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trailing edge for the flow. With this model, the slip line boundaries create
an exponential damped sinusoidal relaxation of the disturbances as compared
to algebraic decay for analogous unconfined flows. A similar observation
applies to wind tunnel far fields. The nonlinear case differs from the lin-
ear one in that the amplitude of the downstream propagated disturbance in-
teracts nonlinearly with the near field in the former case. For these wall
jets, acceleration to criticality is accomplished by stream tube contrac-
tions and throats induced by upstream influence of the turning. In the co-
flowingocase, selection rules defining various jet flow regimes in terms of
theojet transonic similarity parameter and pressure level are given. Condi-
tions are prescribed which define the penetration length for supersonic dis-
turbances downstream from the exic as well as the location of the throats in
the jet. The criticality of the flow far downstream is also quantified in
terms of these parameters.

Models are described forthrcomplete problem for a tangentially blownairfoil in incompressible and transonic flow. An important feature of these

configurations is the foregoing wall jet structures. A systematic theory
based on matched asymptotic expansions for the fine structure of the jets
away from their exits is developed which shows that in a small deflection
approximation the pressure jumps associated with Spence's theory prevail,
even if the flow is rotational and compressible. Furthermore, the asympto-
tic developments provided allow further systematic refinements in which
the effects of initial skewness and vorticity inaccessible to other theories
can be assessed. A study of the trailing edge region of the blown airfoil
problem reveals that for finite trailing edge angles, the dividing stream-
line leaves tangent to the higher stagnation side if upper and lower stag-
nation pressure are unequal. If these pressures are equal, the dividing
streamline leaves along the bisector. Computational results based on an
inviscid model reveal that significant enhancements of lifting pressures
are possible with tangential blowing on transonic airfoils. Comparisons
with experiment indicate the need foirrefinements incorporating wave inter-
action phenomena near the jet exit as well as viscous interaction processes
in the downstream portion of the wall iet. Based on this requirement, a
finite difference module has been developed which characterizes the develop-
ment of blown laminar boundary layers and wakes in the transonic reg4me.
Solutions arising from this phase are being utilized to quantify not only
viscous interaction effects over blown airfoils, but also the degree of
delay in shock-induced separation achievable with slot injection. Sub-
stantial downstream movement in the shock-induced separation point has
been inexpensively quantified with the computational procedure as compared
to experimental methods. The viscous studies show also that the propulsive
wake generated by blowing gives a nearly Gaussian normalized velocity
profile, in spite of a lack of self similarity which occurs in submerged
and self-propelled cases. This result is of significance to assessment
of net thrust in experimental simulations and theoretical far field
modeling.
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SUMMARY

A study of transonic wall jets and tangentially blown wings has been

performed by using asymptotic and computational methods. For the portion of the

effort dealing with wall jets, both submerged and coflowing cases have been

investigated. For the submerged configurations, the nature of the decay process

for disturbances emanating from the jet exit has been examined. In this

analysis, the Kutta condition on the iiozzle rim can be satisfied merely by

requiring streamwise continuity of the potential across the rim as a trailing

edge for the flow. With this model, the slip line boundaries create an

exponential damped sinusoidal relaxation of the disturbances as compared to

algebraic decay for analogous unconfined flows. A similar observation applies

to wind tunnel far fields. The nonlinear case differs from the linear one in
that the amplitude of the downstream propagated disturbance interacts

nonlinearly with the near field in the former case. For these wall jets,

acceleration to criticality is accomplished by stream tube contractions and

throats induced by upstream influence of the turning. In the coflowing case,

selection rules defining various jet flow regimes in terms of the jet transonic

similarity parameter and pressure level are given. Conditions are prescribed

which define the penetration length for supersonic disturbances downstream from

the exit as weli as the location of the throats in the jet. The criticality of

the flow far downstream is also quantified in terms of these parameters.

Models are described for the complete problem for a tangentially blown

airfoil in incompressible and transonic flow. An important feature of these

configurations is the foregoing wall jet structures. A systematic theory based

on matched asymptotic expansions for the fine structure of the jets away from

their exits is developed which shows that, in a small deflection approximation,

the pressure jumps associated with Spence's theory prevail, even if the flow is

rotational and compressible. Furthermore, the asymptotic developments provided

allow further systematic refinements in which the effects of initial skewness

and vorticity inaccessible to other theories can be assessed. A study of the

trailing edge region of the blown airfoil problem reveals that for finite

C3471A/jbs
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trailing edge angles, the dividing streamline leaves tangent to the higher

stagnation side if upper and lower stagnation pressures are unequal. If these

pressures are equal, the dividing streamline leaves along the bisector.

Computational results based on an inviscid model reveal that significant

enhancements of lifting pressures are possible with tangential blowing on

transonic airfoils. Comparisons with experiment indicate the need for

refinements incorporating wave interaction phenomena near the jet exit as well

as viscous interaction processes in the downstream portion of the wall jet.

Based on this requirement, a finite difference module has been developed which

characterizes the development of blown laminar boundary layers and wakes in the

transonic regime. Solutions arising from this phase are being utilized to

quantify not only viscous interaction effects over blown airfoils, but also the

degree of delay in shock induced separation achievable with slot injection.

Substantial downstream movement in the shock-induced separation point has been

inexpensively quantified with the computational procedure as compared to

experimental methods. The viscous studies show also that the propulsive wake

generated by blowing gives a nearly Gaussian normalized velocity profile, in

spite of a lack of self similarity which occurs in submerged and self-propelled

cases. This result is of significance for assessment of net thrust in

experimental simulations and theoretical far field modeling.

Ii
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NOMENCLATURE

a Characteristic submerged jet height

b Slip line deflection, b coefficient in boundary layer momentum

equation

c Density ratio Pe/P in boundary layer, chord length

d Jet exit height in physical plane

f wall and airfoil shape function, similarity factor for stream

function

g Jet displacement function

h Metric coefficient

{ Unit vector in Cartesian x direction

SUi.1t vector in Cartesian y direction

m Ratio of kinetic energy per unit mass to freestream stagnation
It enthal py

mi i = integer, coefficients in boundary layer momentum equation

p Perturbation pressure, Fourier transform variable

$q Velocity vector

q Speed, dynamic pressure

r Polar radius

sI Arc length along airfoil or wall

u Velocity component in x direction

- Velocity perturbation about freestream

v Velocity component in y direction

w Complex velocity

x Cartesian or curvilinear coordinate in freestream direction or

along parallel to wall

x Cartesian coordinate in freestream direction

y Cartesian or curvilinear coordinate normal to freestream or to

wall

y Cartesian coordinate normal to freestream direction

z Complex variable

C3471A/jbs
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A Peak velocity parameter, constant in empirical fit for external

pressure in wake region, constant in nose shape

B Constant in empirical fit of external pressure in wake region,

constant in nose shape

Cj Blowing coefficient

C Chapman'constant

CFF Far field constant

CL Lift coefficient

SCp Pressure coefficient

D Reduced exit height

E Normalized stagnation enthalpy ratio

F Wall slope function, complex potential

G Green's function, reduced jet velocity function, pressure gradient

parameter, E'

H Heaviside function, stagnation enthalpy

J Jet momentum efflux

K Transonic small disturbance parameter

L Wall length
SM Mach number, moment of momentum

M. Freestream Mach number

N Number of supersonic points

P Pressure

R Radius of curvature, reflection coefficients

I Re Reynolds number

S Slip line implicit function for shape [
T Karman Guderley operator

U Freestream velocity

W Typical flow quantity

a Angle of attack, reflection coefficientI Ba V-f--r, Prandtl Glauert factor, angle between dividing streamline

and tangent to lower surface

y Specific heat ratio

4
C3471A/jbs
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6 Characteristic flow deflection

6 Displacement thickness

c Eddy viscosity

C Boundary layer similarity coordinate

n Dummy coordinate in y direction, intermediate variable,

curvilinear coordinate normal to wall

e Momentum thickness, polar angle

X Mach number ratio appearing in reflection coefficient

V Viscosity

pi i = 1,2,3 quantities appearing in energy equation

v Trailing edge angle
fDummy coordinate in x direction, curvilinear coordinate along

parallels to wall

p Density

SCharacteristic slope of jet free boundaries

€ Perturbation velocity pot-!ntial in external flow

IF Stream function

SCoflowing jet overpressure parameter, angle between dividing

streamline and upper surface, vorticity

A Laplacian

r Circulation

0 Reduced velecity potential

Subscripts

e Refers to edge of boundary layer

u Upper

•- Lower

j Jet

FF Far field

SL Slot
SFreestream

SComponent in • direction

5

C3471A/jbs



SC5055.21FR

n Component in n direction

0 Zeroth order quantity

1 First order quantity

Superscripts

+ Above dividing streamline

Below dividing streamline

S.Special Symbols

< > Average

[ ] Jump

Overbar, refers to average of quantity under it.

Ii
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1.0 INTRODUCTION

Tangential blowing to avoid the effects of separation on airfoils and to

produce supercirculation lift enhancement has received extensive consideration

at low speeds. A natural application of these capabilities to current tactical

requirements associated with runway denial and ship dispersal is of great mili-

tary interest. These scenarios strongly suggest the value of V/STOL capability.

Predictive models for the aerodynamic characteristics of jet-flapped and upper

surface blown wings associated with this application have been primarily addressed

through linearized surface singularity and conformal mapping methods. 1"4 Sys-

tematic and mathematically consistent procedures integrating viscous effects in

such a calculation have received only limited attention, and appear not to have

addressed the question of the necessary blowing requirements to avoid

separation.

At transonic speeds, tangential blowing has been proposed as a means of

mitigating the adverse aerodynamic consequences of shock boundary layer

interaction. In particular, the quest for high maneuverability in this Mach

number range suggests enhanced buffet-free lift through supercirculation and jet

momentum effects. Quantification of these gains as well as others associated

with such non-aeronautical applications as circulation controlled rotors,

diffusers, convective film cooling, and chemical laser aerodynamic windows requires

further knowledge of the structure of the associated wall jets and the nonlinear

interaction with the surrounding flow.

Toward obtaining theoretical models which could describe these phenomena,

ONR has had a research program, "Transonic Wall Jets and Upper Surface Blown
Wings," underway since January 1976. During the course of this

investigation, analytical and computational procedures have been utilized to4 gain further insight into tangentially blown airfoil flows. The work has

encompassed detailed investigations of the wall jets and their relationship to

the aerodynamic augmentation of the blown airfoils. By contrast to the surface

singularity procedures utilized in the other early studies of blown wings, the

C37•' ~C347 IA/j bs
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effort to be described has utilized computational methods which are capable of

handling nonlinear phenomena and viscous interactions that occur in the transonic

regime in a mathematically consistent manner.

This report summarizes these studies and provides recommendations
for future research. It is based on a number of papers which have been

disseminated 5 "7 in connection with the contract and other resul s which will be
published in the open literature in the future. The first portion of this

report summarizes the early work of the contract dealing with transonic wall

jets. In subsequent sections, a study of inviscid phenomena over incompressible
and transonic blown wings is provided. Later portions describe recent work

in viscous effects dealing with delay of separation and the structure

of wakes downstream of propulsive wings.

8
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2.0 A STUDY OF INVISCID SUBMERGED TRANSONIC WALL JETS

An essential element of the flow field over propulsive wings such
as those employing upper surface blowing is transonic wall jets. In such

phenomena, a transonic primary flow or wall jet entrains an ambient or coflowing

stream through turbulent mixing processes.

Existing models for such wall jets stress the incompressible treatment
of these phenomena using eddy viscosity and energy methods. Correspondingly,
there is a need for simulations that include the effects of nonlinearities, mixed

flow, and wave interactions on the development of the wall pressure

distributions and overall augmentation forces.

Previous investigations of related phenomena are limited to the

treatment of inviscid shockless free jets, and include the work of Chaplygin,8

Frankl,9 and GuderleyO, all of which employ hodograph methods. To study shock
development and mixed flow phenomena, we have applied modern relaxation methods

r to treat arbitrary jet exit velocity distributions and assess the influence of

an adjacent wall boundary.

In this section, the computational model will be discussed from
I: [analytical and numerical viewpoints regarding nonlinear inviscid phenomena. In

analogy to unbounded cases such as airfoil flows, the far field is employed to

condition the numerical problem and provide useful information about the decay

of disturbances. Both free and wall jets are discussed for several examples

illustrating various features of this class of flows.

2.1 Formulation

Referring to the physical configuration depicted in Fig. 1, a jet is

fZ shown exhausting from the exit OC bounded by the wall OQ and a mixing layer

which has been idealized as the slip line CB. This approximation neglects

turbulent diffusion processes in the study of wave interactions with the shear

layer, but these phenomena can be incorporated in later refinements.

Furthermore, it will be assumed that wall and jet turning angles are small. In

9
C3471A/jbs
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"WALL JET CONFIGURATION ..

SLIP LINE

/" • C .__• A S1=Y"d - 6G (x)= 0 .. B

•= Velocity O 0
d JET M. =Asymptotic

WAL I0 Mach Number

' S LIPy. LI2(

B -,y - 6f(x) - 0 q =0

LIL

Fig. 1 Wall jet configuration.
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contrast to the usual jet formulations, ii which an upstream cowl shape is
specified, or stagnation conditions are a',sumed, 8 12 this analysis will treat a

specified exit Mach number distribution. Additional assumptions are
irrotationality and subsonic conditions infinitely far downstream. The methods

applied here can be generalized to cases where these restrictions are not
present. Finite length walls OQ are considered in keeping with relevance to

upper surface blown wings and other propulsive lift devices.

Returning to Fig. 1, the equations of slip lines S1 (x,y), S2 (x,y), and
the wall boundary B(x,y) are assumed as

CB: S, = y-d - 6G1 (x) = 0

QA: S2 = y -6G 2 (x) = 0

OQ: B= y -f(x) = 0

where 6 is a characteristic flow deflection parameter. In a small disturbance
limit, inwhich the scaled jet exit height D = d61/ 3 , the wall length L, and the

transonic similarity parameter K = (1 - M2 )/6 22/3 are held fixed, 6 + 0, the

asymptotic expansions of the velocity, pressure P, and density p are*

(x,y;M.,6,d,L) [1 + s2/3x (x,Y;K,D,L) + ... it + [6-y + ...] (1.1a)

•-. . y2/3x
P/P I 1- 6 0 + ... (1.1b)

P/P 1 + 62/3a + ... (1.1c)

where the subscript - signifies conditions at x o, • is the perturbation

potential, P. is the ambient pressure, U = a M, a2 = yP./p. p. is the
density, a. is the speed of sound, 4 is the flow velocity, and the scaled
coordinate Y = is also fixed in the limit. If a further transformation is
introduced in which V = ,-K Y, a boundary value problem can be formulated for the

case of an elliptic far field. The region can be considered as the rectangular

*Equations are numbered consecutively from the beginning of each section.

References to equations in other sections provide the section number of
the referenced equation.
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domain shown in Fig. 2, corresponding to transfers of the boundary conditions to
the appropriate undisturbed streamlines allowed by the small disturbance

limit. Dropping the tildes, the following small disturbance equation holds
inside OQABCO

a2 13x2 + a2 )@ = (y+1)(au 2/ax)/2K , (u (1.2)

where we define function • and o such that

u(x,y) = Q,(x,y)
*(x,y) = O(xY)

Invoking continuity of pressure and flow tangency along the slip lines, we have
with a =- D -K

*(x,a) 0 (1.3a)

x (X,a) = G{(x) , 0 < x 4 - (1.3b)

c(x,O) C1  , L < x 4 - (1.3c)

ýy (X,O) = G(x) L 4 x 4 - (1.3d)

where the constant C1 is to be computed by iteration. In this approximation,

the slip lines are therefore not truly free, the unknown functions G! being
computed from th.. solution by a simple differentiation. The remaining boundary

conditions are

*y(xO) = f'(x) F(x) 0 x < L (1.3e)

*x (O,y) = h(.y) = H(Y) (1.3f)

12
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Fig. 2 Transformed wall jet domain.
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Equation (l.3f) is representative of the initial exit velocity profile which

conceivably is determined by the upstream duct contour and stagnation pressure.

