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\ PREFACE
Y
Modern control theory has for a long time been largely the domain of mathematicians

and control theoreticians. Engineering applications were rare and partial, for a part due to
the inaccessability of the theory to the practical engineer, but mainly because of the lack of
computing power available to process the estimation and control algorithms resulting from
the theory. In the course of the sixties and especially in the seventies the digital computer
made enormous advances resulting in a reduction in size, power and cost by several magnitudes.

Moreover, successful attempts were made to develop efficient algorithms which could be
implemented in moderate-size onboard computers,

PO ettt nant-

As a result of these developments, realisation of the potential benefits of modern control
has come within grasp and several applications in the aerospace field can be witnessed to-day.

The present Agardograph is an attempt to present a picture of the advances in modern
control as applied to aerospace system design. The Agardograph is divided into three parts.
Part one deals with some basic concepts of control theory, part two contains a number of
chapters on practical design techniques developed from the theory, and finally part three
describes a number of dcsign examples and practical applications in real systems.

The editor wishes to thank ali contributors to this Agardograph for their efforts and
patience when changes to the original manuscripts were required. The assistance and
encouragement of his colleagues and the executive staff of the AGARD Guidance and §
Control Panel are greatly appreciated. They were of great help in the lengthy process of
soliciting the contributions and compiling the publication.
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AN OVERVIEW OF OPTIMAL CONTROL IN AEROSPACE SYSTEMS

by
Arthur E.Bryson, Jr*
Stanford University
Department of Aeronautics and Astronautics
Stanford, California 94305, USA

1. INTRODUCTION

Optimal contro)l started nearly 300 years ago with Isaac Newton and John Bernoulllli
when they invented the calculus of vartations (COV). The calculus of variations was de- ‘
veloped further by Euler and Lagrance In the 18th century, by Hamilton, Jacobi, Weler~ /
strass, and Bolza in the 19th century, and by Bliss, Caratheodory, McShane, Belliman, ]
Pontryagfin, and others in this century. However, it was the digital computer in the 1950's :
that made the calculus of variations a practical tool for synthesis of optimal control 1

logic. Optimal control concepts and algorithms are now used not only in the field of auto- !
matic control but also in fields of structural optimization, econometrics, and operations J
research. i
2. AREAS OF APPLICATION IN AEROSPACE SYSTEMS i

For convenience, we divide the arzas of application of optimal control in aerospace
guidance and control into four categories:
- Performance,
- Navigation,
- Guidance, and
- Control.

2.1 Performance

Rerospace designers are always concerned with getting optimal performance from their
vehicles. Optimization of flight paths is a direct extension of Bernoilli's brachisto-
chrone (“shortest time") problem.

One of the earliest optimal flight path problems was stated by Hohman (Ref. 1) in the
1920's. He also gave the solution, namely that a minimum fuel transfer between two circular
orbits is obtained by applying thrust Impulses at the periapsis points of a tangent ellip-
tical orbit. Also, in the 1920's Goddard (Ref. 2) formulated the sounding rocket problem,
which was partly solved by Hamel (Ref. 3), and more completely by Tsien and Evans (Ref. 4).
They showed that minimum fuel for a given final altitude is obtained by using a thrust im-
pulse that brings the rocket up to a velocity where thrust approximately equals drag plus
weight, followed by a slowly changing thrust period, and then a coasting period. In the
late 1940's Hestenes (Ref. 5), at the Rand Corporation, discussed the application of the
COV to the problem of maximum airplane range. In 1957, Bellman introduced the concept of
""dynamic programming', a feedback view of the COV, that really started the modern develop-
ments in optimal control (Ref. 6). In the late 1950's, Okhotsimskil and Eneev (Ref. 7) and
Breakwell (Ref. 8) gave digital computer solutions to the problem of minimum fuel rocket
trajectories from the earth's surface to orbit injection. In 1960, Kelley iniroduced the
idea of a gradient algorithm for numerical solution of COV problems (Ref. 9). In,1962, dig-
ital computer solutions, using a gradient algorithm, were given for minimum time-to climb

flight paths for a supersonic airplane with terminal constralnts on velocity and flight 1
path angte (Ref. 10). Also, in 1962, the first book on applications of optimal control to
aerospace problems appeared, edited by Leitmann (Ref. t1). It was followed in 1963 by

Lawden's book (Ref. 12) on optimal space trajectories,

In the years since then, the design of algorithms has become a challenging field of
intellectua) endeavor (Ref. 13). As a result, dptimization algorithms have been greatly
Improved so that synthesis of optimal flight path{ for spacecraft, boosters, and aircraft
is nearly routine in government and in industry. One of the interesting recent contribu-
tions is by Erzberger (Ref. 14) who demonstrates an algorithm for on-board determination ;
of the flight path of an airplane to minimize '"direct operating cost¥, a linear combination ’

M of fuel and time of fliaht. This algorithm will be used in the flight control computer of
the Boeing 767 (See also Part 111, Chapter 1 of this Agardograph).
-
4 2.2 Navigation ‘
- Optimal navigation merges concepts from the calculus of varfations with those from
! statistics and random processes.

Navigation is the science of estimating the position of a vehicle from observations
4 of celestial objects, objects In the vicinity, and from observations of velocity and ac-
celeration. A navigation "fix" I|s made when the number of observations is equal to the
number of unknowns; e.g., two star sightings from a ship determine its latitude and lon-
gitude, |f more observations are made, the position Is 'over-determined" and some form of
data-weighting must be used to arrive at a best estimate of position. Gauss introduced the
idea of "least-square fits'" in the 19th century and showed how observations could be used
recursively to update the six elements in the ephemeris of a planet or the moon (Ref. 15).
The concepts of random processes were developed in this century by Einstein, Markov, Kol-
mogorov, Wiener, Kalman, and many others (Ref. 16),

Wiener, in particular, extended the idea of minimizing @ finite sum of squared errors
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with static constraints to the minimization of an integral of squared errors with dynamic
constraints, using the concept of continuous white noise (Ref. 17). This minimization is
a calculus of variations problem, and in 1961 Kalman and Bucy (Ref. 18) gave an elegant
recursive solution to it (the Kalman-Bucy Filter, or KBF) for the case where the dynamic
constraints ‘can be written as a set of first order coupled ordinary differential equations.
This filter concept, combined with cheap rellable digital computers, has had an enormous
impact on aerospace navigation, guidance, and control. For navigation it permits the com-
bination of all kinds of continuous and/or discrete observations to give a continuous best
estimate of position and veloclty.

The basic inertial navigation scheme uses an ad hoc concept developed by Schuler that
is quite similar to the more general concept used in the KBF. Measured specific force com-
ponents are combined with calculated components of gravitational force and kinematics to
estimate velocity and position. When an inertial measurement unit (IMU) is aligned or %2;
dated using other observations of velocity and/or position, this is done rationally an
conveniently using a KBF (see e.g. Ref. 19).

One problem in the use of KBF's in aerospace systems has been '"divergence' which ap-
pears to be caused primarily by unmodeled process noise so that the filter gains become
;oo smal;. Some methods of preventing divergence are discussed later in this paper and in

Ref. 20).

2.3 Guidance

Guidance may be regarded as a feedback version of performance. As such it combines
navigation (to estimate present position and velocity) with a feedback law for actuating
thrusters or aerodynamic control surfaces that accelerate the vehicle in a manner to take
it to the desired destination.

Booster guidance to orbit injection Is a prime example. Ground radar measurements,
supplemented perhaps by an onboard IMU, give position and velocity. A ground computer con-
tinuously calculates the present desired pitch angle of the booster to take it efficiently
from there to orbit injection. This angle is transmitted to the booster and the onboard
control system continuously changes the pitch angle to the desired value. The guidance law
used in the ground computer may be developed using optimal control concepts. A neighboring
optimum guidance law can be developed in conjunction with the determination of the nominal
optimal path, using concepts of the second variation (Ref. 21) or differential dynamic pro-
gramming (Refs. 22, 23).

Missile guidance to intercept moving targets may be developed using linear-quadratic-
gaussian (LQG) techniques, a central part of optimal control theory. For short ranges, it
merges with att!tude control.

Minimax strateglies for missiles and fighters may someday be developed using 'differen-
tial game'" theory, which, at present, are limited due to computer capacity and the com-
plexity of these 3-D problems (Ref. 24).

2.4 Control

Control differs from guidance only in having shorter time scales. Control tradition-
ally has meant attitude control whereas guidance was concerned with translation of the
center of mass along a flight path. Thus '"guidance' is implemented by 'control'. Optimal
control has all the elements of optimal guidance plus elements of feedback regulator (or
servomechanism) theory. In the 19th century, Routh gave the first precise statements on
necessary conditions for stability of dynamic systems, but most of feedback regulator tech-
nology was developed in this century by Bryant, Sperry, Nyquist, Black, Bode, Wlener, Kal-
man, and many others.

One of the major triumphs of optimal control is linear-quadratic-gaussian (LQG) syn-
thesis of feedback logic (Refs. 25, 26). A linear-gaussian stochastic model of the system is
developed first, then an integral-quadratic performance index is selected. Using methods of i
the calculus of varlations a set of optimal regulator gains and a set of optimal filter (KBF)
gains are determined. By feeding back estimated state, an optimal! compensator is formed (see
e.g. Ref. 27). This techrique really comes in to its own for controlling multi-input, multi-
output systems. |t has been used for attitude and translational control of spacecraft, sat-
ellites, aircraft, helicopters, boosters, missiles, remotely-piloted-vehicles, hydrofoils
ships, submarines, etc. There are, however, some things to beware of in using LQG synthesis.
We have already mentioned one of the main difficulties, filter divergence, but another is
sensitivity to system parameters. If one or more significant parameters in the linear-gsauss-
Tan stochastic model of the system are uncertain or vary slowly with time it is important to
Investigate the sensitivity of closed-loop system stability to these parameters (Ref. 28).
Methods have been developed for designing feedback control logic that Is minimally sensitive
to specified parameters. This is discussed below and in reference 29.

Lastly, as space and aircraft structures get larger, elastic deformation and fuel slosh
frequencies get lower and creep into the controller bandwidth. Care must be taken not to
destabilize these modes with the feedback law (see e.g. Ref. 30). In some instances active
demping of these modes may be desirable as in flutter suppression (Ref. 31).

3. DESIGN OF OPTIMAL TIME INVARIANT ESTIMATORS

The optimal estimator for a linear plant excited by gaussian white noise, using mea-
surements containing additive gaussian white noise, Is the Kalman-Bucy filter (KBF) of
reference 18. It is inherently a time-varying flliter, even for & time-invarient plant with
time-invariant noise densities (a stationary stochastic system). However, for a stationary
system that is observable with the given messurements, the KBF becomes time-invariant in a
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short time after initialization. Suprisingly, this steady-state KBF is usually not the
best time-invariant estimator for the system. In fact, some of the estimate errors may

grow with time, a phenomenon called divergence.
Divergence may be understood for a time-invarlant linear system if we think about it

in modal co-ordinates. The time-varying filter gain for any stable observable mode tha. is
undisturbed by process noise will asymtotically tend to zero since the estimate-error vari-
ance tends to zero. Thus, the steady-state KBF will estimate this mode ‘open-loop". |f this
mode is neutrally stable (real part of the eigenvalue equal to zero), the initia) estimate~
error in the mode will not attenuate {f we use only the steady-state KBF. Even if we use

the exact time-varying gain, this galn will asymptotically tend to zero and modeling errors
(which are inevitable) will soon produce an error in the estimate of this modal co-ordinate.
This behaviour is masked In non-modal co-ordinates since (usuvally) none of the filter gains
tends to zero.

One straightforward way to prevent divergence is to ensure that all neutrally-stable and
marginally-stable modes are disturbed by the process noise model! even if this requires the
addition of unrealistic noise terms such as noise in kinematic equations. Another way is to
de-stablize the undisturbed neutrally-stable modes since the gain on an undisturbed, un-
stable mode does not tend to zero for a KBF. Perhaps the most rational way (but also the
most complicated way) is to use a nonlinear programming algorithm to select constant filter
gains that minimize the weighted trace of the error-covariance matrix subject to estimate-
error eigenvalue constraints (see Ref. 20).

An example (treated in Ref. 20) is a constant-~gain filter to estimate the lateral mo-
tions of an aircraft using measurements of heading angle (from a magnetic compass) and roll
rate (from a roll rate gyro) and only one process nolse source, lateral wind gusts. All
modes are observable but the heading mode (eigenvalue equal to zero) is completely undis-
turbed by lateral wind gusts, and the spiral mode {often marginally stable or only slightly
unstable) is only slightly disturbed by lateral gusts. The steady-state KBF does not esti-
mate the heading modal co-ordinate at all and the time-constant of the estimate-error decay
for the spiral modal co-ordinate may be several minutes. Small changes in the KBF gains will
fix this difficulty so that the time~constants for estimate-error decay of these two modes
will be only a few tens of seconds while producing only modest Increase in the error vari-
ances. :

4. DESIGN OF OPTIMAL TIME-INVARJANT COMPENSATORS

The optimal compensator (in the sense of minimizing the expected value of a quadratic
performance Index) for a linear plant excited by gaussian white noise, using measurements
containing gaussian white noise is comprised of
a) the KBF which estimates the state variables of the plant, and
b) feedback of linear combinations of these estimated states to the controls,

The optimal feedback gains are time-invariant for a time-invariant plant with long operating
times. This compensator Is inherently time-invarying even for a time-invariant plant with
time-invariant noise densities, since the KBF is inherently time-varying (see previous sec-
tion). However, if the plant and the noise densities are time-invariant, the KBF asymptoti-
cally becomes time-invariant so the compensator also becomes time-invariant. Surprisingly
this steady-state compensator is usually not the best time-invariant compensator for the
system, for the reasons given In the previous section (divergence of the KBF).

Even if the KBF is modified to avoid divergence, the resulting compensator may prove
to be unsatisfactory because of its sensitivity to small changes in the plant parameters.
Methods for designing optimal time-invariant compensators with sensitivity constraints are
discussed below.

5. DESIGN OF OPTIMAL TIME-INVARIANT COMPENSATORS FOR PLANTS WHOSE PARAMETERS VARY OVER A
SPECIFIED RANGE

A requirement for many control systems is that the closed-loop system remain stable
over a specified range of plant parameters. This requirement may arise from either of two
considerations:

a) Some plant parameters are uncertain but are known to be in 8 certain range.

b) The closed-loop system is being designed to operate with a fixed compensator over a
range of operating conditions and hence over a specified range of values of plant para-
meters.

Closed-1oop stability over the specified range of plant parameters may be regarded as
a constraint in the design of a fixed compensator. Other operformance criteria might in-
clude:

a) Attenuation of response to disturbances.

b) Rapid and accurate response to command inputs.

¢) Rapid and accurate tracking response.

An approach to the design of parameter-insensitive systems that also give good response
is discussed In reference 29. These compensator parameters are determined (for a chosen
order of dynamic compensator) to minimize a welighted sum of several quadratic performance
indices (QP1's) where one QPi is evaluated with nominal values of the plant parameters and
the other QPI's are evaluated at the limits of the specified parameter ranges. Nonlinear
programming techniques are used to find the optimal compensator parameters. Performance
degrades as the design range of plant psrameters increases. This Is shown symbolically in
figure 1.

Performance improves and parameter Insensitivity degrades as the compensator order is
increased for a given set of measured outputs. Thus estimated-state feedback, which cor-
responds to a8 compensator of order equal to the order of the plant, gives the best per-
formance but has the poorest parameter insensitivity characteristics.
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ABSTRACT

The optimal control problem for stochastic systems is described in details.
Several classes of policy are defined and compared. The corresponding solutions are
deduced from Bellman's principle and discussed in connection with the concept of "dual
effect"” of the control. After the derivation of the optimal closed-loop solution for
the linear quadratic gaussian problem, several algorithms are proposed for the nonlinear
problem and discussed in the perspective of their implementation in aerospace applica-
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LIST OF SYMBOLS

x(k) n-dimensional state vector at time k

u(k) p-dimensional control vector .yplied at time k

v(k) n-dimensional wnuise affecting the dynamic at time k

z(k) m-dimensional measurement vector available at time k

wik) m-dimensional noise affecting the observation at time k

x§ sequence of the state vectors from time O to time k
{x(3)] 0 ¢ j & k)

Ut sequence of the control vectors from time O to time k
{(u(i)] 0 £ 3§ s k}

Zt sequence of the measurement vectors from time O to time k

{z(j)] 0 £ 3 ¢ k)

£(k,x,u) function of (NxR"xRP) + R" describing the dynamics

hik,x) function of (NxR") + R" describing the observation process
Q(k) covariance matrix of the plant noise at time k

R(k) covariance matrix of the measurement noise at time k

c cost function

8(x) terminal cost function

L(k,x,u) cost function

Ik information state at time k

J(N-k) cost~to-go for the k remaining steps

%(k|k) estimate of the state vector at time k

P(k]k) error covariance matrix of the estimate at time k

p.d.f. probability density function

oL open loop

F feedback

qF qQ measurement feedback

oL closed-loop

OLO open-loop optimal

cLO closed-loop optimal

OLOF open~loop optimal feedback.

1. Introduction

In modeling any aerospace system tlhe engineer first defines variables characteri-
zing the problem (the state variables) and then try to connect these variables via causal
relationships deduced from physical laws . After a simulation based on this model he is
able to determine how well it can predict the evolution of the physical system. In most
cases this prediction is not exact. At this point the engineer can try to elaborate a
more sophisticated model in order to reach a better concordance. He may or may not suc-
ceed. If the does not that may be because the system is influenced by physical pertuba-
tions which are actually unpredictable, i.e. for which causal relationships do not exist.
On the other hand it is also possible that the concordance between the cbservation- of
the physical system and of the mathematical model is corrupted by random errors in the
instruments used to observe the system, or by imprecision introduced by the transmission
of this information (for example the quantization error introduced by the digital coding
of the measurements). These two kinds of random perturbation are referred to as "noises"
(noise on the dynamical model and noise on the observations) and it is possible to deter-
mine their statistics by repeated experimentation. Finally, due to the complexity of the
system, the engineer has maybe to consider only a reduced order model, neglecting deli-
berately high order modes, to make possible the treatment of the model on the available
computer (for example small size on-board computer). In this simplification the effects
of the neglected modes have to be considered as unpredictable noises. In order to take
into account these random noises or errors in the elaboration of the model use is
made of the "stochastic processes theory". The purpose of this chapter is to discuss
a particular aspect of this theory (e.g. the optimal control of stochastic systems) in
the perspective of aerospace applications. The mathematical background of this theory
has been developped and discussed in many publications (see, for example, [1] to [7]}).

Two main problems occur in the investigation of stochastic processes : the estima-
tion problem and the optimal control problem. The estimation problem is stated as follows.
Consider a physical system, possibly corrupted by random perturbations, and producing
outputs which are observable but also corrupted by noises. The purpose of the estimation
problem is to elaborate, on the basis of a mathematical model, a suitable policy in order
to generate the "best" estimation, in some statistical sense, of the state of the system
by processing the outputs. The problem structure is given in fig. 1. Kalman was the first
to propose an optimal recursive solution, for the linear gaussian problem, with the
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classical "Kalman filter" ([8], [9]). Many books and papers were published in this domain
(see, for example, [10]). The second problem, which is in fact the subject of this chap-
ter, concerns the optimal control of stochastic systems. Consider the same physical sys-
tem but assume it is possible to influence its evolution via some input variable. The
purpose of the problem is to elaborate a suitable policy in order to produce the input
variable minimizing some performance index. The problem structure is given in fig. 2.
This problem can be considered as a generalization of the optimal deterministic control
problem. Well-known contributions to the optimal stochastic control are the works of
Bellman ([11]), Feld'baum ([12]), Aoki ([13]), Meditch ([14]), Astrdm ([15]).

The problem of estimation and control of stochastic sytems is, of course, very
crucial in aerospace applications. Many examples can be found in the literature, e.g.
lateral control for automatic landing for DC8 ([16]), lateral and longitudinal control
systems for CCV-B52 ([17]). These methods have been widely used is spacecraft applica-
tions and will be developped in the future. For example the attitude control of the
future large space structures is based on these modern control methods ([18]).

The purpose of this paper is to present the theoretical background of the stochas- ’
tic optimal control theory, to show the general structure of the solution and to under-

line how difficult it is to implement it in the general case. As the theory will be
reviewed in the perspective of aerospace applications the mathematical developments ?
will be omitted, as well as the historical evolution of the theory. What is intended is

a good understanding of the problem in order to make possible the comparison and the

discussion of practical optimal and suboptimal solutions. As the aerospace systems are

generally described as lumped systems characterized by differential equations (or by 1
difference equations in the discrete time formulation), we restrict ourselves to the

consideration of lumped stochastic systems. On the other hand only the discrete-time

formulation will be considered, although a substantial literature have been published

concerning continuous-time systems. There are three main reasons to justify this restric-

tion. Firstly the discrete-time formulation avoids some mathematical difficulties rela-

ted to the stochastic differential calculus and permits therefore to explain more compre-
hensively the basis of the theory. The second reason is that measurements are often

taken at discrete times (radar, starscanner ...). The third reason is that, due to the

complexity of the problem, digital computers are necessary to generate the solution.

The discrete-time formulation is therefore particularly suitable for the practical imple-
mentation of the solution algorithms.

The paper is organized as follows. In section 2, the general formulation of the
problem is presented and some classes of control policies are discussed and compared,
according to the amount of information used in their elaboration. In section 3 the
optimal solutions corresponding to these classes are deduced from Bellman's principle.
The "certainty equivalence™ property and the "separation" property are discussed with ]
respect to the "dual effect" of the control. In section 4% the optimal solution for the
linear quadratic gaussian problem is presented in details while in section 5 some clas-
sical extensions to non linear problems are discussed in the perspective of their
implementation in aerospace systems.

2. Problem formulation

Consider an aerospace system characterized by some variables, referred to as
"state-variables" (for example, position, velocity, angles of attitude, angular velocity...),
with some control variables (for example thruster, control surfaces...), and with output
variables (radar outputs, accelerometer, gyrooutputs...). Assume furthermore that a mathe-
matical model has been elaborated for the evolution of these variables. Examples of mode-
lisation can be found in [19] (ch.5) (lateral and longitudinal autopilot, roll attitude
controller for a missile). This lastsimple example is now presented in details.

We want to design a feedback controller for a missile using hydraulic powered
ailerons that keeps the roll attitude ¢ , close to zero, while staying within the physi-
cal limits of aileron deflection § and aileron deflection rate . Considering a reduced
order model where the roll attitude motion is decoupled from the other attitude motions,
the mathematical model reduces to

§ = u
= -2 w+l g+ noise (2.1)
3 T
= w
where u is the command signal to aileron acuators
w is the roll angular velocity
t is the roll time-constant
and E is the aileron effectiveness

Defining the state vector x as

w(t) (2.2)
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eq. (1.1) can be rewritten as

x(t) =] 0 0 0 x(t) + 1 u(t) ¢+ noise (2.3)
EE 0
T T
o] 1 o] 0

Assuming, in addition, that the roll angle ¢ can be measured with some accuracy, the
output equation can be written as

z(t) = [0 0 1] x(t) + noise (2.4)
where z(t) is the output variable.

In the general case the system is described by a discrete-time dynamical equation
of the following form

x{k+1) = flk,x(k),u(k)] + v(k) (2.5)

In this expression
%x(k) is the state vector (of dimension n) at time k
u(k) is the control vector (of dimension p) applied at time k
v(k) is the additive noise at time k
f[+,v,+] is a Ffunction of (N x R® x RP) » R" .

We assume that the system is observed via the following measurement equation

2(k) = h[k,x(k)] + w(k) (2.8)

In this expression,
z(k) is the observation vector (of dimension m) at time k
w(k) is the additive measurement noise at time k
h{+,+] is a function of (N x R%) + R

In our roll attitude controller example, consider a discretization of the time
with a given sample period T. The discrete-time equations are now written as

x(k+1l) = Ax(k) + Bu(k) + G(v(k) (2.7)
where A = r 1 o] 0
E[1-¢"7/7) e Tt 0 (2.8)
E[T-t+1e 1/ 7] tf1-e"T/7) 1
N /
s ~~
B = T
ECT(1-¢"7/%) + (1-e7/"12 (2.9)
Er? - Tr(i-¢"TT) - c2(1-6"' ™)) i
\ - i
,
and G = |O
1 (2.10)
o]
.
The output equation is given by :
2(k) = Hx(k) + w(k) (2.11)

where 1
H = [0 o] 1]

It is assumed, in general, that the a priori probability density function (p.d.f.) of

the initial state x(0) is given (p(x(0)]) and that the two noise sequences, {v(k)} and

{w(k)}, are white, uncorrelated, uncorrelated with the initial state, gaussian, with 1
zero mean and covariance matrices equal respectively to Q(k) (semi-definite positive)

and R(k) (positive definite). These assumptions concerning the statistics of the noises

may seem rather restrictive but they are made in order to avoid difficulties in the

derivation of the equations and to keep an implementable form for the solution structure.

The structure of the system, as given in fig. 3, is a particular case of fig.2 relative to

(2.5) and (2.6). The model structure is assumed to be known and we are concerned only

by the design of the "controller black box" appearing below the dashed 1line.
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There is an infinite number of ways to generate the control variable. "he choice is never-
theless constrained by the objectives of the control action and by restrictions on the
control as well on the state variables. These control policies belong to the class of
admissible controls and it is reasonable to try to select, from this class, the control
which is the "best” one with respect to some prespecified performance measure. For deter-
ministic systems this performance index to be minimized is a given furnz*ion of the state
and the control variables. For stochastic systems such a function {s itself random "variable"
so it is not appropriate to consider its minimization. This performance index is there-
fore transformed into a deterministic quantity by taking its expected value, extended

to all possible initial vectors and all possible noise sequences, {v(k)) and {w(k)},
according to their given statistics. As conclusion, the optimal stochastic control pro-
blem consists in the elaboration of the best admissible control policy minimizing a
performance index defined as

E[(C(N)] , (2.12)
where
8 N N-1 N-1
C(N) 2 ClXg 5 Ug "1 = 8lx(N)] + £ Llk,x(k),u(k)] . (2.13)
k=0

In this relation,

8(+) is the terminal cost contribution and is a non negative convex function R® + R

L(*y*,°) is the cost contribution relative to the evolution of the state varfiables and
control variables

N is the number of stages of the process and is fixed a priori.

This C(N) is a function of the state and control variables sequences.

XN 8 (x(0), 000 Lx())
- (2.14)
o1 8 (u(o),eee LulN-1))

The controller block appearing in fig. 3 has now to be designed in order to elaborate
the policy minimizing the performance index defined in (2.13).

In the roll attitude controller example, we want to obtain, after a given time
interval (N sample periods) a roll angle, a roll angle velocity and an aileron deflec-
tion as close as possible to zero. It is the reason why we select a terminal cost function
penalizing the terminal offsets of these variables according to three weighting coeffi-
cients (51’32’33)

OLx(N)1= a 62(N) + a (M) + a e’ . (2.15)

On the other hand, as we have to stay within acceptable 1limits of roll angle, aileron
deflection and aileron deflection rate, it is suitable to construct a performance index
penalizing, during the evolution of the system, the offsets of ¢, § and u from zero.

2 2 2
Lix,x,u) = £ 800w (k) (2.16)

$o 85 “3
where ¢, 1is the maximum acceptable value of ¢
6§, 1is the maximum vailable value for §
U, 4is the maximum available value for u .

This simple example of construction of a performance index gives some insight in the
meaning and choice of the cost function.

2. Some__types_of control policies.

Suppose that, at time k, u(k) has to be selected. The only information concerning
the past evolution of the system, available at time k, consists in the sequence of control
variables actually applied up to time (k-~1) :

k-1 d

Uy {u(0,...,u(x-1)} ,

and of the sequence of observation vectors, up to time k :

zX 4 {2(0),...,2000) .

As the control has, of course, to be causal, i.e. non anticipative, the optimal control
must be an explicit function of these data

u(x) = yruX~1,2X; (2.17)

As this point, ¥ could be a random function of the past data. Feld'baum has investigated
this possibility ([{12]) and its conclusion was that this does not improve the results for
the cases he considered. We shall therefore restrict ourselves to deterministic control
policies, i.e. to policies where the control, at time k, is generated as a deterministic
function of the past data. The problem consists in the suitable choice of the form of
this function.




4

Different classes of deterministic control policies will be defined according to
the amount of information used {n their elaboration. ¥We now define notations characteri-
ting this information. We first characterize the "a priori" {nformation with

a) The knowledge about the dynamice, from time r up to time 1, i.e. the knowledge of the
functions f(k,.,.) for k varying froma r to 1.

n: ] (f(k,.,.)|rexgl} (2.18)

b) The know)ledge about the measurement program, from time r up to time 1, {.e. the
knowledge of the functions h(k,.) , for k varying from k to 1.

mi & (nex,.) frekel) (2.19)

c) The knowledge about the structure of the performance index, i.e.

C(N)
!
d) The knowledge about the statistios of the initial state and of *he noise sequences.
With the assumptions made in 2.1 concerning the noises this information reduces to
S, 4 {p(x(0))} concerning the initial state, (2.20)
S; 4 {Q(0),...,Q(k)} concerning {v(k)} , (2.21)
S: ] (R(0),...,R(k)} concerning {w(k)} . (2.22)

For convenience we define a new amount of information related to the a priori statistics :

k A N-1 _k
s = (so.sQ ,sR} .

We now characterize the "on-line" information, consisting, at time k, in the control
variables actually applied from time O, up to time (k-1) :

(2.23)

u 1 8 (u(r)|osrek-1} (2.24)
and in the outputs of the system, actually observed from O up to k :

2% & (2(c)|osrex) . (2.25)

According to the amount of information actually used four main types of control
policies have classically been defined. They are :

1) The Open-loop (OL) control policy.
In this class the controller is elaborated mainly from the "a priori" information.
Incomplete use is made of the on-line information and, particularly, no measurement
knowledge is exploited. The control has the following form :

g’l,C(u),ut‘ll (2.26)

WOlx) = u°L[D§'1.s°,s

2) The Feedback (F) control policy.
In this class use is made, in addition, of the measurement information up to the
present time, but no knowledge about th future observations is avajilable. At every
time the on-line information is fed back into the controller but no subsequent
feedback is anticipated. The controller has the following form :

oFe) = oFrol 1, s% comy, uk uk"t 2Ky, (2.27)

3) The q-measurement Feedback (qF) control policy.
In this class use is made, in addition, of the knowledge about the observations for
the q next stages, i.e. of the h functions and of the statistics of the measurement
noises for the q next stages, although the corresponding observations, of course,
are not yet available. The controller has the following form :
Wl (k) = wIFrpl™t, 554 cqwy,mk*e, 2k yk- 1y (2.28)

[- 3]

4) The closed-loop (CL) control policy.

This class is a generalization of the qF policy class. More precisely the information

concerning the next observations is available for the (N-k) next stages. The controller
has the following form :

CcL

wlek) = uCL[DN-l N k k-1

NolsNcon,ut 2k ok (2.29)

The algorithms proposed in the literature belong to one of these four principal
classes. As the amount of information used in the elaboration of the controller becomes
more important from the OL class to the CL class it can be expected that the "best" policy
belongs to the CL control class. The superiority of the CL class will be discussed in
section 3 in connection with the concept of "dual control"™. At this point it must be
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noted that the F class, the gqF class and the CL class differ only in the availabiliry
of the knowledge about future observations, while in the OL class no use at all is made
of the observations, past, present or future. We now show how it is possible to derive
theoretically the best controller for each of these four classes.

3. SOLUTION STRUCTURE.

For the derivation of the optimal controller structure for the four proposed clas-
ses use will be made of the well-known Bellman's principle of optimality ([11],[20]))
stating that the optimal policy has the following basic property. At any given time,
whatever the present state and the previous control actions are, the remaining control
variables must constitute an oprimal policy with respect to the present state. For
deterministic systems the state can be considered as known while in the stochastic case
this state is, in general, unperfectly known. What is available, at time k, concerning
the state is some statistical knowledge namely the conditional probability density func-
tion of the state, given some informatéen. This informas{on is called "information state”
by Striebel ([21]) and will be noted I-“(respectively IOL IF 19F 1CL ¢5p the four consi-
dered classes). These information states represent in fact "the amcunt of information
used in the elaboration of the controller and have been defined in relations (2.26j,
(2.27), (2.28) and (2.29). With this notation we can use an unified formulation for the
derivation of the solution structure for the four classes.

As, according to Bellman's principle, for each remaining period the policy has
to be optimai with respect to the actual information state, the optimal policy elabora-
tion begins, classically, with the optimal choice of the last control. Assume therefore
that, at time (N-1),with an information state I ., u(N-1) has to be chosen. This last
c-utrol is selected in order to minimize the exgeéted value of the cost, conditioned
in the information state IN-l' without regard to the past controls, i.e.

min :(C(xf,uﬁ 1
u(N-1)

At time (N-2), the control u(N-2) is then obtained in such a way that it minimizes the
expected value of the above expression conditioned on IN-2' i.e.
min  E{min  E{c(xY,0N" |1
u(N-2) u(N-1)
Proceeding similarly backward in time up to time 0O, we obtain the optimal policy and the

cgsresponding optimal value of the performance index, noted JO(N) (respectively JOLO(Ny,
JF0(N),J9FO(N) anda JCLO(N))

)1 (3.1)

N-l)

T S (3.2)

JO(N) = min E{... min E{min etexN ol N1

u(0) u(N-2) u(N-1)

With the assumptions made in 2.14 concerning the form of the performance index it is
possible to rewrite (3.3) under the following form of the usual stochastic dynamic
programming equation :

Mo, Yoo |1} . (3.3)

N-1 N-2

JO(N-k) = min E{L(k,x(k),u(k) + J°(N-k-1)|1k} . (3.4)
u(k)

where J°(N-k) is called the "cost-to-go" for the remaining (N-k) stages and is a function
of Ik' The terminal condition is given by

Jo(0) = Efelx(M)1[Iy}. (3.4)

This last formulation shows that, for a given class, the optimal solution is
completely characterized by the knowledge of the sequence of the J°(N-k)[I ], for k vary-
ing from N to O. Suppose that, at time k, J°(N-k-1)[I *1] is an available ¥unction of
Ix41- The optimal control at time k is then obtained gy the condition of minimization
(3.4), where the conditional expected value has to be extended to all the Ik+1’ according
to their statistics conditioned on the actual available information state I . These
J°(N-k) have to be generated recursively according to eq.(3.4)with terminal condition

3.5 . The foundamental difficulty of the stochastic optimal control problem consists
precisely in the practical construction of the sequence of the J%(N-k).

It will now be shown how to specialize this general formulation of the solution
structure for the four proposed classes.

For this class the information state IgL consists in

(Dg-l N-1

oL §
Iy *© Q

k

It follows that oL 0

L
I, I, UluGe-D) .

k-l}

35048 :C(N)9Uo

The expression (3.2) can therefore be rewritten as




min  Efmin  E{c(x¥,u¥"1)|10L

oL
PR
u(N-2)  u(N-1)

13t sun-2)11]t (3.8)

As the expression

min z{c(xﬁ,u§'1)|Igfz.u(u-z))
u(N-1)
is a function of I:Ez, its expectation, conditioned on I:fz, coIncides with it and
(3.8) can be written“as
min min  E(C(Xg,Ug D)[I0 ,uN-2)) . (3.9)

u(N-2) u(N-1)

The process can be reproduced. As conclusion, the optimal cost for the N stages problem,
sOLO(N) s given by
JOLoNy = min Efc(xb,oNH 1oL, vl (3.10)
where the minimization is taken with respect to the sequence Uﬂ-l. ﬂ
The optimal open-loop control sequence is obtained from this minimization subject to

eq(2.5). This problem is, in fact, a static problem because all the controls can be
obtained before the process starts.

The formulation (3.4) can also be used in order to derive the solution structure.
The terminal condition (3.5) can be rewritten as

39400y - E{S[x(N)lllgL) - JO[x(N)]pHx(N)lI:L]dx(N) . (3.11)

In this relation the conditional p.d.f. p[x(N)II:L] can be obtained using the Markov
property of the system

pLx(N)[19F] = Ip[x(N)Ix(N-l),Q(N-l)l..p[x(l)lx(O).Q(O).u(O)]p[x(O)]dx(N-l)...dx(o)]

(3.12)
The expression of JOLO(N-k) is then obtained recursively by (3.4) where
ECLLk,x(k),uCi) |10} = JL[k,x(k),u(kup[x(k)[I:L]dx(k) (3.13)
with p[x(k)llgL] obtained as in (3.12), i i
and E0a%%%w-x-1) 107 = JOLO(N-k—lXIgL,u(k)] . (3.1%)
as u(k) has to be obtained deterministicly from 1
It is easy to verify that this formulation {is equkvalent to (3.10).
b) Feedback policy :
For this class the information state Ji consists in ;
af ¢ {Dg’l,so,sg'l,s:.uﬁ'l.zt} (3.15)

k
In (3.3) the expression ﬂ%ﬂ_l)E(C(XE,Ug-l)]IF } is, in fact, a function of IF_ , z(N-1),

h(N-1 ,.,.), R(N-1) and u(N-2). As in the fegaéack policy no information is assumed to
be available about future measurement, it is impossible to evaluats at time (N-2),
given 15_2. the expected value of this expression conditioned on I, _,. This difficulty
arises because the problem is not well defined : no specific assu%ption has been
made regarding the subsequent feedback. A classical method to avoid the difficulty
consists in considering that no subsequent feedback will be available in the future
time., This assumption defines the open-loop optimal feedback (OLOF) policy. This corres-
ponds to replacing the quantity

min ElC(xg,us D [1g |} by 3%:-1)z{c(x§,u° )1
which is not a function of z(N-1) so it becomes possible to evaluate its expected value
conditioned on IF‘ . That means, in other words, that u(N-2) is chosen as the OL optimal
control, for the problem defined on the last two stages. This process can be reproduced
and the OLOF control is defined in general as follows.

N-1 oL }

N-1

Suppose that uOLOP(k) has to be chosen at time k with 1F available. Define first

the sequence of OL optimal controls to be apglied from time k up to time (N-1), based

on the available Ii. This sequence, noted (U L°)§'1 is a function of Ii.
OLO N-1 _ OLO ,N-1

(v ) = (U K

and is generated according to the following condition

oLO

oty & o) = kN1 (3.16)

s%M%1f) & min Etex§,ui DIy . (3.17)

U:'l
The OLOF policy consists in applying at time k the control UOLo(k|k). which is the first
control of this sequence. Processing then the next observation, 2(k+l), redifine 1

k+1*
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recompute the sequence (UOLO):;i,

of controls is defined by

choose uOLo(k+1|k+1) and so on. The resulting sequence

(UOLOF)g-l = {UOLO

(k|x)] k=0,...,N-1} (3.18)
This OLOF policy has been proposed by Dreyfus ([22]) and OLOF algorithms can be found in
the works of Spang ([23)), Aoki ([13]) and Farison ([241]). There are other feedback poli-
cies, namely the policies based on the certainty equivalence property or on the separa-
tion property. As these policies are frequently used in practical applications they will
be exposed and discussed in details later.

As the q-measurement feedback policy is an intermediate between the F policy and
the CL policy, the CL policy will be first discussed and it will be shown later how the
qF policy follows from it.

. . s CL : .
For this class the information state Ik consists in

cL §

N-1 N N k-1 k}
k

I (D5 18028 1uSpaMesUs T 2g (3.19)

In (3.3) the expression
min E{C(XE,UE)IISEl}

is a function of I, ., z{(N-1), h(N-1,.) ,R(N-1) and u(N-2). As in the CL policy know-
ledge about the fu@uge measurement is available,it is possﬁble to evaluate, at time (N-2),
the conditional expected value of this expression given IN-Z The formulation (3.2),

(3.3) can therefore be used and

CcLo N-1 CL CL

IOy = min EC...min  Efmin  ECCxg,ug DIzt oa(afloro 1Sty L (3.20)
u(o) u(N-2) u(N-1)
In order to obtain more comprehensible expressions the incomplete notation (Ut-lézt}
is generally used in the literature, instead of the complete information state ItL, as

defined in (3.19), with the implicit assumption that the conditional expected values
have to be evaluated in the CL frame.

The nested structure of the expectations and minimizations in (3.20) shows that
this solution structure anticipates subsequent feedback. Whenever a control is computed
in eq. (3.20) we have to evaluate expectations conditioned on the subsequent measurements.
At this is done at each step the resulting control depends on the future observation
program and the &ssociated statistics.

The formulation of eq. (3.4) and (3.5) can also be used.With the incomplete nota-
tion convention for the information state mentioned earlier it follows

JCLO(N-k) = min E{LLk,x(k),u(k)] + o°L0n-k-1)]2X, 0" 1) (3.21)
u(k)
with the terminal condition
g0y = erorx(n 12, 0¥ 1 = JO[X(N)]p[x(N)|Z§,U§-1]dX(N) . (3.22)
d) The g-meagurement Feedback policy.
For this class the information state consists in
- - -1 .k
R RN (3.2)

The qF control sequence is obtained, similarly to the OLOF, as the sequence of the first
controls for the partially CL -ontrol sequences for the problem defined on the time
interval [k,N], with the assumption that no measurement will be available after k+q.

At each step k it is necessary to define a new problem on the time interval (k,N), to
compute the partially CL sequence for this problem and then to select the first control
of this sequence. This is in fact a "finite-horizon closed-lcop" control since at each
step it takes into account the measurement program and the corresponding statistics for
the q subsequent steps.

As said before, since the CL policy uses more completely the available information,
it can be expected that the best control belongs to this class. We will now try to give
more insight into this property. The following qualitative discussion is based on the
introduction of the concepts of "dual effect" of the control, and of "probing" and "cau-
tion".

Feld'baum ([12]) was the first to point out that the control can have two effects
on a stochastic system : a direct effect on the evolution of the state variables but also
in addition, an indirect effect on the future state uncertainty, that means that the con-
trol can result in learning about the state of the system. This is referred to as "the

dual effect" of the control. The control is said to have no dual effect of order r (ri2)
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if the expected future uncertainty (i.e. the central moments of order 2 to r) is mnot
affected by the control with probability one. The system is then said to be "neutral”.
Conversely, if one of these r-th central moments is affected by the control sequence
with non zero probability the system presents the dual effect. It must be noted that
the presence or the absence of the dual effect is an intrinsic property of the dynamic
system and of the corresponding observation process.

On the other hand the controller can present two properties referred to as "pro-
bing and "caution".

If the structure of the system is such that the control presents the dual effect,
i.e. if the control has an influence on the future uncertainty on the state, this situa-
tion can be exploited in order to enhance the estimation and ultimately to improve the
overall performance. It is clear that only a CL control {(and partially a qF control) can
take benefit of this effect, because it anticipates the future feedback. If the system
is not neutral the CL control will "probe" to improve the estimation, and presents there-
fore the capability of "active learning", while a F control, eventhough it "learns"
about the system by processing the past measurements does not actively "help" the lear-
ning.

In a stochastic system, because of the presence of uncertainties on the initial
state, on the dynamics and on the measurements, the controller has to be "cautious" in
order to avoid to increase the effect of these uncertainties on the performance index.

An OL controller, for example, has to be quite cautious because it assumes no future feed-
back and does not therefore permit corrective action on the evolution of the uncertainty.
At the opposite a CL controller can be less cautious because it "knows"™ that observations
will be available in the future and that it will therefore be possible to control the
evolution of the uncertainty. The performance is therefore better for a CL control than
for an OL control. Dreyfus ([22]) gives an example of a neutral system for which the

CLO control produces a better performance than the OLOF control : the OLOF control
ignores that measurements will be available in the future so the predicted uncertainty

is greater for the OLOF control than for the CLO control with the consequence that the
OLOF control has to be too cautious.

We now introduce two particular control policies belonging to the feedback class.
As they are widely used they are investigated in details. On the other hand, the proper-
ties on which these policies are based are strongly related to the concept of dual
effect of the control.

The certainty equivalence (CE) is said to hold if the CLO control has the same
structure as the optimal control for the corresponding deterministic optimal control
problem defined by the same dynamical equation and same performance index but where
all the random variables have been replaced by their expected values. Suppose that the
optimal control for this deterministic problem (deterministic optimal-DO) has, at time
k, the form

WPOrK) = wlk,x(k)] . (3.24)

The CE property holds if Lo
u "YV(k) = wlk,®(k|k)D , (3.25)

where k k-1
#(k|k) = E[x(X)|Z5,Ug "0 . (3.26)
It will be seen in section 4 that this property holds for linear systems with quadratic

cost and gaussian additive noises.

The CE property is, in general, not valid but a control policy frequently used
is elaborated by assuming that the CE property holds. The resulting control, called
certainty equivalent control, is obtained as follows. Evaluate first the deterministic
optimal control for the corresponding deterministic problem without process noise and
with complete state knowledge and replace thanm x(k) by its estimate, i.e.

WCE(k) = vIx,&(k|X)1 . (3.27)

The problem is partitioned into two decoupled subproblems :

- optimal estimation of the state

- elaboration of the optimal control for the deterministic problem.

The controller structure is given in fig. 4. It must be noted that for non linear sys-
tems the solutions of these subproblems are not trivial and that only approximate solu-
tions are available in general. In most cases this control policy is not optimal because
the CE property does not hold in general. It must be noted, in addition, that this
policy belongs to the feedback class rather than to closed-loop class, because no use

is made of the future measurement program in the elaboration of the controller.

The separation property is a generalization of the CE property. A control is said
to present the separation property if it depends on the observations only through the
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estimation of the state, i(klk), i.e. if its structure is of the following form
CLO
u

(k) = ¢[k,®%(kx|k)] , (3.28)

where the ¢ function can be different of y defined in (3.25), as the function characte-
rizing the optimal control for the corresponding deterministic problem. As in the CE
property discussion a separation control policy can be defined even if the separation
property does not hold. Here also the problem can be partitoned in two subproblems :

- optimal estimation of the state
- elaboration of the controller using as input the estimation of the state.

It is clear that .the CE property is a particular case of the separation property.
An example of system where the separation property holds, but not the CE property is
given in [25].

When the CE property holds it is clear that nothing can be gained by anticipating
the subsequent observations. In this case the CLO policy reduces to be OLOF policy
because no use is made of future measurements. This is not true for the separation
property. The fact that the separation property holds does not necessarily imply that
CLO control belongs to the feedback class, because the ¢ function defined in (3.28) can
depend on the future evolution of the uncertainty.

It is not possible, at the moment, to investigate, in general, the relationship
between CE or separation property and the presence or absence of the dual effect in the
control. Only results corresponding to particular classes of problems are available.
Bar-Shalom and Tse ([26]) ' have shown, for example, the following result. Consider a
stochastic linear system with quadratic cost but non linear meusurement equation. For
this system the CE property holds if and only if the control ha. no dual effect, i.e.
if the system is neutral. The generalization of this result is also given by the same
authors ([27]) and concerns stochastic systems with linear dynamics non linear measu-
rement equation, quadratic cost but non gaussian noises. In this case the CE property
holds if and only if the control has no dual effect of second order, i.e. if the condi-
tional covariance matrix of the estimation error is undependent of the past control
sequence. These results constitute in fact extensions of the properties of the linear
quadratic gaussian problem which will now be investigated in details, as an illustra-
tion of the above theory.

4., OPTIMAL CONTROL OF LINEAR QUADRATIC SYSTEMC.

Consider, as a particular case of the general problem defined in section 2, a linear
system with quadratic cost, that means that in eq. {z.%) and (2.6) f(k,x,u) and h{k,x)
have respectively the form

f(kyx,u) = A(k)= + B(k)u , (4.1)
and
h(k,x) = H(k)x (4.2)
and that the performance index introduced in (2.13) has the following form
N-1
cony & 3 xTnsxan + 2 13 k"o, Gox0 + 3 uT00 1,00 w00) (4.3)
k=0 !
with $ and L,(k) symmetric semi-definite positive (nxn) matrices anc L_(k) symmetric

semi-definite positive (pxp) matrix. The properties of the noises are the same as in
section 2 while the a priori p.d.f. of the initial state is assumed to be Gaussian with
mean X(0) and covariance matrix P(0).

Two preliminary remarks can immediately be made.

a) Theestimation problem related to this system admits an exact solution by use of the
Kalman filter. It is well-known (see for example [7]) that the conditional p.d.f.
the state, given the past measurements and a control requence, is gaussian with a
mean and a covariance matrix generated recursively by the Kalman filter, i.e.

plxCo) 25,051y = Nz, POOT (4.4)

skl & Erxco |2k, 0k (4.5)

k-1
o }

with

and s T, k
P(k|k) 2 E{Ix(k) - &(k|k)Ilx(k) - &(k|k)]1 |2g5,U

The recursive expressions of i(k]k) and P(k|k) are given in Appendix A. As this con-
ditional p.d.f. is gaussian it is characterized only by its first two moments. As the
evolution of the covariance matrix is independent of the control sequence this system
does not present the dual effect of the control and is therefore a neutral system.

b) On the other hand the corresponding deterministic optimal control problem admits an
exact solution. It is well-known (see for example [14))that the optimal control uPQk)
is a linear function of the state vector, i.e.

W00 = Kk toxt (4.6)

where the control gain matrix Kc(k) is given by
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K (k) = =[Ly(k) + BT(K) m(k+1) BUOI™Y B(K) w(ke1)A(K) (4.7)

The (nxn) matrix #(k) is given recursively by a backward Riccati equation
n(k) = L (k) + KI(k+1)L2(k)Kc(k+1) + [A(Kk) + B(k)KC(k+1)]T n(k+1)[A(Kk) + B(k)Kc(k+1)]

(4.8)
with the terminal condition

w(N) =8 . (4.9)

In addition the minimal cost corresponding to a given initial state x(0) is given by

) = 3 xTmox(0) . (4.10)

The structure of the CLO solution for the stochastic problem is also well-known.
It can be shown, by application of the theory of section 3, that the CLO solution is of
the following form :

w000 = Kk (OR(K[K) (4.11)

with the control gain matrix Kc(k) given in (4.7). The performance index is given by

30y = 1 k() R(,R(0) + a(0) (4.12)

where w(0) results, as in the deterministic problem, from a backward evolution governed
by the Riccati equation (%4.8) with terminal condition (4.9). The scalar a(0) results
zlso from a backward evolution independent of the control sequence (see Appendix B).

