such that

f'' =1+uvu”

nt

1+ €3 , (e + 0)
f=n+eq
The momentum Eq. (1) of Section 4.2 specialized to this laminar case which is
" ff" v of! w of
f t—y- = X (f N f 3;) (2)
where the coefficients in the original equation have taken on limiting values in
the asymptotic nearly zero pressure gradient flow reduces to the linearized form

! nogn a_g..'.= = 3.
9" 4z 9" -xgm=0 0 (=) (3a)
with the boundary conditions
g(0) = g'(=) = ¢g"(0) =0 . (3b)

*Assistance of V, Shankar in obtaining these results is gratefully acknowledged,
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On the basis of the invariance of e and, correspondingly, the momentum flux J,
for large x where

J =] puzdy = const., (4)

with y a Cartesian coordinate normal to the freestream, p = density, the

. quantity g' has the following similitude
v _ 1
9 "7;6(“) o (5)
This leads to the weil known solution of (3) given by
) Ce-n2/4
g = . (6)

The effect of the finite size of the perturbation velocity u” is shown in

Fig. 52, where tne scaling of the peak velocity uﬁeak = egn(x,o) is indicated.
By contrast to {6), the numerical results suggest that uﬁeak ~ 'O'JOIO. If,

however, C in (6) is determined by matching with the numerical solution such as
shown in Fig. 53, or alternatively, u' is normalized to the peak velocity at

X

each x station, a strikingly good agreement between Eq. (6) and the computa-

tionally obtained wake profile is obtained, as indicated for the conditions
aelineated in the figure for the blown NACA 0012 airfoil,

Regarding these facts, we have also determined that Upeak - x~0:1885 ¢

x » » for the case at hand, in contrast to the Bickley submergad jet solution
where Upgst ™ x~1/3,  The slower rate of decay of the present coflowing jet
seems consistant with the reduced action of viscous dissipation associated with
the lower relaiive velocity between the jet and external flow. It should also
be noted that this trend differs from that discussed in Birkhoff's book38
regarding wakes with “"hydrodynamic seif propulsion” associated with self pro-
pelled objects such as boats or airplanes. For these cases, if no acceleration
gccurs, the thrust, T, is equal to the drag, D, leading to

J=fudy=T-D=0 . (7)

-0
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For such cases, it can be shown that

M= jm y2 urdy , invariant with x, (8)

The invariance (8) leads to a different similarity than for the Bickley
jet. For self propelled wakes, ujoq., ~ x‘3/2. The weaker decay experienced in
the present studies is associated with the lack of similarity arising from the
presence of two characteristic velocities, i.e,, that from the jet momentum, and
the other corresponding to the freestream, The latter boundary condition and
(4) impose conflicting requirements negating similitude. The other reason for

deviation from the self propeliled case is the fact that T > D in the flow being
computed here.

In future studies, two regimes will be considered appropriate to the
blown wakes considered. For T >> D, the blown wake can be considered as a
linear nonsimilar perturbation on the Bickley submerged jet similar solution for

sufficiently small x. For x » o, the wake behaves 1ike a classical flat plate
structure in which T - D is conserved.

Besides their theoretical significance, these considerations are of
importance in assessing the net thrust of propulsive wings in experimental
simulations, In addition, the asymptotic wake characteristics discussed here
will be employed in modeling the far field for the blown viscous interaction
problem in subsequent studies.
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6.0 CONCLUSIONS

During the course of the research program, a number of areas received
attention in connection with the study of tangentially blown airfoils. Par-
ticular empkasis has been placed on understanding the structure of compressibie
wall jets occurring in such flow fields. Modern relaxation methods have pro-

® vided an efficient means of analyzing the diversity of wave patterns arising in
these jets. For submerged transonic jets, with subsonic conditions infinitely
far downstream and a specified exit velocity profile, the following specific
findings arise associated with unchoked flow over a series of wall shapes,

° The Kutta condition on the nozzle rim can be satisfied merely by
requiring streamwise continuity of the potential across the rim as
a trailing edge for the flow. With the use of this procedure, the
numerical algorithm correctly tracks a Tocal singular solution
which has a square root zero and is locally harmonic in scaled
variables, providing the rim is not transonic.

