
7
A106 869 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA SCIENCE A-ETC F/ 9/2

SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL.(U)
JAN 81 S E GOODMAN, N S SLICK, W K NCHENRY MDA903-79-C-0018

UNCLASSIFIED IDAN 878 IDA/HS-81-23408 NL

mmmnmmmmum
IIIIIIIIIEEEEE

IIIIEEEEEEEEEE
IEIIIEEIIIIIIE

(I1 c~? LEIL1/

NOTE N-878

*ii
SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL

I Seymour E. Goodman, University of Virginia, Chairman
Norman S. Glick, Department of Defense
William K. McHenry, University of Virginia

John B. McLean, Rome Air Development Center
Claude E. Walston, IBM, Federal Systems Division

I Clark Weissman, System Development Corporation

1January 1981

I Prepared for

Office of the Under Secretary of Defense for Research and Engineering

DISTRIBUTION STATEMENT A D T IC
I Appoved tot Public rzeeo s ELECTE

IDistribution Unlimited NOV 6 1981A

INSTITUTE FOR DEFENSE ANALYSESB
SCIENCE AND TECHNOLOGY DIVISION

400 Army-Navy Dtive, Arlington, Virginia 22202

Contract MDA 903 79 C 0018
Task T-0-072

IDA Nm No. HQ 8-2340

[81 10 30 510 Co , of copies

IApproved for pubis reease; distdbutlun unlited.

~1

•.

SI

UNCLASSIFIED
SE1CURITY CLASSIFICAIONS OF TWOS PAGE9 fROI, Does atetuE)l

REPORT DOCUMAENTATION PAGE BFRED COMPLECTINOM
1. REPORT HUMMER 'a. G.OVT ACCESSION NO. 3. 111CIPT CAAO iUtE

4. TITLIE (mod Sio.beeai.) S. TYPE OF REPORT a PEmoo COVERED

Software Technology Transfer and Export December 1979-October 1981
Control 6. PbeRPoRMING ORG1. REPORT NumBeRl

Semur E. Go~odman, Chairman, Norman S. Glick, D9079C01William K. McHenry, John B. McLean,MD9079C012 Claude E. Walston, Clark Weissman
S. PERFORMING ORNGANIZATIONS NAME ANO CORESS IPROGRAm ELEMEt 'RjCT TASN

* INSTIIrE FOR DEFENSE XqM~YSES Task T-0-072:1 400 Army-Navy Drive
Arlington- VA 222Q2_____________

I I. CONTROLI.INO OFFICE NAME ANO ADDRESS Ia. -REPORoT 0*13
Deputy Under Secretary for international)W~

Programs and Technology, OtJSDR&E O31 PAGES'
The Pe2anW tnD 2 143
'1.MONITORING A06 NVAMA ORSS(Of dferent tMIN CAVUI#N4 Oliceel IS. S1CURItTY CLASS. (00 #*at moon)j

DoD/IDA Management Office UNCLASSIFE
* -. ~~400 Army-Navy Drive T; ELSIIAINQNIRGN

Arlington, VA 22202 SCooNEL

15 ISTRTO SoyouomSTAlEmENr tl thi. a OW

& Approved for public release; distribution unlimited.

I7. DISTRIBGUTION1 STATEMENT (Of Oio db@~ft 0080"d #Str B ke 20. 01 differen 1fio Rbpir

None

IS. SUPPLEIMENTARY NOTES

N/A

it. KEY 11OR110S (CAM~ 4 tNIN side.. I~t no.edwp andmpI byiro blec ueb)9

Software, Export Control, Technology Transfer, Technology Transfer
mechanisms, militarily Critical Technologies List, Software Life Cycle,
Software Developent Tools, Software Engineering

2(. AMYRACT 'Cmtfuu 4" '"'1" e1 CS " N N e n d CdaeO' forlm N utWO" affJ"

The formulation of a reasonable and effective export control policy for
software products and software engineering kmwowr has been an important
and difficult task for both the U.S. Govermlwnt and industry. This note
represents the contribution of the Software Subgroup of Technical Worldng
Group 7 (Computers) to the developmient of a technical poliv-y for the
control of software.

DO I j ,"7 1473 EDrIIO OF I NOV 6S IS 085CLE1'i UNCLASSIFIED
SECURITY CLASSIVICATION OF TNIS PAGE e t £ael

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGKOr!Mi Date £Nmofe)

20.

The note attempts to provide useful discussions and analyses in three
areas. The first exmnines why the problem of software control has been
so difficult, and presents the rationale for a mmber of working hypoth-
eses which underlie the approach taken for the entire study. The second
emmines, in some detail, the "what" Cnw-how and operational capability)
and "hoW' (transfer mechanisms) of software technology transfer. The
last section reommends several items for inclusion on the Militarily
Critical Technologies List.

UNCLASSIFIED
SECURITY CLASSIFICATION OF TuS PA0ErbIn O0t E-tePd)

//~

I
!
I

FOREWORD

This note reports the recommendations and views of the

Software Subgroup of Technical Working Group 7 (Computers) of

the Critical Technologies Project. The work reported herein

provided part of the basis for Chapter 6 of the report of

Technical Working Group 7. However, some of the views ex-

pressed herein differ from those presented in the output of

the Critical Technologies Project as a whole, in that the

rationale of this note interweaves considerations of control

policy with determination of which technologies should be

identified as Militarily Critical Technologies. The Critical

Technologies Project dealt only with the latter issue in the

FY 1981 study effort. Nevertheless, since this note represents

a thoughtful contribution to the understanding of the rela-

tionship between software technology and its control for ex-

port purposes, it is being published as part of the related

work performed in support of the Critical Technologies Project.

This note has been reviewed by IDA management, but the

views expressed herein are those solely of the authors and

should not be construed to be those of IDA nor its DoD sponsor.

I

ABSTRACT

The formulation of a reasonable and effective export

control policy for software products and software engineering

know-how has been an important and difficult task for both the

U.S. Government and industry. This note represents the con-

tribution of the Software Subgroup of Technical Working Group 7

(Computers) to the development of a technical policy for the

control of software.

The note attempts to provide useful discussions and analy-

ses in three areas. The first examines why the problem of

software control has been so difficult, and presents the rationale

for a number of working hypotheses which underlie the approach

taken for the entire study. The second examines, in some detail,

the "what" (know-how and operational capability) and "how" (trans-

fer mechanisms) of software technology transfer. The last section

recommends several items for inclusion on'the Militarily Critical

Technologies List.

Aceession For

NTIS GEA&I
DTIC TAB
Un anno0unce d
Justi! i cr, ioa

By
_Distributioni/

Availability Codes

Avail and/or

Dist I Special

tv

.., ,, ' ' 11{1A

Executive Summary...................................... ..3

1. Introduction ...

2. Why is Software Control So Elusive?.................. 15

*i I 2.1. The Software Life Cycle
2.2. The Elusive Form of Software4 ' 2.3. Software Development Tools
2.4. Why the Control of a "Product" is Not the Key Issue
2.5. Software Versus Hardware Development

3. Working Hypotheses31

3.1. Scope of Our Analysis
3.2. Limitations of Software Export Control
3.3. Software That Should be Considered for Export Control
3.4. Adversary Capabilities and Foreign Availability

4. An Overview of the "What" and "How" of Software
Technology Transfer 43

5. Software Know-how and Operational Capability 47

5.1. Introduction
5.2. Know-how
5.3. Operational Capability
5.4. Systems Software
5.5. Software Development Tools
5.6. The Feasibility of Controls Based on a

Taxonom ic Approach

6. Software Technology Transfer Mechanisms75

6.1. Introduction
6.2. A Taxonomy of Transfer Mechanisms
6.3. The CNCTEG Framework for Evaluating the Effectiveness

of Transfer Mechanisms
6.4. Evaluation of Transfer Mechanisms
6.5. A Partition of Transfer Mechanisms for the Purposes of

Control
Appendix to Section 6 (SECRET, not included in this report)

7 . Some Thought Experiments 99

7.1. Introduction
7.2. Software Life-Cycle Phases
7.3. Acquiring Military Capability
7.4. Software Development Trends

8. Recommendations117

8.1. Introduction
8.2. Recommended Entries for the Militarily Critical

Technolgies List

8.2.1. Software Li fe-Cycle Management Technology
8.2.2. Software Library Data Base
8.2.3. Software Development Tools
8.2.4. Maintenance of Large Software Products
8.2.5. Formal Methods and Tools for Developing

Trusted Software
8.2.6. Secure Software
8.2.7. Large Self-Adapting Software Systems
8.2.8. Commercial Software Integral To Critical

Military Systems

8.3. other Recommendations

8.3.1. Recommendations about Product Form

8.3.2. Recommendations for Further Study

IReferences Cited ... 139

2

Executive Summary

Recommended LiltEnre

The software subgroup of the Computers Technical Working

Group (TWG-7) recommends the addition of eight software

technologies to the Militarily Critical Technologies List (MCTL).

These are:

1. Software Life-cycle Management Technology
(Section 8.2.1)

2. Software Library Data Base (Section 8.2.2)

3. Software Development Tools (Section 8.2.3)

4. Maintenance of Large Software Products
(Section 8.2.4)

5.Formal Methods and Tools for Developing Trusted
Software (Section 8.2.5)

6. Secure Software (Section 8.2.6)

7. Large Self-Adapting Software Systems (Section 8.2.7)

8. Commercial Software Integral to Critical Military
Systems (Section 8.2.8)

The concern of the software subgroup has been with softwr

tcoo for the development of large software systems. It can

Jbe argued that the relative U.S. and NATO superiority over the

U.S.S.R. and the Warsaw Pact in developing and maintaining large,

integrated software and software-hardware systems is one of the

most critical advantages remaining to the West in military-

related technologies.

j A large software system is one whose effective development

and maintenance require sophisticated life-cycle management

technology. We try to capture the essence of this technology in

I3

the first five recommended list items. Our posture is to view

software more as a process than a product, i.e., as a labor

intensive social activity of teams of technical personnel working

over a long life cycle to produce a variety of "products" such as

English and mathematical documentation of the requirements,

functional specifications, user operations, and source and object

code - what we collectively call "software." Our recommendations

focus on this process which is necessary to construct large

software systems that have sufficient functionality to provide

significant military utility. When software size reaches a

threshold it requires many people, automated tools, various types

and levels of documentation, and technical and management

controls employed over a multi-year development and use life

cycle. It is this technology and technical know-how which we

recommend for control, and we believe that such control is best

imposed through the control of selected transfer mechanisms and

software development tools. See Section 2 for a more extensive

discussion.

In terms of somewhat simplistic parameters, we have chosen

the rough equivalent of 15,000 lines of source code (without

normal comment statements and documentation) or four person-years

of effort for initial system development as threshold values for

defining "large." Except for small programs of direct and

important military value, which should probably be controlled

through classification, we believe that the government should not

be concerned with the enormous volume of software that falls

beneath our threshold values. The burden on both the government

and the software community would be counterproductive, and the

4

security-threatening technology transferred via such products is

not likely to be significant. A more complete set of "capture-

release" criteria are presented in Section 3.3.

The remaining three list items are concerned with more

specialized technologies. Two cover fairly general emerging

technologies of high military utility. Other technologies in this

class may have to be added later, since constraints of time and

expertise did not permit us to thoroughly cover all software

areas. One such future possibility is robotics software. The

final item concerns know-how that could enable adversaries to

counter or jam U.S. military capabilities by acquiring access to

and compromising software used in critical military systems.

AR21ication software

It must be emphasized that we are not concerned with the

operational capabilities provided by applications software. This

is beyond the scope of our expertise. For example, from our

perspective, a CAD/CAM package for designing aircraft engines,

shipped in object code form with only user manuals for

documentation, transfers little software know-how. It may well

transfer a great deal of technology for designing aircraft

j engines. We assume that applications software of concern will be

flagged by TWGs or DoD groups dealing with the applications

technologies.

Listed below are a few of the conclusions, other than MCTL

items, that have emerged from this study. See also Sections 3 and

8.3.

I5

3

MlrImplementation Isue

Software is a much more open technology than hardware. Care

must be taken to avoid methods of restricting technology transfer

which would significantly and adversely affect the advancement of

this technology in the U.S. One of the great strengthes of U.S.

software technology is its extraordinary openness. In spite of

intensive "borrowing" of software by other countries, we continue

to make more extensive use of product and know-how transfers

within the U.S. than is possible from the U.S. to foreign

countries. In fact, with respect to our NATO allies, we believe

OJ that joint efforts should be expedited by the U.S. government.

The best way to stay ahead in the race is to run faster.

The software subgroup rejects the idea that virtually all

software should not be controlled because "they can get it

anyway" through covert means. Forcing an adversary to resort to

covert means to obtain software products adds links to the

acquisition chain which may increase the acquisition time, risk,

effort, and the probability that information will be lost during

the transfer process. Such information losses will play a more

prominent role in hindering the acquisition of large,

sophisticated software systems. Furthermore, the lack of ready

access in those situations to the the services and other forms of

support provided by the organizations which develop the software

can further degrade the usefulness of what is acquired.

From an implementation standpoint, the best ways to avoid

the two undesirable extremes mentioned in the preceding two

-' paragraphs are through:

1. An informed software community,

and 2. The careful analysis and control of software

transfer mechanisms.

The software community consists of a large number of people

and organizations in government, academia, and industry. Much of

this community has not considered its activities to fall under

export control prior review or even self restraint. The control

of software will involve a more delicate and difficult balance of

interests between academic freedom, free enterprise, and national

security than has been the case for any other technology. The

software community needs to be involved in determining this

balance. To a large extent, the effectiveness of any set of

controls will be dependent on the voluntary restraint of an

informed professional community.

We believe that a lot of software can be sold to adversary

countries, and that a lot of person-to-person contacts between

software specialists from the U.S. and adversary countries is

possible without significantly threatening U.S. national

security. The key to drawing a line between what is and what is

not desirable and controllable is an understanding of the

effectiveness and controllability of the software technology

transfer mechanisms. We have made a fairly comprehensive analysis

of these mechanisms (Section 6), and our findings are summarized

in Section 8.1 of this report. We believe the regommn i.ons f

l trasfe mechan that we have included with each

MCTL item in Sections 8.2.1-8.2.8 should be cnd o

=heint Jion 2f _7 item.

.Trends Andakag

Most current technical trends will make it easier for

adversaries to acquire software capabilities through transfer

from the West. A thoughtful set of controls may slow this

acquisition rate, perhaps significantly, but it must be

recognized that there will always be substantial leakage since

what is being sought is becoming increasingly widespread and

available.

Taxonomic Anoroaches

We believe that a taxonomic approach to software export

control, i.e., what is essentially done now with hardware, is

unmanageable for systems and applications software. Furthermore,

such an approach misses some of the most important aspects of

control of this technology. However, we have used a partial

taxonomic approach in our recommendations concerning software

development tools. See Section 5, especially Section 5.6.

PoutForm AndPotbly

It is necessary to control the portability and modifiability

of software products through technical means. One general and

moderately effective way to do this is limiting shipment to

object code or hardware forms (e.g., ROM) and basic user manuals.

Simple, cheap, effective means to tie a software product to a

specific configuration are needed.

In general, the transfer of any software product should be

uncontrolled if the product does not. provide a direct military

8

I operational capability or explicitly fall into a small number of

categories (e.g., software development tools or self-adapting

systems), provided that it is transferred in the form of object

code with only users manuals and passive maintenance service, and

provided that there be reasonable technical safeguards that the

system not be portable.

Ib.Q.uqcbZ Exneriments
Our analysis of transfer mechanisms used a set of novel

' 'gedanken' (thought) experiments showing the value of what-how

Ji transfers to a determined antagonist. One experiment considered

how an adversary might piece together a tactical command,

control, and communications system from commercially available

software. Another investigated what transfer mechanisms were

important in the construction of an actual time-sharing system.

Both experiments played an important role in formulating our

ideas, framework, and recommmendations. See Section 7.

9/

1. Introduction

The formulation of a reasonable and effective export control

policy for software products and know-how has been an important

and difficult task for both the U.S. Government and industry.

This task becomes increasingly important, because the hardware

capabilities of our adversaries are improving to the point where

it is possible for them to work on a respectable number of fairly

large and sophisticated systems of military importance. It can be:1 argued that the relative U.S. superiority over the U.S.S.R. in
j developing large, integrated software and software-hardware

* systems is one of the most critical advantages remaining to the

U.S. in military- related technologies.

This report represents the contribution of the software

subgroup of the Computer Technical Working Group (TWG-7) to the

development of a technical policy for the control of software.

The starting point for our analysis was the conceptual framework

established by the software subgroup of the Computer Networks

Critical Technology Expert Group (CNCTEG) (4,71 , and our

assessment of the software capabilities of our adversaries. We

have expanded and modified the CNCTOG framework as necessary on

the basis of new material and our own deliberations. Although we

have pushed forward both the breadth and depth of the analysis of

software technology transfer, the short working period available

to the TWG made it impossible to comprehensively study all of

software in great detail.

Software is a particularly difficult technology to analyze

and control. we try to explain why in Section 2. The problem of

software technology transfer and export control will continue to

require attention. We think it necessary to provide a discussion

of our conceptual basis so that readers can better understand the

rationale for our conclusions and recommendations, and so that

ji this report may serve as a building block for further studies.

Section 3 contains a detailed listing of the working

hypotheses that have emerged from our conceptual basis, and a

brief summary of our perceptions of foreign and adversary

capabilities. This section provides the foundation from which

our analysis and recommendations follow, and we feel that this

foundation is as important as the recommendations themselves.

An overview of the 'what' and 'how' of software technology

transfer is contained in Section 4. We define some basic

terminology and provide an introduction to our top-down

taxonomies. The topmost levels of these breakdowns are also

presented here.

Section 5 contains our detailed taxonomy of the 'what' of

software technology transfer. This analysis is limited to systems
software and software development tools. A partial evaluation of

military utility is also provided.

The mechanisms for software technology transfer, i.e., the

'how', are treated in Section 6. We provide a taxonomy, and a

discussion of the possible effectiveness and controllability, of

the various mechanisms. Detailed analyses are given of one

moderately active mechanism (this analysis is contained in the

classified appendix to this section), and of one passive

mechanism - the physical forms of product sales. These two

examples were chosen because of their importance and wide use,

12
-I

and it is hoped that they may also serve as prototypes for

further analyses.

Sec tion 7 is built around examples of 'gedankeri' experiments

that try to pull the 'who', the 'what', and the 'how' together. A

'1 software development team based on our perception of a reasonably

good Soviet group is hypothesized to want to build two major

systems of considerable military value. The systems have been

chosen from among those with which members of our TWG software

*1 subgroup are deeply familiar. The thought experiments estimate

the effect of several technology transfer mechanisms on the

ability of our hypothetical Soviet-like development team to

.1 produce the target systems. The analyses are done from both the

standpoint of the acquisition of a significant operational

capability and from the standpoint of the acquisition of in-depth

know-how transfer.

