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B. Aazhang K.S. Vastola

2. Summary of Progress During Reporting Period

The primary direction of progress on this project during the
reporting period has been toward the design of robust linear estimation
and control procedures for uncertain models. Generally speaking, a
robust procedure is one which is insensitive (in terms of performance) to
small deviations from an assumed model. One of the most successful approaches
to robust design i{s a game theoretic one in which a procedure is sought
to have the bestworst-case performance over a relevant class of models

neighboring the assumed (i.e., nominal) model. Thus, the primary design
philosophies in this study have been minimax-meam-square-error estimation

and minimax quadratic control. Related game theoretic approaches to
hierarchical stochastic decision problems and to antijammizg strategles
have also been considered during the reporting period. A brief descrip-
tion of the results obtained during the reporting period is contained
in the following paragraphs. More complete details of these results can
be found in the publications listed at the end of this discussion, copies
of which are attached as appendices to this report.

The problem of robust linem smoothing of a stationary random
signal with uncertain spectrum observed in additive noise with uncertain
spectrum is considered in [6]. Here, a genaral solution to this problem

is given for spectral uncertainty classes of a general type based on
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Choquet capacities. This type of model includes standard uncertainty
models such as contaminated mixtures as well as several topological
models of uncertainty. Further, an extensive numerical study [8] in-
dicates that the worst-case performance of the proposed technique is
generally much better than that resulting from designs which simply
ignore the presence of uncertainty. More general problems of robust
estimation of stationary signals (including smoothing, filtering and
prediction) also have been considered in the case of discrete time [9].
Here, a general minimax result is given from which robust solutions

to a variety of problems follow straightforwardly.

Also considered in this study are the problems of state estima-
tion and control in linear stochastic systems with uncertain noise
statistics. 1In [7], two aspects of minimax MSE state estimation are
considered. These are: minimax state estimation for single-variable
systems with uncertain process or observation noise spectra and minimax
state estimation for multivariable systems with white noisea of uncer-
tain componentwise correlation. In each problem, a minimax theorem is
proven indicating that the robust state estimator is the minimum MSE
filter for a least-favorable model. Thus, for example, in the second
problem the robust solution is the Kalman-Bwy filter for a least-favor-
able pair of process and state noise covariance matrices. The related
problem of minimax estimation with nonhomogeneous Poisson observations
processes with uncertain rate functions has also been considered [3].
Here, analogies with the continuous-observations case are exploited to
obtain straightforward minimax solutions to this problem. Minimax
linear-quadratic control within the second formulation mentioned above
(i.e., white noises with uncertain componentwise correlation) is con-
sidered in [4,5]. Results similar to those for state estimation in (7]
are found to hold for this problem. Also, an interesting result con-
cerning the separability of estimation and control is observed in thia
problem. In particular, it is seen that the minimax controller design
is independent of that of the state observer, whereas the reverse is
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not necessarily true. Thus, for example, the state observer for mini- + | }
max control is different from the minimax state estimator of [7] for ,
the open-loop system. This is in contrast to the analogous problem r

without uncertainty in which estimation and control objectives separate.

gy

As noted above, game theoretic analyses have also been applied
to the problems of hierarchical stochastic decision making and anti-
jamming. 1In particular, [1] considers the class of stochastic multi-
person, multicriteria decision problems (defined on general Hilbert
spaces) with quadratic objective functionals, static information struc-
ture, and with a hierarchical structure with regard to the order in
which desicionQ are announced. Here, a set of conditions is obtained
under which a unique equilibrium solution exists and can be determined
as the limit of an infinite sequence. Further, [2] considers the pro-
blem of transmitting a sequence of independent and identically distrib-

uted Gaussian random variables through a memoryless Gaussian wiretap

P ads ol oS ype N SER

channel with an intelligent jammer. Under a minimax MSE criterion, the
complete set of strategies for the jammer and transmitter is obtained
for this problem within power constrainst on transmitter and jammer.

A variety of solutions is possible depending on the relative power
constraints‘of the players and the noise levels in the transmission

and wiretap channels.
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[7]
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Publications Reporting Research Supported by ONR Contract
N00014-81-K-0014

T. Basar, "Hierarchical Equilibrium Solutions in Stochastic Decision
Problems Defined on General Hilbert Spaces,' submitted for publica-
tion to Information and Control.

T. Basar, 'The Gaussian Test Channel with an Intelligent Jammer,"
submitted for publication to IEEE Transactions on Information

Theory.

E.A. Geraniotis and H.V. Poor, "Minimax Filtering Problems for
Observed Poisson Processes with Uncertain Rate Functions,”" Proceed-

ings of the 20th IEEE Conference of Decision and Control, San Diego,
California, December 16-18, 1981 (to appear).

D.P. Looze, H.V. Poor, K.S. Vastola and J.C. Darragh, '"Minimax
Control of Linear Stochastic Systems with Noise Uncertainty,’
submitted to IEEE Transactions on Automatic Control.

D.P. Looze, H.V. Poor, K.S. Vastola and J.C. Darragh, 'Minimax
Linear-Quadratic-Gaussian Control of Systems with Uncertain Statis-

tics," Proceedings of the 10th IFIP Conference on System Modeling
and Optimization. Springer-Verlag: New York, 1981 (to appear).

H.V. Poor, "Minimax Linear Smoothing for Capacitles," Annals of
Probability (to appear).

H.V. Poor and D.P. Looze, 'Minimax State Estimation for Uinear
Stochastic Systems with Noise Uncertainty,'" IEEE Transactions on
Automatic Control, pp. 902-906, August 1981,

K.S. Vastola and H.V. Poor, "An Analysis of the Effects of Spectral
Uncertainty on Wiener Filtering," submitted for publication to
Automatica.

K.S. Vastola and H.V. Poor, "Robust Linear Estimation of Stationary
Discrete-Time Signals," Proceedings of the 1981 Conference on

Information Sciences and Systems, The Johns Hopkins University,
Baltimore, MD, March, 1981, pp, 512-516.
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4. Appendix: Copies of Publications

This appendix contains copies of the publications listed in Section 3
above, with the exception of [5] which is currently being put into final form.
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(1]

T. Basar, "Hierarchical Equilibrium Solutions in Stochastic Decision
Problems Defined on General Hilbert Spaces," submitted for
publication to Information and Control.
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HIERARCHICAL EQUILIBRIUM SOLUTIONS IN
STOCHASTIC DECISION PROBLEMS DEFINED

ON GENERAL HILBERT SPACES*

TAMER BAJAR
Decision and Control Laboratory
Coordinated Science Laboratory
University of Illinois
1101 W. Springfield Av.
Urbana, IL 61801

ABSTRACT:

This paper considers the class of stochastic multi-person multi-~
criteria decision problems defined on general Hilbert spaces, with quadratic
objective functionals, static information structure, and with the mode of
decision making requiring the decision makers to announce their strategies
in a sequential order. A set of conditions, independent of the probabil-
istic structure of the problem, is obtained, under which the hierarchical
equilibrium solution exists, is unique and can be determined as the con-
vergent limit of an infinite sequence. The analysis is confined primarily
to the three-person case, in which context explicit conditions and strategies
are obtained, but extensions to the case of more than three decision makers

are also elucidated,

*
Manuscript prepared June 10, 1981,
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1. INTRODUCTION

This paper introduces and discusses a general approach towards deriv-
ation of the optimum (hierarchical equilibrium) solution of a class of
stochastic multi-person multi-criteria decision problems which incorporate
multi levels of hierarchy in decision making. Analysis is primarily
confined to three-person decision problems defined on general inner-product
spaces, with quadratic objective functionals,and with the mode of decision
making requiring the decision makers to announce their policies in a sequen-
tial order; but, extensions to other types of decision problems with more
than three decision makers and other modes of decision making are also
discussed. The stochastic decision problems covered by our general frame-
work are those with finite dimensional control (decision) spaces, those
defined in continuous-time, with lumped or distributed parameters, as well
as the ones whose state dynamics are described by differential-delay
equations.

One of the important results obtained in the paper is that under
suitable conditions (which are explicitly obtained), independent of the
probabilistic structure of the problem, the equilibrium solutionm is unique
and it can be determined as the convergent limit of an infinite sequence.
For the special case of Gaussian distributions [such as the cases when all
primitive random variables are Gaussian vectors (in the finite dimensional
case), or are Gaussian stochastic processes (in the continuous-time case)]
the optimum strategies of the decision makers are affine functions of the
available static Lnformation.

Two special versions of this problem have been considered before for
the two-person case., Bagar (1980) discusses the case when the decision

variables belong to finite dimensional spaces, and Bagchi and Bagar (1981)

g
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: l discuss the continucus-time version when the decision makers make noisy
observations of the initial state. In a way, the present paper presents
nontrivial extensions of these results to the M(® 3)-person case, but th:
i solution here is not as explicit (in analytic form) as in those two papers
because the framework here is more general.

A precise mathematical formulation of the problem is presented in

Section 2, and the general solution is obtained in Section 3. For some

background material on functional analysis that is employed in these two

Akhilov (1977). Section 4 treats a special case, and Section 5 discusses

!

i sections, the reader is referred to Balakrishnan (1976) and Kantorovich and
[

1

‘ possible extensions to more general models. The paper concludes with an

Appendix.
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2. GENERAL FORMULATION

Let (0, F §) be an underlying probability space, and Hi (i =0,1,2,3)
2 1 .2
)i’ for h™, h® ¢ Hi'

Let z, be an Hi-valued weak random variable [cf. Balakrishnan (1976) | defined

be separable Hilbert spaces with inner products (hl, h

on (9, § P, and oy denote the sigma-algebra generated by 2, (i=1,2,3).

Furthermore, zi has a finite second moment, i.e.

2
(1) E{[(zi, hi)il } < = for every h, ¢ H,

2
(i1) E{|(zi, hi)i} } is continuous in hi’

where E{.} denotes the total expectation over the underlying probability space.
Let Si (i = 1,2,3) be separable Hilbert spaces with inner products

1

<sl, s2>i, for s, s2 € Si’ and v be an Si-valued weak random variable defined

on (Q, JF,  and satisfying the following two properties:

(1) u; is g, -measurable,

(ii) u; has finite second moments.

We call such a u a permissible control (decision) variable of the i-th

decision maker [abbreviated, DMi ). Equivalently, we can introduce a permis-
sible strategy for DMi as a mapping Yi:ﬂ1 ~ S, such that Yi(zi) is gi-measurable
and has finite second moments. Denote the class of all such mappings for DMi

by ri [to be called the strategy space of DMi], which is in fact a Hilbert

space under the inner product E{<Yi(zi), Yi(zi)>i}, for yi, vz el In

i
this general formulation [using the standard terminology of decision theory ],

g

z denotes the state of Nature and z, (1 = 1,2,3) denotes the measurement
available to DMi -- all these (weak) random variables are static, in the sense

that they do not depend on the controls (actions) of the decision makers.
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In order to complete the formulation, we introduce general quadratic
objective (cost) functionals for the decision makers on the product strategy

spaces Fl x F2 x F3 as

N Ji(yl, Ypr Y9) = E{si(zo. Uy, Uy, u3)luj - Yj(zj), §=1,2,3} (2.1)

where

_ 1
84(2ys uy» ugs ug) 7 SUgs Y2y o U Dygugdy - <ugs Dy

% <« i 1 i

{ L
Y29 T Y T Pk T Yy Tty o Gi%or 242

i i
- <uy, Cizo>y = <up, Gz 1, §, k, =1, 2,3, §édkéi, <k

s R S P ¢
» D, F.,, F
37 ik’ 33

on appropriate Hilbert spaces, with F;j and F:k

Our objective in this paper is to investigate the existence, uniqueness

i

i
Here, Di Kk’ ij, Ci, Cj’ Ck are linear bounded operators defined

being also self-adjoint.

and derivation of a hierarchical equilibrium solution for this stochastic
decision problem, in the presence of a linear hierarchy for decision making.
Specifically, it is assumed that the strategies are announced sequentially --
first DMl announces his strategy and makes it known to both DM2 and DM3, then
DM2 announces his strategy and makes it known to DM3, and finally DM3 decides
on his optimal strategy. Each DM strives to obtain a minimum value for his
cost functional, thereby leading to the following definition of a hierarchical

equilibrium solution:

Definition 2.1. The set of strategies {Yi £ ri,

equilibrium if
0 o [+ o
(1) Jl(Yl, TZ(YI)‘ '1'3[ Y» TZ(Y]_) h < I, (vys Tz(vl). T3[ Yl.Tz(Yl)])

vy el

i=1, 2, 3} is in hierarchical

—— -
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(o] o
(11) Y, = TZ(YL)

o o (o]
(1il) Yy o T3(Yl. vz)

where Tz: Tl - 72, T3: Fl x Fz - F3 are unique measurable mappings satisfying
( <
the inequalities Jz(Yl, Tz(Yl). TBIYI. Tz\vl)l) Jz(Yl. Yoo TJ(YI.YZ)).
r -
¥ Yl € ‘1 72 € Tz,and JJ(Yln 72’ T3(Y1' YZ)) < J3(Y1' YZ' 73). ¥ Yi € ri'
i=1, 2, 3. a

Remark 2.1. The assumption of uniqueness of Tz and T, in Def. 2.1 is not

3
restrictive here since the underlying information structure is static, and

such unique mappings exist, as we shall demonstrate later. If the information
structure had been dynamic, however, we would have to extend the definition

in order to account for nonunique responses [ see Bagar (1981a,b), for such

an extension]. a
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We now sezk a ;2 € rz so that, for fixed v, € T

3. DERIVATION OF THE EQUILIBRIUM SOLUTION

{
Step 1. Firstly, to determine T,, we hold v, ¢ [, and v, ¢ [, fixed and !

s
minimize J3(y1, Yo *) over r3. Since 8y 1s strictly convex in Yy, this om
minimization problem admits the unique solution

v3(z3) - T3(yl.y2)(13) - E{D3ly1(zl) +D 2yz(z ) + C 3% l‘3} (3.1) '

whare E(-IzJ} denotes the conditional expected value of () given the observed

value of z,. This i{s a well-defined quantity, which is o3qnclsutab1¢. by

standard results of probability theory [ cf. Lodve (1963)].

e A s~

Step 2. YNext, to determine TZ' we substitute (3.1) into Jz(vl. Yqo Y3) and

seek to minimize the resulting expression over Yy € Fz for fixed Yy € Yl;

this, however, is not a standard stochastic optimization problem, because of

the presence of several conditional expectations. Writing out the function

to be minimized, we have

1
I2(rps g0 Tylrys ¥p)) = ElF <y, up>y = <uy, Dy)up>y

3

= <upy DyyDy Eluy f25] + Dy3DyoEluy [25] + DyaC3H z 241>,

4+ d<u), Frlups +3<Dy Eluy|2] + Dy Eu, |z 0+ €3 Bz |z,], FiqDy Eluy|2,]
1 Frpupy + 3Dy Bluy |25] + Dy,Eu,|25l+ C3 Hz |25), F3uy Eu |2,

2 2 3 2 2
F33PagEluplzg) + F3aCaBlz f251 >3 - <up, Fy3Dy)Eluy|25] + Fy3D5Elup]2;]

2. 3 2 2
FlaGaElzplz5loym @y, Coz>p = @y, €122 - <DyjEly|z,]

3 2
D3ZE[u2|zs] + C3E[z°|z3], C3z°>3 Iu1 - Yi(zi)' 1=1,2}

a
- Yy €T
Lz(Yz) , for fixed 1 L -

1 1
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Since I'z is a linear vector space, to every Y, € I'z there corresponds an
h e Iy such that Yo = ¥, * h. Hence, (3.2) can be written as
and furthermore, since Lz is quadratic, we have

L,(3, +h) = L (y)+ &, (5 -h)+lszL (7,:h)

2tV 21+ &yl5pih) + 36L,(5ih),
whereby

L(3) & Ly(3) + 6Lo(§,:h) + 26%L (7,50, ¥ her (3.3)

2' V2 2" V2 2728 2° "V 2 .

Rere, 6L2 and 621.2 denote, respectively, the first and second Gateaux variations

of Lz around ¥, which are defined by

d

6L2(72;h) = lim Y L2(72 + ah)
a-+0
2 4
4 . -
Lz('Vz.h) alimo 2z L2(72 + ah) .

The first of these is homogeneous of degree one, and therefore (3.3) readily

leads to the set of necessary and sufficient conditions
v * - 2 7 13
6L2(y2,h) 0, §"L,,3h) > 0 ¥her,- (3.4)

By making use of the smoothing property of conditional expectations, we can

write 6L2 and 621.2 in the forms

&, (750 = E{d(z,), L)(z,,u,,4,)>, lu1 = v,(2)), u, = §,(2))} (3.50)
and

82, (7,5h) = El<h(z,), h(z)>, + <E[h(z,) 2],

2 el

i
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(D3,F3303z = DygD3; = DypDy) Elh(z)[2315,) (3.5b)
where

ty(zgnugup) = uy +(D3,F3 D = DDy - DDy, ELEu, 23] 2,

- 0, Elu, [z,] + [n32 33031 = D3Da; - D32F§J]E[E[ullz3]lz

- [D,,C] + 03,2 - D3, F2,CIElElz 2,1 lz,] - COElz l2,] ,

*
and super-index star ( ) denotes the adjoint operator under the appropriate
inner product. Relations (3.4) and (3.5a) now readily lead to the first-
order condition

5(22, 4y, ul) & 0, a.e. F; » Uy = Yz(zz) ,
2

where Pz is the probability measure induced under the weak random variable
2

z,. Let us rewrite this equality more explicitly as
t,(z,) = KEIE[7,(z)) |z3]|22]+ DZIE[yl(zl) ]zzl
2
+ G E (e [Yl(zl) EN ][zzl + CElz |z, 1+ G,EE [20[23 ][z2 I(3.6)
vhere
- - * 2 * * 3.7.
K D32F33035 + Dy303; + D350p4 Q.78
- - * 2 2*
¢y °3z’ 33P31 + D305 + 32’13 (3.7)
- P2 o3 3
G, 32 F33€3 + 0,505 ¢ Dsz 3 . (3.7¢)

Relation (3.6) is in fact a linear operator equation which has to be solved
for Y'z, and this determines the mapping T, introduced in Def. 2.2. The

questions of existence and uniqueness of such a mapping, and satisfaction

LA
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of the second condition of (3.4), are now addressed to in Proposition

3.1 to follow.

Preliminary terminology and notation

Let 71 be the space of linear bounded operators mapping Fi into
itself. For B¢ 51, let ui(B) and “B"i denote, respectively, the
spectrum and norm of B, where the latter is defined by

HBHi - supr [|<Bix, BiX>i|/<x’ x>i]% (3.8)
xel,

Furthermore, let ri(B) denote the spectral radius of B ¢/2,, which
is defined by
1/n
n
r,(B) = lim sup ||B [ (3.9)
i pu i
n=-—

Finally, let us introduce the Hilbert space Mi as the space of all Si-valued
cj-measurable weak random variables defined on (I, 3, ?) and with finite
second moments (i, j = 1, 2, 3). [Note that Mi is in fact isomorphic to

Ty» and it is also a Hilbert space.]

Now, by invoking the following condition
cl. rz(K) < 1,
we are in a position to state the proposition given below.

Proposition 3.1. Assume condition Cl to hold true. 1) Equation (3.6)
admits a unique solution ;2 ¢ Fz for every fixed Y1 € Fl, vhich 1s also
the unique solution satisfying (3.4); hence T,: Fl - F2 is uniquely defined.

11) The unique solution to (3.6) can be found, for any fixed Y1 ¢ Fl, as

[RY
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the convergent limit of an iterative procedure (known as successive approx-
imations), which starts with an arbitrary element of FZ on the right-hand
side (RHS) of (3.6) and recursively updates this choice by resubstituting

(to the RHS) the strategy obtained on the left-hand side of (3.6).

Proof. Llet us rewrite (3.6) as

> 2 23
Y2(22) = K 32°2Y2(zz) + kyl(zz) (3.10)

where kY is a fixed element of FZ for every fixed Y1 € Fl, and 6; denotes
1

the conditional expectation operator 5;Y2(22) = ErYZ(zz)|z31, where the

convention is such that the super-index stands for the conditioning sigma-

field and the sub-index identifies the range space [Sl’ S, or 83] of the

2
weak random variable whose conditional expectation is taken. The operator

6§ is likewise defined as a conditional expectation operator. Each of these

operators is a projection operator [see e.g. Bagar (1975)], with 6; mapping

M2 into M;, where M, is the Hilbert space of all second-order S, -valued

2 2

weak random variables defined on (Q, ¥, ). [Note that M2?3 M; and M2 > Mi.]

Being projection operators, both 62 and Gg have unit norm, are linear and
bounded. Therefore Kfiagz M2 > M§ is a linear and bounded operator. We
may also take the range spaces of 62,63 and K as M2 (instead of Mg) and
introduce a natural extension of r, to the space of linear bounded operators

2
mapping M2 into itself, to be denoted ;é. Then we have, using the spectral
radius inequality for product operators,
- 23 - - 3= .3
<
réxﬁzez) rZ(K)rzcgz)tZGSZ)
<z =
&K = & < 1, )

where the second inequality follows from a known (unit norm) property of

Dby e
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projection operators, the equality follows since (by construction) the
regtriction of ;é to M§ is rz, and the last lanequality follows from Cl.
Hence, the spectral radius of the operator in (3.10) is less than
unity [or, equivalently, the spectrum of that operator is totally in the
unit sphere], and by Theorem 3 (Chapter XIII) of Kantorovich and Akhilov
(1977) equation (3.10) admits a unique solution in M2. Furthermore, by the

same theorem, the solution can be obtained iteratively by
(n+l) 2 (n) -
YWy = xley M) Fly @) s B TO L

where Yéo)(')is any initial choicein M2' Since we already know that the range

.

space of K°§53 comprises only cz-measurable elements, and kY ¢ I,, it
1

follows that ;2(-) = lim Yén)(-) is necessarlly cz-measurable, and therefore

n=-<e

the unique solution ; ) of (3.10) inm M2 is in fact in the subspace Mg,

203
and to this, there corresponds a unique element Y2 in Fz.

What remains to be shown now, in order to complete the proof of the
Proposition, is satisfaction of the second order (sufficiency) coundition

of (3.4). Towards this end, we first note that K is a self-adjoint operator,

and hence under Cl,
|<x, Kx>1| < <x, x>i , ¥Xe¢€ Mg , x¥8

where © is the zero element in Mg. If this inequality is utilized in (3.5b),

we readily arrive at the bound

62L2(;2;h) > E{<h(z,), h(z,)>, - <Elh(z,)|z,], E{h(z,)|25]>,]} , b # 6.

By the nonexpansive property of conditional expectations [cf. Bagar (1975)],

Ei<E(h(z,)|2,], E(h(z,)|24]>,] = el«h(zy), h(zy)>,)

P

b
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and therefore

aZLz(fz;h) > E(<z[h(z2)lz3l. E[h(zz)lz3l>2‘— E(h(zz)$z3l.
E[h(z2)|z1]>2} = 0,

that is, the second Gateaux variation is positive definite.

