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ABSTRACT

Two efficient algorithms are presented for obtaining steady-state

solutions of nonlinear circuits and systems driven by two or more

distinct frequency input signals. These algorithms are particularly

useful in cases where the steady-state response is either not periodic,

' or is periodic but its period is too large for existing methods.

-' The first algorithm is applicable to any circuit or system driven

by any number 2 of input frequencies. The second algorithm is

restricted only to 2 input frequencies and is therefore significantly

more efficient than the first algorithm. Both algorithms are

formulated for systems described by an implicit system of nonlinear

algebraic-differential equations, thereby obviating the need to write

state equations.

Numerous examples have been solved successfully using these two

algorithms. A selection of some of these examples is given for

illustrative purposes.
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I. Introduction

A fundamental problem In the design of communication circuits, such as

modulators and mixers, is to calculate the steady-state response when the circuit

is driven by inputs having "P" distinct frequency components {W1 9 2 '...WPI},

where P > 2 [1-2]. For complete generality, we assume the circuit or system is

described by an implicit system of differential-algebraic equations [3] of the form
fj(x,x,Y; It,w2t,= 0 , j = 1,2,...,m+n (1.1)

where x is an n-vector denoting the state variables, y is an m-vector denoting the

remaining non-state variables and f.(.) contains p periodic input signals of fre-

quencies wl, 2,..., P, respectively. In Appendix A, f.(-) is given by an explicit

formula which holds for most circuits of practical interest.

Standing Assumption. Given any initial stite x.. (1.1' has a unique as totically

almost-periodic solution [4]; namely, % I !

x(t) = Xt(t) + xss(t) (1.2)

where .. .

Mtr(t) 0 as t L v ._ ( .3)

is called the transient component and , Q i-- '

M
Xss(t) = a cos kt + a sin vk (1.4)

is called the steady state response , where the summation is taken over all

possible frequencies [5)

Vk a mlkl +m2k42+ "pkeP (1.5)

generated by the frequency base

Note that (1.4) is not an ordinary Fourier series because its frequency spectrum

{vlv 2,... vM} is not harmonically related. In fact, xss(t) is not even periodic if

the frequency base {wlw 2 o...,wp} is incommensurable [5]. In the mathematical

literature, (1.4) is called an almost periodic function.

Our objective in this paper is to present 2 efficient algorithms for calculating

the steady-state response xss(t).
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Current methods for calculating x SSt) can be classified into 4 categories:
1. Brute force method. This approach solves (1.1) by numerical integration

(starting from an arbitrarily chosen initial state x0 ) until the steady state is

reached [3].

Although this method is quite general, it is prohibitively expensive for

lightly-damped circuits where it takes a very long time for the transient component

to die out.

Moreover, if the frequency base is incommensurable, x ss(t) is not periodic and

it is difficult to determine when the steady state has been reached.

2. Perturbation method. This approach solves (1.1) by iteration with the initial

solution often chosen to be the solution of a linearized equation. It includes the

Volterra series method [5-7] and the Picard iteration method [8].

Unfortunately, this method works only for almost linear circuits where the

nonlinearity is often extremely weak (e.g., low distortion amplifiers). For circuits

which rely on nonlinearity in an essential way (e.g., modulators and mixers) this

method becomes highly inaccurate let alone the fact that the iteration often does

not converge.

3. Harmonic balance method. This approach solves (1.1) by approximating the

solution in a finite trigonometric series and then balancing all terms having iden-

tical frequency components, often via Galerkin's procedure [9-10].

Although very interesting theoretically, this method is often extremely time-

consuming because the various frequency components are estimated by multi-dimensional

Fourier analysis.

4. Shooting method. This approach solves (1.1) by finding first an initial state

x0(often via.Newton-Raphon method) such that the solution starting from x0 is

periodic, i.e., no transient component [11-12].

There are 2 serious problems associated with this method.

(a) It can not be used when the solution'is not periodic.

(b) Even if the solution is periodic, the period T is often many orders of magni-

tude larger than the period of the individual frequency components vk, thereby

making the numerical integration over this long period T prohibitively expensive.

For example, consider

xss (t)= Al cos wit + A2 cos w2t (1.6)

The following table lists several combinations of w, and w2 (of periods T, and T2
respectively) which makes xs(t) a periodic function. Also listed is the period T

of x S(t) and the ratio p1  -T/T I and P2 = T/T2"
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Table 1. Example of w1 and which make xss(t) periodic of frequency w.
w2

2r2w 27r T ATWl(Hz); w 2(Hz) TI= 21 sec) T2= -(sec) T= w-sec):pl - Tr.

1 0.23 6.2832 27.318 6.2832(102) 102  0.23(102)

1 0.233 6.2832 26.967 6.2832(103) 103 0.233(103)

1 0.2333 6.2832 26.932 6.2832(104) 104 0.2333(104)

1 0.2333.. .3 6.2832 26.927 6.2832 (0f
n) ion 0 .233...3(I o

n)

n digits n digits

103 0.233(003) 6.2832(10 -3) 0.26967(10 -3) 6.2832 103  0.233(103)

104  0.2333(104) 6.2832(10 "4 ) 0.26932(10 "4) 6.2832 104 0.2333(104)

l05  0.23333(105) 6.2832(105) 0.26932(10 "5) 6.2832 1O5  0.23333(105)

10n  0.23333...3(10) 6.2832(10"n ) 0.26927(10") 6.2832 10n  0.233...3(10 n )

n digits n digits

Note that when w, 1, T * - as n * -, and when w, = 10n ' Ti 0 but T = 6.2832

as n -. Hence, from a numerical integration point of view, it will take an

infinite amount of integration steps in order to obtain the periodic solution xss(t)

when n - W. Since p, - a and P2 - - as n - - in both cases, the larger the values

of P, and P2 1 the more computer time will be required. Hence, p1 and P2 give a

measure of numerical efficiency of the shooting method. This observation motivates

the following:

Theorem 1

The steady state response xss(t) in (1.4) is periodic of frequency w if each

frequency vk can be expressed as a rational number

k MTk (1.6)vk = n k k = 1,2,..,M(16

Moreover, if mk and nk are relatively prime integers for all k 1,2,...,M,

then the period T 2ir/w of xss(t) is given explicitly by

11 2w( m(1.7)

wheret
n A L.C.M. {nl , n2 ... . . .nM (1.8)

m A G.C.D. {m1 ,m2 , ... ,mM}  (1.9)
tL.C.M. and G.C.D. denote Least Common Multiple and Greatest Common Divisor,
respectively.
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and

k
where Tk = 27r/v k'

Conversely, if there are at least 2 frequencies Iiand v k where v is rational
but v k is irrational, then x ss(t) is not periodic.
Proof. Rewriting (1.4) as

!ss(t) = x s (v It'v 2 t,.. 'Vt) (.1

to emphasize the M periodic components of frequency vVV 21...VM9 we obtain

x (t+T) = x (v1 (t+T) ,v2(t+T),.. .Vv4(t+T))

.ss 1 mM V y

= xss(vl(t+2rN)lv 2(t+22 .)...,vM(t+2TM)))(.2

m

(t+ sx (vlt+ n ..,mt2n,2) "v~t

Fi ny k f I rain a bukki rainl w a ersn b (1.)

ith an Coegr nseqenty o (18n d (19) Itflosfrm(.3 and (1.4t) thas

an infinite period; i.e., it is not periodic. 0

It follows from Theorem 1 that if x s(t) is periodic, its frequency is given by

* G.C.D.{m1,m 2,...mMl (1.15)
! .C.M.inl,n2,..,nN
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and its period T is bounded by:

max{T1 ,T2 ,..,T pI < T < 2l(nln2...nM) (1.16)

It also follows from (1.8)-(1.10) that since m is typically a small integer

(m=l if all mk are relatively prime), the period T can be many orders of magnitude

larger than that of Tk. Typically, T increases by an order of magnitude if we

increase the number of significant figures in representing the component frequencies

Vk, k = 1,2,...,p by one.

Observe that in solving (1.1) by numerical integration, the step size h is

determined by the period of the highest frequency component [3], namely,
h <_.-min{T1,T2,., k  (1.17)

It follows from (1.16) and (1.17) that both the brute force method and the shooting

method are usually impractical when there are multiple input frequencies.

To overcome the problems associated with existing methods, we will present two

new efficient algorithms in this paper. The basic idea in both algorithms is to

find an initial state x(O) A xO so that the transient component

!tr(t) = 0 for all t > 0 (1.18)

regardless of whether the steady state response x ss(t) is periodic or not. In both

algorithms, x* is found by a Newton-Raphson mehtod. However, unlike the shooting

method [11], (1.3) is solved numerically only over a small fraction of the period T

(in the periodic case) per iteration. This is why our algorithms are computationally

quite efficient.

The algorithm to be presented in Section II is completely general and is appli-

cable regardless of the number "p" of input frequencies, provided p < .

The algorithm to be presented in Section III is restricted only to the 2-input

frequency case (p=2). We will see that this restriction leads to a significantly

more efficient algorithm than that of Section II.

II. Almost-Periodic Solution Algorithm 1: Multiple-Input Frequencies

Since our algorithm does not depend on whether x sst) is periodic or not, let

us assume that the exact steady-state response

M
xssCt) = a0 + I {a2k-I cos Vkt + a2k sin vkt} (2.1)

k--



is not periodic for the sake of generality. Consequently, we will call the co-

efficients ak as generalized Fourier coefficients.

