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ABSTRACT

Nonparametric techniques used to solve the change point
problem are applied to the problem of texture classification.
The texture classification problem is not formulated as a hy-
pothesis testing problem, but instead our interest lies in
the values of K., K+, and K-, the change point statistics.
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1. Introduction

Although the problem of texture classification has been

thoroughly studied, it is still desirable to investigate

whether or not we can model the random behavior of the imaging

equipment and still achieve a reliable classification scheme.

To this end, we introduce a statistical test previously used

to determine whether or not a sequence of random variables

has a change point.

Definition: A chan e point is defined to be an index T in

a sequence xl~x2 ,...,xT of random variables such that xl x 2 , . ..

have a common distribution Fi(x) and XT+lx.xT have a

common distribution F2 (x), where F1 (x)F 2 (x).

Note that there is no change point if T=T.

Determining whether or not a change point exists in a

sequence of random variables is related to two texture classi-

fication methods described in Weszka et al. [1]. From the

description of the change point statistics in Section 2, this

association will become clearer.
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. Change point statistics

Many authors Aave presented approaches to solving the

change point problem. These include tests for a change in

mean level (Sen and Srivastava [2,6]), likelihood ratio

tests (Hinkley [3]), Bayesian approaches to inference about

T (Smith [4]), and distribution-free approaches as in

McGilchrist and Woodyer [5] or Sen and Srivastava [2].

We desire to use a method which makes no assumptions

about the initial distribution. Thus we consider a version

of the Mann-Whitney U statistic. This statistic can be used

for testing the hypotheses of no change point versus change

point at r.

Let us now examine the Mann-Whitney statistic for testing

if two samples (xl,X 2 ,...x t and xt+l,...,xT) come from the

same population. The statistic Ut,T is defined as

t T
Ut,T EDi=l j=i+l ij

where

Dij = sgn(xi-xj)

To use the above statistic to solve the change point :rob-

lem, and for our purposes, we let t vary such that 15t<T. Then

we introduce the following statistics:

max
KT = lt<T IUtTI (3)

+ max

KT = lt<T U (4)KT = t,T

-min
KT = lst<T Ut, T  (5)

..T ,t,,T_



which are the definitions in Pettitt [7]. we refer to

KT~, 4,V and KT as the change point statistics. It is

easy to see that

T = max (4, KT (6)

It is precisely this fact which we wish to investigate.

4T and KT will be computed along the columns, rows, and
diagonals of an image, and we wish to see whether K T is K

or KT. This gives an indication as to the nature of the

changes in sign of gray levels between pixels in different

portions of the image. Thus, if KT=K4+, the majority of the

changes are positive; if KT=K T' the majority of the changes

in sign are negative.



3. The relationship between change point statistics and other

features

In this section we wish to show the relationship between

the change point statistics and other texture classification

features alluded to in Section 1.

Weszka et al. E11 also form differences of gray levels,

although these differences are absolute differences for a

given displacement S. The probability density of these differ-

ences is estimated by the number of occurrences, and various

measures are computed from these probability estimates, P6.

The change point statistics use the sign of the difference and

thus include additional information relating to the signs of

the changes in gray level. Also, the displacement is varied

up to a given limit (lt<T) and so information is included over

various displacement values, 6.

The survey by Haralick [8] as well as Weszka [1] discuss

the use of run length statistics. This is simply counting

the number of pixels with the same gray level. This, too, is

included in the change point statistics, since the run length,

t, is varied between 1 and an upper bound of T. Pixels of the

same gray level in a run add 0 to the sum UtT by definition

of the sign function.

The gray-tone spatial dependence matrices of Haralick (81

and Haralick et al. (91 are used to model the probabilistic

behavior of texture. What is not mentioned is the fact that



there are underlying assumptions in using Pearson product

moment correlation, and these statistics cannot be arbi-

trarily applied. Siegel [10] indicates that the Pearson

product moment correlation requires scores in at least an
-

equal interval scale, and that the scores be from a bivariate

normal population. If we are dealing with gray levels, the

first assumption is satisfied (that of equal scale), but

the second assumption of normality may not be met.

Thus we have chosen to use distribution-free statistics

where no assumptions other than continuity of F(x) are made.

This is even weaker than the normality assumption, since

the continuity assumption is underlying the assumption of

normality.

Here we have shown similarities and differences between

change point statistics and previous methods for texture classi-

fication. The similarities indicate that we can expect simi-

lar results with change point statistics, yet the statistical

differences indicate that a larger sample size is needed for

the same level of significance. The reader is referred to

Randles & Wolfe (11] for a discussion of asymptotic relative

efficiency of distribution-free statistics.