° As compared to unconfined flows, the slip line boundaries create a
rapid decay of the disturbances, The functional form of the far
field perturbation potential is an exponential damped sine, similar
to that encountered for incompressible flow but different in that
its amplitude interacts nonlineariy with the near field.

. Analysis of the free jet case indicates subcritical monotone
¢ streamwise variations of the pressure for a subsonic jet exit, as
in linear subsonic flow.

RIS S

° Acceleration of the wall jet to criticality over convex walls is
accomplished by stream tube contractions and throats induced by
upstream influence of the turning.

~

IF IR TET AR bR TR RO A KR, G
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° The upper slip line of the wall jet becomes asymptotically
parallel to that emanating from the trailing edge infinitely far
downstream.

For this phase of the effort, as well as that dealing with coflowing jets, the
inverse methods reported in Refs, 27-29 appear to be an attractive means to
reduce wave drag and enhance thrust recovery by elimination of shock waves by
suitable wall contouring,

With regard to the investigation of coflowing wall jets, selection
rules have been identified for the existence of throats in the jets on the basis
of an integral theorem based on small disturbance formulation of a unit problem
involving a flat plate cowl. The latter has important features that are of
relevance to more complicated cowl geometries. For a slightly subsonic external
flow, with an embedded jet at nearly the same velocity and settling pressure,
approximately sixteen cases have been enumerated depending on the range of jet
similarity parameter, Computational results have validated some of these cases,
The information provided in this phase illuminates factors influencing the pene-
tration length of initially supersonic jets and the scales affecting overexpan-
sion spikes evident :n experiments over blown surfaces of propulsive wings,

In the portion of the study dealing with the complete problem of a tan-
gantially blown airfoil, asymptotic and computational simulations have received
attention in incompressible and transonic regimes. These analyses have utilized
models of the jet that are accurate in regions away from the nozzle exits and that
are capable of later integration of the results of the aforementioned basic
studies of coflowing wall jets appropriate to a local description of the exit
flows, For the more globally oriented inviscid blown airfoil models, the
analytical and computational models indicate that:

® In the thin jet smail deflection approximation, the pressure jumps
associated with the Spence theory prevail even if the flow is
rotational and compressible.
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Tiie asymptotic developments provided allow further systematic
refinements.

Effects associated with initial skewness and vorticity
inaccessible to other theories can be assessed,

For finite trailing edge angles, the dividing streamline leaves
tangent to the higher stagnation pressure side if upper and lower
stagnation pressures are not equal and at the trailing edge
bisector if they are.

Computational results obtained for transonic USB configurations
indicate significant enhancements of 1ifting pressures associated
with blowing.

Comparisons with experiment indicate the need for refinements
incorporating wave interaction phenomena near the jet exit as well
as viscous interaction processes in the downstream portion of the
wall jet.

Initial results characterizing viscous effects using finite difference laminar
descriptions of the flow fields demonstrate clearly that:

Substantial downstream movements in the shock-induced separation
point are achievable with application of tangential blowing. By
computational schemes, these delays can be inexpensively
quantified as compared to experimental methods.

The nropulsive wake at great distances downstream gives a nearly
Gaussian normalized velocity profile in spite of a lack of self
similarity which occurs in purely submerged or self propelled
cases, This result is of significance for assessment of rnet' thrust
in experimental simulations and theoretical far-field modeling.
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With the viscous module and the appropriate iterative coupling algor-
ithm to the external flow to be implemented in the near future, optimization
between separation suppression, wave drag minimization, and supercirculation
control will be possible, It is envisioned that the design techniques contained
in Refs, 27-29 will augment this capability by providing methods to modulate
shock formation in concert with the blowing effects.

