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SUMMARY

The potential of “high”™ pressure water jets to cut slots in an ice
sheet, primarily for possible use as an assist to ice breaking, has been under
investigation.by the Division of Mechanical Engineering of the National
Research Council of Canada.

An the field, slots have been cut into and through fresh water ice,
about 0.7 m thick with water jets applying up to about 260 kW of power to
the ice. Each ice sheet consisted of a clear bottom layer and multiple upper
layers of opaque white ice. The ice temperature just below the top surface
ranged from -21°C to 0°C. In the laboratory, cuts to more than 17 cm were
made in artificially grown, emsentially clear, fresh water ice, and cuts to
almost 256 cm were made in a simulated sea ice. Up to 50 kW was applied to
the fresh water ice and up to 31 kW was applied to the simulated sea ice.

This report describes the ice cutting performance of small to
moderate scale water jets. The majority of cuts produced a narrow, clean
kerf, indicative of erosion in a ductile material, while other cuts produced a
wide spalled trench, indicative of spailing in a brittie material. 8Still others
oroduced a combination of the two modes of cutting, with a wide, shallow
trench and a narrow, deep kerf below the trench. In many cases the ice was
also crazed extensively by the water jet. The causes and the effects of these
characteristics on ice cutting performance are discussed, along with the
effects of jet truverse speed, noszle diameter, nozsle pressure, nozsle stand-
off, ice characteristics and the overall scale of the system. An empirical
relationship, derived by regression analysis, is presented correlating the jet
penetration to the power in the jet, the jet traverse speed, the nozale stand-
off and the estimated ice temperature. . *
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La pomsibilité de faire des coupures dans des plaques de glace &
I'aide de puissants jets d’eau, principalement comme aide éventuelle pour
briser la glace, a fait I'objet de recherches i la Division de Génie mécanique
du Conseil national de recherches du Cansada.

Lors d’essais effectués en milieu naturel, il a été possible de passer
a travers de Ia glace d'eau douce ayant une épaisseur de 0,7 m a I’side de jets
d’eau exercant une puissance de 260 kW sur la glace. Chaque plaque de glace
se composait d’une couche inférieure transparente et de multiples couches
supérieures blanches et opaques. La température de la glace juste en dessous
de la surface supérieure se trouvait dans la gamme - 21 a 0°C. En laboratoire,
on a réalisé des découpes de plus de 17 cm dans la glace d’eau douce, trans-
parente et artificielle, et des découpes de prés de 25 cm dans de la glace
marine simulée en appliquant respectivement jusqu'a 50 kW et 31 kW.

Dans le présent rapport on présente le rendement de jets d'eau a
petite et moyenne échelle. La majorité des découpes faites étaient étroites
et nettes, indiquant I'érosion d’une substance ductile, alors que d’autres
étaient larges et irréguliéres, témoignant de I'éclatement d’une substance
camsante. D’autres encore combinaient les deux phénoménes: découpe large
et peu profonde en surface prolongée d’une découpe étroite et profonde.
Dans de nombreux cas aussi, le jet craquelait la glace sur une grande surface.
On y étudie aussi les causes et les effets de ces caractéristiques sur le rende-
ment du découpage ainsi que les effets de la vitesse d’avance du jet, du
diamétre de I'ajutage, de la pression i I'sjutage, de I'éloignement de ia lance,
des caractéristiques de la glace et de I'échelle globale du systéme. Une
analyse par régression a permis d’obtenir une relstion empirique entre Ia
pénétration du jet et la puimance de ce demier, la vitesse d'avance, 1’éloi-
gnement de la lance et la température estimée de la glace.
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CUTTING ICE WITH “HIGH” PRESSURE WATER JETS

1.0 INTRODUCTION

Cutting a slot into a sheet of ice can reduce its flexural strength considerably. Such a slot or
multiple slots should be useful in easing the passage of an ice-breaking vessel through ice fields. The
substantial weakening of an ice sheet by cutting one or more grooves in the ice by means of a high
pressure water jet has been proposed as a possible means of extending current ice breaking capabilities
and reducing fuel consumption. A relatively simple device, the high pressure water jet, used as a
cutting tool, has the potential for development into a rugged, practical system for notching ice ahead
of an ice-breaking vessel. Although mechanical modes of cutting can remove material more efficiently,
a water jet has the advantage of non-mechanical contact and can cut with a substantial stand-off from
the material being cut. This characteristic along with the ability to introduce a concentrated, high level
of power in’o thc material would provide significant practical advantages for the water jet cutting
method whe: used tc assist ice breaking.

