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1. Personnel Supported by ONR Contract NO0014-81-K-0014

Faculty Investigators

I T. Baser H.V. Poor (P.I.)

IGraduate AssistAnts

B. Azhang K.S. Vastola

2. Summary of Progress During Reporting Period

The primary direction of progress on this project during the

reporting period has been toward the design of robust linear estimation

and control procedures for uncertain models. Generally speaking, a

robust procedure is one which is insensitive (in terms of performance) to

small deviations from an assumed model. One of the most successful approaches

to robust design is a game theoretic one in which a procedure is sought

[to have the bestvorst-case performance over a relevant class of models

neighboring the assumed (i.e., nominal) model. Thus, the primary design

philosophies in this study have been minimax-meaa-square-error estimation

and minimax quadratic control. Related game theoretic approaches to

hierarchical stochastic decision problem and to antijaumi 6 strategies

have also been considered during the reporting period. A brief descrip-

tion of the results obtained during the reporting period is contained

in the following paragraphs. More complete details of these results can

be found in the publications listed at the and of this discussion, copies

of which are attached as appendices to this report.

The problem of robust linew smoothing of a stationary random

signal with uncertain spectrum observed in additive noise with uncertain

spectrum is considered in [61. Here, a general solution to this problem

is given for spectral uncertainty classes of a general type based on

Ii Il III E II i I Iin
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[ I
Choquet capacities. This type of model includes standard uncertainty r
models such as contaminated mixtures as well as several topological

[ models of uncertainty. Further, an extensive numerical study [8] in-

dicates that the worst-case performance of the proposed technique is

Igenerally much better than that resulting from designs which simply
ignore the presence of uncertainty. More general problems of robust

estimation of stationary signals (including smoothing, filtering and
prediction) also have been considered in the case of discrete time (9].

Here, a general minimax result is given from which robust solutions

to a variety of problems follow straightforwardly.

Also considered in this study are the problems of state estima-

tion and control in linear stochastic systems with uncertain noise

statistics. In [7], two aspects of minimax MSE state estimation are

considered. These are: minimax state estimation for single-variable

systems with uncertain process or observation noise spectra and minimax

state estimation for multivariable systems with white noises of uncer-

tain componenmise correlation. In each problem, a minimax theorem is

I proven indicating that the robust state estimator is the minimum MSE

filter for a least-favorable model. Thus, for example, in the second

problem the robust solution is the Kalman-Bucy filter for a least-favor-

able pair of process and state noise covariance matrices. The related

problem of minimax estimation with nonhomogeneous Poisson observations

processes with uncertain rate functions has also been considered [3].

Here, analogies with the continuous-observations case are exploited to

3 obtain straightforward minimax solutions to this problem. Minimax

linear-quadratic control within the second formulation mentioned above

I (i.e., white noises with ancertain componentwise correlation) is con-

sidered in (4,5]. Results similar to those for state estimation in [7]

are found to hold for this problem. Also, an interesting result con-

cerning the separability of estimation and control is observed in this

problem. In particular, it is seen that the minima: controller design

is independent of that of the state observer, whereas the reverse is

_.I
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not necessarily true. Thus, for example, the state observer for mini-

max control is different from the minimax state estimator of [71 for

the open-loop system. This is in contrast to the analogous problem

without uncertainty in which estimation and control objectives separate.

As noted above, game theoretic analyses have also been applied

to the problems of hierarchical stochastic decision making and anti-jamming . In particular, [1] considers the class of stochastic Multi-

person, multicriteria decision problems (defined on general Hilbert

spaces) with quadratic objective functionals, static information struc-

ture, and with a hierarchical structure with regard to the order in

I which desicions are announced. Here, a set of conditions is obtained

under which a unique equilibrium solution exists and can be determined

as the limit of an infinite sequence. Further, [2] considers the pro-
blem of transmitting a sequence of independent and identically distrib-

uted Gaussian random variables through a memoryless Gaussian wiretap 
)5

channel with an intelligent jamer. Under a minimax MSE criterion, the

complete set of strategies for the jammer and transmitter is obtained

J for this problem within power constrainst on transmitter and jamer.

A variety of solutions is possible depending on the relative power

constraints of the players and the noise levels in the transmission

and wiretap channels.

[
I
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3. Publications Reporting Research Supported by ONR Contract

N00014-81-K-0014

(1] T. Basar, "Hierarchical Equilibrium Solutions in Stochastic Decision
Problems Defined on General Hilbert Spaces," submitted for publica-f tion to Information and Control.

[21 T. Basar, "The Gaussian Test Channel with an Intelligent Ja-er,"
submitted for publication to IEEE Transactions on Information
Theory.

[31 E.A. Geraniotis and H.V. Poor, "Minimax Filtering Problems for
Observed Poisson Processes with Uncertain Rate Functions," Proceed-
ings of the 20th IEEE Conference of Decision and Control, San Diego,
California, December 16-18, 1981 (to appear).

[4] D.P. Looze, H.V. Poor, K.S. Vastola and J.C. Darragh, '"inimax
Control of Linear Stochastic Systems with Noise Uncertainty,"
submitted to IEEE Transactions on Automatic Control.

[5] D.P. Looze, H.V. Poor, K.S. Vastola and J.C. Darragh, "Minimax
Linear-Quadratic-Gaussian Control of Systems with Uncertain Statis-
tics," Proceedings of the 10th IFIP Conference on System Modeling
and Optimization. Springer-Verlag: New York, 1981 (to appear).

[ [6] H.V. Poor, "Minimax Linear Smoothing for Capacitfes," Annals of
IProbability (to appear).

[7] H.V. Poor and D.P. Looze, "Minimax State Estimation for Linear
Stochastic Systems with Noise Uncertainty," IEEE Transactions on
Automatic Control, pp. 902-906, August 1981.

[8] K.S. Vastola and H.V. Poor, "An Analysis of the Effects of Spectral
Uncertainty on Wiener Filtering," submitted for publication to
Automatica.

[91 K.S. Vastola and H.V. Poor, "Robust Linear Estimation of Stationary
Discrete-Time Signals," Proceedings of the 1981 Conference on
Information Sciences and Systems, The Johns Hopkins University,
Baltimore, MD, March, 1981, pp. 512-516.
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4. Appendix: Copies of Publications

~This appendix contains copies of the publications listed in Section 3

above, with the exception of [5] which is currently being put into final form.
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[1] T. Basar, "Hierarchical Equilibrium Solutilons in Stochastic Decision
Problems Defined on General Hulbert Spaces," subamitted for
publication to Information and Control.
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HIERARCHICAL EQUILIBRIUM SOLUTIONS IN

jSTOCHASTIC DECISION PROBLEMS DEFINED
ON GENERAL HILBERT SPACES*

TMER, BA§AR
Decision and Control Laboratory
Coordinated Science Laboratory

University of Illinois
1101 W. Springfield Av.
Urbana, IL 61801

ABSTRACT:

This paper considers the class of stochastic multi-person multi-

criteria decision problems defined on general Hilbert spaces, with quadratic

objective functionals, static information structure, and with the mode of

decision making requiring the decision makers to announce their strategies

in a sequential order. A set of conditions, independent of the probabil-

istic structure of the problem, is obtained, under which the hierarchical

equilibrium solution exists, is unique and can be determined as the con- 4

vergent limit of an infinite sequence. The analysis is confined primarily

to the three-person case, in which context explicit conditions and strategies

are obtained, but extensions to the case of more than three decision makers

are also elucidated.

I " Mauscipt repred uneI0, 989



1. INTRODUCTION

This paper introduces and discusses a general approach towards deriv-

ation of the optimum (hierarchical equilibrium) solution of a class of

stochastic multi-person multi-criteria decision problems which incorporate

multi levels of hierarchy in decision making. Analysis Is primarily

confined to three-person decision problems defined on general inner-product

spaces, with quadratic objective functionals,and with the mode of decision

making requiring the decision makers to announce their policies in a sequen-

tial order; but, extensions to other types of decision problems with more

than three decision makers and other modes of decision making are also

discussed. The stochastic decision problems covered by our general frame-

work are those with finite dimensional control (decision) spaces, those

defined in continuous-time, with lumped or distributed parameters, as well

as the ones whose state dynamics are described by differential-delay

equations.

One of the important results obtained in the paper is that under

suitable conditions (which are explicitly obtained), independent of the

probabilistic structure of the problem, the equilibrium solution is unique

and it can be determined as the convergent limit of an infinite sequence.

For the special case of Gaussian distributions [such as the cases when all

primitive random variables are Gaussian vectors (in the finite dimensional

case), or are Gaussian stochastic processes (in the continuous-time case)]

the optimum strategies of the decision makers are affine functions of the

available static information.

Two special versions of this problem have been considered before for

the two-person case. Bafar (1980) discusses the case when the decision

variables belong to finite dimensional spaces, and Bagchi and Balar (1981)

4 'on __e___ch a~r(J91



1 2

I discuss the continuous-time version when the decision makers make noisy

observations of the initial state. In a wy, the present paper presents

nontrivial extensions of these results to the 4(> 3)-person case, but tht 0

solution here is not as explicit (in analytic form) as in those two papers a

because the framework here is more general.

I A precise mathematical formulation of the problem is presented in

Section 2, and the general solution is obtained in Section 3. For some

background material on functional analysis that is employed in these two

jsections, the reader is referred to Balakrishnan (1976) and Kantorovich and

Akhilov (1977). Section 4 treats a special case, and Section 5 discusses

possible extensions to more general models. The paper concludes with an

Appendix.

I

I
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2. GENERAL FORMULATION

Let (f, J, 9) be an underlying probability space, and H i (1 - 0,1,2,3)

be separable Hilbert spaces with inner products (h , h2 )i, for hI, h2 E Hi.

Let zi be an H -valued weak random variable [cf. Balakrishnan (1976)1 defined

on (., j, ), and a denote the sigma-algebra generated by zi (i - 1,2,3).

Furthermore, zi has a finite second moment, i.e.

(i) E{!(z i , hi) il 2  < - for every hi E H,

(ii) E{!(z i, hi)i1 } is continuous in hi,

where Ef.} denotes the total expectation over the underlying probability space.

Let S i (i = 1,2,3) be separable Hilbert spaces with inner products
1 2 1 2

<S 1,s 2 >i, for s , s 2 Si, and ui be an Si-valued weak random variable defined

on (Q, 3, 0 and satisfying the following two properties:

i) ui is oi-measurable,

(ii) ui has finite second moments.

We call such a ui a permissible control (decision) variable of the i-th

decision maker [abbreviated, DMij. Equivalently, we can introduce a permis-

sible strategy for DMi as a mapping Yi:Hi Si such that yi(zi) is ai-measurable

and has finite second moments. Denote the class of all such mappings for DMi

by r, (to be called the strategy space of DMij, which is in fact a Hilbert

1 2 12
space under the inner product E{<y (z), Yi(zi)> , for i y e r Inii
this general formulation [using the standard terminology of decision theory],

z denotes the state of Nature and z (i - 1,2,3) denotes the measurement

available to DMi -- all these (weak) random variables are static, in the sense

that they do not depend on the controls (actions) of the decision makers.

9-,-
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In order to complete the formulation, we introduce general quadratic

objective (cost) functionals for the decision makers on the product strategy

spaces ri x r 2 X 13 as

I Ji( 1, 72, y3) E{gi(z ,  , u2, u 3 )Ju - (z1), j - 1,2,3} (2.1)

* where

gi(zO ,  u3 ) 1 D U1 9 U <u i  u - <u , > D-u,k

0 2I3 i i< Fk F i i >._ (.
2 F jju >j + 2 U k' kUk>k <u, j <. , C zo> i

-<u F U> + k (2sj .2

- <u, C > <U C z> i J, k, 1, 2, 3,

Here, Fi _______

D i F i i Ck are linear bounded operators defined

ion appropriate Hlbert spaces, with F jand Fkk being also self-adjoint.

Our objective in this paper is to investigate the existence, uniqueness

and derivation of a hierarchical equilibrium solution for this stochastic

decision problem, in the presence of a linear hierarchy for decision making.

Specifically, it is assumed that the strategies are announced sequentially --

first DMI announces his strategy and makes it known to both DM2 and DM3, then

DM2 announces his strategy and makes it known to DM3, and finally DM3 decides

on his optimal strategy. Each DM strives to obtain a minimum value for his

cost functional, thereby leading to the following definition of a hierarchical

equilibrium solution:

Definition 2.1. The set of strategies (y ri, i - 1, 2, 3} is in hierarchical

equilibrium if

Ci) J (Y 0 - T yTI0  1 4J(lTT T(11 1' 2 3 1' 2 1 j1~ 1  2(yl), 3[y1,T2())

Y F- r

L

Lm ,
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(ii) Y' T"(YO)

where T r I -. , T3: 1 x r 2  re f 3 are unique measurable mappings satisfying

the inequalities J2 Olt ) T2Cy1). T3 1  T2 (y 1 )]) M J 2 (Y1 , Y2' T3 (0 1 9 2 ))'

Y 1l C 1li Y2 r2' and J 3 (0 1 9 Y2' T3(Y 1 9 Y2)) 1 J3019 "2' Y3)I V c ri,

i 1, 2, 3.

Remark 2.1. The assumption of uniqueness of T2 and T3 in Def. 2.1 is not

restrictive here since the underlying information structure is static, and I

such ,nique mappings exist, as we shall demonstrate later. If the information

structure had been dynamic, however, we would have to extend the definition

in order to account for nonunique responses [see Balar (1981a,b), for such

an extension].

,-14
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3. DERIVATION OF THE EQUILIBRIUM SOLUTION

Step 1. Firstly, to determine T, we hold Y 1 c r1 and Y2 C r 2 fixed and

minimize J3(y1 , Y2, 
" over r 3. Since £3 is strictly convex in u3, this

minimization problem admits the unique solution

I y3Cz3) - T 3(ly2)(z3) - E(D3 1yI(z 1) + 32Y2 (z2) C zoz 3l (3.1)

j where E( Iz 3l denotes the conditional expected value of () given the observed

value of z3. This is a well-defined quantity, which is a3-measurable, by

standard results of probability theory (cf. Lolve (1963) 1.

Step 2. Next, to determine T2, we substitute (3.1) into J2 (Yl, y 2 , y3) and

seek to minimize the resulting expression over 2 e"2 for fixed £ e1;

this, however, is not a standard stochastic optimization problem, because of

the presence of several conditional expectations. Writing out the function

to be minimized, we have

j2(y1, y2 ' T3 (ryl Y2)) "( <u2 ' u29 2 - u2' D2 11u1>2

- u2 , D2 3 D3 1 E ul z..J + D2 3 D3 2 E'u 2 jz 31 + D23C3  o z 3J 2

yu1 F 1 >1 +D 31E 1 'z3 1 + 32Elu 2 lz314. C3 oz~z3I F33 3 1 u 1 Iz3J

2 1 3 >3

2 3 2 o C2Zo l <D31[liz3
+ D o 3EI-  2 ,

+ 3 2 E~u2 lz~J + C3 2l3'3> u iz)

I - L2(YO , for fixed Y1 c r
21 1

We now seik a ' 2 r r2 so that, for fixed Y

*1-
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L2(? 2 ) (L 2 (y 2 ), V Y2 e r2 " (3.2)

Since r2 is a linear vector space, to every y2 E '2 there corresponds an

h e r2 such that 2 - 12 + h. Hence, (3.2) can be written as

.2 (V2 ) 
• L2 ((2 + h) V h e r 2

and furthermore, since L2 is quadratic, we haveI2
L2 C?2 + h) L2 (Q2)+ 6 2 ( 2 ;h) + 1 L2(12;h),

whereby

i1 2L2 (t2) ' L2 (1 2 ) + 6L2 ( 2 ;h) + 16 L2(12;h), V h r 2 (3.3)

Here, 6L2 and 62 L2 denote, respectively, the first and second Gateux variations

of L2 around 12' which are defined by

d

6L2 ( 2 ;h) lim A- L2Q + ah)

h) -,.im d+h)
2 2' 2 2

The first of these is homogeneous of degree one, end therefore (3.3) readily

leads to the set of necessary and sufficient conditions

SL 2 (1 2 ;h) - 0, a2L2(52;h) > 0 V h E r2  (3.4)

By making use of the smoothing property of conditional expectations, we can

write L2 and 8 2 L 2 in the forms

M0.2'2;h) - E(<h(z 2 ),, 2 (z 2 ,u 2,ul)> 2 lul - yl(z), U2  12 (z2 )} (3.5a)

and

d 62L2 (12 ;h) - E{<h(z 2 ), h(z2) 2 + <E[h(z2) IZ31'

_ ____ __



(D 2  -D 23 32 - D32D2 3) EL h(-2)z 3 >2  (3.5b)

32 3332 233D22 2 D12

where
a

z( + * F2 D D D "~
S2 z2,u2,u) + 323332 - D2 3 32 - 32D231 E[Eu 2(z3]Iz21

- 21E l1 z21 2 3 -D 2 32 3 1 -DD 32 13  1 Z3
] z2

3 C2 D* 12 C EEz2 I
- D C + 3  C -DF C3I z -C2 E~lz 223 + D32 3 32F333 Iz3] z2 ]  0

and super-index star C ) denotes the adjoint operator under the appropriate

inner product. Relations (3.4) and (3.5a) now readily lead to the first-

order condition

'2 (z2 , u2 ' u 1 ) 0 a.e. P , u 2 , 2 )

z 2 2
where P z is the probability measure induced under the weak random variable

z2. Let us rewrite this equality more explicitly as

12(z2) - K E[E[ 2 (z2) Iz3 1z2]1 + V2 1E y1 (z].)Iz 2
1

+ GE Ey ()zIz + C2E (z( 1+ G i (3.6)
I [[I(21) IZ3 ]Iz2 2 z2 2 + 2 [z° Iz3]z 2

where

*2

K -D 233D32 + D2 3D3 2 + D 2D23  (3.7a)

G, * 2 * 2*
G D3 2 F3 3D 3 1 + D2 3 D3 1 + D32F1 3  (3.7b)

4-DC +D C2  (3.7c)
2 32 33 3 23C3 32 3

Relation (3.6) is in fact a linear operator equation which has to be solved

for Y72' and this determines the mapping T2 introduced in Def. 2.2. The

questions of existence and uniqueness of such a mapping, and satisfaction

II
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[ of the second condition of (3.4), are now addressed to in Proposition

3.1 to follow.

Preliminary terminology and notation

Let i be the space of linear bounded operators mapping ri into

itself. For B 3, let i(B) and IJBILJ denote, respectively, the

spectrum and norm of B, where the latter is defined by

11Bll - sup rI<B xi, Bix>il/<x, x>O (3.8)

Furthermore, let ri(B) denote the spectral radius of B ea , which

is defined by

1/n
r 1 (B) lim sup I B nH (3.9)

Finally, let us introduce the Hilbert space M as the space of all Si-valued

i-measurable weak random variables defined on (C, 3, P) and with finite
i

second moments (i, J - 1, 2, 3). rNote that Mi is in fact isomorphic to

r, and it is also a Hilbert space.]

Now, by invoking the following condition

Cgl. r2 (K) < 1,

29

we are in a position to state the proposition given below.

Proposition 3.1. Assume condition C1 to hold true. i) Equation (3.6)

admits a unique solution Y2 4 r2 for every fixed Y1 e r£ , which is also

the unique solution satisfying (3.4); hence T2: r 1  r 2 is uniquely defined.

ii) The unique solution to (3.6) can be found, for any fixed Y e 1I, as

J.
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the convergent limit of an iterative procedure (known as successive approx-

imations), which starts with an arbitrary element of r2 on the right-hand

side (RHS) of (3.6) and recursively updates this choice by resubstituting

(to the RHS) the strategy obtained on the left-hand side of (3.6).

S Let us rewrite (3.6) as

Y 2 (z2) K 2 2 2 (z2) + kf1 (z2) (3.10)
13

where ky is a fixed element of r for every fixed Y, cI , and 2 denotes
1 2 3

the conditional expectation operator 2Y2 (z2) - ErY 2 (z2 )1z31', where the

convention is such that the super-index stands for the conditioning sigma-

field and the sub-index identifies the range space ESi, S2 or S3] of the

weak random variable whose conditional expectation is taken. The operator

a2 is likewise defined as a conditional expectation operator. Each of these
2 i

operators is a projection operator [see e.g. Bafar (1975)7, with S2 mapping

2into M2 where M2 is the Hilbert space of all second-order S 2-valued

weak random variables defined on (n, U, P). [Note that M 1 and 2 = ._ 4
2 3 "

Being projection operators, both £2 and 42 have unit norm, are linear and

bounded. Therefore K is a linear and bounded operator. We

223
may also take the range spaces of 62,C9 and K as 1 (instead of ) and

introduce a natural extension of r2 to the space of linear bounded operators

mapping 12 into itself, to be denoted r2. Then we have, using the spectral

)radius inequality for product operators,

- 3 - 3
2 2 - (22r2 2 2

[ 'r 2 (K) - r2 (K) < I, (i)

where the second inequality follows from a known (unit norm) property of

L_
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projection operators, the equality follows since (by construction) the

restriction of r2 to is r2, and the last inequality follows from Cl.

Hence, the spectral radius of the operator in (3.10) is less than

iI unity [or, equivalently, the spectrum of that operator is totally in the

[ unit sphere], and by Theorem 3 (Chapter XIII) of Kantorovich and Akhilov

(1977) equation (3.10) admits a unique solution in M2 . Furthermore, by the

Isame theorem, the solution can be obtained iteratively by
y (n+l) ( * 28 3y (n)(z ) + ky (z), n -0, 1,.¥2 2 2 2 2 1

where YO).is any ini ua L choicein M2 . Since we already know that the range

space of Kd2 3 comprises only a 2-measurable elements, and ye r, it
2 22 1 2

follows that Y2 () - lim Y~n)(.) is necessarily a2 -measurable, and therefore

the unique solution Y2 (z2 ) of (3.10) in M2 is in fact in the subspace

and to this, there corresponds a unique element Y2 in 12 '

What remains to be shown now, in order to complete the proof of the

Proposition, is satisfaction of the second order (sufficiency) condition

of (3.4). Towards this end, we first note that K is a self-adjoint operator,

and hence under Cl,

I<x, K<x>l < <x, x>i , x x e x;II

where e is the zero element in If this inequality is utilized in (3.5b),

we readily arrive at the bound

62L2  2 ;h) > E(<h(z2 ), h(z2 )>2 - <Eth(z2 )lz3], E[h(z2 )lz3]>21 , h 0 9.

By the nonexpansive property of conditional expectations [cf. Baqar (1975)],

E(-<ECh(z 2)1z3 , Eh(z2 )1z3]>2) g Et<h(z2), h(z2)>2,1

I.
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and therefore

6 2L2(2;h) > E(<EI h(z 2 ) 23], Et h(z 2 ) iz31>2 - Ef h(z2 )lz3J,

E[h(z2)1z1]>21 - 0,

that is, the second Gateaux variation is positive definite.