On a more ambitious scale, which will depend on further developments in
current parabolic marching schemes and improvement and application of multiple
deck asymptotic models, future effort should consider blowing effects on:

. Strong shock boundary layer interactions with limited separation
near the foot of the incident normal shock and trailing edge

° Blowing effect on near wake curvature modification of viscous lift
at trailing edge and cowl lip

° Impact of shock waves in the jet on wall jet transition and
separation,
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APPENDIX &
DETAILS OF VISCOUS FORMULATION

T e 5
L B P vl

oy
o

Governing Equations

In what follows, the approach to treat the viscous regions of the flow
§ field will be described. In major raspects, the formulationa: aspects given

‘ here resemble those given in Ret. 3G. However, certain important details asso-
ciated with the blowing applicatior require special treatment., For a self con-
tained account, therefore, some of the unbiown formulation is repeated here.
Referring to the curvilinear axis system shown in Fig. Al, the boundary layer
L equations (which include laminar and turbulent cases) to be utilized to

N - calculate viscous zones are as follows:

!

RN 1 T
.

Continuity
? R v R
S-i(U)+37(pVh1)~0 (la)
%x-Momentum
E uu -8 _ 1 3p 3 ( M _ T
g %Iax""vay Apax * ay (W3y - euV) (1b)
X
; Energy
i uah , — o 2 ru oM, 1o (w2
g %laxﬂw sy S aybray t v (-5 gy () - oV TR (o)

where as a typical average, pv = pv + p'v', and as usual, the primes denote
fluctuations about temporal averages, Pr is the Prandtl number, p = density,
- u,v are velocity components in the x and y direction, respectively, H = total

*The appropriate eddy viscosity representations for the Reynolds stresses have
not been considered in this phase of the effort, but will receive attention
in later aspects concerning marching of the boundary layer downstream of
impingement points of shocks from the external flow.
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enthalpy, p = dynamic viscosity, and hy = metric, If in the x*,y* Cartesian
coordinate system shown in Fig, Al, the surface of the airfoil is given as

y = F(x*) ’
then the metric h, is given by

Boundary Conditions

The appropriate conditions for the solution of (1) consist of surface
constraints, ini.ial conditions, and matching considerations to the outer flow.
The surface conditions are given as follows:

Surface (No Slip and Adiabatic Wall)

u(x,0) = v(x,0) = 0 (22)
H
%Y (x,0) =0 . (20)

Initial Conditions

In Appendix B, a local nose solution is considered which is utilized to
start the solution in a manner appropriate to the parabolic initial boundary
value problem for Eqs. (1).

At the jet exit, x = Xp, referring to Fig. A2; an initial profile is
specified on the blown section AB. The data on BC is "inherited" from history
of the flow field which has been marched to this point from the boundary layer
and external flow through iterations between successive sweeps of some sort of
successive iine relaxation method or other inviscid solver. A key point is the
following: The solution of (1), subject to the initial conditions in ABC, char-
acterizes the mixing of the flow exhausting from the nozzle and the boundary
layer along the upper surface of the airfoil (ORC in Fig, Al). A similar treat-
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ment has been used to handle the mixing of the upper and lower streams in the
wake region downstream of the trailing edge and to establish the jump conditions

for the pressure.

These will be a viscous modification of the Spence jump con-

ditions developed from concepts of Preston and implemented by us (Refs. 5-7).

Matching with Quter Flow

are:

The appropriate boundary conditions at the edge of the viscous region

Tim u(x,y) = ue(x) (3a)
Y+
Tim v(x,y) = ve(x) (3b)
Y+
;im p(xs¥) = p (x) (3¢)

where the yuantities on the right side of Egs. (3) are effectively the inner
limit of the outer flow, i.e., if W(x,y) is one typical such quantity, then.
Ne{x) ~ 1im W(x,y). (e ~ external.)

yre

Transformed Problem

blown boundary layer problem indicated previously.