2.2 Far Field

To complete the formulation of the problem for subsonic conditions far

downstream, the asymptotic behavior is derived in this section. On introducing a

Green's function G, satisfying homogeneous Dirichlet conditions on OA and CB and

homogeneous Neumann conditions on OC and AB in Fig. 2 with

AG = 6(P,Q) =- (x-A)6(y-n)

where Q(ý,n) is the source point and P is the field point, Green's theorem

applied to the region OQABCO gives the following integrodifferential equation

for @
4

i=1

where

I -Y+1 f dý ~~yýO 2/ýd
1 2K 0 0

L aI -fý GO (x,y;ý,n)dE12 =-f €(F.,O) w•
aG

13 = -Cl f - (x,y;ý,O)dý
L

a
14 = f h(n)G(x,y;O,n)dn

0

The quantity G may be obtained from the cosine transform where

=f G cospx dx
0

G=-fc cospx dp
1TO0

14
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The subsidiary equations for G are
d•dGI /dG\ dG)

dy my] Ty- y ri+ \/

cosp [EG] (G)y-n+ (G)y=n- 0

G(P,O;•,n) = G(P,a;•,n) = 0,

implying that

sinhp(n-a) sinhpy cospa
p sinhpa y< (1.4a)

sinhPn sinhp(y-a) cospb
p sinhpa y > n ( b)

Equations (1.4) can be inverted by a treatment of appropriate contour

versions for the inversion integrals, initially, without the cospE factor and,

subsequently including it, using the shift theorem. To obtain convergence and

exponential decay of the integran6, the appropriate closure for the contour is a

large semicircle IjP = R, R + -, with Im p 0 for x ý 0. Summing the residues

at the poles p = n-ni, n (sgnx)(1,2,3,...), gives the following final

expression for G:

1-•G n sin nay sin ncir {efn(x+&) + e-nax'lx-} (1.5)

- T/a

Equation (1.5) is valid for y j n, x • •, and can be summed as the integral of a

geometric series giving

- 15
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-2G= S(a(x+0),a(n+y)) + S(a(x+d),a(n-y))

- S(ajx-ýI,a(n+y)) - S(aIx-j,ak(n-y))

N 1 1-~COSaU-Y secha x+ý) l-cosat - secha X-E
=> G Tn-n i-c'osa(n+Ylsecha(x+C) x1-cosa(n+Ylsecha(x-F,) (1.5')

where

S(A,B) _ nlenAcosnB =-nll-eZI

1 zn(1l2e-AcosB + e- 2A)

z A + iB

An inspection of these formulas reveals that G is exponentially small as x +

and is logarithmically singular at the source point, as anticipated.

Based on (1.5), the dominant term of the asymptotic expansion of I, as

x + is given by the formula

a Xus

I -y• e'•xsinay a sin2ndn nha~d& (1.6)
0 0

where in the evaluation,* the contribution of the simple pole of G, vanishes,

and integrals of the form

a Go
f dr1 f eaIx-If(&,n)dý
0 0

and a

f adr f e-a(x+C)f(C,n)dý (1.7)
o 0

*The upper limit of the inner integral can be interpreted as .0 to within terms
of higher order involving e-ax as x + -. This interpretation is made in
Eq. (1.8).

16
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arise. The multiplication by u2 of the asymptotic expansion represented by

(1.5) as x + . and its subsequent integration with respect to & formally gives a

development dominated by these integrals. Writing the inner integral of the

first of (1.7) as

- ~x0
Ie'•lx'4{f(ý,n)d= e'aX ei ,n)d + eaX• e'tf(t,n)dt

and if the e"ax factor of the first integral on the left-hand side is indicative

"of the behavior of * as x + -, then u2 and f are 6(e"2 at) in this limit. If u2

and f are bounded on the range of integration, the first integral converges and

the second is o(e" 2 ox) as x + .. The second integral in (1.7) requires no such
decomposition and is also convergent; hence, (1.6) follows. Evaluating the

I remaining integrals and using (1.5) and (1.5'), the final expression for the far-

field is
CFF e'x*snY Oe2x*)

C(Y*) sinY* + 6(e ) as x + (1.8a)- FF j1* +CF

where

v+1 D 0O2CFF -J.• J sinwY*dYf ox(t,Y)sinhý*dg
0 0

D L
f H(Y)sintY*dY D_-K f o(ý,O)cosh,*d- 2C sinh L* (1.8b)

•~ ~ W * x/D-K , i* - &IDV-K L* - L/DVY[ Y* Y/D • r

2.3 Numerical Analysis

The numerical procedure is similar to one first developed by

Murman 13 and extended by Jameson1 4 and Bailey and Ballhaus. 15  Briefly, the

transonic potential equation in divergence form is discretized by using central

17
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differences when the equation is elliptic, and backward differences when it is

hyperbolic. Thus, we may write

(K; +1 2i ox) + (ty)y

21 2)21i/2.txi.-112) Z (-+1/2" xi -1/2)'i

+ (2i)(K( ,2  +1 ( 2 2

U i -l(K(¢ 1i-/2"xi -3/2) - xi-1/2"xi-3/2))/Pi

I

+ (€Yj+I12 - •Yj-l 2 )/qj (2.1)

-y+1 _ + +~ ::/)

K P +/ i +4- +
2 Pi-1/2 Pi--/2

Li-j Pi pipi-1• n -

+ ii(K -±1- _____ + $4~)

[P -1/ ] 4i-3 jqjq~l/ 2  qjqj 11/2 (2)

where the missing subscript is j when only i's are present and i when only j's

are present. For example, Di1 -i-jand •j~l i Also,

18
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pi (Xi+l " X-)/2 qj (Yj+1 Yj-1)/2

Pi- 3/ 2  xi-I - xi-2 qj-1/ 2  YJ Yj-1

Sqj =Y i+ Y
Pi -1/2 xi -1

Pi+1/2 Xi+l i

and

"0 if the point (xiY is elliptic

I1 if the point (xiYj) is hyperbolic

If one defines

VCi K- Y / (i+1/2 Pi- 1 -2 ')

then

0 if VCi 0

Pii

1 iif VCi < 0

Here, the iterations are viewed as steps in pseudotime with 0+ (NEW) and o (OLD)

"values. In addition,

*+
: 1,2I _ • + "1~32 -

!Pi-I/2Pi Pi Pi-I/2 Pi Pi-3/2 Pi Pi-3/2

"19
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These definitions guarantee that the linearized difference algorithm satisfies

the von Neumann stability criterion. (See Jameson14 for the proof.)

Overrelaxation is employed in the elliptic region (pi j 0i-lj 0)

only. First, define

eI =-/PiPi-1/2 , 3 -= /PiPi+l/2 ,

and

e2  e1 + e3

Then, the elliptic difference expression in Eq. (2.2) given by

[ 4+ + +I ti+1"€Di (Di'¢i -1 = D+ e D+ + e b

IPi+-1/2i PiPi-1/2 1 li- - e2  + 3

is replaced by

e0+ (D+e/w-Die+eo
1ei - 1 -iie 2 (1-1/w) 3 e +1

where w is the overrelaxation parameter, i.e., 1 < w, < 2. Note that if w = 1,
there is no change between the two expressions.

To improve stability near the sonic points, especially if a
discontinuous wall ooundary condition is being considered, it was found

necessary, as in Bailey and Ballhaus, 15 to add to Eq. (2.1) the term

SCAt (T" i ) - (Di (+-I 'Di -1)

xi-xi.1 xt = (xi _ xi_1)2

where c is chosen to be in the range 0 < e 4 .5.

20
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Boundary Conditions

The boundary conditions o(x,D) = 0 and oy(xO) = f'(x) may be

incorporated into the numerical scheme by using the same techniques described

in Murman and Cole. 1 6  Discussed first will be the boundary condition at the

jet exit x = 0, which may be one of two types: (A) subsonic at the jet exit,

or (B) partially or completely supersonic at the jet exit. The far field
boundary condition will be treated later.

(A) Subsonic at the Jet Exit

Here the boundary condition is

x(O,Y)= H(Y) 0 < Y < D

where

K - (y+l)H(Y) > 0 for 0 Y D

In this case, let x1/ 2 = 0, x1 - xl/ 2 = AX/2, po = 0, and ,= 0;
it is also required that x2 - x1 = Ax. Then, the derivatives in Eqs. (2.1)

and (2.2) become

jl x3x/,,-2 - x1/2) -1/2)]• - o,)/Ax

= - (2x3/2 + Ox1/2)jI2 x3/2 =x1/i12 Ax

;- 2x + H(Y A H(Y) Ax

j21 • C3471A/jbs
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(B) Partially or Completely Supersonic at the Jet Exit

For this case, two boundary conditions are required at x =0; namely,

x(0,Y) :H(Y) 0 4 Y 4 D

I j

and

o(O,Y) = g(Y) for Y £ [0,D]

where

K - (y+l)H(Y) < 0

For all points Y • [0,D] in which K - (y+1)H(Y) > 0, g(Y) need not

exist.

If a point (x,,Yj) is elliptic, the discretization given in case (A)

is used. On the other hand, if (xl,Yj) is hyperbolic, it is assumed that the

grid may be extended to the left by Ax/2, and that x0  0, X-l = -Ax/2, and

S0j = @(0,VY) = g(YV).

Using Taylor's tneorem,

0¢-1,j = 10j - AXIx(0,Yj)/2 = g(Y j) - AxH(Y j)/2

These values for jand -lj may now be substituted into Eq. (2.2) in the

normal way, and line relaxation may be applied to the first column of unknowns

along x = xI.

The far field boundary conditions given by Eq. (1.8) contain two

unknown constants, C1 and CFF, which must be determined in an iterative

fashion. The basic technique holds CFF fixed while C1 changes until the

solution converges. Then, CFF is updated by evaluating the integrals in

Eq. (1.8b), and the procedure is repeated until CFF also converges. In order to

22
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determine C, the mesh network is swept from left to right by using line

relaxation. After the potential is computed on the line x = L, extrapolation

of the interior points yields $(L,O) - L If it is assumed only that $ is

continuous at x = L, then Cl = D(L,O) = (x,O) for x > L, which guarantees

that 0 (x,0) = 0for x >L.

It is physically plausible that a Kutta condition given by

*Cx(L-,O) = ýx(L+,O) = 0 (3)

is satisfied by the solution for trailing edge neighborhoods in unmixed flow.

Because of (3), the nonlinear term in (1.2) can be assumed negligible, and * is

locally harmonic in the scaled variables. Let

z =x* + iy , x* = x - L

o arg z , r mod z

w(z) = u(x*,y) - iv(x*,y) = complex velocity

4

Swhere

, v ý,

If the boundary conditions are locally linearized near the point z 0,

. ,then

v(x*,O) + F(L) - , x* +0 (4a)

u(x*,O) = 0 , x* > 0 . (4b)

23
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To dominant order, a sufficient condition to satisfy (3) and (4) near the origin

is that w has the following branch point behavior

w = i(w + B/7) as z + 0 , (0 < e < i) (5)

where B is a real constant to be determined by matching with the outer nonlinear

solutions. Equation (5) implies that

-y Br3/2sin3o/2 (6)

Several examples to be discussed indicate that the approach described previously,

in which @ is maintained continuous at the wall trailing edge, gives numerical

solutions that satisfy the Kutta condition (3). However, a rigorous proof that

this is an implication of the algorithm has not been attempted. A similar

procedure has been used by Krupp1 7 to satisfy the Kutta condition in the

solution of the transonic small disturbance lifting airfoil problem.

2.4 Results and Discussion

In addition to the assumptions given in the Introduction, the analysis
previously described is not directly applicable to choked flows where upstream
and downstream conditions are decoupled. Sonic zones comprising the entire

vertical dimensicn of the flow field are thereby excluded. However, the

foregoing methods can be extended to handle such cases.

A number of examples will now be considered. For these cases, the

associated wall displacement functions and exit velocity distributions H(Y) are
given in Table 1. For most of these cases, K is unity and D will take on this

value for the remainder of this paper.

Wall pressure distributions for the convex ramp comprising Case 1 are shown

in Fig. 3 for K = 1 and K - 1.46. By interpreting these results as distributions for

different final M's downstream but with the same s, the decrease in M. leads to

upstream motion of the terminating shock but a preservation of the shock strength.

24
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* Table 1. Wall Jet Cases

Case f W,-ll Shape Function H(Y) Remarks

1 f f , 0 4 x ( 1 L 3.8 for this and all
other cases

= 2_, 1<x: 2 .075
= 3-2x ,2 4 x 4 L 0 4 Y < 1

2 f - f 2 -fl

3 f f 3 = 0 0 4 I Has discontinuous slope
at x=

=[x2-1+2(L+1)(l-x)]/2L 1 4 x < L

4 f f4  0 ,0 x 4 1 HaG reflex curvature on
x-1) os1curved ramp portion10(L-1-)- CosE-1- I I< x -c L

LT. L-1 '

5 f , 0 < x 4 } H = 1 0 4 Y 1 1/2 € 0.2 on 0 4 Y 1/?2

1 -2x ,I < x 4 2 = 0 11I2 4 Y 4 1

-3 2 x,2 x L

i.i

25
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There is a smooth acceleration to critical conditions with the location of the

sonic line established at the curvature discontinuity, x = 1. These calcula-

tions, which are typical of the other cases, cost approximately $60 on the

Berkeley 7600 and ran 15-30 CP seconds. Figure 4 shows a close-up of the

pressures near the trailing edge. The dashed line has a slope proportional to

/FW, appropriate to the singular behavior given by Eqs. (5) and (6) and the Kutta

condition (3). Isobars shown in Fig. 5 are consistent with these remarks and

demonstrate the satisfaction of homogeneous pressure boundary conditions on the

slip lines. Because of the weakness of the singularity, e.g., *xx - r'/21 as

r 0 0, special numerical treatments such as those of Woods1 8 were not used.

In Figs. 6 and 7, rapid decay of the disturbances is indicated. The

relaxation length for this decay from (1.8b) with D = K = 1, is w. This

exponential decay is typical of flows confined by jet boundaries and is much

more potent than for bodies in unbounded fields. Qualitatively similar effects

have been discussed by Murman,1 9 and Pinzola and Lo20 in connection with tunnel

wall interference on transonic airfoils. The distinction between confined and

unconfined flows can be appreciated by an interpretation of the exponential

series due to (1.5) arising in the far field developments dominated by (1.8).

Because of linearity of the far field, this series is directly related to

expansions occurring in analogous incompressible flow problems, in which a

singularity is reflected between free pressure boundaries. This yields an imdge

development in which the strengths alternate in sign to satisfy the slip line

condition.* Thus, the relaxation to uniform conditions downstream, which must be

consistent with homogeneous conditions on the slip lines, produces a more rapid

decay than found in unconfined flows.

?U

*Such a series can be summed by recognizing that it is a partial fraction ex-
pansion of a hyperbolic function which is exponentially small as x + w, con-
sistent with developments such as (1.8a).

27
C3471A/jbs[i29

' ' ' • m_'A



SC5055. 21FR

C 0.1

0.01 0.1 1.0 10
0.013.8- x

Fig. 4 Local solution near trailing edge, Case 1.
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In Figs. 8a and 8b, the upper and lower slip lines obtained from inte-
gration of (1.3b) and (1.3d) are given for Case 1. It is evident from Fig. 8a

that the curved surface in this approximation turns the flow so that the streams

are parallel for x- . It is evident from Fig. 8b that in the near field, this

is not quite the case. Asymptotic parallelism can be established for subsonic

conditions far downstream by integration of the small disturbance continuity

equation. Thus

GI(x) - Gý(x) -f (Ku(x,Y) -y+ u2 )dY (7)
dx02

and, since u= O(ex*), this expression shows that GI(x) G2(x) as x +

Equation (7) can also be obtained by differentiating (1.8a) with respect to Y

and using (1.3b) and (1.3d). For the case of a free jet with a symmetrical exit
Mach number profile function H, i.e., H(Y-1/2) = H(1/2-Y), GI = -G2 and the

divergence theorem or integration of (7) between x = 0 and w gives the displace-

ment of the jet infinitely downstream as

G() KH(Y)- . H dY (8)

where C(YO) = 0 has been used.

Insight into the mechanisms causing acceleration to supercriticality

can be obtained from the flow direction field for Case 1 shown in Fig. 9. For
I' clarity, all isocline slopes have been magnified by a factor of 100, and only

the entrance section 0 4 x < I is depicted. The expansion around the curved
ramp on the interval 1 4 x < 2 leads to upstream influence in the subsonic
region which turns most of the flow downward upstream of x = 1, producing

throats and acceleration due to the stream tube contraction required by the zero

slope boundary condition in that region. Also indicated is the "ballooning" due

to the singularity occurring at (0,I), the top point of the jet exit station.

In contradistinction to the trailing edge where u + 0, local linearization

cannot be used to characterize the flow behavior in this region, and some local

similarity solution must be sought, presumably of the foi n x"f(y/xo) where

Sand I are exponents to be determined.
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Fig. 8a Slip line shapes for Case 1.
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Fig. 8b. Close-up of slip lines near jet exit for Case 1.
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By contrast, the concave shape shown in Fig. 10 produces the antici-

pated compressive deceleration, which is also depicted in Fig. 11.

