, AD~A106 869 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA SCIENCE A-=ETC F/6 9/2
SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL.(U)
JAN 81 S E GOODMAN» N S GLICKs W K MCHENRY MDA9DS-79-C-0018
UNCLASSIFIED IDA-N-878 1DA/HG~81-23408

B

—————— ——— .

— e A e el -

S e s P i gs o
PP S TR WP St

R 3

el o #3 o e - oo ol RN

peng pag puqg DEY Ppuy Iy PEN PN NN SN U NE PN DR BN AR IS GO0 =W

ADA106869

o FLE copt

NOTE N-878

SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL

Seymour E. Goodman, University of Virginia, Chairman
Norman S. Glick, Department of Defense
William K. McHenry, University of Virginia
John B. McLean, Rome Air Development Center
Claude E. Walston, IBM, Federal Systems Division
Clark Weissmon, System Development Corporation

January 1981

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

DISTRIBUTION STATEMENT A D I lc

Approved for public release ELECTE iy
Distribution Unlimited NOV6 1981 %

INSTITUTE FOR DEFENSE ANALYSES
SCIENCE AND TECHNOLOGY DIVISION
400 Army-Navy Dtive, Arlington, Virginia 22202

Contract MDA 903 79 C 0018
Task 7-0-072

IDA Log No. HQ 81-23408

of 81 coples

81 10 30 510 o

en ‘_‘i"“"“" R K)

? Mvmn A S TIUNGR. SPPPIPUITRr s T e

. 3. 4 . .

- b ot i b

e s o - -
B i et O Y

Approved for public release; distribution unfimited.

e S

A Wt YR

ar S,

g

T

UNCLASSIFIED

SECUMTY CLASSIFICATION OF Twis SAGE (When Dote Entored)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING PoRM
[T REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
N -Rie f

4. TITLE (and Subiiite) i “['s. rvee or nemonr a memon coveneo
Software Technology Transfer and Export December 1979-October 1980
Control

S PERAFORMING ORG. REPOAT NunBER
IDA Note N-878

7. AUTWORYa, . CONTRACY ON GRANT NumBERTs 1
Seymour E. Goodman, Chairman, Nomman S. GLick,| o o e
William K. McHenry, John B. MclLean, MDA 903 79 C 0018
Claude E, Walston, Clark Weissman

3. PERFOANMING ORGANIZATION NAME ANO ACORESS 1. ::gi..‘.-.Q:.L(‘.::.Y"u-.-oJ‘CT TASK
INSTITUTE FOR DEFENSE ANALYSES T nouegne
400 Army~Navy Drive Task T-0-072
Arlinaton, VA 22202

1. CONTROLLING OFFICE NAME AND ADDRESS 12. .AEPORY DATE
Deputy Under Secretary for International
Programs and Technology, OUSDRSE _-%-91%:—*—
The Pentagon, Washington, DC 20301 143
. MONMITORING A NCY NAME & ADORESS(s/ trom C, e Offrice) 13. SECUMITY CLASS. (of thee repoe)
DoD/IDA Management Office UNCLASSIFIED
400 Armmy-Navy Drive BT R T ITWY T TS ira T R
Arlington, VA 22202 5a. gc‘féo‘&t'z"c"w“ COWNGRAGING

e —————————————
16. DISTRIBUTION STATEMENT (ul thre Report)

Approved for public release; distribution unlimited.

17. CISTRISUTION STATEMENT (of the adetract snteved In Blaek 10, il dilferent irom Repert)
None

18. SUPPLEMENTAARY NOTES

N/A

19. XTY WOROS (Continue an reverse side (! necsssary and v oy bleck

Software, Export Control, Technology Transfer, Technology Transfer
Mechanisms, Militarily Critical Technologies List, Software Life Cycle,
Software Development Tools, Software Engineering

20. A@STRACT /C - ade H y and idoniity by dleck number)

The formulation of a reasonable and effective export control policy for
software products and software engineering know-how has been an important
and difficult task for both the U.S. Govermment and industry. This note
represents the contribution of the Software Subgroup of Technical Working
Group 7 (Computers) to the development of a technical policy for the
control of software.

DD , 55" 1473 eormiow oF 1 wov es 13 omsoLETE “NclASSIFlin

T TS
SECUMTY CLAISIFICATION OF THIS PAGE ("hen Date Entered)

UNCLASSIFIED

SECURMTY CLASSIFICATION OF THIS PAGE(Whan Dace Enteved)

20.

The note attempts to provide useful discussions and analyses in three
areas. The first examines why the problem of software control has been
so difficult, and presents the raticnale for a mmber of working hypoth~
eses which underlie the approach taken for the entire study. The second
examines, in some detail, the "what" (know-how and operaticnal capability)
and "how" (transfer mechanisms) of software technology transfer. The
last section recommends several items for inclusion on the Militarily
Critical Technologies List,

|

UNGLASSIFIED

SECURITY CLASSIFICATION QF THIS SAGE/Whon Data Entered)

ol Sl ISR " oo e . = i b . - P . N _
ek o 0 . T . Lot A e e LM g Lt s e 2 B i B s BT, YO e Rt ¥

-— - ——

FOREWORD

This note reports the recommendations and views of the
Software Subgroup of Technical Working Group 7 (Computers) of
3 the Critical Technologies Project. The work reported herein
”! provided part of the basis for Chapter 6 of the report of
'é Technical Working Group 7. However, some of the views ex-
% pressed herein differ from those presented in the output of
3 the Critical Technologies Project as a whole, in that the
o rationale of this note interweaves considerations of control
f‘ policy with determination of which technologies should be
identified as Militarily Critical Technologies. The Critical
Technologies Project dealt only with the latter issue in the
FY 1981 study effort. Nevertheless, since this note represents
a thoughtful contribution tc the understanding of the rela-
tionship between software technology and its control for ex-
. port purposes, it is being published as part of the related
| work performed in support of the Critical Technologies Project.

This note has been reviewed by IDA management, but the
views expressed herein are those solely of the authors and
should not be construed to be those of IDA nor its DoD sponsor.

iii //';/

|
|
!
I

I S T R SR N S T - R L L .
-

: ABSTRACT

Y

The formulation of a reasonable and effective export
control policy for software products and software engineering
know-how has been an important and difficult task for both the
i U.S. Government and industry. This note represents the con-

4 tribution of the Software Subgroup of Technical Working Group 7
(Computers) to the development of a technical policy for the
control of software.

| The note attempts to provide useful discussions and analy-

& ses in three areas. The first examines why the problem of

A software control has been so difficult, and presents the rationale
for a number of working hypotheses which underlie the approach
taken for the entire study. The second examines, in some detail,
the "what" (know-how and operational capability) and "how" (trans-
fer mechanisms) of software technology transfer. The last section
recommends several items for inclusion on’the Militarily Critical

.f, Techn?logies List.

3| Accession For

| NTIS GRA&I iﬁ’
(DTIC TAR

|

Unannounced]
2 Justificotion

By
pistribution/

| Availability Codes

‘Avail andfor
Special

.. |
| A

——

s B S Tt S UMM R K5 gy A G W 08

IABLE QOF CONTENTS

EXecutive SUMMALY..ecesecracosccscascsascososscocarscosonsssssd

l- IntrOdUCtion.-...-.......-.........-..-.............-....-.-ll

2. Why is Software Control SO ElusSive?...ceccescesssssrscncecsaeld

. The Software Life Cycle

. The Elusive Form of Software

. Software Development Tools

. Why the Control of a "Product” is Not the Key Issue
. Software Versus Hardware Development

: 3. Wotking Hypotheses.aaoooo»o.‘ooooco.ooo.o..oovt.u.oo'ooooocc3l

|
bl
R
&' 3.1. Scope of Our Analysis

4 3.2. Limitations of Software Export Control
5! 3.3. Software That Should be Considered for Export Control

‘ 3.4. Adversary Capabilities and Foreign Availability

i
? 4. An Overview of the "What"™ and "How" of Software
' Technology TransSfe@rleeecicecsccocasessescassscancancsnnnocassidl

5. Software Know-how and Operational Capabilit¥eeeeeccecoccosssd?

5.1. Introduction

5.2. Know-how

. Operational Capability

. Systems Software

. Software Development Tools

. The Feasibility of Controls Based on a
Taxonomic Approach

d 6. Software Technology Transfer Mechanisms.,.....eceeeveeceaees?5

6.2. A Taxoncmy of Transfer Mechanisms

6§.3. The CNCTEG Framework for Evaluating the Effectiveness
‘ of Transfer Mechanisms

6.4. Evaluation of Transfer Mechanisms
l 6.5. A Partition of Transfer Mechanisms for the Purposes of
b Control
Appendix to Section 6 (SECRET, not included in this report)

A 6§.1. Introduction
i

7. Some Thought ExperimentsS....ccceeeeesecsascacsaccscasssasacsddd

£ 7.1. Introduction
o 7.2. Software Life-Cycle Phases

! 7.3. Acquiring Military Capability
7.4. Software Development Trends

!;
!
:
{
‘| B

i e

e e OB @Y <

i pa A S, A TP IAD AN GRS

. T T v e Ten e T G TRRMTR e LY

Recommendations.. coooo.o.t'-u.00.loo.'l0;.0.|0o...n.06..o.t.ll7

8.1. Introduction
8.2. Recommended Entries for the Militarily Critical
Technolgies List

8.2.1. Software Life~Cycle Management Technology
8.2.2. Software Library Data Base

8.2.3. Software Development Tools

8.2.4., Maintenance of Large Software Products

8.2.5. Formal Methods and Tools for Developing
Trusted Software

8.2.6. Secure Software

8.2.7. Large Self-Adapting Software Systems

8.2.8. Commercial Software Integral To Critical

Military Systems
8.3. Other Recommendations

8.3.1. Recommendations about Product Form
8.3.2. Recommendations for Further Study

ReferenCes Cited...O..QI..........'......'.Q‘..l..b..'l.l......l39

ok b BN O o AN A 5 1 e I NI i T AL WKy AR BRGNS ool RIS 3 Gl W a6 — ..

Executive Summary
Recommended List Entries
J The software subgroup of the Computers Technical Working

Group (TWG-7) recommends the addition of eight software

technologies to the Militarily Critical Technologies List (MCTL).
These are:

1. Software Life-c¢ycle Management Technology
(Section 8.2.1)

NP, S

2. Software Library Data Base (Section 8.2.2)
i 3. Software Development Tools (Section 8.2.3)

4. Maintenance of Large Software Products
(Section 8.2.4)

5.Formal Methods and Tools for Developing Trusted
Software (Section 8.2.5)

\,
> 6. Secure Software (Section 8.2.6)

7. Large Self-Adapting Software Systems (Section 8.2.7)
!
' 8. Commercial Software Integral to Critical Military
¥ Systems (Section 8.2.8)

The concern of the software subgroup has been with software '
{ | Lechnology for the developmentvof large software systems. It can
be argued that the relative U.S. and NATO superiority over the
U.S.S.R. and the Warsaw Pact in developing and maintaining large,

integrated software and software-hardware systems is one of the

e R

most critical advantages remaining to the West in military-
related technologies.
A large software system is one whose effective development

and maintenance require sophisticated life-cycle management

oL

technology. We try to capture the essence of this technology in

l
!
1
1
1 e
|
!

B W,

v, TR e T
s it i

R AL

Ly

e e A

k¥ '&&.W%&W“wvmwww1um A i g e i

the first five recommended list items. Our posture is to view
software more as a process than a product, i.e., as a labor
intensive social activity of teams of technical personnel working
over a long life cycle to produce a variety of "products" such as
English and mathematical documentation of the requirements,
functional specifications, user operations, and source and object
code - what we collectively call "software.” Our recommendations
focus on this process which is necessary to construct large
software systems that have sufficient functionality to provide
significant military utility. When software size reaches a
threshold it requires many people, automated tools, various types
and levels of documentation, and technical and management
controls employed over a multi-year development and use life
cycle. It is this technology and technical know-how which we
recommend for control, and we believe that such control is best
imposed through the control of selected transfer mechanisms and
software development tools. See Section 2 for a more extensive
discussion.

In terms of somewhat simplistic parameters, we have chosen
the rough equivalent of 15,000 lines of source code (without
normal comment statements and documentation) or four person-years
of effort for initial system development as threshold values for
defining "large." Except for small programs of direct and
important military value, which should probably be controlled
through classification, we believe that the government should not
be concerned with the enormous volume of software that falls
beneath our threshbld values. The burden on both the government

and the software community would be counterproductive, and the

3
[3
i

-

Y ST, SN

fl
s e

e

., &

T

PR Y

security-threatening technology transferred via such products is
not likely to be significant. A more complete set of "capture-
release” criteria are presented in Section 3.3.

The remaining three list items are concerned with more
specialized technologies. Two cover fairly general emerging
technologies of high militafy utility. Other technologies in this
class may have to be added later, since constraints of time and
expertise did not permit us to thoroughly cover all software
areas. One such future possibility is robotics software. The
final item concerns know-how that could enable adversaries to
counter or jam U.S. military capabilities by acquiring access to

and compromising software used in critical military systems.

Applications Software

It must be emphasized that we are not concerned with the
operational capabilities provided by applications software. This
is beyond the scope of our expertise. For example, from our
perspective, a CAD/CAM package for designing aircraft engines,
shipped in object code form with only user manuals for
documentation, transfers little software know-how. It may well
transfer a great deal of technology for designing aircraft
engines. We assume that applications software of concern will be
flagged by TWGs or DoD groups dealing with the applications

technologies.

Listed below are a few of the conclusions, other than MCTL
items, that have emerged from this study. See also Sections 3 and

8.3.

ez - AL i e il el o i - eLg o g P ~ v .
Lk > - & . = PR T o . _ - . < ot 0e e e e

Major Implementation Issuesg

Software is a much more open technology than hardware. Care

e —— e

must be taken to avoid methods of restricting technology transfer

which would significantly and adversely affect the advancement of

B this technology in the U.S. One of the great strengthes of U.S.

software technology is its extraordinary openness. In spite of

intensive "borrowing" of software by other countries, we continue

to make more extensive use of product and know-how transfers

"o WL

KR

R JP A
e A s e

within the U.S. than is possible from the U.S. to foreign
countries, In fact, with respect to our NATO allies, we believe
that joint efforts should be expedited by the U.S. government.

The best way to stay ahead in the race is to run faster.

NS

The software subgroup rejects the idea that virtually all
software should not be controlled because "they can get it
anyway" through covert means. Forcing an adversary to resort to
covert means to obtain software products adds links to the a
acquisition chain which may increase the acquisition time, risk,
effort, and the probability that information will be lost during
the transfer process. Such information losses will play a more
prominent role in hindering the acquisition of large,
sophisticated software systems. Furthermore, the lack of ready
access in those situations to the the services and other forms of
support provided by the organizations which develop the software

can further degrade the usefulness of what is acquired.

From an implementation standpoint, the best ways to avoid
the two undesirable extremes mentioned in the preceding two

| - paragraphs are through:

oy

'

e b b PSS 21 L g PRI oIS ™ il By Dol e WO SN s O~ 5.5 - Nyt B BI5GB, 2P vlistl SR

3 1. An informed software community,

and 2. The careful analysis and control of software

transfer mechanisms.
The software community consists of a large number of people

and organizations in government, academia, and industry. Much of

d o S
o e b e Bl

this community has not considered its activities to fall under
export control prior review or even self restraint. The control

of software will involve a more delicate and difficult balance of

" B
atuat e o Bl L

interests between academic freedom, free enterprise, and national

o g T

. ehi .v_."‘
[T SR

security than has been the case for any other technology. The

o F-,,‘_,_W‘ﬁ-ﬁ————_-—y———_ml

software community needs to be involved in determining this

the effectiveness of any set of

balance. To a large extent,

controls will be dependent on the voluntary restraint of an

informed professional community.

We believe that a lot of software can be sold to adversary

countries, and that a lot of person~to-person contacts between

software specialists from the U.S. and adversary countries is

possible without significantly threatening U.S. national

security. The key to drawing a line between what is and what is

not desirable and controllable is an understanding of the

effectiveness and controllability of the software techrology ;

transfer mechanisms. We have made a fairly comprehensive analysis

£ " of these mechanisms (Section 6), and our findings are summarized
in Section 8.1 of this report. We believe the ;gggmmgnﬁasigng Loz

, sontrolled transfer mechanisms that we have included with each
:;1 MCTL item in Sections 8.2.1-8.2.8 should be considered part of

the definition of the item.

L. 4 4
e - e .

SR ydnaiiidth

A,

At]
PO Wy

o

i aii 6 5 g WA I b abin y 8 el U TN VN s W o o B SR Rk, SO 0 N,

Irends and Leakage

Most current technical trends will make it easier for
adversaries to acquire software capabilities through transfer
from the West. A thoughtful set of controls may slow this
acquisition rate, perhaps significantly, but it must be
recognized that there will always be substantial leakage since

what is being sought is becoming increasingly widespread and

available.

Taxonomic Approgches

We believe that a taxonomic approach to software export
control, i.e., what is essentially done now with hardware, is
unmanageable for systems and applications software. Furthermore,
such an approach misses some of the most important aspects of
control of this technology. However, we have used a partial
taxonomic approach in our recommendations concerning software

development tools. See Section 5, especially Section 5.6.

Product Form and Portability

It is necessary to control the portability and modifiability
of software products through technical means. One general and
moderately effective way to do this is limiting shipment to
object code or hardware forms (e.g., ROM) and basic user manuals.
Simple, cheap, effective means to tie a software product to a
specific configuration are needed.

In general, the transfer of any software product should be

uncontrolled if the product does not.provide a direct military

B ek, uti

e
e e

oy

PR SN SRS Wy

SO LN AGT R 547 L, Y VI WAL St s it Ul 2 SR 4 NN Wil 0 5, rei it i RNk s Wl S0 SN 4

operational capability or explicitly fall into a small number of
categories {(e.g., software development tools or self-adapting
systems), provided that it is transferred in the form of object
code with only users manuals and passive maintenance service, and
provided that there be reasonable technical safegquards that the

system not be portable.

Ihought Experiments

Our analysis of transfer mechanisms ﬁsed a set of novel
'gedanken' (thought) experiments showing the value of what-how
transfers to a determined antagonist. One experiment considered
how an adversary might piece together a tactical command,
control, and communications system from commercially available
software. Another investigated what transfer mechanisms were
important in the construction of an actual time-sharing system.

Both experiments played an important role in formulating our

ideas, framework, and recommmendations. See Section 7.

el - P Al 7 i 48 ORI T ' 8 S S Nl IO 5ok TS RIS 5 R ol 10 S 4 i

1. Introduction

The formulation of a reascnable and effective expért control
policy for software products and know-how has been an important
;“ and difficult task for both the U.S. Government and industry.
This task becomes increasingly important, because the hardware

capabilities of our adversaries are improving to the point where

it is possible for them to work on a respectable number of £airly
y large and sophisticated systems of military importance. It can be
argued that the relative U.S. superiority over the U.S.S.R. in

b developing large, integrated software and software-hardware

systems is one of the most critical advantages remaining to the
~ U.S. in military-related technologies.

This report represents the contribution of the software
subgroup of the Computer Technical Working Group (TWG-7) to the
development of a technical policy for the control of software.
The starting point for our analysis was the conceptual framework
established by the software subgroup of the Computer Networks
Critical Technology Expert Group (CNCTEG)({4,7], and our
| assessment of the software capabilities of our adversaries. We
have expanded and modified the CNCTEG framework as necessary on
the basis of new material and our own deliberations. Although we
have pushed forward both the breadth and depth of the analysis of
software technology transfer, the short working period available
to the TWG made it impossible to comprehensively study all of
software in great detail.

‘; Software is a particularly difficult technology to analyze

and control. We try to explain why in Section 2. The problem of

11

A a2 o VR ADoK = e 7 R i b B by o, Sl

software technology transfer and export control will continue to
require attention., We think it necessary to provide a discussion
of our conceptual basis so that readers can better understand the
rationale for our conclusions and recommendations, and so that
this report may serve as a building block for further studies.

Section 3 contains a detailed listing of the working
hypotheses that have emerged from our conceptual basis, and a
brief summary of our perceptions of foreign and adversary
capabilities. This section provides the foundation from which
our analysis and recommendations follow, and we feel that this
foundation is as important as the recommendations themselves,

An overview of the ‘what' and 'how' of software technology
transfer is contained in Section 4. We define some basic
terminology and provide an introduction to our top-down
taxonomies. The topmost levels of these breakdowns are also
presented here.

Section 5 contains our detailed taxonomy of the 'what' of
software technology transfer. This analysis is limited to systems
software and software development tools. A partial evaluation of
military utility is also provided.

The mechanisms for software technology transfer, i.e., the
'how', are treated in Section 6. We provide a taxonomy, and a
discussion of the possible effectiveness and controllability, of
the various mechanisms. Detailed analyses are given of one
moderately active mechanism (this analysis is contained in che
classified appendix to this section), and of one passive
mechanism - the physical forms of product sales. These two

examples were chosen because of their importance and wide use,

12

P CSUUUUE U

O R AR N GE PO i LA RS ke a i L had e R R R T itbos B2 AR i N SO RCAD S N

and it is hoped that they may also serve as prototypes for
further analyses.

Secﬁion 7 is built around examples of ‘gedanken' experiments
that try to pull the 'who', the 'what', and the 'how' together. A
software development team based on our perception of a reasonably
¥ good Soviet group is hypothesized to want to build two major
systems of considerable military value. The systems have been
chosen from among those with which members of our TWG software
] subgroup are deeply familiar. The thought experiments estimate

the effect of several technology transfer mechanisms on the 3

& ability of our hypothetical Soviet-like development team to
produce the target systems. The analyses are done from both the
; standpoint of the acquisition of a significant operational
capability and from the standpoint of the acquisition of in-depth
know-how transfer.

Section 8 contains our recommended entries for the
Militarily Critical Technologies List, and several other
recommendations, concerning problems of implementation.,
| A variety of software terms used in the body of the report
were felt to be part of the working vocabulary of most software
specialists. Readers who are unfamiliar with %these terms should

consult the DACS Glossary [5].

The software subgroup of the Computers Technical Workiag

e b

Group (TWG-7) consisted of: Norman S. Glick (Department Oof
Defense), Seymour E. Goodman (Chairman, University of Virginia),

William K. McBenry (University of Virginia), John B. McLean (Rome

Air Development Center), Claude E. Walston (IBM,FSD), and Clark

13

- R AT . b o S DR B e - e s A

S e . ISR § e AT A it n AL e TR SRR i St 5 e B o AL T Bl 200 SUIE Sl

1 Weissman (System Development Corporation).

We would like to thank the Science Division of the U.S. Army
Foreign Science and Technology Center (USAFSTC-SD) and William
3 Carlson and others at the Defense Advanced Research Projects
Agency (DARPA) for their assistance and the use of their
¢ facilities. We would alsoc like to thank the more than 50 other
people from government, industry, and the academic community who
gave their time to share their views and experience with us.