Remark 3.1. Under Cl, the operator [I—K&2 2] is invertible, and its inverse
is also linear and bounded. This leads to an operator-form characterization

of T which is

2‘
T.(y)(z)) = [1@ - ka2ed] (o, 2% + ¢ 822l (z))
271742 292 21*%1 14191'M1

2.3
+ &2c Z + &2&262 }

(3.11)

where the definition of{ is analgous to that of &; in the proof of Propo-
sition 3.1. We furthermore note that, under Cl the inverse can be written
in the form of an infinite convergent series [cf. Kantorovich and Akhilov

(1977) |

[1 - x&iag]‘l - 1+ (Ka

n=1

2 3 n

2 2) s (3.12)

which we will have occasion to utilize in the sequel, at step 3 of the

derivation. c

Step 3. We have so far determined T3 and Tz, uniquely, and under conditions

which do not depend on the probabilistic structure of the problem. In order

to complete the derivation of the equilibrium solution, we now consider

the minimization problem described by (1) in Def. 2.1, so as to determine T,
Towards this end, let us first substitute the unique responses of DMJ

and DM2, as given by (3.1) and (3.11), respectively, into Jy» and consider

the first Gateaux variation of the resulting quadratic expression around

a nominal point ?1 € FI:

" PP
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e pprgrewpapaey v v ge s+ s se T BEE IR Sl T L

| -




— il ol

13

3 3,-1 2 2,3 2.2
<vgr (Dg + D303 & - kGE) 0,8 + 6,88y, + &Cz,

(%)

2 3 33 1
+ 88,6,z 1 + Dy4[Dy, &y + &0z ] + €22 +

[ ]

1 2.3, -1 2 2,3 22 2.3
+ 31 - R&E) N0, 8 + 688y + &0z, + &G, 1,

- 2F;3[D31&ivl + &icgzol - Zc;z°>2 + %<D3l&iy1 + &fcgzo
n3zag(1 - xaiag)'ll(DZIaf +oaltdy, + s2c2z_+ 82862,

Fid Dy 81y + &1C3z,] + F3pDa,83(1 - K83E) 7T (0,87 + G,E18DY, + 850z,

+ agagczzo - 2c;z0>3 s L (1) (3.13)

éLl(Yl;hl) = E{<h1(zl), ll(zl, Yl(zl))>1}, (3.14)
where

2 (z), ¥,(2))) = B (2)) - (D),8; + G 8280k, (2,) = Ky (2))

- aladn), + adaZe) (1 - kede) THik,(z,) - 6},-C,828D)k, (2} (3.15)
and

5 Ar-agled 0,8 + e a8 - ka3) TN, 8] + G818

- “;(Dzlai +cgiaha - x&%ag)‘l* ((c,828) - F3,)

.1 - el ro, &2+ aled) + o) ,ef + 6,828 (3.16a)

A 2 *p¥. - D* Fl D (3.16b)

1 = Dy3Pyy * D50p3 = D3yFy3D0y

B AR EE T T 7 - TR A A i Y P
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A * 1 1
Gy = DyaDy, + D31F23 - D31F33032 (3.16¢)
»*
L1 * 1 * 1
G, = FyaDys + DypFyq = DypFasDyy (3.16d)
31 3 1
kl(z ) = ClE[zolzl] + [D13C3 + D31C3 31 33 3]E[E[z |z3]|zll
(3.17a)
A 1 1.3
kz(zz) = CZE[zolzz (03203 + F,,C3 - D32F33C3)E[E[z ]z3]|22]
(3.17b)
k3(zz) (1 - Kuzsg) ﬁa2c z &gsgczzol . (3.17¢)

This result is obtained through some routine but cumbersome manipu-

lations, and in the course of the derivation we also obtain the second

Gateaux variation to be

2 -
3 Ll(yl, hl) - E{<h1(21).

Note that both Al

hy (290>,

+ <h1(z1). (1 -.B)hl(zl)>l} .

(3.18)

and G4 are self-adjoint operators [and so are A Giai

1

and Gasgagl, and hence the operator [ is self-adjoint, mapping Pl into

itself.

The counterpart of inequality (3.3) {is also valid here, and by arguing

as in step 2, we arrive at the set of necessary and sufficient optimality

conditions

v - = 2 v .
sLy (3,5 hp) 0, &Ly(§;3h) >0 ¥h e, (3.19)

which readily leads to the necessary condition (see (3.14)]

(A v 3o & s sae .
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zl(zl, 71(21)) = 0, a.e. P , (3.20)

where Pz is the probability measure induced under the weak random variable
1

z,. Let us rewrite (3.20) in a more appealing form, which is the counterpart

of (3.6) for DMI1:

. - . 1 1,3
(2 = (=B () + k(2D + (D8, + G388k, (z,)
(3.21)

3,2.* 1 1
- G[‘& )k3(zz);

+ al(&l 21 +alulc Y(1I - K&zaz) 2(zz) - (Fzz

This is a linear equation in 1 and ve now seek conditions, independent
of the probabilistic structure of the problem, under which it will admit a
unique solution in Ty- The general existence condition, which also enables

us to compute the solution recursively, as in Proposition 1, is
rl(I -5 <1 (3.22)

where rl(-) is defined by (3.9). However, this is dependent on the statis-
tics of the weak random variables invol;ed, and therefore is not precisely

the condition that we seek. By appropriate manipulations on (3,22) [details
of which are included in the Appendix], we are able to obtain a "deterministic"
condition [C2, given below] which insures satisfaction of (3.22). Before
presenting this condition, and the general result as Theorem 3.1 below, let

us introduce the following expressions:

Preliminary definitions for Condition C2 and Theorem 3.2

P L Rk I e R i i R R R R R

(n) - *
3 £y, (076, - 0373, (07D, = Dy (K [F;0y, - D)
* &k n-l
+ D, (K)" 7G,G, + D 164 (Ko *° Dyy (3.23a)
% 0o-ln-1 x 0=l n-1 .
=D, T (K )iF;Z(K)jDZI =Dy, I I (K )iGA(K)jDZLI
1=1 j=1 i=1 y=1
i+=n i+j=n-1

B N L, LR W ' Y

[V
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1
[ l
{ |
S _
r =

Condition C2

rﬂ

D

n
12(K)7Gy

-

21 1
. n-1 n-1
i *
)‘?f,(K)Jcl +D, T I ()
== <t iml gwl
i+j=n-1

n 1
£l Gy, - c [Fya ()0, = G (K )"[FZZD,1

* n-1 * n-1
+ GG, (x) 5 * (KD T6,G]
* n-1 n-1 s n-1 n-1
-G, I = (K*)iFé,(K)JD21 ror ot ®Ht
1=1 j=l - i=1 j=1
i+i=n i+i=n-1
n * (K n
= 1,0G4(K)7Gy - GyF) (K) G - G, ) e F506
X % o n-1 n-1
+ 6 (K * 16401 -6, I I (K )ip (K)j
- =1 j=1
i+j=n
* n-1 n=-1 " .
+6] I I )jck(x)lcll
i=1 j=1
i+j=n-1
* & 1
r(Ap) + 1 (DyoDyy + DyyDy5 - sz 22021
2 * (5l 1 (G.G
+ 281 (DyGy = Dy L Fyp6y = Gal) + 17 (G4Gy 4 GIGB
*
+ 2r,(Dy(G,Gy) + ¢ (D21 WD) * rl(G G,G)
c (n) (n) (n) (n)
+ [a1 a, + a; ’ +a, ]
n=l
r < 1

F}Z(K)“c - D (K )“{r,z L - ©

5]

*
-D

(K)JD

12

]

21

16

1

(3.23¢)

]

* n-1
- 031 + clci(x) G

(3.23d)

(3.24)
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Theorem 3.1 Assume conditions Cl and C2 to hold true.

. o
i) Equation (3.21) admits a unique solution Y, € ., which is also the

1!
unique solution satisfying (3.19); hence, the decision problem admits a
unique hierarchical equilibrium solution, given as E(i, yg = Tz(yi),

o o o
Y3 = T3(Yl’ '{2)}-

ii) The unique equilibrium strategy Yi of DMl can be obtained as the

convergent limit of an iterative procedure applied to (3.19), which is

similar to the one of Proposition 3.1 (ii).

Proof. See the Appendix (Section 6). The iteration is defined explicitly

s s mssnn

by (6.1). =

Remark 3.2. The operator J#, which plays a crucial role in the solution

of (3.21), depends on some inverse operators, specifically on (I - xsgeg)'l
and its adjoint. However, under Cl each of these operators can be determined
as the convergent limit of an infinite series [cf. Remark 3.1, relation
(3.12)]), and moreover, since rz(Kegeg) < 1, a finite truncation of this
series will provide a fairly good approximation to (I - xegeg)'l. Hence,

the linear bounded operator <can be written in the form of infinite sums

of products of "deterministic¢" linear bounded operators and some conditional
expectations [to see this, simply substitute (3.12) into (3.16a)], and for
practical purposes, in the form of finite sums of products of such operators.
Therefore, in principle, the iterative procedure of Theorem 3.1 (ii) can

be carried out routinely, by performing a series of linear operations.

This discussion also readily leads to the following structural result

(given in Corollary 3.1 below) in the case of Gaussian distributions. 3

Corollary 3.1. If the weak random variables 20 210 2 and z, are jointly

Gaussian distributed, the unique hierarchical equilibrium solution is affine

-t — - —_—
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in the available information; that i{s, there exist linear bounded cperators

L3 H ~ S.L (i =1, 2, 3) and "deterministic" functions s

1 i efSi (L =1, 2, 3),

i

such that

vi(z) = Lz +s, i1=1,2,3) (3.25)

Proof. In view of the discussion of Remark 3.2, this result follows from

. o

the following two properties of Gaussian weak random variables [cf. Balakrishnan

(1976)] .
(a) 1f zi and zi are two Gausslan weak random variables which are

Hi-valued and ci-measurable, and Al and A, are two "deterministic" linear

2
bounded operators with the same range space, mapping ci-measurable Hi-valued
variables into ci-measurable variables, then the sum Aizi + Azzi is also

a Gaussian weak random variable.

(b) 1f z; and zj are two Gaussian weak random variables, with the
latter being Hj-valued, we have E[zifij] = Aijzj + aij’ for some linear
bounded operator Aij and for some a,, ¢ Hj.

ij
Repeated utilization of these two properties on the right-hand side
of (3.21), for a fixed Vl(zl) taken as an affine function of 2y, leads to
an affine function of z, on the left-hand side of (3.21). Since the iteration

converges for any starting choice of 71, the statement of the Corollary

follows as a special case of Theorem 3.1. e
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4. A SPECIAL CASE, AND A NUMERICAL EXAMPLE

Condition C2, which involves some straightforward but rather cumbersome

operations in terms of linear operators, simplifies considerably for an

important special class of decision problems. Specifically, consider the

case when each decision maker interacts (through his cost function) only

with the closest decision maker(s) in the hierarchy. 1In such a case, J1

will not depend on Y3 and J3 will not depend on Yy but J2 will in general

depend on both y; and y;. Therefore, we now consider the decision problem

described by the cost functionals (2.1) -~ (2.2), but with the terms

corresponding to the operators

1 1 1 3 3

3
Fi3s Fp3, C35 D33, Fpys Fpy, and )

D;3»

deleted. Furthermore, we assume that there is no coupling between the
decision variables of DMl and DM3, in the cost function of DM2. Then,

the expression corresponding to (3.24) becomes

-t A * 1 * 1
r = 11(D1yDyy + DyyDyg = DyyFpgDyy) + 25 (D15G) - Dy FppGy)
* 1 ® * .1 _.n * 1 *
n
¥Rl B om0y (Fpp (R)Dyy + (K)TEYDy - Dyp)
n-1 n-1
* il .3
+ I T (K)TF,&K'D,ll, (4.1)
=] j=l
i+j=n

which can be obtained by basically following the steps (of the Appendix)

that led to (3.24). Hence, what replaces C2 is
c2' < 1

under which (and also under Cl) the statement of Theorem 3.1 is valid for

this special class of decision problems.

TR IR R0 S i
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As an {llustraction, consider the case when all spaces are one-

dimensional Euclidean, and various parameters assume the values

]
Dy ™ Dy = Dy3 = Dy A
1 2 2 I Y
Fa2 1 Fi3 22 8
L 1 1 3 3 3 2

Condition Cl takes the form
r,(K) = K = 15/128 < 1

and therefore it is satisfied. For C2', on the other hand, we have

- 15 3 15 1 > 15 %
o= 28t w 128 "8 & Grg) Im-7]

n=2
= 0,1171875 + 0.0054931 + 0.0010728 + 0.000L005 +

+ 0.0000088 + 0.0000006 + . . . .

= (0.1238633 (to the nearest 7 figures)
< 1,
which indicates that it is also satisfied, and by a comfortably wide

margin.
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5. EXTENSIONS TO MORE GENERAL TYPES OF DECISION PROBLEMS

~e— —

The general method of derivation introduced in this paper has been

discussed within the context of 3-person stochastic decision problems with F
linear hierarchy, but it is equally applicable to similarly structured i l
stochastic decision problems with more than 3 decision makers and again i
with linear hierarchy. A repeated gpplicacion of the techniques utilized at
step 3 in Section 3 (and also in the Appendix), by starting at the bottom ‘

i
of the hierarchy and moving upwards, would lead to a set of conditions g
(one for each level of hierarchy) which involves multiples of infinite i
convergent series, under which the hierarchical equilibrium solution would é

uniquely exist. Furthermore, a natural counterpart of Corollary 3.1 would

e Y,

also hold for this more general problem, in the sense that, under jointly
Gaussian statistics, all decision makers' optimal strategies will be affine ;
in their static observations.

Yet another possible extension is to multi-person stochastic decision
problems wherein more than one decision mnker‘operaces at each level of
hierarchy. Then, the single-criterion stochastic optimization adopted
in this paper at every level of hierarchy will have to be replaced by

multi-criteria stochastic optimization. In particular, if the mode of

i
g
i

decision making is noncooperative, and the decision makers (at the same

level of hierarchy) adopt the Nash solution concept, a blend of the

techniques of this paper and of Bagar (1978) can be employed to obtain the

hierarchical equilibrium solution and the conditions under which it exists

and is unique. If, however, the decision makers at the same level of hierarchy

act as members of a team (with a single objective functional), then the

theory of Radner (1962) will have to be used as a supplementary technique



| 2 .

in the derivation. In either case, when the underlying statistics are

Gaussian, the optimal policy for each decision maker will be in the form (3.25).
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6. APPENDIX

In this appendix, we provide a proof for Theorem 3.1.

We have already shown in the discussion that precedes the statement
of the theorem, that the first condition of (3.19) is satisfied if and only
if (3.21) admits a solution, and that this solution exists and is unique
if (3.22) is satisfied,

Taking this as our starting point, we first substitute (3.12) in

(3.16a) to obtain

1,3 1 1,3 2 2.3n 2 2.3
I -8 = a808) + (0,8 +G88)I1 + nflacazaz> 1(0,,€] + G,e7e)

1, 2 * 3,2 % o .32 % 2.3 1
+ €,(81D,y) + &&G)) [I + n’_:1‘82“‘2K )71{(G,8,8; - Fp3)
® 23n 2 2.3
[T+ £ (Kezez) ].,.&, + Glelel) + D

* 2 * 2 3
2171 1
n=l

1231 + G,€,€

371 ¥

where we have utilized the following property of adjoints of conditional

expectations
*
2.3.% 3* 2 3.2
(€,8) = & & =&6& .

Now, multiplying out several terms, and collecting some common terms together,

we arrive at

1.3 * % * 1 12
I-25 =488+ [DyD,; + DDy, = DyyFyo0p 188
* 1 123 *x k1 132
+ [Dy,6; - Dgy (FyGy - G3)16181€] + [G3Dy; + GyDyy - G Fap01 1€,616)
% % 1.3.2.3 . _* 1232
+ [G3Gl + 0163 - 611’;261]5151"1‘1 + D21°4D2151°1°151
* 12,32 % * 322 % .1.3.232
+D,,G,6,€ (€187 + 616,018, (E18))" + G,G,6,818) (&18))

> (),l,,2.,3.0,2 (n)_ 1,2 3.0+l (n),1,,3,2. 0+l
+ nEI[Al e (E18]) € ¢+ e (e8] + Ay T8 (18)
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. (n),1,3,.2,3,. 0+l
P + A, alel(elal) ]

where Al denotes the linear bounded operator inside the brackets on the
right-hand side of (3.23a), and ‘\2, A3, 4\4 are defined likewise through
l (3.23b) - (3.23d).

l For two linear bounded operators al and dé mapping fl into Fl, we

have [¢f. Kantorovich and Akhilov (1977)]
5@ +ay) 2 T@) + 5@,

and therefore the spectral radius of I - 5 can be bounded from above by

‘ 1.3 * % %1 12
! £, (L - &) = (a81€)) + £ [(Dy,D,y; + Dy Dy, = Dy FypDy;)€48]

* 1 1.2.3
+ 71 [(D),6 = Dyy (Fy,6; - G3))€,€16]

* * * 1 * .1.3.2

*+ 1 lGP1p - (61Fpp = 63)D7))8 58]
xx w1 1,323

+ £1[(G,6; + GGy - GF1,G e e eTe]]

* 6.D..eke
+ 1,00,;6,05:&

2 12,32

2.3 #
151611 + r,[D5,6,G,€; (81 €))7

——

* * 322 * 1,3 ,2,3.2
+ rl[GIG402151(5151) 1+ ‘1[G1G4°15151(8151) )|

n=

+

(n),L,,3,2 n+l (n),1,3 ,2,3.n+l
LAy e (BB T I 8 (818 )

+

Now, utilizing the line of argument that led to inequality (i) in the proof
of Proposition 3.1, we may readily factor out the projection operators

corresponding to conditional expectations, and thus obtain the final bound

nr—— P NS, — ———— ———
. .
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where r is given by (3.24), and we have used the property that

*
rlc7) = rlﬁy ) for any linear bounded operator (: Fl - T Then, condition

1
C2 guarantees, in view of our discussion in the proof of Proposition 3.1,
existence of a unique solution to (3.21), which can be obtained as the

convergent limit of the series generated by the iterative procedure

w+l) . (n) 1 1,3
Y] (T =By " +k + (D8 + G388k,
(6.1)
1,2 % 3,2 % 2.3 -1 1 2,3,
+ &,(&D,; + €86 )(I - Ke, &) "{k, - (F,, G,8,€5)k,]

()]
1 € Tl.

To complete the proof of the Theorem, we now show that the second

starting at any initial choice y
Gateaux variation (3.18) is positive definite under C2.
Firstly, since r < 1, and J is self-adjoint,
[E{<h (z)), (@ - Dh (zp> ]| < E{<, (z)), hl(z1)>1} ,

unless hl is the zero element in Tl.

Using this in (3.18) we have
2 I'd =
'L, >EL<hl(zl), hl("l)>1 d’xl(zl), hl(zl)>1} o ,

provided that h1 is not the zero element. Hence, ale is positive definite,

which completes the proof of the theorem.
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THE GAUSSIAN TEST CHANNEL WITH AN INTELLIGENT JAMMER

TAMER BAGAR
Department of Electrical Engineering
and Coordinated Science Laboratory
University of Illinois
1101 W, Springfield Av.
Urbana, IL 61801

ABSTRACT

Consider the problem of transmitting a sequence of identically dis-
tributed independent Gaussian random variables through a Gaussian memoriless
channel with a given input power constraint, in the presence of an intelli-
gent jammer., The jammer taps the channel and feeds back a signal, at a given
energy level, for the purpose of jamming the transmitting sequence. Under a
square-difference distortion measure which is sought to be maximized by the
jammer and minimized by the transmitter and the receiver, this paper obtains
the complete set of optimal (saddle-point) policies. The solution is
essentially unique, and it is structurally different in three different regions
in the parameter space, which are determined by the signal-to-noise ratios
and relative magnitudes of the noise variances. The best (maximin) policy of
the jammer {s either to choose a linear function of the measurement he
receives through channel-tapping, or to choose, in addition (and additively),
an independent Gaussian noise sequence, depending on the region where the
parameters lie. The optimal (minimax) policy of the transmitter is to
amplify the input sequence to the given power level by a linear transformation,

and that of the receiver is to use a Bayes estimator.

*Manuscript prepared June 19, 1981.
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I. INTRODUCTION AND PROBLEM DESCRIPTION

The communication system depicted in Fig. l represents an extended
version of the so-called Gaussian test channel (cf. [l]), which also includes
an intelligent jammer who has access to a (possibly) noise-corrupted version
of the signal to be transmitted through a Gaussian chaannel. More specific-
ally, a Gaussian random variablef of zero mean and unit variance [denoted
u ~ N(O,L1)] is to be transmitted through a Gaussian chaannel with input energy

constraint cz, and additive noise (w = v, + wz) with total noise variance

I = i $,- Let the transmitter strategy be dencted y(+), which is an
element of the space Tt of real-valued Borel measurable functions satisfying
the power constraint E{[y(u)lz} < c2. The jammer has access to a noise-
corrupted version of
A
xRy +w o, (L)
—
JAMMER
v
v
v-N(0,o)
TRANSMITTER RECEIVER
] X z 3
Lty () (+)— - —@—@——»— () fo—

Fig. 1. The Gaussian test channel with an intelligent jammer
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‘Ihis single variable can be replaced with a sequence of independent

identically distribucted Gaussian random variables, without altering the
resulcs of chis paper.
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denoted

y = x+v (2)

where v ~ N(2,%), all random variables @, Wi, W, and v) are statiscically

independent, and §l a 0, gz a2 0 and ¢ 3 0. Based on the observed value of

y, the jammer feeds back a second-order random variable v = 3(y) to the

ey — - -

channel, so that the input to the receiver is now

. z = X+ VA, . 3)

The random variable v is correlated with y, but it is not necessarily

decermined through a deterministic transformation on y (i.e, 3(+) is in
general a random mapping]; furthermore it satisfies the energy constraint
E[VZ] < kZ. Let us denocte the class of all associated probability measures
» for the jammer by Mi. Finally, themreceiver applies a Borel-measurable
transformation §(-) on its input z, so as to produce an estimate 4 of u,

by minimizing the square-difference distortion measure

- EUs(2) - ul2 | v} odu(w) . (%)

-~

Rey, 8, w) =

e -

Denote the class of all Borel-measurable mappings §(°), to be used as an
estimacor for u, by U_. Then, the transmitter and the receiver seek to

minimize R by a proper choice of y ¢ and § € Fr, respectively, and the

[
jammer seeks to maximize the same quantity by his choice of . € Mj' Since

{ there 1s a complete conflict of interests in this communication problem,

an "optimal" transmitter-receiver-jammer policy would be the saddle-point

s +* *
;glutiog vy ¢ Tt, 5 € NP € Mj) satisfying the set of inequalities

* % * * * * - - e
R(y ,3 ,_)SR(Y,ﬁ,_»,)SR(Y, 5, W) ’ “‘Ye~c)5.-r»u‘xj- (3)
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The maximin policy . is also known as a least-favorable probabili;y measure
for the jammer {3].

In this paper, we verify existence and "essential" uniqueness* of the
saddle-point solution, and determine the corresponding policies explicitly
and in analytic form. The main result is presented in the next section and,
in particular, in Theorem 1. The structure of the solution is different in
three different regions of the parameter space; in one of these regions the
solution is ctrivial, and in the other two regions (which are covered by
Theorem 1) the saddle-point policy for the transmitter is to amplify the
input signal to the maximum power level through a linear transformationm.

The saddle-point policy for the jammer is to choose a Gaussiau random variable
(or a sequence of independent identically distributed Gaussian random vari-
ables, if the input is also a sequence) which is correlated with the input
siznal; the nature of this correlation turns out to be different in the two
regions of intere;t. For the receiver, the optimal policy is to use a Bayes
estimator. The proof of this result, which is given in section II, is rather
involved, and at places it requires some rather intricate arguments, but it

is essentially a proof of the "verification'" type.

Section III of the paper includes some discussion on special cases
and on some related results in the literature. The Appendix provides proofs

of two Lemmas which are utilized in the derivation in section II.

»
This term will be made clear in the next sectioun.

