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PREFACE

Modern control theory has for a long time been largely the domain of mathematicians
and control theoreticians. Engineering applications were rare and partial, for a part due to
the inaccessability of the theory to the practical engineer, but mainly because of the lack of
computing power available to process the estimation and control algorithms resulting from
the theory. In the course of the sixties and especially in the seventies the digital computer
made enormous advances resulting in a reduction in size, power and cost by several magnitudes.
Moreover, successful attempts were made to develop efficient algorithms which could be
implemented in moderate-size onboard computers.

As a result of these developments, realisation of the potential benefits of modern control
has come within grasp and several applications in the aerospace field can be witnessed to-day.

The present Agardograph is an attempt to present a picture of the advances in modern
control as applied to aerospace system design. The Agardograph is divided into three parts.
Part one deals with some basic concepts of control theory, part two contains a number of
chapters on practical design techniques developed from the theory, and finally part three
describes a number of dcsign examples and practical applications in real systems.

The editor wishes to thank all contributors to this Agardograph for their efforts and
patience when changes to the original manuscripts were required. The assistance and
encouragement of his colleagues and the executive staff of the AGARD Guidance and
Control Panel are greatly appreciated. They were of great help in the lengthy process of
soliciting the contributions and compiling the publication.

IR. PIETER KANT

Acsi " "O r

I, T"

Di t

T . 0:



CONTENTS

Par

PREFACE
by Ir. P.Kant iii

Reference

PART I - THEORY

AN OVERVIEW OF OPTIMAL CONTROL IN AEROSPACE SYSTEMS
by A.E.Bryson, Jr. I

THEORY OF STOCHASTIC OPTIMAL CONTROL - SOME BASIC NOTIONS
by G.Campion 2

AN INTRODUCTION TO STOCHASTIC OPTIMAL CONTROL THEORY
by R.F.Stengel 3

PART Ii - DESIGN TECHNIQUES

DESIGN CONSIDERATIONS FOR OPTIMAL FLIGHT CONTROL SYSTEMS
by F.R.Gill 4

DESIGN TECHNIQUES FOR MULTIVARIABLE FLIGHT CONTROL SYSTEMS
by C.A.Harvey and R.E.Pope S

PRACTICAL DESIGN AND REALIZATION OF A DIGITAL ADAPTIVE FLIGHT
CONTROL SYSTEM

by V.Krebs and U.Hartmann 6

CONTROL LAW DESIGN FOR TRANSPORT AIRCRAFT FLIGHT TASKS
by V.Adam and H.Leyendecker 7

CONTROL DESIGN OF FLEXIBLE SPACECRAFT
by R.E.Skelton 8

PART II - APPLICATIONS

OPTIMUM CLIMB AND DESCENT TRAJECTORIES FOR AIRLINE MISSIONS
by H.Erzberger 9

APPLICATION OF NONLINEAR SYSTEMS INVERSES TO AUTOMATIC FLIGHT
CONTROL DESIGN - SYSTEM CONCEPTS AND FLIGHT EVALUATIONS

by G.Meyer and L.Cicolani 10

MANAGEMENT OF REDUNDANCY IN FLIGHT CONTROL SYSTEMS USING
OPTIMAL DECISION THEORY

by R.C.Montgomery I I

OPTIMAL CONTROL IN THE LUNAR MODULE DIGITAL AUTOPILWT
by W.S.Widnall 12

APPLICATION OF OPTIMAL CONTROL TECHNIQUES TO TACTICAL MISSILE
GUIDANCE

by C.F.Prlice 13

DEVELOPMENT OF MULTIVARIABLE CONTROLLERS FOR AIRCRAFT
TURBINE ENGINES

by R.L De Hoff, S.M.Rock and M.M.Akhter 14



iI

AN OVERVIEW OF OPTIMAL CONTROL IN AEROSPACE SYSTEMS
by

Arthur E.Bryson, Jr*
Stanford University

Department of Aeronautics and Astronautics
Stanford, California 94305, USA

1. INTRODUCTION

Optimal control started nearly 300 years ago with Isaac Newton and John Bernoullil
when thej invented the calculus of variations (COV). The calculus of variations was de-
veloped further by Euler and Lagrance In the 18th century-, by Hamilton, Jacobi, Weler-
strass, and Bolza in the 19th century, and by Bliss, Caratheodory, McShane, Bellman,
Pontryagin, and others in this century. However, it was the I cornuter in the 1950's

that made the calculus of variations a practical tool for sy of optimal control
logic. Optimal control concepts and algorithms are now used not only in the field of auto-
matic control but also in fields of structural optimization, econometrics, and operations
research.

2. AREAS OF APPLICATION IN AEROSPACE SYSTEMS

For convenience, we divide the areas of application of optimal control in aerospace
guidance and control into four categories:
- Performance,
- Navigation,
- Guidance, and
- Control.

2.1 Performance

Aerospace designers are always concerned with getting optimal performance from their
vehicles. Optimization of flight paths Is a direct extension of Bernoilli's brachisto-
chrone ("shortest time") problem.

One of the earliest optimal flight path problems was stated by Hohman (Ref. 1) in the
1920's. He also gave the solution, namely that a minimum fuel transfer between two circular

orlits Is obtained by applying thrust Impulses at the periapsis points of a tangent ellip-
tical orbit. Also, in the 1920's Goddard (Ref. 2) formulated the sounding rocket problem,
which was partly solved by Hamel (Ref. 3), and more completely by Tsien and Evans (Ref. 4).
They showed that minimum fuel for a given final altitude Is obtained by using a thrust im-
pulse that brings the rocket up to a velocity where thrust approximately equals drag plus
weight, followed by a slowly changing thrust period, and then a coasting period. In the
late 1940's Hestenes (Ref. 5), at the Rand Corporation, discussed the application of the
COV to the problem of maximum airplane range. In 1957, Bellman introduced the concept of
"dynamic programming", a feedback view of the COV, that really started the modern develop-
ments in optimal control (Ref. 6). In the late 1950's, Okhotsimskii and Eneev (Ref. 7) and
Breakwell (Ref. 8) gave digital computer solutions to the problem of minimum fuel rocket

trajectories from the earth's surface to orbit injection. In 1960, Kelley introduced the
idea of a gradient algorithm for numerical solution of COV problems (Ref. 9). In.1962, dig-
ital computer solutions, using a gradient algorithm, were given for minimum time-to climb
flight paths for a supersonic airplane with terminal constraints on velocity and flight

path angle (Ref. 10). Also, in 1962, the first book on a plications of optimal control to
aerospace problems appeared, edited by Leltmann (Ref. Il. It was followed in 1963 by
Lawden's book (Ref. 12) on optimal space trajectories.

In the years since then, the design of alporithms has become a challenging field of
intellectual endeavor (Ref. 13). As a result, bptimization algorithms have been greatly
Improved so that synthesis of optimal flight paths for spacecraft, boosters, and aircraft
is nearly routine in government and in Industry. One of the interesting recent contribu-
tions is by Erzberger (Ref. 14) who demonstrates an algorithm for on-board determination
of the flight path of an airplane to minimize "direct operating costy, a linear combination
of fuel and time of fliaht. This algorithm will be used In the flight control computer of
the Boeing 767 (See also Part III, Chapter 1 of this Agardograph).

2.2 Navigation

Optimal navigation merges concepts from the calculus of variations with those from
statistics and random processes.

Navigation is the science of estimating the position of a vehicle from observations
of celestial objects, objects In the vicinity, and from observations'of velocity and ac-

celeration. A navigation "fix" Is made when the number of observations is equal to the
number of unknowns; e.g., two star sightings from a ship determine its latitude and lon-
gitude. If more observations are made, the position Is "over-determined" and some form of
data-weighting must be used to arrive at a best estimate of position. Gauss Introduced the
idea of "least-square fits" in the 19th century and showed how observations could be used
recursively to update the six elements In the ephemeris of a planet or the moon (Ref. 15).
The concepts of random processes were developed In this century by Einstein, Markov, Kol-
mogorov, Wiener, Kalman, and many others (Ref. 16).

Wiener, in particular, extended the idea of minimizing a finite sum of squared errors

*Paul Pigott Professor of Engineer
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with static constraints to the minimization of an integ-al of squared errors with dynamic
constraints, using the concept of continuous white noise (Ref. 17). This minimization is
a calculus of variations problem, and in 1961 Kalman and Bucy (Ref. 18) gave an elegant
recursive solution to It (the Kalman-Bucy Filter, or KBF) for the case where the dynamic
constraints.can be written as a set of first order coupled ordinary differential equations.
This filter concept, combined with cheap reliable digital computers, has had an enormous
impact on aerospace navigation, guidance, and control. For navigation It permits the com-
bination of all kinds of continuous and/or discrete observations to give a continuous best
estimate of position and velocity.

The basic Inertial navigation scheme uses an ad hoc concept developed by Schuler that
is quite similar to the more general concept used In the KBF. Measured specific force com-
ponents are combined with calculated components of gravitational force and kinematics to
estimate velocity and position. When an inertial measurement unit (IMU) Is aigned or
dated using other observations of velocity and/or position, this is done rationaly and
conveniently using a KBF (see e.g. Ref. 19).

One problem in the use of KBF's in aerospace systems has been "divergence" which ap-
pears to be caused primarily by unmodeled process noise so that the filter gains become
too small. Some methods of preventing divergence are discussed later in this paper and in
(Ref. 20).

2.3 Guidance

Guidance may be regarded as a feedback version of performance. As such it combines
navigation (to estimate present position and velocity) with a feedback law for actuating
thrusters or aerodynamic control surfaces that accelerate the vehicle in a manner to take
it to the desired destination.

Booster guidance to orbit Injection is a prime example. Ground radar measurements,
supplemented perhaps by an onboard IMU, give position and velocity. A ground computer con-
tinuously calculates the present desired pitch angle of the booster to take it efficiently
from there to orbit Injection. This angle is transmitted to the booster and the onboard
control system continuously changes the pitch angle to the desired value. The guidance law
used in the ground computer may be developed using optimal control concepts. A neighboring
optimum guidance law can be developed in conjunction with the determination of the nominal
optimal path, using concepts of the second variation (Ref. 21) or differential dynamic pro-
gramming (Refs. 22, 23).

Missile guidance to intercept moving targets may be developed using linear-quadratic-
gausslan (LQG) techniques, a central part of optimal control theory. For short ranges, it
merges with att!tude control.

Minimax strategies for missiles and fighters may someday be developed using "differen-
tial game" theory, which, at present, are limited due to computer capacity and the com-
plexity of these 3-D problems (Ref. 24).

2.4 Control

Control differs from guidance only In having shorter time scales. Control tradition-
ally has meant attitude control whereas guidance was concerned with translation of the
center of mass along a flight path. Thus "guidance" is implemented by "control". Optimal
control has all the elements of optimal guidance plus elements of feedback regulator (or

servomechanism) theory. In the 19th century, Routh gave the first precise statements 
on

necessary conditions for stability of dynamic systems, but most of feedback regulator tech-
nology was developed in this century by Bryant, Sperry, Nyquist, Black, Bode, Wiener, Kal-
man, and many others.

One of the major triumphs of optimal control Is linear-quadratic-gaussian (LQG) syn-
thesis of feedback logic (Refs. 25, 26). A linear-gausslan stochastic model of the system is
developed first, then an integral-quadratic performance index Is selected. Using methods of
the calculus of variations a set of optimal regulator gains and a set of optimal filter (KBF)
gains are determined. By feeding back estimated state, an optimal compensator is formed (see
e.g. Ref. 27). This techrique really comes In to Its own for controlling multi-input, multi-
output systems. It has been used for attitude and translational control of spacecraft, sat-
ellites, aircraft, helicopters, boosters, missiles, remotely-piloted-vehicles, hydrofoils
ships, submarines, etc. There are, however, some things to beware of in using LQG synthesis.
We have already mentioned one of the main difficulties, filter divergence, but another is
sensItivity to system parameters. If one or more significant parameters In the linear-gauss-
ian stochastic model of the system are uncertain or vary slowly with time It Is important to
Investigate the sensitivity of closed-loop system stability to these parameters (Ref. 28).
Methods have been developed for designing feedback control logic that Is minimally sensitive
to specified parameters. This is discussed below and In reference 29.

Lastly, as space and aircraft structures get larger, elastic deformation and fuel slosh
frequencies get lower and creep into the controller bandwidth. Care must be taken not to
destabilize these modes with the feedback law (see e.g. Ref. 30). In some instances active
damping of these modes may be desirable as in flutter suppression (Ref. 31).

3. DESIGN OF OPTIMAL TIME INVARIANT ESTIMATORS

The optimal estimator for a linear plant excited by gausslan white noise, using mea-
surements containing additive gausslan white noise, Is the Kalman-Bucy filter (KBF) of
reference 18. It Is Inherently a time-varying filter, even for a time-invarlent plant with
time-invariant noise densities (a stationary stochastic system). However, for a stationary
system that Is observable with the given measurements, the KBF becomes time-invariant in a
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short time after initialization. Suprisingly, this steady-state KBF Is usually not the
best time-invariant estimator for the system. In fact, some of the estimate errors may
grow with time, a phenomenon called diver ence.

Divergence may be understood for a tme-invarlant linear system if we think about it
in modal co-ordinates. The time-varying filter gain for any stable observable mode tha. Is
undisturbed by process noise will asymtotically tend to zero since the estimate-error vari-
ance tends to zero. Thus, the steady-state KBF will estimate this mode "open-loop". If this
mode is neutrally stable (real part of the eigenvalue equal to zero), the initial estimate-
error in the mode will not attenuate if we use only the steady-state KBF. Even if we use
the exact time-varying gain, this gain will asymptotically tend to zero and modeling errors
(which are inevitable) will soon produce an error in the estimate of this modal co-ordinate.
This behaviour is masked in non-modal co-ordinates since (usually) none of the filter gains
tends to zero.

One straightforward way to prevent divergence is to ensure that all neutrally-stable and
marginally-stable modes are disturbed by the process noise model even if this requires the
addition of unrealistic noise terms such as noise in kinematic equatiom. Another way is to
de-stablize the undisturbed neutrally-stable modes since the gain on an undisturbed, un-
stable mode does not tend to zero for a KBF. Perhaps the most rational way (but also the
most complicated way) is to use a nonlinear programming algorithm to select constant filter
gains that minimize the weighted trace of the error-covariance matrix subject to estimate-
error eigenvalue constraints (see Ref. 20).

An example (treated In Ref. 20) is a constant-gain filter to estimate the lateral mo-
tions of an aircraft using measurements of heading angle (from a magnetic compass) and roll
rate (from a roll rate gyro) and only one process noise source, lateral wind gusts. All
modes are observable but the heading mode (eigenvalue equal to zero) Is completely undis-
turbed by lateral wind gusts, and the spiral mode (often marginally stable or only slightly
unstable) is only slightly disturbed by lateral gusts. The steady-state KIF does not esti-
mate the heading modal co-ordinate at all and the time-constant of the estimate-error decay
for the spiral modal co-ordinate may be several minutes. Small changes in the KBF gains will
fix this difficulty so that the time-constants for estimate-error decay of these two modes
will be only a few tens of seconds while producing only modest increase in the error vari-
ances.

4. DESIGN OF OPTIMAL TINE-INVARIANT COMPENSATORS

The optimal compensator (in the sense of minimizing the expected value of a quadratic
performance index) fnr a linear plant excited by gaussian white noise, using measurements
containing gaussian white noise is comprised of
a) the KBF which estimate the state variables of the plant, and
b) feedback of linear combinations of these estimated states to the controls.
The optimal feedback gains are time-invariant for a time-invariant plant with long operating
times. This compensator Is Inherently time-invarying even for a time-invariant plant with
time-invariant noise densities, since the KBF is inherently time-varying (see previous sec-
tion). However, if the plant and the noise densities are time-invariant, the KBF asymptoti-
cally becomes time-invariant so the compensator also becomes time-Invariant. Surprisingly
this steady-state compensator is usually not the best time-invariant compensator for the
system, for the reasons given In the previous section (divergence of the KBF).

Even if the KBF is modified to avoid divergence, the resulting compensator may prove
to be unsatisfactory because of Its sensitivity to small changes in the plant parameters.
Methods for designing optimal tlme-invariant compensators with sensitivity constraints are
discussed below.

5. DESIGN OF OPTIMAL TIME-INVARIANT COMPENSATORS FOR PLANTS WHOSE PARAMETERS VARY OVER A
SPECIFIED RANGE

A requirement for many control systems is that the closed-loop system remain stable
over a specified range of plant parameters. This requirement may arise from either of two
considerations:
a) Some plant parameters are uncertain but are known to be In a certain range.
b) The closed-loop system is being designed to operate with a fixed compensator over a

range of operating conditions and hence over a specified range of values of plant para-
meters.

Closed-loop stability over the specified range of plant parameters may be regarded as
a constraint in the design of a fixed compensator. Other performance criteria might in-
clude:
a) Attenuation of response to disturbances.
b) Rapid and accurate response to command Inputs.
c) Rapid and accurate tracking response.

An approach to the design of parameter-insensitive systems that also give good response
is discussed In reference 29. These compensator parameters are determined (for a chosen
order of dynamic compensator) to minimize a weighted sum of several quadratic performance
Indices (QPI's) where one QPI is evaluated with nominal values of the plant parameters and
the other QPI's are evaluated at the limits of the specified parameter ranges. Nonlinear
programming techniques are used to find the optimal compensator parameters. Performance
degrades as the design range of plant psrameters Increases. This Is shown symbolically in
figure 1.

Performance Improves and parameter Insensitivity degrades as the compensator order Is
Increased for a given set of measured outputs. Thus estimated-state feedback, which cor-
responds to a compensator of order equal to the order of the plant, gives the best per-
formance but has the poorest parameter Insensitivity characteristics.
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ABSTRACT

The optimal control problem for stochastic systems is described in details.
Several classes of policy are defined and compared. The corresponding solutions are
deduced from Bellman's principle and discussed in connection with the concept of "dual
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LIST OF SYMBOLS

x(k) n-dimensional state vector at time k

u(k) p-dimensional control vector .-elied at time k

v(k) n-dimensional :- .se affecting the dynamic at time k

z(k) m-dimensional measurement vector available at time k
w(k) m-dimensional noise affecting the observation at time k

0 sequence of the state vectors from time 0 to time k

(x(j)j 0 * j < k}
k

Uk sequence of the control vectors from time 0 to time k

{u(j)I 0 < j * k)
k

Zo  sequence of the measurement vectors from time 0 to time k
{z(j)I 0 < i * ki

f(k,x,u) function of (NxRnxRp) - Rn describing the dynamics

h(k,x) function of (NxR n ) - Rm describing the observation process

Q(k) covariance matrix of the plant noise at time k

R(k) covariance matrix of the measurement noise at time k

C cost function

8(x) terminal cost function

L(k,x,u) cost function

Ik  information state at time k

J(N-k) cost-to-go for the k remaining steps

A(kjk) estimate of the state vector at time k

P(klk) error covariance matrix of the estimate at time k

p.d.f. probability density function

OL open loop

F feedback

qF q measurement feedback

OL closed-loop

OLO open-loop optimal

CLO closed-loop optimal

OLOF open-loop optimal feedback.

1. Introduction

In modeling any aerospace system the engineel first defines variables characteri-
zing the problem (the state variables) and then try to connect these variables via causal
relationships deduced from physical laws . After a simulation based on this model he is
able to determine how well it can predict the evolution of the physical system. In most
cases this prediction is not exact. At this point the engineer can try to elaborate a
more sophisticated model in order to reach a better concordance. He may or may not suc-
ceed. If the does not that may be because the system is influenced by physical pertuba-
tions which are actually unpredictable, i.e. for which causal relationships do not exist.
On the other hand it is also possible that the concordance between the observation- of
the physical system and of the mathematical model is corrupted by random errors in the
instruments used to observe the system, or by imprecision introduced by the transmission
of this information (for example the quantization error introduced by the digital coding
of the measurements). These two kinds of random perturbation are referred to as "noises"
(noise on the dynamical model and noise on the observations) and it is possible to deter-
mine their statistics by repeated experimentation. Finally, due to the complexity of the
system, the engineer has maybe to consider only a reduced order model, neglecting deli-
berately high order modes, to make possible the treatment of the model on the available
computer (for example small size on-board computer). In this simplification the effects
of the neglected modes have to be considered as unpredictable noises. In order to take
into account these random noises or errors in the elaboration of the model use is
made of the "stochastic processes theory". The purpose of this chapter is to discuss
a particular aspect of this theory (e.g. the optimal control of stochastic systems) in
the perspective of aerospace applications. The mathematical background of this theory
has been developped and discussed in many publications (see, for example, [1] to [71).

Two main problems occur in the investigation of stochastic processes : the estima-
tion problem and the optimal control problem. The estimation problem is stated as follows.
Consider a physical system, possibly corrupted by random perturbations, and producing
outputs which are observable but also corrupted by noises. The purpose of the estimation
problem is to elaborate, on the basis of a mathematical model, a suitable policy in order
to generate the "best" estimation, in some statistical sense, of the state of the system
by processing the outputs. The problem structure is given in fig. 1. Kalman was the first
to propose an optimal recursive solution, for the linear gaussian problem, with the
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classical "Kalman filter" ([8], [9]). Many books and papers were published in this domain
(see, for example, [10]). The second problem, which is in fact the subject of this chap-
ter, concerns the optimal control of stochastic systems. Consider the same physical sys-
tem but assume it is possible to influence its evolution via some input variable. The
purpose of the problem is to elaborate a suitable policy in order to produce the input
variable minimizing some performance index. The problem structure is given in fig. 2.
This problem can be considered as a generalization of the optimal deterministic control
problem. Well-known contributions to the optimal stochastic control are the works of
Bellman ([11]), Feld'baum ([12]), Aoki ([13]), Meditch ([14]), Astr6m ([15]).

The problem of estimation and control of stochastic sytems is, of course, very
crucial in aerospace applications. Many examples can be found in the literature, e.g.
lateral control for automatic landing for DC8 ([16]), lateral and longitudinal control
systems for CCV-B52 ([17]). These methods have been widely used is spacecraft applica-
tions and will be developped in the future. For example the attitude control of the
future large space structures is based on these modern control methods ([18]).

The purpose of this paper is to present the theoretical background of the stochas-
tic optimal control theory, to show the general structure of the solution and to under-
line how difficult it is to implement it in the general case. As the theory will be
reviewed in the perspective of aerospace applications the mathematical developments
will be omitted, as well as the historical evolution of the theory. What is intended is
a good understanding of the problem in order to make possible the comparison and the
discussion of practical optimal and suboptimal solutions. As the aerospace systems are
generally described as lumped systems characterized by differential equations (or by
difference equations in the discrete time formulation), we restrict ourselves to the
consideration of lumped stochastic systems. On the other hand only the discrete-time
formulation will be considered, although a substantial literature have been published
concerning continuous-time systems. There are three main reasons to justify this restric-
tion. Firstly the discrete-time formulation avoids some mathematical difficulties rela-
ted to the stochastic differential calculus and permits therefore to explain more compre-
hensively the basis of the theory. The second reason is that measurements are often
taken at discrete times (radar, starscanner ... ). The third reason is that, due to the
complexity of the problem, digital computers are necessary to generate the solution.
The discrete-time formulation is therefore particularly suitable for the practical imple-
mentation of the solution algorithms.

The paper is organized as follows. In section 2, the general formulation of the
problem is presented and some classes of control policies are discussed and compared,
according to the amount of information used in their elaboration. In section 3 the
optimal solutions corresponding to these classes are deduced from Bellman's principle.
The "certainty equivalence" property and the "separation" property are discussed with
respect to the "dual effect" of the control. In section 4 the optimal solution for the
linear quadratic gaussian problem is presented in details while in section 5 some clas-
sical extensions to non linear problems are discussed in the perspective of their
implementation in aerospace systems.

2. Problem formulation

2.1 Sy stem description

Consider an aerospace system characterized by some variables, referred to as
"state-variables" (for example, position, velocity, angles of attitude, angular velocity...),
with some control variables (for example thruster, control surfaces...), and with output
variables (radar outputs, accelerometer, gyrooutputs...). Assume furthermore that a mathe-
matical model has been elaborated for the evolution of these variables. Examples of mode-
lisation can be found in [19] (ch.5) (lateral and longitudinal autopilot, roll attitude
controller for a missile). This lastsimple example is now presented in details.

We want to design a feedback controller for a missile using hydraulic powered
ailerons that keeps the roll attitude 0 , close to zero, while staying within the physi-
cal limits of aileron deflection 6 and aileron deflection rate S . Considering a reduced
order model where the roll attitude motion is decoupled from the other attitude motions,
the mathematical model reduces to

6=u
• 1 E

-- +- 6 + noise (2.1)

w T T

where u is the command signal to aileron acuators
wis the roll angular velocity

T is the roll time-constant
and E is the aileron effectiveness

Defining the state vector x as

(t) (2.2)
0(t)
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eq. (1.1) can be rewritten as

x(t) 0 0 0 0 ]X(t) + 1 U(t) + noise (2.3)

Assuming, in addition, that the roll angle # can be measured with some accuracy, the
output equation can be written as

z(t) = [0 0 1] x(t) + noise (2.4)

where z(t) is the output variable.

In the general case the system is described by a discrete-time dynamical equation
of the following form

x(ktl) = f[k,x(k),u(k)] + v(k) (2.5)

In this expression
x(k) is the state vector (of dimension n) at time k
u(k) is the control vector (of dimension p) applied at time k
v(k) is the additive noise at time k
f[,*, .] is a function of (N x Rn  x R

P ) - Rn

We assume that the system is observed via the following measurement equation

z(k) = h[k,x(k)] + w(k) (2.6)

In this expression,
z(k) is the observation vector (of dimension m) at time k
w(k) is the additive measurement noise at time k
h[,] is a function of (N x Rn) - Rm

In our roll attitude controller example, consider a discretization of the time
with a given sample period T. The discrete-time equations are now written as

x(k+l) = Ax(k) + Bu(k) + G(v(k) (2.7)

where A 1 0 0

E[l-e -T / T
] e-T/T  0 (2.8)

E[T-T+Te
- T/t T[i-e-T/ 1 J

B =TI

-T/T T/T
E[T(l-e -  ) + (1-e (2.9)

E[T 2 - TT(-e
- T / T )  

T 2 (1-eT/T)

and G 0

d1  (2.10)

The output equation is given by

z(k) Hx(k) + w(k) (2.11)

where
H [0 0 1]

It is assumed, in general, that the a priori probability density function (p.d.f.) of

the initial state x(O) is given (p[x(0)J) and that the two noise sequences, (v(k)} and
(w(k)), are white, uncorrelated, uncorrelated with the initial state, gaussian, with
zero mean and covariance matrices equal respectively to Q(k) (semi-definite positive)
and R(k) (positive definite). These assumptions concerning the statistics of the noises
may seem rather restrictive but they are made in order to avoid difficulties in the
derivation of the equations and to keep an implementable form for the solution structure.
The structure of the system, as given in fig. 3, is a particular case of fig.2 relative to
(2.5) and (2.6). The model structure is assumed to be known and we are concerned only
by the design of the "controller black box" appearing below the dashed line.
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There is an infinite number of ways to generate the control variable. -he choice is never-
theless constrained by the objectives of the control action and by restrictions on the
control as well on the state variables. These control policies belong to the class of
admissible controls and it is reasonable to try to select, from this class, the control
which is the "best" one with respect to some prespecified performance measure. For deter-
ministic systems this performance index to be minimized is a given fun:*ion of the state
and the control variables. For stochastic systems such a function is it-,elf random "variable"
so it is not appropriate to consider its minimization. This performance index is there-
fore transformed into a deterministic quantity by taking its expected value, extended
to all possible initial vectors and all possible noise sequences, (v(k)) and (w(k)),
according to their given statistics. As conclusion, the optimal stochastic control pro-
blem consists in the elaboration of the best admissible control policy minimizing a
performance index defined as

E(C(N)] , (2.12)

where N-1

C(N) [ e[x(N)] + I L[k,x(k),u(k)] (4.13)
k:O

In this relation,

0(.) is the terminal cost contribution and is a non negative convex function Rn * R
L(',*,.) is the cost contribution relative to the evolution of the state variables and

control variables
N is the number of stages of the process and is fixed a priori.

This C(N) is a function of the state and control variables sequences.

xN a. - (x(O),* - ,x(N))
u~l ~ (2.1'.)

0 - {u(O),... ,u(N-l))

The controller block appearing in fig. 3 has now to be designed in order to elaborate
the policy minimizing the performance index defined in (2.13).

In the roll attitude controller example, we want to obtain, after a given time
interval (N sample periods) a roll angle, a roll angle velocity and an aileron deflec-
tion as close as possible to zero. It is the reason why we select a terminal cost function
penalizing the terminal offsets of these variables according to three weighting coeffi-
cients (ala 2,a 3)

a[x(N)= a1a 
2
(N) + a2 W

2
(N) + as3 

2
(N) (2.15)

On the other hand, as we have to stay within acceptable limits of roll angle, aileron
deflection and aileron deflection rate, it is suitable to construct a performance index
penalizing, during the evolution of the system, the offsets of #, 6 and u from zero.

L(kxu) = * (k) 62(k) u2(k) (2.16)
o so Uo

where *o is the maximum acceptable value of #
60 is the maximum vailable value for 6
u0  is the maximum available value for u

This simple example of construction of a performance index gives some insight in the
meaning and choice of the cost function.

2. Some t es of contrololicies.

Suppose that, at time k, u(k) has to be selected. The only information concerning
the past evolution of the system, available at time k, consists in the sequence of control
variables actually applied up to time (k-l)

Uk-l 4- {u(O,...,u(k-l) ,

and of the sequence of observation vectors, up to time k

Zo - {z(O),...,z(k))

As the control has, of course, to be causal, i.e. non anticipative, the optimal control
must be an explicit function of these data

u(k) = k-U (2.17)

As this point, * could be a random function of the past data. Feld'baum has investigated
this possibility ((12)) and its conclusion was that this does not improve the results for
the cases he considered. We shall therefore restrict ourselves to deterministic control

policies, i.e. to policies where the control, at time k, is generated as a deterministic
function of the past data. The problem consists in the suitable choice of the form of
this function.
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Different classes of deterministic control policies will be defined according to
the amount of information used in their elaboration. We now define notations characteri-
zing this information. We first characterize the "a priori" information with

a) The knowledge about the dynamics, from tine r up to time 1, i.e. the knowledge of the
functions f(k,.,. ) for k varying from r to 1.

D" 4 (f(k,.,.)jrsksl) (2.18)
r

b) The knowiedge about the measurement program, from time r up to time 1, i.e. the
knowledge of the functions h(k, .) , for k varying from k to 1.

l  {h(k,. ) irsksl) (2.19)
r

c) The knowledge about the structure of the performance indea, i.e.

C(M)

d) The knowledge about the stat stiso of the initial state and of the noise sequences.
With the assumptions made in 2.1 concerning the noises this information reduces to

S. - (p[x(0)]) concerning the initial state, (2.20)

Sk (Q(0),...,Q(k)} concerning (v(k)) (2.21)
Q

S k (R(O),...,R(k)} concerning {w(k)) • (2.22)

For convenience we define a new amount of information related to the a priori statistics

k 
A SR (2.23)

We now characterize the "on-line" information, consisting, at time k, in the control
variables actually applied from time 0, up to time (k-1)

k-i A (.4
U0  - {u(r)IOr*k-l) (2.24)

and in the outputs of the system, actually observed from 0 up to k

Zk 6 (z(r)10*rtk1 (2.25)

According to the amount of information actually used four main types of control
policies have classically been defined. They are

1) The Open-loop (OL) control policy.
In this class the controller is elaborated mainly from the "a priori" information.
Incomplete use is made of the on-line information and, particularly, no measurement
knowledge is exploited. The control has the following form

OLL N-i N-I, k-I] (2.26)u (k) u ED, ,SoSQ C(N)9U0.

2) The Feedback (F) control policy.
In this class use is made, in addition, of the measurement information up to the
present time, but no knowledge about th future observations is available. At every
time the on-line information is fed back into the controller but no subsequent
feedback is anticipated. The controller has the following form

F F N-1 k k-1 k
u (k) u ED ,S ,C(N),Mt,U ,Zk].  (2.27)

3) The q-measurement Feedback (qF) control policy.
In this class use is made, in addition, of the knowledge about the observations for
the q next stages, i.e. of the h functions and of the statistics of the measurement
noises for the q next stages, although the corresponding observations, of course,
are not yet available. The controller has the following form :

UqFM qF o- skqc(N),Ro ,Zo,Uo (2.28)

4) The closed-loop (CL) control policy.
This class is a generalization of the qF policy class. More precisely the information
concerning the next observations is available for the (N-k) next stages. The controller
has the following form :

CL CL N-1 N N k k-lu (k) =u [D ,S ,C(N),MN,Zuo] 0 (2.29)
The algorithms proposed in the literature belong to one of these four principal

classes. As the amount of information used in the elaboration of the controller becomes

more important from the OL class to the CL class it can be expected that the "best" policy
belongs to the CL control class. The superiority of the CL class will be discussed in
section 3 in connection with the concept of "dual control". At this point it must be
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noted that the F class, the qF class and the CL class differ only in the availability
of the knowledge about future observations, while in the OL class no use at all is made
of the observations, past, present or future. We now show how it is possible to derive
theoretically the best controller for each of these four classes.

3. SOLUTION STRUCTURE.

1) Derivation of the o2tal conrotEl lers.

For the derivation of the optimal controller structure for the four proposed clas-
ses use will be made of the well-known Bellman's principle of optimality ([11],[20])
stating that the optimal policy has the following basic property. At any given time,
whatever the present state and the previous control actions are, the remaining control
variables must constitute an optimal policy with respect to the present state. For
deterministic systems the state can be considered as known while in the stochastic case
this state is, in general, unperfectly known. What is available, at time k, concerning
the state is some statistical knowledge namely the conditional probability density func-
tion of the state, given some information. This information is called "information state"b: (espetive ~on is cled "nformat onr state"
by Striebel ([21]) and will be noted Ik (respectively 1IF CL for the four consi-

k k kdared classes). These information states represent in fact the amount of Information
used in the elaboration of the controller and have been defined in relations (2.26),
(2.27), (2.28) and (2.29). With this notation we can use an unified formulation for the
derivation of the solution structure for the four classes.

As, according to Bellman's principle, for each remaining period the policy has
to be optimal with respect to the actual information state, the optimal policy elabora-
tion begins, classically, with the optimal choice of the last control. Assume therefore
that, at time (N-l),with an information state I , u(N-l) has to be chosen. This last
-Litrol is selected in order to minimize the exVeted value of the cost, conditioned
in the information state IN_1' without regard to the past controls, i.e.

N N-1 l N_ } 13 l
min E{C(Xo,U o  I 1(
u(N-1)

At time (N-2), the control u(N-2) is then obtained in such a way that it minimizes the
expected value of the above expression conditioned on IN-2, i.e.

N N-1
sin E(min E(C(XO,U o  )IIl _)I N-2 ) (3.2)
u(N-2) u(N-l)

Proceeding similarly backward in time up to time 0, we obtain the optimal policy and the
cgpresponding optimal value of the performance index, noted JO(N) (respectively JOLO(N),
j ONJqFO(N) and jCLO(N)) :

N N-1 )l }  J 3 3

JO(N) = min E(... min Elmin E(C(Xo,Uo )IIN_}IIN 2I...Io . (3.3)
u(O) u(N-2) u(N-l)

With the assumptions made in 2.14 concerning the form of the performance index it is
possible to rewrite (3.3) under the following form of the usual stochastic dynamic
programming equation :

J°(N-k) = min E{L(k,x(k),u(k) + JO(N-k-l)jIk) (3.4)
u(k)

where J*(N-k) is called the "cost-to-go" for the remaining (N-k) stages and is a function
of Ik The terminal condition is given by

JO(O) = E[[x(N)]IIN.. (3.4)

This last formulation shows that, for a given class, the optimal solution is
completely characterized by the knowledge of the sequence of the J*(N-k)[I 1], for k vary-
ing from N to 0. Suppose that, at time k, J°(N-k-1)[I I is an available Kunction of

Ik+l . The optimal control at time k is then obtained by the condition of minimization
(3.4), where the conditional expected value has to be extended to all the I +l, according
to their statistics conditioned on the actual available information state I k These
J°(N-k) have to be generated recursively according to eq.(3.4)with terminal condition
3.5 . The foundamental difficulty of the stochastic optimal control problem consists

precisely in the practical construction of the sequence of the J°(N-k).

It will now be shown how to specialize this general formulation of the solution
structure for the four proposed classes.

a) 02n&e~eij
OLcosssn

For this class the information state I consists in
k

I0L IN1S S1CNk- (3.6
Ik  0 Q 0

It follows that OL OL Uu(k-l)} (3.7)
I k I k-1

The expression (3.2) can therefore be rewritten as
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min E(min N NX-i )1 IN-R U(N- 2 ))IN-2  (3.8)
u(N-2) u(N-1)

As the expression m n E{C(XNUN II L u(N 2))

u(N-l)

is a function of IN-2 , its expectation, conditioned on I OL coincides with it andN-2 IN- 2 ,
(3.8) can be written as

min min E{C(Xo,U N-1 L u(N-2)) (3.9)
u(N-2) u(N-1)

The process can be reproduced. As conclusion, the optimal cost for the N stages problem,
jOLO(N) is given by

JOLO N N- OL N-1
jO(N) = min E{C(Xo,U o 0  io Uo  } (3.10)

N-1
where the minimization is taken with respect to the sequence Uo
The optimal open-loop control sequence is obtained from this minimization subject to
eq(2.5). This problem is, in fact, a static problem because all the controls can be
obtained before the process starts.

The formulation (3.4) can also be used in order to derive the solution structure.
The terminal condition (3.5) can be rewritten as

J OLO(0) = E{O[x(N)]IL I = Je[x(N)]p1(x(N)LiNdx(N) (3.11)

In this relation the conditional p.d.f. p[x(N)II NL] can be obtained using the Markov
property of the system

p[x(N)IOL I = fp[x(N)ix(N-l),A(N-1)...p[x(l)tx(O),Q(O),u(O)lp[x(O)ldx(N-1)...dx(O
) 1
(3.12)

The expression of J OLO(N-k) is then obtained recursively by (3.4) where

E=L(kx(k) ,u(k) OL L[kx(k), ) (k)II L dx(k) (3.13)

with p[x(k)II LI obtained as in (3.12),

anC LO OL OLO OL
E[J (N-k-I)IIk] = jO(N-kl)(I k ,u(k)] , (3.14)

as u(k) has to be obtained deterministicly from I L

It is easy to verify that this formulation is equivalent to (3.10).

b) Feedba kpolic

For this class the information state J consists in
k

N-I N-I _k .k-I _k({r DO  S,S ~oo (3.15)
k " 0  Q R 0 0Hl N-1iIn (3.3) the expression ulp-_)E{C(XoUo )II }  z(N-),

exrsso Ng-1 a,)i is, in fact, a function of IF 2
h(N-i ,.,.), R(N-l) and u(N-2). As in the feedack policy no information is assumed to
be available about future measurement, it is impossible to evaluate at time (N-2),

given IF2, the expected value of this expression conditioned on I . This difficulty
arises - because the problem is not well defined : no specific assuiption has been
made regarding the subsequent feedback. A classical method to avoid the difficulty
consists in considering that no subsequent feedback will be available in the future
time. This assumption defines the open-loop optimal feedback (OLOF) policy. This corres-
ponds to replacing the quantity

mi N N-1 )i 1 mN N-i 0L
N-I F i} by mn E(C(XoU o  )fIN. 1u(N-I) N u(N-1)

which is not a function of z(N-1) so it becomes possible to evaluate its expected value
conditioned on IF . That means, in other words, that u(N-2) is chosen as the CL optimal

N-2control, for the problem defined on the last two stages. This process can be reproducedand the OLOF control is defined in general as follows.

Suppose that u OLOF(k) has to be chosen at time k with IF available. Define first
the sequence of OL optimal controls to be aptlied from time k up to time (N-I), based
on the available IF This noted (u-L)N

"I is a function of IF

kThssequence, noekUL)

OLO N-i - OLO N-I I] F uOLO(Ilk=I (3.16)
( ) (u k [k - (u llll k....N-}3

and is generated according to the following condition

JCL (IkF - min E(C(Xo,U o ')1Ik) (3.17)
k N-i

Uk OLO

The OLOF policy consists in applying at time k the control u (kik), which is the first
control of this sequence. Processing then the next observation, z(k+l), redifine IF 9

k+
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reomut teseuece(OLO N-i OLOk.

recompute the sequence (U c) hoose u 0(I+llk+l) and so on. The resulting sequence
of controls is defined by ktl

OLOF-N-lI L
( oU= {u- f (kIk)i k=O,...,N-l} (3.18)

This OLOF policy has been proposed by Dreyfus ([22]) and OLOF algorithms can be found in
the works of Spang ([23]), Aoki ([13]) and Farison ([24)). There are other feedback poli-
cies, namely the policies based on the certainty equivalence property or on the separa-
tion property. As these policies are frequently used in practical applications they will
be exposed and discussed in details later.

As the q-measurement feedback policy is an intermediate between the F policy and
the CL policy, the CL policy will be first discussed and it will be shown later how the
qF policy follows from it.

c) £kl!4etdaoa vlit.
For this class the information state I L consists in

k

CL N-1 N-l N N k-i k
Ik {DO S ,SQ ,R MoUo ,Z0o (3.19)

In (3.3) the expression
N CLmin E{C(X o, 9 )I N-1}

is a function of I _., z(N-l), h(N-l,.) ,R(N-1) and u(N-2). As in the CL policy know-
ledge about the fuute measurement is availableit is possible to evaluate, at time (N-2),
the conditional expected value of this expression given I The formulation (3.2),
(3.3) can therefore be used and N-V

J L(N) N N-i CL CL CL

CLO = min E{...min E{min E{C(X,,U )IINI)IIN_ 2 .. .I 1 (3.20)
u(O) u(N-2) u(N-l)

k-i k
In order to obtain more comprehensible expressions the incomplete notation {U o  Z}

is generally used in the literature, instead of the complete information state IL, as
defined in (3.19), with the implicit assumption that the conditional expected vaues
have to be evaluated in the CL frame.

The nested structure of the expectations and minimizations in (3.20) shows that
this solution structure anticipates subsequent feedback. Whenever a control is computed
in eq. (3.20) we have to evaluate expectations conditioned on the subsequent measurements.
At this is done at each step the resulting control depends on the future observation
program and the associated statistics.

The formulation of eq. (3.4) and (3.5) can also be used.With the incomplete nota-
tion convention for the information state mentioned earlier it follows

CLO CLO k k-iJ (N-k) = min E{L[k,x(k),u(k)] + J (N-k-l)1ZoU o  (3.21)
u(k)

with the terminal condition
: ZoU °  J8[x(N)]P[x(N)1 N.U-

CLONN dX(N) (3.22)
J (0) =E[8[x(N)]1Z0 ,9U, ~(~pxNI,,U d()(.2

For this class the information state consists in

IqF 4 1 0N-1 8  5 N-lgktq k k ,4 1 (3.24)k 0D QSS , R  0M 0U 0Z } ( .

The qF control sequence is obtained, similarly to the OLOF, as the sequence of the first
controls for the partially CL control sequences for the problem defined on the time
interval [k,N], with the assumption that no measurement will be available after k+q.
At each step k it is necessary to define a new problem on the time interval (k,N), to
compute the partially CL sequence for this problem and then to select the first control
of this sequence. This is in fact a "finite-horizon closed-loop" control since at each
step it takes into account the measurement program and the corresponding statistics for
the q subsequent steps.

As said before, since the CL policy uses more completely the available information,
it can be expected that the best control belongs to this class. We will now try to give
more insight into this property. The following qualitative discussion is based on the
introduction of the concepts of "dual effect" of the control, and of "probing" and "cau-
tion".

2) Dualeffect of the control-probing andcaution.

Feld'baum ([12J) was the first to point out that the control can have two effects
on a stochastic system : a direct effect on the evolution of the state variables but also
in addition, an indirect effect on the future state uncertainty, that means that the con-
trol can result in learning about the state of the system. This is referred to as "the
dual effect" of the control. The control is said to have no dual effect of order r (r)2)
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if the expected future uncertainty (i.e. the central moments of order 2 to r) is not
affected by the control with probability one. The system is then said to be "neutral".
Conversely, if one of these r-th central moments is affected by the control sequence
with non zero probability the system presents the dual effect. It must be noted that
the presence or the absence of the dual effect is an intrinsic property of the dynamic
system and of the corresponding observation process.

On the other hand the controller can present two properties referred to as "pro-
bing and "caution".

a) Probing or active information storage.

If the structure of the system is such that the control presents the dual effect,
i.e. if the control has an influence on the future uncertainty on the state, this situa-
tion can be exploited in order to enhance the estimation and ultimately to improve the
overall performance. It is clear that only a CL control (and partially a qF control) can
take benefit of this effect, because it anticipates the future feedback. If the system
is not neutral the CL control will "probe" to improve the estimation, and presents there-
fore the capability of "active learning", while a F control, eventhough it "learns"
about the system by processing the past measurements does not actively "help" the lear-
ning.

b) Caution

In a stochastic system, because of the presence of uncertainties on the initial
state, on the dynamics and on the measurements, the controller has to be "cautious" in
order to avoid to increase the effect of these uncertainties on the performance index.
An OL controller, for example, has to be quite cautious because it assumes no future feed-
back and does not therefore permit corrective action on the evolution of the uncertainty.
At the opposite a CL controller can be less cautious because it "knows" that observations
will be available in the future and that it will therefore be possible to control the
evolution of the uncertainty. The performance is therefore better for a CL control than
for an OL control. Dreyfus ([221) gives an example of a neutral system for which the
CLO control produces a better performance than the OLOF control : the OLOF control
ignores that measurements will be available in the future so the predicted uncertainty
is greater for the OLOF control than for the CLO control with the consequence that the
OLOF control has to be too cautious.

We now introduce two particular control policies belonging to the feedback class.
As they are widely used they are investigated in details. On the other hand, the proper-
ties on which these policies are based are strongly related to the concept of dual
effect of the control.

3) CertaintyEqgivalence Pro02ertYandSe§2araion_Pro2erty.

The certainty equivalence (CE) is said to hold if the CLO control has the same
structure as the optimal control for the corresponding deterministic optimal control
problem defined by the same dynamical equation and same performance index but where
all the random variables have been replaced by their expected values. Suppose that the
optimal control for this deterministic problem (deterministic optimal-DO) has, at time
k, the form

uDO(K) 0[kx(k)] (3.24)

The CE property holds if CLO(k) *[k(kfk) (3.25)

where
R(klk) = E[x(k)IZot o  ] . (3.26)

It will be seen in section 4 that this property holds for linear systems with quadratic
cost and gaussian additive noises.

The CE property is, in general, not valid but a control policy frequently used
is elaborated by assuming that the CE property holds. The resulting control, called
certainty equivalent control, is obtained as follows. Evaluate first the deterministic
optimal control for the corresponding deterministic problem without process noise and
with complete state knowledge and replace than x(k) by its estimate, i.e.

uCE (k) = *[k,i(klk)1 (3.27)

The problem is partitioned into two decoupled subproblems

- optimal estimation of the state
- elaboration of the optimal control for the deterministic problem.
The controller structure is given in fig. 4. It must be noted that for non linear sys-
tems the solutions of these subproblems are not trivial and that only approximate solu-
tions are available in general. In most cases this control policy is not optimal because
the CE property does not hold in general. It must be noted, in addition, that this
policy belongs to the feedback class rather than to closed-loop class, because no use
is made of the future measurement program in the elaboration of the controller.

The separation property is a generalization of the CE property. A control is said
to present the separation property if it depends on the observations only through the
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estimation of the state, 9(klk), i.e. if its structure is of the following form

u CLO(k) = ,[k,A(klk)] , (3.28)

where the # function can be different of * defined in (3.25), as the function characte-
rizing the optimal control for the corresponding deterministic problem. As in the CE
property discussion a separation control policy can be defined even if the separation
property does not hold. Here also the problem can be partitoned in two subproblems
- optimal estimation of the state
- elaboration of the controller using as input the estimation of the state.

It is clear that the CE property is a particular case of the separation property.
An example of system where the separation property holds, but not the CE property is
given in [25].

When the CE property holds it is clear that nothing can be gained by anticipating
the subsequent observations. In this case the CLO policy reduces to be OLOF policy
because no use is made of future measurements. This is not true for the separation
property. The fact that the separation property holds does not necessarily imply that
CLO control belongs to the feedback class, because the f function defined in (3.28) can
depend on the future evolution of the uncertainty.

It is not possible, at the moment, to investigate, in general, the relationship
between CE or separation property and the presence or absence of the dual effect in the
control. Only results corresponding to particular classes of problems are available.
Bar-Shalom and Tse ([26])'have shown, for example, the following result. Consider a
stochastic linear system with quadratic cost but non linear me. surement equation. For
this system the CE property holds if and only if the control ha- no dual effect, i.e.
if the system is neutral. The generalization of this result is also given by the same
authors ([27]) and concerns stochastic systems with linear dynamics non linear measu-
rement equation, quadratic cost but non gaussian noises. In this case the CE property
holds if and only if the control has no dual effect of second order, i.e. if the condi-
tional covariance matrix of the estimation error is undependent of the past control
sequence. These results constitute in fact extensions of the properties of the linear
quadratic gaussian problem which will now be investigated in details, as an illustra-
tion of the above theory.

4. OPTIMAL CONTROL OF LINEAR QUADRATIC SYSTEM.

Consider, as a particular case of the general problem defined in section 2, a lineal,
system with quadratic cost, that means that in eq. (2.5) and (2.6) f(kx,u) and h(k,x)
have respectively the form

f(k,x,u) = A(k)x + B(k)u , (4.1)
and

h(k,x) = 11(k)x ,(4.2)

and that the performance index introduced in (2.13) has the following form
4 .1 xT N-I 1 1 T+Iu

C(N) xT(N)Sx(N) + E- xT (k)L ( k)x(k) M uT(k) L2 (k) u(k)) (4.3)
kO

with S and L1 (k) symmetric semi-definite positive (nXn) matrices and 1 (k) symmetric
semi-definite positive (pxp) matrix. The properties of the noises are ?he same as in
section 2 while the a priori p.d.f. of the initial state is assumed to be Gaussian with
mean g(O) and covariance matrix P(O).

Two preliminary remarks can immediately be made.

a) Theestimation problem related to this system admits an exact solution by use of the
Kalman filter. It is well-known (see for example [7]) that the conditional p.d.f.
the state, given the past measurements and a control requence, is gaussian with a
mean and a covariance matrix generated recursively by the Kalman filter, i.e.

k k-l]
p[x(k)IZo,U o  = N[R(klk),P(k)] , (4.4)

with ~ -
e(klk) - E[x(k) Zk,Uk ] (4.5)

and TkkP(klk) -  E([x(k) - R(klk)][x(k) - i(klk)]TlZo,U k-lI

The recursive expressions of R(klk) and P(klk) are given in Appendix A. As this con-
ditional p.d.f. is gaussian it is characterized only by its first two moments. As the
evolution of the covariance matrix is independent of the control sequence this system
does not present the dual effect of the control and is therefore a neutral system.

b) On the other hand the corresponding deterministic optimal control problem admits an
exact solution. It is well-known (see for example [14])that the optimal control uDqk)
is a linear function of the state vector, i.e.

u DO(k) = K (k)x(k) , (4.6)c
where the control gain matrix K (k) is given by

lc
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Kc W = -[L 2 (k) + BT(k) w(k+l) B(k)] - 1 B(k) w(k+l)A(k) (4.7)

The (nxn) matrix w(k) is given recursively by a backward Riccati equation

w(k) = L(k) + K T(k+l)L (k)K Ck+l) + [A(k) + B(k)Kc(k+i)] T w(k*l)[A(k) + B(k)K (k+l)]
1 c 2 c cc

(4.8)
with the terminal condition

w(N) = S (4.9)

In addition the minimal cost corresponding to a given initial state x(O) is given by

J(N) = _ xT(o)l(O)x(O) (4.10)

The structure of the CLO solution for the stochastic problem is also well-known.
It can be shown, by application of the theory of section 3, that the CLO solution is of
the following form :

u CLO(k) = Kc(k)g(klk) (4.11)

with the control gain matrix K (k) given in (4.7). The performance index is given byc

JCLO(N) p(o)Tw(' ,R(O) + m(O) (4.12)

where w(O) results, as in the deterministic problem, from a backward evolution governed
by the Riccati equation (4.8) with terminal condition (4.9). The scalar 0(0) results
also from a backward evolution independent of the control sequence (see Appendix B).
As the controller has exactly the same structure as in the deterministic problem, with
x(k) replaced by its estimate the CLO control presents the certainty equivalence proper-
ty. The only effect of the noises is to increase the value of the performance index via
the tPrm o(O).

According to what was said in section 3 the OLOF policy coincides with the CLO
poiicy because the system is neutral (CE property). The OLO policy can be deduced
simiarly to the CLO policy. The solution structure is identical. The only difference
;iht £(kjk) and P(klk) are replaced by the characteristics of the prediction estimate
£(kCO) and P(kIO) i.e.

k-ian r(klO) = E[x(k) u I ] I(1.13)k-
and P(klo) = E{[x(k) - r(klO)][x(k) - A(k0o)]Tu -l1 (4.14)

More precisely the OLO control at time k is given by

u OLO(k) K (k)R(klO) , (4.15)c

and the performance index by
jOLO(N) = R(o)Tw(o)S(O) + 8(0) (4.16)

where K (k) and w(O) are obtained as in the CLO solution (and as in the deterministic
optimal solution), while 8(0) results from the same backward evolution equation as in
the CLO solution, but where P(klk) is replaced by P(kJO). The superiority of the CLO
solution on the OLO solution results from the fact that 0(0) is greater than a(O) becau-
se it is evaluated on the basis of prediction covariance matrices greater than filtering
estimation matrices.

As the roll attitude control problem described in section 2.1 (eq.(2.7) to
(2.11)) has a linear structure, the optimal solution presents the separation property ard
is obtained, as exposed in the present section, in two steps. The first step consists
in the optimal estimation of the state vector

x(k) 6 r (k) 1
WO J (4.17)
O(k)

by use of the Kalman filter (App. A). In order to implement the filter the a priori pro-
bability density function of the initial state, characterized by its mean ind covariance
matrix, has to be specified on the basis of the a priori information about this state,
and the perturbations on the dynamics and the measurements have to be defined, namely the
noise covariance matrices which in this case present the following form

Q(k) r 0 0 and F(k) a r(k)
0 q(k) 0J (4.1 )
0 0 0

The choice of adequate values of q(k) and r(k) is Lased on the physical informationavailable about these perturbations. The second step consists in the optimal control.

The form of the optimal controller is given in eq (4.11) with a controller gain given
recursively by eq. (4.7) to (4.9). In these expressions the weighting matrices S, L (k)
and L 2(k) are chosen according to the form of the cost function defined by (2.15) aAd
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(2. 16) 

2-13

S a2  0 L (k) 0 0 0 and L2 (k)

0 0 a O 1/4 2

The flowchiart of the solution is given in fig. 5.

The assumption concerning the noise sequences can be somewhat weakened without
invalidating the CE property. Root has shown ([28]) that the CE property holds even if
the noises are non gaussian, and Tse that it still holds if the measurement noise is
not white but gaussian. Other cases have been given in section 3.3. Unfortunately the
linear quadratic gaussian problem is the only class where it is easy to derive the
exact solution. We now present suboptimal algorithms proposed for non-linear problems
and we discuss them with respect to their implementability in aerospace applications.

5. EXTENSIONS OF THE LINEAR QUADRATIC GAUSSIAN THEORY.

The linear quadratic gaussian theory is now extended in 3 directions : the opti-
mal control of non-linear problems, the study of the effect of modelling errors and the
adaptive control theory.

5.1 Non-linear sy2stems.

As said in section 3.1 the CLO solution of the general non-linear problem is com-
pletely characterized by the sequence of the jCLO(N-k) functions, which are functions
of the information states ICL

, 
and are generated recursively according to Bellman's

principle (eq (3.3) and (3.4)). For CL policies, each of these jCLO(N-k) can be consi-
dered as a functional defined on the set of the probability density functions of the
state at time k, given past controls and measurements, i.e. of p[x(k)lZk,Uk-l], with
the implicit assumption that the a priori information, as defined in section 2.2, is
completely available. In order to elaborate ":he complete solution it is necessary to
generate this sequence of functionals. In most cases an analytical solution does not
exist (except for the linear quadratic gaussian case where the conditional p.d.f. of
the state is gaussian and is characterized by its first two moments), and only subopti-
mal algorithms are proposed.

In a first class of algorithms it is intended to generate a recursive approxima-
tion of the jCLO(N-k) functions. A first method, due to Alspach ([30]), is based on the
approximation of the cond'tionnal probability density function of the state by use of
the gaussian sum approximation technique. Following this approach this p.d.f. is repre-
sented as a superpcsition (a "mixture") of elementary gaussian distributions ((31] -
[33]). The parameters )f these distributions are generated recursively by a set of
Kalman filters working in parallel. This representation of the state p.d.f. is then used
in *he evaluation of the expectations appearing in (3.3) and (3.4). The complexity of
tr.- algorithm results from the fact that a large rumber of terms have to be considered
it, the gaussian sum. Nevertheless this method takes into account the eventual dual
etfect of the control and seems theiefore to be, at the moment, one of the best appro-
ximatiuns of the CLO solution, although its implementation is tedious and computer-time
co nsu ning.

A second algorithm is due to Bar-Sha:om, Tse and Meyer ([34],[35]). In this me-
!ho,, a :implificatio. is introduced in the recirsive evaluation of the jCLO(n-k) by
-:onsidering that the conditional probability density function of the state is characte-
rized by its first two moments, even if the estimation is performed using a sophistica-
tel method as the gaussian sum approximation. By consideration of a perturbation problem
ir :und nominal trajectorie it is possible to minimize the expectation appearing in
(3."). This solutions shows also the possible influence of the control on the future
uncertainty -of the state so the dual effect of the control is taken into account. This
algorithm is easier to implement but can be less effeo.:tive because only the first two
moments of the density functions are considered and because the performance deperds on
the -hoice of the n.min~iI trajectories.

A third aigorithm is due to Campion ([36]) and consists in a gaussian sum approxi-
'na'in ot the JCLU(N-k) under the form

CLO ITexp[-jCLO(N-k)] = E a.(k)expf- 7 [ (k) - A .(k)]
T  

.(k)[A(k) - A .(k)]} (5.1)

where (k) is the vector of the parameters characterizing p[x(k)IZ,Ulo ].

Tti vector is, in general, of infinite dimension and has therefore to be truncated.
the Pv-lution of the parameter (k), A.(k) and Vt,(k) satisfies backward recursive
t,:,itions deduced from (3.4). in his alorithm the computer time requirements are also
1,-rtant although the greatest part of the computational work can be achieved off-line,
bef- re tdrting the process, independtly of the initial condition.

.t is clear, fro..m these descriptions that these alRorithms are not easily imple-
:Tefitabie with on-bori computers. For practical realizations implementable suboptimal
algorithms are derived from the certainty equivalence property (see 3.3), with, possibly
correcticn terms in 1cder to compensate as much as possible the fact that this solution
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does not present the dual effect of the control. As the original problem is partitioned
into two decoupled subproblems (the estimation problem and the deterministic control
problem) the implementation of the certainty equivalent solution supposes that the solu-
tions of these two problems are available. The estimation of the state can be obtained
using the linearized Kalman filter, or the extended Kalman filter, or by a more sophis-
ticated method (see, for example [7],[1O],[37]). On the other hand, even for determinis-
tic systems, it can be difficult to obtain the closed-loop optimal policy when the sys-
tem is not linear (see, for example ([9]).

Jacob and Patchell ([39]) and Hughes ([40]) propose a controller based on the
certainty equivalence property but a modification is introduced in order to take into
account the concepts of caution and probing defined in section 3.2. The caution is inclu-
ded to reflect the knowledge the system has about the state : when the uncertainty decrea-
ses the controller can be less "cautions". On the other hand, in order to reflect the
influence that the controller can have on the future evolution of the uncertainty, a pro-
bing signal is superposed to the certainty equivalent solution. Jacobs and Patchell pro-
pose a small known increment with alternating sign, while Hughes suggests a treshold
probing signal, so the control signal is prevented to become smaller (in absolute value)
than a prespecified level. The introduction of an additional probing signal is motivated
by numerical studies in which phenomena called "Turn-off" and "Escape" where 0oserved
([41]) - ([43]). Turn-off is defined to appear when the state estimate becomes small
and causes the control to be small for a long period. During this method, because of the
lack of control, some state variable are not yet controlled and can behave unsatisfacto-
rily. The use of a probing signal prevents or terminates turn-off. Escape is said to
occur when the control becomes very large and causes unsatisfactory system behaviour.
Caution can eliminate this phenomena.

5.2 Modelling errors.

In order to make possible the implementation of an optimal controller with small
on-board controller one has to consider simple mathematical model, ideally a low order
linear model. Because of this simplification divergence can occur between the physical
system and the mathematical model. These errors, referred to as "modelling errors",are
of three kinds.
1. The physical system can present non linear characteristics.
2. Even if the physical system do not present nonlinearities, the physical parameters

are maybe not perfectly known or may be subject to slow change (for example the iner-
tia characteristics of a satellite with unknown thermal deformations).

3. In a low-order model the higher order modes are deliberately neglected. These modes
can affect the outputs of the system (this phenomenon is known as the "observation
spillover") and .n the other hand, are also influenced by the control variables desi-
gned on the basis of the low order modes only. ihis phenomenon, referred to as the
"control spillover",can cause unsatisfactory behaviour of the system. The effect of
this mode truncation is under intensive investigation, specially for the future large
space structures ([18]).

Methods of reduction of the effect of the third modelling error can be found in [18],
specially in [44]. The best method to reduce the effects of the first two kinds of errors
is to implement an adaptive controller. This particular aspect of optimal control is now
quickly described in section 5.3.

5.3 Adaptive control.

Even if a linear mathematical model is realistic, the solution structure of the
optimal control problem becomes non linear if the parameters of the model are not known
exactly or are not selected optimally. That can be seen on the roll attitude controller
example introduced in section 2.1. Suppose, for example, that the roll time-constant T
is not known with a good accuracy, producing an unsatisfactory behaviour of the system.
Defining an augmented state vector x

a

xa (x 5.2)

the dynamical equation of the augmented system becomes

xa (k+l) x(ktl) A[T(k)] 0 xa(k) + [i(k)] u(k) + v (5.3)
t(kI) L 1v.3)J L OII -

which is non linear in the variable x (k).
It can be possible to identify these 8nknown parameters before applying effectively the
control variables. There are many identification methods (see, for example, [45]). If
it is not possible, an adpative controller has to be designed, i.e. a cortroller struc-
ture where the parameters are adapted following the evolution of the unknown parameters
uncertainty. The most used method is the "model reference" adaptive control, introduced
by Landau ((461). In this method the controller is designed for a linear reference model,
but the parameters of this model and of the controller are adapted following the evolu-
tion of the system. This technique can also be used if the physical system presents non
linearities. This adaptive control approach, which is an intermediate between non linear
control and linear control, is promised to a wide development, s 'cially for aerospace



2-1S

applications, but a complete discussion of its properties and possibilities is outside
the subject of this chapter.

6. Conclusions.

1. As the complexity of the optimal controller increases dramatically if a non-linear
or an high order model is considered, one has interest to design the controller on
the basis of a low order linear mathematical model. In order to prevent unsatisfactory
behaviour it can be necessary to modify somewhat the solution based on this model
(see section 5). Such a solution is of course suboptimal but presents the advantage
to be implementable with on-board computers.

2. It is worthwile, nevertheless, to develop more sophisticated algorithms. As they are
closer to the optimal solution they produce a reference for the comparison with the
suboptimal solutions. These algorithms are not implementable for on-line applications
but they are usefull for ground simulations. On the other hand it is important to
have a clear understanding of the mechanism of elaboration of the optimal control and,
particularly, of the concept of dual effect of the control (section 3.2), because
this discussion gives the reasons why a certainty equivalent controller can behave
unsatisfactorily, and can be helpfull for the a priori detection of situations where
a more sophisticated method has to implemented.

APPENDIX A : Kalman filter equations.

For the linear system described by (4.1) and (4.2) the mean and covariance matrix
of the conditional p.d.f. of the state are given recursively by the Kalman filter equa-
tions.

a) The prediction p.d.f. p[x(k+l)1Z ,k Uk] is gaussian with a mean R(k+llk) and a cova-
riance matrix P(kIllk) given by

i(k~lIk) = A(k)i(klk) + B(k)u(k) , (A.1)
andT P(k+llk) = A(k)P(klk)AT(k) + Q(k) (A.2)

b) The conditional p.d.f. p[x(k~l)IZo ,U o ] is still gaussian with a mean R(k+llk+l)
given by

i(k~ilk+l) = R(k+llk) + K(k+l)Ez(k+l) - H(k+l)R(k+llk)] , (A.3)
and

P(k+llk+l) :[I - K(k+l)H(k+l)]P(k+llk) , (A.4)
n

where I is the identity matrix of order n and where the Kalman gain K(k+l) is given
by n

K(k+l) = P(k.llk)HT(kl)[H(k+l)P(k+llk)HT(ktl) + R(k+l)] -  
(A.5)

APPENDIX B : Closed-loop optimal control for the linear quadratic gaussian problem.

CLO Following eq. (3.5) the terminal condition for the backward evolution of the
J is written JCLO() = [I xT (N)Sx(N)]p[x(N) IL]dx(N) (B.1)

As the conditional p.d.f. of the state is gaussian, with mean S(NjN) and covariance
matrix P(NIN), the relation (B.1) can be rewritten as

jCLO(o) _I T (NIN)(N)R(NIN) + a(N) , (B.2)

where s(N) = S , (B.3)

1 tr[SP(NIN)] (B.4)
C2N

We now show that, in general, J CLO(N-k) can be expressed as

JCLO (N-k) = - 9(klk)w(k) S(kIk) + a(k) (B.5)

where the weighting matrix w(k) and the scalar a(k) are idependent of the control sequen-
ce and of the actual realization. CLO
Suppose that jCLO(N-k-l) has this form. From eq. (3.4) J (N-k) is obtained as

CLO m 1T k)(kukjC O(N-k) = min E(-x (k)L (k)x(k) + u(k)L(ku) + . R(k~llk+l),(k+l)R(k~llk~l)
u(k) 2 1 2 2

+ i(k + )i C
L }  

(B.6)

We now evaluate separately the terms of the above conditional expectation.

a) E[. xT(k)L (k)x(k)llCL] :1 T(klk)L (k)R(klk) + - tr[Ll(k)P(klk)] (B.7)

b) E[T uT(k)L 2 (k)u(k)II L] = uT(k)L 2(k)u(k) , (B.8)

because u(k) is assumed to be selected through a deterministic policy.

c) The expression of R(k+llk+l) is given in (A.3). As the innovations sequence (i.e. the
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sequence of (z(k) -H(k)R(klk-l)}) is a white gaussian sequence with, zero mean arid
a covarianice matrix given by CH(k)P(k k 1)HT(k) + R(k)], it is independent of the
previous estimates and the expected value

2C ~~l~~~~)Zkli~ 1L
is given by

1 T

I-trin(ktl)[H(ktl)P(ktl k)H T(k~l) + R(k+l)J1 (B.8)

d) As the quantity mt(ktl) is assumed to be idependent of the actual realization it is
but a deterministic quantity coinciling with its expected value. The minimization
condition (B.6) is therefore eqjuivalent to the following condition

min {_IuT MkL (k)u(k) +-[CA~k)(k~k) + B(k)u(k) ]T i(ka-l)[A(k)x(k) + B(k)u(k)]1), (B. 9)
u(k) 2 2 2

which has the same fosm as in the deterministic problem. The optimal control is there-
fore given by

u CLO (k) =K c(k)R(klk) ,(B.10)

where the control gain Kc(k) is given by

K (k) =-[L 2(k) +. BT (k)iv(k+l)B(k)]- B(k)ir(k+I-)A(k) .(B.11)

With this expression of u CO(k), J CL (N-k) can be rewritten as

whr JL (N-k) =-1 2 kk)1T(k)R(kjk) + a~k) ,(B.12)

w(k) =L I(k) + Kc(k+1)L 2(k)Kc(k+l) + CAMk + B(k)Kc(k+l)] Im(k+l)[A(k) + B(k)Kc(ktlfl,

and

m(k) = a(k+l) + - tr[L (k)P(kjk)] +.~ trtvr(k+l)[H(k+l)P(k+llk)H (k+l) + R(k+1)]}2 1

It must be noted that the relation (B.12) is the same as (4.8) corresponding to the
deterministic problem.

Fi.1 The estimation problem

Fig. 2 The control problem (1)

controloier

nois
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Fi.3 The control problem (2)
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AN1 INTRODUCTION TO

STOCHASTIC OPTIMAL CONTROL THEORY

Robert F. Stengel
Princeton University

Flight Research Laboratory
Department of Mechanical and Aerospace Engineering

Princeton, N. J. 08544 U.S.A.

SUMMARY

The design of control logic that commnands a dynamic system to a desired output or
that augments the system's stability is facilitated if objectives are expressed in a
quantitative criterion, because the optimization of this criterion establishes a feasible
design point for control. If the information which the control logic must use is uncer-
tain or if the dynamic system is forced by random disturbances, one can hope to optimize
only the expected value rather than the actual value of this criterion. The methodology
f or design is based upon stochastic optimal control theory, the topic of this chapter.
After introducing the dynamic models of interest, optimal control and estimation are pre-
sented separately. Limitations of this approach are addressed, and the unified design of
linear stochastic optimal controllers for analog and digital implementations is described.

* The principal benefit of stochastic optimal control theory is that it provides an engi-
neering framework within which practical control design can be accomplished for complex
dynamic systems.

INTRODUCTION

Optimal control theory is that body of information which describes the application
of forces to a system for the purpose of maximizing some measure of performance or mini-
mizing a cost function. The nature of the control is stochastic if, in addition to the
controlling forces, the system is forced by random disturbances, if the parameters of the
system are subject to random variation, if initial conditions are random, or if any mea-
surements used to formulate the control are subject to random errors. All control systems
are intended to optimize some criteria, whether or not the criteria are stated explicitly,
and there is some degree of uncertainty in any control system implementation. Conse-
quently, stochastic optimal control theory has broad application to practical systems,
as demonstrated by the remaining papers in this volume.

The apparent dichotomy between "optimal" control and "practical" control is linked
more closely to style than substance, as optimal control design can be a very practical
process. One impediment to understanding is the definition of what we mean by "optimal".
Whereas there is a class of problems in which a single, unequivocal optimum can be de-
fined, e.g., minimum time, fuel, or cost, there is an even greater class in which the
selection of weights in the cost function is arbitrary. These weights have no small
effect on the numerical solution, and the analyst may purposely digress from theoretical-
ly "best" weights in order to make the solution more "robust", i.e., more insensitive to
parameter variations. In such instance, optimality, per se, is less important than the
fact that optimization provides a systematic procedure for "itrading of f" system perform-
ance and control activity within established limits. This in itself is a most practical
quality. Therefore, let us define "optimal" as "tending toward the optimum", recognizing
that some deviation from the optimum is acceptable, if not unavoidable, in practical
application.

Aerospace systems are dynamic, and the evolution of their motions in time is of
particular interest; hence, the criteria to be optimized are expressed naturally in terms
of final values and time-integrals of the motion and control variables. Nevertheless,
of great practical concern, so frequency-domain equivalents are useful. The power of
time-domain formulations is related to their generality; optimal controls for nonlinear

tim-vayin sytem ar spcifed ifnot calculated) readily, and the simplifications
afforded by linearity and time-invariance are accomodated in a single theoretical frame-

* work. When both linearity and time-invariance can be assumed, frequency-domain concepts
aid interpretation and, in some cases, computation. This chapter presents stochastic
optimal control theory from a time-domain viewpoint, providing frequency-domain perspec-
tives where possible.

What follows can not include all methodologies for all optimization problems. It is
an interpretation of the theoretical underpinnings of optimization techniques commsonly
applied to aerospace problems. While it is hoped that this chapter may provide new
insights or clarifications of stochastic optimal control theory, the theory itself has
been developed earlier. The reader who is interested in greater detail should refer to
(1] to [14], which are principal sources of material for this chapter.

* t After reviewing general models of dynamic systems and some basic characteristics of
the mathematics, the theory of deterministic nonlinear optimal control is presented.
The notion of neighboring-optimal trajectories as prototypes for feedback control is
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introduced, as is the need for estimation that arises in some cases. Optimal filtering
and prediction for discrete-time systems are presented, with continuous-time estimation
developed as the limiting case for vanishingly small sampling interval. The separation
theorem and its limitations are discussed, and the chapter concludes with details of
linear, time-invariant stochastic optimal controllers.

MODELS OF DYNAMIC SYSTEMS

Stochastic optimal control is to be applied to a dynamic system that consists of a
physical process and its observation. Elements of the physical process can be arranged
in five distinct families, which identify their respective roles in the process, and the
observation contains two families of variables. Each family is represented by an ordered
set (or column vector) of scalar quantities, with dimension appropriate to the system:

Vector Description Dimension

p Parameters
UControllable Inputs m
wUncontrolled Inputs (Disturbances) 'ai
xPhysical States n

y Process Outputs r
Nf Measurement Errors r
z Observations r

The relationships between these variables are illustrated by Fig. 1.

These seven categories of variables serve distinct purposes in the dynamic system.
The vector of parameters, p, scales the process's response to inputs and to its own
motions. The forces on thW process (or inputs) that can be controlled are contained in
u. while those which are beyond control are contained in w. The state vector, x, repre-
sents the dynamic condition of the process, i.e., the fundamental response to iniputs.
The process structure is such that x "feeds back" into the system (through physical
effects), and this feedback can modTfy process response in several ways, e.g., by shifting
the steady-state characteristics, causing oscillations, stabilizing the process, and so
on. The output vector, y, can contain none or all of the above (p, u, w, and E), select-
ed components of each ve~tor, or transformations of these vectors7 depending upon the
process and its instrumentation. In general, the output can not be measured exactly, so
the observation, z, is some combination of the output, y, and measurement error, n. Any
dynamic effects asasociated with control actuation or neirsurement sensing are assumed to
be contained in the physical process.

Open-loop optimal control can be applied only if the dynamic system is characterized
by adequate controllability, and closed-loop optimal control (including stochastic control)
requires adequate observability as well. A system is controllable at time to, if there
is a control history, 3!(t), to It < t f < -, which transfers each element of an arbitrary

initial state, x(t0 ), to zero at t f If there is an independent physical path between every

component of x and at least one element of u, then the process is likely to be completely
controllable. (There must be adequate control "power" as well.) The path can be either
direct or indirect, as long as it can be distinguished from possibly redundant paths. A
system is observable at to if the output history, y(t), to :S t < tr < -is adequate to recon-

struct x(t0 ). If there is an independent physical path between every component of x and

at least one element of X, then the process can be said to be completely observable.
Again, the path can be direct or indirect, but it must be non-identical to all other paths.
Conditions that must be satisfied for complete controllability and observability can be
found in [l]-[31, [61-[8J. These definitions say nothing about the potential quality of
control or observation -- they merely indicate whether or not the structures for control
and observation exist.

4 In most cases, the physical process is only partially controllable and observable,
either as a consequence of the physical process itself or because limited resources pre-
vent implementation of complete control and observation. Such a process can be separated
into four parts -- those sub-processes which are both completely controllable and observ-
able, those which are one but not the other, and those which are neither.

From a practical point of view, complete controllability and observability are not
required if the uncontrolled or unobserved states are well-behaved. For example, adequate
rigid-body control of an aircraft need not depend on controlling or observing well-damped
aeroelastic, fuel sloshing, or external stores modes. If an uncontrolled sub-process is
stable, i.e., bounded disturbance inputs produce bounded response, the sub-process is
oservatobe suabpocssssable, i fetis ad totbeadetectable.cassboundsvongtheIobserved
osidvtobe subpocsinsable, nd its efcsand not cae te. rces oundiverge.eIfbanrun-
states can be estimated. Partial controllability and observability may be acceptable,
but sub-processes which are not stabilizable and/or not detectable must be avoided.
Closed-loop control can be applied only to those elements which are both controllable and
observable.

Physical processes normally are continuous functions of time, so it is appropriate
to model the evolution of their motions by differential equations. Although some processes



are best described by partial differential equations, we will restrict our view to ordin-
ary differential equations, noting that numerical approximations to the former can be
achieved with the latter. The solution variables for these equations are contained in
the state vector, x(t), the focal point of estimation and control. In an increasing
number of applications using digital computers, control settings are calculated and mea-
surements are made at discrete (often periodic) instants of time. Difference equations
that are equivalent to the original differential equations can be found, and continuous-
time stochastic optimal control solutions are paralleled by discrete-time results.

For either continuous-time or discrete-time models, the dynamic equations can be
classified as in Fig. 2. If the dynamic coefficients are changing rapidly with time, in
comparison with the time scale of motions, the dynamic model must be time-varying; if the
coefficients are relatively constant, a time-invariant model will suffice. If motions
evidence the superposition characteristic, i.e., doubling the input doubles the output,
then linear models can be used; if not, the dynamic model must be nonlinear. A non-
linear, time-varying dynamic system can be described by an n-component vector dif-erential
equation representing its dynamics, an r-component algebraic (or transcendental) equation
representing the output, and an r-component equation representing the observation:

dx (t) = . .. (t) = f IEMt) x(t), UMt) WMt) t) (1)

dt

y(t) = h [p(t), x(t), u(t), w(t), t] (2)

z(t) = j [y(t), n(t)] = y(t) + n(t) (3)

The vector, f, contains an element for each element of x; each element of f is the appro-
priate scalar equation that defines the time-rate-of-change of its corresponding compon-
ent of x. The dimension of the output function, h, is not governed by the dynamics of
the process; it may be larger or smaller than the state dimension, and there is some
freedom in its choice. The nonlinear complexities of observation normally can be absorbed
in Eq. (2), and observation error is added in Eq. (3).

Solutions of nonlinear, time-varying differential equations require direct integra-
tion, either by numerical or analog computation. The resulting time histories describe
the evolution of motions for given controls, disturbances, and initial conditions;
each change in any of these quantities leads to a new state trajectory.

Small perturbations from a nominal trajectory can be modeled by linear approximation.
To do this, both sides of Eq. (1) to (3) are expanded in Taylor series, and terms beyond
the first degree are neglected. The zeroth-degree terms generate the nominal solution,
and the first-degree terms govern the perturbation solution. The model variables are as-
sumed to be separable into nominal and perturbation components denoted by ( ) and A(
respectively. The nominal, nonlinear equations are

x(t) 
= f [Po M), Xo (t) . U (t) , W(t) , t] (4)

Y0 o(t) = h [po(t) , xo) Uoo(t), wtt (5)

zo(t) = y(t) + not) (6)

Assuming parameter variations are not perturbed, the corresponding linear, time-varying
equations are

Ax(t) = F(t)Ax(t) + G(t)Au(t) + L(t)Aw(t) (7)

Ay(t) = H x(t)Ax(t) + Hu (t)Au(t) + Hw(t)Aw(t) (8)

Az(t) = Ay(t) + An(t) (9)

where the Jacobian matrices,

af af a
F(t) = _x- (n x n), G(t) = u (n x m), L(t) = -C (n x s) (10)-(12)

ah hh
(t) - T _ (r x n), Hu(t) - Cr x mn), l wt) = r x ) (13)-(15)

are evaluated at o(XOt), Uo (t), t), P ct), t). The Jacobian matrices express the

linear sensitivity of f and h to small perturbations in x, u, and w. Even if PCt) is
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constant, these matrices are likely to vary in time as long as the nominal input variables
(Uo,!o) and solution variable (xo) vary in time. The linear, time-invariant case rigor-
ously occurs only with constant nominal inputs, when the state has reached equilibrium,
or if there is no functional dependence of the Jacobian matrices on the changing variables.

The dynamic equations have been expressed as a vector set of first-order differential
equations because these provide the most flexibility for computation and analysis. A
large body of dynamic analysis, particularly that related to structures, is based on lin-
ear second-order equation sets, which can easily be converted to first-order "state-
space" notation. Using the modal coordinate vector, Aq, the second-order equations are

MA4 + CA_ + KAq = DAu (16)

where, M, C, K, and D are the mass, damping, spring, and forcing matrices, respectively.
This equation can be put in the first-order form

Ax = FAx + GAu (17)

by first defining

_x = -2 (18)

LAiJ LA2J
then forming

F = I (19)
-M I -

and

G = -0-] (20)

If the Jacobian matrices are constant, an equivalent frequency-domain model is
easily formed. The Laplace transforms of Eq. (1) and (8), neglecting initial conditions,
are

(sI-F)Ax(s) = GAu(s) + LAw(s) (21)

Ay(s) = Hx (sI-F)-1G + Hu]AU(S) + [Hx (S-F)-1L + Hw ]Aw(s) (22)

where s is the Laplace operator. Equation (22) is seen to contain transfer function
matrices between the inputs, Au(s) and Aw(s), and the output, Ay(s).

While a comparable difference equation is not easily specified for the nonlinear
dynamic equation, the linear, time-varying differential equation has a straightforward
discrete-time equivalent. The time-varying difference equation

Ax(t) = f(t,to)Ax(t0 ) + J0(t,T)[G(T)Au(T) + L(T)Aw(T)] dT (23)

0

propagates the state precisely from one sampling instant, to ,to the next, t , using the

state transition matrix, 0(t,to) [6]. For a linear, time-invariant system with stepwise-
constant inputs and periodic sampling, Eq. (23) can be put in the form

Axk+1 = *(T)Axk + r(T)A3uk + A(T)Awk (24)

where T is the sampling interval, k is a sampling index, and

*(T) = eT I + FT + IF 2T 2 + (25)

r(T) = (9 - I)F-IG - [I + 1 FT + F2T2 + " "GT (26)
ACT)= ( -1 312

A(T) - (0 - I)F L z [I + 1 FT + jF 2T2 + " ]LT (27)

The equilibrium response of linear, time-invariant models is shown below to be useful
in the design of non-zero set point regulators using stochastic optimal control theory.
Starting at the nominal equilibrium, a constant input perturbation, Aup or Awp , would

disturb the state from its nominal value. The perturbation equilibrium value, Ax , isdefined by Eq. (7), with Ak - 0:
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x := -F-I(G~up + LAw) (28)

provided exists. The corresponding output is found by substituting x , u , and tkV-p -p
in Eq. (8). Alternatively, if desired values of m components of the output, AYm* are
specified, Eq. (7) and (8) can be solved simultaneously to find AX and AU
With A - 0 and Hw - 0,

_A i F G l -LAw p -LAw!f

I- wIS (29)
Ai X H yAHm un L i

requiring the existence of an additional inverse matrix, S [15]. The corresponding dis-
crete-time perturbation equilibrium involves Eq. (24) and (8) with A2k+l = A?--k ; however,

it can be shown that the solution is identical to Eq. (29), as might be expected.

OPTIMAL TRAJECTORIES AND NEIGHBORING-OPTIMAL SOLUTIONS

Conditions for Optimality

We begin by considering optimal control strategies for dynamic systems whose param-
eters, disturbances, and initial conditions are known without error. By convention, the
control history, u*(t), t0 < t < tf, that minimizes a cost function, JNL' is to be found.

The cost function considered here consists of two parts, a scalar algebraic function of
the final state, O[X(tf)], and a scalar integral function of the state and control:

JNL = $[X(tf)] + L[x(t),u(t)] dt (30)
0

The choice of f[.] and the integrand, L[.], dictates the nature of the optimizing solu-
tion, and there is some flexibility in expressing a particular cost as a terminal or
integral function. In the example of an aircraft trajectory with fixed terminal cost
function, O[x(tf], choosing L[.] - 1 specifies a minimum-time problem, while choosing
LI-] = fuel flow rate leads to a minimum-fuel problem. Alternatively, the state can beaugmented to include a fuel mass component, and the minimum-fuel problem can be specified

by redefining 0[x(tf)].