As of July 31, 1980, the material presented in this report

3 v -

does not represent an official view of any U.S. government

Bk <2
L

iMoo

organization, nor does it reflect the views of any other
organization. Conversely, any changes made to this report after
this date will not necessarily reflect the views of the software
subgroup. With the exception of the separated SECRET appendix to
Section 6§ on transfer mechanisms, no classified material was used
T in the preparation of this report. The authors welcome

constructive comments.

2. Why Is Software Control So Elusive?

A better grasp of software and its control is obtained if we
rethink our implicit model of software as a product, like a dozen
eggs or a computer of specified performance, and view it as a
social process. Software that contains a large number of complex
functions is generally developed by a large number of people
working in a complex social structure. Furthermore, studies have
revealed as much as an order of magnitude difference in the
performance of individual programmers [cf., 3]. This phencmenon is
also at work in the Soviet Union, since we do not have a lock on
bright people,'and therefore they have the ability to recreate
software produced by single jindividuals. If we adept a process-
oriented view of software, we can better reveal what we are
trying to control and why it is so difficult, Then we can begin
to formulate an approach to controlling software technologies and
certain goods which should not be exported to adversary

countries.

2.1. The Software Life Cycle

The best working software is a product ©of a number of
discrete stages with defined output and review, i.e., 2 social
process. Together with the use of the software library inventory
and software development tools, they comprise what we have chcsen
to call "life-cycle management technology."” Although numerous
apprnaches to the life cycle for software are used, one that s

modelled here is the DoD methodology.

The earliest stage is that of ¢oncept definition, when the

= Rt ool e W i i ¢ v “ . S - . " .. e .
SR S5 ey Rk T AT it e s oyt ek Y W < B % g o B N 55 G ol e N .

overall system purpose and operation is conceived. A clear
statement of objectives is required. Objectives may be derived

from higher-level systems, from control of lower-~level systems,

;} from simulations, and from "war gaming"” scenarios. Cost and
scheduling factors also assist in the concept definition.

The reguizements and specifications stages begin to

structure what the system must do to satisfy its objectives,

0 wonangielis G

Again, simulation can be employed. Techniques of structured
requirements are usefully employed to follow the flow of system

operational control and its needed data and computational

requirements. Once developed, these requirements and their
specifications must be written in well-formed, unambiguous
notation. A number of such languages now exist and are used in
preparing mathematically precise system specifications o¢f what

the system must do, i.e., its service specifications.

System design is the stage that defines how the systenm
works, i.e., how the system implements the service
specifications. A design may be written in at least one of a
| number of notations: f£low diagrams and data diagrams, state
&’ machine tables or specification languages, English, structured
English, or even a programming Bigher Order Lanquage (EQL) of the
coding variety. Each approach carries with it advantages and
disadvantages and a considerable technical methcdology. All
approaches use a form of modular design which defines the input,
cutput, and functional behavior of each module. Witha the

definition of these modules and their interfaces %to other

modules, system hardware, and human components, a software

i’ architecture is developed. More modern methods go further in

ls

A0

it

-

DU SP S

Y ad

< .y

y

Rt aennsat’ et

Rl % 5 e W W BT et it e R Y, 2 IR SRR N 2 0 el A M

describing the types of parameters, and their "visibilitcy" in
scope to other modules., Side effects and environment
considerations for each module may also be specified,

C€oding proceeds directly from the design stage. First the
individual modules are coded, then the associated modules until a
chain of integrated modules is built up which performs one or
more of the service specifications. The design is often imple-
mented in an HOL such as FORTRAN, COBOL, JOVIAL, PASCAL, etc.

These module chains, called "builds," relate directly to the
requirements specification and form the basic unit of testing of
the system. Modern testing methods employ "threads" or "builds”
testing which checks the correct operation of a thread (i.e., a
logical, ordered subset of the whole) of functions which satisfy
one system requirement. There is considerable technology required
for system testing., Test plans must be developed to lay out a
strategy of tests to be performed in sequence by a number of
systems people working in parallel. Test conditions are set up,
parameters tc drive modules are created, and results are captured
and analyzed against specifications and requirements. Errors that
are found must be logged and engineering changes generated and
controlled for correcting such errors. The module data base grews
and changes with each engineering change, and a system of
controls tracks software releases and the errors outstanding
against them. These tests proceed thread by thread until all
requirements are demonstrated., Threads are then merged into a

complete integrated system, which is tested for correctness and

performance. Finally, the system is tested at the user's

e e, SR B it e i R Tl A Gy I 05 o o B D

installation. This may be the first time that all of the system
elements work together and use real ("live™) data.

A number of management techniques are used at various coints
in the life-cycle. Standard management activities, e.g.,
preparing work breakdowns, cost estimates, schedules, and
manpower loading statements, have been adapted to the peculiar-
ities of the software industry. Some of the know-how which has
been acquired through difficult learning experiences includes
understanding and anticipating the rigor needed for a large
software project, handling detailed internal management and
technical documents, incorporating a number of defined events and
milestones f£or management review at various levels, using
modelling and control systems, and building project management on
the basis of hierarchies of individuals who have different levels
of experience and responsibility. Much ¢f this experience cannot
be acquired through open, passive sources.

A recent technological development which 1is changing
traditional patterns of testing is the strategy of "building the
gystem correctly,” rather than %testing for flaws. This
technology employs formal mathematical specifications of the
system in a predicate calculus language and a set of software
tools that operate on the formal specifications to prove their
correctness mathematically. By successive refinement of these
formal specifications, a hierarchy of increasingly more detailed
specifications are written and proved correct. These
specifications then become the coding specifications from which
HOL code is written and it too 1s subject to proofs (using %ools)

as part of the formal verification of the correctness of the

18

NN PR St

i—

. © a NPT
B T Tk oo e s o a s .ot Satin St o

software. This is an emerging technology which shows promise of
reducing the cost of software development and maintenance, and of
improving the quality and correctness ¢of the software.

After final testing, the system enters gperation and
maintenance (0O&M). The Q&M stage might be considered the end, as
the system is completed and 1in operaticonal use. But large
programs are quite complex and involve many interfacing
interrelated "clockwork" mechanisms. They are very fragile in the
sense 0of needing continuing support and maintenance to Keep them
current and operational. Repairs are needed to correct errors,
upgrades to improve performance, changes to accommodate hardware
configuration changes or new performance requirements. New
functional capabilities unforeseen or unclearly outlined in the
original specifications may need to be added. Such modification
of working software is the rule of industry and is reflected in
the model, version, or release numbers associated with all
software products.

Such repair is really redesign and requires a return %o
earlier life cycle stages. Thus, 0&M must make extensive use of
the documentation o¢f the program contained in the software
library data base (see below). Rnowledge required to carry out
0&M involves understanding the software architecture, detail
design, the various specification and programming languages in
which the software is written, the computer on which the software
operates, the complement of equipment in the system
conf iguration, the applications environment, the types and ranges

of expected input and output variables, how to operate test

tools, and the proper use of configuration management tools to

Xxeep the software current, O0&M is a major problem stage for
software, because it is entered years after the concept stage and
when few of the original designers are available to perform the
changes. It has been found in major military systems that it
costs 100 times more to £ix a problem in the 0&M stage than to
detect and repair an error in the regquirements and analysis
stage. Overall, 0O&M costs about twice the total of all other
stages combined, While 0&M follows the other life-cycle phases
sequentially, it really must be considered an entirely separate
stage. Few, Lif any, of the personnel who built the socftware
continue to support it and 0&M is carried out for an extended
period of time after operation begins, We intend to address O&M
as a separate candidate technology for the militarily critical
technologies list.

That is the life cycle of a typical large scale software
system for commercial or military application. Small scale
software development mimics these stages in a less structured
manner and, therefore, in a less controllable way. A prcblem for
export control is to determine at what stage the contreol is
applied, For some systems, diverse teams of diverse vendors at
diverse locations work on different stages, each having differant
output elements of the partially completed system. We contend
that export control may more effectively address the process of
software development through these life cycle stages rcather than

through the software products. Furthermore, the control must

[7]]

address the large scale software developments, not the smaller

efforts; since these larger efforts offer greater visibility,

20

" et

- —a— Al

controllability, and capabilities of higher value not easily

emulated by adversaries.

For our purpcses, & large scale software system 1s one that
employs the social processes of meetings, 1interaction,
coordination, cooperation, and documentation of progress that
apply for a project with four or more people working for a year
or more. Typically, such an e2ffort results in the initial
delivery of a system with from 15-20,000 to hundreds c¢f thousands
of computer instructions ¢f HOL statements. (A more formal
statement of our "capture-release" criteria is contained in

Section 3.3.)

2.2. The Elusive Form of Software

Unlike finished goods in other technical manufackturing,
software has no single physical form. In the early life cycle
stages it is English functional descriptions. In design stages it
is more formal mathematics or logical information flow
specifications. In ;he coding stage it is in the form of "scurce"
text in a HOL. This text is translated by software tools into
"object” binary form for direct execution on a given computer.
Application programs in HQL source code form may be translated
into many different object code forms for different computers, or
into different object code forms on the same computer £or
different configurations of interfacing software and peripheral
hardware. And for each form there must be accompanyiag

documentation to describe the sof:tware operation and differences.

S IR SN

ARG B 2 va M NI Sdmn ot e N 10 Db < ebnddbi B ARSI Wl A

. . v
— A

e 3

-
-

ik

O W B v

Finally, through the 0&M process, the source programs are
changed, repaired, and improved in function and performance to
produce an assortment of new versions of essentially the same
"product.” The aggregate of these software items typically
constitute millions of lines of text in various forms. If any one
of these items is incorrectly formulated or maintained, incorrect
operation can result.

In order to maintain these items over the course of the
software life cycle, a software library data base is used. The
data base 1s created incrementally and is a "living” document,
best maintained on-line by a sophisticated set of tools. The
structure of the data base depends on the conventions of the
languages and notations employed in the various stages of
development. These conventions must permit both human and machine
access to the text.

The data base contains multiple directories of the objects
in the data base. Aall directories originate from a master
directory, which is often organized along system Or component
lines so that releases of modules are placed with other modules
of the same thread or function. Subdirectories often follow the
organizational structure of the developmant project, with each
programmer having his or her private files. These files are
periodically released to the software librarian to include in the
master directory. The master directory is further organized by
text forms for each development stage; it then resembles a multi-
dimensional matrix of functions, forms, and people. This
structure is key to the retrieval and to the automation of the

generation of system products: software and documentation., Even

22

PRI vey —;

B e R T I e %

the naming of objects becomes a crucial technology, since much of
the structure is embedded in the names, they reflect a path
through the directories, and thev encode the form of the text and

version number of interest (e.g., JONES.PASCAL.3). They also

e o —— e

provide a uniform key upon which all of the related software
tools can operate.

Access to the library is strictly controlled by the

i it

librarian and operating procedures for obvious reasons of safety

e, oy L0y

and protection, but also for less obvious reasons of error

control, <cost control, status reporting, and project

R A

communication. Private files are strictly controlled by each
owner. Backup procedures are of highest priority and are handled
both by the librarian and individual programmers. Backup becomes
£ more crucial and more costly as the library grows.

| All of the techniques outlined above are collectively known
as "configuration management."” As an important component of life-
cycle management technology, configuration management techniques
are well-developed in the United States and a critical technology

which is not widely available or appreciated in the Soviet Union.

2.3. Software Development Tools
Software development tools play a key role in life-cvcle
management technology. Although they are products, a large amount
- of know-how is required to use them in the context of life-cycle

| management technology. Sence, the software subgroup feels that

| 23

- . B . ¢ -+~ > - R re————

e —— ke

¥

|
|
|
i
A
/

M
1
1
b |
-

ol L S

“

s Sl 600, A AN OISl st A G 0 SR NI T 5 i 1B Nt B3N W nili

comprehensive controls on life-cycle management technology should
involve controls on tools as well. Thevy include library
maintenance tools, compoesition tools, translation tools, guality
control and verification tools, and administration tools. A more

complete taxonomy of these tools is presented in Section 5.5.

2.4. Why the Control of a "Product” is Not the Rey Issue

Our posture is to recognize software as a process and to
impose controls on the production of large scale software,
principally through the control of transfer mechanisms (Section
6) and the tools for 1life cycle software develorment. With some
exceptions, we emphasize the development process, controlling the
process of software development itself, rather than products
which might reveal critical technologies, because software is
ubiquitous, easy to transport, and dependent on 0O&M. The uses of
software have proliferated to the extent that any attempt to
catalogue them all would require huge amounts of manpower and
resources (see Section 3).

Software is easy to transport both mechanically and
electronically. That alone makes it difficult to control.
However, modern computer usage further compounds the problem by
making computer systems remotely accessible. Therefore, the
benefits of the software may be obtained without the need to own
a copy. These remote transaction services are a growing sector of
the computer service business encouraged by new telecom-

munications tariffs.

Finally, software is difficult to control since much of the

s, A

|
- i
L~

1

Bl M35 g WA B T et s, €6 bl I DN SNSRI A~ Wiy T W o W

business does not involve software products, but support services
and technical assistance, in the form of training, documentation,
consulting, and O&M, This technical assistance is critical for
the end user; without it he would incur a large cost aand lead

time if he had to maintain the software himself.

2.5. Software Versus Hardware Development

We hope to highlight the nature of software by the following
comparison with hardware. Superficially, software development
appears similar to hardware development. Both move through
similar phases: concept, specification, design, production,
operations, and maintenance. Both employ skilled staffs and
comnplex tools. Both require competent and experienced management,
and both are expensive. 3ut since software ls a process, the
transfer of technology implicit in full software sales goes far
beyond what would be considered reasonable for the sale of
hardware. The sale of a turnkey plant, for example, does involve
a transfer of mass production techniques for the product and
spare parts, and the technology needed for operation and
maintenance, Zowever, if the adversary wishes to enhance and
improve the product, he must master all the necessary engineering
8kills himself. Pull software sales implicitly assume the
transfer of the skills, because software never reaches a
completed form but is constantly being maintained and enhanced.
Other differences between hardware and software are apparent in

each part of life-cycle management technology.

25

RS AL

AALIF W im0 PRI AN tbnT g s et S . SN e Wi Y = T2 i ok 2 B, AR

1. The software life cycle

Although a number of the stages of development of hardware
and software are similar, there are some major differences.

First, the technclogy which we are trying to control is much
more complex than for hardware, since software is among the most
complex "machines" man has ever built. Typical products involve
millions of statements, lines of text or code. The software
ocbjects are "soft"™ and have to be referenced by naming each
uniquely. The naming process to manage the software objects is
itself complex. The order and struc ure of these objects are as
important as the objects themselves, and the placement must also
be uniquely identified by name or structural content.

The most complex hardware objects built today are the LSIT
chips for computer memories. The smallest component level is the
"bit" £lip-flop transistor which is replicated many times. The
biggest chips today have approximately 6,000 bits; a number
which is at least an order of magnitude smaller than the number
of lines of code in medium-large software systems. And the
information content of a bit component is far less than the
information content of a software statement or line of code.
Secondly, the testing requirements £or software differ
considerably from those for hardware. Both technologies employ
prototypes as vehicles to test readiness of the product for
market. Upon completion of the hardware testing, the major cost
and production engineering still remain to produce the product.
Not so with software; much of the cost and effort is consumed in
completing the prototype. In fact, the prototype is the first

version of the product. Of course the tools and testing methods

26

1
i
t
[}
s

2

e S e AT A o i M*,W\.,mmmw

are radically different in form and substance. With software it
is often difficult to specify the test conditions. Furthermore,
the tools for testing may have to be built from scratch for each
product. There is little reusable cest software. And the problems
are compounded because the new software test tools must
themselves be tested. There is no appreciable technology transfer
or "learning curve" from one project to another in software
testing.

Finally, the economics of the development process are
significantly different. Hardware is machine intensive after the
first prototype. Up to that time hardware and software are
similar handcrafted items, except that software is orders of
magnitude more complex. The major hardware costs come after
prototyping with production engineering, tooling, and materials.
Software has no counterpart to post prototype hardware production
costs. Hardware production decisions can be based on retail and
OEM quantity orders based on the prototype's performance and the
unit cost (total cost divided by units produced). Software is
labor intensive throughout its life cycle; there are no
materials, and rarely any quantity production. Indeed, most
software products are customized £for the end-user system
configquration. The nature of the software business drives the
manufacturer to write off his total cost on a few units, often
just one. The government's cost-plus contracting is a typical
example of this form of software economics. Retail, high volume,
software sales have not been a staple of the software industry,

and existing cases are often tied to hardware sales.

v e AR LR il g il e 0 AT ¥ O St O 53wt e it IR >

b —— e 2

2. Software Library Management

We have repeatedly underscored the fact that there is not
teally an end product in software. Software must be considered
the sum total of the contents of a software library data base at
any given moment in time. While hardware products are visible,
tangible items, software products must be input into a machine
before they can be "seen." It is impossible to view the entirety
of a software product at once. Hardware has its documentation,
but for software, the documentation is the product because any
current code form is just a documentation of the development

process so far.

3. Tools

Both technologies employ tools and some computer tools are
common to both. But hardware needs radically different tools for
materials handling, shipping, attaching, measuring, etc. Software
tools involve invented languages, wmathematics, symbol
manipulation and management, and a set of procedures and software
programs for processing the languages. In hardware production
retooling is a major engineering, management, and economic
consideration which comes long after a working model or
prototype exists. And the tooling is designed for the production
of a discreete number of products over a certain useful life,

Software tools are often effectively built from scratch for
each job with an impact akin to hardware retooling; and the tools
never wear out. Recent software engineering thrusts have been to

attempt to standardize on some of these tools. The difficulty is

28

5 - @ X . - N . B ! 4
Ml bititcmicasmrtmemtedadiitennt it eI e B S o R L B N e e Ty TS o By - e s . o .

that each new product nas different constraints, Software tools

. built for one product cannot easily address the requirements of a

different CPU, set of peripherals, programming language, or even

different developmert methods which must be used in building

e
PR

another product, That selection of constraints is made long

before the software issues are addressed. It would be the height

RGN

of folly for a hardware product customer to tell the manufacturer

what he wants, how it is to work, how it is to be built and

3 tested, and that the factory must be built on his premises in
f{ some end user location which is hundreds of miles away from the
f? manufacturer's facility. Yet that is exactly the situation for
! the majority of DoD and other government software procurements.

P b = A T T A N P AR AL B TR o g s]

ﬂ 29/3 o)

e T g o e o UL "ML SRR D, v Prg

3. Working Hypotheses

Listed below are the working hypotheses that have emerged
from the deliberations of the TWG-7 software subgroup. These
hypotheses underlie many of the analyses and recommendations of

this study.

3.1. Scope of Qur Analysis

a) The primary concern of the software subgroup has been
with software technology for the development of large software
systems. We are not concerned with the operational capabilities
provided by applications software. This is beyond the scope of
our expertise. For example, from our perspective, a CAD/CAM
;Eckaqe for designing aircraft engines, shipped in object code
with only users manuals for documentation, transfers little
software know-how. It may well transfer a great deal of
technology for deéigning aircraft engines. We assume that
applications software of concern will be identified by Technical

Working Groups concerned with applications technologies.

b) Software technology differs in several important ways
from most other military-related technologies (see Section 2).
These differences complicate the problem of export control. As a
result of these differences and complications, we do not feel
constrained to analyze software within the context of existing
rigid formats, such as the Commodity Control List (CCL). Such a

product-oriented, taxonomic approach has been tested in Section 5

and found deficient (see Section 5.6).

4
t
'

"
|
.s

=%

e S ey AW ST e o - e ki g, T AR e+ 73 o Sl

¢) It is not within the purview of the software subgroup to
pass judgment on the relative social merits of "acadenic
freedom,"” "free enterprise," and "national security." We are
aware of, and in some cases sympathetic to, arguments as to
whether or not various forms of academic or commercial exchanges
have political or social value that compensates for concomitant
undersirable technology transfers. We leave such decisions to
others. It is our task to make technical evaluations of various
know-how and product transfers, and it is inconsistent to be
concerned about a particular transfer mechanism when it is used
by a commercial organization, but to ignnre the use of the same
mechanism by a nonprofit organization. Therefore, our analyses
and recommendations are made without regard for originating

organization or price

3.2. Limitations of Software Export Control

a) Most current trends will make it easier for adversaries
to acguire software capabilities, through transfer from the West.
A thoughtful set of controls may slow this acguisition rate, but
it must be recognized that there will always be substantial
leakage since what is being sought is becoming iacreasiagly

widespread and available,

b) It will be possible to £ind counterexamples or to
conjecture counterexample scenarios to almost every broad
generalization, For example, specific counterexamples could be
found to any attempt to rank the effectiveness of What and How
transfer combinations, although the ranking would seem to aold

for most situations. This is the result of the enormous diversity

32

- = AN D S BN SR 27 g W RN TN TSI i £ T O, ST TS Bl O - S s5in ki o NN B e T R
- e

of possible software transfer situations.

c) Several of the countries against whom export controls are

directed have considerable scientific and technological resources
and accomplishments. It is unreasonable to assume that they are

incapable of making significant advances in software development

P

on their own. Nevertheless, thay seem to rely on the transfer of
1 software technology from the U.S. and other COCOM countries. We
do not understand to what extent this reliance is a matter of

convenience and tc what extent it is a matter of dependence. It

may be possible to slow the progress of software development in
adversary countries with a thoughtful set of controls. However,
to try and provide a gquantitative measure of what effect any
given set of controls would have on further progress in these

* countries is unrealistic.
3.3. Software That Should Be Considered for Export Contrel
3.3.1. The Extremes of Software Export Controls

a) Care must be taken to avoid methods of restricting

technology transfer which would significantly and adversely

i affect the advancement of software technology in the U.S. One of
the great strengths of U.S. software technology is its very
'1 openness. In spite of extensive "borrowing” of software by the
other countries, we continue to make more extensive use of

product and know-how transfers within the U.S. than is possible

i from the U.S. to the foreign countries. The best way to stay

ahead in the race is to run faster. It may be of use to drop some

33

R R T e Y il - i

obstacles benind us to slow our opponents or to avoid helping
them, But we should not slow down :o do this, particularly siace
our adversaries have demonstrated some ability to get around
obstacles. Fortunately, our opponents have handicapped themselves
in software development in ways that are at least as effective as

anything we could do.

b) The software subgroup rejects the idea that wvirtually all
software should not be controlled because "they can get it
anyway"™ through covert means. Forcing an adversary to resort to
covert means to obtain software products adds links to the
acquisition chain which may increase the acquisition time, risk,
effort; and the probability that information will be lost during
the transfer process. Such information losses will play a more
prominent role in hindering the acguisition of large,
sophisticated software systems. Furthermore, the lack of ready
access in those situations to the the services and other forms of
support provided by the organizations which develop the software

can further degrade the usefulness of what is acquired.