The effect of a slope discontinuity is indicated in Fig. 12. It is

evident that the numerical method accurately locates the initiation of the sonic

line at the point (1,0) where the flow is "tripped" to criticality by the

acceleration singularity at this location. In most other respects, the pressure

distribution is similar to that for Case 1.

In Fig. 13, the effect of a reflex curvature in accelerating the recom-

pression process is shown. As related to comparable turning and wall deflection

treated in Case 1, the strength of the terminating shock is considerably in-

creased, as is the magnitude of the pressures near the trailing edge.

The effect of mixed flow conditions at the exit is shown in Figs. 14-16.

Here, the function H as well as 4(O,Y) comprise the Cauchy data needed to

properly pose the hyperbolic portion of the initial manifold. Since the verti-

cal velocity Dy(O,Y) can be derived as a tangential differentiation, the Cauchy

data connotes specification of the additional velocity component for supersonic

portions of the jet exit station. Figure 16 indicates that in addition to toce

usual terminating shock, the transition from hyperbolic to elliptic flow occtrs

across a weak shock emanating from the specified u discontinuity at (0,1/2).

In Fig. 17, the behavior of centerline pressures for various free jet

cases is shown. The monotone subcritical behavior exhibited by these nonlinear

cases has not vet been corroborated by rigorous proof based on the boundary
value problem with subsonic exit and downstream conditions. For lineariz-d

subsonic flow, this property is obvious from the maximum modulus theorem. It

should be noted that in the free jet problem discussed here, specified mass

flow, pressure ratio, and final Mach number M uniquely determine 6, the scale

parameter for the jet displacement.

For a validation, a comparison of numerical and Prandtl-Glauert free jet

Ssolutions for u(x,1/2) for H = 0.35 and K = 10 is shown in Fig. 18, where the

analytical solution obtained either from su..med eigenfunction expansions or

transforms is:

35
C3471A/jbs



K SC5055.21FR

I I I I I I I I - j

4%
4%

4%

4%%
4 

L X
4% cJ 0•

4% 
0

4% 03
4% %

C\J-

4% I-
4%4% CJ

4%.I I ! I4_-

4% L:3"or

t0



@911A Rockwell International
Science Center

I SC5055.21FR

CL

C--

(A

L)

-r-

LLt4

-2 4

• 37

.2 :1



SC5055.21FR

Li I I I I I I I I 1

'Cj * z I

I~0 a~ r

/ 00

'UI0
4E

000

4-

I~ 2' \ "

38C



Rockwell International
Science Center

SC5055.2IFR

C:)

S .00

C~C
IE

-o

C" S..

/ ejo

000

II,, C: C) C = :0C) Cl:

I\ C'J C" 'V

II39



I'I

00

4-)

I ~ l CL

LO

LI a)

4- C)%

Ia W

C):

L- LO

C/ CDa) C
cf ON; ~; y

40/



01 Rockwell International
Science Center

SC5055 21FR

C-C)

~~ rN

-X

144

C=

CC

(Ni C i .'----,-- • •

'4U

0L
C

r;

C=)-

%0~

41 ~C=

00

41



SC5055. 21FR

Lr'k

000

00 -c

0;1 '

KnLLl :

'4" 4' *1

~~42



.l

Rockwell International

Science Center

SC5055.21FR

0.7

0.6 H K
0.5 o -. 35 0.5

0.4 --. 1 1

0.3 o -. 35 1

0.2 v .35 1

0.1

C 0.0-

-0.1-

-0.2

-0.35

-0.46

-0.7
-0.6,
-0.7T I 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

Fig. 17 Centerline pressures for a transonic free jet for various pressure
ratios and similarity parameters, K.
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u= 2H tan- 1 siny(

sinhx(

t/ tv=- HVK zn coshxt + cosyt(b
coshx _ cosy

and

t t

Ix_ VK , Y Try

The slight discrepancies showvn in Fig. 18 presumably derive from the small

nonlinear effect associated Aith the finite K value and from truncation erro,,s of

the discretizations which are only approximately second order for a non-uniform

elliptic mesh. The associated universal slip line curve is obtained from the

following integral of (9b)

G (x) -(2n+l)x
1 - 4 [ 2n+x ) 2  - X ctnh- (coshx) (10)

Tr 0 (2n+0)(0

where the daggers have been dropped. Equation (10) has the following limiting

behavior

- .- _ ý -x n x + (. zn 4 + 1\ x +- ( ( x 2 as x 4
K 7 2-xnx

GI(x) 1 4 -x -2x
HlK - 2-- e ( (xe ) as x 4

and is plotted in Fig. 19. The asymptotic half width thus checks that given by

(8) when the nonlinear second term in the integral is omitted.
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3.0 INVISCID MODEL FOR UPPER SURFACE BLOWING

In the previous section, a submerged jet problem related to tangential

blowing was studied. Actually, the jet structure investigated in this connec-

tion can be realized only approximately for large values of the jet momentum

flux. For more moderate values, it is necessary to account for interaction with

the e,,ternal stream. This implies that a coflowirg rather than sub:l'e,-ged jet

must be considered adjacent to the wall and that the associated perturbations of

flow external to the jet be treated.

In Fig. 20a, a schematic of an upper surface blown airfoil is shown

embedded in a transonic flow, with a supersonic wall Jet tangentially injected

along its upper surface. The inviscid problem for this configuration is

formulated in Fig. 20b, based on a heuristic generalization of the jet flap model

of Ref. 21. Conditions across the jet and jet-wake are not indicated. Relevant

to this formulation, we will discuss certain aspects of the coflowing jet flow

which are pertinent to establishing the appropriate boundary conditions for the

external flow. WJe will also treat other properties that have significance for

non-aeronautical applications in addition to the present one.

Considering the coflowing wall jet, we divide its coosideration into

regions such as Re, RTE, and domains outside of these neighborhoods on and off

the airfoil. The latter doiiains are inviscid boundary layers with a structure

consistent with a balance solely between pressure and centrifugal forces. A

syste~natic as inptotic theory for the fine strtcture of these layers is given in

Section 3.2.1. In other sections and Refs. 5-7, properties of Re and RTE are

discussed. For these regions, the effects of streamwise acceler•lion and wave

interaction phenomena controlled by a length scale of the order of the jet

thickness significantly alter this balance. To shed light on the transition of

these axial boundary layers to the other zones, Section 3., treats an "inner"

problem associited with the coflo%qing wall jet relevant to the matching of the

regions Re and tTE to the jet, wake, and external flow. Section 3.1.1 also

discusses selection rules to define the nature of the mixed flow structures that

can arise in the wall jet. Numerical studies illustrating these structures

"47
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Fig. 20a Schematic of upper surface blown wing.
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Fig. 20b USB global small disturbance formulation,T[o;K] = [K - 'y+l),xý x 10 +(
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which produce significant spikes observed in blown transonic airfoil pressure

distributions are provided subsequently in Section 3.1.3. In Section 3.2.2,

other aspects are discussed relevant to RTE and the formulation for the global

description for the blown airfoil problem. Results are given for typical cases

in later portions of this rep,'rt.

3.1 Coflowirng Transonic Wall Jet, - An "Inner" Problem

In Fig. 21a, the appropriate formulation of a problem in which the re-

gions Re and RTE are merged in the tangentially blown jet region of Fig. 20a is

shown. As indicated previously, we are concerned with the transition of these

regions in which streamwise gradients are important to other regions which are

dominated by gradients normal to the jet. For the former, we note that for

supersonic and trarsonic portions near the jet exit, the zharacteristic longitu-

dinal scale is of the order of the wavelength of the ;eflected wave pattern from

the slip lines. To treat the longitudinal scales properly, a KG limit, which in

the notatior; of Fig. 20 has (XTE - Xe)/6 4/3, x/4/3, [y - 6bx(x)]/6,

Ke (1 - 2 )/V 2/ 3, K (1 - M2 )/62/3 fixed as 6+0, is utilized. Here, M is the

average of the square of the exit Mach number distribution, and M. is the freestream

value of the Mach number. In this formulation, a new excess pr'.ssure ratio

parameter arises naturally, which is given by

P
e

SC=, fixed in the KG limit
6

where P. is the freestream ambient static pressure and Pe is the corresponding

static value at the jet exit. Essentially, the approximation of slightly

different velocities between the jet and external flow is used to study

important flow features. In practical applications at transonic speeds, this

could be realized with nearly choked blowing nozzles.

The formulation shown in Fig. 21a can be derived in the usual way by

substituting the appropriate asymptotic expansions for the velocity potential

49
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into the full potential, and energy equations and the boundary conditions. On
the boundaries of the cowl B'V' and CV, the latter involve tangency oT 1-2

flow. On the slip lines C'U' and CU, they involve continuity of pressure and

vertical velocity. At the jet exit, Dirichlet or Neumann conditions are

specified if the exit is subsonic. If the exit is supersonic, Cauchy data

are required. This model provides a means for studying the coupling of the

external and internal flows and for understanding the role of this interaction

on the development of the flow on the rear portion of the airfoil. Extension to

axially symmetric cases also appears feasible. Intrinsic in the formulation is

the representation of the internal and external flows by separate perturbation

potentials € and o, respectively. The appropriate asymptotic expansions for each

are:

JET
j .2(1)Tf x i ...9 (I
e

= exact jet potential

x/6 4/3, = (y - 6b (x))/6, Ke (1 - R•)/6 2/3 (Pe 1)/62/ (2)

fixed as 6+0

I
Ue = average velocity at jet exit

BLENDING LAYERS (IMMEDIATELY ABOVE AND BELOW JET) 4
OB 2-(
U- x + 6 ,y) +(3)

X, Y, K (I M2)/6 2/ 3 , w fixed as 6+0

U freestream velocity in external flow

51
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EXTIRNAL FLOW

OEXT x + 62/30(xi) + ... 
(4)U

xS 61/3 y, K, w fixed as 6-,0.

If o represents the velocity potential in any of the three regions delineated

above, the velocity ý is given by vo. On the cowl surfaces and the slip lines

denoted generically as S(xj) = 0, we have

q vS = 0

as the tangency boundary condition. In connection with the slip lines, note
that.6b (x) 3E (). Moreover, the perturbation pressures for the jet and

blending layer are, respectively:

JET

p.
=I - y62 P(x,y) + ... (5a)

Pe

where Pe is the mean pressure at the jet exit.eI
BLENDING LAYER

P B y6 2/3pB(5b)
* - + .. (Bb) '

I.

where P. is the ambient pressure in the freestream.

EXTERNAL FLOW

P - y6 2/ 3 p(x,k ) + ... (5c)

52
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By virtue of pressure compatibility on the slip lines, the relation

'P! -4j: (6)

holds along the slip lines B'U' and CU in Fig. 21a, which upon tangential inte-

gration yields the relations indicated. The constants Cu and C. are similar to

circulations and are obtained from the difference of the potentials at the

trailing edges B' and C. The trailing edge behavior and jet turning angle are

obtained from (6) and the compatibility relations ýo = qon the slip lines.

Local nonuniformities occur at the trailing edges which are anticipated as weak

singularities. "Inner inner" expansions for these would require the solution of

the full potential equations in these neighborhoods.

To complete the specification of the problem, a far field ýFF is neces-

sary. This function should have the property that it asymptotically matches

with the outer flow on the boundary of the region Re. A procedure which pro-

vides the necessary nonlinear feedbacks with the near field of the problem in

Fig. 21a involves the asymptotic solution of a relevant integrodifferential

equation. A heuristic far field derivation in anticipation of this more satis-

fying approach is described in the next section.

MATCHING OF EXIT/TRAILING EDGE REGION WITH EXTERNAL FLOW

Because of the anticipated jump in the vertical velocity at the trail-
ing edge associated with a jet flap or USB, we assert that the inner limit of

the external flow solution which is assumed to be locally harmonic in strained

variables in that neighborhood has a logarithmic singularity in the complex per-

turbation velocity. To simplify tihe discussion, we consider matching in the

1 71 cotext of a jet flap (x, = XTE) for the present. Generalization to more com-

plicated USB cases should present no major new difficulties. As a consequence

of the logarithmic singularity assertion, the complex potential behaves like

z log z, as z+O, where z = x + i/! in the vicinity of the trailing edges as

53
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they appear in the external formulation.* Accordingly, in the notation of (6),
V we assume that

D= A{x log F - y + "" (7)

where A is a constant, = x2 + 2, and • tan- 1 K--Y . In a corresponding
x

manner, we assert that the outer limit of the blending layer solution for t

associated with the expansion (3) is given by

. - a{R log F - -K g} + ... (8)

where a is another constant.

For matching, we introduce intermediate variables x• and yn given by:

x x y y fixed as s+0 (9)x ,TE =Tg ' Yn :nT Y-)

wi th

6 4/3 << P, << 1

4/33

j 6 << n << 6-3

where the << sign signifies "order of."

In the intermediate limit (9) which implies that

x = 0xr+0

= S 1/3nyn + 0

•*For near critical trailing edges this assumption is invalid.
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X x + 0

y ,
Y n

the variables and various terms appearing in (7) and (8) have the following

appearance

1 nY /3
tan- IKY tan- (10a)

1•n~•/3

tan-1 + tan- (10b)x ýx

/r2x2 n2y2

log lo 1og J 8- 3+ 72 (lOc)

2 2 +K2/3 2y2(1)
log log log x +K6 1  y2 . (10d)

On the basis of a comparison of the various elements in Eqs. (10), we find by

virtue of (7) and (8) that the perturbation potentials in bLth regions compare

roughly as follows, where the -=> indicates asymptotic correspondence:

6/ <=>> 6 + 6(.oo )l (11)

3/

- providing the limit is taken as fixed constant = x as 6+0. More

A precisely, if the external and inner flow solutions are written in terms of

intermediate variables, we obtain the following correspondence:
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A A62 / 3 { x log VC-xT 2• 37 - '/K xy

"<0> S2a - Iog Fi'-+X--2"7-in -Z log - Y

4 (62 log 6) (12)

The last term is a compensation term added to achieve matching. Presumably, an

internediate solution could be developed to eliminate this rather foreign look-

ing entity whose physical significance is not well understood at this time.

Aside from this rather minor difficulty, the result contained in (12) demon-

strates that a numerical solution of the problem in Fig. 21a will match with the

solution of d global jet flap problem near the trailing edge providing A = a and

the far field for the former is given in accord with (12).

"THIN DOMAIN" SPENCE REGION

Another matching is required downstream of the trailing edge, involving

the confluence of the wavelike region and the "Spence" zone where pressure and

centrifugal forces equilibrate. This reg-ime is reached in the limit of x,y

fixed as ý+0 and leads to the "thin domain" problem shown in Fig. 21b. Here,
the streamwise derivatives are negligible in the dominant approximation. iMatching with the external flow takes place by "patching" across the slip line

with the boundary conditions of compatible normal velocity and pressure as shown

in the figure. The inner limit of the thin layer solution represents the jet i
far field of the problem associated with Fig. 21a.

3.1.1 A Basic Transonic Coflow Problem

Many of the fundamental ideas associated with the problem depicted in

Fig. 21b are contained in the unit problem shown in Fig. 22. Here, a jet of ve-

locity Ue exhausts into a coflowing stream with a freestream velocity U. A

56
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major simplification over the problem given in Fig. 21a is now that the cowl PBO

is a flat plate internally and externally as well as the bottom wall surface LSR.

Moreover, the lower cowl boundary VC in Fig. 21a is replaced by an infinite wall

y = -1 in Fig. 22 for this idealization. We assume that conditions are known at

some exit station AB, which could beat x = -- in the coordinate system indicated,

and could correspond to a settling chamber location. Note in this connection

that a far field analysis indicates that as station AB tends to x = -- , the

assumed Neumann condition is asymptotically equivalent to a homogeneous

Dirichlet one. In particular, with the problem for * based on Fig. 22, a far

field representation, obtained from an iterative solution procedure regarding the

nonlinear term of the Karman Guderley equation as a weak forcing term, is

1 eRUA2  21rI/1e
=AA1eCos 1y + (y+1)i e cos 2•y

•(R~~y2 =iRK A1e7/ve os/y+8K

+ A 1
2  (Y+.)2e e + Ae e cos 2vy +8 Ke3/2 2'

as x -+

Defining the average of a flow quantity g at the station x = xo as
0

<g(XoY)> = average of g at x = xo - J f(xo,y) dy
* -1

we have in particular, using the foregoing asymptotic solution specialized to

x = 1,

A12  (Y+l) -2T/ee1 8 Ke 3/2

Moreover, we find that

S=P2( Y)>-1,yr
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An interpretation of the constant A appearing in the foregoing

expressions is obtained by using Green's theorem to derive a nonlinear integro-

differential equation for p. Fron the forliulatior of Fig. 22, it is possible to

evaluate the boundary terms on the boundaries of the rectangular domain AB and

PR. The appropriate integral theorem is

2Kl - -w

+b'() sinh 2 2 f

00

where

C =

Approximation of this expre.siun for x + + •, with interrelationships between

b(-) and c %o be derived subseouently, is consistent with the asymptotic

expansion of e for x + -• previously given and the result

c, : x as x

where the partial integration boundary term in the first integral of Che Green's

theorem expression dominates the double integral and is approximately ± cx 12i as

x + w, and the contribution of the lower limit vanishes. This change in signs

is of decisive importance in obtaining the desired upstream and downstream

boundary conditions. Furthermore, the Green's theorem expression shows that

A1  1 b'(=) f d
0

i.e., A1 is a moment of the source distribution associated witn the deflected

slip line.
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Returning to the configuration at hand, we note that in some sense,

this system is a simple idealization of an inviscid ejector. A sketch of a

wind tunnel realization is also shown in Fig. 22. An analytical/computational

solution has been developed to study this problem, with the objective of

addressino the following issues associated with the problem of Fig. 21b:

1. Under what circumstances is the jet far field supersonic if the
initial conditions are subsonic?

2. What is the degree of downstream penetration of an initially

p. supersonic jet, i.e., how long is the supersonic region?