In this section, we generalize the procedure given in Ref. 2 to the
On introduction of

transformed independent variables

Ug 172 X
X =X, dg = R ody 5 = é hldx (4a)
and the dependent variables
= i‘k ] = - _a-& A
pu 3y ’ DVhl 3x (4bl
with
172
¥ = (peueuesl) / f(x;z) ’ (4c)
149
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; o ‘ the system (1) under the transformation (4) becomes
i
, "y u 2 . - LA 1
(bf")' + mlff + mzf myc = My [f X f X (5a) ‘
Y 1 v ] , of
(wE')" + wpE' +uy = myg (f ax - E a—x) (5b)

, where primes denote partial differentiation with respect to ¢, and

TSR R $ s, e e

P
f':L E:H ,b:c + 1 ,c:._?.‘.l._ C:—g.
ug ’ H; ( em) Peke P

i | g, = eddy viscosity (= 0 for laminar fiow)

e signifies conditions on the edge of the ovoundary layer

my = L1+ 51 e b (o) = 4 (1+m,) + 13 (/o)
1772 hug 3 7 ax ‘"PeHe T 7 2! TR Voqu, x lee

Pale
X
Sl-fhldx
0
S 3u
1 ‘“2=“‘h“”3‘“"§'
1 1%
1 s
1 m e
i 10 hl
: s, au
. .1 e _
| M1 uh, 5 "™
u ‘
u1=%,:<1 +e,§-§£;>, uy = mf ,ug = C—= (1 - pr7h) e
e
Here, dagger superscripts refer to turbulent quantities., Herein, it will be ’
: assumed for convenience that the Prandtl number is unity.

:
f
i
% 150
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‘i‘ Boundary Conditions
: The transformed versions of (2) and (3) are :
¢ j
% : £=0,f=f =€ =0 (6a) ;
8
|- (k=) » 1, f=8=1 . (6)
i In accord with the remarks given in Section 4.1, we have assumed in our studies

that Pr = 1, C = 1 (Chapman gas). An integral of (5b) satisfying these

; conditions is € = 1. In addition, we assume throughout that Ho = Vg where
- subscript = denotes freestream conditions,

Nunerical Procedures

The discretization of the system (5) appropriate to treatment of the
viscous regions will be indicated, These equations are written as a first order
system by introducing the new independent variables u(x,z), v(x,z), and G(x,z).
Thus, Egs. (5) can be written as ’

o (7a)
u' = v (7b)
(bv)' + m,fv +m (C_UZ) = myo(u B 21) (7¢)
| 1 2 1007 ax X
. El = G (7d)
, . oF of
| (u6)' + g + g =my (Wgg- G55 - (re)
% Using Keller's box scheme (7a), (7b), and (7d) become
, th - £
# -1
3 " Jun
¥ i- -1 _ o
R Vel .
g: 151

C3471A/jbs




$C5055,21FR
n n
E. - E.
: 'ﬁ'.""‘-J-1 = Gg_uz (8¢)

J

where we have averaged about the point (xn,;j_l,z). Using the box centered at
(xn_l,z,;j_l,z), Eq. (7c) is discretized as:

(V)] - (bv)§

n n n
hj + (ml)n_l/zfj_l/zvj-IIZ + (mz)n_le(C‘Uz)j_llz
n n-1 n-1 .n n 2
a2 Vi - )
(8d)
where
-1 n-1
(bv)73 - ()
ALY i n-1 2yn-1
Sp-1 " B = )1 2P0 = M) 1s2(e-uT)y ks

J
n-1 n-1 n-1 .n-1
- (mlo)n-llz (uj.l/2uj-1/2 + Vj_l/ij_l/Z)//kn .

Similarly, Eq. (7e) is discretized

(uIG)Q - (MIG)Q_I n-1/2 n
4 ¥ =5 (ug)j-142ej-1/2 + (myg)y.iy2
n n-1 n
. e (f5.1/2 - f52172) o112 Ei.i2 | .
j.1/2 LA - 2 T |7 e
(8e)
where
152
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n-1 n-1 n-172 n-1/2

o t _ (“IG)J‘-I = (ulG)j , )n-IIZGn_l N (U3)j_1 = (U3)j

3 n-1 - h. T \M2ljl1285.102 .

o J J

%3 = () 2un-llZEr}-l . Gq-l (fn _¢h-1 1 /x .