Equation (30) is minimized subject to the dynamic constraint provided by the system's
differential equation:*

x(t) = fix(t), u(t), w(t), p(t),t], with x(to), w(t), p(t) given (31a)

or

f[.] - t 0 , t < t < tf (31b)

Because Eq.(31b) always equals zero, it can be adjoined to the integral cost function
without changing the value of JNL or the minimizing control; however, Eq. (31b) is a

vector relationship and the integral cost is a scalar. Defining the n-component vector
of Lagranqe multipliers, At) (also called the adjoint or costate vector), the scalar
product AT{f[.1 - k(t)) is formally added to L[.]. The solution equations for X
determine the optimal control.

Defining the scalar Hamiltonian, H[x(t), u(t), A(t), t],

Hlx(t), u(t), A(t), t] = L[x(t), u(t)] + XT(t)f[x(t), u(t), t] (32)

Eq. (30) can be written as

NL *[x (t f) t + {H[x(t), u(t), A(t), t] - 'it)idt)) dt (33)

0

Following (1], the second term in the integrand can be integrated by parts:

* Constraints on the state or control at interior points, end points, or over the entire
interval also can be addressed. These constraints can specify that the variable(s)
equal given value(s) or that they are merely bounded by sich values.



3-6

JNL = *xZtf)J - [AT(tf)x(tf) - AT(t )x(t )]

+if {H[-] + 1T(t)x(t)} dt (34)

0

Necessary conditions for a minimum value of JNL with respect to the control are

formed by requiring that the sensitivity of JNL to any control variations, Au(t), and

associated state variations, tx(t), be zero on the minimizing path. From Eq. (34), the
first variation in JNL can be expressed as

AJNL = AJIC + Aicontrol
t

= AT (t)Ax(t) + (2H + I + Au]dt + [x(t)] - XT(tf)}Ax(tf)0 - -D (35)
0

where the first term is the cost function's variation due to changes in the initial state
and the remaining terms are the result of changes in control. AJcontrol = 0 for arbitrary
values of Ax and Au only if three conditions are satisfied:

t= HT(t) = - LiT(t) - FT(t)X(t) , t < t < t (36)
- xax 0_

A(tf) { O[x(tf)]}T (37)

uL L Tu(t) + GT(t)A(t) = 0 t < t < tf (38)

The adjoint vector is obtained by integrating Eq. (36) backward in time from the end con-
dition specified by Eq. (37), with all time functions evaluated along the optimal (nominal)
trajectory. Equation (38) is then a direct expression of the cost function's stationarity:
on the optimal path, the sensitivity of the Hamiltonian to small changes in the control
is zero. These three equations are called the Euler-Lagrange equations.

It is necessary for the Euler-Lagrange equations to be satisfied on the optimal
path, but these equations guarantee only stationarity, not optimality. While the min-
imum may be indicated, it also is possible that JNL has been maximized or forced to an
inflection point by the control. As described in [1], three sufficiency conditions mustbe satisfied to guarantee a minimum. 1) The Hamiltonian must be convex (Huu >0) in the

interval, indicating that the solution has reached a "valley" rather than a :'ridge
line" or "ledge". For controllable systems without terminal constraints, this condition
usually is sufficient to guarantee optimality. If the (m x m) matrix Huu is singular,
minimizing controls may still exist, but time derivatives of H u, as well as Hu itself,
must equal zero in the interval. 2) The solution must be "normal", i.e., small changes
in terminal constraints lead to neighboring optimal solutions. A system that is not
completely controllable is likely to be "abnormal" in this respect. 3) There must be no
conjugate (or focal) points. Finding the path which yields the minimum distance from any
point on the globe to the equator provides an example: the north and south poles are
conjugate points because there are an infinite number of such paths.

If the nonlinear system equations have low order and simple structure, it may be
possible to find analytic closed-form solutions to the optimizing equations; however, in
most cases, it is necessary to resort to iterative numerical techniques for solution.
These are discussed briefly in the next section.

Numerical Optimization

Iterative techniques for finding the optimal control history, u*(t), to S t < tf, and
the corresponding state trajectory, x (t), must provide solutions of the n-component
differential equation [Eq. (36)), subject to initial conditions for the state, x(to),
and final conditions for the adjoint vector, A(tf). The optimal trajectory is very much
a function of how the control vector is defined; changing the components of u(t) is likely
to change the numerical values of x*(t). Solutions to the two-point boundary-value
problem can be found using extremaT fields (dynamic programming), neighboring extremals,
penalty functions, quasilinearization, and gradient methods [1], [111. The principal
distinctions between these methods are which equations and conditions are nominally
satisfi. 4 by the problem formulation itself and which must be forced to solution by the
iteration. A particular appeal of the gradient methods is that the dynamic system
equation is solved exactly on each iteration, with the control being perturbed from step
to step. In other words, the algorithm simulates the system's dynamic response with
varying control histories from one iteration to the next, and the physical effects of the
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optimization are quite visible at each step.

A schematic of gradient (or steepest-descent) optimization is shown in Fig. 3. The
process begins with the specification of initial conditions and a nominal control history.
Note that a simulation program is an inherent part of the process and that the adjoint
vector is integrated back from the final point on each iteration. In most cases, suffi-
ciency need not be verified for every iteration, so this computation is optional. The
choice of a stopping condition is somewhat arbitrary. If the minimizing value of J is

known (for example, it would be zero with a path-following cost function), 
the NL

iteration can stop when the computed cost is acceptably close to its known value.

Otherwise, the iteration can stop when some scalar function of the control gradient,

Hut), e.g., [HHu(tH (t)]dt)/(tf-to), is acceptably close to zero.

0

The choice of the (m x m) control-gradient weighting matrix, Kkt), in the control
adjustment equation,

= Uk(t) - Kk(t)HT(t) (39)Mk+l (t) = 4 t k Uuk

is critical for rapid convergence to the minimizing control. If K(t) is too small, con-
vergence may require a large number of iterations; if it is too large, convergence may
not occur at all. In the neighborhood of the optimal trajectory, Huu (t) should be greater

than zero (by convexity); if Kk(t) = -1 (t), the iteration becomes a Newton-Raphsonuuk

algorithm. In practice, H uu(t) can be difficult to calculate precisely, and the calculated

value may not be convex during early iterations. Efficient constant values of Kk (which

may change from one iteration to the next but are constant on each iteration) can be found
from auxiliary integrals of the trajectory (1] or by numerical search, as in [16].

It should be recognized that the amount of computation associated with iterative

numerical optimization is immense, and it rarely will be practical to solve these equations
in "real time", i.e., during the actual time interval, (totf). Indeed, even if the com-
puting "power" to effect such a solution is available, uncertainties regarding distur-
bances in (t,tf) and variations in the target time and state may invalidate the optimality
of the instantaneous control shortly after it is applied. The principal value of such
solutions, to date, has been to identify nominal trajectories and control histories prior
to application. In addition to providing valuable planning information for vehicle and
actuator sizing, fuel loading, etc., the pre-calculated optimal trajectories and controls
can determine time-varying set points for feedback controllers, e.g., the neighboring-
optimal control laws described in the next section. An interesting alternative is to
define an "extremal field" of optimal paths in order to implement nonlinear guidance and
control laws based upon the principles of dynamic programming. [17]

Neighboring-Optimal Solutions

The linear perturbation models introduced in an earlier section can be put to use to
examine the effects of small variations in initial conditions and terminal cost on the
optimal trajectory and controls. We formally consider the second variation of the cost

function for the nonlinear system, 62j NL, identifying it as the cost function for the

associated linear perturbation model (Note that optimality quarantees that the first vari-
ation is zero on the optimal path):

JNL f[(to)+Ax(to)] ,[(tf)+Ax(tf)]1 
= JNL[X(to)'(tf)] + 6 

2JNL[ A(to)'x(tf)] (40)

Taking second variations on the right side of Eq. (30), (

62N L = AT (tf)0 (tf)Ax(tf) + )  dt
NL 2 x f 2L (t) L (t] [Au t)J

subject to the linear dynamic constraint, 
41)

Ac(t) = F(t)Ax(t) + Gt)u(t), Ax(t ) given (42)

F(t) and G(t) are defined by Eq. (10) and (11), evaluated along the optimal path. Pertur-

bations from the nominal optimal solution are

Ax(t) x) - (t) (43)

Au(t) - u (t) - 0<(t) - (44)
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A notational change is introduced in the quadratic cost function,

j= (tf)(t )Ax(tf) + 1 f [ A ~) ~) dt (45)L 0, t 0(t) R(t) AU(t)

and the corresponding Hamiltonian can be written as
iT TT

H(t) _ IAx (t)Q(t)Ax(t) + 2AxT(t)M(t)Au(t) + AuT(t)R(t)Au(t)]
(46)

+ AX T(t)[F(t)Ax(t) 
+ G(t)Au(t)]

The Euler-Lagrange equations, Eq. (36) to (38), are

AI(t) - Q(t)Ax(t) - M(t)Au(t) - F (t)A_(t) (47)

A_(tf) = P(tf)Ax(tf) (48)

0 = MT(t)Ax(t) + R(t)Lu(t) + GT(t)A_(t) (49)

Equation (49) can be rearranged to solve for the control,

Au(t) = -R-l(t)[MT(t)Ax(t) + GT(t)AX(t)] (50)

and this relationship can be substituted in Eq. (42) and (47) to express the linear two-
point boundary value problem as

-I T -l T~tA~
Ax(t) = [F(t) - G(t)R- (t)M (t)]Ax(t) -G(t)R-I(t)GT(t)A (t), Ax(to ) given (51)

A-(t) = [-Q(t) + M(t)R-1(t)MT(t)]Ax(t) - T[F(t) - G(t)R-I(t)MT(t)]TA_(t),

AX(tf) given (52)

Because Ax(t) and Ai(t) are adjoint, Eq. (48) applies not only at the final time
but during the entire interval:

A).(t) = P(t)Ax(t) , t < t < tf (53)

Then Eq. (50) can be expressed as an optimal feedback control law,

Au (t) = -R (t)[G (t)p(t) + MT(t)]Ax(t)

= -C(t)Ax(t) (54)

where C(t) is the time-varying (m x n) control gain matrix.

The (n x n) matrix P(t) remains to be found. Differentiating Eq. (53), incorporating
Eq. (51) to (53), and rearranging terms, a nonlinear differential equation for P(t) can
be derived:

PAx - Ai - PAx

= [(-Q + MR-IMT)Ax - (F - GR IMT )T A X] - P[(F - GR-IMT )Ax - GR-G TAX_]

- [(-Q + MR-IM T  (F - GR-lMT)TP]Ax MP(F -GR - ) - GR- G TPAx (55)

Cancelling Ax on both sides of the equation leads to a matrix Riccati equation for P:

P -(F - GR-1MT)Tp - P(F - GR-IMT ) + P(GR-1GT)P + (-Q + MR-1MT ), P(tf) given

(56)
The solution for P(t) and, therefore, for C(t) is seen to be independent of Ax(t);

hence, the control law defined by Eq. (54) is linear. Variations in Ax(t0 ) or Ax(tf)

have no effect on C(t), although the linear-optimal [or linear-quadratic (LQ)l control
history obviously is affected by state perturbations.

From Eq. (44), the total control if formed as the sum of the nominal and perturba-
tion optimal controls:
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u(t) - C (t) I,( t) -x(t)] (57)

The prototype neighboring-optimal control law is illustrated in Fig. 4. This diagram
reflects Eq. (57), and it introduces *he notion that an alternative to time-scheduling
ofNo~ uN, and C can be considered. when t f is not fixed and is of secondary importance,

it may be desirable to choose a scalar function, n, of the state with fixed end point as
the scheduling variable. This scalar function must be monotonic in time, so as not to
introduce singularities in the scheduling, and it also can be used to reduce the order
and complexity of the original optimization, as demonstrated in [1], [16], (17], and
several other references. Range, R, and specific energy, E, are examples of functions
that have proven to be suitable scheduling variables for flight path optimization;* just
as "time-to-go", (t-tf ), is often a more pertinent independent variable than time, t,
"range-to-go" and "energy-to-go" can be employed in actual implementation.

Equation (57) indicates that the total control approaches its nominal value as the
actual state approaches its optimal value. This result apparently assures that the total
control is optimal, i.e., that the dynamic system is forced to follow the optimal tra-
jectory. If, however, there are disturbances not modelled in Eq. (31) or the actual
system differs from the dynamic model, Eq. (57) may not be up to the task, and CMt may
not be optimal.

The optimal treatment of disturbances and system variations depends on whether they
are deterministic (certain) or random (uncertain) and, in the latter case, whether they
are random constants or random processes (continually changing in time). From Eq. (17),
disturbances, Aw(t), that are certain and, therefore, known can be opposed by perturbing
the control an additional amount, A~d(t), such that G(t)A~d(t) = - L(t)Aw(t). A rocket

launch through a known vertical wind profile could be treated in this fashion. KnownIparameter variations should be taken into account in calculating C(t).
Random disturbances and parameter variations pose a different problem because the

cost functions presented earlier can not be minimized with certainty. At best, we can
hope to minimize some statistical measure of the cost, and this implies that statistical
characteristics of the random processes are known. A reasonable approach, as presented
in [1], [3], [4], [10], [121-[14], is to minimize the expected value (or average value)
of the cost, conditioned on the statistics of the random processes. Random disturbances
and parameter variations are treated in the same manner, i.e., both can be modelled as
,.process noise". Although conditions for stochastic optimality of nonlinear systems have
been discussed in the literature, the most useful results apply to linear systems with
zero-mean gaussian process noise. The fortuitous result for this case is that the LQ
gain matrix defined by Eq. (54) is optimal without qualification. Equation (57) is the
stochastic neighboring-optimal control law for a linear system forced by zero-mean random
processes, although the minimum value of the cost function is greater than it would be
without random forcing [1].

Solving the problem of random constant disturbances or parameter variations is more
involved because the induced error does not average zero during the interval. Two possible
solutions are estimation of the constant and integral compensation. Assuming the distur-
bance or parameter is observable, the state can be augmented to include the random constant,
and an estimate of the constant can be based upon observation of the system. The estimate
then is used in the same way as its deterministic equivalent. Recognizing that the random
constant would prevent [xE(t) - (t)] from reaching null, an integral of the state error

could be added to Eq. (57), leading to asymptotic convergence of the actual and optimal
states. These approaches are shown to be similar in (18].

Figure 4 implies direct feedback of the state in neighboring-optimal control, but it
should be recalled that the state may not be measured directly and that available measure-
ments may be corrupted by error (Fig. 1). In such instance, Eq. (57) must use an estimate
of the state, (t), which is deitved from the observation, z(t). If the statistics of the
estimators which minimize the root-mean-square error between i(t) and x(t) or which maxi-
mize the probability that (t) and x(t) are the same can be found. (these two estimators
are identical for a wide class of problems.) By the separation theorem, the controller
and estimator can be optimized separately [19]; however, contrary to early suppositions,
the stochastic optimal control law that results is not guaranteed to have satisfactory
stability and performance. These issues are addresse-d in later sections. The next section
presents a number of important aspects of optimal estimation.

OPTIMAL ESTIMATION

Given kc equally valid but "noisy" measurements of a constant scalar quantity, it
would be reasonable to simply average the measurements to produce an estimate of the con-
stant. such an estimate is optimal in the sense that it minimizes the sum of the squared

*Specific energy is the sum of kinetic and potential energy per unit mass.
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errors between the measurements and the constant, i.e., it is a "least-squares" estimate.
If prior knowledge of the measurement errors indicated that some measurments were better
than others, this could be taken into account in the estimate, and the better measurements
could be weighted more heavily in the averaging process. The proper weighting factors
could be determined by penalizing the poorer measurements in the squared-error criterion,
leading to a weighted-least-squares estimate of the constant. An additional measurement
could be incorporated in the estimate by repeating the computation with (k+l) terms, but
it is possible to get an identical estimate using a recursive weighted-least-squares
algorithm that sums the prior estimate and the measurement update with suitable weighting.

If the variable to be estimated is not a scalar constant but a vector that is vary-
ing in time, this algorithm can be extended to account for the passage of time and for
an underlying linear stochastic dynamic process, resulting in the discrete-time Kalman-
Bucy Filter, often shortened to Kalman filter. The equivalent continuous-time Kalman
filter is obtained in the limit as the time interval between samples approaches zero.
The extended Kalman filter is, in effect, a neighboring-optimal estimator, combining
linear measurement updates with nonlinear observations and propagation of the state. The
optimal predictor uses the system model to project current optimal estimates ahead in time.
These filters and predictors can be employed to provide the optimal estimates required
for stochastic optimal control.

Least-Squares Estimates of Constant Vectors

Constant vectors can be treated as easily as constant scalars, so we begin with the
linear observation equation,

Az = HAx + An (58)

where the constant vector, Ax, has dimension n, the measurement vector, Az, has dimension
kI > n, H is a (k1 x n) observation matrix, and the error vector has dimension k This

equation is analogous to Eq. (8) and (9), with H = Hx and H = Hw = 0.

A scalar quadratic (or mean-square) cost function of the residual, i.e., the error
between Az and the estimate, Ac, is formed:

1 Tj = _(Az _HAx)T(Az -HA;)

= I (AZ - AzTHx - THTA z + AxT THA ) (59)

The optimal estimate minimizes J, and it is found from the necessary condition for a
functional minimum [1], [7]:

aJ - (HTHAx - HAz)T = 0 (60)

anx

Solving for Ax, the least-squares estimator is written as

Ax = (HTH)- IHTAz (61)

No reference to the statistical properties of 6z is made in this equation. A solution
can be found with k1 = n; however, for averaging to occur, kI must be greater than n.

To verify that Eq. (61) averages the measurements, assume that Ax is a scalar and

that Azk = Ax + Ank, k = 1 to k1. Then H is a (k1 x 1) matrix of ones, and (HTH) - 1 = 1/k1 .

The product H TAz merely sums the measurements, which are divided by k1 to produce the
estimate.

Now suppose that some measurements are better than others, i.e., that the statistics
of An vary from one element to the next. If each scalar residual is normalized by the
magnitude of its expected value, ek' the normalized residual vector can be expressed as

N(Az - HAx), where N is a diagonal (k1 x k1) matrix with elements l/ek. The correspond-

ing cost function is

J 1 (Az - HA) TN N(Az - HAx)

2
= I(Az - HA )TR-(Az - HAx)

= (Az TR-1 Az - AzTR- HAx - Ax HTR-IAz + AT HTR- HA) (62)

T -1 2.
R = (N N)- is a diagonal matrix with elements ek , i.e., a matrix of the expected squared

errors of the residuals. Differentiating with respect to Ax,
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J (H R HAx - H R Az) = 0 (63)

and the weighted-least-squares estimator for constant Ax is

A = (HT R H) H TR 1 Az (64)

This equation is a "batch processing" algorithm, in that all measurements are pro-
cessed at once to provide the estimate. If new measurements become available, they can
be incorporated without a complete recalculation of the prior result. Given kI measure-
ments and the resulting estimate,

AZ= H 1 A x + An 1  (65)

41  T -i -i T -iAx (HRi H HR 1 Azl (66)

The new measurement, Az2, with dimension k2, is

Az2 = H 2Ax + An 2 (67)

R2 is a (k2 x k2 ) matrix containing the expected squared errors in the new measurement.

The cost function for all (k1 + k2 ) measurements [Eq. (62)) can be partitioned as

--1  2 2 1

H R 02 (Az2 - H2 Ax 2

and the estimate following incorporation of all the data is derived from DJ/Ax2 = 0:

=(HTR1 T -1 -1 TR - T -L (69)

-2 1 1 1  H2 R2 H) (H 1 1 -1 H2 R2 A 2 )

Defining

P1 = (H H) (70)

and using the matrix inversion lemma [6],

-1 T -I - - THpH + R1I(p1I + H2R2 H 2 ) = P 2212 + 2 21 (71)

Eq. (69) can be written as
Ax2  Ax1  T T(2PH + -l -

Noting that T 2
1(H2 PlH 2 + 2-(H 2PH 2 + R2) = I, Eq. (72) can be reduced to

T T

A 2 = Ax + PIH2(H 2 P1 H2 + R2 ) -Hz 2 - H2 xI)

+ H (I- 2 (AH2 - H 2+ 1 ) (72)

where K2 is the recursive weighted-least-squares estimator gain matrix. Although the

derivation is complex, the result is quite simple, because the new estimate is based on
the old estimate plus a gain matrix times a residual. Equation (73) looks like a digital
filter, and measurements taken over a period of time could update the estimate as they

occur. Redefining k as a time index and letting the observation vector at time k have r
components, the recursive mean-value estimator is

A = Ak__l + Kk(Azk - HkAk-l) (74)

with

. . . . . . . . . . . . . . .£. . . . .•.. . . .. . .. . . . I [ . . " m I I I -
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Kk P kH kHk TklH + -k (75)

and

T -1 -1Pk = (Pk-l + HkRk Hk) (76)

K is an (n x r) gain matrix, while Pk is an (n x n) matrix that represents the estima-

tion error at the kth sampling instant.

Keep in mind that these equations estimate a constant vector, and the gain matrix
normally gets smaller as more measurements are made. If least-squares estimation is to

be applied to the states of a dynamic system over a period of time, the estimated quanti-
ties may not be constant, and a vanishing gain matrix will not account properly for the
information contained in later measurements. There must be mechanisms for including
effects of the system model and its inputs (both controlled and uncontrolled) on A and

Pk* Before doing this, however, more substance must be given to statistical descriptions

of the random processes which contribute to estimation uncertainty.

Probability, Random Processes, and the Propagation of Uncertainty

Probability theory describes the relative frequency of occurrence of a variable's
numerical values. For a real scalar variable, x, the probability that its numerical
value lies in the range (--,+-) is one. The probability density function of x, p(x),
indicates which numerical values are more (or less) likely than others, and its integral
over (--,+-) is one:

p(x) dx = 1 (77)

The expected value (or expectation) of a function of x, g(x), is the integral of the
product of g(x) and p(x) over the range:

E[g(x)] = f;(x)p(x)dx (78)

The expected value of x is its mean value, mx ,

E[x] = -fxp(x)dx = mx (79)

while the expected value of the squared error between x and m is its mean squared error
or variance, ax 2: x

Xm) 2 ] f(X - m )2p(x)dx = a 2 (80)E x x = x

The square root of the variance, ax, is the standard deviation of x from mx

A gaussian (or normal) probability density function is defined completely by its
mean and variance,

S 1 e
-(x -mx) 2/20 (81)O~x) e 2xx

xxAand it reaches its maximum value, i.e., the point of maximum likelihood, when x = m.x
The corresponding multivariate gaussian probability density function of the n-component
vector, x, is

p(x) e - ) T p (x - m)/2
_________ e (82)

.,(21r)n/2 1PI 1/2

where m is the vector of mean values, P is the (n x n) covariance matrix of x, and IPI is
its deTerminant. The diagonal elements of this symmetric matrix are the variances of the
components of x, and the off-diagonal covariances represent the degree of correlation
between the components (-l < pij < 1):
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P = E(X - m) (x - m) T]

2

x Pl2axI0 x2  .....

2P 2 x 1 x 2 X 2 . . . .(8 3)

. . . . . . . . . . . . . . .2

xn

A scalar random process, or stochastic process, is an ensemble of random continuous-
time functions, xi(t), i=l to -, each of which has a probability function, p(xit), that

may vary with time. The value of xi (t) at a specific time, t, is a random variable. The
statistics of a random process are formally averaged over the entire ensemble of trials,
although it is understood that an infinity of trials is rarely (if ever) available. If
ensemble statistics do not vary in time, the process is stationary; if ensemble statistics

and time-averaged statistics are interchangeable, the process is ergodic.

The significance of the gaussian probability density function is that it characterizes
a large percentage of naturally occurring random variables, and it is particularly amenable
to stochastic analysis and computation. One reason that the gaussian distribution is so
common is that random variables often are the sum of many random effects, and, by the
central limit theorem [7], the distribution of such a sum tends to become gaussian as
the number of effects becomes large no matter what the distributions of the original
effects. As a corollary, gaussian inputs to linear systems produce gaussian outputs;
because each random process is fully characterized by its mean value and covariance
matrix, analysis can be based upon these quantities rather than more complex characteri-
zations. Mean values, m(t), can be propagated by deterministic linear dynamic equations,
e.g., Eq. (7) and Eq. (24), and covariance matrices, P(t), can be propagated by equivalent
difference or differential equations, to be presented below.

Stochastic optimal control normally deals with vector processes that are nonstation-
ary, i.e., mean values, covariances, and any other pertinent statistical measures are
likely to vary in time. A process can be said to have reached stochastic equilibrium
if all statistical measures are stationary. The assumption of ergodicity may become
important if experimental samples are used to estimate statistical parameters. Similar
definitions can be applied to random sequences, the discrete-time equivalents of random
processes.

The frequency content, or time correlation, of a random process is an additional
statistical measure of importance. If the power spectral density, or frequency spectrum,
of a stationary process has a constant value, T over all frequencies in (-= < w < +-),

the process is called white noise [7]. As a consequence, two samples of continuous-time
white noise, x(t) and x(t - T), are completely uncorrelated unless T is identically zero;
the corresponding autocorrelation function,

Sxx (T) = E[x(t)x(t + T)] (84)

is a Dirac delta function of T, 6(T), scaled by T 0 [7]:

(xx(W = Y0 6(T) (85)

By analogy to optics, a stationary random process whose power spectral density varies
with frequency is called colored noise. The corresponding autocorrelation function
typically consists of a symmetric combination of exponential and sinusoidal functions
of T, with maximum (finite) value at T = 0.

There is an essential quandary associated with continuous-time white noise that does
not carry over to discrete-time white noise. Because the variance of a stationary process
equals its autocorrelation function at T = 0, continuous-time white noise with finite
power spectral density, T , has an infinite variance [Eq. (85)]. Nevertheless, just as
response to an impulse fuRction can be well-defined and useful in deterministic systems
analysis, the response to white noise has significance in stochastic analysis. One reason
is that system dynamics normally cause adjacent continuous signals to be correlated, so
the output autocorrelation function is not singular. The variance of a stationary random
sequence also is defined by xx (0); however, xx(0) = TO (without the delta function) for

discrete-time white noise, so its variance is finite [12]. In the "digital" (discrete-
time) filter developments which follow, the white random sequences that are assumed to
drive the system and corrupt the measurements are represented by covariance matrices;
for "analog" (continuous-time) filters, white random processes are represented by spectral
density matrices.

* The Dirac delta function is infinite at T = 0 and zero when T = 0. Its integral over
all time is one.

.. .. -
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The propagation of uncertainty is introduced most easily for the linear discrete-
time case. Beginning with Eq. (7), it is assumed that the controlled input, Auk, in

known and that the disturbance is a time-varying random sequence with covariance matrix,

Qk and zero mean value. The mean value is propagated by the equation itself,

E[Axk] = E[¢k lAXk l + rk- AUk_l + Ak-lAWk I ] (86a)

or

Am.= $k '-Aok_l + rk IAUk-I + Akl(0) (86b)

The covariance propagation is defined by squaring Eq. (7) and taking expectations through-
out. The Auk terms drop out, as there is no uncertainty in them, to yield

E[(Ax - Am)k(Ax- Am)T ] = E[$k(l(Ax - Am)k_ 1 + AlA!tklIE[(AXlk- Ak-iW1~ I

- Am)kl + Ak-lAWk_l]T }  (87a)

or, with Pk = E(-Ax - Am)k( - t

Pk 
= 

k-ik-1 k-1 
+

kQk-I k-I

0 P " *T + A

= k-l k-l k-l k-l (87b)

The expected value of (Ax - wm)k-lAtk_1 is zero because the disturbance is white noise

and, therefore, not correlated with any other variable. The covariance matrix of the
"process noise" can account for random parameter variations as well as disturbances,
following earlier comments.

0 and r are functions of the sampling interval, T; as T - 0, the propagation equa-
tions for continuous-time models are obtained. For small T,

Amk - (I + Fk iT)Amk_1 + GkITA _I (88)

In the limit, (Ammk - Amkl)/T * Am(t), Amk_. - Am(t), and AUk_ . Au(t), leading to

A ()= F(t)Am(t} + G(t)Au(t) (89)

Similarly, Eq. (87b) is

Pk Pk-1 = F P ++ PiFT +- (90)T = k-l k-i k-i k-i k-kIki

As T - 0, this becomes
T

P(t) = F(t)P(t) + P(t)F(t) + Q(t)6(t-T) (91)

Equations (86) and (87) provide the mechanisms for incorporating system dynamics in
the discrete-time weighted least-squares estimator derived earlier, while Eq. (89) and
(91) do the same for the continuous-time case.

Kalman Filters and Predictors

A filter uses past and current measurements to estimate the expected value of the
current state. A predictor uses the same information to estimate the expected value of
the future state. A smoother uses the same information to estimate the expected values
of the current and all past states. In the context of stochastic optimal control, we
want to know where the system is and where the system (or its target) is going; filters
and predictors provide information that is relevant to feedback and command, and it is
these that will be discussed presently. Smoothers provide more precise data processing
because all interior estimates are based upon future as well as past and current measure-
ments. They should be applied in "post-flight" trajectory determination, evaluation,
calibration, and analysis; however, they have little application to "real-time" control
and are not treated here.

a
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The linear discrete-time Kalman filter performs five functions in recursive fashion:

1) State Estimate Extrapolation (Propagation)
2) Covariance Estimate Extrapolation (Propagation)
3) Filter Gain Computation
4) State Estimate Update
5) Covariance Estimate "update"

The first two of these were introduced in the previous section, while the last three
follow directly from weighted-least-squares estimation. Given the state estimate from a
previous iteration, (1) uses the physical process model to propagate the estimate of the
state mean to the next sampling instant without regard to new measurements; (2) does the
same thing for the state covariance matrix, assuming that "process noise" of known
covariance is forcing the system. The result enters the computation of the optimal gains
for incorporating new measurements. The filter gain computation (3) weights prior knowl-
edge of measurement error covariance with state estimate covariance on a purely statisti-
cal basis, i.e., the actual measurements have no effect on the gain computation. These
measurements correct the state propagation in (4), adding the product of the gain matrix
and the measurement residual to the physical estimate of the state provided by (1). A
similar correction is made to the covariance estimate; however, actual measurements have
no effect on the covariance "update" (5). It is assumed that the measurement errors are
described by random processes with known covariance.

The five equations corresponding to these functions are summarized using () to de-
note an estimated (expected) rather than actual value, the subscript to denote the sam-
pling instant, (-) to indicate an estimate computed before the measurement is incorporated,
and (+) to indicate the fully updated estimate [7]:

State Estimate Extrapolation

A -)Y= k l(+) + Fk lA!!k-l , do(+) given (92)

Covariance Estimate Extrapolation

Pk(- ) = ok-lPk-l(+)0k-i + Qk-l P0 (+) given (93)

Filter Gain Computation

Kk = k JH ik(_)HT + Rk] - (94)

State Estimate Update

A2k(+) = A2k(-) + Kk[Azk - HkAXk(-)] (95)

Covariance Estimate "Update"

)  = + l kP -0

(I - KkHk)Pk(-) (see [7]) (96)

The filter described by Eq. (92) to (96) is optimal only if 0k' rk' Hk' Qk' and R are

known precisely. These matrices may be time-varying, i.e., varying from one sampling
instant to the next. Even if they are constant, there is a starting transient associated
with the filter computation. In other words, if the filter is not initialized at stochas-
tic equilibrium, it is a time-varying filter. With constant system and covariance
matrices, once stochastic equilibrium is reached, Pk(+) = Pk-l(+), Kk = constant, and the

optimal estimate can be made using Eq. (92) and (95) alone. The optimal filter's structure
and performance depend on the definition of the observation vector; for a given state
vector, changing the number or quality of the measurements affects the complexity of
computations and the precision of state estimates. Multiple dissimilar measurements can
provide a degree of "analytic redundancy" (20], allowing the full state to be estimated
even though measurements have been degraded or lost. In such case, the optimal filter
is defined by these five equations, but the definitions of Az, H, and R are altered to
account for changes in the measurement. Requirements for observability must be satisfied
in any event.

Optimal prediction of the future state is based upon extrapolation of Axk(+) to a
future time using the dynamic system model (Eq. (92)]. The prediction time interval need
not be the same as the sampling interval used for estimation, as long as 0 and r are
redefined accordingly. From Eq. (93) it should be clear that the uncertainty in the pre-
dicted state is greater than that of the current state estimate.

The number of discrete-time filter equations copld be reduced to three by substitut-
ing Eq. (92) in Eq. (95) and Eq. (93) in Eq. (96). Pk(-) is no longer available for the

A MUMMA
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Kk computation; however, [7] presents a suitable alternate form:

Kk = pk(+ H R (97)

Although the three-equation formulation does not necessarily involve less computation,
it provides a good starting point for obtaining the continuous-time Kalman filter using
the limiting arguments of the previous section:

State Estimate Extrapolation and Update

X
A2x(t) = F(t)Ax(t) + G(t)Au(t) + K(t)[Az(t) - H(t)A(t)], Ax(tO) given (98)

Covariance Estimate Extrapolation and "Update"

P(t) = F(t)P(t) + P(t)FT(t) + Q(t) - P(t)HT(t)R-(t)H(t)P(t),

P(to ) given (99)

Filter Gain Computation

K(t) = P(t)H T(t)R- I(t) (100)

Direct derivations of the continuous-time estimation equations contend with the mathe-
matical difficulties of "white noise" using the calculi of Ito and Stratonovich, as in
[12] - (14]. Whereas, Eq. (92) to 96) can be solved sequentially in the order shown,
the continuous-time equations [Eq. (98) to (100)] must be solved concurrently for optimal
estimation. The general statements made earlier about discrete-time estimators apply
here as well. In particular, constant-coefficient systems can reach stochastic equilib-
rium with constant filter gains, leaving only Eq. (98) to be integrated for optimal
estimation. Optimal prediction is obtained by integrating Eq. (98) to the prediction
time with no further measurements, using Ax(t) as an initial condition.

Comparison of the optimal filter gain computations [Eq. (99) and (100)] with the
optimal control gain computations [Eq. (56) and (54), with M(t)=0] reveals a mathematical
duality [1]. The filter covariance is computed using a matrix Riccati equation that isthe same as Eq. (56) with FT replacing F, HT replacing G, time running forward rather
than backward, and Q and R representing spectral density matrices rather than state and
control weighting matrices. Unlike the corresponding control gain computation, optimal
filter gains can be realized in "real time", with no knowledge of the final state. Dual-
ity allows the same computer algorithms to be applied in obtaining control and estimator
gains, and it facilitates the extension of analytical results from one problem to the other.

As shown below, linear estimators are consistent with the neighboring-optimal con-
trollers discussed earlier, but it is instructive to consider the extension of the Kalman
filter to nonlinear dynamic systems before proceeding. Because Eq. (98) serves to propa-
gate the time-varying expected value of the state using linear dynamics originally pre-
sented as Eq. ( 7), the estimator can be applied to nonlinear models by using nonlinear
dynamics [Eq. (1)] instead, i.e.,

x(t) = f[x(t),u(t)] + K(t){z(t) - h[x(t), u(t)]} (101)

K(t) is obtained from Eq. (99) and (100), with the various matrices defined as before.
The estimate obtained from this extended Kalman filter is optimal only to the extent that
assumptions regarding the statistics of inputs, noise, and states are not violated. The
performance of such filters can be improved, at the expense of increased computation, by
using statistical linearization (i.e., random-input describing functions) to characterize
the matrices in Eq. (99) and (100) [7]. Furthermore, hybrid filters can be formulated to
process discrete-time measurements with continuous-time dynamic models.

If some of the parameters, p(t), of the physical process are subject to uncertainty,
the extended Kalman filter can be used to provide on-line estimation of the unknown
parameters. These parameter estimates are of value in updating control strategies as
well as state estimates. In such case, the state vector and dynamic equations are aug-
mented to include the random parameters and their assumed relationships with the remainder
of the process, and Eq. (99) to (101) are applied as before. The estimation problem is
necessarily nonlinear even if the original physical process is linear because products
of the original states and the unknown parameters, i.e., the new state components, destroy
the linear superposition characteristic. Thus, the sensitivity matrices, Eq. (10) to
(15), must be continuously redefined during the estimation, and the filter can be expected
to reach stochastic equilibrium only in rare instances.

Uncertainties in the initial conditions or the statistics of disturbances and mea-
surement errors also can be estimated on line, but the extended Kalman filter is not
particularly appropriate for this job. Maximum likelihood hypothesis testing provides a
better solution. In this approach, a bank of optimal estimators -- each of which is
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formulated under a different hypothesis regarding the system's initial conditions,
statistics, or parameters -- is applied to the measurements, and the estimate whose
likelihood of correctness is greatest determines which hypothesis is to be accepted [9].
The instantaneous state estimate can be obtained either from the associated filter or as
a sum of all the filters' outputs, each weighted by its probability of correctness.

An estimate of the probability (or likelihood) that each hypothesis is correct is
propagated from one instant to the next using Bayes's Rule. For hypothesis A, the like-
lihood of correctness at the k th sampling instant is estimated from the likelihood at
the previous instant,

pk(A) = ak(ZkIA)pkl(A (102)

where Zk represents the set of all measurements through the kt-
h instant and ak(ZkJA) is

the probability that these measurements would have occurred under hypothesis A. The
process is replicated for hypotheses B, C, and so on.

Maximizing the natural logarithm of the likelihood is equivalent to maximizing the
likelihood itself, and it is a simpler computation. With the gaussian assumption
[Eq. (82)1, the logarithm of ak(Zk A) is a quadratic function of the residual, 0k 1

.] ,

and the multiplication of Eq. (102) is replaced by addition:

Zn[pk(A)] = k[(lk-Hki k ) I + tn[Pk_,(A)] (103)

In principle, an infinite bank of filters would be required to account for a continuum

of hypotheses; in practice, a small number of filters (on the order of a half dozen or
less) may be adequate to track the most likely hypotheses., .6 Contrary to the assurances implied by optimality, the estimates produced by optimal

estimators may diverge from reality for a number of reasons, e.g., modeling error or
uncertainty, incomplete observability, and numerical error (roundoff, truncation, or
ill-conditioning). Methods of limiting divergence include enhancement of the estimator's
"robustness" by altering its assumed noise statistics or structure 211 - (23], integral
compensation of filter residuals [24], and use of square-root or "U-D" algorithms to
compute filter gains [25) - [26). Broad discussions of causes of divergence and possible
solutions are contained in [7] and [8].

STOCHASTIC NEIGHBORING-OPTIMAL CONTROL

The Prototype for Linear-Quadratic-Gaussian (LQG) Control

At this point, we can return to the closed-loop control problem, as methodologies
for obtaining optimal estimates of the state from the measurements have been specified.
Figure 5 presents a schematic of a stochastic neighboring-optimal control law that has
three parts: the nominal trajectory and control generator, a linear-optimal filter, and
the linear-optimal feedback control logic. The first part results from prior nonlinear
optimization and is scheduled as discussed in a previous section. The second part sub-
tracts the nominal measurement from the actual measurement to obtain the perturbation
measurement, Az(t), which is the input for a linear estimator. The resulting perturba-
tion estimate, t.(t), is multiplied by the feedback gain matrix, C(t), to produce a
linear-optimal control perturbation, Au*(t). This is summed with the nominal optimal
control, _*(t), that drives the dynamic system. If the neighboring-optimal estimation
and control gains are based upon linear models driven by gaussian processes and controlled
to minimize quadratic costs, a linear-quadratic-gaussian (LQG) control law is the natural
outcome of the design.

The nominal trajectory may be altered to achieve a continually changing objective,
e.g., rendezvous with or impact on a moving target. Determining where the target is or
will be at some future time requires additional filtering or prediction. Whereas linear
estimation of the controlled system's deviation from the nominal path is consistent with
neighboring-optimal control, optimum estimation of the target's state may require non-
linear processing. Nevertheless, practical considerations may dictate a simpler approach.
For example, a proportional navigation (constant or compensated line-of-sight) scheme
may use a linear estimator, absorbing nonlinear target dynamics in the assumed process
"noise" with little degradation of accuracy but great reduction in computation.

The combination of target tracking and estimation of the controlled system's state
introduces the more general notion of an estimator (or bank of estimators) whose order
is not the same as or whose structure differs from that of the controlled system. The
deterministic neighboring-optimal controller (Fig. 4) introduces no new dynamic modes,
because the feedback law is a linear combination of the actual states; therefore, the
closed-loop dynamic system is described by an nth-order differential (or difference)
equation. A full-state linear-optimal estimator is itself an nth-order differential
(or difference) equation, so the prototype stochastic closed-loop system is of order 2n.
Adding a target estimator further increases system order.

&
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Alternatively, some characteristic of the controlled system may be handled best by
increasing the order of the estimator. For example, coherent vibrational or aeroelastic
modes may not require active control yet may degrade the utility of rigid-mode motion
sensors. Increasing the assumed measurement noise decreases the bandwidth of the optimal
filter, possibly resulting in unacceptably low phase margins in the closed-loop system.
The classical control approaoh of notch filtering provides more precise control of phase
characteristics, and including known resonant modes in the optimal filter has similar
effect.

There also could be good reason to employ estimators with order less than n. Some
measurements may be effectively noise-free, and full- or augmented-state estimation may
be unnecessary. Reduced-order or decoupled estimators then would provide suitable al-
ternatives for practical implementation, as discussed in a later section.

Certainty Equivalence and Separation

Invoking the certainty-equivalence principle or the separation theorem allows optimal
control and estimation gains to be derived independently; however, the limitations of
these concepts must be noted. As summarized in a number of this chapter's references,
"certainty-equivalence" indicates that the control gains for the uncertain (stochastic)
system can be computed as if the feedback information were certain, i.e., as if
AR(t) = Ax(t). "Separation" addresses the computation of estimation as well as conr,.)
algorithms. When these synonymous principles apply, the expected value of the stoch.-ti
system's cost function is minimized with control strategies that take no account of es_
mation error and estimator gains that are unaffected by control strategy.

The separation theorem does not apply to all control problems, and even when condi-
tions for its application are met, there is no guarantee that stability, response, and
sensitivity characteristics will be satisfactory. The separation theorem applies to the
LOG problem, including the stochastic neighboring-optimal controller presented here, and
to systems that are nonlinear in the control or the observation [19). If second-degree
perturbation effects are considered in neighboring-optimal control, the separation theorem
does not apply [27]. The nonlinear terms introduce multiplicative disturbances and noise
that couple the actions of control and estimation gains in minimizing the expected value
of the cost function. Multiplicative disturbances are akin to parameter uncertainty,
leading to another circumstance in which the separation theorem does not formally apply;
mismatch between actual system dynamics and those assumed in the estimator.

Of more fundamental concern is the possibility that the LQG controller may have
negligible tolerance to parameter variations [281. This problem is discussed in the next
section, where it is shown that enhancing the robustness of the estimator at the expense
of increased estimation error restores the system's stability margin.

LINEAR, TIME-INVARIANT (LTI) SYSTEMS AND STOCHASTIC EQUILIBRIUM

To this point, it has been assumed that the physical process to be controlled is non-
linear and that the associated linear perturbation model has time-varying coefficients.
Stochastic equilibrium is unlikely to occur because input statistics and parameters may
be continually changing. Nevertheless, the salient features to be addressed in control
system design often can be captured by linear, time-invariant (LTI) models.

In many cases, the nominal state and control [xN(t) and _%(t)] are determined with-
out regard to optimality, deriving instead from physical conditions of nonlinear equili-
brium determined on an ad hoc basis. Deviations from this nominal condition, including
"retrimming" to a new euiii-brium, may be small enough to be well approximated by linear
models. Furthermore, if the system parameters, p(t), and the equilibrium are slowly
changing, the transient behavior and stability cHaracteristics of the process can be
portrayed by a succession of time-invariant models.

Even if an LTI model provides an adequate description of system motions and observa-
tions, the previous sections clearly show that optimal control and estimation gains are
time-varying. The gains, C(t) and K(t), depend on the Riccati matrices, P(t) and P(t),which are solution variables of differential equations. In both cases, the time variation
of gains takes the form of a transient which begins at the integration starting point,i.e., the final time for control and the initial time for estimation.

A simple scalar open-loop example illustrates that the time scales of the Riccati
equation transients often are comparable to that of the associated dynamic system. With
time constant, T, the unforced scalar system is

Ac(t) = -(-)Ax(t) , Ax(to) = Ax (104)

In the limit, as control and observation weightings become large, the homogeneous solu-
tions to Eq. (56) and (99) are,

2(t-tf)/Tp(t) - p(t f)e , tf > t > t o0 (105)
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-2(t-t )/T

p(t) - P(t )e to < t < tf (106)

respectively, and the time constants for solution are T/2 in both cases. Thus, if
(tf-t0 ) is large compared to T, and if the p

2 terms introduced by control and observation

are stabilizing, the control and estimation Riccati solutions are essentially at equili-
brium for the major part of the interval. The period following the estimator gain tran-
sient and preceding the control gain transient is one of stochastic equilibrium, i.e.,
the coefficients of the dynamic system and the stochastic optimal controller are constant.
As a practical matter, it may be acceptable to employ constant gains throughout the
interval in order to simplify the control implementation and its analysis.

LTI controllers and estimators are discussed in the remainder of this section, with
the particular objectives of describing some of their fundamental properties, as well
as some of the structural and modeling alternatives that can be employed in solvinig par-
ticular problems. It should be recognized that although the design process is linear,
the choices of weighting matrices and logical structures often are dictated by unmodeled
nonlinearities, e.g., the operating ranges of sensors and control surfaces, the needs and
opinions of human pilots, and so on. Furthermore, not all random processes are gaussian,
and not all error sources are random. As a consequence, stochastic controller design
remains an iterative process, in which evaluation of interim results by computation and
analysis plays an important part.

Design of Continuous-Time Linear-Quadratic (LQ) Regulators

An LQ regulator is a linear-optimal constant-coefficient controller that forces an
LTI system to a zero or non-zero set point. In the context of the original problem, a
zero set point lies on the nominal nonlinear equilibrium trajectory, [xN(t), U(t)),

while a non-zero set point connotes some deviation, [Ax p, Au 3 from the nominal equili-
brium. Both alternatives are treated by defining the state and control perturbations
from the set point,

A(t) Ax(t) - AX (107)

Am(t) - Au(t) - Aup (108)

and minimizing the quadratic cost function

1 A- (I T [ MN FAAt)]
0J(A (t)AUMl][ J[tJ dt (109)

2 fJ [Q RIs (t) A

subject to the dynamic constraint

Ax(t) FA(t) + GAut) (110)

From Eq. (54), the continuous-time LQ regulator is
1.(t) Rl[GTP + MT] Ax(t)

= -CA-(t) (111)

where P is the (n x n) equilibrium solution of Eq. (56) (with arbitrary initial conditions)
and C is the (m x n) constant control gain matrix. The set point is reintroduced to the
controller by substituting Eq. (107) and (108) in Eq. (111):

Au(t) - AUp - C(Ax(t) - Axp] (112)

If the set point represents the desired value of an m-component output vector, Ayp, as

in Eq. (29) (i.e., k = m), Axp and Au , are algebraic functions of Ay and any constant

disturbance, A p,

Ax = -S LAw + SIAy (113)
-p 11 -p 12 p

Amp -s LAw + S22Y (114)

-p 21 -p 2 2A p

where S is partitioned as

S11 (-GS21 + I) (115)

S 12 -F 1F-GS 22 (116)
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S21 =-S 22HxF 1  (117)

S 2 2 = (-HxF-IG + H U) (118)

The deterministic Lo regulator (Fig. 6) can be expressed as

Au(t) = CFAyp + CBAx(t) + CDWp (119)

with the forward, feedback, and disturbance gain matrices defined by substituting Eq.
(113) and (114) in Eq. (112):

CF = (S2 2 + CS 12 ) (120)

CB = -C (121)

CD = -2 + CS1 1 )L (122)

Once C is determined, CF and CD become deterministic functions of the system. Con-

versely, C is unaffected by the choice of set point or the presence of disturbances.
The LQ regulator has zero "hangoff" from the output set point, A yp, if system parameters

are known and disturbances are measured without error; however, parameters often are
uncertain, disturbances rarely are measured, and steady-state errors are likely to occur.

Stability of the open-loop LTI system* is dictated by the eigenvalues (or roots) of
F, which are the n complex-valued solutions to the characteristic equation,

AOL(s)= SI - F1 = 0 (123)

The eigenvalues express the natural frequencies, damping ratios, and time constants of
the system's normal modes of motion (6]. Asymptotic stability is guaranteed if all the
eigenvalues of F have negative real parts.

The characteristic equation of the closed-loop system

M(t) - (F + GCB)Ax(t) + GCFAyp + (L + GC )6w (124)

which results from using Eq. (119) as the control law is

ACL(s) - IsI - (F + GCB)I = 0 (125)

Regardless of the stability of the open-loop system, the deterministic continuous-
time LQ regulator guarantees closed-loop stability if the following four conditions are
met [4]

1) R is a positive definite matrix

2) (Q - MR-lMT) is a positive semi-definite matrix

J) (F -GR IM), (Q - MR- MT) ] is an observable pair

4) ((F - GR M ), G] is a stabilizable pair

This stability result assumes that the proper F and G are used in the calculation of C;
nevertheless, the control law has been shown to be remarkably tolerant to parameter
variations, which effectively change the gain and phase characteristics of the multiloop
system. The LQ regulator is shown to provide ±600 phase margin and infinite loop gain
margin, as well as guaranteed stability with 50% gain reduction, for scalar and multi-
input controls in [4] and [29], respectively.

The locus of roots for the LQ closed-loop system can be expressed as a function of
the quadratic weighting matrices if we consider the 2n eigenvalues of the closed-loop
LTI system and its adjoint [Eq. (51) and (52), with constant matrices). The eigenvalues
are solutions to the equation

ASA(S) - IsI - Fl = 0 (126)

where, from Eq. (51) and (52),

(- RN M) (-GR lG T)

F - J _M) (127)L(-Q + M1M) (-F + G
A system is as!jotically stable if all components of the state approach their
equilibrium vaIUs as t - . f one or more state components diverge, the system is
unstable.

Man
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The eigenvalues of F are found to be symmetric about the imaginary axis, i.e., half have
negative real parts and half have positive real parts. If the four necessary conditions
described above are met, the stable (negative) eigenvalues describe the LQ closed-loop
system whether or not the open-loop system is stable and independent of the magnitudes
of 0, R, and M. The right-half plane eigenvalues describe the adjoint system, which is
stable for time running in reverse. Put another way, the n stable eigenvalues of F are
the eigenvalues of (F + GCB), which are solutions to Eq. (125).

The asymptotic behavior of the closed-loop roots as R approaches infinity or becomes
vanishingly small are of interest. In the latter case, the "cost" of control is "cheap',
so the speed of response is rapid. For scalar control and full state feedback, [3] shows
that p eigenvalues approach the transmission zeros of (sI-F)-IG as R becomes small, where
p is the number of zeros. The remaining (n-p) eigenvalues go to infinity in a Butter-
worth configuration, described in [3]; thus, the corresponding modes become very fast.
Similar asymptotic behavior is experienced with multiple controls.

As R approaches infinity, the cost of control increases, so a "minimum control
energy" solution is obtained in the limit. If F is stable, the minimum-energy solution

is no control at all; C approaches zero, and all eigenvalues approach their open-loop
positions. If one or modes of F are unstable, C cannot go to zero and still guarantee
closed-loop stability; the minimum-energy control forces the unstable roots to their
left-half-plane "mirror images" and allows the stable roots to approach their open-loop
values.

The LO regulator may be unduly conservative in the case of very unstable open-loop
roots because it tends to make the corresponding closed-loop modes very stable, even with
minimum-energy control. Ad hoc gain reduction (within the 50% limit) can reduce excessive
stability margin. As an alternative, a prescribed degree of reduced stability could be

achieved by including e2O t , a < 0, in the integrand of the cost function [Eq. (109)].
This is equivalent to computing gains for a system matrix (F + aI) (4] that is more stable
than the actual matrix, F.

The quadratic weighting matrices (Q, M, and R) can be selected to achieve various
purposes, e.g., state-control perturbation tradeoff [1], pole placement [3], output
regulation [3], and implicit model following [30], as well as neighboring-optimal control.
All of these options produce control laws described by Eq. (119) and Fig. 6. The quad-
ratic integrand of Eq. (109) is normalized to maximum allowable mean-square values of the
state and control by specifying the diagonal elements of Q and R to be the inverses of
these maximum values (M and the off-diagonal elements of Q and R are zero). This is an
effective means of adjusting the speed of response and the relative magnitudes of state
and control perturbations, but it has relatively weak effect on overshoots in the tran-
sient response. Overshoot can be addressed using state-rate weighting [31], in which

&tT
a term of the form, Ax Q*Ax , is included in the cost function. From Eq. (110), the

corresponding increments in state, cross-product, and control weighting are:

[AQ AM] [FrT]IQ FG

[AMT ARj [GTJ ;[FG

FQ1 F *GTOG (128)

Output or comand weighting, 0T y, is obtained in similar fashion using Eq. (8),

L~~u y x  x y u(11
T 1 (129)

For constant set point,

AY.H x(FPA" + GAu) (130)

output rate weighting can be specified by analogous manipulations.

The closed-loop system can be forced to be dynamically similar to a mode] system of
order n,

by specifying that the mean-square error between modelled and actual state rates be
minimized. The implicit model-following weighting matrix is
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I Q AM] (F _FM) TOM (pFM) (F -FM )T M(12[ T1 132)

aMT AR GTQM (F -FM) GTQMG

where OM weights state-rate errors. The quadratic cost function [Eq. (109)] can be de-

fined as an aggregate of the various weighting types, the only restriction being that
the net valuP3 of Q, M, and R satisfy the four conditions for stability.

If reduced-order control of low-frequency mcdes is the primary goal, or if control
actuator rates are limited, it may be desirable to restrict the bandwidth of control
outputs. These objectives can be accomodated by adding a control rate penalty to the
cost function,

Q, [o 1  02 jA;']

_ A T :u1R 3 A dt (133)
0 .0 0 R 2- v

and augmenting the dynamic system to include control actuator dynamics, as well as a
new control variable, Av:

Ax [F G 1 ~X1 0
I + 1 A (134)

There are two cases of interest. In the first, the linear dynamics of the actuator
are significant: Du contains the time constants of the actuators and possible coupling

between them, DU reflects loading of the actuators by the state variables, GU = - Du
and AV is the commanded value of control position, i.e., AV = . The cost function is

put in standard form by substituting the lower rows of Eq. (134) for Am in Eq. (133), and
the perturbation control law becomes

A_ t = -CIAx(t) - C2AU(t) (135)

The term Au(t) could be obtained from measurements of control position, or it could be
constructed by integrating the lower rows of Eq. (134). In the second case, actuator

u u 'A Th onrlraeidynamics are negligible; then D = Du = 0, G = I, and Aw Y Au. The control rate isx V - --

is commanded, and the LQ regulator is

A!(t) - -C1A-(t) - C2A'(t) (136)

Taking the Laplace transform and performing minor manipulation

Au(s) -(sI + C2 ) C1 Ax(s) (137)

Because it is a "strictly proper rational matrix" (more poles than zeros), (sI + C2 )-
1

can be recognized as a low-pass filter matrix. The controller attenuates high frequency

components of A%(s), which in turn reduces the feedback from higher order modes, lessens
disturbance and ,easurement noise effects, and smoothes the commands to control actuators.
Note, however, that Eq. (136) and (137) describe a perturbation controller; changes in
the set point are transmitted without filtering, as in Eq. (112).

Control rate weighting is seen to change the structure of the LQ regulator, adding
m integrators as part of the control reconstruction or low-pass filters. Integral compen-
sation also can be added explicitly, providing an "autotrimming" feature that accounts
for parameter variations and bias disturbances. Pure integrals of the output vector

AY(k < m) result in infinite "D.C." (zero frequency) gain in the associated open-loop
transfer functions, reducing the low frequency sensitivity of the closed-loop system.
Also referred to as "Type 1" compensation [31], the output integrators eliminate steady-
state "hangoff" without direct measurement and compensation of disturbances.

For constant set point, the perturbation output integral is,

A -(t) - A (t 0 ) + A (t)dt o A(t) 0 (138)

0
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the cost function is,

Ar Af 0TT T Q2 0:j dt (139)

and the augmented state equation isr[ :iF
t F A t) G

Ax~) I U.t (140)

A t H 0 AHt) u

The perturbation controller takes the form,

At) = -C1 Ax(t) - C2At(t) (141)

and its Laplace transform can be written as,

A"(s) -C A (s) - C2 AY(s)/s (142)

revealing the proportional-integral "Type 1" structure. Integral compensation and con-
trol-rate weighting are combined in the proportional-integral-filter ("PIF") controller,
which evidences parameter insensitivity, bias disturbance rejection, and high frequency
attenuation [32].

All of the continuous-time LQ regulators discussed here use the same solution equa-
tions to determine feedback gains and non-zero set points; hence, the criteria for closed-
loop stability, steady-state response, and root locus properties apply throughout. The
principal differences between the controllers derive from definitions of cost functions
and augmented system dynamics. Consequently, in the discussion of digital control that
follows, it is sufficient to address only the basic LQ regulator.

Digital Linear-Quadratic Regulators

The corresponding discrete-time optimization of a quadratic cost function subject
to a linear, time-invariant dynamic constraint uses summations and difference equations
rather than integrals and differential equations. The cost function is,

T [ ] k (143)

and the dynamic constraint is, from Eq. (24),

Ak =CAk + rAuk (144)

The discrete-time LQ regulator takes the form,

= CA~k (145)

where the control gain matrix is [33],

T I T _
C = (R + rTPf) -  (fr P1 + MT) (146)

and P is the steady-state solution to the discrete-time matrix Riccati equation,

~~T Tp I T l'1 T)(17
Pk-l = 0 Pk + Q - U PkD + M +) (R + kr (rPkD + (147)

The discrete-time problem does not formally recognize the time between sampling

instants, but Q, 4, and R can be defined in such a way that the discrete-time regulator
minimizes the continuous-time cost function, subject to the constraint that the control
is piecewise-constant between sampling instants.* If we simply multiplied Eq. (143) by
the sampling interval, T, it would be zn Euler (rectangular) integration of the continu-
ous-time cost function [FI. (109)], but a more precise approach is to specify that the

K *In other words, the digital commands are converted to analog signals using a zero-

order hold 13).
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cost summation be equivalent to

M (t)

j~=1 W AR Rt [A^t) T] dt (148)

k=0 k ~MT ,t

k^

with (tk+l - tk) = T. Following (33], [34] 3hows that Q, M, and R can be expressed as

integrals of Q, M, R, and the system equations:

= f'T $T(t)Qs (t) at (149)

0 fT r ]Tto(tt + Mt) dt (150)

= (t)Qr(t) + 2Mr(t] dt (151)

With these definitions of the cost matrices, Eq. (145) becomes a led-data LQregulator whose deterministic closed-loop response remains close to contnuous-tiime LQ

regulator response even with relatively long sampling intervals (compared to the system's
natural periods of motion). Nevertheless, the system is essentially "open-lo3p" between
sampling instants, as feedback information is processed only periodically; effects of
measurement errors and disturbances are free to grow during the interval. Under the
assumption that these effects are gaussian, Eq. (87) can be used to predict the growth
of state uncertainty, and the sampling interval can be chosen to limit the uncertainty
to an acceptable level [35]. If the uncertainty arises from parameter variations, there
may be an absolute limit on the sampling interval beyond which no optimal solution can
be found [36].

Design of Linear-Gaussian (LG) Estimators

Paralleling the previous two sections, we consider the estimation of the state per-
turbation about its set point, Ax , which is specified in Eq. (113). The LTT system
model is

Ax(t) FA2t + LAwt) , Ax(t o ) given (152)

with A(t) specified by Eq. (108), and

Aw(t) = Aw(t) - Atw (153)

At(t) is assumed to be a white gaussian process with zero mean and spectral density matrix

Q. The controlled input, Gy(t), is neglected for simplicity; it can be restored as a
deterministic factor at will. The measurement vector is

A~Z HAX +An (154)

where AR is a white gaussian process with zero mean and spectral density matrix R. The

LG estimate, Ax(t), is obtained by integrating

A;(t) = F(t+KP(t) - HA^(t)] Ax(t ) given (155)

The state estimate relative to the nominal (zero set point) condition is [Ax(t) + Ax .
The filter gain matrix is

K = pHTR -I  (156)

where P is the steady-state solution of Eq. (99):

, ;+ T + .OLT - .T-1. (157)
0 =FP + PF P QL H TR lH P17

Collecting the Ax terms, the characteristic equation of the estimator [Eq. (155)] is

AE(s) = IsI - (F - KH) = 0 (158)

From [5], the estimator is guaranteed to be asymptotically stable if 1) R > 0, 2) Q > 0,
3) [F,(LQL'T) ] is a stabilizable pair, and 4) FH is a detectable pair. As before, it
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is assumed that the correct F and H are used to calculate K; however, asymptotic stability
of the estimate error is guaranteed if the gain and phase characteristics of the assumed
and actual systems are sufficiently close [23]. Suppose that the noise-free defect in
modeling for each observation, Azi, i = 1 to r, is represented by an amplitude ratio,

Ai, and phase angle, 0i:

A Z a c tua l A eJ oi( 
1 9Az i = A.e (159)

Az
assumed

Stability is maintained for < Ai  - or [lol < 600.

The asymptotic behavior of the LG estimator's roots also is equivalent to that of
the LQ regulator [3]. As the signal-to-noise ratio becomes large (Q >> R), p eigenvalues

approach the D transmission zeros of H(sI - F) IL and the remaining (n - p) eigenvalues

go to infinity in a multiple Butterworth configuration. For low signal-to-noise ratio
(Q << R), the n estimator eigenvalues approach positions representing the stable open-
loop modes or the stable mirror images of unstable open-loop modes. Additional insight
can be found in [37], which shows that the filter structure partitions asymptotically
into r "fast", uncoupled first-order filters dnd an (n - r) Luenberger observer [38] as
measurement noise becomes small.

Although an observer is asymptotically stable, it can produce a steady error with

constant input [39], and the same is true for the LG estimator. Setting Ax = 0 and
substituting Eq. (154) in Eq. (155),

A - (F- ) K(HAXss +Ans s  (160)

Assuming the Ai = 0 and r = n, the steady-state estimate equals the actual steady-state
only if A"' 0 or F = 0. The latter is equivalent to specifying the dynamic system to

-ss
represent Brownian motion, or integrated white noise [3]. The value of estimating the
perturbation from the control set point (rather than from the nominal value) is apparent,

for the control action should force Axs to zero, eliminating the offset error. Alterna-

tives to this approach include rescaling the estimate by [-(F - KH) KH] or using

the compensated filter [24].

There is substantial latitude for specifying the statistics of disturbance inputs
and measurement noise. If all components are white, gaussian, and uncorrelated with other
components, the spectral density matrices, Q and R, are diagonal. If disturbances are
instantaneously correlated with each other or if measurement errors are coupled, Q and R
are symmetric but not diagonal. If disturbance inputs are "colored", i.e., correlated
in time as in a turbulence spectrum, the dynamic equation and state vector can be aug-
mented to incorporate the assumed correlation [7]. Colored measurement noise is best
handled by defining a derived measurement,

Az = Az -EAz (161)

whose measurement noise is self-correlated by E and, therefore, is correlated with the

process noise, LAW. The LG estimator structure then is equivalent to Eq. (155), with

A I replacing Az and K defined accordingly [40]. In addition to these alternatives
motivated by random process statistics, it is possible to consider Q and R as design
parameters which can be adjusted to achieve non-optimizing objectives, e.g., robustness
[22]. In such case, the justification for using the LG estimator rather than a more
general observer is that its stability properties art, well-defined and its design
algorithms are straightforward.

This discussion carries over to discrete-time LG estimators with little modification;
furthermore, the earlier treatment of LTV discrete-time estimators is easily restricted
to the LTI case. One important distinction is that even if the continuous-time distur-

bance spectral density matrix, LQL T , is diagonal, the equivalent sampled-data covariance

matrix, A6A T , is likely to be non-diagonal (but symmetric). This occurs because states

not directly forced by LA" are coupled to the disturbance through F and (T), both of
which figure in the computation of A [Eq. (27)]. This coupled forcing can have a material
effect on the performance of the discro4e-time filter.

"Aliasing" or "frequency folding" may limit the maximum acceptable estimation
sampling interval [3], [41], [42]. A sampling interval of T sec corresponds to a sampling
frequency of l/T Hz or 2v/T rad/sec. From Shannon's theorem [43], at least two samples
per cycle are required to reconstruct a sine wave of known amplitude (or phase) without
ambiguity; hence, the dominant signal frequencies must be below 1/2T Hz to satisfy this
criterion. If signals above 1/2T Hz are sampled, they are indistinguishable from sampled
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signals below 1/2T Hz, i.e., they are "folded" into the properly defined frequency
spectrum, causing irreversible "aliasing" errors in the sampled signal. In other words,
a continuous spectrum in 0 < w < - is "mapped" into the discrete spectrum in

0 < w(rad/sec) < n/T by the sampling process.

Troubles in estimation can occur if the spectrum of Az(t) (which is sampled every

T sec to produce Ak) has significant amplitude at frequencies beyond 7/T rad/sec. In

principle, one can distinguish between high frequency information (contained in A?)

and high frequency noise (contained in Ai) because the former could be modelled and
estimated; however, even the minutest modelling errors -- including the use of finite-
precision computation -- can turn the former into the latter. If the measurement origi-
nates in an "analog" sensor that either is noisy or sensitive to high frequency signals,
e.g., an accelerometer that picks up unwanted structural vibrations, a high-roll-off
analog low-pass filter should precede the sampling.

The Linear-Quadratic-Gaussian (LQG) Regulator

The LQ regulator and LG estimator are combined to form the LQG stochastic controller.
This section summarizes continuous-time and sampled-data LQG regulators with non-zero
set points, and it presents recent results regarding the properties of such systems.

With constant control gain matrix, C, and estimator gain matrix, K, which have been
computed earlier, the continuous-time LQG control law (Fig. 7) is described by two equations:

Au(t) = S2AY W)- CAx(t) (162)

Ax(t) = FEAx(t) - GECAX(t)

+ K{Az(t) - HELAX(t) + S1 2Ap(tJ, Ax(t O) given (163)

Perturbations are measured from the nominal condition (zero set point), the disturbance
input is assumed to be unmeasured, and the deterministic control effect is introduced in
the estimator. The physical model used for estimation (FE., GE , HE) may differ from the

actual system (F, G, H), but it is assumed here that Ax is dimensionally equivalent to
Ax. The equilibrium response matrices are computed from Eq. (116) and (118) using
FE, GE, HE, and the Hx and Hu that correspond to the commanded input, Ay p. For design

purposes, it is assumed that Ayp is constant; however, the actual commanded input may
vary in time.

Substituting Eq. (162) in Eq. (7) and noting that Az = HAx + An, the 2nth -order
differential equation which describes the LQG closed-loop system is

Ax(t) [ -GC Ax(t) GS 22 l -s I-
t + Ay p(t)

-AxW.) KH (FE  GEC - KHE) EAx(t)l 2]KHESI2

Ax(t0 ) given
+_IA~)+ L wt (164)

Th [1A(t KI t 1Ax(t ) given
The stability of this system is described by the roots of the characteristic equation

[F -G1
sI- [KH (FE - GEC - KHE) 0 (165)

A dynamically equivalent description of the system, is obtained by replacing the state

estimate, Ax, with the error in the estimate, Ac = Ax - Ax,

[Axi (F-GC) .- GC 1 Ax]
F- F) K(H - H) - (G - G)c] [FE - (G- G)C KHE]

+ E (E]6)
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If the estimator's model is exact, this reduces to

L = L] + (167)
0 (F -KH)J AC

In this case, the stability matrix is upper-block-triangular; hence, the closed-loop
eigenvalues of Ax are determined by (F - GC), and the closed-loop eigenvalues of Ac are
determined by (F - KH). This affirms that the closed-loop LQ regulator and LG estimator
error dynamics are uncoupled and stable when the actual and assumed parameters agree.*

The LQG regulator is guaranteed to be stable in the absence of parameter variation,
but unlike the separate LQ regulator and LG estimator, it is not guaranteed to be tolerant
to parameter variations. These alter the estimator error dynamics and cause them to
couple into the state dynamics, as indicated by the lower row of Eq. (166). [28] pre-
sents a simple example in which an infinitesimal parameter variation of either sign gives
rise to instability.

One might suspect that the transfer characteristics of the estimator cause the
problem, and this turns out to be the case. Each input-output pair in the estimator has
gain and phase characteristics that are affected by the choice of Q and R. Estimation
bandwidth generally decreases as measurement noise intensity increases, reducing high
frequency gain and increasing phase lag. Conversely, the bandwidth is increased by re-
ducing the assumed measurement noise or increasing the assumed process noise. From the
earlier discussion it is clear that if all the states are measured, the n estimator poles
tend to infinity as the assumed process noise becomes very large, i.e., estimator
response tends to become instantaneous [3] [37]; the remaining LQ regulator dynamics then
recover their deterministic robustness. If all the states are not measured, the (n - r)
estimator poles that approach finite transmission zeros may limit the robustness obtained
by arbitrary increase in Q. Designing the LG estimator with the assumed process noise

Q(P) = Qo + p2GQIGT 0 < p < (168)

where p is an arbitrary adjustment parameter and Q1 is any positive definite symmetric

matrix, is shown to restore the phase margin for a scalar control example at the expense
of decreased measurement noise rejection [22]. It would appear that if some parameters
of F and G are more likely to vary than others, selective increases in process noise of
the following form would address the problem directly:

AQ(p) = p2 AFP AFT (169)

or

AQ(p) = p2 AGC P C TAGT (170)

where AF and AG reflect the expected variations in F and G, and C and P are the results

of LQ regulator design without parameter variations. (This approach remains to be
investigated.)

Recognition of the importance of gain and phase margins in multiloop systems has
led to a renewed interest in frequency domain techniques, including application to LQG
problems[45] - [49]. Parti6 ilar attention is directed to the frequency-dependent
singular values** of various transfer function matrices in the control and estimation
loop. For example, the "return difference" in a single input-single output system is
directly related to the system's sensitivity to parameter variations. The "return differ-
ence matrix" has a similar interpretation for multiloop systems, and its maximum and
minimum singular values characterize this sensitivity. Because they are scalar quantities,
singular values are amenable to graphical techniques, including Bode-like "frequency
response" plots. Furthermore, the minimization of quadratic cost functions is found to
be equivalent to the minimization of associated singular values [49].

The sampled-data LQG control law is most easily described by three equations:

This does not guarantee open-loop stability of the estimator, as might be desired in
preliminary testing of control logic or following partial failure of control actuators
144]. If the loop between the estimator and the system is broken, Eq. (164) indicates
that the eigenvalues of the estimator are defined by (F - GC - KH). Although (F - GC)
and (F - KH) are guaranteed to be stable, there is no guarantee that (F - GC - KH) is
stable. The problem is, of course, avoided if the deterministic effect of control is
not included in the estimator.

** Singular values are the square roots of the eigenvalues of the product of the matrix
times its complex conjugate transpose.

i l .... .. .... . .. .. ..
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3 uk = S 2 2 y - CAXk(+) (171)

Ax(- = *EAxk-l(+) - rECAXkl(+) ,x (+) given (172)

Ax()= Axk(-) + K 1Azk - H E [Ax(-) + S 12 Ay] (173)

This controller is formulated under the same assumptions employed for the continuous-time
example. Its robustness properties parallel but are somewhat more restrictive than those
of the continuous-time LOG controller, approaching the latter's stability margins
asymptotically as the sampling interval becomes small (501.

CONCLUSION
Stochastic optimal control theory encompasses a wide range of mathematical and physi-

cal principles, only a few of which could be addressed here. As must be the case in any

introductory or abbreviated treatment of a complex subject, selected facts, rules, and
examples have been reviewed, but there are exceptions, alternate methods, and special
cases which could not be included. The principle benefit to be derived from stochastic
optimal control theory is that it provides a systematic way of describing feasible solu-
tions that can be expanded or simplified to match the control design problem. The theory
provides the equations and algorithms which generate answers once the system model and
performance indices are specified; however, it cannot give a priori guidance as to which
indices are good and what numerical values are satisfactory. It must rely on the user's
good judgment to specify mode7.s and objectives properly, and it is quite literal in its
response; ask the wrong question, and it most surely will give the wrong answer. Pose
the problem accurately, and it provides a practical solution, no matter how counter-
intuitive the solution may be. The challenge in applying stochastic optimal control
theory is to match understanding of the methodology, knowledge of the system to be con-
trolled, and reasonable expectations of optimal system performance.
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DESIGN CONSIDERATIONS FOR OPTIMAL FLIGHT CONTROL SYSTEMS

F. h. Gill
Flight Systems Department

Royal Aircraft Establishment
Farnborough, Hampshire, England

SUMMARY

This paper is a contribution to a proposed AGARDo r-fA, on
"Theory and applications of optimal control in aerospace systems".
Following a review of the several interacting factors affecting
the design of control laws for any kind cf Flight Control System
(FCS), the modelling problem is discussed, including accuracy
requirements for computer models of the aircraft, FCS, external
disturbances and sensor noise. The state-of-the-art in design-
ing the control and scheduling laws is surveyed and the limits of
conventional control techniques are exposed. To overcome these
limits, the use of selected nonlinear control techniques is dis-
cussed, including the concept of redundant adaptation with
safeguards.

LIST OF SYMBOLS

A (n x n) matrix of coefficients for aircraft or full system

B (m x m) matrix of coefficients of control signal to control surfaces

B a control effectiveness

Finput filter control parameters

G closed-loop control parameters

Gi  gearing of closed-loop (i)

GiW G iB , Gi minimum, maximum and compromise values of Gi

G a  part of Gi changed with aircraft characteristics

G v  VICTOR gearing: G. G . Gv

AGL error in Gi causing limit cycles or hazardous poor damping

AG. error in G.1 1

J quadratic performance function

K eedback gains from solution to the matrix Riccati equations

M model parameters

P(s) input command filter to give dead-beat response in x to xc

Q(s) input command filter for desired response of y to p c

Ti response time of closed-loop (i)

T gust time constantg
V function used for parameter optimisation

d difference signal, y - y

t closed-loop error signal

p pilot input command
Lc control signal input

v external disturbances

w sensor noise

x n-dimensional state vector

xc command for change in state xi
x. state used in closed-loop (i)1
y output state vector

yi components of y representing primary aircraft motion

Y-2 other significant components of y

model response

e control parameters

ta control parameters changed with aircraft characteristics

e values of e which minimise VP. time constant of simplifipd noise filter

!A weight associated with i'th component of V1



P 4-2

I INTRGPUCTION

The mairn purpose (f this pal er i.i; review the, rnrt errio aei sgrgrr
ca, control laws for a full aut hority flight coont ro. s3vster! , A S,,C r. rar\
expose 1limitations experienced with conivent loral 'linlear) 1L' i w.: i!, i '~ t. W
these limitations may be reduced in future F(%:.

Ir. general , various 2ont r,) l aw des igr. t echr.i 1 ,.e sa -t ski rirg loue S;a
groups faced with solving particular frblems using li ff'ertr' fa .'.'~. Tor-ii
his paper is based on the part icular experience .,f a1 rr.,L. a* hiFarrd -r gh and.,

reflects the present but rapidly changingw state- f-he-ar' wilrnir. ni.s gr Aj

The design of the control laws fur a fly-ty-wire 'FbW aircraft lo t he ao:
most of the discussion although reference is made, whera[I r priate, te
system. Referring to Fig 1, we require to:

(a) selest the closed-loop controller j in order to re,1Lcet trie eff'-_-

external disturbances to acceptable values 'reguia! .r j r.Llerci;

(h select th, co mmand input contro)ller F in, rdter t- _itts!. aicce; tat -
'raft response toc a r ilot command ( tracki rig r rub iem )

i) st-lect how F and Iare varied it. rdt-r !',erst~f.r van:al.
the aircraft ?h-apse'erist ics asorss t he f iehl 1!"d Marl, ev r''-'
select. the sc;hedulinig laws.

.r 2rder to achieve a satisfactory design ,f the c:-ntr .aid ~.~.:gjw w,
nieed t spec vy flyinp, :;ual it lea it, terms (-f the r-juired charact n~A;

hut h a lot command anid to external disturbanices and sens> res' c ,.
t, define sat i fact Dry mode 1s , f the ai rcraft , sensors , F2, ex te urr. . s! _r. ar. :it, i
sensor ri, .'s for simulat i :ir, in the co)mputer used for de-s iFg. ,and ar, ay~ ..rl se!, Ttcoo
,are Aisco sed hriefly it. sect joris -~ and as a background to the revieo . r, !fjuo!s
isel ini thi designi or 1 hetar control laws,, sect ion 4, and a di acussi,,A' re!''ee,'r
nt, *he- Use f n n linear co-ntrol laws, sect ion

P fCrrenct is mad.- t manry t ext boo-ks r. classi cal 1anid moderi, c-ttri 1 t h.t ry n:

EFVIEW )F FA ":-+:2 AFFHOT:NI3 THE E'IIN OF 7~N~LLAW:

As 7a tackgrrd, weL dis1cuss' first a number of issues which im~ inge oi, the design. _f
cmt ri laws ind whi !I. com;j li cate th-e ,veral I i I: sigri, anialys is and as sessmenit jr, LI m.

Airw rt hi r;-s!s requ j remrrret

The j~i Fi in )f a irwort h i r,,ss i~ o (f vreat es t impof-rt ance , and i s d iscuss-d fi rst f
the ;ust , t he Fi ina 1s to t he onirolI surface-s from the FCS have been limited in authori-ty

such t'l, if the, corntru 1 oigra 1 is incorrect , the result ing aircra ft motion is no t
ha,,ardou's, and the pilnt has ' ate'to disone the failed F -ll. In many in-ser ice
-yc'.em:3, certain c MYtrol systems have full authority anid, in some future -ytesIfs
stabiiisingp, c-r.'r-l signals could result in loss of aircraft, eq loss of the contrcl
whic h ot at i 1 is s an otherwise stat ically unstable aircraft .

w ith th., fill autho)rity P%., or inrgle failure may cause an unlesirable and , ternals
haaroamiotion., which. may tnien cause damage to or loss of the aircraft. A full author-
t;F '_ 71ust t ( 1e S Aosined to) automat ical ly dF' .sct and Is3olate all suchi fai lures be fore- tlie

aiircraft'.:- motion. is sinjificantly affected, s?, that tire average rate of aircraft loss due
to all 1 caiuses-, is niot increased, je between IC- anid 0iI1 pfh per flight hour) for a comt-
tat aircraft in [eacetirre -,rerations anid between lo-7 anid 10-- pfh for a trans; ort. -ir-
craft . 1ecognising that there are many different causes of aircraft damage or loo. ,-m

of which are unaffected Hby the -Cthe figure associated with each cause f F,'U failre
is in the region of 10- pfh or less, dlepending or how the overall target is rartitic~ed'.
It is iMpo0Ssitl? to 'Prove' that a system will meet such an integrity tarret (1l)' toLrz:
ejuals about 11)' years) and we have to rely on 'engineering.' judgement based or ; lo:
,-xperierce arid rigorous analysis in, 'order to obtain certi fication of full authority mVd
espe i ally full time FCL.

Much attention has been and continues to be given to surviving that olassffal
urea associated with equipment malfunctions which can be detected and survved by usin,-
hardware redundarcy techniques. There are, however, other kinds of failure which Ire I
detected by hardware redundancy techniques alone. One of these is associatod wit
inappropriate design or implementation of the flight control or scheduling laws. .uch
failures may not result in an immediate loss of the aircrr ft but, combined with the
pilot's subsequent difficulty in c!ompleting his flight task under the experincedi t~i
tions, there may be an unacceptable increase in the risk of aircraft loss.

Inappropriate flight control or schedulinig laws arise in a number of ways. For1
example, an inaccuracy in the aircraft model used during the design, combined with or
mo-dell ig of ?rrors in t he sc hedu1i ng sensors , coulId lead t o an error i n t he closetd-i
g-ain sufficiently large to cause uniaccer tably poor damping and even Isaiiy
order to rvoid this hazardous situation, satisfactory gain margins must be applied.
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This ;articular example indicates the need to model the aircraft and all components
t he FC: as accurately as possible. Alternatively, more advanced control policies,

,;uch as self-adapt ivw techniques, are being developed so as to adjust automatically the
c i trol laws to behave in the required manner. With such policies, we would no longer
nteed very accurate rhodelling of the aircraft for control law design purposes and, more-
.vrir, the niumber of different types of scheduling sensors could be reduced, resulting lr.
t significant reduction in FCS hardware.

With the advent of digital FCS computers, the means of implementing these more com-
ilex nonlinear control laws is available. However, we are faced with the problem of
Jet, tirig and is,:lating possible, although infrequent, failures of such complex fur.ctions.

t is this question of integrity that has so far pr-vented the use of nonlinear control
laws.

In the design of all functions programmed in the FCS computers, see Table 1, there
are three interacting and conflicting requirements:-

(a) mir.imise the amount of FCS hardware,

L) improve flying qualities through the ubc of more appropriate control and
scheduling laws;

Lc) increase confidence that the airworthiness targets will be met.

Although this A;AK ograph is mainly concerned with (b), we must keep in mind the other
areas (a) and (c) in designiog the 'optimal' practical system for a particular aircraft.

.. .;ecificaticn jf flyir.g qualities

:1 is generally recognised that existing specifications of flying qualities are
itadejuate for the design cf control laws aimed at achieving best possible performance
for difficult flight tasks and severe environmental conditions. Existing specifications
are based or ey,.erience with aircraft without full authority FCS and do not, therefore,
f-mt<dy (he performance benefits of multi-loop feedback and feedforward control.

A chicker.-and-pgg situation arises. Realisable requirements can be formulated
6 nly after exhaustive pilot-in-the-loop simulation experiments, augmented by appropriate
flight tests on a number of representative aircraft using representative control laws.
Cn the other hand, design of the optimal control laws implies the need to specify optimal
flying qualities in a fashion appropriate to the design technique applied. This situa-
titan is likely to remain for some time as further and more comprehensive experience is
gaired ,nr; the benefits - and problems - of flying an aircraft with a full authority
multi-Ionp F('S".

The difficulties in specifying performance requirements are compounded by the fact
that the control laws and, therefore, the flying qualities can be changed with flight
task and environmental condition . This is already done, of course, with in-service
autopil~ts. With FBW aircraft, in order to reduce pilot's workload and eliminate the
;nssibility of pilot error, such task-oriented control laws should be selected auto-
matically whenever possible. However, pilot-selectable control laws may be advantageous
for some flight tasks and/or for some system concepts.

The presernt trend, therefore, is to consider the flying qualities, control laws and
F: requirements for each difficult flight task under the most severe conditions, eg
'wo-rst' gust. Table 2 lists some of the difficult flight tasks for a combat aircraft.

.1 An interpretation of flying qualities requirements for the design of control laws

From the point of view of designing the control laws for each flight task, it is
necessary to interpret formal srec'fications in terms of the design techniques to be
applied. Referring to Fig 1, one method involves, firstly, defining outputs y1  which
are important for each task and, secondly, specifying a model M such that the
differences between the actual response yl(t) and the model response

im(t) = MPc(t) (1)

are reduced to acceptable values for all pilot commands pc(t) and all external
disturbances v(t) . The model M is a diagonal matrix ihich could be varied with
flight task,an3 amplitude and/or rate of pilot command.

i., many ways, a pilot's command can be viewed as a command for a change in trimmed
output state y The outputs 1, can often be selected such that the desired model
response is defd-beat with a specified rise time and/or delay to a rapid pilot step
command about any trimmed state. For such cases, y (t) should follow y (t) with
negligible overshoot provided this can be achieved B1fficiently rapidly. -M

When the pilot makes no input, as in an autopilot hold mode, the main problem is to
reduce the difference

l : XOl - Xl (2)



4-4

to acceptable values for the 'worst' external disturbance vm (t) , ie that yielding
largest deviations from the required trimmed state, Y01 . During the glide path hold
mode, for example, y, includes height, airspeed and-attitude and we are concerned with
ensuring that deviat! ns outside specified limits of these outputs are acceptable for
any shape or size of wind gust or shear.