As the controller has exactly the same structure as in the deterministic problem, with
x(k) replaced by its estimate the CLO control presents the certainty equivalence proper-~
ty. The only effect of the noises is to increase the value of the performance index via
the term a(0).

According to what was said in section 3 the OLOF policy colIncides with the CLO
poricy because the system is neutral (CE property). The OLO policy can be deduced
similarly to the CLO policy. The solution structure is identical. The only difference
is thet %(k|x) and P(k|k) are replaced by the characteristics of the prediction estimate
A(kiC) and P(k|0O) i.e.

®(k|0) = E[x(k)luﬁ'll (4.13)
and Ty,k-1
P(k|0) = E{[x(k) - &(k|0)I[x(k) - %(k[0)I |us "} (4.1%)
More precisely the OLO control at time k is given by
W00 = x toR(k|o) (4.15)
and the performance index by
%%y = 3 20 Tr(0)R(0) + BLO) (4.16)

where K (k) and 7(0) are obtained as in the CLO solution (and as in the deterministic
optimal "solution), while B8(0) results from the same backward evolution equation as in
the CLO solution, but where P(k|k) is replaced by P(k|0). The superiority of the CLO
solution on the OLO solution results from the fact that B(0) is greater than a(0) becau-
se it is evaluated on the basis of prediction covariance matrices greater than filtering
estimation matrices.

As the roll attitude control problem described in section 2.1 (eq.(2.7) to
(2.11)) has a linear structure, the optimal solution presents the separation property ard
is obtained, as exposed in the present section, in two steps. The first step consists
in the optimal estimation of the state vector

x(k) = ¢(k)
w(k) (4.17)
¢(k) ’

by use of the Kalman filter (App. A). In order to implement the filter the a priori pro-
babtility density function of the initial state, characterized by its mean and covariance
matrix, has to be specified on the basis of the a priori information about this state,
and the perturbations on the dynamics and the measurements heve to be defined, namely the

noise covariance matrices which in this case present the fcllowing form
Q(k) = 0 0 0 and P{k) = r(k)
0 q(k) O (4.1%)
0 0 (o]

The choice of adequate values of q(k) and r(k) is rLased on the physical information
available about these perturbations. The second step consists in the optimal control.
The form of the optimal controller is given in eq (%.11) with a controller gain given
recursively by eq. (4.7) to (4.9). In these expressions the weighting matrices S, L, (k)
and L2(k) are chosen according to the form of the cost function defined by (2.15) a%d
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a, 0 o0 1762 o o
= = = L
S =]0 a, 0 . Ll(k) = 0 0 0 and Lz(k) )
2 -]
0 0 a, 0 0 1/6¢,

The flowchart of the solution is given in fig. 5.

The assumption concerning the noise sequences can be somewhat weakened without
invalidating the CE property. Root has shown ([28]) that the CE property holds even if
the noises are non gaussian, and Tse that it still holds if the measurement noise is
not white but gaussian. QOther cases have been given in section 3.3. Unfortunately the
linear quadratic gaussian problem is the only class where it is easy to derive the
exact solution. We now present suboptimal algorithms proposed for non-linear problems
and we discuss them with respect to their implementability in aerospace applications.

5. EXTENSIONS OF THE LINEAR QUADRATIC GAUSSIAN THEORY.

The linear quadratic gaussian theory is now extended in 3 directions : the opti-
mal control of non-linear problems, the study of the effect of modelling errors and the
adaptive control theory.

As said in section 3.1 the CLO solution of the general non-linear problem is com-
pletely characterized by the sequence of the JCLO(N-k) functions, which are functions
of the information states ICL, and are generated recursively according to Bellman's
principle (eq (3.3) and (3.5)). For CL policies, each of these JCLO(N-k) can be consi-
dered as a functional defined on the set of the probability density functions of the
state at time k, given past controls and measurements, i.e. of p(x(k)|2X,uk-11, with
the implicit assumption that the a priori information, as defined in section 2.2, is
completely available. In order to elaborate “he complete solution it is necessary to
generate this sequence of functionals. In most cases an analytical solution does not
exist (except for the linear quadratic gaussian case where the conditional p.d.f. of
the state is gaussian and is characterized by its first two moments), and only subopti-
mal algorithms are proposed.

In a first class of algorithms it is intended to generate a recursive approxima-
tion of the JCLO(N-k) functiorns. A first method, due to Alspach ([301), is based on the
approximation of the cond.tionnal probability density function of the state by use of
the gaussian sum approximation technique. Following this approach this p.d.f. is repre-
sented as a superpcsition (a "mixture") of elementary gaussian distributions ([31] -
[33]). The parameters >f these distributions are generated recursively by a set of
Kalman filters working In parallel. This representation of the state p.d.f. is then used
ir *the evaluation of the expectations appearing in (3.3) and (3.4). The complexity of
tre algorithm results from the fact that a large nrumber of terms have to be considered
in the gaussian sum. Nevertheless this method takes into account the eventual dual
ettect of the control and seems therefore to be, at the moment, one of the best appro-
ximations of the CLO solution, although its implementation is tedious and computer-time
consuning.

A second algorithm is due to Bar-Sha.om, Tse and Meyer ([34],(35)). In this me-
thov, a vimplification is introduced in the recursive evaluation of the JCLO(n-x) by
considering that the conditional probability density function of the state is characte-
rized by its first twc moments, even if the estimation is performed using a sophistica-
ted method as the gaussian sum approximation. By consideration of a perturbation problem
ir 2und nominal trajectorie- it is possible to minimize the expectation appearing in
(3.4). This solutions shows also the possible influence of the control on the future
uncertainty of the state sc the dual effect of the control is taken into account. This
algorithm is easier to implement but can be less effecutive because only the first two J
moments of the density functions are considered and because the performance deperds on
the ~hoice of the n.minal trajectories.

A third ajgorithm is due to Campion ([36]) and consists in a gaussian sum approxi-
marion ot the JCLU(N-k) under the form
Lo " 1 T
expl-J (N-k)) = I ai(k)exp(- 3[x(k) - Ai(k)] ni(k)[x(k) - xi(k)J) (5.1)
i=1

where A(k) is the vector of the parameters characterizing p[x(k)[Zt,Ut-I].

Thi- vector is, in general, of infinite dimension and has therefore to be truncated.

The ev.lution of the parameters a (k), A, (k) and m;(k) satisfies backward recursive
eg.ations deduced from (3.4)., In this algorithm the computer time requirements are also
imprortant although the greatest part of the computational work can be achieved off-line,
befire ~tarting the process, independtly of the initial condition.

.t is clear, frcm these descriptions that these algorithms are not easily imple~
tentabie with on-boar: computers. For practical realizations implementable suboptimal
algrrithms are derived from the certainty equivalence property (see 3.3), with, possibly
currection terms in order to cumpensate as much as possible the fact that this solution
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does not present the dual effect of the control. As the original problem is partitioned
into two decoupled subproblems (the estimation problem and the deterministic control
problem) the implementation of the certainty equivalent solution supposes that the solu-
tions of these two problems are available. The estimation of the state can be obtained
using the linearized Kalman filter, or the extended Kalman filter, or by a more sophis-
ticated method (see, for example [7],[10]1,[37]). On the other hand, even for determinis-
tic systems, it can be difficult to obtain the closed-loop optimal policy when the sys-
tem is not linear (see, for example ([91]1).

Jacob and Patchell ([39]) and Hughes ([40]) propose a controller based on the
certainty equivalence property but a modification is introduced in order to take into
account the concepts of caution and probing defined in section 3.2. The caution is inclu-
ded to reflect the knowledge the system has about the state : when the uncertainty decrea-
ses the controller can be less "cautions". On the other hand, in order to reflect the
influence that the controller can have on the future evolution of the uncertainty, a pro-
bing signal is superposed to the certainty equivalent solution. Jacobs and Patchell pro-
pose a small known increment with alternating sign, while Hughes suggests a treshold
probing signal, so the control signal is prevented to become smaller (in absolute value)
than a prespecified level. The introduction of an additional probing signal is motivated
by numerical studies in which phenomena called "Turn-off" and "Escape" where observed
([#1]) - ([43)). Turn-off is defined to appear when the state estimate becomes small
and causes the control to be small for a long period. During this method, because of the
lack of control, some state variable are not yet controlled and can behave unsatisfacto-
rily. The use of a probing signal prevents or terminates turn-off. Escape is said to
occur when the control becomes very large and causes unsatisfactory system behaviour.
Caution can eliminate this phenomena.

5.2 Modelling errors.

In order to make possible the implementation of an optimal controller with small
on-board controller one has to consider simple mathematical model, ideally a low order
linear model. Because of this simplification divergence can occur between the physical
system and the mathematical model. These errors, referred to as "modelling errors",are
of three kinds.

1. The physical system can present non linear characteristics.

2. Even if the physical system do not present nonlinearities, the physical parameters
are maybe not perfectly known or may be subject to slow change (for example the iner-
tia characteristics of a satellite with unknown thermal deformations).

3. In a low-order model the higher order modes are deliberately neglected. These modes
can affect the outputs of the system (this phenomenon is known as the "observation
spillover") and 5n the other hand, are also influenced by the control variables desi-
gned on the basis of the low order modes only. lhis phenomenon, referred to as the
"control spillover",can cause unsatisfactory behaviour of the system. The effect of
this mode truncation is under intensive investigation, specially for the future large
space structures ([181]).

Methods of reduction of the effect of the third modelling error can be found in [18],
specially in [4u4]. The best method to reduce the effects of the first two kinds of errors
is to implement an adaptive controller. This particular aspect of optimal control is now
quickly described in section 5.3.

5.3 Adaptive control.

Even if a linear mathematical model is realistic, the solution structure of the
optimal control problem becomes non linear if the parameters of the model are not known
exactly or are not selected optimally. That can be seen on the roll attitude controller
example introduced in section 2.1. Suppose, for example, that the roll time-constant 1
is not known with a good accuracy, producing an unsatisfactory behaviour of the system.
Defining an augmented state vector Xa

x. = | x N , (5.2)
a
T J
the dynamical equation of the augmented system becomes
v I d
Yy 7 - N .
x (k1) = | x(ke1) | = Al7(K)] 0 x (k) + Blt(k)]l{u(k) + | Gv(k)
| (5.3)
T(k+l) L ¢} I o} o]
J R

which is non linear in the variable x_(k).

It can be possible to identify these dnknown parameters before applying effectively the

control variables. There are many identification methods (see, for example, [45]). If

it is not possible, an adpative controller has to be designed, i.e. a cortroller struc-

ture where the parameters are adapted following the evolution of the unknown parameters '
uncertainty. The most used method is the "model reference” adaptive control, introduced

by Landau ([46])). In this method the controller is designed for a linear reference model,

but the parameters of this model and of the controller are adapted following the evolu-

tion of the system. This technique can also be used if the physical system presents non

linearities. This adaptive control approach, which is an intermediate between non linear

control and linear control, is promised to 4 wide development, s >cially for aerospace i




applications, but a complete discussion of its properties and possibilities is outside
the subject of this chapter.

6. Conclusions.

1. As the complexity of the optimal controller increases dramatically if a non-linear
or an high order model is considered, one has interest to design the controller on
the basis of a low order linear mathematical model. In order to prevent unsatisfactory
behaviour it can be necessary to modify somewhat the solution based on this model
(see section 5). Such a solution is of course suboptimal but presents the advantage
to be implementable with on-board computers.

2, It is worthwile, nevertheless, to develop more sophisticated algorithms. As they are
closer to the optimal solution they produce a reference for the comparison with the
suboptimal solutions. These algorithms are not implementable for on-line applications
but they are usefull for ground simulations. On the other hand it is important to
have a clear understanding of the mechanism of elaboration of the optimal control and,
particularly, of the concept of dual effect of the control (section 3.2), because
this discussion gives the reasons why a certainty equivalent controller car behave
unsatisfactorily, and can be helpfull for the a priori detection of situations where
a more sophisticated method has to implemented.

APPENDIX A : Kalman filter equations.

For the linear system described by (4.1) and (4.2) the mean and covariance matrix
of the conditional p.d.f. of the state are given recursively by the Kalman filter equa-
tions.

a) The prediction p.d.f. p[x(kf1)|zt,U§] is gaussian with a mean X(k+1l|k) and a cova-
riance matrix P(k+1|k) given by

Z(k+1]k) = AQOR(k|K) + B(X)u(k) , (A.1)
and T
P(k+1|k) = A(K)P(k|k)A (k) + Q(k) . (A.2)
b) The conditional p.d.f. p[x(kfl)lzz*l,uﬁl is still gaussian with a mean X(k+1|%+1)
given by
F(k+llke1) = R(k+1}x) + K(x+1)[z(k+1) - H{k+1)&(k+1|Xx)] , (A.3)
and
P(k+1|k+1) =01 - K(k+1)H(k+1)1P(k+1lk) . (A.u)

where In is the identity matrix of order n and where the Kalman gain K(k+1l) is given
by

K(k+1) = P(k+1|K)H (k+1)[H(k+1)PCk+1|k)H (k+1) + R(k+1)1° % (A.5)

APPENDIX B : Closed-loop optimal control for the linear quadratic gaussian problem.

cLO Following eq. (3.5) the terminal condition for the backward evolution of the
J is written CLO 1T oL
J (0) = j[; x (N)Sx(N)]p[x(N)IIN Jdx(N) . (B.1)

As the conditional p.d.f. of the state is gaussian, with mean %(N|N) and covariance
matrix P(N[N), the relation (B.l) can be rewritten as

J%0) = 2 T(N[OTODRNN) + a(¥) (B.2)

where #(N) = 8§ , (B.3)

and a(N) = % trl[SP(N|N)] . (B.4)
We now show that, in general, JCLO(N-k) can be expressed as

JON-k) = 2 R(K[K)T () R(K[K) + a(k) (B.5)

where the weighting matrix (k) and the scalar a(k) are idependent of the control sequen-
ce and of the actual realization. CLO

Suppose that JCLO(N-k-1) has this form. From eq. (3.4) J (N-k) is obtained as

JL00-0 = min B0 xTOOL 00X ¢ 3 u0OL (Kulk) + 3 ROkel[keD)m(ke1)R(ke1|ke1)
u(k)
+ a(k+1)|I§L} (B.6)
We now evaluate separately the terms of the above conditional expectation.
1.7 CLy _ 1 .T . 1
a)  ElF x ()L 0Ox(k) 171 = 5 & (k|k)L1(k)x(k|k) + 3 te(L (KP(k|K)] (B.7)
10T CL, _ 1 T
b) E[Z uw (L, ()u(k) [ I.7) = 5 uw ()L, (kulk) (B.8)

because u(k) is assumed to be selected through a deterministic policy.

c) The expression of X(k+1|k+1) is given in (A.3). As the innovations sequence (i.e. the
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sequence of {z(k) - H(k)X(k|k-1)}) is a white gaussian sequence with zerc mean and
a covariauce matrix given by [H(k)P(k|k-1)HT(k) + R(k)]), it is independent of the
previous estimates and the expected value

EL3 ROkl ke m(ke DR(keDlke1]10H]
is given by

2A0ORKNK) + BOOW(O) I w (e DIAGOR(K]K) + B(k)u(k)]
+ 3 trla (ke DH(F1IPCkeL K)HT(k+1) + R(k+1)]} (B.8)

} d) As the quantity a(k+1) is assumed to be idependent of the actual realization it is
{ but a deterministic quantity coinciding with its expected value. The minimization
condition (B.6) is therefore equivalent to the following condition

min (3 uT(k)L2(k)u(k) + SA00RGTK) + BOOuG) 1w (ke 1)[AGOX() + BOKu(k) 1}, (B.9)
u(k)

. which has the same form as in the deterministic problem. The optimal control is there-
-1 fore given by

G
uCL (k)

= Kc(k)i(klk) s (8.10)
where the control gain Kc(k) is given by
1 K ) = =L (k) + B () w(keDBOOT™Y BOOR(Ke1)AK) . (B.11)
4 . . . CLO CLO s
With this expression of u (k), J (N-k) can be rewritten as
3CE%-ky = 2 w(klIOTOORKIK) + alk) (B.12)

where

T(k) = L (k) + KZ(k#l)Lz(k)Kc(k*l) + [A(K) + B(k)Kc(k+l)]Tn(k+1)[A(k) + BUOK_(k+1)],

and

: a(k) = a(k+l) + % tr[Ll(k)P(k|k)] + % tr(w(k+1)[H(k+1)P(k+1|k)HT(k+1) + R(k+1)1}

i It must be noted that the relation (B.12) is the same as (4.8) corresponding to the
! deterministic problem.
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AN INTRODUCTION TO

STOCHASTIC OPTIMAL CONTROL THEORY

Robert F. Stengel
Princeton University
Flight Research Laboratory
Department of Mechanical and Aerospace Engineering
Princeton, N. J. 08544 U.S.A.

SUMMARY

The design of control logic that commands a dynamic system to a desired output or
that augments the system's stability is facilitated if objectives are expressed in a
quantitative criterion, because the optimization of this criterion establishes a feasible
design point for control. If the information which the control logic must use is uncer-
tain or if the dynamic system is forced by random disturbances, one can hope to optimize
only the expected value rather than the actual value of this criterion. The methodology
for design is based upon stochastic optimal control theory, the topic of this chapter.
After introducing the dynamic models of interest, optimal control and estimation are pre-
sented separately. Limitations of this approach are addressed, and the unified design of
linear stochastic optimal controllers for analog and digital implementations is described.
The principal benefit of stochastic optimal control theory is that it provides an engi-
neering framework within which practical control design can be accomplished for complex
dynamic systems.

INTRODUCTION

Optimal control theory is that body of information which describes the application
of forces to a system for the purpose of maximizing some measure of performance or mini-
mizing a cost function. The nature of the control is stochastic if, in addition to the
controlling forces, the system is forced by random disturbances, if the parameters of the
system are subject to random variation, if initial conditions are random, or if any mea-
surements used to formulate the control are subject to random errors. All control systems
are intended to optimize some criteria, whether or not the criteria are stated explicitly,
and there is some degree of uncertainty in any control system implementation. Conse-
quently, stochastic optimal control theory has broad application to practical systems,
as demonstrated by the remaining papers in this volume.

The apparent dichotomy between "optimal" control and "practical® control is linked
more closely to style than substance, as optimal control design can be a very practical
process. One impediment to understanding is the definition of what we mean by "optimal".
Whereas there is a class of problems in which a single, unequivocal optimum can be de-
fined, e.g., minimum time, fuel, or cost, there is an even greater class in which the
selection of weights in the cost function is arbitrary. These weights have no small
effect on the numerical solution, and the analyst may purposely digress from theoretical-
ly "best" weights in order to make the solution more "robust", i.e., more insensitive to
parameter variations. In such instance, optimality, per se, is less important than the
fact that optimization provides a systematic procedure for "trading off® system perform-
ance and control activity within established limits. This in itself is a most practical
quality. Therefore, let us define "optimal” as "tending toward the optimum®, recognizing
that some deviation from the optimum is acceptable, if not unavoidable, in practical
application.

Aerospace systems are dynamic, and the evolution of their motions in time is of
particular interest; hence, the criteria to be optimized are expressed naturally in terms
of final values and time-integrals of the motion and control variables. Nevertheless,
stability, input-output characteristics, parameter sensitivity, and modal response are
of great practical concern, so frequency-domain equivalents are useful. The power of
time-domain formulations is related to their generality; optimal controls for nonlinear
time-varying systems are specified (if not calculated) readily, and the simplifications
afforded by linearity and time-invariance are accomodated in a single theoretical frame-
work. When both linearity and time-invariance can be assumed, frequency-domain concepts
aid interpretation and, in some cases, computation. This chapter presents stochastic
optimal control theory from a time-domain viewpoint, providing frequency-domain perspec-
tives where possible.

What follows can not include all methodologies for all optimization problems. It is
an interpretation of the theoretical underpinnings of optimization techniques commonly
applied to aerospace problems. While it is hoped that this chapter may provide new
insights or clarifications of stochastic optimal control theory, the theory itself has
been developed earlier. The reader who is interested in greater detail should refer to
{1] to [14], which are principal sources of material for this chapter.

After reviewing general models of dynamic systems and some basic characteristics of
the mathematics, the theory of deterministic nonlinear optimal control is presented.
The notion of neighboring-optimal trajectories as prototypes for feedback control is
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introduced, as is the need for estimation that arises in some cases. Optimal filtering
and prediction for discrete-time systems are presented, with continuous-time estimation
developed as the limiting case for vanishingly small sampling interval. The separation
theorem and its limitations are discussed, and the chapter concludes with details of
linear, time-invariant stochastic optimal controllers.

MODELS OF DYNAMIC SYSTEMS

Stochastic optimal control is to be applied to a dynamic system that consists of a
physical process and its observation. Elements of the physical process can be arranged
in five distinct families, which identify their respective roles in the process, and the
observation contains two families of variables. Each family is represented by an ordered
set (or column vector) of scalar quantities, with dimension appropriate to the system:

Vector Description Dimension
P Parameters 2
] Controllable Inputs m
w Uncontrolled Inputs (Disturbances) ]
X Physical States n
Y Process Outputs r
R Measurement Errors r
z Observations r

The relationships between these variables are illustrated by Fig. 1.

These seven categories of variables serve distinct purposes in the dynamic system.
The vector of parameters, p, scales the process's response to inputs and to its own
motions. The forces on th& process (or inputs) that can be controlled are contained in
u, while those which are beyond control are contained in w. The state vector, x, repre-
sents the dynamic condition of the process, i.e., the fundamental response to inputs.
The process structure is such that x "feeds back"” into the system (through physical
effects), and this feedback can modify process response in several ways, e.g., by shifting
the steady-state characteristics, causing oscillations, stabilizing the process, and so
on. The output vector, y, can contain none or all of the above (p, u, w, and x), select~
ed components of each vector, or transformations of these vectors,; depending upon the
process and its instrumentation. 1In general, the output can not be measured exactly, so
the observation, z, is some combination of the output, y, and measurement error, n. Any
dynamic effects associated with control actuation or med3surement sensing are assumed to
be contained in the physical process.

Open-loop optimal control can be applied only if the dynamic system is characterizead
by adequate controllability, and closed-loop optimal control (including stochastic control)
requires adequate observability as well. A system is controllable at time ty, if there

is a control history, u(t), ¢, < t < tg < =, which transfers each element of an arbitrary

initial state, g(to), to zero at tf. If there is an independent physical path between every

component of x and at least one element of u, then the process is likely to be completely
controllable. (There must be adequate control "power” as well.) The path can be either
direct or indirect, as long as it can be distinguished from possibly redundant paths. A
system is observable at to if the output history, y(t), tya 2t tf < » is adequate to recon-

struct 5(t°). If there is an independent physical—bath between every component of x and

at least one element of Y then the process can be said to be completely observable.

Again, the path can be direct or indirect, but it must be non-identical to all other paths.
Conditions that must be satisfied for complete controllability and observability can be
found in [1)-[3], ([6]-[8). These definitions say nothing about the potential quality of
control or observation -- they merely indicate whether or not the structures for control
and observation exist.

In most cases, the physical process is only partially controllable and observable,
either as a consequence of the physical process itself or because limited resources pre-
vent implementation of complete control and observation. Such a process can be separated
into four parts -- those sub-processes which are both completely controllable and observ-
able, those which are one but not the other, and those which are neither.

From a practical point of view, complete controllability and observability are not
required if the uncontrolled or unobserved states are well-behaved. For example, adequate
rigid-body control of an aircraft need not depend on controlling or observing well-damped
aeroelastic, fuel sloshing, or external stores modes. If an uncontrolled sub-process is
stable, i.e., bounded disturbance inputs produce bounded response, the sub-process is
said to be stabilizable, and its effects can not cause the process to diverge. 1I1f an un-
observable sub-process is stable, it is said to be detectable, as bounds on the observed
states can be estimated. Partial controllability and observability may be acceptable,
but sub-processes which are not stabilizable and/or not detectable must be avoided.
Closed-loop control can be applied only to those elements which are both controllable and
observable.

Physical processes normally are continuous functions of time, so it is appropriate
to model the evolution of their motions by differential equations. Although some processes
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are best described by partial differential equations, we will restrict our view to ordin-
ary differential equations, noting that numerical approximations to the former can be
achieved with the latter. The solution variables for these equations are contained in
the state vector, x(t), the focal point of estimation and control. In an increasing
number of applications using digital computers, control settings are calculated and mea-
surements are made at discrete (often periodic) instants of time. Difference equations
that are equivalent to the original differential equations can be found, and continuous-
time stochastic optimal control solutions are paralleled by discrete-time results.

For either continuous-time or discrete-time models, the dynamic equations can be
classified as in Fig. 2. If the dynamic coefficients are changing rapidly with time, in
comparison with the time scale of motions, the dynamic model must be time-varying; if the
coefficients are relatively constant, a time-invariant model will suffice. If motions
evidence the superposition characteristic, i.e., doubling the input doubles the output,
then linear models can be used; if not, the dynamic model must be nonlinear. A non-
linear, time-varying dynamic system can be described by an n-component vector differential
equation representing its dynamics, an r-component algebraic (or transcendental) equation
representing the output, and an r-component equation representing the observation:

dax(t) .

- = E(t) = f [E(t)r §(t)r ult), wit), t] (1)
dt

y(t) =h [p(t), x(t), uit), wit), t] (2)
z(t) = 2 [Z(t). n(t)] = y(t) + n(t) (3)

The vector, f, contains an element for each element of x; each element of £ is the appro-
priate scalar equation that defines the time-rate-of-change of its corresponding compon-
ent of x. The dimension of the output function, h, is not governed by the dynam1cs of

the process, it may be larger or smaller than the state dimension, and there is some
freedom in its choice. The nonlinear complexities of observation normally can be absorbed
in Eq. (2), and observation error is added in Eg. (3).

Solutions of nonlinear, time-varying differential equations require direct integra-
tion, either by numerical or analog computation. The resulting time histories describe
the evolution of motions for given controls, disturbances, and initial conditions;
each change in any of these quantities leads to a new state trajectory.

Small perturbations from a nominal trajectory can be modeled by linear approximation.
To do this, both sides of Eq. (1) to (3) are expanded in Taylor series, and terms beyond
the first degree are neglected. The zeroth-degree terms generate the nominal solution,
and the first-degree terms govern the perturbation solution. The model variables are as-
sumed to be separable into nominal and perturbation components denoted by ( ) and A( ),
respectively. The nominal, nonlinear equations are

Zo(t) = £lRo(8) s X (8)s uy (), wole), ] (4)
Yo(t) = hip,(t), x (L), u (t), w,(t), t] (5)
2z (t) = y, (t) + n(t) (6)

Assuming parameter variations are not perturbed, the corresponding linear, time-varying
equations are

AX(t) = F(t)Ax(t) + G(t)Au(t) + L(t)Aw(t) (N
Ay (t) = H_(t)ax(t) + H (t)Au(t) + H_ (t)4w(t) (8)
Az (t) = Ay(t) + An(t) (9)

where the Jacobian matrices,

If af af

F(t) =32 (nx m, G(t) = 55 (nxm, L(t) = 55 (n xs) (10)-(12)
ah ?h 3h

He(t) = 33 (£ x n), Hy(e) = 0 (r xm), Ho(t) =55 (r x8)  (13)-(19)

are evaluated at (go(t), go(t), go(t), go(t), t]. The Jacobian matrices express the
linear sensitivity of f and h to small perturbations in x, u, and w. Even if go(t) is
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constant, these matrices are likely to vary in time as long as the nominal input variables
(go,go) and solution variable (50) vary in time. The linear, time-invariant case rigor-

ously occurs only with constant nominal inputs, when the state has reached equilibrium,
or if there is no functional dependence of the Jacobian matrices on the changing variables.

The dynamic equations have been expressed as a vector set of first-order differential
equations because these provide the most flexibility for computation and analysis. A
large body of dynamic analysis, particularly that related to structures, is based on lin-
ear second-order equation sets, which can easily be converted to first-order "state-
space"” notation. Using the modal coordinate vector, Aqg, the second-order equations are

MA§ + CAQ + KAQ = DAu (16)

where, M, C, K, and D are the mass, damping, spring, and forcing matrices, respectively.
This equation can be put in the first-order form

AX = FAx + GAu (17)

by first defining

Ax
Ax =1

then forming

G = | ----- (20)

If the Jacobian matrices are constant, an equivalent frequency-domain model is
easily formed. The Laplace transforms of Eq.(7) and (8), neglecting initial conditions,
are

(sI-F)Ax(s) = GAu(s) + LAw(s) (21)

1 1

By(s) = [H,(sI-F) "G + H JAu(s) + [H (SI-F) "L + H_)Aw(s) (22)

where s is the Laplace operator. Equation (22) is seen to contain transfer function
matrices between the inputs, Au(s) and Aw(s), and the output, Ay(s).

While a comparable difference equation is not easily specified for the nonlinear
dynamic equation, the linear, time-varying differential equation has a straightforward
discrete-time equivalent. The time-varying difference equation

Ax(t) = @(t,t )Ax(t,) + ﬁ(t,r)[G(r)Ag(r) + L(t)lw(T)) drt (23)

o

propagates the state precisely from one sampling instant, t, /to the next, t , using the
state transition matrix, o(t,to) [6)]. For a linear, time-invariant system with stepwise-
constant inputs and periodic sampling, Eqg.(23) can be put in the form

Axy 4y = ®(TIAX), + T(T)Aw, + A(T)Aw, (24)
where T is the sampling interval, k is a sampling index, and

*(T) = eFT =1 4+ FT + %lFZTZ + (25)

MM = @-nDF'e=x+irr+dlrin?s- - er (26)

M = @ -DF L s e der e Lptn? e 0 o (27)

The equilibrium response of linear, time-invariant models is shown below to be useful
in the design of non-zero set point regulators using stochastic optimal control theory.
Starting at the nominal equilibrium, a constant input perturbation, Agp or A!p , would

disturb the state from its nominal value. The perturbation equilibrium value, Ax_ , is
defined by Eq. (7), with Ax = 0: P




= g1
Agp F (GAEp + LAgp) (28)

provided F-l exists. The corresponding output is found by substituting A;p,Agp, and A!p
in Eg._(s). Alternatively, if desired values of m components of the output, A!m' are
spe01f}ed. Eg.- (7) and (8) can be solved simultaneously to find A§P and Au_.

With Ak = 0 and H, = 0, ®
Ax F G |7-Law -LAw
Zp “p “p
1 s |l lo. wm =8 (29
P by Ay
P X Y m —m

requiriqg the existence of an additional inverse matrix, S [15]. The corresponding dis-
crete-time perturbation equilibrium involves Eq. (24) and (8) with A§k+1 = Agk + however,

it can be shown that the solution is identical to Eq. (29), as might be expected.

OPTIMAL TRAJECTORIES AND NEIGHBORING-OPTIMAIL SOLUTIONS

Cconditiong for Optimality

We begin by considering optimal control strategies for dynamic systems whose param-
eters, disturbances, and initial conditions are known without error. By convention, the
control history, u*(t), t, 2t 2 tg that minimizes a cost function, Jy;, is to be found.

The cost function considered here consists of two parts, a scalar algebraic function of
the final state, ¢Ix(tg)}, and a scalar integral function of the state and control:

£
Iy = elx(tg)l + K,; Lix(t),u(t)] at (30)
o
The choice of ¢[°] and the integrand, L[+], dictates the nature of the optimizing solu-
tion, and there is some flexibility in expressing a particular cost as a terminal or
integral function. In the example of an aircraft trajectory with fixed terminal cost 1
function, ¢[§(tf], choosing L{+] = 1 specifies a minimum~time problem, while choosing

L{*] = fuel flow rate leads to a minimum-fuel problem. Alternatively, the state can be
augmented to include a fuel mass component, and the minimum-fuel problem can be specified
by redefining ¢[5(tf)].

Equation (30) is minimized subject to the dynamic constraint provided by the system's
differential equation:*

x(t) = £[x(t), u(t), w(t), p(t),tl, with x(t)), w(t), p(t) given (3la)

t (31b)

£le] - x(8) =0 , t <t< ¢t

[+]

1A

Because Eq.(31b) always equals zero, it can be adjoined to the integral cost function
without changing the value of JNL or the minimizing control; however, Eg. (3lb) is a

vector relationship and the integral cost is a scalar. Defining the n-component vector
of Lagrange multipliers, A(t) (also called the adjoint or costate vector), the scalar
product AT{f[+] - X(t)} is formally added to L[+). The solution equations for A
determine the optimal control.

Defining the scalar Hamiltonian, H[x(t), u(t), A(t), t],

Hix(t), ult), A(t), €] = Lix(t), u(t)] + AT(R)EIx(t), u(t), tI (32)
Eq. (30) can be written as
g, = plxit,)) +ftf (HIx(t), u(t), A(t), t] - X(t)x(t)} dt (33)
o]

Following (1], the second term in the integrand can be integrated by parts:

* Constraints on the state or control at interior points, end points, or over the entire
interval also can be addressed. These constraints can specify that the variable(s)
equal given value(s) or that they are merely bounded by sich values.
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- T _ T
Iyr = ¢Ix(te)] = (A7 () x(ty) AT (e ) x(t)]

+f‘ (HE+1 + AT (x(t)) dt (34)
o
Necessary conditions for a minimum value of JNL with respect to the control are
formed by requiring that the sensitivity of JNL to any control variations, Au(t), and

associated state variations, Ax(t), be zero on the minimizing path. From Eq. (34), the

first variation in JNL can be expressed as

8y = M5c * Meontrol
t
f
T EL T aH 3 T
o]

where the first term is the cost function's variation due to changes in the initial state

and the remaining terms are the result of changes in control. AJcontrol = 0 for arbitrary

values of Ax and Au only if three conditions are satisfied:

. T T
i) = - ;’: B - Tigam g et < te (36)
Ay = {g—x Mytf)]}" (37)

AT () _ aLT(e)
Ju du

+eTA(e) =0 , t <t<t

(38)
(e}

f

The adjoint vector is obtained by integrating Eq. (36) backward in time from the end con-
dition specified by Eq. (37), with all time functions evaluated along the optimal (nominal)
trajectory. Equation (38) is then a direct expression of the cost function's stationarity:
on the optimal path, the sensitivity of the Hamiltonian to small changes in the control

is zero. These three equations are called the Euler-lLagrange equations.

It is necessary for the Euler-Lagrange equations to be satisfied on the optimal
path, but these equations guarantee only stationarity, not optimality. While the min-
imum may be indicated, it also is possible that JuL has been maximized or forced to an

inflection point by the control. As described in [1], three sufficiency conditions must
be satisfied to guarantee a minimum. 1) The Hamiltonian must be convex (Huu>0) in the

interval, indicating that the solution has reached a "valley" rather than a “ridge
line™ or "ledge". For controllable systems without terminal constraints, this condition
usually is sufficient to guarantee optimality. If the (m x m) matrix Hou is singular,

minimizing controls may still exist, but time derivatives of Hu' as well as Hu itself,

must equal zero in the interval. 2) The solution must be "normal", i.e., small changes
in terminal constraints lead to neighboring optimal solutions. A system that is not
completely controllable is likely to be "abnormal” in this respect. 3) There must be no
conjugate (or focal) points. Finding the path which yields the minimum distance from any
point on the globe to the equator provides an example: the north and south poles are
conjugate points because there are an infinite number of such paths.

If the nonlinear system equations have low order and simple structure, it may be
possible to find analytic closed-form solutions to the optimizing equations; Yowever, in
most cases, it is necessary to resort to iterative numerical techniques for solution.
These are discussed briefly in the next section.

Numerical Optimization

Iterative techniques for finding the optimal control history, u*(t), to £t <ty and

the corresponding state trajectory, 5.(t), must provide solutions of the n~component
differential equation [Eq. (36)], subject to initial conditions for the state, x(ty),
and final conditions for the adjoint vector, L(tf). The optimal trajectory is very much

a function of how the control vector is defined; changing the components of u(t) is likely
to change the numerical values of x*(t). Solutions to the two-point boundary-value
problem can be found using extremal fields (dynamic programming), neighboring extremals,
penalty functions, quasilinearization, and gradient methods ([1], [11]. The principal
distinctions between these methods are which equations and conditions are nominally
satisfi. 1 by the problem formulation itself and which must be forced to solution by the
iteration. A particular appeal of the gradient methods is that the dynamic system
equation is solved exactly on each iteration, with the control being perturbed from step
to step. In other words, the algorithm simulates the system's dynamic response with
varying control histories from one iteration to the next, and the physical effects of the
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optimization are quite visible at each step.

A schematic of gradient (or steepest-descent) optimization is shown in Fig. 3. The
process begins with the specification of initial conditions and a nominal control history.
Note that a simulation program is an inherent part of the process and that the adjoint
vector is integrated back from the final point on each iteration. In most cases, suffi-
ciency need not be verified for every iteration, so this computation is optional. The
choice of a stopping condition is somewhat arbitrary. If the minimizing value of JNL is
known (for example, it would be zero with a path-following cost function), the
iteration can stop when the computed cost is acceptably close to its known value.

Otherwise, the iteration can stop when some scalar function of the control gradient,

t
£
Hu(t), e.g., L[ [Hu(t)Hz(t)]dtbqtf-to). is acceptably close to zero.
o

The choice of the (m x m) control-gradient weighting matrix, Kk(t), in the control
adjustment equation,

_ _ T
B (8 =y (8) = K (O (6) (39)

is critical for rapid convergence to the minimizing control. If K(t) is too small, con-
vergence may require a large number of iterations; if it is too large, convergence may
not occur at all. In the neighborhood of the optimal trajectory, Huu(t) should be greater

than zero (by convexity); if Kk(t) = d;t(t), the iteration becomes a Newton-Raphson
k

algorithm. In practice, Huu(t) can be difficult to calculate precisely, and the calculated
value may not be convex during early iterations. Efficient constant values of K, (which

may change from one iteration to the next but are constant on each iteration) can be found
from auxiliary integrals of the trajectory (1] or by numerical search, as in [16].

It should be recognized that the amount of computation associated with iterative
numerical optimization is immense, and it rarely will be practical to solve these equations
in "real time", i.e., during the actual time interval, (tg,tg). Indeed, even if the com-
puting "power" to effect such a solution is available, uncertainties regarding distur-
bances in (t,tg) and variations in the target time and state may invalidate the optimality
of the instantaneous control shortly after it is applied. The principal value of such
solutions, to date, has been to identify nominal trajectories and control histories prior
to application. 1In addition to providing valuable planning information for vehicle and
actuator sizing, fuel loading, etc., the pre-calculated optimal trajectories and controls
can determine time~varying set points for feedback controllers, e.g., the neighboring-
optimal control laws described in the next section. An interesting alternative is to
define an "extremal field" of optimal paths in order to implement nonlinear guidance and
control laws based upon the principles of dynamic programming. [17]

Neighboring-Optimal Solutions

The linear perturbation models introduced in an earlier section can be put to use to
examine the effects of small variations in initial conditions and terminal cost on the
optimal trajectory and controls. We formally consider the secord variation of the cost
function for the nonlinear system, 62JNL, identifying it as the cost function for the

associated linear perturbation model (Note that optimality quarantees that the first vari-
ation is zero on the optimal path):

Ty {X (e +Ax () T, [x () +ax () 1} = Ty [x(t) x(te)] + 8% [8x(ty) Ax(tp)] (40)
Taking second variations on the right side of Eq. (30),
2 . N £ T " Lot L, (e Ax (t)
643, = J, = 3Ax (t.) e, (t.)Ax(t.) + 3 [Ax" () du” (t)) dt
NL L 2 £ 'V xx £ F 2 -
¢ Loty Lo (e)] [Ault)
o ux uu -
subject to the linear dynamic constraint, (41)
Ax(t) = F(t)bx(t) + G(t)au(t), bx(ty) given (42)

F(t) and G(t) are defined by Eq. (10) and (11)3 evaluated along the optimal path. Pertur-
bations from the nominal optimal solution are

8x(t) = x(t) = xg(t) (43)

(44)

Bu(t) = u(t) = ug(t)
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A notational change is introduced in the quadratic cost function,

te Q(t) M(t) Ax(t)
3 = %AgT(tf)P(tf)Az(tf) + % ./~ (AT () AuT (t)] at  (45)
t T
o M (t) R(t) du(t)
and the corresponding Hamiltonian can be written as
4 Hit) = 2raxT(0Q(t)ax () + 28xT (£)M(E)Au(t) + BuT (E)R(t)Au(e)]
T (46)
ﬁ + ALV (L) [P(E)Ax(t) + G(t)Au(t)]
The Euler-Lagrange equations, Eqg. (36) to (38), are
L Ai(t) = - Q(t)Ax(t) - M(t)Au(t) - FT(t)AA(t) (47)
Ar(tg) = P(te)Ax(ty) (48)
p
4
: 0 = MT(t)Ax(t) + R(t)eu(t) + GT(t)AA(t) (49)
Equation (49) can be rearranged to solve for the control,
Au(t) = -R-l(t)[MT(t)Az(t) + GT(t)AA(t)] (50)

and this relationship can be substituted in Eq. (42) and (47) to express the linear two-
point boundary value problem as

sx(t) = [F(t) - GOR LM (B 1ax(t) - c(OR (6T () ar (b)), bx(ty) given (51)

Ai(t) = [-a(t) + MOR I BNMT () 1ax(t) - [F(t) - a(erR LM () 1Tar (),

Aﬁ(tf) given (52)

Because Ax(t) and A)(t) are adjoint, Eq. (48) applies not only 2t the final time
but during the entire interval:

AAr(t) = P(t)Ax(t) v to <t < tf (53)
Then Eq. (50) can be expressed as an optimal feedback control law,
su"(t) = -R7L(t) 16T ()R (t) + MT(&)]1Ax(t)
= -C(t)Ax(t) (54)

where C(t) is the time-varying (m x n) control gain matrix.

The (n x n) matrix P(t) remains to be found. Differentiating Eq. (53), incorporating
Eq. (51) to (53), and rearranging terms, a nonlinear differential equation for P(t) can
be derived:

PAx = A} - PAx

= (-0 + R MMax - (F - cr MDY TaA] - PL(F - R IMD)ax - Gr™1eTan)

= ((-g + MR IMT) - (F - cR™IMT)Tp)ax - PL(F - GR™IMT) - cr™}cTPlax (55)

Cancelling Ax on both sides of the equation leads to a matrix Riccati equation for P:

B =-F - R IM)Te - p(F - aR™IMT) + P(GR™IGT)P + (-0 + MR IMT), P(t.) given

(56)

The solution for P(t) and, therefore, for C(t) is seen to be independent of Ax(t);
hence, the control law defined by Eq. (54) is linear. Variations in Az(to) or Ag(tf)

have no effect on C(t), although the linear-optimal [or linear-quadratic (LQ)] control
history obviously is affected by state perturbations.

From Eq. (44), the total control if formed as the sum of the nominal and perturba-
tion optimal controls:
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* *
u(t) = u(t) + 8u (t)

u () - ClO) Ixtt) - xy(t)] (57)

The prototype neighboripg-optimal control law is illustrated in Fig. 4. This diagram
reflscts*Eq. (57), and it introduces *+he notion that an alternative to time-scheduling
of Xyr Uy and C can be considered. When tf is not fixed and is of secondary importance,

it may be desirable to choose a scalar function, n, of the state with fixed end point as
ghe scheduling variable. This scalar function must be monotonic in time, so as not to
introduce singularities in the scheduling, and it also can be used to reduce the order
and complexity of the original optimization, as demonstrated in [1], [16], ({17], and
several other references. Range, R, and specific energy, E, are examples of functions
that have proven to be suitable scheduling variables for flight path optimization;* just
as "time-to-~go", (t-tf), is often a more pertinent independent variable than time, t,

"range-to-go" and “energy-to-go” can be employed in actual implementation.

Equation (57) indicates that the total control approaches its nominal value as the
actual state approaches its optimal value. This result apparently assures that the total
control is optimal, i.e., that the dynamic system is forced to follow the optimal tra-
jectory. If, however, there are disturbances not modelled in Eq. (31) or the actual

system differs from the dynamic model, Eq. (57) may not be up to the task, and C(t) may
not be optimal.

The optimal treatment of disturbances and system variations depends on whether they
are deterministic (certain) or random (uncertain) and, in the latter case, whether they

are random constants Oor random processes (continually changing in time). From Eq. (17),
disturbances, Aw(t), that are certain and, therefore, known can be opposed by perturbing
the control an additional amount, Agd(t). such that G(t)Agd(t) = - L(t)Aw(t). A rocket

launch through a known vertical wind profile could be treated in this fashion. Known
parameter variations should be taken into account in calculating C(t).

Random disturbances and parameter variations pose a different problem because the
cost functions presented earlier can not be minimized with certainty. At best, we can
hope to minimize some statistical measure of the cost, and this implies that statistical
characteristics of the random processes are known. A reasonable approach, as presented
in [1]), [31, (4), (10], ([12]-[14]), is to minimize the expected value (or average value)
of the cost, conditioned on the statistics of the random processes. Random disturbances
and parameter variations are treated in the same manner, i.e., both can be modelled as
"process noise". Although conditions for stochastic optimality of nonlinear systems have
been discussed in the literature, the most useful results apply to linear systems with
zero-mean gaussian process noise. The fortuitous result for this case is that the LQ
gain matrix defined by Eq. (54) is optimal without qualification. Equation (57) is the
stochastic neighboring-optimal control law for a linear system forced by zero-mean random

processes, although the minimum value of the cost function is greater than it would be
without random forcing [1].

Solving the problem of random constant disturbances or parameter variations is more
involved because the induced error does not average zero during the interval. Two possible
solutions are estimation of the constant and integral compensation. Assuming the distur-
bance or parameter is observable, the state can be augmented to include the random constant,
and an estimate of the constant can be based upon observation of the system. The estimate
then is used in the same way as its deterministic equivalent. Recognizing that the random
constant would prevent [x(t) - Eﬁ(t)] from reaching null, an integral of the state error

could be added to Eq. (57), leading to asymptotic convergence of the actual and optimal
states. These approaches are shown to be similar in [18].

Figure 4 implies direct feedback of the state in neighboring-optimal control, but it
should be recalled that the state may not be measured directly and that available measure-
ments may be corrupted by error (Fig. 1). In such instance, Eg. (57) must use an estimate
of the state, x(t), which is derived from the observation, z(t). If the statistics of the
measurement errors are known, that estimate can be optimal in some sense. For example,
estimators which minimize the root-mean-square error between x(t) and x(t) or which maxi-
mize the probability that x(t) and x{t) are the same can be found. (These two estimators
are identical for a wide class of problems.) By the separation theorem, the controller
and estimator can be optimized separately (19]; however, contrary to early suppositions,
the stochastic optimal control law that results is not guaranteed to have satisfactory
stability and performance. These issues are addressed in later sections. The next section
presents a number of important aspects of optimal estimation.

OPTIMAL ESTIMATION

Given k equally valid but "noisy" measurements of a constant scalar quantity, it
would be reasonable to simply average the measurements to produce an estimate of the con-
stant. Such an estimate is optimal in the sense that it minimizes the sum of the squared

* Specific energy is the sum of kinetic and potential energy per unit mass.
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errors between the measurements and the constant, i.e., it is a "least-squares" estimate.
If prior knowledge of the measurement errors indicated that some measurments were better
than others, this could be taken into account in the estimate, and the better measurements
could be weighted more heavily in the averaging process. The proper weighting factors
could be determined by penalizing the poorer measurements in the squared-error criterion,
leading to a weighted-least-squares estimate of the constant. An additional measurement
could be incorporated in the estimate by repeating the computation with (k+1) terms, but
it is possible to get an identical estimate using a recursive weighted-least-squares
algorithm that sums the prior estimate and the measurement update with suitable weighting.

If the variable to be estimated is not a scalar constant but a vector that is vary-
ing in time, this algorithm can be extended to account for the passage of time and for
an underlying linear stochastic dynamic process, resulting in the discrete-time Kalman-
Bucy Filter, often shortened to Kalman filter. The equivalent continuous-time Kalman
filter is obtained in the limit as the time interval between samples approaches zero.
The extended Kalman filter is, in effect, a neighboring-optimal estimator, combining
linear measurement updates with nonlinear observations and propagation of the state. The
optimal predictor uses the system model to project current optimal estimates ahead in time.
These filters and predictors can be employed to provide the optimal estimates required
for stochastic optimal control.

Leagst-Squares Estimates of Constant Vectors

Constant vectors can be treated as easily as constant scalars, so we begin with the
linear observation equation,

bz = HAX + An (58}

where the constant vector, Ax, has dimension n, the measurement vector, Az, has dimension
kl >n, His a (k1 X n) observation matrix, and the error vector has dimension k,. This

1
equation is analogous to Eq. (8) and (9), with H = Hx and Hu = Hw = 0.

A scalar quadratic (or megn-square) cost function of the residual, i.e., the error
between Az and the estimate, Ax, is formed:

3 = 2oz - max) T(Az - HAX)

T

|
N[~

(02782 - AzTHAX - AXTHTAz + AR HOHAR) (59)

The optimal estimate minimizes J, and it is found from the necessary condition for a
functional minimum (1], ([7]):

3 - (THax - HAZ)T = 0 (60)
9ax

Solving for Ax, the least-squares estimator is written as

ax = 7w " aTaz (61)

No reference to the statistical properties of Az is made in this equation. A solution
can be found with kl = n; however, for averaging to occur, kl must be greater than n.

To verify that Eq. (61) averages the measurements, assume that Ax is a scalar and
that Az, = Ax + Ang, k = 1 to k;. Then H is a (k; x 1) matrix of ones, and (H'H) ' = 1/k,.

The product HTAE merely sums the measurements, which are divided by kl to produce the
estimate.