Previous work by the Gas Dynamics Laboratory of the Division of Mechanical Engineering
of the National Resea:ch Council of Canada in cutting a variety of materials with high pressure water
jets and a few water jet cuts in ice at the University of Missouri at Rolla during frozen soil cutting
trials for the U.S. Army Cold Regions Research and Engineering Laboratory led to exploratory smalil
scale ice cutting trials in the Gas Dynamics Laboratory!!). While these initial trials showed that ice
indeed could be cut with high pressure water jets, extrapolation of the results to a full scale system
was impractical. After a subsequent series of field tests by CRREL at very high pressures!! ), the Gas
Dynamics Laboratory in collaboration with CRREL made various series of cuts in ice ranging from
floating ice'2’ to manufactured ice to lock wall ice collars with a pumping system about one full order
of magnitude larger than the laboratory system. These cuts covered a fairly wide range of conditions,
from relatively high speed shallow penetration cuts to low speed relatively deep penetration cuts.
Extrapolating about two orders of magnitude from these results, while not at all reliable, did indicate
that a realistic full scale system might be possible.

To further investigate the potential cutting ability of water jets in ice, larger scale field tests
were initiated3(4)(7) by the Low Temperature Laboratory of the Division of *’echanical Engineering
of the National Research Council of Canada and conducted in collaboration with the Gas Dynamics
Laboratory. Through the course cf this investigation, the field tests were supplemented by further
fairly small scale laboratory tests!’(®) including one series of cuts in a simulated sea ice!®’.

2.0 ICE CUTTING SYSTEM

Cutting ice with a water jet is achieved by impacting a high velocity jet of water onto the
ice. The resulting velocity and directional changes apply forces to the ice sufficient to fracture some
of the weaker bonds between and within crystals. By traversing the jet across the surface of the ice a
slot can be cut into or even through the ice. Figure 1 shows a water jet cutting such a slot in a floating
ice sheet.

Typically, the jet is produced by accelerating high pressure water through a convergent steel
nozzle, The high pressure water is supplied by a pumping system such as that shown in Figure 2,
usually drawing the water for the jet from under the ice sheet. To produce a high quality coherent jet,
the high pressure flow is stabilized in the cutting lance, either with a long straight pipe or with a flow
stabilizer followed by a shorter straight pipe. Interchangeable nozzles terminate the cutting lance, with
care taken to ensure that only minimal flow disturbances are introduced in the nozzle and its
mounting. Control of the nozzle pressure is most often accomplished with a bypass returning some
of the high pressure water back to the reservoir. For convenience and flexibility the various major
components of the system are generally connected together with suitable hoses.
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For most of our field testing (Fig. 3), the swing of a hydraulic crane with a telescoping
boom was used to traverse the cutting lance, which was mounted in a lightweight triangular latticed
column fitted to the head of the crane boom. Traverse speed was controlled by both the swing speed
and the radius of the cutting arc. Nozzle stand-off could be adjusted by lifting or lowering the boom.

Suitable and accessible test sites were selected, on a spring-fed pond for the first series of
field tests (March 1977)(37 and on the Ottawa River for the second and third series (February 1978¢(4)
and February 1979(7) respectively). Both the crane and the high pressure pumps were positioned on

solid ground as close to the ice as feasible (Fig. 3). For the field tests the ice thickness ranged up to
about 0.75 metre.

In the laboratory, during one series of tests (July/August 1977) cuts were made in blocks of
fresh water ice previously removed from ice sheets that had been grown in a large ice tank. In another
series (July /August 1978)(5) cuts were made in fresh water ice sheets floating in the same ice tank
and in a third series (January 1979)(6) cuts were made in a simulated sea ice sheet floating in another
ice tank. The ice sheets were formed in insulated ice tanks, the fresh water ice by mechanical refriger-
ation in a cold chamber and the simulated sea ice by fan assisted natural freezing in an unheated
building during winter. The fresh water ice ranged from about 10 cm to 30 em thick while the simu-
lated sea ice was almost 25 cm thick. After cutting out the blocks from the ice sheet, they were
stored in a chest freezer held at the desired ice temperature until just before cutting.