Section 8 contains our recommended entries for the

Militarily Critical Technologies List, and several other

recommendations, concerning problems of implementation.

A variety of software terms used in the body of the report

were felt to be part of the working vocabulary of most software

specialists. Readers who are unfamiliar with these terms should

consult the 2& Glssr [5].

The software subgroup of the Computers Technical Working

Group (TWG-7) consisted of: Norman S. Glick (Departmnent of

Defense), Seymour E. Goodman (Chairman, University of Virginia),

William K. Mc~enry (University of Virginia), John B. McLean (Rome

Air Development Center), Claude E. Walston (IBM, FSD) , and Clark

13

Weissman (System Development Corporation).

We would like to thank the Science Division of the U.S. Army

Foreign Science and Technology Center (USAFSTC-SD) and William

Carlson and others at the Defense Advanced Research Projects

Agency (DARPA) for their assistance and the use of their

facilities. We would also like to thank the more than 50 other

people from government, industry, and the academic community who

gave their time to share their views and experience with us.

As of July 31, 1980, the material presented in this report

does not represent an official view of any U.S. government

organization, nor does it reflect the views of any other

organization. Conversely, any changes made to this report after
this date will not necessarily reflect the views of the software

subgroup. With the exception of the separated SECRET appendix to

Section 6 on transfer mechanisms, no classified material was used

in the preparation of this report. The authors welcome

constructive comments.

14

2. Why Is Software Control So Elusive?

A better grasp of software and its control is obtained if we

rethink our implicit model of sof tware as a product, like a dozen

eggs or a computer of specified performance, and view it as a

social process. Software that contains a large number of complex

.1 functions is generally developed by a large number of people

working in a complex social structure. Furthermore, studies have

revealed as much as an order of magnitude difference in the

performance of individual programmers (c-.6. 31. This phenomenon isI also at work in the Soviet Union, since we do not have a lock on

bright people, and therefore they hnave the ability to recreate

:1software produced by single individuals. if we adopt a process-

oriented view of software, we can better reveal what we are

trying to control and why it is so dif ficult. Then we can begin

to formulate an approach to controlling software technologies and

certain goods whi.ch should not be exported to adversary

countries.

2.1. The Software Life Cycle

The best working software is a product of a number of

discrete stages with defined output and review, i.e., a social

process. Together with the use of the software library inventory

and software development tools, they comprise what we have chosen

to call "life-cycle management t1echnology." Although numerous

approaches to the life cycle for software are used, one that is

modelled here is the OoD methodology,

The earliest stage i.s that of cocp definition, when the

i5

overall system purpose and operation is conceived. A clear

statement of Objectives is required. Objectives may be derived

from higher-level systems, from control of lower-level systems,

from simulations, and from "war gaming"scnro.Ctad

.11 scheduling factors also assist in the concept definition.

The reur.et ad spciictin stages begin to

structure what the system must do to satisfy its objectives.

Again, simulation can be employed. Techniques of structured

requirements are usefully employed to follow the flow of system

operational control and its needed data and computational

requirements-. Once developed, these requirements and their

specifications must be written in well-formed, unambiguous

notation. AL number of such languages now exist and are used in

preparing mathematically precise system specifications of what

the system must do, i.e., its service specifications.

System desig~n is the stage that defines how the system

works, i-. how the system implements the serviLce

specifications. A design may be written in at 'Least one of a

4 number of notations: flow diagrams and data diagrams, state

machine tables or specification languages, English, structured

English, or even a programming Esigher Order Language (HOL) of the

coding variety. Each approach carries with it advantages and

j disadvantages and a considerable technical methodology. All

approaches use a form of modular design which defines the input,

output, and functional behavior of each module. With the

definition of these modules and their interfaces to other

modules, system hardware, and human components, a software

$architecture is developed. More modern methods go further in

16A

describing the types of parameters, and their "visibility" in

scope to other modules. Side effects and environment

considerations for each module may also be specified.
Coding proceeds directly from the design stage. First the

individual modules are coded, then the associated modules until a

chain of integrated modules is built up which performs one or

more of the service specifications. The design is often imple-

mented in an BOL such as FORTRAN, COBOL, JOVIAL, PASCAL, etc.

These module chains, called Nbuilds," relate directly to the

requirements specification and form the basic unit of tesing of

the system. Modern testing methods employ "threads' or "builds"

testing which checks the correct operation of a thread (i.e., a

logical, ordered subset of the whole) of functions which satisfy

one system requirement. There is considerable technology required

for system testing. Test plans must be developed to lay out a

strategy of tests to be performed in sequence by a number of

systems people working in parallel. Test conditions are set up,

parameters to drive modules are created, and results are captured

and analyzed against specifications and requirements. Errors that

are found must be logged and engineering changes generated and

controlled for correcting such errors. The module data base grows

and changes with each engineering change, and a system of

controls tracks software releases and the errors outstanding

against them. These tests proceed thread by thread until all

requirements are demonstrated. Threads are then merged into a

complete integrated system, which is tested for correctness and

K performance. Finally, the system is tested at the user's

I17

installation. This may be the f irst time that all of the system

elements work together arnd use real ("live") data.

A number of management techniques are used at various points

in the life-cycle. Standard management activities, e.g.,

preparing work breakdowns, cost estimates, schedules, and

manpower loading statements, have been adapted to the peculiar-

ities of the software industry. Some of the know-how which has

been acquired through difficult learning experiences includes

understanding and anticipating the rigor needed for a largeI software project, handling detailed internal management and

technical documents, incorporating a number of defined events and

milestones for management review at various levels, using

modelling and control systems, and building project management on

the basis of hierarchies of individuals who have different levels

of experience dnd responsibility. Much of this experience cannot

be acquired through open, passive sources.

A recent technological development which is changing

traditional patterns of testing is the strategy of "building the

system correctly," rather than testing for flaws. This

technology employs formal mathematical specifications of the

system in a predicate calculus language and a set of software

tools that operate on the formal specifications to prove their

correctness mathematically. By successive refinement of these

formal specifications, a hierarchy of increasingly more detailed

specifications are written and proved correct. These

specifications then become the coding specifications from which

HOtS code is written and it too is subject to proofs (using tools)

as part of the formal verification of the correctness of the

software. This is an emerging technology which shows promise of

reducing the cost of software development and maintenance, and of

improving the quality and correctness of the software.

After final testing, the system enters oier_ o ad

maintenance (O&M). The O&M stage might be considered the end, as

the system is completed and in operational use. But large

programs are quite complex and involve many interfacing

interrelated "clockwork" mechanisms. They are very fragile in the

sense of needing continuing support and maintenance to keep them

current and operational. Repairs are needed to correct errors,

upgrades to improve performance, changes to accommodate hardware

configuration changes or new performance requirements. New

functional capabilities unforeseen or unclearly outlined in the

original specifications may need to be added. Such modification

of working software is the rule of industry and is reflected in

the model, version, or release numbers associated with all

software products.

Such repair is really redesign and requires a return to

earlier life cycle stages. Thus, O&M must make extensive use of

the documentation of the program contained in the software

library data base (see below). Knowledge required to carry out

O&M involves understanding the software architecture, detail

design, the various specification and programming languages in

which the software is written, the computer on which the software

operates, the complement of equipment in the system

configuration, the applications environment, the types and ranges

of expected input and output variables, how to operate test

19

tools, and the proper use of configuration management tools to0

keep the software current. O&M is a major problem stage forI software, because it is entered years after the concept stage and

when f ew of the original designers are available to perform the

changes. it has been found in major military systems that itH costs 100 times more to f ix. a problem in the O&M stage than to
K detect and repair an error in the requirements and analysis

stage. Overall, O&M costs about twice the total of all other

stages combined. While O&M follows the other life-cycle phases

sequentially, it really must be considered an entirely separate

stage. Few, if any, of the personnel who built the software

continue to support it and O&M is carried out for an extended

period of time after operation begins. We intend to address O&M

as a separate candidate technology for the militarily critical

technologies list.

That is the life cycle of a typical. large scale software

system for commercial or military application. Small scale

software development mimics these stages in a less structured

manner and, therefore, in a less controllable way. A problem for

* export control is to determine at what stage the control is

applied. For zome systems, diverse teams of diverse vendors at,

diverse locations work on different stages, each having different

output elements of the partially completed system. we contend

that export control may more effectively address the process or

software development through these life cycle stages rather than

through the software products. Furthermore, the control mnust

address the large scale software developments, not the smaller

efforts; since thiese larger efforts offer greater visibility,

20

controllability, and capabilities of higher value not easily

emulated by adversaries.

* For our purposes, a large scale software system is one that

employs the social processes of meetings, interaction,

coordination, cooperation, and documentation of progress that

apply for a project with four or more people working for a year

or more. Typically, such an effort results in the initial

delivery of a system with from 15-20,000 to hundreds of thousands

of computer instructions of SOL statements. (A more formal

statement of our "capture-releases criteria is contained in

Section 3.3.)

2.2. The Elusive Form of Software

Unlike finished goods in other technical manufacturing,

software has no single physical form. in the early life cycle

stages it is English functional descriptions. In design stages it

is more formal mathematics or logical information flow

specifications. in the coding stage it is in the form of "source"

text in a SOL. This text is translated by software tools into

"object" binary form for direct execution on a given computer.

Application programs in SOL source code form may be translated

i into many different object code forms for different computers, or

into different object code forms on the same computer for

I different configurations of interfacing software and peripheral

hardware. And for each form there must be accompanying

documentation to describe the software operation and differences.

1 21

I

Finally, through the O&M process, the source programs are

changed, repaired, and improved in function and performance to

produce an assortment of new versions of essentially the same

"product." The aggregate of these software items typically

constitute millions of lines of text in various forms. If any one

of these items is incorrectly formulated or maintained, incorrect

operation can result.

In order to maintain these items over the course of the

software life cycle, a software library data base is used. The

data base is created incrementally and is a "living" document,

-j best maintained on-line by a sophisticated set of tools. The

structure of the data base depends on the conventions of the

languages and notations employed in the various stages of

development. These conventions must permit both human and machine

access to the text.

The data base contains multiple directories of the objects

in the data base. All directories originate from a master

directory, which is often organized along system or component,

lines so that releases of modules are placed with other modules

of the same thread or function. Subdirectories often follow the

organizational structure of the development project, with each

programmer having his or her private files. These files are

periodically released to the software librarian to include in the

master directory. The master directory is further organized by

text forms for each development stage; it then resembles a multi-

dimensional matrix of functions, forms, and people. This

structure is key to the retrieval and to the automation of the

generation of system products: software and documentation. Even

22

A|

the naming of objects becomes a crucial technology, since much of

4 the structure is embedded in the names, they reflect a oath

through the directories, and they encode the form of the text and

version number of interest (e.g., JONES.PASCAL.3). They also

* I provide a uniform key upon which all of the related software

tools can operate.

Access to the library is strictly controlled by the

librarian and operating procedures for obvious reasons of safety

and protection, but also for less obvious reasons of error

control, cost control, status reporting, and project

communication. Private files are strictly controlled by each

owner. Backup procedures are of highest priority and are handled

both by the librarian and individual programmers. Backup becomes

more crucial and more costly as the library grows.

All of the techniques outlined above are collectively known

as "configuration management." As an important component of life-

cycle management technology, configuration management techniques

are well-developed in the United States and a critical technology

which is riot widely available or appreciated in the Soviet Union.

2.3. Software Development Tools

Software development tools play a key role in life-cycle

management technology. Although they are products, a large amount

of know-how is required to use them in the context of life-cycle

management technology. Hence, the software subgroup feels that

23

4 comprehensive controls on life-cycle management technology should

involve controls on tools as well. They include library

maintenance tools, composition tools, translation tools, quality

control and verification tools, and administration tools. A more

* complete taxonomy of these tools is presented in Section 5.5.

2.4. Why the Control of a "Product" is Not the Key Issue

Our posture is to recognize software as a process and to

impose controls on the production of large scale software,

principally through the control of transfer mechanisms (Section

6) and the tools for life cycle software development. with some

exceptions, we emphasize the development process, controlling the

process of software development itself, rather than products

* which might reveal critical technologies, because software is

ubiquitous, easy to transport, and dependent on Q&M. The uses of

software have proliferated to the extent that any attempt to

catalogue them all would require huge amounts of manpower and

resources (see Section 5).

Software is easy to transport both mechanically and

electronically. That alone makes it difficult to control.

However, modern computer usage further compounds the problem by

making computer systems remotely accessible. Therefore, the

benefits of the software may be obtained without the need to own

a copy. These remote transaction services are a growing sector of

the computer service business encouraged by new telecom-

munications tariffs.

Finally, software is difficult to control since much of the

24

business does not involve software products, but support services

and technical assistance, in the form of training, documentation,

consulting, and O&M. This technical assistance is critical for

the end user; without it he would incur a large cost and lead

time if he had to maintain the software himself.

2.5. Software Versus Hardware Development

we hope to highlight the nature of software by the following

comparison with hardware. Superficially, software development

appears similar to hardware development. Both move through

AI similar phases: concept, specification, design, production,

operations, and maintenance. Both employ skilled staffs and

complex tools. Both require competent and experienced management,

and both are expensive. But since software is a process, the

transfer of technology implicit in full software sales goes far

beyond what would be considered reasonable for the sale of

hardware. The sale of a turnkey plant, for example, does involve

a transfer of mass production techniques for the product and

spare parts, and the technology needed for operation and

maintenance. However, if the adversary wishes to enhance and

improve the product, he must master all the necessary engineering

skills himself. Full software sales implicitly assume the

transfer of the skills, because software never reaches a

completed form but is constantly being maintained and enhanced.

Other differences between hardware and software are apparent in

each part of life-cycle management technology.

2

.,I
I k _ _ - --

1. The software life cycle

Although a number of the stages of development of hardware

and software are similar, there are some major differences.

First, the technology which we are trying to control is much

more complex than 'or hardware, since software is among thems

complex "machines' man has ever built. Typical products involve

millions of statements, lines of text or code. The software

objects are "soft" and have to be referenced by naming each

uniquely. The naming process to manage the software objects is

itself complex. The order and strur- ure of these objects are as

* important as the objects themselves, and the placement must also

be uniquely identified by name or. structural content.

The most complex hardware objects built today are the LSI

chips for computer memories. The smallest component level is the

"bit" flip-flop transistor which is replicated many times. The

biggest chips today have approximately 6',000 bits; a number

which is at least an order of magnitude smaller than the number

of lines of code in medium-large software systems. And the

information content of a bit component is far less than the

information content of a software statement or line of ccde.

Secondly, the testing requirements for software differ

considerably from those for hardware. Both technologies employ

prototypes as vehicles to test readiness of the product for

market. Upon completion of the hardware testing, the major cost

and production engineering still remain to produce the product.

Not so with software; much of the cost and ef fort is consumed in

completing the prototype. In fact, the prototype .il the first

version of the product. Of course the tools and testing methods

26

are radically different in form and substance. With software it

is often difficult to specify the test conditions. Furthermore,

the tools for testing may have to be built from scratch for each

product. There is little reusable cest software. And the problems

are compounded because the new software test tools must

themselves be tested. There is no appreci.able technology transfer

or 'learning curve" from one project to another in software

testing.

Finally, the economics of the development process are

significantly different. Hardware is machine intensive after the

first prototype. Up to that time hardware and software are

similar handcrafted items, except that software is orders of4

magnitude more complex. The major hardware costs come after

prototyping with production engineering, tooling, and materials.

Software has no counterpart to post prototype hardware production

costs. Hardware production decisions can be based on retail and

OEM quantity orders based on the prototype's performance and the

unit cost (total cost divided by units produced). Software is

labor intensive throughout its life cycle; there are no

materials, and rarely any quantity production. Indeed, most

* software products are customized for the end-user system

configuration. The nature of the software business drives the

manufacturer to write off his total cost on a few units, often

just one. The government's cost-plus contracting is a typical

example of this form of software economics. Retail, high volume,

software sales have not been a staple of the software industry,

and existing cases are often tied to hardware sales.

27

2. Software Library Management

We have repeatedly underscored the fact that there is not

really an end product in software. Software must be considered

the sum total of the contents of a software library data base at

any given moment in time. While hardware products are visible,

tangible items, software products must be input into a machine

before they can be "seen." It is impossible to view the entirety

of a software product at once. Hardware has its documentation,

but for software, the documentation is the product because any

current code form is just a documentation of the development

process so far.

3. Tools

Both technologies employ tools and some computer tools are

common to both. But hardware needs radically different tools for

materials handling, shipping, attaching, measuring, etc. Software

tools involve invented languages, mathematics, symbol
manipulation and management, and a set of procedures and software

programs for processing the languages. In hardware production

retooling is a major engineering, management, and economic

consideration which comes long after a working model or

prototype exists. And the tooling is designed for the production

of a discreete number of products over a certain useful life.

Software tools are often effectively built from scratch for

each job with an impact akin to hardware retooling; and the tools

never wear out. Recent software engineering thrusts have been to

attempt to standardize on some of these tools. The difficulty is

28

that each new product has different constraints. Software tools

built for one product cannot easily address the requirements of a

different CPU, set of peripherals, programming language, or even

different development methods which must be used in building

another product. That selection of constraints is made long

before the software issues are addressed. It would be the height

of folly for a hardware product customer to tell the manufacturer

what he wants, how it is to work, how it is to be built and

tested, and that the factory must be built on his premises in

some end user location which is hundreds of miles away from the

manufacturer's facility. Yet that is exactly the situation for

the majority of DoD and other government software procurements.

I

I
II

U

II --
. , , ii I I I+I II2I9/

l Aj

3. Working Hypotheses

Listed below are the working hypotheses that have emerged

from the deliberations of the TWG-7 software subgroup. These

hypotheses underlie many of the analyses and recommendations of

this study.

3.1. Scope of Our Analysis

a) The primary concern of the software subgroup has been

with software technology for the development of large software

systems. We are not concerned with the operational capabilities

provided by applications software. This is beyond the scope of

our expertise. For example, from our perspective, a CAD/CAM

package for designing aircraft engines, shipped in object code

with only users manuals for documentation, transfers little

software know-how. It- may well transfer a great deal of

technology for designing aircraft engines. We assume that

applications software of concern will be identified by Technical

Working Groups concerned with applications technologies.

b) Software technology differs in several important ways

from most other military-related technologies (see Section 2).

These differences complicate the problem of export control. As a

result of these differences and complications, we do not feel

constrained to analyze software within the context of existing

rigid formats, such as the Commodity Control List (CCL). Such a

product-oriented, taxonomic approach has been tested in Section 5

and found deficient (see Section 5.6).