3.3.2. Capture~release Criteria

a) Size and complexity

Software that is large enough and complex enough to require
some sort of social process and team effort to build anéd maintain
is most likely to be of concern. As rough gquidelines, we
recommend the equivalent of at least 15,000 lines of sources code

(plus normal comment~type documentation above the source code

34

N e e -

—

. A

i A
— S'_; .1.1..-‘_..,..

¥ %
P Y

aban S 325 S $agh W

line count) or at least four person years of effort devoted to
the development of the product before it is initially delivered
to the user. Furthermore, the software should represent an
integrated system, not some simple collection of easily
programmed pieces. We explicitly reject minimum monetary cost as
a "threshold variable" because there is no widely accepted method

for computing such costs.

b) Destination Country and End User

At one extreme, it goes without saying that we should
control the sale of militarily critical software to military or
police force of an adversary country. At the other extreme (and
we feel this should be equally obvious) sales of useful software
to the COCOM countries and, in particular, to their military
establishments, should be encouraged and expedited.
Unfortunately, this has not always been the case. In between
there is a spectrum running from our close NATO allies to our
potential adversaries. For example, given the great differences
between the capabilities of the People's Republic of China and
the Warsaw Pact countries, for example, it is impossible to treat
the two "equally"” without some special understanding of the use
of that term. Such decisions must ultimately be made from a

political, rather than technical, standpoint.

c) Product Form
Product form should play a large role as a criterion for
export controls., Products which are very portable can be used in

a large number of installations. The military establishment in

35

o320 wiut W X pow o T P D o Rt daailie,
nstairoiln it T et s NS . . . S, . ;
o Lt ——r i

e e

the U.S.5.R., for example, enjoys extraordinary approvpriation
privileges over the resocurces of the general economy, increasing
the risk that products which are portable will be vulnerable to

military exploitation. Products in source code form can be

S

adapted to other uses, modified, or enhanced with greater ease
than products in object code. A further discussion of the

differences between object and source code is in Section 6.4.3.,

oA &

, :
}} and reconmendations for technical measures to make products less
*§ portable are considered in Section 6.5.2.

2|

B

. d) Operational Capability

From our perspective, the transfer of any software product
should be uncontrolled if it does not provide a direct militarily
critical operational capability as outlined in the reports of the
other TWGs, or if it does not fall into four other categories we
isolate in Section 8; provided that it is transferred in the form
of object code with users manuals and passive maintenancs
service, and that there are reasonable technical safegquards :zhat

‘ the system not be portable.

| e} Volume of Sales
f ; . . .
We have not been able to come up with a meaningful criterion]

for export control which involves volume of sales, i.s2., the

number of copies of a product sold. 1

£f) Arrays of Software Products
‘ The software subgroup has found the problem of arrays of

software products to be particularly intractable. We recognize, }

on the one hand, that arrays of products can offer an operational

36

i i

o, . . e\ NPRSTr S A e ey | o o - g - .)
IR pulintiganibas ;i A g NN Y Bt ok A T o

capability which is much greater than the operational capability

provided by the products alone. On the other hand, it is

difficult to prevent an adversary from amssing such arrays on a
,{ piece-by-viece basis. Shipping products in a form which does nct

f} make them very adaptable, e.g., object code, can make it more

difficult to integrate stand-alone products, Also, we are
capturing many products that are already integrated. Section
7.3.1 addresses this problem in greater detail, The scoftware

subgroup recommends that more research be done in this area.

e AT
e i b

3.4. Adversary Capabilities and Foreign Availability

PSR A

Brief summaries of the software subgroup's perceptions of
adversary and fcreign software capabilities are presented bdelow.
Given the enormous diversity of software technology and the large
number of programmers in the world, these summaries could not be
anything but crude oversimplifications. Within each country, it
is likely that there exist individuals or groups whose talents

and experience greatly surpass our perceptions of the norm for

‘ each nation.

u 3J.4.1. Adversary Capabilities

a) The political-economic s&tructure of the communist
countries in general, and of the Soviet Union in particular, is
such that the military, state police, and related organizations
enjoy what, by Western standards, are extraordinary appropriation
- privileges with respect to the resources of the general

economies, Furthermore, the Soviet Union appears to have

MV 4N
e A bl A .

et o o 3 i
¥ SN (A

»

N e ok

R T P g SN B it S aeb s M

extraordinary privileges over and access to the scientific and
technical resources available in most of the Warsaw Pact
countries and elsewhera (e.g., Cuba)., This is not to say that the
Soviet military or XGB can always takae effective advantage of
these privileges, but the opportunity to do so is well
established. Most of the software technology that is useful for
building civilian systems is also applicable %o developing
military systems, and it is often transferable without diversion
of equipment. These considerations make it exceptionally
difficult to separate military from civilian use of software
products and technology, and to separate consideration of the

U.S.S.R. from the other CEMA countries.

b) The U.S.S.R. has, by far, the greatest software
capability of any of the communist countries. Nevertheless, much
of this capability is rudimentary by U.S. standards. An extensive
discussion of non-military Soviet software developments and
problems, through 1978, is given in [8]. Progress since then has
been evolutionary, although the volume of Soviet software work
has increased fairly dramatically in recent years. This increase
has been the result of the greater availability of respectable
hardware and of greater experience and awareness of the
importance of software. Most of the Soviet software commmunity
continues to suffer from assorted major and minor systemic
difficulties. One c¢f their most critical weaknesses has been in
the development and maintenance of large, sopnisticated, highly
integrated systems involving interfaces with communications and

sensor devices.

38

*

There is evidence that the Soviets are concerned abcut this

major deficiency, and are trying to do something about it. They
have gained experience during the last decacde, and have been
considerably influenced by U.S. developments. The software
subgroup believes that software technology in the U.S.S.R. may
have now developed far enough in both quality and quantity £for
the Soviets to be on the threshold of investing significant
reéoqrces into what is generally called "software engineering" in
the U.S. Their efforts to do this could be aided substantially by
certain kinds of product and know-how transfers from the COCOM

countries. We address some of these transfers in Sections 35-7.

¢) Several of the East BEuropean Warsaw Pact countries
(notably the German Democratic Republic, Hungary, Czechoslovakia,
and Poland) have software capabilities that, on a per capita
basis, are as strong as those of the U.S.S.R. The company GDR
Robotron, in particular, seems to have capabilities in the
systems software area that are comparable to those of some
respectable West European companies. Some of these countries are
Known to be working on software systems that could have
significant military value. Bulgaria and Romania seem to Dbe

somewhat weaker in software technology.

d) The available evidence [c.f. 2,6] leaves little doubt
that the People's Republic of China nhas a rather rudimentary
national software capacity, although there seem to be some very
knowledgeable individual Chinese and, as in virtually everything
else, the potential of that country is enormous. China is not now

in a position to develop many large, sophisticated, militarily

39

critical software systems, and this is likely to be the case for

at least the next few years. The U.S. and the other COCOM
countries need to give serious thought to what sort of aid they

want to provide China in this technology.

e) At least two other adversary couantries, Cuba and North
Korea, have software capabilities, although these are much weaker
than those of other countries we have considered. We know almost
nothing about North RKorea. Cuba is a participant in the SM CEMA
minicomputer effort and organizations concerned with national-

level software development have been identified.

£f) The software subgroup has not been able to identify
clearly any integrated systems of software development tools in
use in adversary countries, although it appears that some
partially integrated sets are in use. In recent years, there has
been a substantial increase in the volume of literature
describing tools, but most of these tools are stand-alone and are
concerned with composition and translation. Increased efforts to
acguire this technology have followed a growing awareness of its

importance.

3.4.2. Foreign Availability

a) The U.S. leads the world in software technology. However,
the 0.S. lead is by no means a monopoly, although it may still be
very substantial in some important areas. Many of the COCOM
countries, and several non-COCOM countries as well, have
substantial software development capabilities. Adversary

countries could learn much from non-0U.S. sources, and these

4qQ

s it i A b aiaiCre e ¢ " s, ¥ e B WP et b e R e, T e SR e P gDl i SOl - SR W it - - SR

sources might also serve as a funnel of U.S. software technology
to our adversaries. Although tighter unilateral control of
software technology by the U.S. might be of some value, the
effectiveness of these controls will be limited without the
cooperation of COCOM. Some thought might also be given to how to
;~ make it more difficult for U.S. software technology to be

transferred via non-COCOM third countries.

X b} Western Europe and Japan have aggressively sought to
: acquire software development knowledge. U.S. experts with
‘W appropriate software experience have been sought to be

consultants, to present papers at foreign conferences, anéd to

33 teach courses. Western European software engineering expertise,
particularly academic, is given widespread recognition.

Possessors of strong academic backgrounds in software development

methodology are given responsibility in projects to develop large

commercial software systems. Despite the strong interest in

acquiring software development skills, one finds in Westera

Europe the same phenomenon that has been experiesnced in the U.S.:

| success in large software projects is often dependent on . <«
(experience of having been a part of an earlier large product

! development effort. The formal knowledge which has been eagerly

' sought seemingly aust be supplemented by the actual experience of
building a software system--a frequently painful first-time

experience in which the project does not meet all its objectives.

;| In Japanese industries, as in Western European industries
. which are controlled or strongly influenced by government, there

is a tendency to have a longer planning cycle, encouraging the

41

use of methods whose payoff is more long-range than U.S.

companies are willing to accept. This willingness to defer payoff
has led in some instances (e.qg., robotics) to the development of
indigenous software capabilities based on research primarily
conducted by U.S. laboratories, even before U.S. companies have

been willing tc make the investment.

¢) Several development groups in Western Europe (COCOM and
non-COCOM) and Japan are aware of the importance of software
development tools technology. However, the availability of
integrated systems of tools and the base of experience in their
use (especially in the development and 0&M of large military

systems) are below that of the United States.

d) Yugoslavia and finland have limited software capabilities

and somewhat delicate political and economic relationships with

the Warsaw Pact countries.

l
|
l
|
!
i

i att S b - W, Wb 2

T LA AT Ll

4. An Overview of the "What" and "How" of Software Technology
Transfer

. v
The CNCTEG software subgroup established what effectively
amounted to a top-down, hierarchical framework for the breakdown
of software technology transfer. The software subgroup of TWG-7
has chosen to use this framework, with some additions, suqh as
the tree-like representatioﬁs shown in Figures 4.1, 4.2, and 4.3.
The top level of this breakdown, shown in Figure 4.1,

partitions software technology transfer into:

(1) "What" - software know-how and operational capabilirty,
where:

(a) know-how is the knowledge to preocduce and
deploy software products, and

(b) operational capability is the capabilitg

provided by a product or service to accomplis
some task.

(2) "How" - the mechanisms for the transfer of software
know-how and operational capability.

A further breakdown of the "what" of software technology
transfer is shown in Figure 4.2. Software know-how is divided
into subject matter knowledge (e.g., algorithms, modules, data
structures, etc.) and the software development process. Some
examples of the basic components which comprise subject matter
knowledge are real-time control algorithms, &table look-up
algorithms, sensor-based algorithms, etc., The socftware
development process includes such stages as concept definition,

requirements and analysis, design, coding, testing, operation,

and maintenance (see Section 2.1).

43

C A Wl DA BNl F b Uy simlin S Vi i A i s N
Y g B O e it e Sl S Ve, O S d £ 31 KoYz - T 2 TN o3 L AT, SRS 0 . .

Software !
Technology |
Transfer !

|

3 l
|
| |

: l :
] —_— —t
What | | Bow |
l { I
Type of Information | Technology Transier
Foreign Availability | Mechanisms
|
|

|
|
Military/Economic Passive/Active |
Significance !

ooy ’
AR Y.+ v

p |
% Pigure 4.1. Software Technology Transfer

T What |

{ !

| Type of Information
| Poreign Availability
|

I

[

l
!
Military/Economic !
Significance |

l

' |
I
I l
| | | Operational |
: Rnow-how { | Capability |
[

| |

] [
| | I ! ! -
Software
Development &
Maintenance
Tools

e

Qther
Softwar

Software
Development
Progcess

Systems

J | |

Software | | [
% [Software |

[!

[[

|

> |

! | Subject
! KnowledgeI
|

Figure 4.2. The "What” of Technology Transfer 1

! 44

(5, i, AR I oI i s A 0 STIMRE, . L SIS Kl o U R ppi o iy AR oAb A, Pl O 30

Operational capability is broken down into three categories.
The first is systems software, which refers to sets of
independent programs which form a functional whole, usually put
together in a layered approcach (e.g., the combination of
microcode, standard mach;ne instructions, and an operatinag
system). Software development and maintenance aids are the tools
which are deemed critical to the software development process.
Other software applications refers to the capabilities deemed
critical to development and manufacturing processes other than
software (e.g., CAD/CAM) and capabilities that are directly
related to important military activities (e.g., nuclear weapons
design).

Section 5 presents a taxonomy of systems software and
development and maintenance tools, along with a partial military
utility evaluation. A taxonomy and analysis of technology
transfer mechanisms (the "how" of technology transfer) comprise
Section 6. The top level of this taxonomy is shown in Figqure 4.3.
Transfer mechanisms can be broken down into three categories. The
first 1is product shipment, which deals with user manuals,
programs, etc., delivered to adversary countries. The second is
assistance, a broad category which encompasses help or services
provided to adversaries. Finally, the remocte access usage
category refers to the usage of a product by an adversary while
the product remains under Western control, e.g., through a
computer network.

Section 7 is an attempt to pull together the "what", "how",

and "who" of software technology transfer in the £form of a

few detailed hypothetical scenarios. We felt that such

(0t i R OCAMT AR vt s Wy W gl 3 N, SN g WO < % ST ek B i 3.2, Yolsd ok e

! | Bow |
! l
Technology Transfer

| I
g | Mechanisms |
| Passive/Active |
| [
|
|
| ! f
f— | -1
| Product | [| | Remote]
{ Shipment | | Assistance | | Access|
[i | | g Usage |

[

Figure 4.3. The "How" of Technology Transfer

experiments nelped to deepen our appreciation of the problems of

software technology transfer and its control.

46

I a

P ESRATIS LN SIS {

IS YN

Y o

5. Software Rnow-how and Operational Capability

5.1. Introduction

This section provides a partial taxonomy of software Xnow-
how and operational capability which expands on the structure
given in Section 4. It does not cover all of software; due to
assorted time and manpower constraints, it deals only with
systems software and software development tools in detail, an
initial effort is made to assess the military utility of many of
the listed items.

The software subgroup believes that a taxonomic/military
utility approach to software export control is too coarse and
unmanageable., Bowever, it is difficult to fully appreciate the
problems until one tries to consider such an approach in detail.

A discussion of this view is reserved for Section 5.6.

5.2. Know-how

Software know-how has been partitioned into two categories:
software subject matter knowledge, and know-how embodied in the
software development process.

Software subject matter knowledge consists of the basic
"components" of software: algorithms, data structures, etc. Since
most of this information is widely available in the open
literature, it is beyond control. Any attempt to classify <his
knowledge would be fruitless due to the sheer size of the tasxk,
Furthermore, much of this knowledge is implicitly present in our
taxonomy. Application-specific components or progranms (CAD/CAM
routines, sensor-based algorithms, ete.) which have high military

utility are covered separately in the reports of the other TWGs.

47

N » N 3 T o Caa e e g e - i 00 " i e add e G
e i 5 vt A PRSI i) B Sy, WG SR Aine S otk it SN . SR Y SN i [P o e e

Bl

Software development process Know-how covers the xknowledge
needed to produce and deploy a broad spectrum of large software
products, This know-how is more developed in the United States
than in any other country and is based on extensive first-time
experiences which often involve building less than completely
successful systems. This experience involves the management of a

team of software engineers and programmers who are involved with

A Y e e - e -

the life-cycle technology discussed in Section 2. For typical

- Lindl

defense systems, the product of this effort (i.e., the software

PP

library data base which documents the transformation of the
ar product from initial requirement statements to the latest working
l; object code version) can amount to millions of lines of text and
' code which must be managed.

b The military utility of life-cycle management technology is
.t very high. Any large defense system which the adversaries aight
| wish to build requires a knowledge of this technology.
Furthermore, the experience gained in building a seemingly
innocuous system (e.g., a medical senscr system waich handles
| multiple real-time inputs) can be applied in an entirely
? different context., Since adversary experience with this
'i technology is somedhat limited, its criticality is also guite

high. Therefore, the control of the export of life-cycle

software subgroup.

1
| 48

{ management technology is considered of prime importance by the

b s . d

B i3 &

TN T T

RS

5.3. Operational Capability

Operational capability is divided into systems scoftware,
software development tools, and other software. Quz taxonomy
addresses the f£irst two catesgories.

The evaluation of military utility £for software was carried
out using the matrix framework shown in Figure 5.1. Each category
Of software was given a rating from

zero: little or no discernible military utility, to

nine: extremely significant military utility.

The category as a whole was then given a rating greater than or
equal to the highest rating across the spectrum of possible
military applications{l12].

The software subgroup cautions that this approach. is
somewhat arbitrary, only partially and tentatively complete, and
needs further refinement. Several problems arise in tryiag to
determine military utility in this fashion. First, one can posit
situations in which most software could have a high utility in a
given military system. HBence, the ratings for broad classes are
simply too general. Secondly, we do not think that an analysis in
this form addresses the difficult problem of arrays of software
products. This analysis was carried out considering products in
isolation. The value of an array of products, such as an
integrated set of software development tools as oppesed Lo stand-
alone tools, can be much greater. Therefore, we consider these
ratings to be useful to the extent that they provide a general
ordering of relative utilities of products when used in isolation

in specific military systems.

49

— e e amem

et — e

i

oy

! 9 AL
e A = add -

A

P Y

S it M e c. o » G RN S - C M L 4 b s, ot

Military Systems
(see Legend™ below)
I II 1IIrT IIv Vv VI VIZI

5.4. Systems Software™™ 9 3 9 ~ 9 9 9 9
4.1. Buman Interface
Software 8 2 2 2 7 8 7
4.2. Data Capture 8 3 8 1 3 5 4
4.3. Data Presentation 9 1l 3 7 8 8 5
4.4. Data Transmission 7 3 5 3 3 7 S
4.5. Data Processing 9 3 9 9 9 9 8
4.6. Data Storage 9 3 5 6 8 8 5
4.7. Data Access 9 3 3 6 8 8 5
5.5. Software Development
Tools 9 6 9 S 9 9 9
5.1. Software Library
Data Base 9 6 9 S 9 9 9
S.2. Software Support
Library Management 9 3 9 3 9 9 S
5.3. Text Processing 3 1 2 1 2 3 1
S.4. Translation 8 2 7 7 S 5 7
5.5. Quality Assurance
and Control 9 6 9 g 9 9 9
5.6. Accounting/
Administration 9 § 9 9 9 9 9

Figure 5.1. Matrix of Military Utility of Computer Software
Technoligies

Legend

I. Operational Capabilities (Military)
II. Military Business Programs
III. Satellite Systems
IV. Ballistic Missle Systems
V. Strategic C-Cubed and Planning
VI. Tactical C-Cubed
VII. Aircraft Weapon Systems
]

Ratings for other categories, such as Space Operations,
Cruise Missiles, Communications Systems, Shipbased Systems,
Submarine Systems, Tank Systems, and Field Artillery have not
been supplied.

* .
Numbers, such as 5.4.3, correspond to subsections =hat follow.

5.4. Systems Software

Systems software rafers to that body of software integrated
into a functional whole, or system, serving a specific, common
purpose. Often systems software is built from more general-
purpose components, but specific to the computer hardware and
application area. Current systems software methods advocate a
structured or layered architecture of software. At the lowest
layer is the hardware. The lowest software layers manage this
hardware in the form of routines to control input/output,
interrupts, memory allocation, and even the microcoded
instruction definitions. Higher layers define increasingly more
abstract computer "machines" which present abstract services to
yet higher layers, and implement that functionality by
combinations of service requests on the lower layers. The
collection of layers of software for managing the computer is
called a monitor or an operating system (0S). Modern 0Ss
"virtualize" computer resources into a standard, abstract set of
resources viewed commonly by all application programs. Still
higher layers include software for networks of computers, data
base management systems (DBMS), and particular applications.

To provide a taxonomic view of this plexus of
interdependent, applications dependent software, we postulate th
"generic information system,” consisting of seven broad abstract
functions provided by ail systems in some measure. These
functions follow directly the flow of data and its processing in
the generic comgponents of a system. Within each function, we list
the variety of software processing characteristics of that

function. The reader is cautioned that no single system possesses

51

S S 0 U S

SN sl

e,

>)
&

~ rptitn & o L sociild A

S e T e e s otiom arsaliorioneshin

all these components, but is created by integrating some from
each function. These large, complex systems are difficult and
expensive to construct, and represent the end product of a
technical and managerial superiority by the U.S. in life-cycle
management technology. Figure 5.2. presents a tree-like overview

of systems software,

TAXONOMY MILITARY UTILITY

5.4.1. Human Interface Software {8}
1.1. System Qperation {4}
1.2. System Command Language {3}
1.3. System User Authentication {8}

D .

This area deals with the computer software that permits
humans to control system operations and to authenticate that a
particular human is authorized to have access to the system. The
high rating for system user authentication software reflects the
importance of this software for tactical C-cubed and strategic C-
cubed military functions. This software is critical in military
systems for preventing unauthorized users from obtaining data
from the system, obtaining services from the operation of the
system, destroying the system, entering incorrect or misleading
data, or entering illegal commands to subsidiary military
organizations. Xnowledge of the details of this class of software
could improve adversary chances to identify vulnerabilities in

the assocated military systems.