It is also useful to specify the behaviour of each yl(t) when the disturbance
v(t) reduces to zero. Ideally, each component of Ayl(t)- should reduce to zero with
little overshoot provided the decay is sufficiently ripid. This implies that the modes
of motion associated with yl(t) are close to being critically damped.

In addition to the primary outputs Yl , there are other important outputs Y2
which also need to be considered. Depending on the flight task and conditions, y2 may
include actuator activity, acceleration at the pilot's station and excessive loadg. In
general, we require to reduce Y2 to acceptable levels provided we can achieve the
desired performance in terms of- yl" Experience has shown, however, that it is also
necessary to specify:

(a) the minimal damping of all modes of motion formed by interaction between the
FCS and the aircraft;

(b) adequate gain and phase margins for each mode of motion.

These additional conditions, together with the need to minimise deviations in all
components of y - X + y2  caused by sensor noise w(t) , often cause situations where
compromises hav to 6e ma e between the different components of y .

Pilot opinion, of course, remains a major factor in deciding how to specify

for each flight task and the relative importance of the components of y . As mentioned
before, however, pilot opinion can be obtained only through pilot-in-thg-loop simulations
or flight experiments using previously defined and practically realisable control laws.
For research work, we can define a range of control law options for comparative assess-
ment and subsequent iteration through a design and assessment procedure. As a result of
such research studies, pilots' opinions may change as improvements in achievable flying
qualities are recognised and preconceived ideas in the designer's mind may change as
features of the control laws which lead to the pilot achieving improved performance are
exposed. For a new project aircraft, a more precise specification is desirable, based
on the state-of-the-art at the time of project definition. However, with the possibility
of being able to re-program the digital FCS computers during the lifetime of the aircraft,
an update of the control laws is feasible as improved flying qualities specification
become available or as the aircraft's mission(s) change. Much work is being done, at the
present time, to update current flying qualities specifications.

2.4 Design, analysis and assessment procedure

The main stages in the design of the control laws and the assessment of both air-
worthiness and flying qualities of the aircraft plus FCS are shown as a flow chart in
Fig 2. It is convenient to consider that part of the process which need not include the
pilot-in-the-loop as a separate design/analysis package. It is shown within the dashed
box of Fig 2.

As discussed above, a provisional statement of objectives is defined from available
formal specifications of flying qualities and airworthiness requirements and from the
results of experimental work proceeding elsewhere. This statement is provisional in the
sense that changes may be made from the results obtained in subsequent stages of the
design, analysis and assessment (pilot-in-the-loop) procedure on the control law, system
algorithms, software and hardware aspects of the system. (The feedback paths are
excluded from Fig 2 for clarity).

The current state-of-the-art on control law design is based on linear control
theoryl, 2 . It is necessary to interpret requirements in terms of these design techniques
and to linearise and otherwise simplify the models of aircraft, FCS and external distur-
bances (discussed further in section 3). Initial design studies are often made using as
simple as possible models in order that the computer operator is not confused by the
complexity of the problem. These are followed, of course, by further analysis with the
simplifications removed, and eventually including all nonlinearities. At this point, the
process is one of analysis rather than design, eg time responses to representative inputs
and disturbances appraised. Several iterations through the design/analysis process may
be necessary.

The resulting control laws, satisfactory from the objective viewpoint, are then
assessed with the pilot-in-the-loop, using available simulators and, finally, flight
tests in the aircraft. Adverse pilot comments, particularly in executing difficult
flight tasks, together with performance measurements, may well lead to further iterations
through the design, analysis and assessment loop.

Parallel developments of the multiplexed FCS leads to the need to include the
effects of certain properties of the FCS in the analysis, pilot-in-the-loop simulation
and flight tests. In particular, it is necessary to assess the effects of real hardware
characteristics rather than the assumed models of the FCS, ideally using a comprehensive
rig in conjunction with a pilot-in-the-loop simulator. The transient effects on FC,
failures and problems associated with loss o? parts of the FCS require careful assessment.
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It should be noted that there is a need for rapid and inexpensive re-programming
of the FCS computers during the development stages in order to allow for (inevitable) 4
changes in the control laws. This requirement has system implications in that means must
be found to establish airworthiness confidence for such rapid changes.

The main emphasis in this paper is on the design/analysis phases within the dashed
box of Fig 2. This includes in section 5 an appraisal of the future use of nonlinear
control laws for the following two main reasons:-

(a) with conventional control laws, it is necessary to make inevitable compro-
mises in view of the fact that different control laws are needed to reduce
errors in different elements of Y (= Yl + Y2 ) to acceptable values;

(b) it is necessary to provide for unknown or incorrect values of parameters in
the total system, eg through the application of adequate gain margin. With
conventional techniques, this provision leads to larger errors in yl com-
pared with a system which would automatically and safely correct fof such
errors.

The limitations of conventional control and scheduling laws emerges from a sensitivity
analysis of the system's performance to changes in the characteristics of the aircraft,
FCS and external disturbances. This is an important part of the design/analysis package.
As discussed further in section 3, a particular objective of the sensitivity analysis is
to define modelling requirements.

2.5 Design/analysis package

At RAE Farnborough, the design/analysis package, dashed box in Fig 2, is contained
in an operator-interactive computer program called Time SIMulation (TSIM). In contrast
Lo previous procedures that were based on separate programs, some on different computers,
the interactive TSIM package represents a significant step forward, because the operator
can quickly change the program and obtain results in a rapid sequence and in a digestible
visual form from different and selectable sub-routines. For example, he can obtain in
quick succession time histories for representative inputs and disturbances using linear
(and simplified) equations and the full nonlinear equations of motion. The separate
phases of design, sensitivity analysis and performance analysis shown in Fig 2 merge whew
the operator interacts continuously with the design/analysis package.

A simple simulation language has been defined which allows simulations to be writ-
ten as a set of nonlinear equations in a Fortran program. This is linked to the main
analysis package by a translator. When running, the analysis package is controlled
interactively by commands typed in by the operator. He can command, for example. an
automatic linearisation of the nonlinear equations about any datum he specifies, select
which 'nodes' to ignore in simplifying the equations, and obtain outputs in tabular or
graphical form on a VDU or print-out from any sub-routine of the analysis package.
Changes to the equations.-ffmotion or 'o the characteristics of inputs and disturbances
need not necessarily require a re-build of the TSIM package.

With an interactive procedure such as TSIM, the operator is an important part of
the design/analysis lcop. As such he needs to be very familiar with the chosen analysis
technique and conversant with its limitations, bearing in mind that he is often dealing
with systems of order 4- or more. It is also important to make the TSIM or similar
computer package as simple as possible to operate so that the designer can concentrate
his expertise on the design/analysis problem.

As a research tool at RAE, the TSIM package is b-ing continuously modified as more
complex problems are investigated and as experience is gained of new techniques. Some of
the analysis tools currently available are listed in Table 3.

3 SOME ASPECTS OF THE MODELLING PROBLEM

For the desigr f the control laws and a first analysis of the aircraft's behaviour
it is necessary to model on a suitable computer the aircraft's equations 'f :,
external disturbances and the characteristics of the FCS including sensor imperfections.
The following brief comments on the problems of modelling are based on recent RAE
experience.

5.1 Aircraft equations of motion

The nonlinear equations of moti.i of the aircraft plus its FCS can be written

= f(x, U) ia)

where x is an n-dimensional state vector and u is an m-dimensional control vector
representing control signals applied to the control surfaces and other kinds tf motivator.
It is desirable for the form of these equations to be such as to facilitate linearisation
and simplifications so that suitable approximations can be made for control law design
purposes. In effect, this is part of a sensitivity analysis which establishes the more
important modes of motion and associated closed loops.

liven the aircraft equations of motion, it is necessary to ensure that flying
qualities are optimum for small perturbations at all points in the flight and manoeuvre

L.....l.... ........a- .r... 0
p.. ....a um. ....foI .r
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envelope. For this purpose, equation (3a) i.3 linearised about representative flight
cnditions, yielding x Ax + Bu (Sb)

where A and B are (n x n) and (m x m) matrices of constant coefficients. The power-
ful techniques of linear control design and analysis are now applicable.

The results of this linear design remain satisfactory for manceuvres which are
slow relative to the variations in the coefficients of the A-matrix representing both
the aircraft and its feedback control. For more rapid manoeuvres, the linear design is
no longer satisfactory and it is necessary to design and analyse performance using the
full nonlinear equations.

It is now widely recognised that it is necessary to write the equations of motion
representing both rigid body and structural motion of the aircraft in a common form.
This need arises because there is an increased coupling between all modes of aircraft
motion and other modes introduced by the multi-loop feedback control. There has been and
continues to be difficulty ii. nbtaining appropriate values of the coefficients of the
A-matrix representing structural i_ s of motion. Traditionally, structural mode equa-
tions have been written in a form compatible with both structural analysis techniques and
methods of measuring coefficients for these equations. Translation of this available
data into the required form is complicated but necessary in order to allow an integrated
design.

3.2 Accuracy required for aircraft equations

Precautions must be taken, during the design of the control laws, to avoid possible
inaccuracies in either the form of the aircraft model or the values of the coefficients.
In the following discussion, we restrict attention to inaccuracies in the values of the
coefficients for rigid body small perturbation motion, the simplest case being the
simplified manoeuvre demand system shown in Fig 3.

Consider first the i'thloop of the several closed loops depicted in Fig 3. There
s a range of values of the gearing G.1

(Gi A < (Gi (Gi B i = 1,2,3,...,m<n (4)

for which all modes are acceptably damped. The damping can be increased by decreasing
the phase lag of the feedback signal xi or, equivalently, phase advancing xi using a
lead-lag filter or a sensor measuring x (in state space, xi is equivalent to x,-,,
and thus phase advance is achieved by increasing Gi- I ). Alternatively, the decreas 1

in phase lag can allow an increase in (Gi)B for a given minimum damping.

The potential benefits of increasing Gi are twofold, both related to the assoc-
iated decrease in the response time Ti of the mode associated with closed loop (i) .First, there is a decrease in the deviations of xi  (and the associated Yi 

) 
caused by

a particular external disturbance and, second, the output yi can be made o track more
accurately a pilot's command Pc . Conversely, there are two main disadvantages, an
increase in the undesirable effects of sensor nois: and a decrease in the gain margin of
the closed loop (i) .

The closed-loop gain is the product of Gi , the motivator effectiveness, and the
equivalent gearing of the FCS equipment. Suppose that poor damping results if This over-
all closed-loop gain increases by some increment AGL . For high frequency modes, such
poor damping may result in hazardous limit cycles through the exceedence of hardware
rate iimits. It is therefore essential to ensure that variations AGi in closed-loop
gain are less than AGL . Major contributions to AGi include:

(a) incorrectness or uncertainty in the model motivator effectiveness;

(b) approximations in designing the scheduling laws;

(c) errors in the FCS gearing and in phase delays which contribute to the gain
margin;

(d) errors in the models of the scheduling senscrs.

A compromise gearing (Gi)C < (Gi)B is selected from these and other considerations and
this practical value limits achievable performance in terms of the response time T. .

Given a maximum possible response time Ti for the i'thclosed loop, we next con-
sider the accuracy requirements of the aircraft model for the response yi to pilot
command Pc . Referring to Fig 3, we restrict attention to a particular control law
structure fo- which the input ui into the i'thclosed loop is 'assuming for the prese,,t
that Gi+ = 0 ):

u. = Fi(s)p Qi(s)Pi(s)P (5)

where Pi(s) is an approximation to the reciprocal of the transfer function between u.
and xi , and Qi(s) is chosen to give the desired response in yi to Pc . In efle'_l
we are defining a command xc  in the state xi such that:

Xc Qi(s)Pcs)X (6)
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The transfer function between ui and xi can be written:

N(s)/D(s) (6a)

where, in general, the order of the denominator is greater than the numerator. A
practical form of filter Pi(5) is:

P (s) (6b)

assuming that N(s) includes the gain of the transfer function (6a). The response of
xi to x. is then the same as the response of the output of i/D(s) to ui . Given an
appropriate Qi(s) , the problem reduces to obtaining accurate tracking of xc to x.
which ideally requires:

(i) critical damping of the mode associated with xi

(ii) a response time Ti less than the fastest expected response time of xc
(limited by choice of (Gi)c);

(iii) accurate knowledge of the numerator N(s) of the transfer function between
x and u.c1

The last condition (iii) leads to further accuracy requirements for aircraft modelling.

In many cases, a first order approximation for Pi(s) is satisfactory but the
parameters aa of this approximate Pi(s) are complicated functions of the aircraft's
coefficients-in the A-matrix. In contrast to the closed-loop characteristics, which are
affected almost entirely by the motivator effectiveness, accurate knowledge of severalaerodynamic derivatives are required to compute Oa with sufficient accuracy.

The problem is eased by several factors. First, large errors in ea do not affect
stability in the closed loop although, if the errors are gross, pilot-induced oscilla-
tions (PIO) may result when the pilot increases the gain of his loop via his response to
cues from the outside world. Second, the effects of errors in 6a can be decreased by
adding an integral loop, Gi+ 1 in Fig 3.

The integrator (or leaky integrator) operates on the difference (xi - xc ) so
that the lower frequency mode associated with the integral loop Ci + I) is excited
significantly only when there are significant errors in ea . Finally, the pilot is so
adaptive that he will accept a wide range of response characteristics, initially prefer-
ring those experienced before. Performance may not be affected by such errors but the
workload to achieve this performance will increase.

3.3 Modelling external disturbances

We restrict the discussion to variations in wind speed/direction, ie gusts,
although other external disturbances are important in a final assessment, eg dropping a
store, change in aircraft configuration, change in fuel disposition. During the initial
design/analysis stages, it is desirable to use simple models of gusts in order to keep
t.e problem as comprehensible as possible. The basis of such simplifications can be
explained by continuing the discussion of the closed loops depicted in Figs 1 and 3.

Considering first the gust shape, we may define three types of gust (Fig 4). For
the impulse-like gust (a) , the steady state error in xi is zero for all values of G.
However, the transient error in xi decreases with increasing Gi (other parameters
being changed to maintain relative damping of all modes). This performance improvement
is significant only if the gust decay time T is smaller than the closed-loop response
time Ti . For relatively small Tg , undesirable motion of the system is experienced
with no significant benefit in reducing xi . For the step-like input (b) , there is a
steady state error in xi which decreases as Gi is increased. Introduction of the
integral term, closed loop (i + 1) in Fig 3, causes this steady state error to decrease
to zero at a rate determined by the response time Ti l of the i + l)th loop,
Ti+ 1 < Ti . As Gi+l is increased, Ti+I decreases with a resulting more rapid removal
of the steady state error in xi . There is, however, a maximum value of Gi+l above
which relative damping is unacceptable but this maximum value increases as Gi  is
increased. For the ramp input (c) , there is a steady state error in xi even when the
integral is applied. This steady state error decreases as the gearing Gi+l is
ir.creased. It should be noted that, for an impulse-like gust (a) , increasing Gi+l
increases the duration of the transient error in xi due to unnecessary excitation of
the long period mode associated with the (i + I)th closed loop.

Suppose we find the closed-loop control parameters G which minimise the errors in
the output y caused by the simplified gusts (a), (b) and (c). Experience has shown
that G is insensitive to the shape of the gusts, eg to values T , T and T"
Indeed, the same result is obtained if we minimise errors in y cused by more §omplex
models of gusts, eg von Karman or discrete gust spectra. The Errors in y for a given
G depend, of course, on the gust shape so that, for the assessment of performance, more
representat ve gust models must be used.

Whether this empirical result is generally applicable is questionable but exper-
ience to date justifies simplification of the gust models for initial design/analysis
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purposes. In fact, for linear control law design, further simplifications can be made

since there are well established relationships between a system's response to an

impulse, a step and a white noise input (as indicated by the transfer functions in Fig 4).

The gust models required for assessment, especially pilot-in-the-loop assessments,
must be more accurate. In particular, the modelling of gusts as a stationary random pro-
cess (eg von Karman spectra) draws the adverse comment from pilots that the simulation is
unnatural, and this situation is unacceptable. For thig reason, improved gust models are
being sought, a discreet gust spectrum being one optiong

.

Another aspect of the assessment problem involves finding which gust shape by
itself or in combination with other disturbances can cause a hazardous error in y . A
hill-climbing procedure, similar to that used for parameter optimisation (section-4), can
be applied to determine which gust shape in a family of gusts produces maximum y . We
can then calculate the magnitude of this 'worst' gust shape which causes a hazaraous
situation and attempt to ascertain whether this event will occur more frequently than
acceptable. It is interesting to note that, in general, different worst gusts are assoc-
iated with different elements of y ,(eg longitudinal displacement and rate of descent at
touchdown due to gusts during an automatic landing).

3.4 Modelling FCS characteristics

There are three main issues in modelling FCS characteristics:
(a) phase or time delays caused by FCS components;

(b) noise, particularly sensor imperfections;
(c) nonlinearities, eg actuation rate limit.

The need to attenuate high frequency sensor noise using some form of noise filter intro-
duces a significant phase lag so that (a) and (b) must be discussed together.

3.4.1 Phase and time delays

The replacement of analogue by digital computers and the possible replacement of
some sensors by their digital equivalents has led to the need for sampled-data analysis
in the z-plane, rather than the customary continuous analysis in the s-plane. Although
z-plane analysis is available in a design program such as TSIM, the current approach
still usually involves an approximate linearisation of the model representing the
digital processor so that the more familiar s-plane analysis can be used for initial
studies. Subsequent analysis of sampled data effects are examined using z-plane
analysis and time responses. In the interests of brevity, we exclude further discussion
of problems arising from such sampled-data effects, assuming that the time delay and data
staleness can be modelled as an analogue lag.

In addition to this computer lag, it is necessary to introduce an analogue filter
immediately before A-D conversion in order to eliminate aliasing and, in some cases,
another filter is needed after D-A conversion in order to reduce quantisation noise.
Furtl1r- more, there are problems in implementing on a digital computer the high frequency
part of the complex filter used for attenuating unwanted structural modes which are
detected by motion sensors such as rate gyros and have to be treated as noise. In
practice, the analogue filter before A-D conversion is generally designed to include the
high frequency part of this structural filter (and thus the overall FCS is effectively
hybrid).

The phase delays of the actuation system and, in some cases, lags in the sensors,
are partially compensated using a lead-lag filter as shown in Fig 3. Full compensation
is not practical, partly because the filter must be realisable and also because allowance
must be made for variations in the lags of the actuation system.

In broad terms, the phase lag of available FCS components, excluding the noise
filter(s), is approximately equivalent to a first order filter of about 0.04 s time con-
stant, equally divided between the computer with its associated filters and the actuation
with its associated compensation.

It will be appreciated that, even for the linear model of the FCS, we are faced
with a high order set of equations, the modes of which interact with each other and with
the aircraft equations of motion. Simplification of these equations, as with the air-
craft equations, must be made with caution but is useful in preliminary design studies
and for purposes of examining tle physical principles involved. The simplification in
Fig 3, for example, has been chosen to illustrate numerous problems and techniques in
this Chapter.

3.4.2 Sensor noise

Ideally, the sensor should measure the state xi used in the feedback control (or
the state required for scheduling). In addition to instrument noise, as measured under
static conditions, sensors detect variations in other states x- under dynamic condi-
tions. Appropriate positioning of the sensors and corrections io the outputs of the
sensors using data from other sensors are techniques used to reduce such non-instrumental
noise. Some of these corrections require a priori knowledge of the motion detected by
the sensor in the environment cf the aircraft and such knowledge is often scarce. For
example, there is uncertainty as to what airstream sensors measure at high incidence and
low speed. Consequently, there is always some residual unwanted signals which must be
treated as 'noise'.



4-9

The conventional method of reducing the effects of high frequency sensor noise is
to introduce a noise filter. In Fig 3, this is represented as a first order lag, time
constant Ti , with phase lag approximately equal to that of a practical and more com-
plex high order filter. For increased attenuation of high frequency noise, Ti should
be increased, the penalty being an increase in the phase lag of the i'thclosed loop,
leading to the need to decrease Gi so as to maintain acceptable damping. It is useful,
in fact, to consider varying Gi with i/Ti  'slaved' such that relative damping of all
modes remains acceptable. In many cases, the slaved l/T. is approximately proportional
to Gi . Since flying qualities tend to improve with decreasing response time Ti and
this decreases with increasing Gi , the control laws required to reduce the effects of
high frequency sensor noise conflict with those required for improved flying qualities.

Lower frequency components of the noise are not significantly attenuated by the
noise filter. In some cases the effect of such noise components are, in fact, reduced
by increasing G. (and 1/Ti ) in the same way as low frequency external disturbances. In
such cases, an aiditional integral loop (Git ) is required to reduce the effects of such
noise, eg the effects of datum errors or drifts of one sensor are reduced by the correc-
ting action of a second sensor.

For initial studies of the control laws, simplifications can be made similar to
those discussed for gusts (see Fig 4). For detailed analysis and assessment purposes,
more accurate models are required but are not always available, in contrast to the
availability of comprehensive gust models. It should be noted that the undesirable
effects of sensor noise are often as significant as the effects of gusts although the
effects may be related to different components of the output y

The relationship between the effects of external disturbances and of sensor noise
is more readily understood with reference to the closed-loop error signal, e in Fig 1.
There are frequency components of e , high relative to l/T i , for which a decreased
gearing Gi is beneficial and lower frequency components of e requiring an increased
Gi . This conflict is the same for all causes of fluctuation in e , ie whether sensor
noise or external disturbances.

3.4.3 Nonlinearities

In practice, several components of the FCS have nonlinear characteristics. The
improvement in components and sub-systems in recent years has reduced the extent of many
undesirable nonlinearities considerably and their effects are usually small. Neverthe-
less, there are a number of features that need careful consideration including:

(a) the suppression of the effects of external disturbances by the closed-loop
control laws, especially those using powerful integral terms, can reduce significantly
the authority available from a particular control surface for manoeuvre demand. A
hazardous situation may arise if the pilot has no knowledge of the control authority
available to him. In some cases, this situation can be eased by employing separate
control surfaces for low and high frequency components.

(b) Although the amplitude and rate of change of control signals are not
deliberately limited with full authority systems, there are practical limits, such as a
rate limit in actuation systems. Exceeding such limits can lead to dangerous limit
cycles and must therefore be avoided by the selection of the control laws and/or the
development of appropriate hardware.

(c) The use of digital computers leads to sampled-data effects and, in some
cases, to a 'staleness' of data through the use of data stored from one computer cycle
to the next.

(d) Stick-feel characteristics with possible dead zones, hysteresis and other
ergonomic features, both spurious and intentional, in the stick, rudder pedals etc.

4 ELEMENTS OF AN INTERACTIVE DESIGN/ANALYSIS PROCEDURE

With an interactive procedure such as TSIM, the computer operator is an important
part of the design and analysis loop. It is important that he is fully familiar with:

(a) the particular type of analysis (root locus, parameter optimisation, etc)
and recognises its limitations;

(b) the equationsofmotion of the aircraft and the FCS and takes account of
nonlinearities and possible inaccuracies;

(c) the provisional nature of the interpretation of flying qualities require-
ments, especially those for difficult flight tasks or severe environmental
conditions.

We have discussed (b) and (c) in sections 2 and 3. In the following discussion of Ci),
we do not attempt to be rigorous since there are many excellent texts on the subjects.
The aim is to expose fundamental difficulties with available techniques and to show why,
in practice, several analysis and design techniques are used in a complementary fashion.

Referring to Figs 1 and 3, we are concerned with the selection of multi-feedback
loops G with associated feedforward control F , the parameters of which we combine as
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the vector 6 . With conventional control laws, the control parameters of the i'th
closed loop, eg (Gi , 1/Ti), can be considered constant since their values are varied
only as scheduled functions of aircraft state and such variations are usually but not
always slow relative to the modes associated with the i'thclosed loop. This assumption
of constant control parameters is necessary, of course, for the application of linear
control theory.

4.1 Approach using optimal control theory

It is often useful to obtain an initial solution without assuming a control law
structure. Instead, we are concerned with determining the optimal time history u(t) of
the control signals fed to the m control surfaces and other motivators. The linearised
equations of motion of the aircraft alone can be represented by:

k(t) = Ax(t) + Bu(t) (7)

where x(t) is an n-dimensional state vector (nth order linear aircraft equations),
u(t) is an m-dimensional control vector, and
A and B are matrices with constant coefficients.

The motions to be optimised are linear combinations of some but not necessarily all the
states:

y(t) = Cx(t) . (8)

An optimal linear control can be defined 2 as the control vector u(t) which trans-
fers the system from an initial state x(t0 ) to a final state x(tf) and which
minimises a quadratic performance functlon:

t

f (y T(t)Qy(t) + uT(t)Ru(t))dt + xT(tf)PlX(t f ) (9)

to

subject to the constraints of equations (7) and (8). Here, Q and R are weighting
matrices, usually diagonal.

The optimal regulator is generated by the linear control law:

u(t) - K(t)Ox(t) , K(t) = R1BTP(t) (10)

where P(t) satisfies the matrix Riccati equation:

- P(t) = CTQC - P(t)BR-lBTp(t) + P(t)A + ATp(t) (10a)
with

P(tf) P1  (lOb)

As tf becomes large, the solution P(t) approaches a steady state value independent of
P1 . In practice, this is the usual requirement for FCS. Because of these asymptotic
properties, the feedback matrix K becomes independent of time.

Several methods are available for the numerical solution of these equations but
most are unwieldy for large order systems. A relatively simple and straightforward
solution7 results if we assume constant gains K . The performance function to be
minimised becomes an eigenvector (n x n) matrix M , the elements of which are numbers
representing the response of each state xi caused by an initial condition on each
state x.

J
This approach is useful for a preliminary study of a new problem but its usefulness

appears to be limited for a number of reasons including:

(a) difficulties in selecting the weighting matrices Q and R

(b) the solution requires feedback of all states (x to xn), some of which do not
improve performance significantly and which must be estimated from a limited
number of sensors;

(c) the eigenvector matrix M may not include all aspects of performance V
the elements of which are numbers representing each output state y of y
due to representative disturbances on all states x , aircraft and FCS; -

(d) although the solution is stable, the degree of damping and, in particular,
gain margins are not implicit.

There has been, and continues to be, developments which reduce the above and other limi-
tations at the expense of more complicated programs and conditions needed to obtain a
realisable and stable solution. It is usually advantageous to employ alternative,
although 'sub-optimal', design techniques to augment solutions from the matrix Riccati
equations.
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4.2 Parameter optimisation

After gaining some experience with a specific problem, the control law structure
can be defined in terms of realisable filters between each motion sensor or pilot
command and each motivator. The design problem becomes the selection of the parameter 0

(combining G and F in Fig 1) which minimises a selected function (of outputs y
caused by a defined set of disturbances or inputs), eg

t f

V f (yTXy)dt iV(1)

t O

where A is a weighting matrix assumed to be diagonal and N is the order of the aircraft
and FCS equations. An iterative hill-climbing procedure is used to find eop which
minimises V . Theoretically, the process may converge to a local minimum-bht, in
practice, the initial guess of the optimum values of e are close to the final values,
especially when solutions using the matrix Riccati equations are available.

If the output y does not include all state variables x (now representing both
aircraft and FCS equations, simplified or not), or if a specific value of relative damp-
ing c = r0 is desired, a more appropriate function is:

N

v = iVi + - CC] (12)

where 6 = 0 if r , 0 or 6 is large if < O • Such a constrained optimisation
procedure has caused few problems other than the need, in general, to perform calcula-
tions for each V in the time domain and for the relative damping in the s-plane. How-
ever, most distur ances can be approximated to white noise for which the responses in x
or y of linear systems are linearly related to their responses to initial conditions,

and Zo can be calculated in the s-plane alone (see sections 3.3 and Fig 4). Consequently
rapid calculations of each Vi can be obtained without employing lengthy time history
calculations.

4.3 Conflict curves and the compromise constant control laws

The main difficulty with parameter optimisation is the selection of the diagonal
weighting matrix x in equation (11). Consider the simplest case when N = 2

V = V1 + X2V2 (13a)

The optimum occurs when 3V/3e = 0 , ie

i 2m  ) \0 ° (13b)

where the gradients are calculated at the optimum control state, eop • Equation (13)

defines the value of A2 which should be used, but this requires an a priori solution
of the problem.

This weighting dilemma is illustrated in Fig 5a by plotting V1  against V2 as

the weight X2 in equation (13a) is changed in successive optimisations. When A2  is
large, V2  is a minimum employing parameter values A (in many cases the gains o
most of the components of ea are zero). When X2 is small, V2 is just acceptable
and V1  is a minimum employing parameter values OB . Between these extremes, there is
a compromise set of parameter values eC which is best selected by engineering judge-
ment having first derived the conflict-curve.

In the general case, the measurement matrix V is high order because the equations
of motion include the FCS components and the control laws themselves. The conflict
curve between two (or more) elements of V can be obtained using a constrained
optimisation. The function to be minimised is:

N

V 1 + 62[V2 - C2] + X 6i[V i - Ci] (14)
i~3

where 6i = 0 when Vi x Ci or 6i is large when V s Ci . The result is a minimum
value for V1 with each Vi  (i =, ..., 2n) just less than the associated constraint
Ci provided there is a solution for V. = Ci . By changing the value of C2  in

successive applications of the constrained parameter optimisation, a conflict curve of
V1 against V2 is obtained for which all other elements of V are forced to be less
(usually, just less) than the assumed constant constraints.
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A practical example is instructige. The pitch rate manoeuvre demand for an experi-
mnental FBW system in a Hunter aircraft involved a compromise between the effects of rate
gyro noise (V2) and the transient pitch rate error to a pitch rate command q,(V1 ) . In
this simple case, we wished to minimise Vjsubject to the condition that actuator
activity due to sensor noise was acceptable. Assuming a model of sensor noise and a
model of the actuator, we defined:

T

V 1  f C [- qc]2 dt for lagged step q c
0

T

V 2  = T ;2 dt ,for sensor noise w

where T is very large and is elevator rate. We obtained the conflict curve

Vl vs V2 ,the points on which defined possible values of the control parameters. The
models of the rate gyro noise and the actuator were then replaced by actual hardware and
the compromise values 6C selected as that for which V1 was smallest subject to the
condition that the real-actuator motion caused by real gyro noise was acceptable. The
author's finger placed on the actuator was used as the means to measure acceptable
actuator motion!

4.4 Sensitivity to changes in aircraft or environment

In the above discussion of optimisation techniques, there has been no consideration
of direct control of sensitivity aspects of performance, ie changes in the characteristics
of the aircraft or FCS and changes in disturbance characteristics, gusts or sensor noise.

Consider, for example, the conflict curve V1 v8 V2 where

V 1  J 2 y(v)dt ,T

(15)
T

V2  f y2 (w)dt ,T -

0

je the effects of gusts, v . against the effects of sensor noise, w .This conflict
occurs in every closed loop although the outputs (y1, Y2) may change from loop to loop.
The conflict curve depends on the magnitude and, to a lesser extent, the frequency
components of v and w . As an example, the change in the conflict curve for three
magnitudes of the external disturbance v , assuming constant sensor noise w . is shown
in Fig 5b.

When v is small, V1 is negligible and we would select control parameters close
to 0A -When v is large, a more acceptable solution is close to 2B 2 accepting a
large value of V2 . A more complex situation arises if the magnitudes of both v and
w change.

This example illustrates a major difficulty closely associated with the weighting
dilemma discussed above. With constant control parameters, an optimum can be defined
only for constant values of the inputs and disturbances, eg 'average' models. For other
values, the system is far from optimal. This limitation is unacceptable when we are
seeking best performance for difficult flight tasks and for infrequent severe environ-
mental conditions.

The situation is made more complicated if we introduce a gain margin AGL Of
sufficient magnitude to ensure that V2 in the above example remains fully acceptable
for the worst combination of errors in the closed-loop gain (section 3.2). Because the
gain margin decreases as we change from OA to OB ,dashed line in Fig 5b, the compro-
mise parameter values eC must be chosen, in many cases, to be e rather than eC
ie applying a smaller nominal gearing than that decided from considerations of the con-
flicting elements of V alone, ie neglecting gain margin situations. The resulting
decrease in the system's rate of response may be unacceptable in seeking improved per-
formance for future aircraft throughout the flight and manoeuvre envelope.

5 THE FUTURE USE OF NONLINEAR CONTROL LAWS

As discussed in sections 3 and 4J, many conflicts arise in the design of conven-
tional control laws because:

(a) the control parameters which minimise one aspect of performance differ from
those which minimise other aspects. A compromise is necessary with
conventional control laws with which parameters are essentially constant;
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(b) due allowance must be made for errors and variations, especially in terms of
the gain margin AGi in each closed loop.1I

The compromises obtained in designing conventional control laws usually yield satisfac-
tory flying qualities except when the flight task is difficult and/or when severe
environmental conditions are experienced.

Current research 9 I 0 into selected nonlinear control policies is aimed at reducing
the extent of such conflicts so that improved flying qualities can be achieved under all
expected conditions. Although this work is still in progress, it was considered worth-
while to conclude this paper with a short discussion on the subject.

5.1 Variable integral control to optimise response

In the selection of the constant parameters in the closed loop control laws, eg ii
and I/Ti of Fig 3, a compromise is made between two or more conflicting aspects of
performance. Recent studies1 0 have established the feasibility of varying Gi as a
function of on-line measurements of these conflicting aspects of performance. The para-
meter l/Ti and other control parameters are slaved to the variation of Gi such that
if Gi remains set at a value in the allowed range:

GiA > G > GiB

for any length of time, then damping and other aspects of performance are satisfactory.

The on-line measurements are derived from the error signal e , Fig 1, and separa-
ted by suitable filters into positive definite functions E1  and E2 measuring those
frequency components that could be reduced by either increasing or decreasing Gi
respectively. For example, we allow Gi to vary according to:

Gi(t) xiEl(t) - X2E2 (t) (16)

where A1 ,2 are suitable weights. A number of precautions are necessary, including the
use of an integral loop, Gi+l or its equivalent, so as to avoid prolonging the duration
of large values of Gi . The latter condition has led to this technique being called1 0

VICTOR, Variable Integral Control To Optimise Response.

For most of the time, El(t) is negligibly small for the flight task in hand, ie
the low frequency components of the error signal e have negligible amplitude. The
gearing Gi reduces to its minimum GiA together-with an associated increase in noise
filter time constant. Consequently, the effects E2 of high frequency components of
inputs, external disturbances and noise are much smaller than with the compromise
constant control laws, GiA < GiC . When E1  increases due to pilot command, external
disturbance or low frequency noise, Gi increases rapidly to its maximum GiB > GiC for
large E, . There is a more rapid decrease of E1  than with the compromise constant
control iaws which leads to a rapid decrease of Gi to the minimum GiA as El
approaches zero. Because the application of high values of Gi is transient, the
corresponding increase in E2 is transient and, therefore, acceptable. Referring to
Fig 5b, we are allowing the control laws to change rapidly from 0A to OB during the
transient response to any input or disturbance.

5.2 Self-adaptive properties of VICTOR

The gain margin AG. is large when Gi.= GiA , but as the gain is increased
through the compromise vafue GiC to the maximum value GiB , the gain margin decreases.
In a recent study1 O of the pitch rate plus integral to elevator loop for a longitudinally
unstable aircraft, the gain margin was 25 for Gi = GiA and 3 for Gi = GiB .

It is convenient for the present and subsequent discussion on self-adaptive tech-
niques to express the gearing Gi between the sensor and control surface as the product:

G i = (GaGv  (GaO + AG a)Gv (17)

where Gv is the VICTOR gearing and Ga is the control surface gearing which, ideally,
compensates for the control surface effectiveness, Ba

a
Gao 1-

We assume an error AGa in Ga , bearing in mind that there are contributions to AGa
other than errors in Ba

As Gv  is increased, the situation can arise when the gain margin AGi approaches
AGL , so that poor damping and hazardous limit cycling could occur. However, the second
performance measure E2 in equation (16) can be chosen to increase rapidly as the
relative damping decreases so that the VICTOR gearing 0 v is decreased. As a result,
the system recovers rapidly from large errors AGa in Ga

The magnitude of E2 may increase due to either an increase in sensor noise, or
detection of high frequency external disturbances or deterioration of the FCS equipment,
as well as incorrect compensation of the control surface effectiveness. It is hazardous,
therefore, to estimate Ba in a self-adaptive manner from this technique alone.
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Nevertheless, the onset of a large value of E2 can be used to restrict the maximum
value of GiB until the correctness of Ga has been checked using more appropriate
self-adaptive schemes (section 5.4).

5.3 Alternative self-adaptive schemes

In the design of conventional scheduling laws, a comprehensive model of the air-
craft plus FCS is used to derive the laws by which selected parameters 6a are varied as
functions of the outputs of available scheduling sensors. The applied value of 6 must
allow for a tolerance Aea equated to the expected worst combination of errors A
variations in all factors contributing to both the closed-loop characteristics and the
transfer function between the output y and pilot command Ec (section 3.2).

With explicit self-adaptive schemes I , a simplification of this model is programmed
in the FCS computers with a view to updating the parameters M of a simplified model
from on-line measurements of the system's response to measurable inputs. Appropriate
values of 0 a are computed from M using previously determined parametric relationships.

In effect, the model is fed by the same inputs as the system. The model output

is an estimate of the aircraft's response y . The difference signal:

d yy

is used to change the model parameters M in order to reduce the difference signal d
In some cases, it is possible to estimate the error &M in M so as to estimate Aa
and a safe value of ea

In comparison with similar techniques used for the identification of the aero-
dynamic characteristics of aircraft, explicit adaptation differs in a number of ways,
some of which are listed in Table 4. Of these differences, the most important is the
need to ensure that gross errors in ea are avoided since these can lead to a hazardous
situation. We restrict attention in this chapter to the question of reliable adaptation
rather than survey the variety of algorithms available for accurate identification of M
in the presence of noise.

Nearly all self-adaptive schemes so far investigated have been based on estimating
the closed-loop gearing Ga , Fig 6b, and adjusting other components of ea in accor-
dance with pre-selected parametric relationships. Such Ga-adaptation tends to be
unreliable for three main reasons. Firstly, a grossly incorrect value of Ga can cause
hazardous poor damping and limit cycles. Secondly, the difference signal d is
insensitive to small errors in G leading to inaccurate identification. Thirdly,
simplifications to the model of Re aircraft lead to errors in Ga

An alternative scheme based on estimating the input filter gearing ka , Fig 6 c,
has been investigated recently. In contrast to Ga-adaptation, an adaptive scheme based
on estimating ka has the following advantages:

(a) grossly incorrect values of ka do not cause poor damping of the closed-loop
and the self-adaptive loop recovers rapidly from a transient incorrect value
of ka ;

(b) the difference signal d is relatively sensitive to small errors in ka and
can be made more sensitIve if the closed-loop integral gearing is small
during adaptation;

(c) the model is simple and changes mainly through a change in closed-loop
response time Ti which is related to the VICTOR gearing Gv

Rapid and relatively accurate variations in k are, therefore, acceptable. Adjustments
to other parameters, particularly Ga , could ge made using pre-selected parametric
relationships between ka and other components of ea . It is preferable, however, to
apply a number of additional precautions embodied in-the concept of redundant adaptation
with safeguards.

5.4 Redundant adaptation with safeguards

In order to explain this concept, we restrict attention to a specific case for the
three parameters, the closed-loop gearing G , and the gearing ka and time constant
Ta of a first order input filter, Fig 6a. ideally, ka is the reciprocal of the gain
in the transfer function between xc and xi and depends in a known way on the VICTOR
gearing Gv . The time constant ta  is related to the zero of this transfer funition.

Rapid and continuous ka-adaptation is allowed for both pilot input commands and, if
the latter has not occurred during the previous t, seconds, for a specially timed test
signal. Estimates of G and t are made from the current value of ka using pre-
selected parametric rela~LonshlpS and these estimates are compared with independent
estimates of Ga and T obtained from separate explicit self-adaptive schcmes for Ga
and a - Agreement within a pre-selected tolerance leads to an update of Ga and Ta
although the rate of change of G is made less than the expected maximum rate of change
of the motivator effectiveness. gignificant disagreement leads to a rapid decrease of
the VICTOR gearing Gv for the short time t2 necessary to apply the following special
adaptation process.
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The specially tuned test signal is applied at two values of the VICTOR gearing, one
low and one high, so that the system's response characteristics are changed significantly.
Two estimates for each of the three parameters ka, Ga and Ta ;1I Mad, irJ l
Agreement of all three within a pre-selected tolerance leads to an update of Ga and Ta
In the unlikely event of a continuing disagreement, the gearing Ga is set at the lowest
value.

Two further precautions are applied. Firstly, in the unlikely event of G being
set on a grossly incorrect value, the VICTOR scheme causes the closed-loop gain o reduce
automatically and rapidly, thus preventing a hazardous situation. Such an event initiates
the above special adaptation process in order to distinguish whether the measure of noise
effects (E2 ) increased due to an increase in sensor noise or due to incorrect Ga  '
Secondly, limits are set to the maximum allowed excursions of the values of (Gal ka, "a).
With a pilot-selectable, task-oriented control system, these maximum allowed excursions
are changed such that, fcr flight tasks requiring maximum VICTOR gearings Gv , a tighter
constraint is placed on the allowed self-adaptive variations.

This type of redundant adaptive concept fits in with the use of analytic redundancy
schemes under development for detection of failures other than potential failures in the
nonlinear control policies. Further consideration of this aspect of the subject is out-
side the scope of this paper although, as mentioned in section 2.1, these system aspects

should be considered side-by-side with performance aspects in any practical design,
analysis and assessment.
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Table 1

Types of function programmed in an FCS computer

Function Definition

Flight control laws Provide appropriate feedback (G) and feedforward (F)
control signals to each motivator from motion sensors
and pilot's commands

Scheduling laws Vary flight control laws as the aircraft character-
istics change across flight envelope. Also, varies
control laws with flight task

System algorithms Provide acceptable FCS failure detection, isolation
and survival capability

Table 2

Difficult flight tasks

1 Air-to-air tracking/high incidence manoeuvring

2 High speed, low level dash

3 Air-to-ground tracking

4 Approach and landing

5 Take-off

Table 3

Analysis te hniques incorporated in TSIM

Sub-routine Comment

1 Time response Applicable to both linear and nonlinear equations

2 Roots and root loci s- and z-planes, and mixed continuous/discrete systems

3 Frequency response

4 Parameter optimisation Optional hill-climbing procedures. Discussed in
section 4

5 Matrix Riccati equations Discussed in section 4

6 Sensitivity analysis Performance matrix evaluated as specified control and
aircraft parameters are changed

7 Observer designs
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Table 4

Main differences between explicit self-adaptation and identification

Although the aircraft is 'identified' during self-adaptation, there are significant
differences between self-adaptation and identification procedures with a new aircraft.

(1) with self-adaptation, there is pre-knowledge of the relationship between the
components of the aircraft model M which leads to approximate parametric
relationships between the ccmponents of -a ;

(2) the system, aircraft and FCS, is better behaved than the basic aircraft and,
in particular, its response to a pilot command is accurately known;

(3) the characteristics of the system can be changed in a defined manner, eg by
varying the VICTOR gearing Gv ;

(4) there is less store available in the FCS computers for on-line self-
adaptation compared to ground-based computers with large store available for
identification;

(5) gross errors in the estimated a could be dangerous and must be avoided or
otherwise prevented from causing a hazard;

(6) special inputs must be small and infrequently used for self-adaptation
whereas large signals are needed for identifying nonlinear characteristics
of aircraft;

(7) delays in updating 0 must be short compared with possible variations in
the aircraft characteistics.

'I
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DESIGN TECHNIQUES FOR MULTIVARIABLE FLIGHT
CONTROL SYSTEMS

C. A. Harvey
R. E. Pope

Honeywell Systems and Research Center
2600 Ridgway Parkway

Minneapolis, Minnesota 55413

SUMMARY

Modifications to airframe designs directed at increased maneuverability and reduced weight are
placing stringent demands on flight control systems. This is particularly true for advanced fighter
aircraft which may possess relaxed static stability, additional surfaces for direct force control, and
active structural control requirements. Fly-by-wire systems, particularly digital systems, have
provided the flexibility to not only accommodate but influence airframe design modifications and have
led to the control configured vehicle (CCV) concept. These advances in air vehicle design and flight
control system implementation have begun to overwhelm traditional design techniques which are most
effective on aircraft applications with few surfaces, little dynamic coupling, separation between flight
control and other avionic subsystem bandwidths and analog system implementations. This Chapter will
describe and illustrate, through flight control design examples, new techniques which address 1) the
multi-input closely coupled nature of advanced flight control applications and 2) digital implementation
issues. The techniques described seek to exploit the advantages of traditional techniques in treating
conventional feedback control design specifications and the simplicity of modern approaches for multi-
variable control system design.

SYMBOLS

A System matrix Ps Stability axis roll rate
B Control matrix p Riccati matrix-optimal control
C Measurement matrix q Robust estimator design parameter
C* Linear combination of normal Q Weighting matrix

acceleration and pitch rate r Left singular vector
c Collective r Stability axis yaw rate
dc Differential collectiveR Matrix of left singular vectors; control
E Expected value weighting matrix
F Kalman filter gains rlim Rate limit
G(s) Open-loop transfer function matrix S Riccati matrix - filter
gr Rotor dynamics transfer function s Laplace operator
H(s) Closed-loop transfer function matrix u Control vector
Hz Hertz U, V, G Inverse Nyquist array matrix transformations
I Identity index v Right singular vector
J Performance index V Matrix of right singular vectors
J I x System state vector
k Loop gains y System measurement
K Gain matrix z Vertical velocity
L(s) Perturbation matrix z Scalar variable analogous to inverse Nyquist
M Relative maximum of closed-loop variable; discrete plane operator

amplitude-frequency response Z Transform operator

9 Intermediate variable in calculation of z w Frequency
Non-linearity input amplitude a Singular value

8 Control deflection E Diagonal matrix of singular values
Damping ratio p Scalar weighting parameter
Eigenvalue .A% Diagonal matrix of eigenvalues

O Bank angle 9 System noise
G Sensor noise; pitch angle System noise covariance matrix
6 Measurement noise covariance matrix

Acknowledgment. The flight control system design techniques described in this chapter were developed
under U.S. Office of Naval Research Contract # N00014-75-C-01444 and NASA Dryden Flight Research
Center Contract # NAS4-2518. Honeywell's Systems and Control Technology section, primarily G. Stein,
T. Cunningham, J. Doyle, R. Stone and G. Hartmann contributed extensively to the developments
described through initial development and application of these techniques to numerous flight control
design problems.



1.0 INTRODUCTION

A multivariable flight control system is one in which there are multiple interacting control loops.
This interaction is dictated by the dynamic coupling resulting from the aircraft design. Until recently,
aircraft were de~signed to minimize dynamic coupling.

For the design of flight control systems with little dynamic coupling, traditional or so called classical
design and analysis techniques are more than adequate and provide key insights into the fundamental.1 design issues of feedback control systems. The design and analysis techniques discussed in this chapter
are directed at systems whose control loop interaction extend the utility of classical techniques to the
point where they are not only cumbersome to use as design tools but produce flight control system
designs with undesirable performance characteristics. The inadequacies of classical design techniques
are by no means accepted facts. There has been continuous debate over the two last decades as to the

* utility of classical techniques versus the utility of non-classical or modern techniques.

It is useful to view the utility issue from the perspective of the flight control system application,
particularly as flight control systems have evolved over the years. In depicting that history, the
essential items to consider are

0 the aircraft application

0 the performance requirements

0 the control approach

These items determine the utility of the design and analysis techniques.

The first row of Table 1 represents the aircraft application, performance requirements, control
approach, and design and analysis techniques for early aircraft up through aircraft built in the 19501s.
For these a~pplications the airframe was designed to provide stability and control for the three attitude
degrees of freedom and the propulsion system was designed for speed control. The control approach
was open loop and design and analysis techniques were airframe oriented. Feedback control design
techniques representative of classical techniques are shown for systems described by row 2 of Table I.
In this case also, the airframe was designed to provide 3 DOF attitude stability and control and the
propulsion system provide speed control. Inadequate airframe designs or the promise of improved
performance resulted in feedback systems which were used to augment stability. The most prevalent
example Gf such a stability augmentation system is a yaw damper. The introduction of feedback control
required additional design and analysis techniques, particularly those which addressed the stability
characteristics of feedback control systems. Because the feedback control design was very simple,
involving only one sensor variable and one surface command, classical techniques were very effective
and led to the acceptance of stability margins as flight control system design specifications.

Additional demands were then placed on flight control systems in the form of command augmentation
systems as shown in row 3 of Table 1. The airframe application still remained the same with or without
a need for stability augmentation. Handling quality tests determined that command augmentation
provided better handling qualities as exemplified by the acceptance of rate command systems or C*
systems. Traditional design techniques were still very adequate for design since despite an increase in
thie number of sensor and surface pairs, the design could be performed one pair at a time because of the
loose dynamic coupling.

The introduction of command augmentation, however, initiated the application of modern multi -
variable techniques, particularly model following approaches. These techniques promised to facilitate
flight control system design thus producing better designs. Despite the promise, they were not widely
accepted by practical control system designers.

Fly-by-wire systems, particularly digital FBW systems, as shown in row 4 of Table 1, brought
new issues to flight control design. New techniques were developed and utilized to insure that digital
systems performed as closely as possible to their analog counterparts. In addition the availability of
a digital computer and its associated "unlimited" computational capability on board the aircraft
encouraged more application of modern techniques which promised better performance. Again these
techniques were not wide*.y accepted by practical control designers.

The systems described by row 4 of Table 1 represent the state of the art of todays production
aircraft. Table 2 presents characterizations for current experimental and prototype aircraft and
projected production systems. The introduction of the control configured vehicle (CCV) concept has
had a dr-imatic effect on flight control systems. In a CCV aircraft, the flight control system is not
merely augmenting stability or improving performance, but is providing a flight critical stabilizing
and control function. The criticality of the flight control system in a CCV application has intensified
the need for efficient and reliable design and analyses techniques. CCV aircraft, in themselves
however, do not possess dynamic coupling levels which make classical design techniques intractable.
In addition, classical techniques directly address stability issues and have therefore been much more
attractive to a designer for CCV control designs.
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Direct force control, made possible by additional surfaces and thrust vectoring of the propulsion
system, as characterized by row 2 of Table 2 introduced a flight control design application that benefits

from multivariable control techniques. In this application, it is difficult to eliminate closely coupled

dynamics in the airframe design. Interaction with the propulsion system can magnify the coupling.
For this application, the large number of control inputs and the close coupling of dynamics can easily
overwhelm classical "one loop at a time" techniques.

The problem is projected to worsen with the integration of flight control and other avionics sub-
systems as shown in row ? if Table 2 and Figure 1. In the sections that follow, we will discuss design

and analysis techniques whLch have been developed to address these multivariable control problems.
In the development of these techniques, which is still ongoing, the goal has been an efficient flight
control design and analysis capability which addresses the following:

i) multi-input closely coupled dynamic systems

ii) conventional design specifications, particularly stability margin and high frequency attenuation

iii) the impact of unmodeled or uncertain dynamics on system performance

iv) digital realizations.

These items are addressed in varying degrees of detail in the techniques that are described and illustra-

ted by design examples.

2.0 DISCUSSION OF TECHNIQUES

Various approaches exist for the design of multivariable flight control systems. This section
presents a brief review of certain of these approaches followed by summary descriptions of the techni-
ques with illustrative examples.

2.1 Review of Approaches

One approach is to use a classical single-input, single-output (SISO) technique for the design of one con-
trol loop at a time. In this approach the design of each individual loop is carried out on the basis of that
loop's input-output pair and its effect on the input-output pairs for the other loops. This approach can
be useful for certain problems, but its capability is severely limited for highly coupled multivariable
systems. Furthermore, analysis of multivariable feedback systems with SISO techniques can give
misleading results.

An approach to extending SISO techniques to multivariable systems makes use of approximate
decoupling and the Inverse Nyquist Array methodology [2. 1, [2. 21. This approach cani be useful for
systems that are sufficiently decoupled to be naturally diagonally dominant. But, forcing the loop
dynamics to be diagonally dominant appears to impose undue restrictions on the design. Furthermore,
the diagonalization or near diagonalization process can yield highly misleading conclusions concerning
robustness with respect to design model uncertainty, by which we mean all the uncertainty between the
design model and the actual operating system.

Another approach to extending SISO frequency domain techniques to multivariable systems uses the
Characteristic Loci methodology [2. 31, [2. 41. In this approach characteristic gain functions and
characteristic frequency functions are defined in terms of appropriate matrix-valued rational functions
of a complex variable to generalize the Nyquist-Bode and root locus methods used for SISO systems.
This approach is appealing because of the mathematical insights that it can provide. But, it also can
yield misleading conclusions concerning robustness with respect to design model uncertainty. Another

drawback to this technique and the INA technique is that they are limited to square systems, that is,
systems that have the same number of outputs as inputs. This could represent a severe limitation of
the design process.

Alternatives to the frequency domain methods include the modal control appt oach and the linear-

optimal approach. Both of these approaches commonly deal with state space formulations which permit
treatment of non-square systems with ease. But, the deficiencies associated with these approaches
are generally related to key issues that are most naturally expressed in frequency domain terms.

The modal control approach consists of choosing feedback gains so that the closed-loop system has
desired elgenvalues and eigenvectors (2. 51, (2. 61. This approach can be useful when design requirements
can be easily expressed in terms of desired closed-loop modal characteristics. But, in many cases the
system design requirements cannot be so simply expressed. This is especir.lly true for design require-
ments associated with tolerance to design model uncertainty.

In the linear optimal control approach, controllers are determined that minimize a performance
index which is the integral of a cost function. This cost function is a sum of quadratic terms in the
states and controls. The controller uses feedback of all the states of the sy-tem or estimates of these
states if all the states cannot be measured. This approach appears to be the most widely applicable,
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but there are certain difficulties involved in its use. The first issue that arises is that of selecting
appropriate weighting matrices for the cost function. A second issue that arises is that linear optimal
controllers often have inadequate high frequency attenuation and excessive bandwidth. Another issue
is the care required in the design of an estimator or observer so that the guaranteed stability margins
of optimal full state feedback control are nearly preserved when the output of the estimator or observer
is used in the feedback path.

A major deficiency in each of the above approaches is the lack of guaranteed robustness with respect
to design model uncertainty. A viable approach to the analysis of this robustness is the use of singular
values and certain characterizations of the design model uncertainty. Since there is no existing synthesis
technique which corresponds directly to this analysis technique, it appears that such an analysis must be
incorporated in the design process. That is, preliminary designs should be subjected to such an analysis,
and if this analysis shows the design to be inadequate, then further iterations of the design should be
made guided by the robustness analysis results.

2.2 Description of Linear-Multivariable Design Technicjues and Illustrative Examples

The robustness of several of the illustrative examples will be analyzed using singular value analysis.
So this method will be briefly summarized proceeding to the description of the design techniques.

As indicated above, a critical property of feedback systems is, their ability to maintain performance
in the face of uncertainties. In particular, it is important that a closed-loop system remain stable
despite differences between the model used for design and the actual plant. These differences result
from variations in modeled parameters as well as plant elements which are either approximated,

aggregated, or ignored in the design model. The robustness requirements of a linear feedback design
are often specified in terms of desired gain and phase margins and bandwidth limitations associated
with loops broken at the input to the plant actuators [2. 71, [2. 81. These specifications reflect in part
the classical notion of designing controllers which are adequate for a set of plants constituting a
frequency-domain envelope of transfer functions [2.91. The bandwidth limitation provides insurance
against the uncertainty which grows with frequency due to unmodeled or aggregated high frequency
dynamics.

The Nyquist or Inverse Nyquist diagram (polar plots of the loop transfer function) provides a means
of assessing stability and robustness at a glance for SISO systems. Multivariable generalizations of
the scalar Nyquist, Inverse Nyquist and Bode analysis methods can be developed from a basic result

on robustness properties of linear systems expressed in .erms of singular values.

Detailed discussions of the concepts of singular values and singular vectors are given in references
[2. 101 and [2. 111. For simplicity, these concepts will be briefly described here for square matrices,
although the concepts apply to arbitrary matrices.

2.2.1 Singular values

The singular values a. of a complex n x n matrix 4, are the nonnegative square roots of the eigen-
values of A*A where A* is the conjugate transpose of A. The (right) eigenvectors v i of A* A and r i of
AA* are the right and left singular vectors, respectively, of A. These may be chosen such that

aor. = Av. , i = 1, ... n (I)

a I a 2 S ... ! an

and the fri and (vil form orthonormal sets of vectors. The singular value decomposition of A is
I~i *

A = R V (2)

where

R = r I , r 2 ' . . . . r n ] V v. v2 . . . v] (3)

and Z is the diagonal matrix with diagonal elements al, a2. 0 a n . The minimum and maximum
singular values have special significance and will be denoted here by 2 (A) and F (A) respectively.
These singular values derive their special significance from the relations

min 1A.11max JIMx11
o()=min IlAxil -A ma=l~i (4)

C1x11 = I (A) = 11x11 = 1

and a (A) is the spectral norm of A. The singular values give an accurate measure of how close A is
to being singular. The ratio q/F is known as the condition number with respect to inversion. The
eigenvalues of A generally fail to provide such an accurate measure. The magnitudes of the eigen-
values of A are bounded below by Z (A) and above by F (A). But, the magnitude of the smallest eigen-
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value can be much larger than 2.(A), and the magnitude of the largest eigenvalue can be much smaller
than -(A). This key difference between singular values and eigenvalues is the reason that singular value
analysis provides an adequate measure of robustness and that eigenvalue analysis is inadequate.

Now consider the linear feedback system shown in Figure 2 where G(s) is the nominal loop transfer
matrix and L(s) is a perturbation matrix which is nominally zero and represents the deviation between
G(s) and the real plant. A reasonable measur of the robustness of this feedback system is the magni-
tude of the perturbation which may be tolerated without causing instability. Taking the magnitude of
L(s) to be its spectral norm, the following basic result was obtained by Doyle [2. 121.

If a system, such as that shown in Figure 2, satisfies the following conditions:

i) G(s) and L(s) are n x n rational square matrices

ii) Det G(s) # 0

iii) L(s) is stable

iv) The nominal closed loop system H = G(I + G) 1 is stable

then the system is stable for all perturbations that satisfy

-(I +G _ > 3(L(s)) (5)

for all s in the classical Nyquist D-contour consisting of the segment of the imaginary axis from -jR to

+jR and the semicircle of radius R in the right half-plane with R chosen sufficiently large.

A similar result holds for a system with the perturbation shown in Figure 3. In this case the
quantity I + G(s) 1 in (5) is replaced by the quantity I + G(s).

The singular values also have useful graphical interpretations. Consider the dyadic expansion

H I +G= rivJ=l i i i

a1 r ,2 r n (6)

x

where the oyi, ri and vi are the singular values. and left and right singular vectors, respectively of
I + G - 1 . This is an alternative form of the singular value decomposition in equation (2).

It has been shown [2. 13] that the eigenvalues and eigenvectors of a rational matrix are continuous
(through generally not rational) functions of frequency. Since singular values and vectors are just
special cases, ai(j w), ri(Jw) and vi(jw) are also continuous functions of w.

Since
-1 I GI-1 1 *

H(I+(I)+ = - v.r. (7)
0. 1 I

the values I/al(jw) and I/on(jw) give the maximum and minimum possible magnitude responses to an
input sinusoid at frequency w. In this sense, a plot of these singular values vs. frequency may be
thought of as a multivariable generalization of the Bode gain plot. Plots of this type will be referred
to as a>-plots.

Another useful graphical interpretation analogous to the scalar Inverse Nyquist diagram may be
constructed by noting that

G
- = Ervi* - I

-a Er v* -Ev v.*
ir i ii (8)

, E(oir i  vi)vi*

where Pig. = ir i -v i with Pi real and 11gt, 1 1 for all i.

Let zi be defined implicitly as a function of a i and 8i by the quadratic equation

z. 2 + (I + -a
2
)z + 0 2 = 0 (9)i
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By plotting the zi(jw) (i=1 ... m) for frequencies of interest a plot analogous to the scalar Inverse
Nyquist plot is generated. While phase does not have the conventional meaning on these plots, the more
important notion of distan, from the critical point preserves its importance. These plots will be
referred to as z-plots.

Concepts such as M-circles are also obvious in this context. The minimum value of M is given by

Mm max (1/a l(j)) (10)m W 1

Similar results may be obtained for additive perturbations by working with I + G rather than I + G- 1 . In
this case a diagram is generated which is analogous to the scalar Nyquist diagram.

Singular values offer no encirclement condition to test for right half-plane poles. But this is not a
major deficiency because there are other simple techniques to assess the stability of the nominal system.

2.2.2 Deficiencies in Existing Approaches

The single-loop-at-a-time approach involves first of all the selection of loops. That is, for a
system with a given number of inputs it is assumed that there are at least that many outputs of interest
and the first question that arises is what outputs should be paired with the inputs. For some systems

this choice is obvious from the system characteristics. In highly coupled systems the choice may be
difficult. Once the pairs have been selected, it is necessary to choose the sequence of loop closures.
This choice also can be clearly dictated for some systems, but not for others. The design then proceeds
by closing one loop at a time, generally conducted in an iterative fashion. The robustness of the final
closed loop system is then examined by breaking one loop at a time and determining the stability margins.

The following example illustrates that analyzing robustness by breaking one loop at a time can be
very misleading. The example was chosen to demonstrate this point only and does not represent any
particular physical system. In fact, the controller considered is not representative of a good single-
loop-at-a-time design. The loop transfer matrix for the example is

G +1 S-100 10(s)+1)
G(s) = 2 +100 L-l(s+l) s-1l (11)

The open loop poles are at + 10j, and with identity feedback the closed loop poles are both at -1. Single
loop breaking analysis for either loop indicates that the phase margin is 90 and the gain margin is
+ - db. For comparison, the corresponding z-plot is shown in Figure 4. It is not a plot of a rational
function, so it may appear somewhat unusual. The important feature is the proximity of the plot to the
critical point, -1, which indicates a lack of robustness.

The discrepancy between these two robustness indications can be easily understood by considering
a diagonal perturbation

L = [ 0 (12)
0 k 2

where k and k2 are constants.

Then regions of stability and instability may be plotted in the (kl, k2 ) plane as has been done in
Figure 5. The open loop point corresponds to ki = k2 = 0. Breaking each loop individually examines
stability along the kl, k2 axes where robustness is good, but misses the close unstable regions caused
by simultaneous changes in k, and k2 . Thus, single loop analysis is not a reliable way of testing
robustness.

The approach taken with the Inverse Nyquist Array (INA) methodology attempts to extend SISO
techniques to multivariable systems. In this approach the key feature is the use of diagonal dominance
of the INA. Computer-aided displays of the Nyquist plots of the elements of the inverse of the loop
transfer matrix can be used to assess the closeness to decoupling. These plots can be examined, and

- - the information obtained can be useful in the selection of appropriate input-output pairs. If diagonal
dominance cannot be achieved by this selection process, the methodology suggest techniques for
introducing compensation to achieve the desired dominance. Once the diagonal dominance of the INA
is achieved, design of diagonal feedback is accomplished with SISO methods. References [2. 11 and [2. 21
are recommended for detailed descriptions of this approach.

The Characteristic Loci methodology uses multivariable generalizations of the open-loop gain as a
function of frequency and the closed-loop characteristic frequency as a function of gain. In this technique
an inner-loop is designed on the basis of characteristic frequency as a function of gain to serve as a
starting point for an outer-loop design which provides sufficient feedback gain to insure satisfactory
performance. This approach also uses computer-aided displays. In this case the displays of interest
are the loci of characteristic gain and characteristic frequency. Detailed descriptions of this approach
can be found in references [2. 31 and [2. 41.
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The following simple example was constructed to illustrate deficiencies associated with the Inverse
Nyquist Array and Characteristic Loci approaches.

Consider the system with loop transfer matrix

-47s + 2 56s

G(s) = (+l)s+2) -42s 50s +2J (13)

Assuming identity feedback, the closed-loop poles are at -2 and -4. This system may be diagonalized
by introducing constant compensation. Let

U = ](14)
7 8

and

[7 -8
V 1 (15)

U-6 7(

Then letting

= VGU = 2 (16)

1 s+2J

the system may be rearranged so that

H = G(I + G) 1

= UGV(I + UGV) - 1

(17)
= UG(I +G) (

= U G(I +a)-' V.

This yields a diagonal system that may be analyzed by scalar methods. In particular under the assumption
of identity feedback G represents the new loop transfer matrix. Because U and V represent a similarity
transformation, the diagonal elements of G are also the -tgenvalues of G so that the decoupling or domi-
nance approach and eigenvalue or characteristic loci approach would generate the same Nyquist or Inverse
Nyquist plot shown in Figure 6. Only a single locus is shown since the contours of 1/(s + 1) and 2/(s + 2)
are identical. The tempting conclusion that might be reached from these plots is that the feedback system
is very robust with apparent margins of + - db in gain and 900+ in phase. The closed-loop pole locations
would seem to support this.

This conclusion, however, would be wrong. The z-plot for I + G is shown in Figure 7 and there is
clearly a serious lack of robustness. The (kl, k2 ) - plane stability plot for this example is shown in
Figure 8. Neither the diagonal dominance nor eigenvalue approaches indicate the close proximity of an
unstable region. This failure can be attributed to two causes.

First, the eigenvalues of a matrix do not, in general, give a reliable measure of its distance (in a
parametric sense) from singularity, and so computing the eigenvalues of G(s) (or I + G(s)) does not give
an indication of robustness. Using eigenvalues rather than singular values will always detect unstable
regions that lie along the k 1 = k 2 diagonal, but may miss regions such as the one in Figure 8.

Second, when compensation and/or feedback is used to achieve dominance, the "new plant" includes
this compensation and feedback. Because of this, no reliable conclusiors may be drawn from this "new
plant" concerning the robustness of the final design with respect to variations in the actual plant. It is
important to evaluate robustness where there is uncertainty.

2.2.3 Modal Control

The modal control approach provides a method of finding feedback gains that yield certain desired closed-
loop eigenvalues and eigenvectors. The modal concept is common to many flight control applications.
For example, the lateral-directional axis of a fixed wing aircraft has three dominant modes (roll, dutch
roll, and spiral) and the longitudinal axis has two dominant modes (short period and phugoid). Desired
modal properties are often specified in terms of eigenvalues (frequencies, damping ratios, time constants)
and associated coupling or decoupling of responses. Handling quality criteria for the lateral axis are
expressed in such terms. The dutch roll mode should have an eigenvalue with desired frequency and
damping ratio and an eigenvector that ideally contains nonzero components for sideslip and yaw rate
only. The roll mode should have an eigenvalue corresponding to a desired time constant and an eigen-
vector which Ideally has roll rate as its only nonzero component. The spiral mode should have a small
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real eigenvalue and an eigenvector that ideally has only bank angle as its nonzero component. This
approach can be used with state feedback or output feedback.

The details of this approach may be summarized as follows. Consider the linear multivariable
feedback system

x = Ax + Bu (18)

y = Cx (19)

u = -Ky (20)

where the state vector, x, is n-dimensional, the control vector, u, is m-dimensional and the output
vector, y, is p-dimensional, A, B, C, and K are matrices of appropriate dimensions, and it is assumed
that

Rank (B) = m (21)

Rank (C) = p <5 n (22)

An eigenvalueeigenvector pair for the closed-loop system is denoted as (Xi, v.) where

A cv. = Xv. 1(23)

and A c is the closed-loop system matrix

A = A - BKC (24)
c

Only certain pairs are achievable. An achievable pair satisfies

Av. + Bw. = X.v. (25)1 I II

where w. is a vector with dimension = min (m, p).

In the case of state feedback, C may be chosen to be the identity, and (23) and (25) yield

w. = Kv. (26)
1 1

Letting A be the diagonal matrix with elements X. on the diagonal, V be the matrix with its i t h column
being the eigenvector vi, and W be the (mnx ) matrix with its ith column being wi, equation (25) yields

VA - AV = BW (27)

and equation (26) yields

W = KV (28)

which can be solved for K, i.e.

K = WV - 1  
(29)

Complex eigenvector pairs can be rotated to provide a real matrix K. In the case of output feedback,
equation (28) is replaced by

W = KCV (30)

and if p < n, the matrix CV has rank less than n so that (30) cannot be solved for K in general. One
method for resolving this difficulty is to select only p eigenvalue-eigenvector pairs with A denoting the
(pxp)diagonal matrix of eigenvalues and VT denoting the (nxp) matrix of corresponding eigenvectors,
and W denote the corresponding (wxp) matrix. Then K is given by

K (CV)- 1  
(31)

subject to

V'- AV = BV (32)

In this case there is no constraint on the remaining n-p eigenvalue-eigenvector pairs, and they could be
undesirable.
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The design procedure initially involves choosing portions of vi in order to eliminate certain state
responses from a mode while emphasizing others and letting other responses (control or compensation)
react arbitrarily.

For Rank (B) = m, m free parameters can be specified, one of which is the eigenvalue. Equation
(25) can be rewritten

Aciqi = [(A- XiI), BIqi = 0

q = ](33)

Iw i

qi is therefore a null space mapping of A A convenient tool for finding the relationship between viand w i is contained in the singular value 5ecomposition of Aci;

A = X.Z.Z. (34)
Cl 1 I i

where X i is an n-by-n matrix containing columns of orthogonal left singular vectors of A ci

X. is an n-by-n matrix containing columns of orthogonal left singular vectors of A ci

Z. is an n-by-n+m matrix containing n singular values, a's, of A ci

a 0...0 0...0

0 a2

.
n

0a 0... 0
n
nm

= r.[10 ~ is nxn diagonal

Z. is an nIrn-by-n+m matrix containing n-m orthogonal right singular vectors of A .

By rearranging (34)

A cZ. = X. . (35)
el I 1 1

and noting that the last m columns of the XiZ i product are null, we find the appropriate null space for
Aci by using the last m columns of Zi;

A .Z. = 0 (36)ci i

where Z. is defined as1Z [ P n-- (37)

The matrix is a set of m orthonormal basis vectors spanning the null space of A ci Referring to (33),
we have

qi = Zia i (38)

where a is an m vector of linear coetficients not all of which can be zero.

Now we would like to select desired v. and solve (33) for the corresponding w. This cannot be done
in general if m<n, but an approximate solution can be obtained by minimizing a performance index
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J (Vdi- v)* Q (Vdi - vi)  (39)

subject to (33) where v is the desired eigenvector. By this process one can select arbitrarily the
desired Vdi and the resulting v, which are attainable are the closest to those desired in the sense of
(39). This can be accomplished by replacing vi in (38) with v = E Z.ai where

E is an n-by-n+m matrix

E [1 0] n

n m

and minimizing (39) with respect to O,.I

at. = Arg min J
-2'E Q E2i- 1 2-* ET (0

(Z.i ET Zi  QVdi

the appropriate W. is found using (38)

.. . x T E~) 1 _ TW i  EZ i ti = EZ i(71i EQE i  E Q Vdi (41)

where E is an m-by-n+m matrix

E [ 0 I]} m

n m

2.2.4 F-4 Design Example

As an illustrative example this method was applied to the design of an inner-loop control law for the
F-4 lateral axis. The data for this example is taken from reference [2. 14]. The state space representa-
tion of this example is in the form of equation (18) with

P s stability axis roll rate

r s stability axis yaw rate

X 5 angle of sideslip

0 bank angle

8 ruc ler deflection
r

6 aileron deflection
a

u 18Lac aileron command

Matrices A and B are

-.746 .387 -12.9 0. I .952 6.05

.024 -.174 4.31 0. 1-1.76 -.416

.006 -.9994 - .0578 .0369 .0092 -. 0012

A 1. 0. 0. 0. 10. 0.

0. 0. 0. 0. 1-2 0 . 0.

0 0. 0. 0. 0. I 0. -10.

-A=
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0. 0.

0. 0. Open Loop Poles

0. 0. X roll subsidence - -. 079

B 0. 0. X dutch roll = -. 098 + j2.079

20. 0. X spiral = -. 0063

0. 10. X rudder actuator = -20.0

X aileron actuator = -10.0

From the point of view of fighter handling qualities, all four of the lateral axis closed loop roots
have desired values which can be taken from MIL-F8785B, as is done, for example, in reference [2. 141.
The desired roots are:

a) Roll subsidence mode = -4.0

b) Dutch roll mode = -0.63 + j2.42

c) Spiral mode = -0.05

Desired eigenvectors were selected to pair with the desired eigenvalues, and the method described
above was used to compute nearest attainable eigenvectors. The rcsults are:

a) Roll subsidence hiode (e-4tv1 )

Desired vdl [1. 0 0 a a a]

Attainable v1  = [1. -. 007 0 -. 25 .13 -. 56]

b) Dutch roll mode, real part (e- 6 3 t(cos 2 42t)v 2 )

Desired vd2  = [0 a 1. 0 a a]

Attainable v2  = [0 15.6 1. 0 7.86 -. 103]

c) Dutch roll mode, imaginary part (e-" 63t(sin 2. 42t)v 3

Desired vd 3  = [0 1. a 0 a a]

Attainable v 3  [0 1. 6.16 0 -9.49 14.61

d) Spiral mode (e-" 05tv4)

Desired vd4  - [a a 0 1. a a]

Attainable v 4  [-.05 .037 0 1. -. 0014 -. 00791

A few comments are in order to explain these choices. Consider, for example, the roll subsidence
mode. The desired eigenvector is taken to be vdl = (1 0 0 a a a), which means that the mode should
show up dominantly on roll rate, but not on yaw rate or sideslip (we want no sideslip buildup during turn
entries). These are good basic handling quality considerations. The a's in the vector indicate that we
do not care how much of the mode shows up on these components. Certainly, since ¢ =fpsdt, some
mode content has to be expected on element a 4 and, similarly, if the surfaces are actually controlling
the mode, some mode content should also appear in a 5 and a 6 . The linear projection which best
achieves these objectives is shown as v i above. Note that we can satisfy our desires almost perfectly.

Similar arguments also apply to the dutch roll mode. In this case we want no oscillatory dutch roll
content on roll rate and bank angle. This is a key handling quality requirement for all well-behaved
lateral control laws.

In the case of the spiral, we want the mode to be predominantly bank angle (corresponding to steady
turns) with no substantial sideslip component. The latter is a basic turn coordination requirement.

A sample design vas carried out with the modal approach assuming that the output, y, consisted of
the first four states. This output posed little difficulty, since our desire is embodied in four eigenvalue-
eigenvector pairs. There is some concern with the remaining two pairs. It is desired to have these
poles not be too far left from their open loop values. This is not a problem in this case, since the trace
of the open-loop system matrix is the same as the trace of the closed-loop system matrix. So the sum
of the closed-loop eigenvalues is the same as the sum of the open-loop eigenvalues. Thus, for this
example the sum of the remaining closed-loop poles is greater than their open-loop sum, and, in fact.
each of these closed-loop poles is to the right of their open-loop values. The closed-loop vales of X 5
and X6 are -19.03 and -6. 64 in comparison to open loop values of -20 and -10.
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An initial condition response for the open-loop system is shown in Figure 9. A similar response
is shown in Figure 10 for the closed-loop system. Dramatic improvement in reduced cross coupling
between the roll and dutch roll modes is evident. Also evident is the improved dutch roll damping
and the roll response time.

It is a simple matter to use this method to determine the effects of different sensor combinations
and compensators. This makes it a useful tool for tradeoff studies. Unfortunately there is no robust-
ness guaranteed so that this aspect of the design must be analyzed independently.

2. 2. 5 Linear Optimal Control

The linear optimal control approach has been extensively discussed in the automatic control
literature. The synthesis procedure in this approach usually starts with a mathematical model of the
form

= Ax + Bu + (42)

y Cx + 9 (43)

where and 8 represent system and sensor noise which are assumed to be gaussian, white, mutually
independent, stationary, and zero mean with covariances,

coV[u(t); (T)] = 6(t-T), C Z 0 (44)

coy [e(t); t(T)] = e (t-T), 0 0 (45)

The control law is obtained by minimizing a performance index of the form

T TJ = E f (xTQx + u Ru)dt (46)
0

The resulting control law is

u = -Kx = -R B P (47)

where P satisfies a Riccati equation and is an estimate of x given by

AS + Bu + F(y - C ) (48)

with F = SCT0 " and S satisfies another Riccati equation. In a deterministic versior of this approach
where it is assumed that there is no noise and C is the identity, the control law is given by (47) with

replaced by x. For this latter version it is known that the controllers possess guaranteed stability
margins of at least -6db and + - db in gain and at least 600 in phase at each input if R is chosen to be
the identity. It is also known that these controllers have first order attenuation at high frequencies.
This property can be a problem for many flight control applications. Controllers for the nondeter-
ministic version generally have higher order attenuation at high frequencies but they do not possess
any guaranteed stability margins.

One difficulty with this approach is that of relating the performance index to design spe,.ifications.
A method for selecting the weighting matrices, Q and R, on the basis of desired modal charEcteristics
is described in [2. 15]. This method is based on the asymptotic modal properties of optimal controllers
as the weight on the control tends to zero. The designer can choose desired modes the same way as in
the modal control approach and construct corresponding weighting matrices. The F-4 lateral-directiona l
example was also treated by this method, and the resulting controller's closed-loop transient response
was essentially the same as that shown in Figure 9. This controller does possess the guaranteed
stability margins.

2. 2. 6 CH-47 Design Example

In another illustrative example this method was used in conjunction with singular value analysis of
robustness. The example treats the longitudinal degrees of freedom of the CII-47 helicopter. In
forward flight, this vehicle exhibits coupled pitch attitude and vertical motion dynamics which must be
controlled by coordinated action of two inputs. This vehicle is a tandem rotor machine whose physical
characteristics and mathematical models are given in [2. 161. Control over vertical motions is
achieved by simultaneous changes of blade angle-of-attack on both rotors (collective), while pitch and
forward motions are controlled by changing blade angle differentially between the two rotors (differ-
entially between the two rotors (differential-collective). These blade angle changes are transformed
through rotor dynamics and aerodynamics into hub forces which theni move the machine.
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Our objectives will be to design a command augmentation control law which achieves tight, non-

interacting control of the vertical velocity and pitch attitude responses. A small perturbation linearized

aircraft model should prove adequate for this purpose and is available from [2. 161. The state vector

consists of the vehicle's basic rigid body variables x = (V, i, q, 0) (forward velocity, vertical velocity,

pitch rate, pitch angle). Two integrators are appended to achieve integral control of the primary

responses, and controls are the collective and differential collective inputs described above, u - (c. dc).

Hence, the design model is

x = Ax + Bu A,B in [2.161

Zcmd (49)

x6 cmd

The major approximations associated with this model are due to neglected dynamics of the rotors,

to neglected nonlinearities in the blade angle actuation hardware, and to variations of the A, B matrices

with operating point (flight condition variations). We will treat modeling errors due to these approxi -

mations as sources of the perturbation L(s) in Figure 2 and will attempt to make controllers robust

with respect to them.

Elementary dynamic and aerodynamic analyses of rotating airfoils, hinged at the rotor hub, indicat,.

that lift forces will not be transmitted to the hub instantaneously with collective changes in blade angle-
of-attack but will appear only when the cone angle of the rotor has appropriately changed. The dynamics

of the latter have been shown to be damped second order oscillations with natural frequency equal to

rotor speed and damping determined by somewhat uncertain aerodynamic effects [2. 171. Hence, rotor

dynamics can be crudely represented by second order transfer functions

2

gR(s
, 
0 = 2 + 

2 C2R5 +2 (50)

with w = 25 rad/sec and C conservatively confined to the range 0.1 - 1.0. Because collective and

differ htial-collective inputs both involve coning motions of the rotors, one such transfer function

will appear in each control channel. Since these dynamics are neglected in equation (49), it then follo'

that any perturbed transfer function matrix computed from Figure 2 will have the form

G G= G( +L) = Gdiag(gR),

and hence,

L = dag (gR-l)

max s2 2CwR
o [L] s2+ 2C wRs +,I,

The function was evaluated for n range of s jw values (with brute firt-c , ,,II T, x Ii

shown by the solid lines in FigLire 10.

Figure 10 also shows an alternate bound for F [1.1 derived fr.i , ,

Safonov [2. 181. This bound is slightly more conservative ii h;' 1,

larger class of perturbations corresponding to nonconsial, 1!

In addition to the dynamics of rotors, each control A. ti,

nonlinearities which are neglected in the norninal d . 4iv

imposes the greatest dynamic constraint on perfr,,?-

effect.

An approximate model for rate lnitis ,i, t , iA

u = R ,im SAT [94(u(-u)" ],,,

where SAT ( ) denotes the staridird

can be developed with -rf,, ,v' :

These hounds will of i-ur , , T,,,

lines ir Figure 10 dep t , o
for the ar 'un,-i t , I , '

frequencif- . I i -i

ronlin, artit-' % 1I
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The third major source of model uncertainty is the variation of A, B matrices with flight condition.
Such "component" variation could again be translated into an overall bound for L(s) via Safonov's
procedure. In this case, however, the result would be unduly conservative because coefficient variations
tend to be highly correlated and are not arbitrary dynamical operators. A more direct way to compute
the bound is to compute the loop transfer matrix for a number of representative flight conditions and then
compute the maximum (singular value) deviation. Results of this process are shown by the dotted line
in Figure 11. We see the (initially surprising result that [L becomes quite Large at low frequencies.
This happens because the basic helicopter's low frequency modes are stable at some flight conditions
and unstable at others. Theoretically, 3" G(jw) will approach infinity for frequencies and flight conditions
where these modes cross the jw-axis. This means that the perturbations exhibited by our plant are not
necessarily stable and, hence, the stability-robustness result cited earlier fails to apply. We will see
later that stable controllers can still be obtained and that the ability to incorporate unstable l's in a
generalized multivariable stability robustness theory appears to be an important research topic. For
the moment, however, our designs will be restricted to individual flight conditions for which the dotted
L's in Figure 11 can be disregarded.

The uncertainty bounds shown in Figure 11 indicate that tY.e robustness criterion given by equation
(5) imposes a "multivariable bandwidth" limitation on the feedback loop. Magnitudes of L(jw) tend to be
large beyond certain frequencies which requires G -1 to be large and consequently G must be small.
This is most readily illustrated with a single lo,)p example whe-e plots of the function c [+g 1] reducr
to the inverse closed loop frequency response, i.e.,

I -[1,K]

The condition that a [l+g 1 3 be large then translates directly into the high-frequency "roll-off" require-
ment commonly imposed on classical control loops.

For illustrative purposes, single-loop and multi-loop designs will be described.

The vertical velocity and pitch attitude motions of the nominal C'11-47 model at hover uncouple
naturally into two non-interacting channels -- (z,x 5 ) controlled by (c). anid (v, q. x ) controlled by
(dc). The hover flight condition thus offers an attractive single-loop design case. igma plots for
several trial pitch-motion controllers for this case are shown in Figure 12. These controllers were
all designed with the linear-optimal methodology and correspond to the following cost functional:

.1 f . [57.3 x 6 (dc) ] di (56)

with 900., 9.0, 0.09, and 1.0, respuctively, for the four trials. these weights were selected in
accordance with the asymptotic procedure described iii reference f2. 191. The asymptotic modes
corresponding to these weights are a forward speed mode with an eigenvalue near the origin and a
third order lutterworth pattern for the remaining modes. As expected, bandwidth of these controllers
increases with decreasing ; and eventually violates the stability-robustness constraint imposed by
neglected rotor dynamics (for the moment we ignore rate limit and flight condition variations). That
this violation actually produces instabilities was verified by computing closed-loop roots of the trial
controller, in the presence of the rotor. Trial 3 is unstable! f)ur options are therefore to restrict
bandwidth to approximately Trial 2 or to provide additional roll-off beyond the maximum 20 db'decade
attenuation inherent in I.Q-desigi [2. 201. The latter option is illustrated by Trial 4 which uses a

-value somewhat smaller than Trial 2 but includes a low-pass filter at w-12 red/see to help avoid
the rotor resonance peak. Note that the closed loop frequency responses are well-shaped for all
pure I.Q-trials and that Trial 4 achieves extra bandwidth at the expense of slightly larger M-peaks.