31

c) It is not within the purview of the software subgroup to

pass judgment on the relative social merits of "academic

freedom," "free enterprise," and "national security." We are

aware of, and in some cases sympathetic to, arguments as to

whether or not various forms of academic or commercial exchanges

have political or social value that compensates for concomitant

undersirable technology transfers. We leave such decisions to

others. It is our task to make technical evaluations of various

know-how and product transfers, and it is inconsistent to be

concerned about a particular transfer mechanism when it is used

by a commercial organization, but to ignore the use of. the same

mechanism by a nonprofit organization. Therefore, our analyses

and recommendations are made without regard for originating

organization or price.

3.2. Limitations of Software Export Control

a) Most current trends will make it easier for adversaries

to acquire software capabilities, through transfer from the West.

A thoughtful set of controls may slow this acquisition rate, but

it must be recognized that there will always be substantial

leakage since what is being sought is becoming increasingly

widespread and available.

b) It will be possible to find counterexamples or to

conjecture counterexample scenarios to almost every broad

generalization. For example, specific counterexamples could be

found to any attempt to rank the effectiveness of What and How

transfer combinations, although the ranking would seem to hold

for most situacions. This is the result of the enormous diversity

32

of possible software transfer situations.

c) Several of the countries against whom export controls are

directed have considerable scientific and technological resources

and accomplishments. It is unreasonable to assume that they are

incapable of making significant advances in software development

on their own. N~evertheless, they seem to rely on the transfer of

software technology from the U.S. and other COCOM countries. We

do not understand to what extent this reliance is a matter of

convenience and to what extent it is a matter of dependence. It

may be possible to slow the progress of software development in

adversary countries with a thoughtful set of controls. However,

to try and provide a quantitatijve measure of what effect any

given set of controls would have on further progress in these

countries is unrealistic.

3.3. Software That Should Be Considered for Export Control

3.3.1. The Extremes of Software Export Controls

a) Care must be taken to avoid methods of restricting

technology transfer which would significantly and adversely

affect the advancement of software technology in the U.S. One of

the great strengths of U.S. software technology is its very

openness. in spite of extensive "borrowing" of software by the

other countries, we continue to make more extensive use of

product and know-how transfers within the U.S. than Is possible

from the U.S. to the foreign countries. The best way to stay

ahead in the race is to run faster. it may be of use to drop some

33

obstacles behind us to slow our opponents or to avoid helping

them. But we should not slow down to do this, particularly since

our adversaries have demonstrated some ability to get around

obstacles. Fortunately, our opponents have handicapped themselves

in software development in ways that are at least as effective as

anything we could do.

b) The software subgroup rejects the idea that virtually all

software should not be controlled because ",they can get itI anyway" through covert means. Forcing an adversary to resort to

covert means to obtain software products adds links to the

acquisition chain which may increase the acquisition time, risk,

effort; and the probability that information will be lost during

the transfer process. Such information losses will. play a more

prominent role In hindering the acquisit.-on of large,

sophisticated software systems. Furthermore, the lack of ready

access in those. situations to the the services and other forms of

support provided by the organizations which develop the software

can further degrade the usefulness of what is acquired.

3.3.2. Capture-release Criteria

a) Size and complexity

Software that is large enough and complex enough to require

some sort of social process and team effort to build and maintain

is most likely to be of concern. As rough guidelines, we

recommend the equivalent of at least 15,000 lines of sources code

(plus normal comment-type documentation above the source code

34

line count) or at least four person years of ef fort devoted to

the development of the product before it is initially delivered

to the user. Furthermore, the software should represent an

integrated system, not some simple collection of easily

programmed pieces. We explicitly reject minimum monetary cost as

a "threshold variable" because there is no widely accepted method

for computing such costs.

b) Destination Country and End User

At one extreme, it goes without saying that we should

control the sale of militarily critical software to military or

police force of an adversary countr:y. At the other extreme (and

we feel this should be equally obvious) sales of useful software

to the COCOM countries and, in particular, to their military

establishments, should be encouraged and expedited.

Unfortunately, this has not always been the case. In between

there is a spectrum running from our close NATO allies to our

potential adversaries. For example, given the great differences

between the capabilities of. the People's Republic of China and

the Warsaw Pact countries, for example, it is impossible to treat

the two "equally" without some special understanding of the use

of that term. Such decisions must ultimately be made from a

political, rather than technical, standpoint.

c) Product Form

Product form should play a large role as a criterion for

export controls. Products which are very portable can be used in

a large number of installations. The military establishment in

FI35

the U.S.S.R., for example, enjoys extraord-inary appropriation

privileges over the resources of the general economy, increasing

the risk that products which are portable will be vulnerable to

military exploitation. Products in source code form can be

adapted to other uses, modified, or enhanced with greater ease

than products in object code. A further discussion of the

differences between object and source code is in Section 6.4.5.,

and recommendations for technical measures to make products less

portable are considered in Section 6.5.2.

d) Operational Capability

F'rom our perspective, the transfer of any software product

should be uncontrolled if it does not provide a direct militarily

critical operational capability as outlined in the reports of the

other TWGs, or if it does not fall into four other categories we

isolate in Section 8; provided that it is transferred in the form

of object code with users manuals and passive maintenance

service, and that there are reasonable technical safeguards that

the system not be portable.

e) Volume of Sales

We have not been able to come up with a meaningful criterion

for export control which involves volume of sales, i.e., the

number of copies of a product sold.

f) Arrays of Software Products

The software subgroup has found the problem of arrays of

software products to be particularly intractable. We recognize,

on the one hand, that arrays of products can offer an operational

36

capability which is much greater than the operational capability

provided by the products alone. On the other hand, it isI difficult to prevent an adversary from amssing such arrays on a

piece-by-piece basis. Shipping products in a form which does not

make them very adaptable, e.g., object code, can make it more

- -Idifficult to integrate stand-alone products. Also, we are

*1 capturing many products that are already integrated. Section

7.3.1 addresses this problem in greater detail. The software

subgroup recommends that more research be done in this area.

*1 3.4. Adversary Capabilities and Foreign Availability

Brief summaries of the software subgroup's perceptions of

adversary and foreign software capabilities are presented below.

Given the enormous diversity of software technology and the large

number of programmers in the world, these summaries could not be

anything but crude oversimplifications. within each country, it

is likely that there exist individuals or groups whose talents

and experience greatly surpass our perceptions of the norm for

each nation.

3.4.1. Adversary Capabilities

a) The political-economic structure of the communist

countries in general, and of the Soviet Union in particular, is

such thttemltr, state police, and related organizations

enjoy what, by Western standards, are extraordinary appropriation

privileges with respect to the resources of the genera!

economies. Furthermore, the Soviet Union appears to have

37

4 extraordinary privileges over and access to the scientif ic and

technical resources available in most of the Warsaw Pact

countries and elsewhere (e.g., Cuba). This is not to say that the

Soviet military or XGB can always take effective advantage of

these privileges, but the opportunity to do so is well

established. Most of the software technology that is useful for

building civilian systems is also applicable to developing

military systems, and it is often transferable without diversion

of equipment. These considerations make it exceptionally

difficult to separate military from civilian use of software

products and technology, and to separate consideration of the

U.S.S.R. from the other CEMA countries.

b) The U.S.S.R. has, by far, the greatest software

capability of any of the communist countries. Nevertheless, much

of this capability is rudimentary by U.S. standards. A~n extensive

discussion of non-military Soviet software developments and

problems, through 1978, is given in (81. Progress since then has

been evolutionary, although the volume of Soviet software work

has increased fairly dramatically in recent. years. This increase

has been the result of the greater availability of respectable

hardware and of greater experience and awareness of the

importance of software. Most of the Soviet software commmunity

continues to suffer from assorted major and minor systemi.c

difficulties. One of their most critical weaknesses has been in

the development and maintenance of large, sophisticated, highly

integrated systems involving interfaces with communications and

sensor devices.

38

00"

There is evidence that the Soviets are concerned about this

major deficiency, and are trying to do something about it. They

have gained experience during the last decade, and have been

considerably influenced by U.S. developments. The software

subgroup believes that software technology in the U.S.S.R. may

have now developed far enough in both quality and quantity for

the Soviets to be on the threshold of investing significant

resources into what is generally called "software engineering" in

the U.S. Their efforts to do this could be aided substantially by

certain kinds of product and know-how transfers from the COCOM

- countries. We address some of these transfers in Sections 5-7.

C) Several of the East European Warsaw Pact countries

(notably the German Democratic Republic, Eungary, Czechoslovakia,

and Poland) have software capabilities that, on a per capita

basis, are as strong as those of the U.S.S.R. The company GDR

Robotron, in particular, seems to have capabilities in the

systems software area that are comparable to those of some

respectable West European companies. Some of these countries are

known to be working on software systems that could have

significant military value. Bulgaria and Romania seem to be

somewhat weaker in software technology.

d) The available evidence [c.f. 2,61 leaves little doubt

that the People's Republic of China has a rather rudimentary

national software capacity, although there seem to be some very

knowledgeable individual Chinese and, as in virtually everything

else, the potential of that country is enormous. China is not now

in a position to develop many large, sophisticated, militarily

39

critical software systems, and this is likely to be the case forj at least the next f ew years. The U.S. and the other COCOM

countries need to give serious thought to what sort of aid they

want to provide China in this technology.

e) At least two other adversary countries, Cuba and North

Korea, have software capabilities, although these are much weaker

than those of other countries we have considered. We know almost4 nothing about North Korea. Cuba is a participant in the SM CEMA

minicomputer effort and organizations concerned with national-

level software development have been identified.

f) The software subgroup has not been able to identify

clearly any integrated systems of software development tools in

use in adversary countries, although it appears that some

partially integrated sets are in use. In recent years, there has

been a. substantial increase in the volume of literature

describing tools, but most of these tools are stand-alone and are

concerned with composition. and translation. Increased efforts to

acquire this technology have followed a growing awareness of its

importance.

3.4.2. Foreign Availability

a) The U.S. leads the world in software technology. However,

the U.S. lead is by no means a monopoly, although it may still be

very substantial in some important areas. Many of the COCOM

countries, and several non-COCOM countries as well, have

substantial software development capabilities. Adversary

countries could learn much from non-U.S. sources, and these

40

sources might also serve as a funnel of U.S. software technology

to our adversaries. Although tighter unilateral control of

software technology by the U.S. might be of some value, the

effectiveness of these controls will be limited without the

cooperation of COCOM. Some thought might also be given to how to

make it more difficult for U.S. software technology to be

transferred via non-COCOM third countries.

b) Western Europe and Japan have aggressively sought to

acquire software development knowledge. U.S. experts with

appropriate software experience have been sought to be

consultants, to present papers at foreign conferences, and to

teach courses. Western European software engineering expertise,

particularly academic, is given widespread recognition.

Possessors of strong academic backgrounds in software development

methodology are given responsibility in projects to develop large

commercial software systems. Despite the strong interest in

acquiring software development skills, one finds in Western

Europe the same phenomenon that has been experienced in the U.S.:

success in large software projects is often dependent on -

experience of having been a part of an earlier large product

development effort. The formal knowledge which has been eagerly

sought seemingly aust be supplemented by the actual experience of

building a software system--a frequently painful first-time

experience in which the project does not meet all its objectives.

In Japanese industries, as in Western European industries

which are controlled or strongly influenced by government, there

is a tendencl to have a longer planning cycle, encouraging the

41

4 *-

use of methods whose payoff is more long-range than U.S.

companies are willing to accept. This willingness to defer payoff

has led in some instances (e.g., robotics) to the development of

indigenous software capabilities based on research primarily

conducted by U.S. laboratories, even before U.S. companies have

been willing to make the investment.

c) Several development groups in Western Europe (COCOM and

non-COCOM) and Japan are aware of the importance of software

development tools technology. However, the availability of

integrated systems of tools and the base of experience in their

use (especially in the development and O&M of large military

systems) are below that of the United States.

d) Yugoslavia and Finland have limited software capabilities

and somewhat delicate political and economic relationships with

tne Warsaw Pact countries.

42

f

4. An Overview of the "What" and "How" of Software Technology
Transfer

The CNCTEG software subgroup established what effectively

amounted to a top-down, hierarchical framework for the breakdown

of software technology transfer. The software subgroup of TWG-7

has chosen to use this framework, with some additions, such as

the tree-like representations shown in Figures 4.1, 4.2, and 4.3.

The top level of this breakdown, shown in Figure 4.1,

partitions software technology transfer into:

(1) "What" - software know-how and operational capability,
where:

(a) know-how is the knowledge to produce and
deploy software products, and

(b) operational capability is the capability
provided by a product or service to accomplish
some task.

(2) "Bow" -the mechanisms for the transfer of software
know-how and operational capability.

A. further breakdown of the "what" of software technology

transfer is shown in Figure 4.2. Software know-how is divided

into subject matter knowledge (e.g., algorithms, modules, data

structures, etc.) and the software development process. Some

examples of the basic components which comprise subject matter

I knowledge are real-time control algorithms, table look-up

algorithms, sensor-based algorithms, etc. The software

development process includes such stages as concept definition,

requirements and analysis, design, coding, testing, operation,

I and maintenance (see Section 2.1).

'.I

I1 43

!I

I Software I
I Technology I
STransfer

4

I-

IWhatI How I
I _________ I ______________________

I Type of Information I Technology Transfer
I Foreign Availability I Mechanisms
I Military/Economic I Passive/Active
Significance

Figure 4.1. Software Technology Transfer

What I
1-1
Type of information
Foreign Availability
Military/Economic
Significance

I Operational I
I Know-how I I Capability

I I I I I Software
I Software I I Software I I Systems I I Development & I Other
Subject I Development I Software I I Maintenance 1 1 Softwar

I Knowledgei I Process I I Tools
__ __ _II __ _ __ _I __ _ _ II _ __ _ II_ _ _ _

Figure 4.2. The "What" of Technology Transfer

44

Operational capability is broken down into three categories.

The first is systems software, which refers to sets of

independent programs which form a functional whole, usually put

together in a layered approach (e.g., the combination of

microcode, standard machine instructions, and an operating

system). Software development and maintenance aids are the tools

which are deemed critical to the software development process.

Other software applications refers to the capabilities deemed

critical to development and manufacturing processes other than

software (e.g., CAD/CAM) and capabilities that are directly

related to important military activities (e.g., nuclear weapons

design).

Section 5 presents a taxonomy of systems software and

development and maintenance tools, along with a partial military

utility evaluation. A taxonomy and analysis of technology

transfer mechanisms (the "how" of technology transfer) comprise

Section 6. The top level of this taxonomy is shown in Figure 4.3.

Transfer mechanisms can be broken down into three categories. The

first is product shipment, which deals with user manuals,

programs, etc., delivered to adversary countries. The second is

assistance, a broad category which encompasses help or services

provided to adversaries. Finally, the remote access usage

category refers to the usage of a product by an adversary while

the product remains under Western control, e.g., through a

computer network.

Section 7 is an attempt to pull together the "what", "how",

and "who" of software technology transfer in the form of a

few detailed hypothetical scenarios. We telt that such

45

IHow

ITechnology TransferI
I Mechanisms
IPassive/Active

Product IRemotel
IShipment I Assistance I Accessl
I _ _ _ _ _ _ I _ _ _ __ _ _ I Usage I

IiFigure 4.3. The "How" of Technology Transfer

experiments helped to deepen our appreciation of the problems of

software technology transfer and its contr-ol.

46

5. Software Know-how and Operational Capability

5.1. introduction

This section provides a partial taxonomy of software know-

how and operational capability which expands on the structure

given in Section 4. It does not cover all of software; due to

assorted time and manpower constraints, it deals only with

systems software and software development tools in detail. An

initial effort is made to assess the military utility of many of

the listed items.

The software subgroup believes that a taxonomic/military

utility approach to software export control is too coarse and

unmanageable. However, it is difficult to fully appreciate the

problems until one tries to consider such an approach in detail.

A discussion of this view is reserved for Section 5.6.

5.2. Know-how

Software know-how has been. partitioned into two categories:

software subject matter knowledge, and know-how embodied in the

software development process.

Software subject matter knowledge consists of the basic

"components" of software: algorithms, data structures, etc. Since

most of this information is widely available in the open

literature, it is beyond control. Any attempt to classify this

knowledge would be fruitless due to the sheer size of the task.

Furthermore, much of this knowledge is implicitly present in our

taxonomy. Application-specific components or programs (CAD/CAM

routines, sensor-based algorithms, etc.) which have high milltary

utility are covered separately in the reports of the other TWGs.

47

Software development process know-how covers the knowledge

needed to produce and deploy a broad spectrum of large software

products. This know-how is more developed in the United States

than in any other country and is based on extensive first-time

experiences which often involve building less than completely

successful systems. This experience involves the management of a

team of software engineers and programmers who are involved with

the life-cycle technology discussed in Section 2. For typical1 defense systems, the product of this effort (i.e., the software

library data base which documents the transformation of the

product from initial requirement statements to the latest working

object code version) can amount to millions of lines of text and

code which must be managed.

The military utility of life-cycle management technology is

very high.. Any large defense system which the adversaries might

wish to build requires a knowledge of this technology.

Furthermore, the experience gained in building a seemingly

innocuous system (e.g., a medical sensor system which handles

multiple real-time inputs) can be applied in an entirely

different context. Since adversary experience with this

technology is somew hat limited, its criticality is also quite

high. Therefore, the control of the expor-t of life-cycle

management technology is considered of prime importance by the

software subgroup.

48

- --- - - .f

5.3. Operational Capability

Operational capability is divided into systems software,

software development tools, and other software. Cu: taxonomy

addresses the first two categories.

The evaluation of military utility for software was carried

out using the matrix framework shown in Figure 5.1. Each category

of software was given a rating from

zero: little or no discernible military utility, to

nine: extremely significant military utility.

The category as a whole was then given a rating greater than or

equal to the highest rating across the spectrum of possible

military applications [121.

The software subgroup cautions that this approach. is

somewhat arbitrary, only partially and tentatively complete, and

needs further ref inement. Several problems arise in trying to

determine military utility in this fashion. First, one can posit

situations in which most software could have a high utility in a

given military system. Eence, the ratings for broad classes are

- Isimply too general. Secondly, we do not think %that a&n analysis in

this form addresses the difficult problem of arrays of software

products. This analysis was carried out considering products in

isolation. The value of an array of products, such as an

integrated set of software development tools as opposed to stand-

alone tools, can be much greater. Therefore, we consider these

ratings to be useful to the extent that they provide a general

ordering of relative utilities of products when used in isolation

in specific military systems.