.-
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II. DERIVATION OF THE SADDLE-POINT SOLUTION

In this section, we obtain the saddle-point solution of the problem
formulated in Section I, for all values of the parameters, c a 0, kao,
il a0, §2 32 0, o 20, There exists, however, a region in this parameter
space, in which the problem is trivial, in the sense that the jammer has the

power to do the best he can possibly do, by cancelling out the signal com-

pouent y(x) in the received signal z, Specifically, consider the region

RLl- ki 2¢ +

— ':1
where the deterministic feedback policy
*
3G = -y (6)

is feasible for the jammer, which leads to

and thereby to
o
§ (z) = 0 , . (7
resulting in a maximum distortion level of
* %
Ry, 8§ ,8) =1

Note that the choice of any specific coding strategy is irrelevant here,
since they all lead to the same maximum distortion level, under (6) and (7).
Hence, for this special case, the pair (6*, 5*) as given by (6) - (7) con-
stitutes a (trivial) saddle-point solution (and the only one) for any

choice of y € T

P kW
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Leaving this "uninteresting' case aside, we henceforth restrict our

analysis to the parameter region

2 2
R2. kK <e” + g 40,

which we further decompose into two subregions characterized by the addi-

tional constraints

, ek
R3. k- — L +§ >0
(™ + 8 * o)
R4, kK -~ +& =0
(e© + & F a)

The complete solution to the problem is now provided in Theorem 1 below,
after introducing some notation and terminology.
Preliminary notation for Theorem 1
Introduce the scalar parameters X and t by
Y A (8a)
ce 1= 00+ apied vg ot wepin (8b)

and let N denote a Gaussian random variable with mean zero and variance

tkz, i.e.,

N~ NGO, tk%) (9)

whenever t

v
o
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Theorem 1. 1In region R2, the communication problem admits two saddle-point

a

Xk * * *
solutions (v , 5, u ) and(-y , =6 , u ), where

*
(1) v (u) = cu, (10)
*
(i1) u 1is the Gaussian probability measure associated with the random

variable
Ay , inR3
v = 8'(y) = (11)
x(l-t)ay +n, in R4

where t ¢ [ 0,1] in R4, and n ~ N(O, tkz).

*
(111) § 1is the Bayes estimator for u under the least favorable

*
distribution & , computed as

2

e 1 0¥ty + 520 + g0k, 1R

*
§(z) = (12)

[c/(c2 + 23]z, in R4

i -

gzggf. The proof proceeds in two steps. We first establish validity of
the right-hand side (RHS) inequality of (5) when u* is determined by (11),
and then prove the left-hand side (L¥S) inequality of (5) when Y* and 6*
are given by (10) and (12), respectively. Finally we discuss the

"essential uniqueness'' property of the saddle-point solutiom.

(a) THE RHS INEQUALITY

Region R2 M R3: Suppose that u* is determined by (ll) and the
parameter values lie in region R2 7 R3. Then, the RHS inequality of (5)
i dictates a combined coding-decoding problem, with the channel ocutput

[ equivalently, receiver input] being [ from (3) ]

zes (1 + VDy(u + (1 + x)wl + \v + Lo

\

-
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where 0 < (1 + %) < 1 from (8a), since we are in region R2. Let

Y

——

Y —_— s

(1 + X)wl + AV + v,

with square-difference distortion, Gaussian channel noise { with mean zero

and variance (1 + \)251 + kza + 52], and channel-input energy constraint

By’ < + ni?

It is well known that this problem admits a linear solution [cf. [1]],

which is that the best coding scheme is to amplify the input u to the maximum

available power level, i.e.
s
y(u = ¢c¢(l+XNu , ¢c>0 ,
and to choose the quadratic distortion minimizer § as the Bayes estimator
¥ i 2,2 . 2 .
5 (2) = Elujz] = {(1+ Vec/[(1 + A)7(c” + §) + Vo + g,]lz

which is precisely (12) in the region R2 M R3. Moreover, since 1 + X > 0,

ot *
y (W) = ¥ (W) = cu ,

1+

which is the same as (10). Hence, we have established the validity of the

RHS of (5), for the solution presented in Theorem 1, in the region R2 ™ R3.

Note that, yet another possible coding policy for the transmitter would be

*
Yy(u) = ~cu , ¢>0 ,

¥ (u) z (1 + V)y(u). Then, the problem we face is the Gaussian test channel

C brhe M 3B S A% 7 ol 0l UG ARSI (4. § By - g A B v
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i.e. amplification by a negative factor, but since this leads to the same

minimum distortion level, we adopt the convention of choosing only the

positive amplification factor and call such a solution "essentiallv umique”.

Region R2 M R4: YNow suppose that the parameter values lie in the
region R2 N R4. A similar reasoning as above again leads to a Gaussian

test channel

<5

 §

. () /’—\\ 2 5C-)
—eet v () + > 1°50) o

w={14+ A(1 - t)%]w + A(1 - t)%v + 0+ w

1

with the channel-~input energy constraint being
- ?
E 7wl?t < A1+ -09?

- TA 1
where y(u) =[1 + A(1 - t) y(uw). The Gaussian channel noise has its mean

zero and variance

var (@) = [1+ A(L - z;)“]zsl + 2281 =)o + tk + :,

Substituting for A and t from (8a) and (8b), respectively, we can evaluate
the latter expression to be

2 202 + 52)c2

2 +

var (w) = El - Ez - k° -

2 .32
(k™ + ;2) c
2

2
(c® + 51)2 (e + El)

Likewise, the input power constraiat can be written as

var (;(u)) < cz[c2 + §1 - §2 - k2]2/(c2 + :1)2 g ]

and furthermore

AL BB RSB S R e e

RENR 3
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10

m+var (W) = c” + % <+

Again using the well-known result for Gaussian test channels, we obtain the

essentially unique solutiomto be

/2

Trw = el +a - ol
1/2
* E|uz| m [
6 (z) = Elulz] = var z > @m+ var(w) > 2 +e :
31

with che lacter expression verifying (12) in region R4. Furthermore, since
1 +x(1l - :)1/2 is nonsingular (in fact, it lies in (0,l] under the assertion

that t € [0,1]),

/2

v @) = /L + Al - oY

= cu

which verifies (10), also in the region R4. This then completes the proof
of parts (1) and (iii) of the Theorem, under the assertions that a least

favorable distribution u* for v exists, as given by (ll), and t € [0,1] in
R4. The former assertion is verified next, in the sequel, and the latter

one is verified in Lemma 2 in the Appendix.

(b) THE LHS INEQUALITY
*
Region R2 N R3: Suppose now that y and 6* are given by (10) and (12),
respectively, and the parameter values lie in R2 N R3. Then, the LHS

inequality of (5) dictates the following optimizacion problem for the jammer:

J(‘ E{(az - UIZW} du(v) , (13)
bl

nax
- &M

where

5 i A1 3e s A AL ABADAN-DOMNI« Y5 ¢ oo K el s A




l .

-3

11
zZ = cu + wl + o+ v,
2,2 ’ 2
x = c(l +2)/[(l+ X" (e +,l)+x3+§2] . (14)
Note that (13) can also be written as
3 2 > 2.2
max J'E {Effaz - u]"|v,y}} du(v) = max B E{a"2" - ZGZU'V’Y}dﬁ(V[])}+ L.
:\1 - y ﬂ( ®
[ 4
J J
where
Yy mcu+w + v,

1

Furthermore, since w5 is independent of u, v, and v, u 13 independent of

v, and they both have zero mean, the latter expression can be simplified

to
® 2 2 2 .22 .2 2 2
max E { J' E{a‘v2+ @ 2v(cu + w,) + o (czu + W, +w,) - 2acu
v H L 2
-, -
J
- 2avu|v,y} du(viy)} + L
(-]
2.2 \ 2. 2,
= max B ) (a7 - 2] [} 4 (ae - DT +at(E) + 2y
- ™ s
3
where

(y) = oE[uly] - dzcE[u[y] - aZE[wlfy]
2 2 2
= {[a(l - ac)e/(c” + L rD]-[a £,/ + Lty

= [-az + a(e + an')/(c2 +3 + Dy : pyY . (15)

Hence, we may confine attention to the maximization problem

;- oax g tf (@®V - 2uny)] dutuln} (L6a)
, M ®
~ M,

s —_ - e - ———
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Wwhich is in fact invariant under the transformation c -« -¢, and is therefore
also the maximization problem (for the jammer) corresponding to the pair
(-Y*, -6*). Now, by utilizing the Cauchy-Schwartz inequality [cf. [2]],
(l6a) can be bounded from above by

. 1/2

o 1/2
J £ max { fazvz du(v) + 2 [I \azdg(v) ] lEy{lﬂ(Y)'Z}l i
.<EM -0
=)

and since . € Mj, this can further be bounded from above by

T’k + 2k[Ey[lﬂ(y)|2]|l/2 . (16b)

But, provided thac

LN PRI

this upper bound is attained uniquely if we choose, in (l6a), H(VIY) to be

the one-point conditional probability measure corresponding to the strategy
* 2,,1/2
RN Y R AL LS s IO (17)

which may be verified by direct substitution of (17) into (l6a) and by
comparing the resulting expression with the upper bound (16b). Now, what
remains to be shown i{s that (17) is equivalent to (ll) in region R2 "~ R3,

and that Ey[lﬂ(y)lz} > 0. Lemma 1 in the Appendix proves that the coeificient
pof y 1in (15) is in fact positive in the region R2 " R3, and hence the

lacter requirement is readily fulfilled. Furthermore, since

K () = <kp y
(e, {Imen 1“3t o lvar ()12

Ay

from (8a) and the property that p > 0, the former requirement is also

satisfied. This then completes the verification of che LHS inequality of

- ey




13

3), and thereby verification of the theorem, for the region R2 ~ R3.

egion RI " R4: We now finally verify the LHS inequalicy of (5) when
the paramecers belong to the region R2 ~ R4. What replaces the maximization

problem (13) in this case is

which can be rewritten as (through some straightforward manipulacions)

" 2

c” "2 gl gl

- - max E [ ] v = VE[—Y-w Iyl d“(uly)] + 3 +3, +~
- P P4 y c l l - 2
(c + ‘l) _de -® c
(18)

which is an expression that is invariant under the transformation ¢ - -c.

Now, note that

3 31
3[7} u - wlly] = 1} © 3 < y - = y=0,
¢+ ;1 +c ¢+ gl +o

and therefore the maximizing solution is any probability measure _, with

the property

j vz do(v) = k

-

2

*
Let us now invesctigate whether , ,determined by (l1),is one such messure

in region R2 " R4. Towards this end, it suffices to show that

\
20, e i

var{y(l - t) L
and

t ¢ [0,1]

-—— —— - —-—— e M- ¥ A——— — R o o e o~ ~ -~ -
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The latter is shown in Lemma 2, in the Appendix. For the former, simply

2
note that, because " ~ N(0, tk™) and independent,

.-

/2

var [A(l - r.)l y+ 1] = Xz(l - t) var (y) + var (™) C)

2 2 ‘ 2
= A (L - )™ + ;1 +¢) + tk

= K-t + ol = kP ‘

thus establishing the desired result. As a parenthetical remark, we should

mention that the estimator (12) in region R2 © R4 may also be viewed as an

aqualizer decision rule [see [3]] since the conditional (on <) risk function 1

corresponding to it is a constant on 3Mj, the boundary of Mj' [Note that
in this interpretation, elements of 3Mj are the decision variables of the
jammer, and we have to introduce probability measures on an.] Hence, the |
minimax (saddle-point) property of 5* in R2 M R4 can also be verified [with

y* fixed, as givea] by resorting to a well-known property of equaiizer decision
rules when they are also Bayes with respect to a least favorable probability
measure [which in this case is the one-point distribution on auj, which

/2

selects the Gaussian random variable A(l - r.)l y + 7]; see, [4], [5]. But,

the proof given here seems to be more suited to the problem under considera-

tion since (1) it does not require additional probabilicy measures to be

*
defiined on Mj, and (ii) it also establishes the optimality of y . 1 ‘

To recapitulate, we have verified existence of a saddle-point solution

(10) = (12) for the communication problem under consideration, in the -
parameter region R2. The analysis also readily leads to the conclusion

* * *
that in addition to (10) - (l12), the triple (-y , =48 , , ) also provides a

saddle-point solution, naturally leading to the same saddle-poiat value

- my - ———ee—— o el o L. oo
— ey - T e——— e, . o e a ————
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for R. The question now arises as to whether other saddle-point equilibria
exist. In region R2 " R3, there is clearly no other saddle point, since

*  x
the maximization problem (l6a) [which corresponds to both (y , § ) and

(‘Y*: -5*)] admits a unique solution, thereby eliminating the possibility

of multiple saddle~point policies for the jammer.[Qtherwise, interchange-
ability property of saddle points (cf. [6}) would lead to a contradiction].
In the remaining part of R2, i.e. R2 " R4, however, the issue is more subtle,
Since the maximization problem (l8) is invariant under different choices

of probability measures from BMj, the LHS inequality of (S5) clearly does

not admit a unique solution - in fact, all second-order probability measures
with first moment zero and second moment equal to k2 constitute a solution.
But, for any one of these to constitute a saddle-point policy for the jammer,
it has to be in equilibrium with (Y*, 6*), because of the interchangeability
property of saddle-point equilibria. This further implies that, with Y*

*
fixed as given, § has to be Bayes with respect to that least-favorable

*
distribution. Since § 1s a linear estimator and all random variables are

Gaussian, this requires the chosen element of an to be a Gaussian probabilicy

measure, and some further analysis reveals that (ll1) is in fact the only

such element. =

Some of the expressions derived in the proof of Theorem 1 now lead to
the following Corollary which gives the saddle-point values in different

regions,

Corollary 1. The saddle-point value (R*) of R(y, §, w) in different

regions is given as follows:

Rl: R = 1

EPTRY B NSO

L

N
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RZ T R3 R = (gc - 1) + 4713 +§?+k')r2kp(c-+§l+:)
2
- * c2 2 Sl.
2R R omem—— (T + 5t )
(c” + {1)" c
where % and p are defined by (l4) and (15), respectively. =
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III. DISCUSSION OF SCME SPECIAL CASES, AND CONCLUDING REMARKS

The general solution to the communication problem of Fig. 1 has the
property that it is structurally different in the two regions of interest,
with the dividing "line" between these two regions being a hyperplane
determined by the allowable power levels for the transmitter and jammer, and
the noise intensities in the main channel andrthe jammer's wiretap link. In
particular, if the transmitter's allowable power level (cz) is larger than
that of the jammer (kz), we stay in region R2, and if this difference
is sufficiently large the jammer's maximin policy is an additive mixture of
a linear transformation on his measurement and an independent Gaussian random
variable, whereas if the difference is small it i{s more likely (depending
on the values of other parameters) that his maximin policy will be onlv a
linear transformation on his measurement.

. If the wiretapping channel noige variance () is sufficiently largze,
the parameter region is R2 U R3, and hence the optimum strategy for the jammer
is a linear policy - which may seem, at first sight, to be somewhat counter-
intuitive, since the information contained in v (concerning u) is quite
unreliable. However, some scrutiny reveals that the jammer, in fact, uses
this noisy measurement as 3 source of noise in order to jam the transmission
channel. This makes particular sense in the limiting case g -+ =, when the
optimal jamming policy is to choose u* as a Caussian distribution with mean
zero and variance kz, which should be independent of the transmitter output.
This conclusion for the limiting case corroborates a result obtained in { 7]
in a somewhat different context. More specifically, this recent reference
addresses the problem of obtaining optimal pclicies in the presence of

jamming, when lammer's policies (considered as random variables) are forced

e

-
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to be independent of the transmitter outputs, and the loss function (to be
ninimaximized) is taken as the mutual information between the transmitter
output and the receiver input. In this framework, McEliece and Stark solve
in [ 7], as an application of their general approach, the communication
problem depicted in Fig. 1, but without the tapping channel, and arrive at
the conclusion that the least-favorable distribution for v is a Gaussian
distribution. Hence, the two seemingly different problems (with different
loss functions -- square-difference distortion and mutual information)

admit the same saddle-point solution in the presence of an independent
jammer strategy.[This equivalence can in fact be verified directly by making
use of some inequalities of Shannon [ 8] on mutual information.] But, this
equivalence does not directly extend to the communication system considered
in this paper, and derivation of the saddle-point solution of the communi-
cation system of Fig. L when the loss function 1is taken as the mutual infor-
mation between u and z remains today as a challenging problem.

There exist quite a few results in the literature on worst case designs,
wherein the Gaussian distribution has been proven to be the least-favorable
distribution (such as the cases of entropy maximization [ 9], Fisher-information
ninimization { 10], or minimax estimation problems [ 11], [12]), and the present
paper adds to this list a new class of problems not considered heretofore.

‘e should note, however, that if the input sequence in Fig. 1l is vector-
valued and/or the number of channels is more than one, the saddle-point
solution will no longer be linear-Gaussian (i.e., the solution of this paper
does not carry over to the vector case), since the counterpart of the Gaussian
test channel does not admit a simple linear coding scheme in the vector case

[(13].

.

i
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IV. APPENDIX

In this appendix, we provide proofs for the two Lemmas which were used

in the proof of Theorem 1 in section II.

Lemma 1.

9
p = -az +{a(e + a0) /(" + g+ @)l > 0, tn R2 O R3,

where o is defined by (14).

19

Proof Through straightforward substitution from (14) and (8a), and some
manipulations,
2
2
p = 3 2 L% +g-¢ - g5 - al
¢+ 5, + 3
1
2 , 2 £ )
I e C I T CLE D B S
¢+ 51 + G 1+ 2 1+
aZ 2,2 2
= 2 [ A" (e +§l+g)+,\(c +£l)+52]
LT+ 0"+ +9
2
22 2 k(e™ + )
(1 + M) (" + il + ) (e + &+ )
> 0

since 1 + A > 0 in R2, and the last multiplicative term is positive in R3.

Lemma 2.

t £ (0,11 in R2 "R4 , where t is defined by (8b).