82

Fhttb bbbttt

| Systems I
| Software |
FHtrrrbr bttt
[|
[(
l I |
B e | D e T
| Human Interface | | | Data Capture |
t++tt bbbttt bt | S e o
|
|

|
Fbtbttt bt ettt bbbttt
| Data Presentation |
L T R R S R

!
Pttt trbb bbbttt bttt b
| Data Transmission |
e e s

|
l
l
|
!
I
|

[I

!

bbbttt ttbbtrt R bbbttt trteett
| Data Processing | | Data Storage | | Data Access |
B o o e g F+btb bttt R L ST awe e

Figure 5.2. Systems Software Taxonomy

FHEE Sing MR P ATMAT e O O WD TP i i

|
1' |
, TAXONCMY MILITARY UTILITY .
|
;j 5.4.2, Data Capture Software {8})
i 2.1. Sensor Data Input {8} ‘
1 1.1. Electrcmagnetic Sources {8}
,; 1.1, satellite Visual {8}
A: 1.2. Radar {6}
;é 1.3. Infrared Detection System {7}
:j 1.4. Other {?}
;1 1.2. Acoustic Sources {?}
'6 1.3. Other Sources {?}
53 2.2. Human Data Input {7}
: 2.1. Natural English Language Input : {7} |
2.2. Reyboard/Console Drivers {2} |
' 2.3. Speech Input Analyses {7} i
i 2.4. Menu Reader {4} %
2.5. Graphic Inputs {7} §
5.1. Light Pen {5} |
5.2. Track Ball {3}
o 5.3. Joy Stick {3}
_' 5.4. X-Y Tablet {3}
: 5.5. Touch Panel {7}
! 2.3. Peripheral Input {5}
; 3.1. Card Reader {0}
J 3.2. Paper Tage {0}
| 3.3. Magnetic Tape/Cards . 13;
L 3.4. Optical Character Reader {5}
‘ 3.5. Bar Code Reader 3}

3.6. Photo Reader {5}

T T Ao Saiiiae ez SN Lt WA b D st il k- el e, R IO e, Simi oS AN B b Gl by . % <

TAXONOMY MILITARY UTILITY

Discussion
The high rating {8} given data input software is based on
the complaxicy of the softwar= needed for the satellite input

problem. Here the data rate is so high that even the fastest

A e e —— e e e

computing engines require intricate real-time softwarze %o

accommodate the input data.

d o £ ey v o @ - ;
SRR St SRR L ARG,

5.4.3. Data Presentation Software {9}

-3.1. Direct Presentation Software {?}

1.1. Reyboard Consocle Drivers {2}

1l.1. Scroll Terminals {1}

: 1.2. CRT Terminals {5}
g 1.3. Text Formatters) {2}
- 1.2. Speech Synthesis {s}

1.3. Menu Presentation {6}

1.4. Graphic Output (2}

3 4.1. CRT {8}
i: 4.2. Plotters {8}
{“ 4.3. Photo (Film) Camera {71}
| 4.4. Thermal Printers {3}
4.5. Cursor Positioning {4}

& 3.2. Qutput to Peripherals (2!
2.1. Line Printer {0}

2.2. Spooling {0}

j 2.3. Card Punch {0}
2.4, Paper Tape {0}

2.5. Magnetic Tape/Cards {3}

TAXONCOMY MILITARY CTILITY
S.4.3 (con't
2.6. Barcode Printing {3}
2.7. Phototypesetter {4}

0 .

The military utility rating {9} for the data presentaticn
category is based on the importance of this software to
strategic and tactical C-cubed systems, each of which has a very

high military importance. The rating {8} for software related to

IR P A

Y graphic CRT and plotter display is based on their use in the
presentation of target data, geographical data, and venicle

4 position and characterization.

5.4.4. Data Transmission {7}

4.1. Network Protocols {9}

1.1. Link Level {3}

'l 1.1. BDLC, SDLC, etc. (3}
*‘ 1.2. Transparency Controls {4}
i 1.3. Error Controls {5}

; 1.2. Transport Level {7}

% 2.1. Datagram {7}
: 2.2. Virtual Circuit {7}

1.3. HBigher Level {9}

E 3.1. Virtual Terminal (VTP) {5}

3.2. File Transfer {8}

>|
1
A
!

S g e

d
1
P
“

=

X
I
b |
54 "
‘ 11
b Ol - o —~t- PR T~ o . hn . -~ ERRY ~a PRIEY - - —— A —— —~— —— - - ~— PR —— o PR P
,u H i~ [o « oy Oy [[.y [3B) [oA) LI} LY ™~ n (78] [Ta) o) Ty "Wy (a2 [43) Gy cH €y en
e fo— Lo [y T N - s L] [y ae [L [V s [— pom [— s et [[[y [V e A T
)
y ’
M []
r .
i '
4 LB
“ [N
(3]
: "
o
13 e
€ O
m 1])
3 o
W il [s} tn —
(6] 9 -t e
m 3] Q 1) v |
; i 0 of 11
3 3] a 0O n 4] oo
P -y o L - 0 n :
¢ "y — 3] 7] : ¢
* v L2 sy L] o !
3 ‘) L] ow [1] 0N ol O "] '
P V]] RE] o £ 1~ L Q s] (&) \
5 U et " -l 0 [J] i1} n [e4 ot }
. " i v 14 J 1 N8 LY w e n (o] Y] ~
14 [} s} 2] 13 9] (] [o] o @ B 4
i : o 0 [T n oy in B Y. 0 a0 i (TR o] 2 3
3 oo T .- o “ o0 3 U o~ PRI U O A4 O m
i 1N ” o 1 4 1! g O (¢] [I] V] [T — [S
! > "1 D S T - VR PO a T B 1 m PP S S B I w
H = Y R [0 3 [E) -1 " H 2] Kol — -4 £3 M QO o G Q H
w Q o} et s N 3 -l ") " -l N O 3 v 2 I o [N % TR VIS B) §
: Z L “et " /I B ¢ a6l th o W (¢} [s] n Q o v Q@ 2 {
Ay O 1 L I [S | =z W us Q)] Q (4] [AT VIR TR | SN & | (6 I 13 — ;
f M 13 o B o a 0 Nt)] 3 et e s 4 (24 i 3 v Q 0 O 2 (e} 1
o IS U R § S R o R o S om0 g N N Mty v O w
(3] (§] %]) [T Y B S NS ot YA ¢ n . m] v 1 ST B « IR X 0 '
% 1) m g " (3 J—1 s} " @ of Yy o o [V b ® - i - TE Y ot af m
3 . O R 2 DL T - T R R C Y S Y | [CRNYS A N Y- BN - VIR € R V2NN C TR € T " R o T TR §)
2 oy 8] " (8] 3 &] < O o/ M Iy o = L L .
; . « O Y S {1 o0 . . T &) ‘ TN C D 7 B A A P ¥ B]
" LA I v NN Y N £ 2] Lt B & B g -t o @ qa
N [. . . [. (O] . . . e . .
3 S < T oY T " e B SR S Y . S I -1 o
43 . L] * . L] L] - -] L] - -
4 -t [] (o] (g% cl o ~) o [aa] - - - -r (1] [{a} w
- L - L) -
- v =t . -y
.
! "n
¥
;
§
K — - L Giaivnatearsnt SRl ut ot 2giianil TARAEES oS T - - — — - = - T SoT Tt et o —— == ',l
- & a o v o b . o, v e . " LA L » Lo o S - a

(2 ™
o 1
> N~
O,
: .
i o
A (=] a— - ~~— ~— - —— —~—— ~~— ~— .- —~— - 0 14 ~~ - ey — ——— - ——
.b) Lo AN N « K) T A B < SR <) Y o W R 3 S N <) " o G Y ™M LI (Y
ﬁ. et e Al L A Syt St A St e N e’ .<.A A St et St Gt had A
™~ I3
Du. ~y | ¥
4 A
< ls) [
ﬂ M 132 L)
M o 7] [}
E [3) 3
w 2
* n
3 T
o -1 4]
W 1! [
$ (L) ~1{ [¢]
3 "y I n s)
: o o - 0] 1))
& - [¢] v [~
: S m U o u
4) 0 @ e~ A »
® -t -y . Ei (& " >
A -t -] =] vt [¥] o4 e
) M Y 2 O Va4 @ 1 PP
% v oo [O e >y !
m Y] ~ 1Y) LIS | Q
¢ - {$)] o o U
w . — kS re 0t 13 1
' 0] n r.. o o 1" —f 2 ey af (B}
3 (] 1 ¥ 14 -t " (] « 34 LB 1]
5 -l a0 n T o g o [Y
R (5 B g n "] vl e LU S s S)
‘0 n .Q [s] n [] -~ h.;. V) (2] v [(S P - “
¢ (L1 BT B B 1~ U] O [»] -~ at v wn] 1 o "
:) O 1 4 O © O Y] o0 4 b ¥ > 6 [T o
H bt %] o a (s} [[r o . s (B [S P | (] ¢}
! O YO P N U oMo b L “ Qo et O
D e (G A & B) I 3 [JEN P I o Qo [@ =} 0] o U & [| o
} O €A Q M R £ ~ o o 0 N O M~ M
H 4 o= S T RN = B I @O B TR S, LS I R » T 1 o
& (&4 [Y | 0 (v [o I B 1% 3] n [} |9 -4 » (o) o ¢} Q Y]) v
[| 3] — n a L [s] at n o m [»] ™ i3] 3] o] [1Y n FY] 1 (3] ot (3}
3 1 o] 4 Y] 3 - [J]] [(e e Ly o :.. I] N Y] n (2] o [|
5 = U+ m "_.“ n T A S N L & A U -3 o . m LU <L B e T
2 o : L}]
? s) . . .t . « B g (¢} v 3] N (&)
L4 O ~H c© ™ - oo s I v T T £ Lo w —~ N ey o N
H ~— . . . - - t bR fi (8]
A R T N T o Y L S O R o T TR Y N e w ~ 0 S S -
i, . . . "5, " U . .
. A [1§) 118] - b Q [1a] wn
% . 0 — .
F - [8 1)) -t
. . (1] v .
" A L ¥ ~ [Ia]
— ~ - s Y @ e ag AN e BN YIRE ° - -
L i & . (e el

jad o n ~ -
S v (O TR ST) N . .
N [O T B ¢ - VI N _M .m.
=] .u " "W v o w e -3 O
s +] Mmoo v e o o -
. e -y o | ¥ [} i1 e Y 1) & o ye =y o
¢ § e e o S0 ey w D ow g B S e Ly
8] . N - . - . " .
L - o ~ o~] ﬂc v _E o M u o . m. CE mb
u.u ~ e - -t L — - * " HY o P 19] o
[[4) o (8} " o m W 0
4 AR] H X -t £ 6 2 -
od 0 o= VU~ T IRV T a
M .mx" L S ' B w o m) w4, P
: wt g ! [LR N ~y -t
1 umd Mw b (o] Kl 12 0 3] Mu. 8] 1y .Uh n v
e 5 O 4]) =} € ' - 1) " L . o "
. [Y (0] "ws € @ ~
(&) o) G o > o WM o 30 o0
/ -4 O . = 1) 1) o e ’
) H e Mg v t ad
2 > " u @ Pt (%] w4 ! v (s} bt
., -t = N e O I e e ! I e B
-4 @ 3] < " o 1) 8] 3 jo n ., [Q
: Jou fra o Y o I T T n
% fi o w) pat Uy K8 1)) =] ot 1) ~t 3
: " 2 ., m L 3 P I I ¢ o v
% 0, by 2w 6 an O > g4 w0 0w
¥ L (o] L B t2 T T B (X I ' L
(&1 [} fHa : » (¥ . [L)
Oy " 0 S S
3 -1 w a7} (3 lo] ~ . () =]
e v v 3 v 5 0 o g 3
) 3 > Y I TR N - 3 3
a (S AN)] n LY ¥ " @ - ia Bx] [V L
) < 1 (7)) «f ny Q o - h) ’ - e} c : 3
2 i3 o 3 0m it 2 o o 2} ! L © B R A < B
4) o0 Y RS e S B RS 3] o
H e -ﬁ\f. o 3 n -4 e] a Iy o " + w
P Do A .% § oo N Y W Yo @ R B
v n o R N B S o e b T. R T v“. PN ¢
2 D> n 3 o .woh “.- & Hm nm“ Aw‘ £ = o le] M» . 1
u “ M“ m W— -qh‘ % Q. U3 Wa %. MJ. E]) | ¥] ‘O. o fo) L .H.. o]
el N v o v D N ') I) m © v I on g
i vy 9 G l A o "o I T B P R
i > < an w @ o 3 A w w 3 Y o o, L B I 1
\ o et m.. of o ..M“ C. —1 [¢)] |9 e V) c [0} 5 " v Mw .H;“ o " - — ot
i o oM Y AT . 4 < 0 v 4 9 7 - o ToE g e
1 P e | [J o) c o (4] Q) c "y yt o
? m U) O ¥ ©® o 10 - ™ o - e
§ C : (o m] & = o M w m . o ¢ |4
5 v s 0% - 1 u [V S R N 0 s o J e a " a - @
g ‘ b, 5 I B S B ¢ A L] t P v w - B Y m
£ . o M L o 4} LY I o §a . B B2 A =~ v U L « M
. . et o3 [& 0 It} 28 - o " H Ea B A - fe] 'Y " -,
¥ » - 0 —4 v o . 4 (41 [o] - M) 1 . 3
] - OBOUO 1 w .ﬁ g & o 9 9 A N . H o v A S < o
M r P NS D TR & N 4 B u i PO TR G 4 5 O a
~. [} . [" . . . > o n " o © - Q) R w 0 o
A v \D —1 o ™ 4.0.] : . : “ f > ot -M“ O W L —~ —n,“- 24 4 v b
@ = 1.\.. . : : ° . .n q.w ﬁ\w Q/Q - [1/] q.m C O n o “ 94 [A " m
K e - ‘ 2 . t -
| . QM admnaeaeasdsudasgssddass
n v N . B4y Moo o0 o YA : 0 . -
. n e - -t W 3] 7} @ - w ! .u a
-r 3 0 %] [¢1S a 3 O . L - L]
. t af) 'Y " e s i LY R ot
[1a} o [i1] n, o Aw A |m [V] . ;1] o %] —t
r ! ™m0 .m. v 3 a (2T« B a
t W - 0w n
— —

e a3 a1, e 5 s A, S el S e

.

TAXCNOILY MILITARY UTILITY [
{
|
i pallistic missiles is oovious. ?
| . . . : ..]
9 The raziag {8} for DBMNS software reflacts tcae direc:t
;
%, relavance oI tnese systems to C-Cubed nmilitary Iunctions and the i
5 investmen: :n zuilding such complex software.
v 5.4.5. Data Storage Sorfkwara {5}

§.1. Memory Management

)
—-

1.1. Virtual Memory

Ly
o

1.2. Segmentation

—~— —~ —~ ~
-~
v

1.3. Paging 2}
1.4, Allocartion/Raclanation
(Garpage Colisction) {2}
1.5. Cache Management {2}
1.5. Capabilitiss !lanagement {2}
1.7. Protection Traps {2
§.2. Secondary ilemory ianagement {2}
; 2.1. Tape Controls {?
] 2.2. Spocling {?}
T' 2.3. Disc Centrol {2}
‘ 2.4, Devica allocation {2}
{
| o
{
_‘ e Time did not permit the military utility breakout f£or DJats
3 Storage Software.
’! 5.4.7. Data Accaess Software/Tata !llanagement Systen (9
‘% 7.1. File/Data llanagement Systam (DHS) {2} :
‘ 1.1. Ddirectory fanager {2} ‘i

—
)
o

; 1.2, Spesach Ratrieval Computacions

3 ‘ 60

B il

o it

»
Y

vy

LA

+

W S

e —

N ——r— -

i

Etiat Ztmatan L€ o adil

B

LS W L, WA DT bt iy s W "l e ST AR RS

~ay

TAZOUCHY HILITARY CTILITY

-
.
w
.
[
o}
[
o
[

o]
[eN
fu
r
(]
()]
<3

[N}
I
[
a3
-
o

1.4. Datz Semantics analyzers

-
)
——

—~
)
-

.5. Data Langquage 2rogessors

Time ¢id not germit the military utility Dreskourt for Daca

Access Software,

5.5. Softwars Development Tools
Softwara development tools are the next major element of our
tazonomy. Qther tools, such as those for computer aided design
(CAD) and nanufacture (CAH) of non~-software 2roducts, ara deuter
addressed ov the other TWGsS. Integrated systems of tools nave &
alone tools. Systems of tools
nay be classified in five generic categoriszs:
1. Library iaintenancs
These tools include: those used %to creats directories,
£ilas, and versions of £ilss, datz bDase management TO0OLls that ars
ised to store a2nd recrieve text from the software liorzry, access
control tools employed by tiae library DBUS, and lidbrary tools
that interizce tne library with the native oferating syszan of
the nardware for disc and tape access or backup Iunctions.
2. Composition
Tools used to enter, edit, and display/print software taus.
3. Trzansliazion
These include all integrated tools thpat zranslatz sourca
mex% To other source text, or to axecutabls object code.

4., Tast ana ¥Validacion

TQOLs needed =0 confirn tkat the softwars 3ystcem i3 worsiag

N o

N LoD sl

TAXCNOLLY MILITARY J7TILITY

corracsly.
3. Project !lanagement
These are integratad zools used to adminiscer large scitware
Srojacks.
5.5. Software Development Tools {9}
35.1. Softwares Librazy Data Bacse - Usaed to provide

5.2.

2.1
2.2
2.3
2.4
2.5
2.5
2.7
5.3.

3.1

-

constantly up~to-date representations of the
computer programs and :test data in botha
computer and numan readapble forms., The
current status and past history of all code
generatad ar2 also =maintainecd, Speciiic
livrary Prograns are availapble Lo serve 25
aids to implementacica. Ianciuded ara a

dircectory, £iles, progesses, data items angd

types, and access profiles. {9}
Soitware Support Lipbrary Management

(Data Base lanagement System) {3}
. Production Librariss {3}
. Retrieval {?}
. Update {2}
. Loader {2}
. lLanguage Processo: {2}
. access Control {2}
. Report Generacor {7
Text Procassing {3;
. 2diser {2}

.l.?ez; 2ditor - A& CompuTsr Jrogran

4sed to prepars documenzatioa 2nd perfern

La < zZ S c

| Software !

| Develooment
| Tools i

C——— e e

f

e ———

| Apslicazzion- | [Soifuzware i
l SPeCifiC I [Development l
| Tools l | Tocls {

:

Rttt ot 2 St o8 R i
l
|
J l I
e B e e
| Softwars | | Sofizwars Livrarv | | Datz 3ase |
| Librarzy | | lianagement Tools | | llanagsnsent Sysizsos |
B

 asnihiidi

i ArSLohine

e b o atl

s 1 LR
1

{
!
| Tax:t | ! 2ranslation |
[}
1
|

l

Tcols !

| Procassing |

e b e
l
R R e
| Quality Assurance i |
| Contrel Tools l

S0 et b e el o e e o o e -
Lt a2 i e e e i e A ot i i iy e i

e

o AL R S P S AR5 oo b S ety vt L £ o

HILITARY

&
i

{

% 3.3. (con'z)

|

o 3.2. Comparator - & Computar Drogram Lsed to
] compare twe versions of the same computer
'4 program uncer Last to gstaslish *den;i-tl
w configurations or to specificalliy idencily
- changes in tne source coding dDetween toe
.i twO wversions.

‘ 3.3. Formatter
o
-l 3.1. Flowcharter - A computer gTrogram usad to
‘1 analyze a coded computar 2rogram and then
i to snow in detail the logical
1 structure of the analyzed program. The
'q £low is determined from tne actual
v] dperations &s specified oy tle axecutadle
] statements, not £from comnmants. The
! flowcaarts which are machine-generztead
) can sometimes D2e compared to
: soecification—generated charcs to show
differences.
3.4. Electronic dail
5.4. Translaticn

4.1. g4
1.1.

4.2. 2t

2.1.

2.3.

gher Order Languages (HOL)

Comgiler - A computer program that sither
transforms a 30L source zrogram into an
assembly language fora for subseguent

assembly %o nachine language translazion
oy the assembler, ocr that transiorams
directly the =2OL p2rograz iaco an

equivalent macniane language Drogran or
Docentially into nicrocodse for =2
micro-programmable computar.
oblam=-Criented Languages (?0L)

Compiler 3uilding/Implementation Systanm -
Computer programs zchat facilitace tiae
development oL compilers oy use of an HCL
and s3pecialized dasza coastriucts (2.5.,
J73-3J0C IT).

JXT2as3i0l2s Laaguage 2rocesscrc - A
computer program taat allows users to
define new lancguage feature for
axtending a3 base languaga.

garcware Description Languagas

64

)

(18]
—~—

~—

—~

PN
~3
~

—

et =pmey
[ERS IS R4

~J

(31
pe—

e e ey

o

A s g Lo ool

UTILITY

TAXONCHIY HILITARY

1 4.3, Assemblers (iHachine Laaguage) {2}

- 3.1. Cross Assembler - A computear »2rocram that
, accepts synbollic ianscructcion mnemonics
! for a selacted target computer and gener-

'~i ates target computar machine code wiile

3 19sted on anotineér campuitar. A Cress

y assemlar taus allows code writizea for

- one compuler to De assemdlsed on anotiner. {1}

,.{

J 4.4, Preprocessors {2} |
i

a 4.1. Macros {21}

A

gl 4.2. HOL Syntax Checker {?}

i

! 4.3. HOL-H0L Syntax Checker {

~
(I8)

2.3. Postprocassors

5.1. Compool/Dictionary Suilder

.-

.2. Binder/Linkar/Loader/Allocator

* 2.1. Linkage Editecr - & computer p»rogran ;
that <combines separataly oroduced

) - object or load mnodules; resolves
symbolic cross-refarences among thenm;

replaces, deletes and adds contrsl sec-

tions; generates ovarlay structurss

on reguest; and produces eajacuctadla

code that is r=2ady to be loaded in:zo

storage. Al3o 2 linking-loader periorms

‘ the operations dynamically duriag
i execution LI required.

{1}

1 ar

3.3. Decompiler - A comguter progran toea

aCcepts as data 31 prograim Wi i
‘ machine-level language and produce
output in nigner level pronlem-oriented t
target language or the algorizams, atc. '
of the machaine ilevel code. {1

-
.

(1]

f—

e
)

é.é, Program Libraries

nslacors =~ ComputEr 3Cog

TTail £d converst 30U
ted wita one computer 3V
ourse <coda 0On anotn

4.7. 50L Tt
v

P
—— b e

[SO Y

(con't)

7.2. Interpraters
translate and =esxecute
language scata2ment sequentialliy.

TALONCIIY

7.3. Optiniczers

Quality Assurznce and Control

(Tast and Validation)

5.1. Requirements Definitioas

2 A
Jdeke

2.1. Actomatic Test Generator
progran L a

e

2.2, Prograa
progranc
scurce
data on »oro

ha
5L 3canaric in some szec
generatas ¢
determines

code

Iassrumentation

ne axact
P «; .
tae expect

Vel
(2]
w0
i)

exacutions.

2.3. Software

donitor -

that provide decailed
system Deridrmance.
titings as cores usage,
individual progran

measure
collected mathematically

periormance.

and analyzed later.

usage
itens.

aiyzer - 0 com
z21d princs e
grana eleme
and subroutd

"
2 2Zrogrzanm.

-)
smaand f=2azu

5]

MILITARY

{

(=}
+]
i
tl

- Comyuter DLOGLam

(9
—

e

[]

©

)

—

O O ¢ et
M o

MR AT TS rwp s ey trM e ey
- gucil ADITARY CTILITY

........‘_..4._.‘-__4.._. ____. — e _...‘ -
(V8]
.
[8]
.