Remark 3.1. Under Cl, the operator [I-K&22 ] is invertible, and its inverse

is also linear and bounded. This leads to an operator-form characterization

of T2 , which is

2 3 2 (D21, + 2a3 (Zl)
T2(yl)(z 2) - LI - K&2&21 2 1  G&1 1  (3.11)"2C2 Zo L?22o+ 4~20 + &&2G 2Zo}

where the definition of is analgous to that of in the proof of Propo-

sition 3.1. We furthermore note that, under Cl the inverse can be written

in the form of an infinite convergent series (cf. Kantorovich and Akhilov

(1977) 1

23-1 2 2I[I - z&&] - I + n-I 22 )  (3.12)

which we will have occasion to utilize in the sequel, at step 3 of the

derivation.

Step 3. We have so far determined T3 and T2, uniquely, and under conditions A

which do not depend on the probabilistic structure of the problem. In order

to complete the derivation of the equilibrium solution, we now consider

the minimization problem described by Mi) in Def. 2.1, so as to determine TI .

" Towards this end,let us first substitute the unique responses of DM3

and DM2, as given by (3.1) and (3.11), respectively, into Jl' and consider

the first Gateaux variation of the resulting quadratic expression around

iP" a nominal point i l
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J1(1 T 2 (y1), T3 [y 1 , T2 (y 1)I) - Ef <'y1, yl> -

3 3-1 23 22
Y (12+ D 1 3 D 3 2 &2 ( Kt& [(D21 'a1 + G rr~l+ Co

12 r7 ( 3 31
2 '22o1 + D1 3 D31ry 1 + &3C3z o] + Clzo>1 +

+ -'<(I  
2Ke 3 2 G 2 3 2 2 2 3Z

(F 1  2F 1 D3 2 3-1 2 2 3 2 2 2 3

22 23 3212) ( 2 - K 2 G) [(D2 1&i 1 + G1 &2&) Y + &&2C2 +

-2 D 3y 3 3 2 3 3.23,1 3D1[23+ _
2F D 31 Y 1  + F3 32z2 -2Czo 2  + < & 1 + &2C2z

+ 22Gz23 2 2 z3  2- 2I 1 3 23.13

+- D & 2( K& a 2 E (D) ,  G I)y + &(clz + &3.34)
322 2 2 21 1 +111 1 2 20 2 2G2z,

Fb1 D 1&Nr + &3 c3 z + F 1D 23( - 24&2 ( 2  2 3
34 31 1 1 3 o 33 &- D291+( y

+& 2 a 3 z -2C'z 2G 3 L (3.13)

S 0 ;h El<h (z1) I t(Z 1, Y (z1 ))W } (3.14)

where

(z1 1 3
Zi(Zl' Y1(Z1)) "(z 1(Z1) - (D12  + G3&2&2)k 3 (z2) -k l (z l )1) _12 2 3 2) 2 3 2

2 * 3 2 * - K 1 2 3 (z2)} (3.15)
- 1 D21 + & QG )(

I  -K& a--2242(23 2

and

..3 -A&I - (D&21 2 + G3&Y M)(I - K&2 ) (D211& + GI&3
1 1 12 2 3 23- 2 3) 21 12

I-&2D2&I +  23&I*( - K& *2 {(G4&2&2 - 12 )

2 3 1 2 2 * 2 _*23)(31a)-(D & 2+ G&a& K&2&3 ) F)3
2 21 41 2 2 22

. -K& 2) 
1(D21& + GIl) a (3.16a)

* * * 1

A1 ,, DDD3 1 + D3 1D1 3 . D31F33D31 (3.16b)
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G 3 D3D32 + D 31F23 - D31F33D32 (3. 16c)
l *

S1 *l * 1
G4 F 23D32 + D32F23 - D32F33D32 (3.16d)

k h(z ) . ClE[zoIZll + i[D(3 + D 1 - F 1 C 3 ]E([zC~131
3+ * 1 * 1 3

(3.17a)

k (z ) C1E~zIzz - * C1 + 1 3 * 1 3

2 2 2 o 2 3 F2 3 C3 - D32F33C3)E[E z o z 3]z 2 ]

(3.17b)

k3 (z 2) 1 (I - M.2 2G 2 Z. (3.17c)

This result is obtained through some routine but cumbersome manipu-

lations, and in the course of the derivation we also obtain the second

Gateaux variation to be

82 LI(? I , h) E{<hl1(zlI), h1 (zl1)> + <hl1(zl1), (I -. &)hl (zlI)> I }

(3.18)

Note that both A1 and G4 are self-adjoint operators (and so are A1  ,

and G4 23, and hence the operator b is self-adjoint, mapping r' into

itself.

The counterpart of inequality (3.3) is also valid here, and by arguing

as in step 2, we arrive at the set of necessary and sufficient optimality

conditions

6L ('.] hl) - 0, a2L1( h) ) 0 V hI £ rl, (3.19)

which readily leads to the necessary condition (see (3.14)1

UeE i
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I tl(Z t1 1 (Z1 )) - 0 a.e. P , (3.20)

where ? Z is the probability measure induced under the weak random variable ,

zI.I Let us rewrite (3.20) in a more appealing form, which is the counterpart

Iof (3.6) for DM1:

1(z 1 ) - (I -. )1 1 (z I ) + kl(z I ) + (D 2&2  32+ G 3k1 1 2 3 k3(z2)

(3.21)

+ &t(4 D2 1 +& 3EGI)(I -K&a)- {k2(z2) - (F221 _G4&2a2)k3(z2)i

This is a linear equation in 1, and we now seek conditions, independent

of the probabilistic structure of the problem, under which it will admit a

unique solution in " The general existence condition, which also enables

us to compute the solution recursively, as in Proposition 1, is

r,(I-b) < 1 (3.22)

where r1(-) is defined by (3.9). However, this is dependent on the statis-

tics of the weak random variables involved, and therefore is not precisely

the condition that we seek. By appropriate manipulations on (3.22) [details

of which are included in the Appendix], we are able to obtain a "deterministic"

condition [C2, given below] which insures satisfaction of (3.22). Before

presenting this condition, and the general result as Theorem 3.1 below, let

us introduce the following expressions:

Preliminary definitions for Condition C2 and Theorem 3.2

S(n) . in * 1 *n 1

a - r[D2 - D2 1F2 2 (K) D2 1  D )21(K) [F2 2D2 1  D12

* (K* )n-I * (K)n-l D(3.23a)11 4 12 +21G 4  23.23a

n-l n l i n-l n-iD21-l F -IE (K*)F I2(K)JD2- D2 Z Z (K* iG4(K) D2I
D2L nJl i- 22 2L 21 il J-1 4 21

i+j -n i+j-n-i

I
'- .--
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• 1 n * *

a(n) r)nKal )_  " rl D12 (K)nG - D21F 2 (K)n I  - D2 1(K*) F 22G1 - 031

S* n-iG D + * n-i 3 23b)

+ 1(K) 1D 4D D 4 "
n-i 1 n-i n-I

D (K* i (K -  D* D (Ki (K,)i
D- 1 21 ' 1 2 I'

i.i j.i i.i J.l
i+J -n i+j-n-1

(n) n * I n * 1 F D
3 13 1 1 2 7122 2 12]

a3  r[ G3(K~D 2 1  GIF2 2 (K) D2 I  G1 (K*) F2 1  .

+ G 4[ G (  2)n -1D ,1 4+ (K*])n-1G4G (3.23c)

, n-i n-I * n-i n-I ,
- z (K )F (K)jD + G 2 (K*)'G (K)jD

. jj- 22 21 1 .1 jul 4 21

i+jun i+j ,-n-I

() G ( n.l G 3G + GG () n-IG
4  1 G3(K) G1  G1F22(K) 1 (K*) [ 22G 1  3

+ G K*)n-IG * n-i n-I (K)JG
i. J-1 ' 2 1

i+j n (3.23d)

n-i n-i+ GI z Z (K*)JG4(K)jG 1

iji j=i
i+j -n-i

• * * 1

r r r1(A,) + r1 (D12D2 1 + D212- D21F22D2 1)

* 1* *1i
+ 2r (DG D*( _ G3] + rI(G3G I + GIG3 G GF22G)
21(D12G1 21  221 -3 r1(03 1  01G3  G1 22 1

+ 2(D2 1 - D2 1[F2 2
G
1 ol

+ 2r (D* G4 GI) + r (D*IG4 D2 1) + r (G G4 G )

[ (n) (n) (n) a(n) I  (3.24)+ 2ta I  + a + a3  + a4 ,(.4
n-i

Condition C2 r < I

U--
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Theorem 3.1 Assume conditions Cl and C2 to hold true.
o

i) Equation (3.21) admits a unique solution y1 I, which is also the

unique solution satisfying (3.19); hence, the decision problem admits a

0Ounique hierarchical equilibrium solution, given as f-' o 2 T2(Y)
r,~~-l Y3 ' 23Y'"2}

0

ii) The unique equilibrium strategy y1 of DM1 can be obtained as the

convergent limit of an iterative procedure applied to (3.19), which is

similar to the one of Proposition 3.1 (ii).

Proof. See the Appendix (Section 6). The iteration is defined explicitly

by (6.1).

Remark 3.2. The operator .&, which plays a crucial role in the solution
2 3 -1of (3.21), depends on some inverse operators, specifically on (I - KP2 2-

and its adjoint. However, under Cl each of these operators can be determined

as the convergent limit of an infinite series [cf. Remark 3.1, relation
2 3

(3.12)), and moreover, since r2 (KC2 e2 ) < i, a finite truncation of this

2 3-I
series will provide a fairly good approximation to (I - K.2 2) . Hence,

the linear bounded operator can be written in the form of infinite sums

of products of "deterministic" linear bounded operators and some conditional

expectations (to see this, simply substitute (3.12) into (3.16a)], and for

practical purposes, in the form of finite sums of products of such operators.

Therefore, in principle, the iterative procedure of Theorem 3.1 (ii) can

be carried out routinely, by performing a series of linear operations.

This discussion also readily leads to the following structural result

(given in Corollary 3.1 below) in the case of Gaussian distributions. -

Corollary 3.1. If the weak random variables zo, z , z2 and z3 are jointly

Gaussian distributed, the unique hierarchical equilibrium solution is affine

!
L3 . . . .
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in the available information; that is, there exist linear bounded operators

i Hi. - Si (i - L, 2, 3) and "deterministic" functions s e'S (i - 1, 2, 3),

such that t
Yi(zi) = £izi + s i  (i 1., 2, 3) (3.25)

Proof. In view of the discussion of Remark 3.2, this result follows from

the following two properties of Gaussian weak random variables [cf. Balakrishnan

(1976)].

(a) If z. and z2 are two Gaussian weak random variables which are
i 3.

H -valued and ai -measurable, and A1 and A2 are two "deterministic" linear

bounded operators with the same range space, mapping a -measurable H -valued

variables into c; -measurable variables, then the sum Aizi + A2 2 is also

a Gaussian weak random variable.

(b) If zi and z. are two Gaussian weak random variables, with the

latter being H.-valued, we have E[zi[z.] = Ai zi + ai., for some linear

bounded operator Aij and for some aij 6 Hj.

Repeated utilization of these two properties on the right-hand side

of (3.21), for a fixed 7
1(zl) taken as an affine function of zl, leads to

an affine function of z1 on the left-hand side of (3.21). Since the iteration

converges for any starting choice of j1, the statement of the Corollary

follows as a special case of Theorem 3.1.

i Ii

I :
I
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4. A SPECIAL CASE, AND A NUMERICAL EXAMPLE

Condition C2, which involves some straightforward but rather cumbersome

operations in terms of linear operators, simplifies considerably for an

important special class of decision problems. Specifically, consider the

case when each decision maker interacts (through his cost function) only

with the closest decision maker(s) in the hierarchy. In such a case, J

will not depend on y3, and 3 will not depend on yl, but will in general

depend on both V, and T3" Therefore, we now consider the decision problem

described by the cost functionals (2.1) - (2.2), but with the terms

corresponding to the operators

1 1 1 3 3 3
D13' F33, F23 3 C3, D31 ' Fli, E12, and CI

deleted. Furthermore, we assume that there is no coupling between the

decision variables of DMI and DM3, in the cost function of DM2. Then,

the expression corresponding to (3.24) becomes

r r 1(D12D21 + D21D12 - D21F22D21) + 2r1 (D12G1 - D21F22G1)

*1 *l n *n *+ rI(GiF22G1 ) + Z r1[D21(F22 K + (K ) (F 22D21 " D1 2 )
I n= l

n-1 n-I

+ Z (K) F22 ( ] , (4.1)
i-I j-2

i+j -n

wlich can be obtained by basically following the steps (of the Appendix)

that led to (3.24). Hence, what replaces C2 is

C2' r' <1 ,

under which (and also under Cl) the statement of Theorem 3.1 is valid for

this special class of decision problems.
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As an illustration, consider the case when all spaces are one-

dimensional Euclidean, and various parameters assume the values

D D D D
12 21 23 32

F 1 F2 F2  73 1
22 11 33 '22 8

D F .C D F F3 3 3 2 0
13 33  2 3 - C3  D31  11  12 1 13

Condition C1 takes the form

r2 (K) - K - 15/128 < 1

and therefore it is satisfied. For C2', on the other hand, we have

1.5 3. _L _5 115r 128 64 1 ( 18) ( t-2 - In-71
n2

M 0.1171875 + 0.0054931 + 0.0010728 + 0.0001005 +

+ 0.0000088 + 0.0000006 + .

- 0.1238633 (to the nearest 7 figures)

< 4

which indicates that it is also satisfied, and by a comfortably wide
~mrgin.

I11i

I

I
-- ,. .



1 21

5 5. EXTENSIONS TOMORE GENERAL TYPES OF DECISION PROBLEMS

The general method of derivation introduced in this paper has been

discussed within the context of 3-person stochastic decision problems with

I linear hierarchy, but it is equally applicable to similarly structured

I stochastic decision problems with more than 3 decision makers and again

with linear hierarchy. A repeated application of the techniques utilized at

step 3 in Section 3 (and also in the Appendix), by starting at the bottom

of the hierarchy and moving upwards, would lead to a set of conditions

(one for each level of hierarchy) which involves multiples of infinite

convergent series, under which the hierarchical equilibrium solution would

uniquely exist. Furthermore, a natural counterpart of Corollary 3.1 would

also hold for this more general problem, in the sense that, under jointly

Gaussian statistics, all decision makers' optimal strategies will be affine

in their static observations.

Yet another possible extension is to multi-person stochastic decision

problems wherein more than one decision maker operates at each level of

[ hierarchy. Then, the single-criterion stochastic optimization adopted

in this paper at every level of hierarchy will have to be replaced by "I

multi-criteria stochastic optimization. In particular, if the mode of

1. decision making is noncooperative, and the decision makers (at the same

level of hierarchy) adopt the Nash solution concept, a blend of the

I techniques of this paper and of Balar (1978) can be employed to obtain ther. hierarchical equilibrium solution and the conditions under which it exists

and is unique. If, however, the decision makers at the same level of hierarchy

act as members of a team (with a single objective functional), then the

theory of Radner (1962) will have to be used as a supplementary technique

*1'
L . . . .. . . . .
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in the derivati~on. In ei~ther case, when the underlying statistics are

Gaussi.an, the optimal, plilcy for each deci~sion ,,aker llI be in the form (3.25).

I

4

1/

L!

'I i,i !  I

jr__ _ _ _ _ _ _ _ _ _ _ _ _ _
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6. APPENDIX

In this appendix, we provide a proof for Theorem 3.1.

We have already shown in the discussion that precedes the statement

of the theorem, that the first condition of (3.19) is satisfied if and only

if (3.21) admits a solution, and that this solution exists and is unique• I t

if (3.22) is satisfied.

Taking this as our starting point, we first substitute (3.12) in

(3.16a) to obtain

13 1 13 2 3n 2 23
I - .6 A161 i + (D12P2 + G3 a2 P2 )]1 + E (KC2 2 ) ](D2 1 P1 + Gia1 1)

1 2* 3 2 * G 32 n 2 3 _ I
+ e2 (e.1D2 1 + eIP1F I [I + 2 22 K  ] (G4&2p2 F 22 )

n=1

[ 2 3n 2 23 * 2 *23
[ i + (K42G2) I(D21PI + GlPI& I) + D12 C1 + G3a191 ,

n~l

where we have utilized the following property of adjoints of conditional

expectations

23* 3 *2 32(22) r2 2 2 2 2"72

Now, multiplying out several terms, and collecting some common terms together,

we arrive at

I Aa1 93 + DD +D* D *F1 D 1 2
" 15 -Al [D1 2D2 1 + D2 1 D1 2 -2122D21]PY-1

I ,(F1G el 2 3 1 1 3 2

[D12G, - D21(F22G - G3)] 1I161 + [G3 D2 1 + G D1 2 - GlF 22D2 1]I1P 1F 1  a

+ [DG +G - G P1 G-i 1362 &3 +* D *1 132 a3
* *1 323 * 1232

G3G + G1 G3  G1P22G1 1 1 11 + 1 1 1

1 2 3 2* * 1  3 2 3 2
+ D2 G4G e(P- 1 1) + GIG D 2 1  (I) + G G Gle (ei-

(n) 1 2 3-n 2  (a) 1 2 3 n+ (n) I 32n+I
+ Z [A1 e( 9 1 2j 6lro1l) + A3 9 C(9 91
nalI II1 13 111
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(n) 1 3 2 3 n+1+ A4 llel 1

where A denotes the linear bounded operator inside the brackets on theV '1

right-hand side of (3.23a), and "2 , A3, A4 are defined Likewise through

(3.23b) - (3.23d).

For two linear bounded operators 7 and 62 mapping r' into ri, we

have [cf. Kantorovich and Akhilov (1977)]

r1 ( ) + 2  rl(' l) + r2(72)

and therefore the spectral radius of I - O'can be bounded from above by

rll1 3 1 2

r -1 ( r1(A I&aC) + r1 [(D1 2 D2 1 + D*D* 2 - DFD21 l1 • 1 2 1 2266

1 r1(D 12G 1 - 2(2 - 13)) 2

" * - 1 -* 132
+ r 1(G1DI2  (G1F22 - G3)D21)61101 I ]

•** *1 1323
+ r [ (G G + G 1G 3  - G 1 F21 G ) e , l]

1 31 1 3 1 22 1111
1 12 3 2 * 1 2 3 2 ..

"r[D21G4D21&IC1 16] + rI[D21G4G161(9I 1)

* * 322 * 13 232
+ r [G1G4D21L1 (C191 ) ] + rI[GIG4G1 g t1 (el&1) ]

( 2 n2(n)123n2(n), 23n+1+ (r[ 1L 1 (,1 1 1) I,] + r 1[(A 1e,(eleo1)n1 l
n=I

+ ,I(n) a (e3 2 )n+lI (n) &1 3 2 3 )n+l+ t 3  1 t1 1 4 + 1lA l(t 1 )  ]}1

Now, utilizing the line of argument that led to inequality (1) in the proof

j of Proposition 3.1, we may readily factor out the projection operators

corresponding to conditional expectations, and thus obtain the final bound

r4II
,1-X 2 ,r.

,



25

where r is given by (3.24), and we have used the property that

r - rl(27) for any linear bounded operator 67: rI  r l' Then, condition

C2 guarantees, in view of our discussion in the proof of Proposition 3.1,

existence of a unique solution to (3.21), which can be obtained as the

convergent limit of the series generated by the iterative procedure

(n l) (n 1 1)
Yn - (I&.)y + k + (D & + G3c2e2)k3
1 *1 1 1 2 2  3223(6.1)

1 2- 32. 23 -1 1 2 3

+ & (9 D1 + ae G )(I - K.2e2) (k (F22  2)k

starting at any initial choice jO) C 7V

To complete the proof of the Theorem, we now show that the second

Gateaux variation (3.18) is positive definite under C2.

Firstly, since r < 1, and &9 is self-adjoint,

JEC<h (Z ),(I - -9)'h (z )>,) I < E[,di ](Zl) hl(Zl) l

unless hI is the zero element in "-. Using this in (3.18) we have

52L I > E Lrhl (Z 1), h1(Z 1)> 1 -d 1 (Z 1, h 1(zl)l 0 ,II

2provided that h is not the zero element. Hence, 82L is positive definite,

which completes the proof of the theorem.

4,

*11
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I THE GAUSSIAN TEST CHANNEL WITH AN INTELLIGENT JAMM~ER

Department of Electrical Engineeringl and Coordinated Science Laboratory

University of Illinois
1101 W. Springfield Av.1Urban&, IL 61801

ABSTRACT

Consider the problem of transmitting a sequence of identically dis-

tributed independent Gaussian random variables through a Gaussian memoriless

channel with a given input power constraint, in the presence of an intelli-

gent jammer. The jammer taps the channel and feeds back a signal, at a given

energy level, for the purpose of jamming the transmitting sequence. Under a

square-difference distortion measure which is sought to be maximized by the

jamer and minimized by the transmitter and the receiver, this paper obtains

the complete set of optimal (saddle-point) policies. The solution is

essentially unique, and it is structurally different in three different regions

in the parameter space, which are determined by the signal-to-noise ratios

and relative magnitudes of the noise variances. The best (maximin) policy of

the jainr is either to choose a linear function of the measurement he

I receives through channel-tapping, or to choose, in addition (and additively),

an independent Gaussian noise sequence, depending on the region where the

parameters lie. The optimal (minimax) policy of the cransmitter is to

amplify the input sequence to the given power level by a linear transformation,

and chat of the receiver is to use a Bayes estimator.

*Manuscript orepared June 19, 1981.

I '3



2

1. INTRODUCTION AND PROBLEM DESCRIPTION

The communication system depicted in Fig. 1 represents an extended P
version of the so-called Gaussian test channel (cf. [1]), which also includes

an intelligent jammer who has access to a (possibly) noise-corrupted version

of the signal to be transmitted through a Gaussian channel. More specific-

ally, a Gaussian random variable t of zero mean and unit variance [denoted

u - N(O,1)] is to be transmitted through a Gaussian channel with input energy
2

constraint c , and additive noise (w - w1 + w2) with total noise variance

+ " Let the transmitter strategy be denoted y(.), which is an
1 12'

element of the space 7t of real-valued Borel measurable functions satisfying

the power constraint Ef[y(u)] } c . The jamer has access to a noise-

corrupted version of

X y(u) + w1  , (l)

v I

TRANSITTERRECEIVER

~N(O, t) w . N(o, ].) w (o,-2 -

Fig. 1. The Gaussian test channel with an intelligent jazner

-his single variable can be replaced with a sequence of independent
IdenticaLly distributed Gaussian random variables, without altering the
results of this paper.
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denoted

y = x + v , (2)

where v - N(O,a), all random variables (u, w,, w2 andv) are statistically

independent, and i U 0, w 0 and a a 0. Based on the observed value of

y, the ja-mmer feeds back a second-order random variable v = 3(y) to the

channel, so that the input to the receiver is now

z - X + V + W2  (3)

The random variable ) is correlated with y, but it is not necessarily

determined through a deterministic transformation on y [i.e. !(.) is in

general a random mapping]; furthermore it satisfies the energy constraint
7

E['] £ k. Let us denote the class of all associated probability measures

6 for the jammer by M . Finally, the receiver applies a Borel-measurable

transformation 8() on its input z, so as to produce an estimate 2 of u,

by minimizing the square-difference distortion measure

2
R(y, 5, 0) - J' EC[5(z) - ul vi d (') (4)

Denote the class of all Borel-measurable mappings 8(), to be used as an

estimator for u, by 7_. Then, the transmitter and the receiver seek to

minimize R by a proper choice of y I I" and 56 r respectively, and the

jammer seeks to maximize the same quantity by his choice of M 6 .. Since

there is a complete conflict of interests in this communication problem,

an "optimal" transmitter-receiver-jamnmer policy would be the s ent

*r' ~~~) satisfying the set of inequalities

R(t,5,) 0 R(y, 5 se R(y, 5, 6. y 6 - 5 - r 4 x *.. (5)

II
I I I I I . . .. .. .. .. .. ..
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.he maximin policy - is also known as a least-favorable probability measure

for the jammer [3].

in this paper, we verify existence and "essential" uniqueness of the

saddle-point solution, and determine the corresponding policies explicitly

and in analytic form. The main result is presented in the next section and,

in particular, in Theorem I. The structure of the solution is different in

three different regions of the parameter space; in one of these regions the

solution is trivial, and in the other two regions (which are covered by

Theorem 1) the saddle-point policy for the transmitter is to amplify the

input signal to the maximum power level through a linear transformation.