Proof. Starting with the inequality that determines R4,

~~~~~~

-~
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2 (% + &)
K+ 53 ;<
(c” + &y + )
2 2 : 2
— A A N CRE - I

and squaring both sides
2 . 32, 2 2 . 12,2
(k" + ) (e + & + 0 < (" + 8%k

we arrive at

(2 + 5P+ e+ )
2+ El)zkz

Since this latter expression is equal to 1 - t [ from (8b)], and it ig also

positive, the desired property follows. =]

~—— -
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‘INTMAX FILTERING JROBLIMS FOR BSERVED 0ISSON PROCISSES
“ITH UNCERTAIN RATE FUNCTIONS
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Jurcinated 3ciance Laboratory
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Absctract

This paper creats the following Jecision
proolems £or continucus-tine svstems with iiscon-
inuous observacions (i.e., Or systems Jvserved
zarougn point processes):

.. Rooust astcned filtering.

I1. vbust <lener filtering
I1I. Minimax state escimacion for svsctems Jiinh
101se uncercaiacy.
in eaen case there s issumed tO e some legTes Of
incercaiat? 1a the rate funczion of an Observec
22153001 »rocess. ind a4 corrvespondiag Wnlmax lesizn
aniloscony is adopted. a3 Problem ! we issume :thac
he rate >f the >oservatisan process L3 i letermin-~
itz function >f zime, ang 1a Proolems I and I[II
“¢ 1issume :N4C nhese Tates ire vide-sense-stacione
irv stochastic processes. jeneral solutions zo zhe
ihree Srodlems ive considered in terms of leasz-
favoranlae zate Ifunctidns OY Hrocesses, ind 3everal
iseful mocels Jf .ncertaiatv ire :iscussed Ln 7ris
contexe,

v

sacraduction

The purpose Ot zhis paper is zo formylate and
solre zhrae aUnizax lecision problems Zor concinu-
Sus ~Cing sVSTems ODservec Lhrougn poiat processes.
11 particular, for Poisson observations wicth
.ncerzain ratesl, we consider :the problems Jf robust
natcned filzeriag, rooust wiener filzering, and
zininax jtace estimacion. aAll of these problems
1ave Seen :zonsidered in the context of continuous
>oservations. [a particular, Zor continuous Jbser-
7ation nodels, rooust nacched filtering has Seen
consicered ia “iesl, robust Wiener filtering in
. 2-3', and mninax stace escimation in [9-10).
Here, we apply =he mechodology of zhese esrlier
«“orks o0 consider cthese problems for iisconcinuous
Joservacions.

Ia Seczion I, cthe zobust matched fil:ering
ariclem is considered. We see nere that, alchough
tne problem formulation and {cs solucioa for Lz

4ncertaiacy resemble chat of the corresponding
oroolem for conctinuous 3ignals "3), :zhe disconcia-
1ous proolem (s not cirsccly cransiormable co zhe
continuous Jne. TFurchermore ctne special signal
structure (the 1onnegacivity of the rate funczion)

’Thxs research was supporzed L{a part sv the Office
ot laval Researcn snder Concracs '{000le=4l-K<001s.
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1a the discoantinuous observations case allows us
0 consider for cthe signal (race) any uacer:aiacy
wodel descrived by 2-alternacing capacities (e.3.
contaminated mixtures, zotal variaction aeignbor-
noods, band zodels, and extended p-point Dodels
(see {22')); zhis cannot be Jone for the concinu~
ous observations case. Therefore, complete re-
analysis of chis problem is required here. Sece
zions II and III treat the related problems of
robust Wiener filtering and minimax scacte estima-
tion, respectively. [a contrast to the matched
filzering problem of Seccion 1, it is seen zhat
hese WO problems can be transformed iirectlv o
inalogous continuous-cime problems (as treated in
"71,°8',{10]) and thus are solvable using cach-
aiques Of previous scudies. For :nese problems
+¢ Dresent 4a approach that creats, in a unified
<4y, some imporzant models for .ncertaiacy {a the
rates (¢.2., bSand Dodels and contaminated

T Ktures ;.

1. ROBUST MATCHED FILTERING

A.__Syscem Model

consider the photodetector iepictec ia Tig. 1,
Wnich is used for fiber ana free space Jspcical
commnicacion systems (see ll}) aad wnich allows
18 %0 emphasize different noise coancributions The
output of -he photodeZector is Zivea Sy zhe sum of
a filcered Polsson process Ls(:) 2lus an {ndepen-

ient zero-mean chermal noise L_h(:). The currenc

L’(:) can Se expressed, for t z J, as

N
iizy = ZF
3

ik e
eg tit=")
=]

1.1

whete [N .t 2 0} is ian iahowogeneous counting
process such that N, is che aumder of pnotoelece
crons zeneraced during [O,:),-‘ {3 cthe emission

tine, and the gn’s are i1.4. random variables :hac,

in avalanche photodiodes (APD's), model :the jumber
Jf secondary electrons jenerated for each primary
photosleczzron. Hers e {3 che charge of an alac-
tron and cthe APD {mpulse response is assumed 0 3e
$ (t) where : is cthe Dirac delta (i.e., :zne photo~
diode is assumed 0 Se Ldeal). This {s 10t a
major restriction and che rasulcs thac Zollow may
e mdified for che jeneral case Ln which zhe
impulse response L3 ;h’f:\ with h’ aonimpulsive.

The incenstcy i of Ne {s relaced to the

Jeziseen and lontend, Saa Seoje, 4,
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‘ncident sprical oower ov
:.;pa:)-‘.J-ZSV;\-I: 11.3)
Jnere "~ is ne :uantum 22ficiency Of che 17D and
®, 13 Ine z2nergy in i yaocom, riZ., 1 is Plank's
1onscant ina is the .inmoaulaced sprical carrier
irequency. e igsume cthat 2¢I) i35 :etermaistic

ing thus 30 1s ' sefinea in (l,2)V, The race '-d
B

iccounts Ior the constant rate at which sponcane-~

Jus Jut :xtraneous 2lecirons ire jenerited iurin

SyIi.  AS 2 onsequence L .t 15 iffected dv a
H

iisturdbance calleu the zark curreag waich is
usualiy negligible proviaed 3(2) {; a0t oo smail.

The filctered Poisson process at the outpuc of
the receiver filtar i(see Fig. 1) 7_ can be writtan
as -

i :: ag At =" s Lo (TOR(E--id". 1.3
el 7 Aoy

e

Ia "1, pp. 1od-179' the :haracteristic functiom,
ne iumulancs, ind shus che moments o>f vy _ were

evaluatea. 1[a parzicular the signaleco-noise racio
at the sutpur of che receiver (s given Hv

T, e me)? 2

L -n . ol

e v =4

Jartv PN

Tz (g

. i ) .
<. ki s
R ML SER s
3 2e"Z(g™) s}
(l.s)
wnece . 1 13 -he wo-sized spectral Jjensi-y Jf the

mal’i0ise process wnich is assumed IO de wnicte

N
jaussian, ina the momencs Z(g) and £(g”) 3f -he
za1n Of tne APD were avaluated in 12]; for odur
proolem these are 3iven conscants.

The assumption iLn 7l.+) aboutg che thermal noise
>eing a vhite >aussian process 13 not restrictive
stace this is a realisczic enough model for our
system; noctice :that in a photon channel the main
source 2f "ntoise’” Ls che shot noise {avolved in the
sountiag arocess N_. Therefore, ia what foliows we

“ill Se prizarily interested ia the “signal"”
process “(' Y.

3. The Macched Tilcer

As proved i{n (12, pp. 168-172], as cerzain
paramecers tend =0 prescribed limics, che process
g1z, (defined in (1.3)) tends to & GCaussian procass
on "J,t) with mesn the unsquared numerator of (l.4)
and variance zhe ienominacor of (1l.u). Therefore
tnhe probability of error reduces o J(3NR) (where
) is the :ail of the standard saussian iiscribdbu-
zion) ana 3NR b>ecomes 4 useful performance neasure.
Thus, daximizing che 3NR over all possible filzer
izpulse cesponses Ls desirable. The resulting
asprimal filcer {s che nagched filcer.

Let s scand for ‘~’<'\. 2 for hiig -}, dnd

"~

N
s /e e -
a, = T2 e Lec , be the ianer prod
2e7°2(87) R4
act defined for zeal a,5> as "a,b = a(m)db(=idr.

9
hen 2 < %, s 2% ala:a % %22 9} whera T is

,2) and SNR of (1.4) may de written as

hl h
SNR=E"(3)c kh;s,nw)/E(g') where

A
s(h;s,n)=’n,s""/"h, (3 -adh. (1.5

for any n % %, zhe space Jof >ounded, linear, posi-
tive Jperators mapping < o itselfi. ~Tor :he coa-
tinuous~-tine case chat we consider in this papaer,
n {s the autocorrelacion funccion of cthe zero-
nean Gaussian chermal noise process and it is
zenerally of che form Kc(',:) o).dé (= =2). In this

seneral case s +n of (1.5) must be interpreted as
S(*)(r «3)+n(~,2). If in particular a(r,3) is
of the form n(r)s(- -2) (l.a. che noise process is
cimewise uncorrelated) zhen s +a of (1.5) is just
$(*, +n(v); the white noise case that we “Teated
firse, above, is a special case of chis for

a(*) =a, for all -.

The matched filter problem for fixed 3 and n
is given by (compare with (3})

nax aCh;s,n) (1.9
h<2%
The solution zo this problem for fixed s is ziven
5y
Property 1 (Macched Filter):

max :(h;s,a)= :((s*ﬂ)-ls;s,n) -’s,(son)-ls

hizZ 1.,

where (sm)-l is the inverse mapping in Z corre-
spoadiag o s+n (recall s 2 J and n {3 a posicive
operator).

2zoof. Follows scraighcforwardly from che
Schwarz tnequality.

de are going to need che following cwo

properties of che functional :
2roperty 2: For fixed 2 £ X, =(h;s,a) Ls convex in
(s,m) € X7 « Z.
2roof. The proof is similar to that of Property 2

of [31].
2roperty 3: The functional
max <(h;s,n) -(n,(son)']-s' {s convex in (s,n)
h2
on 2% « E.

2roof. Since (s,(am)-ls‘) - :((sm)'ls;s,n)
Property 3 follows from Property 2.

ls\ of (1.7) with

’:,n'lﬂ of (1] nocice that the iiscontinuous
observations case is equivalenc =o che continucus
obsarvations case with autocorrelacioan function
a(*,3) +s(") (v =) ({.8. the useful signal also
plays the role of additive uncorrelaced noise).

emgrk . LeC us assume that “.4-0 (no '"dark”

current is present) and that a0 thermal noise
discurbs che syscem of Fig. 1. Then vta (1.4,

Remark 1. In comparing ’s,(s+n)”
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1.3) reduces to
:this, ) s a,3 " “h,3h

and 1.7) o
aax cthis, N =z0l,s, V= 3,1
N %
that i{s the optimal filtzer {3 chat one with impulse
response identicalillv L. ia >cher vords the matcned
filzar i3 4 pure integrator in this :case.

. _The obust lacched TLl:ar Zor acertain
3ignal Structure
Zquation (1.7) iacicates chat for <nown 3,2

the maccned filcer is given d>y a e _,.m'l,-_ Suppose
10w, that s and 0 are only cnowa o be wembers Jf

- LI

zie classes 4 = 77 " S, We would liks to
fina a filzer whose performance ices not deterior-
ace drascically aver o < ™. Then as ia ‘3] ve say
thae ao < % is robustc over s ¢ T Lf

inf  :ihgis,a) . max{ taf s his,a) (1.3)
(3,00 b % s,ad ™
We note zaat (h,;s, a0 2% X7 0 X Ls a gaddle

poiat solucion zo the jame of (1.3 if
iaf :<EL,:s.n)3:w?g;s,.:;L‘-mx :«'n;sL.n.).
(3,250 7 = - A -
(1.3)
loncerning such a solution we nave che following
result:
'

Lemoa 1. Suppose o and 7 ire convex,

’
-4

5., 24 <7, and A, = (5, = 1) "3, . Then

S.38.,3% ' 18 3 saddle point for eq. (1.3 L{£f the

$sllowiag inequality iolds for all (s,a) 34 <7
Zas.s 2’8, 2 n (s -adh, (L.10)

2roof. For 3% 70,1) and (s,n) < & ¢ 7 iefine

Tellex)s, -73,, * (l-3)n, ~3n and
K(a;s,a) = 3¢hy i7,0)

Thea, siace & and T are coavex (h.L;sL,:LL\ is a
saddle poinc Zor 2q. (1.3) iff
X(x;s,2) 2 K(0;s,a)

for all 2 2 [0,1l] ana 5 = /. 5ince 7 and -, are
iinear funczions of x and {(¥;s,n) {s chrough {cs
Jefinition and ZIrom Properczy 2 a convex fuanction
2f (s,a) it follows zhat K(x¥;s,a) L3 convex in ¥
far each (s,n) = 4 x ™. Thus X(a;s,a) 2 «(0;s,n)
holds {if

TER(xss, 0 2l 0

2
a0

far all ts,a; S 4/ ¢« ™, Ja 4diiferenciatiag we nave

'.:K;:;s.n)/‘.al',z_o s, °("L'h'.)°(h’.."""“)h7..)

ind _emma 1 follows.

wow, we jefine a pair (s, ,n, ' =0 Se laast
favoriole for o ¢ ™ Lf .-
5., (3, -, 'LsL' - an
=" (s, a2 "

’ s,(lon)-Ls . (11D

Iz follows easily from Eqs. (1.7), (1.9) and (1l.1l1)

chat (s, ,0, )% <7 13 least faverzhle for o
. RN -1

ana % ¢ (h,_,s!.,‘ ) where ‘-L... tsL-n’_\ sL is a

5aadle poinc solution zZo (1.3). We ilso have

LSTRA >: Suppose »/ and 7 aire convex, (s,,q )W 7

1

and a, ® (3, onL). sL. Furthermore suppose that

. -1 ;
sL,m =) 3, 13 right coanciauous ia x at x =0
for cach is5,1)% 4 <™ here . = (1-1)&Lo:nmd
Seilex)s, «a8 .

favorable for o and ™ Lff (1.10) nolds for all
($,2) o « 7.

2ropf. The proof is similar to the proof of Lemma
1 and follows step by steap the proof of Lemms 2
ind che Mppendix of {3].

b & ™M
Then (sL.rxL)./ ' is least

Lemmas 1 and 2 imply cthat, wichin a alld cone-
tinuity requiremsnt the :zriple (h. ;sL,:LL) wich

nsL,:\L) 2o ™ and h,_‘- f"L*"’.)JsL 3ives the

Jesired solution to our sroblem Lf£f (1.10) is
satisfied.

In the sequel we find :the robust zatched
filcer H\ for classes & of the siznal described

by L, uncertainty or uncercainty iescribed by

Choquet capacities. Although we could consider
uncercaiacy in the noise (or in the signal and the
noise similtaneously), we rescrict attencion co
signal uncertainty only, since the chermal noise
can be very realistically modeled as white
Gaussian for most applications. Therefore it is
10C so rascriccive co assume chat we deal with
aonnegacive autocorrelacion functions. Also
recall that the signal s which represents a rate
function is always nonnegative. Under chese
assumptions the concimuity requirement of Lemma 2
i3 sacisfied.

C.l1 L, uncertainty

Let M = (no} satisfying the assumpcions above
and assume chac the signal quaatity i3 known to be
in the class /1 = %" deftned by

FARETE R 4 NTPNLE Y (1.12)

where s, can be chought of as a known nominal

0
signal and 3 > O as a degree of uncertainty ia the
aominal model.

Define

sL- (sLono)hR-so-cohRQ-hR) (l.138)

T 2en) Tey (1.135)
Jhere hR sati{sfies cthe equation

Aghg = (1 -hp)lsy «Tgn (2 =ng)] . (i.13)

Then we have chat L€ a solution co (l.1l3¢" ard

(1.13b) exiscs
iheorem 1: The triple (ha;s,h.no) {3 a saddle point

Toete ?
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solution co 2q. (1.3' for o, and {n)}.

A . * -1
2r20f. Since s, = &, and 3, *(3, -a,' 5, L€ i3
— 1 1 x w ] L

sufficient via Lemma . 5 show chat (1.10) wizn
h,‘ a i, tolds for all s = JL. I is ecasily seen

chaet, iace REC W1 -n.,\is;. 2q. 1.10) Secomes

h_{,\z-iL{\lS°i,' 2 )

ana then from (l.l3a) ind .1.12b,

‘.1}\: .h’.{’\‘s =3y - ;‘) e ).
3ut from :zhe Schwarz inequalicy, (1.13b) and (1.12)

"4 len.),ses. |S h_(2- . e Tas
A (2eh Y, 508y | S Bol nR\ s so,,sj vi®3

9 0
ana the theorem follows.

Tquation (1.13¢), which gives zhe robust
natched filier Zor our problem, can bSe solved
izaratively cogecher with (l.13b). Solucions o
related 2quations for the continuous rbservations

Zise aave seen sreaged ia (47,

.- -ncertaiaty wichin capacitcy :slasses

In this seczion we consider uncorrelated
thermal noise srocessaes wich auzocorrelacion func-
sivns of :he form n);‘\éa' =) where n)(') > 2
a.2. and let uis iefine

’ Ay dr @ L 1.1%)

-
The important case of whicte noise is iacluded i{a =

e class ipove «n7) = N _ 2 and T, = N.%. 2 for
p 2 N o}

“niZe 201se wWith Two~3ized spectral lemsicy N

PSR

2
i1 thne nonnegative signal s s~ -'-s(’)) we& impose
Ihe consctraing

3(T.cT ay = & 3T | 1.13
3 3

Zguation 1.13) L3 an iverage pover constraint ‘W
ienoCtas iAverage power, E.’ ienotes average energy).

ote nat in most optical communicacions syscems
ine rate Iunczion is proportional o the :rans-
zcted power (3ee Zfor example eq. (1.2)).

3efore characterizing cthe uncertaiacy class
$2r the signal ve need soms definizions. Llat
denote J,:z' and 7 lenoce the 3orel T-algebra on .
Then a findite set function v on 7 is a l-alternate
Lag capacizy '13: on 2 1f it is {ncreastng,
zaontinuous from below, continuous from above for
closed sets, and Lf ({z sacisfies 7(2) =0 and
(A . 3) = v(A T B) S v(A)+v(B) for all A,3 < 7.
Jbviously any finite measure i{s a 2-alternating
capacicy.

For any pair (vo,vl) of 2-alternacing

capacities on 7)) there axists a Radon-Nikodyn
lerivative :vlfdva, introduced in {19], with the
iefining properly chat for each x I [0,®

3 .3v, dv, > xpo® faf d (A) where

K3 1 J AZz ¥

1A &1~ xn'l{va(A) -vlq',\c)].

Cefine the finice measures a, and 3, 30 chac

they are absolutely continugus with respec: =0 the

Lebeésque nsasure . on | with lerivacives A, and s,

respectively. ‘This rescriction is only for the
purpose of preserving notational uniformity and
can De relaxed.) Consider the secs

~ b4
- (e

.
v Siye (1.16)
~ =3 a2 iii S v A) for all A 2 7, and
3 S 3 3
G ey OomE (1.1
3 3 3

where v, (&) = ;y(A) for all A<7, 'lx‘?o“ - EN' and v,
1s 4 2Z~alternacing capacity. Note :that "-" is veakly

compact {19] and convex. The following result (s
a subcase of Theorem 4.1 of (191].

Leoms J: Lec vy and v be as defined {n (1.16)-

(1.17), and s be a version of v, dv, Then

8
1 - L
shere exists measure 3° < ™_ such that =, dm"/dv
ind 5 s 2 3 N

n';(f"o < xb = v ({75 < xp (1.18)
for all x £ '0,m). Conuqunnt}y T, decomes
stochastically smaller under m;’ sver "ﬁs.

Lat 8. be the derivative of nIs' wich raspect

<0 the Lebesgue msasure on . Next, wWwe prove cthe
nain theorem of this seczion.

Theorem 2. For 1:;‘ s deflned by _emma 3 let

[ - - , .

j ¢ cmg va, !:x{ particular 3 'L' N, and define
BT Tyl

polnt soluction for the ama of (1.3) where :the
classes & and 7 are defined by # = {s!ms i, and

Then ':h!.;’!.’n0> L8 4 saddle-

s = Jus/du}. ] {no}.

2roof. To prove chat (hL; Ay) i3 a saddle-point

3
L
for (1.8), 1: suffices to show that (1.10) i{s crue
(see Lomma 1). In this case (1.10) reduces =2

2.

‘s-s ,2h o0’ 20

sr L 9 nI.
s(hy)sde 2

- -
. .

o 2 ca ) ts am -
where z(hL\ -.hL~hL and h'L'(':. no) iL 0(1’ 0)

1(h,)s, dw
-1
Zquivalently we can wrice
. L
‘.‘(Wo)du’ LS . :(-‘J)d'l
3 o

where 'a("o) sl (1#*0)'2 Ls an iacreasing func-
zion of g Yowever, Lemma 3 implies chac )
becomes sctochastically smaller under ni’ than any
other o 2 "7’. This completes the proof of
Theorea 2.

The rate function sy can de thought as a
least-favorable sijnal for minimax macched filcer-
ing. We can actually prove the following
property.
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satistfies :he

<oac.uston If Lamma Y iff s e ;a; is Walnizes
ua :'1;!.:1,) * s, seay PRI S+, ide Lo

- ‘e

ver all > T #.

Jrooz. Cefine e BEE ) . e oa ~a, . har
20z BTy sty Ten
an o tis,n, e p :1 a
R . m -
R 3 5N
53¢ Zur s lew T 3 sonvex ind Twice :iffer-

2nciaole >n 2,17, Theorem © Iollows Irom Theorem
2.0 2f 3.

Recall thac = ),z i3 :ompact for any
finize decision time incerval 2. Therefore all
e imporzant classes 5f siiznal uncertainty udre
capazicies - see 12! The least-favorable sige
~al iL 13 nen -elaceg >v i, = Esws S 20 the

ieastefavorabie :iscridbucion ?s of the equivalent

TJ0ust avpochesis testing problam of

- 4 P R : = O
'13"')5 L R ;- versus "\'.-.:!\‘ iy
™. e l..%] 11 e wnite nolie case’. The least-
Zavorapie :iatribucions 1ave ceen Isund for the
fecontamnacea, totalevariaiion neignborhoods

wcels ia 10} Zor the cand model in "21): ing

A

I3t Ina extendad pesoint in Il
2. ROBUST WIZNER FILTERING

5uppose Ine zriple O, ‘.‘:_\:_' 3,?\ consiscts of

1 sample 3pace L, in increasing Samily of ~-fielcs

bl . iad 3 procapility Teasure P, Lerc N _ He

in T _-acaptea poiat process with umps OF size ) ing

+ iG ompensator ‘-s:s jee L4]). <Consider cthe
3

sroolem of Linear ™SE escimatidn 3§ ¢ _ irom the

:ogervacions N_ ziven ov

-

N, et it - im, T2 DY

Loy

Jnece 3 13 an F_ marcingale. oce chac :'-c;:z)
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Jnere nj\:,‘.') L{s che solution zo

Lz, -: n,r:,u)-::(ﬂ(u.s\o7u3(u-s,}du. Q2.0
) 2

Toezp Jand L -c,8) ® Z(3 % ) (3 is assumed o
4 4 . T3 t
J¢ onnegacive).

The equation corresponding to (2.3) for
continuous sbservacions would be (15, pp. 198-201;
ne same as (2.5) but wizh ‘i (u=s) replaced bdy

£_'3,8), the aucocorralacion of the noise process.
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iad Lf Turns Ooul that che COrTESPONCLAg <¢Xpression
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R replaced oy :(_‘(u.w. Therefore 2.1,

Can oe writren in zhe equivalent form (equivalent
for linear filcer ilesign, -hac is:
Phal |
3 0 - (e i
.r‘ - [ic -

iw_, t <) 22035,

wWhere - is che Ioncinuous Joservations process
and ¥_ is a standard zero irift, variance =

~lener process. This resul: ippears ia 11, ».
320%.
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: \ Y
iv, e b de ~ ) dw_ e 1z eaw )
: - z

:
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Therefore che 1oncausal <iener filcering
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where (i) {s the spectral :lensity of - .
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lensity 7(u) byt has a spectral mmasure 3, zhen
(2.7) pecomes
dm 4
* 1 - amgmy
e (m, Y - - ._.—-
3 N - .in‘ qu\‘

where dm_ = ‘du. However as shown Ln 1y, .
Ty

PP

remains che same whers now ~(u) is the derivacive
3¢ the absolutely continuous par: of =, 7izh
respect to tha lepesgue measurs.

Noce that, {n all of the acove liscussiom, it
is assumed chac the encond-ord‘r characteriscics
of the race process [\ ; t 2 )} are xnown. How-

ever, since chese characteriscics are ~ately known
exactly, we wish to consider the filter iesiyn
problem for the case {n which the race spectrum °
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Zor :apecity classes via 237,

If che spectral lensizy is Sandlimited <hen
all ne incerzaiaty classes mmntioned in Seczion
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wcel Jives 3 capactiv. However, in :the non-
causal filcering case ing f3r an t-coataminaced
signal tne leastefavoraole lensizy was fiund ia
37 zallowrag a 1irfec: approdch.
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In inis section we take o, T . < ),?\ 0 bSe
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srocess vich jumps ) or 1 ina :Cmpensacor )'-_:a'.
Sy s

linsfzer the Linear stochastic system iescribed ov

5zaze ¢13. :Zi:-;\:;:::-sz:v:, 12 4::_0-.‘(,) LD

-cservations 2a. N_= " ~c!X_caziedm_, z2) 1.0
snare a_ind 3 are natriles 3 poeycive 1efianz2., :

L3 3 Uector, v L3 2 ectir 3tanddri Wiener »rocess

incependent Of (.) ':'J' zne covariance of Z-:j, 13

siven, 211{) =J., ang 7, i3 an ¥ _-marzingale. The

2ToCesses s ina M ire assumed %O de independent.
Iz .3 snown :a i2,p. 1)) that zhe <alman

Jieriang 2Qudtions I3r Ine svscem escrided in
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which are zhe sams wicZh those 3f & continuous-
cbservations iystem with °  as the covariance >f 2

wienar process :tvpe 10ise. Also, the performance
3f iny linear filter (s predicted 5v che continuous-
coservacions inalog implied by (3.3). 1In other
<“orss an equivalent continuous-observations model
2 3.2 is

iw 3.4

Jnere w_ is i itanaard “ianer process.

in add{tion, in the above equactions
21t wa assume that A s A, 3 =3,

ind ¢ s : {.a., Je 1ave 1 time-invariant

svetem), chen {_ and °

are Jide-sense itatcionary

ind ' _ e % a8 in 3ection [I. {a :zhis case, wva can

is5e the 7ocei > '2.-+ =0 ipply soms of che
results of 10V (agaia "23) and (3] will be qelp-
tul 1s for jaction [I) directly to the problem of
ainimax mesn-square-error estimacion of che scate
in (3.1) for sicuactions in which there is une
certainty concerning -he noise structure (i.s.,
uncertainey ia 3 or in the covariance matrix of
Tv_,t 2 0}). 1n particular, such probiems are
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solved by the Xalman filters corresponding =o
certain least-favorable noise models that are
characterized i{n [101.

emark 1. The model of che rate 3s %\ = % -c'X

can se interpreted as * bYeing the carrier and :':\’t

containing che informacion. Thus che usefui
informacion (assume E(Z(C} =12) i3 in variacion

3t {_, while the power of =he "a0ise" dapends

an
emark 2. If 3.1} (being dx_-.-\x:u—sav_ in
che scacionarv case) allows X_ 20 cake Jan Soch

aegative and positive values cthen * | -f~c':(_

>ecomes negacive for some range of X and -.
4

{owever 1n situations >f praczical interest :his
happens wich low prooabilicy. The 2xacc analysis
of :nis sicuacion remains an open problem : sae
23] for a discussion of this proviem).
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r Abstract

The problem of linear-quadratic-Gaussian control of multivariable linear
stochastic systems with uncertain second-order statistical properties is

considerad. Uncertainty is modeled by allowing process and observation

