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Nonparametric techniques used to solve the change point
problem are applied to the problem of texture classification.
The texture classification problem is not formulated as a hy-
pothesis testing problem, but instead our interest lies in
the values of K, Kg, and K7, the change point statistics.
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1. | Introduction

Although the problem of texture classification has been
thoroughly studied, it is still desirable to investigate
whether or not we can model the random behavior of the imaging
equipment and still achieve a reliable classification scheme.
To this end, we introduce a statistical test previously used
to determine whether or not a sequence of random variables
has a change point.

Definition: A change point is defined to be an index t in

a sequence X,,X,s..-/X of random variables such that Xy oXgreeas

T
X, have a common distribution F, (x) and X 410X have a
common distribution Fz(x), where Fl(x)#Fz(x).
Note that there is no change point if T=T.

Determining whether or not a change point exists in a
sequence of random variables is related to two texture classi-
fication methods described in Weszka et al. [1]. From the

description of the change point statistics in Section 2, this

association will become clearer.
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2. Change point statistics

Many authors nave presented approaches to solving tae
change point probiem. These include tests for a change in
mean level (Sen and Srivastava [2,6]), likelihood ratio
tests (Hinkley [3]), Bayesian approaches to inference alout
T (Smith [4]), and distribution-free approaches as in

McGilchrist and Woodyer [5] or Sen and Srivastava [2].

e

1

We desire to use a method which makes no assumptions

about the initial distribution. Thus we consider a version

of the Mann-Whitney U statistic. This statistic can be used

L SRR b %

for testing the hypotheses of no change point versus change
point at .
Let us now examine the Mann-Whitney statistic for testing

if two samples (xl,xz,...xt and xt+l"°"xT) come from the

same population. The statistic Ut T is defined as

14

t T

U =3I z

T o1 j=i+l 7ij

7 where ]
3 3
, Dij = sgn(xi-xj) '
3 To use the above statistic to solve the change point »rob- L

lem, and for our'purposes, we let t vary such that 1=t<T. Then

we introduce the following statistics:

.
i max
H Ky, = 1st<T IUt'TI (3)
% + max
y KT = 1=<t<T Ut,T (4)
_ -min ~
K, = 1st<T U, (5) 1
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which are the definitions in Pettitt [7). We refer to
Ky K;, and K; as the change point statistics. It is
easy to see that

+ -
KT = max(KT, KT) (6)

It is precisely this fact which we wish to investigate.

K; and K; will be computed along the columns, rows, and
diagonals of an image, and we wish to see whether KT is K;
or K;. This gives an indication as to the nature of the

changes in sign of gray levels between pixels in different
+
TI
changes are positive; if KT=K;, the majority of the changes - B

portions of the image. Thus, if K=K, the majority of the

in sign are negative.
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3. The relationship between change point statistics and other

features

In this section we wish to show the relationship between
the change point statistics and other texture classification
features alluded to in Section 1.

Weszka et al. [l] also form differences of gray levels,
although these differences are absolute differences for a
given displacement 8. The probability density of these differ-
ences is estimated by the number of occurrences, and various
measures are computed from these probability estimates, PG'
The change point statistics use the sign of the difference and
thus include additional information relating to the signs of
the changes in gray level. Also, the displacement is varied
up to a given limit (l<t<T) and so information is included over
various displacement values, §.

The survey by Haralick [8] as well as Weszka [l] discuss
the use of run length statistics. This is simply counting
the number of pixels with the same gray level. This, too, is
included in the change point statistics, since the run length,
t, is varied between 1 and an upper bound of T. Pixels of the
same gray level in a run add 0 to the sum Ut,T by definition
of the sign function.

The gray-tone spatial dependence matrices of Haralick [8]

and Haralick et al. [9] are used to model the probabilistic

behavior of texture. Wwhat is not mentioned is the fact that
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there are underlying assumptions in using ggarson product
moment correlation, and these statistics cannot be arbi-
trarily applied. Siegel [10] indicates that the Pearson
product moment correlation requires scores in at least an
equal interval scale, and that the scores be from a bivariate
normal population. If we are dealing with gray levels, the
first assumption is satisfied (that of equal scale), but

the second assumption of normality may not be met.

Thus we have chosen to use distribution-free statistics
where no assumptions other than continuity of F(x) are made.
This is even weaker than the normality assumption, since
the continuity assumption is underlying the assumption of
normality.