The saddle-point policy for the jammer is to choose a Gaussian random variable

(or a sequence of independent identically distributed Gaussian random vari-

ables, if the input is also a sequence) which is correlated with the input

signal; the nature of this correlation turns out to be different in the two

regions of interest. For the receiver, the optimal policy is to use a Bayes

estimator. The proof of this result, which is given in section 1I, is rather

involved, and at places it requires some rather intricate arguments, but it

is essentially a proof of the "verification" type.

Section III of the paper includes some discussion on special cases

and on some related results in the literature. The Appendix provides proofs

of two Lemnas which are utilized in the derivation in section II.

This term will be made clear in the next section.
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II. DERIVATION OF THE SADDLE-POINT SOLUTION

In this section, we obtain the saddle-point solution of the problem

formulated in Section I, for all values of the parameters, c a 0, k a 0,

a 0, 2 a 0, a z 0. There exists, however, a region in this parameter

space, in which the problem is trivial, in the sense that the jamer has the

power to do the best he can possibly do, by cancelling out the signal com-

ponent y(x) in the received signal z. Specifically, consider the region

RI 2
R1. k 2: c2 + 9I +" a

where the deterministic feedback policy

(y) = -y (6)

is feasible for the jammer, which leads to

z w 2 - v

and thereby to

6(z) , (7)

resulting in a maximum distortion level of

R(y, 8 , ) - I

Note that the choice of any specific coding strategy is irrelevant here,

since they all lead to the same maximnum distortion level, under (6) and (7).

Hence, for this special case, the pair (6 , a ) as given by (6) - (7) con-

stitutes a (trivial) saddle-point solution (and the only one) for any

choice of y t*

4
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( Leaving this "uninteresting" case aside, we henceforth restrict our

analysis to the parameter region

R2. k2 < c2 + + a

which we further decompose into two subregions characterized by the addi-

tional constraints

2

RL3. k c2  2 +  2 >

2(c + kI-) 0
R4. k + < 0

(c2 + +  2

The complete solution to the problem is now provided in Theorem I below,

after introducing some notation and terminology.

Preliminary notation for Theorem 1

Introduce the scalar parameters X and t by

A--k/(c 2 + + a) (8 a)

1- + 2 2 2 2 2 Cb
t I - 1(k2  c + Z + a)/[k Cc + (8b)

and let I denote a Gaussian random variable with mean zero and variance

2t , i.e.,

n NCO, tk2 ) (9)

whenever t > 0.
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Theorem 1. In region _, the comunication problem admits two saddle-point

solutions (' , , u ) and(-y , -d , w ), where

*v
(i) y (u) = cu, (10)

(ii) u is the Gaussian probability measure associated with the random

variable

xy in R3
• -(y) a (11)yx(1-tN y + n , in R()

where t s [0,1] in R4, and n n, N(0, tk 2).

(ili) 5 is the Bayes estimator for u under the least favorable

distribution u , computed as

* ( {c(l+X)/[ (I+X) 2(c2+) + x a + 21 z , R3
8(Z)-2 (12)

2 2
c/(c -lz , in R4

Proof. The proof proceeds in two steps. We first establish validity of

the right-hand side (RHS) inequality of (5) when ; is determined by (11),

and then prove the left-hand side (LHS) inequality of (5) when y and 6

are given by (10) and (12), respectively. Finally we discuss the

"essential uniqueness" property of the saddle-point solution.

(a) THE RES DMEQUALITY

Region R2 (, R3: Suppose that i is determined by (11) and the

parameter values lie in region R2 " R3. Then, the RHS inequality of (5)

dictates a combined coding-decoding problem, with the channel output

[equivalently, receiver input] being (from (3) ]

z ( U) + (1 + .+v + w2

(1 Xyu 1 Xv
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where 0 < (I + ') < 1 from (8a), since we are in region R2. Let

7(u) - (1 + \)Y(u). Then, the problem we face is the Gaussian test channel

(I + X)w 1 + Xv + V2

with square-difference distortion, Gaussian channel noise [ with mean zero

and variance (I + N)2KI + ka + 2 , and channel-input energy constraint

E([ (u)I 2 (l+ A) 2c

it is well inown that this problem admits a linear solution [cf. [ 1]],

which is that the best coding scheme is to amplify the input u to the maximum

available power level, i.e.

(u) - c(l + X)u , c > 0

and to choose the quadratic distortion minimizer 5 as the Bayes estimator

5 (z) - E[uz] - (1 + %)c/[ (1 + X)( + N 2 +
J

which is precisely (12) in the region R2 rl R3. Moreover, since I + X > 0,

: '1 * I
y(u) - (u) cu

which is the same as (10). Hence, we have establishe the validity of the

RHS of (3), for the solution presented in Theorem 1, in the region R2 r R3.

Note that, yet another possible coding policy for the transmitter would be

* ( u) - -cu , c •0 ,:

Wi 4
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i.e. amplification by a negative factor, but since this leads to the same

minimum distortion level, we adopt the convention of choosing only the

positive amplification factor and call such a solution "essentially unique".

Region R2 ( R4: Now suppose that the parameter values lie in the

region R2 " R4. A similar reasoning as above again leads to a Gaussian

test channel

w- (I+ X(I - 01 wI + X(l - 0)% + I + w2

with the channel-input energy constraint being

- 2 -j1+XI )1
E {[y(u)] } _ ctl.4 - t)1

where Y(u) [C1 + X(l - t) ]y(u). The Gaussian channel noise has its mean

zero and variance

va ()- 2r 2 2
1ar (w) + X(l - t)]2 + X (I - t)O + tk +

Substituting for X and t from (8a) and (8b), respectively, we can evaluate

the latter expression to be
22

2 2 2 2(k2 + )c2
var(w) - 2 (k + 2 ) 2 c 2

c- 2 c2  ) 2  (c +-.lI (c2 +

Likewise, the input power constraint can be written as

war (y(u)) £ 2[2 2 - ,2 2 + 2
va Yu)C. - + I /(c a

and furthermore

[ - r - --" - ' li
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m + var (w) , + 1 + t2 k

Again using the well-known result for Gaussian test channels, we obtain the

essentially unique solution- to be

-* t1/2y (u) - c([. + ),.(1 -t) u

K *Efzl inM c
5 (z) - E[u zj - a z - z - z

var z in + var(+) 2+

with the latter expression verifying (12) in region R4. Furthermore, since

I + .(l - t)1/2 is nonsingular (in fact, it lies in (0,1] under the assertion

that t - [0,1]),

* -* t)1/2]y (u) - y(u)/[l + G.(l -

W Cu

which verifies (10), also in the region R4. This then completes the proof

of parts (i) and (iii) of the Theorem, under the assertions that a least

favorable distribution ' for v exists, as given by (11), and t a (0,11 in

R4. The former assertion is verified next, in the sequel, and the latter

one is verified in L-na 2 in the Appendix.

(b) T1M LHS INEQUALITY

Regio R2 n R3: Suppose now that y and 8 are given by (10) and (12),

respectively, and the parameter values lie in R2 (I R3. Then, the LHS

inequality of (5) dictates the following optimization problem for the jamer:

r2max E(Uz - ul I} d)(,v) (13)

where

, I 1
L- -



J ~ ~~~~ 
r 

III

l..

Z Cu + W + ',d + W1

2. 2
" C(l + X)/[(l + %) (C + r X) + • (14)

Note that (13) can also be written as

,-.fE,.r([, - , 2 ,,y] d,.(v) - -x - 2,zu!,,y),,(vly)]+ 1..

where
y - cu + w + v.

Furthermore, since w2 is Independent of u, w1 and v, u s Independent of

wP and they both have zero mean, the latter expression can be simplified

to

fEcr v + a 2 (cu w) (max E f t ) + a2(Cu2 + w + w:) -2cu

- "u1Vy} d,(vly)l + 1

mx Ey .f [,.72 j 2 vi(y)] djj(v y)} +- (O -1 + +() 2

( where

-r 0E(ulyl - 2 cE[uijy1 a ~2 Erw 1 j
n c c(2 + ) 2 2 + )]~

, - c)c/( + a.)] Z[+21 /(c . )y

2 (c + =i )/(C 2  + +] a)]y a py (15)

Hence, we may confine attention to the maximization problemI
[2 d.

J m wax E i - 2,,r,(y)] d ,(vy) I (16a)

,6 'M
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which is in fact invariant under the transformation c - -c, and is therefore

also the maximization problem (for the jammer) corresponding to the pair

(-y , -Y ). Now, by utilizing the Cauchy-Schwartz Inequality [cf. [2],

(16a) can be bounded from above by

:9 max C 522 do () 2 [ v d4 0) E TET()I 2 ~
S

and since - E M., this can further be bounded from above by

1 ! 2C2 + 2kjE yT(y)>I1 11/2 (16b)

But, provided that

E y I ,(y> 12] , o

this upper bound is attained uniquely if we choose, in (16a), '(vy) to be

the one-point conditional probability measure corresponding to the strategy
* ]] Y 11/2]

- (y) = -(k/[E £"(y)I2  , (y) , (17)

which may be verified by direct substitution of (17) into (16a) and by

comparing the resulting expression with the upper bound (16b). Now, what

remains to be shown is that (17) is equivalent to (11) in region R2 - R3,

and that E oO-T(y)2 1 >0. Lam I in the Appendix proves that the coefficient

p of y in (15) is in fact positive in the region R2 7 R3, and hence the

latter requirement is readily fulfilled. Furthermore, since

-k ______-kp_ y -

[E 1Y0.l (Y)12]]1/2 .-rla - y 1/2yIp( var (y) i1 i2

from (8a) and the property that p > 0, the former requirement is also

satisfied. This then completes the verification of the LHS inequality of

-
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15), and thereby verification of the theorem, for the region R2 - L3.

legion R2 - R4: We now finally verify the LHS inequality of (5) when

the parameters belong to the region R2 R4. What replaces the maximization

problem (13) in this case is

which can be rewritten as (through some straightforward manipulations)

Yt J-v 2VCU- I'ldej)]+'+
(C' + OM) i Z2 2

(18)

which is an expression that is invariant under the transformation c - -c.

Now, note that

c IEC[ u - w!y] • c - y = 0
C I c c 2+ 91 + a c 2+ +i a

and therefore the maximizing solution is any probability measure., with

the property

J 2 ~v

Let us now investigate whether determined by (].1.),is one such measure

in region R2 R4. Towards this end, it suffices to show that

var[X(l - t) y + k 2

and

t I (0,L]
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The latter Is shown in Lema 2, in the Appendix. For the former, simply

note that, because - - N(O, tk-) and independent,

1/2 2
var [Xl - t) y + 1] M ,(1 - t) var (y) + var (7)

a X2 (1 -) Wc 2 1 + cr) + tk"2

M k2 (I - t) + tk 2  k

thus establishing the desired result. As a parenthetical remark, we. should

mention that the estimator (12) in region R2 R4 may also be viewed as an

a,-alizer decision rule (see [311 since the conditional (on ) risk function

corresponding to it is a constant on 3M., the boundary of M . [Note that

in this interpretation, elements of 3M are the decision variables of the

ja-er, and we have to introduce probability measures on 3M..j Hence, the

minimax (saddle-point) property of 4 in R2 R4 can also be verified [with

y fixed, as given] by resorting to a well-known property of equalizer decision

rules when they are also Bayes with respect to a least favorable probability

measure [which in this case is the one-point distribution on 3M, which

selects the Gaussian random variable X(l - t) /2y + 71; see, (41, [51. But,

the proof given here seems to be more suited to the problem under considera-

tion since (I) it does not require additional probability measures to be

defined on .4,, and (ii) It also establishes the optimality of y

.o recapitulate, we have verified existence of a saddle-point solution

(10) - (12) for the comunication problem under consideration, in the

parameter region R2. The analysis also readily leads to the conclusion

that in addition to (10) - ( 12), the triple (-y , -5 , * ) also provides a

saddle-point solution, naturally leading to the same saddle-point value
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.or R. The question now arises as to whether other saddle-point equilibria

exist. In region R2 - R3, there is clearly no other saddle point, since

the maximization problem (16a) [which corresponds to both (y , ) and

(-y , -5 )] admits a unique solution, thereby eliminating the possibility

of multiple saddle-point policies for the jammer.[Otherwise, interchange-

ability property of saddle points (cf. (6]) would lead to a contradiction].

In the remaining part of R2, i.e. R2 r R4, however, the issue is more subtle.

Since the maximization problem (18) is invariant under different choices

of probability measures from M., the LHS inequality of (5) clearly does

not admit a unique solution - in fact, all second-order probability measures
k2

with first moment zero and second moment equal to k constitute a solution.

But, for any one of these to constitute a saddle-point policy for the jammer,

it has to be in equilibrium with (y , 8 ), because of the interchangeability

property of saddle-point equilibria. This further implies that, with y

fixed as given, 5 has to be Bayes with respect to that least-favorable

distribution. Since 6 is a linear estimator and all random variables are

Gaussian, this requires the chosen element of 'M. to be a Gaussian probability

measure, and some further analysis reveals that (11) is in fact the only

such element.

Some of the expressions derived in the proof of Theorem I now lead to

the following Corollary which gives the saddle-poLnt values in different

regions.

Corollary I. The saddle-point value (R) of R(y, 6, .) in different

regions is given as follows:

R: R I
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2 r2

R2 R4: R - --- (k + + 1-- )
(c + ( -)" c

where 2 and p are defined by (14) and (15), respectively. -
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III. DISCUSSION OF SOME SPECIAL CASES, AND CONCLUDING REMARKS

The general solution to the communication problem of Fig. I has the

property that it is structurally different in the two regions of interest,

with the dividing "line" between these two regions being a hyperplane

determined by the allowable power levels for the transmitter and jammer, and

the noise intensities in the main channel and the jammer's wiretap link. In

particular, if the transmitter's allowable power level (c 2 ) is larger than

that of the Jammer k), we stay in region R2, and if this difference

is sufficiently large the jammer's maximin policy is an additive mixture of

a linear transformation on his measurement and an independent Gaussian random

variable, whereas if the difference is small it is more likely (depending

on the values of other parameters) that his maximin policy will be only a

linear transformation on his measurement.

If the wiretapping channel noise variance (z) is sufficiently large,

the parameter region is R2 U R3, and hence the optimum strategy for the jammer

is a linear policy - which may seem, at first sight, to be somewhat counter-

intuitive, since the information contained in y (concerning u) is quite

unreliable. However, some scrutiny reveals that the jammer, in fact, uses

this noisy measurement as a source of noise in order to jam the transmission

channel. This makes particular sense in the limiting case a - =, when the

optimal jamming policy is to choose u as a Gaussian distribution with mean

zero and variance k2, which should be independent of the transmitter output.

This conclusion for the limiting case corroborates a result obtained in (71

in a somewhat different context. More specifically, this recent reference

I addresses the problem of obtaining optimal policies in the presence of

jamming, when Jammer's policies (considered as random variables) are forced
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to be independent of the transmitter outputs, and the loss function (to be

J minimaximized) is taken as the mutual information between the transmitter

output and the receiver input. In this framework, McEliece and Stark solve

in [7 ), as an application of their general approach, the communication

problem depicted in Fig. 1, but without the tapping channel, and arrive at

the conclusion that the least-favorable distribution for v is a Gaussian

distribution. Hence, the two seemingly different problems (with different

loss functions -- square-difference distortion and mutual information)

admit the same saddle-point solution in the presence of an independent

jammer strategy. [This equivalence can in fact be verified directly by making

use of some inequalities of Shannon [8] on mutual information.] But, this

equivalence does not directly extend to the communication system considered

in this paper, and derivation of the saddle-point solution of the communi-

cation system of Fig. 1 when the loss function is taken as the mutual infor-

mation between u and z remains today as a challenging problem.

There exist quite a few results in the literature on worst case designs,

* Iwherein the Gaussian distribution has been proven to be the least-favorable
distribution (such as the cases of entropy maximization [9], Fisher-information

minimization [ 101, or minimax estimation problems [ 11], [12]), and the present

paper adds to this list a new class of problems not considered heretofore.

UJe should note, however, that if the input sequence in Fig. I is vector-

valued and/or the number of channels is more than one, the saddle-point

solution will no longer be linear-Gaussian (i.e., the solution of this paper

does not carry over to the vector case), since the counterpart of the Gaussian

test channel does not admit a simple linear coding scheme in the vector case

(131.
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IV. APPENDIX

In this appendix, we provide proofs for the two Le-as which were used

in the proof of Theorem I in section II.

Lemma 1.

2 2
p - -a + OL (c + aa)/(c + + a)] > 0, in R2 R3,

whexe a is defined by (14).

Proof. Through straightforward substitution from (14) and (8a), and some

manipulations,

2
cc

_ X 2 a c
2 + ~ l 1JC +j + + c

2 222

(1 " ( + (c 2 + + X + 2

S + +2 _ i+ _+

2 [X 2(c 2 + i + c)+ XC 2 + :.) + 2
(I + Mc 2 + i +  11)1

[k- +

(i + M)c 2 + Zi +  ) (c 2 +  I +  )  + ]

> 0

since I + A > 0 in R2, and the last multiplicative term is positive in R3.

Lemma 2.

t C[0,11 in R2 ' R4 , where t is defined by (8b).

Proof. Starting with the inequality that determines R4,

I i
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2 (c 2 + kk 2 2

(c2 + +

9 2(k"2 + 2)(c 2 + I + a)  < ( C2 +  I ) k ,

and squaring both sides

(k2 + c2) (c2 + +  ) _< (c2 + 2k2

I-

we arrive at

(k2 + 2) 2 (c 2 + I + a)

(c + k

Since this latter expression is equal co 1 - t [from (8b)], and it is also

positive, the desired property follows.

I,

I
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4 -Jnere - is ".no :uanrum e fi v * -- 'e sl- nact lefined for rel a,b as a,b - 5t')b(-dY.

S' :no +-nervy .n A -nocon, rz, n s ?lank' en -, s - '- 'a:a Z Z,a a 01 where Z is
:-onsrant in .is --n inmocularea 3pcicsl carrier he

trecuencv. e issums :hat oi :- is :ete r~in 7stc 70,t) and SNR of (1.4) mav ae written as
inO th~us so Ls :efinea 'i -.~ he rateinn +hu o'.., " ': :£1n L (ii ."he.-ae 4 3NR-E(i)cth;s,n )'E(d') jnere

Accounts :or :ne :onscanc rae at which ;poncane-

Jus 3ut !x.-aneous electrons are generated 4uring :(h;sn) *'n,s'/h.(s-n)h, (l.5
s a :zonsea unce L,.- Ls iffectea Dy a for any n - t the space ;if bounded, linear, posi-

isiturbance zalleu :ht aark .urrent wnih ia :ive 3peracors mapping Z :o itself. For the con-
usually geligible proviaed pk:) Li .not too small. tinuous-rime case chat 40 consider in this paper,

n is the aucocorrelation f .nction of "he zero-the reer f i seen oro. 1) ,a e o ttn of mean Gaussian thermal noise process and it is
.he receiver filter is** Fig. 1) y. can e writtan generally of the form Kc(,,:) -k14 ( -) . In thisas

; " t - h . 1.3 general case s+ n of (1.5) mst te interpreted as
" iI ' n' h S' )a( -) * n(-,Z). If in particular ni( a) is

of the form n(,'r)(- -i) (i.e. the noise process Is
1 ,pp. 108-179

1 
the zharacteristic funct±3n, zimovise uncorrelated) then s-n of (1.5) is just

:he zussalancs, and :tus the nmuents 3f y, were s(-, ) n(-); the white noise case that we treated

evaluateo. la particular the SjL4faloco-noise ratio first, above, is a special case of chis for

at -he output of the receiver is 4iven y n(- niw for all -.

Z L ,, -0' - The matched filter problem for fixed s and n
U . is given by (compare with f3j)

mr V(h;s,n)

A ". dr :he solution to this problem for fixed A is given

-~ :-. roorty I (Matched Filter)-
" e -1 3max :(h;s,a) k (s -. n ; s ,n) /s, (s - n) 3

(I.-) h - (17
n:re ;:0 I -n: '-o-slerd spectral (hnisy of :.he -wher *'ssn 

1
.

".npl not process "anicn is assumeo :o e wnic sl'ere (s-n) -  
is the inverse mapping in t corre-

an lnts -(g) nd I ) of -he sponding to s -n (recall s a .I and n is a positi-e

;ain 3f tno .4D wore evaluated 1. 1,1; for ur operator).
proolem tneso are given constants. ?roof. Followe scraightforwardly from the

The assumption in fl..) about he thermal noise Schwarz inequality.

aeLn. a "4hite aussian process Is not restrictive We are going to need the folloving two
since chis is a realiscic enough model for our properties of the functional
system; notice :hat in a pnoton cnannel the main ?roperty 2: For fixed h Z %, :(h;s,n) is convex in
source 3f 'noise" Is the shot n ise involved in :he (sn) - ,, Z.
nunrin; process M.. T'herefore, in what follows we rof. The proof is similar co that of Property Z

-ill be primarily Interested in -he "signal' of (31.
process APropert 3: The functional

.lax c(h;s,n) =(s,(Cen)ls is :onvex in (s,n)Z..he Aa .h,.d Fiter max.

s proved in r12, pp. 168-1721, is certain on - .

parsmecers tend to prescribed l±ics, che process on e .

