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" ’JF ABSTRACT

Digital arcs in 3D digital pictures are defined. The
digital image of an arc is also defined. A digital arc is
defined to be a digital line segment if it is the digital
image of a line segment. It is shown that a digital line
segment may be characterized by the chord property holding
for its projections onto the coordinate planes. It is also
shown that a digital line segment may not be characterized
by its own chord property. A linear time algorithm is pre-
sented that determines whether or not a digital arc is a
digital line segment>%
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1. Introduction

Recent growing interest in three-dimensional (or simply,
3D) image processing [4,9,11,12,19,20] makes it essential to
develop a theory of 3D discrete geometry. Some work has al-
ready been done on the subject (8,11].

The following two problems are among the many with which
digital image processing is concerned. One is the problem
of digitization, that is, how to represent continuqus objects

using finite sets of digital points. The other is the prob-

lem of retrieving from a set of digital points information
about the object represented by it. Consider a line segment,

for example. One problem is how to represent it by a set of

-digital points, and another is how we can tell whether or not
a given set of digital points represents a line segment. Simi-
lar problems can be formulated for other types of curves.

some of the 2D digital geometric properties that have been

studied extensively are connectedness, straightness, and con-
vexity [1,2,5,6,7,10,13,14,17}. = Extensions to 3D digital
geometry have been investigated for connectedness and convexity
[16,8]. In this paper we study the property of straightness
for sets of 3D digital points.

The straightness of 2D digital arcs was studied in (14].
It was shown that a 2D digital arc is straight (or equivalently,
is a 2D digital line segment) if and only if it has the chord

property. (This property is defined in the next section.) A
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similar result is obtained for 3D digital arcs in this paper.

We define how 3D arcs and curves are represented by sets of

3D digital points. Then we give a necessary and sufficient
condition for a set of 3D digital points to represent a line
segment. Next we present an algorithm that determines whether
or not a given set of 3D digital points is straight (a 3D line
segment).

In the next section we introduce terminology and definitions
that are used throughout the paper. In particular, a scheme
of digital representation of 3D arcs is introduced and the
chord property is defined. 1In Section 3, we show that the chord

property of the projections of a set of digital points charac-

terizes the straightness of the set. It is also shown that the
chord property of the set itself is not a necessary condition. ¥
Section 4 presents an efficient algorithm that determines the
straightness of digital arcs and analyzes its time complexity.
In the last section, we discuss the results obtained and their

relation to those for sets of 2D digital points.
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2. Definitions

The set of all points in 3D(2D) Euclidean space is
denoted by E(E'). The set of all points in E(E') with inte-
ger-valued coordinates is denoted by D(D'). A point in D

or D' is called a digital point.

Two points d=(i,j,k) and d'=(i',j',k') in D are called ]
26-neighbors if max{|i-i'|[,|j-j'|,|k~k'|}=1. Similarly,
d=(i,j) and 4'=(i',3j') in D' are called 8-neighbors if max
{{i-i"|,]3-3"]}=1.

A 26-chain (8=-chain) is a finite sequence of digital

oo A I SRt 3 99 R S0 ¢ S

points in D(D') such that every element of the sequence except
the first is a 26-neighbor (8-neighbor) of its predecessor.

A set Q of digital points in D(D') is said to be 26-connected
(8=connected) if for any two points 4,d' of Q, there is a

26-chain (8-chain) in Q from 4 to 4'.

B e s o .

The block distance between w=(x,y,2) and w'=(x',y',2') in

-

E is defined by B(w,w')=max{|x-x'|,|y-y'|,|2z-2"'|}. Similarly,

WO e RO

the block distance beween w=(x,y) and w'=(x',y') in E' is
defined by B8(w,w')=max{|x-x']|,|y-y'|}. Two points w and w'

are said to be near each other if B(w,w')<l. Given a finite

© e TN e

set Q of digital points, point w is said to be near Q if there

is a point 4 of Q to which w is near.