Data 3ase Analyzer - A comTutar Drogrixn

that reports inicrmacicn on every usasa

of data, ideantifies =2ac3 program usinag

any data elament, and indicates waetisr

£ae Ddrogram inpuss, uses, mcdifies, or

outputs the data clameaint. {2;
3.4. Tast Cases {2}

Compiler Validation System - & ccmpuzs
program usad tc¢c ansure i i b
meet their language speci

-
.
._l
.

o

.

-~

&

2
.
(5]
1]

Tast Case/Test Data Generator -
generator that producas tast data or

W
us
et b

3 . ‘ _ p
> ! cases Lo exarcise the target sys:tem.
by generator differs from a simulator,
N decause it creatszs tast data using
- numerical generators, zcc. Oncs Lie data
: are produced by the generator, 2
¥ simulator might De rsquirsd To route tle
%, data £to the systen. {7}
5.5. Synthetic Data/Load {7}
P .) .
S.56. Emulacor/Simulator {27
6§.1. Zmulation =~ The use ¢ pgrogramaning
‘ Ceciinigues Lo permit & comiputer systsm =3
, exacute object level trograms writtsa ot
a given computar., Sometimes confuzed wiih
an iacerpretive iastruction simulacor
@with execution, in a standard macaine, of
‘ the object code. {3:
I §.2. Instruction Simulator - & <comsuter
procram used to dynamically siaulate tae
| execution caaracteristics of a2 tzrget
| computar using a sequence of instructions
of a host computar. {3}
f 5.7. Debugger =- Compile and execution-tinme
- c¢neckout and debug capgabdilities &f£:ia:s
| T ; At o
identify and nelpy i30late 2rograzs 2=2rcors. {3
o 7.1. 3ra2zkzoints
, 7.2. Symbol Dicticnary {2}
| . -
7.3. Coda/Data Refarsnca Traps {?}
S {2}

‘ 7.4. Code Flow Trace

. \rwe wrm e mey ccampe wawep
TA}{OEIO:L.‘.’ si..u--.“.?- < - I.da. -

4,1. Iastructicn Traca - & QOonpute:r 2r3grim
used to racord every instance QI ca2
occurrance of a cercaia <¢lass of
operactions or & given setc ¢f conditions
or =0 trigger 2avent-<&rivean dacza
ccllection. In some cases, t2is creztas

; avent

a completa £ime r£acord of ever:
occuring during program =2xacution.

7.5. Conditional Data Dumps (Snapshotis)

5.1. Snap Generator - provides program or
data locaticns that 2ars relative t©o
program labels. Used tygzpically ¢to
presaent a aictu:e (data contents) of =
selec ad portion Of memory.

3. Try=-2xit Conditicnal Code Zxecution

7.7. Conditional 3Backup and Retry

Program Verification Systems -~ 2rograzns
that verify the correctness of soitware
2ither oy IZormal Proof or by instrumenting
the source code. They provide data that
shows now thorougaly &the source cocde nas
been used. Zxamples are RXV?P, JAVS, 2ET.

J.1. Initial Conditions

1.1. Progran 3egquencer = & cComputer srogra
wiicn coerces tihe executioa of all
possible iastructions and oranche
within & program to detarmine progra
£low, =0 execute seldom-~used drancnas,
and To =2ssist in :ae verification of
proper program operacions.

i)

2. Corractness Criteria (Invariants)

3. 3pecification and Design HOL and
Processor

3.1. Consistency ChecCiar - A& <ompucar
srogram wuicn detz2rmiaas (1) if
raguiremanis and/or design specifiad
£or computer pPrograms arsa coasiscans
with 2a¢n ociher and their data base and
(2) i tcoey 2zsz Complets,

68

-
N
——

P
)
s

—~~
[V]
——

[

—~
Ch

——
*J
e

—~—
)
—e

—
(O}
-

= e . —_ Pl B i NN S g e\ o, Nkl ae PR Pt i Dk S TN A MR Pl 20

Tafouely MILITARY UTILITY

3.3, (con't

[

3J.2. Design Langua
Prograa u d
understandable ra
socftwars design a
Programs allow de
constructed and are
nierarchical Zasaion.

ge
E

e e
~—y
o
et

.3. Interface Checker/analyzer - A computsar
orogram that is used to automatically
check the range and limits of variables
as well as _ae scaling of scurca
programs to assure formal compliance
with interface and control documents.

oA
w

»

PO
—~
w
e

3.4. Requirements Language Processor = A
CoRputer program used to drovide a
succinct and unamdiguous specification
Of the system based on comguter
raquirements. It allows requirements

ol to De communicaced and translacsd in 2

: nierarcaical or other organized aanner.

PR Y ..:‘)‘»_.,; -

3.5. Requirements Tracer =- & computer

P! progranm used to provide traceawpility
' » from requiremencs througn design aad
- implementation of the software
sroducts, {9}

8.4, Verification Condition Generatot
(VCG) £for HOL

-~
(V)
[

gt B LR A NN SR Y R AR Y i G AP i

~
)
[y

[+5)
*
tn
.

Theoram Proving System {2}

[+

6. Conz

o)

onfiguration tanagemeat (Spec,
Code, Proof Text) {2}
5.9. 40L Syntax-Semancics Checkars {2}

9.1. HOL Zditor - A computer program usead co
analyze sourca programs £or coding errors
and t©o extract ianformation that can e
usad £or checxing zelationshiss ocecwasn
sections of code. {

"
o

0y

d

(Y8
.
[8]
.

2 Auditor - The editor willi scan

urce code and dezac:s violations <

necific programming practices and

dards, c¢onstruct an ex:ena;V° cross-

rance lisc of all lavels, wvariables,
and conscants, and check for prescriged

' prograxa formacs. {

3 00

L HTR NS

B ¥
[¥]
w3

{
. b

r.
£

v A + 85 s MRS 4

S 27 S WA T o= Sl S, G A TS M i T M . 4

MILITARY UTILITY

3 TAXONOUY
3.5, (con't)
3.6. accounting/Adminiscration {9}
5.1, Software Configuration Control System {9}

1.1l. Standards Enforcer =~ A computer orogran
used to decvermine automatically whether
prescribed programmiag practices and
standards have been followed. The program
can check for violations of standazds sac
for sucn conventions as program size,
commentary, structure, atc. {5}

——mm i — e N e e .

1.2. Structure Aanalyzer -~ A computer progras
used to examine source code and detesrmine
that structuring rules, set for either
control or data structurss or both, nave

2

.._.‘!_.._:.1..‘.4 ..

’ been opeyed. {2}
J 1.3. Computer Program 'anagement Aids {9t
: 3.1. . Cost Zstimating Programs for
‘ Estinating Cost of Programs {31
3 3.2, Time Estimating Program
(Develooment/?roduction time) {5}
3.3. Configuration Hanaqemeht Systems {9}
5.2. Zngineering Caange Control (2CC) {2}
5.3, Access Control {2}
: 3.1. User Access Profile {?
“ 3.2. Securiey {2}
| 3.3. Privacy {2}
; 3.4. Accountability 2}
.
»{ 6.4, Safety (7}
g 4.1. 3ackup {2}
%.2. Recovery {23

! 4.3, Data/Command Legality and

L]
Reasonanlaness Checks {2
¥ 5.5, Cost Conzzols (7}
£.0. /lecnod3 and Procadures and
supporting Documentation {?}

i it

PO iy P I L L S Do L CBA e M - e B SN e A W il ST e

1 §.6. The Feasibpility of Controls Based on a Taxonomic Approach
After considerable deliberacion, the software subgroup has

come £o the conclusion that a taxonomic approach to axporc

control for systems software is seriously deficient ia at leasc
two ways.

First, such an approach does not directly addrass software

e a X e ——

life-cvcle development and maintenance technology, which we
believe to be the moOst critical issue (see Sections 2 and 3). A
taxonomy and military utility evaluation, such as that given for

systems software in Sections 35.3. and 5.4., rfocuses attention on

products rather than on technology and technology transfer.

L Sl

Second, even as a means f£or the analysis of products and
some of the technology embedded in these products, such an
approach is too coarse and unmanageable, The basic problems are
: that software use is extraordinarily pezvasive and that there is

an enormous range of software products, In Figure 5.1. and in
Section 5.4 we have two taxonomies for systems software. A "first
level" breakdown is given in Figure 5.1. at this level of detail,
‘ a military utility evaluation produces very nigh ratings for
| virtually every category. The reason is that, within each systens
i‘ software category at this level, it is possible to idencify
important military use. In Section 5.4., we exhibit a "second
level” breakdown which is an order of magnitude longer and more
detailed than that of Figure 5.1. At this level of
disaggregaczion, we are able to identify gquite a few categories
with milicary utility ratiags of less than 7, altiaough aany

| continue to have ratings from 7 to 9.

The "taicd level™” breakdown, which we have not done, would

71

i
i
H

< T e MR RS Letn s e 6 e el e YO RN S T 5 vl B BN S S, Yl 535 M -

explicitly consider sgecific named products, portability, etc. It
would be an order of magnitude larger and more detailad than our
"second level" breakdown, i.e. about 100 pages long. At this
level of disaggregation, we would find that most software
products need not be controlled. For example, under Section
4.5.2.2., Buman Data Input, we find natural language and speech
input given aigh ratings. One can identify or imagine important
military software systems in these categories that should be
given high ratings. However, one can also imagine academic or
commercial systems in these categories that could be safely sold
to users in adversary countries with suitable safequards (e.g.,
object code and user manuals only, and witn a lack of portability
~ see Section §.3).

The problem with giving licensing officers, or government
personnel who are asked to evaluate license regquests, "control
categories” like "real-time operating systems” at the £irst or
second level breakdowns is that this is too ¢carse. They either
have to say "no"” to all requests with items in such categories,
or they have to work out a third level disaggregation. Even with
this level disaggregation, this approach encourages an attitude
of "we canaot sell them anything they do not already have.,"
Regardless of one's political philosopny, we can all understand
why customers in adversary countries would not be interested in
spending much hard currency for what they can get from indigenous
sources. The software subgroup feels that this is countser to U.S.
academic and commercial interests, that it is potentially an

enormous burden for the U.S, government, and it is neither the

72

et oo S S b e e -

only nor the best way to protect U.S. national security with
respect to software technology transfer.

3 We feel that a taxonomic approach for applications software
1l would also be too coarse and unmanagable. Any attempt to provide

a taxonomy of applications software would be at least an order of

magnitude larger, at each level of detail, than the corresponding
taxonomies for systems software. However, we have isolated four
classes of software which we believe should be controlled because
of their high military criticality. Software development tools,
in particular, may be controlled using a partial taxonomic

approach. N

/74

I l
{

L iy, W AT S bt B s b L TN R Wi M Rt e i B A S

6. Software Technology Transfer Mechanisms

6.1. Introduction

This section presents a taxonomy of software transfer
mechanisms, an evaluation of their effectiveness, and an
examination of the feasibility of controlling some of these
mechanisms. A classified appendix looks at some mechanisms in
more detail than would be possible in the main body. This
appendix has been detached from the main body of this report and

is available through appropriate channels.
6.2. A Taxonomy of Transfer Mechanisms

The taxonomy presented here is a more detailed examination
of the general breakdown of transfer mechanisms given in Section
4. The transfer mechanisms can be divided into three groups:
assistance, product shipment, and usage. Covert mechanisms which
parallel many of-the transfer mechanisms in the above categories

are also examined.

6.2.1. Assistance

The assistance type of transfer mechanism includes a variety
of services, training, and education, and often involves the
interaction of technical personnel. Assistance is divided into
préduct support assistance and general assistance. Pigure 6.1

presents a taxonomy of assistance mechanisms in a tree structure

format.

- e o~ AT s T RN R ot g b N T A 2 RN MR Tl 5 W3 08 Aok N3N AN Al il A

| Short-Term Technical |
| visits & Discussions |
S S OISO SN NS

to Written Materials
(next page)

Figure 6.1, Assistance Mechanisms

76

4
{
R D o S I,
| Assistance |
] R T O N
P .00..10..00..‘.‘."0.0'.....'0‘00.l.'...."‘...l’
I I
| Fbtbt bttt bbbttt
| Product | | General |
' | Support | | Assistance |
+4ttbbbbttt tttttttt i+t
> .‘.l0..0.‘.000..00‘.00-00.0.00.0..0 l
| | | | |
-1 $httt bbbttt ! e 2 R G B s & 2 S e |
| User [| | Maintenance | | Installation | [
| Training | ! | Training | | Training | |
3 +ttt bttt | B o e s |
: o |
of | Modification & | ! [[
A | Enhancement | R A |
% | Training | | Consulting | | Academic | |
X +hbbbtdtt bbbttt R D | Courses | |
- o o = |
& ...O.......‘.Q........‘\0....6‘...'.Q.....'Q‘..C.Q‘l‘..'.0...0....
‘ [I ! !
&l +Htt bbbt | e o T o SR A l
: | Apprenticeship | | | Professional | |
‘ bttt bbbt td I | Contacts [|
’ | f s |
‘ 'ooooo"b , ! l
| | | [eeeoccocans |
dbpbb bttt] e | | {
| Thesis | l | Joint [| 44ttt tttttrtt |
bbbttt { | Ventures | | | User Group o
| eptb bt | | Participation | |
cecesses]on cecssscsasess| thEbttbbttdrtirtit |
. | | I] |
1 e s S N R +btbbtb bbbt] |
‘ | Team { | | Conferences | leeoeconnss [
’ i | Membership | ++++tt+tttttdt +hdtbddbrtttrit | | |
A ++++++++++++++ | License & | I e S T
¥ | Extensive | cecscesevescssl | Trade Shows & | |
| | Teaching | | | Exhibits |
; R e T IR e o o = R S
] | Extended | [|
| Exchange | [eeenoeesns]
. | Programs | | ! |
R e mEa s e | dbttrttttrtrt bbbt |
tesecestcsseccsanccnssssscecessal | Contrace |
| | Negotiations | |
bbbttt bbbttt bbbttt bttt R s A R

....'QO."O..‘.'

B g ARG AR ™ oy s gt RS . VNS T Wil 0 5.

ressecsccensscsso(from preceding page)

!

| |

bttt bbbttt

3 | Written I

1 | Materials |

J FHttrerbtdbt

‘ [

' | coveoososccenmecssccrescsssssncarennmsasasces

E | l | |
1

| N T A AT AT AR VU R U N RTINS
| | Books | | Journals | | Other |
| bbbttt tbt bbbbtbbb bttt bbbttt

B S SRR NS
! | Courseware |
s L T NN

I

{
"' |.00000.0000000.0000.'0..0.00
i
e

| l -
R O i s m e o A A s

; | Texts | | Programmed | | Computer— |
\; l | | Learning | | aided l
i [| | Texts { | Instruction |

- AR R s s R A R

Figure 6.1. Transfer Mechanisms (con't)

- a—

R T) i oan oL kit yiman e

6.2.1.1 Product Support Assistance

This typically takes the form of training or other support
services related to a particular product. The types of training
that £all into this category are: (1) user training; (2)
installation training; (3) maintenance training; and (4) training
to make modifications and enhancements of the product. Product
support services also involve some assistance with software
problem determination, provision of fixes, and guidance in system

usage.

6.2.1.2. General Assistance

This mechanism may be broken down into five categories:

(1) Apprenticeship--Any relationship involviang strong
collaboration between a Western expert and an adversary
"student” from an adversary country, or groups of these in
some joint work. Examples are thesis research, tean
membership in a software development project, and a license
with extensive teaching.

(2) Joint ventures--These relationships also involve strong
collaboration, but differ from apprenticeships in that the
participants may be transferring technology in both
directions. Joint ventures may have various degrees of
coupling.

(3) Consulting--Western experts, both as individuals and groups,
provide specific consulting services for adversary
countries. They may provide advice, produce a piece of work

(i.e., develop or tailor a software package in accordance

78

poranesrs
“

Py

with customer specification), or provide support services
which do not relate to a specific product which the
consultants have provided.

(4) Academic courses--~Students from adversary countries enter
Western academic computing courses provided by university,
government, or industrial organizatjons, but do not advance
far enough to be considered apprentices; or instructors frem
the West go to adversary countries to teach such courses.

(5) Professional contacts-—-This category includes a wide variety
of transfers such as extended exchange programs (but not at
the level of categories (1) and (2)), short-term technical
visits and discussions, participation in user groups, trade
shows and exhibits, conferences, and contractual/commercial

discussions.,

(6) Written material--This category includes all open and
proprietary passive sources of information such as
textlooks, journals, articles, etc., as well as courseware:
programmed instzuction texts, computer-assisted instruction,
and other materials which may be of academic, governmental,

or industrial origin.

6.2.2. Product Shipment

The product shipment transfer mechanism is distinguished by
the delivery of certain physical items (not including product
support assistance and written material as described in category
(6) above). Software products and documentation come in many
forms. Some examples are proposals in various levels of detail,

design specification data, intermediate design documentation,

79

2577

TRV - LT
— sl At e

=

) |

program logic manuals, users manuals, code listings in HOL,
assembly language, or object code form, and source and object
code representations in such physical forms as tapes, disks,
floppies, cards, read-only memory, etc. Figure 6,2 presents a

taxonomy of product shipment forms.

6.2.3. Remote Access Usage

This category refers to providing a user from a adversary
country with access to the usage of software and data via some
kind of telecommunications link (e.g., a computer network or

phone line). The hardware and software is owned and controlled by

the West.

6.2.4. Covert Mechanisms

The covert acquisition of operational capability or know-how
can be divided into the same three categories listed above.
Means of getting assistance might include infiltration of
American or subsidiary companies by individuals, dumny
corporations set up to buy American products with all the
associated product support assistance, compromise and blackmail
of American technical experts, acguiring documentation and other
aids from the development process, etc, Physical products may be
purchased through other agents, stolen, or legally purchased in
pieces and assembled. A particularly good way te transfer both
know~how and operational capability would be to purchase part of
an American software corporation through a front organization,
furthermore, many third countries may serve as conduits. For all

the mechanisms the software subgroup can postulate, adversaries

80

likely to come up

with others.

s o
| Product |
| Shipment |
ST

0‘......'.0'.0...00'0'.0..0...0....0“10.0..0-..'.‘.......‘O“

[
+bbt bbbttt bbbttt
| Documentation |
e o RIS AT,

[

I
't....l’...'o.....
[|

S m |
| Proposals | [
++++ttt bttt |

o.o..oo.o&oco-.t'l

[
I

$++++tttitt
| Code Listings |
o o R ST

I
I
I
[
I
I
I
[
I

+Httrtrt bbb+

| Data for Desi
| Specification

gn}

$bdtttbttt bttt bbb+

N S AR IRNE S .
| Program Logic |
| Manuals [
e T SRR A

®so 0 0ce0cs s

D s o T S
| Intermediate |
| Documentation |
N S o T o SR

)
Ioooo..o--~o...ooc..-

Figure 6.2. Product Shipment

s e e sectes

I
Fhbtttb bbbttt

| User Manuals |
Fbtbtrbt bttt

|
+++++ttr+ebt bbb+ |
| Hardware Forms | |
| (disks, ROM, etc.) | |
s |

!

SP e T e et s e

!
hdtttttt bbbttt
| Updates, New [
| Releases, etc. |
R T S

LR 2 B IR IR S AR IE I SR B AR R IE IR SRS I B BN I A BN BE BB IR A 4

00.0-.0—0000‘

| |
B o = s
| Object Code |
B o o S e

®e 00000 c0 0o

thbt ottt bbbt b+
| Source Code |
4+ttt tttrrtr++

e s e s e enoe

R SR

| Assembly Code |
++++tttttt+tr i+

I
I
I
[
I
!
|
I
I

Mechanisms

6.3. The CNCTEG Framework for Evaluating the Effectiveness of
Transfer Mechanisms

It proved impossible to develop a linear ranking of the
effectiveness of various different mechanisms for software
technology transfer. There are simply too many cases in which
other factors may alter the order of any such ranking. Instead,
the software subgroup has found it useful to consider transfer
mechanisms in light of four general factors developed by the

CNCTEG.

6.3.1. Know-how Transfer

Two factors influence the effectiveness of the transfer of
know-how. The first is the nature of the know-how transfer
mechanism. At one end of the spectrum are "active" mechanisms in
which frequent interchange of information exists, e.g., an
individual ("student”) working with a vendor's programming team
("teacher") as a regular employee for some period of time.
"Active” mechanisms tend to be iterative in nature; "students"
seek information, receive answers, and seek further information.
At the other end are "passive” mechanisms in which no interchange
exists, e.g., an individual ("student™) disassembles a program
and derives or infers certain facts about the design strategies
underlying the item. The terms "active” and "passive" refer to
"teacher" activity; adversaries may very actively seek and use
information they get from passive sources. "Active" mechanisms
are normally of nore concern than "passive” mechanisms because

they tend to transfer know-how as well as operational capability.

The second factor is the kind of know-how transfer involved.

i G S, N RN AU o i el AL TR TR e

R‘ At the lowest level of effectiveness are those transfers which
deal only with operational information, such as now to use a

product and make minor modifications. The medium level includes

1 the information of the first level and adds specific knowledge

about structure and design, e.g. specific information about

interfaces between modules. The highest level includes the first
two, but also includes explicit knowledge about how the program
was produced, i.e., the life-cycle management technology. As the
spectrum is traveled from the lowest level to the highest, the
information added is more likely to give the adversary the

ability to build, modify, adapt, and maintain programs.

6.3.2. Operational Capability Transfer

Two factors influence the effectiveness of the transfer of
operational capability. The most important is the nature of the
operational capability. At the highest level of transfer
effectiveness are offerings that directly provide operational
capability of military concern, e.g., 2 nuclear weapons design
| -.program. At the middle level of transfer effectiven2ss are
w offerings that provide an appropriate base that may be modified
at a cost significantly less than starting from scratch to
provide the specific application operational ability of concern,

e.dg., a civilian air traffic control system that could be

v

modified to meet military requirements. At the lowest level of
transfer effectiveness are offerings that provide operational
capability of no concern, e.g., a payroll program.

The second factor involves the form of the operational

capability, which may range from "easy to replicate" (e.g., a

83

ST Loy, BRI A RET i s ey o " SR 0 OB S IEOTA Nl N~ 5 an il BB

program recorded on a reel of tape) to "hard to replicate” (e.g.,
a program embedded in a semiconductor chip). Also, the product
may or may not be in a form which can be easily used on an
adversary's computer. The "easy to replicate" forms of
operational capability are of much more concern because they
potentially transfer an unlimited quantity of the operational
capability in question, given that suitable systems and
supporting services are available.

These four criteria may be applied to each of the transfer
mechanisms outlined above. In most cases there is a wide range
of possible levels of effectiveness; the software subgroup has

isolated those combinations which are of greatest concern.