49

Miitr Systems

(see Legend1 below)
SII II iV v VI VI:

5.4. Systems Software** 9 3 9 9 9 9 9

4.1. Human Interface
Software 8 2 2 2 7 8 7

4.2. Data Capture 8 3 8 1 3 5 4
4.3. Data Presentation 9 1 3 7 8 8 5
4.4. Data Transmission 7 3 5 5 3 7 5
4.5. Data Processing 9 3 9 9 9 9 8
4.6. Data Storage 9 3 5 6 8 8 5
4.7. Data Access 9 3 5 6 8 8 5

5.5. Software Development
Tools 9 6 9 9 9 9 9

5.1. Software Library
Data Base 9 6 9 9 9 9 9

5.2. Software Support
Library Management 9 3 9 9 9 9 9

5.3. Text Processing 3 1 2 1 2 3 1
5.4. Translation 8 2 7 7 5 5 7
5.5. Quality Assurance

and Control 9 6 9 9 9 9 9
5.6. Accounting/

Administration 9 6 9 9 9 9 9

Figure 5.1. Matrix of Military Utility of Computer Software
Technoligies

I. Operational Capabilities (Military)
II. Military Business Programs
III. Satellite Systems
IV. Ballistic Missle Systems
V. Strategic C-Cubed and Planning
VT. Tactical C-Cubed
VII. Aircraft Weapon Systems

* Ratings for other categories, such as Space Operations,
Cruise Missiles, Communications Systems, Shipbased Systems,
Submarine Systems, Tank Systems, and Field Artillery have not
been supplied.

Numbers, such as 5.4.3, correspond to subsections that follow.

5.4. Systems Software

Systems software refers to that body of software itgae

into a functional whole, or system, serving a spoecif ic, common

purpose. Often systems software is built from more general-

purpose components, but specific to the computer hardware and

application area. Current systems software methods advocate a

structured or layered architecture of software. At the lowest

layer is the hardware-. The lowest software layers manage thIs

hardware in the form of routines to control input/output,

interrupts, memory allocation, and even the microcoded

instruction definitions. Higher layers define increasingly more

abstract computer "machinesR which present abstract services to

yet higher layers,. and implement that functionality by

combinations of service requests on the lower layers. The

collection of layers of software for managing the computer is

called a monitor or an operating system (OS). Modern OSs

"virtualize" computer resources into a standard, abstract set of

resources viewed commonly by all application programs. Still

higher layers include software for networks of computers, data

base management systems (DBMS), and particular applications.

To provide a taxonomic view of this plexus of

interdependent, applications dependent software, -we postulate thze

"generic information system," consisting of seven broad abstract

functions provided by all systems in some measure. These

functions follow directly the flow of data and its processing in

the generic components of a system. WJithin each f'unction, we list

the variety of software processing characteristics of that

function. The reader is cautioned that no single system possesses

all these components, but is created by integrating some f rom

each function. These large, complex systems are difficult and

4 expensive to construct, and represent the end product of a

technical and managerial superiority by the U.S. in life-cycle
* management technology. Figure 5.2. presents a tree-like overview

of systems software.

TAXONOMY MILITARY UTILITY

45.4.1. Human Interface Software (8}

1.1. System Operation (41

1.2. System Command Language (3}

1.3. System User Authentication {81

This area deals with the computer software that permits

* humans to control system operations and to authenticate that a

particular human is authorized to have access to the system. The

high rating for system user authentication software reflects the

importance of this software for tactical C-cubed and strategic C-

cubed military functions. This software is critical in military

systems for preventing unauthorized users from obtaining data

from the system, obtaining services from the operation of the

system, destroying the system, entering incorrect or misleading

data, or entering illegal commands to subsidiary military

organizations. Knowledge of the details of this class of software

could improve adversary chances to identify vulnerabilities in

the assocated mi.litary systems.

52

.......
ISystems

Software

Hua Inefc +1Dt atr

I Data Presentation I II Data Transmission

I Data Processing I I Data Storage 1 Data AccessI

Figure 5.2. Systems Software Taxonomy

53

- - - - - -- - - - -

TAXONCMY MILITARY UTILITY

5.4.2. Data Capture Software (81

2.1. Sensor Data Input 181

1.1. Electromagnetic Sources {81

1.1. Satellite Visual {81

1.2. Radar 16}

1.3. infrared Detection System {7j

1.4. Other

1.2. Acoustic Sources {?}

1.3. Other Sources f?}

* 2.2. Human Data Input £71

2.1. Natural English Language input (7}

2.2. Keyboard/Console Drivers £21

2.3. Speech Input Analyses (71

2.4. Menu Reader £4}

2.5. Graphic Inputs (7}

5.1. Light Pen £51

5.2. Track Ball £31

5.3. Joy Stick (31

5.4. X-Y Tablet (3}

5.5. Touch Panel £71

2.3. Peripheral Input (5i

3.1. Card Reader (0}

3.2. Paper Tape "01

3.3. Magnetic Tape/Cards

3.4. Optical Character Reader

3.5. Bar Code Reader £31

3.6. Photo Reader (5)

54

4 TAXONOMY MILITARY UTIL TY

The high rating (81 given data input software is based on

the complexity of the software needed for the satellite input

problem. Here the data rate is so high that even the fastest

computing engines require intricate real-time software to

accommodate the input data.

5.4.3. Data Presentation Software (91

-3.1. Direct Presentation Software (?}

1.1. Keyboard Console Drivers (?}

1.1. Scroll Terminals (11

1.2. CRT Terminals (51

1.3. Text Formatters (21

1.2. Speech Synthesis (51

1.3. Menu Presentation i6}

1.4. Graphic output 0?}

4.1. CT (81

4.2. Plotters (81

4.3. Photo (Film) Camera (71

4.4. Thermal Printers (31

4.5. Cursor Positioning (41

3.2. Output to Peripherals (?}

2.1. Line Printer (01

2.2. Spooling

2.3. Card Punch (01

2.4. Paper Tape (01

2.5. Magnetic Tape/Cards (31

55

TAXONOMY MILITARY UTILITY

5.4.3 (con't)

2.6. Barcode Printing (31

2.7. Phototypesetter (4}

The military utility rating (91 for the data presentation

category is based on the importance of this software to

strategic and tactical C-cubed systems, each of which has a very

high military importance. The rating (81 for software related to

graphic CRT and plotter display is based on their use in the

presentation of target data, geographical data, and vehicle

position and characterization.

5.4.4. Data Transmission (7}

4.1. Network Protocols (91

1:1. Link Level (3}

1.1. HDLC, SDLC, etc. (31

1.2. Transparency Controls J41

1.3. Error Controls (51

1.2. Transport Level (71

2.1. Datagram {7}

2.2. Virtual Circuit (71

1.3. Higher Level {91

3.1. Virtual Terminal (VTP) (51

3.2. File Transfer (81

56

TAXONOMY

2 .4-

1 ,.3. .. -ai- Ch ck

.2 Coreton8

2 c :r o -ctI

2.2. Rt:as-masion

13. Pa,-riy Cutesu{3}

3..n~c:i~ror.

.. Der~r-ecion 5

4.. 3ecaria Cou az:resre

-I 57

.. Costing (9

2.2. 'Ira :fic Load3(3

2.3. rror Stamistcics (9

3.. iagflosticz D

3.2. ?.estart/R31oad {9

3.d :T e tork r o c es sor s(9
4 1
4.2. Cozceitratc'rs £71

4.4. Gateways 1

4.3 Se c urit loxes ,.SJ

Ahough -he m i 1i cav u;t ii o. ins cateco:r 63 ot ye-

rated~ !.a d---1, a so f t -a r a d. s c uzso n s i Zo r a o r o~ f G-3
(telecoizunications) are ce1'.vanz.

5...2:a proc-assarg _....rare }

5.1. Operating 5vstarms 9

1.1. Batch Coxamercial (31

1.2. 2ac/ieSaigCommrerci a2.(

1.4. IiRoprlcsior UIz:cut .ers(

58

mirocomo._rer and micronroce33o.
con:4 igurzzions

5.3 . Soi -.rar~e to Suppor,: ~J

3.1. Linear File Systemns (31

3.2 tyiararchical (31

3.3. e tw ar!, f'71

3.4 nv ect ed (51

3.'3. QIuervy LanguaGes

3.7. 10ata Descri-ption Lanquaces

5.4. Svs~e.,-snecifjc Sd:reSuoct Fnctionz

The very hihrating (91 ha.-s be en give n ffor thc- mnilitarv

real-tiJ.ae operazing Svystem.3 because this io~ar s so

specificall- itne rmilit"ary --uncti4ons. Th i s -aaqo rv

?erhams controlled by --he mun-itions act but is menzionedi here fo r

ccmp3latnss.

T t ra -_ins ", 3 orC s ecur U o _;e r az :S-_am; cy 2 rn ":c t s :'-

dire-ct Celevanca of t~iese systems to tactical C-cu)cmd mla

fnctions -.iitn a need for multi-level securi4ty, for strazecic

oce nanage en:t ann 1i za t_4o n s, anc f:or a m ur4 ca z_4o rz -a;: e c,, 4,72 -s

e..,''~z 7) T) esg reiai: Si:Z.

ooerating syistems i.s also of significant mitJary ijmortance.

Long missio:n satellites require .i;> elia, ;ilicy aoft*are in

adc itiLon co higa raliacility l'ard%:are. The desirazilitv of

.eliabili:2 and' security in the com-ut-ars used for c'.1e con~roi of

59

ballistic missiles is obvious.

The razing {8} for DBjMS softw,;are reflects the cirecz

relevance -) -nese syszers to C-Cubed military nunctions an' the

investmen: -.-i zuilding such complex soft:Ware.

5.4.0. Data Storage Software

5.1. Memory Management

1.1. Virtual Memory

1.2. Segmentation (?}

1-3. Paging [?

.. 4. Aliocaion/.-leclamation
(Garnage Collection)

1.5. Cacne Management {?}

1.5. Capabilities Management?

1.7. Protection Traps (?}

6.2. Secondary Memory Ianagement

2.1. Tape Controls {?}

2.2. Spooling {?}

2.3. Disc Control

2.4. Device Allocation ?}

Time did not permit the military utility breakouz for Data

Storage Soft'€are.

5.4.7. Data Access Soft -are/Data . !anagemenc System i

7.1. File/Data Ianagement Syste. (D".IS)

1.1. Direc-ory -lanager

1.2. S2eec. R.etrieval Com-utirlons

60

TMOUCUY "IJITARY UT0 .I-

1.3. Load Update System {?}

!.- 4 . Data Semantics Analyzers {?}

1-.5. Data Language Processors {?}

Time did not permit the military utiityv breakout: for Data

Access Softw*are.

5.5. Software Development Tools

Software development tools are the next ma-or element of our

ta::onomy. Other tools, such as those for computer aided design

(CAD) and manufacture (C.) of non-software roduczs, are bet er

addressed by the otner TTIGs. Integrated systems of tools have a

higher military utility than stand alone tools. Systems of tools

may be classiied in five generic categories:

1. Library "Maintenance

These tools include: those used to create directories,

files, and versions of files, data base management tools tha are

used to store and retrieve text from che soft;n, are lirary, access

control tools employed by the library DBMtS, and library tools

taatl:nterface the library %i:i t&he nantive o~er-=t -, , s yse Z o.1r

F Ithe hardware for disc and tape access or backup functions.

2. Composition

Tools used to enter, edit, and display/;r-int softn.are zzx-.

3. T.-ansla zion

T!:ese include all integrated tools that -ranslate source

Stext to other source text, or to executable object code.

4. Test and Validation

Tools needed to confirm Znat the soft'are system .s wor:'.ing

3 61
i :A

TINXIO 1Y 1ILTAY UJT IL!TY

correczly.

S. Project Managemenz

These are integrated :ools used to adminisaer sojz_- stware

projects.

5.5. Software Develooment Tools {9}

5.1. Software Library Data Base - Used to provide
constantly up-co-date representations of the
computer programs and test data in botn
computer and humarn readable forms. The
current status and past history of all code
generated are also maintained. Specific
library pro, rams are available to serve as
aids to implementacion. Included are a
directory, files, processes, data items and
types, and access profiles. (9}

3.2. Software Support Library Management
(Data Base :anagement System) [}

2.1. Production Libraries

2.2. Retrieval

2.3. U9date f?}

2.4. Loader ?

2.5. Language Processor

2.5. Access Cont:ol

2.7. Report Generacor 1?}

5.3. Text Processing

3.1. E~di .or ?
.. Tt d1:r A co er .0rogra-.

rd e i-s (erase, inser:, change,
and move .-iocds or grou,s oL wors).

62

A-

S~oftware
Deveiopment
Tools

II

-A-~cain I 5of"tiae

Specific I Develooment
I Tools I Toois
+++++ -- +++ + ++-++ ++

II

*++~+++#++ ++ +++++ ++~i++++++ .-++++ + ++

o-re I I Software Librarv I i * Daa Baze
SLi'r- ary I I Manage'.nenc Tools I 'anazen: sz S-7szSI

+++++++++++++ ++++++ .++.++...+++...- ++..

:ext I Translazion I Accounting-
?rocessing I zo-. izistrz:.on ooLs

- - -.--+- +- -+- ,---.---,--

, 'uality Assurance &
I Con,cl Tools I

Figure 5.3. Software Develogment Tools T::nor, y

63

~-_ ----- -- _-- i* - :. ; -. , ,/ - - ---z .. , -. - -- --- r.... - u... P ' . ."

T AX 0 N Gi I i4LITARY 7--IT-Y

5.5. (con't)

3.2. Comarator - A computer program :sed to
compare twao versions of t: same computer
program under test to estahis- ideical
coniigurations or to specifica-iy iden ':y
changes in the source coding hetween the
two versions. (2}

3.3. Formatter i?}

3.1. Flowcharter - A computer program used to
analyze a coded computer program and then
to show in detail the logical
structure of the analyzed program. The
flow is determined from the actual
operations as specified by the executable
statements, not from comments. The
flowcharts wIhich are macnine-senera-ed
can sometim e s e comared to
specification-generated charts to show
differences.

3.4. Electronic :.ail {?}

5.4. Translation

4.1. figner Order Languages (HOL)

1.1. Compiler - A computer program that either
transforms a ROL source -program into an
assembly language form for subsequent
assembly to machine language -ranslazion
by the assembler, or tnat transforms
directly the ROL program inco an
equivalent machine language program or
potentially into microcode for a
micro-programmable comouter.

4.2. Problem-Oriented Languages (POL)

2.1. Compiler Building/Implementation System -

Computer programs that facilitate the
development of compilers oy use of an ROL
and specialized data constructs (e.g.,
J73-JOC rT) .3

2.2. Zxcensiole Language Processo= - A

computer program that allows users to
define new language 2eatures for
extending a base language. {7}

2.3. Hartware Description Languages

64[

: T I# Il m I

TAXONI*1Y '.ILITA.Y UTLITY

4.3. Assemblers (MHachine Zanguage) {?}

3.1. Cross Assembler - A comnputer orocram t -ac
accepts symbolic instruction ainemoircs
for a selected target computer an(gener-
ates target computer machine code while
hosted on another computer. A cross
assemble r t.us allows code written for
one computer co be assemoled on another.

4.4. Preprocessors

4.1. Hacros

4.2. HOL Synta:: Checker

4.3. HOL-HOL Synta:: Checker

. PostProcessors (?I

5 .1. Compool/Dictionary Builder {?}
,.2. 5inder/Linker/Loader/AlJocator [?}

2.1. Linkage Editor - A computer program
tha t combines separately produced
object or load modules; resolves
symbolic cross-references among them;
replaces, deletes and adds contzrol sec-
tions; generates overlay struczures
on request; and produces er:ecutazle
code that is ready to be loaded into
storage. Also a linking-loader performs
the operations dynamically during
execution if required. {1}

52.3. Decompiler - A computer prcgr_.a thIat
acceics as da-a a progra- i writen 1.
machine-level language and produces
output in higher level problem-oriented
target language or the algorithms, etc.
of the machine level code. {l}

4.6. Program Libraries

I1.7. HOL Translators - Computer oro ,s :na:
are tile, t J coner ourca Code
associated wi-- one computer system in:o
equivalent source code on another
computar s /steml.

7.1. Compilers

I
. 65

TAXON~itY MLITARY tTITY

7.2. Interpreters -Comuuter programs tnat
arnlt a c! ;ecute eac.h source

language scatement sequentALall~y. 0

5.5. Quality Assurance and Control

(Test. and Vali-1ation) 9

3.1. Requirements Definitions

5.2. instrumentation ?
2.1 AuomaicTest Generator -A computer

-'program. that accapts inputs zspecifyiag a
tes;t zcanario in some special language,
generates the exact coziputer inu ,and
deterines thax-pected results.

2.2. P-rogr am T low ;nalyzer -Acompute r
program =,-a'- provides Statistics ozn
source code statement usage anc ziming
data on progta a lements during test cazse
executions.

2.3. Software MIonitor - Computer :proqrams
that provide detailed statizzics zbout
system per-formance. Te eamln e such
tiiings as core usage, queue length-s, and
individual P r ogqram ope r atcanto *,e l p
measure performance. DOata are usualy
collected nathematically during a:-'ecution
and analyzed later. }

monitors aid prints e~zecution t i:e s o z
all progr -, elements (f un ctio r,
routines, and subroutines.

3.3. Measurement

3.1. An alyzr a :ompu t sr p m z -ausd to0
crov a ;. nZr tr. 'a ;u 0
the sourca program. uli inc.Luues

itaes of com:and featu.res a-ne dat- a za

items. 63

5.. con't)

3.2. Data Base Analyzer -A com-puterc ,roqr -.
tha reOrtS ica no eve:y !SagZ

oz data, identifiez ae7z:n progra ;Z~
any data eie.-ent, ano6 6.-.at,4_-atez
thea program inputs, uses, nodifiaz 0r
outputs the data 21ezent. (2",

*5A .. Tet 'Cases ?

4.1. C ozp i ar Validation S-ystem -Acommputer

prog ram used to ensure that cov.npJUe:s
meet their language specitfization. 4

4.2. Teast. Case/Test Data Generator- 1
generator thlat proLducas test data or t as t* ~~cases to exercise the tagt6s~
generator differs f':rm a sinulator,
!because it creat_- test data uzing
numerical generators, acc. Once Aat

are 3 roduced by the generator,a
simulator might be rc.uiraeU' to route t:ne
data to tie sytm a,}

5.5. Synthetic Data/Load (?I

55.. 'Emulator/Simulatlor

"-mu.1. uation - Thea usze o: nr ,-,,:.n
tIecliniques to pemtcoimputer sys em to
execute objlect levzel zrogram"s w;ritten1 Zor

a given cozmputer. Som,-etimes conifuZe'.
an interpretive instruction sijznulzor
with execution, in a standaz& machiie, of
the object code.

6..insruction Simaulator - A cmue
program uzed to dynami cally simu.--e t e
exeacution chl-aracter is tics o f a t: :; 0
computer using a sequence of instruczions
olf a 'host cor.outer.