4. The computation of change point statistics

Recall that in order to compute KT K;, and

necessary to compute
t T

U = E D. (1)tT i=l j=t+l ij

for values of t such that 15t<T, where T is fixed. In the

results presented here, several values of T were used only

to see if there existed a value T beyond which the results

did not vary. In this work both t and T represented positions

within an image.

The above formula can be computationally expensive. Empiri-

cal results show that for values of T I0, computation can ex-

ceed 10 minutes. As Haralick et al. [9] indicate, it is de-

sirable to use a method that is computationally feasible. We

present an alternative to equation (1) that is briefly men-

tioned in Pettitt [7], but is not fully discussed.

In equation (1), note that

t-l T TUtT = E E D.. + D (7)
Now i=l j=t+l jt+l D

t-i T t-i T t-t

E Z D. E E Di  E D (8)
i=l j=t+l ij i=l j=t 3 i=l it

Substituting (8) into (7):

t-l T T
Ut,T  E D..+ E D.

i=l j=t+l D  i  t j(7

t-l T t-l TUtT= E E D. - it + Z Dtj (9)
i=l j=t jt+l



t-1 T
Notice that Ut-l,T = l jEt D.. by definition,

t-1 TU U -EDi + E D (10)
Ut,T Ut-1,T 1 it j=t+lD tj

t-1 t-l
Since -E D = D by symmetry of the sign function

i=l it i=lti

t-1 T
U =, U t-, + D ti + Z D tj (11)
t'T Ut-'T i=l j=t+l

Also since Dtt=0 by definition, we arrive at our final recur-

sion formula
T

U ,T =Ut-l,T + E Dt. (12)" i=l

Hence our computation can be speeded up by storing the previous

values of Ut-1, T for the computation of U t,T  The empirical

results indicate that using this formula allowed us to compute

Ut,T for up to T=20 in under two minutes.

Be careful to note that the above equations still only deal

with one dimensional random variables. In order to apply these

statistics to images, it is necessary to make a two-dimensional

adjustment. We have done this in the following manner:

When computing Ut,T along the rows (direction "I") let

n
D. = E sgn(xik - xjk) (13)

Sk=l

where n is the number of rows. When computing Ut,T along the

columns (direction "J"), we use a similar equation



n
Dij. = ksgn(xki - ) (14)
1] k=l ki kj

A slightly different equation is used to compute Dij along

the image diagonals. We desire to capture information from

the diagonals throughout the image, not the longest diagonals

only. This is accomplished by varying the slope of the dia-

gonal. We arrive at

K n
D.. Z sgn(xki - X (n+lk)j) (15)k=l

where K denotes the diagonal axis. One can easily see that

the differencing takes place along a line whose slope is varied,

and D.K . is the sum of such differences.
13

I JK IBy computing D1  D and D we will have UI Ut and

K +UtT. With these U statistics in hand, we can compute KT

KT and eventually KT = max(KTKT) for each of the directions

I J KIJ, and K. The triple (KTK,,KT) is used to characterize a

given image.

In practice, instead of using the values of the KT, we use

instead the sign (+/-.) of the change point statistic (K4 or
T

that KT equals. Thus for each sample we have a triple of direc-

tions indicated by signs. Intuitively, these signs indicate

whether the gray levels increase or decrease in value in the

specified directions. If a sign is positive (negative), this

means the difference in gray level is positive (negative), and

the gray level has increased (decreased) in value. The following

sections describe some results of using change point statistics

in practice.



5. Experimental results

This experiment consisted of two parts: First, we want

to see if change point statistics can be used in texture

classification, and secondly we are interested in determining

if it is necessary to let T approach the value of n for an

nxn image. This is motivated by the fact that the computation

of Ut, T is so costly, and if T=n, we have a combinatorial ex-

plosion.

The results are presented in the following format: For

each of the directions I,J, and K we compute KT and K by
+~~ ~ an Tw opt T b qa

equations (4) and (5). With KT and K we compute K by equa-T TT

tion (6). For each sample and axis, we record either + or -

depending on whether KT or K, respectively. Thus for eachT=u To orach

sample we have the triple of change point statistics (values

of KT) represented by + or -. These are what we use to differ-

entiate the texture samples.

For the second part of the experiment, we let T=5,10, and 20.