The ice blocks were cut with water jets by linearly traversing the block of ice underneath a
fixed cutting lance. For the ice sheets (Fig. 4), the lance was traversed linearly with a small carriage
sliding on a beam. It was driven by an air cylinder for the cutting of fresh water ice and by a small
electric drive for the cutting of simulated sea ice, This system was, in turn, mounted on a large carriage
which could be moved perpendicularly to the traverse so that a series of cuts could be made.

3.0 TEST PROCEDURES

Fresh water ice was made in the laboratory cold chamber by cooling the water to near
freezing and then lowering the chamber ambient temperature to -25°C. When a sufficient thickness
of ice had formed, the chamber was stabilized overnight at the following day’s required test temper-
ature.

Simulated sea ice was made by adding commercial sea salt to fresh water until the salinity
reached 16 %o , cooling the resulting brine for one week until the brine was near freezing and then
freezing for two weeks in early January 1979 at an average ambient temperature of about -14°C
(range - 26°C to +4°C) until sufficient thickness of ice had formed.

Generally for all tests, prior to the ice cutting, measurements were made of ice thickness,
ice temperature (3 to 4 cm below the ice surface) and ambient temperature. In most cases, the
ambient temperature was also noted during the day while the ice cutting tests were taking place. In
addition, samples were taken from each ice sheet for future determination of ice characteristics. For
the simulated sea ice the brine salinity was monitored both at intervals during freezing and prior to
the water jet cutting.

With the desired nozzle installed on the cutting lance and properly positioned for the start
of s cut, the selected nozzle pressure was established and the initial nozzle stand-off was set. The jet
(or the block) was then traversed at the desired speed, cutting a slot into or through the ice sheet.
While cutting, the time to traverse a known distance was measured and recorded, and any significant
features of the cutting were noted. After a suitable length of cut had been made, the traverse was

stopped, the final nozzle stand-off was measured and the penetration was measured at intervals along
the timed portion of the cut.
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4.0 ICE CUTTING TESTS

In cutting the ice blocks, of a total of 103 tests, only 42 tests produced measurable cuts.
Although a few tests had no measurable effect on the ice, most cracked or shattered the blocks so f 1
badly that the cuts could not be identified. In cutting the fresh water ice sheets, of a total of 162
tests, 2 were aborted, 5 were missing measurements of traverse speed and 3 were exploratory tests L '
with a different type of nozzle. Thus, 194 cuts provided relevant data on water jet cutting of fresh
water ice. In addition there was relevant data for 27 cuts in the simulated sea ice. The range of test
conditions for both seis of data was as follows:

Fresh Water Ice Simulated Sea Ice 4
minimum  maximum minimum maximum
‘ Traverse speed (km/h) 0.06 8.41 0.15 1.06
f Hydraulic power (kW) 1.4 262 3.7 31 ,
Nozzle diameter (mm) 1.02 16.66 151 T *
Nozzle pressure (MPa) 4.1 71 13 53
Nozzle flow (L/s) 0.16 26.2 0.29 0.59
Nozzle stand-off (cm) 3 152 7.5
Penetration (cm) 0 74 2.8 24.8
Ambient temperature (°C) -32 ~+ 25 -22 -15
Ice temperature (°C) -21 0 -12 <-1

All nozzles produced generally coherent jets (Figs. 1 & 4); however, some jets were better
than others. Microscopic examination of the nozzles revealed some small flaws at the exit of some
nozzles and in the smaller nozzles, some roughness in the bore and insufficient blending between the
conical and cylindrical portions.

Uniformity of traverse speed during individual tests could not be maintained. The average
variation for the 25 field tests for which more than one speed measurement was made was +15% with
the worst case +40%. For the simulated sea ice cutting tests the traverse speed appeared somewhat
more uniform than for the fresh water ice cutting tests. Also, when traversing with the hydraulic
crane, the nozzle stand-off varied due to imperfect leveling of the crane.

