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- In many surface water bodies, weter temperature closely follows ambient air
temperature. This means that varmer water in winter absorbe heat from below,
The extent aand pattern of winter hest gain {9 constrained by the fact that
the water temperature does not fall delow the freesing point. On the besis of
a fow sinmple assumptions, governing equations are solved here pertaining to
heat flow in bottom sediments. The results are preseated in gemeral nondi-
ssusionalized curves. These allow estimation of water/sediment heat flux —
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for any particular case, given truncation of the water temperature curve at the
freezing point. The user must supply pertinent yearly air temperature mesn
and amplitude of variation, together with the thermal diffusivity for the bottom
msaterial. The governing equations are solved using a higher order finite
element method which solves directly for temperature gradients and heace for
heat flux. Thus the method provides particularly sccurate flux values at high
efficiency. The results illustrate in detail how winter water heat gain is less
in cases where mean air temperstures are lower.
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PREFACE

This report was prepared by Dr. Kevin O'Neill of the Geotechnical
Research Branch, Experimental Engineering Division, and Dr. George Ashton
of the Snow and Ice Branch, Research Division, U.S. Army Cold Regions Re-
search and Engineering Laboratory. The study was supported by the Office,
Chtc! of Engingers, Directorate of Civil Works, under Work Unit 31594,
iy Ice Cover and Effects on Thermal Ener
!nd.g;_Qg.gg;g;;ggg, This work unit is part of the Environmental and Water
Quality Opetstionsl Studies program managed by Jerome L. Mahloch of the
U.S. Army Engineer Waterways Experiment Station.

The report was technically reviewed by Dr. Dennis Ford of WES.

The contents of this report are not to be used for advertising or pro-
motional purposes. Citation of brand names does not constitute an official

endorsement or approval of the use of such commercial products.
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INTRODUCTION

One of the components of the total energy budget of a water body
is the energy stored in and released from the bottom materials (usually
sediments). The heat flux is seasonal, with heat conducted into the bottom
during summer when the water is warm and released to the cold water during
winter. This paper explores the magnitude of this heat flux, particularly
in winter, when the water temperature is truncated at 0°C from the approxi-
mately sinusoidal variation that would otherwise persist.

NATURE OF THE PROBLEM

A reasonable representation of the annual temperature of a water
body is a sinusoidal variation more or less following the average air tem-
peratures., However, when the air temperature falls below 0°C the water
temperature cannot follow it, because of the state condition; heat loss
from water at 0°C to the subfreezing atmosphere manifests itself in ice
formation while the liquid water remains at 0°C. In lakes with a complete
ice cover, the cover also seals the water body from energy exchange with
the atmosphere., Changes in the water temperature are dominated by heat
flux from the bottom materials, which gradually raises the water tempera-
ture through the winter, While bottom heat fluxes in summer are generally
not important components of the energy budget of water bodies, they are
important during the winter.

A completely rigorous treatment of the bottom heat flux contribution
requires specification of the water temperature at the sediment/water
interface to include the gradual warming due to the heat flux. Neverthe-
less, a good approximation is to assume a constant bottom surface tempera-
ture of 0°C during subfreezing weather (Fig. 1). We also note that the
constant 0°C water temperature during the winter is an excellent approxima-
tion for rivers and, while the associated heat flux causes only a small
temperature rise (on the order of 0.01°C), the heat flux itself may have a
significant effect on frazil ice in the flow., Finally, we note that the
strictly sinusoidal surface temperature variation on a semi-infinite medium
is a classic problem in conductive heat transfer and has been solved
analyticallyl.

T Figure l. Generalized river bottom
y temperature variation with time.
’ A QU Wp—— =1 Between time t; and t; the ambient
PEQ/I air temperature follows the dashed
o NI line, while the water temperature does
E‘* i not drop below 0°C,
'I "

lcarslaw, H.S. and J.C. Jaeger (1973) Conduction of Heat in Solids. Second
Edition, London: Oxford University Press, p. 64~-70,
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ANALYSIS

The specified surface temperature variation is shown in Figure
l. Ty 1s the sediment surface temperature at any time t, T, is the
mean and T, the amplitude of the strictly sinusoidal (atr) surface
tenperature, T is the mean of the truncated sinusoidal variation and is the
temperature which will be approached at very great depths in the bottom
after imposition of the truncated surface temperature over many years.
These quantities ideally would be obtained from several years of water
temperature measurements. As a practical matter, however, a reasonable
approximation is to fit a sinusoidal variation to average monthly air
temperatures obtained from nearby meteorological stations, since the water
temperature variations of most shallow water bodies closely follow air
temperature variations,

The governing heat conduction equation is

2
T
x

where T(x,t) is the temperature in the bottom at distance x below the
sediment/water interface and K = k/pc where k is the thermal conductivity
of the bottom materfal, p is the density, and c¢ i{s the heat capacity. (The 1
Celsius temperature scale is assumed below. In principle, any other scale
would result in identical expressions, as long as the freezing temperature
of water is taken as zero degrees.)