Even though the number M of frequency components in (2.1) could be quite large

(M may equal -!) in most practical cases,

A /12k.li 2 + 12 0 for all k> N (2.2)

where II denotes Euclidean norm.

Hence, we will seek to find an approximate solution

N
MN(t) = a0 + kIl {a2k-I cos Vkt +a 2k sin vkt} (2.3)

whose N < M.

A. Calculating -k when transient component is zero

In section 1I-B, we will present an algorithm for finding an initial state

!0 such that the transient solution component xtr t) in (1.3) is zero for t > 0.
In this subsection, let us assume x has been found so that the solution of (1.1)

starting from x0 is x(t) = xss (t) for t > 0.

To minimize computation time, we will often choose a relatively small N so

that (2.2) is not necessarily satisfied. In this case, the following theorem is

important:

Theorem 2. Properties of Generalized Fourier Coefficients

Let N < M be any positive integer.

(a) For any (not necessarily optimum) N-frequency component approximation

N
iN(t) A 0 + Z {b2k-I cos Vkt + b2k sin vkt} (2.4)

to x. (t) in (2.1), the mean-square error

M[x 2(t)-Nt)2 A lim i T  s2dt~s~) ~) T-).w 01 ~O ~xs~)_N

is given explicitly by:t

"We define the mean of x(t) by

xt} llm IT x(t)dt
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M[Xss(t)-YN(t)]2 = M[%x(t) 2 - lao 2 - 1 kNlak2 + laO 12 + I N lab, 2  (2.5)
=s ~s ~0 1 k _-O 2Ek= (2.5)

(b) Among all possible coefficients {bob 1,...,bzN} in (2.4), the coefficients

which result in a minimum mean-square error are precisely the first 2N+1 generalized

Fourier coefficients; namely

N z !k' k = 0,1,2,...,2N (2.6)

(c) The minimum mean-square-error is given by:

M[xss (t)-x t) 2 = lI l k1 (2.7)

k=N+l ~

Proof. It suffices to prove the scalar case.

(a) M(xss(t)-N(t))2 = M{xss(t) - b0 - N [bzk-iCOS kt+b2ksin Vkt]}k=l N

M[Xss - 2b0 MXss(01 - 2M{Xss(t) I [b2k-1Cos vkt+b2ksin vkt]} i

N k=l
+ b0 + M{ I [b2kl cos v kt+b2k sin vktl}

2  (2.8)
k=l

where we have made use of the fact that

M{sin vt} = 0 for all v (2.9)

M{cos vt} - 0 for all v # 0 (2.10)

The last term in (2.8) can be further reduced:
N N 2N2 i

M{ I [bk Ceos Vkt+bk sin v tj) 2 = N ( 2 +b2 b (2.11)
k= 1k k= 1 (bklb~)

Substituting (2.1) for xss(t) in the second and third terms in (2.8), we obtain

N
2boM[xss(t)] + 2M{x.s(t) IX[b 2k1 COS Vkt+b2ksin Vkt)}

N " = 2N
2 a0b0 + J (b2k-la 2k l+b2ka2k) = 2aob0 + Z akbk (2.12)

k= 1k=1
Substituting (2.11) and (2.12) into (2.8), we obtain:

2N 2N
ss N ss 0 k k+0 -kl2N kl 2N k

2 _ 1 2N 2 2 1 2N2 (2.13)MEx 1 (t)], - a k- ak + (aoob0) + f k = (A-b k

which is Just the scalar version of (2.5).
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(b) Since bk occurs only in the last 2 terms of (2.13), the minimum of (2.13)

occurs when (2.6) holds. M

Cc) MCx Ml(2)J a a2 + I- E ak2 (2.14)

Substituting (2.6) and (2.14) into (2.13), we obtain:

21I M 2MCXss(t)-xN(t)I = k ak (2.15)
k=N+l

which is just the scalar version of (2.7). *

Theorem 2 shows that regardless of the integer N, the generalized Fourier co-

efficients fao0al,...,a2NI in (2.3) can be obtained by minimizing the means-square-

error between xs t) and xN(t). Hence, increasing the number of frequency compo-

nents from N to N+l does not affect the previously calculated coefficients.

Since by assumption, xt't) = 0 for t> 0, we can calculate xs (t) by solving
(1.2) numerically. Assuming a uniform step size At, let us calculate (Z+l) time

steps to obtain x (At), x (2At)...,x (kAt),...,xss((Z+l)At)' where Z is some5 ss -ss .ss ~s
integer to be chosen later.

Since Theorem 2 implies that the jth components ak.9 k = 0,l,...,2N, of each

generalized Fourier coefficient a k can be determined independently of the coef-

ficients of the remaining components of the vector xN(t), it suffices for us to
derive a formula for calculating these coefficients in the scalar case. To simplify
our notation, define the vectors

Xss(0) XN(O) a 0  ao(Z)
xss(At) x N(At) I a 1 W

xss(Z) Xss(2At) 'xN(Z) A xN(2At) 'aA a2  , and a(Z) A a2 (Z) (2.16)

Lxss(ZAt) XN(ZAt) a2NaN

and the Z x (2N+l) matrix

1 1 0 ... 1 0

I cos v1At sin viAt ... cos VN At sin vNAt

rA cos 2viAt sin 21At ... cos 2VNAt sin 2vNAt (2.17)

1 cos Zv1At sin ZvAt cos ZVNAt sin ZvNAt
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ofere (23)aegvnb
The (2N+1) generalized Fourier coefficients alaq..ak . ,a2N I of x N(t)

a = aZ) +E(Z)(2.18)

r XS(Z) (2.19)

and E.(Z) is an error vector satisfying

e (Z) - 0 as Z-cT (2.20)

The (2N+l) x (2N+l) matrix (p 1') in (2.19) is non-singular for all positive

frequencies v l'v2t...,vN and for any step size At if, and only if

At 2nir (2.21)
Ivij±vk)

for all i, k = 1,2,...,N, and for any integer n.
Proof. 2 i 1 T [ x t) 2 dMCxss(t)-x NMtf T- Ti JO s (t~NMtI2 d

= lim 1xs kt-x~~)

I~k- [xs(kAt)xN(kAt)JJ1 + EMZ (2.22)

where 
T Ts

e(Z) > 0 denotes the error resulting from taking only a finite number Z of time
steps.

Now substituting t = kUt in (2.3) and using the notations in (2.16) and (2.17),

we can write

z2 = Ex (z)Tx
I= [xss(kAt)-xN kAt)] D x (Z) ] £xSS(Z)-x-N(Z)J

= [ ss(z) -Pa(Z))T[X55 (Z)-r'a(Z)]

ss- aT(z)r x s(Z) - xS(Z)ra^(Z)

+ T M~r ra(Z) (2.23)
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After adding and subtracting aT GIGGIa sTG-la to (2.23), where

G Er and a A rTxss(Z) (2.24)

we obtain

I [xss (kAt)xN(kAt) 2  xsTs(Z)x ss(Z) - aT(z)GGIa - oTGGI(z) + a (Z)Ga(Z)

+aTG'1IGGa a TIa

(a(Z)-G'IO)TG (a(Z)-G'la) + xT(Z)Xss(Z) -aTG'l (2.25)

Since only the first term of (2.25) depends on i(Z), and since G as defined
in (2.24) is clearly positive semi-definite, it follows from (2.22) and (2.25)

that the mean-square error M[xss (t)-xN(t)32 attains its minimum when

a(Z) -Ga' - (r r)-rTx (Z) (2.26)------------ ss
It follows from Theorem 2 that as Z -, a(Z) - a and hence e(Z) - 0 in (2.18).

The proof showing (r' )is nonsingular if and only if (2.21) holds involves

some cumbersome determinant expansions. The details are given in Appendix B. *

Theorem 3 gives us an explicit formula for calculating (approximately) the

(2N+I) generalized Fourier coefficients {ao,a1,... ,a2N} for any N; namely,

a;= (rTr' 1ET !S( (2.27)

This approximate formula becomes exact as the number Z of integration time

steps tends to -.
Since (2.21) applies only at a countable set of isolated points, it is easy

to choose a suitable at satisfying (2.21). Once At is chosen, r can be calculated
from (2.17). The vector xss(Z) in (2.17) represents (2N+I) "samples" taken from

the exact steady-state solution xss (t) from (2.1) at a regular time interval equal

to at.
In practice, xss(Z) is of course calculated numerically by solving (1.1)* 1

starting from any initial state x0  which results in a.zero transient component.
Finally, note that (2.27) gives the (2N+l) generalized Fourier coefficients

of only one component of the state vector xss(t). Hence, (2.27) must be applied

i This implicit system of differential-algebraic equationscan be solved using the
Backward Differentiation Formula (BDF) as described in [3].
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n times for the "n" state variables in x. Since r remains unchanged, each calcu-
lation involves only changing x s(Z) in (2.27) corresponding to each component of

SSt). *

B. Finding the initial state x

If we let xN i(Tb) denote the ith component of xN(t) from (2.3) at any time
t =Tb) ,ten1

N
XNq(Tb) a0  + I {a~k Cos IVk + ak sin vT} (2.28)

1 1 k=1 1kl 1~ ki kb

when ak denotes the ith component of a. Substituting (2.27) for ain (2.28),
we obtain

XN(IbJ. TTb -1 = 1TTb[r ) -'r (M) = x T(z) [r(r TN
1i - _-ssi _s$1  --- ()]

i 1 ,2....,n (2.29)

where x T M denotes the x~ (Z (as defined in (2.16)) associated with the ith

component'o x (t)M, and

tY(Tb) 1 1 cos vlTb sin v lTb, .... Cos v NT siv b (2.30)

Since r(rTrY-ly(T b) in (2.29) remains unchanged for all i =l,2, ...,n, we can
combine all n components of xN(t) from (2.29) into a single matrix equation:

XN (Tb x 5 (0) x5  (At) x5  (2At) ... x5  (ZAt) CLO (Tb;At,ZN)-

1 1 1 al (Tb ;At,Z,N)
X N (Tb) Z xs (0) xs (At) x ss(2At) ... xs (ZAt)

2 SS2 SS2  ~c 2(Tb ;AtZN)

Xn (Tb xs (0) xs (At) x5  (MA) ... sn (ZAt)

a 7(T .;At,Z,N)
N(Tb;0 X(At,; xO______

c (Tb ;AtZN) (2.31)

where the (Z+1)-vector

Cd(T ;At,Z,N) 5r rTr)i y(T b) (2.32)

depends only on Tb,AtZ, and N (since r in (2.17) depends on AtZ,and N) but not

on x.