The beauty of singular values is that the above stability-robustness analyses carry over without
change to multivariabie systems. This is illustrated in Figure 13 with some two-channel trial desigils
at a 40 knot forward speed flight condition. These controllers are again of the LQ-typt-, this time using
the cost function,

(57 3 + .l0(c) 2  + dr(dc)J dt. (57)

with ( 4 - * (10000, 900), (9.0, 9.0), and (1. 0, 1. 0) for the three trials shown. 'he disti nction beme.,-'i
Figure 121nd 13 is that Figure 13 shows two sigma-plots for each trial, corresponding to the two singular
values of (1C "! ). For stability-robustness, the smaller of these values must fall above the sigma -plot
of i. it all frequencies. The larger value is unspecified. Ihowever. ii order to maximize bandwidth
' i all directions", it is reasonable to adjust the relative weights ( l' P2) such that the two singular values
are 6pproximately equal and then to push them jointly to as high a bandwidth as the F[L. plot permits.

* ,\',rd4ig to (551I, these are givn tiv the stgma-plots of Figure 12 viewed "upside down".



5-IS

(For the moment, we again use only neglected rotor dynamics for L.) This design philosphy is incorp-
orated in the three trials of Figure 13. The first trial has low b,;ndwidth and substantial differences
between the two singular values. These differences are reduced and bandwidth is increased in the next
trial. The third trial serves to maximize bandwidth by using additional roU-off filters in each control
channel.

As seen from these trials, singular value analyses 2ppear to offer a convenient way to maximize
multivartable bandwidth subject to stability-robustness limitations. The next design step is to achieve
reasonable command responses from the resulting feedback loop. One way to do this is to place a
command shaping filter ahead of the loop. For feedback loops with integral control on the primary
responses, such sophistication i often unnecessary because commands inserted at the integrators
(as shown in equation (49)) produce good transients. This is the case here, as evidenced by the responses
of Trial 3 to step attitude and step velocity commands shown in Figure 14. Note that the loops are tight,
weU damped, and non -interacting as desired.

So far we have ignored model uncertainties due to rate limits. This was done because there is no
apriori way to select the parameter I for Figure It. which is determined by the maximum magnitudes
of signals in the closed loop. Clearly. for I sufficiently large all our trial designs would violate the
resulting 'LI bound. That such violations actually correspond to instabilities was verified by repeating
the transient responses for Trial 3 with progressively larger attitude commands. Unstable behavior
occurs for 0cm d 

> 18 degrees, with I = 60.

In order to improve robustness with respect to rate limits, the following iterative procedure may be

used:

1) Assume a signal Level Limit 01 ' 1o

2) Design I + G I consistent with the resulting IL]

3) Evaluate the actual maximum signal level, %~i. by computing transient responses with worst
case commands and/or initial conditions

4) If T' and 1 0 are substantially different, return to step I with 0~ + 1~4o+ (TI - 0 ) where e
is a design parameter. Otherwise STOP.

An illustration of the first iteration of this procedure is given in Figure 13 where the assumed signal
level 1o a 20. (The dashed F[LI curve) yields a controller (Trial 2) whose actual signal level is
ni - 0.6. The associated transient responses are slow but stable. To fine tune this design, a second
iteration might be taken with Jo . 5.

We noted earlier that IL| due to operating point changes becomes quite large at low frequencies
because the helicopter's slow modes are not stable at all operqting points. At intermediate and high
frequency ranges, however, the uncertainty bounds are reasonably small (Figure 11). This suggests
that if the loop transfer matrix G(s) has sufficient low frequency gain to stabilize the slow modes under
all conditions, then the design might well be stable even though the (sufficient) stability-robustness
condition fails. This is in fact the case. Both trial design No. 2 and No. 3 remain stable at 8 repre-
sentaive flight conditions ranging from hover to 160 knot forward speed and from +2000 ft/min to
-2000 ft/min ascent rates. The intuitive idea which underlies this result (sufficiently high low-frequency
gain) may well provide needed insight toward a generalized multivaribble robustness theory for unstable
perturbations.

This example illustrates that the linear optimal approach may be combined with singular value
analyses to provide a useful multivariable technique. In this illustrative example the use of a state
estimator in the loop was not considered. But, in the general linear optimal approach the il.cusion
of such an estimator must be considered.

2.2.7 Robust Estimators

It was shown in reference [2.211 that multivartable linear-optimal regulators using full state feedback
have impressive robustness properties, including guaranteed gain margins of -6 db and + - db and phase
margins of 600 in all channels. But, if observers or Kalman filters are used for state estimation in the
implementation, there are no guaranteed margins. (2.221 Fortunately, an adjustment procedure is
available t2.231 for use in the observer or filter design which makes it possible to essentially recover
the guaranteed margins of full state feedback for minimum phase systems. Tl-q adjustment procedure
involves the introduction of a scalar design parameter, q, with the property that as q tends to infinity
the stability margins tend to the full state margins.

An example that illustrates this adjustment procedure is a linear optimal regulator designed for
flutter suppression with the DAST (Drones for Aerodynamic and Structural Testing) wing. A single
control surface input and two accelerometer outputs were used in the design. The model consisted of
five flexure modes, five aerodynamic lags, a third order actuator, and a first order wind gust model.
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The robustness of five controllers is summarized in Table 3 and Figure 15. The first controller is the
full state feedback controller. The second uses a Kalman filter for state estimation. The remaining
three use filters for state estimation derived using the adjustment procedure with different values of
the design parameter, q. In addition to the stability margin data, the RMS control surface activity
corresponding to an EMS gust input of one ft/sec is given as well as the controller bandwidth. The
stability margins actually increase monotonically with q with an attendant increase in control surface
activity. But, the control surface activity corresponding to the largest value of q was within the design
specification limits and the stability margins for this value of q are significantly improved over the
q = 0 case and are nearly as good as those of the full state feedback controller. As shown in the
frequency response plots of Figure 15 the robust estimators smooth out the notching characteristics
of the Kalman filter providing better stability margins with only a slight degradation in RMS performance.
This example clearly demonstrates the utility of the adjustment procedure.

2. 3 Digital Design

The techniques described above do not explicitly address a digital mechanization of flight control
designs. They are, of course, all applicable to digital system design and analysis lacking only in a
transformation from continuous to discrete space. In fact the most common design scenario for a
digital flight control law has evolved using continuous system techniques. The steps generally followed
are

1. Design the feedback structures using continuous techniques to achieve performance and
sensitivity goals (i. e., stability margins) for the continuous plant-controller.

2. Choose a sample time with a Nyquist frequency well above the control frequencies and
discretize the continuous compensators using appropriate algorithms such as Z-transform,
Tustin's method, or Prewarped Tustin's method.

3. Choose a first or second order continuous prefilter for each sensor to eliminate the impact
of aliasing from unmodeled high frequency dynamics such as structural modes or high band
sensor noise. This is typically chosen conservatively low, i.e., well below the Nyquist
frequency.

4. Select a control command output continuous postfilter (also thought of as an actuator
prefilter) with an output hold device to reduce the effects of digital quantization but obtain
minimum phase loss at the control frequencies.

Steps 2. 3. and 4 provide a sufficient scenario to implement a digital representation yielding the
desired flight control goals of step 1.

The major difficulty with this approach is thai these steps all contribute phase lag to the system.
This presents little problem if the sample rate is sufficiently higher than the stability crossover
frequencies. Lowering the sample rate results in stability difficulties and performance reduction.
The net result is a design technique which dictates high sample rates. This represents the state of
the art in digital design techniques for production aircraft systems today.

2.5J. 1. Low Sample Hate Destgn

It has been claimed that designing directly with discrete plant models will produce lower sample
rates and minimum compensation and still meet the same design goals as analog conversion techniques.
This has led to a number of design techniques and tools which do result in low sample rates [2. 241.
[Z. 25). The direct digital design technique described in reference [2. 241 is based on an optimization
approach formulated to match a modeled transient response at discrete time points. The feedback
control law, gains and compensation parameters, are designed to force the closed loop response of a
discretized plant, (including pre and post filters) to best fit a desired response transient at the
discretized points. This technique was utilized by Peled to examine prefilter and sample rate
selection [2. 261. As an example of the technique, a direct digital design was performed for a digital
feedback around a simple integrator which attempted to match a desired closed loop exponential response.

Shown in Figure 16 the optimization technique results in parameter selections for K. % and 5 for
a fixed sample time, T. and prefilter bandwidth, a. These parameters are synthesized to it the &fscrete
points generated at the sample instances of a unit step response of a continuous feedback control design
(Figure 16-a). Details are given in reference [2.261, with a summary provided in reference [2.271.

The key point for discussion is not the optimization but what it produced. Examining the plant to be
operated on

E)2(s1+ +]

J1 (T) (i-B o )
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where as shown in reference [2.281

-atJI(T) • T + e -1

a a

-at
a I  e

1-a -aTa 1

o -a -aT.

The inclusion of an extra discrete zero, 1 , along with the prefilter pole, a,, form the basis for the
selection of the compensator parameters%.n Figure 16-b, ac and 0c"

In almost all cases examined in reference [2. 261, i.e., choices of T and a, a was optimized to
cancel 0o and 0c optimized to canel a,. The effect of this cancellation is characterized by lead comp-
ensation near the Nyquist frequency and results in total system phase enhancement.

2.3.2 F-8 Design Example

The compensation structure suggested by this technique was used to develop a low sample rate
design for the NASA Digital Fly-by-wire F-8C CCV aircraft. The F-8 digital system operates at 53.33
Hz due to a remote augmented vehicle (RAV) implementation. Analysis determined that the system could
operate at 20 Hz with no significant degradation in aircraft stability and performance characteristics and
with no phase enhancement applied through direct digital design techniques. F-8 Flight tests had indi-
cated unsatisfactory performance at 6.7 Hz. Application of phase enhancement through direct digital
design permitted a 4 Hz sample rate [2.281. A comparison of the continuous and low sample rate
control structure block diagrams is shown in Figure 17. Table 4 presents a comparison of pitch axis
stability margins for the continuous design and the low sample rate design at four flight conditions. A
comparison of frequency response plots for FC#I is shown in Figures 18 and 19. Transient response
comparisons are given in Figures 20 and 21.

These results have not been verified in man in the loop simulation or flight test, however they do
indicate lower sample rates are achievable based on analytical design criteria. A limiting factor not
discussed but which also must be recognized is the effect of output quantization in the actuator command
signals. Smoothing techniques will generally provide adequate performance in this area.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Because of the number of control inputs and close dynamic coupling of future aircraft, and require-
ments that the flight control system provide the stabilizing influence on the vehicle, efficient and reliable
control system design and analysis techniques are essential to satisfactory aircraft performance.
Several techniques have been discussed in this chapter. Modal control techniques permit the designer
to handle a large number of inputs and provide an approach to achieve a desired, within constraints,
system response. A technique based on asymptotic regulator properties reduces the weight selection
difficulties associated with optimal regulator design in a root locus equivalent design approach. We
have shown how to design in stability margins for Kalman filters in the loop with the robust estimator
technique. The most powerful technique of all, however, is the use of singular values in analyzing the
stability characteristics of multivariable systems. Further research is required in this area particularly
in transforming it into a synthesis and design technique. Questions exist on the possible conservative
nature of the stability margins computed with singular value analyses. Research is currently being done
in this area. We firmly believe that stability margins may one day be specified for multivariable systems

based on singular value analysis.

More complex design issues which arise when subsystems are integrated in design have not been
addressed in this chapter. Tight pointing and tracking requirements for todays fighter aircraft will
result in overlapping bandwidths between the flight and fire control systems. Design criteria for the two
systems are not always homogenous and are often conflicting. New techniques are needed to handle
multiple dissimilar design criteria.

In the singular value analysis discussion, techniques for analyzing the effect of nonlinearities were
described. While these can be a powerful tool, much work still needs to be done in treating system
nonlinearities.

Finally. digital control is still in its infancy. Designers are still trying to make digital systems look
like their analog counterparts. Work is ongoing today in the area of finite state machines to try and
discover the real power of digital structures for control application.
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TABLE 1. AIRCRAFT CONTROL SYSTEMS EARLY
TO CURRENT OPERATIONAL SYSTEMS

DESIGNl
APPLICATION REQUIREMENTS CHARACTERIZATION ANALYSIS

40OF STABLE AND PILOT A/C AIRFRAME
STATICALLY CONTROLLABLE toa salwom STABILITY AND
STABLE AIRFRAME CONTROL
AIRCRAFT TNROTTLj AXt

IMPROVED A/C "LOT AMt STABILITY
STAILITY CoAUO R(N@uI ANALYSIS
CHARACTERISTICS TECNIQUES

DOW PLOTS
11YSUIST PLOTS
INCHOLI FOTS
NOT LOCUS

TRANSIENT RESPONSE
ANALYSISSIMULATION

+ 4

IMPROVED ?ILOT Al MULTIVARIABLE
A/C RESPONSE U CONTROL

TECHNIQUES??

PILOT A DIGITAL4YSTEM
sommia : STIIBST LITYANALYSIS

Z.PLANE, WELANE[

:Ii .... lI
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TABLE 2. AIRCRAFT CONTROL SYSTEMS CURRENT
EXPERIMENTAL SYSTEMS AND PROJECTED

CURRENT DESIGN a
APPLICATION REQUIREMENTS CHARACTERIZATION ANALYSIS

CCV STABLE AND PILOT SOOF CLASSICAL
CONTROLLAILE COMMmOS -be Al CALT STAUBLITY
CLOSED LOOP A ANALYUS TECH-
AIRCRAFT CR bIUES MULTI.
SYSTEM sraom I VARIABLE

COTTOL
TECHNIOUESn, TRANSIENT

OFRi$PDMl ANALYSIS-

THROTTLE A/c SIMULATIONCOMMON PE

CCV IMPROVED PILOT OF MULTIVARIASLE
+ MANEUVERABILITY COAt s I PLTI REpo CONTROL

GOOF CAPABILITY AlE TECHNISUES?
IOTOL! 6 oymA/C

INTEGRATE WITH MULTIVARIAILE
GUIDANCE CONTROL
FIRE CONTROL TECINNISUES
PROPULSION CONTROL
WEAPON DELIVERY MULTIVARIABLE
STRUCTURAL CONTROL OPTIMIZATIN

TECHNIVES

FOR IMPROVED PERFORMANCE
AND RELIABILITY AT LOWER
POWER, SIZE. WEIGHT AND
COST
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TABLE 3. ROBUSTNESS SUMMARY FOR DAST EXAMPLE

RMS

Controller q a Gain Margin Phase Margin Bandwidth
Deg Deg/Sec Db Hz Db I Hz Deg Hz Deg Hz Hz

State .0 1.804 164.9 -8.1 9.90 - - -63.7 7.05 +82.3 15.25 23.2

Kalman .0 2.330 186.2 -5.3 10.28 +6.4 21.87 -42.5 8.26 +32.4 13.64 59.8

Robust .000001 2.733 196.8 -6.6 9.85 20.0 75.28 -45.4 7.46 +66.2 13.56 19.3

Robust .00001 3.066 212.0 -7.3 9.87 21.5 103.56 -53.3 7.23 +72.9 14.23 11.1

Robust .0001 3.534 240.2 -7.7 9.90 24.9 149.65 -57.9 7.16 +76.3 14.64 21.8

TABLE 4. PITCH AXIS STABILITY MARGINS

Flight 1 5 9 17
Conditions Cont. 4 hz Cont. 4 hz Cont. 4 hz Cont. 4 hz

Gain
Margin >40 7. 0 >40 7. 3 >40 6.4 >40 6.1
(db)

Phase
Margin 780 63' 72' 50' 81* 90* 800 480
(deg)
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SENSORS INTEGRATED COMPUTATION ACTUATORS

0 FLIGHT CONTROL SENSORS 0 FLIGHTCONTROL 0 AILERON

* VERTICAL DIRECTIONAL GYROS * SASc STAOATOR
* RATE GYROS OIVE PHASE (TRACKING) RUDDER
* LINEAR ACCELEROMETERS * PULLUPPASE(MANEUVER)
* ANGULAR ACCELEROMETERS
* CONTROL SURFACE DEFLECTIONS N THRUSTERS E

AIR DATA SENSORS * DETERMINES A/C POSITION ACTIVE STRUCTURAL H

NAVIGATION SENSORS: IN SPACE
DETERMINE TARGET POSITION CONTROL

SINSPLATFORM ACCELEROMETERS W.R.T. TO A/C C
INSPLATFORM GYROS 0 FIRE CONTROL/WEAPON DELIVERY L

* INSDOERIVED VELOCITY E
I iNS.OERIVED POSITION - DETERMINES OPTIMUM BOMB

* INSPLATFORM GIMBAL PICKOFFS RELEASE POINT
* NAVIGATION AIDS IPS, ETCJ * ISSUES RELEASE COMMAND D

* FIRE CONTROL/EAPON DELIVERY 0 GUIDANCE N

* RANGE AND RANGE RATE . THREAT AVOIDANCE A
* SEEKER PLATFORM GYROS TRAJECTORY OPTIMIZATION
* TERMINAL SEEKER NIMNAL PICKOFFS * STRUCTURAL ANO
* RADAR ALTIMETER PHYSIOLOGICAL 6

" PROPULSION CONTROL LOADING CONSTRAINTS C

ENGINE RI 0 PROPULSION CONTROL S

* ENGINE TEMPERATURE * ENHANCE MANEUVERING
* ENGINE PRESSURE * REDUCE FUEL EXPENDITURE

" STRUCTURAL CONTROL 0 STRUCTURAL CONTROL

* WING MOUNTED ACCEL. * ALLEVIATE STRUCTURAL LOAD
* WING MOUNTED GYROS * STABILIZE STRUCTURAL MODES

Figure 1. Integrated System Representation

I+1(s) G(S)

Figure 2. Linear Feedback System with Multiplicative Perturbation
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Figure 3. Linear Feedback System with Additive Perturbation

17O
Figure 4. Z-Plot for the First Example
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Figure 5. Stability Domain for the First Example
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I 1

I2
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Figure 6. Nyquist and Inverse Nyquist Diagram for the Second Example

j

Figure 7. Z-Plot for the Second Example
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Stable k 2  Nominal

Open 1i unstable

Figure 8. Stability Domain for the Secor~d Example
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Figure 9. F-4 Lateral-Directional Open-Loop Response
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Figure 10. F-4 Late ral- Directional Closed-Loop Response
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1.0W

Figure 12. Trial Designs for Pitch Control at Hover
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Figure 13. Trial Designs for Pitch and Vertical Velocity Control
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Figure 14. Transient Responses (Trial 3)



5-29

~MM

1____________ _________ 2 3i 4I 1n a a a % 12 .11I

____3_ A__ M AU USAN

40~ LESE9

Figure 15. Robust Estimator Characteristics for DAST Example
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Figure 16. Peled's First Order Example
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Figure 18. Pitch Axis Open-Loop Response (continuous)
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Figure 20. Pitch Axis Transient Response (continuous)
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PRACTICAL DESIGN AND REALIZATION OF A

DIGITAL ADAPTIVE FLIGHT CONTROL SYSTEM

by

V.Krebs and U.Hartmann

Bodenseewerk Ger~tetechnik GmbH

Postfach 11 20,D 7770 Uberlingen

Federal Republic of Germany

SUMMARY

A new approach for the design and the practical realization of a digital adaptive command-
and stability system is proposed. The control law for the longitudinal motion of the air-
craft is obtained by state vector feedback using the MIL-F-8785 B handling qualities re-
quirements. The design principle is based on decoupling of the angle of attack and pitch
rate on the one hand andthe pole allocation method for the eigenvalues of the control
system on the otherhand.Since the necessary gain factors contain unknown and variable air-
craft parameters an on-line fading-memory least squares algorithm for the estimation of
these parameters is used.

Only conventional aircraft sensors (rate gyros and accelerometers) and an airborne digital
computer are necessary. Hybrid simulations of the complete system as well as flight test
results demonstrate the efficiency of the concept.

1. INTRODUCTION

Advanced high performance aircraft show drastic changes of their dynamic characteristics
which are caused by a variety of aerodynamic and configuration parameters. Therefore we
are faced with the need for proper adaption of the control loops. A usual approach to solve
the adaption problem is to measure a few of these parameters and to preprogram the con-
troller gains as a function of them. Generally this is a tedious task and in some cases
it is difficult to meet the handling qualities requirements.

Therefore we observe efforts to solve these problems via self-adaptive solutions since
more than two decades (/l/,/2/). In the development of a self-adaptive flight control
system -by reason of simplicity in the sequel called only "adaptive control system"- three
basic questions must be answered:

How can we satisfy the handling qualities requirements? This is the basic concern be-
cause the adaptive approach has to provide better results than the programmed approach
or at least the same ones with considerable less expense.The resulting handling quali-
ties have to be documented and verified, therefore an easily understood design process
is an obvious need.

How can we identify the essential parameters of the aircraft model? In fact the para-
meter estimation is another essential part of the design process. Only a limited num-
ber of parameters should be required by the adaption mechanism because the difficulties
of parameter identification increase significantly with the number of parameters to be
identified.

How can we provide software and hardware reliability? Early attempts in the history of
adaptive flight control have used analog hardware, but the problems of a rather complex
signal processing and of pre- and inflight-testing could not be solved with this tech-
nology. The advent of powerful microprocessors has now changed these basic technical
aspects of the problem: The digital hardware allows the reliable realization of com-
plex signal processing algorithms and detailed testing procedures. Nevertheless a re-
markable part of the reliability problems has been shifted to the software field. Strong
efforts have to be carried out that no software malfunction deteriorates the reliabili-
ty figures of the whole system.

The approach presented in this contribution has been evolved during some years (/3/,/4/,/5.
Recently flight tests have been carried out which demonstrated the proper function of the
adaptive control system. The paper describes shortly the design principle and the iden-
tification process of the system. In a further chapter the realization of the adaptive
controller and some typical data of interest will be documented. Finally significant re-
sults so far obtained in digital and hybrid simulations as well as in flight tests are
discussed.

*) This work was supported by the ministry of defense of the Federal Republic of Germany
under grant T/R 421/70002/72400.
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2. DESIGN PRINCIPLE

The design approach of the adaptive control system is based on the principles of state
vector feedback and pole assignment and has been described in detail (/4/). In the fol-
lowing we will give a short introduction to the basic ideas using well known root locus
techniques. By reason of clarity the actuator dynamics will be considered neqligible in
treating the aircraft dynamics. Actually the realization of the adaptive control system
took account of the actuator dynamics (Chapter 5).

Basically we are following two main steps in the design procedure of the control system.
First we are decoupling the angle of attack and the pitch motion of the aircraft.

For this purpose in aircraft with static stability a positive feedback of the angle of
attack is required. In the dynamics of the controlled aircraft we find therefore motions
with varying angle of attack and elevator deflection but without any change in pitch. i.e.
the influence of the angle of attack is completely compensated. In the second step we have
to satisfy the handling qualities requirements concerning the frequency and the damping of
the short period mode. This will be done by using a proper feedback of pitch angle and pitch
rate.

Following this approach it should be noted that the feedback gain of the angle of attack on
the one hand and the gains of pitch angle and pitch rate on the other hand are completely
independent: The angle of attack gain depends only on the aerodynamic characteristics of the
aircraft whereas the pitch angle and pitch rate gains depend on both, the aerodynamic
characteristics and the handling qualities requirements.

This will be shown using the basic linearized state vector equation

x (t) = A x (t) + Btn (1)

cf the longitudinal motion of aircraft. With the state vector definition

x T

A= pitch angle

Aq = pitch rate

A= angle of attack

A~u = forward velocity
A= elevator deflection

I. we have in general the following system matrices

a 1a22 23 a24 b2

a 3 a32 a 3 a] 4b3 (2)

a4 a42 a43 a44 b4

and the feedback law

An k kT 1K , K IKO K u(3)

It can be shown (/4/) that the forward velocity Au has only a negligible influence on the

short period mode of the aircraft. Furtheron the relation between pitch angle and pitch rate
is purely kinematic. Therefore we proceed to a simplified state vector equation describing
only the short period mode of the aircraft dynamicsE q 1 [a 22  a 23 1. Aqj [ b211

- I L I + I.An(4)
1*1 a32 a33 a b b31

and the corresponding transfer functions (b3  is usually very small, a as 1)

( b21 (s+s 
(

Al C(s)

__ b 31 (s+s )(6)
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withb 2 1  32 - b3 1 a2 2sq b3 1

and the characteristic equation

C(s) = s
2
- (a2 2 +a 3 3 )s + a22 a33- a23 832 (7)

Fig. I shows the locations of poles and zeros in the case of the DO 28D aircraft (Alti-
tude = 2000 m, VTAS = 70 m/s). In Fig. l.a we see the effect of the positive angle of
attack feedback, which cancels in the closed loop the zero of the q/Ln -transfer function
at a =-1.59 (Fig. 1.b). This can be interpreted as a decoupling of the angle of attack Ao
and Aq in Fig. 2. Finally we obtain the required handling qualities, i.e. the damping and
the frequency of the short period mode by proper feedback gains Ke and Kq (Fig. 1.c).

The necessary feedback gains can be readily calculated from the condition of decoupling of
As and A qand from the handling qualities requirements. Using equation (4) we obtain imme-
diately a23 Aa+ b2 1 " An = 0

or

An 2 23 (8)
&q .. . .Ac K . A (8

b21

The differential equation of the decoupled short period mode are now

IA Aq (9 )

Aq a22 Aq + b2 1 (Ke #- q.Aq)

which yield the characteristic equation

s - (a2 2 +b 2 1Kq)s - b2ie = 0 (10)

Comparing equation (10) with the desired characteristic equation

s2 + 2csp-spS + Wsp2 = 0 (11)

where tsp and wsp are the damping and the frequency of the short period mode as presribed
by the MIL-F 8785 B requirements (/6/), we obtain immediately

q -2;sps - a22 IK 2 (12)K q =  -21 ' 6 b21

Equations (8) and (12) establish a direct relationship between the dynamic parameters of the
aircraft, the handling qualities requirements and the feedback gains. It should be noted

that only three dynamic parameters of the aircraft - a a2 3 and b21 - are necessary.

By reasons of reliability and costs we are interested to avoid pitch attitude and angle of
attack sensors in stability augmentation systems of high performance aircraft. This can
easily be done by integrating the signal of a pitch rate gyro and by substituting the angle
of attack signal by the signal of a normal accelerometer, using the fact that the relation
between the normal acceleration az and the angle of attack is approximately given by

az  = Z' • a (13)

if the normal force due to an elevator deflection can be neglected. Fig. 3 shows the simpli-
fied dynamics of the longitudinal control system where the factor b31 - which is usually
sufficient small - has been neglected. It should be noted that the closed loop of the pitch
rate control system provides exactly a steady state one to one response of theq /qc-transfer
function. By prefilters it is possible to shape the pitch rate response in an appropriate
manner according to the requirements of the C*-criterion /7/ or the load factor control
system.

For practical realizations we are interested in a discrete time version of the control
system. As the sampling frequency of the control system should be high in comparison with
the typical time constants of the aircraft, we are looking for a discrete time approximation
of the control law. This control law should be immediately suited for the automatic adaption.
For this purpose we start with a discrete time version of the state equation (4),include

the above mentioned relation between angle of attack and normal acceleration (13) and obtain
(A symbols are dropped)

= [ l Y (k) (14)

[az(k+ 1
) V' 21 V22] az (k)J h 2L ma n . .. .... . ..... ... .. . ... ... ........ . -. -.I
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The feedback law is put up in the form

n(k) = 0t(k) + K q(k) +K az (k) (15)q qz

The condition for decoupling the pitch rate q from the normal acceleration can
be used in the first equation of (14) with the feedback law (15)

q(k+1) - (, 1P +hlK * )q(k)-hiK 0(k) (f 1 2 +hiKa )az(k) 0 (16)

Thus the feedback of the normal acceleration is given by

K -2 (17)
Kaz h1

With the sampling period T we express

q(k+1) = q(k) + q(ki-T

and obtain as characteristic equation of (16)

Ts 2 +(I-p 1 1 -h )K )s-h 1 K' = 0

and by comparison with the desired characteristic equaLion (11)

I* T _ 2  , . 1-e11-2',sp~sp T 19
KK q h (19)

Therefore the identification process must deliver the three coefficients

)'11' 5 1 2' h
of the measurement equation

q(k+1) = f1 1 q(k) + P12az(k
)  

+ h1 ' (k) (20)

whereas the natural frequency w and the damping ratio , sp are derived from the
handling qualities requirement 3.

The natural frequency ws is determined in the MIL-specifications by the so called
load factor sensitivity /6/ ). An evaluation shows that the load factor sensitivity
can be well approximated by a power function of the dynamic pressure qc (/12/).

(21a)

The required damping ratio of the aircraft does not depend on the flight case.
Therefore we chose a constant damping ratio of

=0.7 (21b)

3. IDENTIFICATION ALGORITHM

In section 2 it has been pointed out that realization of the adaptive stabilization con-
cept requires knowledge of three coefficients 011, P12 and hl of the discrete state-
space equation (14). The estimation algorithm to be used should show the following pro-
perties:

- minimum variance unbiased estimates
- recursive form since on-line identification is necessary
- identification of time variable parameters (due to different flight conditions)

convergence independent of choice of the initial conditions of the estimator

- easy programming on a process computer.

I
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We apply a least-squares approach in state-space representation with exponentially
weighting of past data to ensure parameter tracking. Though this method gives biased
estimates /8/1 it has the advantage of a very simple structure. Moreover its efficiency
has been proven already in wide-spread successful applications. Other algo'rithms which
yield unbiased estimates like the generalized least squares method /9/ are too complex
or give no practical improvement. Moreover we remember that the mathematical model (14)
is an approximation, hence our demands foi accuracy of the estimates should not be
emphasized too much.

The structure of the process with unknown parameters is given in state-space form by

b<(k+1) = ; x(k) + H u(k); (22)

y (k) = x (k + n W , (23)

whele x is the nxl state vector, ' is the nxn transition matrix, and H is the nxm in-
put matrix.
Measurements of the input u(k) (mxl vector) and noisy me, rements y(k) of the state
x(k) are available at discrete time instants k (k = 0, 1, 2,. . The model of the
process is then

A
y(k+1) = -(k)y(k) + H(k)u(k) + e(k)

(24)

where '-.. indicates that the matrices 0 and H contain parameter estimates (Fig. 4).

The method of least squares means that we minimize the quadratic error

E: = eT(k)e(k) -Min. (25)

for each k, where

A
2(k): = y(k+1) - ( (k)y (k) - H(k) u(k)" (26)

This leads to

JET
4 -2e(k)yT(k) " _0(k) -(27a?

and

-2e(k)uT k)__ 0
a (k) (27b)

Now we obtain the adjustment mechanism for the model parameters applyino -he gradient
method, i.e. Lhe rate of change in the parameter estimates is chosen proportional to
the gradient to the cost functional E (see for the scalar case / 10/ , p.203 ):

_( 1) - (k) dj(k) E

T dt .4(k) (28a)

A A A
H(k+i) - H(k) dH(k) (28b)

T dt -T_(k)

Equations (27) and (28) yield the iterative estimation proceaure

S(k) = S (k-1) + 1' m(k-1) T(k)-m (k-1) S(k-1)) (29)

with A IDT (k)j [y(k)

S(k): = (k[T(k)
with A [~kj ) k u.k) (30)

and the proportionality-matrix r, comparing Eq. (29) with the usual recursive least
squares approach for single input-single output systems, we see that we may equate
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= "(k)

(31)

where P kk) a matrix with decreasing norm evolving according to

i (k-1 )m(k-I Im 
T

(k-I) P (k-I)
('k) = P (k-I) - 0P(o) -o (32)

m (k-l)- P(k-l) m(k-1) + 1

Tracking of time-variable parameters is ensured, if we provide an exponential weighting
of past data in the estimation algoritlm k29) - (32), i. e. new measurements influence
tle apdating of the narameter estimates in a stronger day than older ones. This yields

/1 ,/, p. 240)

i k- I ) in (k-1 )mT (k-1l)PT (k-1)

ktk) f 1 1- ) - -1 o; ( ° ) Po

- T -(k-l)Pk-l)m(k-l) + (33)

withi the welhting factor

t)), f~l.

4. APPLICATION kTi' THE ESTIMATION ALGORITHW TO FLIGHT TEST DATA

betore impiemontin4 the identification algorithm in the adaptive flight control system,
extensive tests of the estimator have been carried out using flight test data of tne
bus Cess Jet HFB 320 "HANSA". These tests gave information about the following items

- bias in sensor signals

- "itermination of the weighting factor f in Eq. (33).

- influence of input-signals to the quality of the parameter estimates

The problem of signal-bias may be solved either by including an additional bias parameter
bi in the e timation equa-ion (29) or by digital prefiltering of the sensor signals using
a lead-type filter. The identification results with both methods are given in Fig. 5 and
Fig. 6.
The input to the aircraft is the deflection of the elevator, commanded by the pilot- Fig.
5a. The three parameter estimates as well as the estimate bI of the bias-term is given in
Fig. 5b, while Fi3. 5c shows the reconstruction of the output q (rate of pitch) by

AAA A A
q (k+1) ' 1 1 4q(k) + Y 1 2 az (k) + hi(k) -b 1 (k)

in comparison to the measured output to verify the estimation as theoretical values of
the parameters are not available. Since real flight test data have beer, used all adverse
effects of the sensors (noise, nonlinearities) and the airframe (vibrations, structural
bending modes) are included.

Fig. 6 contains the corresponding results after lead-filtering of all measured sensor
signals. The estimates converge in beth cases in the same time (about 3s, Fig. 5b, 6b).
Though the estimation with the bias parameter included is slightly more exact than lead-
filtering (Fig. 5c, 6c), the latter method has been selected for application in the adap-
tive flight control system to reduce the computational burden.

The effoct of the weighting factor is demonstrated in Fig. 6d. A smaller factor f> 1 yields
smoother parameter estimates, since the present data have less influence in the algorithm.
On the other hand the estimator is now unable to follow fast parameter variations. The ab-
solute value of f obviously depends on the signal to noise ratio. Suitable values are in
the range of 1,01 - 1,15.

Finally we discuss the importance of the input signal type to the quality of the identifi-
cation. The input signal (elevator deflection) has to excite all eigenfrequencies of the
system; that is why binaryor three-valued uncorrelated noise (Fig. 7a or 5a) is well suited.
Moreover the power-spectrum of the input signal should be sufficently large in view of the
signal/noise-ratio and the problem of linear dependent measurements. Figure 7 illustrates
the estimator dynamics with elevator deflections which are about ten times smaller than
in Fig. 5. Now the settling time of the parameter estimates is 7 secondes, more than twice
as long as in Fig. 5.

_ - A• .. . .. . . . . . . . . . .. - . . . . . .. I L , , l I I " " i -
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5. REALIZATION OF THE ADAPTIVE FLIGHT CONTROL SYSTEM

For hybrid simulations and flight tests an experimental adaptive flight control system has
been realized using a 16-bit minicomputer. A STOL-aircraft DO 28 D was readily available
for the flight tests. This aircraft is not typical for the application of an adaptive con-
trol system because of its limited flight envelope. Since the main concern during this
phase of the study was only to verify the proper function of the adaptive control system
in the real world, the aircraft was indeed very useful.

During the realization phase of the experimental adaptive control system the following items
turned out to be of importance:

Actuating system:Usually the hydraulic actuating system of high performance aircraft is very
fast. Earlier simulation results indicated that in cases where the actuator bandwidth is
three to four times wider than the aircraft bandwidth it is possible to neglect the actua-
tor dynamics in calculating the adaptive controller gains. In case of the DO 28 aircraft
an electric actuator has been used with a bandwidth of only I Hz. Therefore it turned out
to be necessary to introduce a compensation network in order to reduce the phase shift of
the actuator (see. Fig. 8).

Safety considerations: In case of an experimental adaptive control system a potential mal-
function of the identification process has to be taken into account. Errors of the estima-
ted parameters may result in significant increased controller gains thus leading to stabi-
lity problems of the closed loop. To avoid these stability problems the computed gains of
the adaptive controller have been limited to safe, precalculated values. These limitations
varied according to the dynamic pressure qc=pt-ps. The adaptive control system contained
also a set of preprogrammed controller gains (dependent on the dynamic pressure) for com-
parison and evaluation purposes.

Identification algorithm; The identification algorithm has been programmed according to
table 1 with the following definitions (k=index of sampling instant):

State vector (2xi) Xk: = [qk azk] T

Output signal (lxi) Ylk: q k + Noise
(only first element of
.yk is required)

Input vector (lxi) Uk: =n k

Measurement vector (3xi) mk: = [qk,azk,nk] T

Weighting matrix (3x3) Pk (initiated with Pl(i,j) = 0, i j
Pi(i,i) = Po, for i = 1, 2, 3)

Parameter matrix (3x1) -S,k (initiated with precalculated values,
(only first column of e.g. for the take-off flight condition)
9k is required)

The block diagram of the complete adaptive control system is shown in Fig. 8 where the
main functions of the control system are clearly separated.

Nu wttbci o t Inst u t hi ltt

ItUcr ipttltJ 1tis~t l ti L~od/ Add! Mull Iv. C1u1%n. tis

:;tu u , |tmkf-l
k  
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L'ru:tl ei d
5

-1k6 -
|il t i oi ii ,' k-t ( --)oIk 8 2 2 Weightiln of discit-te t ilte

"k Vll O)f 1'ic stl jlrLI S r.jllt'

V, ll eiki (K-oi¢ct le t ton ii-

trix, 1- Idntity ii ttrix)

I li t F u utI d i 1 ". _ I18 6 9
V t:,

F' Loli I It 1 th 1 6 3 3 Fading Iimttily tl, till
f "I o025

A!tI , i' 11 - l 14 - 12

-tutl.ilt it tria l , I IX

'i t
k  

-- 3 - I 33 , 12 6 6

W, I 1 h10 1

k I.K 'k S k - 24 9 12

Sli, k, .t 6 3 - -

Tal e 1 : I1,11 F I Ib

Table 1: Identificaition algorithm break-down
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Programming considerations: After a detailed analysis of the adaptive control system a
sampling rate of 10 Hz has been adopted. The equations of the control system have been
programmed on a 16-bit airborne minicomputer (ROLM 1602) using fixed point arithmetic
troughout. To increase the accuracy of the identification process the critical parts
nf the programm have been written in double-word arithmetic. Table 2 shows the memory
space and the computation time required for the adaptive control system.

Program Memory space Computation time
(16-bit-words) (ms)

Identification 535 11.3

Control 400 0.9

Operating System 1994 not applicable

Total experimental 2929 12.2
Control System

Table 2: Computational requirements of the experimental adaptive
control system

Hardware of the experimental control system: Fig. 9 shows a blockdiagram of the test
equipment of the experimental adaptive control system including the computer and the
aircraft and actuator dynamics. The actuator and the clutch is engaged or disengaged
by the pilot. To provide a smooth engagement of the control syste-m the actual value of
the elevator deflection at the instant of engagement has been stored in the computer.
With the control system engaged the pilot had the possibility of control wheel steering
(CWS). Furtheron provisions were made to introduce different test and disturbance sig-
nals (qc, nc, AnD).

6. RESULTS

The properties of the digital adaptive stabilizing system first have been tested by digi-
tal and hybrid simulations using the longitudinal dynamics of the Mc Donnell/Douglas F-4
"Phantom" aircraft. This aircraft is well suited for the adaptive stabilizing concept be-
cause its flight conditions span a wide envelope with drastic changes in the open loop
dynamics /12/.
Later on flight tests with the complete adaptive system have been carried out using the
DO 28 - D "Skyservant" of the Bodenseewerk.

The simplified block-diagram of the adaptive control system is given in Fig. 10. As men-
tioned above the C~criterion requires the application of a pre-filter with positive phase
characteristic. It should be carefully observed that the introduction of the dynamic
pressure Pt-Ps is not required for the adaption of the control laws. It is only used
to match the desired handling qualities - especially the eigenfrequency of the closed
loop-according to equation (21).

Extensive digital simulations of the adaptive system with complete fourth order longitu-
dinal dynamic equations yielded good results (/12/) under fast parameter variations and
in atmosperic disturbances which have been simulated using the Dryden form of a continous
random gust model. This gust model is defined and specified in the MIL-F-8785 requirement
/6/.

As discussed in the preceding paragraph the adaptive system has been implemented on a
16-bit airborne computer. The results of hybrid simulations (the longitudinal aircraft
dynamics was reproduced by an analogue computer) of the complete digital adaptive command-
and stability system are given in Fig. 11. The aircraft is disturbed by wind-gusts Fig.11h.
A rapid change in the velocity from Mach 0,2 to Mach 1,0 and back to Mach 0,2 - as indi-
cated on Fig. 11a - yields a considerable change in the parameters and consequently a
change in the estimates ;11, t12 and 1 (Fig. 11e - 11g).
The rate of convergence of the estimation algorithm may be demonstrated even better by using
another Mach number versus time function given in Fig. 12a. See the estimates Fig. 12e-12g.

The flight tests with a D028-D STOL aircraft have been carried out to verify the whole
system. Actually a business aircraft like the D028 with a small flight envelope does not
require an adaptive flight control system at all. However the flight tests demonstrated
the efficiency of the system under the following circumstances, which are different from
the simulations:

- modelling errors of plant and actuator due to nonlinearities

- influence of noise and structural bending modes on sensor-signals

- drift of sensors

- real turbulence
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As discussed in more detail by Krebs (/13/) the adaptive system generally works well for
different flight conditions including power approach.

The atmospheric turbulence generally yields cuff icent excitation for the parameters to
be identified. During periods of quiescent flight however, no parameter tracking is pos-
sible and the parameter estimates have to be locked. Otherwise the parameter estimates
diverge thus increasing the closed loop gains. Due to this fact a certain self-
excitation of the whole system occurs and the resulting pitch rate q, normal acceleration
az, and elevator deflection n lead to acceptable parameter estlmates, though. This may beI
demonstrated in the simulation as well as in the flight test data (Fig.13 and 14).

7. CONCLUSIONS

The simulations as well as the flight test results with the adaptive flight control system
suggest the following conclusions:

- The development and introduction of digital adaptive control systems for advanced high
performance aircraft is possible using today's digital technology. Both, the handling
qualities requirements and hardware reliability can be met.

- Some problems arise with regard to the parameter identification during quiescent flight
but may be surmounted by special provisions like locking of the parameter estimates,
setting the weighting factor f equal to one, or introducing a test signal. The latter
method is discussed e.g. in /14/.

- The question whether scheduled controller gains or self-tuning of the gains is superior
can not be answered definitely. It requires further research activities and flight tests
with high performance aircraft including comparison of both methods.
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Fig. 1: Block-diagram and root-locus of the control-system
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Fig. 2: Block-diagram of the command- and stability system
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Fig. 3: simplified dynamics of the longitudinal control system
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Fig. 4: Confiquration of the parameter estimation
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APPENDIX

The development and the verification of the adaptive flight control system has been carried
out using unclassified data or the F-4 fighter aircraft which is considered to be a typi-
cal aircraft for the application of an adaptive contrcl system. Handling qualities data
on this aircraft have been published in great detail /15/. During the work the following
flight conditions have been considered:

No. Flight Condition Airspeed Altitude
(mis) (m)

1 Power Approach 70.1 0

2 Low altitude,supersonic 374.3 0

3 High altitude,subsonic 178.0 10670.

4 High altitude,supersonic 634.3 13720.

In these flight conditions the dynamics of the aircraft is described by the following
system matrices (Eq. 1)

Flight condition I0e. 1. 0. 0. 0e.]
00419 -.462 -.369 .00166 -1.46

-.0284 .979 -.454 -.00253 - -.029

-9.61 -14.21 9.14 -.0418 [1.83 j

Flight condition 2

r0. 1. U. 0. 10.1
-.00013 -3.13 -72.1 .0108 -63.5

[.00014 1. -2.11 .00006 .= -211]

-9.81 1.96 -1.76 -.0674 -.411

Flight condition 3

0. 1. 0. . 0.

.00127 -. 444 -1.8 .00142 -4.99

- -.009 .987 -.298 -.00038 - -.0411

-9.68 -29.1 .662 .0003 j 1.21 j

Flight condition 4

0. 1. 0. 0. 0.

-.00002 -.372 -42.8 .0044 -17.7
-.00038 1. -.484 0. -.042 /
-9.81 -15.5 1.67 -.0155 .65

To examinate the parameter tracking capabilities of an adaptive control system it can be
of interest to use a state space description of aircraft dynamics with time varying para-
meters. In the following simplified, time-varying system matrices are provided, which are
dependent on the Mach number:
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Elements of the A-matrix

a11 =0.

a 12 =1.

a1 3  0.

a1 4 =0.

a2 1 =0.

a I.SI2  (Cm C

a23 T• Cma v CM& • (CA,

a 2 4 = V S (2Cm + MCmM) - c (CA MC
V4 v y p m mMpmaI m CA+ AM]J

a 3 1 =0.

a32 =1.

a33 - V (CA. Ca

a = - F i (C + 1MCA)1
34 m A 2AM]j

a 4 1 =-g

a4 2 =0.

- S
a 4 3 =q- (CA-C)

a• (C + - Mcw

Elements of the B-Matrix

b11 =0.

21 = - [c M- - • V m Arl

S Sb31 V CmA

41m WT)
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In the equations the following symbols have been used:

Symbol Description Unit

Dynamic pressure q=1 PV2  N/m 2

P Air density kg/m 3

V True airspeed m/s

S Reference wing area m2

I Reference chord r
P

m Mass kg

ly Moment of inertia about y-axis kgm 2

g Acceleration due to gravity m/s 2

M Mach number

CAi Nondimensional lift derivatives

C Nondimensional drag derivatives

Cmi Nondimensional pitching momentderivatives

For sea level we obtain, Lhe following numerical values

Expression Value Unit

p. E 3.416.10 - 3  m-1
m

.581 M s-
1

V m
197.7 M2 ms 2

• S 102.9 M2  -2
Iy

SSLU .3026 M m-1 . s - 1
V Iy

2

3.Lu 1.479 M s -

V ly
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Values of the nondimensional derivatives

Mach number

.206 .8 .9 1. 1.1

C A .91S .079 .-) C- 0404

C 2.8 3.26 (-) 3.26

C0 0 .25 -) -. 12

Cw.242 .0175 -) () .0416

.5~b-55 .085 - (- .031

CWM 0. D. 0. .4 .02

C -. 14 0. 0.

C -. 098 -. 275 (-) (-) -. 594

C -.475 -.49 (-) (-) -. 57

C -1. -1.17 (-) C-) -1.35mq

C0m 0. -.037 -1. (-) .0323

Cm -.322 -.49 (-) (-) -.511

(-) denotes: actual values can be computed by linear interpolation.
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by

Volkmar Adam
Hagen Leyendecker

Deutsche Forschungs- u. Versuchsanstalt
fUr Luft- u. Raumfahrt

Flughafen
3300 Braunschweig

Federal Republic of Germany

Summary

The manufacturers Bodenseewerk Ger~tetechnik, MBB, VFW-Fokker and the research institution
Deutsche Forschungs- u. Versuchsanstalt fUr Luft- u. Raumfahrt have developed and flight-
tested an integrated digital flight control system for future transport aircraft. The
primary objective of the program was, both to improve the manual control of the aircraft
assisted by control systems, and to develop new control and display systems. In addition,
automation is to be provided for longer flight phases which are to be optimized with re-
spect to fuel consumption, flight time, or other criteria. This paper describes some
aspects of the control law design and flight test experience with the integrated digital
flight control system.

Nomenclature

a speed of sound p roll rate
ay lateral acceleration PH static pressure
CD drag coefficient q dynamic pressure
C%/CL drag/lift ratio q pitch rate, rad/s

CL lift coefficient r. thrust pitch moment arm
lift coefficient due to the S wing reference area

C4.) variablel*), e.g. Cy s Laplace operator
Uw horizontal wind speed

Cl3  rolling moment coefficient due v indicated air speed as an ele-to the variable(N), e.g. CIp ment of the state vector
pitching moment coefficient due VAS indicated air speed
to the variable(), e.g. Cm.VK velocity of aircraft mass center

VTAS true air speedW aircraft weight
CWS control wheel steering Ww vertical wind speed
EPR engine pressure ratio W vtal widspe
F thrust state vector

Fl angle of flaps y flight path angle
g acceleration due to gravity 6 6r angles of aileron, elevator, and

GCS guidance and control systemrad q vertical6 pspeed,n/s 6 epilot's commands via control
vertcal peed m/swheel

ix dimensionless moment of inertia A.) deviation from a reference
about x-axis flight, e.g. Ae

KF.) feedback of the variable (*)to fh, gV, co control error signals
the thrust, e.g. KFv e pitch attitude, rad

K0, }  feedback of the variable(*) to 0 bank angle
the aileron, e.g. K, 3H air density

KN undamped natural frequencyK I,) feedback of the variable t-) to damping ratio
the elevator, e.g. Kbe

K6,ay lateral acceleration feedback Subscripts

to the rudder c commanded
1 length of mean aerodynamic chord o reference flight

Mach number sp short period mode
m aircraft mass
n normal load factor

1.0 Introduction

In the past, the increasing operational requirements placed on the flight control system
of transport aircraft have led to systems of more complexity with a large number of com-
ponents. This resulted in increasing weight, volume, energy consumption and costs and
paced the way for digital flight control systems. The advantage of digital systems com-

pared to former analog developments becomes obvious, if the following is considered:

- Integration of a great deal of single functions in a limited number of computers.
- Simple implementation of complex algorithms.
- High flexibility due to definition of system characteristics by software.
- Good self-checking capability.

Airlines thus expect the digital flight control system which will be used in the next
generation of transport aircraft to provide a reduction in cost and a further improve-
ment in performance, in particular when provision of additional operating modes and
automatic functions is desired.
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The increasing air traffic density in the Terminal Maneuvering Area and thk ' zce - tne
aircraft in use today place high requirements on the ability of the pilot and cr, the
quality of the control and sensor system. For the coming near terminal operational pro,-
cedures, the pilot should be able, with the minimum possible work load, to achli:ve a
precision level in aircraft guidance close to that of an automatic system. Thus, an im-
portant development objective is both to improve the manual control of the aircraft
assisted by control systems, and to develop new control and display systems. In additio.,
automation is to be provided for longer flight phases which are to be optimized with rc-
spect to fuel consumption, flight time, or other criteria. The development of such func-
tions becomes more and more important as fuel prices rise.

In order to gather experience with regard to the above-mentioned operational aspects, an
integrated digital flight control system for future transport aircraft has been develop-
ed and flight-tested with a HFB 320 (figure 1) as part of a research project sponsored
by the Federal Minister of Research and Technology.

2.0 The guidance and control system

The flight control system includes a guidance and control system modes concept (GCS
modes concept) with a hierarchical structure corresponding to the degree of automation.
The three levels of the hierarchy are control wheel steering, autcrnatic modes, and auto-
matic functions (figure 2). The basic GCS mode is the control wheel steering mode, which
considerably simplifies flying the aircraft. By control wheel deflections, the pilot can
intervene at any time and command changes for the longitudinal motion in the pitch atti-
tude, or in the rate of vertical speed, respectively, if thrust control is active. In
the lateral motion he can command changes in the bank angle. The primary automatic modes
and funcions are immediately switched of f and the control system calculates control sur-
face deflections for stabilization of the required new flight condition. This results
in high maneuverability with reduced pilot work load.

The modes for altitude and heading hold are automatically engaged when the pilot has
approximately reached stationary straight and level flight condition via control wheel

.0 steering. All other GCS modes are selected and engaged on the control unit of the flight
control system. In addition to well-known autopilot modes for altitude change, heading
change and VOR navigation, the autothrottle mode is implemented for preselection of
aircraft speed. By further, newly developed GCS modes, aerodynamic variables are con-
trolled, too. For example, the pilot selects a multiple of the stall speed. Automatically
the actual aircraft configuration with respect to weight, flap position, etc. is taken
into account by the control law computation. Furthermore, a climb maneuver can be ini-
tiated with maximum flight path angle or with maximum vertical speed on the pilot con-
trol unit of the control system. In addition, automatic functions can be selected, which
permit automatic execution of longer flight phases. These functions are making use of
the ordinary GCS modes and include automatic approach or automatic overshoot in the case
of a missed approach, transition from cruising flight to the approach flight condition
with minimum fuel consumption and transition with time control.

The management of the GCS mode concept is performed by the GCS management logic. The
software of the flight control system is divided into three sections: Computation of
command inputs, controller outputs, and computation of total control variables. Each of
these sections includes several modules which can be activated individually. Correspond-
ing to its logic state with respect to the engaged GCS modes, the GCS management logic
selects the respective modules of the three sections. Figure 3 demonstrates, for example,
which modules of the three sections are engaged when AtITOLAND is switched on together
with the compatible GCS mode speed change (VC).

3.0 The sensor system

All sensor signals required by the flight control system are provided by the sensor sy-
stem in a filtered form suitable for flight control. The signal quality of the various
sensors corresponds to the expected standard for future transport aircraft. Filtering of
the measured analog signals is carried out on the analog side as the digital controller
does not permit high frequency filtering due to its sample time.

An air data and navigation calculation program processes the signals of the static
pressure sensor, of the inertial sensor system, and of the radio navigation receivers.
The vertical acceleration signal is integrated twice and is slowly slaved to pressure
altitude signal, resulting in very smooth altitude and vertical speed signals.

The long-term errors of the inertial navigation system are reduced aiding with a refer-
ence position. The reference position can be calculated either from the signal of a
MLS station or from those of a VOR-DME station. If the reference signal fails during a
turn at low altitude due to shadowing of the antennas on the aircraft, a very precise
continuous flight path can still be maintained. This means that navigation signals of a
constant quality corresponding to the short-term accuracy of the platform are available
in all GCS modes which are used in the Terminal Maneuvering Area.

4.0 Dimensioning of the flight control system

In accordance with the hierarchical structure of the flight control system, dimensioning
of the controller consists of step-by-step development of a coupled multivariable feed-
back system. All essential sensor and command inputs act on the controls available to
the flight control system. These controls are rudder, aileron and elevator. The throttle
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of the engines is used additionally in some GCS modes. If the selected controller struc-
ture (figure 4) is applied strictly, the design of the system eigenmodes can be separat-
ed from the gain determination of the command feedforward loop and the disturbance com-
pensating loops.

Well-damped eigenvalues must be achieved for all flight conditions and for every con-
ceivable combination of GCS modes. This also provides an improved response to gust in
case of no direct feedforward gust allevation system. Disturbances resulting from con-
figuration changes of the aircraft, for example extension and retraction of flaps or
landing gear, can be modeled with a good degree of accuracy and can therefore also be
compensated by open loop control.

Various methods are used to determine the gains of the flight control system and to
schedule them to flight condition parameters. It should be emphasized that the classical
methods such as the time vector method (ref. [il) and the root locus method have proved
to be as useful as modern numerical design methods such as solving the Riccati equation
or automatic parameter optimization by minimizing a cost function (ref. [2, 31).

The met iods were used with equal priority and their results have supplemented and sup-
ported each other. As the control system gains and the system dynamics after minimization
of a cost function do not necessarily comply with the engin( r's ideas, gain modifica-
tion "by hand" together with a nonlinear simulation still plays an important part in the
development of a multivariable feedback system. The design engineer has a fairly wide
decision rangp in which there is more than one satisfying combination of possible struc-
tures and corresponding gains for achieving good closed loop response.

In contrast to the feedback loop design, the feedforward open loop control is determined
explicitly. High control accuracy is strongly dependent on the precision of the control
surface positioning with respect to the dynamic feedforward open loop control signal. On
the one hand, the command model must not exceed the flight-mechanical capabilities of
the aircraft, on the other hand, all knowledge of the aircraft dynamic behavior during
stationary and instationary flight phases must be taken into account for the open loop
control. If the error because of undesired stimulation of the eigenmodes is reduced,
then unnecessary deflections of the controls would also be reduced. This is, for example,
the case when aileron and rudder are to be deflected at the begin of a turn, or whel
elevator and thrust increase is needed during a steady turn.

In the first design step, feedback of the complete state vector was considered. The
physical effects of the various control loops were then examined both by analytical
methods and by simulation. An important design objective was to reduce the number of
feedback loops to the really necessary ones without loss in performance. A further de-
sign objective was to maintain the existing structure and gain factors of the basic in-
ner control loops when further loops were added by activation of other GCS modes. The
design was carried out iteratively, i.e. the effects of each modification step was
checked by simulation. Also the pilot rating was included in the evaluation process to
define the modifications for the next iteration step. The following chapters describe
how the final determination of the control structure and gains was carried out for the
basic modes, such as the control wheel steering modes. A detailed presentation of all
intermediate steps has been omitted.

4.1 Feedforward open loop control laws

A criterion for the quality of a control system is the activity of the controls. This is
particularly true for the throttle activity. Therefore, open loop control laws are de-
termined on the basis of good knowledge about the aircraft behavior resulting from de-
flections of the controls. Thus, necessary adjustments for command changes and known
disturbance effects are rapidly carried out with reduced control activity. The following
examples demonstrate how the open loop control laws are developed.

4.1.1 Compensation of secondary effects of thrust control

In addition to the desired effects, the controls have undesirable secondary effects,
too. For example, an increase in thrust not only changes the resultant longitudinal
force, but also provides a component in lift direction and generates a pitch moment. The
only really important secondary effect of the HFB 320 thrust control is the resultant
pitch moment. Therefore, a compensation by proportional elevator deflection was carried
out. Pitch moment balance indicates:

As the thrust cannot be measured directly, it must be determined approximately from the
engine pressure ratio EPR:

q pR

where KFEPR is a constant and the second term takes into account changes in air density
and Mach number. Thus, elevator deflection due to thrust changes car be expressed by:

__ q/ PR (3)
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with the constant factor

K r. KFEPR (4)

C " Io. S

4.1.2 Thrust setting

According to the GCS modes control concept, the throttle is used for control of speed,
and either altitude or vertical speed. The linearized force equations in x- and z-direc-
tion provide the following expression for the thrust setting:

* + 1 (5)
9 9 CL VTASI

Since VIAS is the control variable for speed, VK must be substituted by:YK= Vr*O = r 1S P
TS~ T14h -. (6a, 6b)

Thus, the following relation results for the thiust setting:

'6F= Wi-+ . +OJ(7

The weight W of the aircraft is a multiplicative factor for all of the various input
variables and is therefore of great importance for open loop control of the thrust. De-
termination of the weight from the takeoff weight minus the weight of fuel consumed dur-
ing the flight is necessary, but sufficient with respect to the measurement accuracy.

The thrust law shows that further variables determine the thrust required for changes in
speed. First, the thrust is immediately be adjusted in proportion to the acceleration
command. Secondly, the drag-lift ratio CD/CL has to be taken into account. During cruise
flight condition the drag-lift ratio is relatively constant. Therefore, changes can be
ignored in this case. But during landing approach with changing flap position or landing
gear extension the effect of changes in the drag-lift ratio on the speed error becomes
significant, due to the decrease in aerodynamic efficiency. An approximate thrust cor-
rection as a function of the flap position at an average angle of attack is therefore
provided.

During climb and descent, the thrust requirement depends on the flight path angle
y = H/VK. In some of the GCS modes a continuous command function for altitude rate (Hc)
is generated, resulting in corresponding changes of the thrust setting. During a turn
maneuver the normal load factor n changes, too. The necessary thrust increase depends
on dn to

It becomes obvious that the open loop thrust control can be easily performed, because
the variables needed for a suitable thrust setting can be derived within the computer.
In principal, this is also true when, in addition, the remaining terms of the required
thrust setting with respect to wind disturbances (Ww,Uw ) are considered. For the control
system presented in this paper, these terms are neglected for open loop thrust setting.

4.1.3 Open loop for steady turn maneuvers

The position of the controls required to maintain the steady turn is defined by the
steady state condition with respect to the aerodynamic moments about the three axes.
Since the deflections of aileron and rudder are very small, it is sufficient to con-
sider the elevator angle only. The change in elevator control surface deflection re-
quired in a steady turn is the following (ref. [41):

-mr 
9W C'A mg f)(8

Add - (f,71)c n 1,-i(8
e mee C1Cr m 'de I ASn)

with the normal load factor n = f (9)
cos $

The expression for tin can be simplified for bank angles less than 300 and by introduc-
tion of the dynamic pressure ratio o/& :

with K,,2 as a multiplicative constant:
*Cm9 1A, CmA' W

e Z M4 0 m4f t' .

4.2 Design experiences

4.2.1 Longitudinal motion

The design requirements with respect to flying quality characteristics are based on
specified areas for eigenvalues of the aircraft in the root locus plot (ref. [5]). There-
fore, the root locus method is mainly used for the dimensioning of the control behavior
in the basic GCS mode, the control wheel steering mode. If the number of closed control
loops Is small, the coupling effects of the gains remain clear and are easily represent-
ed. The design can be carried out in a simple, straightforward manner.
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For the longitudinal motion of the aircraft, the requirements for the short-period natu-
ral frequency wN and the damping ratio E, are specified in ref. 151. Figure 5 shows that
the experimental aircraft HFB 320 meets the frequency requirements even in the uncon-
trolled case. Also the damping ratio E of the short-period mode meets the requirements
of ref. [5]. In addition to these requirements, a design goal is defined for the rela-
tive damping of the short-period mode as C - 0.7 for all flight conditions. Furthermore,
the damping of the phugoid mode needs improvement. Figure 6 shows the control structure
for the control wheel steering mode (CWS-O).

In addition to the feedback gains K6eq and K6.6 , which are determined at first, three

further feedback loops are always active to compensate for effects during a turn maneu-
ver, for the lift change when flaps are extended, and for the pitch moment due to thrust
changes. The compensating task of these feedback loops is strongly alleviated by the
open loop control as described in chapter 4.1.

The complete range of flight operation was ahalyzed using the time vector method and the
root locus method, both showing the interactions of K4q and K%9 with respect to damping

and frequency of the two eJgenvalue pairs of the longitudinal motion. Figure 7 provides
an example of the investigations described here. The Kdq , K48 combinati, . "n in

figure 7, ensures together with adaptive elevator control as a function of -ynamic
pressure that the relative damping of the short-period mode is located bet 3.7 and
0.82 in all flight conditions examined, and that the eigenfrequency WN is incxeased
slightly compared with that of the uncontrolled aircraft (figure 5). At the same time,
the relative damping of the phugoid mode is always greater than 0.70. Figure 8 shows
a simulation result of the control wheel steering mode CWS-O in turbulent air.

The turbulence model used corresponds to ref. [5]: for clear air turbulence at an alti-
tude of 500 feet. The pitch command input is derived from a typical pull-up maneuver,
with a constant pitch rate of qc = 20/s &t the beginning, then being reduced asymptoti-
cally to zero as the required new pitch attitude is approached.

The response of the uncontrolled aircraft to gust disturbances is shown on the right-
hand side of figure 8. The comparison with the response of the controlled aircraft
demonstrated the effect of the Kdeq Ke8 combination, particularly on the stabilization

of the pitch attitude. Figure 9 shows simulation results in turbulent air for four dif-
ferent flight conditions. Satisfactory results were obtained by constant gains and dy-
namic pressure adaption throughout the entire flight envelope investigated (figure 6).
As operation of the flight control system for both without and with an integrated auto-
throttle system is planned, it was also possible to test a second control wheel steering
mode CWS-H (figure 10) in the experimental system.

In accordance with the hierarchical and modular structure of the flight control system,
all loops of the pitch damper and the control wheel input with the gain Ka.0 act on the

elevator. A vertical speed command H is generated from the control wheel signal by
multiplication with the true airspeeS signal and integration with respect to time. The
vertical speed error signal activates the elevator by a proportional gain K *and by

integration with the gain K6eH . A signal for adjustment of the thrust is generated from

the difference between the command signal HC and the vertical speed existing when the
mode was engaged.

As this CWS mode must also comply with the flying quality requirements described above,
the root locus method is again suitable for design. However, the relationship of the
four gains K~q , K 8 , K , and KH would have become difficult to read if the values
were not related t the Rkq , Kecombination previously determined. Figure 11 shows
that the eigenfrequency WN of the short-period mode is neduced slightly by the gains K41 H

and K&H, but still complies well with the requirements of figure 5. The selected K6,

K4 Hcombination (figure 11) also requires dynamic pressure adaption for the elevator, as

shown by analysis for the examined flight envelope.

In parallel to these investigations by use of the root locus method, a linear optimiza-
tion method by solving the Riccati equation was used. If physically reasonable weighting
coefficients Ki are used, the cost functional

J-f[Kq() K, H'(t K, H-(e)] d t - MINIMUM (12)

provides gains which correspond to the results of the root locus method. For good dynam-
ic behavior, which is influenced not only by the pole position but also by the corre-
sponding eigenvectors, cautious changes of the eigenvalues from those of the uncontrolled
system are favorable.

Figure 12 shows a typical simulation result with the control structure of figure 10. The
open loop control of the thrust in this example is rather weak, which means that the
speed decreases during the climb and returns gradually to the initial value after the
climb maneuver is completed. As the correct open loop control depends almost exclusive-
ly on the actual aircraft weight, the pilot must expect a change in the speed behavior,
depending on whether the open loop control provides too much or too little thrust for
the climb. However, the very slow return to the initial value of speed always occurs.
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This behavior results from the pole near the origin (figure 11), which has previously
received little attention. As the speed is the major element in the corresponding set of
eigenvectors and the position of the pole changes only slightly with varying weighting
coefficients in the cost functional, the gain KFvmust be of great importance for this
eigenvalue. Figure 13 clearly shows, in comparison with figure 12, how the climb speed
control operates with and without speed feedback loop.

Root locus graph examinations show that the speed feedback to the thrust has a signifi-
cant effect on the position of the problematic pole near to the origin over the entire
flight envelope, while the other two pairs of poles, already set up by the above-men-
tioned four feedback loops to the elevator, remain at about the same position.

It is clear that the speed must be fed back to the thrust in order to provide satisfac-
tory dynamic behavior for the CWS-H mode. This means one step towards speed control.

The optimization method by solving the Riccati equation was applied to the coupled
multivariable system with the state vector x = (e, q, H, H, v) and the two controls
elevator and thrust. With selected weighting coefficients Ki, the cost functional

/7_H'(Q. H (*K 5 v _ ]dt = MINVMUM (13)
0

provides the gains K.q I %e , K4, , %H which were determined from the rdot locus graph

examination and, on the basis of the complete state vector feedback, the gains KFv,

K6 ev , KFq , KFe , KF , and KFH which were previously not considered.

This design method again shows the importance of the gain KFv , in that a variation of
the weighting coefficient K5 results almost exclusively in a change of the gain KF . In
contrast to this, variation of the other weighting coefficients change all feedbacks in
a manner which cannot be predicted.

By detailed simulation, it becomes evident that the gain V,5, will better be determined

by a physical consideration than by using the result of the optimization run. Flying
with constant glide path angle, the elevator must be deflected when a speed change is
commanded. Provided that the x-force balance is achieved by the thrust during the phase
of acceleration, the required contrl surface deflection can be derived from the con-
dition that changes of aerodynamic z-force and pitch moment must be approximately zero.
The combination of the two equations results in the following relationship:

Ith Osed re 13023 kt the tl . (14)

,.- -L. CL. "(<. "71 ,
In the speed range 130-230 Its the neutral point position defined by C'nc,/ CLe has the

most important influence on the required elevator deflection during speed change. This
term must thus be realized within the control structure. As the aerodynamic derivatives
in equation (14) are approximately constant in the flight regime investigated the gain
is easily determined.

The other four gains KF K F, KFH, and KFH have little effect on the closed loop be-
havior and are thus no so important. From a physical point of view, the small effect
of the two gains KFand KFHin an altitude control loop is surprising. An energy consi-
deration of the aircraft provides a certain amount of clarification.

As mentioned previously a particularly important criterion in flight control system
design is a low throttle activity. On the other hand, increasing the thrust is the only
possibility of supplying additional energy to the aircraft, i.e. it is not possible to
fly without any activity of the thrust. Minimization of the thrust activity is achieved
if the thrust is used only for modification of the total energy and if the exchange of
potential and kinetic energy is controlled by the elevator. A controller which controls
altitude H and indicated air speed VIAS can, therefore, be named an energy controller.

If small deviations from a reference steady flight condition are considered, the linea-
rized form of the change in total energy can be expressed by

dE-mg dH*m V AyV , (15)

whereby the mass is regarded as constant for short times.

Since the controller is intended to control V , the appropriate substitution of VK
must be carried out with the equdtions (6a, 6W. This then results in

nZ igm(A is AUw ) V (16)

If the energy is to remain constant, then any change in the wind UW will cause a devia-
tion in the speed and the altitude. In addition, any change of altitude at a constant
wind speed will result in speed error. In case of flight in higher altitude (correspond-
ing to the change in the densi'y) or with higher velocity VK , deviation from the speed
VIA' causes incrcasing altitude errors. Conversely, it can be said that speed control
will be satisfactory if it Is possible to achieve good altitude maintenance with the
elevator at high altitudes and high speeds. A controller which is intended to control
the total energy by means of the thrust must be designed in accordance with the struc-
ture in figure 4. In addition to the open loop control of the thrust defined in chap-
ter 4.1 proportional and integrated speed feedback mist be provided. If the potential
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and kinetic energies are regarded as command inputs, then the two paths must be connec-
ted together with appropriate weight:

A F - AL W AYII M )(17)

The speed feedback loop is therefore dependent on the aircraft weight and the air den-
sity. Parameter investigations have shown that a constant gain Kpv is sufficiently
satisfying throughout the operational envelope considered. The alitude feedback loop is
dependent on the velocity Vk; the thrust control becomes weaker as the velocity increa-
ses. This explains why the gain KFH has a noticeable effect only in the case of the
aircraft flying at low speeds. However, simulations of flight with the GCS modes VC and
ALT HOLD engaged and with simultaneous flap setting show that inclusion of KFH provides
an additional reduction in the thrust activity. The controller structure implemented in
the flight control system, divided into pitch damper, altitude controller, and speed
controller, is shown in figure 14.

The open loop control for the speed controller consists of the gain Kq . It is inter-

esting to see that Kkv is the only connection to the elevator from speed control. The

nonlinear expression KFF1 , cumpensates changes in drag during flap setting. The effects
of these gains are described in chapter 4.1.

The gains KFv and KFfv are important with regard to compensation of disturbances and
errors remaining from unprecise open loop control. If the thrust reaches its limits, the
integrating path is disconnected, and this results in a speed error. Altitude control
via the elevator still operates satisfactorily.

4.2.2 Lateral motion

The control structure for the lateral motion is much alike that one of the longitudinal
motion. Also similar design steps are carried out starting with the basic GCS mode, the
control wheel steering mode CWS-0. These investigations show that the lateral oscilla-
tion, the Dutch roll mode, can be damped either by lateral acceleration (K,) or yaw

rate feedback to the rudder. The control structure is shown in figure 15. The two gains

K6p and K6, (figure 15) are required for bank angle control. They have virtually no ef-

fects on the Dutch roll mode. The gain K&,ois of no major importance for bank angle con-

trol, because the gain F6.0 already has an integrating characteristic. However, it must

be provided in the controller for trimming of the aileron after the controller has been
switched on. The integrating gain is kept very small such that it causes no significant
change in the dynamic behavior.

Therefore, only the two gains Kpand K6.0 are further considered. The rolling moment

equation together with the two gains, leads to the characteristic equation

~ ~(CIP * ~ )S-C1do* KpsQK~O (18)-

If the resulting poles are always tc have a relative damping E a 0.7, then the following
relationship applies: (C Kj0  2

K/C (19)

This relationship has been evaluated to select a constant gain combination such that the
relative damping is always greater than 0.7 and the eigenfrequency of the root pair is
sufficiently high. As no side-slip sensor is used, the side-slip angle cannot be con-
trolled.

Even in turns with a bank of 250 the side-slip angle is always lesc than 10 for the
HFB 320 aircraft. An open loop control gain Kdrfc can reduce the side-slip in turn even

further. If required, the pilot can deflect the rudder directly with the pedals, thus
achieving a required side-slip ingle, for example during an approach. In order to per-
mit intervention in the above bank angle control loop by the control wheel steering CWSA

the deflection of the control wheel corresponds to a roll rate command pc. Figure 16
shows simulation results of the bank ancle controller for four flight conditions, the
gains K6, C , K60 p, K6.1 , Kdf , and Kdray being constant.

5.0 Flight tests

A flight test program was conducted, using the DFVLR experimental aircraft HFB 320. The
objective was to test the algorithms for control and command computation, the GCS modos
management logic and the pilot interface hardware during flight.

Because of intensive ground tests of the system by use of an elaborated nonlinear simu-
lation no major deviation in the control performance did show up during the flight tests.
Nearly all simulation rpsults were confirmed. No essential modification of any of the
control system gains or Structures was necessary during the flight tests. Within 60 fligh"
hours all control system functions and modes were tested and approved in the speed range
of 130 through 230 kts.

The following figures show some flight test results. Only thost flight phases were selec-



7-8

ted refering to GCS modes already presented. Figure 17 shows a climb maneuver by use of
the mode CWS-H with speed control automatically engaged. The pilot's activity on the
control column is plotted in the upper trace. The integral of the control wheel deflec-
tion presents the commanded vertical speed. The relief for the feedback control on thrust
due to speed errors, achieved by the open loop control gain KFk , becomes obvious re-
garding the speed deviation which is always less than 2 kts, as well as the thrust ac-
tivity. The mode ALT ACQ offers another possibility of automatic altitude change. The
pilot enters commands for altitude and vertical speed via keying in the corresponding
value and using the RATE V/S switch on the control unit, respectively.

Two different flight phases are shown in figure 18: A descent maneuver with 1900 ft/min
and 400 flap extension and a following climb maneuver with 1000 ft/mmn climb rate with
a flap retraction from 400 to 200. The maximum altitude deviation of about 20 ft occurs
during the nonlinearly cur~ed sections of the flight path. The flap retraction causes no
remarkable deviation of speed and altitude.

Speed changes can be commanded if the mode VC is used. Figure 19 shows two deceleration
phases, from 230 kts to 170 kts and, after 25 seconds, further down to 1-0 kts. The com-
manded deceleration is preset in the computer (lkt/s). The maximum speed error occurs
during the deceleration phase. Its value is about 2 kts and the maximum altitude error
is 15 ft.

These speed reductions are combined with a commanded heading change of 1800 initiated
by use of the mode HDG ACQ. The turn maneuver is carried out with a maximum bank angle
of 250. As the transition to the commanded heading is performed by controlling with a
function of VTAS, nearly no overshooting occurs.

Figire 20 is chosen to demonstrate the effectiveness of open loop control. The extension
of flaps nearly causes no deviation of speed and altitude, although the drag is strongly
dependent on the flap position. The nonlinear gain KFA provides the adjustment of the
thrust whereas the gain K4 F compensates the pitch moment due to thrust. The control loops

for maintaining speed and altitude are effectively relieved.

6.0 Summary

The increasing operational requirements placed on flight control systems can be achieved
economically only by use of digital technology and by construction in the form of an
integrated system. Such systems also provide new possibilities in control design. Know-
ledge of aircraft parameters and dynamics can be exploited to develop nonlinear power-
ful algorithms for improvement of the control accuracy. Experience with the experimental
systems have shown that in spite of a high degree of complexity in the software struc-
ture the modular structure of the software with well defined interface signals permit
flexible execution of the modifications and effective testing of these modifications.
The control system can be extended step-by-step by new GCS modes and additions of fur-
ther control and controller modules.

Because of the fact that the control system is designed as a coupled multivariable system
and that the controller structure has nonlinear feedforward open loop control, the re-
quirements with respect to good closed loop response is achieved. Careful design of com-
mand input models matched to the flight-mechanical capabilities of the aircraft is im-
portant. If high quality sensor signals are available, for example those provided by
integrated navigation and inertial attitude sensor system, then precise flight control
throughout the entire flight envelope is possible.
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SUMMARY

When compared to other large scale systems, flexible spacecraft have some peculiarities which can make
control more difficult. In this discussion emphasis is placed upon the time domain and suboptimal Linear
Quadratic Gaussian (LOG) methods, with special attention given to the effects of modeling errors. These.1 effects are discussed in light of the model reduction problem, stability, and control design. Stability,
controllability and observability computations are reduced to their simplest form possible to provide insight
and to facilitate the location of sensors and actuators. The techniques of modal cost analysis are used to
identify the critical parameters and the critical modes of the structure. In the final stage of design,
component cost analysis reveals which states of the optimal dynamical controller should be deleted to
produce a reduced controller which is compatable with the on-line computer software limitations.
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1.0 INTRODUCTION

Flexible structures and their dynamics have been studied well over a century. However, only recently
has there been an interest in the active control of flexible structures. Such interest was piqued in the
1960's by a flexibility-induced instability in USA's first satellite [1), and more recently by sophisticated
requirements for precision controlled structures in space for astronomy, communication networks, near-earth
scientific studies, and space solar power alternatives, [2]. The rapid development of computers and control
theory in the 1960's has encouraged active control applications for other structures as well, such as flutter
suppression in aircraft [3], and active damping of bridges and tall buildings [4). This is not to say that
active control is needed in every structure, however, and there is no clear means tomake the decision of when
and how much control effort is needed in a structure. There is a need to study the dynamical properties of
the mechanical system with a view toward discerning what improvements in performance can easily by made by
redesigning the structure and what improvements must be left for active control functions. This beneficial
interaction of the dynamics and control disciplines in the development of a rational design methodology has
not yet occurred to any mature degree. Usually the structure designs and the control designs occur
sequentially. This luxury cannot be afforded in the future, as stringent requirements force us to provide
better coordination between structure design, control design, and controller software design.

Some of the reasons that the control of flexible spacecraft can be a difficult task are briefly
described by the following three problems.

(i) The Model Error Problem

The space structure is usually constructed of lightweight materials, and thus the assembled structure
is very lightly damped. This uniqueness of light damping for the space structure makes the control design
extremely sensitive to modeling errors, since the slightest perturbation of truncated modes by control
action can shift these eigenvalues into the right half plane. Also there is the usual uncertainty in the
computation of the modal data. This problem is especially critical for spacecraft since modal data
uncertainties cannot be removed before flight, due to the difficulty of testing the extremely lightweight
structure in a 1-g environment.

(ii) The Limited Controller Software Problem

The practical limitations of memory and speed of on-board computers mean that only controllers of con-
strained dimension can by considered. These constraints can severely reduce the performance capabilities
of the controlled system due again to the effect of modeling errors imposed by the cortroller order con-

optimal" state feedback solutions are not going to be realized). Thus, limited software serves only to

compound the model error problem by constraining the order of the controller and by adding delays in the
feedback loop.
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(iii) The Performance Requirement Problem

Of course the model error problem and the limitations of software pose no serious threat to the mission
if the performance requirements are quite lenient. Thus, the degree to which (i) and (ii) pose problems is
directly related to the severity of the performance requirements. Therefore, early researches on the sub-
ject have sought to help with the tradeoffs between performance and modeling errors (including those in-
duced by controller software limitations).

The aim of this chapter is to describe some preliminary approaches to cope with these problems. The
organization of the chapter is as follows. Section 2.0 describes the form of the dynamical model. Section
3.0 describes some of the model error effects in general terms. Section 4.0 presents results on stability,
controllability and observability of flexible spacecraft, and Sections 5.0 and 6.0 assume perfect position
and rate sensors. Section 7.0 treats the more general LOG problem with application of component cost
analysis [5], and Section 8.0 offers some concluding remarks.

2.0 MODELS OF SPACE STRUCTURES

Those portions of the structure resembling beams, plates, and membranes might reasonably be idealized
as a material continuum. The resulting partial differential equations (PDEs) contain all the modal data
over an infinite spectrum, [6]. Other parts of the structure might contain trusses or complicated connec-
tions which require a finite element formulation of the model, resulting in a set of ordinary differential
equations (ODEs), [7]-[9J. Also, the dynamics of actuators and sensors are usually described by ODEs. This
combination of distributed-parameter models (PDEs) and lumped-parameter models (ODEs) must eventually be
reduced to a finite set of ODEs. The discretization of the PDEs must be accomplished so that the frequencyspectrum over which each of the subsystems (actuators, sensors, sub-structure 1, sub-structure 2, etc.) are
modeled is consistent. Otherwise, troublesome dynamical interactions between subsystems might be uninten-
tionally concealed at the outset. Thus, each of the substructure models might be truncated prior to the
assembly of the composite model of Fig. 1,

Actuators Structure Sensors
" S a  

SRY $s

Disturbances Fig. I Open Loop Block Diacram

M'q + C' + + G'I + K'q = B'ua

structures, SSTR (2.la)

Y (n)'

a = x +Bu+w
a a a a a( 1

actuators, Sa

ua Caxa + va

As  Asx s + BsY+w s sensors, Ss 
(2.lc)

z =C x + v

where the inertia or "mass" matrix M' = 0 is positive definite and symmetric, tne stiffness matrixK' = KT ,0 is positive semidefinite and symetric, the internal energy dissipation due to damping is

IT N and C' = CT > 0 is positive semidefinite and symmetric, and any gyroscopic term is due toG' = G'T,
which is skew-symmetric. The disturbance models assumed for wa, va, w., v are all zero-mean white noise

processes. The dimensions of the vector are xs E R
s , x a R a , q c H ua Rm a, u , Rm, y c Rny , z E Rnz.

.k_ _
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One strategy for truncating each of the sub-structure models before constructing the composite structural
model (2.1a) is to use the momentum "completeness" indices of Hughes [10). The subsystems might typically
be truncated to 100 modes and the composite system SV~D might therefore have several hundred configuration
variables q.. For further model reductions afte; thJ eomposite system (2.1) is constructed, "completeness"
of the model will be judged by criteria more closely related to the specific control task than the momentum
criteria of [103. Such methods will be discussed in Section 7.

The coordinate transformation

q = Tn (2.2a)

is often made to put the structural subsystem SSTRin the modal coordinates

Z1) + Z2 n ua  , "u 8 (2.2b)

y PiP PI (2.2c)

R R-T (2.2d)

Z2 4 TTK'T , Z T T[C' + G']T (2.2e)

Let the firstn r elements of q and n be associated with rigid-body (zero frequency) modes of the structure.
Then these matrix partitions apply

Z TKIT block diag. [0 w2  , 24 diag [2 .....2 = T KIT (2.2f)
2 ~1 N e e (.f

TTM'T = I , T = [Tr  Tel (2.2g)

TTC'T = block diag [0 A] , A > 0 (2.2h)

TTG.T = 'r Gre (2.21)

IGer ee

T = [nT nT (2.2j)

P= [Pr Pe (2.2k)

R= [Rr  Rel (2.2t)

T - T (2.2m)

where the zero in (2.2h) holds if the rigid modes are undamped, and G'r = G Ger = -GT ee
Now (2.2) becomes

nr + G' + G'" = BU (2.3a)r rnr + re'e =B

n+ G! +~ G 2~ Bf 2 (2.3b)
e err eee + ae 3e eu

y = Prn r 
+ Pen e(2.3c)

R r r +R r(2. 3d)

There are N nearly elastic modes with frequencies

(W {I L 2  w ' N } 1 (2.4)

and eigenvectors

Te = [tl, t2' .... tN] (2.5)

From (2.2) or (2.3) state variable models are readily constructed, but note that such models rely on
accurate modal data w, t1 . TTG'TA represents the gyroscopic terms due to the presence of spinning rotors
on the structure or spinning structures. Since the absence of a precise theory of damping makes C'difftcult
to characterize, [7], the term A~e often is arbitrarity added to represent energy-dissipative forces In-
ternal to the structure. The arbitrary assumption of "modal damping",; i, gives to A the form

La= diag [2ilw. 24N] (2.6)
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and ci, i = 1,2.... N perhaps are the least accurately known parameters in the model. Modal damping on the
order of i = 0.005 is typically assumed [11] for space struetres. Uncertainties in the mass and stiffness
matrices M and K, lead to incorrect eigenvectors ti . This renders uncertain the mode shapes and mode slopes
at actuator locations (in Be) and At sensor locations (in Pe, Re) on the elastic portions of the structure.
Also the structure of the matrix w4 is altered by errors in T. The uncertainty in the frequencies wi and
eigenvectors ti tends to increase with mode number i. It is plausible, then, that a reasonable model for
uncertainties in each of these parameters

t ei 4tTB', P 4 P't i , R 4 R'ti}  (2.7)ei Ie - ei Re]

is a variance of the form
2 2 (L vari associated with parameters of mode 1) (2.8)G iaO (' vranceasoitdwtpaaeesfmde1(28

for some constant a o . Thus, for all appropriate elements jk of the ith rows of 8 e, and the ith columns of
Pe , R e

2 q E(.i W i)2 = E(5 . - 2 k= EP - 2 -2k
i  (Bei eik (Pei eik e eijk

where E denotes expected value, and the overbar denotes mean value. The uncertainty in the arbitrarily
assumed modal damping ci is quite large, but it is not known whether this increases with frequency. When
the need arises (in later sections) we will arbitrarily assume

E( i - Ci)2  2 (2.10)

for some v >> 1. Of course, more appropriate statistical models might be developed for particular structures.
The above models are offered only to help put into perspective the relative degree of uncertainty of the
parameters of the dynamic models. Such assumptions are not employed in later Sections of this chapter,
save Section 7.0.