7yt, (defined in (1.3)) tends to a Gaussian process Proof. Since (s,(sn) s> - 3((s,-n) Ls;s,n)
on Ot) with men the unaquared nusrecor of (1.4) Property 3 follows from Property 2.
and variance the denominacor of ( '.). .herefore I
tne probability of error reduces to )(SIR) (where Remark 1. In coperin; s,(sn, s of (1.) with
3 Ls the tail of ne standard Jaussian tiscribu- / ,n

1
I) of [31 notice that the .Iiscontinuous

:Ln an M ecomes a useful performance measure. observations case is equivalent :0 che continuous
Thus, maximizing the MJR over all possible filter observations case with autocorroelacia function
Impulse responses is desirable. The resultin$ n( ,i s(-)6 (r -c) (i.e. the useful signal also
optimal filcer is the varchad filter. plays the role of addit'.ve uncorrelated noise).

.it s stand for 'a, ! orIt ,t- ,and .emirk 2. Let us assume that .. 0 (no "dark"
s

current Is present) and that no thermal noise
disturbs the system of Fig. 1. Then via (1..),

1..
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,.3 reduces to I: follows easily from Eqs. (l.7), (1.9) and (1.11)
:lh;s, * h, " / h *hat (s., )1;d s least f.;av:h le for S(h(hJ )'s ,

and l.7 to and z (h, , snL) where n_ s,- I Is a

jax :kh;s,)1 3:1.s, Ji
l

,le ioinc solution :o ('..). we also .1h ve

oM a Suppose .1 and ^ are convex. (s, ,"Z, 45 e"
:'hac is the optimal filter is :hat one wLtn impulse -1 A
response identically i; _n :cner "Lords -he .atcned and nT - t) s.. Furthermore suppose tac
fil:ar ;s s pure Lnegraror Ln ch.a case. -r is A ure iacogricr Inh zace. 7 ii is right continuous in 2 a xt - 0

l.... obus, :latclned L! far :ncertain

Sivial 3trucure for each s,n),.m' where .- (I -a)%-2 nand

Equation kl.7) incicites that for -nown sn I *3)S, -2s hen (3 15 i s t

the matched filter Is given h -I Supp favorable for d and - Lff (1.10) holds for all

now, that s an n are only cniown :o e Ambers of
-n . Proof. The proof is similar to the proof of Lma

-ne la0sss 5 1 and follows seep by seep the proof t Lsea- 2
find a filter whose performance loes not deterior-

ace drascizally over. J e. ohen as in 31 we say and the Appendix of [3].

:hat n ., is robust over W I if Loaes 1 and 2 i ply that, within a mild con-
tinuicy requirement the triple (h. ;%st,mL.) with

n)f , n) :- d In, h (1-8) . , gives the

i sired solution to our problem iff (1.LO) is4-tt nt(, , . a, Z' Is a saddld fa. . satis fied.

Ssolution to the game if (1.3) if In the sequel we find the robust matched

f :,. :s,n S:,h, ;, -n z -h;sn. ). filter 'a for classes W of the signal described

(..1) by L., uncertainty or uncertainty described by

:oncernng sucn a iolution .s .ave the following :hoquec capacities. Although we could consider
resul.: uncertainty in the noise (or in the signal and the

Suppose. and are convex, noise siultaneously), we restrict attention to
signal uncertainty only, since -he thermal noise

S. , - , and a. n (5, - 1, s'3, . :hen can be very realistically modeled as white
as.,,a, is a saddle point f;or eq. (I.S, iff t he ;aussian for most applications. Therefore it is

- - - not so restrictive to assume chat we deal .,ich
zllowing inequality .iolds for all (s,n) i ,': nonnegacive aucocorrelacion functions. Also

recall that the signal s which represents a rate
.a. - 3,, u 'a,.,(s-n)h (1.10 :unction Is always nonnegative. Under these
- -- - "assumptions the continuity requirement of Lema 2

?roof. 7tr 2 0,11 and (s,n) - W , define is satisfied.
" -- 2L- S,. * fl-3)n. *n and C .1 L, uncertainty

K(;s,n) - h . Let n n satisfying the assumcions above

Then, since & and- are convex (. ;sLAX is a and assume thac the signal quantity is known to be

saddle point for eq. (I.)) iff in the class W'L-- defined by

K(;s,n) a K(0;s,n) 2 = 2 -2 1.12)

for all . - 0, 11 an a -. Since 3 and ., are
linear functions of 3 and K(.a;s,n) is through Its where s0 can be thought of as a known nominal
definition and from Property 2 a convex function sianal and A > 0 as a degree of uncertainty in the
3f (s,n) It follows that K(;s,n) is convex in 2 nor=nal mdl.
for each (s,n) -'x "!. Thus K((;s,n) a k(O;s,n)
holds iff Define

1t0K(zs,n), 0 3 L. (s- L"n)ha " 0 "0 hhR(2 - hIR) (1.13a)

aor ill ts,n; -5 ' . 2n differentiating we nave ha ( 2 t ,) - l.13b)

LK';s ,n)- OL,:L)-(h , (s-n)h.L) where hR satisfies the equation

and Leo nI follows. 0 ('. kcs

Now, we define a pair (s, ,n., to be least Then we have chat if a solution co ,l1.l3cN S, I
fa.orsoLe !or W - if - "113 ) exists

is " .n 's,(5):(heorem 1: The triple (hiR;SLsn s a saddle point
. L (s,n,4S ._

:1
p-a



solution to eq. ,..'f-'r a; and .n3 Define :he finite measures iL, and 25 so that

o ince - and -L, 1 - L t LJ :h' are absolutely :ontinuous with respect :o the

sufficient -_ Lme - .3 ;na, nac IL besque measure on . with derivatives n Isd s

h a -olds for all s - :: is easily seen respectively. 'This rescriction is only for the
:ht, ne n. -- . , . ,1. o purpose of preserving notational 4niforuLtv and

3 can ae relaxed.) ConsLder tne sets

2 '- • a " !] , j

&no :.-en from '.a and .122b) ' i0A) S A for all k~ - , and

s va
3ut from hoe Schwarz inequality, l.1b) and 1.12) -here vNpA -I IA) for Ell A-2, , , and v

.- ,sh N 9 h (,-n * LS a Z-alternating capacity. Note :hat isweakly

" 0comact [191 and convex. The folloving result is
anc :he theorem follows. a iubcase of Theorem 4,.l of 191.

Equation 1.13c1, which jives :he robust '.am 3: Let v, and v be as defined In (1.16)-
Matched fil:er for our problem, can be solved n
.:erativelv :ogether with (l.12b). Solutions to 1 0 e a version of

related equations for the continuous ibservations :here exists measure a ' such hat dm /dvN
case lave o:en treaced in 'a ndi

.2 :ncertaint " "i:thin capaci:v classes L(., < XI) - v(.(,- < x(.8)

n his oec:ion we onsir uncorrlaedall x 0,). Consequently coms
Thermal noise srocesses wih au:ocorrelatlon fune-
:ions of ::se form n,- , -: w dhere ns(- > stocnascically smaller under mL over"

a.a. and let s define Let sL be the derivative of . with respect

• d to the Lebesgue measure on :i. lext, we prove rhe

.ain cheorem of this section.

he mport:an case of whi:e noise Is included in t h . For v- as defined by e
a  

3 Let

he 'lass loove ,n3, N ' nd 7 , 1-,' 2 for -3 4m'dv in particular L-,,.'
-N .4 .. 0 am na. atiua and define

-ns:e noLse with rwo-sL:ed spectral density 1 -. , • (1 0)
1
. Then (i;s ,no) Ls a saddle-

'n :he nooneative ii4nal s ()) we impose point solution for the jam of (1.3) where :he
:=e zonstraint classes W and " are defined by W- .sjms -", and

t * 11.15 A =.*. I / =, (a .

Proo . To prove chat (hL;sL no) Is a s3addle-noint

7-uatLOn '1.15 1 an average power constraint 1w for (1.8), i: suffices to show :hae (1.10) Is true

:enores average power, a ienotes average energy). see Lama 1). In this case (1.10) reduces to

';ote :nac in =oat opcical zoemnications systems s - s,h. -  a 0
-he rate function is proportional :o the :rans- or L A

zatted power (see for axample eq. (1.2)). )sd a (h,)s,

3efore characterizing :he uncertainty class L

f:r one signal ye need some definitions. Let ( n h(s-nO)-l
denote ),:! and 1 denote the 3orel T-algebra on... L L LI- and
hen a finALte set function v on - is a 2-alternat- Equivalently we can write
ing capacity "18 on , Li it Is increasing, • L

:ont:nueus from below, continuous from above for -s)dm. - _=(-O)d

closed sets, and if It satisfies .(=) .0 and
I. . 3) - v(A - 3) " v(A -v(B) for all A,3 z 27. where v(-0 1- (..- )

2  
s an increasing func-

cbvtously any finite asure is a 2-alternating :ion of -" owever, Lem 3 imlies that 0

or any par )v 3 ,,J Lj of 2-alternating becomes stochastically smaller under a then any

capacities on t,2 there exists a adon-Nikodyn other % " s This c lees the proof of

eri'etive ividvn, introduced in [191, with the 7heorem 2.

tefoning property chat for each 0,01 'he race function sL can be thought As A
A :IV ltV3 > MI, L.f d,(A) where least-iavorable signal for minimax %ttched filter-

A : Lag. We can actually prove the following
I: . - Xl xv (A v .,A c property.

I
i i



Iz
Theorem 3. :ne maure m - satisfies :he

a linear estimate ' :, i1N f s L1 '4nSln.uston if '_tmma 3 i. ; Minimizes I

-u, a 1) S' .i1 i SS I- . itral4rltrorwara.y :)

-Ve All

3L2,* : * - -i nsx mo w ;1ifer- 2 .
, AaOlr e i n ,.', "heorem :ollows om Ouheorem :h&t ne corresponaing expressiono. 3 ' . mno ;.t .nrns o3 t1:Z or'inan xpeso

for con.inuous 3bservation .ould 3e the same 'atlf
lecal3. met 4A 3,, m act for any u ,'/r) replaced ay 'K. 'u. v) . Therefore 2.11

.Liie tsision :i i .acerval -. Therefore All c wv
me portant classes if iinal ncertaintv Are 'or inear filer e isign, : orq isn

:apaciss ee T-h. . .* least-favoraoke A-- 4
-al 4, is :noen relte Dv 1 705 :o
.eas:.favora_-e i:i!)ucLan )s if :he squi'/alent wnere is he continuous ooearvations process

7ious: ivpochesim -esting problem if
and W_ is a standard zero irift, iariance

' 3 " "- e" "; '4 4 iner process. This resul: ippears ;n ., Z .

-I 'n. wnite nosie :&se ) he least- 3201.
-mvoraole "i:ributions -aze seen fiund for the For - 5eini viat-sense stationarv, .te -ave
-:-cntaumnatea, ota-var:a .3n nei4noorhoods
-owels in 201; .jr he sanr model in ' n ,,s :-) And ",reduces to
.jr :-.e extendeC p-oiont L a -.

"OBLS: .'ELhG ;r I- -: I -

Siopose :ne :.gle ., ". , on its f wnere w is whih:e 3aussian iolse wi:h Iauole-sidec

i i3ple sace ",in increasing family of :-lielrs spectral lensl:y
- d . p i •rooaoljcy .easure ?. 'et: '. noe Therefore the -ioncausal Wiener flleri.g

in " - Aodtec point process with ;ussp if size Inc error is 4iven tv '15, p. -961 dnere " replaces

I. n parttc~slar 'de have
oino zpensator ", :s !ee I)7- .'onsider :he

-rees=dm if .. r ea !^ME astmation if f. rrom he ' 2' - .( *

reser',atons N. liven mnd :he causal ienar filtering error '.p01,

- a, 3 2,.) Lb is given y

'Mere .i Min . ar::zngale. : ote :hat :; *'(:",3;

:us 'Iefned is :e race if :he observations. -

.he solution :a tis estimation problem is where :(L) is the ipectral :ensity f
novn 2. pp. 317-320] :o e

If the process d -ose noc have spectral
n udN 2 c -ensity 7(A) hut has a spectral measure 2 , ten

.7) becomes
4nere o :,.m is :he solution :o * • dms'.

( ,i:, .', t, u), (u,s) - (u-%.,du, (2. 3)
Sswhere dmN = d. However as shown in ]171, (-.S)

".- and t, . * ) (ZCC is assumed to remains rhe som h ,ere now .Ijs) is the derivacive
e Ionneaive). of the absolutely continuous part of ms with

respect to the Leoes"u measure.
The etouation corresponding co (2.3) for 4oce that, in all of te &cove discussion, itcontitnuousn a ,obsee aav orcessonuld

continuous 3servacions 'ou d 5e 15, pp. 198-201; is aismd that the second-order chsracteriscicsme same as f2. ot wt h (u- ) replaced y of rhe rate process ; t a )) re ; . How-

K_ -4,s), he aucocor.elaciia of the noise process. ever, since these characteristics are rarely Knovn
i= larLy the MSE moan square error? for any exactly, we -ish to consider the filter -Iesin

problem for the case in which the rate spectrum

6



Ls a hw jnAY :o d .1 '-~ zinvex clAs j af r . ' - Y ,d " w ,

v ecr. h'e rooua: ;1oner iltI i r re0tr .n1 olem -non c At (" T iv"

.,d - is n "- ase voraole ' ver , .
- a.m , . ao east n4ndre 4. Ls a itrenoara 'ianer process.

if n Addition, in -hte above ecuations
)r -. p 4 asue M t A, -A 3 =3

"nd z - a -do , ave a time-tnvarian

An,; :non ;*514.n :.I@ ;pci.mm -lz:st f.r :ni, ipvstem) , hn ad ied'.tne3ainr

5 -::.dr .horeorer :hare i i Airec- ialogy ind is % - • n Section U..a :a hts case, 4a can

. .l .t L .' i r 2 - ; . n u o a - 3 s ; 4 .' 11 1 t n a 7 h e s p e c t r a l ; S e - h s . -n o o e l ) i t - o a p p l y s o m e o f : .h *.1 e Ji -e11 0jV L :n~e case A :. 5 .esults if 101 again '23! and [31 Ai l 3a elp-

- asure )ve -n o'. ; " an - hs th e le s t oeszue ru' 1 3 for Section :1 directly to the problem if
;ectrOx e a.-souare-er'or estimation of the srro ne

.in '3.]) for situations vn which there Is un-

_ arcapaity , . .r.certainty concerning the noise struct ure (I.e.,
:f she ipectral 1-ensity is t andlimleod then uncertainty in 3 or in the covariance marix of

&I' -,.% n certa1inty -Lasses -Stationed In iectlon . C2 0)). In particular, such pr[obleml are
i.:.. re apcit.es; icher, &se inly =he :an so lved by the Kanaro filters corresponding :.

oeL 4as a znparia. bowever, in vhe non-rda
fi' n -ase and fir an -contamina c iemodethat

causal~an , Ic r n -a

314nal :no eas *: avorcl* Tensiv: :asa f:und La c ivltemi, Inn re ne a
3' :2.:ewrn. a ar:ec: ippro.n. Remark I.. The model of the rate is C , 4C-- arX

: :.l c-t,- .a 0se:r.AT 0N FOR U.R can io Interpreted As 7 5eing -he carrier and C

".-S:.S ;1 e ..INC Rlt.U:;7Y eontaining th e Information. Thus al he useful
:aA :ns iec".oL e -.n ase :a A40 .nformaac on (aosum (X C = -0) la tn the parlacon

f'r .r if 4_ while the power of the "noise" hepends
iec mas oove fnr :)e An r .-:,apaea paint

in

p. ocapac)viry lasss )r a .- monao Lnd orstaiosi 'hc h.ei

eeaiy. If :3.1) (being X -AX It -adv ix of
natzr te Unear t cnasc system escribed c v :he caconary. came allowl X :Aks h n r oc.

* ae l ci.is Oter3i ; IY A e Kedslvd yh amn itr orepni

uale . Ae .- a, -sacvt ani oLi ralues than c'(

.:srva:.o , . - ' = .=X.'3 : dm_ t z .: ecom negative for same rang* af X. and t.

;ne oe . - le as u crowever izn situations if practical interest l
- - " t1'.A "A' ha wiz low proability. The axaca and'ysis

Y hC C trfor a discussion of this relem).
.naependent if 3 :,no zh ovari.ance if X-3 is

i :< ,,anLs n e ar e ":he 4.srmacion Asn Ix Th3e is

;e e,'.o ne m. ire Asumed :A !ae infehendent.
.. "'?.Kaznetsov, "Stable dletection- when -ne

-3 in SOWn ;n 12 ,p. .231 that "he Kalman signal and the spectrum if normal noise are
ic: to.es 3O r :no sCoe :ascro .mn .nacfurate.1 <nownb," e ecomm. And Radio
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Wisner process :- ioise. Also, tha performance *.so, nt. .- 0 t. 7ho0,
f any linear fi. eor is predicted 3y -he continuous-
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3.,1



. vits an d L. ackson, "Linear . i. -. ' rees, Detection, Estimation, and

.. :er tizization " At game iheorl :in- .odulation .heor,-: ?art ,. ' rew "hr:

iiaerat.'ns," :RE :;At. 'inv. 'ec., t. ., ile,, 1968. i
:0..2-199, L955.

. K. "no, "An ilternatzve looroaco :c :-e |

. . Kissam inm " 0, -'3oust 'iner linear zausal least-square oilternlig eorv,
;i.:ars," .r=lin :nst., "'!o. '04, °ZE- Trans. :nform. Theor'-, vol. .-7,

.?-:5, :-. 7p. 232-!40, 'lay 1971.

.:. ?or, ".n roousc 4.iner £i4.ertnq,' 17. j. 'nyders, "On optimal inear -s:imaciin if
I-- --ns. .,utam. 'intr:) , ",'e. C-25. stgnaIS with general spectral Atstrt~puron,"

.. 52-52o, -ZEE rins. 1nfiru. -. orv;, ol. :-ZO,
pp. '54-o5d, 1974.

<. . astoza and A. ;. ?oor, "An anal.sLs of

-he effects of spectral ancertaincy on 7,'iener 13. 0. Choquet, "Theory of capacities," Ann.

fl:ering, manuscript submi.:ted for publica- Insc. Fourier. vol. 5, pp. 131-292. .953.54.
:Lan :a Automatic&.

19. ?. J. Auber and ". Scrassen. "Miaimax tests

*;. " . 'orris, "The Kalman Uilter: A robust and :he Neyman-Pearson lesna for capacities,"

escaiator :or some :asses .-f hinear ,uadracic Ann. Statisc., vol. 1, pp. 251-265, 1973.
.rioiema, :ZEE 7rans. :nrorm. Theor , vol.
"---, p. 5:6-33., September :976. 20, . . 8uber, "A robust 'ersion of :.e

probability ratio test," Ann. Mach. Star.
?oor and D. ?. Looze, ' inimax state vol. 36, pp. 1753-1758, 1965.

_stimacion ;or --near stochastLc systems 'wi:h
72,3C ncerrL~nc-," rEaE -rns. Auom. 21. S. A. <assam, ".obu&C hypothesis testlng or

4nrrzl, "ol. AC-'6, op. )02-406, Auust 1981. oounced classes of probability :ensi:ls,'
:EEE Trans. Inform. Theorv, vol. 1T-27,

noversten, "Optizal communication pp. _4Z-Z7, 1981.

:necrr," in :.ser :iandbook, 7. 7. Arecchi
inc -. .. o"ucz-tu 3ois, Ids. Amsterdam: .2. K. S. vascola and R. V. Poor, "On generalized
.ort.-iio.lano, 1972, pp. A05-1862. 3and models in robust detection and filter-

in%," Proc. 1980 Conf. Inform. Sciences Ssc.
"........nver, Random Point Processes. Princeton, 3,., pp. l-i. Narcn 1980.

..Qw " xr : .;ildv 1975.

23. K. S. '.'astols and H. V. Poor, "On Choquec
-2. ?ersonizk, "Statistics 3r a general capacities and their derivatives with respece

-.ass :f avalanche Iaeecors with apolica- to --ftnice measures," Abst:accs if Papers:

-. zns -)c ootai. -c'unizations," 3el. ivst. 1081 IEEE International iv.os2.um On _hforma-
... n. .,.:oi. 50, :p. 3075-30945, tecember nion Theory, p. 91, ebruary 1981.

24. R. K. 8oel and V. E. Benes, "Recursive aon-
- . . 5. ".ptser and A. . hirv:ayev, 3ratistics linear estimation of a diffusion acting as

"
1
anaom Processes Ao01±caci.ns). the rate of an observed Poisson process,"

r.er-era, 73. IEE Trans. Inform. Theory, vol. T-6,
pp. 561-575, September 1980.

anc-z"o Inc Fi-- ,

I



[4] D. P. Looze, H. V. Poor, K. S. Vastola and J. C. Darragh, "Minimax
Control of Linear Stochastic Systems with Noise Uncertainty,"
submitted to IEEE Transactions on Automatic Control.



MLNIMAX CONTROL OF L124EAR STOCHASTIC SYSTEMS

WITH NOISE UNCERTAINTY

byI

Douglas P. Looze, H. Vincent Poor, Kenneth S. Vastola, and John C. Darragh
Department of Electrical Engineering and the Coordinated Science Laboratory/

University of Illinois at Urbana-Champaign
Urbana, Illinois 61301

Abstract

The problem of linear-quadratic-Gaussian control of multivariable linear

stochastic systems with uncertain second-order statistical properties is

considered. Uncertainty is modeled by allowing process and observation

noise spectral density matrices to vary arbitrarily within given classes,

and a minimax control formalation is applied to the quadratic objective

functional. General theorems proving the existence and characterization of

saddle-point solutions to this problem are presented, and the relationship

of these results to earlier results on minimax state estimation are

discussed. To illustrate the analytical results, the specific example of

regulating a double-integrator plant is treated in detail.

Address of Corresponding Author: Professor H. V. Poor

Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801
Phone: (217) 333-6449

I
I
!



1.1

Introduction

:he design of optimum decision and control procedures for a Linear

scochastic system requires an accurate description of the statistical

behavior of the system. However, because of nonideal effects such as

nonstationarity, nonlinearit7, and other modeling inaccuracies, there is

always a degree of uncertainty in such statistical descriptions. A useful

approach to design in the presence of small modeling inaccuracies is to

use a game-theoretic formulation in which one optimizes worst-case

performance, and this approach has been applied successfully to many

aspects of decision and control system design (see, for example, Huber [1]

and Mintz .2I). In a recent paper [3], two of the authors have applied

this approach in considering the problem of designing linear minimax-,ean-

square-error state estimators for linear systems observed in and driven by

noise processes with uncertain second-order statistics. In particular,

-a .s shown in [3] that, for two 3eneral formulations, such estimators can

often be designed by designing linear minimum-mean-square-error filters

for least-favorable pairs of noise spectra or covariance matrices. Related

minimax state estimation results are found in a paper by Morris [4].