We can recast (2.31) into an exact equation by introducing a slack variable

EN (Tb ;At,Z); namely,

YNTb;xO ) - X(AtZ;xo) ct(Tb;ttZ,N) = -eN (T b ;AtZ) (2.33)

Observe that c N(Tb;At,Z) - 0 if the following 3 conditions are satisfied:
I) Z = .

2) xs~t iscalculated by solving (1.1) numerically with x 0__ate _niia

state, where x0is any initial state which satisfies (1.18).

3) x5 (t)M is calculated with infinite precision and zero local truncation
error.

None of these conditions can be exactly met in practice. Moreover, even if

EN(T b;At,Z) = 0, we still can not solve (2.33) for x*since we do not as yet have
the information *(i.e., the coefficients aO !1 . 2 needed in (2.3) to cal-
culate x N(T b ;x ).

Instead of (2.33), however, suppose we define the following system of "nl"
reatd qutinsasa untin fthe "n" components x .x ofthrelaed euatins s a uncton o T OlsX029*j~ th

initial vector OA X 03 .2 -x.. ] = (X )Y )..x n (0)]T

c0LQ(Tb ;AtZ,N)_

x I(Tb;xO) x01 x1(At; 0 ) xl(2At;x0)... .x I(ZAt;x 0) (%1(T b;At,Z,N) 0

x2(T b;x 0) x 02 X2 (At;x 0) x 2(2At;x 0). x x2(Zi~t;x 0) a2(T;AtZN) 0

Xn (Tb;x ) xO xn(At;x ) xn (2At;x ) .x (Z~t;x) 0

bL c(Tb;AtN -1

~(xo;Tb ,At,Z,N) = 0

(2.34)
where x C tx 0) denotes the ith component of the complete solution x(t) =x t(t)
+ x (t)M of (1.1) starting from the initial state x09 for t = 0, At,2At,... ,ZAt,

and Tb. Observe that unlike (2.31), both x( Tb ;x 0) and X(At,Z;x0) can be calculated
by solving (1.1) numerically.

Now at x= 0 01Xtr(t) = 0 for t > 0 (by definition) and hence we can write

!(Tb ;-xo*) = SS(Tb ;-xO*) = x-N( Tb ;-xO*) + -xM-N(Tb ;xa)(.5

-12-



where xss(Tb;Xo ) Xs (Tb) and XN(Tb;xO) = (T) as defined in (2.1) and (2.3)

respectively; and where xN(Tb;xO ) denotes the remaining (M-N) terms of xss(T
*M_ -.sS b

which have been excluded from xN(Tb). Consequently, at x= ,0 (2.34) can be

written as follows:

XN(Tb;XO ) - X(At,Z;xo )a(Tb;At,Z,N) = -XMN(Tb;XO*) (2.36)

Comparing (2.33) and (2.36), we find

£N(Tb;At,Z) = XMN(Tb;xO) (2.37)

Equation (2.37) is remarkable because it says that eN(Tb;AtZ) 0 when

N - M. In other words, if the exact steady state response xss t) in (2.1) has

only M < - frequency components, and if we choose N = M in (2.3), then

EN(Tb;At,Z) = 0 and (2.31) becomes exact for any Z.

Indeed, when M = N and Z = 2M + 1, r becomes a square matrix and the gen-

eralized Fourier coefficients can be calculated exactly from (2.27):

a = 'xss(Z) (2.38)

Similarly, (2.32) in this case (Z=2M+I) reduces to

c(Tb;At,Z) =~~Ty(Tb) (2.39)

Of course in practice, we will normally choose N << M in order to save compu-

tation time. This choice is often necessary anyway because M = - for most prac-

tical circuits. Fortunately, the amplitudes of the higher-order terms [5] in

many practical circuits satisfy (2.2) so that the error vector e(Tb;At,Z) remains

relatively small even though N << M.

Let us summarize the preceding observations as follow:

Remarks:

1. The solution 0 of the nonlinear equation

F(xo;Tb,At,Z,N) = 0 (2.40)

as defined in (2.34) for fixed At and Z represents, a good approximation to 0

provided the number of frequency components N and/or the number of time-step

samples Z are chosen to be sufficiently large. In particular,
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! 0 - 0  as N - and/or Z ( (2.41)

2. Since (2.40) is not given in closed analytical form, it must be caluclated

numerically for each x0 At, and Z.

3. Equation (2.40) can be solved for x0 (for fixed At and Z) by the Newton-Raphson

method [3]:

(j+l) =0) [ (~ ) Fxi; tZN (2.42)

whereJ (x4) aF(xo;T b,At,Z,N) (.3where JF(X ) - ~ (2.43)
-0 x0 ~0

denotes the Jacobian matrix of F(xo;Tb,At,Z,N) at .
= (j). This can be evalu-

ated by the method given in Section II-C.

4. Once the initial state x is found, we solve (1.1) numerically with x as

the initial state to obtain x ss(At), x ss(2At),..., xss (ZAt). Substituting the ith

component, i = 1,2,...,n, of these data into (2.27), we obtain the first (2N+l)

generalized Fourier coeeficients a0 ,a ,... ,a2N of the ith component xss (t) of

the steady state response xss(t).t Theisteady-state response xN(t) at any time

t = T can now be obtained by calculating (2.3) at t = T.

C. Evaluating the Jacobian matrix J Ffja
Since the most time-consuming part in solving for x via the Newton-Raphson

method is the numerical calculation of the Jacobian matrix JF(xo ), it is

essential to develop efficient computational methods. Taking the Jacobian of

F(x0 ;AtZ,N) in (2.34), we obtain

STb;o) Z x(kAt; O) 2.44)
F( ) =0 ax0 IxoX~j)  k" k k(Tb;AtZ) ~ Dxo0~  ) (.4

Hence, we need to calculate

ax t ) jat t -O,At,2At,...,ZAt, and Tb (2.45)

These (Z+2) n x n matrices can be calculated by the numerical differentiation

method described in Section 17-5-2 of [3]. If the circuit associated with (1.1)

If xss(t) is periodic and its period T is not too large we can replace this step
by nUmerically solving (l.1) from t = 0 to t * T with x0 as the initial state.

-14-
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is given, the most efficient method for calculating (2.45) is the sensitivity

network approach given in Section 17-5-3 of [3].

However, if (1.1) is available only analytically , the sensitivity network

approach is not applicable. In this case, the following method is much more

efficient and accurate than that of numerical differentiation:

In vector form, (1.1) becomes

f(x,x,y;Wit,W2t,...,W t) = 0 (2.46)

p

Applying Taylor Expansion about (x() (t),y(J)(t)) at the jth stage of the iteration,

where { !)(t),y(J)(t)) denotes the solution of (2.41) with initial state

!0 0 we obtain

y(t)

+ O(lW(t)12 , In(t)12,y(t) 2 ) = 0~ ~ ~(2.47)

where

n(t) A !(t) - x(JS(ts, Y(t) A y(t5 - y(J)(t) (2.48)

The first term in (2.47) is identically zero because (x(JS t)y (J(t)) is a solu-

tion of (2.46). Neglecting the higher-order terms, (2.47) can be recast as

follow:

i(t) F f f f A(J)(t)_iF(t) T T(t) t( )I(t) n(t (2.49)

I(-J (t)y (j (t))

The first component equation of (2.49) is a linear time-varying differential

equation

tOur algorithms in this paper are valid for any equation of the form (1.1), which

need not be associated with a circuit.
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AO)Mjt njtJ (2.50)

where A(J)(t) is an n x n-matrix*fun(Wt=-of time. We--wilT hehcefbrth refer to

(2.50) as the variational equation associated with (2.46).

The solution of (2.50) corresponding to any initial state n(O) is given by

[13)

n(t) = 0(M(t) r(O) (2.51)

where 0(J)(t) is the fundamental matrix solution of (2 .50 ).t If we choose

r-(0) =0 0 ... 0 nk(O) 0 0 ... O]T (2.52)

then

ni(t) = (J)(t) nk(O), i = l ,2,...,n (2.53)

where Mk(t) denotes the ikth element of s(t). It follows from (2.52) that

ax i(t) =hi(t) . iM(254

Xk-) rk-T= ,ik

Hence we have proved that

ax(t;xo) = (2.55)

0 0

It follows from (2.54) that JF(x(J )) in (2.44) can be calculated accurately

in 3 steps:

1) Form the variational equation (2.50) at each iteration.