5..Debugger - Com-,pile and e~zecu tion-t a~
checkout and debug capabilities ta
identify, and help isolate program

7.2. Syt.bol Dictionary ?

7.3. Code,/Data Reference Trajps

7.4. Cod e Flow: Tracerf?

67

TA O O :IIrL 7,'-TART L "-
T.icO1CO £Y

5.5. (c=fn' =)~u~ ~zrz

a. ._. nstructi'on .. -T a A o pu te a r r -raz
[ilused to record every 4instante_ or_ C-le.

occurrence of a cerzain clas
ocera:ions or a given sec of conditionz
or to trigger vant-dcriven da:a
collection. :n some cases, thi- cre tez
a comzlete time record of every event
occuring during program execuion. [2}

7.5. Conditional Data Dumps (Snapshots)

5.1. Snap Generator - provides program or
data locations that are relative to

* program labels. Used typically to
present a picture (data contents) of a
selected portion of memory. {l}

7.3. Try--'xit Conditional Code Execution ?

7.7. Conditional Backup and Retry i?}

5.3. Program Verification Systems - P:ograms
that verizy the correctness o soft;.'a:e
either by formal proof or by instrumenting
the source code. They provide data tha:
shows how thoroughly the- source code has
been used. Examples are RXV.7, JAVS, PET. 9}

3.1. initial Conditions

i.i. Program Sequencer - A computer programu
nhicn coerces the execution of al

possible instructions and branches
;ichin a program. to determine program
flow, to execute seldom-used branches,
and to assi s t in -ae veri fication of
proper program operations.

8.2. Correctness Criteria (:nvariants)

3.3. Specificasion and Design SOL and
Processor {?}

I

3.1. Coasisency Chec:e. - computer
zrogram ; iich determies (.)
requirements and/or design specified
for computer programs are consiszent
with each ocher and cheir daca base and
(2) if ey are complet=e.

68

,O',iILITARY rTL IT?

5. . (con' t)

3.2. Design Language Processor - A computer
program use i to provide an
understandable represencation of tie
software design as ic evoives. These
programs allow designs :o be
constructed and are expanded in a
hierarchical fashion. (3}

3.3. Interface Checker/Analyzer - A computer
program that is used to automatically
check the range and limits of variables
as well as 'he scaling of source
programs to assure formal compliance
with interface and control documents. t5}

3.4. Requirements Language Processor - A
computer program used to orovide a
succinct and unambiguous speci --ication
of the system based on computer
requirements. It allows requirements
to be communicated and translaced in a
hierarchical or other organized manner. (91

3.5.. Requirements Tracer - A computer
program used co provide traceability
from requirements through design and
implementation of the software
products. (9}

8.4. Verification Condition Generator
(VCG) for HOL f?}

8.3. Theorem Proving System

3.6. Configuration Nanagement (Spec,
Code, Proof Text) I?}

3.9. HOL Syntax-Semancics Checkers

9.1. HOL Editor - A computer program used to
analyze source programs for coding errors
and co extract information chat can oe
used for chec.~ing relationships zet:een
aeczions of code. 4

1.2. Code Auditor - The editor w.il scan
source code and de-eac violations to
specific programming practices and
standards, construct an exzensive cross-
rezerence lis of all labels, variabies,
and constants, and check for orescribed
progra.m Zormats. 4

169

TAXONOM1Y -MILIT41ORY UTILITY

5.3. (ton't)

5.6. Accounting/Adminiistration (91

6.!. Software Confijuration Control Syzzem (91

1.1. Standards Enforcer - A coaputer program
used to determine automatically whether
prescribed programming practices and
standards have been followed. The program

'I can check for violations of standards set
for such conventions as program size,
commentary, structure, etc. {5}

1.2. Structure Analyzer - A computer program
used to examine source code and deiermine
tnhat structuring rules, set for either
control or data structures or both, have
been obeyed. (2}

1.3. Computer Program H4anagement Aids (91

3.!.,Cost Estimating Programs for
Estimating Cost of: Programs (31

3.2. Time Estimating Programs
(Development/?roduction time) 5}

3.3. Configuration Hanagement Systems (91

t.2. Engineering Change Control (ECC) (71

6.3. Access Control (7}

3.1. User Access Profile (71

3.2. Security (?1

3.3. Privacy {?}

3.4. Accountability (?}

6.4. Safety (?}

4.1. 3acku (71

4.2. Recovery (71

4.3. Data/Coimmand Legality and
Reasonanleness Checks (?1

5.3. Cost Con:rols

.6. :etnoci and Procedures anr
Supporting Documentation (?}

70

5.6. The Feasibility of Controls Based on a Taxonomic Approach

After considerable delibera:ion, the software subgroup has

come to the conclusion that a taxonomic aporoach to exnor:

control for systems software is seriously deficient in at leas:

two ways.

First, such an approach does not directly address software

life-cycle development and maintenance technology, which we

believe to be the most critical issue (see Sections 2 and 3). A

taxonomy and military utility evaluation, such as that given for

systems software in Sections 5.3. and 5.4., focuses attention on

products rather than on technology and technology transfer.

Second, even as a means for the analysis of products and

some of the technology embedded in these products, such an

approacn is too coarse and unmanageable. The basic problems are

that software use is extraordinarily pervasive and that there is

an enormous range of software products. In Figure 5.1. and in

Section 5.4 we have two taxonomies for systems software. A "first

level" breakdown is given in Figure 5.1. At this level of detail,

a military utility evaluation produces very high ratings for

virtually every category. The reason is that, within each systems

software category at this level, it is possible to identify

important military use- In Section 5.4., we exhibit a "second

level" breakdown which is an order of magnitude longer and more

detailed than that of Figure 5.1. At this level of

disaggregazion, we are able to identify quite a few categories

with military utility ratings of less than 7, although many

continue to have ratings from 7 to 9.

The "thLrd level" breakdown, which we have not done, would

71

1A

explicitly consider specific named products, portability, etc. It

would be an order of magnitude larger and more detailed than our

"second level" breakdown, i.e. about 100 pages long. At this

level of disaggregation, we would find that most software

products need not be controlled. For example, under Section

4.5.2.2., Human Data Input, we find natural language and speech

input given high ratings. One can identify or imagine important

military software systems in these categories that should be

given high ratings. However, one can also imagine academic or

commercial systems in these categories that could be safely sold

to users in adversary countries with suitable safeguards (e.g.,

object code and user manuals only, and with a lack of portability

- see Section 6.5).

The problem with giving licensing officers, or government

personnel who are asked to evaluate license requests, "control

categories" like "real-time operating systems" at the first or

second level breakdowns is that this is too coarse. They either

have to say "no" to all requests with items in such categories,

or they have to work out a third level disaggregation. Even with

this level disaggregation, this approach encourages an attitude

of "we cannot sell them anything they do not already have."

Regardless of one's political philosophy, we can all understand

why customers in adversary countries would not be interested in

spending much hard currency for what they can get from indigenous

sources. The software subgroup feels that this is counter to U.S.

academic and commercial interests, that it is potentially an

enormous burden for the U.S. government, and it is neither the

72

4i

IM

only nor the best way to protect U.S. national security with

respect to software technology transfer.

WTe feel that a taxonomic approach for applications software

would also be too coarse and unmanagable. Any attempt to provide

a taxonomy of applications software would be at least an order of

magnitude larger, at each level of detail, than the corresponding

taxonomies for systems software. However, we have isolated four

classes of software which we believe should be controlled because

of their high military criticality. Software development tools,

in particular, may be controlled using a partial ta:tonomic

approach.

71
!
II
, I
I

'I
I 73745/

I/

6. Software Technology Transfer Mechanisms

6.1. Introduction

This section presents a taxonomy of software transfer

mechanisms, an evaluation of their effectiveness, and an

examination of the feasibility of controlling some of these

mechanisms. A classified appendix looks at some mechanisms in

more detail than would be possible in the main body. This

appendix has been detached from the main body of this report and

is available through appropriate channels.

6.2. A Taxonomy of Transfer Mechanisms

The taxonomy presented here is a more detailed examination

of the general breakdown of transfer mechanisms given in Section

4. The transfer mechanisms can be divided into three groups:

assistance, product shipment, and usage. Covert mechanisms which

parallel many of the transfer mechanisms in the above categories

are also examined.

6.2.1. Assistance

The assistance type of transfer mechanism includes a variety

of services, training, and education, and often involves the

interaction of technical personnel. Assistance is divided into

product support assistance and general assistance. Figure 6.1

presents a taxonomy of assistance mechanisms in a tree structure

format.

75

I AssistanceI

.......................... I.............................

IProduct IIGeneral I
Support IIAssistance......

U ser I IMaintenance I I Installation I
Training I Training I I Training I

.......

IModification & I I
IEnhancement ~ -'
Training l I Consulting I I AcademicI I

.......... +...... I Courses I

....... I..

Apprenticeship IIIProfessional
........... Contacts

.............

I
......

IThesis I I Joint+#++++
...... I Ventures IIUser Group

111 ParticipationI
................

Team I i I Conferences I I..........
IMembership I+ I II

......... License & I I.........
IExtensive I.................. Trade Shows&
ITeaching I I Exhibits
..........+#+ l.................

ExtendedI
IExchange I
IPrograms I

...Contract .

INegotiations

IShort-Term Technical I
IVisits & Discussions I........

.................... to Written Materials
(next page)

$ Figure 6.1. Assistance Mechanisms

76

...........................(from preceding page)

Iwritten
IMaterials

j...............................

I I Books I IJournals I other

Courseware I

*1 I..........................

ITexts IIProgrammed 1 Computer-
I I ILearning I I Aided

I Texts I I instruction
....++++-

Figure 6.1- Transfer Mechanisms (con't)

77

6.2.1.1 Product Support Assistance

This typically takes the form of training or other support

services related to a particular product. The types of trainingI that fall into this category are: (1) user training; C2)

installation training; (3) maintenance training; and (4) training

to make modifications and enhancements of the product. Product

support services also involve some assistance with software

problem determination, provision of fixes, and guidance in sys~tem

usage.

6.2.1.2. General Assistance

This mechanism may be broken down into five categories:

(1) Apprentices hip--Any relationship involving strong

collaboration between a Western expert and an adversary

"student' from an adversary country, or groups of these in

some joint work. Examples are thesis research, team

membership in a software development project, and a license

with extensive teaching.

(2) Joint ventures--These relationships also involve strong

collaboration, but differ from apprenticeships in that the

participants may be transferring technology in both

directions. Joint ventures may have various degrees of

coupling.

(3) Consulting--Western experts, both as individuals and groups,

provide specific consulting services for adversary

countries. They may provide advice, produce a piece of work

(i.e., develop or tailor a software package in accordance

78

with customer specification), or provide support services

which do not relate to a specific product which the

consultants have provided.

(4) Academic courses--Students from adversary countries enter

Western academic computing courses provided by university,

government, or industrial organizations, but do not advance

far enough to be considered apprentices; or instructors from

the West go to adversary countries to teach such courses.

(5) Professional contacts--This category includes a wide variety

of transfers such as extended exchange programs (but not at

the level of categories (1) and (2)), short-term technical

visits and discussions, participation in user groups, trade

shows and exhibits, conferences, and contractual/commercial

disnussions.

(6) Written material--This category includes all open and

proprietary passive sources of information such as

textbooks, journals, articles, etc., as well as courseware:

programmed instruction texts, computer-assisted instruction,

and other materials which may be of academic, governmental,

or industrial origin.

6.2.2. Product Shipment

The product shipment transfer mechanism is distinguished by

the delivery of certain physical items (not including product

support assistance and written material as described in category

(6) above). Software products and documentation come in many

forms. Some examples are proposals in various levels of detail,

design specification data, intermediate design documentation,

79

program logic manuals, users manu.als, code listings in HOL,

assembly language, or object code form, and source and object

code representations in such physical forms as tapes, disks,

floppies, cards, read-only memory, etc. Figure 6.2 presents a

taxonomy of product shipment forms.

6.2.3. Remote Access Usage

This category refers to providing a user from a adversar-y

country with access to the usage of software and data via some

I~i kind of telecommunications link (e.g., a computer network or

phone line). The hardware and software is owned and controlled by

the West.

6.2.4. Covert Kechanisms

The covert acquisition of operational capability or know-how

can be divided into the same three categories listed above.

ffeans of getting assistance might include infiltration of

American or subsidiary companies by individuals, dummy

corporations set up to buy American products with all the

associated product support assistance, compromise and blackmail

of American technical experts, acquiring documentation and other

aids from the development process, etc. Physical products may be

purchased through other agents, stolen, or legally purchased in

pieces and assembled. A particularly, good way to transfer both

know-how and operational capability would be to purchase part of

an American software corporation through a front organization.

Furthermore, many third countries may serve as conduits. For all

the mechanisms the software subgroup can postulati-, adversaries

80

are likely to come up with others.

1Product
IShipmentI

... ..

Documentation I I Code Listings I I Hardware ?'orms I
............ I (disks, ROM, etc.)I

41 i

....... IUpdates, New
I Proposals I I IReleases, etc. I

.................

I I Data for DesignI
ISpecification
..................+ Object Code

.................................+

.. I

I IProgram Logic U tser manuals I
Manuals I Source Code I I

I I intermediate JI Assembly Code
IDocumentation

Figure 6.2. Product Shipment Mechanisms

1 81

77-

6.3. The CNCTEG Framework for Evaluating the Effectiveness of
Transfer Mechanisms

It proved impossible to develop a linear ranking of the

effectiveness of various different mechanisms for software

technology transfer. There are simply too many cases in which

other factors may alter the order of any such ranking. instead,

the software subgroup has found it useful to consider transfer

mechanisms in light of four general factors developed by the

CNCTEG.

* 6.3.U. Know-how Transfer

Two factors influence the effectiveness of the transfer of

* know-how. The first is the nature of the know-how transfer

mechanism. At one end of the spectrum are "active" mechanisms in

which frequent interchange of information exists, e.g., an

individual ("student") working with a vendor's programming team

("teacher") as a regular employee for some period of time.

"Active" mechanisms tend to be iterative in nature; "students"

seek i.nformation, receive answers, and seek further information.

At the other end are "passive" mechanisms in which no interchange

exists, e.g., an individual ("student") disassembles a program

and derives or infers certain facts about the design strategies

underlying the item. The terms "active* and "passive" refer to

"teacher" activity; adversaries may very actively seek and use

information they get from passive sources. "Acti.ve" mechanisms

are normally of more concern than "passive" mechanisms because

they tend to transfer know-how as well as operational capability.

The second factor is the kind of know-how transfer involved.

82

At the lowest level of effectiveness are those transfers which

deal only with operational information, such as how to use a

product and make minor modifications. The medium level includes

the information of the first level and adds specific knowledge

about structure and design, e.g. specific information about

interfaces between modules. The highest level includes the first

two, but also includes explicit knowledge about how the program

was produced, i.e., the life-cycle management technology. As the

spectrum is traveled from the lowest level to the highest, the

information. added is more likely to give the adversary the

ability to build, modify, adapt, and maintain programs.

6.3.2. Operational Capability Transfer

Two factors influence the effectiveness of the transfer of

operational capability. The most important is the nature of the

operational capability. At the highest level of transfer

effectiveness are offerings that directly provide operational

capability of military concern, e.g., a nuclear weapons design

-program. At the middle level of transfer effectiven-ss are

offerings that provide an appropriate base that may be modified

at a cost significantly less than starting from scratch to

provide the specific application operational ability of concern,

e.g., a civilian air traffic control system that could be

modified to meet military requirements. At the lowest level of

transfer effectiveness are offerings that provide operational

capability of no concern, e.g., a payroll program.

The second factor involves the form of the operational

* capability, which may range from "easy to replicate" (e.g., a

83

program recorded on a reel of tape) to "hard to replicate" (e.g.,

a program embedded in a semiconductor chip). Also, the product

may or may not be in a form which can be easily used on an

adversary's computer. The "easy to replicate" forms of

operational capability are of much more concern because they

potentially transfer an unlimited quantity of the operational

capability in question, given that suitable systems and
L4

supporting services are available.

These four criteria may be applied to each of the transfer

mechanisms outlined above. In most cases there is a wide range

of possible levels of effectiveness; the software subgroup has

isolated those combinations which are of greatest concern.

6.4. Evaluation of Transfer Mechanisms

6.4.1. Apprenticeship

Many of the types of apprenticeships listed above are likely

to be highly effective because they are very active, i.e., a

"student" works under the close supervision of a. knowledgeable

team or person [9]. This kind of experience-building, iterative

contact is not available via passive sources but is essential to

learning how to put together large pieces of software that work.

Any consideration of evaluating apprentice relationships should

be in terms of how much participation in the social process of

life-cycle software development they permit. A thesis project on

a highly theoretical subject, for example, which involves only a

single teacher and student is not likely to be of concern.

84

.1I

6.4.2. joint Ventures

Joint ventures with full participation of both sides in the

development of a product are likely to transfer significant

amounts of know-how in the development stages, and possibly high

degrees of operational capability as well. Such a venture will

.1 probably result in a product which is well-suited for its

application, and participation in the development process makes

maintenance and adaptation less difficult. Joint ventures which

glue together separate research and development efforts includeI almost as much potential for technology transfer, since a

'A substantial amount of joint work is required to make such a

product work in practice.

6.4.3. Product Support Assistance

The product support mechanism may involve an "active"

relationship between "student" and "teacher," and therefore has

the potential for substantial transfers of know-how. However,

this relationship differs from that of an apprenticeship not only

because it involves a single product, but also because the

'teacher" may have a strong incentive to prevent large transfers

of know-how which would make the "student" independent (or even

competitive) in the future.

Product support assistance which is of greatest concern is

that dealing with installation, maintenance, and enhancement,

since these kinds of training raise the adversary's ability to

make the product more portable and to adapt it to other purposes.

Of most concern is training which imparts general O&M skills.

User training which transfers little more than operational know-

85

how (for example, a limited amount of classroom instruction)

would not be of great concern.

6.4.4. Consulting

A wide range of activities fall under this heading. At one

extreme are "student"-"teacher" relationships which function as

apprentice relationships as outlined above. At the other extreme

are consulting activities which involve solving a specific

problem for the adversary with minimal participation by him, and

which reveal little about the solution or the social process of

producing it. Therefore, the consulting activities which are of

concern are those which are active, which allow adversary

participation in the solution process, and which transfer O&M

capability.

6.4.5. Product Shipment

The effectiveness of the product shipment mechanism depends

on the physical forms of the transfer. Various documentation

forms (e.g., design specification data, intermediate

documentation, user manuals, and program logic manuals) and

source code listings alone or together can transfer a substantial

amount of know-how and operational capability. The effectiveness

of product shipments can be greatly enhanced by the presence of

arrays of these materials or other sources of information.

Linking together a detailed manual on software engineering,

design specilications, intermediate documentation, and the final 4

source code product, for example, may result in the transfer of

86 !1

II

I
substantial amount of know-how. Therefore, particular care

should be taken to consider what arrays of products are being

shipped.

