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ABSTRACT

Digital arcs in 3D digital pictures are defined. The
digital image of an arc is also defined. A digital arc is
defined to be a digital line segment if it is the digital
image of a line segment. It is shown that a digital line
segment may be characterized by the chord property holding
for its projections onto the coordinate planes. It is also
shown that a digital line segment may not be characterized
by its own chord property. A linear time algorithm is pre-
sented that determines whether or not a digital arc is a
digital line segment.?

This research was supported in part by the U.S. Air Force
Office of Scientific Research under Grant AFOSR-77-3271.
The author thanks Janet Salzman for her help in preparing
this paper.

AT . . ' IFTTTFI C rESEARCH (AFSC)

h ]..,n rnl".iewrd snd is

I "" ", TH=W J. ¢' ',¢

Chief, Tocchnical Information Division



1. Introduction

Recent growing interest in three-dimensional (or simply,

3D) image processing (4,9,11,12,19,20] makes it essential to

develop a theory of 3D discrete geometry. Some work has al-

ready been done on the subject [8,11].

The following two problems are among the many with which

digital image processing is concerned. One is the problem

of digitization, that is, how to represent continuous objects

using finite sets of digital points. The other is the prob-

lem of retrieving from a set of digital points information

about the object represented by it. Consider a line segment,

for example. One problem is how to represent it by a set of

digital points, and another is how we can tell whether or not

a given set of digital points represents a line segment. Simi-

lar problems can be formulated for other types of curves.

Some of the 2D digital geometric properties that have been

studied extensively are connectedness, straightness, and con-

vexity [1,2,5,6,7,10,13,14,171. Extensions to 3D digital

geometry have been investigated for connectedness and convexity

[16,81. In this paper we study the property of straightness

for sets of 3D digital points.

The straightness of 2D digital arcs was studied in [14].

It was shown that a 2D digital arc is straight (or equivalently,

is a 2D digital line segment) if and only if it has the chord

property. (This property is defined in the next section.) A



similar result is obtained for 3D digital arcs in this paper.

We define how 3D arcs and curves are represented by sets of

3D digital points. Then we give a necessary and sufficient

condition for a set of 3D digital points to represent a line

segment. Next we present an algorithm that determines whether

or not a given set of 3D digital points is straight (a 3D line

segment).

In the next section we introduce terminology and definitions

that are used throughout the paper. In particular, a scheme

of digital representation of 3D arcs is introduced and the

chord property is defined. In Section 3, we show that the chord

property of the projections of a set of digital points charac-

terizes the straightness of the set. It is also shown that the

chord property of the set itself is not a necessary condition.

Section 4 presents an efficient algorithm that determines the

straightness of digital arcs and analyzes its time complexity.

In the last section, we discuss the results obtained and their

relation to those for sets of 2D digital points.
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2. Definitions

The set of all points in 3D(2D) Euclidean space is

denoted by E(E'). The set of all points in E(E') with inte-

ger-valued coordinates is denoted by D(D'). A point in D

or D' is called a digital point.

Two points d=(i,j,k) and d'=(i',j',k') in D are called

26-neighbors if max{ji-i' 1,j-j' ,1k-k'l}=l. Similarly,

d=(i,j) and d'=(i',j') in D' are called 8-neighbors if max

{jli-i' I, lj-j' l}=l-

A 26-chain (8-chain) is a finite sequence of digital

points in D(D') such that every element of the sequence except

the first is a 26-neighbor (8-neighbor) of its predecessor.

A set Q of digital points in D(D') is said to be 26-connected

(8-connected) if for any two points d,d' of Q, there is a

26-chain (8-chain) in Q from d to d'.

The block distance between w=(x,yz) and wl=(x',y',z') in

E is defined by a(w,w')=max{Ix-x'lly-y'llz-z'l}. Similarly,

the block distance beween w=(x,y) and w'=(x',y') in E' is

defined by a(w,w')=max{jx-x'j,jy-y'j}. Two points w and w'

are said to be near each other if a(w,w')<l. Given a finite

set Q of digital points, point w is said to be near Q if there

is a point d of Q to which w is near.