In this paper, we consider the analogous problem of minimax linear-

quadratic-Gaussian control (LQG) of systems with uncertain second-order

statistics. In particular, we consider the control of linear multivariable

systems with white Gaussian process and observation noises with uncertain

spectral density matrices. It is shown here that, within mild conditions,

this problem can be solved by designing an optimal control for a least-

favorable model, although the model which is le,4st-favorable for control

may not be the same as that which is least-favorable for state estimation

i
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for the same type of noise uncertainty. However, it is also shown that, for

uncertainty in citherthe process or observation noise only, a given minimax

linear-quadratic-Gaussian control problem does have the same least-favorable

model as does a particular minimax state estimaticn problem with a weighted-

mean-square-error criterion. Thus, as might be expected, a limited duality

exists between these two problems. Another phenomenon which is shown to be

associated with minimax cont..ol is that the separation principle which

separates the problems of optimal control and optimal state estimation is

not necessarily valid for minimax control and minimax state estimation. In

particular, it is shown that, although the minimax control law is independent

of the minimax state estimator, the reverse is not true. Several other aspects

of this problem are also considered '.n this paper.

In Section 2, .he specific problem foruilation to be considered is given,

and several relevant ptcperties of optimal LQG control are outlined. The

general minimax problem is treated in Section 3, and results giving conditions

for the existence and characterization of saddle-point solutions are derived.

Section 4 includes a discussion of several interesting properties associated

with the general minimax results of Section 3, and the specific example of

controlling a double-integrator plant with uncertain process noise statistics

is considered in detail in Section 5.

(
$1

I
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2. ?reliminaries

Consider the linear time invariant stochastic system

t t -- )

Cxt  - (2)

where x and are in7, u is in Re, and y and at are in R for each t.

The matrices A, 3 and C are assumed to have compatible dimensions (as required

by (1)-(2)) owiith -e pairs (A,B) and (A,C) stabilizable and detectable

respecti%-ely. The noise processes t and i are assumed to be zero ,man white
C

Kaussian processes with second order statistics

- T 0

Eg= t, (t-s) (3)

E s
T

Eat is (t-s)

where 5 is :he Dirac impulse. It is assumed that (A,,Iv ) is stabilizable and

that 9 > 0. The objective of the problem is to choose ut to minimize the time

average quadratic cost

J - lim (xt Qx +ut Ru t )dt (4)T - , 0 t

where Q x 0 with (A.-A ) detectable and R > 0.

'When ! and 9 are known, the solution to the stochastic regulator problem

(1)-(4) is given by the feedback system:

u- - -Gx (5)
-~ t

- Axc + Bu t tc )(6)
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wnere

G - 1 BTK (7)

ATK+KA+Q - KBR'BrK - 0 (8)

H PC "  (9)

AP+pAT +_. pcTB"lcP - 0 (10)

The matrices K and P are the unique positive semi-definite stabilizing solutions to

( ) and (10) respectively.

As discussed in Section 1, the second order statistics for the processes

• and z are ofren nor known precisely. A common representation of this type

of uncertainty is to assume that !! and 9 are contained in compact sets X and r,

respectively. The objective is then to choose ut to minimize the worst possible

performance (4) given (_,B) Z x 71. We will restrict our consideration to

controls 3eneratad by causal appropriately measurable functions of the

measurement. _enote this class of operators as .. The problem can then be

stated as the inimax problem:

mi + max J(L,xS) (11)
L £ (-,S)E Zx 'f

5

where the dependence of J defined by (1)-(4) on L, 3, and 8 has been

explicitly noted. Note that the optimal linear feedback law defined by

(5)-(10) is a member of -

f9

1See, for example, Chapter 16 of (7] for the explicit measurability

conditions.I

II



3. Existence and Characterization of a Saddlepoint

Two important results concerning solutions to the minimax problem

formulated in section 2 are presented in this section. The first result

establishes an equivalence between a saddlepoint solution to (11) and an

-)pcimal stochastic regulator solution (5)-(10) corresponding to a particular

(3,B) pair. The second result establishes the existence of a saddlepoint

when the sets Z and " are convex.

To obtain these results, we will need the following well-known

theorem (cf. [ 5]) which establishes the fact that the existence of a

saddlepoint is a necessary and sufficient condition for the minimax problem

(I1) to be equivalent to the corresponding maximin problem

max =in J(L,Z,B) (12)
B--,) EY AZX- L E1''

s

Theorem 1: There exists a triplet (L ,Z,8 ) E Z + x X x 7 satisfying the

saddlepoint condition

J(L1,S,)  J(Loo, ) 'R a J(L,lo )(3

SL E £~+ ' E , 9 E 7

if and only if the values of (11) and (12) are equal.

We will also require the following leuua which expresses the cost for

any 3 and B when the control is generated by (5)-(8) with H being any

matrix such that (A-HC) is asymptotically stable.

Lemma 1: Assume that the control ut is generated by the system (5)-(6)

with feedback gain G determined by (7)-(8), and that H is any matrix such

4that all eigenvalues of (A-HC) have negative. real parts. Then the cost

I
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J defined by (.)-(8) is:

J - tr 3- K t r (- + H 8HT)X (14)

where K is given by (8) and X is the unique positive semi-definite solution

of

(A-HC) X X(A-HC) + G TRG 0 (15)

t1

Proof: A proof is provided in the Appendix

Theorem 2 provides the desired characterization of a saddlepoint.

Theorem 2: Assume there exists - E . and 0 E ? which satisfy

tr'- y) - tr('- ° Y} 'f -E (16)00

triH XH 3trf9 R XHT! 0E (17)
0 03 0 0 0.

where H is the Kalman filter gain corresponding to - and 9 (given by
0 0

(9)-(10)), X is given by (15), Y is the solution to

(A-H C) TY + Y(A-H C) + Q + KHoC + C TH TK - 0 (18)
0 0 0 0

and G and K are given by (7)-(8). Lee L0 be the operator representing

the optimal stochastic regulator (3)-(6) corresponding to I ° and 9 Then
0

(L ,-o3 ) is a saddlepoint solution to (11).
0 00

Conversely, assume that (Lo ,E, ) is a saddlepoint for (11). Then L

is the LQG regulator (5)-(10) and (1 ,9o) satisfy (15)-(18).

tThis result may also be developed using the results on pp. 185-186 of [8).

;iIl
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Proof: (Sufficiency) Consider the maximin problem (12). Let and 9
0 0

satisfy (13)-(18) and let L be the corresponding optimal stochastic

regulator. Let H be the Kalman gain for 1 and 93 given by (9)- (10). Then, by le-a I

J(LoZ,9) - trf3(X+K)} + tr(HBHTX} (19)

for every (-, )-.ZX"'. Adding (15) and (8) gives:

(A-HC) T(X+K) + (X K)(A-HoC) + Q + KHoC + CTHTK =0 (20)
a 0 a 0

Hence

Y - X + K (21)

Also, by (16)

tr[S-(X+K)l : try- (X+K)l (22)

Adding (22) and (17), and using (19) gives the lower inequality of (13)

J(Lo ,!,9) S J(Loo, o ) 3 EAZ,, AE7Z (23)

The upper inequality of the saddlepoint condition (13) follows trivially

from the fact that L is the optimal stochastic regulator. Thus,

(L0,- ,9 ) is a saddlepoint for (11).

(Necessity) Suppose (Lo, 0, a) satisfies (13). The upper inequality of

(13) implies that L is the optimal stochastic regulator (for which one

realization is (5)-(10)). Hence lemma i can be used to express the cost.

The lower inequality and leimma 1 imply:

U-,
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'I I r((I+ 3T) I trI- KI +H3HTI

tv ~x S- -r tv r Hoo~) (24)

330 0 0 00 (4

for every 3 E A and 3 E 7% By (21) this can be written as

tr(- )y + tr - )HTX - 0 " fEZ,3E- (25)
0 0 0 0

In particular, B a S gives (16) and 1 - 1 gives (17).0 0

Thus, we see that conditions (15)-(18) are equivalent to the existence

of a saddlepoint. if such a saddlepoint exists, then the minimax controller

4s simply the optimal stochastic regulator designed for the particular

(-o,3o) pair which satisfies (15)-(18). This result can be used to

establish the existence of a saddlepoint.

Theorem 3: Assume Z and 7 are convex, compact sets such that if E AZ

then I 1 0 and (A,!'-) is stabilizable and if 9 E 7, then 9 > 0. Then a

saddlepoint solution for the minimax problem (11) exists.

Proof: The proof shows that a solution to the maximin problem (12) exists

and satisfies conditions (15)-(18) of Theorem 2.

By Lemma 1, and equations (7)-(I0) and (15),

min J(L,t,) - triK + tr(. + a- )X
LE £+ (26)

is continuous in 3 and FJ (with i given by (9)-(10) for eachl and3). Since and "Zare

compact, a solution to (12) exists. Let (Lo. ,o ) be such a solution.

'- --' " '. ".-- 0...3 0-
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Then the Frechet differential of (26) with respect to I and 9 at(! 0 s) 

.must be nonpositive in every direction into the set Z v 1. The Frechet

differential of (26) is given by:

11 tri.3 (K+X)

+ tr .aiHTKR2

2(27)
+ t+ (x3H K i )

trt( (14-H gT)6x]

In (27), 5;R and X represent the Frechet differentials of H and X with

respect to I and 3. From (15), 5A can be computed as the solution of

(A-4c) Tx + 6X(A-qC) - CT 51TX - XKSC . 0 (28)

Thus, 5X is given by:

! - e (A-HC)Tt[cTsfTX + XSHCle(A-HC)tdt (29)
'0

Substituting (29) into (27) and using a few trace manipulations gives

5M0r,;A3. V)- tr(13(X+K)! SA t 31X i)

-tr 0 e(AHc)t(2+ A a T lC)Ttdt(CT 5iTX+XgC] (30)

trfpcTsrf x + pxT-cT

But the integral in the third term of (30) is the solution to (10); i.e.,

P. Hence

5X18.3A)atrf~a2(X+K)j tr(,.%T X Al (31)

Consider an arbitrary point (1,9) E X X 1. Since Z and are convex,

the line segment joining (30,a ) and (3,S) Is in Z X7 and hence

00i
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(, ,.a) B019- , - 9 ) (32)

is a direction into X x '. Substituting (32) into (31), requiring (31) to

be nonpositive and using (21) gives:

t - 3 ( Z )Y3 + tr( @ - 3o)HT X 1o 0 (33)
0 00 0

The choice (3,3) (3,9 0) in (33) gives (16) while the choice (-,9) -

(-o,9) in (33) gives (17). Thus, by Theorem 2, (1 ,03) is a saddlepoint

for (28).

:his section has provided two major results. First, every saddlepoint

solution to the minimax problem formLlated in section 2 has been character-

ized by the conditions of theorem 2. :n addition to providing a means of

identifying a particular solution, these conditions can be used to

characterize the set of possible solutions. This subject will be addressed

further in the next section. Theorem 3 provides the second important result

by demonstrating the existence of a saddlepoint solution to the minimax

problem when the sets Z and '7 are convex and compact.

I.
I
-|_ _ --- ~ _
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-'. Discussion

There are several interesting observations which can be made concerning

che results of the previous section. First we note that, since (6), (9),

and (10') give the linear least-squares state estimator for a fixed @,-)

?air, the optimal linear regulator problem for fixed (8,1) is solved by

feeding back optimal state estimates through the gain G (which does not

depend on (9,!)). Thus, as is well known, there is a separation between

the estimator and regulator design problems in the case of fixed 8,1).

However, it follows from Theorem 2, (16), and (17) that such a separation

does not generally exist in the minimax problem. In particular we see from

Theorem 2 that, although the feedback gain does not depend on (9,3), the

state estimates used for minimax control are not generally the minimax-

mean-square-error state estimates. This follows because the equations

de-ermining the least-favorable pair for control depend directly on the

cost matrices Q and R, which of course have no effect on which pair is

least-favorable for state estimation (as in 3]).

The above observation also implies that the (9,M) pair which is

least favorable for control is not necessarily the same as that which is

least favorable for state estimation. However, the conditions that Theorem

2 requires for minimax control are similar in structure to conditions

required by Theorem 5 of (3] for minimax state estimation. Using the

similarity it follows that, for fixed -, the Kalman filter corresponding

to (90,) where -0 is from (17) also solves the minimax state estimation0 0
problem

mi max Ei(x -) T G RG (x - ) (34)
i t I t t 0 0 t t

where G is the regulator feedback gain from (7). A similar statement|0

- - -. - _ _ _ _ - _ _ _!
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applies if 3 is fixed and is unknown; however if both and are unknown,

there general:.' is not a single ninimax-mean-square-error state estimation

oroblem which has the same least favorable pair as 15).
A maximal element 2 for the set Z is one which satisfies 3 ! " . for

all 2 -- Z, where means thac - ) is nonnegative definite. it

was noted in [3] that if Z or has a maximal element then that clement

is least favorable for state estimation. 3y inspection of (16) and (17)

we see that maximal elements, when they exist, are also least favorable

for the regulator problem.

Exazmle: Assume chat the process noise can be written as

t -t

where - is a zero mean white Gaussian process with

S (t--)

and where (A,:) is a stabilizable pair. A common method of modeling uncer:ainty

in the second order a priori statistics of system (1)-(2) while preserving the

input stnucture of the process noise is to choose a nominal pair ( S 3 and

assume that the true and S, differ from the nominal in norm by no more than

some positive constant . Define

4' .D iEDT: <'

NI!

where " denotes the norm induced by the Euclidean vector norm on the

underlying space (Mq and Ip respectively) and where

- imin ( , n

Then each set has a maximal elemeat
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- 02( -I)DT

33 " " +

and, by the above discussion the minimax controller is the LQG controller

designed for - "0 and 9 - 0 ,

Of course, most uncertainty classes of interest will not contain maximal

elements; however, for any compact classes Z and 7 the set of possible least-

favorable pairs can be reduced to only those on the upper boundaries of

and ,7, where the upper boundary [6] of Z is the set of - satisfying

F Z F: Z E) £-. (Note that the upper boundary of a set with a maximal

element is just that maximal element.) Furthermore, note that the conditions

(16) and (17) are satisfied for all (-,9) pairs in Z x 7 if they are satisfied

for all pairs on the upper boundaries of Z and 7. Thus, by Theorem 2 the

minimax problem on Z Y 77 can be equivalently defined on the upper boundaries

of % and 7,. Moreover, the requirement that '. and 7 be convex can be relaxed

to the requirement that their upper boundaries are also the upper boundaries

of their respective closed convex hulls. We may summarize these observations

in the following theorem:

Theorem 4: Suppose the following cond 'cions hold:

(i) Z. and 77 contain their respective upper boundaries and =
A. 1.

(ii) and are the upper boundaries of their respective closed

convex hulls co(4!Z) and co(.).

(iii) Y 1 E co(/ R.,), (A,41) is a stabilizable pair.
A.

Then:

min max J(L,-!,@)
L-Z (_ (-, )= .X (35)

- min max
LE-C+ (2,9 )Ea2 X

A.
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Note chat 7heorem inplies :,hat the compactness and convexity conditions r
required for exis:ence in Theorem 3 need only apply on and near the upper

boundaries of % and 7.

'I

I

I

I
I

I

I

I
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5. Examole

To iliustrate the results of he above sections we zonsider the

folLowing example which corresponds to control of a double-integrator ?iant:

A q q3;0_0 01 I.0 I 3q 2"

(36)

C [1 0]; r,  R - a, and Q - I 0 01

where r > 0. Note that any compact set of Es has a maximal element in

:hns case given by the maximim value of r 2 n the set. Thus, no significant

generali':y is lost by assuming that r is fixed at sup For fixed a,,q,

and the matrix P solving (10) is given by

I - ( -

(37)

.- ,.q, (2r., ,. [ q 1) q3-

(38)

S. ..( 3 9 )

wher
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= v '2 (2r., 7 ' - q ) r + I q(40
Y!. =  ,(40)

22, _r 'q q

and

,, )r + 2q 2 + q, v 2(2r, +

I'q 2 v"2r q 2 + q,

A convex uncertainty class for % is equivalent to a convex subset ofq 31 21

q, >- 0, q, a 0, and qIq 2 Z q3"" Equation (16) and the fact that

Y is diagonal iply that Z X is least favorable iff.0

(q<o) , (a) (0) (0)q)Y + (q! -q1 )y ;

-vhere superscripts 'o' denote quantities corresponding to -. t follows

from (14), (13), (38), and (42) that the state estimation filter structure,

:he control gain, and the control cost are all independent of q3 " Thus we

can set q3 = 0 withcut loss of generality. (Noce that tr(P) does depend on

C1.) To illustrate the solution to (42), we consider the two uncertainty

classes 3 )

0 N) q2 q(N) c, (43)M= q > ,q2 >0 and max,q,'qq

and

"" " ql > 0,q 2  > 0 , and qq l - ) + q 2 q( (44)

h 
2

TN 0 ~ (N)i-=0 q2 J
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represents a nominal model for the state noise and c is a fixed degree of

uncertainty in the model. Note that Xhas a maximal element

! 'I

i

+ 0

which thus yields a minmax design immediately for this case. The class

A 2 does not have a .maximal element for z > 0, but Theorem 3 allows us to

restrict consideration to the upper boundary of A2 given by

T - (N) (N) (45)

A-I- q1  + q - q1

Thus (42) reduces in this case to

(q) q, (y y 0; 'f q E [(N) (Nq + (46)
- - 2

:he least favorable case is thus q0 I (N ad (o 2 (2 )+ f

7 () a 11(o) athspit;t sq(o) (N q c and q(0) .q(N) i

(a) (0)
Y2) y  at this point; otherwise the solution must be a point on

1 22;satisfing (a) ( )

I
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APENDIX

r _oof of Lemma 1: Define

e t x C te r

-hen , corbining , (I) -, (5), and (6) with (Al):

x rA 3G 3G X

e A -HC ~ tH
- - - L i

Since (A -HC) is stable, the processes x and e, are ergodic. Hence :he cost

can be written as

Qx- T Ru (A3)

Substicucing (Al) and k5) in (A3) gives:

T T T T T

i = r Ex(Q G RG)x -x G RGe -e G RGx + e GTRGej (A4-)
t tt t

-se of a si-mle -race identity converts (A4) into:

r T 1T1j

" GRG -GRG x J e-
lirn cr E r(A-5)

- a -G RG GCRG e J
De fine 1'

rQ "G RG - RG
T

-G RG G RG
L

limE x x T
t r. - a e L e

A - BG BG

0 A -HC

I -
e-4- N
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,hen (A3) becomes

J tr (A6)

where, in view of (A2), Z is the unique solution of:

z + -:T + - (A 7)

Since A is stable, Z can also be written as:
-T

- At At

Z e Xe dt (AS)
0

Hence, (A6) becomes

-Ir At A :t

J Xr e X e dt (A9)
0

;ith a few manipulations, (A9) can be rewritten as

-T -Z
a t -At

j = tr a e dt (AlO)
0

Define -T -

- itT At
K e Qe dt (All)

then

J tr X K (A12)

where

A A-$+ Q0 (A13)

Let

K X

I
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tsing the definitions of A, K and Q leads to three equations:

(A-3G)TK K K1 (A-3G) +G TRG Q = 0 (A14)

(A-3G) TK2 +K7 (A- RC) + K 1BG-G RG - 0 (A1S)

(A-HC) XX(A -HC) +G-RG+ K BG GTBTK 0 (A16)

Combining (A14) with (8) gives

K - K (A17)

Combining (A17), (A5l) and (7) gives

K 0 (A18)

.ence,

I- (A 19)
LF °

w4here x (by virtue of (A16) and (A17) is given by (15) Finally, substituting

(A19) into (A12) and using the definition of X yields (14).

Li
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MINIMAX LINEAR SMOOTHING FOR CAPACITIES

Summary. Minimax linear smoothers are considered for the problem of

estimating a homogeneous signal field in an additive orthogonal noise

field. A minimax game with the quadratic-mean estimation error as an

objective function is used to formulate this problem. Uncertainty in

signal and noise field spectra is modeled using general nonparametric

classes of measures proposed by Huber and S trassen for the problem of

minimax hypothesis testing. These classes, which are described in terms of

Choquet alternating capacities of order 2, include the conventional models

for spectral uncertainty and admit a general solution to the minimax linear

smoothing problem.

-- - - - - - - - -- - - - - - - - -- - - - - - . - - -- .- - -- - -- - -- -
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I. Introduction. Suppose we observe the random field (Yz z = R n  given
for each z E R n by Yz = (S + Nz) where ;S ; z E n} and N; z E 1%ni are

z z z I

orthogonal random fields, each of which is second order, homogeneous, and

quadratic-mean continuous. Suppose further that h is a complex-valued Borel-

.easurable function on Rn , and that S denotes that the linear estimate of

S based on y • z E R1n which has transtcr function h. Then the quadratic-

mean estimation error associated with S is given by

EF IsZ- , 2 _ (2-)[-n(, I 1-hi 2dms + I hi 2 d N] e h;m , '

where m and are the spectral measures on ( n Is n) associated (via

Bochner's theorem [1, p. 245]) with (S z; z E n and N z; z E R1 ,

respectively. For fixed mS and iN, the minimum possible value of e(h;mSiN)

is achieved by the estimate with transfer function dm /d +N) and

this minimum value is given by (2 T) -n dm on the other hand,in N. If, o h ~e ad

R
m and N are known only to be in classes "s and N , respectively, of

spectral measures on (,n ,,n), then a reasonable design strategy is to find

a linear estimate whose transfer function minimizes sup e(h;mSM,.).

S XMN
Such an estimate will be a minimax linear smoother for 7 and . Certain

aspects of this problem have been considered by Kassam and Lim [2] and by

the author [3]. In this paper we consider the minimax linear smoothing

problem for the situation in which the measure classes S and T are of the

type generated by 2-alternating capacities as considered by Huber and

Strassen [4] in the context of minimax hypothesis testing. Examples of this

type of class include mixtures, Prohorov and Kolmogorov (variational)

neighborhoods, and other previously considered models for spectral uncertainty.

yNote that e(h;msmN) -(2 -d)nN + (2- )-,, hh 2d(s +N).1%nha%+ ( ) na S l2
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Here we apply the results of Huber and Strassen to find the structure of

minimax linear smoothers for general models of this type.

2. The minimax smoother for capacity classes. In the following, 2: denotes

a fixed subset of Rn , 6 denotes the Borel a-algebra on ., and , denotes

the class of all finite measures on (2. 7). Recall that a finite set

function v on a is a 2-alternating capacity (see Choquet [5]) on (,.)

if it is increasing, continuous from below, continuous from above for closed

sets, and if it satisfies v(0) - 0 and v(A U B) + (A n B) < v(A) + v(B)

for all A, B E a. For a 2-alternating capacity v on () define the set

7by

- / me(A) v(A) for all A E a, and mr() -v)). (2)

A number of properties of classes of the form of (2) have been developed by

Huber and Strassen [4]. Note, for example, that " v is weakly compact and

that, if v is a measure, then -v 
"

For any pair (v0,v1 ) of 2-alternating capacities on (,47) there exists

a Radon-Nikodym derivative dvI/dv0, introduced in [4], which has the defining

property that, for each t E [0,-],

r ([dv7i/dv 0 > tl)- inf r (A) (3)

AEa

where rt(A) (I (A) + v1(A This derivative (which is a

family of functions having the defining property (3)) is the basis for the

minimax tests between capacity classes of the form of (2) as considered

in [4]. Further properties and a generalization of this derivative have been

considered by Rieder (6]. In th!.s context we state the following result

which is Theorem 4.1 of (41:
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Lemma 2.1 (Huber-Strassen): Suppose vS and vN are 2-alternating capacities

and -T0 is a version dv s/dv N . Then there exist measures q S '77 and

V such that 7 E dq /dq and such that FqN V 0vN

qs([ < tj) = Vs( 0 < ti)

and

q N([T0 > t) - VN(TnO > t))

for all t E [O,zj.