noise spectral density matrices to vary arbitrarily withia ziven classes,
and a miaimax control formulation is applied =o the quadratic objective
functional. General! theorems proving the 2xistence and characterization of
saddle-point solutions to this problem are presentaed, and the rslatiomship
o>f these results to 2arlier results on ainimax state estimation are

discussed. To illustrate the analytical rasults, the specific sxample of

L 4
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regulating a double-integrator plant is treated in detail.
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.. Introduction

The design of optimum decision and control procedures for a linear
stochastic svstam requires an accurate description of the statistical
Sehavicr 3f the systam. However, because of nonideal effects such as
aonstationarity, nonlinearity, and other modeling inaccuracies, there is
aiways a degree of uncertainty in such statistical descriptions, A useful
approach to design in the presence of small modeling inaccuracies is to
use a game-theoretic formulation in which one optimizes worst-case
nerformance, and this approach has been applied successfully to many
aspects of decision and control system design (see, for example, Huber [1]
and Mintz f2]). In a recent paper (3], two of the authors have applied
this approach in considering the problem of designing linear minimax-mean-
squars-error state estimatoars for linear systems observed in and driven by
noise processes with uncertain second-order statistics. In particular,
it is snown in [3] that, for two general formulations, such estimators can
2fcen be designed by designing linear minimum-mean-square-error filters
for least-favorable pairs of noise spectra or covariance matrices. Related
minimax stats estimation results ars found in a paper by Morris [4].

In this paper, we consider the analogous problem of minimax linear-
quadratic-Gaussian control (LGG) of systems with uncertain second-order
statistics. 1In particular, we comsider the control of linear multivariable
systems with white Gaussian process and observation noises with uncertain
spectral deasicy matrices. It L{s shown here that, within mild condicions,
this problem can ve solved by designing an optimal control for a least-
favorable model, although the model which is least-favorable for control

may not be the same as that which is least-favorable for s:tate estimacion




2
for the same type of noise uncertainty. However, it is also shown that, for
uncercaincy in eitherthe process or observation noise only, a ziven minimax
linear-quadratic-Gaussian control problem does have the same leasc-favorable
mocel as Joes a particular minimax state estimaticn problem with a weigzhted-
nean~square-error criterion. Thus, as might be expected, a limited duality
exists between these two problems. Another phenomenon which is shown to be
associated with minimax cont:iol is that the separation principle which
separactes the problems of optimal control and optimal sctate estimacion is
a0t necessarily valid for minimax control and minimax state estimation. In
narticular, iz is shown that, although the minimax control law is independent

of the minimax state estimator, the reverse is not true. Several other aspects

Hy

of this problem are also considered in this paper.

In Section 2, che specific problem formulation to be considered is given,
and several relevant prcpercies of optimal LQG control are outlined. The
general minimax problem {s treated in Section 3, and results ziving condiczions
for the existence and characterization of saddle-point solutions are derived.
Section 4 includes a discussion of several interesting properties associlated
wich che general minimax results of Section 3, and the specific example of

controlling a double-integrator plant with uncertain process noise statistics

i3 considered in detcail in Secciomn 5.




Preliminaries

Consider the linear time invariant stochastic system

i % ? -+~ 2
| xt = Axt + But I (1)

y. = Cxt + 3. 2

-
-

where xC and ¥ are in m“, 4, is in Rm, and Ye and ec are in ]Rp for each ¢.
The matrices A, 3 and C are assumed to have compatible dimensions (as required
5y (L)~(2)) wizh the pairs (A,B) and (A,C) stabilizable and detectable

respectively. The noise processes 3 and 5: are assumed to be zero mean white

saussilan processes with second order statistics

Eg. g, = T 3(c=s) 3
E 3 5 =3 35(t-s)

where ¢ is the Dirac impulse. It is assumed that (A,JE ) is stabilizable and
y that 9 > 0. The objective of the problem is to choose u, to minimize the time

average quadratic cost

T
| J= Um =" (xf gx +u’ Ru )dt (%)
’ T-"THO t t < t

where Q 2 0 with (AMﬁS ) detectable and R > 0.
Wwhen ® and 9 are known, the solution to the stochastic regulator problem

(1)-(4) is given by the feedback system:

= t )

X, = Axt +But+H<y=-Cxt) (6)

UV
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where

¢ =r % 7
ATk + kA +Q @R %% -0 (8)
1=pciot (9
ap+paT+z-2cTokcp = 0 (10)

The matrices X and P are the unique positive semi-definite stabilizing solutionms to
(3) and (10) respectively.
As discussed in Section 1, the second order statistics for the processes
gc and e: are orten not known precisely. A common representation of this type
of uncercainty is to assume that ¥ and 3 are contained in compact sets ¥ and 7!
respectively. The objective is then to choose u, to minimize the worst possible
performance (4) ziven (%,3) £ Z x M. We will restrict our consideration to
controls zenerated by causal appropriately measurablel functions of the
measurement. Jenote this class of operators as 2: . The problem can then be
stated as the minimax problem:
ain 4+ max J(L,=2,9) (1)
L=z Ss 2,9)€ X xN
where the dependence of J defined by (1)-(4) on L, 2, and ® has been

explicitly noted. Note that the optimal linear feedback law defined by

(5)=(10) is a member of z: )

1See, for example, Chapter 16 of (7] for the explicit measurability
conditions.

&
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3. Existence and Characterization of a Saddlepoint

Two important results concerning solutions to the minimax problem
formulated in section 2 are presented in this section. The first result

establishes an equivalence between a saddlepoint solution to (ll) and an

optimal stochastic regulator solution (5)-(l0) corresponding to a particular

{2,9) pair. The second result establishes the existence of a saddlepoint
when the sets Z and M are convex.

To obtain these results, we will need the following well-known
theorem (cf. [ 3]) which establishes the fact that the existence of a
saddlepoint is a necessary and sufficient condition for the minimax problem

(ll) to be aquivalent to the corresponding maximin problem

max ain  J(L,%,3) (12)
(2,9)EXxT LES';‘

Theorem l: There exists a triplet <L°,z°,a°) € £: X % X M satisfying the

saddlepoint condition

J(L,,%,9) 5 J(L,2 .8 ) 5 J(L,2,,8) 13

'1;,&.:‘;,-_'6::,@672

if and only if the values of (ll) and (12) are equal.
We will also require the following lemma which expresses the cost for
any Z and @ when the control is generaced by (5)-(8) with H being any

matrix such that (A-HC) is asymptotically stable.

Lemma l: Assume that the control u, is generated by the system (5)-(6)

with feedback gain G determined by (7)-(8), and that H is any matrix such

that all eigenvalues of (A-HC) have negative real parts. Then the cost




J defined by (1)-(8) is:

J=tr 2K+ cr(E+ BN (14)

»

where K is given by (8) and X is the unique positive semi-definite solution

of

(A-HC)TX + X(A-HC) + G'RG = 0 (15)

Procf: A proof is provided in the Appendixl.

Theorem 2 provides the desired characterization of a saddlepoint.

Theorem 2: Assume there exists I_ £ X and 90 € N which satisfy

eriz v} £ erlz) 44 1 2€% (16)
eri9H XH') 5 tr{® H xu') 7 9 € 7 an
- ) o0 o

where Ho is the Kalman filter gain corresponding to !o and 90 (given by
(9)-(10)), X is given by (15), Y is the solution to
T T,T
(A-H C) 'Y + Y(A-HC) + Q+ KHC +CHK=20 (18)
o o 0 o
and G and K are given by (7)-(8). Let Lo be the operator representing
the optimal stochastic regulator (3)-(6) corresponding to X, and @o. Then
(Lo,zo,ao) i5 a saddlepoint solution to (ll).

Conversely, assume that (L°,2°,3°) is a saddlepoint for (1ll). Then Lo

is the LQG regulator (5)-(10) and (30,90) satisfy (15)-(18).

1This result may also be developed using the results on pp. 185-186 of [8].

E A

———

=1




——— g et o

Proof: (Sufficiency) Consider the maximin problem (12). Let Eo and 90

satisfy (13)-(18) and let L, be the corresponding optimal stochastic

regulator. Let Ho be the Kalman gain for !o and 30 given by (9)-(l0). Then, by lemna

J(Lo,z,a) = tr{2(X+K)} + tr[lﬁﬂrx} (19)

for every (®,2)<SXx”". Adding (15) and (8) gives:

(a8 0T ®X+0) + (X+K) (A-HC) + o + KH C + CTHK = 0 (20)
Hence
Y=X+K (21)
Also, by (16)
er{=TX+K)} s cr{so(x+1<)} (22)

Adding (22) and (17), and using (19) gives the lower inequality of (13)

- - o v 2
J(Lo,_,O) < J(Lo,xo,ao) T 2SN ,REN (23)

The upper inequality of the saddlepoint condition (l3) follows trivially
from the fact that Lo is the optimal stochastic regulator. Thus,

(Lo,so,ao) is a saddlepoint for (l1l).

(Necessity) Suppose (Lo.zo,ao) satisfies (13). The upper inequality of
(13) implies that Lo is the optimal stochastic regulator (for which ome
realization {3 (5)-(10)). Hence lemma 1 can be used to express the cost.

The lower inequality and lemma 1 imply:

[ RSN




&1

r

e s e e o — ey — =

- - P S £ = 3 - T,
tre 2 X (2 3 ;% 2 i (=2 S ; 4
T K} « cxf ¢ -hHoJHO)X, try o X; + tri ( o-#Ho oHo)x‘ (24)

for avery 23S X and 3 £ 7M. By (21) this can be written as

Cmm vyl P y zex BET
tri(@-3 )Y} +er{ @-3 )H XH } S0 7 ZEX,BEN (25)

In particular, 3 = 90 gives (16) and % = 20 gives (17).

a

Thus, we see that conditions (15)-(1l8) are equivalent to the existence

of a saddlepoint. If such a saddlepoint exists, then the minimax comtroller

yo
w

simply the optimal stochastic regulator designed for the particular

( 0,30) pair which satisfies (15)-(18). This result can be used to

astablish the existence of a saddlepoint.

~

Theorem 3: Assume % and 77 are convex, compact sets such that 1f 2 £ %
then 2 2 0 and (A,/Z) is stabilizable and 1f @ € 7 then @ > 0. Then a

saddlepoint solution for the minimax problem (ll) exists.

Proof: The proof shows that a solution to the maximin problem (12) axists
and satisfies conditions (15)-(18) of Theorem 2.
By Lemma l, and equatioms (7)-(10) and (15),

min J(L,%,9) = tr XK + tr(2 + A0 AN)X
LE 1:;- (26)

S w@,9)

is continuous in 2 and ® (with H given by (9)-(10) for eachXand®). SinceX and M are

compact, a solution to (12) exists. Let (Lo,so,ao) be such a solution.
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Then the Frechet differential of (26) with respect to = and % at(!o,ﬁo)
mst be nonpositive in every direction into the set X x . The Frechet
differential of (26) is given by:
IM(Z,9;0%,08) = tr{d3(K+X)}
- =T =
+ tr{ \OH XH}
@n

+ tr[G(éﬁTXﬁ + ﬁIXéﬁ)}

+ cr{(=+H 9 A%)sx}

In (27), 3H and 3X represent the Frechet differentials of § and X with

respect to E and 9, From (l3), 5X can be computed as the solutiom of

T

(a-fic)Tsx + sx(a-fic) - cTsATX - XSHC = 0O (28)

Thus, $X is given by:

L) - T -
sx = - 0 e WHOTETgTy 4 xsfic)e (ATHO Tye (29)
o]
Substituting (29) into (27) and using a few trace manipulations gives
SM(Z,2;02,36) = tr{AZ(X +K)} + trl20A° x )
A (A-BC)t 4 = =T, (a-AC)Tt, . T.-T - (30
-tr{ e (T+HOH e dt[C"SH X +X8HC] }

° _ .7 -
+ tx{ PCTSH'X + PXSHC)

But the integral in the third term of (30) is the solution to (10); i.e.,

P. Hence

5M(2,8;23,29) = er{AZX+K)} + cr{ad i X ) (1)

Consider an arbitrary point (2,8) € Z x 7. Since X and 7 are convex,

the line segment joining (10,90) and (2,3) i3 in Zx 7 and hence

— et — -
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(A2,20) = (T - 30,9 - eo) 32)

"~

is a direction into X X M. Substituting (32) into (31), requiring (31) to i
be nonpositive and using (21) gives:
Fx - =y -3 )W < 33
tr ( JYb +er{® -9 )H XH}SO (33)
The choice (2,3) = (5,90) in (33) gives (16) while the choice (Z,2) =
(20,9) in (33) gives (17). Thus, by Theorem 2, (20,30) is a saddlepoint

for (28).

O

This section has provided two major results. First, every saddlepoint
solution to the minimax probiem formulated in section 2 has been character-
ized by che conditions of theorem 2. In additionm to providing a means of
identifying a particular solution, these conditions can be used to
characterize the set of possible solutions. This subject will be addressed
further in the next section. Theorem 3 provides the second important result
by demonstratiqg the existence of a saddlepoint solution to the minimax

problem when the sets X and 7 are convex and compact.




11

+. Discussion

There are several interesting observations which can be made concerning
che results of the previous section. First we note that, since (6), (9),
and (10) give the linear least-squares state estimator for a fixed @,3)
pair, the optimal linear regulator problem for fixed (@,Z) is solved by
faeding back optimal state estimates through the gain G (which does not
depend on (@,2)). Thus, as is well known, there i3 a separation between
the estimator and regulator design prcblems in the case of fixed (®,X).
Yowever, it follows £rom Theorem 2, (16), and (17) that such a separation
does not zenerally exist in the minimax problem. In particular we see from
Theorem 2 that, although the feedback gain does not depend on (®,X), the
state estimates used for minimax control are not zenerally the minimax-
Jean-square-errzor state estimates. This follows because the equations
determining the least-favorable pair for control depend directly omn the
cost matriées Q and R, which of course have no effect on which pair is
least-favorable for state estimation (as in [3]).

The above observation also implies that the ®@,Z) pair which is
least favorable for control is not necessarily the same as that which is
least favorable for state estimation. However, the conditions that Theorem
2 requires for minimax control are similar in structure to condiﬁions
required by Theorem 5 of [3] for minimax state estimation. Using the
similarity it follows that, for fixed =, the Kalman filter corresponding

to (@o,z) where 3° is from (17) also solves the minimax state estimation

problem
min max Ef (x_-X )T GIRG (%, -%_)} (34)
;‘ 9¢?m t t o 0 t t
t

where Go is the regulator feedback gain from (7). A similar statement

e s [ — e e — i - — - —— e
Bz 4
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es 1f 2 is fixed and I is unknown; however if both = and 2 are unknown,

3

apol

ot

here generally is not a single minimax-mean-squara-error state estimation

orobliem which has the same least favorabla pair as 3).

A maximal 2lement Ew for the set X is one which satisfies

<

"
m
O
2]

c =z~
ALl = T e

, where Z = EM means that (EM- Z) is nonnegative definita. It
was noted in [3) chat 1if X or ™ has a maximal element then that alement
is least favorable for state estimation. 3y inspection of (16) and (17)
we see that maximal elements, when they exist, are also lzast favorable

for the regulator problem.

Zxampla: Assume that the process noise can be written as

K is a zero mean white Gaussian process with

2
s )
m
[a]
®
[TL B
oh

-
Ed
t}

un

E{

and wnere (A,7) is a stabilizable pair. A common mechod of modeling uncertaiaty

in the second order a priori statistics of system (1)-(2) while preserving the
~

iaput structure of cthe process noise is to choose a nominal pair (EV’EV) and
. A

~
assume chat the true X and % differ from the nominal in norm by no more zhan

some positive constant ~. Define

T

hp
L

¥ =20 %>

[ 18

7 {®:ﬁ®~9w25 =}

where ‘¢ denotes the norm induced by the Euclidean vector norm on the

underlying space (Rq and IRP respectively) and where

> min[;min(iw),xmin(a)}.

Then each set nas a maximal element

-

Y
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- - T
30 = D(!N + "I)D

3_ =28+ "I
> N

and, by the above discussion the minimax controller is the LQG controller

designed for X = =, and 2 a 30. _

Of course, most uncertainty classes of interest will not contain maximal

favorablae pairs can be reduced to only those on the upper boundaries of X

and 77, where the upper boundary [6] of ¥ i{s the sec of 2 satisfying

N

F

rrj

l
ad

T
€«

2 =z} = {=}., (Note that the upper boundary of a set with a maximal

, (16) and (17) are satisfied for all (%,9) pairs in X x 7 if they are satisfied

for all pairs on the upper boundaries of ¥ and M. Thus, by Theorem 2 the
ainimax problem on X x 7 can be equivalently defined an the upper boundaries
of % and 77. Moreover, the requirement that X.and 7] be convex can be relaxed

to the requirement that their upper boundaries are also the upper boundaries

in the following theorem:

b

Theorem 4: Suppose the following cond.tions hold:
(1) X and 7 coantain their respective upper boundaries 3, and 37.
Ao 1
(i1) 3% and 3ﬂ are the upper boundaries of their respective closed

convex hulls coQ@z) and cocan).

(i11) 7 X € co(3), (AwWE) is a stabilizable pair.

Then:
:nin+ max J(e,2,3)
a - ) \EV V™
LELg (2,9)807 (35)
= min max J(Lysya)'
LELY (=,9)€3, x 3,
e e
|

elements; however, for any compact classes X and 7 the set of possible least-

" element is just that maximal element.) Furthermore, note that the conditioans

of their respective closed convex hulls. We may summarize these observations

.-

-
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; Note cthat Theorem 4 implies that the compactness and convexity conditions

.-

required for existence ia Theorem 3 need only apply on and near the upper

[ boundaries of % and ™.




5. Example
Eaafible

To illustratas the results of the above sections we zonsider the

following 2xamplie which corresponds to control of a double-integrator piant:

01 0 "4, 9,
: ST S R ¥
A= | -
O g3 33 9y
(36)
~ -
, ‘10|
C=(10]; d=r", R=1l;andQ=|
0 0l

wnere r~ > 0. Note that any compact set of 2's has a maximal element in

,
this case ziven by the maximum value of z~ in the set. Thus, no significant

D
zereralizy i3 lost by assuming that r” is fixed at sup 7. For fixed SIRLPT
and 10 the matrix P solving (10) is given by
- «-—-—-_—’._ -
- - |
2z - g -3, |
t
2 = l (an
- / oy - y 1
% 49,88, Q5 + q;) - 1
T Tomo o+ 2zuals
- -
/:—_.;—_t
.-tﬁ q1 - Q,
. : (38)
:"" !
P
v, . 2 (39)
. = :.ag 7.,7,; whers

e




\

&/?(va’q—z' + ql)'+ r o+ 2~q—2'
':'L = —_————— 40)

2.22/q, + q;

and

- . - - [N Ty
y . r ++ 64\/(12 r 4+ qu : Z(t- +~/q2N2(2r'\/q2 + q].
2

— [ ———————
2~/q2 Vlzr‘v/qz + q]_

A convex uncertainty class for = is equivalent to a convex subset of
‘g% R :ql 20, q, 2 0, and 949, 2 qg}. Equation (16) and the fact that

7 is diagonal imply that = 2 X is least favorable iff.

( o
(q,m - q9i + @ - q )y(o) 20; 7T2¢€X, (2)
2 2772 1 1771
wvhere superscripts 'o' denote quantities corresponding to Z_. It follows

from (l4), (13), (38), and (42) that the state estimation filter structure,

the control zain, and the control cost are all independent of - Thus we

can set 9 = 0 withcut loss of generality. (Note that tr(P) does depend on

q3.) To illustrate the solution to (42), we consider the two uncertainty

classes (q3 = )

~ —— - N N
z, = '=!ql > O,q2 > 0, and maxgiql -qf )},qu -qé ){} < ¢ 43)
and
z, = i?.lq1 > 0,9, > 0, and }ql -q{N)} + iqz -qéN)! < ¢} (64)
“here
~ =
|q(N) 0 |
z 1 '
-y D)
0 qz( J




represents a nominal model for the state noise and ¢ is a fixed degree of

Soues sumse  GEE

uncertainty in the model. JNote that Zl has a maximal element

~aam

qu) + € 0

0 q§N) + &

which thus yields a minimax design immediately for this case. The class
%, does not have a maximal element for ¢ > 0, but Theorem 3 allows us to

restrict consideration to the upper boundary of X given by

2

@0 - oV ., (43)

i Thus (42) reduces in this case to

(o) . (N N .
(950 - qo>(y<°) - y(°)) 20; 7agq,¢ IQ§ ),q< )+ e]. (46)
2 2 2 1 2 2 2
The least favorable case is thus qfo) = qu) and q§°) = qéN) + ¢ if
' (
Yéo) z yf°> at this point; it is q{o) = q{N) + ¢ and in) = qéN) if
yga) < yfo) at this point; otherwise the solution must be a point on 3,
- s
. , (0) (o) :
satisfying 1 =y, -

[Sr—

v
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APPENDIX

200 of Lemma l: Define

e, =X - R, (Al)

Then, combining (1), (2%, (3), and (6) with (Al):

Fx 7 [ra-3¢ 36 7prx] r =
| = ! [ -] - ¢ (A2)
J

Siace (A -HC) is stable, the processes X, and e_ are ergodic. Hence the cost

t

can be writcen as

J(L,3,9) = lim E(xf QxC - uE Ruc) (a3)
£ ~@ =

Substitutiag (Al) and (3) ia (A3) 3ives:

7= 1lim E{x’(3-GTRG)X -x© GTRGe - e GIRGX_+e GRGe }  (a4)
. r t e t ¢ €t t
“se of a simple trace identity converts (a4) iato:
o )
3+G*3G cTrg ~l ‘r-xt"g[xz el]
J= lm o o - i E ! i 4 (a3
&
c-=  -G'RG G'RG | e,
Deiine -
T T
_ FQ+c're -G RG]
Q=1 . T
| =G°RG G RG |
L J
77 - - - -
X ) xc T
== um ¢ | !
[ 1
c-e 1';3:_} L %c ]
_ Ta-36¢ 8 |
A =
0 A - HC
Tz z B
X = 2
= + HEH
_t J

18
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Then (A3) becomes

J = tr 3 z

where, in view of (A2), Z is the unique solution of:

T

AZ+Z A +X=0

Since A is stable, Z can also be written as:

- T
- At__ At

e Xe dt

Hence, (A6) becomes

_ = At - At
J = tr Q e Xe dt
‘0

with a few manipulations, (3d9) can be rewritten as

- Sy
® At _ At

)

J=tr X" & Qe dt

Y0
Cefine -7 -
_ ® At _ AL
K=" e Qe dt
‘0
then
J = tr i E
where
-‘r p— — — -
ATK+KA+Q=0
Let
_ Kl KZ
K = T
K2 X

(a6)

(A7)

(A8)

(a9)

(A10)

(AlD)

(al2)

(Al3)

19
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Using the definitions of &, K and Q leads to three equations:

(A-BG)TKI-FKI(A-BG) +GTRG +Q=20

a- BG)TK2 +K, (A - HC) +KIBG - GTRG =0

T3Tg = 0

-
(A - HC) TX + X(a - HC) +G'RG+K§BG+G )

Combining (Al4) with (8) gives

KﬂKl

Combining (Al7), (Al3) and (7) gives
Ky =0

- !—K o'l
Lo ¢

dence,

20

(Ald)

(AlS)

(Al6)

(Al

(Al8)

(Al9)

“hera { (by virtue of (Al6) and (Al7) is given by (15). Finally, substituting

(A19) into (Al2) and using the definition of X yields (1&).

-

S
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2
MINIMAX LINEAR SMOOTHING FOR CAPACITIES

Summary. Minimax linear smoothers are considered for the problem of
estimating a homogeneous signal field in an additive orthogonal noise
field. A minimax game with the quadratic-mean estimation error as an
objective function is used to formulate this problem. Uncertainty in
signal and noise field spectra is modeled using general nonparametric
classes of measures proposed by Huber and Strassen for the problem of
minimax hypothesis testing. These classes, which are described in terms of
Choquet alternating capacities of order 2, include the conventional models
for spectral uncertainty and admit a general solution to the minimax linear

smoothing problem.

-




e e = ey

1. Introduction. Suppose we observe the random field [Yz;z € Rn} given

-~ 0
for each z & R

. n PR |

by Yz = (Sz + Nz) where f_Sz;z € R} and sz; z € R} are
orthogonal random fields, each of which is second order, homogeneous, and
quadratic-mean continuous. Suppose further that h is a complex-valued Borel-
measurable function on Ru, and that gz denotes that the linear estimate of

S, based on {Yz; z € R"} which has transtcr function h. Then the quadratic-

mean estimation error associated with Sz is given by

» 2 n 2
(" |i-b|%dm_ + " |H| dm\I]% e(himg,m) (1)
v S v _n ) S’y
R R
where me andm\] are the spectral measures on (Rnﬁn) associated (via
4
Bochner's theorem [1, p. 245]) with {sz; z € Rn} and {Nz; z € Rn},
respeccively.. For fixed ng and s the minimum possible value of e(‘h;ms,mN)
is achieved by the estimate with transfer function f o= de/d (ms+m\‘) and
A
this minimum value is given by (Zn)-nf fldn\].l 1f, on the other hand,
R i\