3. For (2), how do the pardmeters K, Ke, w and y affect the penetra-

tion length and the relaxation and decay of the complex nonlinear

wave interaction process to uniform conditions?

4. Under what circumstance3 does a throat arise in the jet?

5. Are any of the ideas associated with the one dimensional flow

theory of under- and over-expanded plumes applicable to delineate

the vario.us flow regimes in this two-dimensional context?

6. If the strea-'wise scale of the reflections is 0(61/3), then the ex-4 ternal flow sees d wavy wall boundary condition if the jet remains

supercritical. In this case, the Dasic slip line shape is modulated

by corrugations inducea by wAve reflections, and the relaxation

length of the interaction process may not be of 0(s1/3). Are Poincare

limit process expansions of the type given in Eqs. (1) - (5)

adeqdate to treat the problem, or is "two-timing" required?

Sruring this phase of the research, a partial answer to sime of these questions
has beei obtained in connection with an integral mass conservation form of the

KG equation tr, the flow in the jet, which is

60
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1 dy0 So I
If the jet slip line is given by y - 413 ,), where R = -I 3 x, then the

tangency condition is

y(X,O) = (1() . (14)
y

Noting that 6(0) = 0, (13) and (14) lead to the relation

0 9
(cf) - J (Ke- -e z 2  dy (15)

-12

Furthermore, if we assert that y and *Oy 0 as • , then the slip linc

pressure condition

@- (xO) = 9'(xO) - Wly (16)

implies if further, ambient pressure is achieved in the freestream, i.e.,

ý-(x,O) + 0 a- x + -, that

xx 9R + w/y as R + (17)

at least on the jet boundary y = 0. If we continue this in the interval

-1 < y < 0, we note that it is a particular solution of the K.G. equation

satisfying the wall boundary condition oy(x,O) = 0. Such a solution represents

an asymptotic velocity distribution infinitely far downstream which is uniform

across the jet and is intuitively reasonable on physical grounds. By contrast

to the limit x + -w, the second order exponentially small corrections for x +

must be determined from the full K.G. equation rather than a Prandtl Glauert

approximation. For critical conditions at this location
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A K
- e (18)

which is achieved by virtue of (17) when

Ke (19)
e Y

if 1 1. Equation (17) with (15) implies that

S(®+) ¥ j f -Ke (20)

Tables 2 and 3 as well as Figs. 23 and 24, summarize cases that can oc-
cur by virtue of the previot 'ormulas for K > 0. These cases are significant

for USB application. Here, xt dc-iotes the streamwise position of the throat or
minimum area section of the jet. Only one configuration (Case V) exists for

w = 0. For w = 1 and w = -1, however, many configurations exist, and a diagram

delineating the various flow regimes is given in Fig. 23. Sketches of the cor-

responding jet shapes are given in Figs. 25 and 26. Note that Case V represents
a uniform flow for the jet which shears the external freestream, i.e., both

flows are uniform in this case. Also, the indicated expansion and contraction

of the jet is co-isistent with one-dinensional reasoning for the various cases.

Note, howevier, that the question of smooth, shockless decelerations and tre

realizability of these inviscid cases must be resolved through experiments and

other analyses which could assess the role of viscous entrainment along the

shear layer. Computational 3tudies could illuminate the question regarding the

existence of shocks in the jets.

In related IR&O work, the case of K K - _o has been analyzed,

involving decay processes associated with radiation of the jet pressure field to

the external coflow through transmitted waves. if Me and M. denote jet exit and

freestream Mach numbers, respectively, then relaxation to uniform state takes

j place through a wave train produced by ri.tiple wave reflections from the wall

and slip line. For the Nth downstream Mach didmond, the analytical solution of

this problem indicates that the wall ptesure C behaves like
p

62
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TABLE 2 - OCCURRENCE OF CRITICAL CONDITIONS AND THROATS IN JET

(K > 0)
S(w 1,0)

StreamwiseSPosition Mach Monotone

Case Jet Exit - of Throat No. Slipline
No. • Supersonic? Range of K1  b(-) (xt) at - Admissible? Remarks

SNO 0 ( IK< >0 >1 No ýPx(.) y

+1
la I No Ke 1- 0 <,, >1 Noe y

II 1 No + Ke< y+ <o <. >1 No

Ila 1 No K <0 - - Yes

Il 1 No < % <0 <1 Yes 4

IV I Yes -- (K < 0 >0 0 >1 Yes

V 0 Yes and No -- > Ke - 0I Yes -

P e P.Pe " -

Pure slip flow
(No Perturbations)

% . 63
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tABLE 3 - OCCURENCE OF CRITICAL CONDITIONS AND THROATS IN JET

(K > 0)

Streamwlse
Position Mach Monotone

Case Jet Exit of Throat No. Slipline
No. w Supersonic? Range of Ke V() (xt) at - Admissible? Remarks

VI -1 Yes -- 4 Ke < 32-K -) Yes • ( ) = - '
e y 

P < P
e

Via Yes Ke . <0 - Yese Y

VII Yes < <0 <- <1 NoY e y-

Vila Yes K - -0 (- (1 No
e 2y~

VIII Yes - y+' < K < 0 >0 <- <1 NO2y e

VIlla Sonic KKe > 0 >0 0<1 Yes
IX NO K e > 0 )0 0 <1 Yes

64
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0I a)

xT3

V

Fig. 25 Slip line shapes for various cases in Table 2, 1, 0.
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Fig. 26 Slip line shapes for various cases in Table 3, -1.
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4K )N
C& -4 {I - (-1) exp (-N log a)} as N+- (21)

where

e e LUMPED

0 REFLECTION PRESSURE
"el + ee COEFFICIENT K - MZ RATIOe[,e SM l + PARAMETER

G=, =e e

If ýP* is the perturbation potential in this process related to the exact

potential by the asymptotic expansion

ee ~ x + &P*(i*,') + 0(02)

7e

for R* x/6, y = (y - 6b (x))/6, Me, M fixed as 6+0, then ýP* satisfies an

initial boundary value problem for the supersonic Prandtl Glauert equation

giving the damped wave train solution

- (x* + I) (-a)nH[x* + e - (2n+1) a
K e n=O e

+ (x*- _ ,(-a)nH [x*- Be- (2n+1)hJ (22)
n=O

where

H(x) =1 x > 0
=0 , x<O

and 0 4 a 4 1.

t' The problem of incompressible flow is also interesting. With a slight

change in normalizations, we have for this case

69
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Pi n _I y 4 0

A 0=O y>O

with the boundary conditions

S•x(--,o) 0
1y(X,O) ( (X,O) = 0, x < 0

ýp (x,O) (x,0) = b'(x), x > 0
y =y

iy (x,-1) 0
y PcýPx (- ,O ) = C - p •

•x (xO)- 0 x(XO) = c, x > 0 ,

where p is the density, and Pc and U are the ambient pressure and freestream

velocity of the external flow. Cartesian coordinates similar to Fig. 22 are

used. Also, t-he jet pressure P. is assumed to be siightly different from that of

the freestream measured by the parameter 6 in a simi~lar manner to that utilized

in the previous developments, i.e.,

P.

00ii
with w = -1, 0 or 1. Furthermore, the slip line is given as y = sb(x), x > 0.

Correspondingly, we assume that the jet velocity V. is expressed as

UJ

U

Finally, the external flow vector is represented as

U + + 6Sýy+ C)S2
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and the jet is

(1 + 6x)t+ yi + (2)

where T and I are unit vectors in the x and y directions, respectively. As in

the other speed regimes, two different potentials are needed because of the

different Bernoulli constants in the jet and external flows. The homogeneous

Neumann conditions at x = -- establishes a pressure level for the jet. The

corresponding inhomogeneous Neumann condition at x = is consistent with

equilibration of the pressure to the ambient level of the external flow (P.).
The aforementioned boundary value problem leads to the following

singular integral equation for b'(x), when Green's function representations for @

and 'P are used in their respective domains of vilidity and the boundary

conditions are applied:

f b'()Jtanh (x-½) - A)d& c(n -
0

which can be solved by Weiner-Hopf, 2 2 conformal mapping - Green's function

methods, or numerical procedures. This formulation can be used to check the

well-posedness of the transonic problem and the appropriateness of the numerical

procedures which we will now discuss.

3.1.2 Basic Ideas for the Computational Solution of the Problem of Fig. 22

Because of the nonlinearity of the flow problem represented in Fig. 22,

numerical methods must be used. The approach that has been implemented employed

a SLOR Murman-Cole type dependent difference scheme with Jameson damping, in

which the QP slip line pressure boundary condition is tangentially integrated to

give

S•(i,0) = p(•,O)_ - + C , x > 0 (23)
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where C = 4(O,O) - 9(0,0) is updated in successive sweeps. Equation (23) and

the relation

'((X,O) = -(x,O) x > 0 , (24)

with the other boundary conditions indicated in the figure, define the numerical

problem. In this connection, a far field in the external field given by

= )(r-) " 0 , as r2 =2 + +K 2 (25)

is prescribed on the finitely large computational boundaries P'Q', Q'Q and QP.

Compatible with (25),

'p+ /y as X+ c

which also is satisfied on the finite computational boundary PR. For ease of

calculation and programming logic, dummy matrix entries have been used in the

region LABP' in Fig. 22.

Details of Numerical Procedure

In some respects, the numerical procedure is similar to that discussed

in Ref. 5. Referring to the formulation in Fig. 22, for interior points, the

transonic potential equation for the jet region and external region in diver-

gence form is discretized by using central differences when the equation is ellip-

tic and backward differences when it is hyperbolic. Parabolic and shock point

operators are employed when required. Both the Neumann boundary conditions and

the subsonic and/or supersonic jet conditions are discretized as described in

Ref. 5. New to this problen are the interface conditions (24) and (25).
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The former can be written as

(x,0) - iQ(x,O) = V(x - XITF) + CITF (26)

Here, v = ±I/y and CITF is a constant to be determined. The quantity xiTF is the

x-coordinate of the cowl lip.

Since no mesh points are placed on the line y=1, ciTF is determined by

extrapolation of ý from above and o from below the slip line along x=xITF.

Tnus, cITF = P(xITF,I) - 'P(xITF,1).

Equation (26) is inserted into the discretization of the operator pyy at
"the first -0h point above the interface by replacing *i,j-1 by

--(xi - XITF) " cITF

Similarly, ýyy below the interface uses ýi,j+l replaced by ýi'j+l + v(xi xITF)

+ cITF. This type of differencing guarantees that Eq. (26) is automatically

satisfied. The relaxation sweep is carried out as in Ref. 5 from upstream to

downstream, where homogeneous Dirichlet conditions are utilized in Station AB in

Fig. 22.

INITIAL PARAMETRIC WALL JET STUDIES

Prior to dealing with conditions (23) and (25), the implications of the

initial conditions and pressure gradients in the problem of Fig. 22 were

investigated in parametric studies that were conducted with an extended version

of our original submerged wall jet code described in previous sections. The

problem studied was in the previous notation:

L[ e;Ke] [e - (Y+I)ý-]•p-- + 0 =0

with
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ýpx(O,y) zPHIXO =g()

p(Oy) h(5) , (specified for hyperbolic exits)

p(i,0) = G(i) , x > 0

0= o

with

S" @FF(Y) as + -

Note that in contrast to the formulation including Eqs. (23) and (24), which

involves the determination of the pressure on the slip line, the formulation

here assumes this variation.

Table 4 provides a tabulation for some of the cases run for this

problem where 'OFF was &ssumed to vanish for these studies. Comments on the

qualitative features of these examples are provided in this table.

From these studies, Figs. 27 and 28 illustrate typical results for

Ke = 0.1 for the effect of the initial velocity g(y) on penetration for a submerged

jet with ý.R(i,0) = 0. Here, Cp = (C )/(M2/3), and C* is the critical
p p

pressure. For h -1, the jet remains subcritical. For the h > 0 cases, it is

evident that the shock terminating the supersonic region moves progressivwly

further downstream with supercritically increasing exit velocity.

Figures 29 and 30 depict the effects of assigning a coflow pressure

gradient along the slip line IPR(x,O) = 1 as compared to the submerged jet case,
io-(x,O) = 0. The former is crudely analogous to (23). It is evident that thexI
pressure gradient has a dramatic influence in accelerdting the flow and

prolonging the supersonic zone. This fact could affect the matching with the

Spence region for the problem of Fig. 2La in the inherent assumption that the

wave interactiop zone there is (6(4/ 3 ).
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TABLE 4 - PARAMETRIC SUIMMY OF RUNS

Cs '0Y a ,xl (x~l) K su NSP 0) Comments

1 1.0 0 y 0 0.1 686 0 iMstly elliptic. Exit hyperbolic,
far field elliptic.

2 3.1 0 0 0 0.1 118 0 Completely elliptic excep jet
exit which is hyperbolic.

3 1.0 0 0 0 I0"3 764 0 Jet exit super-onic.

4 1.0 0 1.0 x I0"3 2652 0 lostly hyperbolic with ellipticS) far field.

5 1.0 0 1.0 x -10"3 2652 0 l-yitly hyperbolic with elliptic!( ~ far field.

6 1.0 0 a 0 10-5 0 0

7 .1.0 - 0 0 0.1I 0 0 Completely tliptic.

8 1.0 0 0 0 0.1 1645 -2x.(0.1) Larger superso.iic region thin
-2.(1.2)without wall.; o.(? .. )

9 2.0 0 1 0 0 0.1 1435 -2x.(O,) Super0on, c region smaller than

9 -2.(1.2)case with less blowing.
0.(2.-)

10 2.0 0 0 0 0.1 1074 3 Smaller supersonic region thin
case with wall.

11 1.0 0 0 0 0.1 1648 -2x,(O,1) O(x,O) = Ck in (3.8,6.2).
-2,(1,2) Field similar to Case 8 without
0,(2,3.8) slip line except for in (3.8,0).

12 0 0 1.0 x -0.5 2838 0 Supersonic everywhere.

12a 0 0 1.0 x -0.5 2838 Cl.(3.8.6.2) Supersonic everjwhere (with will).

13 0 0 -1.0 -x -0.5 85 0.10,3.8) Subsonic jet exit. Very small
C1 ,(3.8,6.2) supersonic fir field.

14 0 0.25 y
2  1.0 x -0.5 2810 0 Supersonic almost everywhere.

IS 0 0.5 y
2  1.0 -0.5 2784 0 Supersonic almost everywhere.

16 0 0 1.0 x 0.5 0 0 Supersonic everywhere.

17 0 - -1,0 -X 0.5 0 0 Subsonic everywhere.

18 0 C 0.5 0.5 x -0.5 2838 0 Supersonic everywhere.j19 , -0.5 .0.5x -0.5 0 0o Subsonic everywhere.

75

z'.



SC5055. 2iFR

L4-

m 0a

0

4-) 4- )

0

'a 4- ) -

CA a ) II
LO4-

U,

lb
C; ~ ~ ~ ~ ~ ~ ( '4- 10*1cl 4 0 o

76



Eiq Rockwell International
Science Center

SC5055.21FR

a 0

Cý -I-,

g*

r--

C 0

W) 0

94-

* 4-S 4

C C

a, C 0

7/ 4-O

p)

.9, (fl

60 0

7/~



¶ ~SC5O 55.21 FR

00
0

10

v4*

ID

ca

C-A

u-,.

9c i
bp) C;

U0. i(..)