2) Calculate the fundamental matrix solution J)(t) of (2.50).

3) Calculate (2.44).

0. Initialization Guidelines

To initiate the algorithm for finding the initial state x0 , it is necessary

to choose the 5 parameters N, Z, At, Tb and x0 for constructing the nonlinear

equation (2.34). Since a good choice of these parameters depends on both the

nature of the problem (number of state variables, degree of nonlinearity,

amplitudes of input signals, number of input frequencies, etc.) and the computer

being used (word length, single or double precision, etc.), we can only offer

tThe Jth column of the fundamental matrix solution is simply the solution of (2.51)

with he initial state

(O) -[o 0 ... 0 1 0 ... O]
T

LJth position -16



some guidelines which have been found useful in our numerous numerical experiments

conducted using our algorithm.

a) Choice of N.

Recall N < M is the number of frequency components used in the truncated

steady state solution xN(t) in (2.3). For typical communication circuits

(amplifiers, mixers, modulators, etc.) the number of significant frequency compo-

nents is usually known from previous analysis and N should be chosen to include

all such components.

If the number of significant frequency components is not known from previous

experience, we simply make an intuitive guess. If this guess is unrealistic, it

will show up in the subsequent error analysis (to be discussed in Section II-E)

and we will have to repeat the analysis with a larger N.

b) Choice of Z, At, and Tb.

Recall that At is the uniform sampling step size used in "sampling" the

numerical solution of (1.1) and Z is the total number of samples taken. It is

important to note that "At" is not the same as the integration step size "h"

used in solving (1.1).

In most of our numerical experiments, we solve (1.1) using a 4th-6th order

BDF algorithm [3] with a step size h = Tmin/50, where Tmin is the smallest period

of the N frequency components. This choice usually gives a very accurate numerical

solution for x(t).

Our sampling step size At is usually chosen within the range

f7h <it< 13h (2.56)

provided (2.21) is satisfied. In practice, ill-conditioning could occur if At is

chosen to be too small, or if it contains some frequency components vj and k such

that (vj -AI= O. (See Appendix B)

Although Theorem 3 shows that the generalized Fourier coefficients can be

calculated exactly only if Z ( (see Eq. (2.20)), our numerical experiments show

that good results can be obtained in many practical cases with a considerably

smaller Z. In particular we have found the following range to be adequate for

the many examples we have tried so far:

S(2N+l) < Z < 2(2N+I) (2.57)
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Finally, the choice of Tb is somewhat arbitrary as it does not affect the
theory in Sec. II-A from which our algorithm is based. However, since the gener-

alized Fourier coefficients are estimated by samples taken over the time interval

[O,ZAt], we choose

Tb > ZAt )  
(2.58)

so that the data x(Tb;xo) would not be redundant.

c) Choice of x

To assure and to hasten the convergence of the Newton-Raphson iteration, it

is desirable to pick a good initial guess xO). Unfortunately, no intuitive guide-
lines are available especially when the steady state solution x sst) is not

periodic.

One approach which has worked well for our examples is to replace the inputA A A
frequencies {vl~v2,...2VN} by an approximate set of frequencies {vl,V2,...,VN} so

that the associated steady-state waveform is periodic with a relatively small

period T = 2ir(n/m), where m and n are defined in (l.8)-(l.9) and is bounded by

(1.16). Using this approximate set of frequencies, we then apply the shooting

method [11), or any other efficient method for finding x0 for periodic solutions,
• *

to calculate 0" We then take this approximate x0 as our initial guess x 0).

If we let mmax Amax{ml,m2,...,mN } and nmin A min{nl,n 2 ,...,nN}, then (1.7)

suggests the following algorithm for reducing T:

(1) If Vk = m k is an integer for all k = 1,2,...,N, then we increase max^

until it is not a prime number and then increase v' k = 1,2,...,N, until mm/v
-k' max/k

is an integer.

Example 1. Let v1 = 2, v2 = 3, and v3 = 7. Then {ml,m 2,m3} = {2,3,7} and we

have from (1.7)

T = 27r 2iG .C'.: ,3,7} 2

Now increase mmax = 7 to v3 = m3 = 8, and then increase v2 to 4. The new period

associated withl,'v2, 31 = {2,4,8} is

T = (2.59)

(2) If vk m k/nk is not an integer, we first change mk as in (1) and then

change nk, k 1,2,...,N until it becomes a multiple of nmin.

Example 2. Let v1 = 2/5, v2 = 3/8, and v3 = 7/9. Then {m1,m2,m3} = {2,3,7}

as in Example 1 and (nl,n 2,n3} {5,8,9}. From (1.7), we find
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T z 21r .. J. " 720ff (2.60)T =2= G.C.D.{2,3,7

Since nmin = 5, we change n2 and n3 to n2  10, and n3 = 10 so that

21 IL.C.M.{5,10,'10} 7 (.1

T = 2 G.C.D.2,4,8 = (2.61)

Note that dramatic reduction in period from 720w to I0ff!

(3) If vk is an irrational number, we first approximate it by a rational

number and then proceed as in (2).

Example 3. Let v, = 0.404040..., v2 = 0.375010101..., and v3 =0.7777...
We can approximate vl,V 2 , and v3 by vl = 2/5, v2 = 3/8, and v = 7/9 and then pro-

ceed as in Example 2. Note the period changes from T = to T = lOir.

E. Termination Guidelines

Since our choice of N may not be realistic in the sense that one or more
significant frequency components may have been inadvertently excluded from (2.3),

our algorithm does not terminate when the Newton-Raphson iteration in (2.42),

converges to an initial state 0" We must further validate our answer as

follows:
(1) If the steady-state response x (t) is periodic with a reasonablly

-ss**small period T, we simply solve (1.1) numerically for x(t,x0 ) (with x0 as

initial state) from t = 0 to t = T and verify that x(0;x 0) x(T;x0)

(2) If the steady-state response xss(t) is not periodic, or if it is
periodic with an unreasonably large period T, we can carry out the following
heuristic validation procedure in view of (2.7) of Theorem 2.

(a) Solve (1.1) numerically for x(t,x0*) (with x0" as initial state) from

t = 0 to t = T, where T is chosen to be sufficiently large.

(b) Solve for XN(kAt,xO) using (2.31)where Tb= kt an d theentries xss(kAt) in the

matrix X(At,Z;x0*) are substituted by xj(t;xo ), t = 0, At, 2At ... Z~t.

(c) Calculate the error

Z
ej t k 1 0  j[x (kAt;xO )-xN (kAt;-)A (2.62)

t,We could reduce T further by decreasing^(instead of increasing) n and n to
n2 = 5 and n3 = 5. However, the v2 and v3 no longer represent a good appooximation.
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for each component j = 1,2,...,n.

If max{l,c2,...,e n} is smaller than some perscribed tolerance, stop. Other-

wise, increase N and/or Z and start all over again.

F. Summary of Multi-Frequency Algorithm

Step 0. Specify the 4 parameters N, Z, 6t, and Tb (See Section II-D) and

calculate the vector c(Tb;At,Z,N) using (2.32).

Set j = 0.
Step 1. Choose initial state x = xJ) (for j = 0, see Section 11-0) and

solve (1.1) numerically to obtain x(At),x(2At),...,x(ZAt).

Calculate F(xo;Tb,At,Z,N) from (2.34). If 1F(xO;T,At,Z,N) < c

whose e is a sufficiently small positive number, call = and

go to Step 4.
Step 2. Compute the Jacobian matrix ' j  in (2.43). (See Section Il-C).

Step 3. Compute x 0 +l) via the Newton-Raphson iteration (2.42).

Go to Step I with j - j + 1.

Step 4. Solve (1.1) for x(t) with x0 as initial state from t = 0 to t = Tb

where Tb= period if xss(t) is periodic, orTb is a sufficiently large

number.
Case 1. xss(t) is periodic with small period T:

Calculate e. = x (OX ) - x.(T;xo ), j = 1,2,...,n

Case 2. xss(t) is not periodic or is periodic with large T:

Calculate c. using (2.62), j = 1,2,... ,n.
If max{cl,,2,. .e.n} > CO

where co is a sufficiently small positive number, increase N and/or

Z and repeat Steps 0-4.

Step 5. STOP.

G. Illustrative Examples

Numerous examples have been solved successfully using the 2 algorithms pre-

sented in Sections II and III. Because of its widespread interest, let us apply

the preceding algorithm to solve the forced Duffing's equation [14-15]:

+ ki + clx + c2x
3 = f(t) (2.63)

This equation arises in many physical problems (e.g., ferro-resonance circuits)

and is known to exhibit many interesting phenomena; including subharmonic, almost-
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periodic, and chaotic solutions £16].

To apply our algorithm, let us recast (2.63) into the form of (1.1), which

in this case is just the state equation

X1 = x2

x2 =-kx2 -c 1xI - c2x1 + f(t) (2.64)

To be specific, let us choose a 3-frequency-input signal

f(t) = A1 cos wit + A2 cos w2t + A3 cos w3t (2.65)

and k = 0.1, c1 = 2.0 and c2 = 1.0.
We have solved (2.64) using many different combinations of amplitudes and

frequencies, 4 of which are listed in Table 2.