In general, the water jet cuts varied from deep, narrow, clean kerf cuts (Fig. 5) to wide,
spalled trenches blasted out of the ice (Fig. 6), while in some cases, a shallow spalled trench was
produced with a deep kerf cut into the bottom of it. For the field tests, the cuts of the first series
(Table I, Nos. 1-12) were all deep narrow kerfs about 5 cm wide with small particles of ice being
removed from the slot with the spent water from the jet. However, for the second series (Table I,
Nos. 55-95) a relatively clean cut kerf was obtained for most of the traverse in only two tests and for
some of the traverse in three other tests. For all the other cuts of this series the ice tended to spall
and break out in large chunks, somewhat smaller pieces and many small particles, leaving a trench of
varying width up to 1 m wide but more usually 0.3 m to 0.5 m wide. The large chunks were often
lifted out of the trench, while the smaller pieces were frequently thrown considerable distances; the
small particles usually were ejected in the spray of spent water from the jet. Only for the shallowest
cut of the third series (Table I, Nos. 135-194) was the ice removed primary by spalling. For all other
cuts spalling was negligible. While some pieces of ice were broken out by the jet, presumably where a
cut intersected an existing crack in the ice, most cuts resulted in a narrow fairly clean kerf about
13 mm wide similar to the cuts of the first series,
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Of the measurable cuts in the ice blocks (Table I, Nos. 13-54) most produced a spalled
groove, a few produced a recognizable kerf and the remainder simply melted a shallow groove in the
ice. It was noticed that kerf cuts only occurred at the higher nozzle pressures (above 48 MPa) and at
the higher ice temperatures (above -5°C), while spalling occurred between 7 and 52 MPa nozzle
pressure and a melted groove was often found at nozzle pressures from 4 to 21 MPa.

Cuts in the laboratory fresh water ice sheets varied from deep, narrow, clean kerf cuts at the
higher nozzle pressures to shallow, widely spalled cuts at the lower nozzle pressures. No sharply de-
fined change in mode occurred; rather, there was a gradual increase in spalling as the pressure was
lowered. Two other less apparent effects were also noticed; spalling tended to increase somewhat as
traverse speed increased and it tended to decrease as each test series progressed. Also, as the jet was
cutting relatively warm ice, much cracking of the ice sheet occurred, with some cracks running all the
way to the side of the ice tank. For colder ice extensive crazing occurred, but only in the vicinity of
the cut.

For the simulated sea ice most of the cuts were essentially clean kerf cuts with a small
degree of surface spalling. However, for the first seven tests, as the pressure was reduced below about
40 MPa, the spalling became wider and deeper until, at about 13 MPa only a spalled trench was
produced. Later in the day, cuts made with a pressure near 33 MPa were essentially clean with little
or no spalling. No cracking or crazing uf this ice sheet was observed.

Cuts through the fresh water ice tended to break large chunks of ice from the bottom of the
ice sheets with the fracture planes running at angles between about 30° and 60° to the plane of the
ice sheet. This was particularly noticeable on the samples cut out for determination of the ice charac-
teristics (Fig. 7), and in the bottom profile of the ice at one side of a hole from which a pair of blocks
was removed (Fig. 8). In this latter view, saw cuts were made to simulate the size and shape of the
original water jet cut. Cuts through the simulated sea ice did not exhibit the angular break-out charac-
teristic, however, in cutting out the simulated sea ice samples, the bottom couple of centimetres of ice
broke roughly perpendicular to the plane of the ice sheet.

Also observed in cutting out the sample blocks in the field was that for the first series of
tests the block could be cut easily with the water jet with no cracking or crazing of the ice; for the
second series an attempt to cut a block with the water jet resulted in a shattered block; and for the
third series a block was again easily cut out, but in this case there was extensive crazing, particularly
of the clear ice.

5.0 ICE CHARACTERISTICS

All the sample blocks of ice cut during the field testing showed a layered structure (e.g.
Fig. 7). The visually distinctive types of layers are noted in Figure 9 along with the thickness of these
layers and the ice density at various locations through the thickness of the blocks. Both the white and
semi-opaque layers themselves consisted of numerous individual but similar layers. While the clear ice
from the first series appeared bubble free, both the second and third series samples contained some
small bubbles.

To determine what effect the water jet cut may have had on individual ice crystals, a full
depth slab was cut out of the sample block from the third series with a chain saw, leaving one water
jet cut edge. This slab was subsequently processed into a partial set of individual thin sections (see
Pounder(3') with care taken to maintain the original position and orientation of each section. Photo-
¢raphs of each thin section were taken between crossed polaroids with a 1 cm reference grid and a set
of prints was assembled into a montage to approximate a large area section of the ice (Fig. 10).