(2D) digital arcs

B L e g L )

A 26~ (8~)connected finite subset R of D(D') is called a (2D)

digital arc if every point of R except two has exactly two
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26-(8-)neighbors in R and each of the exceptional two has
exactly one 26-(8-)neighbor in R. A (2D) digital arc may
be represented by a sequence (do,dl,...,dn) such that di-l

is a neighbor of di for 1l=i=n.

(2D) simple digital curves

A 26-(8-)connected infinite subset C of D(D') is called
a (2D) simple djgital curve if every point of C has exactly
two 26-neighbors (8—neighbqrs) in C. Hence a 26-connected
(8-connected) finite subset of a (2D) simple digital curve

is a (2D) digital arc.

If an arc £ in E' crosses a coordinate line, there may
be one or two digital points that are nearest to the crossing.
when there are two, the one to the right of f with respect
to its sense is chosen as the nearest. Suppose that an arc f
in E crosses a coordinate plane, say the (z=k)-plane. There
may be one, two or four digital points that are nearest to
the crossing. Consider the case of two and let the crossing »
point be (i+%,y,k) ((x,]j+%,k)), where jsy<j+hs (isx<i+) for i
some integer j(i). Let fy(fx) denote the projection of f i
onto the (y=j)-plane ((x=i)-plane). Then of the two points
(i,3,k) and (i+l,3j,k) ((i,j,k) and (i,j+1,k)), the one to the
right of fy(fx) is chosen as the nearest to the crossing.
In case of four-way ties, the digital point that lies to the
right of both £ and fx is chosen as the nearest. When f

Y
crosses other coordinate planes, the nearest point to the

crossing is determined similarly.
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(2D) digital images of arcs and simple curves

net £ be an arc or a simple curve. Whenever f crosses
a coordinate plane (line), the nearest digital point to the
crossing becomes a point of the digital image of £, whicih is

denoted by I(f)(I'(f)).

(2D) digital line segments

A (2D) digital arc is a (2D) digital line segment if tiere
is a line segment f whose digital image is R, i.e., R=I(f)

(R=I'(£)).

(2D) digital iines

A (2D) simple digital curve C is a (2D) digital line if
every subset R of C that is a (2D) digital arc is a (2D)

digital lire segment.

We note that the (2D) digital image of an arc or a simple
curve is not necessarily a (2D) digital arc or a (2D) simple
digital curve. It was shown in [14] that the 2D digital image
of a line segment in E' is a 2D digital arc. It will be =a0own
later that the digital image of a line in E is a simple digital

curve.

The following geametric property is useful in discussing and

characterizing (2D) digital lines and line segments.

The ciaord property [14]

A set Q in D or D' is said to have the chord propertv if
for any 4,d' in Q, every point on dd' is near Q, where dd' is

the line segment between d and d'.
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3. Digital line segments

In this section we extend the results of [14] on 2D
digital arcs to 3D digital arcs. Since they are used in

the proofs below, we restate them as a lemma.

Lemma 1 (Theorems 1 and 2 in [14])
The 2D digital image of a line segment in E' is a 2D
digital arc, and a 2D digital arc is a 2D digital line seg-

ment if and only if it nas the chord property.

It is interesting to note that the 2D digital image of
a line has the chord property but a 2D simple digital curve
that nas the chord property may not be the 2D digital image
of any line. For example, consider the 2D simple digital
curve C={(i,0)|i is a negative integer} U {(1,1) |[i is a non-
negative integer}. It is easy to see that C has the chord
property but there is no line whose 2D digital image is C.
Thus, the chord property is a necessary and sufficient property
for a 2D digital arc to have a line segment as a preimage but
only a necessary condition for a 2D simple digital curve to have
a line as a preimage. This is the reason for defining a 2D
digital line not as having a line as its preimage but as satis-

fying the chord property.

Theorem 2
The digital image of a line is a simple digital curve.

Proof
X-a y=-b 2=C

Let a line £ be given by T = = and assume without

P APy o T A s 1 -
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loss of generality that &¢=2mznz=0 and 2+m+n>0. Consider the
line fz which is the projection of f onto the (z=0)-plane.
Tne 2D digital image of fz on the plane is the projection
on the plane of those digital points of I(f) that are ob-
tained from the crossings of £ on the (x=i) and (y=j)-planes
for all integers i and j. This is so because of the rules
for obtaining the digital image of a line in E and the 2D
digital image of a line in E'.