6.4. Evaluation of Transfer Mechanisms

6.4.1. Apprenticeship

Many of the types of apprenticeships listed above are likely
to be highly effective because they are very active, i.e., a
"student” works under the close supervision of a knowledgeable
team or person [9]. This kind of experience-building, iterative
contact is not available wvia passive sources but is essential to
learning how to put together large pieces of software that work.
Any consideration of evaluating apprentice relationships should
be in terms of how much participation in the social process of
life~cycle software development they permit. A thesis project on

a highly theoretical subject, for example, which involves only a

single teacher and student is not likely to be of concern.

g o T A T SR Bl W+ g gl I o S, Yl S W

i i AT WIS

6§.4.2. Joint Ventures

Joint ventures with full participation of both sides in the
development of a product are likely to transfer significant
amounts of know-how in the development stages, and possibly high
degrees of operational capability as well. Such a venture will
probably result in a product which is well-suited for its
application, and participation in the development process makes
maintenance and adaptation less difficult. Joint ventures which
glue together separate research and development efforts include
almost as much potential for technology transfer, since a
substantial amount of joint work is required to make such a

product work in practice.

6.4.3. Product Support Assistance

The product support mechanism may involve an "active"
relationship between "student" and "teacher," and therefore has
the potential for substantial transfers of know-how, However,
this relationship differs from that of an apprenticeship not only
because it involves a single product, but also because the
"teacher” may have a strong incentive to prevent large transfers
of know-how which would make the "student" independent (or even
competitive) in the future.

Product support assistance which is of greatest concern is
that dealing with installation, maintenance, and enhancement,
since these kinds of training raise the adversary's ability to
make the product more portable and to adapt it to other purpoées.
Of most concern is training which imparts general O&M skills.

User training which transfers little more than operational know-

85

<A sl e AN i L st A RANT Mt it b bd e el e AN e W el R - R 505 G, Py w

how (for example, a limited amount of classroom instruction)

would not be of great concern.

6.4.4. Consulting

A wide range of activities fall under this heading. At one

extreme are "student"-"teacher" relationships which function as

apprentice relationships as outlined above. At the other extreme

are consulting activities which involve solving a specific

3 problem for the adversary with minimal participation by him, and

which reveal little about the solution or the social process of

producing it. Therefore, the consulting activitiss which are of

which allow adversary

concern are those which are active,

participation in the solution process, and which transfer O&M

capability.

6.4.5. Product Shipment

The effectiveness of the product shipment mechanism depends

on the physical forms of the transfer. Various documentation

design specification data, intermediate

forms (e.g.,

documentation, user manuals, and program logic manuals) and

source code listings alone or together can transfer a substantial

amount of know~how and operational capability. The effectiveness

of product shipments can be greatly enhanced by the presence of

arrays of these materials or other sources of information.

Linking together a detailed manual on software engineering,

design specifications, intermediate documentation, and the final 'i‘

' source code product, for example, may result in the transfer of

86

Q

et SRR AT SRS S T ima, WM M stk s e S &kl S UG R S Rt uie i AR50 WP, 5 BT L% Yol

substantial amount of know-how. Therefore, particular care
should be taken to consider what arrays of products are being

shipped.

One of the hypotheses of the software subgroup has been
that, all other things being equal, software which is portable

and can easily be reconstructed should be of more concern than

software which does not have these characteristics. Consequently,

there should be ways of protectiig software so that some
operational capability can be transferred without transferring a
substantial amount of know~how or an open-ended operational
capability. What are needed are effective means by which the
software can protect its own "secrets" and prevent misuse. Some
suggestions for such means will be considered in Section 6.5. For
now it is enough to examine methods presently in use.

The traditional means used by Western corporations for
controlling the unauthorized replication, distribution, and
modification of software, and for preventing transfers of
proprietary information contained in a product, have been two.
First, they have relied on contracts and traditional legal
sanctions to enforce regqulations about unauthorized duplication
of programs which need no modificaticn and can be used at any
installation. Second, £for programs which need modification, they
have relied on selling only object code versions of progranms.
This is a form of weak encryption which has been relatively
effective because American corporations have seen little value in
spending the resources needed to decompile object code. Can these

traditional means be effective control mechanisms against the

= S N, AU WM e B ot 68 D M o e 1 R S BB e A il i A, Y i 0 A -

adversary countries?

The control mechanisms used in the U.S. probably are not as
effective with regard to adversary countries. In the first
place, sanctions against unauthorized replication, duplication,
and modification cannot be enforced. Contracts and sanctions have
proven to be almost worthless internationally. Secondly, it is
very difficult to detect when a specific violation has occur:ed,}
especially if a product has been transferred toc a military
installation., Finally, the form of the product may or may not be
an effective barrier against transfers of know-how.

The CNCTEG reached the tentative conclusion that the form of
code transferred, i.e. source versus object, did not make a great
deal of difference with respect to the transfer of operational
capability (neither form alone can transfer a significant amount
of know-how). The TWG-7 software subgroup has come to modify that
conclusion for a variety of reasons. Although it remains true
that source code versions of programs can be obtained in some
instances with relative ease and that execution environments can
be emulated, the availability of only object code can effectively
hinder technology transfer in certain respects.

There are limits to how much information can be obtained
from an object code version of a program. In the first plaze,
decompiling is technically imperfect and can only produce code
without comments. Much decompiling is really de-assembling; that
is, creating semi-symbolic assembly language source listings of
the CPU operation code symbolics only. There are few, if any,
symbolic data or address references, and almost never HOL

symbolic source statements output from (known) decompilers today.

88

it o WIS WA, Ml 00 W

A WIS e PN s b 1 el Ve KAWL i etk ek A g T B R N s R 5

 { In the case of modern optimizing compilers, there is some doubt
as to whether decompiled code will even vaguely resemble the
source code form or even be comprehensible. Furthermore,
2 decompiling can offer little insight into the relationships

between modules (who "talks to" whom) which is such an important

part of large integrated systems. A fully-documented source code
program can yield insights into the design process, especially
when used in conjuction with "how-to" materials, while an object
code program which has been decompiled cannot. Some two-thirds of
software development costs currently go towards maintenance and

enhancement, yet in many cases, having object code alone would

: not be sufficient to carry out these activities, or would at

F | least make them very difficult.

& The Soviets have probably had much more experience with
decompiling than has the U.S. They do not face the same legal and
economic restraints present in the U.S. They have a large pool of
programmers who have actually been trained in machine language
skills, and have shown a desire to borrow £rom the West even when

, they may possess the skills necessary to do it themselves. As has

L | been noted in Section 3, the Soviets are on the threshold of a

’ new period of software development., The form and kinds of

products acquired by them from the West may have a substantial

impact on the course this development effort follows. There is
no guarantee that the Soviets are unwilling to devote the
resources needed to successfully decompile large progranms.

Apparently, the Soviets are willing to go to some length to

obtain source code{l0].

; 89

¢ ey ——————— s - — ~ . . A Sy

e 4 e R AN ke et g @ T e Y s N e r M 13 n e ”

The provision of updates, new releases, etc., should be
considered at the same time as consideration of the sale of the
product itself is made. The physical forms of updates, new
releases, etc., should not differ from the forms of the original

product.

6.4.6. Academic Courses

The desirability of controlling this mechanism depends upon
the deqgree of "activeness" of the relationship between "student"
and "teacher®™ and the nature of the technology being transferred.
Some well-motivated foreign "students® cultivate a very active
relationship with the "teacher.” The academic courses which are
of most concern are those that present information which is not
available in the passive literature and include projects which
impart a significant amount of know-how. For example, seminars
offered within a company which involve proprietary information

should be of great concern.

Another important factor is what information and resources

are accessible to the "student." While it might seem unnecessary
to control an introductory computer science course, if such a
course gave the "student” unlimited access to computer center
regsources for an extended period of time, substantial know-how
and operational capability transfers could take place. Even the
resources of a good library and access to a Xerox machine could
result in substantial transfers given enough time, Furthermore,
if the course itself deals with software modification,
adaptation, and enhancement, it could impart to the student

gignificant skills in these areas.

- : ARSI A5 8 45" i, S M Mo A e M

6.4.7. Professional Contacts

Professional contacts involve a wide range of interactions

Y between adversary seekers of information and Western sources.
‘ Hence, the effectiveness of these mechanisms enjoys perhaps the
*i widest variations of any of those outlined here. Brief encounters
! via a conference, user group participation, correspondence, even
contract negotiations may result in an active relationship which
could result in a transfer of know-how. Furthermore, sizeable
>ﬂ amounts of know-how may be transferred by a series of brief
;% encounters which, by themselves, are unimportant. The amount of
? information transferred, the replicability of any products
N acquired, and the suitability of those products also can vary
widely according to the kind of relationships which develop. Even
a short description of a new research direction in the West may
save the adversaries substantial resources by indicating the
directions they should pursue.
Given the difficulty of assessing how effective +this
‘k mechanism may be, the software subgroup has reached the
' Q conclusion that the criterion of time should be adopted as one
:-t means of realistically evaluating the kinds of transfers which
can take place via this mechanism. Exchange programs and other

professional contacts of an extended nature (a month or longer)

12

are of most concern. The classified Appendix to this section

discusses some forms of this mechanism in more detail.

[6.4.8. Written Materials

Some forms of written sources may result in significant

91

)

I L

technology transfers. For example, modern computer-assisted
instruction routines, programmed learning texts, or other
"courseware" may be effactive, Other publications which discuss
state of the art developments can also be extremely useful to
adversaries.

The software subgroup has found that there is a substantial
amount of information which is of concern that is available
through governmental and academic channels. However, the wide
variety of materials available, the difficulty of devising
control mechanisms, and the absence of supervision and iterative
feedback in its use imply that only classified or proprietary

information can or should be controlled.

6.4.9. Remote Access Usage

While remote access usage generally poses little threat of
technology transfer, certain types of software may permit
substantial technology transfers to occur. Modern interactive
software products are designed to help the user every step of the
way. A deter@ined adversary "probing™ such a system may be able
to learn a substantial amount about its inputs, outputs,
limitations, etc. Furthermore, software systems are beginning to
incorporate expert insights in various fields. Software which is
intended to help a user create and design such expert systems
would carry a high potential for technology transfer if used by
an adversary. Since this software has the ability to behave like
a knowledgeable human being, active transfers can take place even

though a human is not present. Another concern presented by

remote access usage is that an adversary user might gain

A e e

unauthorized access to software or data.

6.4.10. Covert Mechanisms

There are several factors which influence the effectiveness
of covert mechanisms. First, the adversary must be able to
define specifically what he wants to acquire in the American
'marketplaée." While this is not always an easy matter, past
experience has shown that seemingly innocent technical visits by
trained personnel hnave served as a means for "shopping"” for later
acquisitions. If the adversary is ready to risk a covert
acquisition, he is likely to obtain programs which have a high
operational value and can be easily replicated.

Once the acquisition requirement has been defined, the
number of intermediaries between those requesting the product and
those acquiring it becomes important. Clearly, 1if the
acquisition of a product is entrusted to someone who really has a
limited conception of what to take, the likelihood that all of
the required components will be acguired is diminished.
Purthermore, it would be quite useful to be able to make an on
the spot assessment to see what complementary products, sucu as
documentation and maintenance aids, might be available with the
product. Finally, the product which is acquired must have a
suitable hardware host in which it can function. The advent of a
suitable hardware base in the Ryad and SM models may be spurring
an increased desire for covert acgquisitions.

Cne arqument which the software subgroup rejects is the idea
that exports should be permitted on the basis that the "adversary

can get it anyway" via covert means, As it should be clear from

93

AD=A106 869 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA SCIENCE A-<ETC F/6 9/2
SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL.(U)
JAN 81 S E GOODMANs N S GLICK» W K MCHENRY MDA905-79-C-0010
UNCLASSIFIED 1IDA~N-878 IDA/HQ@~B1-23408

Do 2
et

END
WEREH
_one

: . .t P - § .
i e A AT e g bt By M O SRR e YV W A M A ot

. o eion tanbip A ditibiosih

the above, the effectiveness of such a transfer will probably be
far less than that of an outright sale, especially with a number

| of intermediaries in the acquisition chain.

6.5. A Partition of Transfer Mechanisms for the Purposes of
Export Control

To attempt to control all of the transfer mechanisms
outlined above would be highly undesirable and impossible in

g practice. The software subgroup has partitioned the mechanisms

into four general categories. The first categQry contains some of
;: the most effective mechanisms for which adequate controls may be
%g possible. The remaining categories contain mechanisms that are
.ﬁ less effective, or harder to control, or for which controls are
*; less desirable (e.qg., because controls may hurt us more than they
hurt an adversary). Such a partition does not attempt to address
i the feasibility or desirability of controlling every technology
transfer; rather, it is intended as a broad, tentative guideline
only. Furthermore, with the partial exception of the section on
technical measures below, the subgroup has not considered how i
these controls should be implemented. Such a task is beyond the |
resources and the purposes of the subgroup.
Some undesirable transfers take place merely because of
& ignorance on the part of United States citizens about the
; technological levels and interests of an adversary. It is our
5 hope that our study will alert the United States data processing
' community to potentially damaging transfers. The software
subgroup holds the view that voluntary restraints by an educated
b data processing community may be at least as effective as

government controls,

94

PUD S AUPUR SV, ST T

X’

s € 8 e RN ML e Mo b A 5l N T T MR W O < 4 a8 S 25, WL ST W Wi

6.5.1. Categories
The following transfer mechanisms apply to all transfers,

regardless of source (industrial, academic, or governmental).

Category I
Effective mechanisms for which adequate controls may be
possible.
Apprenticeships: Team Membership
License with Extensive Teaching

Joint Ventures

Product Shipment: Development Data Base

Product Support
Assistance: Modification and Enhancement Training
Maintenance Training

Consulting

Category II

We feel that these mechanisms are less effective and more
difficult to control than those in Category I, but that control
may be possible.
Professional

Contacts: Extended Visits (without apprenticeships)
User Group Participation

Product Shipment: Source Code and Detailed Documentation

Product Support
Assistance: Installation Training

Academic and
Other Courses: State~of-the-art training (including courses),
not widely available

a5

B Ak AR & s R A s < e LAY e S e meds g e) e e bk PV VL AP ., VSIS UM ¥ S e

{ Contract
' Negotiations: Detailed negotiations and proposals

Usage

Category III

While control of the following mechanisms may be possible,
it is doubtful if such controls would be desirable or worth the
! effort of imposing them.

: Professional
3 Contacts: Control of visiting adversary nationals' move-
ﬂ ments in those parts of host organi-
P zation's facilities that are accessible to all
1 members of that organization (e.g., restricted
|
t

access to computer cCenters at commercial or
non-profit organizations).

Movement of U.S. citizens abroad

"Licensing" people who deal with adversary
countries in technical matters

Category IV
We feel that control of the following mechanisms would be
highly undesirable either because they only involve weak
‘ technology transfers or because controlling them would impose

severe constraints on the software industry in the United States.

Written Material: Widely Available Literature (not classified or

proprietary)
L” Correspondence
4 Product Support
Assistance: User Training for Purchased Products

Product Shipment: Object Code and Users Manuals

Professional

Contacts: Short Term (less than two weeks) Contacts -e
and Visits

-y

96

D i o g b = SRS L e T LA BN i s A e A A MR s S s - yles e ARSI 3 WL D T S S .

Short Term Visits to Trade Shows, Exhibits, and
Conferences

Work that is Primarily of a Theoretical Nature
] Apprenticeships: One-on-one Thesis Supervision (but restrict
4 exposure to facilities or group projects)

Academic Courses: Courses that are Widely Available

6.5.2. Technical Measures
A promising approach to the problem of source versus object

code sales and problems of portability, replicability, etc. is

the use of technical measures to tie software to the particular

' machine on which it is being run and to ensure that the software

itself is not tampered with.
& What forms should these technical measures take? One
possibility would be to have the software read special hardware
"signatures" which would be unique to each computer. If the
software could not make a correct reading, it would cease to
function or produce intentionally wrong results, Buried in
{ . thousands of lines of object code, such a command would be
(| exceedingly difficult to f£ind, perhaps entailing about as much
effort as reverse engineering the entire system. For stand-alone
software sales, the software could be tuned for the computer it
is to run on by measuring certain timing or other unigue
characteristics of the machine. Software can also be transferred
in hardware forms such as ROM.

These ideas should be taken as nothing more than promising

suggestions, It is our belief that government-funded research in

—

this area could produce simple, creative measures which would not
only be an an effective aid in limiting technology transfers, but i
also a means of preventing bootlegging and unauthorized transfers }
of software in the United States. As software investment ,]
continues to burgeon, U.S. manufacturers will have increasing

incentives to use such measures. Furthermore, the dramatic %
reductions in the cost of hardware predicted for the future will

make such technical measures economically feasible.

[

RN T Ao e e BN 2 Do S o MBS et gkt o R R R NG e 1 RN et ey B A B s SR, Nl O ¢

N G e e —

7. Some Thought Experiments

7.1. Introduction

In this section, we try to pull together the "Who", the
"What", and the "How" of software technology transfer. We try to
view the acquisition of software and the associated process from
the perspective of a determined antagonist. This antagonist has
a number of reasons for wanting to acquire software and
information about it. One is to determine Western capabilities in
order to establish where we stand with respect to the state of
the art in a given area. While this information is useful for
intelligence and counter~command purposes, it is not an area of
concern of this section. Qther major reasons for acquiring
software, as opposed to developing it from scratch, are to reduce
the expenditure of resources - some of which, like systenm
programmers, may be in critical supply -~ and to reduce the
amount of time that it normally takes to develop and field a
tested system.

Basically there are two approach.s that such an antagonist
might pursue to acquire the software and related documentation.
The first approach is to determine the life-cycle of the software
of interest, to identify the phases (See Section 2) and to
attempt to acquire as much as possible of the project library
data base produced during each life-cycle phase. The second
approach uses a functional analysis to determine the requirements
which must be satisfied by the software in question and then
attempt to fulfill those requirements by acquiring commercially

available software.

39

S Aol A it 3 g WG H BT et s L Do g b 0 VRN it o0 e B KRG e, AL S T ARV

{ 7.2 Software Life-Cycle Phases
7.2.1. Phases and Products

The normal DoD software life -cycle phases are five:
" conceptual validation, requirements validation, €full-scale
development, production, and deployment., Within this cycle, three
key decision points are reached: (1) Program Decision -
following the conceptual phase; (2) Ratification Decision -
following the requirements validation phase; and (3) Prod-
uction Decision - following the full-scale development phase.

These decision points are supported by the Defense Systems

e 26D e Loadil Bk ahiRe I G

Acquisition Review Council (DSARC) and are designated in Figure

7.1 as DSARC 1, 2, and 3.

These DoD phases include all of the generic life-cycle
phases outlined in Section 2.1. The conceptual phase includes the
process of concept definition; €from this phase an initial
specification is produced. A complete requirements document
results from the requirements phase. The four software life-cycle
functions of design, c¢oding and checkout, testing, and
integration occur during the full scale development and initial

production phases.

The major milestones that occur during the system life-cycle
phases and their associated documentation are indicated in Fig.
i 7.1. In the requirements definition phase, the final system
i specification is issued. Also the draft part I (development) and
i the draft interface control drawings (ICDs) are prepared and

reviewed at the system design review. Quite often, a computer
!

program configuration item (CPCI) requirements review will be

held at the end of the requirements definition phase.

10Q

o Y .)

4
M
|

=

S0uU0SOTTW 10(eW pue saseyq @10AD-3311 SIeMIJOS 'L =1nb14

‘esssssne - PRape

D T mum<=& NJU*Qlun——l— :u.—vm»m e 0t00604000000000000s00solsossrsssossssssssscnsssccsctotnositats

- } } i |
ININAOIIO/NOILONDONd | IN3INd013A30 3OS 1nd NOULVOI VA IWN1d3INOD
MIIAIY
0UY IS TYNO
WNYOS n Uudﬂo
2 o»vad § Duvea

TYNOILYYH3dO

MIIATY
NIISI0
WIHLIYD

WNOIIINNS

e @ o - -

MIINTY
NOISF0
YUNIN! T3

t
1 MIIATY —
. t (sanvawsyinozy o
NOILVYOILNI ' 19d2 art
1 RIIAIY
! ' N9I1S30
T 9NI1S3L ! ' m31SAS
' " ,. MIIAIY
! SINIWIN 103N
] T .—.:oxouzo °z< ' !] WT1SAS
1 ! ' 9NIQ0D 1 1 !
AYIANI130 124D ' "23dS | ! -
1¥0dFY LS3L | A 4 N91S30 ! ! .
D34S 1 A¥V - | yodIH RETO v 1 '
NI - 1531 4 awanizg ! N . NOTLINI430 '
! Vol b “ ' SLN3W3ININO3Y '
$a2/ AYIAIZG V' ayIMIIIE 1243 !) N
"23d5 &mﬂﬂ ' \umw\. H wrned w1 J SO v _ PYTER INL43IINOD
2345 M. -y WIYIINI ' S T wijsas !
. $3YNa3I08d 1S3L- | 4SIt 7610 2745 ! 543/ 4
aISINTY 78 WNIS g Tgvd - 93dS WIS ——
TONIL 1 1YY - 5991 . ' '
SIYNOIIONS 1531 ! [T 73 2745 ! J Vo
2708 1 1YV - zwtuvnw%. ! /ayvd ' 0 '
wovva Sk S
, 1 1390 14vHa -+
234 11 14Yd- |)
1IY80 TVIINYS avamy (AWINGD - -
§ 3 Mmoo e e e [N s rmEm TEENTS L LI

POASERE I G) -

U SURPOU AP

_— e e ey

PSPPI RN SO

A I 4 e ORI ¢ 1T e, B LAWY WO aitiee” | it ey R Sl A SSOREERING <. WOk bt i B I A

The final part I specifications and ICDs are issued in the
design phase. Preliminary test plans and partial draft II
4 (product) specifications are prepared for review at the
preliminary design review (PDR). The design pnase ends with the
issuance of the final test plan, the draft test procedures and
the draft part II specifications, which are reviewed at the
critical design review (CDR).

: In the coding and checkout phase, the test procedures are
‘ finalized and the initial CPCI delivery is made. In the testing

phase the interim CPCI delivery is made and the preliminary part

N II specification is issued. During the integration phase the
“ final copies of part II specification, the test reports, and the
&; CPCIs are delivered. Revised copies of the system and part I

specifications and the ICDs are issued incorporating the approved
F. changes so that current documentation is available for transition
‘f to the operational phase. The physical configuration audit (PCA)
| is held following all the revisions and updates.

It should be recognized that Figure 7.l1. illustrates the
idealized flow through the cycle. In reality there are numerous
feedback iterations which occur due to requirements or design
changes, hardware/software tradeoffs, problems encountereé during

l testing, etc.

i 7.2.2. Technology Transfer Utilizing Life-cycle Products

An adversary wanting to improve his own operational
. capability and at the same time desiring to reduce expenditures
ri of critical resocurces (including calendar time) might choose to

i do so by acquiring a copy of a Western system. One way to do this

. 102

- ey - =

— -

T A G 5 17 it NG o it s b L ST ORI s el . A T, YOI 13 T ot e

would be to attempt to acquire all of the documentation products
indicated on Pigure 7.1 (the project library data base). Even on
a classified project, a surprising percentage of the documents
may not be classified, so that accessibility by an adversary may
not be effectively restricted.