The boundary conditions are

T(0,t) = Tm + 'ra sin 24ft, t not between t, and t, (2) t*
T(0,t) = 0 tp Lt <ty (3 ‘i
T(w,t) = T 4) ‘
T(x,0) = T. (5) |

In eq 2, f is the frequency, which we take to be 1 year'l.

It is convenient to non-dimensionalize the equation by introducing

T-T
T“soatx-O,lSegS-r (6)
a

where r = T,/T,. Also, using

t=ft, ¢=x//KT €))

the equations assume the form
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and the boundary condition in eq 2 and 3 is scaled in the same manner.

Since we are primarily interested in the temperature gradient at the
sediment/water interface, we seek to determine 39/3f there as a function of
r and time. At this point the advantages of nondimensionalization are
apparent: all possible results may be displayed in a single set of curves
in 36/23f versus 1. Once 236/3f is determined, the temperature gradieat at
the sediment/water interface i1s determined by the transformation

T
aT _ 30 _ 3t 30 _ _a 239
r T, o T, 2% 9 _/Wf % ° (10)

The problem was analyzed using a finite element formulation described
in more detail in the next section. The resulting output for the case of
r = 1 (no truncation) was compared to the analytical solution and matched
to three significant figures. When r # 1, the program was run for about
five periods to remove transients. About 20-36 time steps per period
(1 year) were used with a 10-element mesh (11 mesh points), which resulted
in a very low cost per run. This efficiency was due to 1) a high order of
interpolation between mesh points and 2) the particular implicit
formulation in time.

THE FINITE ELEMENT ANALYSIS

In this section, a brief outline of the basics of the Galerkin
finite element method is given., It is by no means sufficient for
answering all questions concerning the method and *he reader is referred to
the voluminous literature for further information2.

In the finite element method, mathematical functions are expressed
as sums of finite series, utilizing a preselected set of so—called
basis functions. Thus, if F is the function in question, it is
expressed as

N
F=J F

4 P Uj (11)

2g,g.: Zienkiewicz, 0.C. (1977) The Finite Element Method. Third Edition.
New York: McGraw-Hill.,




where the F; are coefficients, N is a finite integer, and the functions
U4(x) are basis functions. In heat flow problems, the coefficients are
ugually time-dependent, varying according to the particulars of the
problem, whereas the basis functions are written in space in a temporally
invariant manner:

N
F -leFj(t) “j(") . (12) i

The basis functions may be of many kinds, but in any case, are con-
ceptually the first N members of a set which, in its entirety, could theo-
retically express the function F exactly. The use of such a series and the
subsequent manipulations of it are reminiscent of the use of Fourier series
in solving many problems. A major difference is that the sinusoidal func-
tions in a Fourier series are in general nonzero throughout the entire
domain. In contrast, basis functions for finite elements are typically
locally defined, each being nonzero only within the space elements adjacent
to some particular mesh point (“"node”) with which the basis function 1is
assoclated (Fig. 2). An arbitrary function may be approximated using the
functions depicted in Figure 2 by selecting appropriate coefficients, in
this case the approximated function's values at the node points (Fig. 3).

The basis functions need not be linear, nor must the coefficients cor-
respond to the function's valuegs only, but may correspond, for example, to !
its derivatives.

Consider now a differential equation to be solved, written in
the abstract as

Liy] = 0 (13)

]
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Figure 2. Typical linear finite Figure 3. A function F, shown as the i
element basis functions, on a uniform solid line, may be approximated in the &
grid. Usg, for example, rises to a manner of eq 12. Using the basis 1
magnitude of 1 at node point xs, functions in Figure 2 with the function
declines to O at x, and x;, and is values of F at the nodes as the
uniformly O everywhere except between coefficients, one obtains the
x; and xg. The domain between any approximation shown as the dashed
two node points constitutes one finite line.
element,




vhere L is some differential operator. For example, if L corresponds to

[ L]

L=d--2 (14) |
§ i
then eq 13 denotes !
ay _ 3>
-5%--—321-0. (15)
(13

The solution to the equation is some function y, for which the rela-
tion expressed in eq 13 holds exactly. If, instead of y, one substitutes
' into eq 13 an approximation of it, denoted Yy, then the equality will not be
exactly satisifed, and

L{¥] = R(x) . (16)

R is called the "residual,” and inasmuch as y does not satisfy eq 13
exactly, R will not be uniformly zero.

It is the undertaking of a class of numerical methods called
“weighted residual methods” to find approximations y which come desirably
close to satisfying the governing equation. Specifically, it is required :
that . -

g v, R dx = g v, L[¥] dx =0 Q7)

i A where wy(x) 1s one of a selected set of weighting functions, and S is

the domain considered. For example, if w; is uniformly equal to onme,

) then eq 17 requires only that the net or sum of the residual over the

’ entire domain be zero (an unreliable criterion). The functions wy may be
any of a considerable variety of possibilities, each giving rise to a {
different specific method of attack, such as the collocation method, the
subdomain method, and the least squares method.