Let K denote the class of all complex-valued 47-measurable functions on

.. Lemma 2.1 leads to the following theorem:

Theorem 2.2: Suppose vS and vN are 2-alternating capacities on , Let

be a version of dv s/dvN and choose (qS~qN) as in Lemma 2.1. Define
-l

h0 -- (i+ 0) Then [h0 ,(qs5 qN)) is a saddle-point solution to the game

min sup e(h;m S ,mN)
h EX (S'NO)'v S XMv N

where e is defined in (1), and thus h0 is a minimax linear smoother for

7 and
vS vN

Proof: Noting that h0 E dqs/d(qS +qN), we have directly that

e(ho;qs.qN) N e(h;qs,qN)

for all h X. Thus, it is sufficient to show

e (h;msmN ) '-, e(h0;qs~qN ) (4)
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for all (ms,N) .x 7N Lemma 2.1 asserts that is stochastically

ama.lest over 7 under qs and is stochastically largest over ^,'v under
vs

-2 T i ecesn n1 and h 2
q Thus, since 1 -ho -4-nO) is decreasig i n

)(l- -)2 is increasing in "0' we have

I -h012 dmS  7'1- 0 12 dqs

and

: ho12 d = "h 0K-dq,

for all (M ,N E v X .iv Equation (4) and hence Theorem 2.1 follow.

Note that, in view of Theorem 2.1, the pair (qs,qN) singled out by

Lemma 2.1 can be thought of,a least-favorable 
pair of spectral measures

for minima% linear smoothing. Concerning this pair of measures, 
we may

also state the following property:

Theorem 2.3: The pair (q,,q,) E X × 7 satisfies the conclusion of

S N

Lemma 2.1 if and only if its maximizes

min e (h; S, ) ' dSd (mS +m,

over all (m 'mN) 7 x •7

proof: Define f AmN/d(mS +N). Then

min e(h;ms,mN) (2- n  fdmhs (2-) (f - fd m. -* .•

Since Clxi - (x-x-) is concave and twice cont-nuous' , .-

(0,I], Theorem 2.3 follows from Theorem 6.1 ot



7-,A-1-06 983 ILLINOIS WNIl AT URBANA COORDINATED SCIENCE LAD F/S 12/1
ANNUAL PR0OGRESS REPOMT.I1W

UNCLASSIFIED T-111 NL

22

mhhmmhl



7

3. Discussion. Theorem 2.2 gives the general solution to the minimax

linear smoothing problem for signal and noise uncertainty classes of the

form of (2). Several useful examples of classes of this type are given by
a

Huber and Strassen in (4], and other useful examples are given by Rieder

[61, Strassen (71, and Vasola and Poor (8]. Some of the moat comonly

used examples of classes of the form can be written as *-neighborhoods

of some nominal measure 4. Exples of capacity classes that have this

structure are contaminated mixtures, variational neighborhoods, and Proborov

neighborhoods (see (4]). For this type of class, an uncertainty model will

consist of a nominal pair (6S, &) of signal and noise spectral measures

with respective degrees eS and gN of uncertainty placed on the nceinal

measures. The derivative between capacities generating classes of this

type is often of the form (see Huber (9, 10] and Rieder (6])

.To(w) - mkz ', min€" .(w)]] w E .,(

where X is the Radon-Nikodym derivative between the nomnal pair of measures

(i.e., X E ck& /di N) and c' and c" are nonnegative constants with c' 9 c".

If "0 of (5) is a version of dvs/dv3 , then Theorem 2.2 implies that a

minimax Linear smoother for Tvs and MvN is given by

S0 (W) -uzk', mink", h'(w))], wu e (6)

where k' - c'/(1+c'), k" a c"/(1 c") and h' a X/(l .). Noce that h' is

the optiin smoother for the nominal model, and thus the minimax linear

smoother for this case desensitises the nominal smoother (to a degree depend-

I ing on and in those spectral regions where either or is€S N N

domnimt (i.e., where h' s near 1 or is near 0).

I.1- _-* -- __i. ...



In the situations for which (5) is valid, (6) gives the transfer

function of the iniaax linear smoother. Supposefor example, that n *I,

. * [-b,b] for som b < -, c' < c", and h' is syinetric about wa- 0 and

is strictly decreasing on [O,bJ. Then the minimax linear estimate of S

determined by h0 is given explicitly by

I.

Is - O(s -t)Ytdc

where h0 1 is given by

h0(t) - h' (t) + k' [sin(bt) - sin('t)ll(rit) + k"sin(a"t) ('t)

with 7' -_h', and vith a' [trep., a"] the positive solucoa to h'(a') -k'

[resp., h' (a") -k"J.

As a final COamrnUC we note that, although we assumd initially that

the observation field was a conti/uous-paramter fi~eld, Theorems 2'.2 and

2.3 an also directly applicable to the case Ln which the observation field

is a discrete-parmeter field (i.e., in which the time set is :a) since

this letter situations coresponds to the paricular case of the malysis

of Section 2 n hich -(.rt,'r n .

4. ~knwledJ nj. The author would like to chank K. S. Vstola for

several stimalatlng discussions concerning the techniques used in this paper.

Also the helpful crones and suggestions of the anonymus referee are

gratefully acknowledged.
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VNETPO.M5N335. tEE. AND DOUGLAS P. LOOZE4(1f IHs) 2 (wda (; ... (3
VINCENTR POOE.E

Let XJt denote the class of complex-valued transfer functions of causal
A Ann The pub0s. of adiia Unew safe esdmiiNgc (O O time-invariant linear filtr. Then for fixed at and oi. the optimum linear

oodeasdwc o nI mdm.Topie secsc h ei. system driven and obser5il in nose whle seodod (minimum mean-square error) state estimation filter is found by solving

we , sI the shils-val"bs as with uncersi One speb "
thpsek rbil Ils.1 wit unerainal.eoestwlss noiss cemlatl min £(Hf; at, ). (4)
Geeal jlinu reut sa 1uin1 for as& of tlss sidutio hjok- HeJC

log clusetereiu of thu WNW=m f1es In term of keg fawabs if of and q, are such that the observation Spectrum @,(.)[5'(,a +
comdordr properties. Epicit sollidens ure Vim o d ' 2

1 w)+ w) satisfies the Paley- Wiener condition.' then the solu-
'ne -ai .mdsli a slqls-vuhbs cuses' t leaiad far a matrix-nr ton to (4) is given by (Wong 16D)

thet I u es f d Watre d P P -1 ato the ami n im e et aty d s [I_ _ _ _
is alod&mtH t ~)~ f si" A) (5)

1. INTRODUCTION
where superscripts denote multiplicative spectral decomposition and sub-

Several recent studies have considered problems of mmax; linear scripts denote additive spectral decomposition. If, on the other hand. the
filtering and smoothing of stationary processes with uncertain second- spectra. 1 & ands are not known exactly, but are known to be in classes 9X
order statistics. Examples are the works of Kamsm and Lim [I), Kassamn. and 9L. respectively, of spectral densities, then an alternate design crite-
Lim, and Cimini [2). and Poor 13). (4). In this pape. we consider the rion to (4) is the minimax mean-square error criterion
related problem of minimax state estimation for linear stochastic systems
in which the process noine and/or observation nonse processes havef (Ha,.)}(6
uncertain second-order properties In particular, we consider the usual In1 teX max* e)!X L&H f 0 6
linear svstem modelHe 

o%

it, =Ax, +Bft; t.P1 (1) Several studies have considered problem related to (6). The analogous
nonicasal (smoothing case has been considered for spectral band models

Y, =Cz,+ ,; ';t (2) in III, for more general spectral density models in [3), and for general
and x,= 0 where, for each t~to x, CEU' y, E=R', J, 6101- and A. B, clase of spectral measures in (41. Some aspects of a related causlcs
and C are constant mairices of the required dimensions. We assume have been considered in [7) and more recenty in (31. Note that a saddle-
throgout that (1,. ten) and (9,; ten) are orthogonal. zero-mean. point solutioito (6) is apoinlt(WHej, i) E IC t X% X9Lsadisfing
wide-sense-stationary random processes.ma i&Hqjq.In this paper we consider two general aspects of the problem of linear (at S(H) eg.)(' 9Lt~ Xi~H 0A Me)
state estimation in (1) and (2) for situations in which the second-order(7
Statistics of the noise processes are specified only to be within some()
nonparamertric classes. Specifically in Section 11 we consider steady-state
filtering for the angle-variable cuseof (1)and (2). We assume thatouteof That is. a point satisfying (7) consists of a least-favorable spectral par
the noise Processes R", tea) and A9; ten) is a white noise and that th (qj. oj)e X X% and their corresponding optimal (minimum-mean-
other has an unknown spectral density. A minimax meanI-square imnr square-error) filter H', which is the minimax-mean-square-error filter for
design criterion is adopted and the existnc of a solution for this 17XX In the following subsections we consider the existence of wuch

forulaio isdemnsratd fr evealuseful nos pcral classes. In solutions for situations in which one of (J,. te) or (9,; ten) repre-
Section III we consider the .ultivaiahl case of (1) and (2) in which (1,; sents white noise and the other has an uncertain spectral density.
t E ) and (9,; t EE) are both multidimensional white noises with uncer- . Wi P10CWS NOWs With UPICIPP104 Obseiueuo Noise
tan componentwise correlation atrices. A general minima theorem

which extends a result of Morris (51 is presented for this case and results Suppose, for now, that the process noise (1,; ten) represents white
are given which characterma a least.favorable correlaton structure speci- noise with known spectral height -- and that (,; teE) has a spectral i
fying the tmn fil tur. density q# which is known only to be in a class 1X L,(E) of nonse spectra

where L,(E) denotes the class of absolutely integrsble real-valued func-
11. ONa-DnnNwot4AL Fwal5tNO wirh UNKNOWN Noms tios onER. This problem now fits into the franmework developed in (3]. In

particular, we have the following result which is analogous to Theorem 2
A. of (3[.
A. GwralFw"WoonThee'm I: Suppose 41 is a convex class of Spectral densities each

sautisn the Paley-Wiener condition andX !(qe) where s(w)=1 for
to this section we consider the paricular clae of (1) and (2) in which all wen. Then (H'; e.e) with H' optimal for (ej. t) is a saddlepomnt
stnr I and A<0. Without Ioes of generaly we take C=1. For a solution to (6) if, and only if. ej solves

particular t> to, we consider the estimations of the state x, based on the
obevtino y,; to 4t.4) sod consider the steady-state case resulting iss Afe) (8)

from the amst to- -a. We assisme that the processes It,. tEE A) wl oGN
(9,; leE) have spectral dualities al and as. respectively. Note that the where the funcionalJ is defined by
mean-square filtering earo asciated with a time-invariant how filter

f hMumieW mvd Apil 2. 1W.5 M~i hsine 2. 1191, PpW fioaumni by whsArnfr.sso a .W b ~).~.,.lg1-~)e(~d 9
KPW818111 N Cb MIG f001901100 lbb15iiiiC@UM Thi "*p' bj where @. is the State Spectral density given by

offis, t ~f tO ~Cna 554iKOt
Tb, um m *A ft Dopewi at Weud 11mssot &a As Cand 'ROmIN t. *A Pahy-WM Thgs, infifbe to *A hOiN Ofe ME.. kttm

5s.iwiy.Um le d(mn.uaUm3 p,*Umt&Laasm 1?l.iWS4tW1Hr 41E'Iw
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o.(-=B'Zw'+A(10) model for such uncertainty. Other models can be treated similarly. For

e xample. the class consisting of all spectral densities with a given power
3Proof- It follows from the results of Yao [31 that, for any ag e9t, we which differ in L 1 norm from a nominal spectrum can be treated using the

have ~ a, 1 =K/)lep{(rK)J .) results of (31. Another widely used model is the mixture model which is a
min,9( : a, aj = K12(l -xp(- (r1K)~a#)) 11)modification of (02Z corresponding roughly to the case at - o and

He r= at. =(I -t)o where a. is a nominal spectral model with lao =2w.P. and c
where K=' B 111A 1. Since the quantity in (11) is monotonically increasing a degree of spectral uncertainty chosen by the designer. The solution to
in ,(a) the ,only ir' part of Theorem I follows immediately. The "if max.,AJ~a) for this latter case is given by (14) with the third alternative
part follows as a straiagstfoward modification to the proof of Theorem 2 never occurring.
of [3! Before considering the case of uhknown process noise statistics. we note

r Theorem I implies that a inimax. state estimator for this case can be on further point In particular, suppose the Proces (0,; ten) is mean-
f sought by considering the maximization problem of (8). With respect to sqar conitinuous but does not have a spectral density. It follows from

this problem we have the following result from [4. Proposition 21: Dochner's theorem (Wong (6D) that (C, teR) has a spectral measure m#
Theorem 2: The functional J( a) is upper-semicontinuous on L,(R) and and from the Lebesgue decomposition theorem (see Royden [Ilfl) that we

thus achieves its maximum on any compact subset A. can always write ifig=1,+sp where to is absolutely continuous with
Thus, if 'X is compact. the existence of a solution to (6) is sasured. repect to Lebesgue measur and so is singutlar with respect to Lebesgue

Compactness is, of course, only sufficient (and not necesary) and may be measurse. -Moreover, Sisyders (121 has shown that the inimum filtering
a somewhat restrictive condition here since L I(R) has noncompact subsets error mm NmextEx, -1,1') depends only on to. Thus, for any class of
which are of interest as spectral uncertainty models. spectral measures. we miht restrict our attention to the class consisting of1'Example ISpecrral Band Model): A spectral uncertainty model for their absolutely continuous parts and Theorem I may Still apply.
which the robust nonicaual filtering problem has been solved is the .w OheonuNseit icrmPaaNoe*
spectral band model. This is the model for spectral uncertainty used by
Kasmm and Lim (11, and for our case is given by We now consider the alternate case in which the observation notse (,;

teEl) represents white noise with spectral height 0>0 and the process
~t" a a(i.~~au)~.(ii) ER.(2w'f .(.~d~=P, noise (it; teE) has spectral density at which is known only to be within

L La I class 9. We assum that 9C s such that the classe= (f(i) = a()(X w2 +
(12) A 2)-', a69QC is a subset of L,(R). Within this context we have the

following analog to Theorem 1.
where P, < = is a fixed noise power and aL and at, are fix~ed power Thkearem 3: Suppose 9C is convex and is such that the members of E
spectra satisfying the Paley- Wiene condition. The solution to the prob- satisfy the Paley- Wiener condition. Define L= (ii) where o (iW)=@ for
lem of (8) can be found for this case by applying the results of [31 all we R. Then (H';. aja) with H' optimal for (a, a)isa saddepoint
concerning the relationship of the mimmax filtering problem to an solution to (6) if, and only if, aj solves
analogous problem in hypothesis testing. It follows from the results of
Section III of [31 and from the concavity of J that the spectrum .,j max 1(a1) (S
maximizing J over O1t of ( 12) is given by ohr h ucinl1a sdfindb

aj =2wPq ( hr13)fntinlI@)i efndb

where q' is a probability density in the class !P0(p~p q(2wP0); 1a=2)~~lgl#h)5/9&24A)] * (6
a, e A ) thai is least favorable (in the sense of Huber f9j) for testing %Y Proi#f We note first tafraya C ehv w & 8
versus the probability density p, =a/~,A recent result of Kassam tafray~ ~C ehv seYo()
[101 gives q' for this case, and thus it follows straightforwardly from [ 101 rain, rk(; vi. of)I=(eat). (17)
and ( 13) that a is given by ff EX

a~(~.): a@ a(W~)<a,() Thus, the ,only if" part follows immediately. To show the -if" part.
:,to, n,(i) ia(w)Gnao(jw) -avw) (14) suppose. !j 6% solves (15). Notehat the inquality log(l + x) -Cx and the

at, W): fa&)>t(i straightforwardly from the concavity of log(l +x) on (0, *) and the

where a is a constant chosen to satisfy Jmag = 2rPo. Note that al monotone convergence theorem (Royden P ID that

members of 'X of (12) must satisfy the Paley- Wiener condition, and thus 81(( 1 -)o 1 +tos)/8 1.o = (2w) 102
Theorem I implies that the mimmax filter H' for this case is the nimurum
mean-square error filter for the pair (ei. oi given by (5) where og(I) =Z If [(.2+2+~,~) ( 1 w-jiiju (
for all w.,EE

Note that, in general. ej of (14) will not yield a rational observation Suppose N'" is the minimum mean-square error filter from (S) for the pair
spectrum @,,. so that the minimax transfer function H' must be found (j i.W ae(a 8
numerically. However, since H' represe ts the causal prolection of the ~e) ehv Yo11
noacausal estimate of x, (i.e.. the estimate based on (y,; 9lEE)), some IlW~wg9'+~~.,/9s2A)1:~ EG. (19)
nsight about the stricture of Hi' is derived by considerng4 the correspond-
ing noncausal estimate. The transfer function of the nioncausal estimate Thus, (3), (18), and (19) imply
for the spectral pear (~* is H.,e(, +oi) where a, is from (10).
Now that this transfer function represents a imnmax smoother for this 8I( ),+e)St,~1' 4 i)~f' 6 e)(20)
case (see I I . Using (14) we goie that ff., is given by

H.A ~ zra{H ).m a~k Since 1(e) is concave and eg mauimizes Air) over A', we must have
di((l -i +to5 )/8t.. 0 G0for sifi, VX Thua(20) givesdhe left-hand
equation of (7). andl WH' ej. oil is a saddle-paint solution to (6). This

where k=(l'I I + HLse/ 60*,t) and HL @ a,a, ). Thus. completes the proof. C
H. ;w H., 0 lfv. and H., is les sensitive than eother HL or Hf& in regions Theorem 3 implies that the solution to (6) my be sought for this case
where HL is arWe or HLI is small NOte that if 10W ..)'" for all Wen, by seeking a solution to mex,1 (@,~. We nom that. I is concave and
then H., is effectively a version of Ht~ with the gaon limited to k in regions. can be shown to be upper-semocontinuous. Thus. the solution to 46) is
wbgre HL~)> k. assured itfO is compact Again, if (1,; tGE0) ca have a spectral measure

The above example illustrate the structure of the mamas filter for the which is not absohudiay contiguous with respec to Labeupse measure, the

spectra-bad uncertainty model wh bas been applied freqluently a a whiso-obeervabowmase case might stil be treated via Theorem 3 by
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retrcin atenton to the absolutely continuous parts of the relevant rb( H . ) i E~t~ (25)

As an example. it is again of interest to consider the spectral band where g is , Positive semidefinite matrix.
model discussed above. However, it is more reasonable to assume that the The Laphace transform of (1). the assumption HeXJ * and the asuap-
power in the state process (x,; tER) is known rather than the power in tion that (11; r6R) and (9,; iCe) are orthogonal allows the weighted
the .process noise (1,; tRe). Thus, we consider the following modified ma-qur ero 5 to b written as
version of 0121:

(2i)'2f t~)(~~
2 ... ')ds=P,} (21) g.(-iA * -(~)jd

whereaLl w w- -. 4-) -and a (xw A2 4-~' satisfy the Paley-Wiener .+QJ'* H(s)9H(-s)Td,1 (26)
condition. Then it is straightforward to show that the solution to max /(a)

is gien fr ths cae bywhere the superscript T denotes the transpose of the indicated matrix I

if~(~s2  A2)<L( )denotes the n X n identity matrix, and tr denotes the trace of the brackete

o.,.)= $(~.4~; fe~u.~(s'~ 2)~o,()(22) When 32and0ee ixed the filterhich minnes (26)overC 'is
ad-) if (W2 -A' >a,(w)given by the steady state Kalman-DBucy filter 1161 (independently of the

ifA~2 4A)>@t(u)weighting matrix Q):
where 0 is chosen so that (2 r) - 13f % (w.Xu w' +A') 'dw = P, 'The * =AxKy--
miunimax filter is then given by (5) for the pair (. .o). X ,+ y-C , (27)

A4nother situation of interest here is the case in which the process noise K= PCTO - 1 (23)
is white with unknown spectral height. That is. we have

=A P+ PA4T + PC% -'CP. (29)

A=(a~a4w)=E frallwei ansom _12(a~j) 23)The transfer function of the filter defined by (27)-(29) is given by
where ORa-Kh< 3e. It follows immediately from (16) that, for this case.
vtw) =b. a solution which is mom orless bvious even withoutTeorem s) s,( KCr K30
3 Note that a similar result would be obtained if we allowed A~ of Section The corresponding minimum weighted mean-square error is
1l-B tohbe of the form of (23). In fact, we note that if either A of Section
11-B or'( contains an maximal elien I E 6-e.- an eleet GE 9L (or ' 6(WE )=)r(?(3 )
such that Gwt:(Wj_ OW)for al ~E 0 and for all a6 etA (or !KH )),trQ(Z) (3e1)h
corresponding least-favorable spectrum., or ej will he the maximal where the dependence of the error covariance matrix on X and 9 is
clement This problem is related to the notion of a bounding filter which denoted explicitiy.
is an alternate approach to treating problem of unknown noise statistics Often the second-order statistics of (4,; tEDt) and (0; tED) are not
see Nahi and Weiss [131. (141 and Greenlee and Leondes [151). Unfor- known exactly. A common representation of this type of uncertainty is

tuniately. maximal do not exist in many models for spectral uncertainty that I and 0 are cotaasnd in sets XcS' and LC:S'1'. respectively.
ifor example, the spectral band models 112) and (21) do not generally The problem to be consuLs .: -is to find the best filter in X ' in the sense
contain maximali. However, for white-noise models the role of extremal that this filter mrinimizes the largest weighted mean-square error produced
points is more important as will he demonstrated below in the treatment when 1 and 0 range over all possible values. That iw we wish to solve the
of the multivariable filtering problem with white noise of uncertain minuts problem
componentwise correlation in both the process and observation.

min max S(H; X. ). (32)

11l. %riudjsx STATE ESTIMATION FORn MULTIvARIAZU SYMSrs

S . Foufsadation R. Existenc and Chwwrctmzimon of a Saddepuns

The purpose of this section is to consider the state estimation problem Two important results concerning soluttions to the nmna problem
for the multivah"bl form of the linear stochastic system (1) when the formulated in Seetion IU-A are presented in this section. The first result
second-order statistics of the process and observation noise are not establishes an eqivalince betwee a saddlepoiat solution to (32) and the
known. Let the dimensions of x, J, and y, (n, m. and r. respectively) be Kalman- Bacy flter corepodig to aparticulr(Z 0) pair. The scn
arbitrary and assume that (1,; tEDJ) and (0,; 16E1) are orthogonal, result establishes the existence of a saddlspoint when the sets 1.1 and A
zero-mean, wide-sense-stationary white noise processes with covariances awe convex ad compact.I
E(,T) = 8(t -r) and E(0,0,1) = 8(t - i) where I and arwe svmmet- To obtain these results. we will need the followitng well-kinownthoe
nc positive definite matrices. Also. it will he assumed throughout this (cf. [ I 7 which establishes the fact that the existence of a saddlepotnt is a
section that (A. C) is an observable pair and (A. B) is a controllable pair. necessary and sufficient condition for the mamma problem (32) to be
This section will derive the mininsa state estimator when the matrices!Z equivalent to the corresponding maximas Problem
and 9 are known only to be contained in subsets of the convex cones of
positive definite matrices S" clll" and S, "CR', respectively. maxHmin (33)

We will restrict ourselves to consideration of causal, linear time-invariant ZGedN1L
filters which produce a wide-sense-stationary error process

" i X, ~~~~~~(24) 7bMn4:1br Thffms a trplet (NO 2,%0)E UX (X'KX atisfy-
when 1,; e aof sig the seddlepomt condition

complex valued otx, matrices of Laplace transforms of all 3uch filters. O 1 . 0.),K( He; Xe..%),Kr( H: 4. 00)
For every HrE'3* and for every!I and 9 the weighted mean-square Z6(9E 3)
estimation error is defined as H ' ,16N04A ()

i the "_0__hetobeth
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if andl only if the values f (32) and (33) ame equal. Moreover. a tiplet tr( oZoKO)(2v, i'tr(J2f' [I-(A-KOC)f i
satisfying (34) is a solution to (32) and (33).