Now suppose that some measurements are better than others, i.e., that the statistics
of An vary from one element to the next. If each scalar residual is normalized by the
magnitude of its expected value, ey the normalized residual vector can be expressed as

N{Az - HAi), where N is a diagonal (k; x k,) matrix with elements 1l/e,. The correspond-
ing cost function is

3 = 2z - man) TN (AzZ - HAR)

= %(Ag - uax) TR LAz - HAR)
= 202"’ Yz - a2TR tuax - axTHTR 1az + axTHTR tHA%) (62)
R = (NTN)-1 is a diagonal matrix with elements ekz, i.e., a matrix of the expected squared

errors of the residuals. Differentiating with respect to Ai,
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and the weighted-least-squares estimator for constant 4x is

ax = TR 1a)y "taTR g (64)

This equation is a "batch processing"” algorithm, in that all measurements are pro-
cessed at once to provide the estimate. If new measurements become available, they can
be incorporated without a complete recalculation of the prior result. Given k1 measure-
ments and the resulting estimate,

bz, = H,Ax + 8&n; (65)
S\ To-1l. ,-1.T -1
bx, = (H]R;7H;) "HIR; "4z, (66)
The new measurement, 4z,, with dimension k,, is
Az, = Hy0x + An, (67)

R, is a (k2 X kz) matrix containing the expected squared errors in the new measurement.
The cost function for all (k1 + kz) measurements [Eq. (62)] can be partitioned as

-1

. e [P0 (bz) = HyAx))
J = [(8z; - HAX,) (bz, - HAX,)") -1 . (68)
] R, (82, = HyAX,)
and the estimate following incorporation of all the data is derived from BJ/BA_;S2 = 0:
I e | T -1, ,~1,.T -1 T -1
8%, = (HyR;7Hy + HOR,TH,) T(H(R, 782, + H R, 7A2,) (69)
Defining
_ T,-1,.. -1
P, = (H]R,"H) (70)
and using the matrix inversion lemma [6],
-1 T -1, -1 _ - T T -1
(Py" + HyR,'H,) = Py - PiH, (H P H, + Ry) "H,yPy (71)
Eg. (69) can be written as
A s T T -1, .2
Ax, = AX; = PIHO(H P H) + Ry) ™ H A%
T T -1 T,,-1
+ P1H2[I - (H2P1H2 + R2) H2P1H2]R2 AEZ (72)

Noting that (M, HT + R,) 1(H,PH] + R,) = I, Eq. (72) can be reduced to
A oA T T -1 _ -
Mk, = ARy + PH) (HyPIHD + Ry 1(Az, - H M)
= Ax) + R, (8z, = H,8%,) (73)

where K2 is the recursive weighted-least-squares estimator gain matrix. Although the

derivation is complex, the result is quite simple, because the new estimate is based on
the 0ld estimate plus a gain matrix times a residual. Equation (73) looks like a digital
filter, and measurements taken over a period of time could update the estimate as they
occur. Redefining k as a time index and letting the observation vector at time k have r
components, the recursive mean-value estimator is

Ak, = bk _y + K (8z, - HAx ) (74)

with
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Ky = Pyhy (P gl + Ry) (75)
and

s _ 5=l T~ -1

Pk (Pk-l + HkRk Hk) (76)
Kk is an (n x r) gain matrix, while ﬁk is an (n x n) matrix that represents the estima-
tion error at the kth sampling instant.

Keep in mind that these equations estimate a constant vector, and the gain matrix
normally gets smaller as more measurements are made. If least-~squares estimation is to
be applied to the states of a dynamic system over a period of time, the estimated quanti-
ties may not be constant, and a vanishing gain matrix will not account properly for the

information contained in later measurements. There must be mechanisms for including
effects of the system model and its inputs (both controlled and uncontrolled) on Agk and

ﬁk. Before doing this, however, more substance must be given to statistical descriptions
of the random processes which contribute to estimation uncertainty.

Probability, Random Processes, and the Propagation of Uncertainty

Probability theory describes the relative frequency of occurrence of a variable's
numerical values. For a real scalar variable, x, the probability that its numerical
value lies in the range (-~,+») is one. The probability density function of x, p(x),
indicates which numerical values are more (or less) likely than others, and its integral
over (-«,+») is one:

_/}ﬂx)dx =1 (77)

The expected value (or expectation) of a function of x, g(x), is the integral of the
product of g(x) and p(x) over the range:

Elg(x)] = fg(x)p(x)dx (78)

The expected value of x is its mean value, m»

E(x] = !xp(x)dx =m (79)

while the expected value of the squared error between x and m, is its mean squared error
or variance, ox2:

El(x - mx)zl = _J/}x - mx)zp(x)dx = ox2 (80)

The square root of the variance, Oyt is the standard deviation of x from m,.

A gaussian (or normal) probability density function is defined completely by its
mean and variance,

2 2
p(x) = 1 e-(x - m) /20,

\/21r ox

and it reaches its maximum value, i.e., the point of maximum likelihood, when x = m .

(81)

The corresponding multivariate gaussian probability density function of the n-component
vector, x, is

1 x-mTlx - w2
n/2 1/2

p(x) = (82)

(2n) 1P|

where m is the vector of mean values, P is the (n x n) gcovariance matrix of x, and p| is
its determinant. The diagonal elements of this symmetric matrix are the variances of the
components of x, and the off-diagonal covariances represent the degree of correlation
between the components (-1 < Piy <1):
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C e e e e e e e e e e e ozx
r - n
' A scalar random process, or stochastic process, is an ensemble of random continuous- {

time functions, xi(t), i=1 to =, each of which has a probability function, p(xi,t), that
may vary with time. The value of xi(t) at a specific time, t, is a random variable. The

statistics of a random process are formally averaged over the entire ensemble of trials,
although it is understood that an infinity of trials is rarely (if ever) available. If
ensemble. statistics do not vary in time, the process is stationary; if ensemble statistics
and time-averaged statistics are interchangeable, the process is ergodic.

The significance of the gaussian probability density function is that it characterizes
a large percentage of naturally occurring random variables, and it is particularly amenable
to stochastic analysis and computation. One reason that the gaussian distribution is so
common is that random variables often are the sum of many random effects, and, by the
central limit theorem (7], the distribution of such a sum tends to become gaussian as
the number of effects becomes large no matter what the distributions of the original
effects. As a corollary, gaussian inputs to linear systems produce gaussian outputs;
because each random process is fully characterized by its mean value and covariance
matrix, analysis can be based upon these guantities rather than more complex characteri-
zations. Mean values, m(t), can be propagated by deterministic linear dynamic equations,
e.g., Eq. (7) and Eq. (24), and covariance matrices, P(t), can be propagated by equivalent
difference or differential equations, to be presented below.

Stochastic optimal control normally deals with vector processes that are nonstation-
ary, i.e., mean values, covariances, and any other pertinent statistical measures are
likely to vary in time. A process can be said to have reached stochastic equilibrium
if all statistical measures are stationary. The assumption of ergodicity may become
important if experimental samples are used to estimate statistical parameters. Similar
definitions can be applied to random sequences, the discrete-time equivalents of random
processes.

The frequency content, or time correlation, of a random process is an additional
statistical measure of importance. If the power spectral density, or frequency spectrum,

g

f of a stationary process has a constant value, Wo, over all frequencies in (- < w < +=),
the process is called white noise [7]. As a conseguence, two samples of continuous-time
white noise, x{(t} and x(t - 1), are completely uncorrelated unless 1 is identically zero;
the corresponding autocorrelation function,

‘ Ve (T) = Elx(t)x(t + 1)] (84)

is a pirac delta function of 1, (1), scaled by ¥_ [7):"
Ve (1) = ¥ 8 (D) (85)

By analogy to optics, a stationary random process whose power spectral density varies
with frequency is called colored noige. The corresponding autocorrelation function
typically consists of a symmetric combination of exponential and sinusoidal functions
of 1, with maximum (finite) value at 1 = 0.

There is an essential quandary associated with continuous-time white noise that does
not carry over to discrete-time white noise. Because the variance of a stationary process
equals its autocorrelation function at 1 = 0, continuous-time white noise with finite
power spectral density, ¥ _, has an infinite variance [Eq. (85)]. Nevertheless, just as
response to an impulse fuflction can be well-defined and useful in deterministic systems
analysis, the response to white noise has significance in stochastic analysis. One reason
is that system dynamics normally cause adjacent continuous signals to be correlated, so
the output autocorrelation function is not singular. The variance of a stationary random
sequence also is defined by wxx(O): however, wxx(O) = Wo {without the delta function) for

discrete-time white noise, so its variance is finite [12]. In the "digital" (discrete-
time) filter developments which follow, the white random sequences that are assumed to
drive the system and corrupt the measurements are represented by covariance matrices;

for "analog" (continuous-time) filters, white random processes are represented by spectral
dengity matrices.

* The Dirac delta function is infinite at T = 0 and zero when T = 0. Its integral over
all time is one.
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. The propagation of uncertainty is introduced most easily for the linear discrete-
time case. Beginning with Eq. (7), it is assumed that the controlled input, Agk, is

known and that the disturbance is a time-varying random sequence with covariance matrix,
Qi, and zero mean value. The mean value is propagated by the equation itself,

Efdx, ] = BlO 8%, ) + T, ;8w _, + A _ 2w ] (86a)

or

b, =0 ,Am 4 Ty (8w o+ A (0) {86b)

The covariance propagation is defined by squaring Eq. (7) and taking expectations through-

out. The Agk terms drop out, as there is no uncertainty in them, to yield {

T _ } . ,
E[(AX - Am), (Ax = Am))1 = E{[@k_l(A§ M)y A jdw )] \

- T
(0 (8% = dmy ) + A 0w 17 ) (87a)

or, with Pk = E{(ax - Ag)k(A§ - Ag):],

- T T
k= f-1Px-1%-1 * Ak-19%-1%%-1

>

T
O -1Pk-1%-1 * %-1 (87b)

The expected value of (4x - am), 8%, 4 is zero because the disturbance is white noise

and, therefore, not correlated with any other variable. The covariance matrix of the
"process noise" can account for random parameter variations as well as disturbances,
following earlier comments.

¢ and T are functions of the sampling interval, T; as T + 0, the propagation equa-
tions for continuous-time models are obtained. For small T,

Am = (T + F TIAm _, + G _ TAW 4 (88)

In the limit, (Am - Am _,)/T + &m(t), Am_, > Am(t), and Aw _, > bu(t), leading to

Am(t) = F(t)am(t) + G(t)Bult) (89)

Similarly, Eq. (87b) is

P, - P Q
k" Pr-1 . T T k-1
T = F_1Pro1 * PraaFre1 * Fr-1Pr-1Fi-a1T Y T (90)
As T + 0, this becomes
T
B(t) = F(L)P(t) + P(L)F(t) + Q(t)6(t-1) (91)

Equations (86) and (87) provide the mechanisms for incorporating system dynamics in
the discrete-time weighted least-squares estimator derived earlier, while Eq. (89) and
(91) do the same for the continuous-time case.

Kalman Filters and Predictors

A filter uses past and current measurements to estimate the expected value of the
current state. A predictor uses the same information to estimate the expected value of
the future state. A smoother uses the same information to estimate the expected values
of the current and all past states. In the context of stochastic optimal control, we
want to know where the system is and where the system (or its target) is going; filters
and predictors provide information that is relevant to feedback and command, and it is
these that will be discussed presently. Smoothers provide more precise data processing
because all interior estimates are based upon future as well as past and current measure-
ments. They should be applied in "post-flight" trajectory determination, evaluation,
calibration, and analysis; however, they have little application to "real-time" control
and are not treated here.

_‘_______-—M
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The linear discrete-~time Kalman filter performs five functions in recursive fashion:

1) State Estimate Extrapolation (Propagation)

2) Covariance Estimate Extrapolation (Propagation)
3) Pilter Gain Computation

4) State Estimate Update

5) Covariance Estimate "Update"®

e gr——— - -

The first two of these were introduced in the previous section, while the last three

follow directly from weighted-least-squares estimation. Given the state estimate from a
previous iteration, (1) uses the physical process model to propagate the estimate of the
state mean to the next sampling instant without regard to new measurements; (2) does the
same thing for the state covariance matrix, assuming that "process noise"” of known
covariance is forcing the system. The result enters the computation of the optimal gains
for incorporating new measurements. The filter gain computation (3) weights prior knowl- i
edge of measurement error covariance with state estimate covariance on a purely statisti-

cal basis, i.e., the actual measurements have no effect on the gain computation. These
measurements correct the state propagation in (4), adding the product of the gain matrix

4 and the measurement residual to the physical estimate of the state provided by (1). A

similar correction is made to the covariance estimate; however, actual measurements have

no effect on the covariance "update" (5). It is assumed that the measurement errors are
described by random processes with known covariance.

i

The five equations corresponding to these functions are summarized using ( ) to de-
note an estimated (expected) rather than actual value, the subscript to denote the sam-
pling instant, (-) to indicate an estimate computed before the measurement is incorporated,
and (+) to indicate the fully updated estimate [7]):

State Estimate Extrapolation

A% (=) = @ 8% (+) + T, 8 _, Ax_(+) given (92)

Covariance Estimate Extrapolation

A

Pk(-) = Qk—lpk—l(+)¢k-l Qe P°(+) given (93)

Filter Gain Computation

- 5 (-vulrn B 3T -1
Ky = Py (FVHIH B ()H. + R ) (94)

State Estimate Update

Ax (+4) = Mgy (=) + K [bz, - H A%, (=) (95)

» Covariance Estimate "Update”

% P, (+)

| = (I - KH )P, (=) (see [7]) (96)

1

A1 -1, .-
[Pl (~) + HR TH ]

The filter described by Eq. (92) to (96) is optimal only if Ok, Fk' Hk’ Qk' and Rk are

known precisely. These matrices may be time-varying, i.e., varying from one sampling
instant to the next. Even if they are constant, there is a starting transient associated
with the filter computation. In other words, if the filter is not initialized at stochas-
tic equilibrium, it is a time-varying filter. With constant system and covariance

matrices, once stochastic equilibrium is reached, Pk(+) = Pk_l(+), K, = constant, and the

optimal estimate can be made using Egq. (92) and (95) alone. The optimal filter's structure
and performance depend on the definition of the observation vector; for a given state
vector, changing the number or quality of the measuvrements affects the complexity of
computations and the precision of state estimates. Multiple dissimilar measurements can
provide a degree of "analytic redundancy" [20], allowing the full state to be estimated
even though measurements have been degraded or lost. In such case, the optimal filter

is defined by these five equations, but the definitions of Az, H, and R are altered to
account for changes in the measurement. Requirements for observability must be satisfied
in any event.

Optimal prediction of the future state is based upon extrapolation of Aik(+) to a

future time using the dynamic system model [Eq. (92)]. The prediction time interval need
not be the same as the sampling interval used for estimation, as long as ¢ and I' are
redefined accordingly. From Eq. (93) it should be clear that the uncertainty in the pre-
dicted state is greater than that of the current state estimate.

The number of discrete-time filter equations coyld be reduced to three by substitut-
ing Eq. (92) in Eq. (95) and Eq. (93) in Eq. (96). P (=) is no longer available for the

———
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Kk computation; however, (7] presents a suitable alternate form:

~ T -1
K, = Pk(+)HkRk (97)

Although the three-equation formulation does not necessarily involve less computation,
it provides a good starting point for obtaining the continuous-time Kalman filter using
the limiting arguments of the previous section:

State Estimate Extrapolation and Update

AX(E) = F(t)AX(t) + G(£)Au(t) + K(t) [Az(t) - H(t)ax(e)], 8x(t) given  (98)

Covariance Estimate Extrapolation and “"Update™

B(t) = F(L)P(t) + B(LIET(4) + Q(t) - B(ORT (DR L(HH(B)P(L),
P(t) given (99)

Filter Gain Computation

K(t) = B()ET (0 R L(t) (100)

Direct derivations of the continuous-time estimation equations contend with the mathe-
matical difficulties of "white noise" using the calculi of Ito and Stratonovich, as in
[12]) - [14]). Whereas, Eq. (92) to 96) can be solved sequentially in the order shown,

the continuous-time equations [Eg. (98) to (100)] must be solved concurrently for optimal
estimation. The general statements made earlier about discrete-time estimators apply
here as well. 1In particular, constant-coefficient systems can reach stochastic equilib-
rium with constant filter gains, leaving only Eq. (98) to be integrated for optimal
estimation. Optimal prediction is obtained by integrating Eq. (98) to the prediction
time with no further measurements, using Ax(t) as an initial condition.

Comparison of the optimal filter gain computations [Eq. (99) and (100)] with the
optimal control gain computations [Eq. (56) and (54), with M(t)=0]) reveals a mathematical
duality [l]. The filter covariance is computed using a matrix Riccati equation that is
the same as Eq. (56} with FT replacing F, HT replacing G, time running forward rather
than backward, and Q and R representing spectral density matrices rather than state and
control weighting matrices. Unlike the corresponding control gain computation, optimal
filter gains can be realized in "real time", with no knowledge of the final state. Dual-
ity allows the same computer algorithms to be applied in obtaining control and estimator
gains, and it facilitates the extension of analytical results from one problem to the other.

As shown below, linear estimators are consistent with the neighboring-optimal con-
trollers discussed earlier, but it is instructive to consider the extension of the Kalman
filter to nonlinear dynamic systems before proceeding. Because Eq. (98) serves to propa-
gate the time-varying expected value of the state using linear dynamics originally pre-

sented as Eq. (7), the estimator can be applied to nonlinear models by using nonlinear
dynamics [Eq. (1)) instead, i.e.,
x(t) = £{x(t),ult)] + K(t){z(t) - hix(t),u(t)]} (101)

K(t) is obtained from Eq. (99) and (100), with the various matrices defined as before.
The estimate obtained from this extended Kalman filter is optimal only to the extent that
assumptions regarding the statistics of inputs, noise, and states are not violated. The
performance of such filters can be improved, at the expense of increased computation, by
using statistical linearization (i.e., random-input describing functions) to characterize
the matrices in Eq. (99) and (100) [7). Furthermore, hybrid filters can be formulated to
process discrete-time measurements with continuous-time dynamic models.

If some of the parameters, p(t), of the physical process are subject to uncertainty,
the extended Kalman filter can be used to provide on-line estimation of the unknown
parameters. These parameter estimates are of value in updating control strategies as
well as st§te estimates. 1In such case, the state vector and dynamic equations are aug-
mented to include the random parameters and their assumed relationships with the remainder
of the process, and Eq. (99) to (10l) are applied as before. The estimation problem is
necessarily nonlinear even if the original physical process is linear because products
of the original states and the unknown parameters, i.e., the new state components, destroy
the linear superposition characteristic. Thus, the sensitivity matrices, Eq. (10) to
(15), must be continuously redefined during the estimation, and the filter can be expected
to reach stochastic equilibrium only in rare instances.

Uncertainties in the initial conditions or the statistics of disturbances and mea-
surement errors also can be estimated on line, but the extended Kalman filter is not
particularly appropriate for this job. Maximum likelihood hypothesis testing provides a
better solution. In this approach, a bank of optimal estimators -- each of which is
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formulated under a different hypothesis regarding the system's initial conditions,
statistics, or parameters -- is applied to the measurements, and the estimate whose
likelihood of correctness is greatest determines which hypothesis is to be accepted [9].
The instantaneous state estimate can be obtained either from the associated filter or as
a sum of all the filters' outputs, each weighted by its probability of correctness.

An estimate of the probability (or likelihood) that each hypothesis is correct is
propagated from one instant to the next using Bayes's Rule. For hypothesis A, the like-
lihood of correctness at the kth sampling instant is estimated from the likelihood at
the previous instant,

By (A) = ak(zklA)pk_l(A) (102)

where zk represents the set of all measurements through the kEh instant and ak(zklA) is

the probability that these measurements would have occurred under hypothesis A. The
process is replicated for hypotheses B, C, and s0 on.

Maximizing the natural logarithm of the likelihood is equivalent to maximizing the
likelihood itself, and it is a simpler computation. With the gaussian assumption
(Eg. (82)]1, the logarithm of ak(zk A) is a quadratic function of the residual, ek[-],

and the multiplication of Eq. (102) is replaced by addition:

Enlp (M)] = O [(z -H X ) |A] + Lnlp, _, (A)] (103)

In principle, an infinite bank of filters would be required to account for a continuum
of hypotheses; in practice, a small number of filters (on the order of a half dozen or
less) may be adequate to track the most likely hypotheses.

Contrary to the assurances implied by optimality, the estimates produced by optimal
estimators may diverge from reality for a number of reasons, e.g., modeling error or
uncertainty, incomplete observability, and numerical error (roundoff, truncation, or
ill-conditioning). Methods of limiting divergence include enhancement of the estimator's
"robustness” by altering its assumed noise statistics or structure [21] - [23], integral
compensation of filter residuals [24], and use of square-root or "U~D" algorithms to
compute filter gains [25] - [26]). Broad discussions of causes of divergence and possible
solutions are contained in [7] and ([8].

STOCHASTIC NEIGHBORING-OPTIMAL CONTROL

The Prototype for Linear-Quadratic-Gaussian (IQG) Control

At this point, we can return to the closed-loop control problem, as methodologies
for obtaining optimal estimates of the state from the measurements have been specified.
Figure 5 presents a schematic of a stochastic neighboring-optimal control law that has
three parts: the nominal trajectory and control generator, a linear-optimal filter, and
the linear-optimal feedback control logic. The first part results from prior nonlinear
optimization and is scheduled as discussed in a previous section. The second part sub-
tracts the nominal measurement from the actual measurement to obtain the perturbation
measurement, Az(t), which is the input for a linear estimator. The resulting perturba-
tion estimate, Ax(t), is multiplied by the feedback gain matrix, C(t), to produce a
linear-optimal control perturbation, Au*(t). This is summed with the nominal optimal
control, gﬁ(t), that drives the dynamic system. If the neighboring-optimal estimation

and control gains are based upon linear models driven by gaussian processes and controlled
to minimize quadratic costs, a linear-quadratic-gaussian (LQG) control law is the natural
outcome of the design.

The nominal trajectory may be altered to achieve a continually changing objective,
e.g., rendezvous with or impact on a moving target. Determining where the target is or
will be at some future time requires additional filtering or prediction. Whereas linear
estimation of the controlled system's deviation from the nominal path is consistent with
neighboring-optimal control, optimum estimation of the target's state may require non-
linear processing. Nevertheless, practical considerations may dictate a simpler approach.
For example, a proportional navigation (constant or compensated line-of-sight) scheme
may use a linear estimator, absorbing nonlinear target dynamics in the assumed process
"noise” with little degradation of accuracy but great reduction in computation.

The combination of target tracking and estimation of the controlled system's state
introduces the more general notion of an estimator (or bank of estimators) whose order
is not the same as or whose structure differs from that of the controlled system. The
deterministic neighboring-optimal controller (Fig. 4) introduces no new dynamic modes,
because the feedback law is a linear combination of the actual states; therefore, the
closed-loop dynamic system is described by an nth-order differential (or difference)
equation. A full-state linear-optimal estimator is itself an ntb-order differential
(or difference) equation, so the prototype stochastic closed-loop system is of order 2n.
Adding a target estimator further increases system order.
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Alternatively, some characteristic of the controlled system may be handled best by
increasing the order of the estimator. For example, coherent vibrational or aeroelastic
modes may not require active control yet may degrade the utility of rigid-mode motion
sensors. Increasing the assumed measurement noise decreases the bandwidth of the optimal
filter, possibly resulting in unacceptably low phase margins in the closed-loop system.
The classical control approach of notch filtering provides more precise control of phase
characteristics, and including known resonant modes in the optimal filter has similar
effect.

There also could be good reason to employ estimators with order less than n. Some
measurements may be effectively noise-free, and full- or augmented-state estimation may
be unnecessary. Reduced-order or decoupled estimators then would provide suitable al-
ternatives for practical implementation, as discussed in a later section.

Certainty Equivalence and Separation

Invoking the certainty-equivalence principle or the separation theorem allows optimal
control and estimation gains to be derived independently; however, the limitations of
these concepts must be noted. As summarized in a number of this chapter's references,
"certainty-equivalence” indicates that the control gains for the uncertain (stochastic)
system can be computed as if the feedback information were certain, i.e., as if
A%(t) = Ax(t). "Separation” addresses the computation of estimation as well as contr..}
algorithms. When these synonymous principles apply, the expected value of the stochzuti.
system's cost function is minimized with control strategies that take no account of es..
mation error and estimator gains that are unaffected by control strategy.

The separation theorem does not apply to all control problems, and even when condi-
tions for its application are met, there is no guarantee that stability, response, and
sensitivity characteristics will be satisfactory. The separation theorem applies to the
LQG problem, including the stochastic neighboring-~optimal controller presented here, and
to systems that are nonlinear in the control or the observation [19). If second-degree
perturbation effects are considered in neighbnring-optimal control, the separation theorem
does not apply [27]. The nonlinear terms introduce multiplicative disturbances and noise
that couple the actions of control and estimation gains in minimizing the expected value
of the cost function. Multiplicative disturbances are akin to parameter uncertainty,
leading to another circumstance in which the separation theorem does not formally apply:;
mismatch between actual system dynamics and those assumed in the estimator.

Of more fundamental concern is the possibility that the LQG controller may have
negligible tolerance to parameter variations [28]. This problem is discussed in the next
section, where it is shown that enhancing the robustness of the estimator at the expense
of increased estimation error restores the system's stability margin.

LINEAR, TIME-INVARIANT (LTI) SYSTEMS AND STOCHASTIC EQUILIBRIUM

To this point, it has been assumed that the physical process to be controlled is non-
linear and that the associated linear perturbation model has time-varying coefficients.
Stochastic equilibrium is unlikely to occur because input statistics and parameters may
be continually changing. Nevertheless, the salient features to be addressed in control
system design often can be captured by linear, time~invariant (LTI) models.

In many cases, the nominal state and control [§N(t) and HN(t)] are determined with-

out regard to optimality, deriving instead from physical conditions of nonlinear equili-
brium determined on an ad hoc basis. Deviations from this nominal condition, including
"retrimming” to a new equilibrium, may be small enough to be well approximated by linear
models. Furthermore, if the system parameters, p(t), and the equilibrium are slowly
changing, the transient behavior and stability characteristics of the process can be
portrayed by a succession of time-invariant models.

Even if an LTI model provides an adequate description of system motions and observa-~
tions, the previous sections clearly show that optimal control and estimation gains are
time-varying. The gains, C(t) and K(t), depend on the Riccati matrices, P(t) and P(t),
vhich are solution variables of differential equations. In both cases, the time variation
of gains takes the form of a transient which begins at the integration starting point,
i.e., the final time for control and the initial time for estimation.

A simple scalar open-loop example illustrates that the time scales of the Riccati

equation transients often are comparable to that of the associated dynamic system. With
time constant, 1, the unforced scalar system is

sR(t) = -(ax()  , Bx(t)) = bx, (104)

In the limit, as control and observation weightings become large, the homogeneous solu-
tions to Eq. (56) and (99) are,

2(t-tf)/r
p(t) = pltgle e te 2 2t (105)
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P(t) = p(t le Pty St St (106)
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respectively, and the time constants for solution are 1/2 in both cases. Thus, if
(tf-to) is large compared to T, and if the p2 terms introduced by control and observation

are stabilizing, the control and estimation Riccati solutions are essentially at equili-

] brium for the major part of the interval. The period following the estimator gain tran-

sient and preceding the control gain transient is one of stochastic eqguilibrium, i.e.,

the coefficients of the dynamic system and the stochastic optimal controller are constant.

1 As a practical matter, it may be acceptable to employ constant gains throughout the
interval in order to simplify the control implementation and its analysis.

LTI controllers and estimators are discussed in the remainder of this section, with
q the particular objectives of describing some of their fundamental properties, as well

as some of the structural and modeling alternatives that can be employed in solving par-
ticular problems. It should be recognized that although the design process is linear,
the choices of weighting matrices and logical structures often are dictated by unmodeled
nonlinearities, e.g., the operating ranges of sensors and control surfaces, the needs and
opinions of human pilots, and so on. Furthermore, not all random processes are gaussian,
and not all error sources are random. As a consequence, stochastic controller design
remains an iterative process, in which evaluation of interim results by computation and
analysis plays an important part.

Design of Continuous-Time Linear-Quadratic (LQ) Regulators

An LQ regulator is a linear-optimal constant-coefficient controller that forces an
LTI system to a zero or non-zero set point. In the context of the original problem, a
zero set point lies on the nominal nonlinear equilibrium trajectory, lgu(t), gN(t)],

while a non~zero set point connotes some deviation, [Azp, Agp] from the nominal equili-

brium. Both alternatives are treated by defining the state and control perturbations
from the set point,

AX(t) = Ax(t) - bx, (107)

AY(t) = Au(t) - A, (108)

and minimizing the quadratic cost function
o M| |a¥t)

_/-IAET(t)AﬁT(t)l N at (109)
o M R| |Ad(¢)

[
[]
N

subject to the dynamic constraint
AX(t) = FAX(t) + GAU(t) (110)

’
From Eq. (54), the continuous-time LQ regulator is

ay(t) = -R-I[GTP + MT] A% ()

= -CAX(t) (111)

where P is the (n x n) equilibrium solution of Eq. (56) (with arbitrary initial conditions)
and C i8 the (m x n) constant control gain matrix. The set point is reintroduced to the
controller by substituting Eq. (107) and (108) in Eg. (111):

d

A = A - Ax(t) - A 112
i u(t) Uy Clax(t) 591 (112)
i% If the set point represents the desired value of an m-component output vector, Azp. as
ri in Eq. (29) (i.e., k = m), Agp and AEp are algebraic functions of A!p and any constant
;‘ disturbance, A!p,
 §
Alp = -SllLA!p *+ 518y, (113)
r Agp = -521LAgp + SzzAxp (114)
} where S is partitioned as
-1
i | S;;y = F (=68, + 1) (115)
‘ s., = -F lgs (116)
| 12 22
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S22 = (FH,F

G + Hu)
The deterministic LQ regulator (Fig. 6) can be expressed as
Bu(t) = Cply, + Cydx(t) + Cpbw, (119)

with the forward, feedback, and disturbance gain matrices defined by substituting Eq.
(113) and (114) in Eq. (112):

Cp = (S, + CS,) (120)
Cy = -C (121)
Cp = =(5,, +CS;)L . (122)

Once C is determined, CF and CD become deterministic functions of the system. Con-

versely, C is unaffected by the choice of set point or the presence of disturbances.
The LQ regulator has zero "hangoff" from the output set point, Axp, if system parameters

are known and disturbances are measured without error; however, parameters often are
uncertain, disturbances rarely are measured, and steady-state errors are likely to occur.

Stability of the open-loop LTI system® is dictated by the eigenvalues (or roots) of
F, which are the n complex-valued solutions to the characteristic equation,

B (8) = |sT - F| =0 (123)

The eigenvalues express the natural frequencies, damping ratios, and time constants of
the system's normal modes of motion [6]. Asymptotic stability is guaranteed if all the
eigenvalues of F have negative real parts.

The characteristic equation of the closed-loop system

Ax{t) = (F + GCplax(t) + GCFAXp + (L + GCD)A!p (124)

which results from using Eq. (119) as the control law is

8o (8) = |sI - (F + GCB)I = 0 (125)

Regardless of the stability of the open-loop system, the deterministic continuous-
time LQ regulator guarantees closed-loop stability if the following four conditions are
met [4):

l) R is a positive definite matrix

2) (9 - MR™IMT) is a positive semi-definite matrix
3) [(F - GR-IMT), (Q - MR-lMT)sl is an observable pair
4 [(F - GR-*T), G] is a stabilizable pair

This stability result assumes that the proper F and G are used in the calculation of C;
nevertheless, the control law has been shown to be remarkably tolerant to parameter
variations, which effectively change the gain and phase characteristics of the multiloop
system. The LQ regulator is shown to provide :60° phase margin and infinite loop gain
margin, as well as guaranteed stability with 50% gain reduction, for scalar and multi-
input controls in [4] and [29], respectively.

The locus of roots for the LQ closed-loop system can be expressed as a function of
the quadratic welghting matrices if we consider the 2n eigenvalues of the closed-loop
LTI system and its adjoint [Eq. (51) and (52), with constant matrices]. The eigenvalues
are solutions to the equation

Bgpa(s) = |sI - F| =0 (126)

where, from Eq. (51) and (52),
(r - &) (-er™1GT)
F = T (127)
(-g + MR Ty (-F + cr™IMT)

* A system is asymptotically stable if all components of the state approach their
equilibrium values as t + =. Tf one or more state components diverge, the system is
unstable.




3-21

The eigenvalues of F are found to be symmetric about the imaginary axis, i.e., half have
negative real parts and half have positive real parts. 1f the four necessary conditions
described above are met, the stable (negative) eigenvalues describe the 1Q closed-loop
system whether or not the open-loop system is stable and independent of the magnitudes
of Q, R, and M. The right~half plane eigenvalues describe the adjoint system, which is
stable for time running in reverse. Put another way, the n stable eigenvalues of F are
the eigenvalues of (F + GCB), which are solutions to Eq. (125).

The asymptotic behavior of the closed-loop roots as R approaches infinity or becomes
vanishingly small are of interest. In the latter case, the "cost” of control is "cheap”,
so the speed of response is rapid. For scalar control and full state feedback, [3] shows
that p eigenvalues approach the transmission zeros of (sI-F)~1Gg as R becomes small, where
p is the number of zeros. The remaining (n-p) eigenvalues go to infinity in a Butter-
worth configuration, described in [3]); thus, the corresponding modes become very fast.
Similar asymptotic behavior is experienced with multiple controls.

As R approaches infinity, the cost of control increases, so0 a "minimum control
energy" solution is obtained in the limit. If F is stable, the minimum-energy solution
is no control at all; C approaches zero, and all eigenvalues approach their open-loop
positions. If one or modes of F are unstable, C cannot go to zero and still guarantee
closed-loop stability; the minimum-energy control forces the unstable roots to their
left-half-plane "mirror images" and allows the stable roots to approach their open-loop
values.

The LQ regulator may be unduly conservative in the case of very unstable open-loop
roots because it tends to make the corresponding closed-loop modes very stable, even with
minimum-energy control. Ad hoc gain reduction (within the 50t limit) can reduce excessive
stability margin. As an alternative, a prescribed degree of reduced stability could be

achieved by including e2at' a < 0, in the integrand of the cost function [Eq. (109)].
This is equivalent to computing gains for a system matrix (F + al) (4] that is more stable
than the actual matrix, F.

The quadratic weighting matrices (Q, M, and R) can be selected to achieve various
purposes, e.g., state-control perturbation tradeoff (l], pole placement [3], output
regulation [3), and implicit model following ([30], as well as neighboring-optimal control.
All of these options produce control laws described by Eq. (119) and Fig. 6. The quad-
ratic integrand of Eq. (109) is normalized to maximum allowable mean-square values of the
state and control by specifying the diagonal elements of Q and R to be the inverses of
these maximum values (M and the off-diagonal elements of Q and R are zero). This is an
effective means of adjusting the speed of response and the relative magnitudes of state
and control perturbations, but it has relatively weak effect on overshoots in the tran-
sient response. Overshoot can be addressed using state-rate weighting [31), in which

a term of the form, A;TQiAg . i8 included in the cost function. From Eq. (110), the
corresponding increments in state, cross-product, and control weighting are:

AQ AM Fr
= Qs [r G]
aMmT AR et | X

T T
r Qil F Qic

= (128)
cTo;r 6706
Output or command weighting,AgTQyAg, is obtained in similar fashion using Eq. (8),
8Q  8M HIQny Hzoyﬂu
anT ar| Hzoyﬂx HEQYH“ (129
For constant set point,
A§ = H, (FAX + GAY) (130)

ocutput rate weighting can be specified by analogous manipulations.

The closed-loop system can be forced to be dynamically similar to a model]l system of
order n,

4 A
Agn - PHAEM (131

by specifying that the mean-square error between modelled and actual state rates be
minimized. The implicit model-following weighting matrix is
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T _ T
AQ M (F - R0, (F - ) (F - FT0 G

- (132)
aMT AR cTQy(F - Fy) GTQ,G

where Q" weights state-rate errors. The quadratic cost function [Eq. (109)] can be de~

fined as an aggregate of the various weighting types, the only restriction being that
the net values of Q, M, and R satisfy the four conditions for stability.

If reduced-order control of low-frequency mcdes is the primary goal, or if control
actuator rates are limited, it may be desirable to restrict the bandwidth of control
outputs. These objectives can be accomodated by adding a control rate penalty to the
cost function,

® o M o A%
3=3 / [Az'r auT A§T] M R 0 83| + aiRpai ) at (133)
o 0 0 R A

2

and augmenting the dyna@ic system to include control actuator dynamics, as well as a
new control variable, AV:

IXee
e |

Q

=g
1%
o

a
= + Av (134)

[

g2
=]
o
o>

e
7]

There are two cases of interest. 1In the first, the linear dynamics of the actuator
are significant: D, contains the time constants of the actuators and possible coupling

between them, D: reflects loading of the actuators by the state variables, G: = - Du'

and A§ is the commanded value of control position, i.e., A§ 4 Agc. The cost function is
put in standard form by substituting the lower rows of Eq. (134) for A§ in Eq. (133), and
the perturbation control law becomes

AU, (t) = —C,8%(t) - C,AU(t) (135)

1

The term Ag(t) could be obtained from measurements of control position, or it could be
constructed by integrating the lower rows of Eq. (134). In the second case, actuator
dynamics are negligible; then D: = Du =0, 63 = I, and A§ £ Aﬁ. The control rate is
is commanded, and the IQ regulator is

BU(t) = CiaX(t) - C,AN(t) (136)

Taking the Laplace transform and performing minor manipulation

1

al(s) = (1 + c,) "l a¥(s) (137)

Because it is a "strictly proper rational matrix" (more poles than zeros), (sl + Cz)—1

can be recognized as a low-pass filter matrix. The controller attenuates high frequency

components of Ag(s), which in turn reduces the feedback from higher order modes, lessens
disturbance and measurement noise effects, and smoothes the commands to control actuators.
Note, however, that Eq. (136) and (137) describe a perturbation controller; changes in
the set point are transmitted without filtering, as in Eq. (112).

Control rate weighting is seen to change the structure of the LQ regqulator, adding
m integrators as part of the control reconstruction or low-pass filters. Integral compen-
sation also can be added explicitly, providing an "autotrimming” feature that accounts
or parameter variations and bias disturbances. Pure integrals of the output vector

A; (k < m) result in infinite "D.C." (zero frequency) gain in the associated open-loop
transfer functions, reducing the low frequency sensitivity of the closed-loop system.
Also referred to as "Type 1" compensation [31], the output integrators eliminate steady-
state "hangoff" without direct measurement and compensation of disturbances.

For constant set point, the perturbation output integral is,

t
Ab(e) = al(t) + J Ay (t)dt , a%(t) = 0 (138)
o

A
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the cost function is,
{ - Q 0 M A%
Ly n
J = f [Ag’f AT A'ﬁT] o Q, 0 a¥ at (139)
° LMT 0 R AY
- -t
and the augmented state equation is
1 . -

A% (t) (r o] lax(e) G -

. = + AY(t) : (140)

A% (¢) . of |afw H

= . X =2t u
The perturbation controller takes the form,

888 = -ca%(t) - cal(t) (141)
and its Laplace transform can be written as,

Ad(s) = -Ci8X(s) - C, 0¥ (s) /s (142)
revealing the proportional-integral "Type 1" structure. Integral compensation and con-
trol-rate weighting are combined in the proportional-integral-filter ("PIF") controller,
which evidences parameter insensitivity, bias disturbance rejection, and high frequency

attenuation [32].

All of the continuous-time LQ regulators discussed here use the same solution equa-
tions to determine feedback gains and non-zero set points; hence, the criteria for closed-
loop stability, steady-state response, and root locus properties apply throughout. The
principal differences between the controllers derive from definitions of cost functions
and augmented system dynamics. Consegquently, in the discussion of digital control that
follows, it is sufficient to address only the basic LQ regulator.

Digital Linear-Quadratic Regulators

The corresponding discrete-time optimization of a quadratic cost function subject
to a linear, time-invariant dynamic constraint uses summations and difference equations
rather than integrals and differential equations. The cost function is,

~

- N
Q M Aﬁk

12 [ K, oy ]
J =z A%, OY (143)
2 —k AT ~ A,

k=0

M® R Agk

and the dynamic constraint is, from Eq. (24},

" Y Y
By 1 = ®0X%, + FAgk (144)
The discrete-time LQ regulator takes the form,
A" N\
a4, = -CAx, (145)
where the control gain matrix is (33),
c=(r+rery” (rpo + MD) (146)
and P is the steady-state solution to the discrete-time matrix Riccati equation,
ATy .o T or. T ~ T -1,.T T
Pk—l = ¢ Pko +Q (r pko + M) (R+T PkF) (r Pk® + M (147)
E
The discrete~time problem does not formally recognize the time between sampling
instants, but Q, M, and R can be defined in such a way that the discrete~time regulator

: minimizes the continuous-time cost function, subject to the constraint that the control
15 piecewise-constant between sampling instarts.* If we simply multiplied Eg. (143) by
the sampling interval, T, it would be &n Euler (rectangular) integration of the continu-
ous-time cost function [F3. (109)]), but a more precise approach is to specify that the

|
F' * In other words, the digital commands are converted to analog signals using a zero-
! order hold [3).
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cost summation be equivalent to

¢ o M| [axe)

© X+
s=1 > / axT (t) Aﬁ(t)"'] . at (148)
k=0t

M° R A'ﬁ(t)

with (tk+1 - tk) = T. Following (33]), [34] shows that Q, M, and R can be expressed as
integrals of Q, M, R, and the system equations:

~ T T

0= [ Teewae (149)
[e]

- T

w= [ [Twascn +mon]  ar (150)
(o]

- T T

R = f [R + IO (t)Qr(t) + ZMr(t)] dt (151)
]

With these definitions of the cost matrices, Eq. (145) becomes a sampled-data LQ
regulator whose deterministic closed-loop response remains close to continuous-time LQ
regulatcr response even with relatively long sampling intervals (compared to the system's
natural periods of motion). Nevertheless, the system is essentially "open-loop"™ between
sampling instants, as feedback information is processed only periodically; effects of
measurement errors and disturbances are free to grow during the interval. Under the
assumption that these effects are gaussian, Eq. (87) can be used to predict the growth
of state uncertainty, and the sampling interval can be chosen to limit the uncertainty
to an acceptable level [35]. If the uncertainty arises from parameter variations, there
may be an absolute limit on the sampling interval beyond which no optimal solution can
be found {[36]).

Design of Linear-Gaussian (LG) Estimators

Paralleling the previous two sections, we consider the estimation of the state per-
turbation about its set point, Ax_, which is specified in Eq. (113). The LTT system
model is P

AX(t) = FAX(t) + LAWI(t) ,  A¥(t,) given (152)
with Ag(t) specified by Eq. (108), and

BN () = Aw(t) - bw, (153)

A&(t) is assumed to be a white gaussian process with zero mean and spectral density matrix

Q. The controlled input, GAﬁ(t), is neglected for simplicity; it can be restored as a
deterministic factor at will. The measurement vector is

AZ = HAX + AR (154)

N2

where AE is a white gaussian process with zero mean and spectral density matrix R. The
LG estimate, Ax(t), is obtained by integrating

Ax(t) = FAX(t) + x[Az(t) - HAg(tﬂ ., bx(t)) given (155)
The state estimate relative to the nominal (zero set point) condition is [Ax(t) + ax ].
The filter gain matrix is 13

T,-1 (156)

K = PH'R_

where P is the steady-state solution of Eq. (99):

0=rp +pF + 1LY - PHTR 14 P (157)

Collecting the Ax terms, the characteristic equation of the estimator [Eq. (155)] is

Ag(s) = |sI = (F - KH)| =0 (158)

From (5], the estimator is guaranteed to be asymptotically stable if 1) R > 0, 2) Q > 0,
3) [P,(LQLT)5] is a stabilizable pair, and 4) [F,H] is a detectable pair. As hefore, it

S ——
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is assumed that the correct F and H are used to calculate K; however, asymptotic stability

of the estimate error is guaranteed if the gain and phase characteristics of the assumed
and actual systems are sufficiently close [23]. Suppose that the noise-free defect in
modeling for each observation, Azi, i =1 tor, is represented by an amplitude ratio,

Ai’ and phase angle, ¢.:

i
Az ¢,
Azactual = Aie i (159)
assumed

Stability is maintained for % < A, < = or [¢,]| < 60°.

The asymptotic behavior of the LG estimator's roots also is equivalent to that of
the LQ requlator {3). As the signal-to-noise ratio becomes large (Q >> R), p eigenvalues

approach the o transmission zeros of H(sI - F)_lL and the remaining (n - p) eigenvalues

go to infinity in a multiple Butterworth configuration. For low signal-to-noise ratio
(Q << R), the n estimator eigenvalues approach positions representing the stable open-
loop modes or the stable mirror images of unstable open-loop modes. Additional insight
can be found in [37], which shows that the filter structure partitions asymptotically
into r "fast", uncoupled first-order filters and an (n - r) Luenberger observer {38] as
measurement noise becomes small.

Although an observer is asymptotically stable, it can produce a steady error with

constant input [39], and the same is true for the LG estimator. Setting Ai = 0 and
substituting Eq. (154} in Eq. (155),

-1 N v
Afss = - (F - KH) K(HAESS + Agss) (160)

Assuming the Aﬁss = 0 and r = n, the steady-state estimate equals the actual steady-state
only if Agss = 0 or F = 0. The latter is equivalent to specifying the dynamic system to

represent Brownian motion, or integrated white noise [3]. The value of estimating the
perturbation from the control set point (rather than from the nominal value) is apparent,

for the control action should force Agss to zero, eliminating the offset error. Alterna-
A . . N : - -1 )
tives to this approach include rescaling the estimate by [-(F - KH) “KH] or using

the compensated filter [24].

There is substantial latitude for specifying the statistics of disturbance inputs
and measurement noise. 1If all components are white, gaussian, and uncorrelated with other
components, the spectral density matrices, Q and R, are diagonal. If disturbances are
instantaneously correlated with each other or if measurement errors are coupled, Q and R
are symmetric but not diagonal. If disturbance inputs are "colored", i.e., correlated
in time as in a turbulence spectrum, the dynamic equation and state vector can be aug-
mented to incorporate the assumed correlation {7]). Colored measurement noise is best
handled by defining a derived measurement,

"

AZ, = AZ - EAZ (161)

1

whose measurement noise is self-correlated by E and, therefore, is correlated with the
process noise, LAQ. The LG estimator structure then is equivalent to Eq. (155), with

Azl replacing Ag and K defined accordingly [40]. 1In addition to these alternatives
motivated by random process statistics, it is possible to consider Q and R as design
parameters which can be adjusted to achieve non-optimizing objectives, e.g., robustness
[22]. In such case, the justification for using the LG estimator rather than a more
general observer is that its stability properties arc¢ well-defined and its design
algorithms are straightforward.

This discussion carries over to discrete-time LG estimators with little modification;
furthermore, the earlier treatment of LTV discrete-time estimators is easily restricted
to the LTI case. One important distinction is that even if the continuous-time distur-

bance spectral density matrix, LQLT, is diagonal, the equivalent sampled-data covariance
matrix, AéAT, is likely to be non-diagonal (but symmetric). This occurs because states

not directly forced by LAQ are coupled to the disturbance through F and $(T), both of
which figure in the computation of A [EqG. (27)]. This coupled forcing can have a material
effect on the performance of the discrgte-time filter.

"Aliasing"” or "frequency folding" may limit the maximum acceptable estimation
sampling interval (3], [41], [42]. A sampling interval of T sec corresponds to a sampling
frequency of 1/T Hz or 27/T rad/sec. From Shannon's theorem [43], at least two samples
per cycle are required to reconstruct a sine wave of known amplitude (or phase)} without
ambiguity; hence, the dominant signal frequencies must be below 1/2T Hz to satisfy this
criterion. If signals above 1/2T Hz are sampled, they are indistinguishable from sampled
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signals below 1/2T Hz, i.e., they are "folded" into the properly defined frequency
spectrum, causing irreversible "aliasing" errors in the sampled signal. In other words,
a continuous spectrum in 0 < w < « is "mapped"” into the discrete spectrum in

0 < w(rad/sec) < w/T by the sampling process.

Troubles in estimation can occur if the spectrum of A%(t) (which is sampled every
T sec to produce Az ) has significant amplitude at frequencies beyond 7/T rad/sec. 1In
principle, one can dlStlngulSh between hlgh frequency information (contained in Ax)

and high frequency noise (contained in Ag) because the former could be modelled and
estimated; however, even the minutest modelling errors -- including the use of finite-
precision computation -- can turn the former into the latter. If the measurement origi-
nates in an "analog" sensor that either is noisy or sensitive to high frequency signals,
e.g., an accelerometer that picks up unwanted structural vibrations, a high-roll-off
analog low-pass filter should precede the sampling.

The Linear-Quadratic-Gaussian (LQG) Regulator

The LQ regqulator and LG estimator are combined to form the LQG stochastic controller.
This section summarizes continuous-time and sampled-data LQG regulators with non-zero
set points, and it presents recent results regarding the properties of such systems.