Here we have shown similarities and differences between

change point statistics and previous methods for texture classi-

fication. The similarities indicate that we can expect simi-
lar results with change point statistics, yet the statistical
differences incdicate that a larger sample size is needed for
the same level of significance. The reader is referred to

Randles & Wolfe [ll] for a discussion of asymptotic relative

efficiency of distribution-free statistics.
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4. The computation of change point statistics

+ -

Recall that in order to compute KT' KT, and KT, it is
necessary to compute
t T
U = I z D,. (1)
©T a1 jegsr 1

for values of t such that 1st<T, where T is fixed. 1In the
results presented here, several values of T were used only
to see if chere existed a value T beyond which the results
did not vary. 1In this work both t and T represented positions
within an image.

The above formula can be computationally expensive. Empiri-
cal results show that for values of T210, computation can ex-

ceed 10 minutes. As Haralick et al. [9] indicate, it is de-

sirable to use a method that is computationally feasible. we
present an alternative to equation (1) that is briefly men-
tioned in Pettitt (7], but is not fully discussed.

In equation (1), note that

t-1 T T
Now Yer T iﬁl j=£+l Pi3 +j=12;+1 Pt 7
t=1 T t-1 T t-1
iil j='§+1Dij ) iil jitnij ) iﬁlbit (8)
Substituting (8) into (7):
t-1 T T
er T D geta P Y L P )
t-1 T t=-1 T
T h ke P T Pt jatel DE3 )

et i T bkl LA e B




t-1 T

Notice that Ut-l,T = 'E .E Dij by definition,
i=l j=t
t-1 T
U =U__ - . D, + Z D_. (10)
t,T t-1,T i=1 it j=t+l tj
t-1 t-1
Since =-I D,, = I D,_. by symmetry of the sign function
.4 1t .4 ti
i=1 i=1
t-1 T
U =0 __ +« I D, + I D,.. (11)
t,T e=1,T © oy el jagyy ©
Also since Dtt=0 by definition, we arrive at our final recur-
sion formula
T
Ut,T = Ut-l,T + iilDtj (12)

Hence our computation can be speeded up by storing the previous

values of Uy, p for the computation of U The empirical
’

t, T
results indicate that using this formula allowed us to compute
Ut,T for up to T=20 in under two minutes.

Be careful to note that the above equations still only deal
with one dimensional random variables. In order to apply these
statistics to images, it is necessary to make a two-dimensional
adjustment. We have done this in the followinyg manner:

When computing U along the rows (direction "I") let

t,T
I n
Dij = kilsgn(xik - xjk) (13)

where n is the number of rows. When computing Ut T along the
14

columns (direction “J"), we use a similar equation

o 2
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pJ = :

i . sgn(xki - xkj) (14)

1

A slightly different equation is used to compute Dij along -

the image diagonals. We desire to capture information from
the diagonals throughout the image, not the longest diagonals
only. This is accomplished by varying the slope of the dia-
gonal. We arrive at

n
Djj = kilsgn(xki = X (n+1-k)j (15)

where K denotes the diagonal axis. One can easily see that
the differencing takes place along a line whose slope is varied,
and ng is the sum of such differences.

By computing p! J

K . 1 J
iy’ Dij' and Dij' we will have U U and

t,T' “¢t,T'

K With these U statistics in hand, we can compute K+ P

t,T°
K; and eventually Kp = max(KTTK;) for each of the directions

I,J, and K. The triple (K;,Kg,Kg) is used to characterize a

U

given image.

In practice, instead of using the values of the K,,, we use

T
instead the sign (+/-) of the change point statistic (K; or K;)
that KT equals. Thus for each sample we have a triple of direc-
tions indicated by signs. Intuitively, these signs indicate
whether the gray levels increase or decrease in value in the
specified directions. 1If a sign is positive (negative), this
means the difference in gray level is positive (negative), and
the gray level has increased (decreased) in value. The following

sections describe some results of using change point statistics

in practice.
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5. Experimental results

This experiment consisted of two parts: First, we want
to see if change point statistics can be used in texture
classification, and secondly we are interested in determining

if it is necessary to let T approach the value of n for an

nxn image. This is motivated by the fact that the computation

of Ut T is so costly, and if T=n, we have a combinatorial ex-
’

plosion.
The results are presented in the following format: For

each of the directions I,J, and K we compute K; and K; by !
+ -

equations (4) and (5). With KT and KT we compute KT by equa-

tion (6). PFor each sample and axis, we record either + or -

+

depending on whether KT=KT or K;, respectively. Thus for each

sample we have the triple of change point statistics (values

of KT) represented by + or -. These are what we use to differ-
entiate the texture samples.
For the second part of the experiment, we let T=5,10, and 20.