Suppose that fz crosses the (y=j)-line at (x,j). 1If
i=x<i+» for some integer i, then (i,j) is a point of I'(fz).
Also fz crosses the (x=i)-line at (i,y), where j<y<j-%, since
2zm. Thus, point (i,j) of I'(fz) is also obtained from the
crossing of fz on the (x=i)-line, If i+%=<x<i+l, then (i+l,3j)
is a point of I'(fz), and fzcrosses the (x=i+l)-line at
(i+l,y), where j<y<j+%, since 22m. Thus, the point (i+l,3j)
of I'(fz) is obtainable from the crossing of fz on the (x=i+l)-line
too. So every point of I'(fz) is obtainable from the crossings
of fz on the (x=i)-line for all integers i. Therefore, there
is exactly one point of the 2D digital image of fz on each (x=i)-
line. Hence, if (i,j,k) and (i',3j',k') are points of I(f) that
are obtained from tne crossings of f on the (x,z)- and (y,z)-
planes, taen j=j'. Also, if (i,j,k) and (i+1l,j',k') are two
such points, then |j~j'|sl.

~Now consider the liine fy which is the projection of f onto the

zue (y=0)=-plane. By the same argument as above, we can show that

if (i,3,k) and (i,j',k') of I(f) are obtained from the crossings
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of £ on the (x,y)- and (y,z)-plane, tnen k=k'. Also, if (i,j,k)
; and (i+l,j',k') are two such points, then |k-k'[=l.

Therefore, there is exactly one point of I(f) on the (i=i)-

i

: plane for each integer i, and if (i,j,k) and (i+l,3j',k') are
points of I(f), then they are 26-neighbors. Thus, I(f) is

a simple digital curve. O

Corollary 3

The digital image of a line segment is a digital arc. U

Given a set Q of digital points, let Qt denote the projec-

tion of Q onto the (t=0)-plane for t=x,y and z. In the follow-

o Ry s

ing theorem, we assume without loss of generality that if d1=

(il,jl,kl) and d2=(i2,j2,k2) are the endpoints of a digital

e

arc R, then 12-11232—312k2-kl.

Theorem 4.
A digital arc R is a digital line segment if and only if
both R_ and Rz are 2D digital arcs and have the chord property.

Y
Proof

Suppose that the digital arc R is a digital line segment,

that is, R=I(f) for some digital line segment f. Suppose that

f is given by x;a = ¥°b o 2=¢

= 5 for usxsv. Since iz-ilzjz-jlz
kz-kl, we may assume with no loss of generality that 2=zm=n=zo.
Consider the line segment fz which is the projection of f onto

the (z=0)-plane. It is obvious from the proof of Theorem 2 that

B o P e i e < A} AR

I'(fz) is exactly Rz and is a 2D digital arc. Since Rz is a
2D digital image of a line segment, it has the chord property
by Lemma 1. Similarly, Ry also is a 2D digital arc and has the

chord property.
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Now suppose that both Ry and Rz are 2D digital arcs and
have the chord property. By Lemma 1, there exist line segments

=T =T
£ and fz such that Ry I (fy) and Rz I (fz). Let fy and fz

Y
be given by 5%2 = E%S and 5%5 = X%E for u=x=v, respectively.

Consider the line segment x-a _ y=b _ z=c for usx=v. Since
L

m n

i2-ilzj2-jlzk2-k120, we may assume that 2>m=n=0. Let (i,j,k)

be a point of R. Then its projection onto the (z=0)-plane

is (i,j) and (i,j) is a point of I'(fz). Thus, it is the nearest
digital point to the crossing of fz on the (x=i)-line. Simi-
larly, point (i,k) is the projection of (i,j,k) onto the (y=0)-
plane and a point of I'(fy), and so is the nearest digital point
to the crossing of fy on the (x=i)-line. Therefore, (i,j,k)

is the nearest point to the crossing of f on the (x=i)-plane.