(2D) digital arcs

A 26-(8-)connected finite subset R of D(D') is called a (2D)

digital arc if every point of R except two has exactly two



26-(8-)neighbors in R and each of the exceptional two has

exactly one 26-(8-)neighbor in R. A (2D) digital arc may

be represented by a sequence (d0,d 1 ,...,dn) such that di_ 1

is a neighbor of di for lfinn.

(2D) simple digital curves

A 26-(8-)connected infinite subset C of D(D') is called

a (2D) simple digital curve if every point of C has exactly

two 26-neighbors (8-neighbors) in C. Hence a 26-connected

(8-connected) finite subset of a (2D) simple digital curve

is a (2D) digital arc.

If an arc f in E' crosses a coordinate line, there may

be one or two digital points that are nearest to the crossing.

When there are two, the one to the right of f with respect

to its sense is chosen as the nearest. Suppose that an arc f

in E crosses a coordinate plane, say the (z=k)-plane. There

may be one, two or four digital points that are nearest to

the crossing. Consider the case of two and let the crossing

point be (i+ ,y,k)((x,j+ ,k)), where jny<j+ (inx<i+ ) for

some integer j(i). Let f y(f x) denote the projection of f

onto the (y=j)-plane ((x=i)-plane). Then of the two points

(i,j,k) and (i+l,j,k) ((i,j,k) and (i,j+l,k)), the one to the

right of f y(f x) is chosen as the nearest to the crossing.

In case of four-way ties, the digital point that lies to the
right of both fy and fx is chosen as the nearest. When f

crosses other coordinate planes, the nearest point to the

crossing is determined similarly.



(2D) digital images of arcs and simple curves

Let f be an arc or a simple curve. Whenever f crosses

a coordinate plane (line), the nearest digital point to the

crossing becomes a point of the digital image of f, whicii is

denoted by I(f)(I'(f)).

(2D) digital line segments

A (2D) digital arc is a (2D) digital line segment if there

is a line segment f whose digital image is R, i.e., R=I(f)

(R=I'(f)).

(2D) digital lines

A (2D) simple digital curve C is a (2D) digital line if

every subset R of C that is a (2D) digital arc is a (2D)

digital line segment.

We note that the (2D) digital image of an arc or a simple

curve is not necessarily a (2D) digital arc or a (2D) simple

digital curve. It was shown in [14] that the 2D digital image

of a line segment in E' is a 2D digital arc. It will be shown

later that the digital image of a line in E is a simple digital

curve.

The following gecietric property is useful in discussing and

characterizing (2D) digital lines and line segments.

The chord property [14]

A set Q in D or D' is said to have the chord property if

for any d,d' in Q, every point on dd' is near Q, where dd' is

the line segment between d and d'.



3. Digital line segments

In this section we extend the results of (14] on 2D

digital arcs to 3D digital arcs. Since they are used in

the proofs below, we restate them as a lemma.

Lemma 1 (Theorems 1 and 2 in 114])

The 2D digital image of a line segment in El is a 2D

digital arc, and a 2D digital arc is a 2D digital line seg-

ment if and only if it has the chord property.

It is interesting to note that the 2D digital image of

a line has the chord property but a 2D simple digital curve

that has the chord property may not be the 2D digital image

of any line. For example, consider the 2D simple digital

curve C={(i,O)li is a negative integer} U {(i,1) li is a non-

negative integeri. It is easy to see that C has the chord

property but there is no line whose 2D digital image is C.

Thus, the chord property is a necessary and sufficient property

for a 2D digital arc to have a line segment as a preimage but

only a necessary condition for a 2D simple digital curve to have

a line as a preimage. This is the reason for defining a 2D

digital line not as having a line as its preimage but as satis-

fying the chord property.

Theorem 2

The digital image of a line is a simple digital curve.