% . 10/n-172 j-li2%j.172 j.112 Ujalrn2 j-1/2 n

v;‘%5

§ 1 ¢ The boundary conditions for system (8) are

2

?\

9 n_ n_ no_

S fo=uy=0 uy-=1 (9a)

- n n

HO Gy = 0 E: =1 9b

Note that (8c) and (8e) form a iinear system which is decoupled from (8abc).
Therefore, we first solve the nonlinear system (8abc) with boundary conditions
(%a). Then, we solve the linear system (8de) with boundary conditions (9b).
Initial conditions are obtained from considerations in Appendix B and the jet
s H exit conditions,

e, e e e e s -

-t

YDl Al

5
3
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APPENDIX B
NOSE SOLUTION AND SPECIAL PROCEDURES :

The approximate uniformly valid solution utilized applies to a wide
class of airfoils of finite radius of curvature. Denoting x*,y* Cartesian
coordinates as shown in Fig. 44, this family of airfoils has a local

representation near the nose given by
y* = a[aofif +agx* + o(x*2) (1)

where a; and a; are constants and § is the thickness ratio. For example, the
NACA 0012 has

§ = 0.12 3y = 1.4845 , a = 0.63 - «

where o is the incidence, and all lengths are units of the chord.

Based on the previous remarks, a uniformly vaiid representation for the
edge velocity component parallel to the surface u, was assumed to be

2/3
8¢
: (2)

) [./F + sc3/2]2/3

u
e:
T =1

where the constant Cy is determined by patching to the SLOR solution and U is
tha freestream velocity, Note that as x* + =

u
e 2/3
U—- é / ¢X*

= ¢, * - ng*'l/3 R (3)

which is in agreement with the inner expansion of the Karman Guderley flow. On
the other hand, as x* + 0
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u
~%-£ Ax + sz + «oo (incompressible stagnation point flow)

x = arc length

with
A = 2 g-.2__% . 5 ]
3‘32a0c0372 ’ 3 53a8C0372 98=agly

We note that (1) can be reverted to give

X 1 a1x2
/F=-6—a-6+67'——a-8—+ (x3) .

From (2)-(4), the pressure gradient parameter
G(x) = 2 %

appearing in the m;'s defined in Appendix A can be evaluated as
Gu)=1+%x+0u% .

Furthermore, the quantity c appearing in Eq. (5a) is obtained as

_1 -mf'2
¢ = - m
with
]
2,2
()
m:;—-—-z——- .
o)

(4)

(5a)

(5b)

In our procedure, the fcregoing relations in this section are utilized to obtain
a boundary layer solution from the stagnation point, Xgs to a downstream station
Xye FOr X > X1, ug is determined from the SLOR solution and the boundary layer

equations are matched using the data at Xq as initial conditions.
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APPENDIX C
JUMP CONDITIONS ACROSS BOUNDARY LAYERS AND WAKES

In this section, the appropriate jump conditions across the viscous
regions will be studied by using second order boundary layer theory. For this
purpose, matched asymptotic expansion procedures will be employed by using
intermediate variables to effect the matching. The derivation indicated will be
for incompressible conditions. However, similar results are envisaged for the
compressible case.

In Fig. Cl, a coordinate system consisting of parallels to the surface
and their orthogonal trajectories is indicated. The Navier-Stokes equations for
incompressible flow are:

Continuity: v.g4=0
Momentum: v(%—) i xd=-§4vd-= -<§R - veurl &
where w = vorticity = curl G, ﬁ = velocity vector, p = pressure, and v =

kinematic viscosity. In the coordinates indicated, denoting s as the arc length
along the parallels t = constant,

ds; = differential arc length along surface = R(s)de
R = radius of curvature, 9 = apngle between normals, s = constant
ds = differential arc length along arc above surface = (R+t)de.