One of the hypotheses of the software subgroup has been

that, all other things being equal, software which is portable

and can easily be reconstructed should be of more concern than

software which does not have these characteristics. Consequently,

there should be ways of protectii.g software so that some

operational capability can be transferred without transferring a

substantial amount of know-how or an open-ended operational

capability. what are needed are effective means by which the

software can protect its own "secrets" and prevent misuse. Some

suggestions for such means will be considered in Section 6.5. For

now it is enough to examine methods presently in use.

The traditional means used by Western corporations for

controlling the unauthorized replication, distribution, and

modification of software, and for preventing transfers of

proprietary information contained in a product, have been two.

First, they have relied on contracts and traditional legal

sanctions to enforce regulations about unauthorized duplication

of programs which need no modification and can be used at any

installation. Second, for programs which need modification, they

have relied on selling only object code versions of programs.

This is a form of weak encryption which has been relatively

j effective because American corporations have seen little value in

spending the resources needed to decompile object code. Can these

+ {traditional means be effective control mechanisms against the

87

adversary countries?

The control mechanisms used in the U.S. probably are not as

effective with regard to adversary countries. In the first

place, sanctions against unauthorized replication, duplication,

and modification cannot be enforced. Contracts and sanctions have

proven to be almost worthless internationally. Secondly, it is

very difficult to detect when a specific violation has occurred,

especially if a product has been transferred to a military

installation. Finally, the form of the product may or may not be

an effective barrier against transfers of know-how.

The CNCTEG reached the tentative conclusion that the form of

code transferred, i.e. source versus object, did not make a great

deal of difference with respect to the transfer of operational

capability (neither form alone can transfer & significant amount

of know-how). The TWG-7 software subgroup has come to modify that

conclusion for a variety of reasons. Although it remains true

that- source code versions of programs can be obtained in some

instances with relative ease and that execution environments can

be emulated, the availability of only object code can effectively

hinder technology transfer in certain respects.

There are limits to how much information can be obtained

from an object code version of a program. in the first place,

decompiling is technically imperfect and can only produce code

without comments. Much decompiling is really de-assembling; that

is, creating semi-symbolic assembly language source listings of

the CPU operation code symbolics only. There are few, if any,

symbolic data or address references, and almost never HOL

symbolic source statements output from (known) decompilers today.

88

t4

I

In the case of modern optimizing compilers, there is some doubt

as to whether decompiled code will even vaguely resemble the

source code form or even be comprehensible. Furthermore,

decompiling can offer little insight into the relationships

between modules (who "talks to" whom) which is such an important

part of large integrated systems. A fully-documented source code

program can yield insights into the design process, especially

when used in conjuction with "how-to" materials, while an object

code program which has been decompiled cannot. Some two-thirds of

software development costs currently go towards maintenance and

enhancement, yet in many cases, having object code alone would

not be sufficient to carry out these activities, or would at

least make them very difficult.

The Soviets have probably had much more experience with

decompiling than has the U.S. They do not face the same legal and

economic restraints present in the U.S. They have a large pool of

programmers who have actually been trained in machine language

skills, and have shown a desire to borrow from the West even when

they may possess the skills necessary to do it themselves. As has

been noted in Section 3, the Soviets are on the threshold of a

new period of software development. The form and kinds of

products acquired by them from the West may have a substantial

impact on the course this development effort follows. There is

no guarantee that the Soviets are unwilling to devote the

resources needed to successfully decompile large programs.

Apparently, the Soviets are willing to go to some length to

obtain source code10l.

89

The provision of updates, new releases, etc., should be

considered at the same time as consideration of the sale of the

product itself is made. The physical forms of updates, new

releases, etc., should not differ from the forms of the original

prod uct.

6.4.6. Academic Courses

The desirability of controlling this mechanism depends upon

the degree of "activeness" of the relationship between "student"

and *teacher' and the nature of the technology being transferred.

Some well-motivated foreign "students" cultivate a very active

relationship with the "teacher." The academic courses which are

of most concern are those that present information which is not

available in the passive literature and include projects which

impart a significant amount of know-how. For example, seminars

offered within a company which involve proprietary information

should be of great concern.

Another important factor is what information and resources

are accessible to the "student." While it might seem unnecessary

to control an introductory computer science course, if such a

course gave the "student" unlimited access to computer center

resources for an extended period of time, substantial know-how

and operational capability transfers could take place. Even the

resources of a good library and access to a Xerox machine could

result in substantial transfers given enough time. Furthermore,

if the course itself deals with software modification,

adaptation, and enhancement, it could impart to the student

significant skills in these areas.

90

6.4.7. Professional Contacts

Professional contacts involve a wide range of interactions

between adversary seekers of information and Western sources.

Hence, the effectiveness of these mechanisms enjoys perhaps the

widest variations of any of those outlined here. Brief encounters

via a conference, user group participation, correspondence, even

contract negotiations may result in an active relationship which

could result in a transfer of know-how. Furthermore, sizeable

amounts of know-how may be transferred by a series of brief

encounters which, by themselves,- are unimportant. The amount of

information transferred, the replicability of any products

acquired, and the suitability of those products also can vary

widely according to the kind of relationships which develop. Even

a short description of a new research direction in the West may

save the adversaries substantial resources by indicating the

directions they should pursue.

Given the difficulty of assessing how effective this

mechanism may be, the software subgroup has reached the

conclusion that the criterion of time should be adopted as one

means of realistically evaluating the kinds of transfers which

can take place via this mechanism. Exchange programs and other

professional contacts of an extended nature (a month or longer)

are of most concern. The classified Appendix to this section

discusses some forms of this mechanism in more detail.

6.4.8. Written Materials

Some forms of written sources may result in significant

91

technology transfers. For example, modern compute r-as sisted
instruction routines, programmed learning texts, or other

"courseware" may be effective. Other publications which discuss

state of the art developments can also be extremely useful to

adversaries.

The software subgroup has found that there is a substantial

amount of information which is of concern that is available

through governmental and academic channels. However, the wide

variety of materials available, the difficulty of devising

control mechanisms, and the absence of supervision and iterative

feedback in its use imply that only classified or proprietary

information can or should be controlled.

6.4.9. Remote Access Usage

While remote access usage generally poses little threat of

technology transfer, certain types of software may permit

substantial technology transfers to occur. Modern interactive

software products are designed to help the user every step of the

way. A determined adversary "probing" such a system may be able

to learn a substantial amount about its inputs, outputs,

limitations, etc. Furthermore, software systems are beginning to

incorporate expert insights in various fields. Software which is

intended to help a user create and design such expert systems

would carry a high potential for technology transfer if used by

an adversary. Since this software has the ability to behave like

a knowledgeable human being, active transfers can take place even

though a human is not present. Another concern presented by

remote access usage is that an adversary user might gain

92

unauthorized access to software or data.

6.4.10O. Covert Mechanisms

There are several factors which influence the effectiveness

of covert mechanisms. First, "he adversary must be able to

define specifically what he wants to acquire in the American

T0marketplace." While this is not always an easy matter, past

experience has shown that seemingly innocent technical visits by

trained personnel have served as a means for "shoppingn for later

acquisitions.. If the adversary is ready to risk a covert

acquisition, he is likely to obtain programs which have a high

operational value and can be easily replicated.

once the acquisition requirement has been defined, the

number of intermediaries between those requesting the product and

those acquiring it becomes important. Clearly, if the

acquisition of a product is entrusted to someone who really has a

limited conception of what to take, the likelihood that all of

the required components will be acquired is diminished.

Furthermore, it would be quite useful to be able to make an on

the spot assessment to see what complementary products, suci4 as

documentation and maintenance ai~ds, might be available with the

product. Finally, the product which is acquired must have a

suitable hardware host in which it can function. The advent of a

suitable hardware base in the Ryad and SM1 models -may be spurring

an increased desire for covert acquisitions.

One argument which the software subgroup rejects is the idea

that exports should be permitted on the basis that the "adversary

can get it anyway" via covert means. As it should be clear from

93

MOON

AD-AI06 869 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA SCIENCE A--ETC F/G 9/2
SOFTWARE TECHNOLOGY TRANSFER AND EXPORT CONTROL.(U)
JAN 81 S E GOODMAN, N S SLICK, W K NCHENRY MDA903-79-C-0018

UNCLASSIFIED IDA-N-S78 IDA/HG-81-23408 NLM2NENlllfllllIf
IIIIIIIIIIIIIu
EEEEIIIEIIEII
IIEII

Al

the above, the effectiveness of such a transfer will probably be

far less than that of an outright sale, especially with a number

of intermediaries in the acquisition chain.

6.5. A Partition of Transfer Mechanisms for the Purposes of

Export Control

To attempt to control all of the transfer mechanisms

outlined above would be highly undesirable and impossible in

practice. The software subgroup has partitioned the mechanisms

into four general categories. The first categQry contains some of

the most effective mechanisms for which adequate controls may be

possible. The remaining categories contain mechanisms that are

less effective, or harder to control, or for which controls are

less desirable (e.g., because controls may hurt us more than they

hurt an adversary). Such a partition does not attempt to address

the feasibility or desirability of controlling every technology

transfer; rather, it is intended as a broad, tentative guideline

only. Furthermore, with. the partial exception of the section on

technical measures below, the subgroup has not considered how

these controls should be implemented. Such a task is beyond the

resources and the purposes of the subgroup.

Some undesirable transfers take place merely because of

ignorance on the part of United States citizens about the

technological levels and interests of an adversary. it is our

hope that our study will alert the United States data processing

community to potentially damaging transfers. The software

subgroup holds the view that voluntary restraints by an educated

data processing community may be at least as effective as

government controls.

94

1

6.5.1. Categories

The following transfer mechanisms apply to all transfers,

regardless of source (industrial, academic, or governmental).

Effective mechanisms for which adequate controls may be

possible.

Apprenticeships: Team Membership
License with Extensive Teaching

Joint Ventures

Product Shipment: Development Data Base

Product Support
Assistance: Modification and Enhancement Training

Maintenance Training

Consulting

We feel that these mechanisms are less effective and more

difficult to control than those in Category I, but that control

may be possible.

Professional
Contacts: Extended Visits (without apprenticeships)

User Group Participation

Product Shipment: Source Code and Detailed Documentation

Product Support
Assistance: Installation Training

Academic and
Other Courses: State-of-the-art training (including courses),

not widely available

95

Contract
Negotiations: Detailed negotiations and proposals

Usage

Caegr
While control of the following mechanisms may be possible,

it is doubtful if such controls would be desirable or worth the

effort of imposing them.

Professional
Contacts: Control of visiting adversary nationals' move-

mernts in those parts of host organi-
zation's facilities that are accessible to all

*1 members of that organization (e.g., restricted
access to computer centers at commercial or

4 non-prof it organizations).

Movement of U.S. citizens abroad

"Licensing" people who deal with adversary
countries in technical matters

We feel that control of the following mechanisms would be

highly undesirable either because they only involve weak

technology transfers or because controlling them would impose

severe constraints on the software industry in the United States.

Written Material: widely Available Literature (not classified or
proprietary)

Correspondence

Product Support
Assistance: User Training for Purchased Products

Product Shipment: object Code and Users Manuals

Professional
Contacts: Short Term (less than two weeks) Contacts

and Visits

* Ii

Short Term Visits to Trade Shows, Exhibits, and
Conferences

Work that is Primarily of a Theoretical Nature

Apprenticeships: One-on-one Thesis Supervision (but restrict

exposure to facilities or group projects)

Academic Courses: Courses that are Widely Available

6.5.2. Technical Measures

A promising approach to the problem of source versus object

code sales and problems of portability, replicability, etc. is

the use of technical measures to tie software to the particular

machine on which it is being run and to ensure that the software

itself is not tampered with.

What forms should these technical measures take? One

possibility would be to have the software read special hardware

"signatures" which would be unique to each computer. If the

software could not make a correct reading, it would cease to

function or produce intentionally wrong results. Buried in

thousands of lines of object code, such a command would be

exceedingly difficult to find, perhaps entailing about as much

effort as reverse engineering the entire system. For stand-alone

software sales, the software could be tuned for the computer it

I is to run on by measuring certain timing or other unique

characteristics of the machine. Software can also be transferred

I in hardware forms such as ROM.

These ideas should be taken as nothing more than promising

* suggestions. It is our belief that government-funded research in

I 97

this area could produce simple, creative measures which would not

only be an an effective aid in limiting technology transfers, but

also a means of preventing bootlegging and unauthorized transfers

of software in the United States. As software investment

continues to burgeon, U.S. manufacturers will have increasing

incentives to use such measures. Furthermore, the dramatic

reductions in the cost of hardware predicted for the future will

make such technical measures economically feasible.

18

.1$

7. Some Thought Experiments

7.1. Introduction

In this section, we try to pull together the "Who", the

OWhat", and the "How" of software technology transfer. We try to

view the acquisition of software and the associated process from

the perspective of a determined antagonist. This antagonist has

a number of reasons for wanting to acquire software and

information about it. One is to determine Western capabilities in

order to establish where we stand with respect to the state of

the art in a given area. While this information is useful for

intelligence and counter-command purposes, it is not an area of

concern of this section. Other major reasons for acquiring

software, as opposed to developing it from scratch, are to reduce

the expenditure of resources - some of which, like system

programmers, may be in critical supply - and to reduce the

amount of time that it normally takes to develop and field a

tested system.

Basically there are two approach-s that such an antagonist

might pursue to acquire the software and related documentation.

The first approach is to determine the life-cycle of the software

of interest, to identify the phases (See Section 2) and to

attempt to acquire as much as possible of the project library

data base produced during each life-cycle phase. The second
J

approach uses a functional analysis to determine the requirements

which must be satisfied by the software in question and then

* attempt to fulfill those requirements by acquiring commercially

Uavailable software.

S I99

I1

7.2 Software Life-Cycle Phases

7.2.1. Phases and Products

The normal DoD software life -cycle phases are five:

conceptual validation, requirements validation, full-scale

development, production, and deployment. Within this cycle, three

key decision points are reached: (1) Program Decision -

following the conceptual phase; (2) Ratification Decision -

following the requirements validation phase; and (3) Prod-

uction Decision - following the full-scale development phase.

These decision points are supported by the Defense Systems

Acquisition Review Council (DSARC) and are designated in Figure

7.1 as DSARC 1, 2, and 3.

These DoD phases include all of the generic life-cycle

phases outlined in Section 2.1. The conceptual phase includes the

process of concept definition; from this phase an initial

specification is produced. A complete requirements document

results from the requirements phase The four software life-cycle

functions of design, coding and checkout, testing, and

integration occur during the full scale development and initial

production phases.

The major milestones that occur during the system life-cycle

phases and their associated documentation are indicated in Fig.

7.1. In the requirements definition phase, the final system

specification is issued. Also the draft part I (development) and

the draft interface control drawings (ICDs) are prepared and

reviewed at the system design review. Quite often, a computer

program configuration item (CPCI) requirements review will be

held at the end of the requirements definition phase.

10

II
j J hhhh~m.~- -. -~ - - - -- -ca

atw

Cc cr V) .2
j

11

Va LLa

u. -j U,

ww

-w -Q
ct >

h2 wo Q=U

Cat: L
0 j - I

2 t W

LU 01

The final part I specifications and ICDs are issued in the

design phase. Preliminary test plans and partial draft II

(product) specifications are prepared for review at the

preliminary design review (PDR). The design phase ends with the

issuance of the final test plan, the draft test procedures and

the draft part II specifications, which are reviewed at the

critical design review (CDR).

In the coding and checkout phase, the test procedures are

finalized and the initial CPCI delivery is made. In the testing

phase the interim CPCI delivery is made and the preliminary part

II specification. is issued. During the integration phase the

final copies of part II specification, the test reports, and the

CPCIs are delivered. Revised copies of the system and part I

specifications and the ICDs are issued incorporating the approved

changes so that current documentation is available for transition

to the operational phase. The physical configuration audit (PCA)

is held following all the revisions and updates.

It should be recognized that Figure 7.1. illustrates the

idealized flow through the cycle. in reality there are numerous

feedback iterations which occur due to requirements or design

changes, hardware/software tradeoffs, problems encountered during

testing, etc.

7.2.2. Technology Transfer Utilizing Life-cycle Products

An adversary wanting to improve his own operational

capability and at the same time desiring to reduce expenditures

of critical resources (including calendar time) might choose to

do so by acquiring a copy of a Western system. One way to do this

102

would be to attempt to acquire all of the documentation products

indicated on Figure 7.1 (the project library data base). Even on

a classified project, a surprising percentage of the documents

may not be classified, so that accessibility by an adversary may

not be effectively restricted.

If all the products are not accessible, it is a useful

1 0 exercise to assess the impact on resource. expenditures if only

certain of the products are available. In order to do this, let

us hypothesize a typical software system project, project A. We

assume that the size of the delivered software system is 100,000

lines of source code, that the human resources expended were 500

person-months of effort and that the length of the development

cycle (from requirements analysis through system acceptance) is

24 months. Figure 7.2. shows the resources expended during each

of the four main phases of the system life-cycle and the elapsed

time required in each of these phases.

PaePerson-Months Elpe 21=
[% of total

Requirements&
Specifications 50 (10%l 3 months

Design. 125 (25%I 5 months

Coding & Checkout 125 [25%I 9 months

System Integration
and Testing 200 (40%I 7 months

Figure 7.2. Human Resources and Time Requirements Distribution
* for a Typical Software Project

1 103

From this example, we see that if an adversary could acquire

only the requirements and specification documentation, he would

be able to reduce his resource expenditures by no more than 10%

and reduce his development cycle three months. For purposes of

simplicity we assume that there is no loss of information in

transferring, reading, and understanding the documentation, nor

are there any resources expended by the adversary on learning and

"coming up to speed" on the project. As a matter of fact, as more

software systems are engineered using modern technologies, such

as formal specificationsr hierarchies of abstract machines, etc.

the more this simplifying assumption becomes true, and the more

resources can be saved by an adversary who captures the early

requirements and specification documentation.

If the adversary could acquire the requirements and design

documentation, he would reduce his expenditures of resources on

the projectL by as much as 35% and reduce his development time by

perhaps eight months. If he could acquire the checked out code

and its documentation, he might reduce his resource expenditures

on the project by 60% and his development time by 17 months.

In practice, the real savings in time from acquiring a range

of products from a software system's library data base may lie

more in the fact-that the adversary has dramatically reduced the

risk of taking a "wrong" design approach, than in the physical

acquisition of the products themselves. No matter how long it

takes the adversary to build the system once he has the pieces,

he has a reasonable assurance that the pieces do fit together and

will eventually provide him with an operational capability he

104

desires. ie may have substantially reduced the possibility of

pouring large amounts of resources into a project that eventujally

will have to be scrapped or that will drag out so long as to -nake

the product completely obsolete or functionally unnecessary by

the time it is completed. This seems to be one of the main

* reasons the Soviets decided to functionally duplicate the IBM4

S/360 and S/370 computers(81.

7.3. Acquiring Military Capability

In this section we explore two additional, but distincti7e,

forms of technology transfer that might be employed by an

adversary to improve his militray software systems capability.