With constant control gain matrix, C, and estimator gain matrix, K, which have been
computed earlier, the continuous-time LQG control law (Fig. 7) is described by two equations:

1]

Au(t) by, (8) - COx(t) (162)

S22

AR(t) = FoAR(t) = GLCAX(t)

+

K{Ag(t) - HE[A;(t) + slexp(tﬂ}, Ax(t ) given (163)

Perturbations are measured from the nominal condition (zero set point), the disturbance
input is assumed to be unmeasured, and the deterministic control effect is introduced in
the estimator. The physical model used for estimation (FE, GE H ) may differ from the

actual system (F, G, H}, but it is assumed here that Ax is d1mens1ona11y equlvalent to
Ax. The equilibrium response matrices are computed from Eq. (116) and (118) using
FE' GE' HE' and the H and H that correspond to the commanded input, Axp. For design

purposes, it is assumed that Ay is constant; however, the actual commanded input may
vary in time. P

Substituting Eq. (162) in Eg. (7) and noting that Az = HAx + An, the 2nEE -order
differential equation which describes the LQG closed-loop system is

Ax(t) F -GC ax(t) Gs,,
= + A t
2 n ¥p(®)
Ax(t) KH (Fp - GC - KHp) | [Ax(t) -KHpS,,
0 L Ax(t ) given
+ An(t) + Aw(t) , (164)
K 0 Ag(to) given

The stability of this system is described by the roots of the characteristic equation
F ~-GC

sl -~ =0 (165)

KH (FE - GEC - KHE)

A dynamlcally equivalent description of the system, 1s obtained by replacing the state
estimate, Ax, with the error in the estimate, Ae = A; - Ax,

Ax (F - GC) .. -GC ax

AE EFE - F) - K(H - H) - (G - G)C] [FE - (Gg - GIC - KHE] e

4+ 0 e e e (166)
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If the estimator's model is exact, this reduces to

Ax {F - GC)  -GC Ax

= + ... . (167)
A 0 (F - xu)| |ae

In this case, the stability matrix is upper-block-triangular; hence, the closed-loop
eigenvalues of AXx are determined by (F - GC), and the closed-loop eigenvalues of Ag are
determined by (F - KH). This affirms that the closed-loop LQ regulator and LG estimator
error dynamics are uncoupled and stable when the actual and assumed parameters agree.*

The LQG regulator is guaranteed to be stable in the absence of parameter variation,
but unlike the separate LQ regulator and LG estimator, it is not guaranteed to be tolerant
to parameter variations. These alter the estimator error dynamics and cause them to
couple into the state dynamics, as indicated by the lower row of Eq. (166). (28] pre-
sents a simple example in which an infinitesimal parameter variation of either sign gives
rise to instability.

One might suspect that the transfer characteristics of the estimator cause the
problem, and this turns out to be the case. Each input-output pair in the estimator has
gain and phase characteristics that are affected by the choice of Q and R. Estimation
bandwidth generally decreases as measurement noise intensity increases, reducing high
frequency gain and increasing phase lag. Conversely, the bandwidth is increased by re-
ducing the assumed measurement noise or increasing the assumed process noise. From the
earlier discussion it is clear that if all the states are measured, the n estimator poles
tend to infinity as the assumed process noise becomes very large, i.e., estimator
response tends to become instantaneous [3] [37]; the remaining LQ regulator dynamics then
recover their deterministic robustness. If all the states are not measured, the (n - r)
estimator poles that approach finite transmission zeros may limit the robustness obtained
by arbitrary increase in Q. Designing the LG estimator with the assumed process noise

o(p) =g + o%e0 6T, 0 <p < (168)

where p is an arbitrary adjustment parameter and Q1 is any positive definite symmetric

matrix, is shown to restore the phase margin for a scalar control example at the expense
of decreased measurement noise rejection [22]. It would appear that if some parameters
of F and G are more likely to vary than others, selective increases in process noise of
the following form would address the problem directly:

AQ(p) = pzAFPOAFT (169)

or

o2s6c P _cTaGT (170)

AQ(p) oPoCo

where OF and AG reflect the expected variations in F and G, and Co and Po are the results

of LQ regulator design without parameter variations. (This approach remains to be
investigated.)

Recognition of the importance of gain and phase margins in multiloop systems has
led to a renewed interest in frequency domain techniques, including application to LQG
problems [45] - [49]. Partictlar attention is directed to the frequency-dependent
singular values** of various transfer function matrices in the control and estimation
loop. For example, the "return difference" in a single input-single output system is
directly related to the system's sensitivity to parameter variations. The "return differ-
ence matrix" has a similar interpretation for multiloop systems, and its maximum and
minimum singular values characterize this sensitivity. Because they are scalar gquantities,
singular values are amenable to graphical techniques, including Bode-like "frequency
response” plots., Furthermore, the minimization of quadratic cost functions is found to
be equivalent to the minimization of associated singular values [49].

The sampled-data LQG control law is most easily described by three equations:

This does not guarantee open-loop stability of the estimator, as might be desired in
preliminary testing of control logic or following partial failure of control actuators
[44). 1If the loop between the estimator and the system is broken, Eq. (164) indicates
that the eigenvalues of the estimator are defined by (F - GC - KH). Although (F - GC)
and (F - KH) are guaranteed to be stable, there is no guarantee that (F - GC - KH) is
stable. The problem is, of course, avoided if the deterministic effect of control is
not included in the estimator.

** Singular values are the square roots of the eigenvalues of the product of the matrix
times its complex conjugate transpose.
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buy = Syg0y, - cax, (+) (171)
b (7) = 6yA% | (#) - TCAX. | (#)  , Bx_(+) given (172)
A, (4) = A () + K{A_z_k - Hg[ax (=) + sle!pk]} (173)

This controller is formulated under the same assumptions employed for the continuous-time
example. Its robustness properties parallel but are somewhat more restrictive than those
of the continuous-time LQG controller, approaching the latter's stability margins
asymptotically as the sampling interval becomes small [50].

CONCLUSION

Stochastic optimal control theory encompasses a wide range of mathematical and physi-
cal principles, only a few of which could be addressed here. As must be the case in any
introductory or abbreviated treatment of a complex subject, selected facts, rules, and
examples have been reviewed, but there are exceptions, alternate methods, and special
cases which could not be included. The principle benefit to be der.ved from stochastic
optimal control theory is that it provides a systematic way of describing feasible solu-
tions that can be expanded or simplified to match the control design problem. The theory
provides the equations and algorithms which generate answers once the system model and
performance indices are specified; however, it cannot give a priori guidance as to which
indices are good and what numerical values are satisfactory. It must rely on the user's
good judgment to specify model’s and objectives properly, and it is quite literal in its
response: ask the wrong question, and it most surely will give the wrong answer. Pose
the problem accurately, and it provides a practical solution, no matter how counter-
intuitive the solution may be. The challenge in applying stochastic optimal control
theory is to match understanding of the methodology, knowledge of the system to be con-
trolled, and reasonable expectations of optimal system performance.
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DESIGN CONSIDERATIONS FOR OPTIMAL FLIGHT CONTROL SYSTEMS

F. K. Gill
Flight Systems Department
Royal Aircraft Establishment
Farnborough, Hampshire, England

SUMMARY

This paper is a contribution to a proposed AGARDugraph on
"Theory and applications of optimal control in aerospace systems".
Following a review of the several interacting factors affecting
the design of control laws for any kind c¢f Flight Control System
(FCS), the modelling problem is discussed, including accuracy
requirements for computer models of the aircraft, FCS, external
disturbances and sensor noise. The state-of-the-art in design~
ing the control and scheduling laws is surveyed and the limits of
conventional control techniques are exposed. To overcome these
limits, the use of selected nonlinear control techniques is dis-
cussed, including the concept of redundant adaptation with
safeguards.

LIST OF SYMBOLS

(n x n) matrix of coefficients for aircraft or full system

(m x m) matrix of coefficients of control signal to control surfaces

control effectiveness

input filter control parameters

closed-loop control parameters

gearing of closed-loop (i)
G, minimum, maximum and compromise values of Gi

part of Gi changed with aircraft characteristics

VICTOR gearing: Gi = Ga . Gv
error in Gi causing 1limit cycles or hazardous poor damping
error in Gi
quadratic performance function
Jeedback gains from solution to the matrix Riccati equations
model parameters

input command filter to give dead-beat response in x to X,

input command filter for desired response of y to P.
response time of closed-loop (i)

gust time constant

function used for parameter optimisation

difference signal, y - y

closed-loop error signai

pilot input command

control signal input

external disturbances

sensor noise

n-dimensional state vector

command for change in state Xy

state used in closed-loop (i)

output state vector

components of y representing primary aircraft motion
other significant components of y

model response B

control parameters

control parameters changed with aircraft characteristics

values of @ which minimise V
time constant of simplified noise filter
weight associated with i'th component of V
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1 INTRGDUCTION

The mair purpose of this paper is ' review the protaems faced L lesigning jras
cai control laws for a fuil authority flight contro. system ¥ ' . 4 Secoradary a.n
expose limitations experienced with conventional {(linear; contr o laws el 0 Lupgpe
these limitations may be reduced in future FCO.

In general, various control law design technijues are telny tevel jed by separate
yroups faced with solving particular protlems using Jifferent facicities.  The review (o
this paper is based on the particular experience of a wroup ad ik Farnbor ugh 4ndg
reflects the present but rapidly changing state-ct-the-art wi'nin this gr oup.

The design of the control laws for a fly-bty-wire [FbBW) aircraft 1s the tasic ¢
most of the discussion although reference is made, whern appropriate, . cther *ypes ¢
system. Referring tc Fig 1, we require to:

(a) selest the closed~-loop contrciler § in crder to reduce tne effwcty f
external disturbances to acceptable values ‘regulatoir problem),

(b) select the command input controller F in crder tr ottain acceptat (o ir-
craft response to a rilot command (tracking proviem);

() s=lect how F and J are varied irn order to compensate for varia®t ! no
the aircraft characteristics across the fuight and manceuvree cnvel o je, e
select the scheduling laws.

ir order to achieve a satisfactery design of the contr | and scheduling iawo, we
need to specify flying jqualities in terms of the required characteristics f the o0
{d T both apilot command and to external disturbances and sens.r nols-. We als tee
te define satisfactory medels :f the aircraft, sensors, FUU, external dusturiarnce al1
sensor noise for simulation on the computer used for desipr. and analysis puryp - ses., Tt
are discussed briefly in sections 7 and 3 as a background to the review .f jrocedurcs

used in the desipn of linear control laws, section b, and a discussion .f recent researcrh

int~ the use of nunlinear control laws, section %,

.

'y s

-

L.e o

oY o . . 1 . .
Reference is made fo many text books on classical” and medern control the ry™ ara
their application ro FUS-o,

MEVIEW OF FAMNTORD AFFECTING THE [ESTIN OF TCGNTROL LAWS
As a background, we discuss first a number of issues which impinge or the design -f
control laws and which complicate the overall gesign, analysis and assessment problem.

S Alrworthiness requirements

The jquestion of airworthiness is of greatest importance, and is discussed first.
the past, the siwnals to the control surfaces from the FCC have been limited in authorit
such that, if the control signal is incorrect, the resulting aircraft motion is not
harardous, and the pilat has *ime to disconnect the fuiled FTS8.  In many in-ser ice
systems, certain control systems have full authority and, in some future systems, ioss of
stat.ilising cortrol signals could result in loss of aircraft, eg loss of the contrcl
which statiliss~s an otherwise staticnlly unstable aircraft.

I
W
B

withi tre fi1ll authority Foo, a1 single failure may cause an undesirable and, perhays,
harardous motior., whicl. may tnen cause damage to or loss of the aircraft. A full author-
ity KO must te sesipned to automatically de*=ct and isolate all such failures btefore thne
qircraft's motion is significantly affected, sg that the average rate of aircraft loss Jdue
to 41l causes is not increased, fe between 107 and 1075 pfh {per flight hour) for a com-
t:at aireraft {n yeacetime operations and between 10-7 and 107% pfh for a transjort air-
craft. Pecognising that there are many different causes of aircraft damage or losy, some
of which are uraffected by the ¥C0, the figure associated with each cause of ¥F°U fallure
is in the region of 10-% pfh or less, depending on how the overall target is partiticrned®.
It is impossibl; to 'prove' that a system will meet such an integrity target (108 hours
equals about 10% years) and we have to rely on 'engineering' judpement based orn previous
experience and rigorous analysis in ~rder to obtain certification of full authority and
especially full time FCC.

Much attention has been and continues to be given to surviving that -:lass of fai.-
ures associated with equipment malfunctions which can be detected and survived by usiny
hardware redundancy techniques. There are, however, other kinds of failure which are not
Jetected by hardware redundancy techniques alone. One of these is associated with
inappropriate design or implementation of the flight control or scheduling laws. Juch
failures may not result in an immediate loss of the aircr:ft but, combined with the
pilot's subsequent difficulty in completing his flight task under the experienced condi-
tions, there may be an unacceptable increase in the risk of aircraft loss.

Inappropriate flight control or scheduling laws arise in a number of ways. IFor
example, an inaccuracy in the aircraft model used during the design, combined with jour
modelling of <rrors in the scheduling sensors, could lead to an error in the clused=loop
gain sufficiently large to cause unacceptably poor damping and even instability. In
order to avoid this hazardous situation, satisfactory gain margins must be applied.
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This jarticular example indicates the need to model the aircraft and all components
f the FCO as accurately as possible., Alternatively, more advanced control policies,
such as self-adaptive techniques, are being developed so as to adjust automatically the
¢r.trol laws to behave in the required manner. With such policies, we would nc longer
need very accurate modelling of the aircraft for control law design purposes and, more=-
over, the number of different types of scheduling sensors could be reduced, resulting in
4 significant reduction in FCS hardware.

With the advent of digital FCS computers, the means of implementing these more com-
[lex rionlinear control laws is available. However, we are faced with the problem of
deteoting and isclating possible, although infrequent, failures of such complex furctions.
7t is this question of integrity that has su far pr=vented the use of norilinear control
laws.

In the design of all functions programmed in the FCS computers, see Table 1, there
are three interacting and conflicting requirements:-

(a) mir.imise the amount of FCZ hardware,
() improve flying qualities through the usc of more appropriate control and
scheduling laws;
‘o) increase confidence that the airworthiness targets will be met,
Although this AiAb ograph is mainly concerned with (b), we must keep in mind the other
areas {(a) and (o) in designing the 'optimal' practical system for a particular aircraft.
< SJpecification of flyirng gqualities

I* is generally recognised5 that existing specifications of flying qualities are
iradejuate for the design cf control laws aimed at achieving best possible performance
for difficult flight tasks and severe environmental conditions. Existing specifications
are based on experience with aircraft without full authority FCS and do not, therefore,
embody the performance benefits of multi-loop feedback and feedforward control.

A chicken-ard-egg situation arises., Realisable requirements can be formulated
cr.ly after exhaustive pilot-in-the-loop simulation experiments, augmented by appropriate
flight tests on a number of representative aircraft using representative control laws.
Cn the other hand, design of the optimal control laws implies the need to specify optimal
flying qualities in a fashion appropriate to the design technique applied. This situa~
tivn is likely to remain for some time as further and more comprehensive experience is
gained un the bernefits - and problems - of flying an aircraft with a full authority
multi-ioop FUS.

The difficulties in specifying performance requirements are compounded by the fact
that the control laws and, therefore, the flying qualities can be changed with flight
task and environmental condition”. This is already done, of course, with in-service
autopil.ts. With FBW aircraft, in order to reduce pilot's workload and eliminate the
possibility of pilot error, such task-oriented control laws should be selected auto-
matically whenever possible. However, pilot-selectable control laws may be advantageous
for some flight tasks and/cr for some system concepts.

The present trend, therefore, is to consider the flying qualities, contrcl laws and
Fol requirements for each difficult flight task under the most severe conditions, eg
'worst' gust. Table 2 lists some of the difficult flight tasks for a combat aircraft.

03 An interpretation of flying qualities requirements for the design of control laws

From the point of view of designing the control laws for each flight task, it is
necessary to interpret formal specifications in terms of the design techniques to be
applied. Referring to Fig 1, one method involves, firstly, defining outputs Y1 which
are important for each task and, secondly, specifying a model M such that the
differences between the actual response ¥l(t) and the model response

!m(t) = Mgc(t) (1)

are reduced to acceptable values for all pilot commands p,(t) and all external
disturbances v(t) . The model M 1is a diagonal matrix which could be varied with
flight task,and amplitude and/or rate of pilot command.

i many ways, a pilot's command can be viewed as a command for a change in trimmed
output state yn; . The outputs ¥1 can often be selected such that the desired model
response is deﬁg-beat with a specilied rise time and/or delay to a rapid pilot step
command about any trimmed state., For such cases, y,(t) should follow y (t) with
negligible overshoot provided this can be achieved §&fficiently rapidly. ~

When the pilot makes no input, as in an autopilot hold mode, the main problem is to
reduce the difference

by % Yo1 " &1 (@
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to acceptable values for the 'worst' external disturbance vg(t) , e that yielding
largest deviations from the required trimmed state, ygp . 'Buring the glide path hold
mode, for example, Yy includes height, airspeed and attitude and we are concerned with
ensuring that deviati%ns outside specified limits of these outputs are acceptable for
any shape or size of wind gust or shear.

It is also useful to specify the behaviour of each y;(t) when the disturbance
v(t) reduces to zero. Ideally, each component of Ayl(t)' should reduce tc zero with
Tittle overshoot provided the decay is sufficiently rapid. This implies that the modes
of motion associated with yl(t) are close to being critically damped.

In addition to the primary outputs ¥y » there are other important outputs ¥yo
which also need to be considered. Dependifig on the flight task and conditions, y> may
include actuator activity, acceleration at the pilot's station and excessive lcadS. 1In
general, we require to reduce y, to acceptable levels provided we can achieve the
desired performance in terms of ¥ Experience has shown, however, that it is also
necessary to specify: -

(a) the minimal damping of all modes of motion formed by interaction between the
FCS and the aircraft;

(b) adequate gain and phase marginus for each mode of motion.

These additional conditions, together with the need to minimise deviations in all
components of y = y, +y¥y caused by sensor noise w(t) , often cause situations where
compromises have to %e made between the different components of y .

Pilot opinion, of course, remains a major factor in deciding how to specify
for each flight task and the relative importance of the components of y . As menticned
before, however, pilot opinion can be obtained only through pilot-in-thé-loop simulations
or flight experiments using previously defined and practically realisable control laws.
For research work, we can define a range of control law options for comparative assess-
ment and subsequent iteration through a design and assessment procedure. As a result of
such research studies, pilots' opinions may change as improvements in achievable flying
qualities are recognised and preconceived ideas in the designer's mind may change as
features of the control laws which lead to the pilot achieving improved performance are
exposed. For a new project aircraft, a more precise specification is desirable, based
on the state-of-the-art at the time of project definition. However, with the possibility
of being able to re-program the digital FCS computers during the lifetime of the aircraft,
an update of the control laws is feasible as improved flying qualities specification
become available or as the aircraft's mission(s) change. Much work is being done, at the
present time, to update current flying qualities specifications.

2.U Design, analysis and assessment procedure

The main stages in the design of the control laws and the assessment of both air-
worthiness and flying qualities of the aircraft plus FCS are shown as a flow chart in
Fig 2. It is convenient to consider that part of the process which need not include the
pilot-in-the-loop as a separate design/analysis package. It is shown within the dashed
box of Fig 2.

As discussed above, a provisional statement of objectives is defined from available
formal specifications of flying qualities and airworthiness requirements and from the
results of experimental work proceeding elsewhere. This statement is provisional in the
sense that changes may be made from the results obtained in subsequent stages of the
design, analysis and assessment (pilot-in-the-loop) procedure on the control law, system
algorithms, software and hardware aspects of the system. (The feedback paths are
excluded from Fig 2 for clarity).

The current state-of-the-art on control law design is based on linear control
theoryl,2, It is necessary to interpret requirements in terms of these design techniques
and to linearise and otherwise simplify the modelsof aircraft, FCS and external distur-
bances (discussed further in section 3). 1Initial design studies are often made using as
simple as possible models in order that the computer operator is not confused by the
complexity of the problem. These are followed, of course, by further analysis with the
simplifications removed, and eventually including all nonlinearities. At this point, the
process is one of analysis rather than designh, eg time responses to representative inputs
and disturbances appraised. Several iterations through the design/analysis process may
be necessary.

The resulting control laws, satisfactory from the objective viewpoint, are then
assessed with the pilot-in-the-loop, using available simulators and, finally, flight
tests in the aircraft. Adverse pilot comments, particularly in executing difficult
flight tasks, together with performance measurements, may well lead to further iterations
through the design, analysis and assessment loop.

Parallel developments of the multiplexed FCS leads to the need to include the
effects of certain properties of the FCS in the analysis, pilot-in-the-loop simulation
and flight tests. In particular, it is necessary to assess the effects of real hardware
characteristics rather than the assumed models of the FCS, ideally using a comprehensive
rig in conjunction with a pilot-in-the-loop simulator. The transient effects on FC3&
failures and problems associated with loss of parts of the FCS require careful assessment.
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It should be noted that there is a need for rapid and inexpensive re-programming
of the FCS computers during the development stages in order to allow for (inevitable) )
changes in the control laws. This requirement has system implications in that means must
be found to establish airworthiness confidence for such rapid changes.

The main emphasis in this paper is on the design/analysis phases within the dashed
box of Fig ¢. This includes in section 5 an appraisal of the future use of nonlinear
control laws for the following two main reasons:-~

(a) with conventional control laws, it is necessary to make inevitable compro-
mises in view of the fact that different control laws are needed to reduce
errors in different elements of y (= ¥t ¥2) to acceptable values;

(b) it is necessary to provide for unknown or incorrect values of parameters in
the total system, eg through the application of adequate gain margin. With
conventional techniques, this provision leads to larger errors in yj; com-
pared with a system which would automatically and safely correct for such
errors.

The limitations of conventional control and scheduling laws emerges from a sensitivity
analysis of the system's performance to changes in the characteristics of the aircraft,
FCS and external disturbances. This is an important part of the design/analysis package.
As discussed further in section 3, a particular objective of the sensitivity analysis is
to define modelling requirements.

2.5 Design/analysis package

At RAE Farnborough, the design/analysis package, dashed box in Fig 2, is contained
in an operator-interactive computer program called Time SIMulation (TSIM). 1In contrast
to previous procedures that were based on separate programs, some on different computers,
the interactive TSIM package represents a significant step forward, because the operator
can quickly chang~ the program and obtain results in a rapid sequence and in a digestible
visual form from different and selectable sub-routines. For example, he can obtain in
quick succession time histories for representative inputs and disturbances using linear
(and simplified) equations and the full nonlinear equations of motion. The separate
phases of design, sensitivity analysis and performance analysis shown in Fig 2 merge wher
the operator interacts continuously with the design/analysis package.

A simple simulation language has been defined which allows simulations to be writ-
ten as a set of nonlinear equations in a Fortran program. This is linked to the main
analysis package by a translator. When running, the analysis package is controlled
interactively by commands typed in by the operator. He can command, for example, an
automatic linearisation of the nonlinear equations about any datum he specifies, select
which 'nodes' to ignore in simplifying the equations, and obtain outputs in tabular or
graphical form on a VDU or print-out from any sub-routine of the analysis package.
Changes to the equations nfmotion or ‘o the characteristics of inputs and disturbances
need not necessarily require a re-build of the TSIM package.

With an interactive procedure such as TSIM, the operator is an important part of
the design/analysis lcop. As such he needs to be very familiar with the chosen analysis
technique and conversant with its limitations, bearing in mind that he is often dealing
with systems of order 4 or more, It is also important to make the TSIM or similar
computer package as simple as possible to operate so that the designer can concentrate
his expertise on the design/analysis problem,.

As a research tool at RAE, the TSIM package is bcing continuously modified as more
complex problems are investigated and as experience is gained of new techniques. Some of
the analysis tcools currently available are listed in Table 3.

3 SOME ASPECTS OF THE MODELLING PROBLEM

For the design of the control laws and a first analysis of the aircraft's behaviour
it is necessary to model on a suitable computer the aircraft's equations ~f muti. n,
external disturbances and the characteristics of the FCS including sensor imperfections.
The f@llmwing brief comments on the problems of modelling are based on recent RAE
experience.

3.1 Aircraft equations of motion
The nonlinear equations of moti~n of the aireraft plus its FUS can be written

x = f(x, u) (3a)

where x 1is an n-dimensional state vector and u is an m-dimensiocnal contrel vecter

reprezenting control signals applied to the control surfaces and other kinds of motivator.

It is desirable for the form of these equations to be such as to facilitate linearisation
and simplifications so that suitable approximations can be made for contrcl law design
purposes., In effect, this is part of a sensitivity analysis which establishes the more
important modes of motion and associated closed loops.

_ fiiven the aircraft equations of motion, it is necessary to ensure that flying
qualities are optimum for small perturbations at all points in the flight and manceuwvre
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envelope. For this purpose, equation (3a) i; linearised about representative flight
aonditions, yielding .

X = Ax + Bu (3b)
where A and B are (n x n) and (m x m) matrices of constant ccefficients. The power-
ful techniques of linear control design and analysis are now applicable.

The results of this linear design remain satisfactory for manceuvres which are
slow relative to the variations in the coefficients of the A-matrix representing both
the aircraft and its feedback control. For more rapid manoeuvres, the linear design is
no longer satisfactory and it is necessary to design and analyse performance using the
full nonlinear equations.

It is now widely recognised that it is necessary to write the equations of motion
representing both rigid body and structural motion of the aircraft in a common form,
This need arises because there is an increased coupling between all modes of aircraft
motion and other modes introduced by the multi-loop feedback control. There has been and
continues to be difficulty i1, n~btaining appropriate values of the coefficients of the
A-matrix representing structural i. 'es of motion. Traditionally, structural mode egua-
tions have been written in a form compatible with both structural analysis techniqgues and
methods of measuring coefficients for these equations. Translation of this available
data into the required form is complicated but necessary in order to allcow an integrated
design.

3.2 Accuracy required for aircraft equations

Precautions must be taken, during the design of the control lzmws, to avoid possible
inaccuracies in either the form of the aircraft model or the values of the coefficients.
In the following discussion, we restrict attention to inaccuracies in the values of the
coefficients for rigid body small perturbation motion, the simplest case being the
simplified manoeuvre demand system shown in Fig 3.

Consider first the i'thloop of the several closed loops depicted in Fig 3. There
s a range of values of the gearing Gi

(G.) < (G.) < (Gi)B , i=1,2,3,...,men (4)

A 1

for which all modes are acceptably damped. The damping can be increased by decreasing
the phase lag of the feedback signal xji, or, equivalently, phase advancing xj; wusing a
lead~-lag filter or a sensor measuring x; (in state space, x; 1s equivalent to Xs_1»
and thus phase advance is achieved by increasing Gj-3 ). Alternatively, the decreasd

in phase lag can allow an increase in (Gj)g for a given minimum damping.

i

The potential benefits of increasing G; are twofold, both related to the assoc-
iated decrease in the response time T3 of the mode associated with closed loop (i)
First, there is a decrease in the deviations of x; (and the associated y; ) caused by
a particular external disturbance and, second, the output y; can be made %o track more
accurately a pilot's command p. . Conversely, there are two main disadvantages, an
increase in the undesirable effects of sensor noisc and a decrease in the gain margin of
the closed loop (i)

The closed-loop gain is the product of G; , the motivator effectiveness, and the
equivalent gearing of the FCS equipment. Suppose that poor damping results if this over-
all closed-loop gain increases by some increment AGp . For high frequency modes, such
poor damping may result in hazardous limit cycles through the exceedence of hardware
rate 1imits. It is therefore essential to ensure that variations 4Gi in closed-loor
gain are less than AGp . Major contributions to AG; include:

(a) incorrectness or uncertainty in the model motivator effectiveness;
(v) approximations in designing the scheduling laws;

(¢) errors in the FCS gearing and in phase delays which contribute to the gain
margin;

(a) errors in the models of the scheduling senscrs.

A compromise gearing (G;j)c < (Gi)g 1s selected from these and other considerations and
this practical value limits achievable performance in terms of the response time T;

Given a maximum possible response time T3 for the i'thclosed loop, we next con-
sider the accuracy requirements of the aircraft model for the response y; to pilot

command p, . Referring to Fig 3, we restrict attention to a particular control law
structure for which the input uj into the i'thclosed loop is f{assuming for the prese'.t
that Gi+1 =0 ):

u; = Fils)p, = Q:(s)P;(s)p, (5)

where P;(s) is an approximation to the reciprocal of the transfer function between u.
and xi , and Q;(s) 1is chosen to give the desired response in y; to pe . In effect
we are defining a command X4 in the state X5 such that:

x, = Q(s)p, , u; = Pi(sdx . (6)
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The transfer function between uy and xi can be written:
N(s)/D(s) (6a)

where, in general, the order of the denominator is greater than the numerator. A
practical form of filter Pi(s) is:

_ 1
Pi(S) S T3] (6b)
assuming that N(s) includes the gain of the transfer function (6a). The response of
x; to x, 1is then the same as the response of the output of 1/D(s) to uj . Given an

appropriate Qj(s) , the problem reduces to obtaining accurate tracking of x, to x4
which ideally requlres

(i) critical damping of the mode associated with X5 3

(ii) a response time Tj less than the fastest expected response time of X,
(limited by choice of (Gi)c);
(iii) accurate knowledge of the numerator N(s) of the transfer function between
b and u, .
c i

The last condition (iii) leads to further accuracy requirements for aircraft modelling.

In many cases, a first order approximation for P;(s) is satisfactory but the
parameters 8 of this approximate P;(s) are complicated functions of the aircraft's
coefficients In the A-matrix. In contrast to the closed-loop characteristics, which are
affected almost entirely by the motivator effectiveness, accurate knowledge of several
aerodynamic derivatives are required to compute 65 with sufficient accuracy.

The problem is eased by several factors. First, large errors in 8, do not affect
stability in the closed 1lnop although, if the errors are gross, pilot-induced oscilla-
tions (PIO) may result when the pilot increases the gain of his loop via his response to
cues from the outside world. Second, the effects of errors in 8§, can be decreased by
adding an integral loop, Gj4i in Fig 3.

The integrator (or leaky integrator) operates on the difference (xl - Xg) 8O0 %
that the lower frequency mode associated with the integral loop (i + 1) Tis ex01ted
51gn1f1cantly only when there are significant errors in 6, . Finally, the pilot is so
adaptlve that he will accept a wide range of response characteristies, initially prefer-
ring those experienced before. Performance may not be affected by such errors but the 1

workload to achieve this performance will increase.
3.3 Modelling external disturbances

We restrict the discussion to variations in wind speed/direction, Ze gusts,
although other external disturbances are important in a final assessment, eg dropping a
store, change in aircraft configuration, change in fuel disposition. During the initial
design/analysis stages, it is desirable to use simple models of gusts in order to keep
ti.e problem as comprehensible as possible. The basis of such 51mp11flcat10ns can be
explained by continuing the discussion of the closed loops depicted in Figs 1 and 3.

Considering first the gust shape, we may define three types of gust (Fig 4). For
the impulse-like gust (a) , the steady state error in xj is zero for all values of G..
However, the transient error in x; decreases with increasing Gj (other parameters
belng changed to maintain relative damping of all modes). This performance improvement
is significant only if the gust decay time is smaller than the closed-loop response
time T; . For relatively small Ty , unde31%able motion of the system is experienced
with no"significant benefit in reducing x; . For the step-like input (b) , there is a ]
steady state error in x3; which decreases as G;i 1is increased. Introduction of the k
integral term, closed loop (i + 1) in Fig 3, causes this steady state error to decrease
to zero at a rate determined by the response time Tj43 of the (i + l)th loop,
Ti+1 < T{ . As Gj43; 1is increased, T;,; decreases with a resulting more rapid removal
of the steady state error in xy . There is, however, a maximum value of Gi+1 above
which relative damping is unacceptable but this maximum value increases as Gj is
increased, For the ramp input (c¢) , there is a steady state error in xy even when the
integral is applied. This steady state error decreases as the gearlng Gis1 1is
increased. It should be noted that, for an 1mpu1se like gust (a) , 1ncrea51ng Gis+1
increases the duration of the tran51ent error in x. due to unnecessary excitation of
the long period mode associated with the (i + 1)th™ closed lcop.

Suppose we find the closed-loop control parameters G which minimise the errors in
the output y caused by the simplified gusts (a), (b) and (e¢). Experience has shown
that G 1is Insensitive to the shape of the gusts, eg to values Té and T¢d
Indeed, the same result is obtained if we minimise errors in y c%used by more %omplex
models of gusts, eg von Karman or discrete gust spectra. The &rrors in y for a given
G depend, of course, on the gust shape so that, for the assessment of performance, more
representative pust models must be used.

Whether this empirical result is generally applicable is questionable but exper-
lence to date justifies simplification of the gust models for initial design/analysis

,_____———_———M
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purposes. In fact, for linear control law design, further simplifications can be made
since there are well established relationships between a system's response ?o an_ .
impulse, a step and a white noise input {as indicated by the transfer functions in Fig 4).

The gust models required for assessment, especially pilot-in-the-loop assessments,
must be more accurate. In particular, the modelling of gusts as a stationary random pro-
cess (eg von Karman spectra) draws the adverse comment from pilots that the simulation is
unnatural, and this situation is unacceptable. For thig reason, improved gust models are
being sought, a discreet gust spectrum being one option®,

Another aspect of the assessment problem involves finding which gust shape by

itself or in combination with other disturbances can cause a hazardous error in y . A
hill-climbing procedure, similar to that used for parameter optimisation (section™4), can
be applied to determine which gust shape in a family of gusts produces maximum y . We

can then calculate the magnitude of this 'worst' gust shape which causes a hazardous
situation and attempt to ascertain whether this event will occur more frequently than
acceptable. It is interesting to note that, in general, different worst gusts are assoc-
iated with different elements of y ,(eg longitudinal displacement and rate of descent at
touchdown due to gusts during an automatic landing).

3.4 Modelling FCS characteristics

There are three main issues in modelling FCS characteristics:

(a) phase or time delays caused by FCS components;
(b) noise, particularly sensor imperfections;
(e¢) nonlinearities, eg actuation rate limit.

The need to attenuate high frequency sensor noise using some form of noise filter intro-
duces a significant phase lag so that (a) and (b) must be discussed together.

3.4,1 Phase and time delays

The replacement of analogue by digital computers and the possible replacement of
some sensors by their digital equivalents has led to the need for sampled-data analysis
in the z-plane, rather than the customary continuous analysis in the s-plane. Although
z-plane analysis is available in a design program such as TSIM, the current approach
still usually involves an approximate linearisation of the model representing the
digital processor so that the more familiar s-plane analysis can be used for initial
studies. Subsequent analysis of sampled data effects are examined using z-plane
analysis and time responses. In the interests of brevity, we exclude further discussion
of problems arising from such sampled-data effects, assuming that the time delay and data
staleness can be modelled as an analogue lag.

In addition to this computer lag, it is necessary to introduce an analogue filter
immediately before A-D conversion in order to eliminate aliasing and, in some cases,
another filter is needed after D-A conversion in order to reduce guantisation noise.
Furtkzrmore, there are problems in implementing on a digital computer the high frequency
part of the complex filter used for attenuating unwanted structural modes which are
detected by motion s=nsors such as rate gyros and have to be treated as noise. 1In
practice, the analogue filter before A-D conversion is generally designed to include the
high fgequency part of this structural filter (and thus the overall FCS is effectively
hybrid).

The phase delays of the actuation system and, in some cases, lags in the sensors,
are partially compensated using a lead=-lag filter as shown in Fig 3. Full compensation
is not practical, partly because the filter must be realisable and also because allowance
must be made for variations in the lags of the actuation system.

In broad terms, the phase lag of available FCS components, excluding the noise
filter(s), is approximately equivalent to a first order filter of about 0.04 s time con-
stant, equally divided between the computer with its associated filters and the actuation
with its associated compensation.

It will be appreciated that, even for the linear model of the FCS, we are faced
with a high order set of equations, the modes of which interact with each other and with
the aircraft equations of motion., Simplification of these equations, as with the air-
craft equations, must be made with caution but is useful in preliminary design studies
and for purposes of examining tte physical principles involved. The simplification in
Fig 3, for example, has been chosen to i1llustrate numerous problems and techniques in
this Chapter.

3.4,2 Sensor noise

Ideally, the sensor should measure the state xj used in the feedback control (or
the state required for scheduling). In addition to instrument noise, as measured under
static conditions, sensors detect variations in other states x5 under dynamic condi-
tions. Appropriate positioning of the sensors and corrections %o the outputs of the
sensors using data from other sensors are techniques used to reduce such non-instrumental
noise. Some of these corrections require a prior: knowledge of the motion detected by
the sensor in the environment c¢f the aircraft and such knowledge is often scarce., For
example, there is uncertainty as to what airstream sensors measure at high incidence and
low speed. Consequently, there is always some residual unwanted signals which must be
treated as 'noise'.
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The conventional method of reducing the effects of high frequency sensor noise is
to introduce a noise filter. 1In Fig 3, this is represented as a first order lag, time
‘ constant +tj , with phase lag approximately equal to that of a practical and more com-
: plex high order filter. For increased attenuation of high frequency ncise, 1§ should
be increased, the penalty being an increase in the phase lag of the i'thclosed loop,
leading to the need to decrease G; so as to maintain acceptable damping. It is useful,
in fact, to consider varying Gj with 1/tj 'slaved' such that relative damping of all
- 4 modes remains acceptable, In many cases, the slaved 1/tvj; is approximately proportional
to Gj . Since flying qualities tend to improve with decreasing response time T; and
this decreases with increasing Gj , the control laws required to reduce the effects of
high frequency sensor noise conflict with those required for improved flying qualities. ?

Lower frequency components of the noise are not significantly attenuated by the :
noise filter. In some cases, the effect of such noise components are, in fact, reduced
by increasing G: (and l/ris in the same way as low frequency external disturbances. In
such cases, an additional integral loop (Gj, ) is required to reduce the effects of such
noise, eg the effects of datum errors or drl}ts of one sensor are reduced by the correc-
ting action of a second sensor,

For initial studies of the control laws, simplifications can be made similar to
those discussed for gusts (see Fig 4). For detailed analysis and assessment purposes,
more accurate models are required but are not always available, in contrast to the
availability of comprehensive gust models. It should be noted that the undesirable
effects of sensor noise are often as significant as the effects of gusts although the
effects may be related to different components of the output vy

The relationship between the effects of external disturbances and of sensor noise
is mere readily understood with reference to the closed-loop error signal, e in Fig 1. {
There are frequency components of e , high relative to 1/tj , for which a decreased {
gearing G; 1is beneficial and lower frequency components of € requiring an increased :
Gi - This conflict is the same for all causes of fluctuation 1In e , Ze whether sensor t
noise or external disturbances. ;i

!
!

3.4.3 Nonlinearities

In practice, several components of the FCS have nonlinear characteristics. The
improvement in components and sub-systems in recent years has reduced the extent of many
undesirable nonlinearities considerably and their effects are usually small. Neverthe-
less, there are a number of features that need careful consideration including:

(a) the suppression of the effects of external disturbances by the closed-lcop
control laws, especially those using powerful integral terms, can reduce significantly
the authority available from a particular control surface for manoeuvre demand. A
hazardous situation may arise if the pilot has no knowledge of the control authority
available to him. In some cases, this situation can be eased by employing separate
control surfaces for low and high frequency components.

- W .

(b) Although the amplitude and rate of change of control signals are not
deliberately limited with full authority systems, there are practical limits, such as a
rate limit in actuation systems. Exceeding such limits can lead to dangerous limit
cycles and must therefore be avoided by the selection of the control laws and/or the
development of appropriate hardware.

(c) The use of digital computers leads to sampled-data effects and, in some
cases, to a 'staleness' of data through the use of data stored from one computer cycle
to the next.

(d) Stick-feel characteristics with possible dead zones, hysteresis and other
ergonomic features, both spurious and intentional, in the stick, rudder pedals etc. 1

4 ELEMENTS OF AN INTERACTIVE DESIGN/ANALYSIS PROCEDURE

With an interactive procedure such as TSIM, the computer operator is an important
part of the design and analysis loop. It is important that he is fully familiar with:

(a) the particular type of analysis (root locus, parameter optimisation, etc)
f and recognises its limitations;

. (b) the equations of motion of the aircraft and the FCS and takes account of
= nonlinearities and possible inaccuracies;

(e¢) the provisional nature of the interpretation of flying qualities require-
ments, especially those for difficult flight tasks or severe environmental
| conditions.

b We have discussed (b) and (c¢) in sections 2 and 3, In the following discussion of (S)’
h we do not attempt to be rigorous since there are many excellent texts on the subject<,

The aim is to expose fundamental difficulties with available techniques and to show why,
in practice, several analysis and design techniques are used in a complementary fashion.

Referring to Figs 1 and 3, we are concerned with the selection of multi-feedback
loops G with associated feedforward control F , the parameters of which we combine as

O — — T m———
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the vector ¢ . With conventional control laws, the control parameters of the i'th
closed loop, eg (Gy , 1l/13), can be considered constant since their values are varied
only as scheduled }unctions of aircraft state and such variations are usually but not
always slow relative to the modes associated with the i'th closed loop. This assumption
of constant control parameters is necessary, of course, for the application of linear
control theory.

4.1 Approach using optimal control theory

It is often useful to obtain an initial solution without assuming a control law
structure. Instead, we are concerned with determining the optimal time history u(t) of
the control signals fed to the m control surfaces and other motivators. The linearised
equations of motion of the aircraft alone can be represented by:

x(t) = Ax(t) + Bu(t) (7
where x(t) 1is an n-dimensional state vector (nth order linear aircraft equations),
u(t) 1is an m-dimensional control vector, and
A and B are matrices with constant coefficients.

The motions to be optimised are linear combinations of some but not necessarily all the
states:
y(t) = cCx(t) . (8)

An optimal linear control can be defined® as the control vector u(t) which trans-
fers the system from an initial state x(tg) to a final state x(ty) and which
minimises a quadratic performance function:

by

3 = f (3" (t)ey(e) + uT(£)Ru(E))at + x (s )P x(v) (9)

o

subject to the constraints of equations (7) and (8). Here, Q and R are weighting
matrices, usually diagonal.

The optimal regulator is generated by the linear control law:

u(t) = - K(t)x(t) , K(t) = R7iBTR(¢) (10)
where P(t) satisfies the matrix Riccati equation:
- P(t) = cTqc - p(t)BR™IBTR(t) + P(t)A + ATPR(t) (10a)
with
P(t,) = P . (10b)

As tpe Dbecomes large, the solution P(t) apprcaches a steady state value independent of
Py . "In practice, this is the usual requirement for FCS. Because of these asymptotic
properties, the feedback matrix K becomes independent of time.

Several methods are available for the numerical solution of these equations but
most are unwieldy for large order systems. A relatively simple and straightforward
solution? results if we assume constant gains K . The performance function to be
minimised becomes an eigenvector (n x n) matrix M , the elements of which are numbers
representing the response of each state x; caused by an initial condition on each
state xj .

This approach is useful for a preliminary study of a new problem but its usefulness
appears to be limited for a number of reasons including:

(a) difficulties in selecting the weighting matrices Q and R ;

(b) the solution requires feedback of all states (xj to x,), some of which donot
improve performance significantly and which must be estimated from a limited
number of sensors;

(¢) the eigenvectcr matrix M may not include all aspects of performance V ,
the elements of which are numbers representing each output state y; of vy
due to representative disturbances on all states x , aircraft and *CS; -

(d) although the solution is stable, the degree of damping and, in particular,
gain margins are not implicit.

There has been, and continues to be, developments which reduce the above and other limi-
tations at the expense of more complicated programs and conditions needed to obtain a
realisable and stable solution. It is usually advantageous to employ alternative,
although 'sub-optimal', design techniques to augment solutions from the matrix Riccati
equations.

it
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4,2 Parameter optimisation

‘ After gaining some experience with a specific problem, the control law structure
can be defined in terms of realisable filters between each motion sensor or pilot
command and each motivator. The design problem becomes the selection of the parameter ¢
(combining G and F in Fig 1) which minimises a selected function (of outputs y
caused by a defined set of disturbances or inputs), eg -

t

f
s Vo= [ (yTry)dt = ixivi (11)
to 1=1
: where ) is a weighting matrix assumed to be diagonal and N is the order of the aircraft
. and FCS equations. An iterative hill-climbing procedure is used to find Sop which
. minimises V . Theoretically, the process may converge to a local minimum but, in

b practice, the initial guess of the optimum values of @8 are close to the final values,
especially when solutions using the matrix Riccati equations are available.

If the output y does not include all state variables x (now representing both
aircraft and FCS equaftions, simplified or not), or if a specific value of relative damp-
ing ¢ = 4y is desired, a more appropriate function is:

Y N
4 v o= z AV o+ s[e -] (12)
! 1=1

where &8 = 0 if 1« » tg or & 1is large if ¢ < ¢zp . Such a constrained optimisation
,1 procedure has caused few problems other than the need, in general, to perform calcula-
! tions for each V; in the time domain and for the relative damping in the s-plane. How-
i
!

ever, most dlstur%ances can be approximated to white noise for which the responses in x
or y of linear systems are linearly related to their responses to initial conditions,
and so can be calculated in the s-plane alone (see sections 3.3 and Fig 4). Consequently
rapid calculations of each Vj can be obtained without employing lengthy time history

) calculations.
4.3 Conflict curves and the compromise constant control laws

The main dlfflculty with parameter optimisation is the selection of the dlagonal
weighting matrix A in equation (11). Consider the simplest case when N = 2

vV = V, + 2V . (13a)

The optimum occurs when 3V/38 = O , te

3Vl
8
‘ A = - 2 7'op (13b)
2 (3V2)
.| 28 op
where the gradients are calculated at the optimum control state, 8op - Equation (13)

defines the value of Ay which should be used, but this requires an a priori solution
of the problem.

This weighting dilemma is illustrated in Fig 5a by plotting V) against V; as
the weight A, 1in equation (13a) is changed in successive optimisations. When
large, Vo, 1is a minimum employing parameter values 0p (in many cases the gains o%
most of the components of 8 are zero). When Ap Is small, Vo, is just acceptable
and V; is a minimum employing parameter values e . Between these extremes, thereis
a compromise set of parameter values 8c which is best selected by engineering judge-
ment having first derived the conflict curve.

[

i In the general case, the measurement matrix V is high order because the equations
k of motion include the FCS components and the control laws themselves. The conflict

J curve between two (or more) elements of V can be obtained using a constrained

{ optimisation. The function to be minimised is:

‘ ' Vo= v+ sV, - 02] + Z ‘si[vi - ci] (14)
1=3

where 65 = O when Vj « C{ or &; is large when V; > C; . The result is a minimum
value for Vy with each V5 (i = 2, ..., 2n) just less than the associated constraint
! Ci prov1ded there is a solutlon for Vi = Cy . By changing the value of Cp in
successive appllcatlons of the constrained parameter optimisation, a conflict curve of
. Vi against V, is obtained for which all other elements of V are forced to be less

(usually, just less) than the assumed constant constraints.
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A practical example is instructiye. The pitch rate manoceuvre demand for an experi-
mental FBW system in a Hunter aircraft® involved a compromise between the effects of rate
gyro noise (V,5) and the transient pitch rate error to a pitch rate command q,(Vy) . 1In
this simple case, we wished to minimise V; subject to the condition that acgua or
activity due to sensor noise was acceptable. Assuming a model of sensor noise and a

if model of the actuator, we defined:
T
. 2
L v, = j [a - qc] dt , for lagged step q,
. 0
T
v, = % J' n2at , for sensor noise w

where T is very large and #© is elevator rate. We obtained the conflict curve

V1 ve Vo , the points on which defined possible values of the control parameters. The
models of the rate gyro noise and the actuator were then replaced by actual hardware and
the compromise values 8¢ selected as that for which V; was smallest subject to the
condition that the real actuator motion caused by real gyro noise was acceptable. The
author's finger placed on the actuator was used as the means to measure acceptable
actuator motion!

4,y Sensitivity to changes in aircraft or environment

In the above discussion of optimisation techniques, there has been no consideration
of direct control of sensitivity aspects of performance, ie changes in the characteristics
of the aircraft or FCS and changes in disturbance characteristics, gusts or sensor noise.

Consider, for example, the conflict curve Vj vs V, where

2
v, = J. yl(v)dt . T» =
(15)
T
2
V2 = [ yz(w)dt N T+ =
¢}
ie the effects of gusts, v , against the effects of sensor noise, w . This conflict

occurs in every closed loop although the outputs (y1» yp) may change from loop to loop.
The conflict curve depends on the magnitude and, to a lesser extent, the frequency
components of v and w . As an example, the change in the conflict curve for three
magnitudes of the external disturbance v , assuming constant sensor noise w , is shown
in Fig 5b.

When v 1is small, V; is negligible and we would select control parameters close
to @5 - When v 1is large, a more acceptable solution is close to 6p , accepting a
large value of V), . A more complex situation arises if the magnitudes of both v and
w change.

This example illustrates a major difficulty closely associated with the weighting
dilemma discussed above. With constant control parameters, an optimum can be defined
only for constant values of the inputs and disturbances, eg 'average' models. For other
values, the system is far from optimal. This limitation is unacceptable when we are
seeking best performance for difficult flight tasks and for infrequent severe environ-
mental conditions.

The situation is made more complicated if we introduce a gain margin aGp of
sufficient magnitude to ensure that Vo> in the above example remains fully acceptable
for the worst combination of errors in the closed-loop gain (section 3.2). Because the
gain margin decreases as we change from 6, to 8p , dashed line in Fig 5b, the compro-
mise parameter values 8¢ must be chosen, in many cases, to be §C2 rather than 8¢,

te applying a smaller nominal gearing than that decided from considerations of the con~
flicting elements of V alone, te neglecting gain margin situations. The resulting
decrease in the system's rate of response may be unacceptable in seeking improved per-
formance for future aircraft throughout the flight and manoeuvre envelope.

5 THE FUTURE USE OF NONLINEAR CONTROL LAWS

As discussed in sections 3 and 4, many conflicts arise in the design of conven-
tional control laws because:

(a) the control parameters which minimise one aspect of performance differ from
those which minimise other aspects. A compromise is necessary with
conventional control laws with which parameters are essentially constant;
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(b) due allowance must be made for errors and variations, especially in terms of
the gain margin AGi in each closed loop.

The compromises obtained in designing conventional control laws usually yield satisfac-
tory flying qualities except when the flight task is difficult and/or when severe
environmental conditions are experienced.

Current researchg’lO into selected nonlinear control policies is aimed at reducing
the extent of such conflicts so that improved flying qualities can be achieved under all
expected conditions. Although this work is still in progress, it was considered worth-
while to conclude this paper with a short discussion on the subject.