' In the Galerkin finite element method, the set of weighting functions
i is chosen to be the basis functions themselves. Both experience and

b theoretical analysis justify the expectation that the use of the Uj as
weighting functions can produce accurate approximations to the desired y.

} Thus, one approximates y as
| N ’~
y=1 ¥,(e) U (x) (18) 3
J=1
? where the Yj are initially known, and in accordance with eq 17 one then
writes
U, L U] dx =0 19 1
é g LY (19)
5
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N
}_1 {é U, LU, Jax} ¥, = O, (20)

One such equation results for each Uj in the set of N, In matrix
notation, eq 20 is equivalent to ’

[Al{y} = o. (21)

. When the boundary conditions are incorporated, eq 21 constitutes a set of N
linear algebraic equations in the N coefficients sought, which can be i
solved by any appropriate standard method. ’

All results reported below were obtained using a particular set
of basis functions known as Hermite basis functions., These functions
have the property of generating a particularly accurate, higher order
(cubic) interpolation of functions between the node points. The; are
also selected so that half the unknown coefficients correspond to
function values at the nodes; the other coefficients correspond to the
function's gradient values. Thus gradients of the unknown function at

* the node points are obtained directly in the course of solving the

F - problem, without further manipulation or numerical differentiation.
This system is especially desirable for the problem treated here,

since flux values based on solution gradients are the result ultimately
sought. :

RESULTS AND INTERPRETATION

In Figure 4 are presented curves of 36/3f at x = 0, for r = 1,0 (no
truncation), 0.9, 0.8, 0.6, 0.4 and 0.0 (mean air temperature = 0°C). It
is clear from Figure 4 that the truncation of the surface temperature has a
significant effect on the temperature gradient, particularly during the
winter. i

Practical use of these results to calculate the bottom heat flux
contribution requires knowledge of the surface temperature mesn and
amplitude, and the bottom thermal diffusivity K. For shallow water bodies
it is reasonable to use mean monthly air temperature to determine the
former. The thermal diffusivity depends upon the thermal properties of the
- bottom materials. However, the bottom materials of most water bodies are
sed‘ments saturated with water. Measurements of the thermal conductivity,
from which the diffusivity may be calculated, show that bottom materials
may be considered to have the same diffusivity as still water3,
Accordingly, in the examples which follow, the diffusivity K will be taken 3
as 1.31 x 1077 n?s~!, which is the value for water at 0°C. '

——.

As an example, we will use the mean air temperatures for Hanover, New
Hampshire (Fig. 5). The mean annual temperature (T,) is 6.3°C and the

Py

McGaw, R. (1974) Thermal conductivity of organic sediments from two
Wisconsin lakes. U.S. Army Cold Regions Research and Engineering
Laboratory Special Report 129,




r=0444

Time (months)

Figure 4. Nondimensional river bottom
temperature gradient, evaluated at the
sediment/water interface, as a function
of time and r. The nondimensional
river bottom temperature 64 is also
shown. In the example in the text, r =
0.444, and the @4 curve is truncated

at the level shown.

amplitude (T,) 1s 14.2°C, from which r = 6.3/14.2 = 0,444,

Mesn
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Figure 5. An example using the curves
in Figure 4 for Hanover, N.H,

Variation of monthly mean temperatures
is shown at the top, based on data from
nearby weather stations. The
corresponding river bottom heat flux
response is shown below.

Initial time

for the sinusoid that fits the air temperature variation is approximately

mid-April.

Corresponding heat flux response over the months may then be

read off Figure 4, with values between the curves for r = 0.4 and r = 0.6.
The transformation to 3T/3x from 3e/3f is

T
T s 20,

l‘oz.c -ig

x

=7 1

7.2

ATE 3¢ . 86400 . 365 g)l/2 3

(1.31x10 'm‘s

-7.028
7.0 aE'
7




The actual heat flux is then found from k 3T/3x where k 1s the conduc-
tivity of the bottom material (taken as the value for water at 0°C; k =
0.55 W m'1°C'1). Figure 5 shows heat flux values based on this value

of k and on values from Figure 4. Examination of Figure 5 shows that the
heat gain to the water reaches a maximum in November (about the time of
initial ice cover formation) and then decreases, rapidly at first, over the
winter.

This analysis 1s most applicable to rivers and to reservoirs where
sufficient through-flow exists during winter to ensure that the bottom
water is at 0°C throughout the winter. In natural lakes with little
through-flow, the initial temperature at the onset of ice is often somewhat
above 0°C (but seldom above 4°C). In this case a good first approximation
is to use the same procedure but with an r value determined using the
initial temperature, rather than 0°C, However, since the initial tempera-
ture at onset of ice is determined by the particular sequence of meteoro-
logical events after the 4°C isothermal state has been achieved, and these
events vary from year to year, it is diff{cult to predict the f{nitial temp-
erature,

As was discussed earlier, a complete solution to the problem would
include the effect of elevation of the bottom water temperatures as a
result of the heat flux from the bottom. The effect of this warming would
be to cause the falling limb of the “"winter heat gain” curve (Fig. 5) to
fall further, but would have little effect on the higher values of heat
flux near the beginning of the winter.