Proof

Letalinefbegivenbyx-a -b zc and assume withoutLet~~~ ~~ n iefb ie y--



loss of generality that Xm2nO and L+m+n>O. Consider the

line fz which is the projection of f onto the (z=O)-plane.

The 2D digital image of fz on the plane is the projection

on the plane of those digital points of I(f) that are ob-

tained from the crossings of f on the (x=i)- and (y=j)-planes

for all integers i and j. This is so because of the rules

for obtaining the digital image of a line in E and the 2D

digital image of a line in E'.

Suppose that fz crosses the (y=j)-line at (x,j). If

ifx<i+ for some integer i, then (i,j) is a point of I'(fz).

Also fz crosses the (x=i)-line at (i,y), where jsy<j- , since

£ m. Thus, point (i,j) of I'(f z ) is also obtained from the

crossing of fz on the (x=i)-line. If i+ 5x<i+l, then (i+l,j)

is a point of I'(fz), and fzcrosses the (x=i+l)-line at

(i+l,y), where j~y<j+ , since 9am. Thus, the point (i+l,j)

of I'(fz ) is obtainable from the crossing of fz on the (x=i+lj-iine

too. So every point of I'(fz ) is obtainable from the crossings

of fz on the (x=i)-line for all integers i. Therefore, there

is exactly one point of the 2D digital image of fz on each (:=i)-

line. Hence, if (i,j,k) and (i',j',k') are points of I(f) that

are obtained from tne crossings of f on the (x,z)- and (y,z)-

planes, then j=j'. Also, if (i,j,k) and (i+l,j',k') are two

such points, then li-j'Il.

Aow consider the line f.. which is the projection of f onto theI

mile (y=O)-plane. By the same argument as above, we can show that

if (i,j,k) and (i,j',k') of I(f) are obtained from the crossings



of f on the (x,y)- and (y,z)-plane, tnen k=kl. Also, if (i,j,k)

and (i+i,j',k') are two such points, then Ik-k'I:l.

Therefore, there is exactly one point of I(f) on the (i=i)-

plane for each integer i, and if (i,j,k) and (i+l,j',k') are

points of I(f), then they are 26-neighbors. Thus, I(f) is

a simple digital curve. C

Corollary 3

The digital image of a line segment is a digital arc. C3

Given a set Q of digital points, let Qt denote the projec-

tion of Q onto the (t=O)-plane for t=x,y and z. In the follow-

ing theorem, we assume without loss of generality that if d

(iJl,kl) and d2=(i2 ,J2 ,k2 ) are the endpoints of a digital

arc R, then i2-i1 j2-J1 k2 -kI.

Theorem 4.

A digital arc R is a digital line segment if and only if

both Ry and Rz are 2D digital arcs and have the chord property.

proof

Suppose that the digital arc R is a digital line segment,

that is, R1I(f) for some digital line segment f. Suppose that

f is given by m = n for wxv. Since 2-c

k2-k l, we may assume with no loss of generality that Z£m-n~o.

Consider the line segment fz which is the projection of f onto

the (z=O)-plane. It is obvious from the proof of Theorem 2 that

I' (fz ) is exactly Rz and is a 2D digital arc. Since Rz is a

2D digital image of a line segment, it has the chord property

by Lemma 1. Similarly, Ry also is a 2D digital arc and has the

chord property.



Now suppose that both Ry and R are 2D digital arcs and

have the chord property. By Lemma 1, there exist line segments

f and f such that R =I'(fy) and Rz=I'(fz). Let f and f
y z y y z y z
bgvebyx-a _ZC x - m:,bexg-i-ven band - y for u~x~v, respectively.'Fx-a -b _ z-c for uxv icConsider the line segment - Y- = n u:x5v. Since

S2- £J2-J!k 2 -kl 0, we may assume that £_m~nO. Let (ij,k)

be a point of R. Then its projection onto the (z=0)-plane

is (i,j) and (i,j) is a point of '(f z). Thus, it is the nearest

digital point to the crossing of fz on the (x=i)-line. Simi-

larly, point (i,k) is the projection of (i,j,k) onto the (y=O)-

plane and a point of I'(f y), and so is the nearest digital point

to the crossing of fy on the (x=i)-line. Therefore, (i,j,k)

is the nearest point to the crossing of f on the (x=i)-plane.