Examination of the thin sections showed no apparent localized shattering of ice crystals
or any other localized effect peculiar to water jet cutting. However, the extensive crazing of the clear
ice was seen to pass through several ice crystals with little or no deviation at crystal boundaries. The
top opaque white ice consisted of snow ice with many layers of randomly oriented crystals up to
about 5 mm in size — defined as Type T1 ice (see Michel and Ramseier!9’), The bottom clear ice
consisted of columnar crystals mostly 1 to 3 cm thick with horizontal symmetry (horizontal orienta-
tion of the c-axis) — defined as Type S2 ice!9),
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From the laboratory samples of fresh water ice, vertical thin sections, (e.g. Fig. 11 (1 cm
reference grid)) showed that all three ice sheets consisted of bubble-free, columnar grained ice with
horizontal symmetry — defined as Type S2 ice!9). Although some crystals extended through the full
thickness of the ice sheet, the size of the crystals varied considerably.

The samples cut from the simulated sea ice were rather fragile and could be easily crushed
when first lifted out of the ice sheet. However, after a few minutes exposure to the cold ambient
temperature they hardened and could be easily handled. Throughout most of their thickness they
appeared to have a fine vertically elongated dendritic ice structure with voids or cavities between the
dendrites.

The crystal structure of this simulated sea ice is shown in the vertical thin section of a
sample taken from the centre of the ice sheet (Fig. 12 (1 cm reference grid)). The top layer consisted
of large horizontal grains from 1 to 2 cm thick. Below this layer the crystals, still mostly 1 to 2 cm
thick, became tilted more and more towards a vertical orientation until, by the bottom of the ice
sheet, they were essentially vertical. Also visible in Figure 12 are the brine and air inclusions within
the crystals. These inclusions, which appear as strings of tiny bubbles in the lower half of the figure,
were expected to permit easier passage of the jet into the ice and consequently improved penetration
relative to fresh water ice.

When it was assured that no further thin sections were needed, the remaining cores were
melted down and the salinity of the resulting brine was measured. It was found to be 5.0 %.o. The
salinity of the brine in the ice tank about 0.3 m below the ice was found to be 20.3 %o at the time
the samples were cut from the ice sheet.

Although an attempt was made to characterize the strength of the various ice sheets with a
simple field test, it was found to be unsatisfactory and no useful strength data was obtained.

6.0 ANALYSIS OF TEST DATA

For the cuts in fresh water ice and for those in sim::lated sea ice, separate relationships

between the jet penetration and the jet parameters have been derived by multiple linear regression
analyses.

From the general expression

Y = f(u,d,p,s) 1)
where: = average penetration (cm)
= nozzle traverse speed (km/h)
nozzle diameter (mm)
= nozzle pressure (MPa)
= average nozz!e stand-off distance (cm)

g oaE
i

and assuming that a zero value for this function would result in a zero depth of cut, a first approx-
imation was obtained by applying multiple linear regression analysis to a logarithmic transformation
of this expression to yield ultimately an equation of the form:

Y-A.ul.dc.pb.'i 2)
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For the cutting of fresh water ice (Table I), analyses of this type were conducted both on
individual series of tests and on combinations of data from groups of test series, including published
and unpublished data from the early studies of NRC and USA CRREL'! ’(2)(Table I1). These analyses
yielded exponents for nozzle traverse speed consistently near - 0.5. Whenever the data covered a suffi-
cient range of nozzle diameter and pressure, the exponent for nozzle diameter tended to range
between about 1.5 and 2, while that for nozzle pressure tended to vary about 1.5. There was a general
lack of useful correlation to nozzle stand-off.

It was recognized that the exponents for nozzle diameter and pressure were close to those
that appear in the relationship describing the physical jet property of hydraulic power,

HP = C - d? - p.!/: (3)
where: HP = hydraulic power (kW)
C = dimensional constant
d = nozzle diameter (mm)
p = nozzle diameter (MPa)

With the simple relationship,

Y=f(;uf) (4)

consistently good, highly significant correlations were obtained both for individual series of tests and
for many of the combined data analyses. However, with the introduction of tests on ice at signifi-
cantly lower temperatures there was a considerable reduction in the penetration of the jet. Conse-
quently, from the measured ambient temperatures and the few related ice temperatures, an estimated
ice temperature (near the surface) has been derived for each test of Tables I and II. Then by curve
fitting an ice temperature factor to all the data combined, an improved overall relationship was
obtained. In addition, it was found that reintroduction of nozzle stand-off now produced a significant
correlation and further improved the overall relationship. The best overall relationship was