So RcI(f). Obviously, from the proof of Theorem 2, the projec-
tions of R onto Ry and R, are one-to-one. Also, I'(fy)gRy and
I'(fz)ng. So I(f)cR. Therefore, R=I(f) and R is a digital

line segment. U

Corollary 5

A simple digital curve C is a digital line if and only if
it has the chord property.
Proof

Suppose that C has the chord property. Let R be any subset

that is a digital arc. Since C has the chord property, so does

R. Hence, R is a digital line segment by Theorem 4, so by

definition C is a digital line.

-
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Now suppose that C is a digital line. Let dl’dZ be
any two points of C and R the 8-connected subset of C whose
endpoints are dl and dz. Then by definition, R is a digi-
tal line seygment and has the chord property by the above

theorem. So dld2 is near R and thus near C. Hence, C has

the chord property. U

Again, as in the case of 2D simple digital curves, a
simple digital curve which has the chord property may not
have any iine as a preimage.

It is easy to see that if a digital arc R has the chord
property, then at least‘two of Rx’Ry and Rz are 2D digital
arcs. Okviously Rx’Ry and Rz have the chord propertv. %n
R is a digital line segment. Thus, the chord property is

sufficient for a digital arc to be a digital line segment.

However, it is not necessary. As an example, consider tie

Figure 1
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digital arc RrR={(0,1,2),(1,1,1),(2,1,1),(3,0,0),(4,0,0),(5,~1,0)}
as shown in Figure l. Then Ry={(0,l),(1,l),(2,l),(3,0),(4,0),
(5,-1)} and R_={(0,2),(1,1),(2,1),(3,0),(4,0),(5,0)} are 2D
digital arcs and have the chord property. Thus, R is a digital
line segment. Now consider points do=(0,1,2) and d1=(5,-l,0)
of R. The point (2%,0,1) is on EEEI but it is not near R, so

R does not have the chord property.

ISR, e mn g WS e e TN s s
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4. Algorithm

We present an efficient algorithm to determine whether or
not a given digital arc is a digital line segment. We assume
that digital arcs are contained in a cube of size N, that is,
if d=(i,j,k) is a point of a digital arc, then 0<i,j,k=N.
A digital arc can be represented by a chain code starting
with one of its endpoints [15]. Since the chain code of a
digital arc can be transformed into the sequence of digital
points of the arc on-line in linear time, we assume that an
arc is represented by a sequence of digital points (do,dl,..., .

dn), where d2=(i£,j2,k£) is a 26-neighbor of 4 for all

-1
0<2=n. We may also assume without loss of generality that
in-lozjn-Jozkn-ko.

The algorithm is based on Theorem 4 and on results in

[6,7], which are summarized as a lemma below.

Lemma 6 (Theorem 7 in [7] and Lemma 10 in [6])

A 6-connected finite set Q of digital points has the chord
property if and only if H(Q), the convex hull of Q, does not

contain any point of Q.

The "if" part of Theorem 4 together with Lemma 6 yields
a straightforward algorithm. That is, given a digital arc R,
construct Rx and Ry and check if both are 2D digital arcs. 1If
not, R is not a digital line segment. If so, check if the con-~

vex hull H(Ry) or H(R,) contains any point of §& or of ﬁz, 1

ot o vt P
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respectively. 1If so, R is not a digital line segment, and
if not, R is a digital line segment. However, the algorithm is
not efficient. For, Ry and Rz may contain O(Nz) elements and
the construction of H(Ry) and H(Rz) has worst-case time com-
plexity O(NzlogN)[3]. Thus, the time complexity of the algo-
rithm is at least O(NzlogN).

To develop a more efficient algorithm, we note a simple
fact that enables us to eliminate in O(N) time all digital
arcs that consist of more than N points. For the digital arc
R described above to be a digital line segment, we must have
i2+1=iz+l for each %, 1=f2=n. Since 0=<i=N for any point
{(i,j,k) of R, any digital arc that consists of more than N points
is not a digital line segment. Thus, after this elimination
step, we need to examine only the digital arcs that consist of
no more than N elements.