So RcI(f). Obviously, from the proof of Theorem 2, the projec-

tions of R onto Ry and Rz are one-to-one. Also, I'(fy) Ry and

I'(f )cRz . So I(f)cR. Therefore, R=I(f) and R is a digital

line segment. 13

Corollary 5

A simple digital curve C is a digital line if and only if

it has the chord property.

Proof

4 Suppose that C has the chord property. Let R be any subset

that is a digital arc. Since C has the chord property, so does

R. Hence, R is a digital line segment by Theorem 4, so by

definition C is a digital line.



Now suppose that C is a digital line. Let dl 1d2 be

any two points of C and R the 8-connected subset of C whose

endpoints are d1 and d2 * Then by definition, R is a digi-

tal line segment and has the chord property by the above

theorem. So dId 2 is near R and thus near C. Hence, C has

the chord property. El

Again, as in the case of 2D simple digital curves, a

simple diTital curve which has the chord property may not

have any iine as a preimage.

It is easy to see that if a digital arc R has the chord

property, then at least two of R x,Ry and Rz are 2D digital

arcs. Obviously R x,Ry and Rz have the chord property.. o

R is a digital line segment. Thus, the chord property is

sufficient for a digital arc to be a digital line segment.

However, it is not necessary. As an example, consider the

r

X

z d

Figure 1



digital arc R{012,111,211,300,400,5-,)

as shown in Figure 1. Then R y {(O,1),(1,1),(2,l),(3,O),(4,O),

(5,-1)1 and Rz={(0,2),(l,l),(2,1),(3,o),(4,O),(5,o)} are 2D

digital arcs and have the chord property. Thus, R is a digital

line segment. Now consider points d 0=(0,1,2) and d,=(51-110)

of R. The point (2h,0,1) is on d 0d 1 but it is not near R, so

R does not have the chord property.



4. Algorithm

We present an efficient algorithm to determine whether or

not a given digital arc is a digital line segment. We assume

that digital arcs are contained in a cube of size N, that is,

if d=(i,j,k) is a point of a digital arc, then Oci,j,krN.

A digital arc can be represented by a chain code starting

with one of its endpoints [15]. Since the chain code of a

digital arc can be transformed into the sequence of digital

points of the arc on-line in linear time, we assume that an

arc is represented by a sequence of digital points (d0,dl,...,

dn), where d,=(i,,j,,k,) is a 26-neighbor of d,_1 for all

O<Z.in. We may also assume without loss of generality that

in-i J n-J okn-k0 .

The algorithm is based on Theorem 4 and on results in

[6,7], which are summarized as a lemma below.

Lemma 6 (Theorem 7 in [7] and Lemma 10 in [61)

A 6-connected finite set Q of digital points has the chord

property if and only if H(Q), the convex hull of Q, does not

contain any point of Q.

The "if" part of Theorem 4 together with Lemma 6 yields

a straightforward algorithm. That is, given a digital arc R,

construct R and R and check if both are 2D digital arcs. Ifx y

not, R is not a digital line segment. If so, check if the con-

vex hull H(Ry) or H(Rz) contains any point of R or of R
y zy



r7'

respectively. If so, R is not a digital line segment, and

if not, R is a digital line segment. However, the algorithm is

not efficient. FoR Ry and Rz may contain O(N2 ) elements and

the construction of H(R ) and H(Rz ) has worst-case time com-

2plexity O(N logN)(31. Thus, the time complexity of the algo-

rithm is at least O(N2 logN).

To develop a more efficient algorithm, we note a simple

fact that enables us to eliminate in O(N) time all digital

arcs that consist of more than N points. For the digital arc

R described above to be a digital line segment, we must have

it+l=i +1 for each Z, 15L:n. Since 05i5N for any point

(i,j,k) of R, any digital arc that consists of more than N points

is not a digital line segment. Thus, after this elimination

step, we need to examine only the digital arcs that consist of

no more than N elements.