HP - eTi/20 5
Y =07+020 ————— (5)
\/i . sl/b
with 95% confidence limits of
HP - eTi/20
Y,,, =23+ 03 ————— (6)
\/ﬁ - gl/6
HP - eli/20
Y_,, = -10 + 027 ————— (M
\/ﬁ‘ « gl/6
where: T, = estimated ice temperature (°C)
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HP - eTi/20

\/i . gll/é
for all 249 cuts. The regression line (Eq. (5)) along with the +2¢ limits is also shown in the same
figure,

Figure 13 shows a plot of the penetration “Y” versus the combined paremeter

For a comparison of the effects of spalling versus those of kerfing, those tests that could be
identified with either of the two modes were analyzed separately. In addition all cuts with 50% or
more through penetration were eliminated from both sets of data. The resulting regressions were

for spalling:
HP - eTi/20
Y=33+019 —— (8)
Vvu e st/6
for kerfing.
HP - eTi/ZO
Y=25+026——— (9
\/E . sll6

Equation (8) and the spalling cuts are shown in Figure 14, while Equation (9) and the
kerfing cuts are shown in Figure 15.

In cutting the simulated sea ice (Table I1I), both nozzle diameter and stand-off were held
constant throughout the full series of tests and ice temperature data was too limited to show an ade-
quate relationship to penetration. The results of applying the same analysis procedure as used for the
fresh water ice cutting suggested that the best relationship was

HP
Y =17+ 032 — (10)
u3/4

However, for direct comparison with the fresh water ice cutting performance, a regression
analysis based on HPA/u also produced a highly significant equation with almost as good a fit to the
data. With the introduction of a constant to account for stand-off (based on the effect found for fresh
water ice cutting) the resulting equation provides a direct comparison to the cutting of 0°C fresh water
ice (Eq. (5) where eTi/20 = 1),

HP
Y=-02+ 0656 — (11)
\/ﬁ . gl/6
with 956% confidence limits of
HP
Vi3, = 34+ 080 ——— 12)
Vu © s
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HpP
=-37+ 050 —m (13)

\/ﬁ . gli®
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Figure 16 shows a plot *“Y" versus the combined parameter for all 27 cuts.

Vu - o/t
The regression line of Equation (11) along with the 20 limits is also shown in the same figure.

7.0 DISCUSSION

The fresh water ices cut in the field tests were generally a type of natural ice commonly
found on lakes and rivers, having many layers of snow ice with an underlying layer of clear ice. Other
than the candled top layers of the March 1977 ice, the principal difference was in the temperatures.
For the first series in March 1977 the ice temperature was 0°C, while for the second series in February
1978 the ice near the top surface varied from about - 11°C to - 2°C and for the third series in February
1979 it ranged from about - 18°C to -11°C. The colder ice was harder and stronger and obviously
more difficult to cut. On the other hand the candled top layers of ice cut easily, resulting in over-
estimation of the cutting ability of a water jet in more solid ice.

All the fresh water ice made in the laboratory was clear with the characteristics of ice grown
unidirectionally from the free surface. The blocks of ice, having been stored in a chest freezer, were at
a uniform temperature throughout varying from - 18°C to 0°C. However, for the July/August 1978
tests, the three separate ice sheets, near their top surface, ranged from about - 17°C to 0°C.

There was a variety of ices cut in the tests referred to in Table II, ranging from ice blocks to
floating ice sheets to lock wall ice collars. However, all were apparently at or very near to 0°C and
therefore relatively easy to cut.

The saline ice produced for these tests was a first approximation facsimile of first year sea
ice. Its salinity at 5 %o was in the same range as the “typical average figure” of 4 %o cited by
Pounder(8). With its many inclusions and underlying fragile structure, this ice should have been more
susceptible to water jet cutting than fresh water ice.

While the majority of cuts in both types of ice produced a narrow, clean kerf, indicative of
erosion in a ductile material, others produced a wide spalled trench, indicative of spalling in a brittle
material. In some cases both modes of cutting occurred simuitaneously with a kerf below a trench.
Although there was no clear demarcation between kerfing and spalling, the results of this test program
suggest that about 40 MPa was needed to cut a kerf without excessive spalling in either fresh water ice
or in the simulated sea ice. Still! higher pressures generally produced cleaner cuts. For equivalent
conditions a spalled cut tended to be shallower than a kerf cut, although not as much as originally
expected. A few small scale cuts simply melted a groove in the ice.