3.0 MODEL ERROR EFFECTS

Let the composite model (2.1) be written in state form
= Ax + Bu + Dw + f xT a T .T xT)

, C R , n =2nq + a + s (3.1)

z Mx + v + g w (wa. w, va)

where nonlinearities f and g might be added to the model for performance evaluation purposes, but might be
ignored during control design. The associated parameters (A,B,D,M) may be deduced from (2.1), (2.2).
There may be several stages of model simplification between the most general model used for simulation and
performance evaluation before flight, and the model upon which the control design is based. To simplify
the discussion we discuss only two models. In this section model (3.1) will represent the physical system
(admittedly in this case, the state x is infinite-dimensional and the parameters A,B,DM are not precisely
known). The reduced model used for controller design is

R = ARXR + BRU + DRwR xR E Rr (3.2)x(3+v

zR = MRxR + vR

and we postpone to Section 7 the discussion of how (3.2) might be derived. Our current interest concerns
the characterization of the differences between any two models (3.2) and (3.1). In orler to match identi-
cally the measurements z(t) actually obtained from the phyeical system, one could define vector functions
of time ex(t), ez(t) as those which drive the state and measurement equations in such a way

kR A ARXR + BRu + DRwR + ex(t) (3.3)
z MRxR + eM(t)

that z(t) matches the actual measurements. Such model error vectors have been shown [12] to be composed of
four parts

1 9 e = eA + et + ed + en 
(3.4)

z

where e is due nnly to parameter errors, et is due to errors in model order, ed is due to neglected dis-
turbancis and en is due to neglected nonlinearities. Of course, neither of these eA, et, ed, en can be
known a priori. Parameter adaptive control and identification methods [13]-[151 strive to drive et(t) to
zero. Such methods can be effective when eA is the dominant source of error in (3.4). Terms contributing
to et depict the coupling between retained and truncated equations in the (infinite dimensional) model under-
lying the physical system. Much attention [16]-[181 has been devoted to the reduction of the 'spillover"
terms et, (and their corresponding closed loop consequences, to be illustrated in Section 3.1). Such
approaches can be effective if et happens to be the dominating term in (3.4). Orthogonal filters [19], [20)
make fewer assumptions about e(t), save that it is square integrable. This more general characterization of
model error has the potential advantage of simultaneously accommodating errors of the type (3.4), but the
method also has disadvantaqes in the design stage. The method requires the selection and storage of a set
of independent functions to be used for fitting the actual error functionj and the choice of these functions
is not unique. One choice is to use elements of the state transition matrix for a higher order model as in
[21]. Another choice is to use orthogonal functions as in [19].



Having described the nature of the modeling errors, we wish now to be more explicit about their en'fects.
These effects will now be described, first in term of stability and then in terms of a quadratic performance
metric.

4.0 STABILITY AND PERFORMANCE IN THE PRESENCE OF MODELING ERRORS

4.1 Stability and Modeling Errors

Let

u = GRR XR  (4.1)

XR = ARXR + BRu KR(z - MRxR)

describe the dynamical controller used to control the system (3.1). GR is usually chosen to stabilize
[Ak + 8GR Iand KR is usually chosen to stabilize [A - KRM), although the controller poles, x rA +BRG K M],

should also be stable [22]. There is no unique relationship between the parameters of the
controller (4.1) and the evaluation model of the system (3.1). The controller parameters (AR, BR, MR) may

or may not be related to some reduced order model obtained from (3.1). For example, the simpler model
(Ap, BQ, Mp) might have been deri'v¢c directly from physical laws, but using an idealization* of the system

that was simpler then the idealization that led to (3.1). For these reasons the phrase "parameter errors"
has no unique meaning. In fact, none of the terms in the decomposition (3.4) are unique. Nonetheless we
may present a precise characterization of results by introducing an arbitrary coordinate transformation,

x = [a ' x R] ' T]~-l = ["I(4.2)

We define parameter errors by

AA 0RAnR - AR

*B B - BR (4.3)

Am MnR - MR

(Note: We do not intend to calculate either the exact system model (3.1) or the transformation (4.2). The
present discussion serves only to provide insight into the character of the actual modeling errors.) The
system (3.1) may now be written in the form

R = ARXR + BRu + eX , z = MRR + ez (4.4a)

*T = *TAnRXR + f)TAnTxT + 'TBu + Tf  (4.4b)

where the model error vectors ex and ey are given by (3.4) and

e,= [MJxR+ [AJu

et = 91RApTJ xT (4.5)

ev R  gR- d = [I J R ' en = *fj

Augmenting the controller (4.1) to the system (3.1) or (4.4), and defining XR XR XR1 the controlled

system becomes

~XR ~ A R + A-KR(MR + AM) 4R An T KR MaT AA + BG R K R AM

i = leT'eR *TAnT *TAnR + OITBGR xT  +

R KRMnR KRMaT AR + BRGR I
*ly "TWZiaation we mean the set of hypotheses within which the dynamical system is assumed to move. For

example different idealizations of the same system might include: an elastic material continuum, a set of
connectLd rigid bodies, a rigid body, etc.
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F R(w + f) " KR(v + g)1

LT(W + f) (4.6a)
-K R(v + g)

x [R T C R T (4.6b)u 0 0 GR xRT

xR

where y = Cx represents those variables we wish to control in the sense that

VMS=lim EIVI lim E VTQV , Q= Q Q > 0, R > 0 (4.7)

is used as a performance metric. ((4.7) is discussed further in Section 7). Certain remarks can be made
concerning the elgenvalues of the closed loop system (4.6). Let the Inteqers 1,j,k have the range
(i - 1,...,n,x e Rn), d.1 I, ... r, xR c Rr), {k - 1.....n-r}, and denote elgenvalues of a matrix [.] by

Theorem 1:

(a) The eigenvalues of the closed loop system (3.10) go to

AI[A] a x [AR - KRMR ]

as [IBGRI - 0.

(b) The eigenvalues of the closed loop system (3.10) go to

AI[A ] and xj[Ap + BR GR

as 11KM I 0.

(c) The eigenvalues of the closed loop system (3.10) are

A [AR - KRM R]  A j[AR + BRGR] Ak[TAaT]

if

JRA .T= 0 TA R = 0 (4.8)

AA =0 , B =0 , AM = 0 (4.9)

and either

I TB = 0 or MaT. = 0 (4.10)

The proof of (c) follows by substituting the appropriate zero matrices into (4.6a). The proofs of (a) and
(b) are given in [23]. These results may be physically interpreted as follows:

(a),(b) when the controller gains a'e "small enough", [control gain G as in (a), or filter gain KR as in
(b)] and the open loop system is stable, the modeling errors &ll not destabilize the system.

(c) Condition (4.8) implies a choice of coordinates in which the open loop system is dynamically
uncoupled between the XR and XT variables. (Modal coordinates are a special case of this).
Condition (4.9) means no parameter errors feA - 0). The first condition in (4.10) is equivalent
to no "control-spillover" and the second condition in (4.10) is equivalent to no "olservation-
spillover", in the sense of Balas (6]. The eiqenvaies iT A T] I 1....n-r, reresent the
eiqenialue8 of the tr:unfat,! states T .at(its jeuainteod in this case (c), if the trun-

cated modes are stable (Re )i , 0).

Thus, since stringent performance requirements (such as large Q in (4.7)) usually lead to larger control gains
GR, it is evident that the severity of the model error problem (in terms of stability) hinges upon the
performance requirements.

4.2 Performance and Modeling Errors

We cite here the performance available with and without modeling errors. If one chooses GR and KR in
(4.1) to be optimal for the model (AR, 9 R% M R) with noise intensities WR and VR respectively for the zero-

mean white noise processes wR(t) and v(t),and if there were no model errors e(t) - 0, then the tradeoff
between the optimal output performance

YMS i imElY , Q > 0 (4.11)

and the optimal input performance

l 1 II 2 R - R0P > 0 (4.12)
UMS



87

(where p is an arbitrary weighting scalar chosen by the designer) would be "hyperbolic" in the sense of
Fig. 2.

Fig. 2 YMS 
p-0

PERFOMANCErealizable finite
PEVRFORMANCE dimensional controllers

CONTROL EFFORT

LQG Theory
P.O0

UMS

The output of the reduced model is YR = CPAR Under the assumptions of controllability of (A, E) and

observability of both (ARCR), and (AR,MR), [24]

G = RoBK 0 0 + A TK+ C T QC G RG (4.13)

KR = - + ARP+ D T K vK (4.14)
RPARR RAP DRRR R R

and small f: leads to large control gains. In the presence of inpvltable modeling errors, Fig. 2 illustrates
the eventual (and perhaps rapid) degradation in output performance with increasing control authority
(decreasing p), a result not predicted,of course,by the standard LQG theory since the theory relies upon the

absolute fidelity of the mathematical model. Means to combat such model error effects is the subject of
the remainder of the chapter.

For any performance metric of the form (4.7), the relationship between stability of (4.6a) and the
value of (4.7) is established as follows. Denote the plant matrix in (4.6a) by A, and the output matrix in
(4.6b) by C, and ignore nonlinearities f and g. Then (4.6a) has the form

Ax + Dx w (4.15a)

V C', VMS 0 Im~ j 2 Q > 0(4.15b)
t- -

If the matrix pair (A, C) is observable and (A, P) isdisturbable then VMS is finite only if A is stable,
[22). Thus, relative stability information is contained in the magnitude of VMS , and we have the result:

Proposition 1:

If observability and disturbability are properties of the closed loop system (4.6), then VMS serves both as
a stability margin and a quadratic performance metric.

Thus, the calculation

VMS = tr PCT QC 0 = PAT +AP + WT5 (4.16)

provides an acceptable performance evaluation if the triple (A, C, D) is disturbable, observable. There are

three problems which prevent the use of proposition 1 in guaranteeing stability of physical systems.

(1) the "physical" system (4.6) purports to represent is infinite dimensional.

(2) observabillity and disturbability tests are impossible to do with precision on a digital computer, even
for a finite-dimensional model.

(3) even if we had reliable computations for observability, disturbability, the physical system is never
observable in the following sense.

Proposition 2: Unobservability of physical systems

As mathematical models increase in complexity, describing more Tnd more completely the dynamical detaile
of the physical process, the model eventually includes unobservable states with respect to any finite
dimensional output vector V.

Proposition Z explains the sense in which physical systems are never completely observable. This proposition
is intuitively verified by Imagining that microscopic phenomena such as molecular motions are not going to
be observable in the rate gyro measurements. Even though one may not be interested in such trivial examples as
molecular motions, the useful point of propositions 1 and 2 is that as far as stability is concerned there
is no clear way to know when minute motions become "nontrivial". Thus, the propositions serve to remind us
that one can never guarantee tability of the physical system. T;Is point may be made from another view.
Since stability Is a mathematical property of a mathematical model, interpretations of stability for the
underlying physical system must be accompanied by precise statements of the type of modeling errors ignored.
Thus, "stability gtarantees" refer only to properties of the assumed model, and these comments must be kept
in mind when reading the "stability" results of this (or any other) report.
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5.0 POSITION AND RATE FEEDBACK: COLOCATED POSITION SENSORS WITH ACTUATORS (PERFECT)

In this section we ignore the dynamics of sensors and actuators. xa and xs in (2.1), to cite the
stability properties of flexible structures which are either passive (no active feedback control) or which
use measurement feedback with perfect (infinite bandwidth) sensors and actuators. The appropriate model
for this case is (2.2), where the control ua and the noise-free measurements z are given by

Ua =- [Gp  G r]Z , z (R9) (5.1)

Thus, z in (5.1) describes what we mean by-the phtase "perfect" sensors (no phase shifts or time
delays). Substituting (5.1) into (2.2b) gives the system under study with measurement feedback using
perfect sensors,

n + [Z 1 + BGrR] + [Z2 + BG P3n = 0 (5.2)

For convenience in notation we separate the symmetric and skew-synetric parts of the matrices and rewrite

(5.2) as .(

where n s + Zsk [K + Kk], = 0(5.3a)

Zs  TC'T + 1GrR + RTTT) (5.3b)

Zsk TTG'T + 1 R - TGTT (5.3c)

Ks TTKIT + W~p P + PTG p BT (5.3d)

K TT(BGpP 1 TGT BT (5.3e)

The following results are avallale by minor extensions of the work in £25].

Theorem 2:

Measurement feedback with perfect sensors and actuators leads to the eytem (5.3) which is aeoyntotsic-aU1
stable under these conditions:

Zs > 0 (5.4a)

Ksk= 0 (5.4b)

Ks > 0 (5.40)

The system { + Z sk + Ksp = 0 is completely observable. (5.4d)

y = Zs S6

By first putting (5.2) in the form (5.3 ) with the additional assumption Ksk = 0. Theorem 4 of £23] directly
applies as a proof of this result. £25] also shows that under the given conditions (5.4a)-(5.4c) the fourth
condition (S.4d) is both necessary and sufficient . This necessary condition gives a very tidy statement of
what active control is required to stabilize the system. Note that condition (r 4b) suggests that the
position sensors be colocated with the actuators (e.g. translational displacement sensor colocated with a
force actuator, of rotational displacement sensor colocated with a torque actuator), and that Gp Gj , 0.
This yields P - 5 and hence (5.4b) is satisfied. Condition (5.4a) is satisfied if rate sensors are
colocated with the actuators (translational rate senors colocated with force actuators and rotational rate
sensors colocated with torque actuators), and Gr - + > 0. Hence, R - 8' in this case. Condition (5.4d)
can be tested with minimum computation by employing the simple criteria for observability developed in [25].
Toward this end we define the matrices Ts and T., by

T sKss 2 diag [2I 2 S10 (5.5a)

TTT . I (5.5b)S)

TT. T -1 (5.5c)
sk sk

T~kf T kk [ 0 1 (5.5d)sko 'Z k [00 , S
S block diag {... st 0j.... .* i 1 ....p (5.5e)

p ="no. nonzero eigenvalue of e2 - [- -k (5.5f)
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Define the columns of the matrix ZsTsTsk 2 by

r. -.r 4 1 5.5h)I ... s s sk2

We can now cite a special case of theorem 2. where condition (5.4d) is replaced by an explicit numerical,4 com ptat ion .

e ,.orclar j

Aaum'Ne that

(1) AZ poeitim eeneors (perfect ) ire oc-octed with iotuatorp.

(2) (;p GT 0 (5.6a)
p P

(3) Zs  _0 (5.6b)

(4) Ks •0 (5.6c)

(5) the p bonzer, ri eir'i,es , ire' .t, "n- Pr theseav ,,!':i e.s t.e" r5te'r ,e.3 (5.6d)
is aYMttCiI!; saoie LJf M ovl, if'

(6) ,oithr lilrll' 2 •0 r Iril2  0 for all i - 1. p. (5.6)

! The assumptions (1) and (2) guarantee condition (5.4b). Condition (5.4d) is satisfied if and only if (5.6e)
holds. (This is proved by the more general corollary 4.1 of [25] where assumption (5) is not required

6.0 RATE FEEDBACK: COLOCATED RATE SENSORS WITH ACTUATORS (PERFECT)

The stability conditions of corollary 2.1 greatly simplify under two additional conditions; (i) no
gyroscopic terms (6' 0 0) and (ii) colocation of rate sensors with actuators. In this case 7sk = 0, and
the observability test (3.22d), which was reduced to (5.6e) under the conditions in corollary 2.1, now
further simplifies to the following,

Aseupe that

(1) A!: s, t :i : rz. eer ,ars "i're, ir" '' 'it,! .'i'k .rti : , re, P B * = T

(2) ( ; T = 0T .0 (6.1a)
p p r r

(3) (' 0 (6.1b)

(4) rank 8r nr (6.lc)

-;ie. '- gys9t " (5.3) ;8 H t ,ti, z o j f , eta "!, ,*' ,

rank [Zs T s] n1  (6.2)

r. ,' nt  'the -u: ti '!i". ,  ' .rnue ,, 6' 1 In;, Tsi ie th,, .,rresi ! ,-.. :'. ' " "s o.p T .,her -,

Ts a [Tsl Ts2 si N

The proof of this ccrollary is provided by noting that (5.4d) becomes in this case

+KS = 0 , y Z s (6.3)

Wnose observability condition (6.2) is obtained from (5.5h) by omitting the additional transformation Tsk
which was required in (5.5) due to the Dresence of qyroscopic terms. Note from (2.?f) that TTK'T is sinou-
lar. Hence. to satisfy (5.4c) and (5.6c) position sensors are -?-.., .I and nust bi' located s, hat the
riqid body modes are observable ((6.1c) is satisfied [25]). Further discussion of the number and type of
actuators (and colocated sensors) required for controllability appears in [2b].

Finally we cite the stability condition when only rate feedback is utilized. In this case we assume no
gyroscopic terms 0' = 0 so that the control

ua -Crz , z= Rr r + R ee (6.4)

substituted into (2.4) yields

+ ER~ + [ (; , = 0 (6.5a)e rrr r re e
e+ E e r rrr + [F e ' Re e e n (65b
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With rate-only feedback it is clear from (6.5a) that the rigid body coordinates nr are not stabilized. Hence,
we concentrate on the simpler task of improvinq the stability of the elastic coordinates n We choose act-uators so that the rigid body modes are uncontrollable. Hence Br = 0, and with colocation with sensors
8 5r . O, e . R;. The system of interest is therefore

nr - 0 (6.6a)

+ [(, B T + j] e + -2e = 0 (6.6b)e ere e

Note that conditions (5.4a)-(5.4c) are automatically satisfied by (6.6b). Thus by theorem 2 the necessary
and sufficient condition for asymptotic stability of (6.6b) is given by appropriate interpretation of (5.4d).
This leads to

Corollary, 2.3

For nongyros,,opic systems with "olocated rate sensors (perfect), located so that 8r = 0, the measurement of

ua rZ z = er h G = G> 0 (6.7)r

gives to (3.21) thvse properties: nr(t) is unstable, fr(t) is stable. Furthernore, ne(t) is asynptoticalil
stable if and only if the system

+ 2" , Y=0 + Ber8 T]6 (6.8a)

ais o,!wete . observable, or equivalently, if and onZy if N
rank [ . 8e r i] = ni , i l...N , n.= N-n (6.8b)

Q iml I
where ni is t ",,ltie :icity of frequeno wi, and [']i denotes the corresponding columns of the matrix [.

A'o', nr  I zr,.l N is th nuQber of distinct frequencies "

Set 8
r = R= 0 in (6.5). The proof is then immediate by interpreting cornllary 2.2 for the pystem

(6.6b) in lieu of the system (5.3). Thus .2 > 0 satisfies the equivalent uf (6.1c) and T_ = since

2 is already diagonal. Hence (6.2) reduces to (6.8b). #
Proceeding from the roof of the most oeneral corollary .1 to the most specific corollary 2.3 note that the
form of the proofs ar results are basically the same, except that t-wo transformations, Ts and Tsk, wererequired in (5.5h), , Ts, was required in (6.2), and none in (6.8).

Now we turn to questions of modeling errors. Noting that the stability conditions (6.9b) are alreadyindependent of the modal frequencies, we can also make them independent of the assumed modal damning by
requiring rank[BeCr8 ]i = ni 1l....N G C (6.9)

e r el Q 1 *i 1 N r= r
This is a,1u;'." I.. condition for stability which we now use as a design criterion to replace the
condition (6.8b). This condition (6.9) can be replaced by

rank [Bei n , I .... Q (6.10)
prviedC . 0 2 Tprovided 0 • 0. Further insight is available by noting that since . is positive definite and BeGr e is

positive s&midefinite, the observability condition (3.32a) is equivalent to either observab1lity or con-
trollability of the matrix pair (w?, t + BeG B ). The diagonal property of 2 is utilized to get the
equivalmnt conditiog (6.8b). Hence, (6.8b) ks the test for controllability or observability of the matrix
palir (w, A + 6eGrB ) and (6.9), or equivalently (6.10) is the test for controllability or observability of
the pair (3, BeC 8). This point of view makes it clear that the system is stable with respect to ne(t)
for any positive definite rate feedback gain Gr * All elastic modes which are controllable will be asymptoti-cally stable. Note that this condition is independent of the actual modal damping and frequencies. Nowconsider the manner in which the test (6.10) depends upon the modal data. For a system with distinct
frequencies and torque actuators Bei is a row matrix whose jth element is the ith mode slope at the location
of the jth actuator. Thus, the te~t (6.10) depends upon the mode shapes. However, the test is "almost"
independent of mode shapes in the sense that the rank test is satisfied for any error in mode shapes except
the binary error possibility Bei - 0 when it should be Bei 0 0, or vice-versa. The actual magnitude IB1eill
is irrelevant, from the theoretical view. Therefore we may call the test (6.10) "almost:'robust with respect
to modal data, but Is it robust with respect to model order errors? That is, if (6.10) is satisfied for adesir model of N modes, is it satisfied for an evaluation model of N - N modes? To answer this question
simply consider the fact that the larger model leads to the sufficient stability condition

rank [8e]nI ,I 1 N i (6.11)

where Be, i- . are associated with the truncated modes (modes not considered in the test (6.9)),
and Ne *1 N Q is the number of distinct frequencies in the N,, mode model. Condition (6.11) is just the

controllability condition for all Ne m-des. We summarize these results in the following theorem.

Theorem 3o

if G' -0 (no gyroscopic terms) (6.12a)
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SRr r 0 (uncontrollable rigid modes) (6.12b)

B = RT  (colocated rate sensors) (6.12c)e e

G = GT > 0 (positive define rate measurement (6.12d)
r r feedback gain)

then all elastic modes nei(t) which are a..tually controllible, i.e.

rank Bei = ni , (Bei = actual mode shapes, slopes) (6.13)

are asymptotically stable regardles8 of uncertainties in modal dzping, modal frequencies r -odc shcaes.

In view of this result it seems desirable to choose enough actuators (and colocated sensors) to make all
modes controllable. Clearly from (6.13) the lower bound on the number of actuators required for complete
controllability is max (ni, i = 1,2 .... ). Theorem 2 of [25] proves that the rigid body modes are control-
lable if and only if

rank 8r = nr (6.14)

Hence the number of actuators m required to stabilize the complete system (3.29) is

m > max {nr , n , n2 .... NQ} (6.15)

where nr is the number of rigid modes and ni is the multiplicity of frequency Wi. If all frequencies are
distinct

m >max Inr, 1) (6.16)

subject, of course, to the conditions (6.13).

This Section has shown stability conditions for any control gain Gr = CT > 0. The next two Sections
show two ways to pick Gr" The first is by pole assignment and the second is by solving a least squares
optimal problem.

6.1 Rate Feedback Design by Approximate Pole Assignment

There are formal pole assignment methods (for example see [27]) which may be used for general
linear systems. However, our present problem is so special that an easier approach can be taken. The
peculiarities of large flexible structures which suggest the use of these simpler methods are:

(1) the open loop system contains an infinite number of very lightly damped modes

(2) the rate feedback objective might be to simply add a 6maJU amount of damping to these modes

Thus, because we are asking only for small perturbations in the pole locations we might use first order
perturbation methods. Toward this end let us cite known results in the perturbation of eigenvalues and
eigenvectors of time-invariant linear systems.

Theorem 4

If 0i, eji is the ith eiqenvalue, eigenvector of the nxn matrix A with distinct eigenvalues v i 0 i +ci,ei +e i
ze the ith igenvai:e, eigenvector of the matrix [A+hA], then to first order approximation,

L ti = [F AA E]ii , FE = I I FA = AF , AE = EA (6.17)

where F and E are, iespectively, the matrix of left and right Pigenvectors of A, and

[Ae l, he2 . . ten) = E= EH (6.18)

where the matrix H has elements
I -s..

H F AA E (i,j = 1,2,..n) (6.19)
ij Ij

Proof:

The elgenvalues and eigenvectors of any matrix [A + AA] satisfy (assume distinct eigenvalues),

[A + AA][E + AE] - [E + AE][A + AA] , [A + AA] = diag [A I + Axil (6.20)
or

AE + AAE + AAE + -,AtE = EA + EAA + tfEA + AEAA (6.21)

Deleting the products of assumed small perturbations, the last term on each side of equation (6.21) dis-
appears. Solve (6.21) for AA to get

AA FAAE + FAAE - FAEA + FAE - FEA (6.22)

Or, using the facts FA = AF, FAE = A, FE I.

AA = FAE + AFAE - FAEA (6.23)

The elgenvectors ei span the n-space. Hence the perturbation of the elgenvector can also be written as a
linear combination of the ej. Thus for some matrix H with zero diaqonal elements,

I -- m
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AE = EH Hi :0 (6.24)

Substituting (6.24) into (6.23) gives, for the iith element of (6.23)

AXi = [AA]i1 = [FAAE]ii (6.25)

and for the ijth element of (6.23), i j

0 = [F&AE]ij + [AH]ij - [HA]ij  (6.26)

4 Solving ( 6.26 for Hij yields (6.19) directly. #

As an application of theorem 4 to the rate feedback design problem of Section 6.1, let

60

A B (6.27)

Then,

E=L F ~ (6.28)
Jw-I w I _j-l

and theorem 4 gives the real number

X Ai =-[B e G r Be~ii (6.29)

Write b as the ith row of B . Then

AX - bTG bi = - 11b2 (6.30)
1 i r i lI r

The new pole locations are, to first order approximation

x+ -Iil G j. =1AA +  i r J i '( .1

- r2bi .r 2 j i  = N+l,... 2N

The damping factors associated with these new poles are

W-1 ~l~ 1 t- 2 z -11bl Ilb1iIl (6.32)

where the second equality holds under the usual assumption of small damping. Thus, if one has sufficient
knowledge to know which modes should be damped and the amount of damping needed in each mode, then one can
choose Gr to approximately satisfy (6.32) for i = l,...,N. This is equivalent to satisfying

diag[ 8 G Br] = 0 (6.33)[Cdw e r e
for a desired ;d 4 diag [ .2 ""N]d" One may find approximate solutions by solving

min tr (Td2 - BeGrBe) (6.34)
Gr

which has the solution (assuming that the number of modes N is equal to or greater than the number of actuators)

Gr ST (B )- I T (B I ~ B ) 1 (6.35)e e ecd e e e
Thus the approximate expressions (5.38) and (5.35) reveal that the damping Ci obtained by (6.35) is

T IT T -IT
yiwi z [8e(Be e ) Be~de(ee) 

5e]ii (6. 36a)
or

( B1b l e )- B ecdwB (B eT B )- (6 36b)

The first order perturbation in eigenvectors is given by (6.18), and can be readily calculated for the
present problem using (6.27), (6.28). The form of the results (6.32) implies that i is not negative for
any b . Therefore the only significance of errors in the assumed mode shapes and mode slopes within the vec-
tors bi, i=1,2,. .,N is that a damping different from the expected damping will be experienced, in accordance

with (6.32) for the actual bi -

Similar problems are treated in more detail in [22]. Also see [29] - [30] for other interpretations of
the rate feedback problem.
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6.2 Rate Feedback Design by Optimal Control

In Section 5.1 stability conditions were established for any positive definite rate feedback gain Gr'

In Section 6.1 a pole-assignment strategy was suggested for choosing Gr. In this Section we find the Gr which

is optimal for a linear regulator problem. The problem is stated as follows. Find the control u which
minimizes

V[u] : YMS + PuMS I u = -G Z, z = B ne + v (6.37)r ee

where YM and uM, are defined in (4.11), (4.12), subject to the constraint of measurement feedback control.
The necessary conditions for this constrained output feedback problem are (from [31)),

4 Br) KK(A - BGrM) + (A - M)TK + MTGrRGM + cTQC 0 (6.38a)

L(A - BGrM)T + (A BGrM)L + DWV T = 0, W E () ( T(t) vT(t) (6.38b)

RG MLM + BTKLMT 0 (6.38c)

where for the special problem throughout Section 5,

AA [!2 B D C TQ D [DL=BG M3

For the present problem the output vector y and the control u in (4.11), (4.12) are

y - [o oJ ) = i E [.T Q e 'h e (6 .4 0 )ee eI

M= [0,Be Q V0 _eJ(.9

u -G z z = [0, T]('e] + v

where Qe is some weighting matrix to be chosen. In this stochastic version of the problem we have added
white noise disturbances w,v to the plant and measurements of the previous Section. The model is the same
as (2.la) except that u = u + w where w is a zero-mean white noise with intensity W, representing noise
propogating into the stpuzture from various electrical, mechanical sources within the actuators and their
power sources.

If it happens (for reasons to be apparent) that the pa-titions of K in (6.38a) turn out to be

whero K120 K22 =al > 0 (6.41a)

K i 2] (6.41b)

then substitution of (6.41) into the necessary conditions (6.38) yields

Gr = = -Grz , pRo  R (6.42)

and Kl and a satisfy

K 11 = 2 (6.43)

-a( + a 8eR_1BT) +V 2 BeR_T + Qe = 0 (6.44)

Thus, if Qe is chosen by the designer to have the value

Qe a e e + 2A (6.45)

then (6.44) is satisfied. In summary, we have shown that if the K which satisfies (6.38a) has the property
(6.41) and if Qe is selected by (6 45) then the control (6.42) is the optimal measurement feedback control.
Now we must show whether (6.41) is indeed satisfied. To pursue this question we now consider the optimal
control problem without the measurement feedback constraint. The control which is optimal for the linear
regulator problem

T
V im U(n Q h+ uT Ru) (6.46)

subject to t e

wPV 47LAA
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is U - R 1[0 BT]K nei  (6.48)
e

-(KA + AT K) + KBR-IBTK - CTQC = 0 (6.49)

where A, B, C TQC are defined in (6.39). The partitioned parts of (6.49) are

R1TKT = 0 (6.50a)212w2 + 12BeR e 12

-K11 + K12A + K2
2 + K12BeR

1B K22 T 0 (6.50b)

T 0RBTK -Q 0 (6.50c)
-K12 + K22A " K12 + AK22 + K22 e e 22 e

We now wish to use a theorem due to A. Yousuff, [32].

Theorem 5

For the optimaZ control problem (6.46), (6.47), any choice of Qe in (6.46) of the form

Qe= + + e Q (6.51)

where Q is any selected positive definite diagonal matrix, leads to the optimal control

u = - R-IEK 22 h(652 1 T (6.52)

where K22 = Q is the unique solution of

K22 eR- BeK22 + AK22 + K22s = Qe (6.53)

By comparing (6.53) with (6.50c) one can see that the choice of Qe given by (5.56) leads to

K + K12 = 0 (6.54)

Then either

= -KT or K = 0 (6.55)Kl12

Yousuff [32] has shown that K12 = 0 is the correct solution of (6.54) if and only if K22 is diagonal. The

condition for diagonal K22 is (6.51). Hence, K12 = 0 is the correct solution of (6.55) and (6.50a). See

[33] for earlier results very similar to (6.51). By choosing Q = al, > 0 the optimal control (6.52) becomes

Rl T- (6.56)u = - R eTe

Thus the optimal state feedback problem (6.46) - (6.49) shows that the control gain is independent of the

disturbance w, and the optimal measurement feedback problem (6.37) - (6.42) shows the control to be inde-

pendent or the disturbance v. These results are summarized as follows.

Theorem 6

For nongyroscopic flexible structures with colocated (and perfect) actuators and rate sensors the control

policy U = -G z = T  = .T (6.57)

r e e + v, Gr =r 0

where Gr is an arbitrary symmetric positive definite matrix, is both the optimal output feedback control and
the optimal state feedback control for the problem

V = limi TQehe + uTr u]  (6.58a)
t- e

O eGrB +2A (6.58b)er

r + Afe + W2n = eu + V eW (6.58c)

To prove Theorem 6 substitute, from (6.42) R1- I Gr into (6.45) and (6.46). Then divide (6.46) by a

to get the form (6.58a).

It stiould be crphasized that the solutior (6.57) is inderndent of the disturbances w,v and the stochastic
and detcr iristic nroblors hove the san :olution.

Theorr 6 has to possible uses: (1) the inverse optinal control problen revcjls what perforrince criteria
has bcen rininized for any given positive definite gain Gr* (2) Alternately, one may find for any qivcn

weighting Qe the choice of Q in (6.51) (i.e. min IQe-AO-OA-0 BeR-IB QI) to yield the best rate-only

feedback solution to a given
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+ t~, =TK~1~O 0 (1 (6.59)
M+ = Bu M [ 01' 1)

z == q

For a desired damping of = 0.1 a first order root perturbation method might be used. Hence, (6.35)

yields the measurement feedfack gain

Gr = 1.1/4 (6.60)

and (6.36b) reveals the damping = -' 2 1 .Theorem 6 shows that (6.60) is the gain which minimizes

the performance criterion

T11 __ u2 ) V 2 12
V lim Kq 1 q +imE(G, u ) (6.61)

: ~t-t-

Example 2:

For all problems described by the deterministic version of Theorem 6 show that the closed loop system is
described by

"' T 2n , ( + BeG r T (6.62)
e e +  e e ere

min V = lim 2 eTVe (6.63)
u e e e

and that the cost of regulating ne(t) (corresponding to the first term in (6.58a)) is always greater that

the cost of control (corresponding to the second term in (6.58a)) by the amount lim 2;eT e  To show this,

substitute (6.57) and (6.58b) into t- e

Vy t i Qe.eT , u  t- Gr_ l T -l u (6.f4)

to get

V = Vu + lim 2ne Te (6.65)

Hence, if the open loop system is undamped the cost of control Vu and the cost of output regulations Vy

are equal.

Example 3:

Under what condition does rate feedback control minimize the kinetic energy of a purely elastic structure
(A-O-) Answer: The first term in (6.58a) represents kinetic energy if Qe 

= I. However, from (6.58b) this

can never happen for a finite number of actuators and ati infinite number of modes in the structure, since

SGrBe T must be nonsingular to achieve Qe = I. Consequently, for a finite number of modes, the necessary
e re
condition for kinetic energy to be minimized by rate feedback is to have as many actuators as modes as in g391

7.0 COMPONENT COST ANALYSIS AND ORDER REDUCTION

In Section 3.0 general model errors were defined and in Sections 4.0 and 5.0 conditions for stability
in the presence of only parameter errors were discussed. In this Section our attention is focused on errors
of model order. In Sections 5.0 and 6.0 dynamics of sensors and actuators were neglected. We first continue
that assumption to first consider how one might reduce the dimension of the model (2.1a) before considering
the more general treatment of the composite model (2.1). Thus in Section 7.1 only the open loop system is
considered and the inclusion of actuator/sensor dynamics are postponed to Section 7.3.

The central idea of the model reduction methods to be discussed in this Section is to exploit the
precise statement of the optimal control problem in order to predict which system components will make the
largest contributions in the total quadratic performance criterion. These components are retained and the
balance are discarded from the model. A "component" of the system can be any subset of coordinates desig-
nated by the analyst. For example, all of those coordinates associated with a particular substructure
(antenna, solar panel, etc.) might be called one "component" for the purpose of assigning a value to the
component for its contribution in the total performance criterion. The general ideas of such *component
cost analysis" (CCA) are described in [5]. As another example, each modal coordinate might be designated as
a "component". In this event the procedure becomes modaZ cost analysis (MCA), and the result is that the
contribution of each mode is deterpined for the niven quadratic performance criterion. MCA has been applied
to models of flexible structures in [34) - [37), and the next Section is drawn largely from these references.
We now proceed to make these several notations more precise.
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7.1 Performance Objectives

The performance of the dynamical system must be judged by a specific criterion. One may require specific
pole locations, focusing only on stability, but that leaves the question of elgenvectors and output performance
imprecisely specified. Stability is clearly not a sufficient design goal. The Linear Quadratic Gaussian
(LQG) problem has the advantage that poles and zeros are involved in the design specification and that the
motion of specific variables of interest can be penalized directly by inserting these variables Into the
cost function to be minimized. On the other hand, these specified variables may be regulated satisfactorily
while other variables become unbounded. The earlier Proposition I states that observability is sufficient to

prevent this situation but it may not be known whether all the potentially unstable motions are observable
in the selected variables for minimization. Thus, in oversimplified terms, the "classical" approach is to

"design for stability" (and ther, we must check for performance), whereas the LQG approach is to "design for
performance" (and then we must check for stability). Insights into the best of both methods are required
for successful designs. In this section the LQG methods are presented.

We define by the vector y the collection of all variables we wish to directly control. For example, if
attitude control of the rigid body [described by nr in (2.3a)] is the objective then one might choose
y A nr. Alternately, if vibration suppression is the only objective, then y A he might be chosen,as in the

case of Section 6,0. The choice of a weighting matrix Q in (4.11) is often dictated by energy considerations.
As an illustration the cholcesIQ A 1, y 4 hellead to yTQy A kinetic energy in elastic modes. The potential
enerqy in elastic Modes is characterized by the choiceJQ a w2, y = n4t The expected value operator F is
required in (4.11) due to the presence ot random "noisy" distLrbances in the actuators and sensors (2.1).
The control mean-square effort uMs is added to the performance metric as in (6.37), where the scalar p is
an arbitrary weighting scalar wh ch trades off control performance yMS versus control effort UMS. In practice,
p must be chosen so that uMS does not exceed the physical bounds of the actuators or structure Toad design
constraints.

If the model (2.1) chosen for evaluation of candidate control policies were perfectly reliable then the
performance evaluation using the performance criterion (6.37) might be acceptable. But alas, (2.1) is also
subject to modeling errors and the straightforward evaluation of (6.37) subject to (2.1), together with any
specified control policy, conceals the very real problem of uncertainties in the model (2.1). The uncertainty
of the actual parameters in (2.1) usually prompts repeated simulations of (2.1) using different parameters.
Controllers which perform "well" in each simulation might be acceptable. To make this situation more
tractable one might choose to evaluate controllers on the basis of the first order sensitivity of performance
with respect to parameter errors [in addition, of course, to the nominal performance (6.37)]. The following
is one way to characterize this objective. Let p be the vector of v parameters considered uncertain in (2.1).
The new performance metric is

V = YMS + PUMS + (Yp)MS (7.1)

where li ra ly1l12 (7.2)

Y t Q

u lim E 2 (7.3)uMS -t- 11ul RO

ty E limEypI = lim Ei I - iI2 (7.4)(p)MS p t lI iQ

y p ap. ap .

and Pis an arbitrary weighting scalar to be chosen by the evaluator. Thus (yp)MS is a mean squaredmeasure
of the first order effects of parameter variations on the variables we wish to control, y. Of course, to
compute V one must have a model for yp. B y using the notation

pl , [.) block diag {[.)... .[.)1 (v times) (7.5)

the complet2 model (3.1) and its sensitivity may be written [36)

i p A x p B p D p f p

(7.6)

[3= , Z['
yp C Xpx

V -YS + uMS + (Yp = lim EII . (7.7)Q 0 o0
vT . T T T

= (y , uT , yp) , R= R 0

[ 0  Q}

We will assume in what follows that the uncertain parameters are the modal damping factors ;I, squared modal
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T B .- B(7.8)p ( l ... CN: w el . eN)
where we have assumed distinct frequencies for convenience, so that 8 eiis a row matrix. The variance

2 2 -)2
- E(Pi - 2Pi Pi- nominal value (7.9)

is selected as the weighting for each sensitivity in the quadratic term

T o 2 2 (7.10)

P YP i~l i"Q

Thus, the less certain is a particular parameter, the greater is the importance of reducing its effect in
the control system performance. Hence, a larger weighting in V, by the choice of a? as a weighting gives V
this property. From (2.8), (2.9),

2 2- 2 2 fr11an2 = E ) ia, for i =. N (7.11)

and the variance associated with uncertainties is the ith mode shapes or slopes at the jth actuator locations
are

2 = E(B -ei)2 .20Bei ei- , j = 1 a..... a

where ma is the number of actuators. Now Q' in (7.3) may be written

-Q, 2 diag [O 2 Q . o2 .. ,No o0
2Q... 0No2Q]

corresponding to the partitions of p in (7.8).

Finally, the objective of component cost analysis is to decompose V into "component costs" Vi,
nc

V V i  (7.12)

where n is the number of components in the system and Vi is in the in situ contribution of component I. We
choose In the next section to define "components" of the open loop system as "modal" coordinates, and its
sensitivities. In Section 7.3 we choose to define a "component" of the closed loop system as a state of the
dynamical controller. In each case we intend to assign a relative importance to each component by determining
its ranking in the manner

(7.13)V n2..L . .2 n c

and truncate components with small component costs V. from the system. The next two Sections give the
necessary mathematics.

7.2 Modal Cost Analysis

Ignoring the sensor and actuator dynamics in this section, and considering the nongyroscopic system,
(2.3) becomes (6.39), rewritten here,

ne + Ane + W2ne = Be Wa ' nee RN (7.14a)

Ewa(t) = 0 , vwJtwTT) = Wa'(t-T) (7.14b)
a EW 8 tW() a

-M Y lim E 11I (7.14b)

where only the noisy part of the control forces ua = u + wa are considered in this section. When N is small
enough for closed loop control calculations we will not ignore the effects of u in model reduction decisions.
However, we now presume that N is very large (7.14a) and u cannot yet he computed.

Our immediate objective is to ascertain the contribution of each mode of the system in the overall cost
value V. We presume at this point to be dealing with a system of very high order whose control inputs u(t)
are not yet known. Yet to ignore the source of excitation aZtogcthzer would be a mistake since the final
judgement of the quality of the model is in the presencP of actuator activity€. Until more is known about
u(t), fter control design considerations)we assume that u = u w(t) is a white noise of random disturbances

being propogated through the actuators due to electronic noise in the electrical or magnetic amplifier devices,
etc. A white noise disturbance w(t) has already been included in the model (7.6). The consideration of the
control and its effect in the model reduction process will be postponed to the next Section. To proceed we
now need the following definitions.

Definition: Let xi be any subset of n. state variables of the linear system
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x = Ax + Ow , Ew(t) = 0, E w(t) wT(r) = W _(t-r) (7 .15a)

y = Cx

T T Rni n nx x (. . i  .... ) , xi  e , x c R x , nx  n Z i
l=

V lim E Y y TQy

t4"

x i will be called the ith "component" of the system and the "eomponent cost" associated with component xi

is defined by
I1 ay 2Y

V 'lim EL- lm -x aYY_ (x I- ) (7.15b)t ax i ' axi ;x ' x in i

It is easy to verify that the total cost value V is the sum of all component costs

V V. (7.15c)

and that the component costs may be computed by

V = tr[CTQCX)i (7.16a)

0 = XAT + AX + DWDT (7.16b)

where [cTQcx]. denotes the n.xn. matrix partition of CTQCX. The above analysis (7.15)-(7.16) of a linear
system is calldd component colt Analysis (CCA), [5]. The "components" of a system might be defined from
physical or mathematical considerations. From physical considerations xi might represent any physical

component of the system such as the states associated with:

(a) & substructure of the flexible spacecraft (an antenna, a solar panel, a rigid body, etc.)

(b) an electrical or electromechanical element in the system (actuators, sensors, amplifiers, filters, etc.)

From mathematical considerations xi might represent any mathematical component of the state in any trans-

formed (non-physical) coordinates. One such example which is common is to define the "components" to be
"modes" of the systems. In this case the "component costs" (7.14) are called "modal costs" [5]. We
choose to now examine system (7.6), (7.7) using such modal cost analysis (MCA). To begin our modal cost
analysis of (7.6) we define the system components as follows. The vector x is rearranged and decomposed
according to

-i=l ....N (7.17a)

and the vector xp is rearranged and decomposed according to

-=l... ,(2N+Nm ) (7.17b)X Pi ( Xi j =N;1l ....(2N+Ama)

where the pi are defined by (7.8). Generally, one must compute the component costs by first solving (7.16)
on a computer. However, due to the simple form of A resulting from the "modal" components defined in (7.17),
the eqs. (7.16) can be solved analytically. The results for the control problem (7.1) - (7.4) with p = 0 and

ni + 2 iwini + Wi2ni = diT w (7.18b)

are (see D71 for proofs):

V(xi) = (4Tiwi3)'l(l+8.i
2) diTwdi i-l,....N (7.19a)

which represents the modal cost for each mode of the structure, and,

V(2 = o22 (32cii 7 )_ (+4i2+0i 2 ) diTwdi (7.19b). ... .... I . . . . . . . . WII I .. . " . . . . . . . .i - " ' . . . . . . . - . . .. . . . . . . ..-
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which represents the cost associated with the uncertainty in the squared modal frequencies w2 and,

V3i1 ) = a+ 2(8 i3,l3)-l(l+ei
2 )dlTwdi (7.19c)

which represents the cost associated with the uncertainty in modal damping €i and,

= ( 3 1 2 i=l..,N
V(Beij ) = 4w )_ -(I+OWi)W i  ~ .. (7.19d)

ij Bei (4 iw ii j-l ..... ma

which represents the cost associated with the uncertainty in the ith mode shape at the location of actuator2 2 2
j. The variances a , , Bei are given by (7.9)-(7.11) From (7.15) the total cost is

N m
V :i l ) +  + V(ci) + a V(dei.)] (7.19e)

Due to the fact that the component costs (7.19) are given in explicit form, they may be computed for a large
number of modes and a large number of parameters. If we had to rely on numerical methods for solving (7.16)
we would be faced with the task of solving (7.16b) for a system of order 2N(l+(2+ma)N). Unfortunately, this

is indeed the situation when control objectives different from (7.18a) are required.

Example:

Consider the system with small damping,

q+ 2 q V +w2q = w , VT = (1,l) , W = I

Ci = 0.005 i = 1,2 , c = diag [iV2 ]  (7.20)

Wl = 1, w2 = 10 , w = diag [Wlw 2 ]

V = lim E qTq
t-

choosing a = 0 in (7.18a) we find from (7.19)

V(xl) = 50 , V(x2 ) = 0.05 2 (7.21)

indicating that mode 1 is more important to performance than mode 2. Choosing o = 10, then (7.10b) reveals2 4  , 2 oo
=~ 25x10 , V(twi2) 0.05 (7.??)

indicating that w is a more critical parameter than w2" Choosing P = 100 in (7.9) leads to

V( l) = 108 , V(-2 ) 2xlO 5  (7.23)

indicating that the damping in mode I is more critical than damping in mode 2. Finally,

V(Vl ) = 50 , V(D2) = 0.1 (7.24)

indicating that the mode shape of mode I at the location of disturbing force w is more critical than the
mode shape of mode 2 at the location of the disturbing force. The parameters, in order of their import-
ance are therefore, (Cll,,2,w2).

Modal Costs for Kinetic Energy Performance Metric

Consider a kinetic energy performance metric,

V = Jim E T4 (7.25)
t-

Eqs. (7.13) and (7.18a) can give this result by letting a be much larger than 1 and then normalizing the
cost by dividing by s. The results (7.19) reduce to

V(xi ) = (4 i wi )_ dlTWdl Xi' 4 (qi, i) (7.26a)

V(w) a.22 (32;i3wi5) " dlTWdi (7.26b)

V =i) = 1 2(8 i3,i)-I diTWdi (7.26c)

V(Beij) = oBei 2 (4yimi) I W ii J=l,... m (7.26d)

Example:

Consider again (7.20) with the kinetic energy metric (7.25). Then
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V(x) 50 , V(x2 ) = 5

V(W1
2 ) 25xi0 4  , V( w2

2) 5

V()= 1O8 , ( 2 ) = l07

V(v1) 1 50 , V(V2 ) 5

The parameters, in order of their importance are therefore, (c1 '42,w
' '1DV1 2 ' 2 )' where the last two para-

meters are equally important. In general, the parameters which are found to be most critical will depend
upon the specific performance criterion chosen.

When the system parameters are certain (oi = 0 in (7.1)-(7.3)), it is possible to solve for explicite
modal cost expressions without the special restrictions (7.18). The necessary assumption in what follows
is that the modal damping ci is very small. Theorem 7 deals with the theory for deterministic problems

and theorem 8 treats stochastic problems.

Theorem 7

For the system

ni + 24iwin i + 2 0 , fni(0),i ) specified, i=l,....N

N
y = (pini+rini) (7.27)

the cost function

-I0 yTydt = V (7.28)
.i l1

decomposes into the modal costs Vi given by

A 1 3V 1 2 + 1 2 2 2 i (0)
Vi = 2i ax- _T xi( 44 iw 

[ (  i (  + 2 lr Q2]n2O +  ] (72

x i T ni i

in the limit as li 0.

Theorem 8

For the system

ni + 2 i I+,2 = bT uT+di , w N(O,W) , uw %N(OU)

N
y = i (pini+rini) (7.30)

where uw and w are sero mean unorrelated white noises with intensities U and W, the cost function
T N

V lim E(yTQy} = I V (7.31)
t- im =I

decomposes into the modal costs Vi given by

V 4 lim 1 E f2Y - x 1 11 1  O 2 + WI 2 11 rill Q2]L bih1 U+ i di 1W12  (.2
Si f ax I 4  iLU Wit- i YWi (7.32)

y A yTQy

The proof of theorem 7 may be found in D3Q and the proof of theorem 8 may be found in I)J. The value of
(7.32) is that both disturbance and control points of excitation are considered in the subsequent model
reduction decisions. The intensity U of the actuator excitations depends upon the relative bandwidth of
the actuators. In the absence of better data we would use

U =BWI , (WBW actuator bandwidth) (7.33)



8.21

T
Of course, the rezl purpose for including b. uw in (7.30) is to anticipate some sort of excitation through
the actuators, :rior to the actual design of the control law.

The outpJt (7.27) is slightly more general than the s'rarabZe outputs defined in (2.2c). However,
most problems seEn to fit nicely into the format of (2.2c). To interpret (7.27) in the spirit of (2.2c),
simply make the substitutions

in which case the form of the result (7.32) does not change, merely the interpretation of pi and ri as

pi and i. According to modal costs (7.32) the importance of a mode is determined basically by the product

of three properties of the mode,

Vi = (time constant)(observability)(disturbability + controllability) (7.35)

where mode i is: unobservable in position if and only if 11 pill = 0, unobservable in rate outputs if and

only if 11 rill = 0, undisturbable from w if and only if lI dill = 0, and uncontrollable from uw if and only if

11 bill = 0. By substitution of (7.18a) and U - 0) into (7.32) the result (7.19a) is obtained as a special

case of (7.32). The expressions (7.29) and (7.32) are general modal costs for matrix-second-order systems
'hich have no gyroscopic terms.

7.3 Component Cost Analysis as a Spacecraft Control Design Procedure

The results of Sections 6.0 and 7.0 are now combined to form a design algorithm for flexible space-

craft control. The reader should be advised that at this time of rapid developments of both theory and
practice that any such algorithms are ad hoc at best and new theories may allow considerable improvement
in these procedures. However, in the interest of stimulating such improvements the following algorithm
is suggested. Each step in the algorithm is discussed and motivated in some detail.

Definitions and Assumptions:

Al. The system under consideration has the form (2.1) with G' = 0 and (2.6) holds.

A2. Rate sensors are colocated with the m actuators. An actuator applies a fo-ce between two points in the
structure, and a sensor measures the time rate of change of the resulting rectilinear displacement.
Alteratively, an actuator applies a torque between two points in the structure, and a sensor measures
the time rate of change of the resulting angular displacement.

A3. nr of the m actuators are located so that rigid modes are controllable.

A4. There are nr inertially-referenced position sensors located so that rigid modes are observable.

AS. The number of elastic modes calculated for the structure is N.

A6. The largest Liapunov equation of the form (7.16b) which can be solved reasonably accurately on the
available off-line computer has dimension 2NLX 2NL.

A7. The largest Riccati equations of the types (4.13), (4.14) which can be solved reasonably accurately

on the available off-line computer has dimension NRxNR.

A8. The largest cortroller (4.1) which can be accommodated in the :, ,;. computer has dimension NC, where
NC < NR < 

2NL < 2N.

A9. The highest bandwidth of the available actuators is ",BW"

A1O. The parameters considered uncertain are given by (7.8), and these uncertainties are modeled by (7.9).

All. We have in mind the performance measure
Tim + yTTy + uT o u T

S= -lim E{oy R uTY-+ Q 4 LR R- (7.36)

where for (7.8), v = 
2
Ne+ Nem, Ne 1 NR - nr.

To illustrate the design procedure we use the simple example

r = BrU + Drw nr 
R

ne + 24w;e + w2ne = Beu + De w ne R
4  

(7.37)

y = r r+ Pee Zp 2 Mprnr + Vp , r M re e + vr

where

0.005 , w = diag (1,2,5,10], Mpr 10, B r  = I r , Pr I Q = 100

T T T
= 1 1 EuM(TU) = UA(t-T) ,U I Ew(t)w (T) =W' (t-,) ,W =100 ,Ev (tMv U () = V p(-)
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T (0 1 10 0 0 , . ) 0 10 0 , . , . )Vp = 10 , Evr(t)vr(T) = Vr6(t-1) , Vr = 0.1 Pe (e.l,l.0,O.01.O) Te (0.l,0.01,1.OO.l)

DT = (0.0l,O.l,U.01,0.001),
e

and we take, for illustrative purposes only,

N = 4, nr = 1, m = 1, NL = 3, NR = 6, Nc = 2.

The measurements zp and zr respectively represent position of the rigid body and a rate measurement. It

may be readily verified that all the assumptions (Al - All) are satisfied.

7.4 The CCA DesinAlgr2ithm

Step 1: The Prel;ninary Model Reduction:

Set 6 = p = a. = 0 in (7.36) and use MCA (7.32) to reduce the number of vehicle modes from (N + nrd

to (NL + np), where n' is the number of rigid body modes surviving the MCA truncation.

T

Purpoe of STE! I: Reduce the number of modes to a tractable number, but do so with knowledge of y Qy,

the primary control objective.

Exanqe rf STEP I: For (7.37), using (7.32) we have

V(nd .. , V(nI) = 1.00, V(n2 ) = 625.00, V(n3) = 40.40, V(n4 ) = 0.50 (7.38)

Hence, by the modal cost rule for truncation (7.13), mode 4 i,, truncated and the retained modes, listed in
order of their modal cost (their predicted importance in the problem) are (n rn2,n3,rl). The reduced

model is

nr B ru + Drw (7.39a)

ne + 2cw'n e +w' 2 n = 'U + ' w (7.3b)e e e e

y = P n +P', z = M n + v ,z 1W'+v
rr ene p prr p r Mrene + v r

where

w' = diag[2,5,1] , P = (0.10,0.01,0.01)

B;T = (0.01,1.00,0.10), P; = (1.00,0.01,0.10)
e e

STEP II: Rate Feedback Design:

Set u = u0 + ur where
ur = -G rZ , Gr = (8eT B;)-IBT(peTQp;.- 2 ') ;(B ;TB;) -l (7.40)

where 6 is chosen large enough so that PT QP B-2 w'>O.
e e

Puyr'oe of SW? II: It follows from theorem 6 that thp control (7.40) is the control which is both the
optimal measurement zr feedback control and the optimal state feedback control for

V = lim E{nT[2w'+5%GrB en; + urGr ur (7.41)

subject to (7.3gb). Furthermore, such a control increases the relative stability of all controllable
modes and, of course, does not move others. Hence, the system is stable in the presence 'bf almost all"
modal data uncertanties. However, this promise is only valid for those modes within the actuator, sensor
bandwidths. The main purpose of STEP II is to increase the damping of those modes that MCA has identi-
fied as critical to the cost function, and to do this for a Zarger number of modes than the subsequent
outer control loon u. can be optimized for. This allows a control spillover "cushion" in the sense that

the control spillover from uo will have to push those residual poles (truncated in the uo design but

pr,'sent in the ur design of STEP II) further to the right to destabilize them. Now, in order to be sure

that STEP II has provided "spillover protection" for the s&we modes for which such protection will be
needed later, it is important that the design of ur and uo be "coordinated" to the extent that they are

both concerned with the regulation of the output vector y. The rate feedback design minimizes rates, so
choosing ur to minimize Is the rational thing to do. Heiice, we may interpret STEP II in the spirit of

(7.36) by setting a = ai = 0 with u - ur. To match this objective as closely as possible with (7.41), we set
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-l -
OR 8Pr , 2QP ' + 

T  (7.42)
0 r e e ere;

and find the Gr which comes closest (in a least squares sense) to satisfying the second equation in

(7.42). The result is (7.40).

Sv7 ' .'From (7.39), (7.40)

Gr 7.82 (7.43)

The system (7.39) is now described by

nr + BrGrBeT;; = BrUo + Vrw (7.44a)

n; + [2 >' + B 8;T]; + ,2 z B Uo + D w (7.44b)

y = P rnr +P~r,, zp = Mprnr + vp , z = 'ree + vr

STEP III: Second Stage of Model Reduction:

Put (7.44b) in the state form

x A ox + Bou 0 + Dow (7.45)

y = C oX

z = Mox + v ZT = (zT zT)
0p r

where the 2NL components of x are ni "i i = 1,.. NL arranged in any order. Compute

T= C QCoXoi , X = XA + AX + DoWDT (7.46)

and delete from (7.44b) those modes with the smaller component costs defined by

L('e] j) V(;j + V(') (7.47)

where V(ne.) and V(n ) are computed from (7.46). The number of equations retained in (7.44b) is

I IR - n).

c sf f I I , :: STEP III must reduce the model (7.44) to "Riccati-solvable" dimension NR to prepare

for design of the control uo .

xrrI e of f-EF [iI: From (7.44b) - (7.47) we have

V(l,n =l 0.60 V(n2' ,n 2 609.2b , V(ne ,' e) -0.02 (7.48)

indicating that the equation for ne (t) is to be truncated from (7.44b). The model now is put into the

form

x = Ax + Buo + Dw

y = Cx (7.49)

z = Mx + v

where xT = (T ,T ,T T ,T,;T).
r 2 1 r 2 1

STEP IV: Design of the Outer Loop uo .

Set a1 = 0 
= 

6, pR = G-1 in (7.36) to get the optimal controller10 r
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U0 = Gx , x = Ax +bu o + F(z-Mx) (7.50)

-G rBTK , 0 = KA + A TK - KBGr B TK + C TQCa

F = XMTvl , 0 = XAT + AX - xMTv- MX + DWDT

Pw-rTose of STEP IV: The value of R = GrI has been established earlier. Now the optimal controller for

(7.49) has been computed in (7.50), assuming certain parameters, oi = 0.

Those modes of the structure that are observable in y are also observable in y. It is in this sense
'T'that the rate feedback controller of STEP II (which focused on the y Qy term in (7.36)) and the optimal

controller of STEP II (which focused on yTQy term) are "coordinated".

ExarrZe of STEP IV: The essential data from (7.50) is

G = (-3.16E-01, -4.41E-02, -5.77E-01, -8.16E-0l, -4.41E-03, 2.62E-01)

C = (l.OOE+00, l.OOE+00, l.OOE-0l, 0, 0, 0) , a = 7.82 E-03*

M [ .O E 0 0 0 0 0 00 0 0 0 1.OOE-02 l.OOE-Ol

0 0 Ol 0 0 0 0 0

0 0 0 1 0 0 0 0

A O0 0 0 0 0 D= 0 0 0
0 0 0 0 -7.82E-02 -7.82E-01 1 [ 1.OE+O1 -7.82E+00

0 -4 0 0 -2.08E-02 -7.82E-03 1.OE-02 l.OE-01 -7.82E-02

0 0 -l 0 -7.82E-03 -8.82E-02 1.OE-01 1.OE-02 -7.82L-01

0 2.51E+00 6.35E-021

0 2.51E-02 6.30E-04

B 0 F 2.60E-03 6.78E-05
1 .OOE+O0 3.16E+01 1.62E+00

l.OOE-02 3.12E-0l 1.66E-02

J[.OOE-Ol 3.23E-02 3.36E-01

STEP V: Controller Reduction

The optimal system of STEP IV is

=() [ BG ]x) r 0i f 0 w = A O

) FM A+BG-FM ) + v FI() AxIVw

(7.51)

(Y)[ 1' 0 ) G Cx

which is now to be evaluated by criterion (7.36). First we show the simpler case of known parameters

(ai = 0).

*Multiplying (7.36) by 1/a yields a parameter p/a to be selected to achieve an acceptable control

effort. The best value of a is therefore determined from Fig. 2 as that choice which corresponds to the
lowest point on the dotted curve of Fig. 2. This point is found by trial and error, first picking an a
then truncating the controller to the desired order Nc, and repeating this process for a new a. Thus,
the above value of a was found after several passes through STEP V.
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STEP VA: Controller Reduction with Certain Parameters (Gi = 0)

Delete from the controller

NR
x [A+BG-FM]x + Fz , xER

(7.52)

u0 Gx

those states (ni,ri) with the smallest component costs V(r)i,ri) V(T.i) + V(ni ) defined by

V. [QCX]j , 
T 
+ AX + OWe T , Q = block diag [Qa]. (7.53)

for j = i + N i=l , N where V. : V(ri ) and V = V(.) if x has the form T
T:iis yields the'reduced*co~troller.

ARXR + FRz ' U0 = GRXR ' XR R C (7.54)

where AR is obtained by deleting the indicated rows and columns of [A+BG-FM], FR is obtained by deleting

the same rows of F, and GR is obtained by deleting the same columns of G.

Purpose of STEP V.: Reduce the order of the controller (7.52) to the order NC acceptable by on-line

software limitations.

ExcoupZe of 7E5' VA: The calculation (7.53) reveals that the cost-ordered components of the controller
are

"T ^ : ^ ,el)(7.55)
x = (nr,nr,ne 2 ne2nel e1

Hence, if only 4 components of the controller are to be retained they would be

-T : (nr, rrne 2,ne (7.56)

and if only 2 components of the controller are to be retained, they would be

-Tx R ,r) (7.57)

The corresponding reduced -ontroller dynamics are deduced from (7.52) in the manner described above.

STEP VB: Controller Reduction with Unertain Parameters (o)
Delete from the controller (7.52) thos states xi with the smallest component costs V. = V(xiXlp

computed by

v [CT 0 X XAT +AX +DWDT (7.58)
k0

for j = (iR + 2NRk), i = 1...NR , where

[A J , o D=] C= [ (7.59)

= block diag[Q,o a .. 2 QJ

and where 0 is defined by (7.53).

Purpose of STEP VB: The component costs (7.58) represent the sum

V V(x + I V((Xl)pk) (7.60)
k=l
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where the total cost is given by (7.36) with 6 = 0. By use of (7.59) and (7.51) the total cost may be
written

N R NR
V = tr[CsQCsXs] =Q Cl V(xi,xip) + i V(xi,xi) (7.61)

where Vi in (7.58) picks out the first terms in (7.61) due to xi. The remaining terms in (7.61) are due

to the states xi and their sensitivities, which are not needed for this design but may be computed from
the remaining terms in (7.58). The particular range of indices in the Vi computation of (7.58) are due

to the choice of coordinates represented by (7.59). Of course, any other choice of coordinates may be
chosen with an attendent change in the range of indices jj in (7.58) to identify those variables of the
augmented state vector x representing controller dynamics and their sensitivities, xi and X ip. STEP VB

allows sensitivity considerations to influence the controller reduction, whereas, STEP VA assumes the
parameters are known a priori. There is an additional computational burden in STEP VB and for this step
assumption A8 must be changed to

Nc < 2NR < 
2NL < 2N

due to the fact that (7.58) decomposes into (v+l) Liapunov equations each of which is 2NRX2NR [37].

Example of STEP VB: Assume uncertain frequencies w,' w2. Hence

p :T ( ,2) , T = (1,2)

2 2 2
a1 = E( = 0 = 100

2 -2 .2
C2 E(w 2- 2) ic = 2(100)= 200

Carrying out the computations (7.58) we find that the controller states arranged in their cost-order, are

: T = (nelelnr'nr  e2,ne2) (7.62)

Hence if only a fourth order controller is desired we would choose

T (7.63)XR :(nel'nel'nrl,1 r)

If only a second order controller is desired we would choose

^ T (eR, elR (7.64)

Controller (/.64) would lead to instability since the rigid body mode has been truncated.
By comparing (7.55), (7.56) and (7.57), respectively, with (7.62), (7.63) and (7.64), the influence of
parareter sensitivity on the reduced controller design can clearly be seen. For example, (7.55) indicates

that (nP2 e2) are more important than (n el, el) in the nominal optimal controller (7.52), whereas (7.62)
indicates that, from parameter sensitivity consideration, (nen e) is more important.

el' el

8.0 Conclusions

In this chapter we have outlined in some detail many of the critical problems associated with the
control of lightly damped flexible structures. Underlying all of the practical problems of

high performance

assembly in space, configuration changes

on-line controller software design

lack of test data

is the central problem of modeling errors. To justify the expense of a space structure, the performance
requirements will necessarily be very severe. On the other hand, the absence of economical tests pre-
cludes the availability of reliable data before flight. Thus, greater burden of responsibility is -7,2,-ed
upon analytical methods in the design ?.,ithout the benefit of tret data for a system nearly unstab ,e oithout
control. This is the triple jeopardy faced by all flexib, space structure designs.
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Some precise statements have been verified concerning the performance of such structures in the
presence of controllers based upon erroneous models. The modeling error, can always be classified
into four categories: (1) parameter errors, (2) model order errors, (3) disturbance errors and
(4) neglected nonlinearities. Section 4 (theorem 1, part (c)) has shown the class of parameter errors
(i.e. yielding eit:e, no control or no observation spillover) which allow the controlled system to be
stable in the presence of all model order errors. Sections 5 1nd 6 have shown the class of model
order err, s (i.e. infinite bandwidth sensors, actuators) which allow the controlled system to be
stable in Lhe presence of all parameter errors (theorem 3). Section 6 has shown such properties of
rate measurement feedback control as damping and iiverse optimal control solutions. Section 7 has
provided a systematic approach to model order reduction, controller order reduction and parameter
sensitivity using component cost analysis (CCA). inally, a design algorithm is offered which has
these properties:

1. Provides damping for a larger number of modes than the optimal attitude controller controls.
This rate measurement feedback design, with colocated rate sensors and actuators, provides
control spillover protection for the truncated controller.

2. Coordinates the rate feedback design with the attitude control design by use of a similar
cost function.

3. Provides model reduction and controller reduction decisions which are systematically connected
to the mathematical statement of the control objectives and the disturbance models.

There are many possible versions of the CCA desigi algorithm. Some versions would require more com-
putation with some attendent improvement in performance. For example, other choices of coordinates
besides "modal" coordinates may provide better reduced models in Section 7. However, in the interest
of claril the procedures have been explained with some economy of detail.

Flexible space structure control is indeed a fitting challenge to the best of available control
and estimation theories - what an excellent example with which to test the worth of powerful theories.
And, conversely, out of such challenging examples come pointed needs for new theory.
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OPTIMUM CLIMB AND DESCENT TRAJECTORIES FOR AIRLINE MISSIONS

Heinz Erzberger
Research Scientist

Ames Research Center, NASA, Moffett Field, California 94035

SUM IARY

The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady
cruise, and descent segments are derived by application of optimal control theory. The performance function
consists of the sum of fuel and time costs, referred to as direct operating cost (DOC). The state variable is
range to go and the independent variable is energy. In this formulation a cruise segment always occurs at the
optimum cruise energy for sufficiently large range. At short ranges (400 n. mi. and less), a cruise segment
may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on
the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along
with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to
some maximum value in climb and to some minimum in descent, such cruise segments generally will occur. The
algorithm has been implemented in a computer program that can be incorporated in an airline flight planning
system or can serve as a basis for an onboard implementation. The various features of the program are
described and the characteristics of the optimum trajectories are illustrated with a set of example trajec-
tories for an aircraft model representative of the Boeing 727-100.

NOMENCLATURE

cf fuel cost factor, dollars/kg (dollars/lb) T thrust, kg (lb)

c time cost factor, dollars/hr TupTdn climb and descent thrusts, respectively

D drag force t time

DvDv first and second partial derivatives of tc time at end of climb
drag with respect to airspeed

dc cruise distance td time at start of descent

df desired distance to fly tf total missicn time

V true airspeed

dup ddn total climb and descent distances,

respectively Vc cruise speed

E total aircraft energy in units of altitude VupVdn climb and descent airspeeds

Ec cruise or maximum energy Vw wind speed along flightpath

Ec optimum cruise energy VwupVw wind speeds in climb and descent segments,
op~t up do respectively, functions of altitude

EiEf initial and final energy W aircraft weight in kg (lb)

rate of change in energy Wf total mission fuel, kg (lb)

g acceleration of gravity Wi  initial aircraft weight, kg (1b)

H Hamiltonian, dollars per unit of energy Wref reference weight in climb fuel relation

h altitude, m (ft) Wf fuel flow rate, kg/hr (lb/hr)

lup'ldn components of the Hamiltonian x distance flown, n. mi.

J value of performance function, xup'xdn climb and descent distances, running variables
dollars/kg (dollars/lb)

KIAS indicated airspeed, knots parameter defining direction of control
i kperturbations

KupKdn operands under the minimization operator
in H flightpath angle, radian

K, constant in climb fuel relation upWdn climb and descent flightpath angles, respec-
t vely, radian

L lift force AR length of control perturbation

P integrand of cost function or cost per AT,AV thrust and speed perturbations re>_Iive to
unit time cruise conditions

SFC thrust specific fuel consumption per hr \(Ec) cruise cost at cruise energy E

SFC n nth partial derivatives of SFC with c dollars/n. mi.e

respect to (.)

Index categories: Flight Operations; Guidance and Control; Navigation; Communication; Tr' c ortrol.
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throttle setting cruise cost per unit distance

up,,dn throttle settings in climb and descent, Aopt optimum crisa cost over all energies,
respectively otper unit distance

costate variable

INTRODUCTION

The continuing rise in airline operating costs due to escalating fuel prices and other inflationary fac-
tors has stimulated interest in techniques for trajectory optimization. Recent work has focused on the deri-
vation of simplified algorithms for computing trajectories with specified range. Such an algorithm was
described in Ref. 1. The trajectories calculated by this algorithm, unlike those obtained by classical
performance optimization, minimize an integral performance measure such as total mission fuel cost.

Another problem that has received attention recently concerns the optimality of steady-state cruise
flight. Steady-state cruise is generally not optimum for minimum fuel performance (Ref. 2), but the perfor-
mance penalty of steady-state cruise is unknown because the actual nonsteady or cyclic cptimum cruise has not
been computed to date. However, if the steady-state cruise satisfies first-order necessary conditions, Speyer
(Ref. 2) shows, in an example, that the performance improvement of a particular (though nonoptimum) cyclic
cruise is about 0.1%. This improvement, if representative of the optimum cyclic cruise, is not economically
signific'nt. Nevertheless, the determination of the optimum cyclic cruise poses an interesting and unsolved
problem.

Even if economically significant, cyclic cruise could not be used in airline operation because it is
incompatible with existing air traffic control procedures, disconcerts passengers, and decreases engine life.
Optimum trajectories, to be compatible with typical airline practice, should consist of a climbout, a steady-
state cruise, and a descent. Thus, at least for commercial airline applications, the optimum trajectory must
be selected from a set of trajectories that is limited a priori to such types.

A formulation of the trajectory optimization problem that constrains the admissible trajectories to those
containing climb, steady cruise, and descent was given in Ref. 1. In this formulation, energy height was used
as the independent or timelike variable in climb and descent, thus forcing energy to change monotonically in
these segments. It was shown that the use of energy as the independent variable eliminates the integration of
a separate adjoint differential equation, thus simplifying the numerical solution of the optimal control prob-
lem. Therefore, this formulation is also adopted here.

An evaluation of the constrained optimum trajectories by airline operators indicated an interest in the
additional constraint of setting the thrust to some maximum during climb and to idle during descent to reduce
pilot workload of flying the trajectories. An examination of this procedure raised the following questions
that are investigated here. How do the constraints on thrust and, more generally, the aerodynamic and propul-
sion characteristics affect the structure of the trajectories? Under what condition is the constrained thrast
procedure optimum? What performance penalty is incurred by the constraint on thrust?

The avionics and aircraft industry is currently developing onboard performance computer systems to assist
the flight crew in minimizing fuel consumption and operating costs. Because of its modest computational
requirements, the algorithm described herein can be implemented in an onboard computer. This paper briefly
describes a computer implementation of the algorithm and also discusses the characteristics of several optimum
trajectories computed for the Boeing 727-100 a*rcraft.

OPTIMAL CONTROL FORMULATION

As stated in the Introduction, we assume at the outset that the optimum trajectories have the structure
shown in Fig. 1. This structure consists of climb, cruise, and descent segments, with the aircraft energy
increasing monotonically in climb and decreasing monotonically in descent. Neglecting flightpath-angle
dynamics and weight loss due to fuel burn, the point mass equations of motion for flight in the vertical plane
are

(I/g)(dV/dt) =  [(T - D)/W] - sin (1)

dh/dt = V sin (2)

dx/dt = V cos + Vw V + Vw  (3)

with the constraint L = W (.os . The along-track wind component Vw  may be a function of altitude, but
accelerations due to wind siears as well as the vertical wind component can be neglected in this analysis.
In airplanes, unlike rockets, the rate of change of weight due to fuel burn introduces negligible dynamic
effects in the trajectory cptimization. Nevertheless, the effect of weight loss on a trajectory is important
but can be accounted for without adding another state variable by techniques described in the section on
computer implementation. If energy is defined as

E - h + (i/2g)V (4)

then the familiir relation for the rato of .han(:e in energy is obtained by differentiating Eq. (4) with res-
pect to time and substituting the right-hand side, of Eqs. (1) and (2) in place of dV/dt and dh/dt,
respectively:

I df/dt [(T - d)V]/W (5)

L_



9-3

The cost function to be minimized is chosen as the direct operating cost of the mission and consists of
the sum of the fuel cost and the time cost:

J = cfWf + cttf (6)

where cf and ct are the unit costs of fuel and time, respectively. Setting ct = 0 results in the familiar
minimum fL ' performance function. In integral form, the cost function becomes

J = ft (Wfcf + ct)dt ftf P dt (7)

0 0

It is assumed that the time to fly, tf, is a free variable, but the distance to fly is a specified quan-
tity df. Following the formulatio.i in Ref. 1, we now write the total mission cost as the sum of the costs
for the three segments of the assumed trajectory (illustrated in Fig. 1);

ftc P dt + (df - dup - ddn)X + ftf P dt (8)

0 •td

climb cruise descent
cost cost cost

where designates the cost of cruising at a given energy Ec. Next, we transform the integral cost terms
in Eq. (8) by changing the independent variable from time to energy, using the transformation dt = dE/E:

J f E c (P/ElI>o)dE + (df -dup- ddn ) + fEc (P/IEIE<o)dE (9)
Ei  Ef

where Ei and Ef are the given initial climb and final descent energies, respectively. The transformation
uses the assumption that the energy changes monotonically in climb and descent. This places strict inequality
constraints on E, as shown in Eq. (9). Also in Eq. (9), the integration limits have been reversed in the
descent cost term. In this formulation the cost function is of mixed form, containing two integral cost terms
and a terminal cost term contributed by the cruise segment.

With the change in independent variabl- from time to energy, the state equation (Eq. (5)) is eliminated,
leaving Eq. (3) as the only state equation. Furthermore, we note that the performance function (Eq. (9))depends on the distance state x only through the sum of the climb and descent distances dup + ddn. There-
fore, the state equation for the distance is rewritten in terms of this sum as:

d(xup + x ,)/dE = + VwuI . + (Vn + 0n)

Here the transformation dt = dE/E was used again. Also, Eq. (10) provides for independence in the choice of
climb and descent speeds Vup and Vdn and the wind velocities Vwup and Vw,. Wind velocities in climb and

descent are allowed to be independent of each other; generally, different wind conditions will prevail in
physically different locations of climb and descent. The wind velorities can also be altitude-dependent. The
effect of altitude-dependent winds on the optimum trajectories is discussed in Ref. 3.

Necessary conditions for the minimization of Eq. (9), subject to the state equation (Eq. (10)) are
obtained by application of optimum control theory (see, e.g., Ref. 4, p. 71). Then the following relations
are obtained for the Hamiltonian and costate equations, respectively:

V IV + vup + Vwu p +vdn + VWdn]

! up'Vdn E4. + E<O L 1iE'O EIEO-

u p 'rdnd

d /dE = -[H/(xup + xdn)] = 0 (12)

The right-hand side of the Hamiltonian equation is minimized with respect to two pairs of control vari-
ables, one pair applicable to climb (Vup and up), the other pair to descent (Vdn and 7dn). Since each term
under the minimization operator in Eq. (11) contains only one of the two pairs of control variables, the
minimization simplifies into two independent minimizations, one involving climb controls, the other, descent
coitrols. Also, since the right-hand side of the costate equation (Eq. (12)) is zero, 1, is constant.

TRANSVERSALITY CONDITIONS

The transversality conditions are additional necessary conditions that depend on the end-point con-
straints of state variables (Ref. 4). The basic constraint in this problem is that the range of the trajec-
tory be df. However, df is a parameter in the transformed cost function, Eq. (9), and not a state variable.
The final value of the state variable dup + ddn is, in this formulation, subject only to the inequality
constraint dup + ddn < df. This constraint is, of course, necessary for a physically meaningful result.
This inequality constraint can be handlkJ by solving two optimization problems, one completely free
(du + ddn • df), the other constrained (dup + ddn = df), and then choosing the trajectory with the lowest
cost. Physically, the comparison is between a trajectory with a cruise segment and one without a cruise
segment. Considering first the free terminal state case, dup + ddn < df, we obtain the following relation
for the final value of the costate p:
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5(E _ a(df - Xup - Xdn): - (13)

3 ( x u p + x d n ) E = E c , x u p = d u p , X d n d d n

This is the transversality condition for the free final state problem with terminal cost (Ref. 4). It shows
that the constant costate value is the negative of the cruise cost.

Next, consider the case of no cruise segment. Then, the middle term of Eq. (9) drops out and the perfor-
mance function contains only the integral cost terms. This is the case of the specified final state
df = dup + ddn; the corresponding transversality condition yields (Ec) - ,f. In practice it is not necessary
to compute the constrained terminal state trajectory if a valid free terminal state trajectory exists, i.e.,
one for which df > dup + ddn, since the addition of a terminal constraint can only increase the cost of the
trajectory. Therefore, this case is not considered further here.

In both cases the choice of costate determines a particular range. Since the functional relationship
between these variables cannot be determined in closed form, it is necessary to iterate on the costate value
to achieve a specified range df.

The last necessary condition applicable to this formulation is obtained by making use of the fact that
the final value of the timelike independent variable E is free. Its final value is the upper limit of
integration Ec in Eq. (9). Application of results in Ref. 4 provides the following condition:

H+ 1,[(df - du - ddn)xE)]jiEl) 0 (14)

which, when evaluated and simplified, becomes

jH + [d c(d\/dE)] 0 (15)
lE=Ec

where dc is the cruise distance.

Condition (15) has the following physical interpretation. The value of the Hamiltonian H evaluated at
cruise energy Ec is (after substituting Eq. (13) into (11)) the minimum increment in the sum of climb cost
and descent cost to make a unit increment in cruise energy. The product dc(dx/dE)E=E, is the increment in

cruise cost resulting from a unit change in cruise energy. Condition (15) requires the optimum trajectory to
be such that the sum of these two increments be zero for a given cruise distance dc anu cruise energy Ec.

DEPENDENCE OF OPTIMUM TRAJEITORIES ON RANGE

Equation (15), together with knowledge of the salient characteristics of the cruise cost , and the
Hamiltonian H, can be used to determine the structural dependence of the optimum trajectories on range.

Cruise cost at a cruise energy Ec and cruise speed Vc is computed from the relation

k(EcV c [P(TEcV c)/(Vc + VW) with constraints T = DI (16)

where the denominator is the ground speed in the flightpath direction. Examination of the term containing
in the relation for the performance function (9) shows that the vaiue for x should be as small as possible
at each cruise energy to minimize the total cost J. Therefore, the cruise-speed dependence of *. is
eliminated by minimizing the right side of Eq. (16) with respect to Vc:

.(Ec) = min P(T,E c,V c)/(V c + V W ) (17)
Vc

In this paper, , and Vc are always assumed to be the optimum cruise cost and cruise speed, respectively, at
a particular cruise energy Ec.

Except in high wind shear, the cruise cost as a function of cruise energy exhibits the roughly parabolic
shape shown in Fig. 2. For subsonic transport aircraft, the minimum of the cruise cost with respect to energy
occurs close to the maximum energy boundary. This characteristic of the cruise cost prevails for essentially
all values of the performance function parameters cf and ct. The quantities defining the optimum cruise con-
ditions are Ecopt and opt* In Eq. (15), the derivative of the cruise cost function multiplies the cruise

distance. Except under extreme wind shear conditions, the derivative is monotonic and crosses the zero axis
at Ec Ecopt *

By distributing the minimization operator- in Eq. (11) and substituting Eq. (13) in Eq. (II), H can be
decomposed into climb and descent components as follows:

H[E, (E )] lup + I dn8)

where

[P -(V up+ Vwu FP-(Vdn+Vd
I m up mi ------ I mi VwJj (19)Vup d Vdn 0

up dn
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In the preceding section, the Hamiltonian, evaluated at E = Ec, was interpreted as the cost penalty to
achieve a unit increase in cruise energy. Extensive numerical studies of Eq. (18) for several comprehensive
models of subsonic turbofan aircraft show H[Ec,x(Ec) ] > 0 for Ec < Ecopt. Moreover, the minimum cost

penalty for increasing energy Iup is always positive and that for decreasing Idn is negative, but the sum
has never been found negative for models of currently used turbofans. While these characteristics have been
established for several aircraft models, they are not intended to imply a generalization to all aircraft since
no physical laws prevent H from being negative.

Consider first the case where H[Ec,X(Ec) ] > 0. Then Eq. (15) can be solved for the cruise distance dc:

dc = -H[Ec,(Ec)]/(dx/dE)E=Ec  (20)

Since dx/dE -_ 0, but approaches zero as Ec - Ec opt, the cruise distance must increase without limit as

Ec - Ec opt. Our numerical studies have shown that the value of H tends to decrease as Ec increases, but

not enough to change this trend. Figure 3 shows the resulting family of trajectories, assuming H > 0 forall values of Ec . In this case, interestingly, nonzero cruise segments occur at short ranges and at energies

below the optimum cruise energy Ecopt. Optimum cruise is approached asymptotically at long range.

Consider next the case where HLEr,A(Er)j = 0. Then dc = 0, i.e., no cruise segment is present for
dx/dE 0 0. However, Eq. (15) shows that dc can be nonzero d,/dE = 0. This implies that, for H = 0,cruise flight is optimum only at the optimum cruise energy Ecopt. Figure 4 shows the family of trajectories
for this case.

THRUST OPTIMIZATION FOR MINIMUM FUEL TRAJECTORIES

Evaluation of the Hamiltonian equation would be simplified if one of the two pairs of control variables,
airspeed or thrust, could somehow be eliminated a priori from the minimization. Since the pair of throttle
settings, up and 7dn, is thought to be near its limit, we shall look for conditions where extreme settings of
the throttle are optimum. The remainder of this paper examines only the minimum fuel case cf = I and ct = 0,
with winds set to zero to simplify the derivation. However, the results can be extended to the more general
cost function.