C;~ C* * V4 4

78*



Rockwell International
scimnco Conter

SC5055.21FR

CL

PC

M 0(A

000

4-)C

0

0
:2
* C.I) a14

OLL

CD0 0 0; 0* 0; C0 0 0

79



SC 5055.21FR

3.1.3 Results for Complete Problem

Applying the numerical procedure described previously to treat the

problem involving Eqs. (23) and (24), results were obtained for illustrative

cases. In this connection, a typical three-dimensional relief plot of Mach

number as a function of spatial coordinates x and y related to the formulation

in Fig. 22 is shown in Fig. 31, with y now measured from the bottom wall. In

the legend, recall that the quantity w is given by

where Pe is the jet static pressure, P•, is that of the freestream, and *2/3 is a

small parameter measuring the indicated excess pressure ratio. The quantity w

denotes a sign index which can be 1, -1, or zero. In addition, the parameters

Ke and Kj are defined as

Ke =(1 - M2)S 2/ 3  K= (1- M2 )/6 2/ 3

For the case indicated in Fig. 31, w = 1, Ke = 1, and K = . In the code,j Y
the jet exit potential P(-1,y) was assumed zero. In contrast to the homogene-

ous Neumann conditions assumed in the derivation of Table 1, this procedure has

been justified in an earlier section of this report.

In spite of the finite location of the jet upstream boundary, the
results obtained are roughly compatible with those predicted in Table I. Fig-

ure 31 shows a strong acceleration of the initially subsonic jet flow embedded

in a subsonic stream jet flow due to choking associated with constriction of the

jet slip line (not shown). A terminating shock (supersonic to subsonic) forms;

giving sonic conditions infinitely far downstream.
Figure 32 depicts a flow pattern associated with an initally supersonic

jet in a subsonic stream. The acceleration is smooth and isentropic. Both

figures ypify wave interaction regimes that can result in global modifications

of the flow field, resulting from a change in the Kutta condition wake structure

and interaction with the viscous wall jet on upper surface blown airfoils.
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* 3.2 Solution of Blown Airfoil Problem and Relevant Flow Structures

In this section, in contrast to the detailed jet studies previously

given, we change focus and concentrate on various formulations and analyses

which are intended as a critical assessment of different aspects of the jet flap

formulation given in Ref. 1 and its extension to USB for incompressible and
4 compressible flows. Whereas the previous discussions have concentrated on wall

jet flows relevant to the upper surface blown problem, this discussion will

treat other formulational issues. In particular, as a basis for the thin

airfoil and small disturbance models, the thin jet approximation is described in

Section 3.2.1 in terms of a systematic asymptotic expansion procedure for

incompressible flows. This study is used as a basis for obtaining boundary

conditions across the jet. The generalization of these developments to

compressible flow is straightforward and therefore not provided. Section 3.2.2

provides a discussion of the trailing edge region from the viewpoint of a

nonuniformity of the thin jet theory as well as the generalized Kutta condition

for USB. Inherent in this aspect is the geometry of the dividing streamline at

the trailing edge, which is a necessary condition for the determination of the

jet sheet free boundary. Arguments are provided to substantiate tangency to the

upper surface, providing the jet stagnation pressure is greater than that of the
external flow. Also indicated is how the small disturbance jet flap formulation
of Ref. 5 is modified with USB. Finally, Section 3.2.3 gives results from a
computational solution based on the inviscid small disturbance formulation

indicated in Fig. 20b. In this section, transonic USB airfoils are analyzed and

comparisons are made with experiment. Factors associated with the discrepancies

are considered and refinements are proposed to improve the realism of the model,

leading to the discussion of the viscous model given in Section 4.
&

3.2.1 Thin Jet Theory

As an essential ingredient of a wall disturbance formulation, the jet

structure is developed in this section for purposes of specification of the

boundary conditions. In particular, it will be shown how the Spence theory of

Ref. I can be derived and refined from a systematic approximation procedure.
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Referring to Fig. 33, a section of the jet is shown. A curvilinear

jcoordinate system is embedded in the jet as indicated. The lines n = constant

, j are parallel to a reference line (the ý axis) which is the (flux) center line if

the jet is symmetric, or the wall for a wall jet case. In this coordinate
system, the lines E = constant are normal to E axis. In what follows, the

incompressible case will be discis-sed. The genteralizations to compressiblP flow

iare straightforward.

Within the indicated coord~inate system, the exact equations of motion

are

Continuity

q + h qn 0 (27a)
E en

- Momentum
q. aq aq qn q h -1 aP

_-g + qn (q + - (27b)aý nan an -pT T

n- Momentum

q q (27c )

where h, the metric coefficient when related to the differential arc length in

Cartesian (x,y) coordinates is

dx2 + dy 2  h h2 (•'n)dE2 + dn 2  (28)

h(F,,n) = - n/R(E)

with R(E) being the radius of curvature which is shown oositive in Fig. 33.

To obtain an approximate incompressible set of equations prototypic of

the compressible case, the thin jet limit is considered. The characteristic jet

thickness is shown in Fig. 33, where the jet boundary is denoted as n - Tb(E).

The quantity T thus represents a characteristic slope of the jet free boundaries
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Fig. 33 Section of jet and curvilinear coordinate system.
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which is of the same order as the jet thickness in units of its radius of

curvature.

We now define a thin jet limit

t , 0, &,n* = n/T fixed (29)

where the boundary layer coordinate n* is introducted to keep the jet slip lines

in view in the limit process. In (29), the appropriate representations to yield

a nontrivial structure are
q E (ý,n;T)

U 7 uo(&,n*) + V"T'ul(E,n*) + ... (30a)

q n-T Vo + qn t 3/2v + ... (3 0b)

P2- PO + TP + (30c)

where U is some typical freestream velocity. The orders were selected to give

the "richest" possible set of equations and, consistent with this, produce

forcing terms in the equations for the second order quantities. These ordersI| are consistent with the massless momentum s)urce mode of Spence

Substitution of (30) in (27) and equating like orders gives thei following equations for the approximate quantities:

a- 0 +av 0 (31a)

0 0
a u0 _ u0  3b

u u0 + v0• 0 (31b)
0a 0 I,7

0 "(31c)
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+ = (n*) (32a)

au1_ au1 33u0 O au u~U- + l u R(32b)

2u u p av0  av0  u2 n*
20Ul +uf0 0 0 (32c)

The appropriate boundary conditions involve statements regarding the

fact that the jet boundaries are streamlines and that the static pressure is

continuous across the slip lines. The upper and lower slip lines Su and S.= 0

are given by

Su = n -bo(-) T b1(&) = 0

S, = n + Tbo(E) + T2bl(d) = 0

where symmletry has been assumed to leading order.

Based oi, the foregoing discussion, the condition that jet boundaries S

are streamlines is

.VS =0

where • = (q ,qn). Substitution of the expansions (30) into this relation gives:

7 vo(Eb 0 ) = b;(E) uo(•,b 0 ) (33a)

v0(,-bo)= u0 ( ,-b 0 ) (33b)
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Vl(, 
(� ) 

vo(ý,bo)bo +u 0

-bý,o + b(33c)-
1 R +bb) • (ý,bo) (t,bo) + u1(ý,bo)b6

avo-bI •- (&,bo) + blUo(E,bo) (33c)

I;+•, , ~Vo ( ''bO)bO , o
SVl•,bo blb uo (ý'-bo) "Ul(ý,"bo)bo

+ bI - (t,-bO) - bluo(ý,-bO) (33d)

The other conditions involving continuity of pressure are:

po(ý,bo0) = e., qu) (34a)

3P0
pl(E,bo) = - bi(ý) -Tn7 (E,bO) (34b)

where we assume for the present argument that the external pressure field p(U)
ext

is prescribed. Similar pressure conditions hold for the lower slip line
boundary. If s is a characteristic flow deflection angle of the order to the
airfoil thickness or angle of attack, then T << 6 has also been implicitly

assumed.

Solutions

First Order Theory

We introduce the zeroth order stream function given by

vV0 U0

and employ the following transformation for the independent variables

S+ (35)
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Under (35), the differential operators map as follows:

0 a4,

and Eqs. (31) become

-- Vo -' Uo0  - 0 (36b)
au0  au0 3* 0 Q (36a)

au 0
@-•=0 (36b)

Uo 0 aP (36c)
R 3

The general solution for Eqs. (36) is

u 0 = Uo(M (37a)

1 '
PO = k(E) - f uo(p') dp' (37b)

0
= b'(ý) uo(,) , (37c)

k(E) is the pressure on the centerline. The reference (centerline) condition
•i (Vo(EO) = 0) or the conditions at the edges of the jet (Eq. (33b)) show that

Sb6 = 0 and b0 = 1, if b0 (0) = 1. Thus, in terms of an arbitrary initial

parallel flow profile u0 : f(n*) at 0 = 0, we have

"=f f(;)dj . (38a)
0

Therefore, u0 = f(n*(,)), and (38b)
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k(o) - ) k(3 f f (n*(f,)) dp
0

"k( f f2dn* =q() +• 1n ~r*(3)

1~ 122

~ +.~fdn*(38c)

(k(ý) qu + f f2d")
n•

Discussion

Equations (38) describe a parallel flow jet. The total jump in

pressure across the jet from (38c) is

~~1 ~2 1f2( d*(9
'[Po] = PO(ý,I) - PO(',-1) f " f2 (n*) dn* (39)

which agrees with the Spence model. It should be noted that in contrast to the

latter, no assumption regarding irrotationality is required to obtain (39),

which 'is also in contrast to the results of previous workers. The radius of

curvature of the jet is approximately R upstream of the trailing edge, which in

turn is approximately given by that of the blown upper surface. Downstream of

the trailing edge, R is determined from applying (39) to the determination of

the flow outside of the jet. Upstream of the trailing edge, the wail pressure

is determined by (39), since R is known and is given by

Elf2(n*) dn* (40)

S0

In Ref. 6, the appropriate second order theory corresponding to the

expansions (30) are derived. Also indicated are various ;nonuniformities that

can occur, such as those near the trailing edge. These reveal the need for other

expansions in the neighborhood of the nonuniformities.
Also in Ref. 6, a small deflection specialization of the previous thin

jet theory is considered. Therein, a systematic patching procedure is utilized,

employing a "blending layer" at a vertical distance of the order of the slip

line and airfoil deflection angle 6 as 6 + 0. The blending layer has been used
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to validate the usual Taylor's series transfer of boundary conditions employed

to define the outer flow. A treatment of similar blending layers is discussed
23in Cole in connection with incompressible flows around unblown bodies of

revolution.

3.2.2 Trailing Edge Behavior

Incompressible Flows

Defining the complex potential function as

F(z) = O(x,y) + i*(x,y)

where (x,y) is the local coordinate system shown in Fig. 34 and z = x+iy, the
II

local "corner flow" solution to within a dimensional multiplicative constant in

the lower external region A'OB where a and v are the dividing streamline and

trailing edge angles shown is given by

F = e if(W+v)/a zT/B (41)

which implies that the square of the resultant velocity q is

IF1 2 = -2 2( ) (41')

The initial conditions for determination of the jet, which follow from the

requirement that the pressure and flow angle be continuous across the dividing

streamline near the trailing edge, were studied for incompressible flow.

Referring to Fig. 34, with the dividing streamline denoted as OB, we signify the

trailing edge angle as v and the angle that OB makes with the upper surface AO as t

and that with the lower surface as a. The details of this discussion are given
•,in Ref. 6 which shows that = and 0< nis the only viable possibility if the

+stagnation pressure P0 above AOB is greater than that below it, which is

signified by P-, where + and - superscripts signify conditions above and below

the slip line AOB, respectively, and 0 refers to stagnation conditions.

Denoting u as the flow speed along the slip line, Bernoulli implies
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Fig. 34 Blown trailing edge formulation.
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+ 2(P- Po)
U =

I-( P

Here also, u 0. These results quantify the slip.

"If, on the other hand, P0 < P-, then w < and a is the only

possibility with

( Po ) +U" - ; U =00 0
IP

For a hypothetical case in which P_ PO in a real physical flow (fluctuating
I0 0
above and below equality), then a tri-stable configuration could evolve which

would oscillate between configurations in which the dividing streamline is tan-

gent to the upper and lower surface or bisects the trailing edge angle. Similar

arguments have been applied to treat the conditions of the stream sheet at the

trailing edge of unblown incompressible three-dimensional wings in Ref. 24.

Nonuniformities of Second Order Approximations

From (41), we find that another nonuniformity associated with second

order solutions discussed in Ref. 6 is related to the following behavior

(2u/o)-3 a +qu r as r + 0

where, we distinguish the following possibilities as + ÷TE:

(i) qu + 8 > or v <

(ii) qu + 0 8 < or > >r

(iii) qu finite 0 0 , 8 : or v =
I!"I

Case (i) is the most practical situation and will necessitate an inner solution

for the transition layer to join the wall and free jet flows. This aspect is

discussed in Ref. 6. For the jet structure considered here, we briefly

N1,7 investigate the vorticity which can be shown to be given by
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S3/2 o + T 1/2 1 + where as an illustration, if u0  C, then,

a 0@u0WO =n--T• = 0

au 1  u C
I = RT =y constant * 0

Because of the constant initial velocity profile, a non-zero vorticity is intro-
duced by the body curvature. By contrast, a potential vortex over a circular

cylindrical surface would have had a linear initial profile to produce an
irrotational flow. Note for arbitrary initial profiles, uo(O,n*) = f(n*) and

thus, o0 = f'(n*) * 0.

Compressible Trailing Edges

Consider again the configuration of Fig. 34. Here we analyze first the

case where

P• + > PO

With the usual isentropic r,;lation

+ = + , (P+ static pressure on upper side)

P 0

the local Mach number, M, can adjust in a continuous way, so that the flow
recompresses smoothly from B to 0. At 0, M is single valued = M1 and adjusts

itself such that the static pressure P+ equals P-, in accord with the isentropic
relation, assuming that the flow stagnates at 0 on the lower side. The only way
this can be realized is with the w > n and a < w arrangement. In some respects
the configuration resembles flow over a solid wall expansion corner. This gives
rise to an expansion fan interacting with a sonic line from the corner. If the
solid configuration were representative of this flow with the free boundary slip
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A line, comnpression waves would reflect off the sonic line and form a shock
envelope which would be necessary to recompress the flow from an overexpanded

value bow the critical P+ to the P- level. Additiral reflections can be

prodccý:d from the upper slip line C). This discontinuous transition leads to a

multivalued pressure at 0. The ccrttinuous and discontinuous processes are

illustrated schematically in Figs. 35b and 35c, respectively. In Fig. 35b, the

recompression takes place on the line BO. In Fig. 35c it occurs on 00'0"0"'

signifying the confluance of multiple states at 0. Here, the dashed line

element 0 "0"' signifies a shock jump. Experimental data strongly suggests that

in the incompressible case, the configuration with w = t and 8 < f is the

moe- probable situation. Presumably, a more rigorous argument to support this

conjecture would rely on some sort of stability analysis. Specific criteria to

determine whether the discontinuous or continuous configuration occurs in a

given case is an open question that could benefit from further study.

For P+ = PO, tha dividing str, amline would again bisect the trailing
0 PO

edge, since the flow in the immediate vicinity would be incompressible and the
reasoning in the previous section would apply. For the improbable case of

P+0< P0, the conFiguration with w < - and 8 = 7 wculd be applicable as for the

incompressible situation.

External Flow

For distances large compared to the jet width, the 1ine structure of

the jet its important only insofar as it provides matching coniltions to the

irrotational "outer" flow field. In incompressible flow, this external outer

flow can be determined by thin airfoil theory. At transonic speeds, small

disturoance theory is appropriate for this region. Details of the asymptotic

matching procedure have been discussed for incompressible flow in Ref. 6. Based

on these developments and the earlier ones for thin jets in this paper, the

boundary ,onditlons for the outer flow in the incompressible and transonic c:;-%s

for the jet flap and upper surface blowing are now .*dicated.
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Jet Flap

Referring to Fig. 36, the equation of an airfoil can be given as

y = sf(x)

and the jet is

y = 6g(x)

where 6 is the thickness ratio of the airfoil, and f is the upper or lower surface

and involves the angle of attack which is assumed to be of the same order of

6. Considering a small distu,-bance approximation, we obtain

Letting th otr "expaniJonpressuje coefficient be represented asR- 6P - P
Ltigthe ''outer''xaso rsuecefiin erpeetda

P-Pe
-pl. = 6P(X,Y) + ...

then by virtue of a generalization of (39)

[p(x,O)] : - Cjg"(x) = - 2[¢x] (42)

where

C J q2dnT /pU 2 : 0(1) (43a)

and 0 is a perturbation potential.

Equation (42) is the relation used in conjunction with the jet tangency

boundary condition

11 97
C3471A/jbs



SC5055.21FR

SC80 7187

V

y =f(x)

-A B-.. .x y 6g(x)

BLOWN
SECTION

Fig. 36 Configuration for outer USB problem.
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(P(xO) = g'(x) (43b)

and the airfoil boundary conditions to determine the external flow field. These

relations coincide with the relations derived by Spence. They can be generalized for

transonic flow by placing the p inside the integrand in (43a).