Theorem 5 provides the desired charactezauon of a saddlepotnt.
Theor-m 5: Assume that there exists 31 E! and o EA which sausfy -Ko rK([-si- (A r.oC)l-ds}

tr( rZoZ})Qtr{5rZoB )} vZE- A (35)

tr{ KjrZO K,@)Qit ~r{ Z KO~O, VOEl (36) =(2ffJ)I'tr{Q (s)@i(-s)Tds}. (45)

where KO is the Kalman- Bucy gun corresponding to So and 0 defined
by (,8)-(29) and Z0 is the solution to the equation Thus. (36) implies (38) is minimized over A which establishes

(4 -KC)r Zo+Zo(A -KoC) Q=0 (37) (Ho; .@)(Ho; Z.Oo). (46)

Let Hum) be the transfer function of the Kalman-Bucy filter (30) Inequalities (43) and (46) together with the aforementioned separability of

correponding to-- and 0o. Then(Ho,"o.@0 ) isasolution to(32) and (38) imply

(33) &(HO; --.@)<&(HO; ZOo). (47)
Conversely. suppose that (HO.1 0 , - 0 ) is a saddlepoint for (32). "T;hen

Ho is the transfer function of the Kalman- Bucy filter (30). and 4 and @0 The upper inequality
satisfy (35)-(37).

@,,,el &;( HO; -7, 0o) '(H; -2%. 0o) (48)
"SWu fewv. Consider the maxin problem (33). For fixed - and

0. the solution of the minimization is given by the Kalman-Bucy filter follows trivially from the fact that H O is the minimum mean-square error
(7)-(29). The filter transfer function H(s) is given by (30) and the estimator. Thus. (Ho. .o, 0) is a saddlepoint for (32) and (33) and, by
mean-square error is given by [see (26)J Theorem 4, also a solution for (32) and (33).

Necessir: Suppose (Ho 0 ,190.o) satisfies (34). By Theorem 4.
2 -r n rI -) -A-(Ho,0,o.o) solves (33). Hence Ho is the transfer function of the

Kalman- Bucy filter Let P( Z 0. = E({,r) when (1. 9) are the second-
order statistics. Then P( 1.9 ) is given by

•Zr-sI-.l-r[i-H(-slC]rds 0=(A-KoC)P(Z.@)+P(Z.0)( A-KC)
T
+8-BT+KoOK

r
.

(49)
Q'_H=(s)o(-s)TdiJ}  

(38) Thus. the difference

Since (38) is additively separable in and 0. the joint maximization aP'4 P(-..)-P('-o. 0o) (50)
required by (33) can be carried out separately. Is given by

First. consider the process ose. Assume 1O satisfies (35) and (37) for
fixed 9 The solution to (37) is given by O=(A -KC),.%P+.P.4 -KoC)r5B(r-Z )Br-Ko(@-Oo)K r

Z@ =jew A -KqC'r1Qe A -KoC, dl. (39) (SI)

Thus. . P is given by
Substituting 39) in (35) and using a simple trace identity gives

tr{I~o5Zr{Qj e A K.CBIBYi~ocrd} (40) Pj(-elaT. arK9 )K].Ix, 5
Jtr( r~i t QO(52)

by Paseval's theorem. (40) can be written a By (34)

sr5' 05)~ 2 u ~ 'atr (QA P) =&(HMO;;1, ) -( HO;&0 0 ) 40. (53)tr (,,rzo,) = (2,,)-, tr ( Qf,-[,_ ,o)- A.o. =-,o K.d-(oC-).o.= ,,
After substituting (52) into (53). using a simple trace identity, and using

(-ul -o( A -KoC)] rd, (41) the definition of ZO ((39) and (37)1. we obtain

tr(ZO(Z-Z1))+trZ(O(O -0 0 ))0 V0. @EA (54)

In particular. 1 = 0 implies (36) and 0 = 00 implies (35).
[s-(A-Kc) 1-'=[-(ui-4 * c )'- o(,I-A5' Thus. we see that conditions 35)-(37) are equvalent to the existence of

[-f(s)c](sI-A)-'(42) a saddlepont. If such a saddlepoint exists then the minmmax filter is
simply the Kalman-Bucy filter for the I11. 0 ) pair which satisfies

Substituting 442) into (41) ives the first ten on the risht-bsd side o4 (35)-(37). This result can be used to establish the existence of a saddle-

1) Then (35) implies (38) is mmissad ovr A. which establishes point
Thnm, 4: If AY and '. are convex. compact subsets of S- and
'"( HO. 1.0)4K( M"; 10*) (43) S'. respectively, then a saddlepoint solution for the minimax problem

132) exists,
Now. asame I is fxet 0 satitis (36). (37). Substituing(3 intow Pre. The proo shows that a solution to the maximia problem (331

I 36) and mpulating the tram ves est and sausies conditions (35)-(37) of Theorem 5 Dv (26)-(31).

min. A; .- X(.o0)-,,t(Q,(, 0)) (53)

Aga usng Pavals oe. w obt exists . a and ae o act. a solution o 33n

- - " '
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Since &(H;1@) is concave in Iand 0 for every HEXC [wee(26)]. Tben each set has amaximal elementt miflHeic4&(H;.0) is also concave in _7 and 0. Hence, dhe Frtchet
differential of (55) must be nionpositive in every direction into the set Zo=m+;1(63)
! XxX Let SP(1I 0;1_3.0 denote the Fritchet differential of P 0 = 8N + (64)
evaluated at (Zo. 80) in the direction (% Z. 18). By (29).

r+ rand the minimax filter is the Kalman- lucy filter corresponding to
0=(.4-K 0C)6P+8P(.4 -KOC)T+ 1~ + K.1@ Ki (56) (70. 00). 0

wher th deendnceof S on-T.0. 1-7 an 40 as eensupresed. Another reasonable model for uncertainty in die second-order a priori
wher th deendnceof 5 on1. . .Z. nd ~.@ as eensupresed. statistics of system (1) and (2) is that the spectral density matrices are a

Thus. SP is given by convex combination of two possible nominals. Let

6p= fe.4-xC~j[B4iZBr+K.1eK]r j4KCrd,. (7 E (IZA14l-);1>0 2 0. [OJ} (65)

Using (57) and a simple trace identity, the Frfchet differential of (55) Dt (0:80 1 ~+0(l)02;81>0-%2>OYEO. 1]), (66)
becomes Suppose that (Z0,19o) satisfy (35)-(37) and let X0 and yo be the corre-

tr{QP(10@0 ; Z, 0)) tr{B~oBA} 4 Tr( ZOKA@1 sponding constants defined by (65) and (66). Then (35) and (36) become

(58) (XA.A)tr(BTZ.B(Z'r -3)) 40 (67)
where Z0 satisfies (37).

Considerain arbitrary point (Z,80)EDX9L. Since ''And 0tare convex, (7y 0)tr(KOZKO0( _02)) 40. (68)
the line segment oinng (Zo, 0) and (Z. 0) is in 9CXT and hence. Conditions (67) and (68) imply that (35) and (36) can be satisfied with

A.1 --. 10)= Z0, a- 00 (59) strict inequality for all Z--thE0 and 0*00 only if Zia and @o are
enadpoints of the set. Otherwise, we must have

is a direction into '(.'x'It. Substituting (59) into (58) and requiring (58) to
be nonpositive gives tr{BTZ.B( Z, -Z2))=0 (69)

tr rO( -rKr~K,@ @) O (60) tr{KjrZoxo(0I -0 2))1=0 (70)

The choice IZ@(.~ in (60) gives (35) while the choice (Ze= where Z0 and K0 depend On, A0.
0Z.) in (60) gives (36). Thus, by Theorem5S. (Z4, 0) is a saddlepoint

for (32). 0 IV. SUMMARtY

C. D,.rcusion Minimax approaches to two problem associated with the estimation of
the state of a linear stochastic system have been considered. The scalar

Theorem 5 provides an equivalent characterization of a saddlepoint in problem for which the noise spectrum is uncertain was examined in
terms o. quantities associated with the Kalman filter of a particular Section 1I. The minimax filter for this problem was characterized in terms
lES), @0) pair. Theorem 6 establishes the existence of a saddlepoint when of the least favorable noise spectrum. Section III considered a similar
-X and --1 are convex and compact. Taken together. Theorems 5 and 6 problem for the multivariable estimation problem when the noises are
show that the minimax filter which solves (33) when tX and A% are convex white processies with unknown a priori second-order statistics. The saddle-
and compact is given by the Kalman filter correspiondig to the (ZO. 00) point solution for this problem is given by a Kalman- lucy filter for a

pairwhih mximzes r(Q(!.)~.least-favorable pair of componentwise correlation matrices.
There are two important cases for which the conditions (35)-(37) .

provide explicit solutions. The first occurs when the sets IX and A' have .
maximal elements.- and the second is when the sets ~ n r ahREFERNCES
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I .N ANALYSIS OF THE EFFECTS OF1 SPECTRAL UNCERTAINTY ON WIENER FILTERING

[Spectral Uncertainty in Wiener Filtering]

by

Kenneth S. Vastola and H. Vincent Poor
Department of Electrical Engineering and

the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

Results from an extensive study of the performance of Wiener filtering
under spectral uncertainty are presented. For a variety of spectral
uncertainty models the Wiener filter is shown to have unacceptable sensi-
tivity to even small deviations from those signal and noise spectral
densities which were used to design the filter. Performance of a robust
filter (designed to have the best possible performance when the uncertainty
is worst) is also examined. In most cases the robust filter's insensi-
tivrty to spectral uncertainty makes it preferable to the traditional
Wiener filter.
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I. t

The solution to the traditional stationary linear (i.e., Wiener)

filtering problem requires exact knowledge of the signal and noise spectra.

Often in practice it is unrealistic to assume such knowledge. Despite this,

Wiener filters are widely used for steady-state filtering. In this paper

we consider the performance of Wiener filtering when the signal and noise

spectra differ to a small degree from those ass,-d in the design process.

In particular, in Section 2 we consider the Wiener filter for a

particular signal and noise spectral pair which would be natural to assume

is the true spectral pair. We then look again at our circumstances and

model the uncertainty we might have about our choice of spectra. In so

doing we find that the potential exists for totally unacceptable perfor-

mance degradation in the presence of even small degrees of uncertainty.

In Section 3 we consider filters termed "robust". These filters are

designed to have the best "worst-case" performance over uncertainty classes

|i of spectra. The method of design is due to Poor (1980) and was based on

the work of Kassam and Lim (1977). As we will see, the advantage of these

robust filters is that they are least sensitive in the sense that they have

I the smallest possible maximum deviation from optimality within the constraints

imposed by our uncertainty.

Of course there is a trade-off involved in robust filtering. While

fthe robust filter has better worst-case performance, we cannot expect it
to have optimal performance should our original choice of spectra be the

true ones. In Section 3 we will consider this trade-off as well.

I
!
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2. 7he Sekt4itivitu oj the WieineAr FZteA tCo SpecZ'taZ UnceA-tainty

The mean-square-error (MSE) for linear filtering of a signal inuncorrelated

additive noise, where both signal and noise are modeled as real, zero-mean,

second-order, wide-sense stationary random processes, is given by

e(a,v;H) 'J. [a(W) I-HC(W)i + V (w)IH (w)I dw ,(1)

r
where H is the transfer function of the filter and i and v are the power

spectral densities (PSD's) of the signal and noise, respectively. For a

fixed signal and noise spectral pair, (a,v), e(a,v;H) is minimized by

the Wiener filter

H (M) a( ) v(u) (2)

and the minimum MSE is

e (a,v) e(a,v;H*) H - *() M v(w) dw (3)

Unfortunately, as we discussed in the introduction, it is often the

case in practice that our knowledge of the signal and/or noise PSD's is

inexact. If the a and v we choose for designing H are not the true spectra,

I then our filter will generally have less than optimal performance. To

illustrate the degree of performance degradation that can result from such

mis-modeling, we consider the following examples. The numerical results

jpresented here and in the following section comprise a representative
selection from an extensive numerical study (Vastola, 1981).

I"The p-Wit ! W4. . For a number of applications it is natural to

1-
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assum that we have a narrow-band first-order Harkov signal in wide-band

first-order Harkov noise, i.e. that

0 aw2 +W2

S
and (4)

V 22 N
(W) N- a 2 + W

N 2 2

where a a are the 3 dB bandwidths and and vN are the powers of the

signal and noise, respectively. For Fig. 1 we have aN = 10 and a a 1.

In the figures of this paper we have used a measure of performance

which we refer to simply as output signal-to-noise ratio (SNR). The purpose

22

of Wiener filtering is to minimize the MSE,E(fS(t) - 5(t)] ]
between our estimate s(t) (i.e. the output of the filter) and

2+22

the actual signal S~2 t). Since the ouwers of the fle a ewitna
wSere + S~t - SNa )ehe us d nddthsga poeavdd bytev sanotu

axis is 10 logs, 1 0 v/vy. the input S 1 in dB.

The top line in Fig. 1 gives the performance of the Wiener filter

designed using a and v of (4) in equation (2),when a and v are, in fact,
0 0 0 0

the signal and noise spectra which occur. For this case it is straight-

forward, via equation (3), to show that

2 2
(a'V )/V5  a - + a aN)(a 5r + a

where

r 2

Now, suppose that the only information about which we are certain is

'1- e %)v - ____:,~ O) s O
N



I,
Sthe powders of the signal v S and the noise VM and th.at we have estimated

w1th sufficient accuracy the fractional power of each on the set

S~ - 14 real::,), L 1.1. W;e denote the signal and noise fractional powers by

an by %

P , respectively (a.&. (2r) 12S i(w)dw - psv ). In particular, for

t:he exple considered above, we have PS M .5 and pN a .063. If these

total powers and fractional powers are all we can really be certain of, we

would like to know how badly the performance of R can deteriorate. Theo

bottom line in Fig. 1 gives the worst-case performance of R 0. The middle

line represents what we can do trivially for any pair of spectra by using an

all-pass filter (H S 1) when the input SNR is positive and by using a no-

pass filter (H - 0) when the input SNR is negative. Thus we see that if

the spectra are actually first-order Markov then our filter does well, but

if not we can do ai.gni4ir-ntyu w'ue than ttivia JZttng.

Finally we note that uncertainty classes of spectra given by assuming

exact knowledge only of the total and fractional powers are called p-point

classes and have been studied as models of spectral uncertainty by Cimin±

and Kassam (1980). An analogous uncertainty class for probabilities used

in robust hypothesis testing and robust detection has been examined by the

authors (Vastola and Poor, 1980) and by El-Saw, and VandeLinde (1977, 1979).

The c-contamination c.W . Suppose that we again have a particular

spectral pair (a , o) which we believe to be the true spectra, but that we

also have a general sense of uncertainty about our choice which we model by I
an e-contaminated class; i.e., we assume we know that the true spectra

satisfy (a,v) Si x 7 where 0 L e L 1,

I 'I
_ __
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and

(V %'I(W) SS (l-cv (ai) + cV'Qu0) WOl, fv(W) duw V f (w) dw}

Classes of this form have been used extensively as general models of uncer-

tainty (Tukey, 1960; Huber, 1965; Kassam and Lin, 1977; Hosoya, 1978).

Fig. 2 gives the performance of the Wiener filter H designed via

equation (2) assuming a narrow-band (as - 1) first-order Harkov signal in

wide-band (a 1000) first-order tarkov noise. The upper line gives the

performance of this filter when these are the true signal and noise. The

lower line is the worst case of this filter over the uncertainty classes

in (5) with a0 and v given by the above choices and withc = .1. We see

that, for values of input SNR near zero, the worst case is better than trivial

filtering but still much worse than optimal (about 8.5 dB); for values of

input SNR greater in absolute value than 60 the performance in both the

nominal and worst cases is the same as trivial filtering; and for all other

values the worst case is worse than trivial filtering.

An e-contaminated 4ignoLt n wkit noZe. Fig. 3 shows the nominal

and worst case performance of the nominal Wiener filter for the signal

uncertainty class d in (5) with c - .1 and ao first-order Markov with

.a 1. The noise is white noise with no uncertainty and the horizontalas

axis is actually the ratio of signal power v2 to the noise level N /2. Note
s 0!

that the worst case is bounded above by 10; in fact, for any choice of e,

it is bounded above by 10 log(lO).

As noted above, the optimal and worst-case performance of Wiener

~ - ___ -- - - ____ ___ ___

Li
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filtering under various conditions has been examined extensively for several

I uncertainty models and for a variety of signal and noise parameters

(such as bandwidth and power). The above examples are representative of

the sensitivity of Wiener filtering to deviations from spectral assumptions

I. which were found in virtually every case.

F 3. Robu t WieneA Fit vA

To remedy the problems of Wiener filtering sensitivity discussed in the

preceding section, we consider the following robust filter design which

was developed by Poor (1980) based on the work of Kassam and Lis (1977).

A most-robust Wiener filter (Poor, 1980) is a solution H. to the

game

min sup e(o,v;H) (6)
H ( 6, )e dx7

where &0 and ? are classes of spectra representing uncertainty in the signal
I

and noiserespectively, and where e(a,v;H) is given in (1). Note that

; since the sup in (6) gives the least upper bound on the error, R; is a

filter with the smallest possible such upper bound. In other words R  is

least sensitive to worst case uncertainty.

j A pair of spectra (OLVL) is least favorable for Wiener filtering for

the spectral uncertainty classes d and It (Poor, 1980) if

(,; < ,L; )  (7)

for all a e o, v Z where EL is the Wiener filter for the pair (aL,.L)

) ~as in ()

It is straightforward to see that if (OL,aL) c d X 7Z is least favorable_L L
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for Wiener filcering fordP and then the pair ((L,vL),aH) is a saddle-point

solution to the minimax game (6). That is,

LL
!sup e(a,v;H L) =e(aL,v L;RL) - min e(a L, VL;H). (8)

We see from this that if (aL,VL) is least favorable then RL is a most-robust

Wiener filter.

Thus we see that if we can find a least-favorable pair then we can

design a most-robust Wiener filter. One of the methods developed in

(Poor, 1980) for finding least favorable pairs of spectra (and hence most-

robust filters) involves an analogous concept in hypothesis testing: least-

favorable probability density functions (PDF's) for testing one set of PDF's

against another. Least-favorable PDF's have been found for a variety of

classes of PDF's (Huber, 1965; Kassam, 1981; Vastola and Poor, 1980). If

2
every signal spectrum in of has the same finite power vS and every noise

2
spectrum in 71 has the same finite power vN then we can define classes of

I. PDF' s

I a a(w)/ 2wvS, 2 ,ca

and

N fNlfN,(w) - v~w)/Zlrv2, 'EM

and possibly apply the following (Poor, 1980, Corollary 1).

2 2f
Theorem. If oP and 7 are convex and have constant powers vS and VN, respect-

ively, and ' and qN are least-favorable PDF's for S versus N

then a42 V~q and %A 2rr qN are least favorable spectra

for Wiener filtering for d and 7.

This theorem allows us to construct most-robust Wiener filters for the

L
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first two examples considered in Section 2.

The p-poixt azuz. It can be seen from the above theorem and Vastola L
[and Poor (1980) or from Cimini and Kassam (1980) that

PsV2
) 2 for w e S2 2PsVs + p~v

(1-ps)v 
2

2 2 for w e Sc

(l-ps vS + (1-pN)v N

and, hence,

U PSPN (1"Ps1 4-PN f

HR) PS r + pN (1-pe)r + (1-p for all N),v) x,

where r v2 /vN, the input SNR. In Fig. 4 we have superimposed onto Fig. 1

the performance of HR (the Middle line). It is clear from Fig. 4 that,

unless we are extremely certain about our choice of o and v, HR is prefer-
,

able to H
0

The c-contXaJated cLLA. For the classes in (4) it can be easily

( seen from the above theorem and Huber (1965) that

k' - c'r/(c'r + 1) for H4 ) !-k'

0 *(W <HR ) Ho M for k' < Ho 4 ) <0

k" i c"r/(c"r + 1) for H (w) Z k"

where 0 4 c' < c" - - are constants given in Huber (1965). It is interesting

to note that the robust filter HR has this same form for several other

RA,1-L
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4uncertainty models (Poor, 1980; Huber, 1977). Also note that this will

not have constant MSE over W x ,l as in the previous example. In Fig. 54 "
we have superimposed onto Fig. 2 the performance of H when the true spectral

R

pair is (aov o ) (the second line from the top) and when the true spectral

pair is CoLvL) (the third line from the top). Recall from the definition
of (GLVL) that the latter is the worst-case performance of For this

Oos-cf perzomanc HR.

example c' - 1/c" - .125.

Unlike the preceding example, the praferability of the most-robust filter is

not so clear-cut. If one were relatively certain about (aOvO) being correct then

H0 would be the better choice; however, if not, and if the guaranteed level of performance

overd*x I (given by the third line down) were adequate, we would likely choose *.

An e--ontaminated 4inatin akite no-,oe. Clearly the above theorem

cannot be applied to find a robust filter in this case since the noise has

infinite power; however a more direct approach proves fruitful here. First,

we may restrict our search to H c L2 (dw), the mean-square integrable functions

on R, the real line, since all others have infinite MSE regardless of what

i is (cf. equation (1)). Secondwe have, for all H¢ L2(dw),

2 2

:(sup * (a ,j ;H) su 2rj l1-H(adl 2 -) ''W~ + a'(W)) + IH(W)I 2 do

-e((l-0)a0 9 Mv; + e sup j'IaHwI(w) dw

= e((l-)aoV ;H) + Ev2

The last step is true because a' is assumed to be integrable and H a L2 (dw).