The purpose of this is twofold: We desire to see if the com-

putation can be completed and then we use these results as the

training sets for classification. The classification results

for the different values of T are compared to see if the classi-

fications are the same.

The results are tabulated in Figures 1,2, and 3 for T=5,10,

and 20, respectively. In this work, we have used texture samples

of Mississippian Limestone and Shale(ML), Pennsylvanian Sandstone

and Shale(PS), and Lower Pennsylvanian Shale(LP). Ten samples

of each texture were used.



A texture classification decision rule similar to that of

Haralick et al. [9] can be employed here. For each of the

three groups (ML,PS,LP) we classify samples of that group

by the most likely triple that occurs. For example, if a

change point triple is ++ or --- ("flat") it is mcst likely

to be PS(see Figure 2).

Again, looking at Figure 2, the majority of thet samples

have a - for the I axis whereas the LP samples have a + for

the I axis. Therefore, if a sample does not exhibit flat

structure as defined above, we classify it as ML or LP depending

on the I axis statistic.

To test this decision rule, 10 samples were chosen randomly

from among the ML,PS, and LP windows. Their change point sta-

tistics were computed, and they were classified accordingly.

Their actual types are also given in Figure 4.

The second part of this experiment was to determine the

accuracy of using a small value of T. Each of the training

sets were used to classify the samples and the differences were

examined. It is important to note that a preallotea amount

of time was given to compute the training set statistics. This

was done to see if the statistics could be computed in a reason-

able amount of time.



6. Conclusion

In this paper we have presented a new method for texture

classification. It has been shown that the use of change

point statistics is very similar to other information pre-

viously used in texture classification, yet change point sta-

tistics maintain the distinct advantage of using distribution-

free statistics. That is to say, our model of image and noise

does not assume any form of the noise distribution. The proba-

bility distribution of the change point statistics themselves

is independent of the probability distribution of the under-

lying random variable.

Figures 1,2, and 3 show the change point statistics for

the training sets. Since for T=20, the computation did not

finish, we conclude that this computation is prohibitive, even

when we use the recursion equation and store intermediate re-

sults. We still wish to investigate whether or not the classi-

fier is accurate in going from T=5 to T=10.

We see from Figure 4 that the classifier using change point

statistics is about 90% accurate for the samples given. This

is not entirely conclusive since it is still desirable to classi-

fy with the T=20 training set. Clearly, one future direction

is to derive an algorithm even faster than equation(12) and a

better search of the Ut,T space for KT and K Also, one could

extend this work by training on a larger number of texture types.

We have shown that charge point statistics are valuable as an

aid in texture classiiication.



I J K I J K I J K

LP1 - - - ML - + - PSi + - +

LP2 - + - ML2 - - - PS2 + - +

LP3 - + + ML3 + + + PS3 + + +

LP4 - - + ML4 + + + pS4 + - +

LP5 + - + ML5 + + + PS5 + + +

LP6 + - + ML6 + + + PS6 + - +

LP7 - + - ML7 - + - PS7 + - +

LP8 - + - ML8 - - - PS8 + + +

LP9 + - + ML9 + + + PS9 + + +

LPI0 + + + MLI0 + + + PSI0 - - -

Figure 1. Change point statistics for T=5.



I J K I J K I J K

LP1 + - + MU - + - PSI + - +

LP2 + + + ML2 - - - PS2 + - -

LP3 - + - ML3 - - - PS3 + + +

LP4 - + + ML4 + + + PS4 - - -

LP5 - - + ML5 - + - PS5 - + +

LP6 - + + KL6 - - - PS6 + - +

LP7 - + - ML7 - - - PS7 + - +

LP8 - - - ML8 + + + PS8 + + +

LP9 - - + ML9 - - - PS9 + + +

LP10 - - - ML10 + + + PSI0 - - -

Figure 2. Change point statistics for T=10.



I J K

LP1 - - -

LP2 + + +

LP3 - +

LP4 - + -

LP5 + + +

LP6 + + +

LP7 - +

LP8 - - -

Figure 3. Change point statistics for T-20.



I J K Classification(T=-5) Classification(T10) Real Type

Xl - + + LP LP LP

X2 - + - LP LP LP

X3 +- + PS PS PS

x4 - - ML ML ML

X5 + - + PS PS PS

X6 - - - ML ML ML

X7 + - + PS PS LP

X8 + + - PS PS PS

X9 + + - PS PS PS

XI0 + + + ML ML ML

Figure 4. Change point statistics and classification
of unknown samples.
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