Upper Surface Blowing

To treat conditions on the blown part of the airfoil, Eq. (42) can be

applied by approximating the radius R by (ff")-I to obtain the wall pressures,

and by using the airfoil and jet boundary conditions to determine the upper slip

line jet pressures.

From the thin jet theory derived earlier, it can be seeh that rotation-

al flow produces the same pressure jumps across the jet in the dominant approxi-

mation as the irrotational Spence models. Correspondingly, it can be shown that

to within factors involving the density, qualitatively similar results are ob-

tained for transonic flow. Another important aspect of the asymptotic represen-

tations derived here is that they lead to higher approximations for the struc-

ture of the jet and external flow which can be systematically obtained.

Finally, the analytical solutions described above in Ref. 6 allow the systematic

assessment of the effects of initial vorticity and skewness which are inacces-

sible to other theories.

3.2.3 Results and Discussion for Transonic Upper Surface Blowing

A successive line overrelaxation (SLOR) scheme within a Karman Guderley

framework has been used to compute the flow field over an upper surface blown

Sairfoil. On the blown portion, the jump conditions across the jet are deter-

mined by the asymptotic results given in previous sections, i.e., Eqs. (42) and

(43b). Providing that the region is not too close to the jet exit or trailing

edge, the streamwise gradients can be neglected in the entropy and velocity com-

ponent parallel to the wall. Away from these regions, the pressure gradient

perpendicular to the streamlines is balanced by centrifugal force. For the

region near the jet exit, these assumptions become invalid. Here, the scale of
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the gradients in the streamwise direction becomes important, p~incipally due to

the influence of wave interactions with the slip line. Similar fine structures

occur near the trailing edge where the flow can stagnate on the unblown side,
depending on the ratio of the stagnation value.F above and below the dividing

streamline. For incompressible flow, the previous sections have discussed the

tri-stable equilibrium at the trailing edge corresponding to the value of the

stagnation pressure ratio, which leads to the dividing streamline leaving tan-

gent to the upper surface if this is greater than unity. Consistent with the

previous discussion, the appropriate generalization to transonic flow was as-

sumed also to be this arrangement for a single valued pressure without a shock

in that location. This assumption has been altered to assess the sensitivity of

the flow to %e dividing streamline angle. In this connection, surface pres-

sures for the dividing streamline bisecting the trailing edge angle (as it would

in incompressible flow) were compared with those for the tangent arrangement.

Based on these studies, significant differences are anticipated only for large

incidences and trailing edge angles.

Typical results obtained from the computational model are shown in

Fig. 37 in which the flow over a thick airfoil designed at Rockwell's Columbus

Aircraft Division (CAD) was analyzed with the SLOR code. Here, the pressures

for various values of the blowing coefficient, Cj, are compared with those
for the unblown case at a freestream Mach number M, = 0.703 and angle of attack

S= 00. Substantial lift augmentation is evident for blowing. Also evident is

the associated rearward motion of the shock with increased blowing and sectional

loading as if the incidence is increased. .i
Further parametric studies are provided in Fig. 38 which indicate the

effect of parallel displacement of the slot xj (in units of the chord), on the

chordwise pressures. Three positions of the slot xj = 0.5, 0.65, and 0.8 are

shown. No systematic trend in the blown pressures is exhibited on this airfoil

with downstream slot movement for fixed Cj. Evident, however, is a slight in-

tensification of the terminating shock with slot downstream motion although its
position remains unaltered. Despite the limitations of the model to describe
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Fig. 37 Effect of blowing coefficient, (C ), variations on chordwise pressures
for CAD USB supercritical airfoil, M = 0.703, ca 0', (slot location
at 65% chord).
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Fig. 38 Effect of slot location xj in units of chord on chordwise pressures
for CAD USB supercritical airfoil, M 0.703,a= 00.
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the fine structure of the jet exit region, a small suction peak which has been

" observed in experiments is exhibited in this vicinity for xj = 0.5. In Fig. 39,

the corresponding increase in lift coefficient CL with slot downstream movement

is also shown, as is the increase in the size of the supersonic region.

In Fig. 40, the increase of lift with blowing coefficient as well as

size of the supersonic region is quantified.

Tests of the adequacy of the foregoing model to simulate realistic tran-

sonic USB airfoil flows have been inhibited by the lack of suitable experimental

data. Information exists only for highly three-dimensional configurations,

large thickness, or incidence in ranges beyond the validity of the assumptions

of smail disturbance theory. Another restriction is the unavailability of the

associated geometric data and flow diagnostics accompanying the tests. The

results of Yoshihara25 and his coworkers were useful in this connection and

allowed us to compare the jet flap specialized version of the USB theory with

the data in Ref. 21. For the simulations described in this paper, tests per-

formed by N.C. Freeman at NPL on a USB modified 6% thick RAE 102 airfoil, and

described in Ref. 26, appear to have the most suitable results for comparison at

present. Unfortunately, the angle of attack associated with the NPL data is 60,

which is marginal for the application of a small disturbance model.

Figure 41 indicates comparisons of chordwise pressures for various

values of Cj. Also shown are schlierens, indicating the associated flow field

structure. Turning to the Cj:O results (Part (a)), massive shock induced sepa-

ration is indicated and is apparently initiated at the downstream limb of the

lambda shock on the upper surface. This is reflected in the classical erosion

of the suction plateau and is responsible for the indicated disagreement between

the inviscid computational results and the data. For these tests, nominal tan-

gential blowing with a slot height of 0.07% of the chord was used. The slot loca-

tion is 15% downstream of the nose. The Mach number M immediately above the slip
line at the slot is approximately 1.29 for both Cj's indicated. For Cj=0.017, theI slot Mach number Me has been estimated as 1.79 and for Cj=0.048, Me 2.36.
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Fig. 39 Behavior of C and criticality as a function of extent of blowing, CAD
USB airfoil, L = 0.1, M. = 0.703, 0 = 0 , N = number of supersonic
points.
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Fig. 40 Variation of CL and criticality of CAD USB airfoil with blowing
coefficient, M- = 0.703, a = 0, xj 0.165, N = number of supersonic
"points.
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Fig. 41 Comparison of USB theory of this report with NPL tests of Freeman
(Ref. 26), M= . 0.75, a = 6%, c =chord, t =maximum thickness.

106



91% Rockwell International
Science Center

SC5055.21FR

AComparison between theory and &xperiment in Part (b) of Fig. 41 indicates

reduced discrepancies on the upper surfe.ce associated with the limited separa-

tion. In Part (c), the agreement is correspondingly further improved.

To achieve adequate realism, it is important to discuss factors respon-

sible for the disagreements. One feature not captured by the USB simulation is

the pressure spike at the slot location. Based on the slot size, the streamwise

scale for this phenomenon is at least an order of magnitude greater than the

characteristic wavelength of a Mach diamond pattern in the wall jet. These

fluctuations may not be resolvable with conventional pressure tap arrangements for

the thin slot employed in the tests. If a rough model of a coflowing inviscid

supersonic wall jet over a flat plate is used to describe the flow near the slot,

the approach to a final steady state may be damped oscillatory or monotone, depend-

ing on whether the reflection coefficient R which is given by

R=X-1 (44)
x+-

where

e e2  eis M2•B/M e , ' , e +/ 2T

is respectively positive or negative.

The relaxation length L to achieve the downstream pressure in units of

the exit height is of the order of gn R, which can be approximately 5 to 50 in the

present case, depending on the accuracy of the estimate for Me. Note in this

connection that

eR < 0 for 1 M -' and Me M

ee e
" 2
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For the submerged case, R + 1, (Me >> M), and the Prandtl periodic pattern is
obtained, with no radiation of energy to the external flow.

These facts suggest that one factor that may be responsible for the

observed spike is the internal decay process in the jet. If transonic effects and
wall curvature are accounted for, the presence of "ballooning" and throats in the

jet may also be contributory. We have discussed such phenomena in connection with

submerged transonic wall jets in Ref. 5 and earlier in this report and have

reported analogous results for the coflowing case in previous sections. Selection
rules in terms of Me and M for the existence of throats in the jet near field have

also been given previously and are based on an integral form of the Karman

Guderley eqtation. A rough sketch of the wave system that could explain the
spikes in Figs. 41b and 41c is shown in Fig. 42. Yet another phenomenon that would
have a similar wave pattern would be a slight upward motion of the jet due to

viscous mixing or a misalignment with the surface tangent at point A.

Turning now to the discrepancy of the values shown on the rear surface
(downstream of 0.5c) in Fig. 41c, we note that in spite of the obvious elimination

of separation, a thick viscous wall jet is present. Downstream diffusion will

affect the applicatio'ý ol' the Spence relation on the blown portion as well as the

shock jump. In vieci of Cie wall jet thickness shown on the schlierens, this
factor appears to iXŽ iore significant than shock obliqueness at its foot. A near
term refinement befilg implemented employs a coupled inviscid-viscous model which

uses second order boundary layer corrections to the Spence boundary conditions

accounting for axial gradients of the displacement and momentum thickness. Once

these refinements are incorporated, systematic optimization among separation
suppression, wave drag minimization, and supercirculation control will be

possible. It is envisioned that the design techniques contained in Refs. 27-29

will augment this capability by providing methods to modulate shock formation in

concert with the blowing effects.
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throat formation.
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4.0 VISCOUS EFFECTS

4.1 Preliminary Remarks

A schematic of the blown airfoil is shown in Fig. 13, where the shaded

region indicates the boundary layer and wake, P is the stagnition point, and S is

the slot location. In the research performed, a computational model has been de-

veloped to treat the wall jet, wakes, and boundary layers, which without loss of
generality have been assumed laminar. For treatment of the latter, integral

methods have been discarded due to their highly empirical nature, lack of con-
sistency, and questionable applicability te blowing cases. In fact, despite the

unavailability of general arcuracy criteria, it is well known that even for un-

blown incompressible decelerating laminar flows in adverse pressure gradients,
integral methods such as those due to Pohlhausen and others 30- 3 2 produce results

that are increasingly inaccurate as the separation point is approached. For pur-

poses of the present tangential injection study, this limitation is unacceptable.

On the other hand, full elliptic Navier-Stokes solvers such as those employed by
Diewert 33 have not been selected at this time because of their lengthy computational

nature and associated need to resolve grid generation issues peculiar to the

present blowing problem. By contrast, we believe that the most appropriate model

is a zonal one, in which the inviscid region is treated by an iterative scheme such

as Murman-Cole SLOR or any of the more modern techniques, and the viscous regions
are treated by some parabolic solver such as Keller's box scheme. 34 A somewhat more

sophisticated approach involving a parabolized or thin layer Navier-Stokes algorithm

represents a future direction for refinement. The utilization of a finite differ-
ence approach for the viscous layers avoids the need for assumption of velocity

profiles as in the integral methods. This is particularly crucial for tangential

injection that carries with it the possibility of multiple extrema, overshoots,

and exponential rather than algebraic decay of the wall jet velocity profile to

the freestream levels.

Referring to Fig. 44, a viscous module has been developed to described
the boundary layers in Regions , and the blown wall jet In

C3471A/jbs
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a later section, preliminary results fora medule for region @ will be dis-

cussed. Zones 0 ard 2D are in the vicinity of the nose and are especially
important to treat properly in the small disturbance context of our effort. The

correct synthesis and treatment of the small disturbance singularity near the

stagnation point will be discussed and has important implications regarding the
boundary layer development in and 2 , Thus far, numerical investigations

suggest that the precise flow details in @ and (•2 are, however, not decisive

in their influence on the global structure of the field, in particular, the role

of blowing in delaying transonic separation.

On this basis, a rough model for the nose region combining the essential

features of incompressible stagnation point flow, and further downstream, small

disturbance singular behavior, was implemented. More precise simulations
involving asymptotic and computational matching of the aforementioned singular

solution as an inner limit of the Karman Guderley outer flow and a full potential

flow over a parabolic nose appropriate to finite curvature airfoils have been

developed by K. Kusonose in a Ph.D. dissertation supervised by J.D. Cole. 3 5

This solution is appropriate for a more accurate description of the inviscid edge

conditions of the boundary layer. A further refinement is to incorporate these

boundary conditions in a compressible viscous stagnation point flow matching with

the boundary layer.

4.2 Implementation and Results

By using the previously enumerated concepts, a laminar boundary layer module
has been constructed based on a generalization to tangential blowing of the box

method of Ref. 34. Results have been computed by coupling this element to the

inviscid framework previously discussed to provide a blown boundary layer

algorithm. Formulational details are given in the appendices. Specifically,

Appendix A delineates a laminar framework, in which the normal coordinate is

written as a Blasius like variable which is advantageous in resolving the steep

Sgradients treating singular flow near the nose. Appfndix B describes

special procedures implemented at the nose that are required to properly interface
with the smal disturbance inviscid part of the flow. In Appendix C, a derivation

of jump conditions across blown wakes according to matched asymptotic expansions
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is given. These relations are of importance to future efforts on characterizing

viscous modifications of the external flow.

Briefly, for the results to be discussed, a finite difference algorithm

based on the compressible boundary layer equations was used. Furthermore, a unity

Prandtl number, Chapman gas with constant density viscosity product across the

boundary layer, and insulated wall was assumed. With these assumptions, an

integral of the energy equation implies that the stagnation enthalpy in units of

its value at the boundary layer edge, E, is a constant = 1 across this layer. The

momentum equation is thereby decoupled. Thermodynamic variables such as the

density in the layer can be calculated from the boundary layer assumption of

constant pressure across the layer and E = 1. These observations lead to the

following momentum equation for -.he normalized velocity V in units of its

k boundary layer edge value:

(bf")' + mlff" - m2f' 2 + m11c = miO If- (1)

where the coefficients (defined in Appendix B) are related to the external

pressure gradient, primes refer to partial differentiation with respect to •, a

scaled Blasius coordinate in a direction perpendicular to the parallels to the

airfoil. The quantity x refers to the coordinate along the parallels as shown in
Fig. 44.

Figure 45 depicts a NACA 0012 airfoil, with a smoothed small

disturbance SLOR chordwise pressure distribution on its upper surface for M., 0.7

and a = 30 as a basis of illustration; typical results, shown in Fig. 46,

indicate the streamwise evolution of velocity profiles upstream of the slot and

uncorrected for viscous interaction effects on the external flow field. Despite

the rather severe adverse pressure gradients, particularly those associated with

the nose singularity, and their significant influence on the source term in the

momentum equations as the coefficients of the reduced form in the Blasius

variables, the box scheme is robust enough to treat such variations. For the case

at hand, the loss in fullness in the profile resulting from the adverse pressure

gradient is evident. Associated decreasing wall shear stress is also apparent.
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Fig. 45 Pressure distribution on upper surface of NACA 0012 airfoil, M= = 0.7,
a = 3'
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Fig. 46 Unblown streamwise profile development for case of Figure 45.
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Regarding the influence of slot blowing, Fig. 47 shows evolution for the

same airfoil of the profiles downstream of a slot located at x* = 0.2 in which

(x*,y*) refer hereinafter to Cartesian coordinates erected at the mean camber line

in the usual way. For the examples selected, an initial parabolic slot profile

was utilized, in which the velocity function at the slot station x* x* is given:s

by

u _ ,X, ((2a)-( A(-d) 0 < < ýd
ue

( )max

A= 2 + 4 •+d

Iid

and for the range of r l* above the slot lip,

f ' X + ' = ( s " ) ' d < < ( 2 b )

where solution which had been marched from upstream to the slot location is
assumed to have a continuous velocity component aete at the (excluding the
pathological case of shocks t ty functionat the slot stnativn)n

From (2a),

f + A (3a)

f(ýd) = 6 (3b)

For more general slot profiles in which
** * * *

s = F(x* ) 0 < < (d2'

the blowing coefficientio Cv el oc where J thmomentum flux/undt span,
c = chord is given by so prou
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•x* •d
c Xr 1= d (4)

where Rec. is the freestream Reynolds number based on the chord, and XsL is the

streamwise position of the slot in units of the chord. Actually, (4) is an

approximation to within terms of 0(s2/3). In (4), the quantity ýd is given by:

d -e(5)

where d is the dimensional slot height and p is the mean density across the slot.

For the example indicated in Fig. 45, the slot was located at 20%

chord, very close to the onset of separation, which occurred at 27.6% chord for

* this case. It should also be noted that the location of the shock which had

been slightly smoothed for purposes of initial checkout of the algorithm (which

can handle non-smooth cases) is at about 23% chord. The characteristic diffu-

sion of the profile associated with mixing of the jet is evident in the figure.