For the first few simulated sea ice tests, when the ice was still cold, cutting through the hard
surface layer, in all cases, resulted in some degree of surface spalling, becoming more pronounced as
the nozzle pressure was reduced until, at 13 MPa, only spalling occurred. Later in the day, when the
ice was presumably warmer due to the flooding of the surface during each test, the degree of spalling
became negligible (down to a nozzle pressure of 33 MPa). Cutting into or through the underlying
softer ice produced clean kerf cuts.

Extensive cracking and crazing of the ice sheets did not appear to affect subsequent cuts,
with the exception that a sizeable piece of ice would occasionally be broken out as the jet passed over
or near a crack. While extensive crazing of the clear ice has been observed throughout some of the ice
blocks cut out by the water jet for ice samples, there was no indication that there was any weakness
at these locations. Even in making the thin sections, no fractures occurred.
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In the absence of suitable ice strength data, an empirical ice temperature factor (e! /29) has
been included in the analyses to provide a first approximation to the effects of variable ice strength.
The regression analyses have confirmed that ice temperature has a considerable effect on the cutting
ability of a water jet in fresh water ice. However, ice temperature will be governed, not just by
ambient temperature, but also by flooding of the ice surface during the cutting tests, especially in the
laboratory ice tanks. Consequently, the ice was subjected to short periods of warming from the
flooding . followed by longer periods of cooling from the air. Because of the relatively high thermal
inertia of the ice, it is expected that the heat supplied by the flooding produced only a gradual overall
warming of the ice above its initial temperature which started in equilibrium with the ambient temper-
ature.

Cuts penetrating through the full thickness of the ice may not truly represent the jet’s
cutting ability in ice. Apparently, final full penetration occurs by the fracture of sizeable pieces of ice
from the bottom of the ice sheet. While the kerf portion of the cut is characterized by localized over-
stressing of the ice by direct pressure from the jet, with small particles being broken off and washed
away, the chunks of ice broken from the bottom of the ice sheet suggest that a point is reached where
the ice remaining below the kerf is incapable of supporting the impinging force of the water jet. Thus
through cuts are produced by a combination of two different modes of ice failure. However, the
cutting ability of a jet in ice is determined only by the kerf cutting ability of the jet. As can be seen
for example in Figure 16, there can be either excess power in the jet that could cut still deeper if the
ice were thicker, or insufficient power to cut through even the tested thickness without the breaking
away of chunks from the bottom of the ice sheet. Since through cuts can either underestimate a jet’s
cutting ability or overestimate it, and since such cuts, being the deepest achieved in any particular
test series, can have an inordinate effect in determining the slope of a regression line, care should be
taken to avoid excessive reliance on through cuts for extrapolation of test data to cuts in thicker ice.

For the fresh water ice cutting regression analysis, Equation (5) provides a statistically
excellent fit to the entire body of data from both Tables I and II. Nevertheless, some of the data
points remain a considerable distance from the regression line, especially those points representing
the deeper cuts. When the data was separated into groups known to be either cutting or spalling and
the through cuts were eliminated, the scatter of the points was reduced. As suspected, the results of
this separation indicate that spalling does produce considerably less penetration than does kerfing.

Y = 0.73Y

spalling kerfing

Note that even though spalling may produce a shallower cut it still may be more desirable
for some applications.

In addition it is to be noted that Equation (9) for kerfing only indicated a slightly lower
penetration than Equation (5) for all cuts. This is likely due in large part to the elimination of the
“through” cuts, and to some extent, to the elimination of some of the unknown-mode cuts from
Table il.

For the simulated sea ice, the effect of traverse speed, as indicated by its exponent of - 3/4,
may be greater (Eq. (10)) than that for fresh water ice (Eq. (5)) where the exponent is - 1/2. However,
with only 27 data points and with a correlation almost as good witl: - 1/2 exponent (Eq. (11)), there
is insufficient data to establish more firmly the effect of traverse sp:: *. Nevertheless, a comparison
of the slope of Equation (11) to that of E-juation (5) indicates that pevetration in the simulated sea
ice was more than double that in fresh water ice when the jet parameters were similar. Apparently,
the brine and wi inclusions within the saline ice structure did permit easier jet penetration into this
ice, a8 expected.
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8.0 CONCLUSIONS

Most of the fresh water ices cut with water jets have been of good quality, varying from
clear, bubble-fyee ice to snow ice. However, they have varied considerably in temperature with a con-
sequent variation in hardness and strength.