For minimum fuel performance, the two terms in the Hamiltonian Eq. (19) become

S= min Kup Idn = min Kdn (21a)l up Vup 
dnVdn

where

K rWf - XV UP IK f-XVdn (

Kup T - )V T( u )>D Kdn [ I DVdd/]T( d)(1DP I IT( up dn

An accurate model for thrust and fuel flow generally includes the functional dependencies, T(r,V,h) and
Wf(i,V,h). In addition, these functions must be corrected for nonstandard temperatures and bleed losses.

In previous work on aircraft trajectory optimization (Ref. 5), a simpler model for fuel flow and thrust
was used:

Wf = TS c(Vh) ; Tmin(V,h) < T Tmax(V,h) (22)

The critical assumption in Eq. (22) is independence of the specific fuel consumption SFC from thrust.
The virtue of this model lies in the insight it yields into the minimum fuel problem. If Eq. (22) is substi-
tuted into Eqs. (21b), one obtains

C SFW - (X/SFC)Vu Sc FTdn (X/SFc)Vdnl
K SW 1 F up F up K 5FC d (23)

Tup -D >P0 Kdn = _Vdn 'TO-' Td'
, u uup L Tup= D JTup >  Kd: Vd-nL IdnJ" D 1  dn<D

For any fixed values of Vup or Vdn, the operand functions for the minimization of Kup and Kdn are
hyperbolas with poles at T = D. The numerator zero must be to the left of the pole on the thrust axis for
energies less than cruise energy. Figure E is a typical plot of these functions. Clearly, maximum thrust
minimizes Kup and idle thrust minimizes Kdn for any E < Ec, proving that the limiting values of thrust
are optimum for this propulsion model throughout the climb and descent trajectories. This result also implies
that the departure from the extreme thrust values found for the more general propulsion model is directly
attributable to the nonlinear dependence of fuel flow on thrust. Conversely, the need for throttle setting
optimization can be determined a priori from the fuel flow vs thrust dependenue for a particular engine. Such
data are found in the engine manufacturer's performance handbook.

EVALUATION OF HAMILTONIAN AT CRUISE

We have seen in a preceding section that the value of the Hamiltonian computed at cruise energy Ec
determines the structure of the trajectories near cruise. Here we shall relate the existence of cruise below
Ecopt to specific engine and aerodynamic model parameters by substituting truncated Taylor series expansions

of fuel flow and drag as functions of airspeed and thrust into the expression for the Hamiltonian. The loca-
tion of the minimum with respect to the controls as well as the value of H can then be determined as func-
tions of the Taylor series coefficients at E = Ec.
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How shold one pick the point in the control space about which to make the expansion? Computational
experience in Refs. I and 3 has shown that the minimum is in the neighborhood of the optimum cruise speed and
throttle setting, corresponding to the given cruise energy. This suggests that the cruise controls should be
picked for the expansion point.

The fuel flow and drag functions expanded to second order about the cruise controls T = Tc, V = Vc  are

Wf = TcSFC + (TcSFC + S FC AT + TcS FC AV + (1/2) (2SFC + TcSFCT) AT2

+ (TcSFC TV+ SFC )AV AT + (I/2 )TcSFCV2 AV2 + higher-order terms (24)

D = D(V c,E c) + Lv AV + (1/2)Dv2 AV
2 + higher-order terms (25)

The subscripts to SFC and D designate the partial derivatives with respect to the subscripted variable.
Note that the expansion allows for a general fuel flow model in which specific fuel consumption can be thrust-
dependent.

Before substituting Eqs. (24) and (25) into the expression for H, we observe that H is singular at
cruise with T = Tc and V = Vc, because both numerator and denominator are identically zero at that point.
Figure 6 olots the loci of the numerator and denominator zeros of Kup and Kdn in the control space at
E = Ec. It is proved in the Appendix that the locus of numerator zeros is tangent to the locus of denominator
zeros at the optimum cruise controls. For E < Ec, the two loci have no points in common. The two loci can be
tangent but cannot cross since, otherwise, controls would exist that would make the Hamiltonian infinitely
negative, a result ruled out as physically meaningless.

Upon substituting Eqs. (24) and (25) into (21) using the tangency condition (A4) derived in the Appendix,
the following expressions for Kup and Kdn at cruise energy are obtained:

(Tc SFC + SFC) AT- (D v SFC + TcS FCO) AV

+ (1/2)(2SFC + TcSFC )ATz + (TSFC + SFC)V :,.T

K+ (I1/2TcSFC AV2
Kup W c .. V2  (26)
or=
K n (Vc + AV) IAT - 0 V - (1/2)0 "V-i
dn Jv v

Terms above second order have been neglecteo since we are investigating a small neighborhood ot the traise
point. Expression (26) represents Kup if the quantity under the absolute value sign is positive dnd Kdn if
it is negative.

Since the cruise point at AT = 0' and AV = 0 qives the undefined vilue of 0/0 for- E(J. 26, it is
necessary to evaluate the limit as AT and AV approach zero. If the limit exists, it must be independent of
the direction from which the cruise point is approached. To compute the limit and investigate the neighborhood
of the cruise point, a polar coordinate system centered at the cruise point is used to define control pertur-
bations. Let AR and 6 define control perturbations AT and AV as follows:

AT = (D + )V ('7)

AR R(v, + D
AV + yI + (H + 0) I AT I+ (6 + (26)

The parameter 6 defines a direction relative to the reference direction of the line T = Dv .V. The
reference direction i = 0 is excluded from the control space since it is along the direction of the locus of
T = 0 at the cruise point.

After substituting Eqs. (28) into (26) and taking the limit of the resulting expressions as ',R - 0, one
obtains for any * 0:

K = (W/V + )S F+ TSFCT) (29)

The limit is thus well definei since it is independent of the approach direction in each region. However, it
remains to be shown that the limit value is in fact the minimum of Eq. (26) with respect to the perturbation
controls. This question is investigated for two cases, one for which SFC is independent, and the other,
dependent on thrust.
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Case (A): SFC Independent of Thrust

Along the direction defined by AV 0 0, i.e., along the thrust direction, Eq. (23) can be used directly
to determine the dependence of the functions on Tup and Tdn under the minimization operator. Since at
V = Vc , D(VcEc) Tc = (IS FC)Vc Eq. (23) reduces to

K up - (W/Vc)SFC ' Kdn = (W/Vc )S FC (30)

showing that, at the cruise speed Vc, these functions are independent of thrust. This result is not restricted
to small perturbations relative to the cruise thrust. Along other directions, the truncated Taylor series
form (Eq. (26)) must be used. After setting the zero all thrust-dependent derivatives and substituting
Eqs. (28) into (26), the following expression is obtained.

[ + (2SFC (I + Dv) 
+ 

T
c

SFC
V2 )AR

K up WS 21ISup FC FC IF, + Dv (31)

Kdn (V + -V) Dv AR

2l 1/ + ( + O v )

where the positive sign applies to Kup and the negative sign to Kdn. The characteristics of these functions
depend on the drag and specific fuel consumption derivatives. The drag derivatives Dv and Dv2 are both

positive since the aircraft will certainly operate on the "front" side of the thrust-required curve. The
dependence of SFC on speed for a typical, currently in-service turbofan engine at cruise energies exhibits
a slight upward curvature above Mach 0.4 (as shown in Fig. 7), implying that both SFCV and SFCV2 are

positive in the range of interest between Mach 0.4 and 0.9. The slight curvature of SFC indicates that a
quadratic function can accurately model the Mach number dependence of SFC in the Mach range of interest and
not just in a small neighborhood of the expansion point. Also, at typical cruise conditions, one finds that
or. I (2SFCvD v + TcSFCV,). Therefore, for any 5, the denominator of Eq. (31) goes to zero before the

numerator does as AR is increased from an initial value of zero. Moreover, the slope of the operand function
with respect to ,R increases as 0 0. The effect of AV can be neglected since Vc >> AV.

These observations lead to the conclusion that the functions in Eq. (31) slope upward in all directions

as AR increases, except in the direction parallel to the thrust axis, along which the slope is level.
Figure 8 shows a family of plots of the operand functions as a varies over its range. The limiting values of
these functions at the cruise point (,W/Vc)SFC are therefore also the global minimums, and the value of the
Hamiltonian, which is the sum of the two components, is zero. At the cruise energy, furthermore, the optimum
climb and descent speeds are equal to the optimum cruise speed. The optimum climb and descent thrusts at that
point are arbitrary since the Hamiltonian is independent of them.

By applying these results to Eq. (20), it now follows that the structure of the optimum trajectories near
cruise is given by the family of trajectories in Fig. 4. Specifically, no cruise segment occurs except at

optimum cruise energy Ecopt.

By combining results from this and the preceding section, the important result follows that, for the
assumed engine model, optimum trajectories, corresponding optimum controls, and performance are not affected
by constraining the thrust to extreme values in the climb and descent segments.

Case (B): SFC Thrust-Dependent

A complete investigation of the neighborhood of the cruise point analogous to Case (A) requires estimates
of the various thrust-dependent derivatives in Eq. (26). However, understanding of this case can be obtained
by examining the functions in Eq. (26) only along the thrust direction, i.e., for AV = 0. Under that
assumption, Eq. (26) simplifies to:

Kupl

Kor, = (ISF Vct C/F)+ (.J/ F)2FC+ T C(32)

KdJ lSCnV (TcSCSC TLT SF)2F T TF)]

where the plus sign and AT 0 are chosen for Kup and the negative sign and ,AT - 0 for Kdn.

This simplified approach focuses attention on the derivatives SFCT and SFCTZ' which are crucial for this

case. The characteristics of these derivatives can be deduced from plots of SFC vs thrust (Fig. 9). These
plots, and those in Fig. 7, were derived from the operating instructions manual of a typical in-service turbo-
fan (Ref. 6). Obviously, the assumption of a thrust-independent SFC is grossly violated for this engine
since, at low thrust values, the SFC curves approach infinity; i.e., they become undefined. However, at
typical climb or cruise thrusts, corresponding to the upper half of the thrust range, the variation in SFC
is only about 5'.

Fuel flow is also plotted in Fig. 9. The dashed line through the origin gives the best constant SFC
approxiration to the fuel flow function. Comparison indicates an excellent match at high thrust, but an error
of as much as 1200 lb/hr (550 kg/hr) at low thrust. For some applications the assumption of a constant SFC
could be adequate if fuel flow errors at very low or idle thrust settings can be tolerated.

For the upper t o thirds of the thrust range, quadratic functions provide good fits to the SFC curves,

Therefore, one can use the second-order Taylor series expansion at the cruise point to estimate SFC for
fairly large deviations of thrust from cruise thrust.



The thrust in climb or cruise is typically larger than the thrust at which SEC is a minimum in Fig. 9.
Both SFCT and SECT? will therefore be greater than zero and so will the coefficient Of AT in Eq. (32).
It follows that the slope of Eq. (32) as a function of At is greater than zero for Kup and less than zero
for Kdn. In other words, alonq the thrust direction these functions have a strong minimum at the cruise
point whereas in Case (A) they were level alonq this direction. Along other directions, the investigation of
Case (A) has shown a positive slope. Thus, if thrust is an unconstrained control variable along with air-
speed, so that the cruise point lies in the interior of the control region, then the Ootimum climb and descent
thrusts and airspeeds will converge toward the optimum cruise thrust and airspeed as the climb and descent
energies approach the cruise energy. it should be noted that this holds for all cruise energies, including
those less than the optimum cruise energy, Ec op*Since the Hamniltonian is again zero at the cruise energy,
it follows that the structure of the optimum trajectories as a function of range is identical to that of
Case (A) and is illustrated by Fig. 4. Computer calculations for this case in Ref. 1, using a similar engi ne
model, showed that the thrust is either maximum or idle for about three-fourths of the energy range between
initial and cruise energies and then departs from the extremum values so as to converge smoothly to the value
at cruise as cruise energy is approached.

Consider now the case where thrust is constrained to some maximum in climb and is idle in descent. In
that case, the minimum at the cruise point is not accessible since it does not lie in the region of permissible
controls. Also, unlike Case (A), the thrust dependence of Kup and Kdn in Eq. (23) does not disappear along
the thrust direction at V = Vc. Therefore, it is unlikely that at the minimum the sum of the two terms will
be zero. The Hamiltonian is, in fact, greater than zero at any cruise energy. In order to show this, note in
Fig. 9 that, as thrust decreases, SFC increases without bound. It follows that Idn will be less negative
than it would be if SFC were thrust-independent and therefore will be insufficient to cancel 'up at cruise
energy, resulting in a positive value for the Hamiltonian. This was shown earlier to give rise to nonzero
cruise segments below the optimum cruise energy. Thus, the structure of the optimum trajectories for the
constrained thrust case is given by the family of trajectories in Fig. 3.

COMIPUTER IMPLEMENTATION

(a) Algorithm Description

The climb and descent profiles are generated by integrating the state equation (10) from the initial
energy Ei to the maximum or cruise energy Ec. For this purpose, Eq. (10) is separated into its climb and
descent components, which are then modified to include the effect of nonzero flightpath angles as follows:

dxup /E=( up +wup, up)CSYUA (33)

dxdo /dE = (V d + V w d)cOs NYdn /)E)

Flightpath angles are not defined within the reduced dynamics of the energy state model. Nevertheless,
during the integration of the trajectory, the flightpath angles for climb and descent, 'YuD and Xdn, can be
computed by using increments of altitude and distance from two successive energy points. The use of these
computed flightpath angles in Eq. (33) slightly increases the accuracy of the climb and descent distance
integrations.

At each energy in the integration the optimum airspeeds and thrust settings are obtained as the values
that minimize the two components of the Hamiltonian in Eq. (19). The minimization of the Hamiltonian is
carried out by the Fibonacci search technique (Ref. 7). It has the advantage of using the least number of
function evaluations of all known search techniques to locate the minimum with prescribed accuracy and also is
well suited to handle tabular data. Fibonacci search is basically a one-variable minimization procedure. It
is adapted here to two variables by applying the technique to one variable at a time while holding the other
variable fixed. Convergence to the minimum is achieved by cycling between the two variable several times.
Prior to a search over a given control variable, the limits of the regions for Kup and Kdn, which consist
of the T = D locus and the dashed line with shaded border in Fig. 6, are computed to keep the search inter-
val as small as possible.

As previously explained, the choice of Xin the Hamiltonian determines the range of the trajectory,
but the exact functional dependence between Aand range cannot be determined explicitly for the various
weights, wind profiles, and other parameter changes encountered in real time operation. An iterative
procedure is therefore used and is explained in part (b) of this section.

An important part of the algorithm involves accounting for the weight change due to fuel burn. The effect
on the optimum trajectory of the change in weight was not included explicitly in the theory for reasons
previously stated. Two methods are used to correct the optimum trajectories for the weight change. The first
merely integrates the fuel flow and updates the weight in the calculation of t during climb and descent.
This ensures that updated values of aircraft weight are used in the integration of Eqs. (33) to generate the
climib and descent trajectories.

The second methnd modifies the value of used in the Hamiltonian. This modification involves using
the estiiiated weight of the aircraft at the end of climb, i.e., at energy Ec, to compute the value of
rather than the weight at takeoff. It is important to use the weiqht at Ec rather than the weight at some
other energy, to compute because the sensitivity of the optimum controls to changes in xincreases as
the aircraft energy approaches Ec. The fuel consumption for the entire climb trajectory, Fup, is estimated
at the start of climb from the empirical relation:

F =K,([ - E../ (34)
up c 1 1 Wref

where K, is an aircraft-dependent constant and Wref is a typical initial climb weight. This relation
estimates the climb fuel weight to about 101" accuracy, which is adequate for this purpose. Similarly, the
weight at the end of cruise, if a cruise segment is present, is used to comnute for the descent optimiza-
tion. The cruise fuel consumption, Fc, is determined from the relation:
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Fc = d c/V (35)

where W is the average fuel flow rate and Vg the average ground speed during cruise. The calculation
of the average quantities is described in Ref. 8.

The computer implementation includes both the free and constrained thrust cases. For the constrained

thrust case, the cruise distance is computed from Eq. (20). However, because dX/dE -* 0 as Ec - Ecopt, there

is a practical limit to the use of Eq. (20), determined by the numerical accuracy of computing d /dE for

Ec in the neighborhood of Ecopt. A practical limit for Ec is that value for which A = 1
.
01

)opt. The

total range of the trajectory obtained for this value of x is referred to as dmax. All trajectories

requiring longer ranges than dmax are assumed to cruise at Ecopt and contain cruise segments of length

d = df - dup - ddn, where dup and ddn are computed for A = l.Olopt. In the free thrust case, numerical
difficulties can arise in minimizing Eq. (19) as Ec + Ecopt. The value of l.Olbopt has also been found to

serve as a practical criterion for computing the longest range without a cruise segment at Ecopt"

(b) Simplified Flow Chart

A computer program of the algorithm has been implemented in FORTRAN IV and i, described in detail in
Ref. 8. The program contains one main program and 38 subroutines. There are approximately 2400 FORTRAN

instructions in the program. In this paper, the organization and major elements of the program are outlined

with reference to the simplified flow chart shown in Fig. 10.

After reading aircraft lift, drag, and propulsion data, performance function parameters, and wind and

temperature data, the optimum cruise speeds and costs and d/dE are computed for a range of cruise energies
and cruise weights using Eq. (17). Cruise weight is incremented in steps of about 5; of average gross weight.
Cruise energy is incremented in 1000-ft steps from 5000 energy-feet to the maximum or ceilinig energy. The
results are stored in what is referred to as cruise performance tables. At each weight the cruise perforadnce

vs energy will show a dependence as in Fig. 2. The tables also contain a variety of other quantities such as
fuel flow, thrust setting, Mach number, etc., that are needed to fly the trajectories. In addition, at eacn
weight the optimum cruise energy Ecopt and the optimum cruise cost opt are computed and stored in

separate tables. Since these tmbles contain extensive amounts of data and are time consuming to compute,
they can be permanently saved on a mass storage medium.

After reading in additional input data, two optimum trajectories referred to as the minimum and maximum
range trajectories are synthesized. The minimum range trajectory is obtained by choosing the largest value

of n (called mox) stored in the cruise performance tables at the gross weight of interest. The maximum
range trajectory is obtained by choosing the smallest Y, namely, I.O]Aopt, as explained in part (2). Values
of - at given weights are computed by interpolating between data points in the cruise tables. Tne corre-
sponding ranges dnax and dmin can now be compared with df to decide on the type of trajectory required.
If df . dmax, the trajectory will always contain a segment of cruise at optimum cruise energy Ecopt. No

iteration on . is required in this case since the specified range df is obtained by choosing a cruise

segment of length dc = df - dup - ddn. The optimum altitude and Mach number in the cruise segment are updated
every 100 n. mi. to account for the loss of weight due to fuel burn. This is the well-known climb-cruise
technique.

If dmin < df dmax, the maximum energy will fall below Ecopt and iteration with respect to is

required. Here the approximately known inverse relationship between A and df, illustrated in Fig. 1 for
a Boeing 727-100, is incorporated in heuristic to minimize the iteration. Thus, the first estimate of

is computed from

(A/df) + B (36)

The constants A and B are chosen to yield N ax and l.Ol1o t when df is set to dmin and dma x ,

respectively. Then the trajectory is synthesized to yield the actual range d. If d is not sufficiently

close to df, constants A and B are updated by using a pair of ranges and the corresponding pair of
's computed in preceding syntheses. The ranges included in this pair are selected so they enclose the

desired range and lie closest to it. A new estimate of A is now computed and the synthesis is repeated.

Typically, after two iterations the actual range will have converged to within 5 n. mi. of the specific range
and iteration is terminated.

The optimum climb and descent trajectory is specified by storing the range, time, fuel, Mach number,

thrust setting, and altitude as a function of energy height in 500 energy-feet increments.

The computer implementation of the algorithm described here was designed for off-line use primarily as

a benchmark for evaluating various non- or suboptimum trajectories. Various simplifications are possible to

reduce the computer complexity for onboard implementation. For example, the iteration loop to achieve a

specified range need not be mechanized. This approach was used in a piloted simulation of the algorithm

(Ref. 9). In that study, the pilot played an active part in closing the loop on range.

RESULTS

The computer-implemented version of this algorithm was used to compute and to study the characteristics

of several types of optimum trajectories. This section presents a summary of the results. A more complete

discussion, including the effects of winds, nonstandard temperatures, and gross weight changes, can be found

in Ref. 8. The aerodynamic and propulsion models used in these calculations are representatives of the

Boeing 727-100 aircraft equipped with JTSD-7A engines. The time and fuel cost parameters in the performance

function Eq. (7) were chosen to be $500/hr and 6.23 cents/lb, respectively. Inflation has increased these

A L . . . . . . . . . . . . . .. . . .. . . . . . . . . . I I . .. . . . . + . .
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parameters since their selectioci in early 1978. However, because the trajectories actually depend only
on the ratio of the parameters, the trajectories continue to be useful, especially for comparing minimum

4 fuel and DOC cases.

Fiqure 10(a) shows the altitude vs range for 100, 200, and 1000 n. rii. range minimum DOC trajectories.
The aircraft takeoff weight for these trajectories is 150,000 lb. Winds are assumed to be zero and atmospheric
:onditions are for a standard day. For the 200-n. mi. range, both the constrained thrust (solid line) and the
free thrust (dashed line) trajectories are shown. Also, for the 200-n.mi. range, Fig. 10(b) shows the
corresponding altitude vs airspeed profiles.

Below 10,000 ft altitude, all trajectories are essentially identical in boch climb and descent profiles.
At 10,000 ft both the climb and descent profiles are interrupted by short segments of almost level flight.
These are the result of the 250 KIAS speed limit imposed on the trajectory below 10,000 ft by U.S. air traffic
control rules. Thus, when the aircraft reaches 10,000 ft in climb, the aircraft accelerates to the
unconstrained optimum climb speed (see Fig. 12(b)). Similarly, a deceleration occurs in descent at this
altitude.

The constrained thrust trajectories for the 100- and 200-n. mi. ranges contain short cruise segmients
below the optimum cruise altitude of 31,000 ft. Optimal cruise altitude is used for ranges longer than about
250 n. mi. For the relatively long range flight of 1000 n. mii., the optimum cruise altitude increases at a
rate of approximcately 2.5 ft/n. mi. of cruise distance due to fuel burnoff.

The free thrust trajectory for the 200-n. mi. range does not contain a cruise segment. However, the
difference between the constrained and free thrust profiles is slight and is noticeable only above 25,000 ft.
Below this altitude the optimum thrust values are identical for both types, namely, maximum in climb and
idle in descent. Above this altitude the thrust reduces gradually in climb for the free thrust case; it
continues to reduce during the initial descent and reaches idle thrust at 20,000 ft. Differences in the
speed profiles also are noticeable only above about 24,000 ft. As expected, the difference in operating costs
between the two types of trajectories is slight, amounting to an additional $8 saving for the 200-n. mi. free
thrust trajectory.

Minimum fuel trajectories, obtained by setting the time cost parameter in the performance function to
zero, are shown in Fig. 13. In comparison with the minimum DOC trajectories, the minimum fuel trajectories
for a given range climb to a higher altitude and use a substantially lower airspeed above 10,000 ft. Also,
above 10,000 ft the flight-path angle of the minimum fuel trajectories is steeper in climb and shallower in
descent. As before, differences in the altitude profiles between the constrained and unconstrained thrust
trajectories are apparent only near the top of the climb. The penalty in fuel consumption due to the 250 KIAS
speed restriction below 10,000 ft was found to be 66 lb. This penalty increases with an increase in gross
weight but is essentially independent of range.

Table 1 summarizes several important numerical values for the trajectories calculated. Comparison of
tabulated figures shows that the fuel saved by flying the minimum fuel instead of the minimum DOC trajectiry
is about 1,000 lb for the 1,000-n. mi. range, or about 1 lb/n. mi. However, the associated time and cost
penalties are 16 rain and $80, respectively. If the price of fuel continues to increase more rapidly than the
cost of time, as was the case in 1979, the optimum DOC and fuel trajectories will converge, resulting in
smaller fuel and cost differences between them.

For the 200-n. mi.-range minimum fuel trajectories, the differences; in fuel consumption between the
constrained a'nd free thrust cases is 23 lb. This relatively smiall difference would seem to justify the use
of the simpler-to-mechanize and computationally faster constrained thrust anude, especially in an onboard
computer implementation. However, as was pointed out in the preceding theory sections, this difference is
aircraft- and propulsion-model dependent and therefore should be checked whenever there is a change in model
characteristics.

CONCLUSIONS

The approach presented here has established the structure of optimum trajectories for airline operations
and has yielded an efficient computer algorithm for calculating them. The algorithm can be incorporated in an
airline flight planning system or can be used to determine the performance penalty of simpli'fied onboard
algorithms. The latter application is important at this time in view of the current effort by industry to
develop onboard performance management systems.

Two pairs of opposing assumptions, constrained vs free thrust and dependence vs independence of specific
fuel consumption on thrust, played pivotal roles in determining the characteristics of the optimum trajectories.
If the assumption of specific fuel consumption independent of thrust is justified, constrained thrust
trajectories are identical in structure and performance to free thrust trajectories. However, when the
realistic dependence of specific fuel consumption on thrust is taken into account, there will be a difference,
though slight for the example studied, in both performance and structure between constrained and free thrust
cases. The actual differences in performance depend on the propulsion and aerodynamic models as well as other
factors and must be determined for each aircraft model by computer calculation.

APPENDIX

It is to be proved that the loci of Wf - V = 0 and T - D = 0 are tangent at the cruise point, assuming
that the cruise point at T =Tc, V = Vc is a minimum of the cruise cost Wf/V along the locus T - D0 0.
This is equivalent to proving that the cruise point lies on both loci and that the slopes of the loci are
identical at that point.



9-11

That the cruise point satisfies Wf - AV = 0 follows from the sequence of relations below:

( Xf - AV)IT=Tc - v - ] a v - X = (X - A) 0 0]= )T=T c T=c

V=Vc V=V c V=V c

To prove that the slopes are identical, compute the gradient of Wf - AV:

V(If- AV) = [TSFC - I + IS, + SF] (Al)
fV 4T=T c T T=Tc c

V=Vc 
V=Vc

The perpendicular unit vectors i and J point in the speed and thrust directions, respectively. Now
write A as a function of the perturbation AV:

c= [(T +v DAV)SFC(Tc + D AV, Vc + AV)]/(V C + AV) (A2)

Since, by assumption, has a minimum at V = Vc, set the derivative of X with respect to LV equal to
zero. This yields the following relation:

k = DvSFC + Tc (FCTDv + SFCV) = TcSFC/VC (A3)

Next compute the gradient of (T - D)(V/W) at the cruise point:

%(T - D)(V/W)]T=T = (Vc/W)[i(-D ) + j] (A4)
c

V=V
c

The slope of Eq. (Al) relative to the i direction is given by

(TcSFC + SFC) (AS)

Slop c [TSFC V- (TcSFC/V)]

After substituting Eq. (A3) in place of TCSFC/Vc in Eq. (A5), the slope simplifies to -I/Dv , which is

identical to the slope of Eq. (A4).
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TABLE 1. CHARACTERISTICS OF EXAMPLE OPTIMUM TRAJECTORIES

Thrust Range, Time, Cost, Fuel, Cruise Climb Descent
mode n. mi. hr/min/sec $/n. mi. lb/n. mi. Altitude/ft Distance/n. mi. Distance/n. mi

Minimum Direct Operating Cost Trajectories (150,000 lb Takeoff weight)

CT' 100 20:06 3.58 30.405 14899 43.15 52.66

CT 200 33:02 3.00 25.774 26970 101.42 77.85

FT' 200 33:00 2.98 25.331 27827 116.00 84.00

CT 1000 2:13:07 2.28 18.779 30819 135.76 85.38

Minimum Fuel Trajectories (150,000 lb Takeotf weight)

CT 100 21:26 3.60 29.247 17531 37.73 54.12

CT 200 37:03 3.07 24.38 27226 80.06 83.21

FT 200 37:06 3.06 24.268 28011 101.93 98.07

CT 1000 2:29:14 2.36 17.763 33185 121.07 103.51

CT Constrained thrust.

'FT = Free thrust.

ENERGY E -

CRUISE dENERGY

RANCE

ddn

RANGE. x

Fig. 1. Assumed structure of optimum trajectories. Fig. 3. Energy vs range. H 0 at Ec.

MINIMUM ENERGY Eop.

CRUISE
COST, ENEROY

MAXIMUIM

ENERGY

F, ~p RANGE:

CRUISE ENERGY. E,

Fig. 2. Cruise cost function. fig. 4. Energy vs range, H 0 at % j
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APPLICATION OF NONLINEAR SYSTEMS INVERSES TO AUTOMATIC FLIGHT CONTROL DESIGN -
SYSTEM CONCEPTS AND FLIGHT EVALUATIONS

by
George Meyr and Luigi Cicolani
Ants Research Center, NASA

Noffett Field. California. U.S.A. 94035

SUMlY

A practical method for the design of automatic flight control systems for aircraft with complex charac-
teristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented.
The method is effective for a large class of dynamic systems requiring multi-axis control which have highly
coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits
the concept of Inverse dynamic systems, and an algorithm for the construction of inverses is given. A
hierarchic structure for the total control logic with inverses is presented. The method is illustrated with
an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system.
Results of flight evaluation of the control concept on this aircraft are presented.

SYMOLS

Ab transformation of vectors from r,R.6i actual. commanded, error position vectors
fra a to frame b

Sw  wing area
a,.6, actual, commnded, corrective, and

total acceleration vectors THTC hot, cold thrusts of AWJSRA propulsioni$stem
aircraft specific force model error

compensation uaup control vectors for aircraft moments andpoer/confi guratiton system
CL#CD'Cys. aerodynamic and thrust coefficients
CIOCN r ;C.,6; actual, commanded, error velocity vectors

C LaCr Va.Ve true, equivalent airspeeds

fc commnded applied specific force angle of attack

f, aircraft specific force model B sideslip

KrKv,K control law gains xy~a inertial and air mass-referenced flight-
path angles

LxLyLz single axis rotation transformations 6 stagnation pressure ratio

M Mach number 6f flap angle

a aircraft mass or reference trajectory Z acceleration error vector
leg number 

p acc le or t or
NH  engine power, % reference RPM e pitch angle or stagnation temperature ratio

p1,p2 power/configuration position, rate v engine exhaust nozzle angle

states ,$v roll angles about bI p

Q dynamic pressure

INTAODUCTION

The aerodynamic characteristics and operational requirements of modern aircraft present the control
system designer with problems that are increasingly difficult to solve with the standard control system
design methods. For example, these aircraft can have force and moment generation processes with strong,
mlti-axis, highly coupled nonlinearities. In addition, anticipated operational capabilities require that
these aircraft be precisely controlled over a substantial portion of the flight envelope that encompasses
the range of nonlinear aerodynamics. Consequently, the nonlinearity is an essential part of the control
design problem. This paper is concerned with the method of attacking such problems. A method for the design
of an automatic control systm for such aircraft is developed In the first part of the paper, and an applica-
tion to a powered lift STOL aircraft Is presented in the second part; the latter part includes results
obtained from flight evaluation of the automatic control system over the aircraft's operational flight
envelope.

The automatic control arrangmet for which this new design method will be described is shown schemati-
cally in Fig. 1. The flightpoth that the aircraft will be comanded to fly is defined by the path-comand
generator labeled ATC. Air traffic control is a primary example of a system that prescribes flightpaths to be
flomn either automatically or manually. The control system (CS) transforms the desired pat.. r* and aircraft
state x into an appropriate control u that forces the aircraft (AC) to fly a flightpoth r that
approaches the commnied path, even in the presence of disturbances w. The disturbances will be assmed to
be gaenrted by a deterministic environment EN. Thus, we are concerned with a deterministic servo problem.
The inMpt r* is at least a three-dimenslonal function of tim; the state x is at least 12-dimensional
(position, velocity, attitude, and angular velocity in three axes), and the equation of motion of the aircraft,
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EN k f(x~uw

r - h(x) Jw

rW

can be strongly nonlinear and highly coupled.

CONTROL SYSTEM DESIGN METHODS

Current Design Practice

The general approach to control design for such
a nonlinear system is to separate the control system

Fig. 1 Model of the fully automatic mode. synthesis into two parts, as shown in Fig. 2. The
total control u is considered to be composed of the
trim control u and the perturbation control 6u.

wo w The TRIM logic defines the nominal control positions
required for the aircraft to fly the reference flight-
path r*. In other words, a solution (xou o ) is com-
puted to the equation of motion, assuming a disturbance

STRIM -U0- + AC r Wo, so that the output r will coincide with the

au Io = f(xo'UoWo) (XO Io Jw (2)

-REG--x r* = h(xo)

Ideally, if the model of the aircraft were exact &nd
there were no unaccounted disturbances, the trim con-
trol u0  would make the aircraft follow the specified

Lc - - -- - flightpath. However, practical considerations dictate
that a regulator REG be synthesized to correct for
various uncertainties by means of feedback, such as

Fig. 2 Conventional control system configuration. illustrated in Eq. (3).

6u = k(e,x o ) (3)

Once the reference operating condition (xo,uo) has been defined, a perturbation analysis is undertaken
to define the regulator. The equations of motion (1) are expanded about the trim condition: x = xo + 6x,
u = Uo + 6u, w = wo + 6w, and only the linear terms are retained,

Ia af I af 66 x lo au 0 aw10

6r = -Lo 6x

The designer is fortunate if the partial derivatives in Eq. (4) can be considered to be invariant, because
the well-developed theory of linear systems can then be brought to bear on the design problem.

Two approaches are commonly used in cases when the matrices in Eq. (4) are not constant. One approach
is to try to design the control system to be, in some sense, insensitive to parameter variations. Primary
emphasis is placed on the regulator performance near the design point. Reference 1 gives several effective
techniques for synthesizing a constant gain feedback such that the closed-loop system behavior is acceptable
for all values of the parameters within specified limits.

Adaptive control provides the second approach. Here the intent is to soive problems in which the varia-
tions in the plant parameters are not known a priori; of course, the method i; also applicable in cases in
which the variations, although known a priori, are intentionally ignored to simplify the problem. Effective
techniques are given in Ref. 2 for the synthesis of adaptation schemes that adjust the open-loop and closed-
loop gains so as to adapt to variations in the perturbation model of the controlled process.

Both of these approaches can be expected to yield good control near the target. One meets severe diffi-
culties, however, when the nonlinearities of the process are strong and the required operating range is wide.
It may then be necessary to select a large set of operating points to adequately cover the entire operational
flight envelope, design a perturbation servo for each condition, and design a scheduling algorithm that will
tie all these individual designs into a total system. Since the resulting complexity would make the task of
validating the overall system performance difficult for the aircraft configurations being considered in the
present paper, we took a fundamentally different approach.

Concept Using Nonlinear System Inverses

Consider again the usual approach to control design shown in Fig. 2. Conceptually, the source of the
difficulty for the design is the complexity of the feedback control algorithm. However, the trim logic
represents an inverse of the aircraft response to control inputs, and the combinea relationship of the input
to the trim logic to the aircraft's response is, ideally, an identity. Therefore, the relationship is used
to advantage by closing the feedback loop in front of the trim logic, as shown in Fig. 3. As a result,
because of the invariance of the feedback control response (6ro . e), the design of the regulator becms
much simpler; however, the design of the trim logic becomes the central issue. Applications of this concept
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have shown that the total complexity of the control
system can be reduced. Furthermore, a better bal- w e  w
ance between the open-loop (a priori) and closed-
loop (a posteriori) control is a consequence of the + j1.TRIM u AC
method.

The approach is illustrated with the help of
the following example, after which a formal descrip- REG x
tion is given.

EXAMPLE APPLICATION

Consider the process to be controlled as that Fig. 3 Control system configuration with feedback
shown in Fig. 4. The state space is four- closed ahead of TRIM.
dimensional but two-axis, so that the state
x = (x1 ,x2 ) and both x3 and x2  are two-
dimensional. The output r a x, is the position u+ + i2 f x2 i1 X r

vector in two dimensions. The velocity A = f
is generated by x2 through two-dimensional rota-
tion, given by the matrix E whose angle a is a
function of the distance lxxll from the position
origin. The control u is two-axis, and the
state equation is Efa, co a sin a

=( E(a))x + ()u + (0)w (5) Fig. 4 Block diagram of example system.

where 0 and I are 2 x 2 zero and identity matrices, respectively. It may be noted that the nonlinearity
E is between the integrators, and that the sign of ail/3x2 = E may change without passing through zero.

Let the reference path be given by the function r*(t) with velocity *(t) and acceleration F*(t).
The trim condition is,

Xzo = r*

a0 = a(I1r*i)

x2o = ET(ao)i*

uo = ET(ao)F* - a--T r*- T--- to I ET(ao) * - wo

The perturbation model is

Ii aa /01 \. 0 1
-=- -x -l -x + -- du + w 6)

0r* 0
0o ( I)

Consider two special cases in which the reference is constant (i* = 0). When the position r* is such
that the corresponding angle a = 2nr, the perturbation model is

6i = (0 0)6x +(0)du + (0)6w

But when r* is such that a = (2n + 1)n, one has

6i - -I)a + (0}u + (06w

Since there is a sign change in the (1,2) block, a fixed-gain control system that must be stable for this
range of positions cannot be designed. Also, due to the nature of the perturbation model, an adaptive scheme
that ignores the details of ai/ax is likely to be difficult to verify.

On the other hand, the scheme based on system inversion is very direct. Thus, let y1 - x, and consider
the string of integrators

2 . v (7)

which is related to the given system (5) by the nonsingular transformation,

W: x1 - Y1  T: yj a x,

X2 - ET(a)y y2 - E(a)x2 (8)
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The controls transform according to

v= a[a x E ~ )x+u wJ(9

u E ET(a) a a T )Y, + w]-

The y-coordinate description (Eq. (7)) of the system is fully equivalent to the natural (x-coordinate)
description (Eq. (5)).

A configuration of the complete control system is shown in Fig. 5. There are four subsystems: command
generator, regulator, trimmap, and the plant. The generator is initialized at t = to to coincide with the
transformed plant state (YlY2). Note that if there are no modeling errors (SF* = 0), then the combined map
r* - r along the path ABCD in Fig. 5 is an identity for all t _ to; consequently, the map r* - u along
ABC is an inverse of the plant. In addition, the regulator sees a pair of two-axis integrators (Eq. (7)) as
in path BA, and not the complicated perturbation model described above by Eq. (6), which would have to be
considered had the feedback been introduced at point C (as is commonly done). Therefore, the design of the
regulator is easy. Gain scheduling to stabilize the feedback is not necessary; it is provided automatically
by the trimmap. Of course, the regulator can be scheduled for other reasons if desired, such as to account
for operational limitations of the plant.

REGULATOR
1 - -. - - - --------------

lHi)u I____ I XiII~V -- X1a

REG I
L f

COMMAND TRIMMAP PLANTGENERATOR I I

Fig. 5 Exact model following by a nonlinear plant.

It may be noted that the resulting control logic (Fig. 5) has the structure of a model follower. Refer-
ence 3 gives conditions for which exact model following is possible when both the model and the plant are
linear and constant. The example In this section shows that exact model following may be possible even when
the model is linear but the plant is not.

GENERALIZATION - BLOCK-TRIANGULAR SYSTEMS

Consider next the possibility of extending the procedure followed in the preceding example to more

general situations. Let the system state equation have the form

*= f(x,u,t) (10)

where the state x is n-dimensional; the control u is in-dimensional; and f may be nonlinear and time-
dependent. Suppose that, as In the example, there is a nonsingular transformation

T(x,u,t) =(y,v) , w(y,v,t) = (x,u) (11)

such that the new variables (y,v) satisfy the system So(re,k) defined by k in-dimensional colwnns of scalar

t ntegrators

/0 0 . .

i. "oI A : +  v u

\000 ...

where 0 and I are m by i and the integer k n/in. The relation is shown schematically in FIg. 6. The
system (Eq. (7)) in the example is the special case So(2 ,2 ). The complete control logic shown in Fig. 5

generalizes to that shown In Fig. 7.
A sero is designed for the transformed system (Eq. (12)). The matrices A d and B are the first and

second atrices, espectively, in Eq.t(12).etis seos ua a model ferenc m he integrators in

•~ ~ ~ ~ ~~h moe ... ... ...... .lilllr but.. ... the plant.... .... is not.
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Fig. 6 Transformation into canonical system So(m,k).
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MODEL SERVO REGULATOR TRIMMAP PLANT

Fig. 7 Structure of the complete control system.

the model servo are initialized at t = to to coincide with the transformed plant state y. If there are
no modeling errors (6v* = 0), then the combined map yo - y along the path ABCDEF in Fig. 6 is an identity
for all t Z to. The nonlinear, time-dependent plant can track exactly the model servo in terms of the
transformed plant variables y.

The regulator sees the map vo - y along COEF which has the model dynamics,

6y= Aoey + Bo6v* (13)

So, the design of the regulator law

v*= K(eyyost) (14)

is considerably simplified. No gain scheduling is needed for stabilization; that function is provided auto-
matically by the trimmap (W,T). However, the regulator law can depend on the reference yo in order to
match the regulator dynamics with the operational requirements associated with various flight conditions. The
regulator law, just as the model servo law, can be dynamic, including, for example, integral feedbacks; it can
also be nonlinear, including, for example, limiters and rate limiters.

A further useful property of the structure is that it makes practical the techniques of insensitive con-
trol and adaptive control discussed previously because the trimmap removes gross nonlinearity of the plant.
The remaining nonlinearity, due to improper modeling, and other disturbances are much more likely to be
tractable with these techniques than in the case of the original plant.

An effective sensitivity analysis can be developed for this structure. Thus, a Liapunov function
V(y) can be constructed in the Y space where the plant dynamics are So(m,k), and then transformed into the
natural plant state space X where the effects of disturbances on the derivative of V(x) can be investigated
in the usual manner (Ref. 4). Alternatively, the disturbance w(x,t) defined in X can be mapped into an
equivalent disturbance w(y,t) in Y, and its effect on the derivative of V(y, investigated.

Consider now the problem of existence and construction of the required transformations. The problem is
currently understood in the case of linear systems. Time-invariant linear systems are treated in Refs. 5
and 6; time-varying linear systems are treated in Ref. 7. The problem for the nonlinear systems has been
recently attacked from the point of view of differential geometry. References 8 and 9 discuss systems of
the type

m

i - f(x) + E Ulgj(x) , f(O) - 0

and provide conditions for invertibility.
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We consider systems of the type shown schemati-
t cally in Fig. 8. The system is strictly rn-axis in

the sense that dimension of xi equals m for all
u X4 x3 x3 i2 X2 xI x1  integrator columns i from 1 to k. The system is

F3  f F2  f F1  f triangular in the sense that the only feed forward
permitted is from xi+l to ki, and each Fi is inver-
tible with respect to the pair (xi+,,ij). Such an
inverse of Fi will be denoted by Gi . The case
shown is for k = 3. The associated state equation is

k, = F(x,x 2,t)

k2 = F2 (x1 ,x2,x3 ,t) (15)
Fig. 8 Block lower triangular system

S(m,k), k = 3. k3 = F3(x1 ,x2,x3,x4,t) , x4 = u

with the obvious generalization to other k. We call the system block-triangular because of the form of the
state equation in the case when the functions Fi are linear. Thus, for k = 4, the equation is

/ A11(t) A12(t) 0 0 0

2I A 1 (t) A22 (t) A2 3(t) 0 0

IA31(t) A32 (t) A3(t) A t 0(16)

\A4(t) A42(t) A43 (t) A,4 (t)/ \ 4 (t /
where the upper off-diagonal blocks Ai,i+1 (t), i = 1,k - I and Bk(t) are nonsingular, all entries above and
to the right are zero, and all blocks are m by m.

Since the structure of the system (Eq. (15)) is a generalization of the state equation of the example,
one might attempt to construct the transformation (T,W) by applying the simple scheme (Eq. (7)) used in the
example. Thus, let

Yl = xi

Y2 = &3
(17)

y3 y3 J
Then the transformation y = T(x,t) is defined, assuming that all required partial derivatives exist, by

Yi = xi

Yz = FI(x 1 ,x2 ,t)

Ya FF + , L F (18)
ax1  ax2 2 at

Y = FF, + + a-F a2F1
3X 1

2  ax 2 at at
2

The equation for y4 contains 16 terms. Thus, unless Fi is simple, one quickly gets bogged down in high-
order partial derivatives. Moreover, the prospect of inverting Eq. (18) to obtain the backward map
x = W(y,t) may not always be attractive!

A computationally more practical approach to be given next is based on the observation that the time
derivatives of x, may be obtained by first integrating the state equation (15) over a small interval of
time, and then differentiating the resulting time history of x1  the required number of times.

It will be assumed that the functions Fj are such that a simple Euler scheme is adequate for the

integration of Eq. (15), that is, with time step D,

x1 (n + 1) - x1 (n) + FI[xl(n), x2(n), t(n)] D

x2(n + 1) - x2(n) + F2(x1 (n), x2 (n), x3 (n), t(n)] x D

x3(n + 1) - x9(n) + F3[x1 (n), x2 (n), x3 (n), x4(n), t(n)] x D

tTn + 1) - t(n) + D I
The discrete version SO*(m,3) of SoKm3) is given by Eq. (20). Then the transformation
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y1(n + 1) = y1(n) + y2 (n) x D

y2(n + 1) = y2(n) + y3(n) - D

y3(n + 1) = y3 (n) + y4(n) x D (20)

t(n+ 1) :t(n) + D

exists and can be constructed together with its inverse as follows.

The diagram in Fig. 9 shows the construction Y4 Y3 Y2 Y1 X1 x2 x3  X4
of the forward transformation taking x(n) into n
y(n) when k = 3. The generalization to other 1 L
values of k is obvious. The procedure is to con- D F
struct the future values of x, from the present n +I
state x(n), identify them with the future flues 1 F
of Yl, and then construct the present st, y(n) D +from the future values of y, and the Euler ver-

sion of So(m,3). The first row
[x1 (n),x 2 (n).x 3 (n),X4(n),t(n)] is given. (For n +3
convenience of exposition, x4 (n) = u(n).) Euler
integration (Eq. (19)) gives the second row. This Fig. 9 Algorithm for the direct map T(x,t) = y.
row is used to compute the next row and so on until
the column [x1 (n),xl(n + 1),xl(n + 2),xl(n + 3)] is obtained. These are the future values of x1 . The
arrows in the diagram indicate the flow of the computation, and F denotes that the direct functions Fi
are being used.

Having thus obtained the future values of xi, we proceed to identify them with the future values of
yl. thereby filling the y, column of the left triangle in the diagram. Since the transformed system is
S*(m,3), column Y2 can be constructed by differencing,

y2(n) = [y1 (n + 1) - yx(n)]/D

y2(n + 1) = [y1 (n + 2) - y1 (n + 1)]/D (21)

y 2(n + 2) = [y1 (n + 3) - y1 (n + 2)]/0 I
This column is then used to compute the next column and so on until the row [y,(n),y 2 (n),y 3(n),y.(n)] is
obtained, which was the required quantity.

t Y4 Y3 Y2 Yl X1 x2 x3 x4The algorithm for the inverse of this trans- n . _ v _/ - - -

formation is shown in Fig. 10. The primary change

is that the arrows along the diagonals have been D
reversed, and the corresponding functions have been
inverted. The first row, [t(n),y 1(n),y 2 (n),y 3(n),
y4(n)] of the left triangle is given. Euler inte- n+2

gration using Eq. (20) gives the next row. This f
row is used to compute the next row and so on until
the column [y1(n),y,(n + 1),y 1 (n + 2),yl(n + 3)1 is n +3
obtained. The entries are the future values of
yl, which are identified with the future values of
x1 , thereby filling the x, column of the right Fig. 10 Algorithm for the inverse map
triangle. The coordinates x2 are defined by the w(y,t) = x.
relative inverse of x,

,(n) = [x1 (n + 1) - x,(n)]/D

x2(n) = Gzx,(n),xz(n),t(n)]

xl(n + 1) = [x1(n + 2) - x1 (n + 1)]/D (22)

x2 (n + 1) = GI[x1 (n + 1),i(n + 1),t(n + 1)]

x1 (n + 2) = [x1(n + 3) - x1(n + 2)]/D

x2 (n + 2) = G1[x1(n + 2),i 1(n + 2),t(n + 2)]

Column x3 is obtained similarly, but using G2(x1 ,x2 ,i2,t). Column x4 is obtained using
G3(x1 ,x2 ,x3,x3 ,t). Thus, the row [xI(n),x2(n),x 3 (n),x.(n)] is computed, which was the required object.

Several comments may be made at this point concerning the algorithm and systems to which it applies.

1. The calculations involved are well suited for digital computers and practical systems where the
nonlinearities Fi may be given in multidimensional tabular form, rather than in sufficiently differentiable
analytic form.

2. The transformations T and W are static, that is memoryless. Derivatives of measurement noise are
not involved since the future of y, is computed from the present state x.

3. All block-triangular systems S(m,k) with the same number m of axes and the same number k of
integrator columns are equivalent as can be seen from the following sket.':
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S (m~k)

e T0 2 0

T 1 2 =W 20 T10

W12=Wl0T20

EQUIVALENT SYSTEMS S1 AND S2

Hence, for example, exact model following is possible between two different nonlinear systems as long as
both are block-triangular and have the same (m,k).

4. According to Ref. 5, a constant-coefficient linear system need not be block-triangular to be trans-
formable into So(m,k), but then the correspondence between x, and yj will be lost. Nevertheless, the
wider class of systems is useful for designing servos for So(m,k) by means of, for example, pole-placement,
eigenvector control, quadratic optimization, and Liapunov theory, and then transforming the design as well
as analysis into the given system Sl(m,k).

5. All time-varying systems of the type given by Eq. (16) for any m and k are equivalent to constant
linear systems.

6. Systems with redundant paths can be made effectively block-triangular by treating the resolving
constraints as added states. An example is shown in Fig. 11. Here x1 = f1 (x1 ,zj,z 2 ,t). Many pairs (z1 ,z2)
generate a given x1 .

t T In general, a constraint f2 (x1 ,z1 ,z2,t) = 0
must be designed to resolve this redundancy. Let
s = f2(x1 ,z1 ,z2,t). By construction, F = (f1,f2) is

1 !- invertible. Hence, the given state (x1 ,z1 ,z2 ) and the
Vl canonic state (y1 ,y2 ;s) are linked by a nonsingular

l -x transformation. The coordinates (Y1,Y21 serve as the
f fstates of the model So(m,2), and s corresponds to

U2 22 the state of the (decoupled!) constraint model
S So(m*,1), where m* is the dimension of the redun-

dancy. A stable regulator designed for S (m*,1) will
in this case force the system to satisfy the required

f2(x1,z1,z 2 , t) = s 0 constraints s = 0.

Fig. 11 Example of redundancy.

BLOCK-TRIANGULAR MODEL OF AIRCRAFT

We will consider the aircraft to be a rigid body so that the state of the aircraft is given by the
position and velocity vectors of the center of mass and by the attitude and angular velocity of the body

w POWER/CONFIGURAT fixed axes. Position and velocity will be represented
by their runway (inertial) coordinates, rr and vr

UPI P2"l 2 p1 II represented as in Ref. 10 by the direction cosine
f - f' f matrix Abr and angular rates Wb, respectively. The

propulsion subsystem, including any thrust deflection,
the flap deployment system, landing-gear deployment

Vsystem, direct-force devices, and other similar sub-
f2 f systems will be represented by a power-configuration

I subsystem assumed to be mp-axis and second order with
1mp-axis control up and 2m -dimensional state (P1,P2).

-- .... T Te aerodynamics wil be asmed to depend on only the
Ua wbf Abr Abr I rigid body state, the propulsion-configuration state,1  I4. b SOI _ the position of the control surfaces ua, and environ-

mental variables, such as wind and temperature. A

L- - - -block diagram of the model is shown in Fig. 12. TheR TRANSLATION complete system state x = (rr,vr,Abr,wb,pl,p2) has
w ROTATION TRANSLATION dimension 12 + 2mp. The combined control u = (uaup)

and w represents the atmospheric and other distur-
Fig. 12 Model of aircraft. bances. The state equation is given by

rr = Vr (23a)

Vr = f2 (x,u,w,t) (23b)

Abr - S(.b)Abr (23c)

- f%4(X'ua,w,t) (23d)
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P1 = P2 (23e)

P2 = fp(XUp,w,t) (23f)

Equations (23a) and (23c) are the universally valid kinematic equations for translation and rotation of a
rigid body. In Eq. (23b), f2  represents the total specific force acting on the aircraft, including gravi-
tational, aerodynamic, and propulsive forces. In Eq. (23d) f4a represents the total moment including that
contributed by gyroscopic effects, aerodynamics, and propulsion. The power-configuration variable p,
represents such quantities as throttle position, thrust deflection angle, and flap position. Usually, at
least portions of the power-configuration subsystem will have a built-in servo structure. Examples of com-

ponents of ua are aileron, elevator, and rudder positions.

It may be noted from the block diagram (Fig. 12) that variables p2 , u, and wb feed forward, in parallel

with (Abr,P2), into the force generation process f2. Hence, the model is not explicitly block-triangular.
Now, P2 represents such physical quantities as throttle rate, thrust deflection rate, flap rate, cnllective
rate in the helicopter, and mast angle rate in a tilt-rotor, all of which do not couple strongly, if at all,

into the generation of the force. So, the P2 feed forward can be deleted from the model without affecting

its accuracy substantially. The u feed forward represents such effects as lift due to elevator, side force
due to rudder, side force due to the tail rotor in the helicopter, and wo feed forward represents such
effects as CLq and CYr. Although these effects do not conform to the triangular structure, they are not

ignorable. Some effects associated with steady-state moment balance can be removed. The remainder will be
represented as independently generated disturbances d in the force generation process as shown in Fig. 13,

and the regulator must therefore correct for the associated errors.

W W d

pIr P

f r rr
iX

a o o fo a fixe sae x.

w ROTATION TRANSLATION

Fig. 13 Lower triangular model of aircraft.

In any case, the kinematic equations are always invertible,

Vr = r

( b = skew(AbrAbr ) (24

Furthermore, both f~a and fdp are usually invertible with respect to angular acceleration b and power-

configuration variable , respectively, since these quantities are generally subject to direct control.
Thus, for example, aileron, elevator, and rudder control the moment vector acting on the aircraft directly
and one-to-one for any fixed state, x.

Finally, consider the force generation process, f2 in Fig. 13,

f2(rr,vrAbr,Pi,w,t) = fr (25)

Here, the inverse of interest is one that would specify (Abr,P in terms of the total specific force vector
fr,

(Abriv) = b2(rr,V r9 f rwt )  (26

In general, there are mre degrees of freedom in Abr and p combined than in fr, which has exactly three.
Hence, constraints must be imposed to resolve the redundancy. For exanple, suppose that p, = (throttle,
flap), then the dimension of (Abr,P is 5. The degrees of freedom of the redundancy is two, and it can be
resolved, for example, by selecting flap to givefmaximm lift margin, and constraining the attitude to zero

sideslip angle . Itshould be noted that the redundancy must be resolved regardless of what design appoachone takes. In our approach, the redundancy problem is made quite explicit and much more tractable, as will be

seen in the second part of the paper.

Onc T the srttraints have been designed, f2 becomes invertible, and the complete model becomes effec-

tively bock-tA gular. A time history of the position vector rr can be pushed back through the model to
obtain the required controls and intermediate states. That is, the model is equivalent to So(3,4) with the
four three-axis integrator states defined by the three-axis position, velocity, acceleration, and acceleration
rate vectors. The control is the second time-derivative of acceleration. The structure shown in Fig. 7
applies. The transformed variable at point F is defined by y = (r,v,a,i), and the transformed control at
point C is defined by v = 9. The model states at point A are y = (ro'vo;ao~io), and model control atponB
is v* =,Ob. Thus, the structure specializes to that shown in Fig. 14. Te regulator operates on the complete
state error, and generates the corrective second derivative of acceleration.

. . . . . . . .



10-10

r~

ff
r I r0 .. .

MOD ~ REG
L fAW LAW®: ,

if

ioi

ao +a

L
MODEL EQUIVALFNT

PLANT

Fig. 14 Centralized form of control system.

DECENTRALIZED CONTROL STRUCTURE

Although the coarse centralized stru-ture shown in Fig. 14 is useful for design purposes, a finer,

decentralized structure is normally needed for actual implementation. Such a structure may be deduced
follows. Let the model shown in Fig. 14 be divic
into an ATC subsystem, which specifies the requi,

S-flightpath, and a trajectory command generator (I
which defines how the aircraft is to respond to

r0  r Thus, TCOM acts as a model reference. Its inter,
structure (Fig. 15) consists of a linear acceier
servo and a generally nonlinear trajectory regule

COM i TREG f whose output is a corrective acceleration :a*.
LWo LW v output of TCOM is ro, Vo, and ac; the latter is

shown in the figure as simply the sum of a* and
if desired it may be a nonlinear function.

The identical acceleration servo structure
separated from the regulator law. The remainder

II the trajectory regulator (TREG), whose output is
ATC I corrective acceleration 6ac, and the accelerati(

f f I servo is constructed for the plant as shown. Thi
I i Lresult is that ao and a in Fig. 15 coincide wil

ao ao and a in Fig. 14. Therefore, the effects ar
Ba' I equivalent, but the decentralization is increase

2 f I 2 f The acceleration servo can itself be synthe!
I a as a model follower, as shown In Fig. 16. Thus,

o a I acceleration servo in Fig. 15 is identified with
+ + I acceleration command generator (ACOM) in Fig. 16

I  I I 1feedback to control disturbances is provided by
G I G1 acceleration regulator (AREG).

- I Next consider the inverse map of the form ii
ac± + ac arl Fig. 10, which transforms the ACOM variables

+(an,am,am) into power-configuration variables
_J (02,P2,p1) and rotation variables (b,b,Abr) of

ACCELERATION aircraft model in Fi-. 13. This map is shown scl
SERVO matically in Fig. 17 Future values of model ac

ation vector am provided by ACOM are transfom
Fig. 15 Acceleration servo separated. using force trim (FTRIM) defined by Eq. (26), in

the future values of power-configuration variabl
and attitude Abr. Then Eqs. (24) are used to construct the model states of power-configuration and ro
subsystems denoted in the figure as PCOM and RCOM, respectively.

Model followers are again designed by constructing regulators PREG and RREG, which provide feedbac
their respective subsystems. Finally, the inverses PTRIM and MTRIM of fp and fva, respectively, are
structed to compute the control signals up and ua which drive the actual plant, as shown in Fig. 18.

The complete control logic has a hierarchic structure. At the top of the hierarchy is the ATC, wh
defines the reference flightpath; at the bottom are the servo actuators driving the controls Up and ua
information flow and processing are of two types, namely, open loop and closed loop. Thus, considering
open loop, the ATC command enters the trajectory command generator (TCOM), where it is trnsforwid Into
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ACCELERATION CONTROL SYSTEM
Fig. 16 Acceleration model follower. Fig. 17 Inverse force map.

executable flightpath having sufficient smoothness and meeting the required constraints. TCOM is the model
reference for the translational motion of the aircraft such that exact model following is possible. The
output is the flightpath and its derivatives.

In the open-loop flow, the acceleration vector is passed down the hierarchy to the acceleration command
generator (ACOM) and then to the force trim (FTRIM) where the a priori information concerning the total force
generation process is used, together with a variety of constraints, to compute the power-configuration
variable P, and attitude Abr that will result in the required acceleration vector.

These commands are passed down the hierarchy to the power-configuration and rotation servos. The rota-
tion command generator computes an executable rotation and corresponding angular acceleration vector. The
angular acceleration vector is passed down the hierarchy to the moment trim (MTRIM) where the a priori infor-
mation concerning the moment generation process is used to compute the controls ua that will produce the
requested angular acceleration. The other branch from FTRIM is passed to the propulsion-configuration com-
mand generator PCOM and then to the corresponding trim algorithm PTRIM, whose output is the control up.

In the absence of all disturbances and with an accurate representation of the aircraft, perfect model
following would occur at all levels in the hierarchy. In the real situation, there will be modeling errors,
such as those imposed by the assumptions noted previously and those deriving from imperfect knowledge of the
aerodynamic characteristics and the environment. The control of these effects is achieved by means of feed-
backs which enter at various levels in the hierarchy. Thus, the commanded flightpath, which is computed in
TCOM, is compared with the measured flightpath; the difference, namely the path error, is used in the trajec-
tory regulator TREG to compute the corrective acceleration vector, which is added to the primary acceleration
commanded by TCOM. By construction, the trajectory error dynamics are driven only by disturbances and are
decoupled from TCOM, thereby achieving decentralization. The regulator law can be parameterized by signals
from TCOM or ATC to account for changing operational requirements. Propulsion-configuration and rotation
regulators PREG and RREG function similarly.

The symmetry about the boundary separating the plant from the control logic may be noted. The
relation between TCOM output ro and the plant output rr is, except for disturbances, an identity, as are
the relations between (pI,p2;Abrfb), and (pl,p2;Abrwo) at lower levels of the hierarchy. Most of the
control is done open loop by means o( generators and trimmaps. The disturbances are controlled by means of
regulators, which would be unloaded if there were no disturbances.

This design method was applied to several aircraft of increasing complexity. The first complete flight
control system tested in flight was for the DHC-6; results of the test are given in Ref. 11. Methods for
providing pilot inputs to this design were investigated in Ref. 12. Next, the method was applied to control
an A-7 for carrier landing and tested in manned simulation. The results are given in Refs. 13 and 14. The
method is currently being applied to the UH-1H helicopter, with a flight test scheduled in the summer of 1980.
In addition, the method was tested on the Augmentor Wing Jet STOL Research Aircraft (AWJSRA). The remaining
part of the present paper describes the application and evaluation of the system on the AWJSRA, including a
description of the aircraft, the flight control system, and the results of the flight evaluations of the
system.

AUGMENTOR WING AIRCRAFT

The augmentor wing jet STOL research aircraft (AWJSRA) (Fig. 19; Refs. 15-17) is a modified de Havilland
C-8A in which aerodynamic lift is augmented by exhausting compressed cold air from the engine through a jet
flap (Fig. 20); the flow from each engine is split and ducted to both wings for engine-out lift syimnetry; the
amount of augmentation depends on both flap setting and engine power. Further, hot flow from the engine core
is exhausted through controllable nozzles which permit deflection of the "hot" thrust from 6" to 98° relative
to the fuselage centerline. The special flap permits low landing airspeeds, of the order of 60 to 70 knots,
and the thrust deflection permits steep approaches at path angles down to -7.5o.
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The force balance equations governing the GROSSWEIGHT 179000to214000N "' AUGMENTOR
AWiJSRA's rigid body motion are WING AREA S0 4 i mFLAPS

MAX THRUST. I ENGINE 4300N

a +m .A* )im (27)

where A. T, and 9 are the aerodynamic and thrust -

forces and gravity. The right-hand side of
Eq. (27) constitutes the force model, f., in 235m - . u .

Fig. 18. The aircraft forces can be represented 9.7m FLAPS
a s 4

A -Q(CDis + CLks) CENTER OF GRAVITY

~ ' ". - -
- T,[cos(1* .)is- sin(. +)k]- vaI (r

NOZZLES ROLLS ROYCE 23 SoI--I=l-
where ; ,js,k 5  are ind-tunnel stability axes

and T has been separated into the vectored hot Fig. 19 Augmntor wing jet STOL research
thrust TH and the inlet ram drag iieva. Lift aircraft (AJSKA).
and drag coefficients and engine output parameters
are required for the definition of f,; these are DUCTANDNOZZLE
all nonlinear scalar functions available as tabu-
lated data from simulation models (Refs. 18. 19),
and can be expressed in terms of their independent
variables as

CLS CL(..&f.CJ)>

C 0  C 

(29)~c

Cj Tc/QSw  
WING REAR SPAR

Tc  Tc(N . .6.M)

ft FUSELAGE
T H T 1(NHN' 14' ) l i

me 'a%"'

The dependence of aerodynamic forces on propulsion l
is given in terms of the cold-thrust coefficient
Cj, where Tc is the potential thrust from isen- -

tropic expansion of the compressed cold air used
for lift augmentation. The lift-drag polars.
including the tail contribution for trimmed
pitching moment, are shown in Fig. 21 for the NOZZLE
extreme flap settings. The sensitivity of
(CL,Cj) to (aCj) is seen to vary considerably
with 1 lap setting. At minimum flap, the behavior
is conventional, with little dependence of CL
on engine power or of drag on angle of attack at Fig. 20 Augmentor jet flap and propulsion system.
low 3; at maximum flap, both sensitivities are
greatly increased and result in significant con- 4 -
trol cross-coupling. The engine parameters 20
(Fig. 22) depend on the engine power (rpm normal-
ized by a reference value) and the atmospheric S 4 10275
temperature and pressure ratios and Mach number,
(o.6,M). 2 27.5 4 C

The independent variables of the aircraft 20 0
model, Eqs. (27)-(29), consist of control varia- U 1 10 3

bles, {f,1.v,N), and te remaining path and
environmental variables that define the flight 0 0 a 2

condition. The control domain over which the -1 10.
model is defined is bounded by servo limits and I
the available model data, as noted in Table 1. 2 1.2' . f S of ,

Further, solutions of Eqs. (27)-(29). given the 2 ., *j 0 0, _ _-
current flight condition, are required in both 2 1 0 1 2 1 0 1 2 3
the usual control system design (Fig. 2) and the CD CO
present one (Figs. 3, 18). The flight envelope
of the system is the set of flight conditions Fig. 21 AWJSRA lift-drag polars.
for which Eqs. (27)-(29) can be solved, and the
operational flight envelope is the set for which this can be done within constraints associated with the type
of operation (assumed to be passenger operations here) and with the specific aircraft. An outer bound on the
flight conditions of interest for the AWJSRA control system design is given in Table 2. The applied specific
force, f - (i - j)/g, is introduced in Table 2 in order to reduce the number of path variables naeded to
define the flight condition. The ranges for speed and atmospheric parameters in Table 2 are coftstricted com-
pared to current jet transports because the aircraft was designed and operated principally for low-speed, low-
altitude flight research in a terminal area. The range of specific forces includes CTOL and STOL passenger
operations, but is smaller than for VTOL or fighter aircraft operations. Not all flight conditions encompassed
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t oor TABLE 1. DOIAIN OF AIRCRAFT IDDEL DEFINITION
CONNECTED

INLET AIR Control Minimum Pix i WA
MASS FLOW 60 / do 5

k, deg 6 96
N 1 1 0 mini lO3.5,104.7.i

-  
0 TC kN Variable Minimum Maximu

0 v e , knots 45 160
10 ".s g -0.35 0.35

I 0 f •k s , g -1.5 -0.5
oz 0 .. g -30 30

60S 70 So 110 so 70 sO 110 m, kg 17300 24500
0.7 1.1CORRECTED POWER SETTING. N H  0. . 7 1.0

Fig. 22 AWJSRA static engine model one engine.

by the limits in Table 2 are operationally acceptable for quasi-steady flight; only those for which the
system control commands satisfy the operational constraints on controls usage are acceptable. The constraints
applicable to the ANJSRA are listed in Table 3; these are limits on functions of the controls which reflect
various servo limits and safety considerations, such as the flap structural placard, time to recover from
engine-out, nozzle structural limit, lift reserve, angle-of-attack reserve, and control-margin reserve for
regulator usage. These limits can be fixed or dependent on configuration or flight condition. Further dis-
cussion of these constraints, which are unique to the AWJSRA research flight operations, or of constraints
for powered lift aircraft generally, Is omitted here (cf. Refs. 20, 21), but the length and complexity of the
constraint list for this application is typical of aircraft operations generally.

TABLE 3. OPERATIONAL CONSTRAINTS ON CONTROLS USAGE - AWJSRA

Control function Steady flight limits Regulator limits

Flap 5.6' 5f 1 6fm (Ve)

Power N in(f). NH.Nhtmax(r, ) NHmin(0f) _ NH . N "max(u,6)

Nozzle 6. $ 8 96 65 v 96

Lift margin LM LMmin('f)

Pitch -10 ' 15'

Angle of attack -10.5 5 - ,ax(Ve)

Control margin CM _ 0.25 g

Elevator -17 -e - 7

Roll angle -25 - 25 -30' 1 1 1 30'

The next three sections of this paper describe an application of the proposed control structure to the
AWJSRA. That structure applies to all aircraft; it partitions the automatic control logic into a hierarchy
of similar structures consisting of command generators (feed-foruard commands), regulators (state feedback)
and trimmaps (plant inverses) which govern translational and rotational dynamics and the control servos. The
trajectory and attitude command generators and regulators govern the aircraft kinematics and are largely inde-
pendent of the specific aircraft being controlled. Design issues of interest in these elements are the
enforcement of oerational constraints and the desired transient response dynamics on the kinematics. The
force and moment trimmaps govern control usage based on descriptions of the aircraft, including any special
features, such as propulsion-dependent aerodynamic forces and moments, control nonlinearities, and novel or
redundant controls. Design issues of interest in the force trimmap are the enforcement of operational con-
straints on controls, configuration management over the flight envelope, methods of solving the force balance
equations, and compensation of model errors. The discussion is focused on the outer-loop elements where the
crucial design issues are addressed. Descriptions of attitude and power control subsystems, omitted here.
will be included in future reports. The attitude control closely parallels that described in Ref. 10 and 11.

The AWJSRA application was begun at an early stage in the development of the control structure presented
in the first part of this paper (cf. Ref. 10). Consequently, the flight system elements described next con-
tain some simplifying approximations of the structures outlined in Figs. 15-18. but these have only minor
effects on performance in the passenger operational domain. The principal approximation was the assumption
that the acceleration response dynamics were fast compared to those of the trajectory commands and could
therefore be neglected. However, it is apparent from the earlier discussion that these dynamics can be made
simple through appropriate design of the inner-loop command generators and their model readily implemented in
a practicable flight system, as outlined in Figs. 15-17, to achieve the full capability of the proposed
structure for model following.

Several reference frames are required in the following development. Path axes are introduced along with
runway, wind-tunnel stability, and body axes. These are defined briefly in the appendix along with related
transformations and notational rules for vectors and transformations.
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TRAJECTORY CW1ND10 SYSTEM

A flyable reference trajectory is generated in two steps. First, a coarse reference trajectory
(rvpar*), is generated by ATC; it consists of any sequence of straight line and circular arc legs with
arbitrary discontinuities in position, velocity, or acceleration vectors at the leg junctions. In the present
application, the coarse reference is defined from a stored set of parameters S, which suffice to define each
leg. This contains the leg length sf, initial position, reference airspeed Vaf. flightpath angle, initial
course angle, and the inverse radius of curvature:

"-l(m) o ' .) '' - 'm .. '  110m) m *m)
°'r I"af " o . M

where m is the leg number. Given the current leg number, path length, and wind estimate these parameters
suffice to define (r*,v,a'*) L3g number and path length are reset at each leg switch. In operational prac-
tice, the camanded and actual trajectories are required to satisfy a number of constraints on the kinematics,
such as angular velocity anj acceleration limits for passenger comfort, speed and flightpath angle safety
margins, aircraft acceleration and jerk limits, and airspace restrictions, which are denoted formally here as
a list of constraint functions, Ak:

k(rX rVr,ar i) z 0 ; k - 1 . . K) (30)

These constraints are not satisfied by the coarse reference at the discontinuous leg junctions, but it is
assumed that each leg is selected a priori within these constraints. The use of a stored reference path suf-
fices for the present demonstration, but we note that algorithms are available (e.g., Ref. 22) that can auto-
matically synthesize a coarse reference subject to such constraints and couple the present control system to
an advanced 4-D terminal area air trafIic control system.

Next, transition maneuvering, which carries
the aircraft from one leg to the next and satisfies .
Eq. (30), is generated in TCOM. These transitions
are formulated as motion relative to the coarse + + I V0,
reference and added to the coarse reference to
form the flyable comand, (ror,vor.acr). For this
experiment, TCOM was formulated as a relaxing
regulator (Refs. 10, 23) as shown in Fig. 23, PATHAXES
rather than as a servo as applied in the DH0C-6 I ERROR f
(Ref. 11). In Fig. 23, the states ele2 are I RELAXATIO
the relative position and velocity, u is the con- I LAW I T
trol, and e3 is the relative acceleration com- Iw
mand obtained by filtering u to limit jerk. TheI
transition maneuver is generated by initializing a I21t) f
model of the dynamics with the leg junction dis-
continuities at the time of each leg switch and I
then relaxing these initial offsets to zero by u Apw
driving the dynamics with an appropriate controlI
law. This system and its control law have the 30)
following features: (1) the transitions are
generated in each path axis independently;
(2) the control law is linear for small relative Ida;
offsets and saturates at large offsets to impose
operational constraints on the maneuver kinemat- -
ics; (3) the time of initiating the transition is
selected to minimize maneuver activity; and a. + OCT
(4) the transitions are initialized adaptively to
correspond to the estimated state.

TCOM
Path axes are used to synthesize the three- RELAXATION LAW PARAMETERS

dimensional maneuver since accelerations along R__IL P A_
these axes independently control speed, course AXIS LONGITUDINAL LATERAL NORMAL
angle, and flightpath angle, and the maneuvers LINEAR
of interest can be generated by superposition of DYNAMICS
these single-axis maneuvers. The Coriolis accel- 1- 1..23 4. 7.7..I (7.23)
eration due to rotation of the path axes is • . 4 7 2
neglected in the system of Fig. 23; however, angu-
lar velocities are low in passenger operations and LIMITS
little tracking error resulted from this approxi- lumx S .03 .15 .06
mation of the kinematic model. The control law ie2i ex M"
has a third-order linear domain with saturation ZI 1066 I.OSe.21 11 .l3Voe. 1.06 Va. . 21
or nulling as needed to limit the relative accel-
eration or velocity excursions about their refer-
ence values during the transition. The linear
domain dynamics and saturation limits selected for Fig. 23 Trajectory command generator.
the AWJSRA control law are listed In Fig. 23.

The time of initiating the traqsition to the next leg, to, is selected by switching logic (not indicated
In Fig. 23) designed to (1) minimize initial jerk magnitude in the case that the transition starts in the
linear domain or (2) prevent control reversals between saturation limits if transition starts In the nonlinear
domain. These initialization criteria minimize the initial or extreme control rates, eliminate unnecessary
position, velocity, and acceleration overshoot of the new leg of the coarse reference trajectory, and mini-
mize the maneuver time in the case of nonlinear transitions. Further, the transition is initiated indepen-
dently on each path axis in the general case of ,'l*4*xis maneuvers.
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The initial conditions for the transition maneuvers are adaptive, that is, the integrators are loaded
such that the commanded state equals the estimated state and the total acceleration command to the trimuap
is continuous:

el(to) - Apr( r - rr)

e2(to) - Apr(ir -vr)

eq(to) - Apr(atr - a)

This initialization rule unloads the trajectory regulator at each leg switch and permits use of the transi-
tion dynamics for initial path capture and for recapture from large error conditions, such as at switches
between navigation aids where large shifts in estimated position can occur.

+

r, neglected in the system of Fig. 23 on the assumption
___AccelVr that these dynamics were much faster (wn - 2 rps) than

A _ those of the transition dynamics. Experience in the
f AAWJSRA tests showed good maneuver following was usually

02 a1  achieved, but with occasional noticeable tracking errors
during lateral maneuvering as a result of this
simplification.

ONTROL f f The trajectory regulator (TREG) controls the
LAW Atranslational perturbation dynamics, which are governed

by the system shown in Fig. 24, where r,i,i are dis-
af br hv" hr turbances due to navigation errors and uncompensated

model and measurement errors and wind disturbance. The
Fig. 24 Translational perturbation dynamics desired linear domain dynamics and limiting can be

and regulator. imposed on the kinematic perturbations through an
appropriate control law.

The regulator control law for the AWJSRA (Fig. 25) has the following features: (1) each path axis is

independently regulated, (2) acceleration response dynamics and Coriolis accelerations are neglected, and

(?) the control law is linear for small errors and saturates at larger errors to limit velocity excursions,
acceleration authority, and jerk (control rate). Path axes are again the natural reference frame in which
to decouple and control the kinematics. The approximations made are consistent with those made in the tran-
sition dynamics and they are justified by the low authority and bandwidth of the regulator control law.

A

V r P
&P

CONTROL LAW PARAMETERS +vL 1acL 6cL

AXES (P. Wn (m/sac) () (g/sc)

LONGITUDINAL (.7..16) 1.4 .0 .06

LATERAL (.7..14) 5. .1 .065

NORMAL (.7..32) 2.1 .1 .1

Fig. 25 Trajectory regulator - AWJSRA.

Parameter values selected for the control law are listed in Fig. 25. In the linear domain, second-order
perturbation dynamics, (p,wn), are imposed on (6rp,6vp) by calculating the gains as

(kr ~kv) = (-n',2p-n)

The authority limits, Sac L , are modest here but have been satisfactory in current tests at modest levels of
external disturbances. Position error feedback is both rate- and magnitude-limited (by 6acL, kv6vL) in order
to satisfy limits at which engine and aerodynamic forces can be varied and to limit the velocity excursions
used to relax large position errors to 6vL.

It was also useful to treat the longitudinal position and velocity control specially. The longitudinal
position error was erased (up to a limit of 12 m/sec) by resetting the reference trajectory path length
In preference to regulating the longitudinal position error. (That is, the normal regulation that drives
• T to FE • p is reversed. For brevity, Fig. 25 shows only the normal regulation). This reduces the

longitudinal control and the velocity excursions that would otherwise be required to regulate position error.
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Further, the longitudinal inertial velocity error is replaced by the airspeed error calculated from the air-
speed sensor output. These two modifications resulted in good airspeed control and largely eliminated any
dependence of the longitudinal control on the available navigation filter, whose estimation error transients
would have introduced unacceptably large longitudinal axis disturbances.

FORCE TRIMHAP

The function of the force trimmap is to compute the control values that will generate those aerodynamic
and engine forces required to produce the commanded acceleration. This requires a partial inverse of the
plant model, Eqs. (27)-(29), which maps the acceleration command atr into variables that are controlled by
the inner loops (configuration, power, attitude). The element, ACOM, seen in Fig. 18 is omitted in the
AWJSRA system; this is equivalent to neglecting the acceleration servo dynamics and is consistent with similar
approximations in the trajectory command system.

The general structure of the trimmap algorithm, shown in Fig. 26, is derived next. Details of the spe-
cific aircraft are isolated in the basic trimmap element and the remainder of the structure applies to all
aircraft.

/f \ TO ENGINE
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RATE - wcb ATTITUDE

at, MODEL ERROR COMMANDS €b / CONTROL
COMPENSATOR E37, E38

(E39)F
PiC. YlC' 1l'vc

l at atp. Atp

Fig. 26 Force trimmap - flow diagram.

The acceleration command is assumed given in runway axis components and can be transformed to the wind-
tunnel stability axes, which are convenient for the solution of Eqs. (27)-(29). First, the applied specific
force command in path axes is obtained using the transformation

fcp = Ly(ia)Lz(iva)(atr - (31)

Expressions for the path-axis components of an acceleration vector can be derived in terms of the velocity
vector's spherical coordinates, (V,y, v ) with the result:

a = vip + Viv cos V3p + Vip (32)

These components separately control speed, heading angle, and flightpath angle changes in the aircraft trajec-
tory. Using this form in the expansion of Eq. (31) yields the specific force components as:

f:Jp +Sin ~a a

vc cos COS (33)

fCkp) (kvcJ c - g Cos a

Next, the transformation to stability axes is

"c5 I Lz(-Bc)Lx(vc)fcp (34)

Equation (34) contains five unknowns but this can be reduced to three after noting that oc is specified
independent of the trajectory (usually zero except in decrabbed crosswind landings) and that the side force
then follows from oc and the assumed yaw moment equilibrium of the aircraft as:

fc w . -s C N OIc (35a)

Equation (34) can now be solved to give the roll anqle command, *vc, and the specific force commands along
the longitudinal and normal stability axes:
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fct s = (fci - fcs sin Bc)/Cos ac
fpk is - Vcf= 2. + f 2 *

fck s = Cip jp cjs

vc= tan-1(fcjp / fckp) + (35b)

where

w(ee =  - fci p sin ac)/COS 
6c

E= sin-' (f* /f-j +f_2~

Equation (35) is the map to stability axes seen in Fig. 26. The specific force commands, fci s  fcks are

inputs to the basic trimmap whose function is to solve the lift and drag trim equations. For the
AWJSRA, Eqs. (27)-(29) yield these equations as:

fc s TH (cos(a& + v)) 1 Q1w CD 36
fC = L-g\-sin(+v) -eva - L C(36

The solution of Eq. (36) and the design of the basic trimmap are discussed in the next section.

The trimmap outputs are commands to the inner-loop elements controlling attitude, prwer, nozzle, and
flap. The attitude control is formulated to control the Euler parameters of the transformation between com-
manded and actual body axes (Refs. 10, 11, 14) and utilizes the commanded body axis transformation as well as
angular rate ind acceleration commands. A transformation identity is given in the appendix:

Abr(,e, ) = Ly (W)Lz (-B)L x(v)Ly (y)Lz )

from whicli Abr can be computed from the five angles {c,6,Ov,YaTva} which are independently defined by the

trajectory, the trim solution, and 8c. The required angular velocity can be calculated from the commanded
rates of these five independent angles oriented along their respective rotation axes:

c Jb + cs + $v + ;cJ + Tvcr (37)

Expressions for body axes components cb are omitted here but can be obtained from Eq. (37) using the
transformations given in the appendlx by Eqs. (A2)-(A5). The angular rates {yctvc,;Vcl are functions of the
trajectory acceleration and jerk which can be calculated from Eqs. (32)-(35). Similarly, expressions for
angular acceleration commands can be obtained from the derivatives of Eq. (37) and Eqs. (32)-(35). Although
these computations are too extensive to present in this discussion, they can be simplified after neglecting
second-order effects and easily implemented in the flight computer. The more recent alternative formulation
of the attitude commands in Fig. 17 as three successive values of Abr is equivalent to the present formu-
lation, but is expected to be computationally more efficient and exact in its digital implementation.

For convenience, the model error compensation is included in the trimmap structure and is described
next. The trimmap uses a model, f) I, of the aircraft acceleration as a function of contrl variables and
other trajectory, environment, and aircraft variables. Denote the difference between JT) and the actual
relation as ?2. This difference results from numerous sources, including errors in static-force model data,
parameter measurement errors in flight, control and attitude offsets and lags, and simplifying approximations
or software programming faults in the trimmap; the difference varies in flight with maneuvering and con-
figuration. This difference results in acceleration tracking errors whicb can be measured in flight and
integrated to estimate and compensate the model error; the compensation, b, is:

Ep = Apr(atr - ir) 1 (38)
bp - -k -I ft p dt 

(8

to

The acceleration error Z will include the effects of external disturbances and acceleration measurement
errors in qddition to i(T). Neglecting these for the moment, the steady-state behavior of the system for
constant f2 is

E p b P,6rp,6Vp P (O,-?2 pOO) (39)

Equation (38) with integrator authority limits of 0.1g to 0.2g was used in the actual trimmap, and Eq. (39)
shows that steady-state trajectory tracking performance is independent of model errors for errors within the
compensator's authority limit. If 'T)! exceeds these limits then the trajectory regulator automatically
provides additional compensation at the cost of a steady-state position error and reduced margin to regulate
other disturbances. Let f be the mooel error in excess of the integrator limit and then the systemt steady state is

,j i1 11 -N...
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(aCp,6rp,6Vp) "4k- ? ,0) (40)

Finally, if 2?T)I exceeds the combined authority of the model error compensator and trajectory regulator,
then the system diverges from the conmanded trajectory.