ag and m, are known only to be in classes 77’38 and 57{\‘, respectively, of
spectral measures on (I{n,Bn), then a reasonable design strategy is to find
a linear estimate whose transfer function minimizes sup e(h;m ,m\‘).
Such an estimate will be a minimax linear smoother for "7IS and ’71N Certain
aspects of this problem have been considered by Kassam and Lim [2] and by
the author [3]. In this paper we consider the minimax linear smoothing
problem for the situation in which the measure classes '/7(S and 7/’{\‘ are of the
type generated by 2-alternating capacities as considered by Huber and
Strassen [4] in the context of minimax hypothesis testing. Examples of this

type of class include mixtures, Prohorov and Kolmogorov (variational)

neighborhoods, and other previously considered models for spectral uncertainty.

1 -

: . ("B R -0
Note that e(h,ms,mN) 2=) . gn hc:hnN + (2m)

r : 2
an|h-h| d(mg +m).

e v -




Here we apply the results of Huber and Strassen to find the structure of

ainimax linear smoothers for general models of this type.

2. The minimax smoother for capacity classes. In the following, . denotes

a fixed subset of Rn, & denotes the Borel c-algebra on i, and 7 denotes

the class of all finite measures on (.,Z). Recall that a finite set
function v on & is a 2-alternating capacity (see Choquet [5]) on Q,Q)

if it is increasing, continuocus from below, continuous from above for closed
sets, and if it satisfies v(p) = 0 and v(A U B) + (AN B) s v(A) + v(B)

for all A, B S &. For a 2-alternating capacity v on ((,7) define the set

m, oy

.’Wv = {m§& 57?, m(A) £ v(A) for all A €&, and m Q) =v ()}, (2)

A number of properties of classes of the form of (2) have been developed by
Huber and Strassem [4]. Note, for example, that mv is weakly compact and
that, if v is a measure, then W%_s {v].

For amy pair (vo,vl) of 2-altermating capacities on (,4) there exists
a Radon-Nikodym derivative dvl/dvo, introduced in [4], which has the defining

property that, for each t € [0,=],

r_({dv /dv, > t]) = inf r_(A) 3)
t 1 0 A€ t
where tt<A) 5 (1-+t)-l[:v°(A) + vl(Ac)]. This derivative (which is a

family of functions having the defining property (3)) is the basis for the
minimax tests between capacity classes of the form of (2) as considered

in {4]. Further properties and a generalization of this derivative have been
considered by Rieder [6]. In this context we state the following result

which is Theorem 4.1 of (4]:

.-




Lemma 2.1 (Huber-Strassen): Suppose v, and v, are 2-alternating capacities

S N
and 7, is a version dv_ /dv,. Then there exist measures q. € 7_ and
0 SN S Vg
3y € ‘Vv such that 7o dqs/qu and such that
- = 1
ag({mg < £}) = vo((my < t})
and

4y mg > £} = vy my > €D

for all t € [0,=].

Let X denote the class of all complex-valued Z-measurable functions on

s-e Lemma 2.1 leads to the following theorem:

Theorem 2.2: Suppose vg and vy are 2-alternating capacities on (.,&). Let
L

7~ be a version of dv./dv_ and choose (q
0 S h S

N ,qN) as in Lemma 2.l. Define

-1 . '
by = 7o(1+7g) ~. Then [ho,(qs:qN)] is a saddle-point solution so the game

[ ol

! sup e(h;ms.mN)

X (m,,m )E€7. X7
s' ™ ﬁvs Yy

[0

where e is defined in (1), and thus ho is a minimax linear smoother for

mv and Wv .
S N

Proof: Noting that ho € dqs/d(qs-+qN), we have directly that

e(ho;qs,qN) < e(h;qs,qN)

for all h = K. Thus, it is sufficient to show

e(‘no;ms,n\J) < e('no;qs.qN) O]

-




S

€ M, X M, . - z
for all (ms,mN) € Mg 'T(N Lemma 2.l asserts that o is stochastically

smallest over ",'.'V under qg and is stochastically largest over ’7‘?V under
N

2 -2 ;

Thus, since |l~h0'i" = (1+my) = is decreasing in 7, and {ho’lz

qN' =
2 amy? s o b
‘O( : uo) is increasing In ‘.TO, we have

. 2 . 2
“;:‘ 1-hy| “dmg = JQ]I -l “dag

and

» 2 - " 2
“..,‘hoi dmN - d,.‘hOI qu

for all (m.,m ) €7 X ”’tv . Equation (4) and hence Theorem 2.1 follow.
SN Vg .

yote that, in view of Theorem 2.1, the pair (qs,qw) singled out by
as .
lemma 2.1 can be thought of ,a least~favorable pair of spectral measures

for minimax linear smoothing. Concerning this pair of measures, we may

also state the following property:

Theorem 2.3: The pair (qs,q\‘) € ""v X '7lv satisfies the conclusion of
: s N

Lemma 2.1 if and only if its maximizes

. . - oD
in e(h,ms,n\.‘) @) “[dms/d(msﬁ-mN)]dmN

hz®

ih

c
sver all (ms,mN) S .",’zvs X ’,‘,’iv\:.

Proof: Define f = dm\I/d(mS+mv). Then

-

a=J.

. -n - -a-~ 2.
’mm e(h;ms,mN) = (2:7) u,,fdms' 2™ “\E- £ }d\ms‘-n:\,

,
Since C{x] = (x-x) is concave and twice continuously dilfazert.al

{0,1], Theorem 2.3 fallows from Theorem 5.1 3t
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3. Discussion. Theorem 2,2 gives the general solution to the minimax

linear smoothing problem for signal and noise uncertainty classes of the

form of (2). Several useful examples of classes of this type are given by

Huber and Strassen in (4], and other useful examples are given by Rieder

[6], Strassen [7], and Vastola and Poor {8]. Some of the most commonly

used examples of classes of the form 7lv can be written as i-neighborhoods

of some nominal measure u. Examples of capscity classes that have this

structure are contaminated mixtures, variational neighborhoods, and Prohorov
neighborhoods (see [4]). For this type of class, sn uncertainty model will .
consist of a nominal pair (p.s,u.n) of signal and noise spectral measures
with respective degrees ‘S and N of uncertainty placed on the nominal
measurss. The derivative between capacities generating classes of this

type is often of the form (see Huber [9, 10] and Rieder [6])

To@) =maxic’, min{c”, A (@]}, w € I, )

where \ 1is the Radon-Nikodym derivative between the nominal pair of measures E
(L.e¢., \ € cbs/dsN) and ¢' and c'" are nonnegative constancts with c¢' € c".
¢4 %o of (5) is a version of dvs/dvn, then Theorem 2.2 implies that a

minimax linear smoother for ‘ﬁv and mv is given by
S N

————

ho(m)-ux(k’, mia{k”, h' @)}, w € 2 )

e ————

where k' = ¢'/(1+¢'), k" = ¢"/(1+c") and h' = X/ (L +L). Note that h' 1is ’
the optimm smoother for the nominal model, and thus the minimax linear

smoother for this case desensitizes the nominal smoother (to a degree depend-

ing on ¢s and 'N) in those spectrsl regions where either kg or By is

dominant (i.s., vhere h' is near 1l or is nesr Q).

-




| In the situations for which (5) is valid, (6) gives the transfer
| function of the minimax linear smoother. Supposs, for example, that n=1l,
2w [-b,b] for some b <=, ¢' <c", and h' is symmetric about w=0 and
is strictly decreasing on [0,b]. Then the minimax linear estimate of S,

[ determined by ho is given explicitly by
|

o X

§, = J;ho (2 - €)Y dt

where 50 3 ‘f’.l{ho] is given by

ﬁo(t) = h'(t) + k' (sin(bt) - sin(a’t)]/ (M) + k"sin(a"t)/(m)

- .‘ B'(t-7)[sin(d») - sin(a'~) + am(c"*))(ﬂ*)"’dv

vith i’ = S'lfh'} and with a' [resp., a"] the positive solution to h'(a') =k’
[resp., h' (a") = k"].

As a final commsnt we note that, although we assumed initislly that
the observation field was a continuous-parameter field, Theorems 2.2 and
2.3 are also directly applicable to the case in which the observation field
is & discrete-paramster field (i.s., in which the time set is ") since

this latter situations corresponds to the particular case of the analysis

of Section 2 in which (i = [-ﬂ,ﬂ]n.

2
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Minimax State Estimation for Linear Stochastic
Systems with Noise Uncertainty

VINCENT POOR. MEMBER. IEEE, AND DOUGLAS P. LOOZE.
MEMBER, 1EEE

Abstrect—The problem of minimax linear state estimation for linear
stochastic systems driven and observed in noises whose second-order
properties are unknown is considered. Two general aspects of this problem
are trested; the single-varishie problem with uncertain noise spectra snd
the multivariable problem with uncertain componentwise noise cosrelation.
General miaimax results are presented for each of these situations involv-
ing characterizations of the minimax filters in terms of least favorable
second-arder properties. Explicit solutions are given for the spectral-band
uncertainty model in the single-varisble cases treated and for a matrix-norm
neighborhood model in the muitivariable case. Characterization of saddie-
poiats in terms of the extremal propmties of the nolse uncertsinty classes
is also discussed.

I. INTRODUCTION

Several recent studies have considered problems of minimax linear
filtering and smoothing of stationary processes with uncertain second-
order statistics. Examples are the works of Kassam and Lim [!}, Kassam,
Lim, and Cimim {2}, and Poor (3], (4]. In this paper. we consider the
related problem of minimax state estimation for linear stochastic systems
in which the process noise and/or observation noise processes have
uncertain second-order properties. In particular, we consider the usual
linear system model

X, =Ax,+B¢. > )
%=Cx, +4; >, @

and x, =x,, where, for each 1315, x, ER", y, €ER’, {, ER™, and 4, B,
and C are constant matnices of the required dimensions. We assume
throughout that (§,. r€R) and (#; /ER} are orthogonal, zero-mean,
wide-sense-stationary random processes.

In this paper we coasider two general aspects of the problem of linear
state estmation in (1) and (2) lor situations in which the second-order
statistics of the noise processes are specified only to be within some
nonparametric classes. Specifically, in Section II we consider steady-state
filtering for the single-vanable case of (1) and (2). We assume that one of
the noise processes {£,; tER ) and {#,; ER) is a white noise and that the
other has an unknown spectral density. A minimax mean-square error
design criterion is adopted and the existeace of a solution for this
formulaton is demonstrated for several useful noise spectral classes. In
Section 111 we consider the multivariable case of (1) and (2) in which {§,;
tER} and (0, tER} are both multidimensional white noises with uncer-
tain componentwise correlation matrices. A general minimax theorem
which extends a result of Morris (5] is presented for this case and results
are given which characterize a least-favorable correlation structure speci-
fying the ounitax filter.

I1.  OnE-DiENsiONAL FILTERING WITH UNKNOWN Noise
SrecTRA

A. General Formudation

In this section we consider the particular case of (1) and (2) in which
m=n=r=] and A<0. Without loss of generality we take C=1. For a
particular 1>14, we consider the estimation of the state x, based on the
observation of ( y,. 1o € 7<) and consider the steady-state case resulting
from the imit ty — —~a0. We assume that the processes ({,. tER} and
{0, 1ER) have spectral densities o; and oy, respectively. Note that the
mean-square filtening error associated with a time-invariant linear filter
whoee transfer function is H is given by
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£{|x,—z,1l}=(z.)“j_‘” 1= H(w)|2B¥(w? +4%) "'oy(w) dw
+(27)-'f.:°ll'l(w)|z¢,(w)dué 6(H:0.0). (3)

Let I denote the class of complex-valued transfer functions of causal
time-invariant linear filters. Then for fixed o; and 0y, the optimum linear
(minimum mean-square error) state estimation filter is found by solving
the problem

"ueu;'s(n; 9. %) 4

If o and o, are such that the observation spectrum o,(w)={B%(w! +
A2)" 'gi(w) +0g(w))] satisties the Paley- Wicner eondmon ! then the solu-
tioa to (4) is given by (Wong (6])

8%(? +Az)_'o‘(u)]

1
.;(...)[ 5 (o)

where superscripts denote multiplicative spectral decomposition and sub-
scripts denote additive spectral decomposition. If, on the other hand, the
spectra o and gy are not known exactly, but are known to be in classes X
and N, respectively, of spectral densities, then an alternate design crite-
rion 10 (4) is the minimax mean-square efror criterion

HY(w)=

&)

Hexr { (a,..',';gxxus( H: o °')} ' ©)

Several studies have considered problems related to (6). The analogous
noncausal (smoothing) case has been considered for spectral band models
in [1), for more general spectral density models in [3], and for general
classes of spectral measures in (4]. Some aspects of a related causal case
have been considered in [7] and more recently in [3]. Note that a saddle-
point solution to (6) is a point (H"; of, 65) €It XXX N satisfying

oo Sen S ) =S )= g, S(M: i)

M

That is, a point satisfying (7) consists of a least-favorable spectral pair
(06, 0) EX XN and their corresponding optimal (minimum-mean-
square-error) filter H', which is the minimax-mean-square-error filter for
AxN. In the following subsections we consider the existence of such
solutions for situations in which one of (£,. tER) or (6,: tER} repre-
sents white noise and the other has an uncertain spectral density.

B. White Process Noise with Unceriain Observation Noise

Suppose, for now, that the process noise {(§,; (ER)} represents white
noise with known spectral height = and that (#,; ER) has a spectral
density o, which is known ouly to be in a class R C L (R) of noise spectra
where L,(R) denotes the class of absolutely integrable real-valued func-
tions on R. This problem now fits into the ramework developed in (3]. In
particular, we have the following result which is analogous to Theorem 2
of (3}.

Theorem 1: Suppose U is a convex class of spectral deasities each
satisfying the Paley- Wiener condition and X = (a¢) where o(w)=X for
all wER. Then (H'; o4, o) with H' optimal for (e¢. o) is a saddlepoint
solution to (6) if, and only if, oy solves

.:ng,l(o.) (3
where the functional J 15 defined by
Ho)= [ a(w)iopli+e(u)/o o) 4w 0

where o, is the state spectral density given by

'lccdl the Paley- Wienar conditon for ¢ u the fimieness of the megral
;h.m-mu‘»h ‘dw
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o (w)=B¥E(w? +4%)7". (10)

Proof: 11 follows from the results of Yao [8) that, for any gy €, we
have

min &( H: a5, 07)=(K/)(1-exp{ - (7/K)J(a)}) (1)
HeX!'

where K= B2Z| A). Since the quantity in (11) is monotonically increasing
in J(oy) the “only if” part of Theorem | follows immediately. The “if”
part follows as a straightfoward modification to the proof of Theorem 2
of 3

Theorem | implies that a minimax state estimator for this case can be
sought by considering the maximization problem of (8). With respect to
this problem we have the following result from (4, Proposition 2J:

Theorem 2. The functional J(0) is upper-semicontinuous on L (R) and
thus achieves its maximum oa any compact subset .

Thus, if X is compact, the existence of a solution to (6) is assured.
Compactness is, of course, only sufficient (and not necessary) and may be
a somewhat restrictive condition here since L;(R) has noncompact subsets
which are of interest as spectral uncertainty models.

Example (Spectral Band Model): A spectral uncertainty model for
which the robust noncausal filtering problem has been solved is the
spectral band model. This is the model for spectral uncertainty used by
Kassam and Lim (1], and for our case is given by

2= {ono(w) <apfw) <oy (0): wER.@m) ™' [ oy} do=",)
(12)

where Py<x is a fixed noise power and o, and o, are fixed power
spectra satisfying the Paley- Wiener condition. The solution to the prob-
lem of (8) can be found for this case by applying the results of 3]
concerning the relationship of the minimax filtering problem to an
analogous problem in hypothesis testing. It follows from the results of
Section III of {3] and from the concavity of J that the spectrum a4
maximizing J over X of (12) is given by

% =29P)q’ (13)

where g’ is a probability density in the class P, =(pip=dy/(2wP,).
0y € ) that is least favorable (in the sense of Huber [9)) for testing J,
versus the probability density p, =0, //q0,. A recent result of Kassam
[10] gives ¢’ for this case, and thus it follows straightforwardly from [10)
and (13) that gy is given by

o, (w): ifag (w)<o;(w)
o(w)=1aolw): iloy(w)€ao(w)Kao,(w) (14)
o (w): ifao (w)>0,(w)

where a is a constant chosen 10 satisly /a0 =2%P,. Note that all
members of “X of (12) must sausfy the Paley- Wiener condition, and thus
Theorem | implies that the minimax filter /' for this case is the minimum
mean-square error filter (or the pair (oq, o) given by (5) where of(w)=Z
for all wER.

Note that. in general, a5 of (14) will not yield a rational observation
spectrum 4,. so that the minimax transfer function 4’ must be found
numerically. However, since H’ represents the causal projection of the
noacausal estimate of x, (i.c.. the estimste based on {y,. TER}), some
insight sbout the structure of 4’ is derived by considering the correspond-
ng noncausal estimate. The transfer function of the noncausal estimate
for the spectral pair (o4, o) is H, =0 /(0, +a5) where o, is from (10).
Note that this transfer function represents a minimax smoother for this
case (see {1]). Using (14) we note that #,, is given by

H,{(w)=min{ H,(v).max{k. Hy(w))}

where k=(1+a)"'. H, =0,/(0, +a,), and H, =e, /(6 +0,). Thus
H,>H, >H,, and H,_is less semsitive than cither 4, or H,, in regions
where H, is large or H,, is small. Note thet, if Hy(w)€k for all WER,
then H,, 13 effectively a version of H, with the gain limited 10 & in regions
where H,(w)>k.

The above exampile illustrates the structure of the minimax filter {or the
spectral-band vacertanty model which has been applied (requently as a

model (or such uncertainty. Other models can be treated similarly. For
example, the class consisting of all spectral densities with a given power
which differ in L, norm from a nominal spectrum can be treated using the
results of {3). Another widely used model is the mixture model which is a
modification of (12) corresponding roughly to the case o, — o0 and
0, =(1 —¢)o, where oy is a nominal spectral model with [o, =2%F, and ¢
a degree of spectral uncertainty chosen by the designer. The solution to
max,c » J(0) for this latter case is given by (14) with the third alternative
never occurring.

Before considering the case of unknown process noise statistics, we note
oue further point. In particular, suppose the process (§,; r€R)} is mean-
square continuous but does not have a spectral density. It follows from
Bochner's theorem (Wong (6]) that (8,; tER) has a spectral measure m,
and from the Lebesgue decomposition theorem (see Royden [11]) that we
can always write m,=(, +s, where [, is absolutely continuous with
respect to Lebesgue measure and s, is singular with respect to Lebesgue
measure. Moreover, Sayders [12] has shown that the minimum filtering
etror min yeqct £{]x, ~£,|2) depends osly on ¢,. Thus, for any class of
spectral measures, we might restrict our attention to the class consisting of
their absolutely continuous parts and Theorem | may still apply.

C. White Observation Noise with Uncertain Process Noise

We now consider the alternate case in which the observation noise (4,
tER)} represents white noise with spectral height >0 and the process
noise (§,; /ER) has spectral density o; which is known only to be within
a class X. We assume that % is such that the class £={f{(w)=0(w ) w? +
A3~ 0€%) is a subset of L (R). Within this context we have the
following analog to Theorem 1.

Theorem 3: Suppose C is convex and is such that the members of £
satisfy the Paley- Wiener condition. Define = {oy) where ag(w)=8 for
all wER. Then (H’; o5, o) with H' optimal for (ay, o) is a saddlepoint
solution to (6) if, and only if, o solves

.?g(l( %) 19

where the functional /(¢) is defined by
l(o)=(z.)“ef_°° log [1+0(w)B/(8(* +41))] du. (16)
Proof: We note [first that, for any a; €X, we have (see Yao (8])
min S(H. G.’.U()=l(ﬂ(). (17)
HeX'

Thus, the “only if” part follows immediately. To show the “if" part,
suppose o; € solves (15). Note that the inequality log(1 + x)< x and the
asumption ECL(R) imply that /(o{)<oo. For o, €%, it follows
straightforwardly from the concavity of log(1+x) on (0,00) and the
monotone convergence theorem (Royden {11]) that

(1 ~<)0f +ea;)/3¢|, .o =(27)'OB?

ST [0 +42)+ Bii(w)] '[op(w) - si(w)] dw. (18)

Suppose /' is the minimum mean-square error filter from (5) for the pair
(04, 0¢). We have (Yao (8))

||~H'(u)|’=e[|+n*e,'(...)/(o(u*+4*))]"; weQ. (19)

Thaus, (3), (18), and (19) imply
A((1-)og +eog)/3¢) ng=E(H': 0, 05)~E(H': 0. 05). (20)

Since /(o) is concave and o; maximizes /(¢) over “(, we must have
(1 ~e)of +10g)/e|, .o <O for all oy € X. Thus, (20) gives the left-hand
equation of (7). and (H’: o;. a4) is a saddle-point solution to (6). This
completes the proof. o]

Theorem ) implies that the solution to (6) may be sought for this case
by secking a solution to max, .« /(#). We note that. / is concave and
can be shown 1o be upper-semicontinuous. Thus, the solution to (6) 1s
assured if X is compact. Again. if (§,. r€R) can have a spectral measure
which is not absolutely continuous with respect 1o Lebesgue measure, the
white-observation-noise case might still be treated via Theorem 3 by
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restricting attention to the absoiutely continuous parts of the relevant
spectra.

As an example. it is again of interest to consider the spectral band
model discussed above. However, it is more reasonabie to assume that the
power in the state process {x,; /ER} is known rather than the power in
the process noise {§,. tER}. Thus, we consider the (ollowing modified
version of (12):

X= {Ucr"L(“’)“'e(“)‘"l'(“’)" wEQ,

(zn)"alf” (W)’ +,4‘)_'du=P,} @n

where o,(wlw® +4°) ' and 0, (w N w? +4?) " satisfy the Paley- Wiener
condiuon. Then 1t is straightforward to show that the solution to max /()
is given for this case by

9, (w): if B(w? +4%) <o, (w)
0(w)={B(*+4%):  ifo(w)<B(w} ~A?)Sa,(w) (22)
o, (w): ifB(w* +AY)>ay(w)

where 8 is chosen so that (27}~ 'BY® owNw® +4%) " 'dw=P,. The
munimax filter is then given by (5) for the pair (¢, o).

Another situation of interest here is the case in which the process noise
1s whate with unknown spectral height. That is. we have

X={op.0(w)=Z forall wERl andsome Z€(a.b]} (23)

where 0K g€ bh<a. It follows immediately from (16) that, for this case,
og(w)=b. a solution which 15 more or less obvious even without Theorem
3 Note that a similar result would be obtained if we allowed X of Section
11-B to be of the form of (23). In fact, we note that if either X of Section
11-B or *X contans an maximal element oy (i.c.. an element oz €N (or )
such that 6,(w)>a(w) for all WER and for all €N (or (), then the
corresponding least-favorable spectrum a5 or of will be the maximal
clement. Thus problem 13 related to the notion of a bounding filter which
1s an alternate approach to treating problems of unknown noise statistics
(see Nalu and Weiss {13), (14] and Greenlee and Leondes [15]). Unfor-
tunately, maximals do not exist in many models for spectral uncertainty
tfor example. the speciral band models (12) and (21) do not generally
contan maumals). However. for white-ooise models the role of extremal
points 13 more important as will be demonstrated below in the treatment
of the multivanable filtering problem with white noise of uncertain
componentwise correlation in both the process and observation.

111  MINIMAX STATE ESTIMATION FOR MULTIVARIABLE SYSTEMS
A. Formulation

The purpose of this section is to consider the state estimation problem
for the multivariable form of the linear stochastic system (1) when the
second-order siatistics of the process and observation noises are not
known. Let the dimensions of x,. §,. and v, (n. m. and r, respectively) be
arbitrary and assume that {{,; (ER} and {4,; /ER) are orthogonal.
zero-mean, wide-sense-stationary white noise processes with covanances
E(¢,67)=28(1~+) and E(,07)=0O8(:—r) where £ and © are symmet-
ric positive definite matrices. Also, it will be assumed throughout this
section that (4. C) is an observable pair and (A4, B) is a controilable pair.
This section will derive the minimax state estimator when the matrices £