5.1 Variable integral control to optimise response

In the selection of the constant parameters in the closed loop control laws, eg G
and 1/ti of Fig 3, a compromise is made between two or more conflictlng aspects of
performance. Recent studieslO have established the feasibility of varying G;i as a
function of on-line measurements of these conflicting aspects of performance. The para-
meter 1/tj and other control parameters are slaved to the variation of Gj such that
if Gi remains set at a value in the allowed range:

Gjp > G 2 Gip

for any length of time, then damping and other aspects of performance are satisfactory.

The on-line measurements are derived from the error signal ¢ , Fig 1, and separa-
ted by suitable filters into positive definite functions Ej; and E; measuring those
frequency components that could be reduced by either increasing or decreasing Gj
respectively. For example, we allow Gj to vary according to:

64 (6) (£) = A,E,(8) (16)

ME
where 1) o are suitable weights. A number of precautions are necessary, including the
use of an’integral loop, Gy+1 or its equivalent, so as to avoid prolonging the duration
of large values of G; . The latter condition has led to this technique being calleglO
VICTOR, Variable Integral Control To Optimise Response.

For most of the time, Ej(t) is negligibly small for the flight task in hand, <e
the low frequency components of the error signal e have negllglble amplltude The
gearing Gi reduces to its minimum Gjpy together “with an associated increase in noise
filter time constant. Consequently, the effects Ep of high frequency components of
inputs, external disturbances and noise are much smaller than with the compromise
constant control laws, Gip < Gic . When Ej increases due to pilot command, external
disturbance or low frequency noise, Gj increases rapidly to its maximum Gjip > Gic for
large There is a more rapid decrease of Ej; than with the compromise constant
control }aws which leads to a rapid decrease of G; to the minimum Gy ip @as E
approaches zero. Because the appllcatlon of high values of Gj is tran51ent the
corresponding increase in E, is transient and, therefore, acceptable. Referring to
Fig 5b, we are allowing the control laws to change rapidly from 8, to 6y during the
transient response to any input or disturbance.

5.2 Self-adaptive properties of VICTOR

The gain margln is large when Gy = Gjp » but as the gain is increased
through the compromlse vaiue Gic to the maXimum value Gip » the gain margin decreases.
In a recent study 10 or the pitch rate plus integral to elevator loop for a longitudinally
unstable aircraft, the gain margin was 25 for Gj = Gjp and 3 for Gj = Gjp .

It is convenient for the present and subsequent discussion on self-adaptive tech-
niques to express the gearing Gi between the sensor and control surface as the product:

G; = (0,6,) = (G + 8G,)C, (17)
where G, is the VICTOR gearing and G, is the control surface gearing which, ideally,

compensates for the control surface effectiveness, Ba

We assume an error 4G, in G, , bearing in mind that there are contributions to AGa
other than errors in By .

As Gy is increased, the situation can arise when the gain margin AG; approaches
4Gy, , so that poor damplng and hazardous limit cycling could occur. However, the second
performance measure E, in equation (16) can be chosen to increase rapidly as the
relative damping decreases so that the VICTOR gearlng Gy is decreased. As a result,
the system recovers rapidly from large errors 4G, in Gy .

The magnitude of E, may increase due to either an increase in sensor noise, or
detection of high frequency external disturbances or deterioration of the FCS equipment,
as well as incorrect compensatlon of the control surface effectiveness. It is hazardous,
therefore, to estimate Ba in a self-adaptive manner from this technique alone.
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Nevertheless, the onset of a large value of E, can be used to restrict the maximum
value of GlB until the correctness of G, has been checked using more appropriate
self-adaptive schemes (section 5.4).

5.3 Alternative self-adaptive schemes

In the design of conventional scheduling laws, a comprehensive model of the air-
craft plus FCS is used to derive the laws by which selected parameters 85 are varled as
functions of the outputs of available scheduling sensors. The applied value of must
allow for a tolerance 468, equated to the expected worst combination of errors ang
variations in all factors contributing to both the closed-loop characteristics and the
transfer function between the output y and pilot command Pe (section 3.2).

With explicit self—adaptlve schemesll, a simplification of this model is programmed
in the FCS computers with a view to updatlng the parameters M of a simplified model
from on-line measurements of the system's response to measurable inputs. Appropriate
values of 63 are computed from M using previously determined parametric relationships.

In effect, the model is fed by the same inputs as the system. The model output ¥
is an estimate of the aircraft's response y - The difference signal: =

d = y-y

is used to change the model parameters M in order to reduce the difference signal

In some cases, it is possible to estimate the error AM in M so as to estimate
and a safe value of 8. .

d
8

In comparison with similar techniques used for the identification of the aero-
dynamic characteristics of aircraft, explicit adaptation differs in a number of ways,
some of which are listed in Table 4. Of these dlfferences, the most important is the
need to ensure that gross errors in 8, are avoided since these can lead to a hazardous
situation. We restrict attention in this chapter to the question of reliable adaptation
rather than survey the variety of algorithms available for accurate identification of N
in the presence of noise.

Nearly all self-adaptlve schemes so far investigated have been based on estimating
the closed-loop gearing G, , Fig 6b, and adjusting other components of 85 in accor-
dance with pre-selectead parametrlc relationships. Such Ga-adaptatlon tends to be
unreliable for three main reasons. Firstly, a grossly incorrect value of G, can cause
hazardous poor damping and limit cycles. Secondly, the difference signal d is
insensitive to small errors in G leading to inaccurate identification. Thirdly,
simplifications to the model of tge aircraft lead to errors in ga .

An alternative scheme based on estimating the input filter gearing k, » Fig 6c,
has been investigated recently. In contrast to Gyz-adaptation, an adaptive scheme based
on estimating Kk, has the following advantages:

(a) grossly incorrect values of ka do not cause poor damping of the closed-loop
and the self-adaptive loop recovers rapidly from a transient incorrect value
of k H

(b) the difference signal d is relatively sensitive to small errors in k; and
can be made more sensitIve if the closed-loop integral gearing is small
during adaptation;

(e) the model is simple and changes mainly through a change in closed~-loop
response time T; which is related to the VICTOR gearing G, .

Rapid and relatively accurate variations in k are, therefore, acceptable. Adjustments
to other parameters, particularly Gz , could ge made using pre-selected parametric
relationships between ka and other components of 85 . It is preferable, however, to
apply a number of additional precautions embodied in the concept of redundant adaptation
with safeguards.

5.4 Redundant adaptation with safeguards

In order to explain this concept, we restrict attention to a specific case for the
three parameters, the closed-loop gearing G, , and the gearlng kg and time constant
Ta of a first order input filter, Fig 6a. ?deally, 9N 1§ the reciprocal of the gain
in the transfer function between X, and xj and depends in a known way on the VICTOR
gearing G, . The time constant 1, is related to the zero of this transfer fun-tion.

Rapid and continuous kg-adaptation is allowed for both pilot input commands and, if
the latter has not occurred during the previous t; seconds, for a specially timed test
signal. Estimates of G and 1, are made from the current value of k, using pre-
selected parametric r61a%10HSh1pS and these estimates are compared with 1ndependent
estimates of Gy and obtained from separate explicit self-adaptive schcmes for Gy
and 15 . Agreement Wltgln a pre- selected tolerance leads to an update of Gy and 14 ,
although the rate of change of G is made less than the expected maximum rate of change
of the motivator effectiveness. gignlflcant disagreement leads to a rapid decrease of
the VICTOR gearing Gy for the short time t, necessary to apply the following special
adaptation process.
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The specially tuned test signal is applied at two values of the VICTOR gearing, one
low and one high, so that the system's response characteristics are changed significantly.
Two estimates for each of the three parameters ky, G, and 15 are made ind pendently,
Agreement of all three within a pre-selected tolerance leads to an update of G, and 14.
In the unlikely event of a continuing disagreement, the gearing G, is set at the lowest
value,

Two further precautions are applied. Firstly, in the unlikely event of G being
set on a grossly incorrect value, the VICTOR scheme causes the closed-loop gain %o reduce
automatically and rapidly, thus preventing a hazardous situation. Such an event initiates
the above special adaptation process in order to distinguish whether the measure of noise
effects (Ep) increased due to an increase in sensor noise or due to incorrect G,
Secondly, limits are set to the maximum allowed excursions of the values of (G,, kg, t1y).
With a pilot-selectable, task-oriented control system, these maximum allowed excursions
are changed such that, fcr flight tasks requiring maximum VICTOR gearings Gy , a tighter
constraint is placed on the allowed self-adaptive variations.

This type of redundant adaptive concept fits in with the use of analytic redundancy
schemes under development for detection of failures other than potential failures in the
nonlinear control policies. Further consideration of this aspect of the subject is out-
side the scope of this paper although, as mentioned in section 2.1, these system aspects
should be considered side-by-side with performance aspects in any practical design,
analysis and assessment.
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Table 1

Types of function programmed in an FCS computer i

Function

Flight control laws

Scheduling laws

System algorithms

Definition

Provide appropriate feedback (G) and feedforward (F)
control signals to each motivator from motion sensors
and pilot's commands

Vary flight control laws as the aircraft character-
istics change across flight envelope. Also, varies
control laws with flight task

Provide acceptable FCS failure detection, isolation
and survival capability

Table 2

Difficult flight tasks

1 Air-to-air tracking/high incidence manoeuvring
2 High speed, low level dash
3 Air-to-ground tracking }
4 Approach and landing
5 Take-off
Table 3
Analysis te ‘hniques incorporated in TSIM
Sub-routine Comment

Time response

Applicable to both linear and nonlinear equations

Roots and root loci 5- and z-planes, and mixed continuous/discrete systems

Frequency response

Parameter optimisation Optional hill-climbing procedures. Discussed in
section 4

Matrix Riccati equations Discussed in section 4

Sensitivity analysis Performance matrix evaluated as specified control and

Observer designs

aircraft parameters are changed




Table 4

Main differences between explicit self-adaptation and identification

Although the aircraft is 'identified' during self-~adaptation, there are significant
differences between self-adaptation and identification procedures with a new aircraft.

(1)

(2)

(3)

(8)

(5)

(6)

(7

with self-adaptation, there is pre-knowledge of the relationship between the
components of the aircraft model M which leads to approximate parametric
relationships between the ccmponents of ga 5

the system, aircraft and FCS, is better behaved than the basic aircraft and,
in particular, its response to a pilot command is accurately known;

the characteristics of the system can be changed in a defined manner, eg by
varying the VICTOR gearing Gv H

there is less store available in the FCS computers for on-line self-
adaptation compared to ground-based computers with large store available for
identification;

gross errors in the estimated 8 could be dangerous and must be avoided or
otherwise prevented from causing®a hazard;

special inputs must be small and infrequently used for self-adaptation
whereas large signals are needed for identifying nonlinear characteristics
of aircraft;

delays in updating 6 must be short compared with possible variations in
the aircraft charactedistics.

o
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DESIGN TECHNIQUES FOR MULTIVARIABLE FLIGHT
CONTROL SYSTEMS

*
C. A, Harvey
R. E. Pope

Honeywell Systems and Research Center
2600 Ridgway Parkway
Minneapolis, Minnesota 55413

SUMMARY

Modifications to airframe designs directed at increased maneuverability and reduced weight are
placing stringent demands on flight control systems. This is particularly true for advanced fighter
aircraft which may possess relaxed static stability, additional surfaces for direct force control, and
active structural control requirements. Fly-by-wire systems, particularly digital systems, have
provided the flexibility to not only accommodate but influence airframe design modifications and have
led to the control configured vehicle (CCV) concept. These advances in air vehicle design and flight
control system implementation have begun to overwhelm traditional design techniques which are most
effective on aircraft applications with few surfaces, little dynamic coupling, separation between flight
control and other avionic subsystem bandwidths and analog system implementations. This Chapter will
describe and illustrate, through flight control design examples, new techniques which address 1) the
multi-input closely coupled nature of advanced flight control applications and 2) digital implementation
issues. The techniques described seek to exploit the advantages of traditional techniques in treating
conventional feedback control design specifications and the simplicity of modern approaches for multi-
variable control system design.

SYMBOLS

A System matrix P Stability axis roll rate

B Control matrix P Riccati matrix-optimal control

C Measurement matrix q Robust estimator design parameter

C* Linear combination of normal Q Weighting matrix
acceleration and pitch rate r Left singular vector

c Collective rs Stability axis yaw rate

dc Differential collective R Matrix of left singular vectors; control

E Expected value weighting matrix

F Kalman filter gains Tlim Rate limit

G(s) Open-loop transfer function matrix S Riccati matrix - filter

gr Rotor d;namics transfer function s Laplace operator

H{(s) Closed-loop transfer function matrix u Control vector

Hz Hertz U, V,G Inverse Nyquist array matrix transformations

1 Identity index v Right singular vector

J Performance index \' Matrix of right singular vectors

) V -1 X System state vector

k Loop gains y System measurement

K Gain matrix z Vertical velocity

L(s) Perturbation matrix z Scalar variable analogous to inverse Nyquist

M Relative maximum of closed-loop variable; discrete plane operator
amplitude -frequency response Z Transform operator

B Intermediate variable in calculationof z Frequency

n Non-linearity input amplitude o Singular value

) Control deflection T Diagonal matrix of singular values

¢ Damping ratio P Scalar weighting parameter

A Eigenvalue A Diagonal matrix of eigenvalues

] Bank angle 14 System noise

] Sensor noise; pitch angle - System noise covariance matrix

8 Measurement noise covariance matrix —

*
Acknowledgment. The flight control system design techniques described in this chapter were developed

under U.S. Office of Naval Research Contract # N00014-75-C-01444 and NASA Dryden Flight Research
Center Contract # NAS4-2518. Honeywell's Systems and Control Technology section, primarily G. Stein,
T. Cunningham, J. Doyle, R, Stone and G. Hartmann contributed extensively to the developments
described through initial development and application of these techniques to numerous flight control
design problems.
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1.0 INTRODUCTION

A multivariable flight control system is one in which there are multiple interacting control loops.
This interaction is dictated by the dynamic coupling resulting from the aircraft design. Until recently,
aircraft were designed to minimize dynamic coupling.

For the design of flight control systems with little dynamic coupling, traditional or so called classical
design and analysis techniques are more than adequate and provide key insights into the fundamental
design issues of feedback control systems. The design and analysis techniques discussed in this chapter
are directed at systems whose control loop interaction extend the utility of classical techniques to the
point where they are not only cumbersome to use as design tools but produce flight control system
designs with undesirable performance characteristics. The inadequacies of classical design techniques
are by no means accepted facts., There has been continuous debate over the two last decades as to the
utility of classical techniques versus the utility of non-classical or modern techniques.

It is useful to view the utility issue from the perspective of the flight control system application,
particularly as flight control systems have evolved over the years. In depicting that history, the
essential items to consider are

®  the aircraft application
(] the performance requirements
® the control approach
These items determine the utility of the design and analysis techniques.

The first row of Table 1 represents the aircraft application, performance requirements, control
approach, and design and analysis techniques for early aircraft up through aircraft built in the 1950's,
For these applications the airframe was designed to provide stability and control for the three attitude
degrees of freedom and the propulsion system was designed for speed control., The control approach
was open loop and design and analysis techniques were airframe oriented. Feedback control design
techniques representative of classical techniques are shown for systems described by row 2 of Table 1.
In this case also, the airframe was desighed to provide 3 DOF attitude stability and control and the
propulsion system provide speed control. Inadequate airframe designs or the promise of improved
performance resulted in feedback systems which were used to augment stability. The most prevalent
example cf such a stability augmentation system is a yaw damper. The introduction of feedback control
required additional design and analysis techniques, particularly those which addressed the stability
characteristics of feedback control systems. Because the feedback control design was very simple,
involving only one sensor variable and one surface command, classical techniques were very effective
and led to the acceptance of stability margins as flight control system design specifications,

Additional demands were then placed on flight control systems in the form of command augmentation
gystems as shown in row 3 of Table 1. The airframe application still remained the same with or without
a need for stability augmentation. Handling quality tests determined that command augmentation
provided better handling qualities as exemplified by the acceptance of rate command systems or C*
systems. Traditional design techniques were still very adequate for design since despite an increase in
the number of sensor and surface pairs, the design could be performed one pair at a time because of the
loose dynamic coupling,

The introduction of command augmentation, however, initiated the application of modern multi-
variable techniques, particularly model following approaches. These techniques promised to facilitate
flight control system design thus producing better designs. Despite the promise, they were not widely
accepted by practical control system designers.

Fly-by-wire systems, particularly digital FBW systems, as shown in row 4 of Table 1, brought
new issues to flight control design. New techniques were developed and utilized to insure that digital
systems performed as closely as possible to their analog counterparts. In addition the availability of
a digital computer and its associated "unlimited" computational capability on board the aircraft
encouraged rnore application of modern techniques which promised better performance, Again these
techniques were not wide'y accepted by practical control designers.

The systems described by row 4 of Table 1 represent the state of the art of todays production
aircraft, Table 2 presents characterizations for current experimental and prototype aircraft and
projected production systems. The introduction of the control configured vehicle (CCV) concept has
had a dramatic effect on flight control systems. In a CCV aircraft, the flight control gystem is not
merely augmenting stability or improving performance, but is providing a flight critical stabilizing
and control function. The criticality of the flight control system in a CCV application has intensified
the need for efficient and reliable design and analyses techniques. CCV aircraft, in themselves
however, do not possess dynamic coupling levels which make classical design techniques intractable.
In addition, classical techniques directly address stability issues and have therefore been much more
attractive to a designer for CCV control designs.




Direct force control, made possible by additional surfaces and thrust vectoring of the propulsion
system, as characterized by row 2 of Table 2 introduced a flight control design application that benefits
from multivariable control techniques. In this application, it is difficult to eliminate closely coupled
dynamics in the airframe design. Interaction with the propulsion system can magnify the coupling.

For this application, the large number of control inputs and the close coupling of dynamics can easily
overwhelm classical "one loop at a time' techniques.

The problem is projected to worsen with the integration of flight control and other avionics sub-
systems as shown in row ? Jf Table 2 and Figure 1. In the sections that follow, we will discuss design
and analysis techniques which have been developed to address these multivariable control problems.

In the development of these techniques, which is still ongoing, the goal has been an efficient flight
control design and analysis capability which addresses the following:
i) multi-input closely coupled dynamic systems
ii) conventional design specifications, particularly stability margin and high frequency attenuation
iii) the impact of unmodeled or uncertain dynamics on system performance

iv) digital realizations.

These items are addressed in varying degrees of detail in the techniques that are described and illustra-
ted by design examples.

2.0 DISCUSSION OF TECHNIQUES
Various approaches exist for the design of multivariable flight control systems. This section
presents a brief review of certain of these approaches followed by summary descriptions of the techni-

ques with illustrative examples.

2.1 Review of Approaches

One approach is to use a classical single-input, single-output (SISO) technique for the design of one con-
trol loop at a time. In this approach the design of each individual loop is carried out on the basis of that
loop's input-output pair and its effect on the input-output pairs for the other loops. This approach can
be useful for certain problems, but its capability is severely limited for highly coupled multivariable
systems. Furthermore, analysis of multivariable feedback systems with SISO techniques can give
misleading results.

An approach to extending SISO techniques to multivariable systems makes use of approximate
decoupling and the Inverse Nyquist Array methodology [2. 1], [2.2]. This approach can be useful for
systems that are sufficiently decoupled to be naturally diagonally dominant. But, forcing the loop
dynamics to be diagonally dominant appears to impose undue restrictions on the design. Furthermore,
the diagonalization or near diagonalization process can yield highly misleading conclusions concerning
robustnegs with respect to design model uncertainty, by which we mean all the uncertainty between the
design model and the actual operating system.

Another approach to extending SISO frequency domain techniques to multivariable systems uses the
Characteristic Loci methodology [2. 3],[2.4). In this approach characteristic gain functions and
characteristic frequency functions are defined in terms of appropriate matrix-valued rational functions
of a complex variable to generalize the Nyquist-Bode and root locus methods used for SISO systems.
This approach is appealing because of the mathematical insights that it can provide. But, it also can
yield misleading conclusions concerning robustness with respect to design model uncertainty. Another
drawback to this technique and the INA technique is that they are limited to square systems, that is,
gsystems that have the same number of outputs as inputs. This could represent a severe limitation of
the design process.

Alternatives to the frequency domain methods include the modal control approach and the linear-
optimal approach. Both of these approaches commonly deal with state space formulations which permit
treatment cf non-square systems with ease. But, the deficiencies associated with these approaches
are generally related to key issues that are most naturally expressed in frequency domain terms.

The modal control approach consists of choosing feedback gains so that the closed-~loop system has
desired eigenvalues and eigenvectors [2.51,[2.6]. This approach can be useful when design requirements
can be easily expressed in terms of desired closed-loop modal characteristics. But, in many cases the
system design requirements cannot be so simply expressed. This is especielly true for design require-
ments associated with tolerance to design model uncertainty.

In the linear optimal control approach, controllers are determined that minimize a performance
index which is the integral of a cost function. This cost function is a sum of quadratic terms in the
states and controls. The controller uses feedback of all the states of the sy~tem or estimates of these
states if all the states cannot be measured. This approach appears to be the most widely applicable,
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but there are certain difficulties involved in its use. The first issue that arises is that of selecting
appropriate weighting matrices for the cost function. A second issue that arises is that linear optimal
controllers often have inadequate high frequency attenuation and excessive bandwidth. Another issue

* is the care required in the design of an estimator or observer so that the guaranteed stability margins
of optimal full state feedback control are nearly preserved when the output of the estimator or observer
is used in the feedback path.

4 A major deficiency in each of the above approaches is the lack of guaranteed robustness with respect
to design model uncertainty. A viable approach to the analysis of this robustness is the use of singular
values and certain characterizations of the design model uncertainty. Since there is no existing synthesis
L { technique which corresponds directly to this analysis technique, it appears that such an anaiysis must be
incorporated in the design process. That is, preliminary designs should be subjected to such an analysis,
and if this analysis shows the design to be inadequate, then further iterations of the design should be
made guided by the robustness analysis results,

> 2.2 Description of Linear-Multivariable Design Techniques and Illustrative Examples

The robustness of several of the illustrative examples will be analyzed using singular value analysis.
So this method will be briefly summarized proceeding to the description of the design techniques.

As indicated above, a critical property of feedback systems is, their ability to maintain performance
in the face of uncertainties. In particular, it is important that a closed-loop system remain stable
o despite differences between the model used for design and the actual plant. These differences result
F from variations in modeled parameters as well as plant elements which are either approximated,
J aggregated, or ignored in the design model. The robustness requirements of a linear feedback design
¥ 1 are often specified in terms of desired gain and phase margins and bandwidth limitations associated
.
1

with loops broken at the input to the plant actuators {2.7},[2.8]. These specifications reflect in part
the classical notion of designing controllers which are adequate for a set of plants constituting a
frequency-domain envelope of transfer functions [2.9). The bandwidth limitation provides insurance
against the uncertainty which grows with frequency due to unmodeled or aggregated high frequency
dynamics.

The Nyquist or Inverse Nyquist diagram (polar plots of the loop transfer function) provides a means

of asgessing stability and robustness at a glance for SISO systems. Multivariable generalizations of 2

o the scalar Nyquist, Inverse Nyquist and Bode analysis methods can be developed from a basic result
X on robustness properties of linear systems expressed in lerms of gingular values.

Detailed discussions of the concepts of singular values and singular vectors are given in references

[2.10] and [2.11]. For simplicity, these concepts will be briefly described here for square matrices,
although the concepts apply to arbitrary matrices.

2.2.1 Singular values
The singular values o, of a complex n x n matrix A are the nonnegative square roots of the eigen-
! values of A¥A where A* ig the conjugate transpose of A, The (right) eigenvectors v; of A*A and r; of

AA* are the right and left singular vectors, respectively, of A. These may be chosen such that

o.r, =Avi, i =1 ...n (1)

£0,S... S0
1 2 n

and the {ri} and [vi} form orthonormal sets of vectors. The gingular value decomposition of A is

»

*
A =RV (2)
where
¥
R =[r1, rz,...,rn]. vV = [vl, VZ""'vn] (3)
1 and T is the diagonal matrix with diagonal elements oy, 059, ... , oy. The minimum and maximum

singular values have special significance and will be denoted here by g (A) and T (A) respectively.
These singular values derive their special significance from the relations

o (A) = min  ||Ax]] ' 5 (a) = max |l ax|| (4)

Hxll =1 ©Alxlf -

and o (A) is the spectral norm of A, The singular values give an accurate measure of how close A is
to being singular. The ratio g/o is known as the condition number with respect to inversion. The
eigenvalues of A generally fail to provide such an accurate measure. The magnitudes of the eigen-

' values of A are bounded below by g (A) and above by o (A). But, the magnitude of the smallest eigen-




i value__can be much larger than g(A), and the magnitude of the largest eigenvalue can be much smaller
* than o (A). This key difference between singular values and eigenvalues is the reason that singular value
} analysis provides an adequate measure of robustness and that eigenvalue analysis is inadequate.
3
[

 { Now consider the linear feedback system shown in Figure 2 where G(s) is the nominal loop transfer
matrix and L(s) is a perturbation matrix which is nominally zero and represents the deviation between
G(s) and the real plant. A reasonable measur. of the robustness of this feedback system is the magni-
: tude of the perturbation which may be tolerated without causing instability. Taking the magnitude of

- { L(s) to be its spectral norm, the following basic result was obtained by Doyle [2.12].

L{{ If a system, such as that shown in Figure 2, satisfies the following conditions:
b ‘ i) G(s) and L(s) are n x n rational square matrices

ii) Det G(s)# 0

,r‘ iii) L(s) is stable

il

iv) The nominal closed loop system H = G(I + G).1 is stable

N i

then the system is stable for all perturbations that satisfy

g (1 +G He) > 7 (Lts) (5)

o Ll

for all s in the classical Nyquist D-contour consisting of the segment of the imaginary axis from -jR to
+R and the semicircle of radius R in the right half-plane with R chosen sufficiently large.

A similar result holds for a system with the perturbation shown in Figure 3. In this case the
quantity I + G(s)~! in (5) is replaced by the quantity I + G(s).

The singular values also have useful graphical interpretations, Consider the dyadic expansion

- - *
H1=I+G1=Ex.‘ o.r.v,
i=1 Titii
clsczs...Sonx (8)

where the o;, ri and v; are the singular values, and left and right singular vectors, respectively of
1+G-). This is an alternative form of the singular value decomposition in equation (2).

e

It has been shown [2.13] that the eigenvalues and eigenvectors of a rational matrix are continuous
(through generally not rational) functions of frequency. Since singular values and vectors are just
special cases, o;(ju), ri(jw) and vi(jw) are also continuous functions of w.

Since

1,-1

H=(1+G ) =):§ v.r, 7)

the values 1/0;(jw) and 1/o,(jw) give the maximum and minimum possible magnitude responses to an
input sinusoid at frequency w. In this sense, a plot of these singular values vs. frequency may be
thought of as a multivariable generalization of the Bode gain plot. Plots of thig type will be referred
to as o-plots.

Another useful graphical interpretation analogous to the scalar Inverse Nyquist diagram may be
constructed by noting that

-1

= * -
G F_‘.cvirivi I
= * - %
Zcririvi Zvivi (8)
= - %
Hory - vvy
= L3
R
where Big, = or, - v with g, real and ||g‘|| = 1 for alli.
Let z, be defined implicitly as a function of o and Bi by the quadratic equation
2 2 2 2
z, +(1+ai A )zi + Bi = 0 (9)
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By plotting the z;(jw) (i=1, ... m) for frequencies of interest a plot analogous to the scalar Inverse
Nyquist plot is generated. While phase does not have the conventional meaning on these plots, the more
important notion of distance from the critical point preserves its importance. These plots will be
referred to as z-plots.

Concepts such as M-circles are also obvious in this context. The minimum value of M is given by

M_ = m:" (1/0, (jo)) (10)

-1
Similar results may be obtained for additive perturbations by working with I + G rather than1 +G ., In
this case a diagram is generated which is analogous to the scalar Nyquist diagram.

Singular values offer no encirclement condition to test for right half-plane poles. But this is not a
major deficiency because there are other simple techniques to assess the stability of the nominal system.

2.2.2 Deficiencies in Existing Approaches

The single-loop-at-a-time approach involves first of all the selection of loops. That is, for a
system with a given number of inputs it is assumed that there are at least that many outputs of interest
and the first question that arises is what outputs should be paired with the inputs. For some systems
this choice is obvious from the system characteristics. In highly coupled systems the choice may be
difficult. Once the pairs have been selected, it is necessary to choose the sequence of loop closures.
This choice also can be clearly dictated for some systems, but not for others. The design then proceeds
by closing one loop at a time, generally conducted in an iterative fashion. The robustness of the final
closed loop system is then examined by breaking one loop at a time and determining the stability margins.

The following example illustrates that analyzing robustness by breaking one loop at a time can be
very misleading. The example was chosen to demonstrate this point only and does not represent any
particular physical system. In fact, the controller considered is not representative of a good single~-
loop-at-a-time design. The loop transfer matrix for the example is

1 5-100 10(s)+1)
Gs) = —5—— (11)
s +100 -10(s+1) s-100

The open loop poles are at + 10j, and with identity feedback the closed loop poles are both at -1, Single
loop breaking analysis for either loop indicates that the phase margin is 90 and the gain margin is

+ = db. For comparison, the corresponding z-plot is shown in Figure 4. It is not a plot of a rational
function, so it may appear somewhat unusual. The important feature is the proximity of the plot to the
critical point, -1, which indicates a lack of robustness.

The discrepancy between these two robustness indications can be easily understood by considering
a diagonal perturbation

k1 0
L = (12)
0 k2
where k, and k_ are constants.

1 2

Then regions of stability and instability may be plotted in the (kq, kp) plane as has been done in
Figure 5. The open loop point corresponds to ki = l:2 = 0. Breaking each loop individually examines
stability along the k;, kg axes where robustness is good, but misses the close unstable regions caused
by simultaneous changes in k; and k9. Thus, single loop analysis is not a reliable way of testing
robustness.

The approach taken with the Inverse Nyquist Array (INA) methodology attempts to extend SISO
techniques to multivariable systems. In this approach the key feature is the use of diagonal dominance
of the INA, Computer-aided displays of the Nyquist plots of the elements of the inverse of the loop
transfer matrix can be used to assess the closeness to decoupling. These plots can be examined, and
the information obtained can be useful in the selection of appropriate input-output pairs. If diagonal
dominance cannot be achieved by this selection process, the methodology suggest techniques for
introducing compensation to achieve the desired dominance. Once the diagonal dominance of the INA
is achieved, design of diagonal feedback is accomplished with SISO methods. References [2.1) and [2. 2]
are recommended for detailed descriptions of this approach.

The Characteristic Loci methodology uses multivariable generalizations of the open-loop gain as a
function of frequency and the closed-loop characteristic frequency as a function of gain. In this technique
an inner-loop is designed on the basis of characteristic frequency as a function of gain to serve as a
starting point for an outer-loop design which provides sufficient feedback gain to insure satisfactory
performance. This approach also uses computer-aided displays. In this case the displays of interest
are the loci of characteristic gain and characteristic frequency. Detailed descriptions of this approach
can be found in references [2.3] and [2. 4].

3
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The following simple example was constructed to illustrate deficiencies associated with the Inverse
Nyquist Array and Characteristic Loci approaches.

Consider the system with loop transfer matrix

-a7s + 2 563
1
G(s) = ———= (13)
(stl)s+2) -42s 50s + 2

Assuming identity feedback, the closed-loop poles are at -2 and -4. This system may be diagonalized
by introducing constant compensation. Let

7 8
U = (14)
6 1
and _
7 -8
-1
v =21 = {15)
L-G i
Then letting
1
. w0
G = VGU = (16)
0 2_
L s+2

the system may be rearranged so that

H=c1+e!
= vavi +uewn) ™!

= vt +&) v an

=u Gu+a v,

This yields a diagonal system that may be analyzed by scalar methods. In particular under the assumption
of identity feedback G represents the new loop iransfer matrix. Because U and V represent a similarity
transformation, the diagonal elements of G are also the igenvalues of G so that the decoupling or domi-
nance approach and eigenvalue or characteristic loci approach would generate the same Nyquist or Inverse
Nyquist plot shown in Figure 6. Only a single locus is shown since the contours of 1/(s + 1) and 2/(s +2)
are identical. The tempting conclusion that might be reached from these plots is that the feedback system
is very robust with apparent margins of + » db in gain and 90°+ in phase. The closed-~loop pole locations
would seem to support this.

This conclusion, however, would be wrong. The z-plot for I + G-1 is shown in Figure 7 and there is
clearly a serious lack of robustness. The (kq, kz) - plane stability plot for this example is shown in
Figure 8, Neither the diagonal dominance nor eigenvalue approaches indicate the close proximity of an
unstable region. This failure can be attr-ibuted to two causes.

First, the eigenvalues of a matrix do not, in general, give a reliable measure of its distance (in a
parametric sense) from singularity, and so computing the eigenvalues of G(s) (or I + G(s)) does not give
an indication of robustness. Using eigenvalues rather than singular values will always detect unstable
regions that lie along the ky = ky diagonal, but may miss regions such as the one in Figure 8.

Second, when compensation and/or feedback is used to achieve dominance, the "new plant” includes
this compensation and feedback. Because of this, no reliable conclusiors may be drawn from this "new
plant' concerning the robustness of the final design with respect to variations in the actual plant. It is
important to evaluate robustness where there is uncertainty.

2.2.3 Modal Control

The modal control approach provides a method of finding feedback gains that yield certain desired closed-
loop eigenvalues and eigenvectors. The modal concept is common to many flight control applications.

For example, the lateral-directional axis of a fixed wing aircraft has three dominant modes (roll, dutch
roll, and spiral) and the longitudinal axis has two dominant modes (short period and phugoid). Desired
modal properties are often specified in terms of eigenvalues (frequencies, damping ratios, time constants)
and associated coupling or decoupling of responses. Handling quality criteria for the lateral axis are
expressed in such terms. The dutch roll mode should have an eigenvalue with desired frequency and
damping ratio and an eigenvector that ideally contains nonzero compecnents for sideslip and yaw rate

only. The roll mode should have an eigenvalue corresponding to a desired time constant and an eigen-
vector which ideally has roll rate as its only nonzero component. The spiral mode should have a small

-t
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real eigenvalue and an eigenvector that ideally has only bank angle as its nonzero component., This
approach can be used with state feedback or output feedback.

The details of this approach may be summarized as follows. Consider the linear multivariable
feedback system

x = Ax + Bu (18)

y Cx (19)

u -Ky (200
where the state vector, x, is n-dimensional, the control vector, u, is m-dimensional and the output

vector, y, is p-dimensional, A, B, C, and K are matrices of appropriate dimensions, and it is assumed
that

Rank (B) m (21)

Rank (C) psn (22)
An eigenvalue-eigenvector pair for the closed-loop system is denoted as (ki, vi) where

A T NY

and Ac is the closed-loop system matrix

A = A -BKC
c

Only certain pairs are achievable. An achievable pair satisfies
Av, + Bw, = v,
i i ii

where Wi is a vector with dimension = min (m, p).

In the case of state feedback, C may be chosen to be the identity, and (23) and (25) yield

w., = Ky, (26)
i i

Letting A be the diagonal matrix with elements A, on the diagonal, V be the matrix with its ith column

being the eigenvector v;, and W be the (mnx) malrix with its ith column being W equation (25) yields

'
VA - AV = BW (27)
and equation (26) yields
W = KV
which can be solved for K, i.e.
K = wy'? (29)

Complex eigenvector pairs can be rotated to provide a real matrix K., In the case of output feedback,
equation (28) is replaced by

W = KCV (30)
and if p <n, the matrix CV has rank less than n so that (30) cannot be solved for K in general. One
method for resolving this difficulty is to select only p eigenvalue-eigenvector pairs with A denoting the
{(pxp) diagonal matrix of eigenvalues and ¥ denoting the (nxp) matrix of corresponding eigenvectors,
and W denote the corresponding (wxp) matrix, Then K is given by

K = W ! (31)
subject to

vA - AV = BW (32)

In this case there is no constraint on the remaining n-p eigenvalue-eigenvector pairs, and they could be
undesirable.




The design procedure initially involves choosing portions of v; in order to eliminate certain state
responses from a mode while emphasizing others and letting other responses (control or compensation)
react arbitrarily.

For Rank (B) = m, m free parameters can be specified, one of which is the eigenvalue. Equation
(25) can be rewritten

aga =[@-2p Bla =0

V.
1

(33)
w,
i

q; is therefore a null space mapping of A

i A convenient tool for finding the relationship between v,
and w, is contained in the singular value gecomposition of Aci;

1

%*
A. = X<zZ
ci ifii

where X; is an n-by-n matrix containing columns of orthogonal left singular vectors of Aci

Xi is an n-by-n matrix containing columns of orthogonal left singular vectors of Aci

Zi is an n-by-n+m matrix containing n singular values, o's, of Aci
- TN

% 0...0

> n

a
n

———

n
fi‘ [0] ] ; Ei is nxn diagonal

L
Zi is an n+m-by-n+m matrix containing n+m orthogonal right singular vectors of Aci
By rearranging (34)

A .Z = X7 (35)
ei’i i7i

and noting that the last m columns of the Xizi product are null, we find the appropriate null space for
Aci by using the last m columns of Zi;

A.Z =0 (36)
ei”i

where Zi is defined as

Z,
i

The matrix Zi is a set of m orthonormal basis vectors spanning the null space of Aci’ Referring to (33),
we have

q = Ziai (38)

where ai is an m vector of linear coetficients not all of which can be zero.

Now we would like to select desired v, and solve (33) for the corresponding w,. This cannot be done
in genersl if m<n, but an approximate solution can be obtained by minimizing a performance index
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J = (vdi - vi)*Q(vdi - vi) (39)

subject to (33) where Vq; I8 the desired eigenvector. By this process one can select arbitrarily the
desired vy; and the resulting v; which are attainable are the closest to those desired in the sense of
(39). This can be accomplished by replacing v; in (38) with v, = E Ziai where

E is an n-by-n+m matrix

and minimizing (39) with respect to o

a = Arg min J

=% T, = . -15% T
(Z; E'QEZ) " Z, E* QVy (40)
the appropriate Wi is found using (38)
- = _— % — -1 =%
W, = EZga, = EZi(Zi ET Q EZi) 1 Zi ET Q Vdi (41)

where E is an m-by-n+m matrix

ue

et o 1]} m

2.2.4 F-4 Design Example

Asg an illustrative example this method was applied to the design of an inner-loop control law for the
F-4 lateral axis, The data for this example is taken from reference [2,14]. The state space representa-
tion of this example is in the form of equation (18) with

r b
Py stability axis roll rate
ry stability axis yaw rate
x = ] angle of sideslip
] bank angle
6r ruc ler deflection
& aileron deflection
- a B
8 rudder command
re
u = & aileron command
L ac

Matrices A and B are

’-.746 .387 -12.9 0. : . 952 6.05
.024 -.174 4.31 0. :~1.75 -.416
.006 -.9994 - .0578  .0369 : . 0092 -.0012
A = 1. 0. 0 0. : 0. 0
0 . 0. . :-20. 0.
Lo. 0 j o -10.
E




t

;

i 0. Open Loop Poles

3 0. 0. A roll subsidence = -,079

H B = o 0. A dutch roll = -.098 + §2.079

i e

; 20. 0. \ spiral = -,0063

i 0. 10. ] A rudder actuator = -20.0

'i - A aileron actuator = ~10.0

H From the point of view of fighter handling qualities, all four of the lateral axis closed loop roots
: have desired values which can be taken from MIL-F8785B, as is done, for example, in reference [2.14].
t The desired roots are:

‘ ! a) Roll subsidence mode

b)

c)

X

Dutch roll mode

Spiral mode

mode.

entries).

lateral control laws,

the first four states.
eigenvector pairs.

A few comments are in order to explain these choices.
The desired eigenvector is taken to be v,
show up dominantly on roll rate, but not on yaw rate or sideslip (we want no sideslip buildup during turn
These are good basic handling quality considerations.

do not care how much of the mode shows up on these components.
mode content has to be expected on element a4 and, similarly, if the surfaces are actually controlling
the mode, some mode content should also appear in ag and ag.
achieves these objectives is shown as v; above. Note that we can satisfy our desires almost perfectly.

Similar arguments also apply to the dutch roll mode.
content on roll rate and bank angle.

-4.0
-0.63 +j2.42
-0.05

Desired eigenvectors were selected to pair with the desired eigenvalues, and the method described
above was used to compute nearest attainable eigenvectors.

The rcsults are:

a) Roll subsidence node (e-4tv1)
Desired Va1 = [1. 0 0 a a al
Attainable v, = (1. -.007 0 -.25 .13 -.56]

-, 63t

b} Dutch roll mode, real part (e (cos 2 42t)v2)
Desired V42 = [o a 1. 0 a a]
Attainable v, = fo 15.6 1, 7.86 -.103]

. . -.B63t, .

¢) Dutch roll mode, imaginary part (e (sin 2. 42t)v3)
Desired V43 = [0 1. a 0 a a)
Attainable v, = [0 1. 6.16 0 -9.49 14.8)

d) Spiral mode {e " 05tv4)
Desired v, = |a a 0 1, a a)
Attainable vy = [-.05 .037 0 1, -.0014 -.0079)

Consider, for example, the roll subsidence
1° (1 0 0 a a a), which means that the mode should

The a's in the vector indicate that we
Certainly, since ¢ =fp5dt, some

The linear projection which best

In this case we want no oscillatory dutch roll
This is a key handling quality requirement for all well-behaved

In the case of the gpiral, we want the mode to be predominantly bank angle (corresponding to steady
turns) with no substantial sideslip component.

The latter is a basic turn coordination requirement,

A sample design vras carried out with the modal approach assuming that the output, y, consisted of
This output posed little difficulty, since our desire is embodied in four eigenvalue-
There is some concern with the remaining two pairs.
poles not be too far left from their open loop values.
of the open-loop system matrix is the same as the trace of the closed-loop system matrix.
of the cloged-loop eigenvalues is the same as the sum of the open-loop eigenvalues.
example the sum of the remaining closed-loop poles is greater than their open-loop sum, and, in fact,
each of these closed~loop poles is to the right of their open-loop values. The closed-loop vales of 7\5
and A\g are -19.03 and -6, 64 in comparison to open loop values of -20 and -10.

It is desired to have these
This is not a problem in this case, since the trace
So the sum
Thus, for this




An initial condition response for the open-loop system is shown in Figure 9. A similar response
is shown in Figure 10 for the closed-loop system. Dramatic improvement in reduced cross coupling
between the roll and dutch roll modes is evident. Also evident is the improved dutch roll damping
and the roll response time,

It is a simple matter to use this method to determine the effects of different sensor combinations
and compensators. This makes it a useful tool for tradeoff studies. Unfortunately there is no robust-

ness guaranteed so that this aspect of the design must be analyzed independently.

2,2.5 Linear Optimal Control

The linear optimal control approach has been extensively discussed in the automatic control
literature. The synthesis procedure in this approach usually starts with a mathematical model of the
form

.
X

Ax + Bu +¢€ (42)

L

v Cx + 8 (43)

where € and 8 represent system and sensor noise which are assumed to be gaussian, white, mutually
independent, stationary, and zero mean with covariances,

n

8(t-1), £ 20 (44)
88(t-1), 020 (45)

cov [§(t); §(T)]
cov [ 8(t); !::,(T)]

"

The control law is obtained by minimizing a performance index of the form

J = E f‘”(xTQx +u Rudt (46)
(o]

The resulting control law is

w = -Kx = -R 'BTP2 (47)

where P satisfies a Riccati equation and X is an estimate of x given by

£ = A + Bu + Fly - C%) (48)
: T,~1 e . . - e ; .

with F = SC 0 ~ and S satisfies another Riccati equation, In a deterministic version of this approach
where it is assumed that there is no noise and C is the identity, the control law is given by (47) with
% replaced by x. For this latter version it is known that the controllers possess guaranteed stability
margins of at least -6db and + = db in gain and at least 60° in phase at each input if R is chosen to be
the identity. It is also known that these controllers have first order attenuation at high frequencies.
This property can be a problem for many flight control applications, Controllers for the nondeter-
ministic version generally have higher order attenuation at high frequencies but they do not possess
any guaranteed stability margins.

One difficulty with this approach is that of relating the performance index to design specifications.
A method for selecting the weighting matrices, Q and R, on the basis of desired modal charccteristics
is described in [2.15]. This method is based on the asymptotic modal properties of optimal controllers
as the weight on the control tends to zero. The designer can choose desired modes the same way as in
the modal control approach and construct corresponding weighting matrices. The F-4 lateral-directional
example was also treated by this method, and the resulting controller's closed-loop transient response
was essentially the same as that shown in Figure 9. This controller does poscess the guaranteed
stability margins.

2.2.6 CH-47 Design Example

In another illustrative example this method was used in conjunction with singular value analysis of
robustness. The example treats the longitudinal degrees of freedom of the CH-47 helicopter. In
forward flight, this vehicle exhibits coupled pitch attitude and vertical motion dynamics which must be
controlled by coordinated action of two inputs. This vehicle is a tandem rotor machine whose physical
characteristics and mathematical models are given in [2.16]. Control over vertical motions is
achieved by simultaneous changes of blade angle-of-attack on both rotors (collective), while pitch and
forward motions are controlled by changing blade angle differentially between the two rotors (differ-
entially hetween the two rotors (differential-collective). These blade angle changes are transformed
through rotor dynamics and aerodynamics into hub forces which then move the machine.




i
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Our objectives will be to design a command augmentation control law which achieves tight, non-
interacting control of the vertical velocity and pitch attitude responses. A small perturbation linearized
aircraft model should prove adequate for this purpose and is available from [2.16]. The state vector
consists of the vehicle's basic rigid body variables x = (V, z, q, 8) (forward velocity, vertical velocity,
pitch rate, pitch angle). Two integrators are appended to achieve integral control of the primary
responses, and controls are the collective and differential collective inputs described above, u - (c, dc).
Hence, the design model is

x = Ax + Bu A, B in [2.16]

X5% "2 * Zmd {49)
c e

Xg= " * 8 md

The major approximations associated with this model are due to neglected dynamics of the rotors,
to neglected nonlinearities in the blade angle actuation hardware, and to variations of the A, B matrices
with operating point (flight condition variations). We will treat modeling errors due to these approxi-
mations as sources of the perturbation L(s) in Figure 2 and will attempt to make controllers robust
with respect to them.

Elementary dynamic and aerodynamic analyses of rotating airfoils, hinged at the rotor hub, indicate
that lift forces will not be transmitted to the hub instantaneously with collective changes in blade angle-
of-attack but will appear only when the cone angle of the rotor has appropriately changed. The dynamics
of the latter have been shown to be damped second order oscillations with natural frequency equa! to
rotor speed and damping determined by somewhat uncertain aerodynamic effects [2.17). lence, rotor
dynamics can be crudely represented by second order transfer functions

w2
gols, O = —_—R (50)
R s2 +2C0 s + 2
“R® " YR
with w_ = 25 rad/sec and { conservatively confined to the range 0,1 < 1.0. Because collective and

dift‘ergntial-collective inputs both involve coning motions of the rotors, one such transfer function
will appear in each control channel. Since these dynamics are neglected in equation (49), it then follouws
that any perturbed transfer function matrix computed from Figure 2 will have the form

G = G(I+L) = Gdiag(gR), (511

and hence,

L = diag (gR-l) .

52 + 20w
max R
oftl = ¢ |32
+ 20w, s +-

s ZQmRs YR
The function was evaluated for a range of s = ju values (with brute force maxar
shown by the solid lines in Figure 10.

Figure 10 also shov:s an alternate bound for T [1.) derived from oo er .

Safonov [2. 18], This bound is slightly more conservative than thi give s s
larger class of perturbations corresponding to nonconstant “'s o vy oo

In addition to the dynamics of rotors, each control ¢l
nonlinearities which are neglected in the nominal desigr e e

imposes the greatest dynamic constraint on performarn. « o @ ..
effect.
An approximate model for rate linits onrhe i3

mn:

u = R, SAT [94(11 “u) 'R
Lim ¢ LN

where SAT ( ) denotes the standard <.
can be developed with Safonov's e v 4.

These bounds will of course Jener
lines in Figure 10 deprer the 200
for the argument of the <V

frequencies. Thi< <
nonline arities watl g e
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The third major source of model uncertainty is the variation of A, B matrices with flight condition.
Such ''component' variation could again be translated into an overall bound for L(s) via Safonov's
procedure. In this case, however, the result would be unduly conservative because coefficient variations
tend to be highly correlated and are not arbitrary dynamical operators. A more direct way to compute
the bound is to compute the loop transfer matrix for a number of representative flight conditions and then
compute the maximum (singular value) deviation. Results of this process are shown by the dotted line
in Figure 11, We see the (initially surprising result that G[L] becomes quite large at low frequencies.
This happens because the basic helicopter's low frequency modes are stable at some flight conditions
and unstable at others. Theoretically, 5 G(jw) will approach infinity for frequencies and flight conditions
where these modes cross the jw-axis. This means that the perturbations exhibited by our plant are not
necessarily stable and, hence, the stability-robustness result cited earlier fails to apply. We will see
later that stable controllers can still be obtained and that the ability to incorporate unstable L's in a
generalized multivariable stability robustness theory appears to be an important research topic. For
the moment, however, nur designs will be restricted to individual flight conditions for which the dotted
L's in Figure 11 can be disregarded.

The uncertainty bounds shown in Figure 11 indicate that the robustness criterion given by equation 1
(5) imposes a "'multivariable bandwidth' limitation on the feedback loop. Magnitudes of L{ju) tend to be
large beyond certain frequencies which requires G™" to be large and consequently G mus? be small.
This is most readily illustrated with a single loop example whe~e plots of the function ¢ [l+g'l] reduce
to the inverse closed loop frequency response, i.e.,

] T

-1 ‘'
The condition that g [l+g ]be large then translates directly into the high-frequency "roll-off" require-
ment commonly imposed on’classical control loops.