The first case examines the possibility of acquiring a military

capability through the exploitation of commercial software. The

second case uses the ADEPT-50 project as a case study to explore

ways an adversary could penetrate a. project to acquire software

technology and know-how.

7.3.1. Acquiring Military Software Through Commercial Software

For the purposes of this example, several candidate military

systems were considered, and a tactical command, control, and

communications (C3) system was chosen as an example to explore iii

more detail.

The basic functions (Figure 7.3) of the tactical C3 system

are to support the field commander and his staff in the

acquisition and organization of essential tactical data, in

storing, retrieving, manipulating, and displaying it to support

the commander and his staff in making decisions. This support

Los

ADATA DATA
AFFECTING AFFECTING

REQUIREMENTS CAPAB IL ITY

Intelligence-->I I Forces-------------1

Sitreps--------- >1 Situation I Materiel---------- >1 Resource I

News------------- >1 Monitoring/I Support Forces-->! Monitoring/

Directives--->I Analysis I Personnel--------- >; Analysis I

Requests ------ >1 1Facilities-------- >i
Etc.------------- >1I Etc.---------------- >1

-- - - - - - >1 I__ _ _ _ _ _ _ _ _ _ <

---------- >1< -------------------

IPlans
ICapab il ity/I
IEvaluation I

>----------- I

I Plan I I
IGeneration/ I
IModi.ficati.on I I

I-----------
I __________-I - ________

IAlert. and I
IExecution

1operations I
IMonitoring

--- *4+->---

Figure 7.3. Basic C-cubed Functions

1.06

II

requires an on-line, real-time information processing system

designed to facilitate effective management of field resources,

particularly during emergency situations.

These functions are basic to the discharge of command

responsibilities. Each of these functions is supported by one or

more specific operational capabilities; i.e., by a set of

interrelated computer programs designed to provide a console

operator with command and status information relative to

operational problems. The total set of operational capabilities

provides for the retrieval of information relative to the current

status of military resources, including forces, material,

facilities, personnel, medical items and communications-

electronics items. They also provide for the retrieval of plans

information based on operator input of descriptive qualifiers

about a specific military situation. Plan requirements can be

compared with current status data to evaluate the feasbility of

implementing a particular plan. In the event that a plan is not

feasible, it may be modified through the utilization of pre-

stored or operator entered planning factors. These planning

factors are also used as a basis for generating plans in the

event that no suitable plan exists. Subsequent to the

implementation of a plan, operational reports are compared with

planned events to monitor the progress of the operation.

Potential problem areas can be detected and resolved quickly.

The basic software functions that must be executed in the

system are:

107

1. Communications Processing

The C3 system must be coupled through a communications

network to higher and lower echelons of command, to

other elements of the command structure, such as

intelligence, logistics, etc.

2. Data Base Management

The organization, storage, and retrieval of information

in the system requires a data base management

capability.

The system must be on-line and interactive to be

effective. This requires the use of terminals for query

entry and control, printers for hard copy, and the use

of displays for dynamic presentation of data and

graphics.

4. Special Applications Processing

There will be a need for special functions to support

command decision making. These can range from basic

statistical packages to more sophisticated decision

making tools.

The first stage of the eff ort would be to develop and test a

functionally equivalent C3 system by integrating commercially

available hardware and software components. The basic hardware

elements needed are:

1. A central processor and main memory;

108

2. Mass storage peripherals (high-speed, high-density

disks);

3. Alphanumeric display terminals with keyboards and a

graphic display system; and

4. A communications controller.

The basic software elements are:

1. A real-time, event-driven multiprogramming system;

2. Terminal and graphics processing software;

3. A data base management system; and

4. Special applications software including analyst support

and management/command decision making.

Such a system could be assembled by using a DEC PDP-11/70

data processing system*, equipped with a high-speed control and a

mass storage peripheral for information storage. Alphanumeric

displays and keyboard entry of data and commands could be

supported by DEC VT5Z terminals. Color graphics capabilities

could be added by utilizing the AYDIN display system which has

hardware and software designed to interface with the PDP-11/70.

The operating system could be the DEC RSX-llM system which is a

real-time, event-driven system that supports a variety of I/O

devices, including alphanumeric displays, communications devices,

etc. If the communications processing load becomes too heavy for

* At least two SM minicomputer models are currently being
built in the Warsaw Pact countries which are based on the DEC
PDP-11 architecture. We do not know to what extent these machines
are compatible with those of DEC, nor whether or not the Soviets
or Eastern Europeans have acquired any of the products described
in this section.

109

for the PDP-ll/70, then a DEC PDP-11/04 could be added to act as

a front-end processor.

For the data base management capability a system such as
DEC's Datatrieve 11 could initially be utilized. This is an

interactive query, report, and data maintenance system which

provides facilities for data retrieval, formatting, report

generation, etc. It runs under RSX-llM and includes the RMS-11K

record management services software. The- one area for which

commercial software is not generally available is that required

to support command decision making, although a great deal of R&D

is being done in the areas of self-adapting systems and computer-

based information decision and forecasting systems, and software

is availablefl].

Once the commercial software/hardware capability is

workable, then steps can be taken to make the system suitable for

field military use. This can be done by van-mounting the hardware

to protect it, by ruggedizing the hardware, or by acquiring

military versions of the commercial hardware. For example, Norden

builds a Mil-spec version of the PDP-11/70.

7.3.2. Technology Transfer Mechanisms and the ADEPT-50 System

In this section we perform a gedanken experiment on a real

system development project of the late 1960's. The current Soviet

systems capability can be likened to the U.S. capability of this

time frame. The experiment examines the most effective technical

transfer mechanisms employed on that project which, by analogy,

might be employed by Soviet systems software people in current

technology transfer efforts.

110

7.3.2.1. Project Overview

ADEPT-50 (1ll was a three year project to build a general

purpose timesharing system for potential military use on medi~im

scale commercial computers. An IBM 360/50 was selected as the

base hardware. The system requirements call.ed for three classes

of software, which had to be fully integrated with one another:

1. The ADEPT timesharing operating system;I 2. An interactive data base management system, TDMS; and

A 3. A set of software development tools oriented around a

JOVIAL compiler.

None of the software items existed, though experience with

similar software existed in the project. Therefore, except the

IBM assembler and some IBM loaders, all system components and all

tools to develop the system had to be built from scratch.

The project began with four experienced designers working on

the operating system (OS) -and, at its peak, grew to include some

dozen software people. The service functions of the OS were

designed first and became the interfacing specifications for both

the TDMS and tools groups. A- first kernel OS was servicing these

groups at the end of sixz months. lTew releases appeared every

* three months, slowing to every six months in the last year. Such

releases were incrementally more capable systems. Software

library maintenance tools, debug tools and sysgen (system

generation) tools were completed during the first six months. The

sophisticated JOVIAL tools were at the state of the art in design

of incremental on-line compilation throughout the full project

life. The TDMS system was the most advanced DBMS then conceived

III

employing fully inverted files, English query, flexible report

generation, and batch update. The OS advanced the technology of

secure timesharing and timesharing for large user programs on

moderate hardware. The whole system was completed successfully

and installed in a number of operational DoD test beds. It

survived many years until passed by modern systems. The TDS and

many tools survive today in operational use, and the A-DEPT

security approach began a serious effort on, and contributed to,

today's multilevel secure systems.

7.3.2.2. Experimental Results

The gedanken. experiment provided insight into the nature of

the interrelations between the ADEPT-30 technologies and the

transfer mechanisms. Much of this insight is captured and

explained elsewhere in this report. It supported the choice of

most of the recommended list items of Section 8. In this section

we summarize the results of the experiment and the tie-ins to the

list items.

a) operational Capability

Access to the initial ADEPT-50 operating system (OS) in the

first six months provided a quick operational capability for the

project technical staff. This usage allowed staff personnel to

become fully acquainted with the OS behavior, performance,

command language, and capabilities. This, in effect, provided

them with a working exposure to the system requirements and

functional specifications. The importance of this experience

cannot be under es timat ed, because it had considerable impact on

112

many of the tasks in system development, e.g., online docu-

mentation, coding, and testing.

b) Source Code and Specifications

Of course, these system development tasks also required

access to system source code and specifications contained in the

system software library data base. This added material

significantly increased technical understanding, and was

necessary for the staff to extend the operational capability by

system modification as noted below.

It seemed to us that adversary programming groups could, and

have, benefitted in similar ways from access to operational

capabilities and parts of the software library data base. We

believe that what has been described in the preceding two

paragraphes were major inputs in the efforts by the Warsaw Pact

countries to acquire the IBM S/360 operating systems for their

Unified System (ES) family, and may well be an important aspect

of other software acquisitions by these countries. A goal of

export control should be to try and limit access to the most

revealing parts of the software library data base, as we try to

do with the list item described in Section 8.2.2. Furthermore, in

Section 8.3, we suggest that access be limited to the least

revealing parts of this data base, i.e., to object code and basic

users manuals, and the use of object code that is somehow

technically configured to limit portability.

c) Software Development Tools

If access to the ADEPT-50 technical data base made

extentions to the system feasible, access to software development

113

tools made such extensions practical. These tools are described

in Sections 2.3 and 5.5, and allow controlled manipulation and

management of the source code. Since they themselves are

software, they are subject to all the limitations and foibles

involved in building any large-scale software product. They are

indispensible in any large-scale software development project,

are key to software export control, and are addressed by an

important list item described in Section 8.2.3.

d) People

The ADEPT-50 project began with a small, experienced staff

and grew to include more junior technical people as the project

matured. These junior staff members were apprentices to the

senior designers, who acted as consultants and mentors to the

junior staff. They were the "active" transfer agents, explaining

why the essential features of the design were selected and how

they were implemented, assisting the new members in finding their

way around the extensive and growing software library data base,

and teaching the junior staff how to make the best use of the

software development tools. Coupled with the other aids noted

above, the experts greatly improved the efficiency of the team.

The active mechanisms used here (and others) have been described

in Section 6, and have been partitioned into four categories by

their effectiveness and controllability (Section 6.5). The

recommendations for restricted mechanisms form an important part

of the definitions and potential implementations of all our

recommended list items (Sections 8.2.1-8.2.8).

114

e) System Modification

We believe that software operations and maintenance (O&M)

are really software redesign and implementation. Therefore, the

technical ability to maintain and enhance software is technology

that can be used to build software. The ADEPT-50 experience is

typical of the development of many large software systems, and

supports this point. The new ADEPT-50 releases which were issued

were essentially new software products, even though they were

composed largely of the same modules as existed in the earlier

releases, plus new functional additions and changes to some of

the older modules. The importance of this maintenance technology

is such that we felt the need to include it as a distinct list

item, described in Section 8.2.4.

f) Conclusion

It is relevant to our present analysis to note that, within

a. year, the junior staff were sufficiently skilled, trained, and

experienced to support the configuration management and

production of new releases. After another year or two, they were

leading software development projects of their own. By analogy, a

Soviet team might be able to repeat the learning experience of

the ADEPT-50 junior staff by initially taking responsibility for

maintenance of a commercially available U.S. software product.

Mastering the maintenance tasks would allow the staff to begin

to make incremental and selective modifications or to adapt the

software for other, including military, applications. it appears

that some of the Warsaw Pact countries have been doing this.

Furthermore, use of the more active transfer mechanisms would

115

"

greatly facilitate such transfers, and would contribute further

know-how that could better enable adversaries to build new

systems for military purposes.

7.4. Software Development Trends

In order to combat the proliferation of CPU architectures

and to shorten the development cycle and to reduce costs, the

military services are moving towards the use of so-called

commercial test beds. The idea is to develop and field prototype

systems for feasibility demonstration using commercial hardware

and as much "off-the-shelf" software as possible. As a matter of

fact, the Army is using an approach not unlike that postulated in

Section 7.3.1. for its Beta system.

Furthermore, the trend is to create standardized software

development systems to be used by both military and contractor

personnel to develop and maintain military software systems. As

an example of this, the Army is proposing to create 11 PDSS (Post

Development Software Support) centers for the development and

maintenance of all Army battlefield automation software. These

centers will be equipped with common hardware and support

software and tools. The use of Ada as the standard programming

language, plus the rigid enforcement of software standards and

practices, will be an integral part of the process. These trends,

plus the standardization of military computer architecture

families, will make it easier in the future for a determined

adversary to acquire software systems capability if adequate

controls are not exercised.

116

8. Recommendations

8.1. Introduction

This section presents our recommendations frlist i6tems on

the militarily critical technologies list and a number of other

recommendations concerning product form and further study. The

posture of this group has been to consider software technology

and its transfer as a process. Therefore, we feel that

controlling related technology transfer mechanisms is an integral

part of the definition and control of software technologies. For

easy reference, we have reproduced the four categories of

transfer mechanisms from Section 6.5.2.

Categories at Sotwr Teh c Trnse Me chan i sms

The following four categories of transfer mechanism~s apply

regardless of the source of the transfer (academic, governmental,

industrial):

Caegr I

4 Effective mechanisms for which adequate controls may be

possible.

Apprenticeships: Team Membership
License with Extensive Teaching

Joint Ventures

Product Shipment: Development Data Base

Product Support
Assistance: Modification and Enhancement Training

Maintenance Training

Consulting

117

category rT

We feel that these mechanisms are less effective and more

difficult to control than those in Category I, but that control

may be possible.

Professional
Contacts: Extended Visits (without apprenticeships)

User Group Participation

Product Shipment: Source Code and Detailed Documentation

Product Support
Assistance: Installation Training

Academic and
Other Courses: State-of-the-art training (including courses),

not widely available

Contract
Negotiations: Detailed negotiations and proposals

Usage

While control of the following mechanisms may be possible,

it is doubtful if such controls would be desirable or worth the

effort of imposing them.

Professional
Contacts: Control of visiting adversary nationals' move-

ments in those parts of host organi-
zation's facilities that are accessible to all
members of that organization (e.g., restricted
access to computer centers at commercial or
non-profit organizations).

Movement of U.S. citizens abroad

"Licensing" people who deal with adversary
countries in technical matters

118

4 Catecory

*We feel that control of the following mechanisms would be

highly undesirable either because they only involve weak

-A technology transfers or because controlling them w;ould impose

severe constraints on the software industry in the United States.

Written Material: Widely Available Literature (not classified or

proprietary)

Correspondence

Product Support
Assistance: User Training for Purchased Products

Product Shipment: Object Code and Users Manuals

Professional
Contacts: Short Term (less than 2 weeks) Contacts and Visits

Short Term Visits to Trade Shows, Exhibits, and
Conferences

Work that is Primarily of a Theoretical Nature

Apprenticeships: One-on-one Thesis Supervision (but restrict

exposure to facilities or group projects)

Academic Courses: Courses that are Widely Available

8.2. Recommended Entries for the Militarily Critical
Technologies List

8.2.1. Life-Cycle Management Technology

Descr1 otion

The best working software is a product of a number of

discrete stages with defined output and review, i.e., a social

119

process. Together with the use of the software library data base

and software development tools, they comprise what we have chosen

to call "life-cycle management technology." Although numercus

approaches to the life cycle for software are used, one that is

modelled here is the DoD methodology-

The earliest stage is that of concept d, when the

overall system purpose and operation is conceived. A clear

statement of objectives is required. Objectives may be derived

from higher-level systems, from control of lower-level systems,

from simulations, and from "war gaming" scenarios. Cost and

scheduling factors also assist in the concept definition.

The /l_ _ stages begin to

structure what the system must do to satisfy its objectives.

Again, simulation can be employed. Techniques of structured

requirements are usefully employed to follow the flow of system

operational control and its needed data a-nd computational

requirements. Once developed, these requirements and their

specifications must be written in well-formed, unambiguous

notation. A number of such languages now exist and are used in

preparing mathematically precise system specifications of what

the system must do, i.e., its service specifications.

4 is the stage that defines how the system

works, i.e., how the system implements the service

specifications. A design may be written in at least one of a

number of notations: flow diagrams and data diagrams, state

machine tables or specification languages, English, structured

English, or even a programming Higher Order Language (HOL) of the

120

coding variety. Each approach carries with it advantages and

disadvantages and a considerable technical methodology. All

approaches use a form of modular design which defines the input,

output, and functional behavior of each module. with the

definition of these modules and their interfaces to other

modules, system hardware, and human components, a software

architecture is developed. More modern methods go further in

describing the types of parameters, and their "visibility" in

scope to other modules. Side effects and environmental

considerations for each module may also be specified.

C proceeds directly from the design stage. First the

individual modules are coded, then the associated modules until a

chain of integrated modules is built up which performs one or

more of the service specifications. The design is often imple-

mented in an HOL such as FORTRAN, COBOL, JOVIAL, PASCAL, etc.

These module chains, called "builds," relate directly to the

requirements specification and form the basic unit of t of

the system. Modern testing methods employ "threads" or "builds"

testing which checks the correct operation of a thread (i.e., a

logical, ordered subset of the whole) of functions which satisfy

one system requirement. There is considerable technology required

for system testing. Test plans must be developed to lay out a

strategy of tests to be performed in sequence by a number of

systems people working in parallel. Test conditions are set up,

parameters to drive modules are created, and results are captured

and analyzed against specifications and requirements. Errors that

are found must be logged and engineering changes generated and

controlled for correcting such errors. The module inventory grows

121

and changes with each engineering change, and a system of

conzrols tracks software releases and the errors outstanding

against them. These tests proceed thread by thread until all

requirements are demonstrated. Threads are then merged into a

complete integrated system, which is tested for correctness and

performance. Lastly, the system is tested at the user's

installation. This may be the first time that all of the system

elements work together and use real ("liven) data.

A number of management techniques are used at various points

in the life-cycle. Standard management activities, e.g.,

preparing work breakdowns, cost estimates, schedules, and

manpower loading statements, have been adapted to the peculiar-

ities of the software industry. Some of the know-how .;hich has

been acquired through difficult learning experiences includes

understanding and anticipating the rigor needed for a large

software project, handling detailed internal management and

technical documents, incorporating a number of defined events and

milestones for management review at various levels, using

modelling and control systems, and building project management on

the basis of hierarchies of individuals who have different levels

of experience and responsibility. Much of this experience cannon

be acquired through open, passive sources.

Enr: Software Life-cycle Management Technology

Integrated technical information and know-how related to the

understanding and utilization of life-cycle management methods

for the development of large software systems. Integrated

technical data and know-how include the aggregate of methods,

122

procedures, manuals, standards, events and milestones, work-

breakdown modeling and analysis techniques of resources (e.g.,

cost, schedule, labor, equipment) embodying U.S. managemenz

experience. Large software systems are those involving over

15,000 HOL source statements, or four or more person years of

labor before the initial delivery of the system.

Military U y: High

£_o.e iczn AvailabilLti: See summary in Section 3.4.2.

Adv_ Ca/, Cablity: See summary in Section 3.4.1.