and © are known only to be contained in subsets of the convex cones of
positive definite matrices S”*" CR™"™ and §”*" CR""’, respectively.

We will restrict ourselves to consideration of causal, lincar time-invariant
filters which produce a wide-sense-stationary error process

¢ 2x, %, (24)

where (%,. tER) is the output of the filter. Define X  to be the space of
complex valued #xr matrices of Laplace transforms of all such filiers.
For every HEX * and for every £ and © the weighted mean-square
estimation ervor is defined as

6(H:2.9)% E{Q¢,} (25)
where Q is a positive semidefinite matrix.
The Lapiace transform of (1), the assumption /€Y * and the assump-

tion that {{,; +€ER) and (0. tER} are orthogonal allows the weighted
mean-square error (25) to be written as

5(H; z.e)=(z¢,)"u{9'["" [1-H(s)CYst-0)""
-
-BEBT(~sI-A) T[1-H(-3)C) ds

+Qj_’:°n(:)en(—s)’¢:} (26)

where the superscript T denotes the transpose of the indicated matrix, /
denotes the n X n identity matrix, and tr denotes the trace of the bracketed
matrix.

When = and @ are fixed the filter which minimizes (26) over X * is
given by the steady state Kaiman-Bucy filter [16) (independently of the
weighting matrix Q):

i.r='4'€1+K[.V|.C£l] 27
K=pCcTe"! (28)
0=AP+PAT+Z-PCTO"'CP. (29)

The transfer function of the filter defined by (27)-(29) is given by
H(s)=[s1-(4-KC)]"'K. (30)

The corresponding minimum weighted mean-square error is
5(H.Z.8)=1r {QP(Z.0)) ahn

where the dependence of the error covariance matrix on Z and @ is
denoted explicits ;.

Often the second-order statistics of (£,; (ER) and {#,. tER) are not
known exactly. A common representation of this type of uncertainty is
that £ and © are coc.iained in sets X CS™ ™™ and NCS* ™, respectively.
The problem to be conside: - : is to find the best filter in JC * in the sense
that this filter minimizes the largest weighted mean-square error produced
when X and O range over all possible values. That is, we wish 10 solve the
minimax problem

”?n’ m:!xts(ll. £.0). 32)
[1.3

L L

B. Existence and Characterizanon of a Saddiepownt

Two important results conceming solutions to the minimax problem
formulated in Section [[I-A are preseated in this section. The first result
establishes an equivalence between a saddiepoint solution 1o (32) and the
Kaiman- Bucy filter corresponding to a particular (X, @) pair. The second
result establishes the existence of a saddlepoint when the sets X and X
are convex and compact.

To obtain these results, we will noed the following weil-known theorem
(cf. {17]) which establishes the fact that the existence of a saddlepoint is a
necessary and sufficient condition for the minimax probiem (32) w0 be
equivalent to the corresponding maximin problem

max min 5(H.1.9). (81}
LeN HeX
1.1

Theorsm 6: There exists a triplet ( Hp, Lo, 85) €N * <70 N satisty-
ing the saddlepoint condition
B(Hoy: 2.9)CB(Hy: 5.0¢)€6(H. 5,.9,)

VHEX ", £eN, 89X (34)
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if and only if the values of (32) and (33) are equal. Moreover, a triplet
satisfying (34) is a solution to (32) and (33).
Theorem 5 provides the desired characterizauon of a saddlepoint.
Theorem 5: Assume that there exists =, € and 8, € which satisfy
w{B7Z,BZ) < {B7Z,8%,} vIexX (35)
w{KJZ,K®) Sur{K{ZoK8} vOEN (36)

where K 15 the Kalman- Bucy gain corresponding 1o =, and 8, defined
by (28)-(29) and Z, is the solution to the equation

(4=KoC) Zy+Zo(A~KC)+ Q=0 (37)
Let Hyis) be the transfer funcuon of the Kalman-Bucy filter (30)
corresponding to =, and 8,. Then ( H,. Z,.8,) is a soluton to (32} and
(33).

Conversely, suppose that ( Hy, Z3.8,) is a saddlepoint for (32). Then
Hy is the transfer function of the Kalman- Bucy filter (30), and Z; and 6,
satisfy (35)-(37).

Proof:
‘Sufficiency: Consider the maximin problem (33). For fixed = and
8. the solution of the minimzation is given by the Kalman- Bucy filter
(2N-(29). The filter transfer function H(s) is given by (30) and the
mean-square error is given by [see (26)]
S(H. z.e)z(z-,)"u{of’” [I—H(s)c](:l-A)“
-
BZBT(~s-4) T[1-A(-s5)C] &
*Qf” ﬁ(;)eﬁ(—s)’ds}. (38)
-

Since (38) 15 additively separable in = and ©. the joint maximization
required by (33) can be carried out separately.

First, consider the process noise. Assume Z, satisfies (35) and (37) for
fixed ® The solution to (37) is given by

zo = j’,u-k.,c)':oeu-x,cu dr. (39)
0
Subsututing (39) in (35) and using a simple trace identity gives
T = r

w(B zonz)=u{ojo 4~ KiCUpT RTo1 4~ KoC) 'm}. (40)
By Parseval’s theorem, (40) can be written as
v {B7Z,81) =(z-,)"u{qf" [s1-(a-Kk)] ™!

e

un'[-u-u-x,p)]”a}, (4
However,
[ar = (A=K =[1-(s1- 4+ K0) ' Ko s1-2)
=[1-As)C)(st-4)"! (42)

Subsututing (42) 1010 (41) gives the first term on the nght-hand side of
(38). Then (33) implies (38) 13 ouninuzed over . wiuch establishes

G(Hy. 1.9)&E( H,, T,.9). (43)

Now. sssume I 1s fixed and 6, satisfies (36). (37). Subsututing (39) into
(36) and mampulsung the trace gives

"{‘orzoxoo}."{Qjo-'u-l;;(ukooxor'u—lu(lr,‘} (44)

Agan uung Parseval’s theoren. we obtun

tr{ K{ZoK®) =(zn,)"u{Qf"° [s1-(a-Ke0)]™"
e
K@K -sI-(4 —KOC)]"As}

=(z",)"u{Q[’°° ﬁ(:)eﬁ(—s)rds]A (45)
-
Thus, (36) implies (38) is minimized over YR which establishes
&(Ho: Z.0)<E(Hy: Z.8,). (46)

Inequalities (43) and (46) together with the aforementioned separability of
(38) imply

6(Hy. 2.8)KE( Hy; 24.8p). (47)
The upper inequality
B(Hyi Z9,89) SE(H: Zy.8,) (48)

follows trivially from the fact that H,, is the minimum mean-square error
estimator. Thus, (Hy, 2,.8,) is a saddlepoint for (32) and (33) and. by
Theorem 4, also a solution for (32) and (33).

Necessiy: Suppose (Hy, Z,,0,) satisfies (34). By Theorem 4,
(Hy. Z4.8,) solves (33). Hence H, is the transfer function of the
Kalman-Bucy filter Let P(Z,0)=E(¢,¢]} when (Z,0) are the second-
order statistics. Then P(Z,8) is given by

0=(A—-K,C)P(Z.8)+P(Z.0)(A-K,C) +BZBT + K OK].
(49)
Thus, the difference
APE P(Z.8)—P(Z,.8,) (50
is given by
0=(A~KC)AP+AP(A—KC) +B(Z~59)BT+ Ky(9-6,)KJ.
(51)
Thus. A P is given by
AP= [T KON B(Z-2)B" + Ko(@~8y)K] e 4™ X< .
(52)
By (34
r{QAP}=6(Hy Z.0)~6( Hy: Z7.6,)<0. (53)

After substituting (52) into (53), using a simple trace identity. and using
the definution of Z, ((39) and (37)], we obtain

r(Z(I-Zy)) +r{Z)(0-8,)} &0 VEEX, BN (54)
In particular, X = Z, implies (36) and © =86, implies (35). c

Thus. we see that conditions (35)-(37) are equivalent to the extstence of
a saddlepont. If such a saddlepoint exists then the mummax filter 1s
sumply the Kalman-Bucy filter for the (£,,8,) pair which sausfies
(35)-137). This result can be used to establish the existence of a saddle-
pont.

Theorem 5. If “C and X are convex. compact subsets of S™*™ and
§$7°". respectively. then a saddlepoint solution for the mimmax problem
(32) exists.

Proof: The prool shows that a solution to the maximin problem (33)
exists and sausfies conditions (35)-(37) of Theorem 5 By (26)-(31).

M E(H E.8)=u(QP(L.8)) (55)

15 conunuous in £ and @ Since X and X are compact. a solution to (33)
exusts. Let (7, L. 8,) be such a solution.
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Since 5(H; Z,0) is concave in = and © for every HEX * [see (26)),
ming,eq -G(H: Z,.0) is also concave in = and ©. Hence, the Fréchet
differential of (55) must be nonpositive in every direction into the set
XN, Let 8P(Z,,6,,; AZ, A8) denote the Fréchet differential of P
evaluated at (=, 8,) in the direction (4 Z, A8). By (29).

0=(A—K,C)6P+8P(A—KC) +BAZBT +Koa0 KT  (56)

where the dependence of 8P on =. 8. AZ, and A0 has been suppressed.
Thus, §P is given by

6p=j;’°¢‘-‘-“of"[BAEB’+K0A6K0’]e“"of"'d:. (57

Using (57) and a simple trace identity, the Fréchet differential of (55)
becomes

r {Q8P(Zy.8,;4%,40) ) = {B7Z,BAZ} +u {K{Z,K,40}
(58)

where Z,, satisfies (37).
Consider an arbitrary point (=, 8) €% XX Since X and N are convex,
the line segment joining ( =y, 8,) and (=, 0) is 1n X XX and hence,

(42.40)=(%-5,,8-6,) (59)

is a direction into (X M. Substituting (59) into (58) and requiring (58) to
be nonpositive gives

u{BTZ,B(Z-5,)} ~u{KJZ,Ko(8-8y)} <0. (60)
The choice (Z,8)=(Z,8,) in (60) gives (35) while the choice (Z,8)=
(Z5.9) in (60) gives (36). Thus, by Theorem 5. (Z,, 8,) is a saddlepoint
for (32). 0

C. Discussion

Theorem $ provides an equivalent characterization of a saddlepoint in
terms o quantties associated with the Kalman filter of a particular
(Z.8,) pair. Theorem 6 establishes the existence of a saddlepoint when
X and X are convex and compact. Taken together, Theorems $ and 6
show that the minimax filter which solves (33) when X and X are convex
and compact is given by the Kalman filter corresponding to the (Z,,8,)
pair which maximizes tr (QP(=.0)}.

There are two important cases for which the conditions (35)-(37)
provide explicit solutions. The first occurs when the sets C and N have
maximal clements.’ and the second is when the sets “C and N are each
line segments.

Theorem 7. Suppose Z, €°X and 6, €X are maximal elements in their
respective sets. Then Z, and O, satisfy (35)-(37).

Proof: By the controllability and observability assumptions on the
system (1) and (2), the closed-loop filter matrix (A4 — KoC) is asymptoti-
cally stable. Hence, Z,, defined by (37) 13 positive definite. The maximality
of Z, and O, thus implies (35)-(36). a

Theorems 5 and 7 combined imply that if the sets “C and X cach
contan 3 maximal element then the Kalman- Bucy filter corresponding to
those elements 1s a mnimax filter. This result is a precise expression of
the intwitive design procedure of using the worst-case noises. It generalizes
the concept of a bounding filter (see Nali and Weiss [14]) to the
multivanable esumation problem. One application given by the following
example demonstrates the intuitive nature of the result.

Exampie: A common method of modeling uncertainty in the second
order ¢ prion statistics of sysiem (1) and (2) 13 to choose a nomunal par
(Z,.9,) and assume that the true £ and @ differ from the nomunal in
norm by no more than some positive constant 4. Assume that the norm o
be used for each matnx is the norm 1nduced by the Euclidean vector norm
on the underlying space ( R™ and R’. respectively). Define

& (T iT-E,i%y, I>0) (61)
Ni(0:10-0,i€y, 0>0) (62)

!A manumel slemem of & parnally ordered o0t ¥ 13 an slemnict 1 € such that if €N
then « @+ Hore e ordersng « 2 13 defiasd @ : - ¥ bning pomtive wendefimw

Then each set has a maximal element
So=Zy+ul (63)
8, =8y +n/ (64)

and the minimax filter is the Kalman-Bucy filter corresponding to
(Z5.6,). (m]

Another reasonable model for uncertainty in the second-order a priori
statistics of system (1) and (2) is that the spectral density matrices are a
convex combination of two possible nominals. Let

AL (Z:Z=A,+(1-0)I,; 5,>0,5,>0.A€(0,1]}  (69)
X2 (8:0=y8,+(1-7)8,:8,>0,8,>0,v€[0.1]}. (66)

Suppose that (25, 8,) satisfy (35)-(37) and let Aj and y, be the corre-
sponding constants defined by (65) and (66). Then (35) and (36) become

(A=Ao)ur{B7Z,B(Z,-3,)} <0 (67
(v—10) e {KJZ,Ko(8, - 8,)} <0. (68)

Conditions (67) and (68) imply that (35) and (36) can be satisfied with
strict inequality for all Z5 =, and 838, only if =, and O, are
endpoints of the set. Otherwise, we must have

w{B7Z,8(Z,-3,)} =0 (69)
U{K{ZOKO(O,—O,)}=0 (70)
where Z, and K, depend on A,

IV. SUMMARY

Minimax approaches to two problems associated with the estimation of
the state of a linear stochastic system have been considered. The scalar
problem for which the noise spectrum is uncertain was examined in
Section I1. The minimax filter for this problem was characterized in terms
of the least favorable noise spectrum. Secuon Il considered a similar
problem for the multivariable estimation problem when the noises are
white processes with unknown a priori second-order statistics. The saddle-
point solution for this problem is given by a Kalman-Bucy filter for a
least-favorable pair of componentwise correlation matrices.
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AN ANALYSIS OF THE EFFECTS OF
SPECTRAL UNCERTAINTY ON WIENER FILTERING

[Spectral Uncertainty in Wienmer Filtering]
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Abstract

Results from an extensive study of the performance of Wiener filtering
under spectral uncertainty are presented. For a variety of spectral
uncertainty models the Wiener filter is shown to have unacceptable sensi-
tivity to even small deviations from those signal and noise spectral
densities which were used to design the filter. Performance of a robust
filter (designed to have the best possible performance when the uncertainty
is worst) is also examined. 1In most cases the robust filter's insensi-
tivity to spectral uncertainty makes it preferable to the traditional
Wiener filter.
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1. TIatrweduction

The solution to the traditional stationary linear (i.e., Wiener)
filtering problem requires exact knowledge of the signal and noise spectra.
Often in practice it is unrealistic to assume such xnowledge. Despite this,
Wiener filters are widely used for steady-state filtering. In this paper
we consider the performance of Wiener filtering when the signal and noise
spectra differ to a small degree from those assumed in the design process.

In particular, in Section 2 we consider the Wiener filter for a
particular signal and noise spectral pair which would be natural to assume
is the true spectral pair. We then look again at our circumstances and
model the uncertainty we might have about our choice of spectra. In so
doing we find that the potential exists for totally unacceptable perfor-
mance degradation in the presence of even small degrees of uncertainty.

In Section 3 we consider filters termed "robust'. These filters are
designed to have the best '"worst-case" performance over uncertainty classes
of spectra. The method of design is due to Poor (1980) and was based on
the work of Kassam and Lim (1977). As we will see, the advantage of these
robust filters is that they are least sensitive in the sense that they have
the smallest possible maximum deviation from optimality within the comstraints
imposed by our uncertainty.

Of course there is a trade-off involved in robust filtering. While
the robust filter has better worst-case performance, we cannot expect it
to have optimal performance should our original choice of spectra be the

true ones. In Section 3 we will consider this trade-off as well.
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2.  The Sensditivity o4 the Wienen Filtern to Spectral Uncertainty

The mean-square-error (MSE) for linear filtering of asignal inuncorrelated
additive noise, where both signal and noise are modeled as real, zero-mean,

second-order, wide-sense stationary random processes, is given by

ke

1 o 2 2
7= Jo@|1-B@)| " + v |B@)| ] duw , (1)

-

e(0,viH) =

where H is the transfer function of the filter and 7 and v are the power
spectral densities (PSD's) of the signal and noise, respectively. For a
fixed signal and noise spectral pair, (¢,v), e(c,v;H) is minimized by

the Wiener filter

* g (w)
A T EEID) (2)
and the minimum MSE is
e*(a,v) 4 e(o,v;H*) = %? f H*(w) v(w) dw . (3

-

Unfortunately, as we discussed in the introduction, it is often the
case in practice that our knowledge of the signal and/or noise PSD's is
inexact. If the ¢ and v we choose for designing H* are not the true spectra,
then our filter will generally have less than optimal performance. To
illustrate the degree of performance degradation that can result from such
mis-modeling, we consider the following examples. The numerical results
presented here and in the following section comprise a representative
selection from an extensive numerical study (Vastola, 1981).

The p-noint ~lass. For a number of applications it is natural to
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assume that we have a narrow-band first-order Markov signal in wide-band
first~order Markov noise, i.e. that

Zas vg
A S Y
° us+w
and (4)
2
ZaN vN
\)o(u» ) 2
GN+w

where %g * ay are the 3 dB bandwidths and v§ and vﬁ are the powers of the

signal and noise, respectively. For Fig. 1 we have a_, = 10 and as = 1.

N
In the figures of this paper we have used a measure of performance
which we refer to simply as output signal-to-noise ratio (SNR). The purpose
of Wiener filtering is to minimize the MSE,E{[g(t) - S(t)]z},
between our estimate §(t) (1.e. the output of the filter) and
the actual signal S(t). Since the output of the filter can be written as
s(e) + (§(t) - 5(t)), we use the signal power divided by the MSE as an output
SNR. For the purpose of our graphs we translate this to dB. The horizontal
axis is 10 10310(10v§/v§), the input SNR in dB.
The top line in Fig. 1 gives the performance of the Wiener filter H:,
designed using 9 and Yo of (4) in equation (2),when 9, and v, are, in face,
the signal and noise spectra which occur. For this case it is straight-

forward, via equation (3), to show that

* 2 2 2
e (9,,v)/vg = agay/ fLagayr + agag) (acr + ay)
where
A 2,2
r = vS/vN .

Now, suppose that the only informatiom about which we are certain is
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the powers of the signal vg and the noise v§ and that we have estimated
with sufficient accuracy the fractional power of aach on the set

S = {vreall ., < 1!. We denote the signal and noise fractional powers by
Ps and Py respectively (e.g. (2*)‘1f§ J(w)dw = psvg). In particular, for
the example considered above, we have Pg ® .5 and Py * .063). If these
total powers and fractional powers are all we can really be certain of, we
would like to know how badly the performance of 8: can deteriorate. The
bottom line in Fig. 1 gives the worst-case performance of H:. The middle
line represents what we can do trivially for amy pair of spectra by using an
all-pass filter (H = 1) when the input SNR is positive and by using a no-
pass filcter (H = 0) when the input SNR is negative. Thus we see that if
the spectra are actually first-order Markov then our filter does well, but
if not we can do dignizicantly worse than tuivial §iltering.

Finally we note that uncertainty classes of spectra given by assuming
exact knowledge only of the total and fractiomal powers are called p-point
classes and have been studied as models of spectral uncertainty by Cimini
and Kassam (1980). An analogous uncertainty class for probabilities used
in robust hypothesis testing and robust detection has been examined by the
authors (Vastola and Poor, 1980) and by El-Sawy and VandeLinde (1977, 1979).

The e-contamination class. Suppose that we again have a particular
spectral pair (oo,vo) which we believe to be the true spectra, but that we
also have a general sense of uncertainty about our choice which we model by
an c-contaminated class; i.e., we agssume we know that the true spectra

satisfy (c,v) ¢ Je x T(e where 0 < ¢ < 1,

ne it 4 AR wh .

O R R T

l“mv-— -

—— -




i." 3 (w) = (l-e)oo(u) + =3'(w) o8 n,fa'(u) dw = fyo(u) dw’

= J

and

n. - {vlvw) = (1-€)v (@) +ev' @) uem, f\"(w) dw -f\)o(u) do} .

. .
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Classes of this form have been used extensively as general models of uncer-

tainty (Tukey, 1960; Huber, 1965; Kassam and Lim, 1977; Hosoya, 1978).

— —

Fig. 2 gives the performance of the Wiener filter H: designed via

i i equation (2) assuming a narrow-band (as = 1) first-order Markov signal in

: wide-band (aN = 1000) first-order Markov noise. The upper line gives the

i : ! serformance of this filter when these are the true signal and noise. The
lower line is the worst case of this filter over the uncertainty classes

in (5) with 9, and v, given by the above choices and withe= .1. We see

f ; that, for values of input SNR near zero, the worst case is better than trivial
filtering but still much worse than optimal (about 8.5 dB); for values of
input SNR greater in absolute value than 60 the performance in both the
nominal and worst cases is the same as trivial filtering; and for all other

values the worst case is worse than trivial filtering.

' ! An e-contaminated signal in white noise. Fig. 3 shows the nominal
¢ and vorst case performsnce of the nominal Wiener filter for the signal
uncertainty class Je ig (5) with ¢ = .1 and a, first-order Markov with
ag ® 1. The noise is white noise with no uncertainty and the horizontal
axis is actually the ratio of signal power vg to :h‘Anoisc level NO/Z. Note

that the worst case is bounded above by 10; in fact, for any choice of ¢,

- it is bounded above by 10 log(l0¢).

¥ As noted above, the optimal and worst-case performance of Wiener
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filtering under various conditions has been examined extensively for several
uncertainty models and for a variety of signal and noise paramsters

(such as bandwidth and power). The above examples are represencative of

the sensitivity of Wiener filtering to deviations from spectral assumptions

which were found in virtually every case.

3. Robust Wiener Filteons

To remedy the problems of Wiener filtering sensitivity discussed in the
preceding section, we consider the following robust filter design which
was developed by Poor (1980) based on the work of Kassam and Lim (1977).

A most-robust Wiener filter (Poor, 1980) is a solution HR to the

game

min sup e(o,v:iH) ‘ (6)
H (o,v)6/X7
where # and 7! are classes of spectra representing uncertainty in the signal
and noise,respectively, and where e(c,v;H) is given in (1). YNote that
since the sup in (6) gives the least upper bound on the error, H; is a
filter with the smallest possible such upper bound. In other words H; is

least sensitive to worst case uncertainty.
A pair of spectra (oL,vL).is leasc favorable for Wiener filtering for
the spectral uncertainty classes ¢ and 7 (Poor, 1980) if

NERT iy BPERICAT ) &

*
for all ¢ ¢ o/, v ¢ T where HL is the Wiener filter for the pair (cL,vL)

as in (2).

It is straightforward to see that if (oL.vL) ¢ J/ %X N is least favorable
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for Wiener filtering fors and ™ then the pair ((aL,vL),u:) is a saddle-point
solution to the minimax game (6). That is,

* *
sup e(o,v;H;) = e(g,,v,;H ) = min e(a,,v, ;H). (8)
(V) €% 7 L L) TR sty

We see from this that 1f (o ) is least favorable then B: is a most-robust

L'V
Wiener filter.

Thus we see that 1if we can find a least-favorable pair then we can
design a most-robust Wiener filter. One of the methods developed in
(Psor, 1980) for finding least favorable pairs of spectra (and hence most~
robust filters) involves an analogous concept in hypothesis testing: least-
favorable probability demsity functions (PDF's) for testing one set of PDF's
against another. Least-favorable PDF's have been found for a variety of
classes of PDF's (Huber, 1965; Kassam, 1981; Vastola and Poor, 1980). If
every signal spectrum in ¢ has the same finite power vg and every noise
spectrum in 7] has the same finite power v2 then we can define classes of

N
PDF's

o = (igltglw) = o(w)/2nvs, cent

and

8y = (fyltg() = v(w)/2nvs, vem

and possibly apply the following (Poor, 1980, Corollary 1).

Theorem. If ¢ and 7] are convex and have constant powers vg and vg, respect-

- 1]
ively, and g ¢ 05 and 9y € ON are least-favorable PDF's for 95 versus ON

4 2 4 2
then oL 21-rvsqs and VL 2ﬂquN

for Wiener filtering for o and 7.

are least favorable spectra

This theorem allows us to coustruct most-robust Wiener filters for the
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first two examples considered in Section 2.
The p-point class. It can be seen from the above theorem and Vastola
and Poor (1980) or from Cimini and Kassam (1980) that

( 2
PoV
g S 3 for wes

4 PgVs * PyVy

*
HR(w) = )
(l-ps)vS

3 3 for w e sc