For this system, an elementary displacement vector dg can be expressed
in terms of the metrics h1 and hz as

2 = p2ds? 2dt2
dg hids? + h3dt

where

t
rTERGy v Mt

157
C3471A/jbs




SC5055.21FR

Fig. C1 Curvilinear coordinates.
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If q¢ and qq represent the velocity components in the t and s
-
directions, respectively, then the vorticity w can be expressed as

3
w=w

where K is normal to the x,y plane, with x and y being Cartesian coordinates as
indicated in Fig. Cl., The quantity w is then given by

‘% 3s ot (1 + R(S) qs) .

b
-+ [

Moreover,

> _ 39 1l 3w
curl & = 3¢ fs + T s Tt

R

where ?s and Tt are unit vectors in the s and t directions, respectively.
By using the appropriate relations for the divergence and gradient in this
curvilinear coordirate system and

a x W= - quTt + thTS ’

we obtain the following component form of the Navier-Stokes equations, where the

kinematic viscosity has been normalized to be proportional to the reciprocal of
the Reynolds number, ¢:

Continuity

3q R
§§’S‘+%€[(1 +'§)qt] =0 (1a)
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Momentum
34 t s G¢dg ap ty duw
S RS LN S anli L U (10)
: 2
| R IS S R o)
‘ 1 +_& 3s t at R+t at 1+ t 3s
| .1 fﬂg _ 3 9
, w= i'f:fi 35 3t "R+t
‘ R
The boundary layer equations for this curvilinear network are obtained
using the following 1imit process asymptotic expressions for the flow variables:
q = ul(s,t*) + /e Uy(S,E%) + oo (2a)
! q =7 vi(s5t*) + evyls.t*) + ose (2b)
;
l P =py(s) + /& py(s,t*) + oo (2c)
e+0 , s,t* fixed ., (2d)
Substitution of (2) into (1) gives the following hierarchies on
retention of the indicated orders of terms:
3 Uy 3p1(s) 32u1
o) Uy gtV R T - st e (3a)
] 1 9Py
: o(z): 0= - g => pp = py(s) (3b)
: 9
’ au au ou u u u,v ap
¢ Ny T S VA S BN .SV W A6 SR
¢ ofe)t U gt et Rt R TR 2t R (4a)
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i
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G
p
for
i
€

On substitut

n(1):

AN

P T LY

N

2
Bt QL
L at*
3u v
1 1
35 A = 0
au v t*v
2 2 2 1, _
3t e ) 0

the outer inviscid flow, the appropriate asymptotic

Uy(s,t) + Ve Up(s,t) +

it

Vl(S,t) + /e VZ(S,t) +

Pl(s,t) + Ve Pz(s,t) +

+ 0 , t,s fixed R

ion of (6) into (1) and retention of the indicated

al aU oP.
1 t 1 _ N
UG+t (M50 " 5%
' , 2
1+ t 3s 1 ot R st
al aV v
1 t 1 1 _
wwrtvg g -x =0
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(4b)

(5a)

(5b)

expansions are

(6a)

(6b)

(6c)

(6d)

orders, the

following equations for the approximate quantities in (6) are obtained:

(7a)

(7b)

(7c)
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3y, 83U, . 3y, aV,
olfe): Uy g+ Vgt Ut pl\Vy 50+ V) 55
V.U, + Vv,V aP
172 2'1 2
R % (8a)
aV2 aV1
U, — + U, — Y v 20,V aP
13s 2 3s 2 1 12_ "2
[+ £ that Vs - R 3 (8b)
R
ol aV v
-a—s—z»"l'(l %)-a—tg"‘“R—z':o . (8C)

The appropriate matching between the inviscid and viscous regions is
obtafaed by writing the expression for both regions in intermediate variables
and equating lit2 terms. The appropriate intermediate variable is defined as

tn=7‘-%a- . where ¢ < nle) €1 . (9)
Thus:
t":%E . teat »0
t*={‘,-ztn“o .
Matching

By using the process indicated, the inner (viscous) and outer inviscid

representations are matching schematically, indicated by ¢ (asymptotic equality)

as follows:

Pl(s,ntn) + /e Pz(s,ntn) e py(s) + Ve P S’?E t, e

or

162
C3471A/jbs




7 3
£ o . - .