Table 2. Four combinations of A. and w. and their respective periods.
i i

2c T2- 27 T3- 21 T=2(s)case A1  A2  A3 w1  w2 w3 TI _ 2U 3- W 3

1 0.4 0.4 0.4 1 0.35 0.155 6.283 17.951 40.54 400n

2 0.4 0.4 0.4 1 0.85 0.170 6.283 7.392 36.96 2007

3 0.5 0.5 0.5 1 0.35 0.155 6.283 17.951 40.53 400n

4 0.5 0.5 0.5 1 0.85 0.170 6.283 7.392 36.96 2007r

From previous experience, we know all frequency components

V k = mlkl + m 20 2 + m 30 3  (2.65)

with

"mlkI + [m2kI + Im3kI < 3 (2.66)

are likely to be non-negligible. Since these are 30 frequency components satis-

fying (2.66), we choose N = 30 in (2.3). Applying the preceding algorithm with

At = 11 Tl/50, Z = 1.5(60) = 90, and Tb= 23 Tl, we obtain the initial state 0

listed in Table 3 corresponding to the 4 cases in Table 2. Also listed is the

error ej calculated using (2.62)
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Table 3. Initial state computed using multi-frequency algorithm with a 6th order
BDF algorithm [3].

A A (0) Error

case * *
___ _xl*(O) x2*(0) I2

1 0.69667 -0.18304 0.53(10 -3) 0.99(10 3)

2 0.78298 -0.13834 0.14(10-2) 0.22(10-2)

3 0.82931 -0.32269 0.92(10 "3) 0.14(10-2)

4 0.81562 -0.46932 0.33(10 "2) 0.57(10-2)

Using the initial states from Table 3 and (2.27), we have calculated the 60
generalized Fourier coefficients al,a 2,...,a 60 in (2.3) corresponding to N = 30 for
cases 1 and 2. The waveforms of x (t) for these 2 cases are plotted (using (2.3)) as

the solid waveforms in Figs. l(a) and 2(a), respectively. As a check over the

accuracy of our solutions, we solve (1.1) using the same initial states and the

solution at each integration time step is shown as "dots" in Figs. l(a) and 2(a)
respectively. Note the remarkable accuracy in both cases.

To compare the amplitudes of the 30 frequency components, we use (2.27) to
plot the discrete frequency spectrum for these 2 cases in Figs. l(b) and 2(b),

respectively.

Finally, to obtain a measure of the rate of convergence of the Newton-Raphson

iteration (2.42), the error

(j) /2" i) b+j 2 ) (2.67)

F1 -0  ;TbAt,Z,N)+F2 (Xo ;Tb At,Z,N)

at each iteration is plotted in Fig. 3 for cases I and 2, respectively. Note that
both converges rapidly in 4 iterations.

III. Almost-Periodic Solution Algorithm 2: Two Input Frequencies

In this section, we assume the circuit or system is driven by no more than 2
frequencies; i.e., P < 2 in (1.1). Hence, let us rewrite (1.1) and (1.5) as

follows:

f(x,x,y;wit,w2t) 0 (3.1)

vk = mlkwl + m2kw2 , k = 1,2,...,M (3.2)
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Substituting (3.2) into (1.4) and making use of standard trigonometric identities,

we can recast the steady-state response x ss(t) as follow:

ss (t 0  kl (2k-1 cos(mlkwl+m 2kw2 )t + 2k sin(mlkwl+m 2k 2)tj

M

= ! k=l+ I 2k-l E(cos nikwlt)(cos m2kw2t)-(sin mlkwlt)(sin m 2kw2t)]

l(sin m wt)(cos m 2k2t)+(cos miknit)(sin m2kw2t)2k[( ik22ii2~

M

!0 +  I [2k-l cos mlkwlt+a2k sin mlkwltl cos m2k 2t

+ [a2k cos mlkwlt-a2k-l sin mlkwlt] sin m2kw2tj (3.3)

If we let B denote an integer bound such that

hmlk 1 + 1m2k 1 _< B (3.4)

then the number M of non-zero frequency components vk is given in Table 4 for

B = 1,2,...,l0.
Table 4. The integers M, 2M + 1, and 2B + 1 as a function of B.

B 1 2 3 4 5 6 7 8 9 10

M 2 6 12 20 30 42 56 72 90 110

2M+l 5 13 25 41 61 85 113 145 181 221

2B+1 3 5 7 9 11 13 15 17 19 21

This table can be easily verified by counting the number of solid dots subtended

by an isosceles triangle of base length 2B in Fig. 4. For example, we can enum-

erate the following frequency components when B = 3:

V1 = Wis v2 
= 2' v 3 = 2w,, v4 = 2w2, v5 2 3wl' v6 = 3w2' v7 = wI 

+ w2,

v8 = wl - '2 ' '9 = wI + 2w2 9 VlO = WI - 2w2 'l,1 
= 2w, + w29 and v12 = 2w, - w2 "

Hence, M(3) = 12.
Observe that all solid dots on the mlk-axis in Fig. 4 denote harmonics of

Wl" Likewise, those on the m2Waxis denote harmonics of w2. All other solid dots
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denote intermodulation components. In particular, all solid dots on a horizontal

line through m2k= N, N= 1,2,..., correspond to frequency components of the form

vk = mlk"l + Nw 2. Hence, if we regroup all frequency components in (3.3)

corresponding to dots on a horizontal line together, we can recast (3.3) into

the form

B
Xss(t) = g0 (t) + k I I 2k-l(t) cos kw2t + g2k(t) sin kw2t} (3.5)

~k=l ~

where go(t), gl(t), g2(t),...,g 2B(t) contain only cosine and since components

which are harmonics of w, and are therefore all periodic functions of period

T = 27/w,. Since this observation is the basis of Algorithm 2, we will restate

it as a theorem:

Theorem 4.

The steady-state response x ss(t) in (3.3) which contains (2M+l) generalized

Fourier coefficients can be recast into the form of (3.5) containing only (2B+l)

coefficient functions of time g0(t), g1(t), g2(t),...,g2 B(t) which are all

periodic of period T1 = 2Tr/w 1 .
A comparison between the number of coefficients describing (3.3) and (3.5) is

given in Table 4. Observe that (3.5) has much fewer coefficients compared to that

of (3.3) specially for large B. For example, when B = 8, Algorithm 1 from Section

II would entail solving for 145 generalized Fourier coefficients, whereas only

17 coefficient functions need be specified in (3.5). Our objective in this

section is to develop a new algorithm which takes full advantage of this remark-

ably concise form of solution.

A. Calculating Mk(O) when transient component is zero.

In Section III-B, we will present an algorithm for finding an initial state

x0 such that the transient component xtr(t) in (1.3) is zero for t > 0. In this
subsection, let us assume x0 has been found so that the solution of (3.1)

starting from x0 is x(t) = Xss (t) for t > 0, where Xss(t) is given by (3.5).

For reasons that will be clear in Section III-B, we need to derive a rela-

tionship for calculating gk(O), k = 0,1,2,...,2B, in terms of "(2B+l)" samples

XNssO), xss T1 ), xss(2T1 ),. .. ,Xss(21BT,)taken at T, = 2w/w l intervals. Since each

component xss (t) of xss (t), i = 1,2,...,n, can be calculated separately, it

suffices for Ss to derive the ith component gi,k(O) of gk(0).

Substituting t = 0, TI,2TI,...,2BT1 into (3.5)

and using

gi,k(kT,) = gi,k(O), k = 1,2,...,2B (3,6)

in view of Theorem 4, we obtain
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B

XS (0) =g 150() + I gi,2k-1 0  o wT ~ snk 2 1

x 55 (T1) gi (0) + k II g2() co wT + gi,2k (0) sin kw2T) (37

x 5 s (2BT 1) = gi.O 0 0 +1 k11(9i ,2k-1 (0) cos 2kaw 2T, + gi ,2k(O) si 2kBw 2 T 1)

Equation (3.7) consists of 2B+1 equations in terms of the 2B+1 coefficients

If we define the (2B+1)-vectors

x55 (0) i00

x 55 (TI) g1,1(0)

!s(B) xss (2T,) and 9B gi,2(O) (3.8)

X 5s (2BT 1) gBO

and the (2B+1) x (2B+1) square matrix

1 1 0 ... 1 0

1 cos(w2T,) sin(u T,) ... cos(ButTj) sin(BU2TI)

1 cos(2w2T,) sin(2uT 1) ... cos(2ButT,) sin(2Bw2T1)

(3.9)

1 cos(Bw2T,) sln(Bw2T,) ... Cos(B 2w2T,) sin(B 2 w2 TI)

1 cos(2Bw2T1) sin(2Bw2 TO ... cos(2B2 w2T1) sin(2B2 w2T1) _

then (3.7) assumes the condensed form

~2B~~= ~ (B), i - 1,2,...,n (3.10)
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Theorem 5

The 28+1 coefficients gi,(0),g1i,1(0)gi,2(O),.gi,28(0) describing the

steady-state response (3.5) can be calculated exactly from

-1
= 2(B) xssi (B) , i = 1,2,...,n (3.11)

The matrix Q(B) is non-singular if, and only if, there does not exist an integer

L2 such that

w2 L2
0 1-, L = l,2,...,2B (3.12)

Proof. Eq. (3.11) follows directly from (3.10). The proof that (3.12) is a

necessary and sufficient condition for Q(B) to be non-singular is given in

Appendix C. 0

Corollary

1. S(B) is always non-singular if wI and w2 are incommeasurable.

2. If wl and w2 are both rational numbers, we can make Q(B) nonsingular by

choosing

T (3.13)

where T is the period denfined in (1.7).
Proof. Corollary 1 follows directly from (3.12). Corollary 2 is proved in

Appendix 0.