More significant and not clearly indicated (but shown later), is the fact thet

the separation point has now been moved downstream to 79% chord. Other calcula-

tions show that with modest further increases in Cd, separation can be complete-

ly eliminated. (Note in this context that the peak velocity for (2a) is A42/4.)

In Ref. 36 the corresponding profile development for an "underblown"

case, where the peak is less than the freestream value, is discussed, Relaxation

to a conventional profile occurs as previously. However, this blowing

configuration actually results in premature separation, compared to the case

of no blowing. This is indicated in Fig. 48 where the effect of blowing on the

separation point location is shown. Despite the initially higher shear stress

at the slot in the underblown case ýd = 1, A = 2, the higher vorticity diffusion

and lower overall momentum in the layer leads to earlier separation which can be

seen as the leftmost solid circle in Fig. 48. This level should be related to

the unblown result shown in dashed lines in the same plot. Moreover, the case

ýd =2.65, A = 1, moves the separation point substantially downstream to almost

80% chord. Other cases are shown in Fig. 48, such as the one corresponding to
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Fig. 48 Position of separation point x*, with blowing NACA 0012 airfoil,
M m = 0 .7 , = 30 .
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tihe slot position at approximately 11% chord. This demonstrates the dramatic

role of the slot location and upstream boundary layer thickness in delaying

separation; where for the same slot height, the upstream slot location gives an

almost trivial downstream movement of the separation location, in contrast to

tile potent effect of the downstream slot position.

The results of Fig. 48 can be replotted as in Fig. 49 to show the

trends as a function of a momentum flux parameter which is proportional to Cj.

By Eq. (3), C' (xsL/Re)I/ 2 A2 0/30 for a parabolic profile. For the case at

hand, according to Fig. 39, an A25 = 200 represents a value sufficient to drive

the separation point to the trailing edge. For Re = 106 and ý/p= 1, this

implies that Cj 3 x 10-3, a value that is surprisingly modest in view of the

ease in which laminar boundary layers separate and the typical turbulent values of

Cj associated with transonic experiments. These values which are betweeen 0.01

and 0.1 are selected to be large enough to provide significant supercirculation

enhancements. Returning to the example calculated, Eq. (4) indicates that the

slot height d/c = 0.9 x 10- 3 , corresponding to a -d 2.5. For the limited

number of cases run, there is a suggestion in Fig. 49 that the curves of Fig. 48

collapse to a single universal band of results. In view of the roles of the i
pressure gradient, and the multiple extrema in the velocity profile, this

assertion must be regarded as tentative at best, pending more extensive

parametric studies. What is significant, however, is that for the first time,

the delay effect of tangential blowing on natural and shock induced separation

over transonic airfoils has been inexpensively quantified.
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Fig. 49 Reduced plot of separation location x* as a function of momentum flux
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5.0 WAKE STUDIES

5.1 Formulation

To obtain the wake structure, Eq. (1) of Section 4.2 is solved by using
"initial" conditions at the trailing edge from the boundary layer solutions

obtained with our parabolic solver upstream. In contrast to the no slip and

asymptotic conditions required to complete the formulation over the airfoil, the

wake requires the following conditions to be fulfilled:

f ( ) 1 ' (la)

f(x,O) 0 ) (1b)

where x=1 is the location of the trailing edge.

Note that the zero argument in (1b) is a consequence of Prandtl's

transposition theorem, where the boundary condition on thE dividing streamline

can be replaced by those at any other convenient location, e.g., ý=0.

With the Box Scheme, Eq. (1) gives a three point boundary value problem

for an inhomogeneous ordinary differential equation formulation based on the

parabolic partial differential Eq. (1) of Section 4.2. With pivoting strategies

to avoid singular matrices such as those developed by H.B. Keller, the iterative

inversion of the associated block matrices can be achieved to satisfy (lb)

directly. For coding expendiency, we have, however, elected to replace direct

satisfaction of (1b) by an iterative approach, in which we introduce an

eigenvalue y for which

f(x,-•) = "y(X)

In our method, the quantity y is determined iteratively so that (Ib) is

-I: sati sfied.
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Numerical Details

On the upper and lower surfaces of the airfoil we solve the momentum

equation (Eq. (1) of cection 4.2) with boundary conditions

afU (xO) afu (x,-)
f U,

u an - , an-

and f (x,O) = 3f (xO)/an = 0, af (x,-a)/an = I on the upper and lower surfaces,
respectively. For x = xTE, we form the vector

x) = (X

where u and • are the discrete solution vectors obtained from solving the

momentum equation. For x > xTE, we continue to solve this equation with initial

conditions P(XTE) and boundary conditions F(x,-w) =y(x) as well as

F -• (x,o)

Here, y(x) is selected in a Newton-like iterative scheme to ensure that

F(x,O) 0, i.e.,

y(n+1) . y(n) _F•X,O,y(n),

(n) FX,O, (n)

where the superscript is the iteration counter. In practice, we approximate the

derivative by

aF (n)) F(x,O,y (n) Fx, (n)

a y (n) (n-1)

One computational difficulty encountered was that the initial condi-

tions t(XTE) were not smooth enough to guarantee convergence. Accordingly, a
spline least square smoothing algorithm was employed to obtain smoother starting

conditions.

i
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5.2 Parametric Studies

Using the formulation and computational procedure described in the
previous section, we performed a series of studies of the wake structure

behind a tangentially blown wake. A blown NACA 0012 airfoil at M. = 0.7

and o = 30 was investigated, in which tangential blowing was introduced on the

lower as well as the upper surface at slots located at 21% chord. The pressure
distribution on the latter is shown in Fig. 45. Blowing on both surfaces was

required to maintain attached flow to the trailing edge in view of the adverse
pressure gradient associated with the (smoothed) shock recompression indicated

in Fig. 45.

In Fig. 50, a typical streamwise evolution of the velocity profile u/ue
downstream, including the trailing edge, is shown, where ue = the external

velocity - U the freestream value. The slot height 4d is expressed in terms of

the Blasius variable. If ue is the velocity at the boundary layer edge, the

peak velocity parameter A for a parabolic velocity profile at the slot where

A = I4 (U)max at slot]/d

was assigned the value 3. The other parameters for this case are indicated in

the caption of this figure. Diffusion to the symmetrical bell shaped profile is

evident in the figure. Actually, this shape was achieved as early as x = 5.96

for case 1 (not shown). In spite of the rapidity of this relaxation in view of

the considerable initial asymmetry, the viscous interaction process could be
sensitive to the details of streamwise profile evolution in the transition

phases.
In Fig. 51, the peak velocity (u/ue)max as well as displacement

thickness 6 and momentum thickness o, in units of c//Te" where c = airfoil chord

and Re, = freestream Reynolds number, are shown. By contrast to the classical

submerged jet studied by Schlichting36 and Bickley 37 for incompressible flows,

the momentum thickness in this coflowing case is strongly affected by the

external pressure gradient and has a significant decay for the first 3 chord
lengths downstream. Thereafter, this parameter remains almost constant as in
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Fig. 50 Streamwise evolution from trailing edge of wake velocity profiles for
NACA 0012 airfoil, M = 0.7, a = 30, blown tangentially on upper and
lower surfaces at slot position xAL of 21% chord, peak velocity
parameter A = 3, normalized slot height Cd = 2.5.
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Fig. 51 Streamwise evolution from trailing edge of peak velocity and nortnalized
displacement and momentum thicknesses for case of Figure 50.
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the submerged case, in spite of the external stream. (As an approximation to

obtain these results, the pressure coelficient C p at the wake edge calculated

with an SLOR solution* has been extrapolated downstream by using a monomial

fit Cp = Ax8 .) Correspondingly, the displacement thickness relaxes to a similar

invariance more quickly, as indicated in Fig. 51.

It was of interest to compare the bell shape profile to an asymptotic

flat plate wake solution. Strictly speaking, this comparison is only of valid-

ity when the reduiced perturbation velocity is small. Although this is not the

case at the stramwise stations under consideration, we study here the extended

validity of this behavior, from the viewpoint of experimental and theoretical

interest.

Denoting the perturbation velocity (u - IJ)/U as ul, where U is the

I freestream, we define g' and c such that

':I f: u--1 , (C + 0)

The momentum Eq. (1) of section 4.2 specialized to this laminar case which is

f" + --- = x (f1 -r f" (2)

where the coefficients in the original equation have taken on limiting values in

the asymptotic nearly zero pressure gradient flow reduces to the linearized form

"g" + -g g' 0 ' 0 (3a)

with the boundary conditions

g(O) = g'(-) = g"(O) = 0 (3b)

*Assistance of V. Shankar in obtaining these results is gratefully acknowledged.
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On the basis of the invariance of 0 and, correspondingly, the momentum flux J,

for large x where

oJf pu 2 dy =const. (4)
-00

with y a Cartesian coordinate normal to the freestream, p = density, the

quantity g' has the following similitude

1. 5g' = T-x G(n) •(5)

This leads to the well known solution of (3) given by
en 2 /4

, Ce' (6)

The effect of the finite size of the perturbation velocity u, is shown in

Fig. 52, where tine scaling of the peak velocity u peak ,O) is indicated.pek=.g -0.3010
By contrast to (6), the numerical results suggest that U - x. If,

however, C in (6) is determined by matching with the numerical solution such as
shown in Fig. 53, or alternatively, u' is normalized to the peak velocity at

each x station, a strikingly good agreement between Eq. (6) and the computa-

tionally obtained wake profile is obtained, as indicated for the conditions
aelineated in the figure for the blown NACA OP12 airfoil.

Regarding these facts, we have also determined that upeak -. x"01885 as
x , • for the case at hand, in contrast to the Bickley submerged jet solution

where Upe~t - x"I 3. The slower rate of decay of the present coflowing jet

"seems consistent with the reduced action of viscous dissipation associated with
the lower relative velocity between the jet and external flow. It should also

be noted that this trend differs from that discussed in Birkhoff's book 38

regarding wakes with "hydrodynamic self propulsion" associated with self pro-

pelled objects such as boats or airplanes. For these cases, if no acceleration

"occurs, the thrust, T, is equal to the drag, D, leading to

J = u'dy= T D 0 (7)
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Fig. 52 Comparison of peak wake perturbation velocity (from freestream)
downstream decay against flat plate similarity solution for case of
Figures 50 and 51.
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I • For such cases, it can be shown that

NM f y udy , invariant with x. (8)
i ~-o

The invariance (8) leads to a different similarity than for the Bickley

jet. For self propelled wakes, Upeak - x-3/ 2 . The weaker decay experienced in

the present studies is associated with the lack of similarity arising from the

presence of two characteristic velocities, i.e., that from the jet momentum, and

the other corresponding to the freestream. The latter boundary condition and

(4) impose conflicting requirements negating similitude. The other reason for

deviation from the self propelled case is the fact that T > D in the flow being

computed here.

In future studies, two regimes will be considered appropriate to the

blown wakes considered. For T >> D, the blown wake can be considered as a

linear nonsimilar perturbation on the Bickley submerged jet similar solution for

sufficiently small x. For x + m. the wake behaves like a classical flat plate

structure in which T - D is conserved.

Besides their theoretical significance, these considerations are of

importance in assessing the net thrust of propulsive wings in experimental

!1 simulations. In addition, the asymptotic wake characteristics discussed here
will be employed in modeling the far field for the blown viscous interaction

problem in subsequent studies.

I

134
C3471A/jbs



.4 Rockwell International
Science Center

SC5055.21FR

6.0 CONCLUSIONS

During the course of the research program, a number of areas received

attention in connection with the study of tangentially blown airfoils. Par-

A ticular empIhisis has been placed on understanding the structure of compressible

wall jets occurring in such flow fields. Modern relaxation methods have pro-

vided an efficient means of analyzing the diversity of wave patterns arising in
these jets. For submerged transonic jets, with subsonic conditions infinitely

far downstream and a specified exit velocity profile, the following specific

findings arise associated with unchoked flow over a series of wall shapes.

0 The Kutta condition on the nozzle rim can be satisfied merely by

requiring streamwise continuity of the potential across the rim as

a trailing edge for the flow. With the use of this procedure, the

numerical algorithm correctly tracks a local singular solution
which has a square root zero and is locally harmonic in scaled

variables, providing the rim is not transonic.

* As compared to unconfined flows, the slip line boundaries create a

rapid decay of the disturbances. The functional form of the far

field perturbation potential is an exponential damped sine, similar

to that encountered for incompressible flow but different in that

its amplitude interacts nonlinearly with the near field.

0 Analysis of the free jet case indicates subcritical monotone

streamwise variations of the pressure for a subsonic jet exit, as

in linear subsonic flow.

* Acceleration of the wall jet to criticality over convex walls is

accomplished by stream tube contractions and throats induced by

upstream influence of the turning.

13540
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. The upper slip line of the wall jet becomes asymptotically

parallel to that emanating from the trailing edge infinitely far
downstream.

V IFor this phase of the effort, as well as that dealing with coflowing jets, the

inverse methods reported in Refs. 27-29 appear to be an attractive means to

reduce wave drag and enhance thrust recovery by elimination of shock waves by

suitable wall contouring.

With regard to the investigation of coflowing wall jets, selection

c- rules have been identified for the existence of throats in the jets on the basis
of an integral theorem based on small disturbance formulation of a unit problem

involving a flat plate cowl. The latter has important features that are of

relevance to more complicated cowl geometries. For a slightly subsonic external

flow, with an embedded jet at nearly the same velocity and settling pressure,

approximately sixteen cases have been enumerated depending on the range of jet

similarity parameter. Computational results have validated some of these cases.

The information provided in this phase illuminates factors influencing the pene-

tration length of initially supersonic jets and the scales affecting overexpan-

sion spikes evident :- experiments over blown surfaces of propulsive wings.

In the portion of the study dealing with the complete problem of a tan-
gentially blown airfoil, asymptotic and computational simulations have received

attention in incompressible and transonic regimes. These analyses have utilized
models of the jet that are accurate in regions away from the nozzle exits and that

are capable of later integration of the results of the aforementioned basic

studies of coflowing wall jets appropriate to a local description of the exit

flows. For the more globally oriented inviscid blown airfoil models, the

analytical and computational models indicate that:

In the thin jet small deflection approximation, the pressure jumps
associated with the Spence theory prevail even if the flow is

rotational and compressible.
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A The dsymptotic developments provided allow further systematic

refinements.

* Effects associated with initial skewness and vorticity

inaccessible to other theories can be assessed.

* For finite trailing edge angles, the dividing streamline leaves

tangent to the higher stagnation pressure side if upper and lower

stagnation pressures are not equal and at the trailing edge

bisector if they are.

* Computational results obtained for transonic USB configurations

indicate significant enhancements of lifting pressures associated

with blowing.

* Comparisons with experiment indicate the need for refinements

incorporating wave interaction phenomena near the jet exit as well

as viscous interaction processes in the downstream portion of the

wall jet.

Initial results characterizing viscous effects using finite difference laminar
descriptions of the flow fields demonstrate clearly that:

* Substantial downstream movements in the shock-induced separation

point are achievable with application of tangential blowing. By

computational schemes, these delays can be inexpensively

quantified as compared to experimental methods.

e The propulsive wake at great distances downstream gives a nearly

Gaussian normalized velocity profile in spite of a lack of self

* similarity which occurs in purely submerged or self propelled

cases. This result is of significance for assessment of net thrust

in experimental simulations and theoretical far-field modeling.
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With the viscous module and the appropriate iterative coupling algor-

ithm to the external flow to be implemented in the near future, optimization
between separation suppression, wave drag minimization, and supercirculation
control will be possible. It is envisioned that the design techniques contained
in Refs. 27-29 will augment this capability by providing methods to modulate

shock formation in concert with the blowing effects.

On a more ambitious scale, which will depend on further developments in
current parabolic marching schemes and improvement and application of multiple
deck asymptotic models, future effort should consider blowing effects on:

Strong shock boundary layer interactions with limited separation
near the foot of the incident normal shock and trailing edge

* Blowing effect on near wake curvature modification of viscous lift
at trailing edge and cowl lip

* Impact of shock waves in the jet on wall jet transition and
separation.
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APPENDIX A

I DETAILS OF VISCOUS FORMULATION

Governing Equations

In what follows, the approach to treat the viscous regions of the flow

field will be described. In major respects, the formulational aspects given
here resemble those given in Ref. 3F,. However, certain important details asso-

ciated with the blowing application require special treatment. For a self con-

tained account, therefore, some of the unblown formulation is repeated here.