Now, given a 6-connected set Q of n digital points, the

algorithm CONVEX in [6] constructs the convex hull H(Q) of Q

and checks whether h(Q) contains any point of Q in O(n) time.

Since R contains at most N points, constructing and checking

H(R y) and H(R z) takes 0(min{n,N}) time.

We briefly describe how the algorithm CONVEX is applied to

2D digital arcs. Given a 2D digital arc R represented by a

sequence (d0dl,...,d), where d =(i,,j,), suppose that i,+1=

iz+ 1 for all l £:n. A subsequence (ds ,ds+l,...,dt) is called

a run if js=js+= ... =jt,Js_lJs and jt'jt+l. We call ds a



left corner point of R and dt a right corner point of R. In

case of a run of one point, the point is both the left and

right corner point. For any left corner point ds=(is s ) of

R, (is-,,Js) is a point of R and is called a left corner

point of R. Similarly, if dt (it,Jt) is a right corner point,

(it+,,Jt) is a point of A and is called a right corner point

of A.

While traversing clockwise the right corner points and then

the left corner points of R in successive runs of R, we build

a sequence P of the corner points of R. Similarly, we build

a sequence T of the corner points of R. We apply the convex

hull construction algorithm in [3,18] to P to obtain the con-

vex hull H(R) of R. We then check whether any of the points

of P is a point of H(R). If so, R does not have the chord

property and is not a 2D digital line segment. Otherwise, R

has the chord property and hence is a 2D digital line segment.

Algorithm DIGITAL-LINE-SEGMENT(R,n)

//R is a 2D digital arc represented by a sequence

of n+l points.//

Step 1. For each =0,l,...,n-1 do

check if i +l=i

if not then return (FALSE); stop.

Step 2. Build Ry and Rz , the projections of R onto the

(y=O)-plane and (z=0)-plane, respectively.



Step 3. Construct Py and Py, the sequences of corner

points of R and Ry, respectively.

Step 4. Construct H(P y), the convex hull of P y, which

is in fact the convex hull of Ry

Step 5. If H(P y) contains a point of Fy then return

(FALSE); stop.

Step 6. Repeat steps 3-5 for Rz.

Step 7. Return (TRUE); stop.

Theorem 7

Given a digital arc represented by a sequence, algorithm

DIGITAL-LINE-SEGMENT determines whether or not the digital

arc is a digital line segment and its time complexity is

O(rain~n, N).

Li,



5. Discussion

We have defined the digital images of arcs and curves

and the notion of 3D digital arcs and curves. We have

shown that a digital arc is a digital line segment if and

only if two of its projections onto the (x=O)-, (y=O)- and

(z=O)-planes are 2D digital line segments. The third projec-

tion may not even be a 2D digital arc. Still, this closely

corresponds to the case of (continuous) arcs in 3D Euclidean

space, where an arc is a line segment if and only if two,

in fact all three, of its projections onto the coordinate

planes are line segments.

In [14] it was shown that a set of 2D digital points is

digitally convex if and only if it has the chord property.

Thus, a 2D digital arc is a 2D digital line segment if and

only if it is digitally convex. If "digital" and "digitally"

are deleted from this statement, we obtain a true statement

about 2D line segments. Thus, 2D line segments and 2D digital

line segments both have the important geometric property of

being convex.

However, the same does not hold in the 3D case. It was

proved in [8] that the chord property is a necessary but not

sufficient condition for a set of 3D digital points to be

digitally convex. In Section 3, we showed that the chord

property is a sufficient but not necessary condition for a

3D digital arc to be a 3D digital line segment. Thus, it is



not true that a 3D digital arc is a 3D line segment if and only

if it is digitally convex, but it is true for 3D arcs. This

is one of many examples that show the nontriviality of extend-

ing 2D digital geometry to 3D digital geometry.
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