- P =’.k’ YWt -
T S AR

[ T
- :

’x Rockwell International

Science Center

SC5055.21FR

3P 9P
] — 2
PI(S,O) + f\tn "’t—a - (570) + eee + Yg PZ(S’O) + /E—-f-a ntn + eee

« pyls) + /e lim Pols,t) + ees
>0

which for matching implies

N T A T R I T R T Y T

) py(s) = Py(s,0) (10a)
aP,
pz(s»t) = W (S’O)t + PZ(S,O) (]Ob)
and for t + =
5 12(s,0)

pz(S,t) -?*m—s-)——" t + P2(S,0) . (]OC)
For the vertical velocity component, we have analogously

Vl(s’"tn) + /e Vz(s,ntn) + eee o V5 vl(s,7% tn) + gvz(s,.r'el tn) 4+ eee

3V
v (5,0) + nt“-ﬁl (8,0) + /2 Vy(5,0) + coe +o V2V (55028 Y+ oee | (1)

For compatibility with the boundary conditions, we assert that ‘Il(s,o) = 0.
From {11), we have finally,

T R B R N AR TR P 441 2 4 1

| My }
V2(5,0) = lim vl(s,t) = t* T (s,0)

t*a {

8U1
= *
}im vl(s,t) MY (s,0)

t*ao

t*
= LT 0(5,0) - uy(s,0))de = g (12)
J

t¥*ae 3>

-
Ny
——~
wn
-
(=4
~
1

o* = displacement thickness = (I) [Ue - ul(s,r)]dr » Ug = Ul(s,o)

TR
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where by virtue of (5a) the following relation has been used to obtain the
displacement thickness integral in (12)

t* Uy
Vl = é 35 (syt)dr .

Pressure Jump Conditions on Wake and Boundary Layer

Referring to Fig. C2, we consider the saection AB of the wake. The
viscous interaction with the inviscid portion of the solution will be effected
by pressure jump conditions related to the momentum defect in the viscous
layers. This defect plays the role of the classical Spence blowing coefficient
utilized in our jet flap algorithm, To see this, we recall from previously
derived relations that

3P
Pys,t*) » ?t-l (5,0)t% + Py(s,0-) , t* s

aPl

Po(s,t*) » o=

(5,00t% + Po(s,0-)  ,  t* » -

P, u%(s,t*)

3tF (S,t*) ="—R—(s—)—"" .

On integration:

t*
po(5,t%) - p,(s,0) T}é ud(s,te)dtx |
Also,

8?1 1
a—t— (S,0+) = -ﬁ U%(S,O#‘)

3P1 1
i (S,O-) = ® U%(S.O-)
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t*

o1 1
l!lwé u%(s:‘t(d‘l’ *’R‘ t*U%(S:O"’) + P2(5r0+) + DZ(S,O)

Tim
t re0

But,

1
R

1
-é u%(s,r)dr * 5 t*U%(s,U-) + PZ(s,O-) + pz(s,o)

t*

P(s,0+) = P (s,0-)

by matching

and by Bernoulli

Py(s)

Thus:

+

“
+ = constant

UF(s,0+) = U2(s,0-) = U2(s)

where e signifies external conditions.

By virtue of these relations, we obtain

4 *
tl t

1
Po(5,04) - Py(s,0-) = [pe]wake . wié u3(s,t)dx - {; ud(s,7)dx

or

- (4 - e
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t,+x
(7, ]= 11" tisi0) = 2(s,002
2] =7 {*+ Y1 $»1) = Ugls,t)lidt

2

=-% J [u1 - Ue][u1 + Ue]dr

1~ Ue * 9 + &%
“r S (v - Updupde v = {up - Up)dr = - T (13)

where

o= [ (Ug - uy)u, = momentum thickness .

-

Analogous results to (13) can be obtained for the compressible case
from (4b), by recognizing that the significant difference will be folding the
density factor inside the integrands of §* and @ in the appropriate definitions
of these thicknesses, and by employing the adiabatic energy invariant rather than
Bernoulli to obtain the relationship of Py and U; in the outer flow.
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