B. Finding the initial state 0

Consider the ith component of (3.5) at t = (2B+I)T1 :

xss ((2B+I)T 1 ) = gio(O) + E fgi,2k1(0) cos(2B+l)tT, + gi,2k ( 0 ) sin(2B+l)w2Tl
(3.14)

Substituting (3.11) for gik(O) in (3.14), we obtain

Xss i ((B+I)TI)= T (B)gBi = T(B)-'I(B)xssi (B)

sT (B)SlT (B)6(B) (3.15).ss1
where

-26-



(3.16)
Since £QT(B)]Yl S(B) in (3.15) remains unchanged for all i = 1,2,...,n, we

can combine all "n" components of x s(t) from (3.15) into a single matrix equation:

x55 ((2B+l)T1) x 55 (0) x s5 (T) xss (2T) I . x 55 (2BT 1) 1(B) (.7

x55 ((28+1)TI) x552 (0) x 5S (Tl) xss (2T 1) .. s (2BT 1) () (.7

fls ((BIT) xSn ()x n (i xSn (2 1 (B)2B 1

B()AE()- (B) (3.18)

depends only on B.
Observe that (3.17) is exact provided the integer bound B in (3.4) includes

all "M" frequency components of the exact steady-state response xs (t) in (3.3).
In this case,, the entries *x Ct), t = O~*TS . 2TIin X()can be obtained

by solving (3.1) using K0 as the initial state.
Since x0 is precisely what we are seeking, let us define the following

system of "n" related equations as a function of the "n" components

x 0sx02--. xonof the initial vector

!0 ExO x 0  ... x 0 ]T [x(O) x2(0) .. xn(O)) T:
1 2 n

-27-



a1 (B) 0X1((2B+1)Tl;x 0  x1 (0) x 1(Ti;x 0) xi(2T;x0) ... xl(2BT,;xo)0

X2 ((2B+l)T ;x O) x2 (O) x2 (Tl;xo) x2 (2T 1 ;xO) ... x2 (2BTX O)

_a .(8) 0

xn((2B+ I )T1 ;Xo) x (0) xn(T l ;Xo) xn( 2 T1 ;xo) ... (2BT 1 ;x)
L J L 

B2B(B) 0

x((2B+1)TI ;xo) X(B;x 0 ) B(B) 0

F(xo;8) (3.19)
where

xi(kTlx 0 ), k=O,l,...,2B+1 denote the ith component of the complete solution
x(t) = Xtr(t) + xss(t) of (3.1) starting from the initial state xO 1 for t = 0,

T1,2TI,...2BTI,(2B+I)T . Observe that unlike (3.17), both, x((28+l)TI;x0) and
X(B;xO ) can be calculated by solving (3.1) numerically.

0*
Since (3.19) reduces to (3.18) when x= 0  , it follows that x0  can be found

by solving

I- (xo;B) = (3.20)

by Newton-Raphson iteration as in (2.42), with F(.) replaced by F(xo;B).
j))

The Jacobian matrix~ 2F0 ) can be evaluated by the sensitivity network
approach [3] if the circuit is given. If only the equation (3.1) is given,

the Jacobian matrix can be calculated from

• ax((2B+l)T1 ;xo) 8 2B 0 x(kT ;x O)

SF( )  .x- k=O k(B) " x0  o(3.21)

ax ((28+1 )T1 ;x0)
where ~ ax0  can be evaluated using (2.55).

To save computation time, the integer bound B is chosen to include only the

significant frequency components In (3.3). In this case, the initial state x0 *(B)
computed from (3.20) will depend on B and is therefore not exactly equal to x*.

Clearly,
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*(B) *x as BB (3.22)

where B denotes the integer which is large enough to include all frequency com-

ponents of (3.3).

C. Initialization Guidelines

Since (3.1) must be solved many times numerically from t = 0 to t = (2B+I)T I,

we always choose wl to be the larger of the 2 input frequencies. Once wl is

identified, we can calculate F(x0 ;B) in (3.19) by specifying the 2 parameters

B and x0"

a) Choice of B.

The integer bound B in (3.5) should be chosen equal to at least the order of

the highest significant harmonics of w2 in the steady-state response. It is

independent of w1. This important property allows us to analyze a large class of

communication circuits where the "signal" frequency at w2 is much smaller than

the "carrier" or "pump" frequency w1. In such cases, harmonics of w2 will usually

be quite small even though the input signal at frequency w1 is usually very large

(thereby generating many higher harmonics of w ) so that accurate answers can often

be obtained with B a 3.

If the order of the highest significant harmonics is not known, we simply

make an intuitive guess. If this guess is unrealistic, it will reveal itself in

the subsequent error analysis (to be discussed in Section III-D).

b) Choice of 0"

The same procedure presented in Section II-C also applies here.

0. Termination Guidelines.

Recall that in practice, the solution xo*(B) of (3.20) is not the exact

solution x0 . Consequently, we must validate this answer before terminating.

(1) If the steady-state response x ss(t) is periodic with a reasonably

small period T (see(1.7)) then we simply solve (3.1) numerically for x(t;xO* (B))

(with xo0 (B) as initial state) and verify that x(O;xo*(B))Z x(T;x (B)).
(2) If the steady-state response x ss(t) is not periodic, or if it is

periodic with an unreasonably large period T, we can estimate the error with the

help of (2.51). If the "approximate" solution x(t;xo (B)) is indeed close to the

exact solution x(t;xo*) for all t > 0, then it follows from (2.48) and (2.51) that

Ix(t;xo ) - x(t;xo ((B))l < 10(t)[ IX - X* (B)i (3.23)

for all t > 0.

If we let gk (0) and 9(O) denote the "exact" (computed using (3.11) with

B B and exact x0 ) and "approximate" (computed using (3.11) with approximate

!0 (B)) values, then
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*B

. (B). [ 0) B BI= g 2 ~(o)- [goCO)- ,,1o]ix0  Xo()9I'g O+=l2k-1(0)3 2 2k101
Ixg 0+k=l krl

* B B *
IgO* (0) "go(O) + 1 I gk-(O) - g2 l(O)lI + E Ig* O)l (3.24)

k=1 k=B~l 2-()

Since the coefficients gk*(0) and gk(O) can be interpreted as the Fourier co-
efficients associated with the frequency kw2 at t = 0, it is reasonable to assume
that if Igk(O)l is sufficiently small for k > 2B + 1, the computed initial state

!o*(B) will be sufficiently close to x, and hence

?2kl(O) a_2k-l(O), k? k,,2,...,B (3.25)

It follows from (3.23), (3.24), and (3.25) that we can approximate (3.23) by

Ix(t;x*) - x(t;xo(B))l < I(t)l{ ( + £(B,Xo(B))} (3.26)
kzB+l

where £(B,xo* (B)) is an error from the first two terms in (3.24).

Even though the right hand side of (3.26) can not be calculated from avail-
able data, the following heuristic procedure has been used successfully in all
examples we have investigated so far:

(I) Solve (3.1) numerically for x(t;x *(B)) from t z 0 to t - 2(8+2)T

(2) Calculate iB a 1,2,...,n, using (3.9) and (3.11) with B replaced
by B+2 and wlth x (t) replaced byby B+2repce ssi i(t;xo*(B)) for t =Of 1 2T l,...,2(.8+2)T.

(3) If

B+1'B+2 ' 9g2B+l(O)! + 'g2B+3(O)' (3.27)

is smaller than some prescribed tolerance, stop.

Otherwise, increase B and start all over again.

E. Sumnary of Two-Frequency Algorithm

Step 0. Choose w, to be the larger of the 2 input frequencies. Specify the
integer bound B (see Section Ill-C). Set j - 0.

Step 1. Choose initial state x , X J) (for J-O, see Section 1l-0) and solve
(3.1) numerically to obtain x(Tl), x(2Tl), x(2BTl).

Calculate F(xo;B) from (3.19). If IF(x0 ;B)I < e, where e Is a
sufficiently small positive number, call x0 *x{(B) and go to Step 4.

Step 2. Compute the Jacobian matrix JF(XO ) in (3.21) (see Section Il-C).
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Step 3. Compute x0J+l) via the Newton-Raphson iteration (2.42) with F(-) re-

placed by F~x,B). Go to Step l with j - j+l.

Step 4.
Case 1. x (t) is periodic with small period T:

_ssSolve (3.1) for x(t) with x0 (B) as initial state from t =0 to t T.

Calculate

Cij = Xj O,x 0 (B)) - xj(T;xo (B)), j - 1,2,...,n.

Case 2. x (t) is not periodic or is periodic with large T:-ss*
Solve (3.1) for x(t) with x0 (B) as initial state from t = 0 to

t = 2(B+2)T 1. Calculate B+IB+2 as defined in (3.27). If

max{EI, 2 ,...,en} > e0  (case 1)

B+IB+2 > c0  (case 2)

where e0 is a sufficiently small positive number, increase B and

repeat Steps 0-4.