For illustrative purposes, single-loop and multi-loop designs will be described.

The vertical velocity and pitch attitude motions of the nominal CH-47 model at hover uncouple {
naturally into two non-interacting channels -- (z, x;) controlled by (¢), and (v, q, 6, x;) controlled by
(dc). The hover flight condition thus offers an attractive single-loop design case. éigma plots for
several trial pitch-motion controllers for this case are shown in Figure 12. These controllers were
all designed with the linear-optimal methodology and correspond to the following cost functional:

® 2 2
1 = (7.3 x)° + c(do)” |t (56)
(o]

with ¢ = 900., 9.0, 0.09, and 1.0, respectively, for the four trials. These weights were selected 1n
accourdance with the asymptotic procedure described in reference [2.19]. The asymptotic modes
curresponding to these weights are a forward speed mode with an eigenvalue near the origin and a
third order Butterworth pattern for the remaining modes. As expected, bandwidth of these controllers
increases with decreasing ¢ and eventually violates the stability-robustness constraint imposed by
neglected rotor dynamics (for the moment we ignore rate limit and flight condition variations). That
this violation aclually produces instabilities was verified by computing clused-loop roots of the trial
controllers in the presence of the rutur., Trial 3 13 unstable! Our options are therefore to restrict
bandwidth to approximately Trial 2 or to provide additional roll-off beyond the maximum 20 db’/decade
attenuation inherent in 1.Q-design [2.20]. The latter option is illustrated by Trial 4 which uses a

s -value somewhat smaller than Trial 2 but includes a low-pass filter at w=12 rad/sec to help avond
the rotor resonance peak. Note that the closed loop frequency responses‘ are well-shaped for all
pure 1.Q-trials and that Trial 4 achieves extra bandwidth at the expense of slightly larger M-peaks.

The beuauty of singular values i3 that the above stability -robustness analyses carry over without
change to multivariable systems. This 18 illustrated in Figure 13 with some two-channel trial designs
at a 40 knot forward speed flight condition. These controllers are again of the LQ-type, this time using
the codt function,

I [ [(xs)‘ v 573007 ¢ 50 azmc)‘] at, (57
with (al, o) = (10000, 900), (9.0, 9.0), and (1.0, 1.0) for the three trials shown, The distinction between
Figure 12 %nd 13 14 that Figure 13 shows two sigma -plots for each trial, corresponding to the two singular
values of I+ %). For stability -robustness, the smaller of these values must fall above the sigma-plot

of L. at all frequencies. The larger value 13 unspecified. However, in order to maximize bandwidth

"in all directions”, 1t 14 reasonable o adjust the relative weights (¢4, 2,) such that the two singular values
are approximately equal and then to push them jointly tu as high a bandwidth as the 3[L.] plot perniits.

" According o (55), these are given by the sigma-plots of Figure 12 viewed "upside down'’. -
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(For the moment, we again use only neglected rotor dynamics for L.) This design philosphy is incorp-
orated in the three triuls of Figure 13. The first trial has low bandwidth and substantisl differences
between the two singular values. Theae differences are reduced and bandwidth is increased in the next
trial. The third trial serves to maximize bandwidth by using additional roll-off filters in each control
channel.

As seen from these trials, singular value analyses appear to offer a convenient way to maximize
multivariable bandwidth subject to stability -robustneas limitations. The next design step is to achieve
reasonable command responses from the resulting feedback loop. One way to do this is to place a
command shaping filter ahead of the loop. For feedback loops with integral control on the primary
responses, such sophistication is often unnecessary because commands inserted at the integrators
(a8 shown in equation (49)) produce good transients. This is the case here, as evidenced by the responses
of Trial 3 to step attitude and step velocity commands shown in Figure 14. Note that the loops are tight,
well damped, and non-interacting as desired.

So far we have ignored model uncertainties due Lo rate limits. This was done because there is no
apriori way to select the parameter 1 for Figure 11, which is determined by the maximum magnitudes
of signals in the closed loop. Clearly, for 1 sufficiently large all our trial designs would violate the
resulting 5[L) bound. That such violations actually correspond to instabilities was verified by repeating
the transient responses for Trial 3 with progresaively larger attitude commands. Unstable behavize
occurs for ecmd 2 18 degrees, with 1 ~ 60.

In order to improve robustness with respect to rate limita, the following iterative procedure may be
used:

1) Assume a signal level limit 1 < T]o
2) Designl+ G-l consistent with the resulting 5(L]

3) Evaluate the actual maximum signal level, T]l, by computing transient responses with worst
case commands and/or initial conditions

4) If . and 1, are substantially different, return to step 1 with Tlo = noﬂ ('rx1 - T\o) where ¢
is a design parameter. Otherwise STOP.

An illustration of the first iteration of this procedure ig given in Figure 13 where the assumed signal
level 7, = 20. (The dashed FIL) curve) yields a controller (Trial 2) whose actusl signal level is
Ny ¢ 0.6. The associated transient responses are slow but stable. To fine tune this design, a second
iteration might be taken with 'ﬂo = 5.

We noted earlier that 3 [L) due to operating point changes becomes quite 'arge at iow frequencies
because the helicopter's slow modes are not stable at all opergting points. At intermediate and high
frequency ranges, however, the uncertainty bounds are reasonably small {Figure 11). This suggests
tnat if the loop transfer matrix G(s) has sufficient low frequency gain to stabilize the slow modes under
all conditions, then the design might well be stable even though the (sufficient) stability-robustness
condition faila. This is in fact the case. Both trial design No. 2 and No. 3 remain stable at 8 repre-

‘ genta‘ive flight conditions ranging from hover to 160 knot forward speed and {rom +2000 ft/min ‘o

-2000 ft/min ascent rates. The intuitive idea which underlies this result (sufficiently high low-frequency
! gain) may well provide needed insight toward a generalized multivariable robustness theory for unsatable
perturbations,

. This example illustrates that the linear optimal approach may be combined with singular value
{ analyses to provide a useful multivariable technique. In this illustrative example the use of a state
' estimator in the loop was not considered. But, in the general linear optimal approach the {1.cluaion
of such an estimator must be considered.

2.2.7 Robust Estimators |

It was shown in reference [2.21] that multivariable linear-optimal regulators using full state feedback
have impressive robustness properties, including guaranteed gain margins of -8 db and + = db and phase
margins of 80° in all channels. But, if cbservers or Kalman filters are used for state estimation in the !
implementation, there are no guaranteed margins. {2,22] Fortunately, an adjustment procedure is
available [2.23] for use in the observer or filter design which makes it possible to essentially recover
the guaranteed marging of full state feedback for minimum phase systems. Thi« adjustment procedure
involves the introduction of a scalar design parameter, q, with the property that as q tends to infinity
the stability margins tend to the full state margins.

An example that illustrates this adjustment procedure is a linear optimal regulator designed for
flutter suppression with the DAST (Drones for Aerodynamic and Structural Testing) wing. A single

control surface input and two accelerometer outputs were used in the design. The model consisted of
five flexure modes, five aerodynamic lags, a third order actuator, and a first order wind gust model.
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The robustness of five controllers is summarized in Table 3 and Figure 15. The first controller is the
full state feedback controller. The second uses a Kalman filter for state eatimation. The remaining
three use filters for state eatimation derived using the adjustment procedure with different values of
the design parameter, q. In addition to the stability margin data, the RMS control surface activity
corresponding to an RMS gust input of one ft/sec is given as well as the controller bandwidth, The
stability margins actually increase monotonically with q with an attendant increase in control surface
activity, But, the control surface activity corresponding to the largest value of q was within the design
specification limits and the stability margins for this value of q are significantly improved over the

q = 0 case and are nearly as good as those of the full state feedback controller. As shown in the
frequency response plots of Figure 15 the robuat estimators smooth out the notching characteristics

of the Kalman filter providing better stability margins with only a slight degradation in RMS performance.
This example clearly demonstrates the utility of the adjustment procedure.

2.3 Digital Design

The techniques described above do not explicitly address a digital mechanization of flight control
designs. They are, of course, all applicable to digital system design and analysis lacking only in a
transformation from continuous to discrete space. In fact the most common design scenario for a
digital flight control law has evolved using continuous system techniques. The steps generally followed
are

1. Design the feedback structures using continuous techniques to achieve performance and
sensitivity goals {i.e., stability margins) for the continuous plant-controller,

2. Choose a sample time with a Nyquist frequency well above the control frequencies and
discretize the continuous compensators using appropriate algorithms such as Z-transform,
Tustin's method, or Prewarped Tustin's method.

3. Choose a first or second order continuous prefilter for each sensor to eliminate the impact
of aliasing from unmodeled high frequency dynamics such as structural modes or high band
sensor noise. This is typically chosen conservatively low, {.e., well below the Nyquist
frequency.

4. Select a control command output continuous postfilter (also thought of as an actuator
prefilter) with an output hold device to reduce the effects of digital quantization but obtain
minimum phase loss at the control frequencies.

Steps 2, 3, and 4 provide a sufficient scenario to implement a digital representation yielding the
desired flight control goals of step 1.

The major difficulty with this approach is that these steps all contribute phase lag to the system,
This presents little problem if the sample rate is sufficiently higher than the stability crossover
frequencies. lLowering the sample rate results in stability difficulties and performance reduction.
The net result is a design technique which dictates high sample rates, This represents the state of
the art in digital design techniques for production aircraft systems today.

2.3.1. Low Sample Rate Design

It has been claimed that designing directly with discrete plant models will produce lower sample
rates and minimum compensation and still meet the same design goals as analog conversion techniques,
This has led to a number of design techniques and tools which do result in low sample rates [2. 24],
[2.25). The direct digital design technique described in reference [2.24) is based on an optimization
approach formulated to match a modeled transient response at discrete time points. The feedback
control law, gains and compensation parameters, are designed to force the closed loop response of a
discretized plant, (including pre and post filters) to best fit a desired response transient at the
discretized points. This technique was utilized by Peled to examine prefilter and sample rate
selection (2.26]. As an example of the technique, a direct digital design was performed for a digital
fredback around a simple integrator which attempted to match a desired closed loop exponential response.

Shown in Figure 16 the optimization technique results in parameter selcctions for K, a_ and 8 _ for
a fixed sample time, T, and prefilter bandwidth, a. These parameters are synthesized to Bt the &iscrete
points generated at the sample instances of a unit step reaponse of a continuous feedback control deaign
(Figure 18-a). Details are given in reference [2.26], with a summary provided in reference {2.27).

The key point for discussion is not the optimization but what {t produced. Examining the plant to be
operated on
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where as shown in reference [2.28]

-at

e 1
JI(T) = T+ e y :
= e-at !
ay :
1-a, - aTa ;
1 1 i
B B

"1 T
L] Gl al .

The inclusion of an extra discrete zero, B , along with the prefilter pole, ay, form the basis for the
selection of the compensator parametex‘soin Figure 16-b, ac and Bc.

In almost all cases examined in reference [2.26), i.e., choices of T and a, a_ was optimized to
cancel _ and B, optimized to canel aj. The effect of this cancellation is characterized by lead comp-
ensation near the Nyquist frequency and results in total system phase enhancement.

2.3.2 F-8 Design Example
The compensation structure suggested by this technique was used to develop a low sample rate
design for the NASA Digital Fly-by-wire F-8C CCV aircraft. The F-8 digital system operates at 53. 33
Hz due to a remote augmented vehicle (RAV) implementation. Analysis determined that the system could
operate at 20 Hz with no significant degradation in aircraft stability and performance characteristics and !

with no phase enhancement applied through Jdirect digital design techniques. F-8 Flight tests had indi-
cated unsatisfactory performance at 6.7 Hz. Application of phase enhancement through direct digital
design permitted a 4 Hz sample rate [2.28]. A comparison of the continuous and low sample rate
control structure block diagrams is shown in Figure 17, Table 4 presents a comparison of pitch axis
stability margins for the continuous design and the low sample rate design at four flight conditions. A
comparison of frequency response plots for FC#1 is shown in Figures 18 and 19. Transient response
comparisons are given in Figures 20 and 21.

These results have not been verified in man in the loop simulation or flight test, however they do
indicate lower sample rates are achievable based on analytical design criteria, A limiting factor not
discussed but which also must be recognized is the effect of output quantization in the actuator command
signals. Smoothing techniques will generally provide adequate performance in this area.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Because of the number of control inputs and close dynamic coupling of future aircraft, and require-
mentis that the flight control system provide the stabilizing influence on the vehicle, efficient and reliable
control system design and analysis techniques are essential to satisfactory aircraft performance.

Several techniques have been discussed in this chapter. Modal control techniques permit the designer

to handle a large number of inputs and provide an approach to achieve a desired, within constraints,
system response. A technique based on asymptotic regulator properties reduces the weight selection
difficulties associated with optimal regulator design in a root locus equivalent design approach. We

have shown how to design in stability margins for Kalman filters in the loop with the robust estimator
technique. The most powerful technique of all, however, is the use of singular values in analyzing the
stability characteristics of multivariable systems. Further research is required in this area particularly
in transforming it into a synthesis and design technique. Questiona exist on the possible conservative
nature of the stability margins computed with singular value analyses. Research is currently being done
in this area. We firmly believe that stability margins may one day be specified for multivariable systems
based on singular value analysis.

More complex design issues which arise when subsystems are integrated in design have not been
addressed in this chapter. Tight pointing and tracking requirements for todays fighter aircraft will
result in overlapping bandwidthe between the flight and fire control systems. Design criteria for the two
systems are not always homogenous and are often conflicting. New techniques are needed to handle
multiple dissimilar design criteria.

In the singular value analysis discussion, techniques for analyzing the effect of nonlinearities were
described. While these can be a powerful tool, much work still needs to be done in treating system
nonlinearities. 1

Finally, digital control is still in its infancy. Designers are still trying to make digital systems look
like their analog counterparts. Work is ongoing today in the area of finite state machines to try and 1
discover the real power of digital structures for control application.
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TABLE 3. ROBUSTNESS SUMMARY FOR DAST EXAMPLE

TR —

RMS
L
Controller q L} ) Gain Margin Phase Margin Bandwidth
Deg [Deg/Sec Db Hz Db Hz Deg | Hz Deg | Hz Hz
: State .0 1,804 164.9 ~-8.1 9.90 - — -63.7|7.05 | +82,3 |15.25 |23.2
Kalman .0 2.330 186.2 -5.3 | 10,28 +6.4 1 21.87 |-42,5(8.26 | +32,4 113,64 |59.8
Robust . 000001 | 2,733 196. 8 -6.6 9. 85 20,0 75.28 |-45.4]7.46 | +66.2 |13.56 }19.3
Robust . 00001 3. 066 212,0 -7.3 9,87 21.5|103.56 |-53.3|7.23 | +72.98|14.23 |11.1
Robust . 0001 3.534 240, 2 -7.7 9,90 24,91149.65 | -57.9]7.16 | +76.3 J14.64 |21.8
!
|
J
" TABLE 4. PITCH AXIS STABILITY MARGINS
Flight 1 5 9 17
) Conditions Cont,[ 4 hz | Cont.| 4 hz | Cont.| 4 hz Cont. | 4 hz
) Gain
[ Margin >40 7.0 >40 7.3 >40 6.4 >40 6.1
' (db)
# Phase
f Margin 78° 63° 72° 50° 81° 90° 80° 48°
‘ (deg)

o ian)




s M.

' (T Y f

¥ ﬁj’""‘ Lot l.j ;
:

T

! SENSORS INTEGRATED COMPUTATION JI ACTUATORS
©  FLIGHT CONTROL SENSORS ®  FLIGHT CONTROL ®  AnLERON
« VERTICAL DIRECTIONAL GYROS o SAS/CAS ®  STABILATOR
» RATE 6YAOS « DIVE PHASE (TRACKING) e RUDDER
i o LINEAR ACCELEROMETERS o PULL-UP PHASE (MANEUVER)
o ANGULAR ACCELEROMETERS o NAVIGATION ® SPOILER v
» CONTADL SURFACE DEFLECTIONS ®  THRUSTERS €
© AIR DATA SENSORS o DETERMINES A/C POSITION "
o NAVIGATION SENBORS: 1N SPACE ®  ACTIVESTRUCTURAL
As: « DETERMINE TARGET POSITION CONTROL !
o INSPLATFORM ACCELEROMETERS W.RT.TO A/C ¢
AL AL ®  FIRE CONTROLMEAPON DELIVERY : «
* INSDERIVED POSITION * DETERMINES OFTMUM SoMs
o INSPLATFORM GIMBAL PICKOFFS RELEASE POINT
[~ o NAVIGATION AIDS (GPS, ETC.) F’ o ISSUES RELEASE COMMAND 1 =1 ° M
©  FIRE CONTROL/NEAPON DELIVERY ®  GUIDANCE .
o RANGE AND RANGE RATE o THREAT AVDIOANCE 2
o SEEKER PLATFORM GYROS TRAJECTORY GPTIMIZATION
o TERMINAL SEEKER GIMBAL PICKOFFS o STRUCTURAL AND " R
o RADAR ALTIMETER PHYSIOLOGICAL & ! 14
©  PROPULSION CONTROL LDADING CONSTRAINTS ¢ ,
~ ENGINE RPWS ©  PROPULSION CONTROL s
« ENGINE TEMPERATURE o ENHANCE MANEUVERING
* ENGINE PRESSURE o REDUCE FUEL EXPENDITURE
® STRUCTURAL CORTAOL ®  STRUCTURAL CONTROL
« WING MOUNTED ACCEL. o ALLEVIATE STRUCTURAL LOAD .
* WING MOUNTED GYRDS o STABILIZE STRUCTURAL MODES :
i
!
1
|
Figure 1. Integrated System Representation ‘
R
13
V.
1
[ i
)
I+L(s) G(s)
. ‘ {
2
, 4
{
1
3
: .
E Figure 2. Linear Feedback System with Multiplicative Perturbation
]




T Ty .

L(s)

G(s)

Figure 3. Linear Feedback System with Additive Perturbation

b L

Figure 4. Z-Plot for the First Example

STABLE
NOMINAL GAIN

LA
smeLe /5

OPEN LOOP

—~ UNSTABLE

\
\
\

Figure 5, Stability Domain for the First Example

VESN




5-24

i | s
4 J ] 1+s,1+ 7
f—
!
| ah
-1 |
l 1
' y *
|l 1 2
. s+l * %7
- -3 }
|
1
A
&
Figure 6. Nyquist and Inverse Nyquist Diagram for the Second Example
{
k,
}

>

. - 100

{
|
' Figure 7, Z-Plot for the Second Example
|




— L et v o 5 0O T it e et

"

pia e Songltl ot uibvibe, SSRGS

2 i 'y
R SN S

Figure 8. Stability Domain for the Secornd Example

0.25 0.06
ROLL RATE
0B sioesuip 0.04
\
\
0.25 - do0.02
'050 - _ “.m
: L
) Q.75 \ /4-0.02 :
,’ OPEN LOGP RESPONSE . _ 7/ .
! i
1.00 A \-, A A | 0.04
- ] 1 2 3 4 5

X TIME (SEC)

Figure 9. F-4 Lateral-Directional Open-Loop Response

t
;
!




5-26

0.25 0.06
}
1 0.00 ‘ - 0.04
3 ROLL RATE
0.26 4002
4 77 TS SIDESLIP
4 250 J/ o =dom
i} N
0.75 A CLOSED LOOP RESPONSE 1002
2CONTROLS: A, 5R
3 MEASUREMENTS; Ay, P, R
1.00 X R X ; 004
0 1 2 3 4 5

TIME (SEC)

Figure 10, F-4 Lateral-Directional Closed-Loop Response

10 - i
e Rotor
ight ~ - — .
Condition R [~ Dynamics
. 7 -~ ~
7’
._/// 7 \\‘
1.0 < -.,,’ -
| e 7. 7
Due to i i ¥
Rate 4 < RN < SN
N Limits % »7 e
7 7
g S 0w s
| 0.1 Lz~ » P 1
, 0.1 1.0 10. pagssec  100-
t
8
"1 Figure 11. o(L) Bound




)

.1 1.0 10. Rad/Sec 100.

Figure 12. Trial Designs for Pitch Control at Hover

10.

%[HGO']]—‘,’

-

o

of|L

Ra[e]Limit /»

0.1 " A
0.1 1.0 10. Rad/Sec

100.

Figure 13. Trial Designs for Pitch and Vertical Velocity Control




PITCH COMMAND

p— f— SIS CID D D D D S SR e GEE EN, S = ==

i . i 1
0 1 2 3 Sec
P
- Ve \\____.__.____.._-
/
/
5 /
/ VERTICAL VELOCITY
/ COMMAND
-
/ .
/
pr et—
L i 1

——=Pitch Angle (deg)
~~ =Vertical Velocity (ft/sec)

Figure 14, Transient Responses (Trial 3)




st e g

.
A
MOSE DEFLECTION RATED
-
oee T
N0
S PR
'y 12 | 12 |12
. 0 | 23|
; Py
| | an|es
»
»
k-
» LEGEND
— N
™ $ A
K r——- \*
» A e
u - oo o
" A3 -
»
E | 1 L 11 1 1 | '} L 1111 1
1 T 3¢ 0 018 N 8% 1M m W e e

Figure 15,

Robust Estimator Characteristics for DAST Example

5-29




! a. Continuous
! R £ 1 c
4 s
!
{

1
i

b. Discrete with Compensation
; T T
-1 '

i Rgs) >‘ S % c(s) 7‘ IC(Z)
i
.
1 T Pn- :
i (I-BC)(Z-ac) —
! - -8 D(Z) D(S) a
1

Figure 16, Peled's First Order Example

o vl A ot I S




5-31

uonBuswerduw] [oa§uo) 918y ardursg Mo ‘LT undrg

(s)l4
(s)9 (5)°%
gy IWIS | SenH
1504
Indang

S i TGP ® W S WG S~ g

()%

ey,

s> gy
ouyy ajduwes 36.%7 5 1L

* 4dwo?) * dwo)
SIS pARMAO DIV 3hdu]

HOZ

(@ (2)3% AU.V» 3014

HOZ 3y
paemuo peay |
,_u.w&au U0 RIUD (dw] 330y I(dwes MOT °q
(s)3n
* dwo) * dwo)
S94495 pAemiIo4 pady

K

(s)%H

ELLIT

Indu]
30L}4d

ubisag snonujjuo) ‘e




5-32

-1
10 1 10 10
60.0 T T TTTT T TTm 7 TTig 0.0
a5.0 gL Phase — -45.0
- 7
G - —‘b \
30.0 | = . -90.0 H
A ~ A
1 15.0 S -135.0
- LN ~ S
e S,
N 0.0 S =8 _180.0 ¢
-\ Gain \\
D -15.0 -225.0
B 3.0 F \ -270.0
45,0 | -315.0
-60.0 Eooeoceerend 1 pan i1l -360.0
107! 1 10 102
FREQUENCY r/s
Flight Condition
#
Gain Margin = 59 db
Phase Margin = 78°
Cross Over Frequency = 5.2 rad/sec.-
Figure 18, Pitch Axis Open-Loop Response {continuous)
- 1 10 10°
60.0 ‘7 rpg'lllll Ty 0.0
45.0 Vs ﬁ R -a5.0
- ~ ™\
6 30.0 = -1 N\ i‘L | -90.0 P
= \
A 15.0 Dy \ ;\‘ 1R 1350 :
I o N\ \
N 0.0 - ——_\ A ' -180.0 ¢
C Gain
- C rAteLq -225.0 E
p-15.0 F T ,"
B-30.0 [ u =270.0 ‘
- )
-45.0 [ -315.0 e
-60.0 L1111l Lo s 1311t -3s0.0 9 f
-1 10 102

Low Sample Rate Design

Gain Margin = 7 db FREQUENCY r/s
Phase Margin = 63°

Cross Over Frequency = 3.8 rad/sec.

Figure 19, Pitch Axis Open-Loop Frequency Response {low sample rate)




5-33

0 1 2 3 4 5
0.2 T T Tr7 LLUBLELE BLELELEL LNLIRL AL ITIT_‘I'ZS
- »N\ -l
- / ~ 3
0.0 h NS — 1.00
n, E\ / qc+
(ft/sec) / q--
-0.2 0.75
u \ 3
o I :
-0.4 I ] 0.50
, F | ]
4 -0.6 f 0.25
-0.0 | 1 N N W ﬁ Lt 111173 0.00

Figure 20. Pitch Axis Transient Response (continuous)

0 1 2 3 4 5125
0.2 TTTTTTT ) 0 B L lﬁa'
- Lo
0.0 ,’ > — 1.00
"2 E\/ o
{ft/sec) [ ]
-0.2 | 0.75
o
= 'l 3
- - 0.
0.4 Jo.50
-/ ]
0.6 L 0.25
-0.8 LJJ s be v b e b laag 0.00
0

Figure 21. Pitch Axis Transient Response (low sample rate)




6-1

PRACTICAL DESIGN AND REALIZATION OF A

DIGITAL ADAPTIVE FLIGHT CONTROL SYSTEM *)

by
V.Krebs and U.Hartmann

Bodenseewerk Gerdtetechnik GmbH
Postfach 11 20,D 7770 Uberlingen
Federal Republic of Germany

SUMMARY

A new approach for the design and the practical realization of a digital adaptive command-
and stability system is proposed. The control law for the longitudinal motion of the air-
craft is obtained by state vector feedback using the MIL-F-8785 B handling qualities re-
quirements. The design principle is based on decoupling of the angle of attack and pitch
rate on the one hand andthe pole allocation method for the eigenvalues of the control
system on the otherhand.Since the necessary gain factors contain unknown and variable air-
craft parameters an on-line fading-memory least squares algorithm for the estimation of
these parameters is used.

Only conventional aircraft sensors (rate gyros and accelerometers) and an airborne digital
computer are necessary. Hybrid simulations of the complete system as well as flight test
results demonstrate the efficiency of the concept.

1. INTRODUCTION

Advanced high performance aircraft show drastic changes of their dynamic characteristics
which are caused by a variety of aerodynamic and configuration parameters. Therefore we

are faced with the need for proper adaption of the control loops. A usual approach to solve
the adaption problem is to measure a few of these parameters and to preprogram the con-
troller gains as a function of them. Generally this is a tedious task and in some cases

it is difficult to meet the handling qualities requirements.

Therefore we observe efforts to solve these problems via self-adaptive solutions since
more than two decades (/1/,/2/). In the development of a self-adaptive flight control
system -by reason of simplicity in the sequel called only "adaptive control system"- three
basic questions must be answered:

~ How can we satisfy the handling qualities requirements? This is the basic concern be-
cause the adaptive approach has to provide better results than the programmed approach
or at least the same ones with considerable less expense.The resulting handling quali-
ties have to be documented and verified, therefore an easily understood design process
is an obvious need.

~ How can we identify the essential parameters of the aircraft model? In fact the para-
meter estimation is another essential part of the design process. Only a limited num-
ber of parameters should be required by the adaption mechanism because the difficulties
of parameter identification increase significantly with the number of parameters to be
identified.

- How can we provide software and hardware reliability? Early attempts in the history of
adaptive flight control have used analog hardware, but the problems of a rather complex
signal processing and of pre- and inflight-testing could not be solved with this tech-
nology. The advent of powerful microprocessors has now changed these basic technical
aspects of the problem: The digital hardware allows the reliable realization of com=-
plex signal processing algorithms and detailed testing procedures. Nevertheless a re-
markable part of the reliability problems has been shifted to the software field. Strong
efforts have to be carried out that no software malfunction deteriorates the reliabili-
ty figures of the whole system.

The approach presented in this contribution has been evolved during some years (/3/,/4/,/%.
Recently flight tests have been carried out which demonstrated the proper function of the
adaptive control system. The paper describes shortly the design principle and the iden-
tification process of the system. In a further chapter the realization of the adaptive
controller and some typical data of interest will be documented. Finally significant re-
sults sodfar obtained in digital and hybrid simulations as well as in flight tests are
discussed.

%) This work was supported by the ministry of defense of the Federal Republic of Germany
under grant T/R 421/70002/72400.




y

6-2

2. DESIGN PRINCIPLE

The design approach of the adaptive control system is based on the principles of state
vector feedback and pole assignment and has been desrribed in detail (/4/). In the fol-
lowing we will give a short introduction to the basic ideas using well known root locus
techniques. By reason of clarity the actuator dynamics will be considered neqligible in
treating the aircraft dynamics. Actually the realization of the adaptive control system
took account of the actuator dynamics (Chapter 5).

Basically we are following two main steps in the design procedure of the control system.
First we are decoupling the angle of attack and the pitch motion of the aircraft.

For this purpose in aircraft with static stability a positive feedback of the angle of
attack is required. In the dynamics of the controlled aircraft we find therefore motions
with varying angle of attack and elevator deflection but without any change in pitch, i.e.
the influence of the angle of attack is completely compensated. In the second step we have
to satisfy the handling qualities requirements concerning the frequency and the damping of

the short period mode. This will be done by using a proper feedback of pitch angle and pitch
rate.

Following this approach it should be noted that the feedback gain of the angle of attack on
the one hand and the gains of pitch angle and pitch rate on the other hand are completely
independent: The angle of attack gain depends only on the aerodynamic characteristics of the
aircraft whereas the pitch angle and pitch rate gains depend on both, the aerodynamic
characteristics and the handling qualities requirements.

This will be shown using the basic linearized state vector eguation
x(t) = Ax (t) +B-an (1

cf the longitudinal motion of aircraft. With thec state vector definition

x =[s0,8q,80, ] T
AQ = pitch angle
Aq = pitch rate
Ao = angle of attack
Au = forward velocity

An = elevator deflection

we have in general the following system matrices

0 1 ) 0 0
a1 a5, 333 3y b1
A =lay, ay, a3y azl B =] by (2)
a4 34 243 Ay P41
and the feedback law
An = klx = [K K K K ].x (3)
_ = ey q ‘ [ B4 u _-

It can be shown (/4/) that the forward velocity Au has only a negligible influence on the
short period mode of the aircraft. Furtheron the relation between pitch angle and pitch rate
is purely kinematic. Therefore we proceed to a simplified state vector equation describing
only the short period mode of the aircraft dynamics

= . + « AN (4)

and the corresponding transfer functions (b31 is usually very small, a,, ~ 1)

_[.\H(S) = _____gb21(s+s )—- (5)
An C(s)

Ao _ b31(s+sy) (6)
An Cisi

—‘(S) =
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b1 a32 =~ b3q az2

with _ b31 123 - by a3y Sq =
S = ————p - — ' b34
21
and the characteristic equation
C(s) = s2- (apgp+a33ls + ay, ajy- ay; aj, (7

Fig. 1 shows the locations of poles and zeros in the case of the DO 28D aircraft (Alti-
tude = 2000 m, VTAS = 70 m/8). In Fig. 1.a we see the effect of the positive angle of
attack feedback, which cancels in the closed loop the zero of the 8q/An -transfer function
at ¢ =-1.59 (Fig. 1.b). This can be interpreted as a decoupling of the angle of attack Aa
and Aq in Fig. 2., Finally we obtain the required handling qualities, i.e. the damping and
the frequency of the short period mode by proper feedback gains Ky and Kq (Fig. 1.¢).

The necessary feedback gains can be readily calculated from the condition of decoupling of
4a and 4 q and from the handling qualities requirements. Using equation (4) we obtain imme-
diately

a), Aot b2]' An = 0O
or
azj
Aq:———b 'A(l=l(u-A[1 . (8)
21

The differential equation of the decoupled short period mode are now

86 - 8
4 (9)
L]
Aq = aj, Aq + b21 (Kﬁef Kg-4q)
which yield the characteristic equation
52 - (a,,+b,.K.)8 - b, K, = O (10)
227°21Kq 218 .
Comparing equation (10) with the desired characteristic equation
2 2 -
s + 2Cspwsps + wep = [0} (11)

where (gp and wgp are the damping and the frequency of the short period mode as presribed
by the MIL-F 8785 B requirements (/6/), we obtain immediately

2

=20 oW - a -w
K =.__jDBiQ___]2_ , K, = —B (12)
q 21 0 b21 .

Equations (8) and (12) establish a direct relationship between the dynamic parameters of the
aircraft, the handling qualities requirements and the feedback gains. It should be noted
that only three dynamic parameters of the aircraft - Ay, 3,3 and b21 - are necessary.

By reasons of reliability and costs we are interested to avoid pitch attitude and angle of
attack sensors in stability augmentation systems of high performance aircraft. This can
easily be done by integrating the signal of a pitch rate gyro and by substituting the angle
of attack signal by the signal of a normal accelerometer, using the fact that the relation
between the normal acceleration a, and the angle of attack is approximately given by

a2=za - a (13)
if the normal force due to an elevator deflection can be neglected. Fig. 3 shows the simpli-
fied dynamics of the longitudinal control system where the factor b3y - which is usually
sufficient small - has been neglected. It should be noted that the closed loop of the pitch
rate control system provides exactly a steady state one to one response of theq /dc-transfer
function. By prefilters it is possible to shape the pitch rate response in an appropriate

manner according to the requirements of the C"-criterion /7/ or the load factor control
system.

For practical realizations we are interested in a discrete time version of the control
system. As the sampling frequency of the control system should be high in comparison with
the typical time constants of the aircraft, we are looking for a discrete time approximation
of the control law. This control law should be immediately suited for the automatic adaption.
For this purpose we start with a discrete time version of the state equation (4),include

the above mentioned relation between angle of attack and normal acceleration (13) and obtain
(A symbols are dropped)

g{k+1) ¥ ¢ g (k) h
= Ly 12 . + ! « n{k} (14)
a, (k+h) far 2z || 220 hy

o
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The feedback law is put up in the form

nik) = K7o (k) +K"qq(k) +K;zaz(k) (15)

The condition for decoupling the pitch rate q from the normal acceleration can
be used in the first equation of (14) with the feedback law (15)

AlkT) = (F)+hKG YU =hKGE ) = (F,*+hK] Dag (k) = O (16)

Thus the feedback of the normal acceleration is given by

> _ %12
Kaz— h.‘ B

17)

wWith the sampling period T we express
qik+1) = g(k) + q(ks-T

and obtain as characteristic equation of (16)

2 - ~h.K“) s- b=
Ts<+ (1 P1] hlhq) s h1Kw (0]

(18)

and by comparison with the desired characteristic equacion (11)

K® - - Tug? kv . 17F11-2'sp-spT (19)

& h] 4 q h1 .
Therefore the identification process must deliver the three coefficients
Pue $r20 by

of the measurement equation

qlk+1) = Priatk) + ?12a2(k) + hyn(k) (20)

whereas the natural frequency w and the damping ratio ;s are derived from the
handling qualities requirement ;. p

The natural frequencyn»s is determined in the MIL-specifications by the so called
load factor sensitivity ?/6/ ). An evaluation shows that the load factor sensitivity
can be well approximated by a power function of the dynamic pressure gc (/12/).

D
w = g‘qcI

sp (21a)
The required damping ratio of the aircraft does not depend on the flight case.
Therefore we chose a constant damping ratio of
ep - 07 . (21b)

3. IDENTIFICATION ALGORITHM

In section 2 it has been pointed out that realization of the adaptive stabilization con-
cept requires knowledge of three coefficients Y11, 12 and hy of the discrete state-
space equation (14). The estimation algorithm to be used should show the following pro-

perties:
- minimum variance unbiased estimates

- recursive form since on-line identification is necessary

identification of time variable paramecters (due to different flight conditions)
convergence independent of choice of the initial conditions of the estimator
- easy programming on a process computer.
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We apply a least-squares approach in state-space representation with exponentially
weighting of past data to ensure parameter tracking. Though this method gives biased
estimates /8/ it has the advantage of a very simple structure. Moreover its efficiency
has been proven already in wide-spread successful applications. Other alyorithms which
yield unbiased estimates like the generalized least squares method /9/ are too complex
or give no practical improvement. Moreover we remember that the mathematical model (14)
is an approximation, hence our demands for accuracy of the estimates should not be
emphasized too much.

The structure of the process with unknown parameters is given in state-space form by

K(k+1) = 3 x(k) + H u(k); (22)
yik) = x (kv + n(x), (23)
whele x is the nx1 state vector, % is the nxn transition matrix, and H 1s the nxm 1in-
put matrix.
Measurements of the input u (k) (mx1 vector) and noisy me. .rements y (k) of the state
x (k) are available at discrete time instants X (k = 0, 1, 2, ....,. The model of the
process 1is then
~ A
ylk+1) = S(k)y(k) + H(k)u(k) + e(k)
(24
where “A* indicates that the matrices § and E contain parameter estimates (Fig. 4).
The method of least squares means that we minimize the quadratic error
~ T .
E: = e (k)e(k) -» Min. (2%)
for each k, where
y A (26)
elk): = y(k+1) = ¥(k)y(k) - H(k) u(k).
This leads to
JE T :
x— = -2elk)y (k) =0 .
3 (x) ety (27a’
and
" T i
—'—— = -2e(k)u” (k) =0
aﬁ(k) (27b)

Now we obtain the adjustment mechanism for the model parameters applyina the gradient
method, i.e. che rate of change in the parameter estimates is cliosen proportional to
the gradient to the cost functional E (see for the scalar case / 10/, p.203}:

G+ =g (k) dd (k) JE
> ~oT TR
T dt ag (k) (28a})
A A A
Hik+1) - H(K) ~ dH (k) o o (28b)
T dt A8 (k)
Equations (27) and (28) yield the iterative estimation proceaure
S = Sk-1) + s mek=1) { yT k) -mT (k=1) Sk-1)} (29)
T g
with ¢ (k) Yy (k)
A
S{k): =]a » miky: =
QT(k) u (k) (30)

and the proportionality-matrix [, comparing Eq. (29) with the usual recursive least
squares approach for single input-single output systems, we see that we may equate




where P (k) s a matrix with decreasing norm evolving according to

Pk-T)m(k=1)m" (k=1)p" (k=1)

QT(k—1)‘£(k—l) m{k=-1) + 1

Tracking of time-variable parameters is ensured, if we provide an exponential weighting
of past data in the estimation algorithm (29) - (32), i. e. new measurements influence
the ydpdating of the varameter estimates in a stronger way than older ones. This yields
« /11, . 240)

Lok=Tmk=1m (k=12 T (k-1)

m’ (k=P (k=Dm(k=1) + 1

Plo) =P

wlth tne weluahting factor

4., APPLICATION OF THE ESTIMATION ALGORITHM TO FLIGHT TEST DATA

Betore implementing the identiflication algorithm in the adaptive flight control system,
extensive tests of the estimator have been carried out using flight test data of the
bus ess jet HFB 320 "HANSA". These tests gave information about the following items

- bilas 1n sensor signals
- uotermination of the weighting factor f in Eq. (33).

- anfluence of input-signals to the gquality of the parameter estimates

The problem of signal-bias may be solved either by including an additional bias parameter
by 1n the estimation cqua.ion (29) or by digital prefiltering of the sensor signals using
a lead-type filter. The identification results with both methods are given in Fig. 5 and
Fi1g. 6.

Tne 1input to the aircraft is the deflection of the elevator, commanded by the pilot- Fig.
5a. The three parameter estimates as well as the estimate by of the bias-term is given in
Fig. 5b, while Fiy. 5c shows the reconstruction of the output g (rate of pitch) by

A

A # 2 A A
QlkeT) = Fyaatk) + Froan (k) + hyk) o -by (k)

in comparison to the measured output to verify the estimation as theoretical values of
the parameters are not available. Since real flight test data have been used all adverse
effects of the sensors (noise, nonlinearities) and the airframe (vibrations, structural
bending modes) are included.

Fig. 6 contains the ccrresponding results after lead-filtering of all measured sensor
siynals. The estimates converge in beth cases in the same time (about 3s, Fig. 5b, 6b).
Though the estimation with the bias parameter included is slightly more exact than lead-
filtering (Fig. 5c, 6c¢), the latter method has been selected for application in the adap-
tive flight control system to reduce the computational burden.

The effect of the weighting factor is demonstrated in Fig.6d. A smaller factor £> 1 yields
smoother parameter estimates, since the present data have less influence in the algorithm.
On the other hand the estimator is now unable to follow fast parameter variations. The ab-
solute value of f obviously depends on the signal to noise ratio. Suitable values are in
the range of 1,01 - 1,15.

Finally we discuss the importance of the input signal type to the quality of the identifi-
cation. The input signal (elevator deflection) has to excite all eigenfrequencies of the
system; that is why binaryor three—valued uncorrelated noise {Fig. 7a or 5a) is well suited.
Moreover the power-~spectrum of the input signal should be sufficently large in view of the
signal/noise-ratio and the problem of linear dependent measurements. Figure 7 illustrates
the estimator dynamics with elevator deflections which are about ten times smaller than

in Fig. 5. Now the settling time of the parameter estimates is 7 secondes, more than twice
as long as in Fig. 5.




5. REALIZATION OF THE ADAPTIVE FLIGHT CONTROL SYSTEM

For hybrid simulations and flight tests an experimental adaptive flight control system has
been realized using a 16-bit minicomputer. A STOL-aircraft DO 28 D was readily available
for the flight tests. This aircraft is not typical for the application of an adaptive con-
trol system because of its limited flight envelope. Since the main concern during this
phase of the study was only to verify the proper function of the adaptive control system
in the real world, the aircraft was indeed very useful.

During the realization phase of the experimental adaptive control system the following items
turned out to be of importance:

Actuating system:Usually the hydraulic actuating system of high performance aircraft is very
fast. Earlier simulation results indicated that in cases where the actuator bandwidth is
three to four times wider than the aircraft bandwidth it is possible to neglect the actua-
tor dynamics in calculating the adaptive controller gains. In case of the DO 28 aircraft

an electric actuator has been used with a bandwidth of only 1 Hz. Therefore it turned out

to be necessary to introduce a compensation network in order to reduce the phase shift of
the actuator (see. Fig. 8).

Safety considerations: In case of an experimental adaptive control system a potential mal-
function of the identification process has to be taken into account. Errors of the estima-
ted parameters may result in significant increased controller gains thus leading to stabi-
lity problems of the closed loop. To avoid these stability problems the computed gains of
the adaptive controller have been limited to safe, precalculated values. These limitations
varied according to the dynamic pressure qc=pt-pg. The adaptive control system contained
also a set of preprogrammed controller gains (dependent on the dynamic pressure) for com-
parison and evaluation purposes.

Identification algorithm: The identification algorithm has been programmed according to
table 1 with the following definitions (k=index of sampling instant):

State vector (2x1) 1 = [qk’aZk] T
Output signal (1x1) g, + Noise
(only first element of

Xx is required)

Input vector (1x1) = Nk

Measurement vector ({3x1) : = [qk,aZk,nk] T

Weighting matrix (3x3) P (initiated with Py (i,]) o, i 3J
Pq(i, 1) Por, for i =1, 2, 3)

Parameter matrix (3x1) (initiated with precalculated values,
(only first column of e.g. for the take-off flight condition)
8k is required)

The block diagram of the complete adaptive control system is shown in Fig. 8 where the
main functions of the control system are clearly separated.

Number ot instructions

Load/ Add/| Mult | Div.,
Store Sub

Description Instruction Comnents

Stuie old wk_‘_mk

measus ciient s

Corrcetion ot

last measureient s wk_l'bmk_]o(l—K)@k Weighting of discrete time

- values of continuous time
variables (K-correction ma-
trix, l-ldentity watrix)

Instrumental
vecton

Facto = Fading memory tactor
f oo 1,029

curtective
webght Ly matzax

Corgected
wo bt g matr ax

Caorrectave par.e-
micter matsax

Cer e sbend ey
mebea matr px

Table 1: Identification algorithm break-down
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Programming considerations: After a detailed analysis of the adaptive control system a
sampling rate of 10 Hz has been adopted. The equations of the control svstem have been
programmed on a 16-bit airborne minicomputer (ROLM 1602) using fixed point arithmetic
troughout. To increase the accuracy of the identification process the critical parts
~f the programm have been written in double-word arithmetic. Table 2 shows the memory
space and the computation time required for the adaptive control system.

Program Memory space Computation time
(16-bit-words) {ms)

Identification 535 11.3

Control 400 0.9

Operating System 1994 not applicable

Total experimental 2929 12.2

Control System

Table 2: Computational requirements of the experimental adaptive
control system

Hardware of the experimental control system: Fig. 9 shows a blockdiagram of the test

equipment of the experimental adaptive control system including the computer and the
aircraft and actuator dynamics. The actuator and the clutch is engaged or disengaged

by the pilot. To provide a smooth engagement of the control system the actual value of
the elevator deflection at the instant of engagement has been stored in the computer.
With the control system engaged the pilot had the possibility of control wheel steering
(CWS) . Furtheron provisions were made to introduce different test and disturbance sig-
nals (qc, nee Anp).

6. RESULTS

The properties of the digital adaptive stabilizing system first have been tested by digi-
tal and hybrid simulations using the longitudinal dynamics of the Mc Donnell/Douglas F-4
“"Phantom" aircraft. This aircraft is well suited for the adaptive stabilizing concept be-
cause its flight conditions span a wide envelope with drastic changes in the open locp
dynamics /12/.

Later on flight tests with the complete adaptive system have been carried out using the
DO 28 - D "Skyservant" of the Bodenseewerk.

The simplified block-diagram of the adaptive control system is given in Fig. 10. As men-
tioned above the C2criterion requires the application of a pre-filter with positive phase
characteristic. It should be carefully observed that the introduction of the dynamic
pressure pt-pg is not required for the adaption of the control laws. It is only used

to match the desired handling qualities - especially the eigenfrequency of the closed
loop~-according to equation (21).

Extensive digital simulations of the adaptive system with complete fourth order longitu-
dinal dynamic equations yielded good results (/12/) under fast parameter variations and
in atmosperic disturbances which have been simulated using the Dryden form of a continous
random gust model. This gust model is defined and specified in the MIL-F-8785 requirement
/6/.

As discussed in the preceding paragraph the adaptive system has been implemented cn a
16-bit airborne computer. The results of hybrid simulations (the longitudinal aircraft
dynamics was reproduced by an analogue computer) of the complete digital adaptive command-
and stability system are given in Fig. 11. The aircraft is disturbed by wind-gusts Fig.11h.
A rapid change in the velocity from Mach 0,2 to Mach 1,0 and back to Mach 0,2 - as indi-
cated on Fig. 1la - yields a qpnsiderable change in the parameters and consequently a
change in the estimates ¥qq, ¢12 and 31(Fig. 11e - 11qg).

The rate of convergence of the estimation algorithmmay be demonstrated even better by using
another Mach number versus time function given in Fig. 12a. See the estimates Fig. 12e-12g.

The flight tests with a DO28-D STOL aircraft have been carried out to verify the whole
system. Actually a business aircraft like the D028 with a small flight envelope does not
require an adaptive flight control system at all. However the flight tests demonstrated
the efficiency of the system under the following circumstances, which are different from
the simulations:

- modelling errors of plant and actuator due to nonlinearities

- influence of noise and structural bending modes on sensor-signals

-~ drift of sensors

- real turbulence
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As discussed in more detail by Krebs (/13/) the adaptive system generally works well for
different flight conditions including power approach.

The atmospheric turbulence generally yields sufficent excitation for the parameters to
be identified. During periods of quiescent flight however, no parameter tracking is pos-
sible and the parameter estimates have to be locked. Otherwise the parameter estimates
diverge thus increasing the closed loop gains. Due to this fact a certain self-
excitation of the whole system occurs and the resulting pitch rate q, normal acceleration
az, and elevator deflection n lead to acceptable parameter estimatee, though. This may be
demonstrated in the simulation as well as in the flight test data (Fig.13 and 14).

7. CONCLUSIONS

The simulations as well as the flight test results with the adaptive flight control system

suggest the following conclusions:

- The development and introduction of digital adaptive control systems for advanced high
performance aircraft is possible using today's digital technology. Both, the handling
qualities requirements and hardware reliability can be met.

- Some problems arise with regard to the parameter identification during quiescent flight

but may be surmounted by special provisions like locking of the parameter estimates,
setting the weighting factor £ equal to one, or introducing a test signal. The latter
method 1is discussed e.g. in /14/.

- The question whether scheduled controller gains or self-tuning of the gains is superior

can not be answered definitely. It requires further research activities and flight tests

with high performance aircraft including comparison of both methods.
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APPENDIX

The development and the verification of the adaptive flight control system has been carried
out using unclassified data or the F~4 fighter aircraft which is considered to be a typi-
cal aircraft for the application of an adaptive contrcl system. Handling qualities data

on this aircraft have been published in great detail /15/. During the work the following
flight conditions have been considered:

No. Flight Condition Airspeed Altitude
(m/s) {m)

Power Approach 70.1 o]
Low altitude,supersonic [0}
High altitude, subsonic

High altitude,supersonic

In these flight conditions the dynamics of the aircraft is described by the following
system matrices (Eq. 1)

Flight condition 1

0. . 0.
.00166
-.00253
-.0418

Flight condition 2

0.
-.00013
.00014
-9.81

Flight condition 3

Flight condition 4

O.

To examinate the parameter tracking capabilities of an adaptive control system it can be
of interest to use a state space description of aircraft dynamics with time varying para-
meters. In the following simplified, time-varying system matrices are provided, which are
dependent on the Mach number:
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Elements of the A-matrix

Elements of the B-Matrix

b11 = 0.

b lu .