The purpose of this is twofold: We desire to see if the com-

putation can be completed and then we use these results as the
training sets for classification. The classification results
for the different values of T are compared to see if the classi-
fications are the same.

The results are tabulated in Figures 1,2, and 3 for T=5,10,

and 20, respectively. In this work, we have used texture samples

of Mississippian Limestone and Shale(ML), Pennsylvanian Sandstone
and Shale(PS), and Lower Pennsylvanian Shale(LP). Ten samples

of each texture were used.
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A texture classification decision rule similar to that of
Haralick et al. [9] can be employed here. For each of the
three groups (ML,PS,LP) we classify samples of that group
by the most likely triple that occurs. For example. if a
change point triple is +++ or --- ("flat") it is mcst likely
to be PS(see Figure 2).

Again, looking at Figure 2, the majority of the M. samples
have a - for the I axis whereas the LP samples have a + for
the I axis. Therefore, if a sample does not exhibit flat
structure as defined above, we classify it as ML or LP depending
on the I axis statistic.

To test this decision rule, 10 samples were chosen randomly
from among the ML,PS, and LP windows. Their change point sta-
tistics were computed, and they were classified accordéingly.
Their actual types are also given in Figure 4.

The second part of this experiment was to determine the
accuracy of using a small value of T. Each of the training
sets were used to classify the samples and the differences were
examined. It is important to note that a preallotad amount
of time was given to compute the training set statistics. This
was done to see if the statistics could be computed in a reason-

able amount of time.

|
|
|
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6. Conclusion

In this paper we have presented a new method for texture
classification. It has been shown that the use of change
point statistics is very similar to other information pre-
viously used in texture classification, yet change point sta-
tistics maintain the distinct advantage of using distribution-
free statistics. That is to say, our model of image and noise
does not assume any form of the noise distribution. The proba-
bility distribution of the change point statistics themselves
is independent of the probability distribution of the under-
lying random variable.

Figures 1,2, and 3 show the change point statistics for
the training sets. Since for T=20, the computation did not
finish, we conclude that this computation is prohibitive, even
when we use the recursion equation and store intermediate re-
sults. We still wish to investigate whether or not the classi-
fier is accurate in going from T=5 to T=10.

We see from Figure 4 that the classifier using change point
statistics is about 90% accurate for the samples given. This
is not entirely conclusive since it is still desirable to classi-
fy with the T=20 training set. Clearly, one future direction
is to derive an algorithm even faster than equation(l2) and a
better search of the Ut,T space for K; and K;. Also, one could
extend this work by training on a larger number of texture types.
We have shown that charge point statistics are valuable as an

aid in texture classification.
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LP1 - - - ML1 - + - PSl + - +
LP2 - + - ML2 - - - PS2 + - +
LP3 - + +  ML3 + + + PS3 + + + |

LP4 - - + ML4 + + + pS4 + - +

b o o e 0 TN Pl e e I ke ibip

LP5 + - +  ML5 + + + PS5 + + +
LP6 + - + ML6 + + +  PS6 + - +
LP7 - + - ML7 - + - PS7 + - +

LP8 - + - ML8 - - - ps8 + + +

LP9 + - + ML9 + + + PS9 + + +

LP10O + + + ML10O + + + PSlo0

Figure 1. Change point statistics for T=5.
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LPl
Lp2
LP3
LP4
LP5
LPé6
Lp7
LP8
LP9

LP10

J K
- +
+ +
+ -
+ +
- +
+ +
+ -
- +
Figure 2.

I J K I
MLl - + - Ps1 +
ML2 - - - Ps2 +
ML3 - - - PS3 +

ML4 + + + PS4 -

MLS - + - PS5 -
ML6 - - - PS6 +
ML7 - - - PS7 +

MLS8 + + + PS8 +
ML9 - - - PS9 +

ML10 + + + PSlo

Change point statistics for T=10.
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LP2

LP3

pryte=

LP4

LPS

LP6

LP7

Lp8

Figure 3.

Change point statistics for T=20.
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I J K Classification (T=5) Classification(T=10) Real Type

X1 - + + LP Lp LP
X2 - 4+ - LP LpP LP
X3 + - + PS PS PS
X4 - - = ML ML ML ‘
X5 + - + PS PS PS 3
X6 - - - ML ML ML
X7 + - + Ps Ps LP
X8 + + - PS PS PS 1
X9 + + - PS PS PS
X10 + + + ML ML ML

Figure 4. Change point statistics and classification
of unknown samples.
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