Step 5. Stop.

F. Illustrative Examples

Example 1. Duffing's Equation with 2 frequency inputs:

We have used the preceding algorithm to solve (2.64) when f(t) contains only

2 input frequencies. The results corresponding to 3 different combinations of

parameter k, c,, c2, and f(t) are summarized in Table 5 for B = 9, 11, 13, and

17 respectively.

Table 5. Examples Applying the Two-Frequency Algorithm

(1) f(t)=0.5 cost (2) f(t)=0.3 cost (3) f(t)=(l+cos 0.115t) cost
+0.5 cos 0.81t +1.5 cos 0.l115t

B * -;- - -.------

x (B) x *(B) X* (B) X* (B) x0  (B) x0  (B)x01 x02 x1 x2 x1 x2

9 1.04898 0.26642 1.27285 0.27251 1.36899 -0.34537

11 1.11403 0.64204 1.24281 0.17135 1.39967 0.00736

13 1.12986 0.63906 1.22548 0.30906 1.34835 0.16875

15 1.11865 0.63562 1.21332 0.33872 1.35403 0.15168

16e17'0.0021 16e17=0.0083 14G15=0.023
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In each case, an error estimate using (3.27) is calculated and the results

are also listed in Table 5. For example, in case 1, we have

16'17 1 |932(0)1 + 1934(0)1

A 1932,1(0)1 + 1932,2(0)1 + 1934,1(0)1 + 1934,2(0)1

= 0.000853 + 0.000444 + 0.000244 + 0.000554 2 0.0021 (3.28)

The rate of convergence for these 3 cases are shown in Fig. 5. The conver-

gence rate for case 3 is not as good as the cases 1 and 2 because we have delib-

erately chosen a poorer initial guess for constrast.
The steady-state waveforms corresponding to the 3 cases listed in Table 5

are shown in Figs. 6(a), 7(a), and 8(a), respectively. The corresponding frequency

spectrum calculated by the FFT algorithm [17] are shown in Figs. 6(b), 7(b), and
8(b), respectively.t For all cases, the higher-order harmonic and with modulation

components are negligible, as is typical in many practical examples.

Example 2. Transistor Modulator Circuit:

Consider the differential-pair amplitude modulator circuit shown in Fig. 9(a),
where el(t) and e2 (t) denotes the carrier and signal input, respectively. Using

the algorithm described in Appendix A, and the Ebers-Moll circuit model [3] shown
in Fig. 9(b) for the transistors, we obtain the following system of 4 implicit

differential-algebraic equations for this circuit:

-C dv1  v1 -(VVcc) + = 0
IN- 1 2 - Isle 1 -1] + Is[eV4-1] = 0.

Xi~kV+l X(el (lVc
-I-1 + Is[e "Vcc)-1] - Is[ekV4-1] + I[e cc

-~4e2V) v 3 _

-Ise(42 EI] + MI [e -l] = 0 (3.28)

-I [eLY3-1] + CIs [e(V4+e2°VE)- ] + 1 [Vcc-VE+e 2 -v3] = 0

di 2
-L d 12  •0

Note that the first 3 equations in (3.28) correspond to KCL applied at nodes

(D),, and(j) respectively, whereas the 4th equation corresponds to KVL applied

around the loop formed by the inductor L.
Note that unlike in the Multi-Frequency Algorithm, the generalized Fourier co-.

efficients are not directly available in this algorithm.
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Setting e,(t) and e2(t) to zero, we first solve (3.28) for the following dc

operating point:

VlQ- 0, i2Q = 0.155 x 10 3, v3Q = 0.259, v4  = 0.241 (3.29)

We then choose x (0) A v,(0) = v, and x2 (0) A i2(0) = i2 as our initial

guess xv, and apply the two-frequency algorithm for 2 different amplitudes V2
for the signal e2(t); namely V2 = 4.0 and 5.3, respectively. For V2 = 4.0, we

choose B - 6. However, for V2 = 5.3, we choose B = 13 to account for the

additional harmonics that are likely to be significant in view of the larger in-

put signal amplitude. In both cases, our algorithm converges in 2 iterations and

the results are summarized in Table 6.

Table 6. Results obtained with two-frequency algorithm using a 4th order BDF

method [3] with a step size h = 4n(10 8) sec.

Initial State Error Estimate
case vl(0) i2(0) for v B for i

cs 12B+l'c B+2 1 'B+l B+2 2

(1) V2=4.0 B=6 -3.927 0.2387(10 3) 0.78(0) 0.59(0 7)

(2) V2=5.3 B=13 -3.422 0.1138(10-3 ) 0.23(10-1) 0.95(10 "5)

Using the 2 initial states in Table 6, the steady-state waveforms correspond-

ing to the modulator output voltage v0 (t) and the base-to-emitter-voltagesV EB(t) for

transistors TI and T3 are shown in Figs. l0(a),(b),(c) and ll(a),(b),(c); respec-

tively. Note that the modulator output waveform in Fig. 10(a) is typical of those

composed of a carrier and 2 side band frequencies wl I w2" Even the waveforms

VEB(t) in Figs. 10(b) and (c) are quite smooth, indicating the absence of sig-

nificant higher-order frequency components. Consequently, very accurate results

were obtained with only a relatively small B = 6.

On the other hand, the corresponding waveforms for case 2 in Fig. 11

indicate the presence of many more frequency components. Consequently, a much

larger B will be needed to obtain results of acceptable accuracy. We found

B - 13 is adequate for this purpose.

The normalized frequency spectrum corresponding to the output waveforms

vo(t) in case 2 as obtained by the FFT method [17] is shown in Fig. 12.
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IV. Concluding Remarks

Two efficient algorithms have been presented for finding almost periodic
steady-state response of nonlinear circuits and systems.

The multi-frequency algorithm is very general as it allows any number of

commensurable or incoumensurable input frequencies W1 I, 2 ,...,Wp. Although the

output normally includes only harmonic and inter-modulation frequency components

of the form vk a Mlk1  + m2kw2 + - + mPkwp, where mjk are integers, other
frequency components, such as subharmonics, may also be included in this algorithm
if their presence are suspected.

The two-frequency algorithm is applicable only if there are no more than 2
input frequencies. This restriction, however, is more than compensated by its
greatly increased computational efficiency, specially when the steady-state

response contains many frequency components. That this algorithm is significantly
better than algorithm 1 (when applied in the 2-frequency case) is best seen by
comparing the number of respective coefficients in Table 4. Note that for

B-10, Algorithm 1 must calculate 221 coefficients whereas Algorithm 2
needs to calculate only 21. Note that 2B + 1 increases only by 2 as
we increase B by 1; consequently, the two-frequency algorithm remains comput-
ationally quite efficient even with a larger B, thereby allowing stronger

nonlinearities. This is particularly useful when the amplitude of the higher-
frequency input (wl) is much larger than that of w2, as is common in communication

circuits where w, denotes the carrier frequency and w2 denotes the signal
frequency. In this case, the number of significant harmonic components of

w2 will be relatively small so that a small B suffices.
It is also interesting to note that in the limiting case where we have only

one frequency input (P-1), then (3.5) reduces to xss(t) go(t). In this case,

the two-frequency algorithm reduces to the usual shooting method r3,113.

Certain numerical ill-conditioning could occur in the Algorithm 1 when

the step size at is chosen to be too small. The ill-conditioning problem is due
to loss of number of significant digits and therfore depends strongly on the

choice of the computer.

Finally we remark that if the steady state-solution is not periodic so that

the brute-force method is impractical (since we must in theory integrate for all
t > 0), or if the nonlinearity is not sufficiently weak for the Perturbation and
Volterra series methods to converge, then our algorithms are presently the only
methods available for finding steady-state solutions, let alone their good compu-

tational efficiency.
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V. Appendix

Appendix A. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled

2-terminal resistors, voltage-controlled 2-terminal capacitors, current-

controlled 2-terminal inductors, as well as independent and controlled sources.

Mutual couplings are allowed so long as they are restricted to elements belonging

to the same class. Let each independent source be considered as part of a
"composite" branch as in [3]. Adoping the notations in Section 17-2 of [3], we

obtain the following tableau equation for N:

n-l KCL equations {A 0 G i A

b KVL equations {- 1 - - = (A-1)

b elements consitu-{ Ki Kv J2 _ _' LLI 0i
tive relations L~ __~n C2L!_)

Equation (A-l) consists of a system of (n-l) + 2b implicit equations of the form

(1.1) where "b" denotes the number of composite branches and "n" denotes the

number of nodes. Our goal in this section is to derive an equivalent system of

implicit equations containing fewer number of equations and variables for an

important subclass of networks.

In particular, we assume that N contains no loops of capacitors and indepen-

dent voltage sources, no cut sets of inductors and independent current sources

and that all controlled sources are current sources depending on either resistor

or capacitor voltages. Consequently, there always exists a normal tree T con-

taining all capacitors and no inductors [3].

If we let i2 and v2 denote the current and voltage vectors of all inductors

in N, and let il and v, denote the current and voltage vectors of the remaining

elements, then (A-l) can be recast as follows:

F1 2~!1' 2 Q2) 2
I -- - . !