Ly . 3. 58¢
21 \Y] ma, 'V m



In the equations the following symbols have been used:
{
Symbol Description Unit
4 q Dynamic pressure q=% DV2 N/m2
P Air density kg/m3
A v True airspeed m/s
S Reference wing area m?
- lu Reference chord m
B m Mass kg
Iy Moment of inertia about y-axis kgm2
g Acceleration due to gravity m/s2
4 M Mach number -
"1 Cai Nondimensional 1lift derivatives -
:; CWi Nondimensional drag derivatives -
g Cni Nongimeysional pitching moment
. derivatives -

For sea level we obtaiu the following numerical values

3 Expression Value Unit
pe £ 3.416-1073 n!
m
g.s -1
v m .581 M s
g-=2 197.7 M? ms ™2
-~ . Sly 2 -2
| g5 102.9 M s
! = s1 1 1
g . 24 L
v Iy .3026 M m s
1
qg.58ly -
5 Ty 1.479 M s
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Values of the nondimensional derivatives

Mach number
. 206 .8 .9 1. 1.1

CA .91¢ .079 (-} (- .0404
CM1 2.8 3.26 (=) (=) 3.26
CAM (o] 0 .25 (=) -.12
CAL .24 .34 (=) (=) .328
CW .242 .0175 (=) (-) .0416
C ec R -
Wa . 555 .085 (=) (=) .031
C 0. O. 0. .4 .02
CW,,1 -.14 0. (=) (-) 0.
Cma -.098 ~.275 (=) (=) -.594
C o -.475 -.49 (=) (=) -.57
m&

-1. -1.17 (~) (=) -1.35
mq
CmM 0. -.037 -1. (-) .0323
Cmn -.322 -.49 (=) (=) -.511

(-) denotes: actual values can be computed by linear interpolation.
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Summary

The manufacturers Bodenseewerk Gerdtetechnik, MBB, VFW-~-Fokker and the research institution
Deutsche Forschungs- u. Versuchsanstalt fiir Luft- u. Raumfahrt have developed and flight-
tested an integrated digital flight control system for future transport aircraft. The
primary objective of the program was, both to improve the manual control of the aircraft
assisted by control systems, and to develop new control and display systems. In addition,
automation is to be provided for longer flight phases which are to be optimized with re-
spect to fuel consumption, flight time, or other criteria. This paper describes some
aspects of the control law design and flight test experience with the integrated digital

flight control system.

Nomenclature

a speed of sound P roll rate

ay lateral acceleration Py static pressure

o) drag coefficient q dynamic pressure

Cp/C drag/lift ratio q pitch rate, rad/s

C lift coefficient re thrust pitch moment arm
CHq lift coefficient due to the wing reference area

variable(x), e.g. Cg‘

s Laplace operator
Uw horizontal wind speed
v

C rolling moment coefficient due :
1 indicated air speed as an ele-
4 to the variableis}, e.g. C, ment of the state vector
: . : \" indicated air speed
AS
Crmyy) Eltcglng m?mg?t f°eff1°ie“t due v& velocity of aircraft mass center
o the variable(#), e.g. Cmg Vias true aér speed
w aircraft weight
CwWs control wheel steering Wy vertical wind speed
EPR engine pressure ratio x state vector
F thrust ¢ Y flight path angle
F1 angle of flaps Sar Gos O angles of aileron, elevator, and
q acceleration due to gravity rudder, rad
GCs guidance and control system , pilot's commands via control
B vertical speed, m/s Qb % wheel
iy dimensionless moment of inertia A deviation from a reference
about x-axis flight, e.g. Ad&
KF () fﬁedbECk of the variable (#) to efl, eV, e¢ control error signals
the thrust, e.g. Kg, itch attitude, rad
Kﬁou) feedback of the variable (#) to g gank angle !
the aileron, e.q. K%g oH air density
damped natural frequenc
i &%‘) feedback of the variable (#) to N g:m;?i; rgtig d Y
* the elevator, e.g. Kseo
| Subscripts:
' Ks a lateral acceleration feedback P
| y to the rudder c commanded
X ;p lgngth of mean aerodynamic chord o reference flight
Mach number sp short period mode
m aircraft mass
n normal load factor

1.0 Introduction

In the past, the increasing operational requirements placed on the flight control system

' of transport aircraft have led to systems of more complexity with a large number of com- '
i; ponents. This resulted in increasing weight, volume, energy consumption and costs and

- paced the way for digital flight control systems. The advantage of digital systems com-
! pared to former analog developments becomes obvious, if the following is considered:

- Integration of a great deal of single functions in a limited number of computers.
- Simple implementation of complex algorithms.

High flexibility due to definition of system characteristics by software.

- Good self-checking capability.

—
]

Alrlines thus expect the digital flight control system which will be used in the next
! generation of transport aircraft to provide a reduction in cost and a further improve-
ment in performance, in particular when provision of additional operating modes and
| automatic functions is desired.

" | 4
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The increasing air traffic density in the Terminal Maneuvering Area and tht ~.ze ~f thne
aircraft in use today place high requirements on the ability of the pilot and crn the
quality of the control and sensor system. For the coming near terminal operational pro-
cedures, the pilot should be able, with the minimum possible work load, to achiuvve a
precision level in aircraft guidance close to that of an automatic system. Thus, an im-
portant development objective is both to improve the manual control of the aircraft
assisted by control systems, and to develop new control and display systems. 1In additior,
automation is to be provided for longer flight phases which are to be optimjzed with re-
spect to fuel consumption, flight time, or other criteria. The development of such func-
tions becomes more and more important as fuel prices rise.

In order to gather experience with regard to the above-mentioned operational aspects, an
integrated digital flight control system for future transport aircraft has been develop- !
] ed and flight-tested with a HFB 320 (figure 1) as part of a research project sponsored ﬁ
by the Federal Minister of Research and Technology.

2.0 The guidance and control system

The flight control system includes a guidance and control system modes concept (GCS

" modes concept) with a hierarchical structure corresponding to the degree of automation.
4 The three levels of the hierarchy are control wheel steering, autcmatic modes, and auto-
matic functions (figure 2). The basic GCS mode is the control wheel steering mode, which
4 considerably simplifies flying the aircraft. By control wheel deflections, the pilot can !
L intervene at any time and command changes for the longitudinal motion in the pitch atti-

tude, or in the rate of vertical speed, respectively, if thrust control is active. In
the lateral motion he can command changes in the bank angle. The primary automatic modes
and funcions are immediately switched off and the control system calculates control sur-
e face deflections for stabilization of the required new flight condition. This results

in high maneuverability with reduced pilot work load.

The modes for altitude and heading hold are automatically engaged when the pilot has
approximately reached stationary straight and level flight condition via control wheel
steering. All other GCS modes are selected and engaged on the control unit of the flight
control system. In addition to well-known autopilot modes for altitude change, heading
change and VOR navigation, the autothrottle mode is implemented for preselection of
aircraft speed. By further, newly developed GCS modes, aerodynamic variables are con-
trolled, too. For example, the pilot selects a multiple of the stall speed. Automatically
the actual aircraft configuration with respect to weight, flap position, etc. is taken
into account by the control law computation. Furthermore, a climb maneuver can be ini-
tiated with maximum flight path angle or with maximum vertical speed on the pilot con-
trol unit of the control system. In addition, automatic functions can be selected, which
permit automatic execution of longer flight phases. These functions are making use of
the ordinary GCS modes and include automatic approach or automatic overshoot in the case
of a missed approach, transition from cruising flight to the approach flight condition
with minimum fuel consumption and transition with time control.

The management of the GCS mode concept is performed by the GCS management logic. The
software of the flight control system is divided into three sections: Computation of
command inputs, controller outputs, and computation of total control variables. Each of
these sections includes several modules which can be activated individually. Correspond-
ing to its logic state with respect to the engaged GCS modes, the GCS management lodgic
selects the respective modules of the three sections. Figure 3 demonstrates, for example,
which modules of the three sections are engaged when AUTOLAND is switched on together
with the compatible GCS mode speed change (VC).

3.0 The sensor system

All sensor signals required by the flight control system are provided by the sensor sy-
stem in a filtered form suitable for flight control. The signal quality of the various
sensors corresponds to the expected standard for future transport aircraft. Filtering of
the measured analog signals is carried out on the analog side as the digital controller
does not permit high frequency filtering due to its sample time.

An air data and navigation calculation program processes the signals of the static
pressure sensor, of the inertial sensor system, and of the radio navigation receivers.
The vertical acceleration signal is integrated twice and is slowly slaved to pressure
altitude signal, resulting in very smooth altitude and vertical speed signals.

The long-term errors of the inertial navigation system are reduced aiding with a refer-
ence position. The reference position can be calculated either from the signal of a

MLS statlon or from those of a VOR-DME station. If the reference signal fails during a
turn at low altitude due to shadowing of the antennas on the aircraft, a very precise
continuous flight path can still be maintained. This means that navigation signals of a
constant quality corresponding to the short~term accuracy of the platform are avajilable
in all GCS modes which are used in the Terminal Maneuvering Area.

4.0 Dimensioning of the flight control system

In accordance with the hierarchical structure of the flight control system, dimensioning
of the controller consists of step-~by~step development of a coupled multivarjable feed-
back system. All essential sensor and command inputs act on the controls avajlable to
the flight control system. These controls are rudder, aileron and elevator. The throttle
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of the engines is used additionally in some GCS modes. If the selected controller struc-
ture ‘fiqgure 4) is applied strictly, the design of the system eigenmodes can be separat-
ed from the gain determination of the command feedforward loop and the disturbance com-
pensating loops.

Well-damped eigenvalues must be achieved for all flight conditions and for every con-
ceivable combination of GCS modes. This also provides an improved response to gust in
case of no direct feedforward gust allevation system. Disturbances resulting from con-
figuration changes of the aircraft, for example extension and retraction of flaps or
landing gear, can be modeled with a good degree of accuracy and can therefore also be
compensated by open loop control.

Various methods are used to determine the gains of the flight control system and to
schedule them to flight condition parameters. It should be emphasized that the classical
methods such as the time vector method (ref. [1]) and the root locus method have proved
to be as useful as modern numerical design methods such as solving the Riccati equation
or automatic parameter optimization by minimizing a cost function (ref. [2, 3)]).

The met.hods were used with equal priority and their results have supplemented and sup-
ported each other. As the control system gains and the system dynamics after minimization
of a cost function do not necessarily comply with the enginc :r's ideas, gain modifica-
tion "by hand" together with a ncnlinear simulation still plays an important part in the
development of a multivariable feedback system. The design engineer has a fairly wide
decision range in which there is more than one satisfying combination of possible struc-
tures and corresponding gains for achieving good closed loop response.

In contrast to the feedback loop design, the feedforward open loop control is determined
explicitly. High control accuracy is strongly dependent on the precision of the control
surface positioning with respect to the dynamic feedforward open loop control signal. On
the one hand, the command model must not exceed the flight-mechanical capabilities of
the aircraft, on the other hand, all knowledge of the aircraft dynamic behavior during
stationary and instationary flight phases must be taken into account for the open loop
control. If the error because of undesired stimulation of the eigenmodes is reduced,

then unnecessary deflections of the controls would also be reduced. This is, for example,
the case when aileron and rudder are to be deflected at the begin of a turn, or when
elevator and thrust increase is needed during a steady turn.

In the first design step, feedback of the complete state vector was considered. The
physical effects of the various control loops were then examined both by analytical
methods and by simulation. An important design objective was to reduce the number of
feedback loops to the really necessary ones without loss in performance. A further de-
sign objective was to maintain the existing structure and gain factors of the basic in-
ner control loops when further loops were added by activation of other GCS modes. The
design was carried out iteratively, i.e. the effects of each modification step was
checked by simulation. Also the pilot rating was included in the evaluation process to
define the modifications for the next iteration step. The following chapters describe
how the final determination of the control structure and gains was carried out for the
basic modes, such as the control wheel steering modes. A detailed presentation of all
intermediate steps has been omitted.

4.1 Feedforward open loop control laws

A criterion for the quality of a control system is the activity of the controls. This is
particularly true for the throttle activity. Therefore, open loop control laws are de-
termined on the basis of good knowledge about the aircraft behavior resulting from de-
flections of the controls. Thus, necessary adjustments for command changes and known
disturbance effects are rapidly carried out with reduced control activity. The following
examples demonstrate how the open loop control laws are developed.

4.1.1 Compensation of secondary effects of thrust control

In addition to the desired effects, the controls have undesirable secondary effects,
too. For example, an increase In thrust not only changes the resultant longitudinal
force, but also provides a component in lift direction and generates a pitch moment. The
only really important secondary effect of the HFB 320 thrust control is the resultant
pitch moment. Therefore, a compensation by proportional elevator deflection was carried
out, Pitch moment balance indicates:

= - 4dF .
Jdg _C,,,de_'z'u";_,;'q ()
As the thrust cannot be measured directly, it must be determined approximately from the
engine pressure ratio EPR:
g Py

LF-BEPR Ky 5 2

where Kegpr 18 a constant and the second term takes into account changes in air density
and Mach number. Thus, elevator deflection due to thrust changes car be expressed by:

44-;(69,-11—’1"--(5#) HEPR (3)

Po g




74

with the constant factor
i, =T Keeer (4)
F C,,%' Yo' S

4.1.2 Thrust setting

According to the GCS modes control concept, the throttle is used for control of speed,
and ejther altitude or vertical speed. The linearized force egquations in x- and z-direc-
tion provide the following expression for the thrust setting:

F
‘,’V V“+ —-—V—‘Y) (5)
g T4S
Since Vp,¢ is the control variable for speed, V¢ must be substituted by:
- A
Ye=Vous® U with  Vogs = Yy [ (6a, 6b)
Thus, the following relation results for the thrust setting: )
AF:W./@]FLL _Cg_ﬂ)n,ﬁ«/, (7,
9 VO W VCp Wiy g

The weight W of the aircraft is a multiplicative factor for all of the various inpu%
variables and is therefore of great importance for open loop control of the thrust. De-
termination of the weight from the takeoff weight minus the weiuht of fuel consumed dur-
ing the flight is necessary, but sufficient with respect to the measurement accuracy.

The thrust law shows that further variables determine the thrust required for changes in
speed. First, the thrust is immediately be adjusted in proportion to the acceleration
command. Secondly, the drag-lift ratioc C3/C{ has to be taken into account. During cruise
flight condition the drag-lift ratio is relatively constant. Therefore, changes can be
ignored in this case. But during landing approach with changing flap position or landing
gear extension the effect of changes in the drag-lift ratio on the speed error becomes
significant, due to the decrease in aerodynamic efficiency. An approximate thrust cor-
rection as a function of the flap position at an average angle of attack is therefore
provided.

During climb and descent, the thrust requirement depends on the flight path angle

Yy = H/VK. In some of the GCS modes a continuous command function for altitude rate (Hc)
is generated, resulting in corresponding changes of the thrust setting. During a turn
maneuver the normal load factor n changes, too. The necessary thrust increase depends

on an s

It becomes obvious that the open loop thrust control can be easily performed, because
the variables needed for a suitable thrust setting can be derived within the computer.
In principal, this is also true when, in addition, the remaining terms of the required
thrust setting with respect to wind disturbances (W,,U,) are considered. For the control
system presented in this paper, these terms are neglected for open loop thrust setting.

4.1.3 Open loop for steady turn maneuvers

The position of the controls required to maintain the steady turn is defined by the

steady state condition with respect to the aerodynamic moments about the three axes.
Since the deflections of aileron and rudder are very small, it is sufficient to con~
sider the elevator angle only. The change in elevator control surface deflection re-
quired in a steady turn is the following (ref. [4])

Cme W Cm
AJ=-—1"-*F———_——(n—1)—~—"— n(1-5 (8)
¢ Cmdy Qo9 S Cmgy Yas g (
with the normal load factor n = o5 @ . (9)

The expression for A& can be simplified for bank angles less than 30° and by introduc-
tion of the dynamic pressure ratio q,/q:

g
4G =Ky, g2 ¢* ';77‘ (10)
with K, .2 as a multiplicative constant:
! Lmg  lu Cmy W (1
K 2= . ___._-“___.___.— .
¢!¢ qnd, 1%7 9- ZC%QGCA,OB'5

4.2 Design experiences

4.2.) Longjitudinal motion

The design requirements with respect to flying quality characteristics are based on
specified areas for eigenvalues of the aircraft in the root locus plot (ref. [5]). There-
fore, the root locus method is mainly used for the dimensioning of the control behavior
in the basic GCS mode, the control wheel steering mode. If the number of closed control
loops is small, the coupling effects of the gains remain clear and are easily represent-
ed. The design can be carried ocut in a simple, straightforward manner.

B T RRRI——
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For the longitudinal motion of the aircraft, the requirements for the short-period natu-
ral frequency wy and the damping ratio £, are specified in ref. {5]. Figure 5 shows that
the experimental aircraft HFB 320 meets the frequency requirements even in the uncon-
trolled case. Also the damping ratio £ of the short-period mode meets the requirements
of ref. {S]. In addition to these requirements, a design goal is defined for the rela-
tive damping of the short-period mode as £ = 0.7 for all flight conditions. Furthermore,
the damping of the phugoid mode needs improvement. Figure 6 shows the control structure
for the control wheel steering mode (CWS-8).

In addition to the feedback gains Kg,q and K§,g , which are determined at first, three

further feedback loops are always active to compensate for effects during a turn maneu-
ver, for the lift change when flaps are extended, and for the pitch moment due to thrust
changes. The compensating task of these feedback loops is strongly alleviated by the
open loop control as described in chapter 4.1.

The complete range of flight operation was analyzed using the time vector method and the
root locus method, both showing the interactions of KQN and &%9 with respect to damping

and frequency of the two eigenvalue pairs of the longitudinal motion. Figure 7 provides
an example of the investigations described here. The Kéoq » K&e combinatis sievn in

figure 7, ensures together with adaptive elevator control as a function of -i~ ynamic
pressure that the relative damping of the short-period mode is located bet. -~ .7 and
0.82 in all flight conditions examined, and that the eigenfrequency wy is increased
slightly compared with that of the uncontrolled aircraft (figure 5). At the same time,
the relative damping of the phugoid mode is always greater than 0.70. Figure 8 shows

a simulation result of the control wheel steering mode CWS-8 in turbulent air.

The turbulence model used corresponds to ref. [5]) for clear air turbulence at an alti-
tude of 500 feet. The pitch command input is derived from a typical pull-up maneuver,
with a constant pitch rate of q. = 29/s8 at the beginning, then being reduced asymptoti-
cally to zero as the required new pitch attitude is approached.

The response of the uncontrolled aircraft to gust disturbances is shown on the right-
hand side of figure 8. The comparison with the response of the controlled aircraft
demonstrated the effect of the Kf,q ., Kéep combination, particularly on the stabilization

of the pitch attitude. Figure 9 shows simulation results in turbulent air for four dif-
ferent flight conditions. Satisfactory results were obtained by constant gains and dy-
namic pressure adaption throughout the entire flight envelope investigated (fiqure 6).
As operation of the flight control system for both without and with an integrated auto-
throttle gsystem is planned, it was also possible to test a second control wheel steering
mode CWS-H (figure 10) in the experimental system.

In accordance with the hierarchical and modular structure of the flight control system,
all loops of the pitch damper and the control wheel input with the gain K&q:act on the

elevator. A vertical speed command He is generated from the control wheel signal by
multiplication with the true airspeeg signal and integration with respect to time. The
vertical speed error signal activates the elevator by a proportional gain Kcuf‘and by

integration with the gain K69H‘ A signal for adjustment of the thrust is generated from

the difference between the command signal ﬂc and the vertical speed existing when the
mode was engaged.

As this CWS mode must also comply with the flying quality requirements described above,
the root locus method is again suitable for design. However, the relationship of the
four gains K + Kig» Ko i, and Kg, would have become difficult to read if the values
were not related to the q + Kéeg combination previously determined. Figure 11 shows
that the eigenfrequency wy of the short-period mode is reduced slightly by the gains KdeH

and KgoH ., but still complies well with the requirements of figure 5. The selected ngg.
&k,|combination (figure 11) also requires dynamic pressure adaption for the elevator, as
shown by analysis for the examined flight envelope.

In parallel to these investigations by use of the root locus method, a linear optimiza-
tion method by solving the Riccati equation was used. If physically reasonable weighting
coefficients K; are used, the cost functional

J-/[Kf git) + K, H2(t)* iy HA(W)] at = Mivemum (12)

provides gains which cor;espond to the results of the root locus method. For good dynam-
ic behavior, which is influenced not only by the pole position but also by the corre-
sponding eigenvectors, cautious changes of the eigenvalues from those of the uncontrolled
system are favorable.

Figure 12 shows a typical simulation result with the control structure of figqure 10. The
open loop control of the thrust in thie example is rather weak, which means that the
speed decreases during the climb and returns gradually to the initial value after the
climb maneuver is completed. As the correct open loop control depends almost exclusive-~
ly on the actual aircraft weight, the pilot must expect a change in the speed behavior,
depending on whether the open loop control provides too much or too little thrust for
the climb. However, the very slow return to the initial value of speed always occurs.
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This behavior results from the pole near the origin (figure 11), which has previously
received little attention. As the speed is the major element in the corresponding set of
eigenvectors and the position of the pole changes only slightly with varying weighting
coefficients in the cost functional, the gain Kg,must be of great importance for this
eigenvalue. Fiqure 13 clearly shows, in comparison with figure 12, how the climb speed
control operates with and without speed feedback loop.

Root locus graph examinations show that the speed feedback to the thrust has a signifi-
cant effect on the position of the problematic pole near to the origin over the entire
flight envelope, while the other two pairs of poles, already set up by the above-men-
tioned four feedback loops to the elevator, remain at about the same position.

It is clear that the speed must be fed back to the thrust in order to provide satisfac-
tory dynamic behavior for the CWS-fl mode. This means one step towards speed control.

The optimization method by solving the Riccati equation was applied to the coupled
multivariable system with the state vector x = (e, q, H, H, v} and the two controls
elevator and thrust. With selected weighting coefficients K;, the cost functional

T= [ (K, g%t) + Ky 02(8)+ K3 H(8)+ Ky HAW)+ Ks v 2(2)] dE= mimimum (13)
]

provides the gains &kq ’ KQe R K%g , &EH which were determined from the rdot locus graph
examination and, on the basis of the complete state vector feedback, the gains K¢, ,
K@ev, KFq ¢ Keg o Kepy o and Key which were previously not considered.

This design method again shows the importance of the gain Kg,, in that a variation of
the weighting coefficient Kg results almost exclusively in a change of the gain K¢
contrast to this, variation of the other weighting coefficients change all feedba ‘s in
a manner which cannot be predicted.

By detailed simulation, it becomes evident that the gain Kgov Will better be determined

by a physical consideration than by using the result of the optimization run. Flying
with constant glide path angle, the elevator must be deflected when a speed change is
commanded. Provided that the x-force balance is achieved by the thrust during the phase
of acceleration, the required contr.l surface deflection can be derived from the con-
dition that changes of aerodynamic z-force and pitch moment must be approximately zero.
The combination of the two equations results in the following relationship:

44, Gy F re Cnm ) 2w Crng, 7

T e_ O S 1 (14
AVis Cmy C’-Je B Cluc”'de (W [A/ C’—az Vas a S (CmM CL CL" ) ] :
In the speed range 130-230 kts the neutral point position defjned by qna/ CLu has the

most important influence on the required elevator deflection during speed change. This
term must thus be realized within the control structure. As the aerodynamic derivatives
in equation (14) are approximately constant in the flight regime investigated the gain
is easily determined.

The other four gains Krq, Keg, KFn, and Kpy have little effect on the closed loop be-
havior and are thus not so important. From a physical point of view, the small effect
of the two gains Kpgjjand Kpyin an altitude control loop is surprising. An energy consi-
deration of the aircraft provides a certain amount of clarification.

As mentioned previously a particularly important criterion in flight control system
design is a low throttle activity. On the other hand, increasing the thrust is the only
possibility of supplying additional energy to the aircraft, i.e. it is not possible to
fly without any activity of the thrust. Minimization of the thrust activity is achieved
if the thrust is used only for modification of the total energy and if the exchange of
potential and kinetic energy is controlled by the elevator. A controller which controls
altitude H and indicated air speed Vias can, therefore, e named an energy controller.

1f small deviations from a reference steady flight condition are considered, the linea-
rized form of the change in total energy can be expressed by

dE=m-g AdH+m Y AV , (15)

whereby the mass is regarded as constant for short times.

Since the controller is intended to control » the appropriate substitution of V,
must be carried out with the equations (6a, L . This then results in

4E - mgAH*m(dbe/ +AU) (16)

If the energy is to remain constant, then any change in the wind Uy will cause a devia-
tion in the speed and the altitude. In addition, any change of altitude at a constant
wind speed will result in speed error. In case of flight in higher altitude (correspond-
tng to the change in the densi*y) or with higher velocity Vg, deviation from the speed
Viag causes increasing altitude errors. Conversely, it can be said that speed control
will be satisfactory if it is possible to achieve good altitude maintenance with the
elevator at high altitudes and high speeds. A controller which is intended to control
the total energy by means of the thrust must be designed in accordance with the struc-
ture in fiqgure 4. In addition to the open loop control of the thrust defined in chap-
ter 4.1 proportional and integrated speed feedback must be provided. If the potential
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and kinetic energies are regarded as command inputs, then the two paths must be connec-
ted together with appropriate weight:
arLE iﬂ,d_@}/&’,ﬁlﬁ) ,
Y Vic 9 & 9

The speed feedback loop is therefore dependent on the aircraft weight and the air den-
sity. Parameter investigations have shown that a constant gain Kf, is sufficiently
satisfying throughout the operational envelope considered. The alitude feedback loup is
dependent on the velocity V: the thrust control becomes weaker as the velocity increa-
ses. This explains why the gain Kry has a noticeable effect only in the case of the
aircraft flying at low speeds. However, simulations of flight with the GCS modes VC and
ALT HOLD engaged and with simultanecus flap setting show that inclusion of Kgy provides
an additional reduction in the thrust activity. The controller structure implemented in
the flight control system, divided into pitch damper, altitude controller, and speed
controller, is shown in figure 14.

(17)

The open loop control for the speed controller consists of the gain qu:. It is inter-
esting to see that KQW is the only connection to the elevator from speed control. The
nonlinear expression Kgg; , cumpensates changes in drag during flap setting. The effects
of these gains are described in chapter 4.1.

The gains Kfy and Kgfy are important with regard to compensation of disturbances and
errors remaining from unprecise open loop control. If the thrust reaches its limits, the
integrating path is disconnected, and this results in a speed error. Altitude control
via the elevator still operates satisfactorily.

4.2.2 Lateral motion

The control structure for the lateral motion is much alike that one of the longitudinal
motion. Also similar design steps are carried out starting with the basic GCS mode, the
control wheel steering mode CWS-® . These investigations show that the lateral oscilla-
tion, the Dutch roll mode, can be damped either by lateral acceleration (RQﬂy) or yaw

rate feedback to the rudder. The control structure is shown in figure 15. The two gains
K%p and ano(figure 15) are required for bank angle control. They have virtually no ef-

fects on the Dutch roll mode. The gain K&”'is of no major importance for bank angle con-
trol, because the gain ﬂ%o already has an integrating characteristic. However, it must

be provided in the controller for trimming of the aileron after the controller has been
switched on. The integrating gain is kept very small such that it causes no significant
change in the dynamic behavior.

Therefore, only the two gains &%pand K%U are further considered. The rolling moment
equation together with the two gains, leads to the characteristic equation

‘. rCL K - - (18)
If the resulting poles are always tc have a relative damping £ 2 0.7, then the following
relationship applies:
(€, G, %dup)’
kg ¢l —5—Fa—aF (19)
2 20 [Cg, |

This relationship has been evaluated to select a constant gain combination such that the
relative damping is always greater than 0.7 and the eigenfrequency of the root pair 1is
sufficiently high. As no side-glip sensor is used, the side-slip angle cannot be con-
trolled.

Even in turns with a bank of 25° the side-slip angle is always les< than 1° for the
HFB 320 aircraft. An open loop control dain K4, @ can reduce the side-slip in turn even

further. If required, the pilot can deflect the rudder directly with the pedals, thus
achieving a required side-slip ingle, for example during an approach. In order to per-
mit intervention in the above bank angle control loop by the control wheel steering CWS,
the deflection of the control wheel corresponds to a roll rate command p.. Figure 16
shows simulation results of the bank anale controller for four flight conditions, the
gains Ko o+ Kgop» Kg g KQJ¢ , and K&oy being constant.

5.0 Flight tests

A flight test program was conducted, using the DFVLR experimental aircraft HFB 320. The
objective was to test the algorithmg for control and command computation, the GCS modes
manayement logic and the pilot interface hardware during flight.

Because of intensive ground tests of the system by use of an elaborated nonlinear simu-
lation no major deviation in the control performance did show up during the flight tests.
Nearly all simulation results were confirmed. No essential modification of any cf the

control system gains or structures was necessary during the flight tests. Within 60 fligh-*

hours all control system functions and modes were tested and approved i1n the speed range
of 130 through 230 kts.

The following figures show some flight test results. Only those flight phases were selec-
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ted refering to GCS modes already presented. Figure 17 shows a climb maneuver by use of
the mode CWS-H with speed control automatically engaqed. The pilot's activity on the
control column is plotted in the upper trace. The integral of the control wheel deflec-
tion presents the commanded vertical speed. The relief for the feedback control on thrust
due to speed errors, achieved by the open loop control gain Kg, + becomes obvious re-
garding the speed deviation which is always less than 2 kts, as well as the thrust ac-
tivity. The mode ALT ACQ offers another possibility of automatic altitude change. The
pilot enters commands for altitude and vertical speed via keying in the corresponding
value and using the RATE V/S switch on the control unit, respectively.

Two different flight phases are shown in figure 18: A descent maneuver with 1900 ft/min
and 400 flap cxtension and a following climb maneuver with 1000 ft/min climb rate with

a flap retraction from 40° to 20°0. The maximum altitude deviation of about 20 ft occurs
during the nonlinearly cur.ed sections of the flight path. The flap retraction causes no
remarkable deviation of speed and altitude.

Speed changes can be commanded if the mode VC is used. Figure 19 shows two deceleration
phases, from 230 kts to 170 kts and, after 25 seconds, further down to 150 kts. The com-
manded deceleration is preset in the computer (1kt/s). The maximum speed error occurs
during the deceleration phase. Its value is about 2 kts and the maximum altitude error
is 15 ft.

These speed reductions are combined with a commanded heading change of 180° initiated
by use of the mode HDG ACQ. The turn maneuver is carried out with a maximum bank angle
of 259. As the transition to the commanded heading is performed by controlling with a
function of Vragr hearly no overshooting occurs.

Figure 20 is chosen to demonstrate the effectiveness of open loop control. The extension
of flaps nearly causes no deviation of speed and altitude, although the drag is strongly
dependent on the flap position. The nonlinear gain Ky provides the adjustment of the
thrust whereas the gain K4 F compensates the pitch moment due to thrust. The control loops

for maintaining speed and altitude are effectively relieved.

6.0 Summary

The increasing operational requirements placed on flight control systems can be achieved
economically only by use of digital technology and by construction in the form of an
integrated system. Such systems also provide new possibilities in control design. Know-
ledge of aircraft parameters and dynamics can be exploited to develop nonlinear power-
ful algorithms for improvement of the control accuracy. Experience with the experimental
systems have shown that in spite of a high degree of complexity in the software struc-
ture the modular structure of the software with well defined interface signals permit
flexible execution of the modifications and effective testing of these modifications.
The control system can be extended step-by-step by new GCS modes and additions of fur-
ther control and controller modules.

Because of the fact that the control system is designed as a coupled multivariable system
and that the controller structure has nonlinear feedforward open loop control, the re-
quirements with respect to good closed loop response is achieved. Careful design of com-
mand input models matched to the flight-mechanical capabilities of the aircraft is im-
portant. If high quality sensor signals are available, for example those provided by
integrated navigation and inertial attitude sensor system, then precise flight control
throughout the entire flight envelope is possible.
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CONTROL WHEEL STEERING
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o HDG HOLD HEADING HOLD

o HDG ACC MEADING ACQUIRE
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Figure 2: Guidance and control
modes concept
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CONTROL DESIGN OF FLEXIBLE SPACECRAFT
by
Robert E.Skelton
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana 47907
USA

SUMMARY

when compared to other large scale systems, flexible spacecraft have some peculiarities which can make
control more difficult. In this discussion emphasis is placed upon the time domain and suboptimal Linear
Quadratic Gaussian (LOG) methods, with special attention given to the effects of modeling errors. These
effects are discussed in light of the model reduction problem, stability, and control design. Stability,
controllability and observability computations are reduced to their simplest form possible to provide insight
and to facilitate the location of sensors and actuators. The techniques of modal cost analysis are used to
identify the critical parameters and the critical modes of the structure. In the final stage of design,
component cost analysis reveals which states of the optimal dynamical controller should be deleted to
produce a reduced controller which is compatable with the on-line computer software limitations.
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1.0 INTRODUCTION

Flexible structures and their dynamics have been studied well over a century. However, only recently
has there been an interest in the active control of flexible structures. Such interest was piqued in the
1960's by a flexibility-induced instability in USA's first satellite [1], and more recently by sophisticated
requirements for precision controlled structures in space for astronomy, communication networks, near-earth
scientific studies, and space solar power alternatives, [2]. The rapid development of computers and control
theory in the 1960's has encouraged active control applications for other structures as well, such as flutter
suppression in aircraft [3], and active damping of bridges and tall buildings [4). Thic is not to say that
active control is needed in every structure, however, and there is no clear means tomake the decision of when
and how much control effort is needed in a structure. There is a need to study the dynamical properties of
the mechanical system with a view toward discerning what improvements in performance can easily by made by
redesigning the structure and what improvements must be left for active control functions. This beneficial
interaction of the dynamics and control disciplines in the development of a rational design methodology has
not yet occurred to any mature degree. Usually the structure designs and the control designs occur
sequentially. This luxury cannot be afforded in the future, as stringent requirements force us to provide
better coordination between structure design, control design, and controller software design.

Some of the reasons that the control of flexible spacecraft can be a difficult task are briefly
described by the following three problems.

(i) The Model Error Problem

The space structure is usually constructed of lightweight materials, and thus the assembled structure
is very lightly damped. This uniqueness of Tight damping for the space structure makes the control design
extremely sensitive to modeling errors, since the slightest perturbation of truncated modes by control
action can shift these eigenvalues into the right half plane. Also there is the usual uncertainty in the
computation of the modal data. This problem is especially critical for spacecraft since modal data
uncertainties cannot be removed before flight, due to the difficulty of testing the extremely Tightweight
structure in a 1-g environment.

(i) The Limited Controller Software Problem

The practical limitations of memory and speed of on-board computers mean that only controllers of con-
strained dimension can by considered. These constraints can severely reduce the performance capabilities
of the controlled system due again to the effect of modeling errors imposed by the cortroller order con-
straints. (An infinite dimensional system controlled by finite controllers immediately suggests that
“optimal" state feedback solutions are not going to be realized). Thus, limited software serves only to
compound the model error problem by constraining the order of the controller and by adding delays in the
feedback loop.
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(iii) The Performance Requirement Problem

Of course the model error problem and the limitations of software pose no serious threat to the mission
if the performance regquirements are quite lenient. Thus, the degree to which (1) and (ii) pose problems is
directly related to the severity of the performance requirements. Therefore, early researches on the sub-
Jject have sought to help with the tradeoffs between performance and modeling errors (including those in-
duced by controller software lTimitations).

The aim of this chapter is to describe some preliminary approaches to cope with these problems. The
organization of the chapter is as follows. Section 2.0 describes the form of the dynamical model. Section
3.0 describes some of the model error effects in general terms. Section 4.0 presents results on stability,
controllability and observability of flexible spacecraft, and Sections 5.0 and 6.0 assume perfect position
and rate sensors. Section 7.0 treats the more general LOG problem with application of component cost
analysis [5], and Section 8.0 offers some concluding remarks.

2.0 MODELS OF SPACE STRUCTURES

Those portions of the structure resembling beams, plates, and membranes might reasonably be idealized
as a material continuum, The resulting partial differential equations (PDEs) contain all the modal data
over an infinite spectrum, [6]. Other parts of the structure might contain trusses or complicated connec-
tions which require a finite element formulation of the model, resulting in a set of ordinary differential
equations (ODEs), [71-[9]. Also, the dynamics of actuators and sensors are usually described by ODEs. This
combination of distributed-parameter models (PDEs) and Tumped-parameter models (ODEs) must eventually be
reduced to a finite set of ODEs. The discretization of the PDEs must be accomplished so that the frequency
spectrum over which each of the subsystems {(actuators, sensors, sub-structure 1, sub-structure 2, etc.) are
modeled is consistent. Otherwise, troublesome dynamical interactions between subsystems might be uninten-
tionally concealed at the outset. Thus, each of the substructure models might be truncated prior to the
assembly of the composite model of Fig. 1,

Actuators Structure Sensors

a N
S, SsTR S I

d
Disturbances Fig. 1 Open Loop Block Diagram

Mg+ Cq+Gg+Kq=Bu

structures, SSTR (2.7a)
= Pl
y (R. 2)
x. =Ax +Bu+w
a a
actuators, S (2.1b)
u, = Cx +v

sensors, SS (2.1¢c)

where the inertia or "mass" matrix M' = M‘T > 0 is positive definite and symmetric, tne stiffness matrix
K' = K'T > 0 is positive semidefinite and symmetric, the internal energy dissipation due to damping is

QTC'Q and €' = C'T > 0 is positive semidefinite and symmetric, and any gyroscopic term is due to G’ = 6T,

which is skew-symmetric. The disturbance models assumed for Was Var We, v are all zero-mean white noise

: N n
processes. The dimensions of the vector are Xg € RS, x. t R%, g e R, uy v R", u ¢ A", ye R"Y, z ¢ "2,

a
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One strategy for truncating each of the sub-structure models before constructing the composite structural
model (2.1a) is to use the momentum “completeness” indices of Hughes [10]. The subsystems might typically
be truncated to 100 modes and the composite system S T might therefore have several hundred configuration
variables q.. For further model reductions after th§ Bomposite system (2.1) is constructed, "completeness”
of the model will be judged by criteria more closely related to the specific control task than the momentum
criteria of [10]. Such methods will be discussed in Section 7.

The coordinate transformation
qg=Tn (2.2a)

is often made to put the structural subsystem SSTRi" the modal coordinates

n o+ ZpA+ Ipn = Bu, , 8 41T (2.2v)

_{Pn
y ‘[R-'.] , PP (2.2¢)

. RE&RT (2.24)
2,4 Ter 7,4 et + 6' 7 (2.2e)

Let the firstnr elements of q and n be associated with rigid-body (zero frequency) modes of the structure.
Then these matrix partitions apply

2, 4 Tk'T & block diag. [0 w?], W® diag [wl,....d] = T, K'T, (2.2f)
Twr=1, T=01, T2 (2.2q)
T'C'T = block diag [0 a) , 450 (2.2h)
6T = 6L 6l (2.21)
Gér Gée
al= [l gl (2.24)
P Ip. Pl (2.2K)
R= IR, RJ (2.2¢)
g« [8] Bl (2.2m)

: : T T T
where the zero in (2.2h) holds if the rigid modes are undamped, and Gpp = -Gpps Ggp = =Gop » G, = -G, -
Now (2.2) becomes i rr> “er er * Jee ee

¥ Gy ¥ Grglg = By (2.3a)
- . ' . 2 =
ne * Ogfip + Ggellg + 8fig + wing = Bou, (2.3b)
Pa.* Png (2.3c)
y = . .
anr + ane (2.3d)

There are N nearly elastic modes with frequencies

log 2wy oo ng) , (2.4)

and eigenvectors
Te = [t1, ty oos tN] (2.5)

From (2.2) or (2.3) state variable models are readily constructed, but note that such models rely on
accurate modal data wj, t;. TIG'TH represents the gyroscopic terms due to the presence of spinning rotors
on the structure or spinning structures. Since the absence of a precfse theory of damping makes C'difficult
to characterize, [7], the term adg often is arbitrarily added to represent energy-dissipative forces in-
ternal to the structure. The arb?trary assumption of "modal damping”,zi, gives to & the form

a = diag [20quqs ooon 2] (2.6)

. — _ | d




and ¢, i = 1,2,...N perhaps are the least accurately known parameters in the model. Modal damping on the
order of ¢; = 0.005 is typically assumed [11] for space structlres. Uncertainties in the mass and stiffness
matrices M and K, lead to incorrect eigenvectors t;. This renders uncertain the mode shapes and mode slopes
at actuator Jocations (in Bp) and st sensor Jocations (in Pg, Re) on the elastic portions of the structure.

Also the structure of the matrix w¢ is altered by errors in T. The uncertainty in the frequencies w; and
eigenvectors t; tends to increase with mode number i. It is plausible, then, that a reasonable model for
uncertainties in each of these parameters

& Te 3 p 4 o
{wy, 8ei tiB , Pei P ti‘ Rei R ti) (2.7)
is a variance of the fonm
of = ioo (o"oQ variance associated with parameters of mode 1) (2.8)
;or ;ome constant 9o Thus, for all appropriate elements jk of the ith rows of Be. and the ith columns of
e’el

2 - - - -
of & Elog - 5% = E(8; - Bei)ik = E(Pgy - Pei)ik = ERy; - Rei)ik (2.9)

where E denotes exgected ya]ue, and the overbar denotes mean value. The uncertainty in the arbitrarily
assumed modql damg1ng ti is quite large, but it is not known whether this increases with frequency. When
the need arises (in later sections) we will arbitrarily assume

= ua (2.10)

for some u >> 1, Of course, more appropriate statistical models might be developed for particular structures.
The above models are offered only to help put into perspective the relative degree of uncertainty of the
parameters of the dynamic models. Such assumptions are not employed in later Sections of this chapter,

save Section 7.0.

3.0 MODEL ERROR EFFECTS

Let the composite model (2.1) be written in state form

X =Ax +Bu + Dw + f > XT Q (nTs ﬁT, x:l XZ) .
,xe Ryn=2n +a+s (3.1)
WT q

i

T 17T T
Z=Mx+v+g . = (wa. W, va)
where nonlinearities f and g might be added to the model for performance evaluation purposes, but might be
ignored during control design. The associated parameters (A,B,D,M) may be deduced from (2.1), (2.2).
There may be several stages of model simplification between the most general model used for simulation and
performance evaluation before flight, and the model upon which the control design is based. To simplify
the discussion we discuss only two models. In this section model (3.1) will represent the physical system
(admittedly in this case, the state x is infinite-dimensional and the parameters A,B,D,M are not precisely

known). The reduced model used for controller design is

Xp = AgX, + Bou + Dow s x, ¢ R"
R R™R R R™R R (3.2)

Z = MRxR + YR

and we postpone to Section 7 the discussion of how (3.2) might be derived. Our current interest concerns
the characterization of the differences between any two models (3.2) and (3.1). In order to match identi-

cally the measurements z(t) actually obtained from the physical system, one could define vector functions

of time e (t), e,{t) as those which drive the state and measurement equations in such a way

XR = ARxR + BRu + DRwR + ex(t)

z = MRXR + ez(t)

(3.3)

that z(t) matches the actual measurements. Such model error vectors have been shown [12] to be composed of
four parts

e, 8
[ ] e=e, te tey ‘e, (3.4)
e

2z
where e is due only to parameter errors, ey is due to errors in model order, ey is due to neglected dis-
turbancls and en is due to neglected nonlinearities. Of course, neither of these e,, et, eq, e, can be

known a priori. Parameter adaptive control and identification methods [133-[15] strive to ar1ve ex(t) to
zero. Such methods can be effective when e, is the dominant source of error in (3.4). Terms contributing

to et depict the coupling between retained and truncated equations in the (infinite dimensional) model under-
lying the physical system. Much attention [16]-[18] has been devoted to the reduction of the 'spillover"
terms e¢, (and their corresponding closed loop consequences, to be {1lustrated in Section 3.1). Such
approaches can be effective {f es happens to be the dominating term in (3.4). Orthogonal filters [19], [20]
make fewer assumptions about e(ts. save that it is square integrable. This more general characterization of

model error has the potentfal advantage of simultaneously accommodating errors of the type (3.4), but the
method also has disadvantages in the design stage. The method requires the selection and storage of a set

of independent functions {to be used for fitting the actual error function) and the choice of these functions
is not unique. One choice 1s to use elements of the state transition matrix for a higher order model as in
[21]. Another chofce 1s to use orthogonal functions as in [19].
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Having described the nature of the modeling errors, we wish now to be more explicit about their effects.

Thes: effects will now be described, first in term; of stability and then in terms of a quadratic performance
metric.

4.0 STABILITY AND PERFORMANCE [N THE PRESENCE OF MODELING ERRORS
4.1 Stability and Modeling Errors

Let
u = GRxR

. R ) (4.1)
Xg = Agxg * Bgu + KR(Z - MRxR)

describe the dynamical controller used to control the system (3.1). GR is usually chosen to stabilize
[AR + BRGR] and Kp s usually chosen to stabilize [A - KRM], although the controller poles, ij'AR +BoGp - KRM],

J = 1,...,r, should also be stable [22]. There is no unique relationship between the parameters of the
controller (4.1) and the evaluation model of the system (3.1). The controller parameters (AR. Bps MR) may

or may not be related to some reduced order model obtained from (3.1). For example, the simpler model
(Ay, By, Mp) might have been derived directly from physical laws, but using an idealiszation* of the system

that was simpler than the idealization that led to (3.1). For these reasons the phrase "parameter errors"
has no unique meaning. In fact, none of the terms in the decomposition (3.4) are unique. Nonetheless we
may present a precise characterization of results by introducing an arbitrary coordinate transformation,

x = [ag nT][:g] . (ag aT]'] = [::] , (4.2)

We define parameter errors by

$ -

A ¥ yohap - Ag
8

4B = wRB - BR (4.3)
8 -

M MﬂR MR

(Note: We do not intend to calculate either the exact system model (3.1) or the transformation (4.2). The
present discussion serves only to provide insight into the character of the actual modeling errors.) The
system (3.1) may now be written in the form

)'(R = ARXR + BRu +e, s z= MRxR te, (4.4a)
Ry = vpAagxp + wphapxp + gBu + uf (4.4b)
where the model error vectors e, and ey are given by (3.4) and

e, = AA:[xR +| By

| aM 0

[ ol (4.5)
e = R Xy

L Mﬂ-r
e = WRW"’"R:[ , _["’Rf]

e, =
L V- VR 9

Augmenting the controller (4.1) to the system (3.1) or (4.4), and defining ;R £ xp - ;R' the controlled
system becomes

X AR + MA - KR(MR + AM) wRAnT - KRMQT AA + ABGR - KRAM

xp | = | vrhag yrhar vrhep + veBGp +
13

Xg l(RMnR KRMnT Ap + BRGR

*By idsalisation we mean the set of hypotheses within which the dynamical system is assumed to move. For

example different idealizations of the same system might include: an elastic material continuum, a set of
&d rigid bodfes, a rigid body, etc.

connect
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vplw + ) - Ko(v + g)

vplw + ) (4.62)
! -Kplv + g)

{4.6b)

<
L]
——
o ~
A——
L]
—
o O
=
[g]
o —
o O
=
| S|
b3
- o

where y = Cx represents those variables we wish to control in the sense that

- T -/Qo
Voo = Vim EJVIE = VimE ViQy Q-|: , Q>0,R>0 (4.7)
MS teo 0 R

is used as a performance metric. ((4.7) is discussed further in Section 7). Certain remarks can be made
concerning the eigenvalues of the closed loop system (4.6). Let the integers 1,j,k have the range
A=1,...mx e RN}, (§=1,...,r, Xg € R'}, tk = 1,...,n-r}, and denote eigenvalues of a matrix [-] by
,E-D

Theoren 1:

(a) The eigenvalues of the closed loop system (3.10) go to

3[R] and xJ.[AR - KeMgl j

4 as [|BGR|| - 0.

(b) The eigenvalues of the closed loop system (3.10) go to

A,I[A] and xj[AR + BRGR] '
as [[kM[| 0.
(¢) The eigenvalues of the clogsed loop eystem (3.10) are

Aj[AR - KRMR] . Aj[AR + BRGR] . xk[wTAnT]

if '
wRAQT =0 . "’TAQR =0 (4.8)
BA=0 , aB=0 , aM=0 {4.9) ;
and etither {]
| B = 0 or Moy = 0 (4.10)
{ The proof of (c) follows by substituting the appropriate zero matrices into (4.6a). The proofs of (a) and f

(b) are given in [23]. These results may be physically interpreted as follows:

(a),(b) When the controller gains are "small enough", [eontrol gain G, as in (a), or filter gain K a8 in
| (b)) and the open loop syatem is stable, the modeling errors Bi11 not destabilize the system.

(c) Condition (4.8) implies a choice of coordinates in which the open loop system is dynamically
wuncoupled between the xg and Xt variables. (Modal coordinates are a special case of this).
Condition (4.9) means no parameter errors (e, = 0). The first conditiom in (4.10) is equivalent
to no "eomtrol-spillover” and the second conmdition in (4.10) i8 equivalent to wno "observatiom-
epillover”, in the sense of Balas [6]. The eigemvalues ’i[‘r An.r], i=1,...,n-r, rerresent the

eigenvalues of the truncated states X Stability 18 guammteed in this case (e!, if the trun-
cated modee are astable (Re Ao 0).

Thus, since stringent performance requirements (such as large Q in (4.7)) usually lead to larger control gains
Gr, 1t is evident that the severfty of the model error problem (in terms of stability) hinges upon the
performance requirements.

‘ 4.2 Performance and Modeling Errors

[ We cite here the performance available with and without modeling errors. If one chooses G and Kg in
(4.1) to be optimal for the model (AR. BR. MR) with noise intensities W and vR respectively for the zero-

‘ mean white noise processes wp(t) and VR(C)'lﬂd if there were no model errors e{t) = 0, then the tradeoff
between the optimal output performance
Yus & 11m E||y|6 ., 00 (4.11)
tre

and the optimal input performance
uys © lin Elud . R-= Rep > 0 (8.12)
v 0
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(wrere ¢ is an arbitrary weighting scalar chosen by the designer) would be “hyperbolic" in the sense of

Fig. 2.
‘ p+0
Fig. 2 ms !
/’-7— realizable finite
PERFSZMANCE / dimensional controllers
CONTROL EFFORT

LQG Theory
)

e

Uns

The output of the reduced model is Yp < CP‘R‘ Under the assumptions of controllability of (AR,BR) and
observability of both (AR,CR), and (AR,MR), [24]

I PO I ¢ . Te o o] T
Gp=-; Ry Bk ., 0= Kap+ Ak + CoQCp - GpRGy (4.13)
- ouTy-! - pal T T
Ke = PMVR + 0= PAy +A P+ DoMeDp - KeVekp (a.14)

and small ¢ leads to large control gains. In the presence of inevitable modeling errors, Fig. 2 illustrates
the eventual (and perhaps rapid) degradation in output performance with increasing control authority
(decreasing o), a result not predicted,of course,by the standard LQG theory since the theory relies upon the

absolute fidelity of the mathematical model. Means to combat such model error effects is the subject of
the remainder of the chapter.