BASIC TRIMMAP

The function of the basic trimmap is to solve the trim equations, Eqs. (36), for a unique control com-

mand, (6fcc, c,NHc). given the commanded or measured values of the variables defining the flight condition,

0efci ,fck, . Equation (36) is nonlinear with tabulated functions, Eq. (29), and lacks closed-form

solutions, but it is readily solved numerically. In addition, the number of unknown controls exceeds the
number of equations by two so that arbitrarily many solutions can exist at a given flight condition. This is
seen in Fig. 27a, which shows all solutions at a typical glide slope condition. Not all of these are
acceptable as trimmap outputs; only those that satisfy the operational constraints on controls usage for
quasi-steady flight previously listed in Table 3 are acceptable. The solutions that remain after imposing
these constraints are shown in Fig. 27b for the glide slope case. The result, a severe reduction of the
usable solutions, is in general the result at all flight conditions. The basic trimnap must, therefore,
resolve the trim solution redundancy, subject to constraints on controls usage at all points within the oper-
ational flight envelope.

idog
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Fig. 27 AWJSRP trim solution redundancy. (Ve = 65 knots, f = -.130, =k . -.991,
m mo , e , 6 ) s

Basic Trimmap Structure

The logical structure of the AWJSRA basic trimmap, shown in Fig. 28, consists of two principal elements:
a configuration schedule and a trim solution algorithm. First, the trim solution that optimizes the con-
figuration subject to the controls usage constraints is calculated off-line for the entire flight envelope,
and solutions for two of the controls are stored in the flight computer as the configuration schedule. In
flight, the configuration schedule commands these two controls as a function of the feed-forward reference
trajectory from TCOM. Because the reference trajectory is a sequence of steady flight conditions and

FROM IV, \{ CONFIGURATION
REFERENCE 6is SCHEDULE
TRAJECTORY fa1, )m, TI..

,R ~ ~ ~ f ,C.RI  o
o A ~ TO POWER,CONFIGURATION

A I AND ATTITUDE
AV. CONTROL

fag0  TRIM SOLUTION PC
/.'/I ALGORITHM Nc

Fig. 28 Basic trim ap structure - AWJSRA.

J , ........ , - -- N OIll
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the maneuvering between these flight conditions, the configuration schedule maintains an optimum configura-
tion at each steady flight condition and coordinates configuration variations during the reference trajectory
maneuvering. Secondly, the remaining two controls (termed regulator controls) are calculated in the trim
solution algorithm by solving the trim equations at the current flight condition and actual configuration
(the actual configuration may lag the coimmanded one in flight). The specific force cojmmand inputs include
the feedback from the trajectory regulator and model error compensator, and, therefore, the two regulator
controls will differ from their nominal values associated with the reference trajectory and configuration
schedule to the extent that the feedback is nonzero. Further, the control margin available from the two
regulator controls becomes insufficient at some boundary of the flight envelope, but this boundary can be
expanded by designing the trim algorithm to use a configuration control for regulation when necessary as
described below. The structure in Fig. 28 using a configuration schedule and a trim algorithm applies to
other aircraft as well; for example, for CTOL aircraft, the flap is scheduled and angle of attack and throttle
regulate the trajectory.

Several ways of partitioning the AWJSRA controls into regulator and configuration controls were consid-
ered; the partition normally used is shown in Fig. 28. Only the flap's response is too slow for its use in

4 path regulation and any pair from {cl,NH,v} or all three can be used. The pair {u,NH} is used in CTOL air-
craft and can also be used satisfactorily for the AWJSRA throughout its range of configurations. However,
the use of all three controls increases the available control margin and operational flight envelope compared
to any single pair, so the trim algorithm is designed to vary the nozzle when the primary regulator controls
saturate. This arrangement leaves flap and nozzle as the scheduled controls. Alternatively, [u,v) can be
selected as the primary regulator controls with scheduled flap and power. This regulator pair has greater
control margin and orthogonality of its perturbation force outputs in the low-speed, steep-descent STOL
regme; it was included in the flight system as a selectable option, but will not be discussed in detail here.

Confi gurati on Schedule

The configuration schedule results from optimization of the configuration at all flight conditions sub-
ject to the operational constraints given in Table 3. In general, fuel, noise, or control characteristics
can be optimized. For the AWJSRA, control characteristics were optimized in two steps. First, the flap was
maximized to obtain maximum lift margin which depends strongly on flap; this is favorable for fuel flow at
low speeds but was modified in the high-speed regime to trade excess lift margin for reduced fuel flow.
Secondly, the nozzle was scheduled to maximize the regulator control margin for {x,NH), which depends
strongly on nozzle setting. (Control margin refers to the envelope of specific forces that can be generated
by moving the regulator controls over their permitted ranges for regulator usage (noted in Table 3). It
measures the margin of that envelope from the specific force for the reference flight condition and combines
both longitudinal- and normal-axis margins in a single scalar measurement; see Ref. 20.) This criterion
approximately minimizes sensitivity of the primary regulator pair. For simplicity, the schedules were opti-
mized at standard values of the parameters (e,4,m), (denoted po), corresponding to an average weight and
standard day sea level conditions. This reduces the computational requirements for the stored schedule at
the cost of a small reduction in the operational envelope of the system. The reduction is small because of
the narrow range of values for these parameters in the AWJSRA design envelope (Table 2). The resulting flap
and nozzle schedules were stored in the flight computer as fitted functions; they are illustrated in
Fig. 29a by contour plots on a graph of (ve~fi s) for the case that fk5  is -1 g (reference values of k
depart very little from this in passenger operations). The corresponding solutions for {Q,NH) are shown in
Fig. 29. One effect of the scheduling criteria is that the configuration varies with flight condition in
such a way that the corresponding steady-state values of {cI,NH) remain approximately centered in their
allowed ranges until one of the configuration controls reaches a limit. Thus, during transitions between
steady flight conditions the configuration changes while the regulator controls change very little, except
;is required in response to path tracking errors.

L The flight envelope achieved by the trinnap-aircraft combination is defined by the selected configura-
tion schedule and is reduced from the envelope of the aircraft alone as a result of any approximations that
underlie the stored schedule. The flight envelopes for the present schedule are shown in Fig. 30; the inner
boundary shows the limits of equivalent airspeed and longitudinal specific force within which operationally
acceptable steady flight is achieved and the outer boundary shows the limits within which trim solutions
exist. (Note that the longitudinal specific force reduces to sin y in Eqs. (33) and (35) for the case of
steady flight with zero sideslip, and is sometimes called the equivalent flightpath angle. The use of
V- fis plots to illustrate flight envelopes here simply generalizes the more familiar Ve - Y plots for

present purposes. Further, the flight envelope is a six-dimensional volume of flight conditions, Fig. 30
shows the two-dimensional cut of this volume which is of most Iimediate interest.) The region between the
two boundaries is the envelope-abuse region in which solutions exist but violate one or more of the con-
straints in Table 3, as noted in the figure. In practice, this region is a safety buffer for the automatic
control because the aircraft may be carried into it unexpectedly by disturbances, particularly during
approaches that exploit the minimum Ve y boundaries, as does the typical STO. approach shown in Fig. 30.
Consequently, the configuration schedule should provide an adequate envelope-abuse region and can be optimized
there after selectively relaxing the constraints of Table 3. In the present work, the schedule was optimized
within the operational envelope only and the fitted scheduling functions simply extended analytically into
the abuse region, but this resulted in the adequate buffer region seen in Fig. 30. Finally, the flight
envelope of the AWJSRA alone is shown in Fig. 30 by a dashed line; a comparison with that of the tritimap-
aircraft combination shows only a modest loss of envelope as a result of design approximations.

Trim Algorithmn

The trim algorithm remains to be described. A flow diagram is shown in Fig. 31; it is constructed from
trim routines that assume one of (v,c1,NH) is given and solve for the remaining two controls. The fixed-
nozzle mode is used initially with the nozzle commnand specified from the configuration schedule. If a solu-
tion falls to exist or exceeds the permitted ranges of {c&,NH) for regulation control usage, the algorithm
defaults to a different mode which changes the nozzle commnand from its scheduled value as necessary. If no
solution exists for any mode (as a result of inaccurate limiting of the coarse reference trajectory) then
the most recent solution is retained. Note that the other control pairs could also have been used in the



10-21

SOLUTION
BOUNDARY 9

.2 / 9L

REF
I , -..-- "It PATH 9

NOZZLE SCHEDULE, dog POWER SETTING %

1 920 - 7.8 0o a .609

O .1 RF. .1 9
"- /FLIGHT -

-41 4 3 5 5600

.2- 90 f 5. 2

9 ,
2 I I

- 1e

50 70 90 110 130 150 170 50 70 90 110 130 150 170

V* knots V* knots
FLAP SCHEDULE dog ANGLE OF ATTACK dog

(a) Configuration schedule. (b) Nominal trim solutions (fks = -1, p Po).
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neighborhood of the reference flight condition; for example, engine power can be scheduled and the fixed-
power mode interchanged with the fixed-nozzle mode in Fig. 31.

~The modes required in the trim algorithm were formulated using stored tables of CL, CO, TH, TC, and m,rand on-line numnerical solution of the force balance equations by an exhaustive grid-search method. -In the
grid-search method, a piecewise linear model is constructed by calculating the specific force output at the
grid points used in the data tables for the unknown controls; these linear models can be solved piece by
piece until the piece containing the solution is found or the grid is exhausted. Solution existence is thus
determined in a numnber of steps, not exceeding a known upper bound, and uniqueness is determined from proper-
ties of the model with selection based on engineering considerations in cases of multiple solutions. For the
AWJSRA, a minor region of multiple solutions occurred but posed no significant design question. For conven-
tional aircraft, much simpler models and routines can be used, including closed-form or tabulated solutions
(Refs. 11, 14). For VTOL aircraft, such as the tilt rotor, model complexity and nonlinearity may be increased
with the result that more powerful solution routines would be necessary.

The accuracy of the trim algorithm force model is measured as the maximum specific force difference over
the flight envelope between the trimnap model and the a priori model (apparent accuracy) or between the trim-
map model and the actual aircraft (true accuracy), and measured separately for the longitudinal and normalaxes. This accuracy is of interest because of Its effects on performance and on flght computational require-
ments. Small but variable model errors disturb the system, larger errors result in position offsets and
reduced regulator control margin, and sufficiently large errors cause divergence from the reference path.
Control forces of the order of 0.1 g are significant in passenger operations and authority limits for the
path and mo)dal error compensators are set at this level. On the other hand, acceleration errors of the order
of 0.01 g would result in negligible tracking error transients and reserve the model error compensator
authority for the unknown errors of the a priori model. Consequently, 0.01 g is sufficient apparent accuracy
and is also an appropriate accuracy goal for the Identification of aircraft models to be used in control sys-
tem design and testing. Further, the trade-off between computational requirements and model accuracy can be
of concern, depending on the flight computer and model complexity; for the AWJSRA work, interest centered on
meeting a computational time limit in the fixed-nozzle routine with a model of acceptable accuracy. There, a
two-dimnsional search for {cC,NH} iIs required and the available time limited the model's dx,NH grids to
five values each. Algorithms wer developed and applied to obtain the most accurate tabulated model given
the desired table size and a priori model. This resulted in a trlnuep model with apparent longitudnal., and

300156'/
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normal-axis accuracies of (0.03 g, 0.06 g) within the computational limits imposed. Flight results from the
compensator, shown later, measure the true accuracy.

AWJSRA FLIGHT TEST RESULTS

Flight tests of the AWJSRA application of the proposed control design method illustrate the feasibility
of the method and the performance achieved by it. The AWJSRA application is termed the "Full Flight Envelope
Autopilot" (FFEAP). This aircraft is equipped with the STOLAND digital flight control system developed at
Ames Research Center; STOLAND is an integrated hardware and software system (Refs. 24, 25). The hardware
includes a Sperry 1819A flight computer and associated control servos, navigation receivers and other sensors,
cockpit-display instruments, flight-data recorders, and interfaces for automatic or manual control. The
software contains input-output, navigation and display logic, and a hierarchy of manual, assisted-manual, and
fully-automatic control modes. The FFEAP was implemented in this structure as a replacement of the existing
STOLAND automatic control mode.

Development of the FFEAP proceeded using a sequence of increasingly detailed simulations of the aircraft
(Ref. 26); first, the outer-loop logic (ATC, TCOM, TREG, FTRIM) was tested in a simplified simulation in which
aircraft forces and the translational degrees of freedom are accurately represented, but all lower levels of
the hierarchy (rotational, power, and servo control loops) are represented by the simple response dynamics
imposed on the comi)lned control logic and plant dynamics by the innerloop command generators of Fig. 18.
Results from this stage of the work are reported in Refs. 20 and 23. Secondly, the inner-loop elements were
integrated and tested in a complete simulation of aircraft dynamics on a general purpose scientific computer.
with aircraft and engine models taken from the manned laboratory simulation. Finally, the control logic was
implemented in the STOLAND system and tested In a manned simulation; this step integrated the control logic
with navigation, display, and interface logic.

The final FFEAP flight program was 7,000 words in length; its implementation (Ref. 27) was facilitated
by coding and debugging efficiencies ,herent In the proposed method. The separation of kinematic from force
and moment control allows the kineratl, control to be formulated vectorally with identical logic in each of
the three translational axes and e th ? rotational axes; hence, the design, coding, and debugging of one
axis suffices for all three a.es. Furth,.. coqmmands are generated by the logic for all aircraft and servo
states and near-exact tracking is expected in the absence of disturbances so that a comparison of commanded
and actual states, beginning at the lowest level of the hierarchy, permits rapid and systematic detection of
software faults and significant model errors. The entire program was debugged using 50 hr on the simulator
over a period of 3.5 months, beginning from an initial compiled program.
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Computational requirements for the proposed metliod were a feasibility issue in view of the complex
models and trim solution algorithms required for the AWJSRA trimmaps. The memory and speed of the 1819A and
the available storage and time limits for the
FFEAP logic within the STOLAND system are noted in AVAILABLE STORAGE
Fig. 32. To meet the time constraint, it was ANDTIME FOR FFEAP
necessary to attend to software efficiencies,
limit the search grid of the trim solution algo- 104 1/////// ///I ////1//
rithm, and execute the outer-loop trajectory
control at a slower rate (0.25 sec proved accept- STOLAND
able for the AWJSRA) than the inner loops or the AUTOMATIC
computer's cycle time (0.05 sec). Requirements C NRLA
for the FFEAP were 7,000 words and 31% of the com- AWJSRA
puter cycle time; these are compared in Fig. 32
with requirements for the conventionally designed W

STOLAND automatic control, which are similar in DHC-6
magnitude. The requirements for the DHC-6 applica- 0
tion were much smaller owing to the reduced trim- I.-
map complexity; there, the entire automatic con- I I

trol system of Fig. 18 is contained in a 0 10 20 30 40
2,500 word program, and this is expected to be
representative for conventional aircraft. The TIME USED/CONTROL CYCLE - %
available computational power of digital avionics
systems will expand greatly in the near future so
that the computational constraints of this experi- SPERRY 181 9A FLIGHT COMPUTER:
ment are only of special interest here, but the MEMORY 32768WORDS
results above demonstrate that the system of CYCLE TIME 50 millisec
Fig. 18, using extensive static and dynamic plant TIME/MULTIPLY 24 ,-sec
models to achieve specified design performance
over the full flight envelope, can be achieved in Fig. 32 Computational requirements in flight computer.
CTOL and STOL aircraft with programs of modest MLS AZ/DME
size and with computer requirements that are com- COVERAGE
parable with those of conventional designs. 4000 LIMIT t2400m

SVa  110 knots. 140.- .

The manned simulation and flight tests uti- I V 1 n 6 120
lized a stancdru closed-circuit reference path 545

2

which is shown in Fig. 33; it includes cruise, TACAN MLS5 5transition, approach, go-around, and climb-out 9 1 0 2
segments. Normally, the FFEAP was engaged in the 7LNIG124n'
vicinity of way point 7 after which the aircraft AIRSPEED RUNWAY
was flown automatically through its speed range , J
from 140 knots to the landing airspeed on the 5000 0 5000
approach half and then accelerated to 120 knots X-m
for the climb-out. The path descends at -7.50 on
the glide slope with clinb-out at 5'. An alter- a 7 4
native view of the reference path is shown in the 600
configuration schedule plots (Fig. 29) as the 9 10 = 6 5
locus of flight conditions along the path; the E 400 - 750 = 50
numbered duts locate final flight condition on ;
each leg. The locus is seen to carry the air- N
craft through the range of configurations and 200 1 2 - 50
much of its flight envelope. I

Estimates and measurements of a number of 5000 0 5000
variables were required as inputs to the automatic M
control. Estimates of inertial position, veloc-
ity, air velocity, and acceleration were required Fig. 33 Reference flightpath.
in the outer loop; they were provided by comple-
mentary filter navigation logic similar to that of Ref. 28. This system had independent filters for the
x,y,z runway axes with navaid and position-dependent gain scheduling, and utilized body-mounted acceler-
ometer and attitude gyro measurements in combination with TACAN or MLS position-measuring navigation aids,
baroaltimeter, and pitot-static airspeed measurements. MLS provides precision azimuth and range for the
final approach; the MLS coverage limit and the transmitter locations for TACAN and MLS at the test site are
indicated in Fig. 33. The navigation filter was also treated to avoid large estimation erior transients at
switches between TACAN and MLS by reinitializing the filter's position estimate at each switch, and the mag-
nitude of the position jumps at those points was reduced by using MLS to calibrate the TACAN biases. Navi-
gation accuracy was good on the final approach using MLS and for the vertical axis generally; on TACAN,
however, it was inadequate for longitudinal control and provided the principal disturbance of the system
lateral control. In addition, the trimmap and inner loops required measurements from total temperature and
pressure sensors, attitude and angular rate gyros, and sensors for engine power, throttle, and nozzle posi-
tion, and all control surface positions.

Performance results are illustrated in Fig. 34 with data from one circuit of the refe.,nce path in a
recent flight test under conditions of low turbulence and winds. The leg number is included with the time
histories for easy correlation of control activity with transition maneuvers and other events.

The trajectory commands are shown in Fig. 34a as path-axis components of acceleration, and as airspeed
and flightpath angle commands. These illustrate the design features of TCOM previously described. For
example, in the turn entries and exits of legs 8, 3, and 5, the lateral acceleration makes rate-limited
changes to new steady-state values with little or no overshoot, and the corresponding lateral position and
velocity commands (not shown) have no overshoot. Airspeed changes (legs 7, 9, 1) and flightpath angle changes
(legs 10, 1, 2, 4) are made with limited acceleration and jerk and no overshoot ofti-je velocity or position
states. The adaptive tr3nsition initiAlization results in a jump in the commtand to the estimated state at
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the start of each maneuver. Tracking errors were small for the cases noted above and the command jumps
were negligible. However, on leg 4, a large flightpath angle error de.elops (as seen by the departure of
the estimated from the commanded value of y) due to excessive uncompensated model error which is discussed
later. Also, a recovery transition conmmand is initiated at the switch to leg 5, which begins with a jump
of the command to the estimated flightpath angle and limits the acceleration and flightpath angle overshoot
used to relax the initial offsets. Similarly, a noticeable excursion in airspeed command occurs during
leg 5 as part of a transition that relaxes significant longitudinal tracking errors at the switch to leg 5.
The maneuvering required at switches between TACAN and MLS is minor and reflects the success of the TACAN
bias estimation logic in this test.

Figure 34b shows the path-axis components of the apparent trajectory errors as estimated in flight-and
entered in the feedback. These errors result from external disturbances and estimation and control errors.
Turbulence levels and related error transients were low for this test. Estimation and measurement error
effects were larger and entered the system as state and acceleration estimation errors that excited the path
regulator, and as attitude and control measurement errors that excited the model error compensator. Control:1 errors for the proposed system can all be viewed as plant modeling errors; their effects include low-frequency
state- and acceleration-error transients associated with maneuvers and configuration changes, and path
divergence if the acceleration model error persistently exceeds the system's compensation authority.

On the longitudinal axis, the principal sensor is the airspeed transducer, with errors which are uni-
form over the flight envelope and which result in a background of airspeed tracking error below 1.5 rn/sec.
The Coriolis accelerations, which were neglected in TCOM's kinematic model, result in kinematically incom-
patible longitudinal velocity and acceleration cormmands. The effect of this modeling error can be seen as
speed error excursions at the turn exits from legs 8 and 4, but is other-wise negligible here and in passenger
operations generally. Noticeable longitudinal position excursions occur on legs 8, 3, 4, 5, and 6; they
result from large navigation errors.

The principal lateral axis excitation is navigation error; during periods of large position measurement
errors (legs 7 and 8 in MLS coverage and throughout TACAN usage), lateral tracking errors are noticeably
larger than during the straight-in approach section (legs 9, 10) where MLS provides excellent accuracy.
Exceptional excursions in excess of 400 m occur on legs 4 and 5 due to a severe navigation error transient
there. The feedback error is nulled at each leg switch as a result of initializing TCOM's transition
maneuver adaptively. This has the effect of adding corrective authority; however, tracking errors continue
to develop due to continued navigation error.

For the normal axis, turbulence is usually the principal disturbance but its levels were low here and
estimation errors are also small for most of the test. This condition resulted in good normal position and
speed tracking accuracy, of the order of 5 m and 1 rn/sec, respectively, throughout the test, except during
legs 4 and 5 where normal velocity error temporarily diverges due to excess (uncompensated) static force
model error. Moderate position excursions also occur during path capture and the transitions to legs 9 and 1
due to angle-of-attack estimation error transients and force-model error variations with configuration
changes.

The corrective acceleration conmmand (not shown) was usually well within authority limits (0.05 g to
0.1 g) except during the large errors of legs 4 and 5, where all axes saturate. Thus, the transient response
for the position and velocity regulation was in the linear domain for most of the flight independent of any
nonlinearity in the control activity commanded by the trirmmap.

The force-model error compensation (Fig. 34c) shows good longitudinal model accuracy and moderate lateral
axis excursions in turns which are due to the combination of lift-model error and roll angle. However, large
normal-axis errors were encountered which reached -0.1 g on the glide slope and exceeded the 0.2 g compen-
sator authority during the climb-out at low flap settings (legs 3, 4, 5). Simulator results show good
agreement on the glide slope but much smaller model error (0.05 g) at low flap settings.

The large error during climb-out appears to be due to an unfavorable combination of large CL model
error at low flap and angle of attack estimation error. This angle is estimated from gyro angles (using
Eq. (A6)) and subject to maneuver-dependent gyro errors (cf. Ref. 29). Lift sensitivity to angle-of-attack
error is significant, in excess of 0.1 g/deg here. The consequence of saturated compensation is that position
errors develop and engage the state feedback in compensating the model error (Eq. (40)) during legs 3, 4,
and 5. Further, this feedback was also saturated on leg 4, leaving the system with no further authority to
compensate the remaining normal acceleration error (of the order of 0.03 g) and path divergence occurred, as
previously noted. No control was saturated, however, and adequate control capability was present in the
aircraft but was unexploited by the present compensator design. Subsequently, recovery occurred when some
of TCOM's authority was added in the transition to leg 5 and some of the model error subsided. Other normal-
axis model-error transients occurred during capture and leg 8 and the transitions to legs 9 and 1; they are
due to gyro errors and model-error variations with configuration.

The simulation model for the DHC-6 was significantly more accurate and Ref. 11 shows measured normal-
axis errors below 0.1 g throughout the test path. Model errors in excess of 0.2 g suggest very coarse
identification of the plant or accuracy of the on-line measurements, and usually can be improved without
exceptional effort. However, the design of the compensator logic for large model errors and methods of using
the system of Fig. 18 to measure and reduce such errors systematically remains as a topic for further
development.

Flight results for the measured instantaneous acceleration error (not shown) indicate good acceleration
tracking throughout the test, with a background of random error below 0.025 g (including measurement error and
gust effects), but with normal axis excursions in association with the configuration changes, gyro error
transients, and the excess model-error event as previously noted.

Figure 34d shows the control conmmand histories. The configuration controls (normally flap and nozzle)
vary as scheduled with TCOM's maneuver cormmands to maintain an optimized configuration for any output of
TC0M. Elkept on the glide slope, power and a are used for path regulation in the plane of symmnetry; local
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mean values are approximately constant in midrange independent of maneuvering and flight condition, as
intended in the configuration optimization; excursions from these values are dependent on the output of TREG.
On the glide slope, the scheduled power algorithm was selected and nozzle shows modest higher frequency
activity to control path errors. Roll angle controls lateral forces and varies normally for turns with
regulation activity superposed on that. This activity is low during the straight-in approach but noticeably
higher elsewhere due to increased lateral-axis navigation errors. Inner-loop performance data are omitted,
but flight results showed excellent accuracy in tracking the attitude and servo commands throughout the test .
so that inner-loop control errors other than those due to sensor errors were a negligible disturbance source.

In this test, the automatic control system used all controls, sometimes simultaneously, to execute a
variety of multiaxis maneuvers and to regulate disturbances. This usage is more complex than in manual con-
trol where reference paths tend to be a sequence of single-axis maneuvers with associated infrequent discrete
configuration changes. The control activity of the automatic system for each axis taken separately was
considered acceptable by the pilots, both in this test and in prior simulation experience with increased tur-
bulence. Control activity for all axes collectively was also monitored in the research flights without diffi-
culty; this was facilitated by the organization of the controls into configuration and regulator pairs. More
generally, the establishment of monitor work-load constraints and their effect on automatic control usage for
redundantly controlled STOL aircraft, such as the AWJSRA, remains an open issue.

Figure 34e shows system position tracking performance as measured by radar. Path-axis components of
both navigation and total system errors are shown, but results for the initial legs of the test are absent due
to failure of radar coverage there. In general, results show good system performance except on legs 3 and 4,
where a large y-axis navigation filter error transient occurs and the model error saturated the system com-
pensation authority.

Large longitudinal navigation errors in excess of 400 m develop in legs 3 and 4, but with little excita-
tion of additional control error. This results from special treatment of the longitudinal control in which
the reference trajectory is reset to null the apparent position error (up to a limit of 12 m/sec), and the
airspeed sensor is used to compute speed error in preference to using the navigation filter output. In con-
trast, lateral axis navigation errors due to the y-filter transient rise to 200 m during leg 4 and, together
with related excursions in lateral velocity, wind, and acceleration estimation errors of the order of
12 m/sec, and 0.15 g, excite the control strongly and the total system errors exceed 400 m. Normal-axis
system error peaks show an excursion of the order of 30 m on leg 3 and a second excursion on leg 4 to 50 m;
the first is due to the projection of the y-filter error transient on the normal path axis and excites little
added control error because the apparent normal-axis errors remained small, as seen in Fig. 34b. In contrast,
the state navigation error is small on leg 4 -it was saturation of the model error compensation in the con-
trol system, as previously discussed, that caused the observed system error excursion.

CONCLUDING REMARKS

The concept of inverse dynamic systems provides an effective means for simplifying the control system 11
design process when the aircraft has complex equations of motion and a flight envelope with multiple opera-
tional constraints. For a large class of practical systems, a transformation can be constructed that trans-
forms the natural representation of the system into an equivalent linear, constant-coefficient reference
model, thereby making the well-developed and powerful tools of linear control theory directly applicable, even
when the natural representation is highly nonlinear. Furthermore, the complete control logic is separable
into command generators that provide open-loop control, regulators that provide control of uncertainties by
means of feedback, and triownaps that contain detailed information concerning the complete force and moment
generation processes of, the aircraft and provide envelope limits and control redundancy management.

One result is that the design of regulators is significantly simplified because the control law sees a
globally constant-coefficient system. In effect, the trinaps provide gain scheduling automatically to
counteract the changes in the natural perturbation model. Any additional scheduling of the regulator law to
account for operational constraints is facilitated by the simplicity of the equivalent system.

A second result is that the design of the reference command generators is simplified by the transforma-
tion because of the simplicity of the effective system. The introduction of limiters and rate limiters, for
example, in order to shape the reference flightpath to fit the flight envelope is greatly facilitated by the
linearity of the effective system.

A third result is that a hierarchy can be established for the complete system in such a way that each
level can be designed and tested independently of other levels. Such local autonomy allows multiple sampling-
rate designs and the implementation of the complete code within a distributed, asynchronous microcomputer
network. In addition, the overall complexity of the control logic can be reduced because greater use of the
available a priori information can result in much greater reduction in complexity of the feedback logic.

A fourth result is that details of the force and moment models and their partial inverses are confined
to the transformation algorithms at each level of the hierarchy. These models are generally available from
aircraft simulations and are nonlinear but algebraic, rather than dynamic.

The proposed design approach has been applied and tested in several aircraft. Detailed descriptions of
some elements of the system from the Augmentor Wing Jet STOL Research Aircraft application and results of the
flight evaluation of this system have been presented. This information illustrates the design approach in a
complex, redundantly-controlled, powered-lift aircraft. A trajectory command generator was derived which is
capable of generating reference trajectories with optimized multiaxis maneuvering between any steady flight
conditions and of satisfying a variety of safety, passenger comfort and aircraft capability constraints on
the kinematics. Near exact tracking of the maneuver commands was usually achieved in the flight results in
the absence of other disturbances (external disturbances or estimation and trimmap model error transients).
All departures from exact tracking due to simplifying approximations in the command generator's kinematic
model are removable without practical difficulty.
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Design of the trajectory regulator is inherently simple in that it models the perturbation kinematics,

and the desired kinematic transient behavior and constraints can then be imposed explicitly. Invariant
kinematic transient dynamics were imposed over the AWJSRA flight envelope and achieved independent of any
details of controls usage or configuration. Although this result is dependent on sufficiently accurate
modeling of the acceleration perturbation response lynamics, these dynamics are relatively fast for the
AWJSRA and were neglected without significant loss of performance.

The force trimmap is the central element of the system; it requires a partial inverse of the system
model, which can be complex, and its design affects system performance significantly. Part of the inversion
requires only analytical closed-form relations and is valid for all aircraft, the remainder utilizes a con-
figuration schedule and a trim solution algorithm in which details of the specific aircraft appear. The
configuration schedule defines an optimum configuration within operational constraints on controls usage at

all points in the flight envelope; thus, it coordinates aircraft configuration variations with any maneuver
commands from the trajectory command generator. Its design also defines the performance of the system for
configuration-dependent parameters of interest (e.g., fuel or noise on any given trajectory, and the system's
operational flight envelope). In the trim solution algorithm, both mathematical and performance design
issues arose. Efficient alqorithms, using a sufficiently accurate model, were required for solving the non-

linear trim equations. Piecewise linear tabulated-data models and an exhaustive grid search algorithm were
used and efficiency and accuracy were a function of table size. This method is generally useful for moder-
ately nonlinear aircraft. Further it was necessary to exploit all available controls, including the redun-
dant nozzle control, in order to maximize the control margin at every flight condition and the system's
flight envelope.

Flight results with the AWJSRA system operating over a complex test path were presented. Good tracking
performance was normally achieved at all levels of the hierarchy (trajectory, acceleration, attitude, power,
and servos); with one exception, this indicated that satisfactory modeling accuracy of the aircraft at all
levels was obtained from the available simulation data. The larger trajectory error excursions observed were
due in part to disturbance by navigation error transients and in part to control-system model errors, prin-
cipally in the static-force model. With one exception, these latter effects were of moderate size, and
steady-state performance was unaffected by model errors within the trimmap compensation authority, which
corresponded to relatively coarse models (0.1 g to 0.2 g). The time histories of trajectory and compensator
errors provide information for updating the force trimmap or the underlying simulation model.

In summary, flight test results to date have demonstrated in a realistic airborne romputation, control,
and navigation environment that the proposed method can yield effective automatic flight control systems for
CTOL and STOL aircraft.

APPENDIX

REFERENCE FRAMES AND TRANSFORMATIONS

It is useful to define the reference frames and related notation used in the AWJSRA development. Sub-
scripts indicate the axis frame to which a vector is referred, ( )a, and transformations of a vector from
frame a to frame b are denoted Aba. The frames used here are runway (r), path (p), wind-tunnel stability
(s), and body (b). Unit vectors defining the axes of frame a are denoted fla,Ja,ka), and the components of

a vector along these axes are denoted ( )ia, ( )Ja,()ka). For brevity, transforn,ations will be defined as
a sequence of single-axis rotations, using the notation LxLyLz where the subscript indicates the axis of
rotation and 

osu 0 -sin cosc sin

ILx(),Ly(a),Lz(u) cos ,sin o 0 1 0 sin a cos 0 (Al)

-sin o cos .bin o 0 cos 0 0 1J

The aircraft body axes are located with respect to runway or inertial axes by the standard Euler angle
transformation:

Abr = Lx ()Ly ()L () (A2)

Path axes are a convenient frame in which to define and control the aircraft translational kinematics; these

are, respectively, along the path tangent or velocity vector and perpendicular to the tangent in the horizon-

tal and vertical planes. The transformation from runway axes depends only on the angles defining the velocity
vector direction,

Apr = Ly(y)Lz('Pv) (A3)

where qv is the heading angle of the velocity vector. Where path axes are based on the velocity vector with
respect to the ai' mass, the angles are denoted Ya and 

1
'a" The transformation from path axes to wind-tunnel

stability axes is obtained by first rotating about the tangent vector through the angle *v and then about
the normal axis through the sideslip angle:

Asp = Lz(-S)Lx(0v) (A4)

Wind-tunnel stability axes are convenient for use in solving the force-balance equations used in the force
trimmap since aircraft lift and drag forces are aligned with its axes. The transformation from stability

axes to body axes is

Abs = Ly( ) (AS)
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Equations (A3)-(A5) provide a transformation from runway to body axes that is equivalent to Eq. (A2):

* Abs(c)Asp(B,*v)A pr(Ya, va)  (A6)

Aircraft attitude depends in Eq. (A6) on angles locating the velocity vector (ya.,va) and controlling the

aerodynamic force (ov,s,a). Expressions for any three angles in terms of the remaining five can be given
from Eq. (A6).
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SYSTEMS USING OPTIMAL DECISION THEORY
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* SUMM4ARY

This chapter addresses the problem of using redundancy that exists between dissimilar systems in
aircraft flight control. That is, using the redundancy that exists between a rate gyro and an accelero-
meter--devices that have dissimilar outputs which are related only through the dynamics of the aircraft
motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure
status and can reconfigure itself in the event of one or more failures. In this chapter an optimal decision
theory is tutorially developed for the management of sensor redundancy and the theory is applied to two air-
craft examples. The first example is the space shuttle and the second is a highly maneuvering high perfor-
mance aircraft--the F8-C. The examples illustrate the redundancy management design process and the perfor-
mance of the algorithms presented in failure detecticn and control law reconfiguration.

I. INTROrUCTION

Reliable sensor and actuator systems are particularly critical to high performance aircraft that rely
on feedback to augment aircraft stability. One technique for assuring reliable operating is to provide
redundant systems together with the logic for managing them. In the past, for sensor components, this has
been accomplished using duplication of components and a simple voting process to manage the redundancy.
Redundancy provided in that way can be termed "hardware" or "duplicative" redundancy since it owes its
existence to hardware duplication. Redundancy also exists between dissimilar components. However, to use
that type of redundancy, one must be aware of the dynamic behavior of the system and the interactions
between system components. Such redundancy is more properly termed "analytical" redundancy since it owes
its existence to analytical knowledge of the systems behavior. Unfortunately, analytical redundancy manage-
ment involves real time modeling of the vehicle dynamics and a vast amount of logic. For that reason its
use to this time has been confined to research vehicles.

For control surfaces the former option of hardware redundancy is not normally availble. This is
because, in aircraft, the effects on vehicle motion are usually different for two different surfaces. Thus,
if redundancy is used, one must necessarily rely on "analytical" redundancy management since the components
involved are necessarily dissimilar. The past resolution of this problem has seldom been to use redundant
control surfaces but to obtain the system reliability level required by making the actuator essentially
"fail proof." Developing analytical redundancy management technology to the point that it is a dependable
tool of the control system designer has obvious advantages to the aerospace community in terms of surviv-
ability potential. To accomplish that objective, however, continued research will be needed. The purpose
of this chapter is to explain the theoretics of analytical redundancy management from a tutorial point of
view and to illustrate its use with examples using the dynamics of the space shuttle and the dynamics of the
F8-C aircraft. Herein, a particular method has been selected for exposition--a moving window technique of
sensor analytical redundancy management that was originally developed for the space shuttle and was later
studied for the F8-C. This work was reported in references 2 and 3. This chapter contains pertinent
extracts of these references as required to tutorially develop the analytical redundancy management method
selected. For the interested reader, reference 1 provides an excellent survey of failure detection which
is one aspect of the analytical redundancy management field.

II. THE THEORETICS OF ANALYTICAL REDUNDANCY MANAGENT

Consider the equations of motion of an aircraft to be represented by the nonlinear differential
equation ea= f(x,u) 

(1)

where x is an n-dimensional state vector and u is an m-dimensional control vector. For aircraft, the
function f(x,u) is a continuous vector function that is differentiable in x and u. For the purpose of
designing a redundancy management system controlled by a digital computer, a difference equation representa-
tion of the aircraft dynamics is useful. It can be considered to be of the form

x(k+l) - 4[x(k), u(k)] + w(k)

where x(k) A x(kT), u(t) in equation (1) is equal to u(k) for kT < t < (k+l)T, and T is the cycle time for
the digital control system. The term w(k) represents the error in integration of (1) and any unmodelled
dynamic effects (e.g. atmospheric turbulence). We shall consider w(k to be a white stationary Gaussian
random process with zero mean and covariance matrix W so that E[v(k)w (j)] = W6kj. For colored noise the
the model state is assumed to be extended so that the process v(k) is essentially white
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Sensors y will be considered to measure the vector function

y(k) - h°[x(k), u(k)J + v°(k)

for the unfailed state H . The sequence v(k) represents the measurement error and is considered to be a0

zero mean white Gaussian process for the purpose of design. For the failure states Hi, 1 1_ i _ M-l, it is

assumed that the sensors' outputs are the some as those for the unfailed states except for y,' whose output

is assumed to be a Gaussian process with unknown mean. Hence, for each of the M-1 failure states H the
sensor outputs are

Hi: y(k) = h i[x(k), u(k)] + v i(k), 1 :_ i S M-1

where

E(vi(k)] = mi

[vi (k)vi(j)] = VikJ

The quantity m is an unknown parameter vector representing the mean of v i(k). It is also convenient to
introduce a du.; hypothesis HM with a priori probability PIm 0 with HM: y(k) = vO(k).

We shall be concerned with selecting the most probably failure state H based on a finite set of

measurements, Y(k) = [y(k), y(2),..., y(k)]. To do this, a cost function is constructed of the form

B = P C f PYH(aHj)d% (2)

i=O J=0 i

subject to

M
P =1i

i=O H

and where the sets Zi , 0 < i _< M, are disjoint and their union represents the entire observation space. In

equation (2): PH = a priori probability of Hi occurring; Ci cost weight for selecting Hj when Hi is

true; and, PYIH (afHi) is the conditional probability density of measurement sequence a given Hi. The symbol

f implies that the integral is carried out over the set Z that represent decision regions in the observa-
Z 
ition space so that when YCZ i we will assume that H i is true. Of course, that is a possibility that an error

might exist in the decision process. That is, YcZi, but H is true. The finction B Is selected so that it

represents the cost of making an incorrect decision. This function is then minimized analytically by
selecting the zones Z The terms in equation 2 may be interpreted in the following way. Each of the

integral terms represents the probability that a measurement sequence is in Z and hypothesis H is true.

Hence, each integral term represents the probability of selecting Hi when Hj is true. These terms are

multiplied by the a priori probability of H occurring, PH J and design weighting constants Cij to obtain

the total cost function referred to in reference 2 as the Bayesian risk function. Therefore, the function 8
represents the cost of assigning any decision structure, Zi . We shall assume that the cosa weights Cii

assigned for making a correct decision are zero (C i0, i=O,..., M) and that the cost of making an incorrect
ii

decision is positive (Cij Z 0, i = J). The weights to be used in designing the failure detection scheme can

be selected by conducting a failure mode and effects analysis. That is, by simulating of the system in a
given failure state, say Hi, and examining the response characteristics corresponding to a control system

selection of state H This type of simulation is illustrated in examples to follow.

The problem, then, is to select boundaries of Z which will result in minimum cost. The general

solution to the problem is represented most easily in terms of likelihood ratios Ai, where

A i(a) = y H(aJHi)/PY H(alHM), i 0,..., M-1

The cost function 8 of equation (2) may be rewritten as
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10 Zi

where

M
4i(ca) " o I P CiJPYIH(alHj)

I J=O H j YI j

This function is minimized by selecting i at each point a in the observation space such that @i(a) is the

smallest of the 4+I possible values *k(a), 0 1 k S M. Hence,

zi a, (010 1(a) - min 0 k (,O}

Dividing each *~by the probability density of Y(k) under HM gives an equivalent test term, ii(a) for

making the decision in terms of the likelihood ratios:

M-1
Si (a) - J= 0 PH C 

ij
A ()

Then

Zi . {OLTi(a) - min Tk(a))

i OSks?4-1

Consider now the problem of mechanizing the preceding test. That is, the problem of determining the

likelihood ratios Ti(a) for the hypothesis

Hi: y(k) - h i[x(k) + v I(k), 1=0, 1,...., M-1, k=0, 1,..., K

By the chain rule for probability densities,

k

p[Y(k)IHi ] = p[y(k)IY(k-l), Hi]'p[Y(k-l)IHI] = p[y(l)IHi R p[y(J)IY(J-l), HI)
J=2

Since under hypothesis i Y(3) - h [x(.)1 + v (j) and h is nonlinear, the probability density

ply(j)lY(j-l), Hi] is not Gaussian. However, the first two moments can be expressed by

E{y(J)IY(J-l), H} = 6(x(j)] + m

where

hi (x(j)] = E{hi [x(J)]IY(J-l), Hi)

and mi  E{vi; and

var(y(J)Y(J-1), Hi }  Vh(JlJ-1) + VI ii1 V

where

V h(Jlj-l) = E{[hi (x(j)) - hi(x(j))1(hi(x(J)) _ 6 i(x(j))Tjy(j-l) H1 }

If it is assumed that the density p[y(j)ly(J-1), H I is Gaussian, then the first two moments give the

pseudo-Bayes density function

p(y(.)IY(J-l), Hi] - ((27r)det[VeJpl)IViv]'-exp{-1/2[y(J)

-ii(z(j) - milTi(jl1 -l) + v 1]-l,(Y) -fi(X(j))- M}



where N-dim(y). McLendon (Ref. 4) shows that, when the variance Vi(jl J-l) is small compared to Vi the

pseudo-Bayes assumption can be Justified analytically.

Then the likelihood ratio becomes, after some simplification,

K (det(V )} 1/2 1K F 1
A (K) = H - exp K Iy (J)

J=l {det[V J(JI-1) + i /} "/2 J=J (j)Tiv]}J

ir+J]- i,(lxyJ] - m} r(1Ii(v( imill

i yVh J-1) - Vi]

In order to calculate this likelihood ratio, one must have values for hi[x(j)] and V (JIJ-I). Since h is
i h

nonlinear, these cannot be computed exactly; however, expanding h [x(J)] in a Taylor series to first order

about xi(JlJ-l) = Efx(J)IY(J-I), H I gives hi[x(J)] = h[xi(j-l)] and

Vl(JlJ-l) = (ahi/ax)[xi(jJ-l)1vi(JIj-l).(3hiT/ax)[i(jJ-l))

where V(JJ-) is the variance of 1 ) In reference 2 for linear systems x (Jlj-l) was obtained
using a linear discrete Kalman filter. For the nonlinear problem, however, a nonlinear estimator is
required. The result can be obtained only approximately for the nonlinear case using an approximate
conditional-mean filter (Ref. 5). Consider Hi, and define

xi(k + 1) 0 E[x(k + l)IY(k + 1), H]

Xi(k + l1k) = 0[£i(k), u(k)]

and

ir (k) 0 y(k) - h([(k), u(k)] - i (k)

where mi(k) is the maximum likelihood estimate of mi over the observation sequence. With these definitions,
the filter algorithm is

x (k+l) = xi(k+llk) + K (k+l)r (k+l)

The gain matrix K i(k) can be calculated using

(k+l) = V!(k+llk)(ahi /ax)[i(k+lIk), u(k+l)][Vy(k+l)f-1

Vy(k+l) = (ah i/x)[ii(k+lIk), u(k+ll]V(k+lk)(ahT /x)[ i(k+llk), u(k+l)].u(k+l) + V
i

i x v

where V!(k+lIk) is the prediction error covariance given byx

V!(k+ljk) = (/aIx)[ii(k), u(k)]Vl(k)(a T/a.x) [i(k), u(V)] + W
x x

and V-(k) is the filter error covariance satisfyingx

V (k+l) = (I-Ki(k+l).(3h/ax)[ii(k+l), u(k)]}V-(k+llk)
xx

Hence, for each Hi there is a filter algorithm, as indicated previously, required to accomplish the

decision process. The structure of the optimal decision logic that might be implemented in a digital flight
control system in indicated in figure 1. To simplify the decision process, we may take C i = 1, i A J. In

this case the optimal decision process involves selecting for each measurement sequence Y(K) the hypothesis
corresponding to maximizing

K Ki i T -li

inPHi - in J -I r (J)Vi (J)ri(J)Hi l Y J2
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where K is the total number of measurements taken to make the decision and is indicative of the window size
in a moving window.

III. APPLICATION OF ANALYTIC REDUNDANCY MANAGEMENT TO AIRCRAFT

This section will illustrate the application of the theory explained in the last section using two
examples. The first example will emphasize the selection of the weights Ci of the Bayesian risk function

to give the reader a feel for the importance of this necessary step in the process. To do this we will use
the space shuttle as an example vehicle with linear models and linear simulation. Next, the performance of

the analytic redundancy management system will be illustrated for a high-performance, highly maneuvering
aircraft--the F8-C aircraft--in high performance roll maneuvers. The later example illustrates the necessity

for including nonlinear kinematics in the analytical model.

Example 1. To obtain insight into the process of Bayesian risk weight selection, consider the space
shuttle orbiter configuration at a Mach number of 5 and an altitude of 120,000 ft. Taking the state to be
defined as x = (p, 0, r, O)T and the only effective control u = 6 the aircraft equations of motion can be
written au

--0.0580 0 0.0170 -5.791 1 2.2561

[1.0 0 0.5773 0 f 0i=x + u+w

.0029 0 -0.0085 -0.7438 0.0553

0.5 0.0055 -0.8660 -0.0009

The noise process w is considered to be a Guassian zero-mean process with a covariance matrix
Wadiag[.005, 0, 2.02, .000003].

For illustration, consider that the vehicle has three sensors: a roll-rate gyro, a yaw-rate gyro, and
a sideslip indicator. To design the bank of Kalman filters for this case the output matrixes are selected
so that all sensor information is included for H and the ith sensor is deleted from the output for Hi.

0
There will, therefore, be four hypotheses to consider, as follows

10: = 0 ] x+v0 ; HI: y = 010 x+v; H2 : y = 0 xv 2  H3 :0 +v

]0 000 2 000 00

Note that, with the above construction of the output matrices, sensor i cannot corrupt the state estimate of
the Kalman filter conditioned under H . Variances of the measurement error are taken, consistent with current
technological capability, to be

0 2 2 2V = diag [(0.05) , (0.01) , (0.01)
2
]

Failure covariances are assumed to be larger than the unfailed ones. (The failure detection performance of
the resulting system has, however, been successfully demonstrated for both statistical failures--increased
variances--and for hardover failures. This capability is a direct result of not assuming a zero-mean
measurement error in the failure states.) The values of V1, V and V3 used are

V diag (0.025, 0.0001, 0.0001)
v

4 2
V d cing (0.0025, 0.001, 0.0001)

3
Vv ding (0.0025, 0.0001, .01)

For each hypothesis the state is observable but, given the measurement errors and uncertainties in the
vehicle equations of motion, each hypothesis has a different capability of estimating the state of the
aircraft. Hence, embedded in the theory is the consideration of the capability of any given sensor group,
corresponding to each hypothesis, to estimate the state of the aircraft. This is reflected in the error

covariance matrix elements of each hypothesis. As an example, E[(p-p)
2 ] under each hypothesis is indicated

as the (1,I) element of the error covariance matrix and is 0.00075, 0.0015, 0.00082, 0.00087 for H0 , H1 , H2

and H , respectively. As expected, H0 has the smallest value of E[(p-p) 2], indicating that this hypothesis,
if tr e, can produce the best estimate of p. Also indicated, however, is the fact that H1 produces the
worst estimate. Again, this is expected since H corresponds to deletion of roll-rate gyro information.

Figure I illustrates the unaugmented step response of the space shuttle to an aileron input. This
aircraft is a nonminimum phase system indicated by roll reversal. Also, it possess a large coupling of the

Dutch roll into the aileron response. Digital feedback was employed at a cycle time of 0.1 sec using
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feedback gains (-4.9, 0.4, 14.5, -6) for (p, 0., r, 0), respectively, to the aileron. The gains were
selected to be constrained to a control system operating with only roll control. Figure 2 shows the
response of the closed-loop aircraft to the same pilot step input when state variable feedback (perfect
measurement of each state) is employed. The noise apparent in the 6 trace is a result of analog to digitala
conversion error only. The nonminimum phase characteristic still is present in the response indicated by
the roll reversal. This could be eliminated resulting in considerable improvement in flying qualities if
yaw control were available. Figure 3 illustrates the same step response using noisy measurements and
accepting H . No actuators and sensors have been failed in figure 3. Figure 4 is an illustration of a
failure modes and effects simulation analysis to determine the weights Cij appropriate for the design. In

figure 4 the responses of the system are indicated for the case where H2 is true and forcing the system to

accept each hypothesis at different times. The failure mode considered in figure 4 is an increase in
measurement noise. Note that at the start of the record H0 is selected and produces poor characteristics,
as can be seen by comparing the H0 true portion of the roll-rate trace of figure 4 with that of figure 3.
Had there been no failure, those traces would be almost identical. When H is selected at approximately

5 sec, poor characteristics are still produced. However, when H2 is selected at approximately 10 sec the

system moves to a normal operation, only to return to its poor characteristics when H is selected at
3

approximately 15 sec. This figure illustrates the effect of accepting hypothesis Hi when H is true.

Simulations of this type can aid the designer in selecting the Cij terms in the Bayesian risk function.

Example 2. The theory was also applied to the design of a failure detection system for the F8-C
digital fly-by-wire aircraft. The purpose of this example is to illustrate the effects of nonlinearities

in the system. The system was designed to detect failures in the roll rate gyro, yaw rate gyro and sideslip
indicator. Sensors for longitudinal motions were used, but the system was not designed to recover from
failures of those sensors. The longitudinal sensors were total airspeed, angle of attack, and pitch rate.
This section is devoted to items that need to be considered in designing an analytical redundancy management
system and results obtained from a real time, piloted, six-degree-of-freedom simulation of the F8-C aircraft
on which the system was tested. Figure 6 indicates the performance of a failure detection logic based on a
linearization of the aircraft dynamics as was done in the space shuttle example previously but using the full
six-aegree-of-freedom dynamics in simulation. The aircraft is subject to an aileron input at reference time
t = 0. The resulting maneuver is seen by the redundancy management system as a failure in the sensors
because of disagreement of the bank of filters in the bank angle estimate. Note the difference in 0 as the
system switches from H2 to Hl . This poor performance indicates that for highly maneuvering aircraft it is

important to represent the kinematics of the vehicle correctly.

In selection of the model of the aircraft dynamics used in the failure it was considered that the
aircraft stability derivatives were not sufficiently well known to justify the scheduling of such data as
functions of flight condition and configuration changes. However, it was felt that the representation of
the aircraft's kinematic equations was well understood and could be scheduled more conveniently as a function
of aircraft configuration. Therefore, in an effort to use as simple a model as possible and provide an
accurate representation of the aircraft dynamics, the model selected was one in which linear aerodynamics

were assumed but the kinematic relations were included as nonlinear functions. The term "linear aerodynamics"
is meant to imply that the aerodynamic force and moment coefficients, X, Y, Z, L, M, N, are assumed to be
linear functions of estimated angle of attack, sideslip angle angular velocities, and control positions.
The model selected was

= rv - qw + X/m - g'sin8 + T.coseT

v = pw - ru + Y/m + g.cose-sino

w = qu - pv + Z/m + g-cos-cosO + T.sineT

= [(Iy - Iz)qr + LI/Ix

= iz - Ix )pr + M + TiT]/I y

= [(Ix - Iy )pq + N]/I z

e = q-cost - r-sinO

* = p + (q.sine.sin4 + r-sin8.cos0)/cose

where the aerodynamic forces and moments are given by

V = (u
2 + v

2 + w2)
I/2

a = tan- w/u

LiJ
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B = sin- v/V

(X,Y,Z) = 1/2 PV
2
S(C ,C ,Cz)

(L,N) = 1/2 pV 2Sb(C1,Cn)Cn)

M = 1/2 pV SMCm

The representation of aerodynamic force coefficients was selected as

=C +C + C 6 + C 6
x x x x f x e

C = C 8+C 6Y Ya Y, r

r

C = Co + Cz + C 6f + Cn 6

C1 = C18 + C p (pb/2V) + Clr (rb/2V) + C16 6a + C16 6r

e f

Cn= C naa+ Cn p(pb/2V) + Cn r(rb/2V) + Cn 6 6 a + n6 6r

a r

The specific aerodynamic coefficients used in the model were taken from a linearization of the F8-C
aerodynamics at 20,000 ft alt and 0.6 Mach number. Note that the model assumes principal axes, whereas the
sensors are body axis mounted. This introduces a modeling error that should be accounted for in the selec-
tion of the statistics of the process error w(k). The preceding equations represent the continuous-time
process model. The use of this model in a digital control system requires a discrete model representation.
Euler's method was used to generate the discrete model difference equations using a time interval of
T=0.03125 sec. Hence, for example, the preceding roll-rate equation becomes

p[(k+l)] = p(kr) + T-p(k,)

Again, this is a source of error in modeling of the aircraft dynamics and should be included in assigning the
statistics of w(k).

In designing the redundancy management logic (Fig. 5), the gradients at/ax and ah/ax were held constant,
and steady-state results were used in the bank of filters and decision functions. The covariance W of w(k)
was computed using the techniques of reference 2.

0The unfailed noise level for the sensors corresponded to a measurement error with V = diag(O.001,v

0.001, 0.001) whereas the failure mode sensor variances were taken as

V
1 

= diag(0.01, 0.001, 0.001)v

V
2 

= diag(0.001, 0.01, 0.0001)
v

3
V

3 
= diag(0.0001, 0.0001, 0.01)

The single-stage prediction i (k+llk) for each filter is obtained by using the last estimate i(kik) of that
filter and the control surface positions and computing the prediction ii(k+llk) from the nonlinear model
just described. Figure 6 indicates the performance of the decision logic for failures that occur during
maneuvering transients induced by aileron inputs that result in rapid rolling.

The system also tested with hardover failures of the zero output, maximum output, and minimum output
types. The detection logic behaved similarly to the tests performed under increased noise types of failures.
An exception was the zero output case. In that case, the failure detection logic was not able to detect
failures until the system was excited with some input, since the sensor output was supposed to be zero until
some input causes an output. Failures of this type, ii required to be detected during a nonmaneuvering
state, would have to be handled using built-in test equipment.
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IV. CONCLUSION

The use of analytical redundancy management has been addressed fr the aircraft flight control problem.
A specific technique of examining failure modes using Bayesian decision theory to process a moving window of
sensor data has been examined in detail. The theoretical methodology;has been tutorially developed and
selection of constant parameters required for the decision logic hast,,een illustrated for two aircraft flight
control examples. The logic required to implement an analytical redundancy management system dwares *hat
required for a simple voting test using hardware duplication yet it offers the promise, if developed to a
useful technology stage, of dealing with redundant actuators. This capability can be used to improve the
survivability of future aircraft guarding against such problems as failire to remove control surface locks--
a problem known to be the cause of several aerospace disasters. Hence, there is motive for developing the
technology even though the cost of implementation may be currently high.
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SUMMARY

The Apollo lunar module (LM) digital autopilot was a first generation computer-based
automatic control system. The use of a digital computer permitted the implementation of
a controller structure and control algorithms that would have been difficult to synthe-
size using analog controller technology. Optimal control theory has recommended a cas-
cade synthesis for controller design: an observer or estimator of the state followed by
memoryless control laws. This structure was utilized in the LM autopilot. The state

estimator had some similarities to a Kalman filter, but the variable gains were chosen
to minimize nonlinear measurement quantization effects. The memoryless reaction control
system (RCS) laws employed parabolic switching curves as suggested by minimum time/fuel
control theory for a double integral plant. The memoryless thrust vector control (TVC)
law was the first application of the minimum time control law for a triple integral plant.

LIST OF SYMBOLS

c = conversion factor having dimension of time
clc 2 ,c 3 = constants for stored mass properties

CSM = command and service modules
F = thrust of the throttleable descent engine
II q,Ir  = moment of inertia about the Q or R axis

IMU = inertial measurement unit
K,),Ko = gains used in the state estimator

L = distance from descent engine gimbal plane to vehicle center of mass
LM = lunar module
m = spacecraft mass
n,n - 1 = present, previous sample
np nu nv = number of RCS jets selected to torque about the P, U, and V axes

R = thrust vector actuator drive rate (0.2 deg/sec)
RCS = reaction control system
t = time at present sample instant
T = autopilot sample period (0.1 sec)
tj = same as t p,tu or tv
t p 'tutv = jet torquing durations commanded by the P, U, and V RCS control laws-the sign

I gives the sign of the torque desired
uq ,uru = thrust vector rotation command signal for the 0 or R axis (1, 0, or -1)

Uopt = thrust vector rotation command signal for time-optimal control

ve = assumed rocket exhaust velocity

xlx 2 1x 3 = components of a nondimensional attitude state vector

0( = magnitude of the angular acceleration that will result from firing the RCS
J jets for one axis

= magnitude of the P-axis angular acceleration that will result from firing
PP one P-RCS jet

c qu- ruuu = magnitudes of the Q, R, and U' components of angular acceleration that
will result from firing one U-RCS jet

0(q 'oXr = and R components of the estimated vehicle bias angular acceleration vector

q,rG = magnitude of the Q or R axis rate of change of angular acceleration that will
result from commanding thrust vector rotation

= angle by which the U' and V' axes are skewed away from the U and V axes
bet, Scb = correction to a component of the estimated angular acceleration, angular

velocity, based on the unexplained attitude
Am ,A = estimated changes in the Q and R bias angular accelerations due to thrustq r vector rotation commands in the last control interval

A2 I'A'~, estimated changes in the P, Q, and R angular velocities due to RCS jetsp q r commanded during the last control interval
A, r A changes in P, Q, and R components of vehicle attitude (small angles)

p q r
At - sample period of the powered flight guidance equations (2 nec)
Av- measured change in velocity due to thrusting



0e = attitude error

O,.o m = outer, inner, and middle gimbal angles of the IMU

8 do'tdi, dm = desired outer, inner, and middle gimbal anglesOdb = attitude error deadband size in the RCS control laws

'o rig = p, Or and R components of the unexplained attitude (small angles)
0 max = threshold value that must be exceeded by a component of the unexplained atti-tude before an attitude measurement is incorporated

f = estimated vehicle angular velocity vector

&d = desired angular velocity vector

-)e = angular velocity error

S)p' 'r = components of the estimated vehicle angular velocity

INTRODUCTION

The lunar module (LM) digital autoiplot provides attitude control of the spacecraft
during both coasting and powered flight. It is designed to control the three spacecraft
configurations shown in Fig. 1: LM descent, LM ascent, and commanded and service modules

(CSM) docked.

Torques for attitude control may be gene-
rated by the reaction control system (RCS) and
by the descent propulsion system. The RCS em-
ploys 16 jets mounted in clusters of four on
outriggers equally spaced around the LM ascent
stage. Each jet has a thrust of 450 newtons.

MODULE The descent propulsion system has a single
Oengine that can be throttled from a maximum

thrust of 45,000 newtons down to 12% of the
COMMAND maximum thrust. This engine is mounted in a
MODULE gimbal system with actuators which can change

the angle of the thrust vector relative to the
Aspacecraft center of mass at the constant rateASCENT STAR E of 0.2 deg/sec. The ascent propulsion system

0 (USED ALONE Is has a single 16,000-newton engine, which is
0 THE ASCENT mounted rigidly to the ascent stage. During

- CONFIGURATION) ascent, attitude control must be maintained
o \ by use of the RCS jets alone.

"( The autopilot is an integral part of the
9N LM primary navigation, guidance, and control

IUNARMODULE system.1 2 Most logical functions of this sys-SDESCENT STAGE tem are programmed in the general purpose on-
board digital computer, which has 36,864 words
of fixed memory for program storage, and 2048
words of eraseable memory. The word length is
15 data bits plus a parity bit. It utilizes
fixed decimal point arithmetic. The memory

Fig. 1 Spacecraft configurations cycle time is 12,usec. The execution of most
controlled by the lunar module instructions requires either two or three mem-
autopilot. ory cycles.

The preliminary design of the autopilot is presented by Cherry and O'Connor.3 ,4 A
history of the development of the autopilot is presented by Cox.5 A summary of the final
design of the autoilot, as flown in the first lunar landing mission Apollo 11, is pre-
sented by Widnall. The complete design details are presented in Ref. 7.

Insights from optimal control theory were useful in formulating the structure of the
autopilot, the state estimator, the RCS control laws, and the thrust vector control law.

STRUCTURE OF THE AUTOPILOT

A control structure that has been popularized by optimal control theory is the cas-
cade synthesis: the combination of a state estimator followed by a memoryless control
law. In the case of the LOG problem (the control of a linear plant with a quadratic cost
performance index and with G ussian noises disturbing the plant and corrupting the
measurements) Joseph and Toul proved that the optimal control of the plant is accomplished
by the cascade combination of a Kalman filter and the deterministic state feedback optimal
regulator. The Kalman filter is a linear estimation algorithm. The optimal regulator is
a linear memoryless control law. Part of the appeal of the cascade synthesis is that the
estimator and the control law can be independently designed. Changes in the driving noise
and measurement noise assumptions lead to changes in the optimal filter gains but do not
affect the control gains. Changes in the quadratic cost weightings on state deviations
or control effort lead to changes in the control gains but do not affect the filter gains.

This appealing separation of the controller design problem into an estimation problem
and a deterministic state feedback control problem was utilized in the 124 autopilot. The_
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control law design problem was further divided into an RCS control law design problem
and a thrust vector control law design problem. Thus three major subsections of the
autopilot were identified, each of which could be designed somewhat independently:
(1) the attitude state estimator, (2) the RCS control laws, and (3) the thrust vector
control laws.

To reduce the order of the control law synthesis problems, it was assimed that inde-
pendent control laws could be implemented for the different spacecraft axes. The RCS
control laws were divided into three separate channels, termed P, U, V. The locations
and orientations of the RCS jets are such that if the spacecraft center of gravity lies
near the geometric center of the 16 RCS jets (such as in the ascent configuration), then
eight "P jets" thrusting only in the Y or Z directions produce torques about the P axis
only (Fig. 2), four "U jets" thrusting in the + X direction produce torques about the U
axis only, and four "V jets" thrusting in the T X direction produce torques about the V
axis only.

+Y AXIS OR *Q AXIS The descent engine may be gimballed under
PITH AXISI computer control about the pitch (Q) axis and

the roll CR) axis. Therefore, the descent-
engine trim-gimbal control laws were separated

)AXIS 4--4into two channels (0 and R) . The computation
of the proper trim-gimbal drive for each

SU' AXIS channel is based on independent single-plane
control laws.

The basic sample interval of the auto-
Z AXIS pilot is 0.1 sec. Every 0.1 sec, whatever
OR . computer job is in progress is interrupted

+R AXIS and control is transferred to the autopilot
(ROLL AXIS) 4V computations. Typically, it requires 0.025

sec to complete the autopilot computations.
In addition to the main autopilot computa-
tions there is a subprogram that is executed

W VAXIS every 2 sec in powered flight to adapt the
+V AXIS autopilot gains as a function of the esti-

mated decreasing vehicle mass and the esti-
+X AXIS OR +P AXIS mated bias angular acceleration due to the

8 SIN 1 
I0 _4 --.4 ) (YAW AXIS) thrusting main engine.

*(ZIR IQ I The most complex interaction between the
+ guidance equations and the autopilot, and be-

AXIS tween subsections within the autopilot occurs
during descent-engine powered flight (Fig. 3).

OR = The spacecraft velocity-changes due to thrust-
.R AXIS ing are measured by the three integrating ac-

IROLL AXIS) celerometers of the inertial measurement unit
(IMU). The velocity-change information is
sampled every 2 sec by the computer and is
used by the navigation equations to determine
the present velocity and position. The guid-
ance equations then compute the desired new
thrusting attitude. In addition to commanding
the desired thrusting attitude, the guidance

Fig. 2 The control axes of the LM. equations can command changes in the thrust
level of the throttleable descent engine.

The velocity-change information is also used every 2 sec (At) to update the estimates
of spacecraft mass and thrust:

m(t) = m(t - At) - Av m(t - At)/v (1)

F = m(t) Av/At

(2)

These estimates are inputs to the autopilot adaptive loop. The control effectiveness of
the RCS jets about the P, Q, and R axes is calculated according to

= cI + c2/(m + c3) (3)

A separate set of constants is appropriate for each axis and for the descent and ascent
configurations. The values so calculated for the orthogonal angular acceleration com-
ponents agu and 01ru are then resolved onto the U' axis to determine u'u" Because of
the inertia symmetry, the value of ou'u can be used also for V axis computations.

The effectiveness of the thrust-vector control signals in the descent configuration
is calculated according to

&q = FLR/Iq, r = FLR/Ir (4)

where F is calculated by Eq. (2), Iq and Ir are calculated as being inversely proportional
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ATTITUDE STATE ESTIMATOR

The Kalman filter9 or the Luenberer observer
I0 '11 is a linear estimator. Inputs

to the estimator are the physical measurements and the known control actions. The esti-
mator uses a linear mathematical model for the plant to predict the response to the known
control actions. Predicted values for the measurements are formed from the predicted
state vector. The difference between an actual measurement and the predicted measurement

is multiplied by a gain vector and the resulting vector is used to adjust the state eati-
mate. In a Kalman filter, the optimal time varying gain vector is obtained from statis-

tical considerations, taking into account the initial estimation error covariance, the
plant state driving noise density, and the measurement noise variance. In the Luenberger
observer the gain vector is usually chosen to be constant. The gains might be chosen by

estimation error pole placement techniques.

The fundamental structure of a Kalman filter or Luenberger observer has been utilized
in the LM autopilot attitude state estimator. This includes the modeling of the space-
craft response to the known control actions and the correcting of the state vector accord-
ing to the difference between the actual measurement and the predicted measurement. How-

ever nonlinear logic is used to determine the gain vector, to overcome the severe effect

of measurement quantization.
The basic measurements of the vehicle attitude state available to the autopilot are

the gimbal angles of the inertial measurement unit, which are sampled every 0.1 sec. To
separate any bias angular acceleration due to the main engine from the angular accelera-
tion due to RCS jet firings, the state estimator needs additional inputs from the ECS con-
trol laws containing the jet-firing information. Including jet-firing information as
well as thrust-vector-command information gives an added benefit; the basic attitude in-
puts may be filtered as required, without necessarily introducing large lags into the esti-
mates of angular velocity and bias angular acceleration.

The estimated changes in the P, Q, and R angular velocities due to RCS jets selected
during the last control interval are computed as

A = t t n
q = qutunu - vnv

Ar =  ru(tunu + tvn) (6)

The estimated changes in the Q and R bias angular acceleration due to thrust vector

rotation commands in the last control interval are computed as

4t=0
p p

A ta = C t
Ill~~ ~~ u .. .. . . .. . .. .. ... -- .. .. . .. . .. . .
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160c = 04Tu q Ac = CtTu()q q r r(7)

The IMU gimbal angles observed during the previous execution of the estimator com-
putations have been stored. The present gimbal angles are now sampled, the change in
gimbal angles is computed, and the change is transformed to a change in body angles.
The difference between the measured change in attitude and the predicted change in atti-
tude is called the unexplained change in attitude. This is computed and added to the
previous total unexplained attitude to form the present total unexplained attitude:

(8a)
8 (n) = e (n-1) + AOp - [P (n-l)T + &pT/21

p p p p p

0 (n) = 0 (n-l) + A9 - 4) (n-l)T + OC (n-l)T 2/2 +A.T/21 (8b)
q q q q q

Or(n) = Or(n - l) + A1 - [uk n -l)T + ar(n- 1)T 2 , 2 rT/2 ]

(8c)

The quantities in brackets may be identified as components of the predicted attitude
change. Note that the predicted attitude change due to gimbal drive commands has been
neglected, and the exact expression for the attitude change die to jet firings has been
approximated by a simpler term.

The unexplained attitude is used to update the estimates of angular velocity and
angular accele-ation. But first, logic is applied to reject the measurement quantization
noise. Since the probability distribution of this noise is not Gaussian but is rectangu-
lar, the noise may be largely rejected by a nonlinear filter logic which is applied inde-

* pendently to the P, Q, and R axes in the state estimator. For each axis, if the component
of the unexplained attitude is less than a threshold value 9, = 0.14 deg, then the un-
explained attitude is assumed to be largely due to the attitude measurement quantization
noise. In this case, the corrections 6" and So to the estimates of angular velocity and
bias angular acceleration for that axis are set to zero. The unexplained attitude is not
zeroed. However, for each axis where the unexplained attitude exceeds the threshold, it
is assumed' that the estimated angular velocity and angular acceleration for that axis are
in need of corrections. Nonzero corrections £ and ba are computed as

bZ = K 9(n)/T, i = K e(n)/T 2  (9)

and then the unexplained attitude O(n) for that axis is reset to zero.

The estimates of the angular velocity and the bias angular acceleration are now up-

dated to the present sample instant as

(10a)

p p p p

q (n) = (n-1) + c (n-l)T +AA + (lOb)
q q q q q

U (n) = 'r (n-1) + 0 (n-l)T + + LZ (10c)
r r r r r

0q(n) = Oq(n-1) + q 1qa)

r (n) = C r(n-h) + Ar + r
(lb)

Note that bias angular acceleration about the P axis is assumed to be zero, and the esti-
mated rate-change term due to trim-gimbal activity in the last control interval has been
neglected. In periods of coasting flight, it is assumed that the Q and R components of
bias angular acceleration are also zero. Accordingly, the final step in the state estim-
ator sets q and ar to zero during periods of coasting flight.

The dynamic characteristics of the state estimator are strongly determined by the
choice of filter gains K and K . The gains selected for the different vehicle configura-
tions are given in Ref. 7. The engineering considerations which were used for determining
the estimator gains are as follows: The sampled measurements of vehicle attitude do not
contain significant noise. Therefore the attitude gain selected (for incorporating the



measurement error into the estimate of attitude) was unity. That is, the best estimate
of vehicle attitude is taken to be the measured attitude. The rate gain K) (for in-
corporating the measurement error into the estimate of angular velocity) should be set
as high as possible to obtain fast accurate tracking of the vehicle angular velocity.
Accordingly a high rate gain is used in the lunar-module-alone configuration. In this
case the angular velocity estimate is similar to that obtained by a simple attitude back-
difference. However, the high rate gain cannot be used in the docked configuration, or
the angular velocity due to bending mode oscillations is contained unattenuated in the
estimated angular velocity. This bending mode noise would lead to degraded control action
by the thruster control laws and the descent-engine thrust vector control law. Therefore,
in the docked configuration a substantially lower value of rate gain is used to filter the
bending mode oscillations, thus yielding a better estimate of the rigid body angular
velocity.

The proper choice of the acceleration gain, Ke, for incorporating the measurement
error into the estimate of angular acceleration, is a balance between the need to filter.1 unwanted disturbances such as due to propellant slosh or bending and the need to have
reasonable transient control. various parameters for the thruster control laws are com-
puted every 2 sec in the adaptive loop as a function of the present estimate of bias

I' angular acceleration. If the bias-acceleration estimates followed the sinusoidal distur-
bances due to slosh or bending, the resulting fluctuations in the autopilot parameters
would produce unpredictable performance. Therefore a low value for the acceleration gain
is desired. However, if the value selected is too low in descent engine powered flight
the proper control response to the angular-acceleration, due to thrust-vector misalign-
ment at ignition or at a throttle change, would be delayed by the slow build-up of the
acceleration estimate. Extensive simulations were used to demonstrate that these com-
promises were made satisfactorily in selecting the filter gains. It was not necessary
to implement a higher-order filter having explicit estimation of bending or slosh modes,
with the attendant difficulties associated with the uncertain parameters. It was not
necessary to implement gains that varied as a function of time-since-ignition or time-
since-thrust-change.

RCS CONTROL LAWS

In the LQG optimal control problem, the optimal state feedback regulator turns out
to be a linear memoryless function of the estimated state of the plant. The LM autopilot
follows the insight that the control laws should be memoryless functions of the estimated
state. However linear control action is not possible. The reaction control system (RCS)
jets have only two control levels: on or off. The thrust vector gimbal drive rate has
only three values: plus on, zero, or minus on. It might have been possible to approxi-
mate the action of a LQ optimal regulator by utilizing pulse width modulation to achieve
an average control level less than the full on level. However this design approach was
not taken. In the case of the RCS control laws, the high total number of firings under
pulse width modulation might have increased the chances of a jet failure. Furthermore
optimization criteria other than quadratic cost had greater appeal.

The RCS control law that was developed for coasting flight has a strong resemblance
to the optimal control law for the minimization of a linear combination of time and fuel
for the double integral plant. Athans and
Falb 12 show that the optimal nonlinear state fxyw
feedback control law has the switching
curves and optimal trajectory shown in Fig.
4. The switching curve X is made up of two
parabolic arcs, which are realizeable tra-
jectories of the plant and are a functionr
of the control effectiveness. The I k rk
switching curve is also comprised of para-
bolic arcs. However these arcs are not
trajectories of the plant. They are a func- -_0_________
tion of the relative weight k that has been 0
placed on minimizing settling time as op-
posed to minimizing fuel. If k is chosen
to be large, the rk switching curve is closer
to the Yawitching curve. If k is chosen to
be small, the rk switching curve is close to
the xl axis. Note that this optimal con-
troller requires only two control-on periods
to bring any initial state error to zero.
Although number of control actions was not
mentioned in the performance index, the
optimal controller appears to minimize the Fig. 4 Time and fuel optimal controller
required number of control actions, for a double integral plant.

One implementation of the theoretical optimal controller would require continuous
monitoring of the state estimate to determine the exact instant for changing the control
commnand. This approach is not possible with digital control. Within the computational
capacity of the LZ4 guidance computer, the fastest repetition rate that is possible for
the autopilot calculations is 10 cps. However, in the lightest ascent conf ig~ration,
two RCS Jets torquing can produce an angular acceleration of about 50 deg/sec'. The
simplest form of RCS control law would turn-on and turn-off the RCS jets only at the
control sample instants. However, if this approach were used, the angular velocity of
the lightest ascent configuration would be controlled to an accuracy of only 5 dgsc



This is clearly unacceptable. To overcome this difficulty, the assumed control effective-
ness of the RCS jets is used to determine the exact jet firing durations that are required
to deliver a desired change in angular velocity.

For automatic control in the 12M-alone case, a subroutine is programed which calculates
the required jet torquing time tj for one axis as a function of: (1) the attitude error
0 e and the angular velocity error ce , (2) the parameters, as calculated in the adaptive
loop, that determine the curvature and position of phase plane parabolas, and (3) the
preference for 1-jet or 2-jet firings to obtain the required torque impulse. By succes-
sive calls to this subroutine, with the appropriate input information for each axis, the
jet firing times for each axis are determined.

The actual control logic applied by
the subroutine in coasting flight is il-

%.O lustrated by the phase plane diagram in
Z.ONC Fig. 5. There are several noticeable de-
T NUEE 'SC4v partures from the theoretical optimal con-

trol law. The most obvious is the intro-
duction of an attitude deadband so that

-.___ once the initial state error has been re-
-- -,>'wr'duced to near zero, there will not be fre-quent jet firings. The phase plane above

D the Oe axis is divided into five zones.
., 4 6b1 or The boundaries of these zones are parabo-
0AS, las. The steepness of the parabolas bound-

ing zone 2 are identical to that of the
estimated vehicle phase plane trajectory

,,i when the jets are torquing. The jet ac-
.... p. """'Yceleration magnitude which determines

this parabola was calculated in the adap-
tive loop. The parabola separating zone
4 and zone 5 is not a trajectory of the
vehicle. It is flat to keep control

Fig. 5 RCS control law for LM-alone angular velocities low, but is not so flat
coasting flight, that a large Oe can persist. The flatness

selected corresponds to an acceleration of
1.4 deg/sec 2 . A smaller acceleration could

not have been chosen without rescaling the fixed-point arithmetic calculations. The inter-
cepts of the parabolas with the Oe axis are a function of the deadband Odb selected by the
astronaut or by the automatic maneuver program. Available attitude error deadbands are
0.3, 1.0, and 5.0 deg.

This phase plane design is such that the control action in response to any initial
condition will transfer the state toward the origin with at most two major pulses. This
is illustrated by segment A-B-C of the sample trajectory in Fig. 5. After the acquisition
of the deadzone, the vehicle state is held in a minimum impulse limit cycle, as shown by
segment D-E-F-G. The state traverses the deadzone, and its direction is reversed by a
single firing of one RCS jet each time a zone 3 is encountered.

we The control logic applied by the sub-

routine in powered flight is illustrated
TORQUE AGAINST by the phase plane diagram shown in Fig.
THE BIAS TORQUE 6. The intercepts of the various parabolas

are shifted as a function of the magnitude
of the estimated bias angular acceleration.

-0.75. The intercept locations shown in Fig. 6 are
typical for powered ascent with a large as-
cent engine thrust vector misalignment.

0, The steepness of the four parabolas are
based on four different angular accelera-
tions. The upper left parabola is based
on the minimum acceleration 0min = 1.4 deg/

SCOAST sec 2 as in coasting flight. The upper
right parabola is based on the net accelera-

TORQUE WITH tion possible with the jets firing against
THE BIAS TORQUE the bias torque. The lower right parabola

is based on the bias angular acceleration

alone (no jets firing), however, it is
steepened by a factor 0/ to improve the
probability that the trajectory would notFig.6 IRS cntro lawforLM-aonerecross the switch curve into the torquing

powered flight with a large bias torque. zone causing an unnecessary small pulse.

A typical phase plane trajectory is
shown superimposed on the phase plane logic

in Fig. 6. The phase plane design is such that the vehicle is controlled with a low-
frequency limit cycle in which the jets are commanded to fire a single pulse in opposition
to the bias torque once each cycle.

The autopilot must perform the same basic control functions in the CSM-docked case
as in the LM-alone case. However, a separate subroutine was developed for the CSM-docked
case. A problem peculiar to the docked configuration is that the vehicle has three low-

l11



frequency bending modes associated with the relatively weak docking adapter connecting
the vehicles. To guarantee that the RCS jets not not be fired at the bending frequency,
jet inhibition logic was designed for the CSM-docked case.

1 3

In addition to the RCS control laws provided to follow the automatic attitude com-
mands, separate control laws are provided to follow manual attitude commands, as inputed
to the computer by the rotational hand controller.

1 4

An interesting performance problem 2
existed with an earlier autopilot design,
in which the orthogonal P-U-V axes were T | IMF 0- 01:57:45 G. T.
used for the application of the single- L:
axis phase-plane RCS control laws. Figure t

(from Ref. 15) shows the U-axis jet - 0 flfirings as telemetered to the ground dur- 
[

ing a short portion of ascent-stage-only -.
powered flight in Apollo 9. One can see
evidence of the low-frequency limit cycle, 2-1
in agreement with the design intent, in -2 L
which the bias torque from the thrusting 0 5 10
ascent engine is balanced by torque pulses TIME (S[C|
from one U-axis jet. (The U-axis jet
selected is the one that can provide the
desired sign torque by thrusting in the
same direction as the ascent engine.) Fig. 7 Typical U-axis jet firings during
However, note in addition to the four Apollo 9 ascent powered flight.
substantial RCS pulses there are five

useless small pulses.

These multiple jet firings are caused by inertia cross-coupling effects. The mass
distribution in the LM is such that the principal axes of the moment of inertia are
aligned closely with the Q and R axes, not the U and V axes. As a result, applying a
torque with a V-axis jet produces an angular acceleration not only along the V axis But
also along the U axis. The magnitude of this cross-coupled acceleration is such that in
the worst case the angular acceleration vector is about 150 away from the applied torque
vector. During the same interval of time shown in Fig. 7 a similar low-frequency limit
cycle existed about the V axis. The V-axis pulses were occurring slightly delayed with
respect to the U-axis major pulses. Hence at the end of a major U-axis pulse, the V-axis
jet was still firing. This V-axis torque produced a cross-coupled angular acceleration
along the U axis. This in turn caused the U-axis phase-plane trajectory to leave the
coast zone and return to the torquing zone. The result is unwanted small pulses. This
cross-coupling effect had be9n anticipated before flight as a result of detailed autopilotperformance simulations.

1 6 'I

To decouple the RCS control channels and thereby reduce the number of RCS firings, a
nonorthogonal set of control axes called U' and V' was introduced. 1 8 The U' and V' axis
directions are uniquely determined by the requirement that the U' direction shall be
orthogonal to the angular acceleration induced by applying either a V-axis torque or a
P-axis torque, and the V' direction shall be orthogonal to the angular acceleration in-
duced by applying either a U-axis torque or a P-axis torque. The U' and V' axes are
skewed symmetrically with respect to the LM R axis as shown in Fig. 2. The sines and
cosines of the angle 6, by which the U' and V' axes are skewed away from the U and V axes
toward the R axis, are

sin6 = (I r - 1 )/12(I r
2 + q2)] 12 (12a)

2 1/2
cos 6 = (I r + Iq )/[2(I 2 + )]

q (12b)

By resolving the attitude error vector and the angular velocity error vector onto the U'
and V' axes and by utilizing the U' and V' components for the purpose of determining U and
V jet torquing requirements, the two control channels have been decoupled.

MINIMUM TIME THRUST VECTOR CONTROL LAW

It was originally expected that the autopilot would be designed to estimate the mis-
alignment of the descent-engine thrust vector relative to the spacecraft center-of-mass
and then command the engine-gimbal actuators so as to null this misalignment. In such a
design, attitude-maneuvering and attitude-hold capabilities would be provided by utilizing
the small thrusters of the reaction control system. However, minimizing the propellant
expenditure of these attitude thrusters was an essential design consideration. Further-
more, the probability of thruster failure would be reduced if the number of thruster
firings was also minimized. It was noted that torques for attitude control could be de-
veloped without a propellant-expenditure penalty by using the descent engine, because
the descent engine in powered flight would be firing continuously. Therefore, an atti-
tude control law was sought that would utilize the descent engine in such a way as to
permit attitude control without the assistance of the attitude thrusters. Because the
actuator drive rate was so slow (0.2*/sec), there was no hope of eliminating entirely
the need for occasional thruster activity. Rapid attitude maneuvers, such as were re-
quired at certain critical instants in a lunar landing, would demand torque from the
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small thrusters. During less critical intervals, on the other hand, the guidance com-
mand would be slowly varying. During these intervals it was hoped that a thrust-vector
attitude control law could maintain the attitude errors sufficiently small so as not to
require the assistance of the thrusters. Accordingly, the control law was sought which
would provide the fastest possible response time-that is, the optimal (minimum-time)
control law. It is known that the desired time-optimal controller would have the property
that the actuators would always be commanded to drive one way or the other. At no time
would a command not to drive be issued. Inasmuch as no limitations on actuator activity
could be identified, this characteristic was considered acceptable.

About either of the two spacecraft axes that could be under thrust-vector control,
the differential equation relating the gimbal-drive control signal, u, to the deviation
of the vehicle attitude, 0, from the desired attitude, Od' is

d30
e FLR (13)

dt3  u

where &, = 1-9 is the attitude error, F is the thrust of the descent engine, L is
the distance from the engine hinge point to the spacecraft center-of-mass, R is the
available actuator drive-rate magnitude and I is the moment-of-inertia of the space-
craft for that axis. The control signal u from the computer, because of the digital
interface, can take on only the values +1, 0, and -1. These relationshipE are illus-
trated in Fig. 8. Note that for
equation (13) to be true, the
third derivative of the desired ad Wd 8

d
attitude must be zero. This re- 8 CONTROL

striction, however, does not ex- 0 f f f EF--,oV NE SS
clude the most likely guidance + We CONTROL
commands: a constant attitude-

hold command or a constant 
pitch-

rate command. Note also that
equation (13) ignores the dynam-
ics of bending and propellant
slosh.