The saline ice made for these tests was a reasonsbie laboratory simulation of first year ses
ice, but on & reduced scale.

A large number of cuts have now been made in fresh water ice with small to moderate scale
water jets, a few have also been made in a simulated sea ice with small scale water jets. In the majority
of cases a narrow, clean kerf was cut in both types of ice. However, below about 40 MPa nozzle pres-
sure the cut consisted mostly of a wide spalled trench. The kerf was apparently produced by erosion
in a ductile material while the spalled trench was apparently produced by hrittle fracture. For those
cuts in fresh water ice that could be identified as either kerfing or spalling the penetration by spalling
was only about three-quarters as deep as that by kesfing.

Apparently, extensive cracking and crazing of the ice sheets did not significantly weaken
them.

As the fresh water ice temperature dropped substantially below freezing, a considerabie re-
duction in penetration capability occurred. This was apparently due to an increase in ice strength. A
first approximation of this effect was obtained by applying an empirical correction factor to the
penetration - - jet parameters relationship based on the estimated temperature of the ice near the
surface. This factor enabled the data from the entire range of temperatures to be explained by a single
highly significant regression equation. Insufficient data was available to establish a similar factor for
the simulated sea ice.

Cuts penetrating through the full thickness of an ice sheet may not truly represent the
cutting ability of a water jet in ice. A jet that penetrates an ice sheet with surplus power may cut even
deeper in a thicker ice sheet, but one that penetrates with marginal power may not cut as deep 1n a
thicker ice sheet.

With all the fresh water ice cutting data of Tables | and 1] taken together, Equation (5)
represents a statistically excellent fit to the data. it confirms that the jet parameters, hydraulic power
and the square root of traverse speed, are the important factors and that ice strength can be taken into
account by a simple empirical ice temperature factor (e'1/2¢). Use of this entire body of data has also
revealed that nozzle stand-off does have a significant effect, albeit a small one.

While Equation (6) indicates a linear relationship between jet penetration and the jet
parameters over the range covered, there is no evidence to suggest that it will not level off at some
point beyond the present range. Nevertheless, it is interesting to speculate what extrapoiation to a
larger system might produce. For example, 4000 kW of pawer input into the ice at a traverse speed
of 5.5 km/h might cut upward of 3 m of fresh water ice at 0°C and sbout 1.5 m at - 20°C.

For the simuiated sea ice the regression analyses indicate that the effect of traverse speed
on the jet penetration is not clearly defined. Although the same general function fitted to the cutting

of fresh water ice, Y = f{(HPA/u ), also fits the cutting of the saline ice very well, the general function

Y = f(HP/u® " %) provides a marginally better fit. With such an uncertainty, no attempt at extrapola-
tion to higher power levels can be justified.

At the rather small scale of these tests the jet penetration into the simulated sea ice was
greater than into fresh water ice, all other conditions being equivalent. While the cutting of saline ice
on a larger scale shows promise of even deeper cuta relative to cuts in fresh water ice, tests on the
larger scale will be necessary to confirm this.
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rd
FIG. 1: WATER JET CUTTING OF FLOATING ICE SHEET
{(JET FROM 12.70 mm BORE NOZZLE)
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FIG. 3: FIELD TESTING OF WATER JET CUTTING
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FIG. 4: WATER JET CUTTING IN THE LABORATORY
(JET FROM 1.51 mm BORE NOZZLE)
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FIG.5: KERF CUT BY WATER JET
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FIG.6: SPALLED TRENCH CUT BY WATER JET
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FIG. 7: CROSS-SECTION OF POND ICE
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FIG. 8: BOTTOM PROFILE OF ICE SHOWING BOTTOM BROKEN-QUT ‘ “

{SAW CUT THROUGH TO SHOW POSITION AND SIZE OF ORIGINAL WATER JET CUT) {
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FIG. 10: MONTAGE OF THIN SECTIONS FROM THIRD SERIES OF
FIELD TESTS — FEBRUARY 1979
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FIG. 11: THIN SECTION OF LABORATORY FRESH WATER ICE SHEET
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FIG. 12: VERTICAL THIN SECTION OF SIMULATED SEA ICE
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