Referring to the curvilinear axis system shown in Fig. Al, the boundary layer

eqjations (which include laminar and turbulent cases) to be utilized to

calculate viscous zones are as follows:

Continuity

'(pU) + 2- (-fTvhl) =0 (1a)

x-Momentum

U a-u au 1 + 2- V au -" -r (1b)
Tx *+ pv~ Ty Fa x apuv)

Energy

u -H aH a EpaH + 1 a (U') -~~r (1c)
T+PvT y [ T Pray ~ PrF ay

where as a typical average, pv pv + •p-rv, and as usual, the primes denote

fluctuations about temporal averages, Pr is the Prandtl number, p = density,

u,v are velocity components in the x and y direction, respectively, H = total

•*The appropriate eddy viscosity representations for the Reynolds stresses have
not been considered in this phase of the effort, but will receive attention
in later aspects concerning marching of the boundary layer downstream of
impingement points of shocks from the external flow.
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enthalpy, p = dynamic viscosity, and hi= metric. If in the x*,y* Cartesian

coordinate system shown in Fig. Al, the surface of the airfoil is given as

y = F(x*)

then the metric hi is given by

h V1 + [F"(x*)1Z

Boundary Conditions

The appropriate conditions for the solution of (1) consist of surface

constraints, iniial conditions, and matching considerations to the outer flow.

The surface conditions are given as follows:

Surface (No Slip and Adiabatic Wall)

u(x,O) = v(x,O) = 0

7 (X,O) 0 . (2b)

Initial Conditions

In Appendix B, a local nose solution is considered which is utilized to

start the solution in a manner appropriate to the parabolic initial boundary

value problem for Eqs. (1).

At the jet exit, x = XE, referring to Fig. A2; an initial profile is

specified on the blown section AB. The data on BC is "inherited" from history

of the flow field which has been marched to this point from the boundary layer

and external flow through iterations between successive sweeps of some sort of

successive ilne relaxation method or other inviscid solver. A key point is the

following: The solution of (1), subject to the initial conditions in ABC, char-

acterizes the mixing of the flow exhausting from the nozzle and the boundary

layer along the upper surface of the airfoil (ORC in Fig. Al). A similar treat-
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Fig. A2 Confluence of streams at jet exit.
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ment has been used to handle the mixing of the upper and lower streams in the

wake region downstream of the trailing edge and to establish the jump conditions

for the pressure. These will be a viscous modification of the Spence jump con-

ditions developed from concepts of Preston and implemented by us (Refs. 5-7).

Matching with Outer Flow

The appropriate boundary conditions at the edge of the viscous region

are:

lim u(x,y) = Ue(x) (3a)

I'y + cc

lim v(x,y) = ve(X) (3b)
y + 0

lTim p(x,y) = Pe(x) (3c)

where the quantities on the right side of Eqs. (3) are effectively the inner

limit of the outer flow, i.e., if W(x,y) is one typical such quantity, then.

SWe x) - lim W(x,y). (e - external.)
ek y+C*

Transformed Problem

In this section, we generalize the procedure given in Ref. 2 to the

blown bounJary layer problem indicated previously. On introduction of

transformed independent variables

1x = x, d 1Pe /2eSI pdy s f = dX (4a)

and the dependent variables

pU 2-2 (4b)ay1 ax

with

1/be e%"e e s) ' 2 f(XI x , (4c)
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the system (1) under the transformation (4) becomes

(bf")' + mi1ff" + m2 f' 2 - M1 1 C = m10 [ f f- (5a)

( +1E')' E' + M n1 0 -f' (E E f5b)+ =1 ax ax (b

where primes denote partial differentiation with respect to ;, and

f U H t

S E = b C(O + c) ,c - rnL
He ' Fe in Pe'e p

t
em = eddy viscosity (= 0 for laminar flow)

e signifies conditions on the edge of the boundary layer

1 Sl 'u a _ 1 1 -
2n h ( 1 U e + i/Peule Tx pe, e)=1 (1+ m2 ) +.hljeu ax e

s, = f h1dx
0
si aue

m2 =h U ax
1 e

j~Sl
1

imlO " h

I S au~ eMili = Ue-m B =m2

el x2
r1 = Tl C (I -1,

r 1p-k ý-rt) P 2 n 3 = eH P f

Here, dagger superscripts refer to turbulent quantities. Herein, it will be
assumed for convenience that the Prandtl number is unity.
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A Boundary Conditions

The transformed versions of (2) and (3) are

0 ,f = V E' =0 (6a)

>> 1) V' E' I (6b)

In accord with the remarks given in Section 4.1, we have assumed in our studies

that Pr = 1, C 1 (Chapman gas). An integral of (Sb) satisfying these

conditions is E = 1. In addition, we assume throughout that Ue = where

subscript a denotes freestream conditions.

Nurerical Procedures

The discretization of the system (5) appropriate to treatment of the

viscous regions will be indicated. These equations are written as a first order

system by introducing the new independent variables u(x,4), v(x,ý), and G(x,4).

Thus, Eqs. (5) can be written as

V = u (7a)

u' = v (7b)

m 2(c' +2) au af (7c)

(by) 1 + mfv + 2(c-u 10(u a-x- v a)

E' = G 
(7d)

( +1G)' G + 3'= mi (u -E G . (7e)

Using Keller's box scheme (7a), (7b), and (7d) become

f n - f n
fj" _-1 n (Ja)

~n nu (8a

h. 1 n (8b)
h
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E- E n (8c),'Z h j - Gj-1/2

where we have averaged about the point (Xn,4j-t/2). Using the box centered at

(Xn-1/2,Cj-1/2), Eq. (7c) is discretized as:

(bv)ý? -
n nv~

(bv) 1  1 LIJI .1/ + (m n n(C-u
2 )n /

"h n_____________ + + 2'n-1/ 2  n

r (fnl fn-1 n-1 fn un 21n i 2 - fjI/2) vj-1/2f i 1/2 (j-1/2)

+ (mlo)n-1/2 V kn+ kn n s n-1

(8d)

where

(bv)n-1 (b ) n2-n
_____________ 

n-i -

Sn-1 = hi (ml)n_1/2(fV)j_1/2- m2)n-1/2(- )j-1-2

(M n-1 n-1 n-1 2fn-1 /
"141 (mon ul Uj-1/2Uj-tl2 + vj-tl/fj-t/2) n

!I Similarly, Eq. (7e) is discretized

! (pIG) - (pIG)j_1 , n-l/2 n

' IIh j -i + , jl/ 2Gn- P2 + (m1o)n-1/2

[ (fnl fn-i nn {'_/2" j._I/2J 2 _/2E.1 1 2

x - 2n -1/2 n

(8e)

where
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n-1 n-1 ~.1/2 n-/
A- (1p 1G)ý' 1  (pG)j n-112 n-1 (03)ý 1  - (113)j

tn-1 h. - 12 )j-l 2Gj- 1 /2 + h

i{ 2  n E11j.I12 + Gj.12 n

(M ,2 [2u 'E /2 + G.t n-1 /.2)]/n

The boundary conditions for system (8) are

fn =u = o un = 1 (9a)

G o E0 1 (9b)

"Note that (8c) and (8e) form a linear system which is decoupled from (8abc).

Therefore, we first solve the nonlinear system (8abc) with boundary conditions

(9a). Then, we solve the linear system (Bde) with boundary conditions (9b).

Initial conditions are obtained from considerations in Appendix B and the jet

exit conditions.

I
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APPENDIX B

NOSE SOLUTION AND SPECIAL PROCEDURES

Tle approximate uniformly valid solution utilized applies to a wide

class of airfoils of finite radius of curvature. Denoting x*,y* Cartesian

coordinates as shown in Fig. 44, this family of airfoils has a local

representation near the nose given by

y* = 6[a 0/ + a x* + 6(x*2)J (1)

where a0 and a, are constants and 6 is the thickness ratio. For example, the

NACA 0012 has

6 = 0.12 , a0 = 1.4845 , a1 = 0.63 -

where a is the incidence, and all lengths are units of the chord.

Based on the previous remarks, a uniformly valid representation for the

edge velocity component parallel to the surface ue was assumed to be

'4

ue 62/ 3C0•-= 1 - 31-1 (2)
I R+ 6co

where the constant CO is determined by patching to the SLOR solution and U is

the freestream velocity. Note that as x* +-

Ue 2/3U ' : x *

:> x C - (3)

which is in agreement with the inner expansion of the Karman Guderley flow. On

the other hand, as x* ÷ 0

155A/_b____

C3471A/Jbs



SC5055.21FR

-- e-Ax + Bx2 + ... (incompressible stagnation point flow)
I>U

x arc length

with

2 2 al 5
A-3/B2- 63aC3 3 2 +64

0 0 0

We note that (1) can be reverted to give

a x2

1 + + (x3 ) (4)
0 -0

From (2)-(4), the pressure gradient parameter

G(x) =- x Uue ax

appearing in the mi's defined in Appendix A can be evaluated as

G(x) = 1 + x + 2)

Furthermore, the quantity c appearing in Eq. (5a) is obtained as

1 - mf'2

with

M T (5b)

1 + (Y-UM!

In our procedure, the foregoing relations in this section are utilized to obtain
a boundary layer solution from the stagnation point, xs, to a downstream station

x1 . For x > xI, ue is determined from the SLOR solution and the boundary layer

equations are matched using the data at x, as initial conditions.
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APPENDIX C

JUMP CONDITIONS ACROSS BOUNDARY LAYERS AND WAKES

In this section, the appropriate jump conditions across the viscous

regions will be studied by using second order boundary layer theory. For this
purpose, matched asymptotic expansion procedures will be employed by using

I intermediate variables to effect the matching. The derivation indicated will be

for incompressible conditions. However, similar results are envisaged for the
compressible case.

In Fig. C1, a coordinate system consisting of parallels to the surface
and their orthogonal trajectories is indicated. The Navier-Stokes equations for

incompressible flow are:

Continuity: v • 4 = 0

2
Momentum: vlJ x -W q v curl

where w vorticity = curl 4, 4 = velocity vector, p = pressure, and v =

kinematic viscosity. In the coordinates indicated, denoting s as the arc length

along the parallels t = constant,
L

dsI = differential arc length along surface = R(s)do

R = radius of curvature, o = angle between normals, s = constant
ds = differential arc length along arc above surface = (R+t)do.

For this system, an elementary displacement vector dt can be expressed

in terms of the metrics hi and h2 as

d12 h2ds? + h2dt2

1 2

where

t
h 1 Ti-'+-'Cs h2 1

"157
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Fig. C1 Curvilinear coordinates.
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"If qt and qs represent the velocity components in the t and s
directions, respectively, then the vorticity w can be expressed as

+ 4

where • is normal to the x,y plane, with x and y being Cartesian coordinates as

indicated in Fig. C1. The quantity w is then given by

Moreover,

curl =W t +at s 1+t as t

where Ts and It are unit vectors in the s and t directions, respectively.

By using the appropriate relations for the divergence and gradient in this
curvilinear coordinate system and

Sx W= qs Wt t + qtwf"s,

we obtain the following component form of the Navier-Stokes equations, where the
kinematic viscosity has been normalized to be proportional to the reciprocal of

the Reynolds number, e:

Continuity

aq
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Momentum

aqs a+ + )qt a--- + t- a) (Ib)

q aqt aqt q2

+ t as +t at R + t at t as

1 ;qt aqs qs
t: ýas -3T-- V77'-, I+•

The boundary layer equations for this curvilinear network are obtained

using the following limit process asymptotic expressions for the flow variables:

S~qs = u1(s't*) + /-e u2(s't*) + • (2a)

"q= I v1 (s't*) + cv 2 ts't*) +

p = Pl (s) + P P2 (slt*) +

S+ 0 , s,t* fixed . (2d)

Substitution of (2) into (1) gives the following hierarchies on
retention of the indicated orders of terms:

auI + uI aPl(S) aZu1
6(1): ul a+ V _s + (3a)

~2I) 1 as + 1.~ at as =at*z

1 apI
0(-): => P1  pl(s) (3b)

- u2  aul au2  aUl t* aul u1V1  'P2  (4a)
1 s u2 as 1 a v2 t+* v 2 a* R as--
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Up2
i u• 3P2 (4b)

I + avl (5a)

as as

au2  av2  t*v

T) - + - + -w I--v 
(5b)

For the outer inviscid flow, the appropriate asymptotic expansions are

,II written as

1qs = U(s't) + i- U2 (st) + .(6a)

qt = V1(st) + /- V2 (st) + *." 
(6b)

p = P1(st) + r P2 (s,t) + ... (6c)

Yor

S •e + 0 , t,s fixed (6d)

On substitution of (6) into (1) and retention of the indicated orders, the

following equations for the approxim~ate quantities in (6) are obtained:

a U1  B U1  aP.
r)(1): U1 L- + (1 + .)V 1 -a- as. (7a)

u1 as 1 a a

1t as + V II - " (7b)

a1  I + a -i 1 0 (7c)

as +
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uaU2 + UI 'UV , a
•(••I) Uas +2 as + +l +iT) 1 a + u1 la-i)

VIU 2 + V2V1  aP2

UV a- 2UIU aP2U1 ý_ + U2 0Ts ' +V2 IV (8b)
+t1at T 2 t a t

'2 + (I 1 (8c)as t R-- -

The appropriate matching between the inviscid and viscous regions is

obtali•ed by writing the expression for both regions in intermediate variables

and equating lia termi. The appropriate intermediate variable is defined as

tn- = where c << n(c) << . (9)

Thus:

t :T t = nt + 0
TC_ n

t* t

Matchlng

By using the process indicated, the inner (viscous) and outer inviscid

representations are matching schematically, indicated by • (asymptotic equality)

as follows:

Pl(s'nt) + FE P2 (sntn) ++ pl(s) + P- P2 sl).-t t +

or

162
C3471A/jbs



f

0%Rockwell Intemattonal
Science Center

SC 5055 .21FR

n P1(s,0) ve a"

.T. (s,0) + ...2(' + Go*(,)1 *+ p1(s) ~~ + C0 i pst

~Ir which for matching 'Implies

p1(s) =P 1(s,0) (10a)

p2(s't) =-ý-- (s,0)t P P2(s,0) (lob)

and for' t+

p 2 (st) +U21(s,0)(1)

P2(st) + R~s) t + P 2(s,0)00

For the vertical velocity component, we have analogously

V1(s,nt ) + IC V n~it )+ ... ++ F V1(s.jn t ) + Cv2(s,-n t )+
n V 2( + C 7 (

Vji(s,O) + nt a- I (s,0) + FC V(s) + +.. re v1(s~.9 t *. (1

For compatibility with the boundary conditions, we assert that Y1(s,0) =0.} From (11), we have finally,

li v1(s~t) = t (S-)
V2(s.0) = 1 a

3U1
= lim ~v pSt) + t* a s I

aa

a*-di3piacenlent thickness -Ul(s.T)]dT U U1(s,0)
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where by virtue of (5a) the following relation has been used to obtain the

"A displacement thickness integral in (12)

t* au
v 1 f a (s,T)dT

0

Pressure Jump Conditions on Wake and Boundary Layer

Referring to Fig. C2, we consider the section AB of the wake. The

""viscous interaction with the inviscid portion of the solution will be effected
by pressure jump conditions related to the momentum defect in the viscous

layers. This defect plays the role of the classical Spence blowing coefficient
utilized in our jet flap algorithm. To see this, we recall from previously
derived relations that

aPt
P2(s't*) + a1 (s,O)t* + P2 (s,0--) , t* +

aP1

P2 (s't*) + @t (s,O)t* + P2 (so-) t*

ap2  u2(s,t*)

-i*(s t*)- _ __

at- ( R(s)

On integration:
t*

1 -
S~*)t

P2(s't*) - P2 (s'o) fl Iu•(s,t*)dt*

I Also,

aP1

a1  1 U(,+

P- (s,O-) = U.(s,O-)
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A B $

Fig. C2 Section of wake.
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so that, 1

A urn -4lim U2(ST(dr ' t'*U2(S,0+) + P2(,+ 2 s0L~~ ~~~ t1' iustdt.tU(s0)+P2(s,0-) +2sO
t 0

But,

P1(s,0+) =p 1(s,0-)

by matching

ap1
- 0 

-as

and by Bernoulli

U2~

PI(s) + -7- constant

Thus:

U2(s,o+) = U2(s, 0-) =U2(S)

where e signifies external conditions.

By virtue of these relations, we obtain

P~s0+) p2(,- 1rp LI ft1
- = = u2.(r,'rdd

-(t* *U

or
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21 1 17 e~t1d

-,'JZ •[u, . Ue][lh + Ue]dT

=W Me f

e U- 2"(13)

where

f - (Ue - ul)UI = momentum thickness
-00

Analogous results to (13) can be obtained for the compressible case

from (4b), by recognizing that the significant difference will be folding the

density factor inside the integrands of 6* and e in the appropriate definitions

of these thicknesses, and by employing the adiabatic energy invariant rather than

Bernoulli to obtain the relationship of P1 and U1 in the outer flow.

i'I
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