As the descent engine ex-
pends its propellant, the space-
craft mass decreases. The moment
arm, L and the inertia, I, vary
with the mass; hence they are Fig. 8 The assumed dynamics of the desired
time-varying. The descent-engine attitude 1 and the vehicle attitude 0.
thrust, F, is throttleable, to
make possible a soft-landing,
and it is commanded to deliver
varying thrust levels by the guidance equations. Thus, the control effectiveness FLR/I
is a time-varying coefficient. However, L and I can vary only slowly, and large dis-
continuities in the thrust F are commanded at only a few discrete points in a lunar-
landing trajectory. Therefore, for the purpose of control-law derivation, we can as-
sume that FLR/I is constant.

The first and second derivatives of the attitude error, 9 e , are the angular velocity
error,carror, e An important assumption is that these
state variables 9 e, &e and ae are all available to the controller with no measurement
noise or estimation error. Under these assumptions, the time-optimal feedback control
law can be derived. It is a feedback law, rather than an open-loop law, in the sense
that the control signal u is given as an explicit function of the present state (me, "e,
Se). This control law will drive any initial state to zero in the minimum time.

Extensive general results appear in the literature on optimal control for linear
time-invariant systems. Time-optimal controls have been found for a number of second-
order systems and for a few third-order systems. However, the time-optimal controller

for the triple-integral plant, of which the thrust-vector control problem is an example,
could not be found in the literature. Therefore, it was necessary to derive the time-
optimal controller for the triple-integral plant. The derivation by Widnall is presented
in Refs. (19) and (20) and is summarized briefly in the Appendix. In terms of the
variables of the thrust-vector control problem, it is found that the optimal control sig-
nal, uopt , may be determined as a function of the present state (e, *e, 4e ) by the follow-
ing sequence of calculations, which constitutes the minimum-time control law:

1/3

x = c2e x2 = c b x 3  e (14)
e =e

S 1 = sign(x), S2 = sign(x 2  + Sx 1 2
1 3 1 2 3/2

op t  sign[x 3 + x + 2 1 2 2 (s 2 x 2 + 2x1 ) ]

Li
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The parameter c has the dimension of time. It is used to convert the state ( e , ")e, 
9 e)

into a nondimensional state (x , x3,x). The optimal control signal, uopt, is then
given in terms of the nondimenlioal state.

The sequence of calculations of the optimal control law given by equation (14) is
executed easily by the autopilot program stored in the lunar-module computer. Tf a digi-
tal computer were not available, implementation of the optimal control law by analog
techniques would be a formidable engineering task.

A distinct design advantage of the optimal control law over a linearized switching
law is the validity of the control law for all values of the state variables and the
control effectiveness. To synthesize a linearized switching law, the designer must base
his choice of gains on some assumption about the maximum values of the state variables.
Large values for the initial conditions call for low control gains, otherwise the closed-
loop response exhibits gross overshoot. But if conservative low gains are selected, the
closed-loop response will be needlessly slow for small values for the initial conditions.
These design considerations apply throughout the full range of control effectiveness.
In this Apollo application, the control effectiveness has more than a two order-of-magni-
tude variation from the heaviest docked configuration at low thrust to the lightest LM-
alone descent configuration at high thrust.

In theory, if using the optimal control law, any initial angular state of the space-
craft will be driven to zero with at most two control reversals. For example, the theo-
retical response of the control system to an initial thrust misalignment, but with zero
initial angular velocity and attitude error, is shown in Fia. 9.

To achieve the theoretical optimal per-
formance with the minimum-time control law

CONTROL SIGNAL _1"1 of Eq. (14), the angular state of the vehicle
must be continuously supplied and the op-imal
control action must be continuously co7-uted.

A 10 7.4 A.| In this way, control reversals take pl,-e at
the exact instant when th switching surface
is reached. In the application under con-
sideration, however, the control la.i was to

20 be implemented in a digital autopilot where
ANGULAR , the angular state could be estimated and

the optimal control action could be computed,
only at discrete sample instants. To ap-
proximate continuous feedback control, it is
of course desirable to sample and take con-
trol action, as frequently as possible. How-
ever, the total autopilot computational load,
including the control law, must stay below a

ANGULAR certain fraction of the total computer capa-
VELOCI TY city, about 25 per cent, so that the remain-
4.,,, I ing capacity is adequate for the navigation,

guidance, display, and other computations.
These considerations determined a feasible
sample rate of 5 optimal-control-law evalua-
tions per second for both axes under thrust
vector control. That is, the optimal con-

ATTIU trol action could be calculated every 0.2
(de) J sec. The gimbal-drive control signals, u,

would be held constant between these control
determinations.

To test the effect of the finite sample
rate upon the closed-loop performance, a

Fig. 9 Minimum time recovery from an simple single-plane simulation of the vehi-
initial thrust misalignment (control cle was programmed and flown under the ac-
effectiveness = l0/sec 3 ) tion of the proposed control law. The sample

interval of 0.2 sec was simulated. In addi-
tion, the response characteristic of the
gimbal-drive actuator was simulated by a

first-order system having an exponential response with a 0.1 sec time constant. The
simulation assumed that the angular state was available with no estimation error. Further-
more, structural-bending and propellant-slosh dynamic effects were not simulated. These
tests were performed with a control effectiveness of FLR/I = 1.0*/sec 3 . This is about the
largest control authority possible; it corresponds to the lunar-landing configuration
with maximum thrust and nearly empty descent propellant tanks.

The initial test results were quite disappointing.2 1 The delays in the control loop
due to sampling, i.e., missing the optimal switching time by up to 0.2 sec, plus the
finite actuator response time, resulted in a poor initial transient response-showing a
large overshoot of the desired zero attitude error-and an unacceptably large limit cycle
in the steady-state response. The limit cycle attitude excursions exceeded 8* peak to~peak.
p The most elegant solution to this problem would have been to find the minimur-time
control law for the sampled-data triple-integral plant. Extensive general results exist
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concerning the theory of minimum time discrete regulator3 22 The optimal control law

has been found for the sampled-data double-integral plant 2 3 '2 4 . However, the control
law for the triple integral plant has not been presented in the literature. An attempt
to derive the desired control law was not successful.

An engineering solution to the problem of overshoot and unacceptably large limit
cycles was to utilize the continuous control law but with a reduced gain. 2 5 If the
switch cirve programmed in the control law is based upon an assumed control effective-
ness, which is less than the actual control effectiveness, then the exact switchinc time
becomes less critical. The state trajectory will still overshoot the switching surface.
However, the excess actual control effectiveness permits the subsequent trajectory to
converge back toward the switching surface. By staying close to the switching surface,
the trajectory will not overshoot the origin by a large amount.

This proposed solution to the problem was simulated for the triple-integral ilant,
again utilizing the single-axis rigid-body simulation with sampling and actuator lag.

* The actual control effectiveness in the simulation was FLR/I equal to 1.0*/sec 3. The
initial angular state was 9 o = 0, Zo = 0, and 'o = 2*/sac2- The results shown in Table1 were obtained for various choices of assumed control effectiveness employed in the
control law. Settling time in Table 1 is defined as the time to reach zero angular ac-
celeration with angular velocity and attitude simultaneously near zero. No meaningful
settling time is identified in the full-gain case, because the limit cycle is comparable
in amplitude to the initial conditions.

Tl4ISettling time
Control-law assumed control Limit-cycle (% of the

*1 effectiveness as a fraction amplitude theoretical
* ol the actual cortrol effec- (0 ,peak to minimum)

tiveness peak) (sec)

1.00 8.1 ....
0.75 0.9 9.7 i10
0.50 0.5 10.1 115
0.40 0.3 10.5 119
0.30 0.15 10.9 124
0.20 0.07 12.9 146
0.10 0.03 16.5 188

The results given in Table 1 clearly show that reducing the control-law gain can re-
duce significantly the expected limit-cycle amplitude. The required settling time in-
creases as the gain is reduced. However, thr increase in settling time is not large until
very small values of control-law gain are used.

Based on these simulation results, the gain-reduction approach was selected as the
solution to the problems introduced by sampling and actuator response delay. A 0.3 reduc-
tion in gain was implemented for all spacecraft configurations and weights. That is,
the first expression in the minimum-time control law given in Eq. (14) was modified to
become

K = 0.3 FLR/I

c = K - 1/3 
(15)

where K is the control effectiveness assumed by the control law.

The structure of the autopilot including the interrelationships of Ie state estima-
tor, the RC! thruster control laws, and the descent-engine thrust vector control laws
was discussed earlier and was illustrated in Fig. 3. The estimated vehicle angular
state is compared with the angular state commanded by the guidance equations. Attitude
errors and angular-velocity errors are computed. These errors plus the estimated angular
acceleration form the inputs to the control laws. During descent engine powered fligl--
gimbal-drive commands for both axes under thrust-vector control are computed according
to the optimal control law of Eq. (14) with the reduced gain of Eq. (15). Attitude con-
trol about the third axis is maintained by firing the smali thrusters. The nonlinear
logic, discussed earlier, operating on the attitude error and angular-velocity error,
controls these thruster firings. In general, the thrusters are commanded to fire only
when the errors exceed certain deadbands. In the lunar-module-alone configuration, the
small thrusters also will fire about the two axes nominally under thrust-vector control,
if the errors exceed the deadbands. In the docked configuration, simulation results
showed that if the small thrusters were permitted to assis the thrust-vector control,
they would be commanded to fire for excessively long periods. The impingement of the
thruster exhaust on the descen, stage would then cause a dangerous level of heating.
Therefore, the autopilot for the docked configuration was modified so that during
powered flight the small thrusters would not be commanded to fire about the two axes
under thrust-vuctor control. This placed the entire burden for control on the optimal
thrust vector control law.

The primary tool for testing the digital autopilot was a detailed simulation of the
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vehicle and of the guidance computer.26 The exact coded instructions of the digital
autopilot were executed in this simulation. The test results 17 showed that the optimal
control law could successfully control the attitude in both the lunar-module-alone con-
figuration and the docked configuration. The important disturbances were shown to be
the thrust misalignment at ignition and the unsymmetrical compliance of the engine-
gimbal structure in response to thrust-magnitude changes.

PERFORMANCE IN FLIGHT

A dramatic demonstration of the attitude-control capability of the minimum-time
thrust-vector control law was given during the flight of Apollo 9. The mission was the
first manned flight of a lunar module and took place in earth orbit. The previous
flight test of a lunar module was unmanned and, due to a premature engine cut-off,
failed to demonstrate a long-duration period of thrusting with the descent-propulsion-
system engine. Therefore, for Apollo 9, a primary flight-test objective was to obtain
a long period of powered flight using the descent engine. In addition, the engine-
throttling capability was to be tested. If the lunar module was to perform such a long
burn while not docked to the command module, the orbits of the lunar module and the
command module would become substantially different, creating a rescue problem should
difficulties develop in the lunar module. Furthermore, the different low-altitude earth
orbits would make tracking coverage difficult. Therefore, the mission planners decided
to conduct the long-burn test of the descent engine while the two spacecrafts were in
the docked configuration. Should problems develop, the crew could immediately transfer
to the command module. Also the greater the mass of the combined vehicles permitted
less orbital change for the same duration of thrusting, thereby helping the tracking
problem.

The planned main-engine thrust profile is shown in Fig. 10. Simulation of the auto-

pilot performance on the digital simulator produced the predicted system performance shown
in Fig. 11. The attitude errors about the three spacecraft axes are shown. The P axis
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Fig. 10 Planned descent-engine thrust profile for the Apollo 9 docked burn.
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is the axis being controlled by the small thrusters. The Q and R axes are the two
spacecraft axes being controlled by the minimum-time thrust-vector control law. During
the initial 26 sec after ignition at 10 and 40 per cent thrvst, there is a mild attitude
transient during which the angular-state estimator and the thrust-vector control law
discover the state deviations due to the small thrust misalignment at ignition and take
action to restore the angular state to zero. At throttle-up to 100 per cent 26 sec
after ignition, the compliance of the structure where the engine is mounted causes a
shift in thrust-vector direction when the thrust level is changed. The change in thrust
from 40 to 100 per cent thrust was assumed to produce a 0.40 shift in thrust-vector di-
rection relative to the center-of-mass about both axes. The angular-state estimator soon
discovers the new bias angular acceleration due to the thrust misalignment, and the
minimum-time control law automatically responds to the updated state estimates. The
attitude transient induced by the thrust misalignment at throttle-up produces a peak
attitude error of 40. The control law returns the attitude error, angular velocity
error, and angular acceleration to nearly zero. The total transient from throttle-up to
steady state lasts about 30 sec.

In the flight plan, a long 5-min period at 100 per cent thrust exists for most of
the burn. This period was noticeably shortened in the simulation, to save computer time.
No significant change from the steady-state behavior shown in Fig. 11 would be expected
in a full-length burn simulation. The end of the planned burn was to include'a period
of manual throttling to test further the variable-thrust performance of the engine. The
simulation results predicted similar attitude transients when the thrumt was reduced

* Ifrom 100 to 40 per cent, but of the opposite sign. During the last 30 sec at constant
40 per cent thrust, the control law is not sufficiently fast to reduce the attitude error
to zero. Because the vehicle is not at this time perfectly aligned with the remaining
velocity-to-be-gained, the guidance equations are commanding a change in the desired
attitude. The discontinuities in desired attitude every. 2 sec can be seen in Fig. 11
through their effect on the attitude error. The actual vehicle attitude is changing
somewhat faster than the desired attitude, so the attitude errors are reducing. In the
last 4-6 sec, the guidance equations shop changing the desired attitude and the attitude
errors are seen to move smoothly toward zero.

The Apollo 9 mission was flown in Moarch 1969. The docked burn utilizing the descent
engine was conducted as planned. The astronauts' comments during the burn indicated
that the control was quite satisfactory. Astronaut Schweickart commented that he felt
some low-frequency oscillations, probably propellant sloshing, but it did not prevent
satisfactory performance. Subsequent analysis2 7 of the telemetered data produced the
plots of attitude error shown in Fig. 12. As discussed in Ref. 27, the initial throttle-
up transients in flight may bear little resemblance to the predicted transients. This is
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Fig. 12 Actual attitude errors during the
Apollo 9 docked burn.

because the throttle-up transient errors are strongly influenced by the random engine
misalignment at ignition. The predicted and actual end-of-burn transients, on the other
hand, are quite similar. After the long period at 100 per cent thrust, the engine thrust
vector is aligned quite close to the center-of-mass. The only significant disturbance is
the deterministic thrust-misalignment angle introduced at throttle-down by the structural
compliance.

The LM autopilot continued to fly with dramatic success in the several Apollo mis-
sions, including the lunar landings. Telemetered data plus comments from the astronauts
confirmed that the autopilot performed in flight in close agreement with the intended
performance.
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During the first lunar landing (Apollo 11) the autopilot followed first the auto-
matic and later the manual attitude commands, changing from a nearly horizontal thrust-
ing attitude at ignition to a vertical (upright) attitude at touchdown. During the
first four minutes of the powered descent after the initial transient, the thrust-vector
attitude control law was successful at following the slowly changing attitude commands
without the assistance of the U or V RCS jets. Later, a propellant slosh oscillation
developed with amplitude sufficiently large to exceed the deadbands in the RCS control
laws. Small RCS firings were commanded to limit the slosh oscillation amplitude. The
slosh oscillation at 0.5 Hz may be seen in the pitch angular velocity shown in Fig. 13

from Ref. 15. The automatic guidance was
U0 Alanding the spacecraft among numerous

V boulders, so Armstrong switched from auto-
matic to manual attitude commands and
pitched the Eagle upright to ex end the tra-

_ _ _ _ __ -jectory beyond the rock field.
2

0 10 20 30 40 50 60 The pitch attitude following liftoff

TIME (SEC) from the lunar surface is shown in Fig. 14
Fig. 13 Pitch-rate during a portion of the from Ref. 15. After 10 sec of vertical rise,
lunar landing powered descent, the automatic guidance commanded a pitch-

over of 50 deg at a rate of 10 deg/sec.
DATA DROPOUT Note the rapid response provided by the

RCS control laws. The actual attitude fol-
0. --- ~ - lows closely the desired attitude. After
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- rection) at cutoff. This causes a time-
COMMANDLD variation in the bias angular acceleration
rACTUAL components along both the U' and V' axes.

-50 2The V' component of the bias angular ac-

celeration as computed by the state esti-
.6 _J mator during the last 150 sec of powered

0 10 2 30 4 ascent is shown in Fig. 15 from Ref. 15.
The autopilot adapted its critical param-TIME (SEC) eters in the RCS control laws in response

Fig. 14 Pitch guidance command and to this varying estimated bias acceleration.
initial phase of powered ascent. The accumulated number of firings of the Vaxis RCS jets for the entire powered ascent

2 is shown in Fig. 16 from Ref. 29. After

liftoff and the initial pitchover, it is
TIME O.4:22:OOG.E.T. evident that attitude control about the V

APOLLO 11 axis was maintained for about 200 sec by
firing the +V jet only. Later the limit

!_ 0 cycle amplitude increased until firings
from both the +V jet and the -V jet were
required to maintain attitude control. Al-
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-2 L VIV , bias angular acceleration of the ascent en-
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Fig. 15 V' component of estimated bias Av. This period of +V and -V torquing may
angular acceleration during final phase be relled to propellant slosh oscilla-
of powered ascent. tions. = Near the end of the powered as-

cent after the bias angular acceleration
has reversed sign, no further firings are200 TIME0.124:22:0 G.E.T. commanded of the +V jet and attitude con-
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150 trol axes, no unnecessary small pulses were
Jseen.
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+X TORCE laws, a structure suggested by optimal con-

0 [ : trol theory, proved to be a practical de-
0 100 200 0 sign approach. Separate control laws were

TIME (SEC) designed for the RCS jets and for the de-scent engine thrust vector. The control

Fig. 16 Total V-axis RCS jet firings laws were further subdivided into separate
during powered ascent, channels. The axes chosen for applicationof the separate RCS control laws were non-

orthogonal. This design effectively



eliminated performance problems that existed because the torque vectors of the RCS jets
were not parallel to the principal axes of inertia of the vehicle.

The attitude state estimator had a structure similar to that of a Kalman filter or
a Luenberger observer in tha~t the modeled response of the vehicle to known control com-
mands was used to eliminate estimation lag. However the estimator gains were not the
Kalman gains but were set in a novel manner to minimize the nonlinear quantization ef-
fects. The attitude state estimator computed the angular velocity and angular accelera-
tion of the vehicle, based on measurement of vehicle attitude and assumed control res-
ponse. The success of this state estimator demonstrates that rate gyros are' not required
sensors for an autopilot. They may be eliminated to achieve an increase in over-all sys-
tern reliability.

H The RCS control laws in the LM-alone case employed parabolic switch curves in their
phase plane logic. This form was suggested by the minimum time/fuel control law for the
double integral plant. The critical parameters in the RCS control laws were adapted in
response to the varying mass of the spacecraft and the bias angular acceleration due to
the thrusting main engine. The control law design permitted rapid response to commands
with a minimum of jet firings. Satisfactory control was possible even in the lightest
ascent configuration because the RCS control laws computed the exact firing time required
to achieve a desired rate change.

A third-order minimum time control law was used to control the vehicle attitude by
means of the thrusting descent engine. The minimum-time continuous control law for the
triple-integral plant was derived. This control law was then successfully integrated
into the digital autopilot. Although the angle of the thrust vector relative to the
center-of-mass could only be commanded to change at the slow rate of 0.2*/sec, the time-
optimal control law permitted satisfactory attitude control, often without the assistance
of the small thrusters. This achieved a saving in the propellant expenditure and number
of firings required by the thrusters. Within the knowledge of this author, this was the
first successful application of a third-order minimum-time control law to a significant
control problem.

This design experience with the minimum time thrust vector control law provides a
valuable lesson for future spacecraft designers. In particular, the designer may not
need to specify high-power, high-speed actuators when the spacecraft is to be controlled
by gimballing the thrusting engine. If the uncontrolled vehicle is unstable (for ex-
ample, many boosters are aerodynamically unstable), then rapid actuation is required.
(This is because for an unstable plant with bounded control the set of initial states
from which the origin can be reached is larger if the maximum control is larger. Hence
a faster actuator reduces the probability that a random disturbance can lead to loss of
control.) If rapid attitude maneuvers must be controlled using the thrust vector, then
rapid actuation again may be required. But where the vehicle is at least neutrally
stable and there are rno rapid-maneuver requirements which must be met solely by torque
from the thrust vector, low-power low-speed actuators may meet the mission requirements.
This permits a significant saving in spacecraft weight and reduces the power that must
be supplied to drive the actuators. To obtain the maximum performance with slow actua-
tors, the control-system engineer should explore the use of a time-optimal control law.

APPENDIX. SUMMARY OF DERIVATION OF THE TIME OPTIMAL CONTROLLER FOR THE TRIPLE INTEGRAL
PLANT.

Trpeitegral plant. The differential equation may be transformed into a non-
* I dimensoa se f first-order equations

x 2 =x 1  (A. 1)

x 3  x2
It is desired to derive a control law having the property that any initial state will be
transferred to the origin of the state space in the minimum time. The available control
is bounded

-' u <- + 1 (A.2)

V A liable heorems. Several theorems are available for the problem of time-optimal
contrf 3Pa ime-nvariant systems:

Existence: A control can easily be constructed for any initial state which
will transfer the state of system (A.1) to the origin. Then by Theorem 13 of Ref. 30,
since there exists for the system at least one control taking the state from the initial
state to the origin, an optimal control also must exist. (If system (A.1) had been un-
stable, then a bounded control for all initial states zould not have been found.)

Uniqueness: It can be shown that the state of system (A.1) is completely con-
trollable. Since it is completely controllable, it follows from Theorem 11 of Ref. 30
that the optimal control is unique.

Necessary conditions: The characteristic values of system (A.1) are real (there
is a triple root at zero). It follows from Theorem 10 of Ref. 30 that the following
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necessary conditions must be met for a control u(t) to be optimal:

1. The control u(t) must be piecewise-constant, taking on the values
+1 or -1 only.

2. The control can change values at most twice (that is, there can be no
more than three intervals of constancy).

A control law satisf;ying the necessary conditions. Define V1 to be the set of all
states from which the origin can be reached in positive time by applying the single con-
stant control u = +1 or u = -1. It can be shown that states in V1 are on the curve given
by

1 22 =- 51 Xl2

I - 0 c x < co (A.3)

where

s= sign(xl). (A.4)

If the state is in Vl, a constant control which carries the state to the origin is

u = -sign(x1 ). (A.5)
Define V2 to be the set of all states from which the origin can be reached in posi-

tive time by applying either a control sequence (-1, +1) or a control sequence (+I,-i).
It can be shown that states in V2 are on the surface given by

x 3 1 2 3/2(A6
w3 = - xI - S2 xlx 2 - s2 (s2x 2 + I /2 (A.6)

where

= sign(x2 + 1 x2). (A.7)

If the state is in V2 , a constant control which carries the state to V1 is

u -ig ( +1 2u = -sign (x 2  rl xl). (A.8)

Define V3 to be the set of all states from which the origin can be reached in posi-
tive time by applying either a control sequence(+l,-l,+l) or a control sequence (-1, +1,
-1). It can be shown that if the state is in V3 , a constant control which carries the
state to V2 is

[x 1 3+ 1 2 3/2
U-sign x3 3 x1 +2XX2 + s2 (s2x2 + rXl) ] (A.9)

Equations (A.5), (A.8) and (A.9), taken together, constitute a control law which meets
the necessary condition that any initial state is transferred to the origin with no more
than two control reversals.

The op timal control. It can be shown that if at any instant the control specified
by the above control law is not applied, then more than two control reversals will be
required to reach the origin. Hence no other control exists that satisfies the neces-
sary condition. Therefore the above control is the optimal control.

In a practical application, it is improbable that the control reversal will be exe-
cuted so that the state trajectory is transferred precisely onto the surface V2 . Even
if the improbable occurred and the control was reversed precisely on the analytic sur-
face V2 , the ensuing trajectory would soon wander off the analytic surface, because the
actual plant is not described perfectly by the assumed differential equation. Therefore
it is necessary to implement only Eq. (A.9). The control given by Eq. (A.9) will bring
th state sufficiently close to the origin.
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SUMMARY

This paper illustrates the application of optimal control theory to the design of
guidance laws for tactical missiles. A survey of applications reported in the open
literature is presented. Case studies are developed using several different linear-
quadratic-gaussian formulations of stochastic optimal control problems. A new guidance
law is presented which explicitly accounts for target parameter uncertainty. Simulation
results and parameter sensitivity studies are presented which provide performance compari-
sons between the optimal guidance techniques and conventional proportional guidance.

1. INTRODUCTION

1 . 1 BACKGROUND

Tactical missile guidance offers a number of opportunities for applying optimal con-
trol techniques to achieve practical performance benefits. First, the basic guidance
objective is to intercept the target with as small a miss distance as possible, a condi-
tion which is readily expressed as a mathematical performance index. Usually implicit in
this objective is the cequirement to achieve as large an operational envelope as pos,i

-

ble -- that is, intercepts should be possible from a wide variety of launch conditions.
Consequently, the missile energy must be efficiently managed.

The missile typically is propelled by a rocket engine having a fixed thrust
schedule and uses aerodynamic controls for effecting guidance maneuvers; however, con-
cepts for thrust vectored control and throttleable or segmented-burn engines have also
been considered. Such controls provide the means to implement guidance laws which yield
efficient trajectories, as well as accurate intercepts.

A missile trajectory may consist of several phases during which different guid-
ance modes are active. A typical sequence is: the post-launch phase which consists of a
preprogrammed flight path to achieve safe separation from the launch platform and to orient
the missile in the general direction of the target; a mid-course phase during which the
missile either flies a preplanned course toward the target, or receives guidance signals
from the launch platform, without the missile itself directly sensing the target posi-
tion; and a terminal phase during which the missile senses the target position directly
with its own active or semi-active sensor, and flies a homing guidance law designed to
null the intercept miss distance.

Although the overall objective is miss distance minimization, the guidance laws
used during intermediate phases are generally more concerned with operational constraints.
For instance, midcourse guidance usually steers the missile so that the missile seeker
,'an acquire the target at the appropriate range, and so that the missile velocity is ade-
quate at the beginning of the terminal phase. Although such constraints can. in principle.
be incorporated within a global trajectory optimization problem, the guidance laws for
each phase have typically been developed separately.

[his paper is primarily concerned with the terminal guidance phase where target
dynamic characteristics can have an important effect on guidance accuracy. Potential
missile targets are of many different types, but the important distinctions from the
standpoint ,f guidance law design are those on the earth's surface and those which are
airborne. Surface targets tend to operate at speeds and possess maneuvering capabilities
whizh .re signifitantly less than a missile's; therefore hitting the target is largely a
maller of knowing where it is, and conventional missile guidance techniques (e.g., beam-
rider, pursuit, and proportional) are generally quite adequate. By contrast, the much
higher speeds and maneuver capabilities of air targets can cause significant miss dis-
tantes against conventionallv guided missiles. In this case the guidance law must know
something about the target's velocity, and perhaps its acceleration as well; correct use
,f the higher derivatives of target motion calls for the application of optimal control

me t hods.

1.2 A IJRVEY OF GUIIDANCE TECHNIQUES

The first applications of optimal control methods to the missile guidance problem
dealt with simplified linear equations of motion for characterizing missile motion normal
to the initial line-of-sight to the target. Minimization of quadratic penalties on the
acceleration Line-history and the terminal miss distance lead to a linear feedback guidance
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law that is readily interpreted as a modification to conventional proportional navigation.
Representative treatments of this problem are found in Refs. I and 2; a recent paper
(Ref. 3) derives a number ot different guidance laws for different types of quadratic
performance indices.

Deterministic treatment .,r optimal guidance attempts to derive feedback guidance
laws, expressed in terms of the system state variables. When accounting for the noise
inherent in measurement data, the separation theorem of linear-quadratic-gaussian (LQG)
stochastic control (Ref. 4) is invoked to design a stochastic guidance law consisting of
a Kalman filter, which estimates the state variables, cascaded with the guidance command
computation. Performance analyses of stochastic guidance laws are presented in Refs. 5

and 6.
a 6 A number of techniques have been developed for relaxing the assumption that the

missile-target engagement dynamics are linear. In Refs. 5 and 6, an optimal stochastic
guidance law is derived which accounts for bounded control constraints. A suboptimal
stochastic guidance law is derived in Ref. 7, based upon statistical linearization, for
the case where both control variables and state variables are bounded. References 8 and

9 apply singular perturbation methods to derive approximately optimal, deterministic feed-
back guidance laws accounting for nonlinear kinematic and aerodynamic effects.

The references listed above typically treat the target dynamics as known, either
following a prescribed guidance law of its own, or maneuvering according to a specified
stochastic model. Reference 10 adopts a differential game formulation wherein the target
evasive and the missile pursuit strategies are jointly optimized. A similar approach is
taken in Ref. 11 where a concept is developed for guiding the missile so that the target
is always "reachable".

In principle, missile accelerations in three directions can be effected with
both aerodynmaic lift and thrust magnitude controls. Most investigations have dealt only
with lift; however, Ref. 7 applies thrust control assuming a fixed proportional guidance
law for generating lift, and Ref. 12 derives both thrust and and lift controls for a bi-
linear model of the engagement dynamics.

All of the cases described above are concerned largely with air targets; against
ground targets, trajectory shaping may be an important. consideration so that the missile
approaches at the required aspect angle. References 13 and 14 apply optimal control tech-
niques to achieve specified constraints on the terminal intercept geometry.

Finally, when direct measurements of target position are available, all the vari-
ables needed for guidance can be estimated with appropriate filtering, and separation
between the functions of filtering and control is usually justified. However, if an
important position coordinate, such as target range, cannot be measured, then missile
m.neuvers may be required to improve estimation accuracy prior to attempting to reduce
the miss distance. Applications of this so-called dual-control concept are given in
Refs. 15 and lb.

The above review is not intended to be exhaustive, but provides some indication
)f the various applications of optimal control to the missile guidance problem. This
paper demonstrates the use of optimal lift control to reduce miss distance, drawing on
new material as well as upon previously published results primarily taken from Ref. 6.

2. GUIDANCE SYSTEM MODEL

Figure I presents a functional diagram of a missile terminal homing guidance

system. This section briefly describes the assumed mathematical models for the subsys-

tems, which are defined by the expanded block diagram in Fig. 2.

Guidance l.aw - The guidance law is separated into a guidance filter which esti-
mates the guidance state variables, and a guidance command which computes missile normal
Icvelerat ion commands. The guidance law design is discussed in detail in subsequent sec-
ti,,ns. Observe that it is thought of as separate from the missile autopilot, in the sense
that each can be designed separately. This is typically valid because the speed-of-response
of the airframe rotational dynamics is much greater than that of the translational dynamics.

Seeker - The homing seeker measures the angular position of the line-of-sight
(lOS) to the target relative to the sensor centerline by observing the direction of elec-
tro magnetic energy reflected from the target. The LOS angle measurement is corrupted by
wideband noise. It is implicitly assumed here that the seeker is a radar which measures
range as well as .OS angle; how(ver, the range measurement errors are neglected. The
seeker model includes the parasitic coupling of missile airframe dynamics into the LOS
direction perceived by the seeker. The latter error is caused by aberration of the elec-
tromagnetic energy as it passes through the protective covering -- radome -- over the
seeker, and it depends on missile attitude through the gain k r in Fig. 2.

Missile Dynamics - The missile dynamics consist of the missile airframe dynamics
and associated autopilot, which is designed so that the missile lateral acceleration fol-
lows the autopilot acceleration commands as closely as possible. Although the actual
airframe dynamics are a nonlinear function velocity, angle of attack, control surface
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Figure I Terminal Guidance System functional Diagram
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Figure 2 Det a iled Model Il)esc r ipt ion

cleflect Ion and altitude, a properly designed autopilot provides a nearly linear response
characteristic it changes in these parameters about a1 nominal flight condit ion are- small.

in addi tion, t he dynamicI's model inclIudes oine of the most sign ifi(cant guidance s ' sttem non-
linearities -- accelerat ion input command limiting. The airframe acceleration command
must be limited in an actual missile to prevent either structural failure or stalling.

Missi ]e-Target-Kinematics - The model oif the interceptor-target kinemat ics issumes
that the missile and target accelerations are normal to their respective velocity vectorts.
This implies that both velocities have co(nstant magnitude but variable direction. 'h v
compoinents of missile and target ao'celerat ion whiich are normal to the l ine-of-sight,. and
which cont rol the terminal miss di stance, are repre'sent ed as t rigonomet ric funct ions of
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the appropriate orientat ion angles This const it utes anot her importalt rioni invar (I fe't
included in the model.

Measurement Noise - The noise on the measurement of .OS angle is caused by .,
number of error sources, some of which are range dependent. Three types of noise are
included in the model: receiver noise (decrtases with decreasing range), target angular
scintillation noise (increases with decreasing range), and range independent noise caused
by the seeker servo system and possibly by amplitude fluctuations in the received signal.

Tar etMotion - The system model includes a randomly accelerat ing target, modeled
as the output of a lowpass filter driven by white noise. This is statistically represen-
tative of maneuvers that are constant in magnitude, but switch sign at random times --
sometimes referred to as "jinking". The filter output has the same autocorrelation func-
tion as the jinking maneuver.

The model in Fig. 2 is referred to here as the simulation model; it is used to
tvaluate the performance of various guidance laws which are derived using simpler dr-sirn
models. The missile-target motion is restricted to a fixed plane arid the elfects of grav-
ity and aerodynamic drag are neglected. The kinematic variables -- r, m , v, , 0 m', a 1m,

and at are defined in Fig. 3. The quantity k r is a gain representing the aber ration

error -- often referred to as randome slope -- which couples the missile airframe motion
into the seeker measurements of LOS angle. The transfer function coefficients -- A\ " a1'

a 2 , a 3 , a,, b 1 , b2' and b,3 -- are assigned values to yield realistic dynamic characteristics.

Yt It

TARGET

am Win

INTERCEPTOR

/ / /Ax

INITIAL x INITIAL
iNTERCEPTOR TARGET
POSITION POSITION

Figure I)efinitions of Kinematic Variables

Miss distance is defined as the ninimum value ol r and represents the point of
closest approach between the missile and target. For most normal engagements -- i.e.,

Ax , -- the minimum range Vector is nearly perpendicular to the original L.OS

Consequent ly, miss distance is approximated in Fig. 2 as Ay at time t when Ax equals
zero.

i. COMPARISON OF SFVERAl. OPTIMAL GUIDANCE LAWS

i. I DIESIGN MODEl. ASSUMPTIONS

)evelopment of any optimal guidance law must be based upon a mathematical model
of the missile/target intercept dynamics. The simulation model shown in Fig. 2 could he
used, but it is convenient to introduce several approximations in order to simplify the
guidance law derivations.

The equal ions inr Table I provide a simplified approximate representation of the
dynamics in Fig. 2, resulting from the following assumptions:

S . and t are nearly constant



- f 
I .-53

F'ABL E1

G;I II)ANCE .AW' DES I N MoDE1.

Kinemat is: Ay -a - a

!a| I . tt I t t t

27

Mi';si Ic' a -A , j + A a co - e +M II 111 lit Ill

M it -t t I k k
MII't Velrlt'ri t "'-, k

A Vk/' 
k + 

k

z 2 k k k/ k
i k k'k g(k

E vk 0

Elv
2 }  (1/r + 2 2 + 2
k g k r k

* lhe dependence of Ay on 0t is suppressed in the delinition of a t

* The dependhnce ot A on 0 is iccounted for in the differential

equal ion for a , but the tim.-variat ion in 0 is neglectedm m

0 'he missile dynamics can be approximated as a first-order lag.

* The effect of airframe acceleration limiting is neglected

* Range, time-to-go, ani missile acceleration are measured with
negligible error

2
0 The target driving noise spectral density is chosen to yield Elat}

2
t

0 The measurement noise variances a 2 2 and c2 torrespond to glint
g' r'

receiver and servo noise components, respectively; the receiver
noise model is that associated with a semi-active radar receiver.

The equations in Table 1 can be written in the state variable form

x(t) = Fx(t) + g ac(t) + w(t) (1)

Zk = h
T 

x(tk) + v(k 2)

where

T JAy Y a aml

Tw = 10 0 Atw t 01
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0o 1 0 0 0

0 0 1 -I 0

-F Km ogj (3)
0 0 0 t 0 0

0 0 0 A x Cos 0

h' =  (1 0 0 01

3.2 LINEAR-QUADRATIC-GAUSSIAN (LQG) GUIDANCE LAW

Based on the above model, we can formulate a general LQG guidance problem stated
as:

Minimize

I f 2J = EJ ay(f M a dt (4)

subject to Eqs. 1 and 2, where y is a penalty on the control weighting. We know from the
separation theorem that the structure of the resulting guidance law is a Kalman (guidance)

filter cascaded with a guidance command, the same as in Fig. 2. The Kalman filter has
the form shown in Fig. 4 where the gains klk, k2 k, and k3 k are elements of the Kalman
gain vector, k, computed by

P k+l 1 P Pk (V + Q  
(5)

k ~P+ hT(h P h +oU)- (6)
-k+L kl I-k -k k+l -k v

k P - k(h r - h + 2 )-I kT (7)

k+l k+l -k -k k+1 k v -k

where < and Q are the discrete dynamics and process noise matrices associated with F and
w in Eq. 3; i.e.,

FAt

Q fat eF(Ata) Qc e FT(At-c) da
0

Qc t

0 0 0 0

where At is the measurement interval. Note that the filter contains only three states
because a is regarded as an error-free measurement. The filter is linear because them

range r in the h-vector is also assumed to be known.

The guidance command is also linear, and is derived by solving the deterministic
optimal control problem obtained by eliminating all noise terms and initial condition
uncertainty from the I.QG problem. The latter is then solved for ac (t ) as a linear func-

tion of the state x, .nd implemented with x replaced by its estimate x(t). Thus, the
structure of the law is given by

a (t ) c' (t) X(t )/cos 0m (8)
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Figure 1 Kalman Filter Mechanization

whe-r, !he gain vte('tor c(t) is a function of the deterministic parameters of the system.
I'hu so-ition tor the elem'nts of c is given by the relations

n]: /t
2  

(9)

2 i/t (10
go

c 2  g0/tg (10)

A-)

32It - (i- e m o)/Aj

q .. . go - -- . . .. - , __ (13)
-2A t 3t -A

3 o2 2 2

3+ 4 (1 - e m go) + - (1-2e m go , + go (t go " X )2A Am

m m

Note that in the simulation model (Fig. 2), the commanded acceleration a is limited by
the maximum allowable acceleration, a C

The quantity q in Eqs. 9 through 13 is referred to as the navigation ratio be-
cause of its connection with conventional proportional guidance. This is illustrated by
expanding a in Eq. 8 as follows:

elA + c2 Ay + c At m c4 a
a 3 ________

- co s 0 m

-y ] (cl t + a 

I 
a.

Cos 0 m o tCos 0m



" 1 -!. r + (c3 t +
cos Om r ri Cos6

Io ii
!  - COS 011

(c at +c a)

Cos 0 Cos 0

rn at

The first term on the right hand side of this expression has the form of proportional
guidance with q as the navigation ratio. It A w and I 0 in Eq. 13, then q 3; thu
conventional proportional guidance with a navigation ratio of 3 is a limiting case of th.
LQG guidance law.

Another useful interpretation of Eq. 8 is that a (t) can be written asic
rii(t+t )

ac(t) = -2 - _go&1
t cos 6go m

where fi(t+t g) is the predicted miss at time t+ go if no control is applied. This is

seen by recognizing that Eqs. 8 through 13 combine to yield

go

ac(t) o2  y Y + AY tgo + f a0 [t (t+) - hi (t+r) didj (li
t cos L 0 0

where
&t -Atr

at(t+r) = at(t)e

n (t+ ) 
= aa(t)e 

i

The quant ities i t(t+T ) and im(t+T ) are respect ively the predicted target rod ini si I
acceleration at time t + I, assuming that wt and ac are zero in Table 1.

1.3 MINIMUM EXPECTED MISS DISTANCE CRITERION

The minimum expected miss distance problem fornmulat ion is based ,it t In, mod,
used for the LQG problem; however, the performance object ive is di lferent , ind i , -tited
as follows: Choose at(t) to minimize

J = E{Ay(t f)},

subject to Eqs. 1 and 2 and the constraint

a < a Ul
c max

Here we place no penalty on the commanded accelerat ion except that it is required not to
exceed the upper bound imposed by the airframe. Thus, we expect this law to yield a
smaller miss distance than any of the LQG laws, because the latter do not account for th,
acceleration constraint in their tormulat ion; they are limited by the constraint only
after the fact in the implementation in Fig. 2.

The derivation for the opt imal accelerat ion command is presented in Ref. . It
is found to have the same linear structure as in the LQG problem; viz,

r m(t+t )
at(t) - I (1'

t COS 0
go m
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However, the four control gains are different. An analytical solution is obtained at
each control stage as a result of the following steps:

0 Determine the predicted terminal miss distance based on the Kalman
filter estimate of the state vector at the current control computa-
tion stage, using the dynamic system model.

* Determine the value of commanded acceleration required over a single
control interval to null the predicted terminal miss distance,
neglecting the constraint in Eq. 18.

0 Determine the actual acceleration command, ac, by passing the above

value through a saturation function that satisfies Eq. 18.

The predicted terminal miss based on a state estimate at time t is given by

Ay(tf) = (tt,t)k(t) (20)

where T(tft) is the first row of the state transition matrix (tft) corresponding to F

in Eq. 3,

F(tf-t)
4.(tft) = e

The effect of a constant command a' applied over an interval At, on the terminal miss
distance is given by

f f c

tt t

P (t ) a 'c (2 1 )

The objective is to select a' such that

6Ay(tf) = -Ay(t f) (22)

in order to null the predicted miss distance. Substituting from Eqs. 21 and 22 leads to
the result,

a' - 1 . T
c - Oc(t-) ( l t x

S- 1 Ay + r2 Ay + ('i at+ 4 (23)

Cos H
In

Carrying out the computat ion for cI through c 4 shows that they are identical to

the optimal LQG control gains in Eqs. 9 through 12, except that the navigation ratio q is
given by

-r2

q= go (24)
At t -AM(t go - At e -A Atat( m t- 1 2 ) " II2 g

'  (1 - e m
2 2

innA
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As previously noted, the missile autopilot acceleration command ac is obtained by passing

a' given by Eq. 23 through a nonlinear saturation function which limits at ±a .C max

3.4 GUIDANCE LAW SUMMARY

In order to compare conventional proportional guidance with the various optimal
laws suggested by the above problem formulations, a hierarchy of laws is defined in
Table 2. Law A is based on proportional guidance and uses a first order low-pass guidance
filter, as illustrated in Fig. 5. The filter time-constant is optimized empirically for
the particular set of engagement conditions simulated. Law B is also proportional guid-
ance, but the low-pass filter is replaced by the Kalman filter illustrated in Fig. 4.
Law D is the LQG law summarized above. Law C is a suboptimal version of D obtained by
ignoring the missile dynamics; this s equivalent to letting Am - W in Eqs. 12 and 13.

Consequently, Law C has only three guidance gains, omitting the am term in Eq. 8.
Finally, Law E is the minimum expected miss criterion. Thus, the designations A ..... E
order the guidance laws with respect to increasing capability to null the intercept miss

distance. The control gains and navigation ratios for each law are summarized in Tables
3 and 4.

TABLE 2

MISSILE GUIDANCE LAWS

DISTINGUISHING CHARACTERISTICS

SYMBOL FILTER
A Proportional Guidance First-Order,

Low-Pass

B Proportional Guidance Kalman

C LQG Guidance; Accounts for Kalm
target maneuvers

D LQG Guidance; Accounts for Kalman
target maneuvers and missile
dynamics

E Minimum Expected Miss Distance Kalman
Guidance; Accounts for target
maneuvers, missile dynamics,
and missile airframe saturation

SLOS ANG L E S Y? ' C

Figure 5 Guidance Law A

TABLE 3 TABLE 4

CONTROL GAINS NAVIGATION RATIOS

GUIDANCE

CONTROL GUIDANCE NAVIGATION
I.AW RATIO, n

GAINS B C D,E

c4  0 0 Eq. 12 A,B 3

c3  0 Eq. 11 3t
3

c2 Eq. 10 3y + o

c I Eq. 9 1) Eq. 13

E Eq. 24
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Both Laws C and D are of the LQC type. The principal difference between them is
that in Law D, q increases with decreasing range (for small y) and becomes large near
intercept to compensate for the lag in missile acceleration caused by the missile dynamics.
This behavior is illustrated in Fig. 6.

100

Ixm
: Ssec-t

J~ 0.scl A

.11 0S-\

0

I z LAW D, Y:O

LAW C, Y:O

0 1
TIME-TO-GO, tgo(sec)

Figure 6 Comparison of Navigation Ratios

Typically, the value of n given in Eq. 22 for guidance Law E is much larger than
the value from Eq. 13 for law D over most of the trajectory, as indicated in Fig. 6.
this is explained by the fact that between seeker measurements, guidance Law E attempts
to null the predicted miss distance c e before the next seeker measurement is
processed. By contrast, the other guidance laws effectively attempt only to reduce the
predicted miss distance at each stage. Law E is useful in the sense that it provides
a lower bound on the miss distance that can be achieved for the assumed engagement
conditions.

3.5 SIMULATION RESIULTS

A new and powerful computerized approach to the direct statistical analysis of
non!inear systems has been developed in recent years (Ref. 17). This method, called the

Covariance Analysis DEscribing Function Technique -- CADET -- provides for efficient
computation of the mean and covariance of high-order, multiple-nonlinearity systems with
multiple statistically described inputs. Although CADET is an approximate technique,
experience has shown that it yields good agreement with multiple trial monte carlo results
for . large (lass of system configurations and requires significantly less computer running
time. The performance results presented here were calculated with a CADET computer program,
which has been validated with a monte carlo simulation in a selected number of cases. A
detailed treatment of CADET can be found in Ref. 18.

In order to compare the performance of the guidance laws listed in lable 2,
nominal values where chosen for the missile-target engagement initial conditions, and for
the parameters of the model in Fig. 2. These quantities are listed in Table 5. All excep-
tions to the nominal conditions are explicitly stated in the subsequent discussion.

All five guidance laws are compared in Fig. 7 over a range of values for the

target maneuver bandwidth. In order that Law A be fairly compared with the others, its
filter time constant, T2 in Fig. 5, is optimized to yield the lowest value of rms miss

distance for each value of At . Observe that the dispersion between the various laws

*Guidance Laws B through D listed in Table I depend upon knowledge of the bandwidths of
the target maneuver (At) and the first-order design model for the autopilot (Am).

Unless otherwise stated in the following discussion, it is assumed that these quanti-
ties are equal to the values used in the simulation model in Fig. 2; i.e., the optimal
guidance laws are matched to the simulation model.

CADET is a trademark of The Analytic Sciences Corporation.
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'FABLE 5
NOMINAL. CONDITIONS

QUANTITY NOMINAL VALUE
SPECIFICATION

aI  0

a 2  0

Missile Parameters b 1 0.1 sec

b 2  0

b3 0

Target Maneuver Bandwidth, Xt  0.2 sec
1

RMS Target Acceleration, at 300 ft/sec
2

Missile Acceleration Limit, amax 80G ft/sec2

Radome Slope, kr 0
Initial Mean Heading Angles, 8m and 8a  0

Control Effort Weighting, y 0

Launch Range 24,000 ft

RMS Heading Error, [E{Of]" 0.15 radm
Target Velocity 1000 ft/sec

Interceptor Velocity 3000 ft/sec

( Receiver, a /r 4xlO 8 ft-
1

r
Noise Parameters Glint, agr 4 ft

9 -4Range Independent, a 4x10 4 rad

30

GUIDANCE LAW

20 B
z

C

10-

I N INA1 VALUE , 02

01 10 2.0
TARGET ACCELERATION BANDWIDTH, ,\, le)

Figure 7 Guidance Law Performance Versus Target Maneuver Bandwidth

generally increases with At . However, the major improvement over conventional propor-

tional guidance is achieved through use of Law C, which includes a target acceleration
term to compensate for target maneuvers. Some additional improvement is achieved by
accounting for missile autopilot dynamics (Law D). Guidance Law E provides a lower
bound on the achievable miss distance.
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Figure 8 displays guidance law performance as a function of missile maneuver
capability.* As ama x approaches the target rms acceleration level (300 ft/sec2 ), Laws C,
D, and E offer marked improvement over proportional guidance (Law B). In addition, the
difference between D and E increases; this is attributable to the fact that Law E
explicitly accounts for the acceleration limit whereas D does not. Hence the former
offers greater improvement over the latter as acceleration saturation beLomes more
significant.

200

100

tj 50
z
0 B (GUIDANCE LAW)
U,

U, 20-

E "

5
400 800 1200

MISSILE ACCELERATION LIMIT, amax(ft/sec 2)

Figure 8 Guidance Law Performance Versus Interceptor Missile Maneuver Capability

The influence of the missile time-constant on miss distance is demonstrated in
Fig. 9. As the latter gets larger, Laws D and E, which explicitly account for missile
dynamics, offer significantly better performance than Laws B and C.

300

U
Z 100-
<
t - GUIDANCE LAW B

UJ

50- C

N
-J
4D

0z
10

5 _j
0.1 0.3 1.0

AUTOPILOT TIME CONSTANT Isec)
Figure 9 Guidance Law Performance Versus Interceptor Missile Time-Constant

*Law A is omitted from subsequent guidance law comparisons on the basis that it yields
performa ce quite close to Law B when its filter time-constant is optimized for the
nominal oise levels.
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In all the cases treated thus far, the designs of guidance Laws D and E are
matched to the truth model representation of missile dynamics, except for the kinematic
nonlinearities neglected in the model in Table 1. An important remaining issue is the
sensitivity of guidance law performance to variations in missile parameters from their
assumed values. One potentially important error source is parasitic coupling through the
seeker aberration effect represented in Fig. 2 by the constant kr , which has heretofore

been chosen as zero. Figure 10 illustrates the effect on guidance system performance
when kr is nonzero. For this case, the parameters a1 , a2 , b1 , b2 and b3 are selected to

yield missile poles at -1 rad/sec and -7.5 ±j15 rad/sec, and zeros at ±20 rad/sec. The
design models for Law D and E assume the missile dynamics are first-order with time-

constant ( m ) equal to 1 sec. The value of a 3 = 2.0 is chosen to be representative of
high altitudes, where missile-seeker coupling is most pronounced. With the exception

that here k X 0, the above conditions are nearly the same as those in Fig. 9 when the

missile time-constant 1.0 sec.

GUIDANCE LAW C

100 -

uJ
' Z

hD
V)
I.

0 : 0.1 b, : 1.067

02: 0 0025 b2 : 0 0722

03: 2.0 b3 : 0 00455

Trm:1.0 sec

0 0.01 0.02

RADOME SLOPE, kr

Figure 10 Guidance Law Sensitivity to Radome Error

As k increases, the performance advantage of Laws D and E deteriorates relative
r

to Laws B and C. This is attributed to the fact that the high value of q associated with
Laws D and E is incompatible with the parasitic attitude loop in Fig. 2, because the latter
is not accounted for in the derivation of the guidance law. Generally kr is an unknown

time-varying quantity, so that it cannot be accounted for exactly. Consequently, degrada-
tion in the performance of the "high-gain" guidance laws will be experienced in situations
where the effect of kr is important -- i.e., at high altitudes.

A word of qualification is merited with respect to the results presented above.
The mechanism by which the optimal guidance laws improve performance is an increase in
the effective guidance gain over that associated with proportional guidance. The in-
creased gain provides a higher commanded acceleration early in the trajectory. However,
higher maneuvering acceleration is not penalty-free in practice. It results in an in-
crease in drag, which in turn causes missile slow-down; the latter can reduce the missile
acceleration capability. These effects are not included in the simulation model (Fig. 2).Nevertheless, practical experience with more detailed simulation models, including drag

effects, indicates that these optimal guidance techniques continue to offer improvements
over conventional methods.

4. UNCERTAIN MODEL PARAMETERS

In all of the design approaches described in Section 3, it is assumed that the
parameters of the model in Table 1 are known. Thus, the guidance problem has a linear
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gaussian structure which yields a relatively simple guidance law. The model tideity can
be improved by including uncertainty in the model parameters, particularly those associ-
ated with the target, about which little specific information is available.

Incorporating parameter uncertainty in the model typically casts the guidance
problem into the general category of nonlinear stochastic control problems, which usually
do not have tractable solutions. In particular, the structure of the guidance law does
not separate into a filter for state estimation cascaded with a guidance command computa-
tion. Indeed, a dual control effect is present wherein guidance maneuvers can be employed
to improve knowledge of the model parameters. A notable example is the case where range
measurements are not available, either because the missile has a passive seeker or range
measurements are denied by jamming. For this situation, interceptor maneuvers normal to
the line of sight are required to estimate range (Refs. 15 and 16).

A common linearization approach to the unknown parameter case carries out the
following steps: assume that the guidance law separation (into filtering and control
functions) principle holds; augment the model state vector with the unknown parameters;
estimate the augmented state vector with an extended Kalman filter; and use the estimated
parameter values in one of the guidance laws described in Sect ion 3. This procedure is
approximately optimal if the parameter uncertainty is small. However, when the un er-
tainty is large the linearization assumed in the extended Kalman filter will not be valid.
It is expected that target parameter uncertainties will be large, not only because they
are poorly known, a priori, but also because the sensor measurement errors are often too
large to estimate such parameters accurately.

To illustrate how the guidance law can be affected by accounting for parameter
uncertainties in its formulation, consider the model in Table 1 and assume that the target
bandwidth X t is a random variable with a known probability density function. Assume fur-

ther that perfect measurements of the state vector are available. Note that even with
perfect measurements, A t could not be estimated without error due to the presence of the

white noise term w~ in the target acceleration model.

A With the above assumptions, it can be shown that the solution to the LQG problem,
with the performance index in Eq. 4, is of the certainty-equivalence type (Ref. 18); viz,

ac(t) =E fcT~t WxWt/cos e mi (25)

whete E IJdenotes the expectation over At conditioned on the measurements taken up

until time t. Because all the parameters and states in Eq. 25 except A t are assumed

known exactly, the solution for a c (t) is the same as in Eqs. 8 through 13 except that

C3becomes

c Ee-t go + A t t -o

3 A 2 t 2
tgo (26)

Al A2 2 t)n

Thus, for this case the guidance law does separate into a "filter" which propagates the
probability density function for A (it is not sufficient just to propagate the mean and
variance of A t since the density is not normally distributed), and a guidance command com-

putation where c 3 is computed from the filter output. The effect of accounting for the

uncertainty in A tis to increase -the gain c3 above the value it would have if the true

value of A t were its mean value At; viz.,

2^ 1

t A )t g

where a 2 is the variance of A

For the purpose of comparing the conventional and modified LQG guidance laws, a
simplified point-mass simulation was conducted. The simulation does not explicitly contain
a guidance filter, but instead provides each guidance law with perfect position and velocity
information, along with a target acceleration estimate containing a time-varying error
with an rms level of 1.0 g. The autopilot/airframe dynamics are also neglected.
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Table 6 summarizes the target engagement that was investigated. Note that the
parameter values used in the two guidance law designs are compatible, in that the value
of A t(time-constant in the target acceleration model) used in the conventional LQG formu-

lation is identical to the mean value of At used in the modified LQG formulation. However,

note that neither of the target acceleration models are matched to the true target accel-
eration profile.

TABLE 6

ENGAGEMENT CONDITIONS

QUANITITY VALUE

*1 Simulation Model

4Missile parameters: a,, a 2, b I b2, b 3  0

Target maneuver bandwidth, A t 0

Target acceleration 10 g

Radome slope, k r0

0
Heading angles 0m180 0

Range rate 1000 ft/sec

Launch range 6000 ft

Measurements
Data rate 10 Hz
Position, Ay, error 0
Velocity, Ay, error 0
Acceleration, at, error 1-g rms

Guidance Law Models

LQGI
Target maneuver bandwidth, A t 2 sec_1

Control effect weighting, y 10

Modified LQG -Target maneuver bandwidth, A t 2 sec_'
Bandwidth standard deviation, 0a 2 sec-1

Control effort weighting, y 10 4

Figure 11 illustrates the relative performance of the two laws as a function of
the missile acceleration capability. Each point on both curves was determined by averaging
the results of 15 monte carlo trials. Evidently, the modified LQG law offers significant
improvement over the LQG law as the missile acceleration capability (relative to the 10-g
target) decreases. These limited simulation results with an idealized, simplified model
indicate that it may be both p~ractical and beneficial to account for parameter uncertainty
in guidance gain computations.

5. CONCL.US IONS

This paper illustrates the application of optimal control techniques to designing
missile guidance laws. One significant conclusion deduced from the examples treated is
that the extent to which optimal guidance techniques yield better accuracy than conven-
tional proportional guidance is strongly related to the comparison between the missile's
acceleration capability and the target maneuver level. When the ratio is less than 3:1,
the optimal laws tend to perform significantly better as a result of including a term
proportional to target acceleration. Accounting for missile dynamics in the optimal laws
(D and E) offers appreciable improvement over Law C (which neglects the dynamics), when
the missile time-constant is greater than about 0.2 sec.

It has also been demonstrated that guidance law performance is 'sensitive to the
design assumptions. If the actual engagement parameters (e.g., missile radome slope) are
different from their assumed values, significant performance degradation is a likely result.

A new guidance law is presented in the paper which accounts for uncertainty in
the target dynamics. The result is a modified LQG-type law with an increased acceleration
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Figure 11 Relative Performance of I.QG and Modified I.QG
Guidance Formulation

gain. ['his technique is shown to be better than the L-QG-law when the ratio of missile
capability to target acceleration is less than 2.8:1.

1 t has been pointed out that certain effects, such as aerodynamic drag, have
been omitted( in the analyses performed here. However, practical exp),rience with detailed
simulations indicates that the results presented in this; paper are, in fact, a valid demon-'
stration of many of the potential benefits in applying optimal control techniques to guid-
ance law design.
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1. INTRODUCTION

The current high performance military aircralt engine represents an extremely complex, iiighly tuned

and expensive hardware component. Successful mission performance and, inueeo, the very life ot the pi-

lot is contingent upon its proper operation. Near-luture engines will be driven by aircralt require-

ments to a substantial increase in configuration complexity and a decrease in allowable error tolerances

[1]. Thee factors combine to form one of the most exciting and challenging areas ot control design ap-

plication. Since near-term propulsion control requirements cannot be met with current design practices,

the opportunity and requirement for truly practical adaptations ot the many new theoretical multivarL-

able control design methodologies are unique in this tield. Hence, the propulsion control technology

area has had an unparalleled level of development and test of synthesis methods over the past 1U years.

The development process for imltivariable control laws tor turbine engines is described. In Sec-

tion 2, a model reference structure is discussed which has been shown to be a flexible framework within

which digital control programs of a wide variety ot function and complexity can le formulated. In Sec-

tion 3, the development of the plant reference model is discussed and trade-oilb between accuracy and

complexity presented. The techniques used to produce optimized, teed-forward state, control and output

trajectories are presented in Section 4. The well-known methods ot regulator synthesis using quadratic

performance functions are briefly reviewed in Section 5, and the results ot several successtul applica-

tions of this methodology are summarized in Section 6.

2. MODEL REFERENCE CONTROL STRUCTURE

The model reference structure for multivariable controls is well known from process control appli-

cations [2,31. Utilization of this architecture permits implementation ot optimal regulator designs,

decoupled integral loops, high response trajectory inputs and failure tolerant functional blocks (Figure

1) in a straightforward fashion. The reference point quantities, i.e., estimates of a compatible set ot

engine states, X0 , outputs, Yo, and control values, U0 , are desired operating values

achievable by the actual system. Table 1 lists typical choices for these quantities for a low bypass,

fixed geometry engine and a more complex variable geometry engine. Typically, these schedules are de-

veloped by the manufacturer during engine evolution. Pilot input (throttle or operating modes) and am-

bient 7onditions are sensed and converted to the desired steady-state operating condition. The trajec-

tory generator produces a compatible and optimized path [5j for large requested changes. This func-

tional block utilizes a nonlinear engine model describing the dynamii response characteristics 0t the

engine to synthesize a path in states, outputs and controls which respects engine and actuator capabili-

ties and operating constraints. This structure is presented in more detail in Section IV. A filter or

estimator, often tolerant of actuator and sensor faults bJ, is used to produce a best estimate ot plant

operating characteristics. Finally, an optimal regulator structure incorporating integral trim produces

coordinated control actuator requests which regulate the engine behavior within acceptable and sate mar-

gins. The modeling and synthesis methods for each ot these blocks are discussed in the following sec-

tions.

3. MODEL DEVELOPMENT

3.1 LINEAR MODELS

Dynamic equations modeling the engine response must be accurate, easily implemented and tractable

for real-time, digital, control purposes. The regular synthesis procedures use linear design models.

Simple nonlinear models developed from these are implemented to provide both teed-forward trajectories

and filter update equations. This provides a significant program economy and efficiency.

The engine modeling is best attacked from basic principles. The problem can be tormulated to de-

fine nomenclature. The engine dynamics are ioxpressed in terms of a general, nonlinear equation relat-

ing n st.nte variables, x, and m input variables, u, and ambient variables, , as follows:

= f(x,u, ) (1)

Engine state variables are elements of the thermodynamic and mechanical equations modeling mass,

energy and torque balance. They consist of temperatures, pressures and rotor speeds (for example, see

Figure 2). Control inputs are fuel flow and geometry positions (e.g., nozzle area, variable stator

angle, etc.).
(

The p outputs are statically related to the states and controls through the nonlinear expression:

y - h(x,u,-) (2)

There are two important types of outputs, viz those that are measured and thcse that are not.

Measured outputs typically include rotor speeds, temperatures, asid pressures throughout the engine gas

path. Unmeasured outputs represent engine performance and limit quantities such as thrust, fuel con-

sumption, surge margin, and turbine inlet temperature. These quantities are related to the state vari-

ables by static thermodynamic equations which are not accurately predictive of these values and whose

accuracy varies with engine build, deterioration and age.

Design models [7] are developed for engine response near a static equilibrium point (i.e., = 0)

which can be characterized by steady-state values of the states, controls, and outputs, (xo,uo,

yo). A linearized model is written as follows:
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"x = F x + G_ u 
(3)

Sy - H x + D6u (4)

where, in principle,

If.
F.. = i

3 j xxx°, etc. (5)

u -NJ
0

and

6x x - xo , etc. (6)

A modal decomposition [7,8] provides the framework for reducing arbitrary linear models to design
models containing the appropriate parameterization for the control function.

The linear Eq. (3) can be transformed to block-diagonal form assuming the nxn dynamics matrix,
F, has no repeated eigenvalues:

x - Tz (7)

- Az + u (8)

y I HTz + Du (9)

where A is an nxn block diagonal matrix, T is an nxn matrix composed of the column eigenvectors

of F, z is an nxl modal coordinate vector, and E is the nxm modal control distribution matrix.

Also,

FT - TA (10)

If the following equilibrium relationship is approximately true (within the time frame of control
interest),

z2 0 ()

then the following reduction can be made

- Frxl + Gru (12)

where x, is now the qxl state vector, Fr is the qxq dynamics matrix, and Gr is the qxm
control distribution matrix. Also

[xj = [ 1 + u (13)

y HrD r

where x2  is treated as an additional (n-q)xl output vector with a (n-q)xq state distribution

matrix H* and a (n-q)xm control distribution matrix D*.

Linear models for the F1O0 engine have been published [8,91. An examination of the eigensystem of
these models (see Table 2) shows that many of the response roots, especially those associated with flow

response, are outside actuator limits. The slower roots model rotor dynamics and a smaller effect due

to heat-soak phenomena in the metal components of the engine. For design purposes, these temperature

roots may often be neglected.

The characteristics of the rotor response are of the same form in all turbofan engines 110]. The

rotor response is dominated by a second-order system with two real roots. Examination of typical eigen-

rotor speeds differentially rematching, i.e., the fan spool decelerating while the compressor acceler-
ates. The slower root involves the collective or rigid-body response of the two shafts. The differen-

tial and collective response is characteristic in the motion of two heavily damped and heavily coupled

inertia elements. (The two spools are aerodynamically coupled in the turbines.) The characteristic

motion is present in all regions of the operating envelope.

It is highly desirable to provide a model in a simple form to minimize computer storage and compu-

tation requirements. Outlined below is a procedure for further simplifying the reduced order system
(system order remains unchanged). The procedure is based on eliminating (setting to zero) elements in

the system dynamics matrix, F [6].

The procedure is comprised of three steps:

Step 1: Identify those elements in F which have little effect on the engine's dynamic response.

Specifically, let Jo represent a measure of the system state response to initial conditions.

J° TA x dt (14)
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Unimportant elements, F , are those for which

0JoJ 0- 1 (15)

F. ./F.
ij/ij

That is, Fi "  is unimportant if a 100 percent change in Fij produces a small percentage change
in Jo. Define all of these elements as Fij*.

Step 2: Set all the Fij* - 0, and define the resultant system dynamics matrix as F.

Step 3: Modify the non-zero elements in F to minimize the mean square difference between the
initial condition respnnses of the reduced system and the original. Specifically, find

F min I f (x-x)T A(x-x) dt f16)

where

x = Fx (original)

x Fx (reduced)

The response sensitivities can be calculated using the algorithm presented in Section 5, using the
following definitions:

Geq = I (17)

Heq = 1 (18)

Ceq = F. (19)

Then finding 'Jo for the system
'Ceq

x Fx + G u (20)
eq eq

eq Heq (21)

Ueq Ceq Yeq (22)

is the same as finding

Jo . Jo (23)

in the desired perturbational system:

= (F+AF)x. (24)

The sensitivity in Eq. (23) will be the principal calculation in the output regulator synthesis
algorithm discussed below.

Example 1: Nearly Uncoupled Response

A simple second-order example is presented to clarify the procedure. Consider the system

[1 10 I11
"i=x . (25)

0 -20 

(

The diagonal elements will dominate this response. Hence, it is desired to find an F matrix of
the form

(26)
b Ib

which most nearly matches the initial condition's response of the original system.

If specific initial conditions are chosen, the problem is easily solved in closed form. That is,
x(t) and x(t) may be found; then from these, J may be computed. Parameters a and b can then be
chosen to minimize J (Eq. (16)).

For the case
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x(o) = 1 and '(o) = (27)

The soh,tion is

S 
-6

.
4 9 5  

O

F = 0 (28)

0 -20

Note that due to the one-way coupling in the system, the F22 element was not affected; only the
Fll element was altered.

Example 2: Turbine Engi ie Dynamics

A typical turbofan dynamics matrix consists of two rotor states, tan sneed and compressor speed
and several heat transfer states representing engine metal heat capacity and turbine blade heating et
fects [61. Suct a model was derived for a turbofan engine at a wide range of flight envelope points at
sensitivities were calculated to each element of the F matrix. Figure 4 shows the range of sensiti%
ity values and clearly indicates the choice of elements to neglect. Elements which are retained may b
scheduled or hfld constant in a nonlinear representation using tnis aT iysis as discussed below.

The calcslation also indicates that the optimal cost, 1.03, i.e., setting the indicate
elements to zero and pertorming no optimization yielded only a 1.0 percet.t change in J,. Pertormir
the optimization reduced this already small error to 0.9 percent. This confirms the unimportance c
those terms whichi --re olitninateo.

J Th teigcvajijvs of th. original and reduced systems are prcsented for comparison in Table 3 for or
operlting poo nt.

3.2 NoNLNEAh MODELS

Low-o:der linear models are the basis for point design of control regulator logic. These dynami
models in a slightly different form can also be used within the controller program to implement tLansi
tion logic, filter update equations, and faulttolerant strategies [i1. The primary requiremer tc
this simplification arises from the real-time, microprocessor implementation. It it is assumed that
u(t) is piecewise constant on an interval [nT, (n+l) T], Eq. (1) can be rewritten relative to t1
constant value of u and the value of x which would be reached if u remained at the value [12) or,

x = F (x , u(n)) [x(t)-x J (29)xss ss

where xss must satisfy the nonlinear equilibrium relationship

0 = I (Xss, u(n),, (30)

or, equivalently,

xs = g(u(n),) (U)

where g(u(n), ) is the reference schedule of the states given the control input levels t4j.

For a set of operating variables, z (e.g., rotor speeds, ambient conditions, and control inputs.
terms of the following form are created to match each selected element of the dynamic equations tI7):

q
t (z)= z (32)

The set of coefficients, aj, which minimize the following cost function are found:

N r
J= min . tn(k) - ,a t(z(k))J' (33)

ajr,q k=1 j-l j

where the non-zero elements of the reduced dynamics matrix, p(k) at each of N flight points are ti
with a set of polynomial functions of the operating variables t(z(k)). The minimization is carrik
over the constant coefficients, aj, the number of terms used, r, and the highest powers represet
ted in each term, q 113,141.

The resilting dynamic matrix can be written as follows:

f = F(x) (34)

i.e., the matrix F represents the gradient of the nonlinear function, f(x,u) along the steady-stal
operating line. A Tavlo, series expansion of t(x,u) matches the function at au arbitrary (x,u)
the gradient at the static operating line, F(x). The results Ill indicate that to match the nonlinea
dynamics to arbitrary order, the following form can be used:
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f(x,u) = [F(X (35)

For e::ample, to match the nonlinear dynamics at arbitrary point to order I6x H5, the following form can
be used:

I

f(x,u) - F(x ) + F(x 2 ) + 0 (x-x-)
5  (36)

2 1 2 0o36

:F (x,x.s)

where

Xxx
X =x 0 + q (37)

x-xoX-0

x 2  -o + q (38)

q2

ql 3 + [_3 (39)

q 3- /3 (40)

x= g(u) (41)

Example 3: Turbofan Engine Dynamics

The reduced parameter models discussed in Example 2 represented fifth-order engine dynamics and
were parameterized with 10 nonzero elements. Curves were derived for each dynamic element using subset
selection methods over the operating envelope.

The models derived for the elements of the dynamics matrix form the basis for the nonlinear model.
Table 4 shows the preliminary model selected to represent engine dynamics throughout the operating enve-
lope. Thirty-three terms are sufficient to match the linearized dynamics at all flight points. The
model's accuracy is summarized in Figure 5, which shows a comparison of the aLtual engine time constants
and those calculated from the curve-fit model of the dynamics matrix. This procedure represents a sig-
nificant simplification over other linear modeling method and allows a tractable simulation of nonlinear
dynamics.

4. TRAJECTORY GENERATOR

If a perfect plant model were known, and if there were no unknown disturbances, then it would be
possible to control the plant using only feed-forward (open-loop) inputs. Furthermore, assuming the
plant were stable, the fecd-forward could simply be a change in the control set point which would pro-
duce the desired steady-state condition. However, using this strategy, transition from the current
state to that commanded would occur with the dynamics characteristic of the open-loop plant. There
would be no direct control over the maximum output excursions.

Another more sophisticated approach calculates an input time history that is optimal with respect
to a ;pecified performance index. Current techniques for trajectory optimization [15-17] utilize an
engine simulation of varying complexity. A cost functional is derived which reFresents desirable tra-
jectory attributes (e.g., maximum thrust response or minimum turbine inlet temperature rates), and a
group of constraints in the trajectory are formulated to respect stability limits and other physical
operating constraints. A trial trajectory is calculated which may or may not satisfy the constraints.
Standard function optimization procedures can be used to derive feasible and optimal paths.

fhe problems with this type of procedure are threefold. First, engine transient simulations, espe-
.1 t.,r gross transitions, may poorly represent engine behavior; second, implementation of exact tra-

" i inevitably impractical; and third, there is no convenient control law formulation of the

r A tr.Im the reference point schedules represent a group of engine variables and controls
I I flr um coiditions and which are within physical and operating limits. These quanti-

,.4. ,aes of throttle setting, mode, and inlet conditions. These may instantaneously
. t' ple because ot pilot inputs. The actual reference outputs could be discontin-

I ti these reference values were linked directly to the regulator, moderate en-
, %,t,jrat,. the actu.tors. To rate limit the reference points or the throttle com-

. ~. imall signal response. Also, since the system response to very large in-
t. hieved wl .,t some input compensation would be suboptimal (and most

S .ir- t I Mi g,,n,,rAtor is designed to produce an ideal reference between the

11 m,., r, ent ly requested by the reference values.

! - ivaw the tol lowing attributes:

* It aLt,al engine response, i.e., tht reference input trajec-

.t.rv, ,. , 'put trajectories,

1 1.- 1It an
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(3) it should exhibit optimized response for both large and small inputs.

The approach chosen for this function is to utilize the dynamic model of the engine compensated with a
nonlinear feedback law and driven by the reference point schedule as the generator ot this nominal path.

The trajectory generation logic is shown in Figure 6. A nonlinear, proportional override logic is
used as the compensation. The critical element in the design is that the model compensation gains are
generated directly from the regulator gain schedules. The procedure results in a 50 percent reduction
of the gain schedule storage requirement. Operation of the trajectory generator and the initial design
a~proach is discussed below.

For small transients, reference inputs are used as direct commands to the engine model. The model
response is further compensated with output gains which are proportional to the optimal regulator
gains. Whea no limits are exceeded by the model, the response of the model is controlled by the locally
linear gains. When a model output approaches a limit, the rate limits are proportionally reduced. This
has the effect of transferring the control law from the unlimited regulator to one of several specifi-
cally designed multivariable limit loops. The rate limit is proportional to the error signal from the
limiting blocks. This feedback in one or more of the control channels will tend to cause the model to
move smoothly onto a limit. If the proportional error signal indicates that the system can move away
from the boundary, the limit is smoothly removed. The feedback gains for the limit loops are designed
using output weightings on the specific engine constraints. This yields a feedback vector for the limit
loop. This vector is simplified using sensitivity calculation and scheduled as a function of ambient
conditions.

The large input performance of the system will tend to behave in a time-optimal fashion. This as-
sertion is justified from optimal solution to the minimum time problem 115,16] for a linear system.
Here, optimal trajectories consist of a minimum time (corresponding to a bang-bang control) trajectory
to a limit, tracking the limit, and moving off the limit to the final point. The character of the tra-
jectories generated in this method will be very similar to this type of motion without the requirement
of explicit solution of nonlinear optimization problems.

Example 4: Turbofan Engine Dynamics

Trajectory generator logic was designed and demonstrated at one flight condition to demonstrate the
concept. A linear model of the engine at sea level, static, intermediate power was used as the engine
simulator. An "acceleration" from 90 percent intermediate power to intermediate power was performed
using fuel flow as the only modulated variable.

The response of the engine to a step input is compared to the linear servomechanism response in
Figure 7. It is observed that the compensated command generator produces a faster thrust response at
the cost of a temperature overshoot and unacceptable surge margin loss.

The nonlinear variable rate limit design was also implemented using the T4 .1 (turbine entrance)
gas temperature limit and the compressor surge margin limits as inputs to the system. The response is
shown in Figure 8. It can be seen that the trajectory generated with this system provides a fast re-
sponse without causing a predicted overtemperature or unacceptable surge margin loss in the model.

5. OPTIMAL REGULATOR DESIGN

Linear optimal control synthesis [151 methods are used to derive constant feedback gains for each
design model. The two most common cost functionals are shown below:

J I 1 (xTA x + 6uTB6u) dt (42)

0

1 -' (S4 Bu) d

(6yTA*6y + uTB6u) dt (4)

where A is an nxn state weighting matrix, B is a mrm control weighting matrix, and A* is a
pxp output weighting matrix. The conditions on the problem for a unique solution are well known [15].
The rsulting state variable feedback control law is optimal for an initial condition response nea, the
equilibrium point. The control law is suitable for regulating the system along a trajectory which is
"near" the linearization point. If the controller produces a nominal trajectory of this type, charac-
terized by a state and control time history, (xn(t), un(t)), then the regulating controller is
written as follows:

u(t) = u (t) + C (xt) + x(t)) (44)

where C is a mxn state variable feedback matrix designed for the equilibrij.a point. The relation-
ship between the control criteria and the weightings, A,A*, and B, is est.ihliu~ed during the design
by evaluating closed-loop response and sensitivity. This procedure will be uiscussed.

In many applications, the quantities that are to be regulated are system c-tput variables and not
system state variables. Using state variable feedback in these appli'st~ons (outputs weighted in the
performance index) generally involves estimation of unmeasured states (e.g., the Kalman filter) and
mathematical modeling of the system's output equations (e.g., y - Hx + Du). If the mathematical model
of the plant were well understood, this procedure would generally n'jce an acceptable control law.
often, modeling errors are present. Consequently, additional inteasl or trim control is necessary to
ensure satisfaction of performance requirements.
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Sometimes these difficulties can be avoided by designing a controller that feeds back functions of

the output errors directly. One disadvantage of this approach is that the resulting gain matrices can-
not be found as solutions to a matrix Riccati equation; they must be found by solving directly minimiz-
ing the objective function 118].

One technique of finding the minimum of J (with respect to C) involves the use ot a gradient
search procedure. An efficient procedure is the modified Newton-Raphson with derivative technique
[19]. The algorithm requires the gradient of J with respect to C.

The gradient of J with respect to C is developed in part in Ref. 20. Summarizing briefly, let

y* Hx 
f 
y - Du (45)

and

u = C y* (46)

with

C C(I - DC)- 1  
(47)

Then, from Ref. 19,

dJi (BH + N
T
) LH

T 
+ GTK LH

T  
(48)

dE

where

F* F + GCH (49)

O = LF* 
T 

+ F*L + X (50)

0 = KH* + F*TK + A + HTCTBCH + NCH + HTCTN T  
(51)

and

X = E[x(O) xT(o)] (52)
0

The gradient search may therefore be used to find a matrix C (u = Cy*) which minimizes J. The
resulting C may be transformed to C (u - C y) using Eq. (39).

One difficulty remains. The resulting feedback gain matrix, C, is, in general, fuil. That is,
there is a feedback path from every output to every control. Often, unimportant or ineffective error to
actuator paths can be identified and eliminated, yielding significant reduction in the number of feed-
back paths which must be implemented. Optimization of the resulting fixed structure gain matrix re-

quires a slightly different forulation of the gradient. Specifically, the gradient of J with respect
to C (instead of 7) must be found.

The derivation of ! is provided in Ref. 6. The result is
dC

dJ = (I + C(D) T  (53)

dC dC

where

= (I - DC)
-1  

(54)

dJ
With L available, the gradient search

procedure can be used to optLmize specific elements in the C matrix with the remaining elements fixed
(e.g., at zero).

6. SUMMARY AND APPLICATION HIGHLIGHTS

6.1 APPLICATION TO THE FIOO AND VCE TURBOFANS

The theoretical methods described have been applied to two advanced turbofan engine designs. The
FOO turbofan is the current engine in the F15 and F16 fighters. A digital MVCS was implemented and
successfully tested in digital, hybrid and altitude engine test runs. A variable cycle engine is an ad-
vanced, highly complex turbofan concept. An MVCS [6] for this engine designed for implementation within
a powerful microprocessor was designed and evaluated on a detailed digital test bed. Highlights from
these applications are summarized below.

The FIOO Multivariable Control Synthesis (MCVS) program 14,8,91, jointly initiated by the Air Force

Aero Propulsion Laboratory and the NASA-Lewis Research Center, was aimed at demonstrating the benefits
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of LQR synthesis theory in the design of a multivariable engine control system for operation throughout
the flight envelope. The payoffs from the method include. (1) enhanced performance from cross-coupled
controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be
applied efficiently to new engine systems.

Steady-state operating data [41 were taken at 309 combinations of flight condition and power lever
angle. The MVCS tracked the reference point schedules well. Temperature and burner pressure limits
were accommodated where required for safe operation. The integral trims held geometry variables to

their respective schedules. The fan rotor speed and fan discharge pressure were held to their scheduled
values through the use of integral trims on exhaust nozzle area and main burner fuel flow.

in general, steady-state performance of the F100 HVCS control was good at all points tested. The
integral control action held scheduled variables close to their scheduled values. Minor reference point
schedule adjustments allowed schedule matching without controls saturating or engine variables exceeding
allowable limits.

Transient performance was assessed at all the flight points. Large PLA transients were run at all
points where air flow constraints permitted PLA operation below 83 . Small PLA transients of 3 were run
to check the regulator performance while random PLA sequences were run to verify correct gain scheduling

operation.

Good transient performance was demonstrated at all flight points. The control attenuated after-
burner pressure pulses occurring during afterburner lights at all but two flight points. At supersonic
points, where operation was permitted only at intermediate and above, excellent suppression of after,-

burner disturbances was observed. The multivariable control successfully operated the engine for random
PLA excursions, thereby verifying the correct functioning of regulator gain schedules and transition

logic. A number of flight maneuvers were performed to check the control's performance with simultane-
ously varying PLA and ambient conditions. The control tracked reference point schedules well and acc3m-
modated all limits.

Programming flexibility which exists due to the modular structure of the multivariable control was

demonstrated by testing two alternate control modes. A fast acceleration set of transition control
rates was implemented which allowed more rapid engine accelerations. Also, the integral trim structure
was changed to use engine pressure ratio instead of the fan discharge Mach number parameter normally
used with the ultivariable control.

Sensor and actuator failure detection logic was incorporated into the control for altitude tests

and functioned well in conjunction with a backup control.. All logic was programmed in 9500 words of
core memory, using a 12-msec computer cycle time. These computer requirements are within the capabili-
ties of present generation computers envisioned for use as engine-mounted digital controls.

The micro-electronic revolution has already significantly affected turbine engine controls. This
capability alone would not radically alter the hydromechanical hardware on current commercial and mili-
tary turbines because these systems have a l

1
nl reputation for reliability and cost effectiveness. How-

ever, near-term propulsion system requirements for V/STOL and military flight applications cannot be

realized with purely hydromechanical devices. The performance capability of these propulsion systems is

now dependent on the control rather than the components. Practical designs integrating engine, inlet,
and airframes will be necessary. Multivariable procedures must be used to accommodate dynamic and sta-
tic interactions which will dominate these system configurations. Proposed V/STOL applications, for ex-
ample, have propulsion system components, gas generators, fans, ducts, mechanical linkages, etc. distri-

buted throughout the airframe. A design method to make this type of system operable is imperative.

The evolution of mu ltivariable, electronic controls for complex turbine propulsion systems is in
full swing. Next generation engines will have the hardware and the requirement. Optimal control proce-
dures and locally linear design techniques offer a strong option to design engineers for the development
of the high performance, high reliability, cost-effective systems which are needed.
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Table 3: Comparison of Eigenvalues Between F and F

ORIGINAL REDUCED
EIGENVAIES (F) EIGENVALUES (i)

:0.49 -0.49
-3.38 -3.so
- . :06
-0.41 -0.39
.0.14 -0.14

*Eigenvalues novellliZed by Collective resPO#'S@

Table 4: Preliminary Nonlinear Model Structure

MATRIX RMS
ELEM1ENT MODEL FORM ERROR*

F1 lS,+ a2p2 + a, 1.0

F33 b1PS3C + b2t42T2 +4b 0.3

F_ CI* c2T2 + C33d25P2 + C4 1.7*1F 2, dlP2 + d2P21 + 4 SC+d 1.5
F-, e1 F11 + ezPi + e'?42P2 + e 1.2

F23  f,1 P2 + f2P11 + f3F33 + f, 1.5

F32  91P, * 92P21 + 93ps3c + 9 1.2

F4 hF33 + * 0.3

F53  'PS3C + 4,3 +k 0.4

F.5  z1t33 + 0.1

Percentage of mean.

PLA AEEC RE p) MULTIVARIABLE

P40CCSCHEDULES

Figure 1: Multivariable Control StructureEI
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Figurer 5: Sensitivity of Liean Squarelu Reposeto-

tions Found by Linearizing th.~ Nonlinear Mcdel
at 28 Flight Points Spanning the Operating Envelope
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