Now, given a 6-connected set Q of n digital points, the
algorithm CONVEX in [o] constructs the convex hull H(Q) of Q
and checks whether H(Q) contains any point of Q in O(n) time.
Since R contains at most N points, constructing and checking
H(RY) and H(R,) takes O(min{n,N}) time.

We briefly describe how the algorithm CONVEX is applied to
2D digital arcs. Given a 2D digital arc R represented by a
sequence (do,dl,...,dn), where d£=(i2,j1), suppose that i£+l=
i

o+l for all 1l=&=n. A subsequence (ds,ds+l,...,dt) is called

a run if js=js+l=...=jt,js_l#js and jt#jt+l‘ We call ds a

C e e e .
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left corner point of R and dt a right corner point of R. 1In
case of a run of one point, the point is both the left and
right corner point. For any left corner point ds=(is,js) of
R, (ig_y,3g) is a point of R and is called a left corner

point of R. Similarly, if a.=(i ) is a right corner point,

t'jt
(it+l’jt) is a point of R and is called a right corner point
of R.

While traversing clockwise the right corner points and then
the left corner points of R in successive runs of R, we build
a sequence P of the corner points of R. Similarly, we build
a sequence P of the corner points of R. We apply the convex
hull construction algorithm in [3,18] to P to obtain the con-
vex null H(R) of R. We then check whether any of the points
of P is a point of H(R). If so, R does not have the chord

property and is not a 2D digital line segment. Otherwise, R

has the chord property and hence is a 2D digital line segment.

Algorithm DIGITAL~LINE-SEGMENT (R,n)
//R is a 2D digital arc represented by a sequence
of n+l points.//
Step 1. For each #=0,1,...,n-1 do
check if 1'.‘&-*-l=iﬂ'+1
if not then return (FALSE); stop.

Step 2. Build Ry and R,, the projections of R onto the

(y=0)-plane and (z=0)-plane, respectively.




Step 3. Construct Py and 5&, the sequences of corner
points of Ry and §§, respectively.

Step 4. Construct H(Py), the convex hull of Py' which
is in fact the convex hull of Ry.

Step 5. If H(P ) contains a point of 5& then return
(FALSE) ; stop.

Step 6. Repeat steps 3-5 for Rz.

Step 7. Return (TRUE); stop.

Theorem 7

Given a digital arc represented by a sequence, algorithm
DIGITAL~LINE~SEGMENT determines whether or not the digital

arc is a digital line segment and its time complexity is

O(min{n,N}). O
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S. Discussion

We have defined the digital images of arcs and curves
and the notion of 3D digital arcs and curves. We have
shown that a digital arc is a digital line segment if and
only if two of its projections onto the (x=0)-, (y=0)- and
(z=0)-planes are 2D digital line segments. The third projec~
tion may not even be a 2D digital arc. Still, this closely
corresponds to the case of (continuous) arcs in 3D Euclidean
space, where an arc is a line segment if and only if two,
in fact all three, of its projections onto the coordinate
planes are line segments.

In [14] it was shown that a set of 2D digital points is
digitally convex if and only if it has the chord property.
Thus, a 2D digital arc is a 2D digital line segment if and
only if it is digitally convex. If "digital" and "digitally"
are deleted from this statement, we obtain a true statement
about 2D line segments. Thus, 2D line segments and 2D digital
line segments both have the important geometric property of
being convex.

However, the same does not hold in the 3D case. It was
proved in [8] that the chord property is a necessary but not
sufficient condition for a set of 3D digital points to be
digitally convex. In Section 3, we showed that the chord

property is a sufficient but not necessary condition for a

3D digital arc to be a 3D digital line segment. Thus, it is




not true that a 3D digital arc is a 3D line segment if and only
if it is digitally convex, but it is true for 3D arcs. This

is one of many examples that show the nontriviality of extend-

ing 2D digital geometry to 3D digital geometry.
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