For any performance metric of the form (4.7), the relationship between stability of (4.6a) and the
value of (4.7) is established as follows. Denote the plant matrix in (4.6a) by A, and the output matrix in
(4.6b) by C, and ignore nonlinearities f and g. Then (4.6a) has the form

L= A+ Dw (4.152)
2
Vel . Yy 911'_'} Hly , 2>0 (4.15b)

If the matrix pair (A, C) is observable and (A, D) isdisturbable then Yyg is finite only if A is stable,
(22]. Thus, relative stability information is contained in the magnitude of VMS' and we have the result:

Fropogition 1:

If observability and disturbability are properties of the closed loop system (4.6), then Yys serves both as
a stability margin and a quadratic performance metric.

Thus, the calculation

Voo = tr PCTQC ., 0=PAl

" T
s + AP + TMD (4.16)

rovides an acceRtable performance evaluation if the trinle (A, C, D) is disturbable, observable. There are
hree problems which prevent the use of proposition 1 in guaranteeing stability of physical systems.

(1) the “"physical” system (4.6) purports to represent is infinite dimensional.

{2) observability and disturbability tests are impossible to do with precision on a digital computer, even
for a finite-dimensional model.

(3) even if we had reliable computations for observability, disturbability, the physical system is never
observable in the following sense.

Proposition 2: Unobservability of physical systems

As mathematical models increase in complexity, deseribing more md more completely the dynamical detatils
of the physical process, the model eventually includes unobservable states with respect to any finite
dimensional output vector Y.

\
Proposition ¢ explains the sense in which physical systems are never completely observable. This proposition 4
is intuitively verified by imagining that microscopic phenomena such as molecular motions are not going to |
be observable in the rate gyro measurements. Even though one may not be interested in such trivial examples as
molecular motions, the useful point of propositions 1 and 2 s that as far as stability {s concerned there

is no clear way to know when minute motions become "nontrivial". Thus, the propositions serve to remind us

that one can never guarantee *tability of the physical system. Tnis point may be made from another view.

Since stability 1s a mathematical property of a mathematical model, interpretations of stability for the

underlying physical system must be accompanied by precise statements of the type of modeling errors ignored.

Thus, "stability guarantees" refer only to properties of the assumed model, and these comments must be kept

in mind when reading the "stability” results of this (or any other) report.
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5.0 POSITION AND RATE FEEDBACK: COLOCATED POSITION SENSORS WITH ACTUATORS (PERFECT)

In this section we ignore the dynamics of sensors and actuators, x, and xg in (2.1), to cite the
stability properties of flexible structures which are efther passive (no active feedback control) or which
use measurement feedback with perfect (infinite bandwidth) sensors and actuators. The appropriate mode)
for this case is (2.2), where the control u, 8nd the noise-free measurements z are given by

u = -6, 6z, 2= (;:) (5.1)

Thus, z in (5.1) describes what we mean by the phrase "perfect" sensors (no phase shifts or time
delays). Substituting {5.1) into (2.2b) gives the system under study with measurement feedback using
perfect sensors, ’

0+ (2) + 86, RIA + (2, + 86 PIn = O . (5.2)

for ¢):onven1ence in notation we separate the symmetric and skew-symmetric parts of the matrices and rewrite
5.2) as

N (2 2 ) [K +K In=0 (5.3a)
where s sk s sk
1 TTT
2, 41707 + 586, R + RTGT8T) (5.3b)
0 Toir o ) CTATT
2, ¢ T6'T + 586 R - R1GI6T) (5.3¢)
b 1 Terr o Vyme: TIT
Ko $TTK'T + {BGP + PGIBT) (5.3d)

o1 AAR
Kok © 7(86,P - PGB (5.3e)

The following results are availahle by minor extensions of the work in [25].

Theorem 2:

Measurement feedback with perfect senagore and actuators leads to the system (5.3) which is asymptotically
gtable under these conditions:

2,20 (5.4)

Ksk =0 (5.4b)

Ks >0 (5.4c)

The system o+ 2o+ Ko =0 l ig completely observable. (5.44)
{ y = 1b J

By first putting (5.2) in the form (5.3 ) with the additional assumption K., = O, Theorem 4 of [23] directly
applies as a proof of this result. [25] also shows that under the given conditions (5.4a)-{5.4c) the fourth
condition (5.4d) 1is both necessary and sufficient . This necessary condition gives a very tidy statement of
what active control 1s required to stabilize the system. Note that condition (5 4b) suggests that the
position sensors be colocated with the actuators (e.g. translational displacement sensor colocated with a
force actuator, or rotational displacement sensor colocated with a torque actuator), and that Gp = > 0.
This yfelds P « B! and hence (5.4b) is satisfied. Condition (5.4a) is satisfied 1f rate sensors are
colocated with the actuators (translational rate sen;ors colocated with force actuators and rotational rate
sensors colocated with torque actuators), and G = G. > 0. Hence, R = B' in this case. Condition (5.4d)
can be tested with minimum computation by employing the simple criteria for observability developed in [25].
Toward this end we define the matrices TS and ‘rst by

T 2 2 2

TSKSTs = a¢ = diag [n‘, Bye. e afy) (5.5a)
TITS =1 (5.5b)
1. e (5.5¢)

sk sk .

T 0 o} 00
Tk -2 -7, {Tsk " L0 S (5.54)

sk
0 -S4
s ® block diag { J } s t= 1,0 (5.5e)
i
2 b 0 1] 2
p = no. nonzero eigenvalue of o = a I ) (5.5¢F)
3
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. 2(N-p)[T_, T
T, 677 1 . sky | &y (5.59)
sk ssk's 2p dr sk
sk, |
Define the columns of the matrix 2. T T by
s's sk,
@ # a 87 ¢
[r], ETIRREN rp'er ZsTsTskz (5.5h)

We can now cite a special) case of theorem 2, where condition (5.4d) is replaced by an explicit numerical
computation.

Jorcllarmy .l

Agsaume that

V) A1l positiom semsore (perfect) ure colonated with aotuators.
¥ per

(2) (}p = Gp >0 (5.6a)
(3) 1, >0 (5.6b)
(4) kg > 0 (5.6c)
(8) the p momaerc eigenvalues of & are f{stinet. ‘ier these ocnditioms the suaterm &3 (5.6d)

is asymptotioully atable [f amd omlu 11
(6) wither frMZ >0 rlirdZ G forall i -1, L. (5.6¢)

The assumptions (1) and (2) guarantee condition (5.4b). Condition (5.4d) is satisfied if and only if (5.6e)
holds. (This is proved by the more general corollary 4.1 of [25] where assumption (5) is not required)

6.0 RATt FEEDBACK: COLOCATED RATE SENSORS WITH ACTUATORS (PERFECT)

The stability conditions of corollary 2.1 greatly simplify under two additional conditiors; (i) no
gyroscopic terms (G' = 0) and (1i) colocation of rate sensors with actuators. In this case gy = 0, and
the observability test (3.22d), which was reduced to (5.6e) under the conditions in corollary 5.1. now
further simplifies to the following.

Crcllarme UL

Aggwme that

(VY ar! peattion prlomate sengore perfesnt i oape oo looated otk T rwirora,  Pos BT. R = BT).

S G - ;T . )
(2) (p (p 0 R €= 0 (6.1a)
(3) ¢ =0 {6.1b)
(4) rank B = n (6.1¢)

Thew the ayster (8.3) Jg asumptotioalls atalie I mdoowmis f

i (6.2)

where Ny o the maltirTinite oF frequenc. Wy mi Te. 18 the rorrearomiing aet ¢ osclwmas =5 T | shere
i f : . N ] S§ } & . Sl ,

7 =
rank [LsTsi] n

ST oo T ), n, =N
2 5 =1 !

The proof of this ccrollary is provided by noting that (5.4d) becomes in this case
CrKe 0,y (6.3)

wnose observability condition (6.2) is obtained from (5.5h) by omitting the additional transformation Ty
which was required tn (5.5) due to the presence uf gyroscopic temms. Note from (2.2f) that TT&'T is sinau-
lar. Hence, to satisfy (5.4c) and (5.6c) position sensors are = -~/ and rust be located s» .hat the
rigid body modes are observable ({(6.1¢) is satisfied {25)). further discussion of the number and type of
actuators [and colocated sensors) required for controllability appears in [26].

Finally we cite the stability condition when only rate feedback is utflized. In this case we assume no
gyroscopic terms ' = 0 so that the control

Uy * -Gez o, I Rrr'\r * Reha (6.4)

substituted into (2.4) yields

n_+ B (R + B =0 (6.5a)

: CRA
r rrrr ry ee

. 2GR - , e s - )
. + be<rk’r Pt [Re«rk’e + 2] e SER 0 {6.5b)
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With rate-only feedback it is clear from (6.5a) that the rigid body coordinates n. are not stabilized. Hence,
we concentrate on the simpler task of improving the stability of the elastic coordinates ne. We choose act-
uators so that the rigid body modes are uncontrollable. Hence B = 0, and with colocation with sensors

B, = RI =0, 8, = RI. The system of interest is therefore

;r 0 (6.6a)

- Lo ol . 2
"e + [beLrBe + A]ne + W e 0 (6.6b)
Note that conditions (5.4a)-(5.4c) are automatically satisfied by (6.6b). Thus by theorem 2 the necessary
and sufficient condition for asymptotic stability of (6.6b) is given by appropriate interpretation of (5.4d).
This leads to

Corollary 2.3

For nongyroscopic systeme with ~olocated rate gemsors (perfeet), located so that Br = 0, the measurement of
feelbark romtrol
\

u, = ~Grz . z2 =B

, G =G >0 (6.7)
a r

e'e r
Jives to (3.21) these properties: np(t) is unstable, n(t) is stable. Furthermore, nelt) is asyrptotically
stable 1¥ and only 1] the sustem

- 2 . - s gl1s 6
ctwo =0 , y = [a+ Be(‘rBe]o (6.8a)
t8 completely observable, or equivalently, if and only if N
e y 8
rank [ + (8,0, 8a341 = ny i 1,...,NQ o n, =N-n {6.8b)
where Ny ia the ~mltiplicity of frequency wi, and [-1i denotes the corresponding colurme of the matrir [-].
Alge, N fa the mumber 5 opigid modes mid NQ fe the number of Jistinet frequencies Wi

Set B, = RI = 0 in (€.5). The proof is then immediate by internreting corollary 2.2 for the fystem
(6.6b) in lieu of the system {5.3). Thus w2 > 0 satisfies the equivalent uf (6.1c) and T_ = [since

2 1s already diagonal. Hence (6.2) reduces to (6.8b). # N
Proceeding from the roof of the most aeneral corollarv .1 to the most specific corollary 2.3 note that the
form of the proofs ar results are basically the same, except that two transformations, TS and Tsk‘ were

required in (5.5h), n, T, was required in (6.2), and nome in (6.8).

Now we turn to questions of nodeiing errors. Noting that the stability conditions (6.8b) are already
independent of the modal frequencies, we can also make them independent of the assumed modal damping by

requiring 7 T

rank[Bek,rse]1 RPN B 1,....NQ G. =G, (6.9)
This fs a . "+ 5 condition for stability which we now use as a design criterion to replace the ». - ..
condition (6.8b}. This condition (6.9) can be replaced by

rank [Bei] =n, , i= l,...,No (6.10)

provided G > 0. Further insight is available by noting that since w2 is positive definite and BeGrBl is
positive skmidefinite, the observability condition (3.32a) is equivalent to ejther observability or con-
trollabilfty of the matrix pair (w?, & + BeG B). The diagonal property of .2 is utilized to get the
equivalent cond1t1op {6.8b). Hence, (6.8b) Vs the test for controllability or observability of the matrix
Pair (w€, 4 + BeG.B,} and (6.9), or equivalently (6.10) ts the test for controllability or observability of

the pafr (uz. BeCrBe). This point of view makes it clear that the system is stable with respect to ne(t)

for any positive definite rate feedback gain Gp+ ANl elastic modes which are controllable will be asymptoti-
cally stable. Note that this condition is independent of the actual modal damping and frequencies. Now
consider the manner in which the test (6.10) depends upon the moda) data. For a system with distinct
frequencies and torque actuators Be; is a row matrix whose jth element is the ith mode slope at the location

of the jth actuator. Thus, the te-t (6.10) depends upon the mode shapes. However, the test is "almost"
independent of mode shapes in the sense that the rank test is satisfied for any error in mode shapes except
the binary error possibility Be; = O when 1t should be Bey # 0, or vice-versa. The actual magnitude ||Be,|l

Is irrelevant, from the theoretical view. Therefore we may call the test (6.10) "almost'robust with respect
to modal data, but is it robust with respect to model order errors? That is, if (6.10) is satisfied for a
deaign model of N modes, is ft satisfied for an evaluation mode) of N, >> N modes? To answer this Question
simp?; consider the fact that the larger model leads to the sufficien€ stability condition

rank [B. ] = n , Pt =1,...,N (6.11)
e i

4
where Be‘. i= NQ‘].....N( are associated with the truncated modes (modes not considered in the test (6.9)),
and N( > NQ is the number of distinct frequencies in the N, mode model. Condition (6.11) is just the
controllability condition for all Ny m~des. We summarize these results in the following thecrem.

Theorem 3

If G' =0 (no gyroscopic terms) (6.12a)




{uncontrollable rigid modes) (6.12b)

B, = Rl : (colocated rate sensors) (6.12¢)
Gr =6l >0 (positive define rate measurement (6.12d)
r feedback gain)

then all elastic modes “ei(t) which are a-tually controllable, f.e.
rank Bey = 0y (Be. = actual mode shapes, slopes) (6.13)
1
are asymptotically stable regardless of uncertainties in modal damping, modal frequencies ~r mode shayes.
In view of this result it seems desirable to choose enough actuators (and colocated sensors) to make all
modes controllable. Clearly from (6.13) the lower bound on the number of actuators required for complete

contro!lability is max {ny, i = 1,2,...}. Theorem 2 of [25] proves that the rigid body modes are control-
lable if and only if

rank B = n_ (6.14)
Hence the number of actuators m required to stabilize the complete system (3.29) is
m > max {"r' Nps Nps oen NQ} (6.15)

where np. is the number of rigid modes and ny is the multiplicity of frequency wj. If all frequencies are

distinct
m > max {n., 1y, (6.16)

subject, of course, to the conditions (6.13).

This Section has shown stability conditions for any control gain G, = s 0. The next two Sections
show two ways to pick G.. The first is by pole assignment and the second is by solving a least squares
optimal problem.

6.1 Rate Feedback Design by Approximate Pole Assignment

There are formal pole assignment methods (for example see [27]) which may be used for general
linear systems. However, our present problem is so special that an easier approach can be taken. The
peculiarities of large flexible structures which suggest the use of these simpler methods are:

(1) the open loop system contains an infinite number of very lightly damped modes
(2) the rate feedback objective might be to simply add a smaff amount of damping to these modes

Thus, because we are asking only for emall perturbations in the pole locations we might use first order
perturbation methods. Toward this end let us cite known results in the perturbation of eigenvalues and

eigenvectors of time-invariant linear systems.
Theorem 4

If {3y, ei} is the ith eigenvalue, eigenvector of the nan matriz A with distinct eigenvalues @ 7? (\i*-‘.li.ei*Aei}
te the ith 2igenvalue, eigenvector of the matrix [A+8A], then to first order approximationm,

srg = [F A E]L, , FE=1 , FA=\F , AE = EA (6.17)
where F and £ are, respectively, the matrix of left and right eigenvectore of A, and

[Ae‘. b8y eis Ae"] = of = EH (6.18)
where the matrix H has elements

1 -6,
Hyy = ——L [F A E]y; . (= 1,2, (6.19)
ij iy - ¥ ij

Proof:
The eigenvalues and eigenvectors of any matrix [A + aA] satisfy (assume distinct eigenvalues),

[A + aAJ[E + o€E] = [E + aEJ(A + aA] , [A + aA] = diag (A + axgd (6.20)
or

AE + AAE + AAE + AAAE = EA + Ean + nEA + AEAA (6.21)

Deleting the products of assumed small perturbations, the last term on each side of equation (6.21) dis-
appears. Solve (6.21) for aA to get

AN ¥ FAAE + FAAE - FAEA + FAE - FEA (6.22)
Or, usfng the facts FA = AF, FAE = 5, FE = I,

AN = FAE + AFAE - FAEA (6.23)

The eigenvectors e span the n-space. Hence the perturbation of the eigenvector can also be written as a
linear combination of the ey. Thus for some matrix H with zero diagonal elements,

T e ge—" -
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AE = EH R H11 =0 (6.24)
Substituting (6.24) into (6.23) gives, for the iith element of (6.23)

B = [AA]i‘ = [FAAE]ii (6.25)
and for the ijth element of (6.23), 1 # j

0= [FAAE]ij + [AH]ij - [HA]ij (6.26)

Solving ( 6.26 for Hij yields (6.19) directly. #

As an application of theorem 4 to the rate feedback design problem of Section 6.1, let

0 1 _[o 0 T
e {: 2 ] S ! (6.27)
- 0 [0 -BeGrBel
Then,
_ -1
1 : I -Jw
E= L‘im -J'w] » F= [1 { jm"] (6.28)

and theorem 4 gives the real number

N T 2
LY "[BeGrBe]ii (6.29)

T as the ith row of Be. Then

Write b1

- wTen = 2
aA; T -bGby = -Hbi”Gr (6.30)

The new pole locations are, to first order approximation

L A PR T PO
r

A = (6.31)

~[|b‘.ﬂ(2;r Sdeg . 1NN

The damping factors associated with these new poles are
.=l 2/ 2. A 2
8y T owy IIb,-IIGr T-gy = w HbiHGY (6.32)

where the second equality holds under the usual assumption of small damping. Thus, if one has sufficient
knowledge to know which modes should be damped and the amount of damping needed in each mode, then one can
choose G, to approximately satisfy (6.32) for i = 1,...,N. This is equivalent to satisfying

. T+ _
diagg u - BeGrBe] =0 (6.33)

for a desired g4 & diag [¢, La--+tylg: One may find approximate solutions by solving

T2
?;n tr ((dm - BeGrBe) (6.34)

r
which has the solution (assuming that the number of modes N is equal to or greater than the number of actuators)

el y-1.T 1. -1

G = (BeBe) Be;dmse(sese) (6.35)

Thus the approximate expressions (5.38) and (5.35) reveal that the damping ti obtained by (6.35) is
. T .-

tqug * [8,(BL8,) ' 8Lc 0B, (818, ) ‘51]1.1 (6.36a)

or
- T .- -
q i Iod 6,8 (a08,) 8Tk B, (8l8,) (6.36b)
r

The first order perturbation in eigenvectors is given by (6.18), and can be readily calculated for the
present problem using (6.27), (6.28). The form of the results (6.32) implies that # is not negative for

any bi‘ Therefore the only significance of errors in the assumed mode shapes and mode slopes within the vec-
tors bi’ i=1,2,. .,N is that a damping different from the expected damping will be experienced, in accordance

with (6.32) for the actual bi'

Similar problems are treated in more detail in [23]. Also see [29]) - [30] for other interpretations of
the rate feedback problem.

R e
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6.2 Rate Feedback Design by Optimal Control

In Section 5.1 stability conditions were established for any positive definite rate feedback gain Gr‘
In Section 6.1 a pole-assignment strategy was suggested for choosing Gr. In this Section we find the Gr which
is optimal for a linear regulator problem. The problem is stated as follows. Find the control u which
minimizes
= - - gl
viu] = Yyg * Py b U = -Gz, 7 = Be ng tv (6.37)

where yyc and uys are defined in (4.11), (4.12), subject *o the constraint of measurement feedback control.
The necessary conditions for this constrained output feedback problem are (from [311),

K(A - BG M) + (A - BGW)TK + MTGIRGrM +clac =0 (6.38a)
L(A-B6 M)+ (A-BGML+DW =0, WEE (‘;’gtg)(wT(t) vT(t)g (6.38b)
-r6 M’ + 8TkMT = 0 (6.38¢)

where for the special problem throughout Section 5,
[0 1 0 0
l:w =-A Be D
0 0
a T Tac 2 ——{— (6.39)
M=[0, B8] s €qeC = .
[ o o 1q

Ax +Bu +Dw , y=2Cx , z=Mxty, X' = ("Z’ ﬁl)

n

>
u

For the present problem the output vector y and the control u in (4.11), (4.12) are

- [Me . .T .
o, 13 {ﬁeJ L s T I E D O (6.40)

"

y

_ _ T("e
u = -Grz , z = [0, Be][ﬁe] +y

where Qg is some weighting matrix to be chosen. In this stochastic version of the problem we have added
white noise disturbances w,v to the plant and measurements of the previous Section. The model is the same
as (2.7a) except that u_ = u + w where w is a zero-mean white noise with intensity W, representing noise
propogating into the stfuzture from various electrical, mechanical sources within the actuators and their
power sources.

If it happens (for reasons to be apparent) that the partitions of K in (6.38a) turn out to be

e 1270 KypTal L ano (6.47a)
K. K
K N 12| (6.41b)
SPRRYY

then substitution of (6.41) into the necessary conditions (6.38) yields

- -1 - . &
Gr = «R R u = Grz B oRO R (6.42)

and K]] and a satisfy

Ky = aw (6.43)

1,7 2 -1.T _
-a( +a BeR Be) +a BeR By * Qe =0 (6.44)

Thus, if 0e is chosen by the designer to have the value
_ 2 1,7
Qe = a BeR Be + 2aA (6.45)

then (6.44) is satisfied. In summary, we have shown that if the K which satisfies {6.38a) has the property
(6.41) and 1f Qg is selected by (6 45) them the control (6.42) is the optimal measurement feedback control.
Now we must show whether (6.41) is indeed satisfied. To pursue this question we now consider the optimal
control problem without the measurement feedback constraint. The control which is optimal for the Tinear
regulator problem

v - mz(;{oeae + uRu) (6.46)

subject to

2n o 5,47)

By * D w

+ +
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is

u=- R0 BZ]K( e ] (6.48)

ﬁe

(kA + ATK) +  kBR™'BTK - CTqC = 0 (6.49)

where A, B, CTQC are defined in (6.39). The partitioned parts of (6.49) are
2 ST T

2Ky put + KjpBRTBKyy = 0 (6.50a)

Kis + Kot + Koow2 + KyoBRTTBIK ) = 0 (6.50b)

M 12 22v 12%" e 22

T 1.7 .
“Kip + Kpph = Kyp * BKyp + KppBeRT B Ky - Qg = 0 (6.50c)

We now wish to use a theorem due to A. Yousuff, [32].
Theorem &
For the optimal control problem (6.4€), (6.47), any choice of Qe in (6.46) of the form
= j -] TA
Qq = 2Q + Qo + QBeR 8IQ (6.51)

where 6 is any selected positive definite diagonal matriz, leads to the optimal control

1

_ -1,.T .
u=- R BoKyoti, (6.52)
where KZZ = 6 is the unique solution of
-1.T -
KZZBeR BeKZZ + AK22 + Koot = Qe (6.53)
By comparing (6.53) with (6.50c) one can see that the choice of Qe given by (5.56) leads to
T .
Kip + Kyp = 0 (6.54)
Then either
" =
Kip = Ky or Ky, = 0 (6.55)

Yousuff [32] has shown that Kip = 0 is the correct solution of (6.54) if and only if Ky, s diagonal. The
condition for diagonal Koo is (6.51). Hence, Kyp = 0 is the correct solution of (6.55) and (6.50a). See
[33] for earlier results very similar to (6.51). By choosing § = I, > O the optimal control (6.52) becomes

us- o RBL, (6.56)
Thus the optimal state feedback problem (6.46) - (6.49) shows that the control gain is independent of the
disturbance w, and the optimal measurement feedback problem {6.37) - (6.42) shows the control to be inde-
pendent oi the disturbance v. These results are summarized as follows.

Theorem 6

For nonmgyroscopic flexible structures with colocated (and perfect) actuators and rate sensors the control
policy T T
u=-GT'Z N Z=Be ne+v , (7r =‘ur>0 (6-57)
where G, ig an arbitrary symmetric positive definite matrix, is both the optimal output feedback control and
the optimal state feedback control for the problem

v = limE[ﬁlthe + uTG;]u] (6.58a)
0 - BeGrBI + 28 (6.58b)

;e + Aﬁe + wzne =Ry + Dew (6.58¢c)
To prove Theorem 6 substitute, from (6.42), R™ = %Gr into (6.45) and (6.46). Then divide (6.46) by a
to get the form (6.58a). ¢

It should be criphasized that the solutior (6.57) is inderemdent of the disturbances w,v and the stochastic
and deterministic nroblems hove the same :olutien,

Theorer 6 has gvo possible uses: (1) the inverse optimal control problen reveale what perforrince criteria
has bcen nininized for any given positive definite gain G.. (2) A1t$rnatc1y, onc may find for any qiven
weighting Q, the choice of Q in (6.51) (i.e. min ||q,-40-Qa-0 B,R"'8,0[l) to yield the best rate-only
feedback solution to a given
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%+ kg = B, M= T, K =[G 401, B = () (6.59)
z = BTq
For a desired damping of y TR < 0.1 a first order root perturbation method might be used. Hence, (6.35)
d d

yields the measurement feedfack gain

G, = 1.1/4 (6.60)

and (6.36b) reveals the damping g = ljl, gy =

the performance criterion

par
-—

.Theorem 6 shows that (6.60) is the gain which minimizes

8

e 6T 1L J

v = timé (6,2 +6"? (6.61)
teo
Example 2:

For all problems described by the deterministic version of Theorem 6 show that the closed loop system is
described by

. . A
he * Dgng + uPng =0 , D= (a+BG8B,) (6.62)
min v = lim 24 ' D (6.63)
e ee *
u o

and that the cost of regulating ne(t) (corresponding to the first term in (6.58a)) is always greater that
the cost of control (corresponding to the second term in (6.58a)) by the amount 1im Zﬁe Aﬁe. To show this,

substitute (6.57) and (6.58b) into e

vy : ]CE ﬁeTQeﬁe -4 e 112 uTcr"u (6.€4)
to get

vy = Yy + Tin ZRITH (6.65)

Hence, if the open loop system is undamped the cost of control Uu and the cost of output regulations Uy

are equal.
Example 3:

Under what condition does rate feedback control minimize the kinetic energy of a purely elastic structure
(A=0)? Answer: The first term in (6.58a) represents kinetic energy if Q = I. However, from (6.58b) this
can never hapopen for a finite number of actuators and an infinite number of modes in the structure, since
B GB T must be nonsingular to achieve Qe = 1. Consequently, for a finite number of modes, the necessary

ere
condition for kinetic energy to be minimized by rate feedback is to have as many actuators as modes as in (39

7.0 COMPONENT COST ANALYSIS AND ORDER REDUCTION

In Section 3.0 general model errors were defined and in Sections 4.0 and 5.0 conditions for stability
in the presence of only parameter errors were discussed. In this Section our attention is focused on errors
of mode! order. In Sections 5.0 and 6.0 dynamics of sensors and actuators were neglected. We first continue
that assumption to first consider how one might reduce the dimension of the model ?Z.Ia) before considering
the more general treatment of the composite model (2.1). Thus in Section 7.1 only the open loop system is
considered and the inclusion of actuator/sensor dynamics are postponed to Section 7.3.

The central idea of the model reduction methods to be discussed ir this Section is to exploit the
precise statement of the optimal control problem in order to predict which system components will make the
largest contributions in the total quadratic performance criterion. These components are retained and the
balance are discarded from the model. A "component" of the system can be any subset of coordinates desig-
nated by the analyst. For example, all of those coordinates associated with a particular substructure
(antenna, solar panel, etc.) might be called one "component" for the purpose of assigning a value to the
component for its contribution in the total performance criterion. The general ideas of such “component
cost analysis" {CCA) are described in [5]. As another example, each modal coordinate might be designated as
a "component". In this event the procedure becomes modal cost analysis (MCA), and the result is that the
contribution of each mode is cetermined for the afven quadratic performance criterion. MCA has been applied
to models of flexible structures in [34) - [37], and the next Section is drawn largely from these references.
We now proceed to make these several notations more precise.
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7.1 Performance Objectives

The performance of the dynamical system must be judged by a specific criterion. One may require specific
pole locations, focusing only on stability, but that leaves the question of eigenvectors and output performance
imprecisely specified. Stability is clearly not a sufficient design goal. The Linear Quadratic Gaussian
(LQG) problem has the advantage that poles and zeros are involved in the design specification and that the
motion of specific variables of interest can be penalized directly by inserting these variables into the
cost function to be minimized. On the other hand, these specified variables may be regulated satisfactorily
while other variables become unbounded. The earlier Proposition 1 states that observability is sufficient to
prevent this situation but it may not be known whether all the potentially unstable motions are obseryable
in the selected variables for minimization. Thus, in oversimplified terms, the “"classical" approach is to
*design for stability" (and ther we must check for performance), whereas the LQG approach is to "design for
performance" (and then we must check for stability). Insights into the best of both methods are required
for successful desfgns. In this section the LQG methods are presented.

We define by the vector y the collection of all variables we wish to directly control. For example, if
attitude control of the rigid body [described by n, in (2.3a)] is the objective then one might choose
y & np. Alternately, if vibration suppression is the only objective, then y é ne might be chosen, as in the
case of Section 6.0. The choice of a weighting matrix_Q in (4.11) is often dictated by energy considerations.
As an illuystration the choices{Q b1, yé ﬁetlead to yTQy & kinetic energy in elastic modes. The potential
enerqy in elastic modes is characterized by the choicejQ # wé, y = na} The expected value operator F is
required in (4.11) due to the presence ot random "noisy" disturbances in the actuators and sensors (2.1).
The control mean-square effort uys is added to the performance metric as in (6.37), where the scalar o is
an arbitirary weighting scalar whqch trades off control performance yys versus control effort uys. In practice,
p must ?e chosen so that uys does not exceed the physical bounds of tze actuators or structure load design
constraints.

If the model (2.1) chosen for evaluation of candidate control policies were perfectly reliable then the
performance evaluation using the performance criterion (6.37) might be acceptable. But alas, (2.1) is also
subject to modeling errors and the straightforward evaluation of (6.37) subject to (2.1), together with any
specified control policy, conceals the very real problem of uncertainties in the model (2.1). The uncertainty
of the actual parameters in (2.1) usually prompts repeated simulations of (2.1) using different parameters.
Controllers which perform "well" in each simulation might be acceptable. To make this situation more
tractable one might choose to evaluate controllers on the basis of the first order sensitivity of performance
with respect to parameter errors [in addition, of course, to the nominal performance (6.37)]. The following
is one way to characterize this objective. Let p be the vector of v parameters considered uncertain in (2.1).
The new performance metric is

Vo= vy * euys + (pys (7.1)
where 5 -
Yus = 1imEllvlig (7.2)
b 2
Uye 2 TImE||ul| (7.3)
MS tow Ry
v
¢ 2 9 213y |2 -
(yp)MS lﬂ:E"yp“Q' tlf E121°‘ "api'|0 (7.4)
T é ElT .a.LT [ .
Yp (apl. ap\,)’Q diag [o]%),__.,ch_\

and pis an arbitrary weighting scalar to be chosen by the evaluator. Thus (yp)MS is a mean squaredmeasure
of the first order effects of parameter varfations on the variables we wish to control, y. Of course, to
compute i one must have a model for yp. By using the notation

af- .
[-]p ] [-TJ;iL s [-] & block diag {[.],...,[- ]} (v times) (7.5)

o]

ap
AY
the complet2 model (3.1) and its sensitivity may be written [36]

) Dy sl b e )

(7.6)
IR N EEERE
- - , i
Yp ¢ Clix
. 2
Vs yes t Ugs * (plys m E]]V”Q . (7.7)
Q 0 0
VT=(yT.uT.y;) , Q =|0 »R, O
0o 0 Q'

We will assume in what follows that the uncertain parameters are the modal damping factors gy, squared wodal

CRQUEI 1 8 PSS ANS BIORES Ak ALAURLRL JOGRSIRIL bai. VEGr DAFARGLOLS AN
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T Do 2:
Po= (gyaevontyl wheeeouy I BoysestsBgy) (7.8)
" where we have assumed distinct frequencies for conventence, so that Beiis a row matrix. The variance
of 8 E(pi - E)'i)2 . E& & nominal value (7.9)
‘4 is selected as the weighting for each sensitivity in the quadratic term
Too, - ¥ 2 .9y ,°2
ypo Yp © izl °1|bp1||Q (7.10)

Thus, the less certain is a particular parameter, the greater is the importance of reducing its effect in
the control system performance. Hence, a larger weighting in V, by the choice of 0¢ as a weighting gives V
this property. From (2.8), (2.9),

PGP iy

052 = E(w% - &%)2 = 1'002, for i =1,...,N (7.11)
i

and the variance associated with uncertainties is the ith mode shapes or slopes at the jth actuator Tocations

e o

are
' 2 2 2
% - ogei = EBej = Bey)” =dogTs 3= Th.m
[ where my is the number of actuators. Now Q' in (7.3) may be written
| Q' = diag [uo Qs - »us 0 | 0,20, Mo R | 0,20, Mo F0]

corresponding to the partitions of p in (7.8).

Finally, the objective of component cost analysis is to decompose V into "component costs" Vi’
ne

V= v,
-k .izl 1 (7-]2)

where n. is the number of components in the system and yi is in the <n situ contribution of component 1. We
choose ?n the next section to define "components" of the open loop system as "modal" coordinates, and its I
sensitivities. In Section 7.3 we choose to define a "component" of the closed loop system as a state of the )
dynamical controller. In each case we intend to assign a relative importance to each component by determining i
its ranking in the manner ;

"> Vgl t’31 R Vnc (7.13)

. and truncate components with small component costs Vi from the system. The next two Sections give the i
| necessary mathematics. !

! 7.2 Modal Cost Analysis

' Ignoring the sensor and actuator dynamics in thissection, and considering the nongyroscopic system,
(2.3) becomes (6.39), rewritten here,

! SV S N :
e + bhg + w'ng = Bewa . ng € R (7.14a) |

Bug(t) =0,  EWftii(c) = W ¢(t-1) (7.14b) ;

T b 2 1
Vg = TG (7.14b) |

- !

) where only the noisy part of the control forces ua = u + wy are considered in this section. Wher N is small
enough for closed loop control calculations we wi?l not ignore the effects of u in model reduction decisions.
However, we now presume that N is very large (7.14a) and u cannot yet he computed.

! Our immediate objective is to ascertain the contribution of each mode of the system in the overall cost

. value V. We presume at this point to be dealing with a system of very high order whose control inputs u(t) "
are npot yet known. Yet to ignore the source of excitation altogether would be a mistake since the final
judgement of the quality of the model is in the presence of actuator activity, Until more is known about H
u(t?,bfter control design considerations)we assume that u = uw(t) is a white noise of random disturbances

being propogated through the actuators due to electronic noise in the electrical or magnetic amplifier devices,
etc. A white noise disturbance w(t) has already been included in the model (7.6). The consideration of the
control and its effect in the model reduction process will be postponed to the next Section. To proceed we
now need the following definitions.

Definition: Let X be any subset of n gtate variables of the linear system
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{ x = Ax + Ow , Ew(t) = 0, £ w(t) w(t) = Ws(t-v) (7.152)
| y = Cx
n n
xT = (....xiT....) » X5 € R i ,xeRY, n, = 121 n;

VA limE Y , Y & yTQy

to

X, will be called the ith "ecomponent" of the system and the "eomponent cost' ussociated with component X

18 defined by

-1 Y 4§ (Y 3y
imE— X, , — % (F—,..., ) (7.15b)
oo Z§X_i )] BXi axi 3Xi “,'

It is easy to verify that the total cost value V is the sum of all component costs
n
v o= § V., (7.15¢)

and that the component costs may be computed by

v, = trlcTaex], (7.162)
0= XA" + AX + DWD' (7.16b)
where [CTQCx] . denotes the n.xn, matrix partition of CTQCX. The above analysis (7.15)-(7.16) of a linear

system is caliéd component codt dnalysis (CCA), [5]. The “"components" of a system might be defined from
physical or mathematical considerations. From physical considerations X; might represent any physical

component of the system such as the states associated with:
(a) & substructure of the flexible spacecraft (an antenna, a solar panel, a rigid body, etc.)

(b) an electrical or electromechanical element in the system (actuators, sensors, amplifiers, filters, etc.)

From mathematical considerations X5 might represent any mathematical component of the state in any trans- 1

formed (non-physical) coordinates. One such example which is common is to define the "components" to be
"modes" of the systems. In this case the "component costs" (7.14) are called "modal costs" [5]. We

chaose to now examine system (7.6), (7.7) using such moda) cost analysis (MCA). To begin our modal cost
analysis of (7.6) we define the system components as follows. The vector x is rearranged and decomposed

according to
af M
X -( ) i=1,...,N (7.17a)

T A
i

and the vector Xp is rearranged and decomposed according to

X, J=1,...,N
x 4t =<fp ) i=1.. ... (2N Nm, ) (7.17b)
Pi \Pi)i  aeNH1, 0 (2Nefim,)
’ where the p; are defined by (7.8). Generally, one must compute the component costs by first solving (7.16)

on a computer. However, due to the simple form of A resulting from the "modal" components defined in (7.17),

F. the eqs. (7.16) can be solved analytically. The results for the control problem (7.1) - (7.4) with p = 0 and
'. y =(2) , Q =[é SJ (7.18a)
-
ng * 2 ggugng *+ugtng = dT w (7.18b)
' | are (see PB7) for proofs):
g Vixg) = (8c,0.2) (140,) d;Twg, i=1,... N (7.19a)

which represents the modal cost for each mode of the structure, and,

2y . 2. 3 7,41 2 2 T
V(w1 ) = 0“41(3251 wi ) (]4'4‘1 +Blu1 ) d'i Wdi
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which represents the cost associated with the uncertainty in the squared modal frequencies wiZ and,
_ 2 3 341 2\ T
V(L'I) = Oci (8;i wg ) (1*8wi )d,‘ Ndi (7.19¢)
which represents the cost associated with the uncertainty in modal damping &4 and,
2)

V(Beys) = ol (8eg0,%)7 (1480,

. i=1,....N
® 9gei Wi ileom (7.194)

a
which represents the cost associated with the uncertainty in the ith mode shape at the location of actuator

j. The variances ocz, o, 2, °Beiz are given by (7.9)-(7.11) From (7.15) the total cost is
i i

N m
ve I D) W ?) + vl + jz: V(dei})] (7.19€)

Due to the fact that the component costs (7.19) are given in explicit form, they may be computed for a large
number of modes and a large number of parameters. If we had to rely on numerical methods for solving (7.16)
we would be faced with the task of solving (7.16b) for a system of order 2N(1+(2+ma)N). Unfortunately, this

is indeed the situation when control objectives different from (7.18a) are required.
Example:
Consider the system with small damping,

a+2;wd+m2q=w . bT=(],'|) , W=1

£y = 0.005 i=1,2 , ¢=diag [),g,] (7.20)
1:;] =1, 4::2 =10, = diag [w],wz]
V=1imE qTq

too

choosing 8 = 0 in (7.18a) we find from (7.19)

v(x;) = 50 , V(xy) = 0.08 {7.21)

indicatine that mode 1 is more important to performance than mode 2. Chousing cg = 10, then (7.19b) reveals

v(d) = 2500, v(ad) = 0.05 (7.72)

indicating that w, is a more critical parameter than w,. Choosing u = 100 in (7.9) leads to

Vg =108, vy = 207 (7.23)
indicating that the damping in mode 1 is more critical than damping in mode 2. Finally,
V(D1) =50 , v(vz) = 0.1 (7.24)

indicating that the mode shape of mode 1 at the location of disturbing force w is more critical than the
mode shape of mode 2 at the location of the disturbing force. The parameters, in order of their import-
ance are therefore, (z],cz,m],01,02,m2).

Modal Costs for Kinetic Energy Performance Metric

Consider a kinetic energy performance metric,

v=1imEQq (7.25)
toe

Eqs. (7.13) and (7.18a) can give this result by letting 8 be much larger than 1 and then normalizing the
cost by dividing by 8. The results (7.19) reduce to

_ -1, T Ta .

Vix = (4eguy)™ dyud, x; @ (q5.9,) (7.26a)

2 2 3 65,-1 T

V(w1 )= aw% (32;1 wy ) d; Wd, (7.26b)
- 2 3 41,7

v(cg) = oci (8z,7w,)™" d, Wd, (7.26¢)

- 2 -1 -
V(Beij) = Ogej (4;1m1) W =,.0m, (7.26d)

Example:

Consider again (7.20) with the kinetic energy metric (7.25). Then




V(x{) =80 , Vixp) =5
V(o) = 25x10" L ulw,?) = 5
vie) = 108, v(gy) =10
V(D)) = 50 , V(D)) =5

10

#

The parameters, in order of their importance are therefore, (;],;z,w,.v,.wz,vz), where the last two para-

meters are equally important. In general, the parameters which are found to be most critical will depend
upon the specific performance criterion chosen.

When the system parameters are certain (o; = 0 in (7.1)-(7.3)), it is possible to solve for explicite
modal cost expressions without the special restrictions (7.18). The necessary assumption in what follows
is that the modal damping £4 is very small. Theorem 7 deals with the theory for deterministic problems

and theorem 8 treats stochastic problems.
Theorem 7
For the system
;i * 2gugng * wizni =0 , {"i(o)’"i(o)} specified, i=1,...,N
N .
y = _z (P.in.iﬂ‘.ini) (7-27)

i=

the cost fumetion

8= T N
ve IO y'Qydt = 'Xl v (7.28)
1=
decomposes into the modal costs V; given by
. 2
a n;“(0)
-1 v -1 2 2, 2 2 i
Yi = 2 o, (0) x (0} LT3 { syl . +ug el o°2n %(0) + TR ] (7.29)
T_ .
Xi = (ni,ni)~
in the limit as Loy > 0.
Theorem 8
For the system
. . T
np * 2egug nptegtng = bl uledle L w s NOM) L, N(OL)
N .
y = i);] (Pyny*ryng) {(7.30)

where u, and W are gero mean uneorrelated white noises with intensitieg U and W, the cost function
T N
v e lim Ety'ay = ] v, (7.31)
Lo i=1

decomposea into the modal costs V1 given by

& yim 1 aY _ 1 2 2 2 2 24 1

v, 80im s E (2~ x ) = o) pll o% * w5l rll oS30 b e+ gl 3

LI z axy " A, i q i i'Q iy it W “’iz (7.32)
vé yTOy

The proof of theorem 7 may be found in [3§ and the proof of theorem 8 may be found in [39. The value of
(7.32) is that both disturbance and control points of excitation are considered in the subsequent model
reduction decisfons. The intensity U of the actuator excitations depends upon the relative bandwidth of
the actuators. In the absence of better data we would use

U= gl 8 actuator bandwidth) (7.33)

“BwW » (ugy

. - 4
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0f course, the real purpose for including bI u, in (7.30) is to anticipate some sort of excitation through
the actuators, ;r7or to the actual design of the control law.
The outpdt (7.27) is slightly more general than the separable outputs defined in (2.2c). However,

{ most problems seem to fit nicely into the format of (2.2c). To interpret (7.27) in the spirit of (2.2¢),
simply make the substitutions

3 n
Pi* 0 , ri- " (7.34)

in which case the form of the result (7.32) does not change, merely the interpretation of P and r, as

P; and e According to modal costs (7.32) the importance of a mode is determined basically by the product

1 of three properties of the mode,
‘ v, = (time constant){observability)(disturbability + controllability) (7.35)

where mode i is: unobservable in position if and only if || pi” = 0, unobservable in rate outputs if and
only if || riH = 0, undisturbable from w if and only if l[diH = 0, and uncontrollable from u  if and only if
ffb,1l = 0. By substitution of 1{7.18a) and U : 0} into (7.32) the result (7.19a) is obtained as a special

case of (7.32). The expressions {(7.29) and (7.32) are general modal costs for matrix-second-order systems
vhich have no gyroscopic terms.

7.3 Component Cost Analysis as a Spacecraft Contrnl Design Procedure

The results of Sections 6.0 and 7.0 are now combined to form a design algorithm for flexible space-
craft control. The reader should be advised that at this time of rapid developments of both theory and
practice that any such algorithms ae ad hoc at best and new theories may allow considerable improvement
in these procedures. However, in the interest of stimulating such improvements the following algorithm
is suggested. Each step in the algorithm is discussed and motivated in some detail.

Definitions and Assumptions:

Al. The system under consideration has the form (2.1) with G' = 0 and {2.6) holds.

A2. Rate sensors are colocated with the m actuators. An actuator applies a fo-ce between two points in the
structure, and a sensor measures the time rate of change of the resulting rectilinear displacement.
Alteratively, an actuator applies a torque between two points in the structure, and a sensor measures
the time rate of change of the resulting angular displacement.

A3. n. of the m actuators are located so that rigid modes are controllable.

A4, There are n. inertially-referenced position sensors located so that rigid modes are observable.

A5. The number of elastic modes calculated for the structure is N.

A6. The largest Liapunov equation of the form (7.16b) which can be solved reasonably accurately on the
available off-1ine computer has dimension 2NLx2NL.

A7. The largest Riccati equations of the types (4.13), (4.14) which can be solved reasonably accurately
on the available off-1ine computer has dimension NRxNR.

A8. The largest controller (4.1) which can be accommodated ir the .n-!:nc computer has dimensjon NC’ where
Ne < Mg < 2N < 2N.

A9. The highest bandwidth of the available actuators is vgl"
A10. The parameters considered uncertain are given by (7.8), and these uncertainties are modeled by (7.9).
A11. We have in mind the performance measure

T T
v T T T v o2 A Ay RIS u
V=1im E{ay Qy + By Qy + ou R + izlai(« bp{ Q 0, + b, Ro 35;)1 (7.36)

tox

- 4]
where for (7.8), v = 2Ne+ Nem’ Ne # 5 NR -n.

To illustrate the design procedure we use the simple example
o ’I

Ny =Bu+Dw, n.eR
Ao+ 2gun +uln, =Bt Dw, n Rt (7.37)
e e e e e * e :
Y= Punp * Pong » 2p = Mon b vy sz = M ng v

where
¢ = 0.005 , w = diag {1,2,5,10], Mpr = 10, Br =1, Dr =10 , Pr =1, Q = 100 ,

» g =1, Eu(thu'(r) = Us(t-1) , U=1, Ew(t)w (1) = Ws(t-1) , W =100, Evp(t)v;(r) = Vst




———— b o b b m—

oo sl

“«

e e e . JR e T e ed

8.2
= T = - = = T =
Vo =10, Ev (thvi(r) = Vps(t-) , ¥, = 0.1, P, = (0.1,1.0,0.01,1.0), B] = (0.1,0.01,1.0,0.1),
vl = (0.01,0.1,0.01,0.001),

and we take, for illustrative purposes only,

"
~n

N =4, n. = 1, m=1,N =3, NR =6, N

L [

The measurements z_ and z, respectively represent position of the rigid body and a rate measurement. [t
may be readily verified that all the assumptions (Al - All) are satisfied.

7.4 The CCA Design Algorithm

Step I: The Prelininary Model Reduction:

Set g =p = g = 0 in (7.36) and use MCA (7.32) to reduce the number of vehicle modes from (N + "r)
to (NL + n;), where n; is the number of rigid body modes surviving the MCA truncation.

Purpose of STE: I: Reduce the number of modes to a tractable number, but do so with knowledge of yTQy,
the primary control objective.

Example of STEP I: For (7.37), using (7.32) we have
Vnd= =, V(ny) =1.00, V(n,) = 625.00, V(n,y) = 40.40, V(n,) = 0.50 (7.38)

Hence, by the modal cost rule for truncation (7.13), mode 4 i< truncated and the retained modes, listed in
order of their modal cost (their predicted importance in the problem) are ("r'"Z'“3'"1)‘ The reduced

model is

3
"

Bru + Drw (7.39a)

.- 2
Y 2to'n' 4w '
ne tw ne W ne

(7.39b)

Bu+D'w
e e

= [ = = M' !
y Prnr +Pene ' 25 Mpr“r + Vp » z, Mre"e v,

where
o' = diag[2,5,1] , véT = (0.10,0.01,0.01)
8,7 = (0.01,1.00,0.10), P} = (1.00,0.01,0.10)

STEP II: Rate Feedback Design:

Set u = + U, where

Yo

(8 Tgr)"! (7.40)

= = uTl‘] rT IT tao 1
= -Grzr s Gr = (Be Be) Be (Pe QPeB 2t’) Be e Bo

Up
where 8 is chosen large enough so that PéTQPéB-ch'>0.

Purrose of STFP IT: 1t follows from theorem 6 that the control (7.40) is the control which is both the
optimal measurement z, feedback control and the optimal state feedback control for

- ‘IT ' Vs |T ] T~ -1
V= lif E{n, [2¢0'+B.G B, 10, + u G u.} (7.41)

subject to (7.39b). Furthermore, such a control increases the relative stability of all controllable
modes and, of course, does not move others. Hence, the system is stable in the presence "of almost all"
modal data uncertanties. However, this promise is only valid for those modes within the actuator, sensor
bandwidths. The main purpose of STEP Il is to increase the damping of those modes that MCA has identi-
fied as critical to the cost function, and to do this for a larger number of modes than the subsequent
outer control loon u, can be optimized for. This allows a control spillover “cushion" in the sense that

the control spillover from uy will have to push those residual pnles (truncated in the Uy design but
pregent in the g, design of STEP II) further to the right to destabilize them. Now, in order to be sure

that STEP II has provided "spillover protection" for the same modes for which such protection will be
n