If all the products are not accessible; it is a useful
exercise to assess the impact on resource expenditures if only
certain of the products are available. In brder to do this, let
us hypothesize a typical software system project, project A. We
assume that the size of the delivered software system is 100,000
lines of source code, that the human resources expended were 500
person-months of effort and that the length of the development
cycle (from requirements analysis through system acceptance) is
24 months. Pigure 7.2. shows the resources expended during each
of the four main phases of the system life-cycle and the elapsed

time required in each of these phases.

Rhase = Elapsed Iime
[8 of total]
Requirements &

Specifications 50 (10%] 3 months
Design 125 {25%] S months
Coding & Checkout 125 [25%] 9 months
System Integration

and Testing 200 [40%] 7 months

Figure 7.2. Buman Resources and Time Requirements Distribution
for a Typical Software Project

1la3

il SIS

kit

b b 2R P ik
RSP SPATACT plol)

|3

From this example, we see that if an adversary could acquire
only the reguirements and specification documentaticn, he would
be able to reduce his resource expenditures by no more than 10%
and reduce his development cycle three months. For purposes of
simplicity we assume that there is no loss of information in
transferring, reading, and understanding the documentation, nor
are there any resources expended by the adversary on learning and
"coming up to speed" on the project. As a mﬁttez of fact, as more
software systems are engineered using modern technologies, such
as formal specifications, hierarchies of abstract machines, etc.
the more this simplifying assumption becomes true, and the more
resources can be saved by an adversary who captures the early
requirements and specification documentation.

If the adversary could acquire the requirements and design
documentation, he would reduce his expenditures of resources on
the project by as much as 35% and reduce his development time by
perhaps eight months. If he could acguire the checked cut code
and its documentation, he might reduce his resource expenditures
on the project by 6§0% and his development time by 17 months.

In practice, the real savings in time from acquiring a range
of products from a software system’'s library data base may lie
more in the fact that the adversary has dramatically reduced the
risk of taking a "wrong" design approcach, than in the physical
acquisition of the products themselves. No matter how long it
takes the adversary to build the system once he has the pieces,
he has a reasonable assurance that the pieces do fit together and

will eventnal}y provide him with an operational capability he

104

desires. He may nave stubstantially reduced the possibility of
pouring large amounts of resources into a project that eventually
will have to be scrapped or that will drag out so long as £to nake
the product completely obsolete or functionally unnecessary by

the time it is completed. This seems to be one of the main

. - S N] ! L "
e e ——— e -

reasons the Soviets decided to functionally duplicate the IBM

S/360 and S/370 computers[8].

Fulidhitdsl

7.3. Acquiring Military Capability

In this section we explore two additional, but distinctive,

LY ey, &
e e e, e

forms of technolecgy transfer that might be employed by an

I Y

adversary to improve his militray software systems capability.
The first case examines the possibility of acgquiring a military
capability through the exploitation of commercial sofiware, The
second case uses the ADEPT-50 project as a case study to explore
ways an adversary could penetrate a project to acquire software

technology and Xnow-how.

{ 7.3.1. Acquiring Military Software Through Commercial Sofiware

For the purposes of this example, several candidate military

u systems were considered, and a tactical command, control, and
communications (C3) system was chosen as an example to explore in

more detail.

The basic functions (Figure 7.3) of the tactical C3 system
are to support the £ield commander and his staff in the

acquisition and organization of essential tactical data, in

storing, retrieving, manipulating, and displaying it to support

the commander and his staff in making decisions. This support

10s

Y e P NAIL R Dt B e I NI e < ' - At iy SO

DATA DATA
AFFECTING AFFECTING
REQUIREMENTS CAPABILITY
Intelligence—~=>|] Forces==~cwcwaa= > [A
Sitreps-==—=-- >| Situation | Materiel~~—=—=n- >|{ Resource { 1
News~—c—=—ceea- >| Monitoring/| Support Forces~=->! Monitoring/ |
Directives---->| Analysis [Personnel-==—=—~- >! Analysis |
Requests—————— >] Facilities==-=~= b |
o > | Etc. > |
| >| | | 1<
I [!
[[I
| it K e e — !
| |
| [
[!
{ ! |
- | Plans |
| | Capability/!|
| | Evaluation |
[| !
| |
| | > [
| I |
I ! | |
] | Plan | |
| | Generation/ | [
| { Modification | |
[| | |
| | I I
! | [
I [=~ == '
| I
| ! i
! | Alert and |
| | Execution I
| | |
{ |
| |
! |
I | |
{ | Operations |
{ | Monitoring I
| |
| [
| I
e —— {mfm D e — e ————— '

i Figure 7.3. Basic C-cubed Functions

o A G A Y G, SR 5 < 254,

e — b -y -

requires an on-line, real-time information processing system
designed to facilitate effective management of field resources,
particularly during emergency situations.

These functions are basic to the discharge of command
responsibilities. Each of these functions is supported by one or
more specific operational capabilities; i.e., by a set of
interrelated computer programs designed to provide a console
operator with command and status infoﬁmation relative to
operational problems. The total set of operational capabilities
provides for the retrieval of information relative to the current
status of military resources, including forces, material,
facilities, personnel, medical items and communications-
electronics items. They also provide for the retrieval of plans
information based on operator input of descriptive gqualifiers
about a specific military situation. Plan requirements can be
compared with current status data to evaluate the feasbility of
implementing a particular plan. In the event that a plan is not
feasible, it may be modified through the utilization of pre-—
stored or operator entered planning factors. These planning
factors are also used as a basis for generating plans in the
event that no suitable plan exists. Subsequent to the
implementation of a plan, operational reports are compared with
Planned events to monitor the progress of the operation.
Potential problem areas can be detected and resolved quickly.

The basic software functions that must be executed in the

system are:

107

RO AT Q53 1. i, IR RN Sl . . i’ & S W AN RN Sl >0 et 885 AN 5 M Y :

 { 1. Communications Processing
The C3 system must be coupled through a communications

[network to higher and lower echelons of command, to

other elements of the command structure, such as
intelligence, logistics, etc.
2. Data Base Management

The organization, storage, and retrieval of information

gha
2 Aad h N .
i nd e o e

in the system requires a data base management

capability.

o, A
aieth .

3. Terminal Control and Displays

The system must be on-line and interactive to be

Sl

effective. This requires the use of terminals for query
entry and control, printers for hard copy, and the use
of displays for dynamic presentation of data and

graphics.

4. Special Applications Processing
There will be a need for special functions to support
command decision making. These can range from basic
‘ | statistical packages to more sophisticated decision

making tools.

The first stage of the effort would be to develop and test a
> functionally equivalent C3 system by integrating commercially
available hardware and software components. The basic hardware

elements needed are:

l. A central processor and main memory; 1

l08

P ~ PSP

el et gavem o e

e ey

M Ak 2 S 5 A PR O™ i i ik TS . S S s » e f - Bl AR

2. Mass storage peripherals (high-speed, high-densicty
disks);

3. Alphanumeric display terminals with xeyboards ard a
graphic display system; and

4. A communications controller.

The basic software elements are:
1. A real-time, event~driven multiprogramming system;
2. Terminal and graphics processing software;
3. A data base management system; and
4. Special applications software including analyst support

and management/command decision making.

Such a system could be assembled by using a DEC PDP~11/70
data processing system®, equipped with a high-speed control and a
mass storage peripheral for information storage. Alphanumeric
displays and keyboard entry of data and commands could be
supported by DEC VT52 terminals. Color graphics capabilities
could be added by utilizing the AYDIN display system which has
hardware and software designed to interface with the PDP-11/70.
The operating system could be the DEC RSX-11lM system which is a
real-time, event-driven system that supports a variety of I/0
devices, including alphanumeric displays, communications devices,

etc. If the communications processing load becomes too heavy for

* At least two SM minicomputer models are currently being
built in the Warsaw Pact countries which are based on the DEC
PDP-11 architecture. We do not know to what extent these machines
are compatible with those of DEC, nor whether or not the Soviets
or Eastern Europeans have acquired any of the products described
in this section.

109

for the PDP-11/70, then a DEC PDP-11/04 could be added to act as
a front-end processor.

For the data base management capability a system such as
DEC's Datatrieve 1l could initially be utilized. This is an
interactive guery, report, and data maintenance system which
provides facilities for data retrieval, formatting, report
generation, etc., It runs under RSX~11M and includes the RMS-11K
record management services software. The one area for which
commercial software is not generally available is that required
to support command decision making, although a great deal of R&D
is being done in the areas of self-adapting systems and computer-
based information decision and forecasting systems, and software
is available(l].

Once the commercial software/hardware capability is
workable, then steps can be taken to make the system suitable for
field military use. This can be done by van-mounting the hardware
to protect it, by ruggedizing the hardware, or by acquiring
military versions of the commercial hardware. For example, Norden

builds a Mil-spec version of the PDP-11/70.

7.3.2. Technology Transfer Mechanisms and the ADEPT-50 System

In this section we perform a gedanken experiment on a real
system development project of the late 1960's. The current Soviet
systems capability can be likened to the U.S. capability of this
time frame. The experiment examines the most effective technical
transfer mechanisms employed on that project which, by analogy,
might be employed by Soviet systems software people in current

technology transfer efforts.

110

e RPN ARG S S o5 T L PR T T e i v el A O N S U b 3ein il 8 AR s A i e e

. 4 7.3.2.1. Project Overview
ADEPT-50 [1l] was a three vear project to build a general]

purpose timesharing system for potential military use on medium

scale commercial computers. An IBM 360/50 was selected as the
S base hardware. The system requirements called for three classes
of software, which had to be fully integrated with one another:

1. The ADEPT timesharing operating system;

2. An interactive data base management system, TDMS; and

3. A set of software development tools oriented around a

JOVIAL compiler.

.Alk._‘n by

R None of the software items existed, though experience with
: similar software existed in the project. Therefore, except the
IBM assembler and some IBM loaders, all system components and all

tools to develop the system had to be built from scratch.

The project began with four experienced designers working on

the operating system (0S) and, at its peak, grew to include some
dozen software people. The service functions of the 0S were
designed first and became the interfacing specifications for both
the TDMS and tools groups. A first kernel 0S was servicing these
groups at the end of six months. New releases appeared every
three months, slowing to every six months in the last year. Such
releases were incrementally more capable systems. Software
library maintenance tools, debug tools and sysgen (system
i‘ generation) tools were completed during the first six months. The
g .. sophisticated JOVIAL tools were at the state of the art in design
‘ of incremental on-line compilation throughout the full project

f{ life. The TDMS system was the most advanced DBMS then conceived

111 1

B L W W AP ki e g el e SN o ORI Yl £ P~ DN D B gmm“mi’hn& -

employing fully inverted files, English query, flexible report

generation, and batch update. The 0S advanced the technology of
secure timesharing and timesharing for large user programs on
moderate hardware. The whole system was completed successfully
and installed in a number of operational DoD test beds. It
survived many years until passed by modern systems. The TDMS and
many tools survive today in operational use, and the ADEPT
security approach began a serious effort on; and contributed to,

today's multilevel secure systems.

7.3.2.2. Experimental Results

The gedanken experiment provided insight into the nature of
the interrelations between the ADEPT-50 technologies and the
transfer mechanisms. Much of this insight is captured and
explained elsewhere in this report. It supported the choice of
most of the recommended list items of Section 8. In this section
we summarize the results of the experiment and the tie-ins to the

list items.

a) Operational Capability

Access to the initial ADEPT-50 operating system (0OS) in the
first six months provided a quick operational capability £or the
project technical staff. This usage allowed staff personnel to
become fully acquainted with the 0S behavior, performance,
command language, and capabilities. This, in effect, provided
them with a working exposure to the system requirements and
functional specifications. The importance of this experience

cannot be underestimated, because it had considerable impact on

112

ot . B 8 W N s, A5 T 0, A R W ¢ 1. B SN S Ml s, ARl

many of the tasks in system development, e.q., online docu-

mentation, coding, and testing.

b) Source Code and Specifications

2 Qf course, these system development tasks also required
access to system source code and specifications contained in the
- system software library data base. This added material
significantly increased technical unde;standing, and was
necessary for the staff to extend the operétional capability by

3 system modification as noted below.

.
a

It seemed to us that adversary programming groups could, and

have, benefitted in similar ways from access to operational

I G- i

capabilities and parts of the software library data base. We

:

believe that what has been described in the preceding two
paragraphes were major inputs in the efforts by the Warsaw Pact
countries to acquire the IBM S/360 operating systems for their
OUnified System (ES) family, and may well be an important aspect
of other software acquisitions by these countries. A goal of
export control should be to try and limit access to the most
{ revealing parts of the software library data base, as we try to
_l do with the list item described in Section 8.2.2. Furthermore, in
Section 8.3, we suggest that access be limited to the least
X revealing parts of this data base, i.e., to object code and basic
users manuals, and the use of object code that is somehow

technically configured to limit portability.

¢) Software Development Tools

extentions to the system feasible, access to software development

‘ If access to the ADEPT-50 technical data base made ‘
|

113

ey B s A, WA £ B NN

CarelR e T Hoonl L R B 5 W

B Ly I W o MR e i (S $

tools made such extensions practical. These tools are described
in Sections 2.3 and 5.5, and allow controlled manipulation and
management Of the source code. Since they themselves are
software, they are subject to all the limitations and foibles
involved in building any large-scale software product. They are
indispensible in any large-scale software development project,
are Key to software export control, and are addressed by an

important list item described in Section 8.2.3.

d) People

The ADEPT-50 project began with a small, experienced staff
and grew to include more junior technical people as the project
matured, These junior staff members were apprentices to the
senior designers, who acted as consultants and mentors to the
junior staff. They were the "active" transfer agents, explaining
why the essential features of the design were selected and how
they were implemented, assisting the new members in finding their
way around the extensive and growing software library data bhase,
and teaching the junior staff how to make the best use of the
software development tools. Coupled with the other aids noted
above, the experts greatly improved the efficiency of the teanm.
The active mechanisms used here (and others) have been described
in Section 6, and have been partitioned into four categories by
their effectiveness and controllability (Section 6.5). The
recommendations for restricted mechanisms form an important part
of the definitions and potential implementations of all our

recommended list items (Sections 8.2.1-8.2.8).

114

D AV T e i 6 el e I MR Warn W gy gk i SN A, Yreditl £ M

e) System Modification

We believe that software operations and maintenance (O&M)

are really software redesign and implementation. Therefore, the

technical ability to maintain and enhance software is technology

that can be used to build software. The ADEPT-50 experience is

ST PV W

typical of the development of many large software systems, and

supports this point. The new ADEPT-50 releases which were issued
were essentially new software products, even though they were

composed largely of the same modules as existed in the earlier

RS I

M releases, plus new functional additions and changes to some of
1 the older modules. The importance of this maintenance technology
b is such that we felt the need to include it as a distinct list

i item, described in Section 8.2.4.

f) Conclusion
*t It is relevant to our present analysis to note that, within
a year, the junior staff were sufficiently skilled, trained, and
experienced to support the configuration management aad
{ production of new releases. After another year or two, they were
A leading software development projects of their own. By analogy, a
Soviet team might be able to repeat the learning experience of
the ADEPT-50 junior staff by initially taking responsibility for
maintenance of a commercially available U.S. software product.
Mastering the maintenance tasks would allow the staff to begin
g to make incremental and selective modifications or to adapt the
software for other, including military, applications. It appears

' that some of the Warsaw Pact countries have been doing this.

Furthermore, use of the more active transfer mechanisms would

115

i mim—ar ——a X.me

- T P R o e Bt

greatly facilitate such transfers, and would contribute further
know-how that could better enable adversaries to build new

systems for military purposes.

7.4. Software Development Trends

In order to combat the proliferation of CPU architectures
and to shorten the development cycle and to reduce costs, the
military services are moving towards the use of so-called
commercial test beds. The idea is to develop and field prototype
systems for feasibility demonstration using commercial hardware
and as much "off-the-shelf" software as possible. As a matter of
fact, the Army is using an approach not unlike that postulated in
Section 7.3.1. for its Beta system.

Furthermore, the trend is to create standardized software
development systems to be used by both military and contractor
personnel to develop and maintain military software systems. As
an example of this, the Army is proposing to create 11 PDSS (Post
Development Software Support) centers for the development and
maintenance of all Army battlefield automation software. These
centers will be equipped with common hardware and support
software and tools. The use of Ada as the standard programming
language, plus the rigid enforcement of software standards and
practices, will be an integral part of the process. These trends,
plus the standardization of military computer architecture
families, will make it easier in the future for a determined
adversary to acquire software systems capability if adequate

controls are not exercised.

lls

" e o N e b

8. Reccmmendations
8.1. Introduction

This section presents our recommendations for list items on
\ the militarily critical technologies list and a number of other
recommendations concerning product form and further study. The
1 posture of this group has been to consider software technoloéy
and its transfer as a process. Therefore, we feel taat
! controlling related technology transfer mechanisms is an integral
] . part of the definition and control of software technologies. For

easy reference, we have reproduced the four categories of

transfer mechanisms from Section 6.5.2.

4
! Categories of Software Technologyv Transfer Mechanisms

¥ The following four categories of transfer mechanisms apply
t’ regardless of the source of the transfer (academic, governmental,

industrial):

Category 1

| Effective mechanisms for which adequate controls nay be

¢ possible.

{ Apprenticeships: Team Membership
License with Extensive Teaching

Joint Ventures

Product Shipment: Development Data Base

Product Support
Assistance: Modification and Enhancement Training
Maintenance Training

—_— e e s

Consulting

-

I, S,

) SR

P A Lk

3T

BN o

%o

. o i F i A]« 117 D W MR AN st i ot 4 e T RN LT S SRS AT D

o v TT

We feel that these mechanisms ara less effective and more

difficult to control than those in Category I, but that control

may be possible.

Professional
Contacts:
Product Shipment:

Product Support
Assistance:

Academic and
Other Courses:

Contract
Negotiations:

Usage

Category IIT

Extended Visits (without apprenticeships)
User Group Participation
Source Code and Detailed Documentation

Installation Training

State-of-the—~art training (iacluding courses),
not widely available

Detailed negotiations and proposals

While control of the following mechanisms may be Dossible,

it is doubtful if such controls would be desirable or worti the

effort of imposing them.

Professional
Contacts:

Control of visiting adversary nationals' nove-
ments in those parts of host organi-
zation's facilities that are accessible %o all
members of that organization (e.g., restricted
access to computer centers at commercial or
non-profit organizations).

Movement of U.S. ¢itizens asroad

"Licensing" people who deal with adversary
countries in technical matters

118

NI — s

+ g Wl - . PRSP 25 NP St il P S S N - - gttt i et AN — i

Category IV
We feel that control of the following machanisms would De

highly undesirable either because taey only iavolve weax

— e e

technology transfers or because controlling them would impose

severe constraints on the software industry in the United States.

4
SO

Written Material: Widely Available Literature (not classified or

Ao X

proprietary)
,; Correspondence
2 Product Support
& Assistance: User Training for Purchased Products
)|
- A .
| Product Shipment: Object Code and Users Manuals
' Professional
Contacts: Short Term (less than 2 weeks) Contacts and Visits
Short ferm Visits to Trade Shows, Sxhibits, and
Conferences
Work that is Primarily of a Theoretical Nature
Apprenticeships: One-on-one Thesis Supervision (but restrict
exposure to Lacilities or group projects)
Academic Courses: Courses that are Widely Available
{
{
8.2. Recommended Entries for the Militarily Critical
Technologies List
i 8.2.1, Life-Cycle Hanagement Tecihnology

The best working software is a product of a number of

discrete stages with defined output and review, i.e., a 3ocial
g :

: 119

A

(g}

process. Together with the use ¢of the softwara lidrary data base

.

1 andé soitware development tools, they comprise what we have chosen

to call "life-cycle management technology.” Although numercus

. —

approaches to the life cycle for software are used, one that is
modelled here is the DoD methodology.

The earliest stage is that of ¢concept definition, when tne
overall system purpose and operation is coaceived. A clear
statement of objectives is reguired. Objectives may be derived
from higher-level systems, from control of lower-level systems,
i% from simulations, and from "war gaming"” scenarios. Cost and
scheduling factors also assist in the concept definition.

The requirements apnd specifications stages begia to
structure what the system must do to satisfy its objectives.
Again, simulation can be employed. Technigues of struactured
reguirements are usefully employed to follow the flow of system
operational control and its needed data and computational
requirements. Once developed, these requirements and their
specifications must be writtsn in well-foramed, unambiguous
i notation. A number of such languages now exist and are used in
. preparing mathematically precise systam specifications of what
the system must do, i.e., 1its service specifications.

System design is the stage that defines how the system
works, 1L.e,, how tne system implenments &the sezvice
specifications. A design may be written in at least one of a
number of notations: flow diagrams and data diagrams, stata
‘ macnine tables or specification languages, English, structured

English, or even a programming Higher Qrder Language (HOL) of the

120

e i e M

AR YR A
st L et

bt

coding variety. Eacn approacn carries with it advantages and
disadvantages and a considerable technical metaodology. all
aporoaches use a form of modular design which defines the input,
output, and functional behavior of eacn module. %With the
definition of these modules and their interfaces to other
modules, system hardware, and human components, a software
architecture is developed. More modern methods go further in
describing the types of parameters, and their "visibility" in
scope to other modules. Side effects and environmental
considerations for each module may also be specified.

Ccoding proceeds directly from the design stace. First the
individual modules are coded, then the associated modules until a
chain of integrated modules is built up which performs one or
more of the service specifications. The design is often imple-
mented in an HOL such as FORTRAN, COBOL, JSOVIAL, PASCAL, etc.

These module chains, called "builds," relate directly to the
requirements specification and form the basic unit of festing of
the system. Modern testing methods employ "threads” or "builds"®
testing whicn checks the correct operation of a thread (i.e., a
logical, ordered subset of the whole) of functions which satisfy
one system requirement. There is considerable technology rasqguired
for system testing. Test plans must be developed to lay out a
strategy of tests to be performed in sequence oy a number of
systems people working in parallel. Test conditions are set up,
varametcers to drive modules are created, and resulits are captured
and analyzed zgainst spvecifications and requirements. Errors that
are found must be logged and engineering changes generated and

controlled for correcting such errors. The module iaventory grows

121

el s

¢ e £oa

N S

Fh g I TR A i % s el e, Y SN I

ané c<hanges with each engineering change, and a system of
controls tracks software ralzases and the errzors outsctanding
against them. These tes:ts prcoceed thread dy thread until all
requirements are demonstrated. Threads are then merged into a
complete integrated system, which is tested for correctness ané
performance. Lastly, the system is testaed at the user's
installation. This may be the first time that all of the systen
elements work together and use real ("live") data.