2

I!
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fClearly this, equation (2), and (6) (the definition of HR) imply that

,R

*1E~ 0W
(H-I)o (w) + N /2

Recall that Fig. 3 showed the performance of H* in this situation in
0

its nominal and worst cases. If we superimposed the nominal and worst
I*

cases of HR onto Fig. 3, as we have done for the other examples, we would

find no change; i.e.,up to the accuracy of the graph the nominal cases and

worst cases of H0 and HR are the same. In fact, they differ by no more than

.01. It should be noted that this is a singular

example and the unusual performance is due to the infinite power of the white

noise, not to the "very wide bandedness" which white noise is generally used

to model.

IV. ViAcu6zon and Conc.tuion

As we have discussed above, the results presented in this paper (with

the one exception of the white noise example) are representative of our

findings in a wide variety of cases. For example, although it is a much

harder case to solve, we have developed numerical results for causal Wiener

filtering of an c-contaminated first-order Harkov signal in first-order

Markov noise. The theory of the causal case has not been developed in the

same generality a the noncausal case; however, this specific example can be

treated using the results of Poor (1980) and Yao (1971). In Fig. 6 we have

presented the results for this causal filtering example with e - .1, as a 1

jand a. - 1000. For comparison we have also included Fig. 7 which gives the

I.
4, t-
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results for the corresponding noncausal case. Note the similarity between

the two figures. Again, this is indicative of our findings over a wide

range of signal and noise bandwidths and E's.

Other situations we examined in the noncausal case include ones with

j and/or v as second-order Markov (i.e. having the form 4a 3v 2/( 2  2 ) 2)

or using bandlimited white noise. The results for all these cases were very

similar to those already presented (e.g. Fig. 5).

Of particular interest is the case of an c-contaminated first-order

Markov signal in c-contaminated bandlimited white noise. Even when the

bandwidth of the noise was extrmely large (e.g. 10 6) the results were similar

to the other cases and unlike those involving nonbandlimited white noise

(cf. the remarks at the end of Section 3).

In summary, the Wiener filter can be undesirably sensitive to small

deviations from assumed spectral models. Furthermore, while there are

enough specific cases to the contrary to make caution advisable, we have

found for a wide variety of situations that, when spectral uncertainty

exists, the robust Wiener filter is generally preferable to the traditional

Wiener filter.

I i

I

I
I|
Ij!

___________________________ -- ~- -.- - ~ ______ -.
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ROBUST LINEAR ESTIYATION OF STATIONARY DtSCRITE-TIM SIGNALS

Kenneth S. Vastola and H. Vincent Poor
Department of Electrical Engineering and

the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urban.. Illinois 6L801

ABSTRACT consider specific models of signal and noise
and present sa numerical results. Finally in

A minim-x formulation of the problem of de- Section 4 we discuss these results along with
sianing discrece-time smothers, filters and some possible topics for further study in this
predictors when knowledge of the signal end noise area.
spectra is inexact is presenced. A result is

gSven which converts the minimax problem to a 2. TUE GENERAL FORNJWUTIO
maximization problem. Explicit solutions are

Sngiven for the case of a contaminated wide-sense Throughout this paper we denote the set of
M arkov signl in white noise. The results of a tutelar* by Z and we assum that we observe a

numerical study of the inherent trade-off in- realization (y(k)IkE Z) of a random process
valved In robust filtering are given for this (Y(k)[kE ZI given by
case and the preferability of the robust filter
is demonstrated for a wide range of input SNR's Y(k)5 ,(k)+N(k), k E Z, (2.1)
and signal bandwidths.

where (S(k)IkE-Z3 and (N(k)jkE Z) are wide-sense
I. iNTRoOuc'noN stationary random processes which are uncorre-

lated with each other. We denote their spectral
In the traditional formulation of the linear measures by mS and min, respectively. e lso

minimz.-mean-squar-error (b0S) signal eastima- assume that the mean of (N(k)I jE Z7 is zero.
tion problem, if the signal and noise processes Our purpose is to form a linear estimate of a
are uncorrelated with each other, the solutions linear function of [s(k)] (the signal) from
to both the causal and noncausal versions of this (y(k)) (the observation).
problem depend only on the power spectra of the
signal and noise. In practice, however, the By a spectral measure we mean specifically
spectral ?roperties of the signal and/or noise a nonnegative Borel measure (i.e. a countably
may not be known with complete certainty. To additive measure on the Borel sets, see [4]) on
account for such uncertainty several studies have U, the unit circle of the complex plane. Given
investigated possible designs of robust filters, such a spectral measure m we denote by Hn(dm)
Robust filters are filters which, while not the Hardy subspace of L

2
(dm), which is the sub-

necessarily performing as well as the optimal space spanned by (eiWIn - 0,1,2,....) (4]. For
!ilter when the signal and noise spectra are as r estimation problem discussed above
anticipated, do not experience a significant de- H9 (d(uS +m")) is the space of all mean-square
crease In relative performance over som class gntegrabLe causal transfer functions, while
of spectra "near" the anticipated pair. On the LZ(d(s +M)) also includes the noncausal ones.
other hand the so-called optimal filter (i.e.,

the one designed based on the anticipated model) Let Dk) represent a "desired" linear oper-
nay experience dramatic degradation of perfor- asion on jh_ signal process fS(k)]; for axple
mance under small deviations (see (5]). D(9) = ae represents smoothing for n < 0,

filtering for n-O and prediction for n > 0.
So far the thrust of this research has been For each pair of spectral -nasures (mg,mN) and

for continuous-time filtering (11J,[2]). In this transfer function RHE L2 (d(mg+m)) the man-
paper we consider the discrete-tim case for square error eD(dmSdm.;K) is given by
causal linear signal estimation (which includes i
smoothing, filtering, and prediction). In Sac- (27), - ID( ) _1(9)12 das( )
tion 2 we present a forulation of the robust (9
linear causal discrete-tims signal estimation ( )
problem and a minimx type theorem which yields (2.2)

a general design approach for these robust signal(2- - 2

estimtors. This formulation is analogous to . &
that presented in Section It of [2] for concin-
uous-tim robust filtering. Zn Section 3 we For each pair ( h) he problem

This research was supported by the Joint min e(dm.dmN;H)
Services Electromics Program under Contract H e K2(d(m5 4 ) (2.3)

W00014-79-C-0,24 and by the Office of Naval
Research under Contract N00014- 1-K-0014. has a solution I (the optimal causal transfer

function) which is uniquely defined a.e. with

P'tuenta4 .LC £JL 1981 Coftj4'tite Zn t4jotm'at*.c SctencA And
Syte, The Johu Hop" uuUnveut Wet~mot, 'W, Mol~cA~
:t17 1911. To apetb h Ptcze.np~ oi ete Conjeaeime.
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respect c c , sSm4. We dnote by et(d=S,d.N) the L d . L .
optimal Value e(dS, m. .;,). o o.E X . dN. ) (

Unfortunately. there is no general exp= s
s4on for 7;(dS,d:f), however for a wide variety updXN[
of came. (all when D and the derivative with (m ,),

respect to Lebesgue measure of the absolutely Thus if we could find a least-favorable pair
continuous part of m. are rational) Snyders 3 (mm4)E X ,, we would have our sought-after

ha ie pcfi xrsin; ut ehs ast-robusc estimator: the optimal causal trans-
given a systematic method of finding others. far function tor ( tN). The ptrlose oa outrThis will be imoertanst in Sectiona 3.

h l p t cmain theorem (below) is to facilitate the search

Of course, this traditional formulation of for a leat-favorable pair.
discrete-time causal signal estimation asuinms
exact knowledge of the signal and noie spectra. speo, o finiea Soel easures oa U tad aon-K As we mentioned in Section I it is oftan epace 3, no fnt So sr -o (a co
S&eaLstic to asume this knowledge, and hece aider 3 endowed with its weak topology (see
is of interest to design a robust signal ant.. - [101). A sequence (%) converges to a mesure a
tor. The design approach we consider here is in thia topology if ,f d converges to :f d

analogous to that of robust Wiener filtering a for every contasuou fuction f on U. (n the
considered by Poor (2] in a formulation based probability literature this is usually referredon the work of Kassam and Li (1]. to as weak convergence of (probability) measures

Specifically, we assun that the signal and (see (9]).)
noise spectra, mg and my, are known only to be- 'd are now ready to present our main
longt nheorm hih reduces the problem of findin a
That is, we know that mg i . and E " but we teast-favoreble paei (and hence a robust o tfn -
do not know which members of d and 7 are the
true signal and noise spectra. fer function) to malimizing the functiomal

et(dmS,duq) over W x 1. Thin is accomplished by
We consider a transfer function Hi to be converting the minisax problem (2.4) to a mal-

robust for aP and -1 if there is am upper bound min problem whose "min" part (given by (2.3))
for e(ms.mq;HI) over all (msg...) E . x I. The has already been solved by Sayders [3].
adjective robust is appropriate since this upper T . If d and 7 are nonntersecting convex
bound would give a guaranteed level of perfor- Rak-compact subsets of 3 then (L ) )Edx
mance. Ideally we would Like to have the best '.
such transfer function. Thus we define a most is a Least-favorabLe pair for causal Linear
robust causal transfer function to be a solution estimation if and only if

to the Lam

min. -up e (daS.dm4;R) (2.4) (-$,s)Edx(

where X Hi 1 up1)I2 where a (doS dN~ in defined above via (2.3).
r0f0. If "only if" part of the theorem follows

In an effort to find a most robust causal directly frm the definitions of Least-fayora-
transfer function we make the following defini- bility and eD(da sdmf); i.e., for

tion. ~~~all (a~.. ES 7,e(das,&N") X *D(d3,N
Definition: A pair of spectral moaureo (-s,-> > I (d, N. in fact this in so for

J ~ i , S lat favoraeL so ale Li wa est :imi:on
is e lase fo ca l l iearestiarbitrary subsets, W end 71, of 3. CA the otherfor the classes W aHn1if hand, the "If" part does depend on the hypothesis.

aeD(dng'dayI~) Z eD(da;.dmt;) (2.5) By definition a Pair (14-) is least
favorable for causal linear eetima uim foe c ases

frall (mg~mq)E57,wee' is the optimal mn ]o petaL Dds,dmMI;%) , 0 (d~

strghorvr r for pai (mR.mN) EP't whr is ifecauaal transfer function for (*;,04) defined v ia U) for.l (.. 1 ) E , ,. e is the
(2.3). optimal cmsL transfer function for

it is saif d to see that a pair defined by (2.3). we wish to show that this La
paioerp (a*) x * if of and I1 are(ug.1.) f ax I is least favorable if and only if wee* c=act a tf2.7) hd,, i.e. if

it and its optimal transfer function form a a 0a4 do e.;1 ora1 0'qsaddLepoLnt soLution to the Sem (2.4), i.e. D "PfN
x x ,1, vhere,for each pair (US.m4., tli a theI'

LI __
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causal transfer function which is optimal for a-mixture, total-variation, and Prokhorov models
chat pair. see [61 and (71; for the band and p-point =odels

sea (81). Thus these results are quite general.
,'ote chat if ninmer equali.ty holds for the

gaee (2.4) (i.e. if (2.6) holds) then the pair Abstractly, the significance of robust
(M:,,I-) satisfying (2.7) is clearly least favor- signal estimation is clear: to be able to put
s ( the tightest upper bound on the error when the

able for and ^7 (see Equation (2.6)). Thus our psibility of deaon frm the asued spectra
problem reduces to shoing that minima equality exists s cearly detheable. o sverr n eastr
holds. We will mae use of the following (from situations we must also expect that the robust
Theorem 3.o. ~ 143-1, t [ )estimator will not perform as well as the assumed

ema fX ad Y e op~rbL•€oplogoaL (or nominal) estimator if the tru spectra are
the nmasl spectra. So there is a trade-off.

linear spaces; A and 5 ate compact conex ub- Thus the questions that naturally arise are how
sots of X ad Y, respectively; and F is a real much is gained by:t robust estimetor in
valued upper-Lower-eemicontinuous concave-con- "o4)) "4s (eco
vex function on A x 8 then F satisfies the worst case (at (0;tt

minims : equality on A X S. nominal estimator at its worst case sad how mach
is lost in using the robust astimator should the

We wish to apply this lome with X - 3x true spectra be the noinal ones. Clearly
(recall that 3 is the space of finite Sorel blanket statement of the superiority of one

iasures on ,4) endowed with its weak* top- estimator over the other in all cases is not
logy, X is endowed vih the corresponding pro- likely to prove correct. Thus we undertake, In
duct topology); Y 4 (d) (the Uardy subspace the next section, an atteapt to answer these
of LZ (M ) spsmd by .X Itn - 0,1,2 .... ) here questions with same numerical exiples.
endowed with its weak topology); A - . x 7; and
3 - .('. our function F on A x 3 is given by 3. Am EAMWU

(- e0 (dm3 .dmlB)" in this section we consider robust filter-

The only property which is not obvious (or ing of a contminated wide-sense Mrkov siSn.l
at least straightforward to show) La that 0 La white noise. Sayders [3] has shown that, if
compact. From [101, Sections V.3 and V.4, we represents white noise (i.e. ds(9) - 2rtnd9
see that all we ued to show is that K L for same positive constant NO) and' if DO) 0

bounded and closed in the norm topology of 1N (0). represents filtering (i.e. D(9) a 1), tha

Soundedness is straightforward since t. 2at (d, m, ) I - s0 P l-8( l d (8-" .' - " - 1 ', (.,
t ; I Z. For cLosedness we muit show

a, •(3.1)
that if in- R in norm (i.e. if tin 'a ) -

2- . for any signal *poct51 me. We wish to consider
RM )I d 0) and if E, . L n H E It * thc'. t a when 7., :.a]a d - (mEim3.a(A) =

n - K '(1-•)m(A) . ;' (A).'Y A ca; for som nonnega-
AssmeH i' then there is a Sorel set E = U tive a f 3 withaU );' . ) 2,v 2 j where 'I
such that \ (E) ; 0 (where). is Lbesegue-Dorel represents 9 nomia, st a pecr-m, here
asure on U) and K(1) > I + a for som a 0 by ts(n) a sg er he(1-2vuo

by _%(S - (vZ(l-r)/ l2co$ +r 2 )IdB for
and for al19 41 E. But 1N(S) -a()ldi 2 a ~ r E [-1,11. and sE (0,11 represents the degree

of possible contaminatiom or error in assu-in
" 0that sis the trus signal spectrum.Ca,).H(9)jZdD > c%(t) > 0 lot all u. Can-

- The paticular mg we have chosen is the
tradictlon: pence K is compact in the weak spectrum of a wi.e-see Wrka process. it has
topoLoa of B (di) and we my apply theLine pLemrmvaad..forra3*2 4 1u. f tihae3d,
This completes the proof of the theorem. pou= bmndVdth

he hypothesis of the theor o (that P ad eond [(2 4 •I)-2)] (3.2)
be coovex eakC*cmpact subsets of 0) is not

overly restrictive for our purpoeee. MEiet is- 5 t t'--the
portancLy, a capacity class (i.e. a class of obtain u(d,. .Alter tivelyi s .i)c e
the !orm mM313(A) A v(A) for all lorel ubeots, D
A, of U, 1m(U) a v(U)) for a capacity v) is weak*- dm/di is rational, we can determine that the
comect ([6J, Lam 2.2) and convex. A capacity oPtIMal.cosal transfer fuaction for the nominal
is a set function Which generaliSLes the idea of pair (m,m )is given by (see (131, Chapter 7)
a measure an was Introduced by Choquat [121 And
app lied by Suber end Stretn [61) to model us- R(S) S E U (3.3)
certainty in robust hypothesis testing. All the I-we
met comonly used "robustness neighborhods" where a * (b - SV7)/2r, 2 ( 2
have been shown to be capacity classes (for the-

. , . . -;......
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and b * (v2wl-re)/e.-(14rZ), We can then sub- Careful examination of FIG. I (here the 3d5
stitute (3.3). a d al into (2.2) to obtain power bandwidth is .001, a - .1 and c - L21)

4 '4 W shows that for Sn's between 20 d5 and 40 d8 the
3 d. , 44). thr t his procedure may befther, worst case performance of the nominal filter

used to obtain e,(da td ;l%) for ay signal WC W + a
spectrum mS; in partruLzr, it may be used co (ao(dai ,d%,B0)) is an order of magnitude or

WC W . W * more greater than the worst case performance of
b n ns ) mae E the robust filter (eD(dmSdN')). On the other

:t A easy to see thast hand at 20 dB this worst case performance of the
case, Is given by +ae where '(A) - robust filter La less than half an order of mag-

i-v iff 0 E since - supi - nitude greater than that of the nominal filterZ- f0EA. sic !Iace+li-(BJ

11()1 ~U~at the nominal pair (a '4 'da-) the "optimal"
So we have error expressions for li 0 at the d

nominal pair in its worst case. If there is perfomance for the original (norobust) problem).

a significant difference between these errors Further this difference decreases rapidly, so

(i~en.11 WC f +grn that from 40dB on there is essentially no dif-
(i~e i (di .dN-;%) is much lrethn ference between the worst performance of thef a(or reaonabl e (say robust filter and the performance of the nominalAN)) for reasonabl aus of 4(a

e0(dm .m filter when the signal spectrum is am originally
* .1) then a clear need fo robust ffltering assd; I.e., above 40dA we lose nothing by

exists. the (minimax) robust filter designed using the robust filter and can at the sae time
in Section Z. will satisfy this need i gain a considerable improvemn in worst case

L, reltivel close ,o performance.

:Ater in this section we will show that this is While the situation pictured in FIG. L is
often the case. First we mast find the least- typical of mest cases we encountered, FIG. 2
favorable signal spectrum, L , so that we may (here the bandwidth is .105, • - L and c - .252)
use (3.1) to calculate e 0 (dindmV). is representative of some other cases. The

differences among the three error quantities ere

Because of the power constraint (i.e., smll throughout the pictured range (and in fact

m(U) - v
2 Y a i d#) we may use the results of they are simallor elsewhere). Here there is little

section III of [2) (particularly Lome I) and need for robust filtering and of course the ro-

of (14] to say that bust filter accomplishes little. It should be
noted, however, that while the differences are

2v 2  2 d smLl, we see that for input SME close to OdB2 (1-)(I-r) if -k-)> ,2ic the worst case of the robust filter is as bad as
dmn ) I-Zrcos r 2  

that of the'minal filter. However, we have
do (3.4) found throughout our investigation that the only

v2  
ids situations in which the robust filter Li Likely

_Irv (l-4)c if -)S2C to be disadvantageous are situations (such as in
FIG. 2) when alL the errors of both filters are

where c is a Positive constant which can always too large to be practical.

be determined so that L (9 ) - 2 . We my 4. COCLUSOUS

now substitute (3.4) Into (3.1) to calculate In this paper we have shown that (ainiamz)
W, robust causal smothers, filters, and predictors

Dcase error or t can be sought by maximizing the functional
filter I din.,) if the spectral classes d end ? are

For comparison purposes the three error c Ivez a satisfy a topological condition which
Srele ( all commnly used models of uncertainty are

expressions discussed above ((Uowm to satisfy. Further, for the case of a
sa ,V. e&> ...- ) were L.rml.se contaminated ,ide-seae Ierkov signal in whitee(di 5  a D'g'dq' noLe we hae daintraed, fto a wide variety

by the signal por v2 sad viewed as functions of input 30's, that the trade-off of poesible
of the input signal-to-noise ratio (SR) for lessone momal case performence in return for -,e
each value of the uncertainty parmeter t sad the improved worst-case performance of the robust
the bandwidth prmter r. (Recall that r filter is a very good ane. moreover, this

compLetely determnes the signal bandwidth via particular ase i a very reasonabLe model for
(3.2).) These three nonmalised error quantities many Applications.

were evaluated for a variety of values of theparmeters 4 and r and for a large range of in- WhiLe the mierical results of Section 3

pur 331 (which for convenience was converted to validate the analytical results of Section 2 for
ds). robust filtering, these analytical results are

much broader. Thus, it would be Interesting to

I L:1 _ _ _ _ __ _ _ _ _
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zonsider a numerical treatment of both the ro- 7. N. V. Poor, "Further results in robust
bust smoothIng and preoictLon Problems, alyti- Wiener filtering," PToc. L8th ZEEE Coot.
cal solutions to which may be obtained via the on D.ciion and Control, Ft Lauderd.l.e
methods if Section 2. 4, p. 94-'99, Dec ber 1979.

REFERMCES 3. K. S. VastoLe and H. V. Poor, "On genoraL-
lead band models in robust detection and

i. A. assam and T. L. Lim, 'Robust Wiener filtering," proc. 14th Coof. fom. c.
iltcers, . 'rnkl 0 , voL 30, psT. Princeton, XJ. p 1-5 rch 1980.

"71-1BS. 197. l3s."
9. P. illing&Ley, Covrgence of Probeblity

.7 Poor, "On robust Wiener filtering," leasures. New York: John ley and Sons,
esA C .vl. AC- 1968

10. 14. Dunfod ad J. T. Scbwatz, LnAsar

3. J. Snyders, "Error formulae for optimal Operator Pert 1. Mew York: tnterscience.
linear filtering, prediction and interpols-
tion of stationary tim series," Ann. M
Statist., vol. 43, pp. 1935-1943, 1972. 11. V. Barbu end Th. Precupen, Convexity ad

.t2laiastion in nach Spaces. aucarcst:
K. Hotbn , anach Spaces of Analytic Editura Acadm"ei,, 1978.
Functions. £ngLewood Cliffs, NJ: Prentice-
Hll, 1%2. 12. C. 2ioquet, 'Teory of capacities," Am.

.,. Furler, vol. 5, pp. 131-292,3. K. S. Vastola and H. V. Poor, "Performnce 4953/54.
analysis of robust filtering schemes," Proc.
of the 23rd l±vest Sym. Cir. Syst., 13. S. A. Tretter, Introduction to Discrete-
Toledo, OH, pp. 259-163, August 1980. Tim Lfto osaing. 4o, York: John

Wiley d Sons, 1976.
6. P. j. uber and V. Strassen, .linimeg tests

and the e eys-Pearson lsei for capacities," 14. P. J. Huber, "A robust version of the prob-
Ann. Statist., vol. 1, pp. 251-263, 1973. ability ratio test," Ann. a4ch. Stat., voL.

36, pp. 1733-1758, 1%5.

251 I - - - - :1 I -

.6 T 1

20 .15 30 35 4-0 45 50 55 60
S0 02 4 t 10 12 L4 16 18

IM I3WV' 3MB3) E -nnT~ SNB (dg)

FiG. 1: .mnal filter et vorst case (solid FIG. 2: No.nedi filter at worst cese (soLLd
Line), robust filter at voter case line), robust tilter at worst cese
dotted Line), eod noLn&l filter (dotted line)., and noui L filter
.c nomal case dashed line) when at nominal case (dashed line) when
bandwidth ..001 and 9 - .1. bandwidth * .103 and 1 * .1.I
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