\ (l—ps)vs + (l-r:N)vN

and, hence,

PgPy . (A=pg) (1-py)

%*
; B S + _——tn
e(o,v Hp) PgT + Py (l-ps)r + (l-pN)

for all (o,v) ¢dx7,

where r 3 vé/vi, the input SNR. In Fig. 4 we have superimposed onto Fig. 1
*
the performance of HR (the middle line). It is clear from Fig. 4 that,
*

unless we are extremely certain about our choice of ¢ and v, HR is prefer-~

*
able to H_.

o

The e-contaminated class. For the classes in (4) it can be easily

seen from the above theorem and Huber (1965) that

( k' 4 e’'e/(e'r + 1) for H:(u) < k'

H;(w) - { B (w) for k' < H) () < "

k" & e"r/(e"r + 1) for H:(w) 2 k",
\

where 0 < c' < ¢" < = are constants given in Huber (1965). It is interesting

*
to note that the robust filter HR has this same form for several other

X

.
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*
uncertainty models (Poor, 1980; Huber, 1977). Also note that this HR will

not have constant MSE over o X "l as in the previous example. In Fig. 5

*
R

pair is (ao,vo) (the second line from the top) and when the true spectral

we have superimposed onto Fig. 2 the performance of H, when the true spectral
pair is ("L"’L) (the third line from the top). Recall from the definition
*
of (CL"’L) that the latter is the worst-case performance of HR For this
example ¢' = l/e¢" = ,125.
Unlike the preceding example, the praferability of the most-robust filter is

not so clear-cut. If one were relatively certain about (ao,vo) being correct then

s
uo would be the better choice; however, ifnot, and 1f the guaranteed level of performance

over # X 7 (given by the third line down) were adequate, we would likely choose B.;

An c-contaminated signal in white noise. Clearly the above theorem
cannot be applied to find a robust filter in this case since the noise has
infinite power; however a more direct approach proves fruitful l-;ere. First,
we may restrict our search to He Lz(dm) » the mean-square integrable functioms
on R, the real line, since all others have infinite MSE regardless of what

3 is (cf. equation (1)). Second,we have, for all He¢ Lz(dm),

N

2 2
sup ¢(0,4,iH) = sup 3+ { 18w (A-e)o W) + eo' @) + |B@)| 2T &

c Shadf R

- e 1) + £ [ 180w
e((l-e)a ,v ; € s:t.: o I -awle'w d
R

- e((l-c)oo,vo;ﬂ) + evg.

The last step is true because ¢' {s assumed to be integrable andH ¢ Lz(dm).

o e Y £ A RN W S Bty £yt S e o

FY7 Y

(22N

| WSS sk B A W

1




—

10
*
Clearly this, equation (2), and (6) (the definition of HR) imply that

. (1-c)3 ()
Hp(w) = @0, +V.77 -

Recall that Fig. 3 showed the performance of H; in this situation {n
its nominal and worst cases. If we sdperimposed the nominal and worst
cases of H; onto Fig. 3, as we have done for the other examples, we would
find no change; i.e.,up to the accuracy of the graph the nominal cases and
worst cases of H: and H; are the same. In fact, they differ by no more than
.0l. It should be noted that this is a singular
example and the unusual performance is due to the infinite power of the white

anoise, not to the 'very wide bandedness" which white noise is generally used

to model.

V. Discussion and Conclusdions

As we have discussed above, the results presented in this paper (with
the one exception of the white noise example) are representative of our
findings in a wide variety of cases. For example, although it is a much
harder case to solve, we have developed numerical results for causal Wiener
filtering of an e~-contaminated first-order Markov signal in first-order
Markov noise. The theory of the causal case has not been developed in the
same generality as the noncausal case; however, this specific example can be

treated using the results of Poor (1980) and Yao (1971). 1In Fig. 6 we have

presented the results for this causal filtering example with ¢ = .1, ag = 1

and o " 1000. For comparison we have also included Fig. 7 which gives the
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results for the corresponding noncausal case. Note the similarity between
the two figures. Again, this is indicative of our findings over a wide
range of signal and noise bandwidths and t's.

Other situations we examined in the noncausal case include ones with
3 and/or v as second-order Markov (i.e. having the form 4u3v2/(a2 + uz)z)
or using bandlimited white noise. The resulcs for all these cases were very
similar to those already presented (e.g. Fig. 35).

Of particular interest is the case of an c-contaminated first-order
Markov signal in e¢-contaminated bandlimited white noise. Even when the
bandwidth of the noise was extremely large (e.g. 106) the results were similar
to the other cases and unlike those involving nonbandlimited white noise
(cf. the remarks at the end of Section 3).

In summary, the Wiener filter can be undesirably sensitive to small
deviations from assunca spectral models. Furthermore, while there are
anough specific cases to the contrary to make caution advisable, we have
found for a wide variety of situations that, when spectral uncertainty
exists, the robust Wiener filter is generally preferable to the traditiomal

Wiener filter.
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ROBUST LINEAR ESTIMATION OF STATIONARY DISCRETE-TIME SIGNALS

Kenneth S. Vastola and H. Vincent Poor
Department Of Electrical Engineering and
the Coordinated Science Laboratory
University of lllinois at Urbana-Champaign
Urbana, Illinois 61801

ABSTRACT

A minimax formulation of the problem of de-
signing discrece-cime smoothers, filters and
praedictors vhen knowledge of the signal and noise
spectrs is inexact is presentsd. A result is
given which converts the minimax problem to a
aaximization problem. Explicit solutions are
given for the case of a contaminated wide-sense
Markov signsl in wvhite noise. The results of s
numerical study of the inherent trade-off in-~
volved in robust filtering are given for this
case and the preferability of the robust filter
is demonstrated for a wide range of input SNR's
and signal bandwidths.

1. INTRODUCTION

In the traditional formulation of the linear
ainimum-mesn-squars-error (MMSE) signal estima-
tion problem, if the signal and noise processes
are uncorrelated with aach other, the solutions
to both the causal and noncausal versions of this
problem dapend only on the power spectra of the
signal and noise. 1In practice, however, the
spectral froperties of the signal and/or anoise
may not be known with complete certainty. To
account for such uncertainty saveral studies have
investigated possible designs of robust filters,
Robust filters are filters which, while not
necessarily performing as well as the optimal
filter when the signal and noise spactra are as
anticipated, do not experience a significant de-~
crease in relative performance over soma class
of spectra 'near" the anticipated psir. On the
other hand cthe so-called optimal fiiter (i.e.,
the one designed based on the anticipated model)
nay experience dramstic degradation of perfor-
mance under small deviations (see [5]).

So far the thrust of this research has besn
for comtinucus-time filtering ([1),[2]). 1In this
paper we consider the discrete-cims case for
caussl linear signal esctimstion (which includes
smoothing, filtering, and prediction). In Sec~
tion 2 we present a formuilation of the robust
linear causal discrete-tims signsl estimacion
problem snd s minimax type theorem which yilalds
a general design approach for these robust signal
estimacors. This formulation is analogous to
that presented in Sectiom II of (2] for contin-
yous=-time robust filtaring. Ia 3ection 3 we

This resesrch vas supported by tha Joint
Services Llectronics Program under Contract
¥000146279-C=0624 and by the Office of Naval
Research under Coucrset NOOOl4-81-K-0014,

consider specific models of s{gnal and noise
and present some numerical results. Finally in
Section 4 we discuss these results along with
some possible topics for further study in this
area.

2. THE GENERAL FORMULATION

Throughout this paper we denots the set of
integers by Z and we assume that we observe a
realization {y(k)|k€ 2} of a random process
{Y()|k€Z} given by

Y (k) »3(k) +N(k), k€, (2.1)

where {S(k)|k€Z} and {N(k)|kEZ] are wide-sense
stationary random processes which are uncorre-
lated with each other. We denote their spectral
messures by mg and my, respectively. We also
assume that the mean of {N(k)| k€& Z{ is zero.

Our purpose is to form a linear estimate of a
linear functiom of {s(k)} (the signal) from

{y ()} (the observation).

By a spectral measure we mean specifically
a nonnegative Borel measure (i.e. a countably
additive measure on the Borel sets, see [4]) on
U, the unit circle of the complex plans._ Given
such a spectral measure m we denote by H{(dm)
the Herdy subspace of Lz(dn), vhich {s the sub-
space spanned by {ei®|n = 0,1,2,...} (4]. For
:9. estimacion problem discussed above
H,_(d(us +my)) is the space of all mean-square
incegrable causal transfer functions, while
12 (d(mg +oy)) also includes the noncausal omes.

Lat D@ ) represent a '"desired" linear oper-
ation on i!g signal process {S(k)}; for example
D@) = &” represents smoothing for an < 0,
filtering for n=0 and prediction for a > 0.
For esch pair of spectral mmasures (ag,=y) sad
transfer functiom H € L2 (d(ag +my)) the masn-
square error ep (dms,dmy;H) is given by

-1 " 2
@™ [ 0@ -u@)|* am @)
-
(2.2)
-1 p” 2
+ @M [ la@)]|” @) .
-ty
For sach pair (ls.-,‘) the problem
ain o, (dm,,dm ;H)
HE Bd@gray) ° ° “ 2.3

has & solution u’ (the optimsl causal transfer
function) vwhich is uniquely defined a.e. with

Presented at the 1981 Congerence (n Injowmaticn Sciences and
Sustems, The Johns Hophins University, Baltimore, ‘0, varar
25-27, 1981, To appear in the Proczedings vj the Cunference.
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respect to mg +my. We denote by QD (dmg ,dmy) the
opcimal value ‘D(d‘s dn.‘ H Y.

Unfot;un-tely, there is no general expres-
sion for ‘D (dmg ,dmy), however for a wide variety
of cases (all when D and the derivative with
Tespect to Labesgue measurs of the absoluctely
continuous part of my are rational) Sayders ({3)
has given specific axpressions; further he has
given a systematic method of finding others.
This will be important in Sectioa 3.

Of course, this traditionsl formulatiom of
discrete-time causal signal estimacion assumas
exact knowledge of the signal and noise spectra.
As we mentioned {n Section 1 it is oftem un-
realistic to assums this knowledge, and hence it
is of interest to design s robust signal estima-
tor. The design approach we consider here ia
analogous to that of robust Wiener filtering as
considered by Poor (2] in a formulation based
on the work of Kassam and Lim (1].

Specifically, we assume that the signal and
noise spectra, mg and my, are known only to be-
long to some nonintersecting classes, ¢ and 7.
That is, we know that mg € # and my € ™ buct we
do not know which members of 4/ and 7 are the
trus signal and noise spectra.

We consider a transfer functiom Hy to be
robust for o/ and M Lif there is an uppot bound
Tor e e (mg,my;Hy) over all (mg,my) € #/ X 7. The
ad jective tobust i{s appropriats since this upper
bound would give a guaranteed level of perfor-
mance, Ideally ve would like to have the best
such traansfer function. Thus we define a most
robust causal cransfer function to be & solution
T E—
dy to the game

min sup e (dm_,dm ;H) (2.4)
H€ n'(-s,N)éixf’! D5y

whera K = ‘H € HZ(G)| sup |H@)| = 1.
* ey

In an effort to find a most vobust causal
transfer function we mske the following defini-
ciom.

ot L L.t
o) (dmg dag i) $ e (dag,dag;H ) @2.5)
for all (mg,my) € /%7, where u{ u the optimal

ssusal transfer functiom for (‘3 ,n.‘) defined via
2.3).

It is straightforward to see that a pair

(ug',a.l,‘) € /XM 1is lesst favorable if and only if
it and its optimal transfer function form a
saddlepoint solution to the game (2.%4), L.e.

L. L.,*
H?:' eD(d-Ils d-“ H) = ¢, (dn d‘N'H‘L)
(dm dmyisy)

Thus Lf we could find a least-favorable pair
(mg,my) €/ X7, we would have our sought-after
most-robust estimator: the optimal causal trans-
fer function for (mg,my). The purpose of our
main theorem (below) is to facilitate the search
for a least-favorable pair.

(2.6)
- sup

m u\‘)elx'( ‘o

We now view J and "1 as subsets of the Banach
spacs, 3, of finite Borsl meagures on U and con-
sider 3 endowed with its weak topology (see
[10]). A sequence {m,] converges to s msasure a
in chis topology if | f dm, converges to = f da

u
for every continuous functiom f om U. (I}aI the
probability literature this is usually referred
to as wesk conveargence of (probedbility) measures
(see [9]).)

We ars now ready to present our main
theorem which reduces che problem of finding a
least-favorable pair (and hence a robust trans-
fer fuaction) to maximiszing the functional
of (dug,dmy) over / x M. This is accomplished by
converting the minimax problem (2.4) to a maxi-
min problem whose "min" part (givem by (2.3))
has already been solved by Sayders [3].

mogn. 1f # and 7 are nomintersecting convex
vesk¥-compact subsets of & then (ng-.g‘)élxﬂ

is a least-favorable pair for causal linesr
estimacion if and only {f

¢ L L
on(dl .d\d) - .N:?Jx"( D(d-s le) Q@.7

whers .;(d-s.dg“) is defined above vis (2.3).

Proof. 1If "only if" part of the theorem follows
directly trn the definitions of least-favora-
bilicy and cn(dlg dl-,), L.o., !or

lll(l,lu)EJKn, (d-sdg‘)ac(d-sdg‘
H.L) 2 o (hs AN). In fact this is so for
arbitrary subsets, / and %, of 2. On the other
hand, the "1{f" part does depend oa the hypothesis.

By definition & pair (af,mp) is least

favorsble for causal linear estimagion for classes

J uul 71 of spectra if .b(d-s hﬂ lL) < QD(‘l ,
dg‘ u‘L) for all (m 'N) € 4 x 7 vhere is the
optimal causal transfer functiom for (ns,gi)

defined by (2.3). Wo wish to show that this is
trus for & pair (a¥, Ly € o x 7 £/ and 7 are
veak® compact end i Y. 7) holds, i.e. if
‘D(“;'"N.l“'{) a ob(d-s.d-,;af). !orfall (mg,my) €
# x M, vhere, for sach pair (mg,my) H' 18 the
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causal transfer functiom which is optimal for
cthat pair.

Note that i{f minimax equality holds for the
same (2.+) (L.e, if (2.6) holds) them the pair
(m‘s',d;) satisfying (2.7) is clesrly least favor-

able for o and " (see Equation (2.6)). Thus our
problem reduces to showing that minimax equality
holds, We will make use of che following (from
Theorem 3.3, pp. l4l-leé in [11]).

Leama, 1If X and Y are separable topological
linear spaces; A and B are compact convex sub-
sets of X and Y, respectively; and F is a resl
valued upper-lower-semicoutinuous concave-con-
vex function on A X 8 then F satisfies the
ainimax equality om A X B,

We wish to spply this lemma with X = 3x 3
(recall that 3 is the space of finite 3oral
measures on (:,7) endowed with its weak™ topo-
logy, X is endowed with the corrsspondiang pro-
duct _copology); Y = (& (the Hardy subspace
of L2(d) spanned by {ei®|n = 0,1,2,...] here
endowed with its weak topology); A « # x 7; and
3 » X, Our function F on A X B is given by

Fl@g,m),H) = e (dmg,dm;R).

The only property which is not obvious (or
at least straightforward to show) is thst K' is
compact. From {10}, Sections V.) and V.4, we
ses that all we need to show is that XK' is
bounded and closed in the norm topology of Hf_(ﬁ).

3oundedness is straightforwerd since fllilg -
: {H@®)|°® s 2r. For closednass ve mst show

-rr "
that {£ H_=~ H {n nowm (i.e. 4f lim ' |H @) -
n o le O

2 . g AT T .

RE){“® = 0) and 1£ {4 : S K then HE X',
*

Assume H € 1 then there is a Borel set EC U
such that % (E) » 0 (vhere A is Lebesgue-Borel
asasure on U) and H®) > 1 4+ ¢ for some ¢ > 0

A
and for alld % E. But lun@)-n@)lzﬂ x
-
JH @) -86)1%® > A (@) > 0 for all n. Con-
2

tradiction! nce K? is compact in the weak
topology of 4'_(tl) and ve may apply the Lemma.
This completes the proof o>f the theorea.

The hypothesis of the theorem (that #/ and
% be comvex wesk*~compsct subsets of 3) 1s oot
overly restrictive for our purposes. Most (m-
portantly, & capacity class (i.ea. & class of
the form ‘3<€ .3 a(A) $ v(A) for all Borel subsets,
A, of U, a(U) = v(U)} for a cspacity v) is veak"-
compact ({6], Lemma 2.2) sad convex. A capecity
is & set functiom wvhich generalizes the ides of
s msasure and vas introduced by Choquet [12] and
appiied by Huber sand Strasssen (6] to model un-
certainey i{n robust hypothesis testing. All the

¢~mixtura, total-variation, and Prokhorov models
see (6] and (7); for the band and pe-point models
see (8]). Thus thess resuits are quite Zenersl.

Abstractly, cthe significance of robust
signal estimation is clear: to be sble to put
cthe tightest upper bound on the error when the
possibility of deviation from the assused spectra
exists 1is clearly desirable. However in most
situations we must also expect that the robust
sstimator will not perform as well as the assumed
(or nominal) estimator L{f the trus spectra are
the nominsl spectrs. So there is s trade-~off.
Thus the quastions that naturslly arise are how
much is gained by robust estimstor in ity
worst case (at (ls.ﬂ. ) ss compsred to the

nominal estimator at its vorst case and hou much
is lost in using the robust astimator should the
true spectra be the nominal ooes. Clearly s
blanket statement of the superiority of one
estimstor over the other im all cases is not
likely to prove correct. Thus we undertaks, in
the next section, an attempt to answer these
questions with some numerical exsmples.

3. AN EXAMPLE

In this section ve consider robust filter-

ing of a contaminated wide-sense Markov signal

white noise, Sayders [3] has showm that, if

; represencs white noise (i.s. 44(‘3) - m«oa
for soma positive constant Ng) and if D@)
represents filtering (i.e. D®) 8 1), them

' dm
* W . 12 -10s
on(tlls,hs) - uoll-up[zﬂ :"lo'(l.#!o B ®))
. a]] a.n

tor aoy signal spogtﬁ\-‘:. We wish to consider
the cage vhen 7 = N; 7 s (m€3a) =
(l=¢)al(A) + em' (A),"Y A € &; for some nonnega-
tive o’ € 3 vich o' (U) = wi(U) » 2m?2} vhere o)
represents a nomins] signal spectrum, here givin
by dmf®) = (vé(ler®)/(1-2r cosd +£2)]d for

v € [=1,1], and ¢ € (0,1} represents the degree
of possible contaminatiom ot error in assuming
that 4 is the trus signal spectrum.

The particular -5‘ we have chosen is the
spectrum of s wide-sense Msrkov process. It has
povar v and, for r 3 3-2,F = 172, it has 3dB
power bandvidth .

cos”tied s br 1)/ (-20)) . 3.2)

sdnu:nsuu the expression for into (3.1) we

obtain ‘b""g'"u" Alternatively, sincs

dm}/® s vational, we can determine that the
optimal capsal tramsfer function for the acminal
pair (ns‘.l“) is given by (ses (l3], Chaepter 7)

"
Hg@®) » —E—me 3 v 3.3

leae

most commonly used "robustnass neighborhoods” . 2012 .
have been shown to be cspacity classes (for the vhere 1 = ® %r)/2x, K= avi(leeT)/ (Ny(l-va)
!
1" - - —.—é—:——-— - M S TR e ——— “_’:T: . - e e - - -
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and b = [vlu-rlz‘/w + (14r2)]. Ve can then sub-
scitutes (3.3), u\? iato (2.2) to obtain

>

e (d-:f.dg‘:). Futthor this proccdun aay be

used to obtain ‘D(d. " ao) for any signal
spectrua us, in puti:ullt. it may be uud :o

obtain cD(dns ,d.-“,ﬂo) - nsi [ (dls,h\‘;ﬂo).

C™ (wc stands for worst
cuo) is given by (l-¢ )ns + us vhere 'S (A) =
2~v° 128 0 € A, since |1 - H(0)|? -;zﬁl-u@)l ,

It is easy to see that

So we have errvor expressicus for Hg at the
nominal pair and in its worst case. If thers is
a significant dl.uornu‘ between these errors

(1..-. it o (dls d\, uo) is much larger than
e (d-s d.\‘)) for reasonsble values of ¢ (say

¢ = .1l) then a clear need for robust t*l:ormg
exists. The (minimax) robust filter H, designed
in Sectiom 2, will sacisfy this nead {

> v ) »
cn(dng.dgj) is relatively close to cb(d-:.dn:).
Later in this section we will show thac this {s
often tha case. First we must find the leasc-
favorable signal spoc:m-, . so that we osy

use (3.1) to calculats o dg‘).
Bacause of the powaer comstraint (i.e.,
m(U) = 7 m £ o) we may use tha results of

Section III of {2] (particularly Lemma 1) and
of [14] to say that

M

2 2 dm

L iy (o) (ioc) if -zi@)>2ﬂc

dn @) 1~2rcosd +r

-8 " - (3.4)
l'rvz (l=¢)e it 35@)5211:

where ¢ is s positive constant which can always
had
be determined so thst " 4-;'@) - 2<nvz.

aow substitute (3.4) méo (3.1) to calculates
cD(d-;‘,d,:), the worst case ervor for the robust
filcer Hpe

We may

For comparison purposes :ho :h:u omr
muutou dhcuuod nbM (o (d-s dg‘).

(a-s N uo) and ‘D(“s 4;‘)) were normslised
ncu-mxmzﬂuvz«nﬂumzw
of the iaput signal-to-noise ratic (SMR) for
each value of the uncertainty paramster ¢ and
the bandwidth paremster r. (Recsll that ¢
completely determines che signal bendwidth via
(3.2).) These three normslized error quancities
wera eveslusted for s variety of values of the
pacamaters ¢ and t aad for a large ramge of in-

- SMR (which for convenience was comnverted to
as).

Careful exsminstion of FIG. L (here the 3d8
power bandwidth is ,001, ¢ = ,l and c = ,121)
shows that for SNR's between 20dB and 40 dBthe
worst case performance of the nominal filter

- 4
(cD(dns .d-x.l-lo)) is an order of magaitude or
more greatar than the worst case performance of
»
the robust filter (cb(dlg,d\‘:)). On the other

hand at 20dB this worst case performance of the
robust filter is less than half an order of mag-
nitude greater than that of the nominal fiicer

ac the nominal pair (.;(a:.d.;'). the "opcimel”

performance for the original (nourobust) probles)
Further this difference decreases rapidly, so
that from 40dB on there is essentiaily no dif-
ference betwesn ths worst performancs of ths
robust filter and the performance of che anominal
filcer vhen the signal spectrum is as originally
sssumed; L{.e., above 40dB we loss nothing by
using the robust filter and can at the sams tims
gsin & considerable improvemsnt in worst case
performance.

While tha situation pictured in FIG. |l is
typical of most cases we encountered, FIG. 2
(here the bandwidth (s .105, ¢ = .1 and ¢ = ,252)
i{s representative of some other cases. The
differences among the thres error quantities are
saall throughout the pictured range (and in fact
they are smaller slsevhere). Here there i{s little
need for robust filtering and of course the ro-
bust f£ilter accomplishes littls. It should be
noted, however, that while the differences are
saall, we see chat for input SNR close to 0dB
the worst case of the robust filter is as bad as
that of the'nominal filter. However, we have
found throughout our investigation that the only
situations {(n vhich the robust filcter Ls likely
to be disadvantageous are situations (such as in

" FIG. 2) when all the errors of both filters are

too largs to be practical.
4. COMCLUS IONS

In this paper ve have shown thac (ainimax)
robust caussal smoothers, filters, and prediccors
can be sought by aaximizing the functional

»

. (tl. ) if the spectral classes # snd M are
8: satisfy a topological condition which
all commonly used models of uncertainty are
wmown to satisfy. Further, for cthe case of a
congtaninated vide-esnse Markov signal in wvhits
aoise ve have dedonstrated, for a wide variety
of input SMR's, that the trade-off of passible
lessened nomingl case performance ia retura for
the improved worst-case perforssnce of the robust
filter {s & very good cne. Moreover, this
particular case is s very ressonable model for
asny applicatiocas.

Whils the numscical results of Section 3
validate the analytical vesuits of Section 2 for
robust filtering, these analytical results are
muach brosder. Thus, it would be (nteresting to
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tonsider a numarical treatment of both the ro-
bust smoothing and preciction oroblems, analyti-
cal soiutions to which nay be obtained via the
nethods of Section 2.
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