A number of management technigues are used at various points
in the life-cycle. Standard management activities, e.g.,
preparing work breakdowns, cost estimates, schedules, and
manpower loading statements, have been adapted to the peculiar-
ities of the software industry. Some of the know-how which has
been acquired through difficult learning experiences includes
understanding and anticipating the rigor needed for a large
software project, handling detailed internal managenent and
technical documents, incorporating a number of defined events and
milestones for management review at various levels, using
modalling and control systems, and building project management on
the basis of hierarchies of individuals who nave different lavels
of experience and responsibility. Much of this experience caanot

be acquired through open, passive sources.

Liss ZpLry: Software Life-cycle Management Technology

Integrated taechnical information and know-now relatad to the
understanding and utilization of life-cycle nanagement nethods
for the development of large software systems. Integrated

technical data and Xnow-how include the aggregata of methods,

122

o R A 2 NI 55 2 g WA T it it N T AR LR 1. I 2o s AESH D SNt s AU it L Il a1 A

procedures, manuals, standards, events and milestones, work-
breakdown modeling and analysis technigques of resources (2.4d.,

cost, scheduls, labor, egquipment) embodyiag U.S. managemant

experience. Large software systems are those involving over

15,000 HOL source statements, or four or more perscn years of

P

labor before the initial delivery of the system.

:!]‘Ijha:t’ Hslll a.:!: High
Foreign Availabilitv: See summary in Section 3.4.2.
Adversarv C3pability: See summary in Section 3.4.l1.

Recompmendations for Controlled Transfer Mechanisms: dechanisms in
catagories I and II listed above.

R Y- S A S Lol VDERJINEEN.

8.2.2. Software Library Data Base
| Unlike finished goods in other tachnical manufacturing,
software has no single physical form. In the early life cycle
stages it is English functional descriptions. In design stages it
is mcore akin to formal mathematics or logical informacion flow
specifications. In the coding stage it is in the form of "source"
text in a BOL. This text is translated by software tools into
"object" binary form for direct execution on a given computer.
Application programs in HOL source code form may be translated

-~ into many different object code forms for diffe

”

ent computers, ot
into different object code forms on the same compiter £cr
various configurations of interfacing software and peripheral
hardware. And Zor each form there nmust be accompanaying

documentation to describe the software coperation and differences.

]l 123

o e e At s e

ca !.;_;a-._l“g

S e 25 0T g WA M i e, e W Ll A PR ORI M o e+ Tpt miats B2 Arides i R, WS e

finally, through the Osid process, the source programs are
changed, repairad, and improved in function and performance to
produce an assortment of new versions of essentially thZe sane
"product." The aggregate of these software items typically
constitute millions of lines of text in various forms. If any one
of these items is incorrectly formulated or maintained, incorrect
operation can result.

In order to maintain these items over the course of the
software life cycle, a software library data base is used. The
data base is created incrementally and is a "living” document,
best maintained on-line by a sophisticated set of tools. The
structure of the data base depends on the conventions of the
languages and notations employed in the varicus stages of
development. These conventions must permit both human and machiae
access to the text.

The data base contains multiple dirzectories of the objects
in the data base. All directories originate from a master
directory, which is often organized along system or component
lines so that releases of modules are placed with other modules
of the same thread or functicn. Subdirectories often follow tae
organizational structure of tne development project, with eaca
programmer having nis or ner private f£iles. These files are
periodically released to the software librarian to include in the
master directory. The master directory is further organized oy
text forms for each develcpment stage; it then resembles a mulci-
dimensional matrix of functions, forms, aand peopla2. This
structure is key to the retrieval and to the automation of thae

generation of system products: software and documentation., Zven

124

[
|
[
I
I

Sy L A SMED i i e 0 Ul R R e WA e ey B, AT b el o Ay A

the naming of objects becomes a crucial technology as mucnp of thne
structure is embedded in the names. They reflect a patn through
the directories, and they encode the form of the text and version
number of interest (e.g., JOMES.PASCAL.3). They also provide a
uniform key upon which all of the related software tools can
operate,

Access to the library is strictly controlled by the
librarian and operating procedures for obvious resasons of safety
and protection, but also for less obvious reasons of error
control, <cost control, status reporting, and project
communication. Private files are strictly controlled by each
owner. Backup procedures are of nhighest priority and are handled
both by the librarian and by individual programmers. Backup
becomes more crucial and more costly as the library grows.

The techniques outlined abeve are collectively known

as "configuration management.”

List Entrv: Software Library Data Basa

A large software product, 'which is the aggregated set of the
final textual forms it takes at each stage of the life-cycle
development process; and the data base and cbnfiguration
management technigues associated with these forms. These forms
are English descriptions, specification and design expressed in
special languages, HOL source code, and machine-executapls binary
object code., They are entered into a software library data base
and are controlled througn this data base and configuration
management technigues. Large software systems are those iaveoiving

over 15,000 HOL source statements, or £four or more person years

125

of labor before the initial delivery of the system.

Militarv USilify: High

Reconmendations £9or Controlled Irapsfer Ja2gpanisas:
mechanisms in Categories I and II listed above.

3
or
[

8.2.3. Software Development Tools
Descriotion

Software development tools vary widely and encompass almost
the £full range of activities associated with software
development. It has taken the U.S. a long time to realize the
need for the systematic software development practices which are
"enforced®™ by the use of these tools. A considerable intellectual
and financial investment has been made in them and in the
technoleogy that employs them correctly. For the purposes of this
list item, only integrated sets of tools should be considered.

A novel feature of the DoD language Ada is that it has been
designed from the start with the concept of a tools environment
in mind. The building of the "Ada eavironment" will involve a
very substantial software life-cycle management effort; our
controls extend to this experience and the environment, but not
to the language itself. The Ada environment is an example of an
integrated set of tools.

Software development tools fall into a number of generic
categories. Library maintenance tools are used to create
directories and files, for storage and retrieval of text, and for
other data base operations. Composition tools are used to enter,
edit, display, and/or print software text, Translation tools

include compilers, interpreters, assemblers, macro libraries,

126

A W8 iy P RR W MR et o B SR A T o PRI A A v D AR s il N 7T N

pre-processors, and post-processors. Test and validacion tools
confirm that the system is working correctly. Finally, project
nmanagement tcols deal with all the adminiscrative aspects of the

system being built.

List Zptry: Software Development Tools

Array of technical information and know-how consisting of
the integrated set of software development tools used in the
development of large software products, including tools for
program library maintenance, program composition, translation,
test and validation, and program project management., "Integrated”
means the use of project management or library maintenance tools;
or the use of either of these in conjuction with any of the other
above-mentioned tools. Furthermore, these tools nmust de designed
to interface with each other's internal data structures, command

language, and internal (process) communications between modules.

Military Utilitv: High

Foreign Availapilityv: Moderate.See Section 3.4.2(c).

Adversary Capagbilitv: Limited. See Section 3.4.1(%).

Recompendations Zor Controllaed ITransfsr dechanisms: The
mechanisms in Catagories I and II, given above, Furthermore,

products in any £form, including object code, should be
controlled.

8.2.4. Maintenance of Large Software Products
Qgsg:;’ 2;‘ ign

The strategic value in software is not in a "secret
formula," but that it "works" and can be relied upon to continue

to operate as expected. Therefore, the system enters gperasion

127 .

and maintsnance (Q&it) after final testing. The 0&i1 stage might be
considered the end, because the system is completed and in
operacional use. 3ut large programs are guite complex and involve
many interfacing interrelated "clockworXk"™ mecaanisms. They are
very fragile in the sense of needing continuing support and
maintenance to Keep them current and operational. Repairs are
needed to correct errors, upgrades to imp:ove performance,
changes to accommodate hardware configuration changes or new
performance requirements. New functional capabilities unforeseen
or unclearly outlined in the original specifications may need to
be added. Such modification of working software is the rule of
industry and is reflected in the model, version, or release
numbers associated with all software products.

Such repair is really redesign and requires a return to
earlier life cycle stages. Thus, OsM must make extensive use of
the documentation of the program contained in the software
library data base. Xnowledge required to carry out Q&M involves
understanding the software architecture, detailed design, the
various specification and programming languages in which the
software is written, the computer on which the software operates,
the complement of equipment in the system configuration, tae
applications environment, the types and ranges of expectad input
and output variables, 20w to operate test tools, and the proper
use of coniiguracion management tools to xeep the softwars
current. 0O&M is a najor problenm stage for software, because it
i3 entered years after the concept stage and when few of the

original designers are available t£9o perform the changes. Qverall,

0&M costs about twice the total of 2ll other stages combined,

While O&i follows the othner life-cycle phases seguentially, it

(a8

really must de considered an entirely separate scage. Few, il
any, of the personnel who built the software c¢ontinue %o support
it and C&aMl is carried out for an extended period of time atfter

operation begins.

List Entry: Maintenance of Large Software Products

Integrated technical information and know-how relatad to the
understanding and utilization of life-cycle management methods
for the maintenance, i.e., repair, adaptation, extensicn, or
modification, of large existing software systems, or large
software systems developed under life-cycle management methods.
Integrated technical data and know-now include the aggregats of
methods, procedures, manuals, standards, sevents and milestcnes,
work-breakdown modeling and analysis technigues of resources
(e.g., cost, schnedule, labor, equipment) embodying U.S.
management experience. Large software systems are those involwving
over 15,000 BOL source statements, or four or more person years

of labor before the initial delivery of the systam.

Military Jtilisw: High
Adversary Capapilify: Limited

Recopnendations £for Controlled Trapsfer lecpanisaps: The
mechanisms in Categories I and II, given aoove.

8.2.5. Formal Methods and Tools for Developing Trusted Software
e

An emerging technology of great promise is that of formal

—~——-

A

T -,

L -

Y

TwT .

SIS e RA S CE G i s A TR VR S W 2 v el e, AN, O o e -

methods to produce software and the tools to enforce the use of
these methods. This technology utilizes theoretical results f{rom
mathematical logic (particularly the predicate calculus),
packaged using heuristic tachniques from the artificial
intelligence community, to develop software systems wanich veriiy
the corfectness of software specifications. From tne formal
results nave also come methodologies to discipline the
programming process, SO that resulting products are more
amenable to proof of correctness, and sets of languages and
verification tools (e.g., specification languages and their
processors, theorem provers, specialized configuration <ontrol
tools) to enforce the discipline that theory recommends.

Formal methods enforce a top-down approach to the production
of software, starting from formal specifications. Tools have been
developed to express, snforcs, and prove the corractness of these
specifications and to refine them to more detailed spec.fications
which, in turn, can be proved correct and further rafined.
Iteration of this procedure produces a hierarcay of proved
specifications, finally resulting in a proved specification
sufficiently detailed to permit direct coding. This software is

then considered "trusted.”

List Zntry: Formal Hethods and Tools for Developing Trustad
Software

Technical information and Xnow-now embodied in arrays of
formal methods and tools which permit tile development of trusted

software, proved to satisfy its specifications. Formal methods

include specification languages and their processors, taeoren

-0 A e Nl AV ot i 1 o Bl B AT gt T i bt e 3 YRR W VRARND Wl R i ket Yot 0L s b R, Yl P N

! provers and specialized configuration control tools., The tools
permit expression, proof, and enforcement of correctness of

software to its specifications at several levels of detail.

Miligaryv Jtilitv: High

o Recaommendations for Controlled Transfer Hechanisms: The
mechanisms in Categories I and II, given above, Furthermore,
products in any form, including object code, should bve
controlled.

4 8.2.6. Secure Software
: ot

The formal methods discussed in Section 8.2.5 have permitted

RN SR 3

the development of an emerging tachnology of secure software for

Ehatll

' large, complex software systems. This software permits computer
: systems which are "trusted® to instantiate predetarmined security
t‘ policies. In particular, this software may permit multi-level
secure operating systems or secure data base management systems
which guarantee that users not have access to information for
which they do not have appropriate access permissions. Much of
this software may be classified and thus fall under %the control

umbrella of the Munitions Act, but the development of secure

! systems is also necessary for such applications as electronic

|
|
i
o
1

funds transfer.

List =Zptrv: Secure Software
Software (e.g., multilevel secure operating systens,

communications systems, special controllers, ané secure data basae

)4
JESPRED. SO

management systems) that is produced using formal methods and

tools so that it is trusted to adhere to predetermined security

131

e s ——

policies., Secure software embodies technical information and

Kknow-now on systems architecture wnich is resistant to

penetration.

Militarvy gtilitv: Zigh

Recommendations for Controllad Trapsfer Hechanisms: The
mechanisms in Categories I and II, given abecve, Furthernore,

products in any form, including object code, should be
controlled.

8.2.7. Large Self-adapting Software Systems

iptid

Self-adapting software systems are able to make significant
changes in their internal processing logic in response to user
commands or based on the demands waich have been placed on the
system in the past. Such systems usually incorporate significant
artificial intelligence technology. Examples are the MACSYMA
system which reorganizes internal data representations and
secondary access paths based on usage statistics; :the
"Programming by Example” system which automatically generatas
significant programs from very succinct and natural usecr
descriptions; and natural language user interfaces, especially
those which can "learn" new vocabulary.

Self-adapting software systems are important because they
Create significant operational capabilities across a diverse set
of applications. The bresadtn of the applicabiliitvy makes Gthese
systems f{undamentally superior to more rigid systams waich are

only useful with complete documentation and wmaintenance ts0ls.

132

et

' Li3t Zptrv: Large Seli-adapting Scitwars Systems
Any computer system which automatically or saami-

automatically makes significan%t revisions to its internal

O O

software processing logic and data in response to user commands

é or based on the history of demands placed upon it.

Militaryvy Utility: Very great potential utility in command and

control and iantelligence operations.

Foreign Availabilitv: There are few, if any, significant systens
]
% of this type outside the United States. The EZuropean
+ . \ . - .
;f perception that computer hardware is expensive ana must be

; parsimoniously utilized has retarded their development of
A systemns of this type. Japan has been exploring such systems
cut does not yet have (known) significant results, except in
the robotics £field.
Adversarv Capapilities: There is no known sigaificant capability
in this arsa in any adversary country.
2ecommendations £or Conitrolled Transfer Mactbanisms: The
mechanisms in Categories I and II, given apove. furchernore,

products in any £orm, iancluding object code, should b>e
controlled.

8.2.8. Commercial Software Integral To Critical dilitary Systems
, Dgngvig;ign
A substantial amount of military scftware in currenc defense
use is unclassified or is available as commercial sofitware
. products. Military systems make use of general purpose scftware
= including operating systems, comnunications front-ends, a wide
1

variety of sofitware utilities, and various applications packages.

' [,

133

Such softwara is of concern Dbecause it can potentially ove
acquired and used to expose flaws in critical U.5. military
systems which may then be sxploited in some fasaion. Pesnezration
studies, for example, nave shown that significant information
about flaws can be derived from &testing the operational
characteristics of a given program.

To meet this threat of "jamming” T.S. systems, the software
subgroup feels that explicit commercial procducts which are in use
in critical military systems should nct be transferred to

adversary nations. A classified list of such products should be

compiled by DoD and used in the export administration process.

These controls should not extend to commercial software products
wnich perhaps provide similar operational capabilities to those
explicitly in use.
List Zotrv: Commercial Software Integral to Critical
Military Systems

Commercial software products (e.g., operating systems, £file
and data management sysytems, communications front-ends) which
are integral to existing critical U.S. military capability or
could be raverse-engineered Lo axpose flaws in U.S, operational
military systems.

THE DEPARTMENT OF DEFENSE SHOULD ADD A CLASSIFIEZD LIST OF
SXPLICITLY MAMED PRODUCTS TO SUPPLZMENT THIS ITEM.

Recommendations £or Congrollad Transfer Heghoaoisns: The
mechanisms in Categories I and II, given above. Turcthermore,
products in any form, iacluding object code, should be
controlled.

[haa

8.3. Other Recommendations

8.3.1. Reconmerdations About Product Form

In addition to identifying techinologies which saould be
included on the militarily critical technologies list, we feel
that attention should Ye given to the form in which any software

product i3 exported.

a) We view cbject code as a fairly weak form of encryption,
since partial or complete decoding algorithms are available for
commonly used languages and machines. ilevertheless, the time and
talent that aust be invested in decompiling objectz code for large
software systems can be very substantial. Certainly the
possession of well-documented source c¢ode can be very helpful to
an effort to functionally duplicate a vroduct, or to an effort to
diffuse and maintain the original product. We believe that the
axport of object code, or ROM or other "hardware" forms, is to be
preferred over the export of source code. Another way to
strengthen object~-code-only export is through license control
simplification for software embedded as part of a "turnkey”
product with U.S. maintenance only. Object code, or software in a
hardware £form, would then be a part of the total product, the
internal structure of which remains unknown and unknowable to the

end user; e.g., a form of commercial "need-to-know."”

b) Computer manufacturers and software houses are likely to
find increasing economic reasons to support nardware and soitware
mechanisms to aid in controlling the diffusion of software. This
trend may do much to help solve some of the problems of the

export control of software products. Greater use of turnkey

135

[——

'
3

i Rieiadd' 4~ o T W SN IS e i, 2 0 T A S MR Bl R b o B N 5 AN, YWl 45 1.

products is one method. Cost effective tecanical means £o
restricc portapbility need to be found and made widely available,
We urge the government to support efforts to develop such

mechanisms.

¢} The transfer of any software product should be
uncontrolled if the product does not provide a direct military
operational capability or explicitly fall into a small number of
categories (e.g., software tools or self-adapting systems),
provided that it is transferrad in the form of ocbject code with
only users mannuals and passive maintenance service, and provided
that there be reasonable technical safeguards that the system not
be portable,
8.3.2. Recommendations for Further Study
a) Other Software Items for the Militarily Critical Tecnnologies

List

Although we feel we have covered the most important software
technologies, no claim is made that the eight recommended List
Entries cover this f£ield exhaustively. Other general, emerging
software technologies, analogous &to the selfi-adapting software
entry (3.2.7), may nave to be listed. One such possibility is
robotics software. Time and expertise constraints prevented the

software group from making an a2xzhaustive study.

) Technical !easures to Reduce Software Portabilicy
The software subgroup strongly recommends tanat research
directeé towards the development of tachnical measures to reduce

software portability (Section 6.5.2) be funded by the Federal

136

e, WA R s a5l AR T MR N R 5 33 ek s BNl L Sl 20t S

government. One possipility involves nardware "signaturses”" to
bind software to specific nardware configurations. Previous work
in this area has been cost-limited, but present decling hardware
costs and increasing investments in software should make such

measures economically viable,

¢) Construction of a Decision Tree
It may be possible to use the analyses of this report to
construct an explicit decision tree for evaluating software-

related export requests.

d) Purther Thought Experiments
We consider analyses such as those of Section 7 to be ver

valuable in providing a deeper understanding of tne nature of
technology transfer. From a broad perspective, despening our
perception and insights about software techaoclogy transfer can
enhance the search for effective control methods and the
delineation of what should be controlled, From a more narrow
perspective, such analyses help t¢0 illuminate such issues as how
militarily significant systems may be constructed from commercial
software or now U.S. systems may be penetratsed and "jammed."
Hence, we recommend that anaylses of this nature be exgpanded and

continued.

e) Increased Awareness

It is necessary to increase the lavel of awareness ¢f the
general public, the computing communicy, and chose involved in
the export control process about the concerns raised in this

report, Technology transfers have taken place as a result of

137

SRR A o v e R0 R T s e Dt D TN SR W00 B, < e T AN - 0 o, Wl 135 0. N

ignorancs of what it is about software that is of concern. Any
effective control of software tachnology transfer will have to
involve groups that nad not considerad their activities invelving

adversary countries to be subject to prior review or voluntarcy

restraint.

£} Implementation of Transfer Mechanism éestrictions

The controls on transifer mechanisms recommended by this
subgroup go considerably further than the license/approval systenm
now in use at the Commerce Department. Consequently, serious
consideration will have to be given on how to implement these

recommendations.

g) The Burden on Working DoD Computer Scisntists

The evaluation of export requests often zappears to disrupt
the work of DoD computer specialists, who may £ind such rsguests
to be an unmanageable burden on top of a full scheduls of
unrelated duties. These people may also lack knowledge of
adversary capabilities, foreign availability, and the process of
software technology transfer. The net result is a disruption of
DoD computer-~related work, weakly informed decisions, and delays
suffered by potential exportasrs. The Department of Defense needs
a few suitably knowledgeable people, with good communications to
DoD and industry, for whom the evaluation of potentially

threataning computer tachnology transfers is a major tasik.

h) Coverage of Foreign and Adversary Software Capadilities

w

Coverage of these areas Dy U.S. government organizations i

weak and needs to be strengthened considerably.

138

!
|
i
bl
i
1

-

PR IAE o € | et EH OIS apa L g i W A VM B W v ek B R S s SR T Mt Eine

References Cited

1. Andriole, S.J. "Another Side to C3." Signal, pp. 15-22.

2. Auerbach, Isaac L. "Computing in China, 1979: An Update."
compyter 12, Number 11 (November, 1979), pp. 52-60.

3. Brooks, Frederick P. Jr. The Mythical Man-month: Essavs on
Software Engineering. Reading, Massachusetts, 1375.

4. Computer Network Critical Technology Expert Group (F.R.
Spitznogle, Chairman). Computer networks: An assesment of the
critical technologies and recommendations for the controls on

the exports of such technologies. Final report, prepared for
the U.S. Department of Defense, April 30, 1979.

5. Data and Analysis Center for Software. The DACS Glossarv: A

Bibliography of Software Engineering Terms. October, 1979,
(Ordering Number: Glos-1l).

6. Garner, Harvey L. "Computing in China, 1978." Computer 12,
Number 3 (March, 1979), pp. 81-9S.

7. Gold, ¢C. L., Goodman, S. BE., Walker, B. G. "Software:
Recommendations for an Export Control Policy." Communications
of the ACM 23, Number 4 (April, 1980), pp. 199-207.

8. Goodman, S. E. "Software in the Soviet Union: Progress and

Problems.” Advapnces in Computers 18 (1979), pp. 231-287.

9. "Hungarians WOrkiﬁg for Western Software Firm." HBetfti

¥Yilaggazdasag, January 12, 1980, pp. 30-31.

10. Kirchner, J, and Rosenburg, M. "Belgian Charged with
Bribery." computerworld, June 16, 1980, p. 1l,4.

1l. Linde, R.R., Weissman, C., Fox, F.E. "The Adept-50 Time-
Sharing System." EJCC, 1969.

12. McLean, John. OSAP Critical Technology: Computers, Volume ¥
(Draft Report, June, 1980).

139