Recommendations o enisms: Mechanisms in
categories Z and I1 listed above.

8.2.2. Software Library Data Base

Descrintion

Unlike finished goods in other technical manufacturing,

software has no single physical form. In the early life cycle

stages it is English functional descriptions. In design stages it

is more akin to formal mathematics or logical information flow

specifications. In the coding stage it is in the form of "source"

text in a SOL. This text is translated by software tools into

"object" binary form for direct execution on a given computer.

Application programs in BOL source code form may be translated

into many different object code forms for different computers, or

into different object code forms on the same computer Icr

various configurations of interfacing software and peripheral

hardware. And for each form there must be accompanying

documentation to describe the software operation and differences.

3 123

.. ., Il I

Finally, through the O&M process, the source programs are

changed, repaired, and improved in function and performance to

produce an assortment of new versions of essentially the same

"product." The aggregate of these software items typically

constitute millions of lines of text in various forms. if any one

of these items is incorrectly formulated or maintained, incorrect

operation can result.

In order to maintain these items over the course of the

software life cycle, a software library data base is used. The

data base is created incrementally and is a "living" document,

best maintained on-line by a sophisticated set of tools. The

structure of the data base depends on the conventions of the

languages and notations employed in the various stages of

development. These conventions must permit both human and machine

access to the text.

The data base contains multiple directories of the objects

in the data base. All directories originate from a master

directory, which is often organized along system or component

lines so that releases of modules are placed with other modules

of the same thread or function. Subdirectories often follow the

organizational structure of the development project, with each

programmer having his or her private files. These files are

periodically released to the software librarian to include in the

master directory. The master directory is further organized by

text forms for each development stage; it then resembles a multi-

dimensional matrix of functions, forms, and people. This

structure is key to the retrieval and to the automation of the [
generation of system products: software and documentation. Even

124

A.
4

the naming of objects becomes a crucial technology as much of the

structure is embedded in the names. They reflect a path through

the directories, and they encode the form of the text and version

number of interest (e.g., JONES. PASCAL. 3) . They also provide a

uniform key upon which all of the related software tools can

operate.

Access to the library is strictly controlled by the

librarian and operating procedures for obvious reasons of safety

and protection, but also for less obvious reasons of error

control, cost control, status reporting, and project

communication. Private files are strictly controlled by each

owner. Backup procedures are of highest priority and are handled

both by the librarian and by individual programmers. Backup

becomes more crucial and more costly as the library grows.

The techniques outlined above are collectively known

as "configuration management."

~Ls Ent:y: Software Library Data Base

A large software product, which is the aggregated set of the

final textual forms it takes at each stage of the life-cycle

development process; and the data base and configuration

management techniques associated with these forms. These forms

are English descriptions, specification and design expressed in

special languages, HOL source code, and machine-executable binary

object code. They are entered into a software library data base

and are controlled through this data base and configuration

management techniques. Large software systems are those involving

over 15,000 HOL source statements, or four or more person years

125

I

of labor before the initial delivery of the system.

Militar, Utit: High

RZeco.Men j UAtn j2_qC Co.tI2_-1-p- M nzaa r Uz: The

mechanisms in Categories I and i1 listed above.

8.2.3. Software Development Tools

nescription

Software development tools vary widely and encompass almost

the full range of activities associated with software

development. It has taken the U.S. a long time to realize the

need for the systematic software development practices which are

enforced by the use of these tools. A considerable intellectual

and financial investment has been made in them and in the

technology that employs them correctly. For the purposes of this

list item, only integrated sets of tools should be considered.

A novel feature of the DoD language Ada is that it has been

designed from the start with the concept of a tools environment

in mind. The building of the "Ada environment" will involve a

very substantial software life-cycle management effort; our

controls extend to this experience and the environment, but not

to the language itself. The Ada environment is an example of an

integrated set of tools.

Software development tools fall into a number of generic

categories. Library maintenance tools are used to create

directories and files, for storage and retrieval of text, and for

other data base operations. Composition tools are used to enter,

edit, display, and/or print software text. Translation tools

include compilers, interpreters, assemblers, macro libraries,

126

pre-processors, and post-processors. Test and validation tools

confirm that the system is working correctly. Finally, pro-ect

management tools deal with all the adminiscrative aspectz of the

system being built.

List t: Software Development Tools

Array of technical information and know-how consisting of

the integrated set of software development tools used in the

development of large software products, including tools for

program library maintenance, program composition, translation,

test and validation, and program project management. "Integrated"

means the use of project management or library maintenance tools;

or the use of either of these in conjuction with any of the other

above-mentioned tools. Furthermore, these tools must be designed

to interface with each other's internal data structures, command

language, and internal (process) communications between modules.

M iliar U ilit : High

Feg Availability: Moderate.See Section 3.4.2(c).

Ad y Caaili v: Limited. See Section 3.4.1(f).

1_ZecomMgnaaad__i2. LU Cotr.l!_di =a ns _ iAia The
mechanisms in Categories I and I, given above. Furthermore,
products in any form, including object code, should be
controlled.

8.2.4. Maintenance of Large Software Products

The strategic value in software is not in a "secret

formula," but that it "works" and can be relied upon to continue

to operate as expected. Therefore, the system enters g

127

• !

An= mainienance (O&:M) after final testing. The O&'4 stage might be

considered the end, because the system is completed and in

operational use. But large programs are quite complex and involve

many interfacing interrelated nclockwork" mechanisms. They are

very fragile in the sense of needing continuing support and

maintenance to keep them current and operational. Repairs are

needed to correct errors, upgrades to improve performance,

changes to accommodate hardware configuration changes or new

performance requirements. New functional capabilities unforeseen

or unclearly outlined in the original specifications may need to

be added. Such modification of working software is the rule of

industry and is reflected in the model, version, or release

numbers associated with all software products.

Such repair is really redesign and requires a return to

earlier life cycle stages. Thus, O&M must make extensive use of

the documentation of the program contained in the software

library data base. Knowledge required to carry out O&M involves

understanding the software architecture, detailed design, the

various specification and programming languages in which the

software is written, the computer on which the software operates,

the complement of equipment in the system configuration, the

applications environment, the types and ranges of expected input

and output variables, how to operate test tools, and the proper

use of configuration management tools to keep the software

current. O&M is a major problem stage for software, because it

is entered years after the concept stage and when few of the

original designers are available to perform the changes. Overall,

128

l
O&M costs about twice the total of all other stages combined.

While O&H follows the other life-cycle phases sequentially, it

really must be considered an entirely separate stage. Few, if

any, of the personnel who built the software continue to support

it and O&Z1 is carried out for an extended period of time after

operation begins.

L Entry: Maintenance of Large Software Products

Integrated technical information and know-how related to the

understanding and utilization of life-cycle management methods

for the maintenance, i.e., repair, adaptation, extension, or

modification, of large existing software systems, or large

software systems developed under life-cycle management methods.

Integrated technical data and know-how include the aggregate of

methods, procedures, manuals, standards, events and milestocnes,

work-breakdown modeling and analysis techniques of resources

(e.g., cost, schedule, labor, equipment) embodying U.S.

management experience. Large software systems are those involving

over 15,000 ROL source statements, or four or more person years

of labor before the initial delivery of the system.

M Utility: High

Aversry jii: Limited

arC~ f n d aiZa Con .1aAi " Zij: The
mechanisms in Categories Z and I, given above.

8.2.5. Formal Hethods and Tools for Developing Trusted Software

Oescriotign

An emerging technology of great promise is that of formal

129L

b".. . l~ ll -L...

methods to produce software and the tools to enforce the use of

these methods. This technology utilizes theoretical results from

mathematical logic (particularly the predicate calculus),

packaged using heuristic techniques from the artificia:

intelligence community, to develop software systems which verify

the correctness of software specifications. From the formal

results have also come methodologies to discipline the

programming process, so that resulting products are more

amenable to proof of correctness, and sets of languages and

verification tools (e.g., specification languages and their

processors, theorem provers, specialized configuration control

tools) to enforce the discipline that theory recommends.

Formal methods enforce a top-down approach to the production

of software, starting from formal specifications. Tools have been

developed to express, enforce, and prove the correctness of these

specifications and to refine them to more detailed spec.fications

which, in turn, cam be proved correct and further refined.

Iteration of this procedure produces a hierarchy of proved

specifications, finally resulting in a proved specification

sufficiently detailed to permit direct coding. This software Is

then considered 'trusted."

List E : Formal Methods and Tools for Developing Trusted

Software

Technical information and know-how embodied in arrays of

formal methods and tools which permit the development of trusted

software, proved to satisfy its specifications. Formal methods

include specification languages and their processors, theorem

13a

!

provers and specialized configuration control tools. The tools

oermit ex-ression, proof, and enforcement of correctness of

software to its specifications at several levels of detail.

Military Uit: High

R.coMZdations f.ox =jXoleQjj. achaijA The

mechanisms in Categories I and II, given above. Furthermore,
products in any form, including object code, should be
controlled.

8.2.6. Secure Software

Descrinti on

The formal methods discussed in Section 8.2.5 have permitted

the development of an emerging technology of secure software for

large, complex software systems. This software permits computer

systems which are "trusted" to instantiate predetermined security

policies. in particular, this software may permit multi-level

secure operating systems or secure data base management systems

which. guarantee that users not have access to information for

which they do not have appropriate access permissions. much of

this software may be classified and thus fall under the control

umbrella of the Munitions Act, but the development of secure

systems is also necessary for such applications as electronic

(funds transfer.

Litry: Secure Software

Software (e.g., multilevel secure operating systems,

j communications systems, special controllers, and secure data base

management systems) that is produced using formal methods and

tools so that it is trusted to adhere to predetermined security

131

...U.., .. r ,

policies. Secure software embodies technical information and

know-how on systems architecture which is resistant to

penetration.

Milita atl : High T

a_qeoaAIendat ions f" a Ca!jjoe TransfIr LI&AL IamI: Th e
mechanisms in Categories I and II, given above. Furthermore,
products in any form, including object code, should be
controlled.

8.2.7. Large Self-adapting Software Systems

Oescriati on

Self-adapting software systems are able to make significant

changes in their internal processing logic in response to user

commands or based on the demands which have been placed on the

system in the past. Such systems usually incorporate significant

artificial intelligence technology. Examples are the *IACSYMA

system which reorganizes internal data representations and

secondary access paths based on usage statistics; the

"Programming by Example" system which automatically generates

significant programs from very succinct and natural user

descriptions; and natural language user interfaces, especially

those which can "learn" new vocabulary.

Self-adapting software systems are important because they

create significant operational capabilities across a diverse se:

of applications. The breadth of the applicability makes these

systems fundamentally superior to more rigid systams which are

only useful with complete documentation and maintenance tools.

132

I
ntry: Large Self-Adapting Softwiare Systems

Any computer system which automatically or semi-

automatically makes significant revisions to its internal

software processing logic and data in response to user commands

or based on the history of demands placed upon it.

Miar tity: Very great potential utility in command and

control and intelligence operations.

Foreign Availabiitv: There are few, if any, significant systems

of this type outside the United States. The European

perception that computer hardware is expensive an& must be

parsimoniously utilized has retarded their development of

systems of this type. Japan has been exploring such systems

but does not yet have (known) significant results, except in

the robotics field.

A Camabi4 ties: There is no known significant capability

in this area in any adversary country.

~ '.r ~ :ran~ ~The
mechanisms in Categories Z and II, given above. Furzhermore,
products in any form, including object code, should be
controlled.

8.2.8. Commercial Software Integral To Critical Military Systems

A substantial amount of military software in currenz defense

use is unclassified or is available as commercial software

products. M!ilitary systems make use of general purpose software

including operating systems, communications front-ends, a wide

variety of software utilities, and various applications packages.

133

Such software is of concern because it can potentially be

acquired and used to expose flaws in critical U.S. military

systems which may then be exploited in some fashion. Penezration

studies, for example, have shown that significant information

about flaws can be derived from testing the operational

characteristics of a given program.

To meet this threat of "jamming" U.S. systems, the software

subgroup feels that explicit commercial products which are in use

in critical military systems should not be transferred to

adversary nations. A classified list of such products should be

compiled by DoD and used in the export administration process.

These controls should not extend to commercial software products

which perhaps provide similar operational capabilities to those

explicitly in use.

m List Fr: Commercial Software Integral to Critical

ilitary Systems

Commercial software products (e.g., operating systems, file

and data management sysytems, communications front-ends) which

are integral to existing critical U.S. military capability or

could be reverse-engineered to expose flaws in U.S. operational

military systems.

THE DEPARTMENT OF DEFENSE SHOULD ADD A CLASSIFIED LIST OF
EXPLICITLY NAMED PRODUCTS TO SUPPLEMENT THIS ITEM.

o netor. s__dT The
mechanisms in Categories I and I, given above. Furznermore,
products in any form, including object code, should be
controlled.

134

-~?F -- M 2-

8.3. Other Recommendations

8.3.1. Recommendations About Product Form

In addition to identifying technologies which should be

included on the militarily critical technologies list, we feel

that attention should be given to the form in which any software

product is exported.

a) We view object code as a fairly weak form of encryption,

since partial or complete decoding algorithms are available for

commonly used languages and machines. Nevertheless, the time and

talent that must be invested in decompiling object code for large

software systems can be very substantial. Certainly the

possession of well-documented source code can be very helpful to

an effort to functionally duplicate a product, or to an effort to

diffuse and maintain the original product. We believe that the

export of object code, or ROM or other "hardware" forms, is to be

preferred over the export of source code. Another way to

strengthen object-code-only export is through license control

simplification for software embedded as part of a "turnkey"

product with U.S. maintenance only. Object code, or software in a

hardware form, would then be a part of the total product, the

internal structure of which remains unknown and unknowable to the

end user; e.g., a form of commercial "need-to-know."

b) Computer manufacturers and software houses are likely to

find increasing economic reasons to support hardware and software

mechanisms to aid in controlling the diffusion of software. This

trend may do much to help solve some of the problems of the

export control of software products. Greater use of turnkey

135

I

oroducts is one method. Cost effective technical means to

restrict portability need to be found and made widely available.

We urge the government to support efforts to develop such

mechanisms.

c) The transfer of any software product should be

uncontrolled if the product does not provide a direct military

operational capability or explicitly fall into a small number of

categories (e.g., software tools or self-adapting systems),

provided that it is transferred in the form of object code with

only users mannuals and passive maintenance service, and provided

that there be reasonable technical safeguards that the system not

be portable.

8.3.2. Recommendations for Further Study

a) Other Software Items for the Militarily Critical Technologies
List

Although we feel we have covered the most important software

technologies, no claim is made that the eight recommended List

Entries cover this field exhaustively. Other general, emerging

software technologies, analogous to the self-adapting software

entry (8.2.7), may have to be listed. One such possibility is

robotics software. Time and expertise constraints prevented the

software group from making an exhaustive study.

b) Technical Measures to Reduce Software Portabilizy

The software subgroup strongly recommends that research

directed towards the development of technical measures to reduce

software portability (Section 6.5.2) be funded by the Federal

136

I

government. One possibility involves hardware "signatures" to

bind software to specific hardware configurations. Previous work

in this area has been cost-limited, but present decling hardware

costs and increasing investments in software should make such

measures economically viable.

c) Construction of a Decision Tree

It may be possible to use the analyses of this report to

construct an explicit decision tree for evaluating software-

related export requests.

d) Further Thought Experiments

We consider analyses such as those of Section 7 to be very

valuable in providing a deeper understanding of the nature of

technology transfer. From a broad perspective, deepening our

perception and insights about software technology transfer can

enhance the search for effective control methods and the

delineation of what should be controlled. From a more narrow

perspective, such analyses help to illuminate such issues as how

militarily significant systems may be constructed from commercial

software or how U.S. systems may be penetrated and "jammed."

Hence, we recommend that anaylses of this nature be expanded and

continued.

e) Increased Awareness

It is necessary to increase the level of awareness of the

general public, the computing community, and chose involved in

the export control process about the concerns raised in this

report. Technology transfers have taken place as a result of

137

ignorance of what it is about software that is of concern. Any

effective control of software technology transfer will have to

involve groups that had not considered their activities involving

adversary countries to be subject to prior review or voluntary

restraint.

f) Implementation of Transfer mechanism Restrictions

The controls on transfer mechanisms recommended by this

subgroup go considerably further than the license/approval system

now in use at the Commerce Department. Consequently, serious

consideration will have to be given on how to implement these

recommendations.

g) The Burden on Working DoD Computer Scientists

The evaluation of export requests often appears to disrupt

the work. of DoD computer specialists, who may find such requests

to be an unmanageable burden on top of a full schedule of

unrelated duties. These people may also lack knowledge of

* adversary capabilities, foreign availability, and the process of

software technology transfer. The net result is a disruption of

* DoD computer-related work, weakly informed decisions, and delays

suffered by potential exporters. The Department of Defense needs

a few suitably knowledgeable people, with good communications to

DoD and industry, for whom the evaluation of potentially

threatening computer technology transfers is a major task.

h) Coverage of Foreign and Adversary Software Capabilities

Coverage of these areas by U.S. government organizations is

weak and needs to be strengthened considerably.

138

-4

I

R Ct

1 1. Andriole, S.J. "Another Side to C3." Signal, pp. 15-22.

2. Auerbach, Isaac L. "Computing in China, 1979: An Update."
Cmt 12, Number 11 (November, 1979), pp. 52-60.

3. Brooks, Frederick P. Jr. The Myhi Man-month. Essay an
Software Engineerin. Reading, Massachusetts, 1975.

4. Computer Network Critical Technology Expert Group (F.R.
Spitznogle, Chairman). Computer networks: ' An asesment, at
c technolocies and recommendations 1r th controls 2n
th. o such technologies. Final report, prepared for
the U.S. Department of Defense, April 30, 1979.

5. Data and Analysis Center for Software. The DACS Glssary A
Bibliography 2f Sof Enaineering Terms. October, 1979,

(Ordering Number: Glos-l).

6. Garner, Harvey L. "Computing in China, 1978." Computer 12,
Number 3 (March, 1979), pp. 81-95.

7. Gold, C. L., Goodman, S. E., Walker, B. G. "Software:
Recommendations for an Export Control Policy." Communications
*f the A 23, Number 4 (April, 1980), pp. 199-207.

8. Goodman, S. E. "Software in the Soviet Union: Progress and
Problems." Advances in Computers 18 (1979), pp. 231-287.

9. "Hungarians Working for Western Software Firm." *
Vilaggazdasac, January 12, 1980, pp. 30-31.

10. Kirchner, J, and Rosenburg, M. "Belgian Charged with
Bribery." Computerworld, June 16, 1980, p. 1,4.

I 11. Linde, R.R., Weissman, C., Fox, F.E. "The Adept-50 Time-
Sharing System." =IC, 1969.

I McLean, John. D Critical T oW C g.r Volume -Y
(Draft Report, June, 1980).

I
I
I

139

I,