00 - 01 rA l - 1  =2(A-2)

o 0 0 1 1 IA T E-2 -2 -2

l 2 2 2 2 n

where the reduced incidence matrix A is similarly partitioned into A = [ A 2]'

and where L(12) denotes the incremental inductance matrix. Substituting
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Tv + ) +(A-3)
W1 = -b9l -(;c') = T Z

into the last equation in (A-2), we obtain the following reduced system of

equations:

212 + Mb)n. = -lE!~l " l (Yc'Y) + AJ (A-4)

v =AT + EI(A-5)
!2 = 2 n -2 = L(i2)12

Let vT denote the branch voltage vector associated with the normal tree T,

and let vL denote the corresponding cotree voltages. Since all capacitors are

assigned in T, vC is a subvector of vT' Similarly, since all inductors are

assigned in the cotree, v2 is a subvector of v Let the reduced incidence

matrix A be partitioned accordingly into AT and AL' so that KVL assumes the form

(A-6)

Since the columns of Ar correspond to tree branches, AT is non-singular [3].

Hence we can solve for the node-to-datum voltage vector vn from (A-6) to obtain

v = [AT -Er) (A-7)

T -1 [ L (A-8)

Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor

current vector i2 by iL' we obtain

22L + (AlblA)[A] .( T - ET) + A, bl + A - AJ~~ = A 0 (A-9)

SA AT]'QT - 2 " V(L)_L = 0 (A-10)

where

and vT is given by (A-8),

Equations (A-9)-(A-IO) constitute a reduced system of Implicit equations in

terms of the state variables x e [A C L]T and the non-state variables contained

within T"

A-2

.m --. , . . .. .... .. . ... . = .. . .. . . . . .... . . . . .. ..,. . .. . . ,.- Z' , ...-"------... . .



Equation (A-9) can be interpreted as the nodal equation of N with all

inductor currents iL. considered as independent sources, and with all node-

to-datum voltages expressed in terms of the normal tree voltage vector vT .

Similarly, (A-10) can be interpreted as the fundamental loop equations (relative

to the normal tree T) formed by the inductor links. These interpretations allow

us to write down the reduced system of implicit equations of simple nonlinear

networks -- such as that considered in section III -- by inspection. If N

contains loops of capacitors and independent voltage sources, or cut sets of

inductors and independent current sources, the above procedure can be easily

generalized by first expressing the cotree capacitor voltages in terms of tree

capacitor voltages, and tree inductor currents in terms of cotree inductor

currents [3].

APPENDIX B

The matrix rT 1r in Theorem 3 is non singular if, and only if,
At 2n~r

IVi- vkL

where r is a Zx(2N+l) matrix, where Z > 2N+l.

Proof. rTr is clearly symetric and positive semi-definite and hence its

eigenvalues X 1, X2.'"Xn are real and non-negative. Hence det (ETr)

X X" .. xn 0 - all eigenvalues are positive - 'r is positive definite -

x ([ t) x>0 for all x $ 0
Hence, we have

det (iTt) $ 0 - columns of Z are linearly independent. (B-2)

The matrix in (2.17) can be recast as follows:

1 1.. 1 1 1 0 0 .. oo

1 ejel e-J . . . ej'*N e'J8N 0  F5 -io.5] . . 0 0

= 1 ej2el eJ2e. . eJ28N e-J 2 9N O .5 jo.SJ . . . 0 0

1 ejZel e'jZel • eJZON e'jZeN 0 0 0 0.5 jO.55

0 0 0 L.JO.si

rinc f D (8-3)

where e :At. Since D is clearly non-singular,

Columns of r are linearly independent
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Columns of r' are linearly independent

" ejei 0 e±Jek and e±iei 0 1 for any i # k
0 ai ± ek $ ±2nt and ei  # ±2nn, for any integer n

± i t ek # ±2nr for any integer n (B-4)

It follows from (B.2) and (B.4) that
T ~2n r

det (rT)  0 V1 It ± K At A ±2nn - At $ i

APPENDIX C

The matrix n(B) in (3.9) is non singular if, and only if, there exists an in-

teger L2 such that
w2 , = L ,2,...,28 (C-1)

Wi L1

Proof. We can recast SI(B) in (3.9) as follows:

1 1 1 ... 1 1 1 0 0 ... 0 0

1 eJo e- j  . . . ejBO e-jB4,  0 [b.5-i0.5] ... 0 0
j(B ) 0 e22 0 e J 2 ¢ . . . e j 2 B  e j2 ¢  0 .5 O .5 ]j . . 0 0

Ie 2B ej2 B' . . eJ 2  ej2B2 €  0 0 0 5 j0.

e . . .. eo.e

"W'B) ( C-2)
where iw2T,. Since Q is non-singular,

Q(B) is non-singular
0 Columns of Q'(B) are linearly independent

, ejk¢o _ eji o # 0 for i,k z 0,±l, -2,...±B, i 0 k

1 - ejLlo 0 0 for L, M 1,2,...,2B

L1 * # 2L2Tr for any integer L2  (C-3)

Substituting 0 a w2T, z 2 w2/wl into (C-3), we obtain:

QCB) is non-singular

L1(w.2/wl) $ L2.
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APPENDIX 0
If wand w2are rational numbers, we can make 2(B3) non-singular by choosing

B<T
(D-1)

Proof. Let wl ml/n, and w2 m2/n2 be irreducible fractions. Then T
=2id~n1/m1), T2 -21r(n 2/m2), and T - 2ir(n/m), where n - L.C.M. {nl3n2} and
m - G.C.D,(ml,m 2 l. Hence m 1 ' m11 . m2 '2 mmT2 , n, kn1' , n2 - kn2' , and
n = kn1 n n21 for some integer k.

Now, since G.C.0.{ml ,m2'1 1, G.C.D.jm1',1 ' I 1, and G.C.0.(mi. ni }- 1,
we have G.C.D.{m2'n1',ml,n2} - 1. It follows that if

max{L 1} = 2B < m1
1n21 (D-2)

then Tn Jm n1
S 2T) -= 1 li~~ P2 L(. L 2 integer (0-3)

But (0.2) is equivalent to
<= /fm1' m (n 2' n, n2 kn1'T T 04

2BT 1 mn 2
1T1  m m1

1n (nl/ml)(m/n)T = _ _ T-u 041 2mT kn11 n2

Hence, if 28T1 < T, then (C.1) holds.
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FIGURE CAPTIONS

Fig. 1 Steady-state waveform for Duffing's equation x + 0.li + 2x + x
3

= 0.4 cos t + 0.4 cos 0.35t + 0.4 cos 0.155t.
(a) Solid waveform represents approximate solution obtained with

multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from x = (0.69667,-0.18304)

from Case 1.

(b) Discrete frequency spectrum obtained from (2.27).

Fig. 2 Steady-state waveform for Duffing's equation i + 0.li + 2x + x
3

= 0.4 cos t + + 0.4 cos 0.85t + 0.4 cos 0.17t.
(a) Solid waveform represents approximate solution obtained with
multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from xo* = (0.79298,-O.13834)

from Case 2.

(b) Discrete frequency spectrum obtained from (2.27).

Fig. 3 The rate of convergence for Case 1 (shown dotted) and Case 2 (shown

solid) in the Examples in Table 2. Horizontal axis indicates the
iteration number j. Vertical axis indicates the error £ (j ) computed

at the jth iteration using (2.67).

Fig. 4 Geometrical interpretation of (3.4) for B - 1,2,...,10. Each solid

dot denotes one frequency component mlkl + m~kw2 .

Fig. 5 The rate of convergence for Cases 1, 2, and 3 in the Examples in

Table 3. Horizontal axis indicates the iteration number j. Ver-

tical axis indicates the error estimated by

e~j pF(x0(J);B) + F2 ( 0~;B)

Fig. 6 (a) Steady-state waveform for Duffing's equation i + 0.06i + x + x

u 0.5 cos t + 0.5 cos 0.81 t (Case 1)
(b) Normalized frequency spectrum of (a).

Fig. 7 (a) Steady-state waveform for Duffing's equation i + 0.05i + x + x3

0.3 cos t + 1.5 cos 0.115 t (Case 2)



(b) Normalized frequency spectrum of (a).

Fig. 8 (a) Steady-state waveform for Duffing's equation ? + 0.1i + x + x
3

- (1 + cos 0.115 t) cos t (Case 3)

(b) Normalized frequency spectrum of (a).

Fig. 9 (a) Differential-pair amplitude modulator circuit. Vcc = IOV,

VE - 5V, L - 2 mH, C - 500 pF, RL= 20 k, RB - 15 k, el(t)

a 0.01 cos 0.115(10 6)t and e2(t) V2 cos 0.11S(10
6 )t.

(b) Ebers-Mollvtransistor circuit model with the 2 diodes described

by Idk = I se dk 1], is = 10
8A,A = 40,a -0.99.

Fig. 10 (a) Steady-state output voltage waveform v (t) for Case 1: carrier

signal el(t) - 0.1 cos 106 t, input signal e2(t) = 4.0 cos 0.115(10 6)t
(b) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor TI.
(c) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T3.

Fig. 11 (a) Steady-state output voltage waveform Vo (t) for Case 2: carrier

signal e,(t) - 0.1 cos 106 t, input signal e2(t) = 5.3 cos 0.115(10 6)t.
(b) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T1 .
(c) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T3.

Fig. 12 Normalized frequency spectrum for the modulator output voltage wave-

form in Fig. 11(a) (Case 2)
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