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\ ABSTRACT
S

Two efficient algorithms are presented for obtaining steady-state
solutions of nonlinear circuits and systems driven by two or more
distinct frequency input signals. These algorithms are particularly
useful in cases where the steady-state response is either not periodic,
or is periodic but its period is too large for existing methods.

The first algorithm is applicable to any circuit or system driven
by any“npmber P » 2 of input frequencies. The second algorithm is
restricted only to 2 input frequencies and is therefore significantly
more efficient than the first algorithm. Both algorithms are
formulated for systems described by an implicit system of nonlinear
algebraic-differential equations, thereby obviating the need to write
state equations.

Numerous examples have been solved successfully using these two
algorithms. A selection of some of these examples is given for
illustrative purposes.
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I. Introduction

A fundamental problem in the design of communication circuits, such as
modulators and mixers, is to calculate the steady-state response when the circuit
is driven by inputs having "P" distinct frequency components {w1,w2,...,wp},
where P > 2 [1-2]. For complete generality, we assume the circuit or system is
described by an implicit system of differential-algebraic equations [3] of the form

fj(§,5,¥;m]t,w2t,...wpt) =0 ,j=1,2,...,mn (1.1)

where x is an n-vector denoting the state variables, y is an m-vector denoting the
remaining non-state variables and fj(-) contains p periodic input signals of fre-
quencies Wy allyse e slps respectively. In Appendix A, fj(-) is given by an explicit
formula which holds for most circuits of practical interest.

Standing Assumption. Given any initial state xn. (1. 1) has a un1que asymptotically
almost-periodic solution [4]; namely, 1
ETF' 3 .
X(t) = xe (1) + 2o () 57, 0-2)
‘- L‘ { P& T :-1
where o moa £ oe TS
[o] :" f" ‘Q i ':, t ;:
O Lot joerow
X¢ (t)+0ast+= ™oL ITN L o] (1.3)
~tr ~ » RSN f T
s LREN 1w 2. (ij:
is called the transient component and < &0 éi){ & a3 2 J

M
Xslt) =39+ 1 {92k-1 CoS Vit + apy sin \’kt} (1.4)

is called the steady state response , where the summation is taken over all
possible frequencies [5]

A
Ve =m kw]'HIIkazt . .+mPka (1.5)

generated by the frequency base WysWpsereswp -

Note that (1.4) is not an ordinary Fourier series because its frequency spectrum
{v1.v2,...,vM} js not harmonically related. In fact, fss(t) is not even periodic if
the frequency base {w],wz,...,wp} is incommensurable [5]. In the mathematical
literature, (1.4) is called an aimost periodic function.

Our objective in this paper is to present 2 efficient algorithms for calculating
the steady-state response 5ss(t)'




Current methods for calculating §ss(t) can be classified into 4 categories:

1. Brute force method. This approach solves (1.1) by numerical integration
(starting from an arbitrarily chosen initial state 50) until the steady state is
reached [3].

Although this method is quite general, it is prohibitively expensive for
lightly-damped circuits where it takes a very long time for the transient component
to die out.

Moreover, if the frequency base is incommensurable, §ss(t) is not periodic and
it is difficult to determine when the steady state has been reached.

2. Perturbation method. This approach solves (1.1) by iteration with the initial
solution often chosen to be the solution of a linearized equation. It includes the
Voiterra series method [5-7] and the Picard iteration method [8].

Unfortunately, this method works only for almost 1inear circuits where the
nonlinearity is often extremely weak (e.g., low distortion amplifiers). For circuits
which rely on nonlinearity in an essential way (e.g., modulators and mixers) this
method becomes highly inaccurate let alone the fact that the iteration often does
not converge.

3. Harmonic balance method. This approach solves (1.1) by approximating the
solution in a finite trigonometric series and then balancing all terms having iden-
tical frequency components, often via Galerkin's procedure [9-10].

Although very interesting theoretically, this method is often extremely time-

consuming because the various frequency components are estimated by multi-dimensional

Fourier analysis.
4. Shooting method. This approach solves (1.1) by finding first an initial state
fo(often via.Newton-Raphon method) such that the solution starting from X is
periodic, i.e., no transient component [11-12].

There are 2 serious problems associated with this method.
(a) It can not be used when the solution ‘is not periodic.
(b) Even if the solution is periodic, the period T is often many orders of magni-
tude larger than the period of the individual frequency components Vg thereby
making the numerical integration over this long period T prohibitively expensive.
For example, consider

xss(t) = Ay €OS wyt + Ay COS wyt (1.6)

The following table 1lists several combinations of Wy and wy (of periods T] and T2
respectively) which makes x s(t) a periodic function. Also listed is the period T

of x.,(t) and the ratio py & T/T, and o, = T/T,.
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Table 1. Example of W and Wy which make xss(t) periodic of frequency w.

w‘(Hz) mz(Hz) = %?(sec) To® gg(sec) T= %?(sec) D]é ;i pzé TE
1 l0.23 6.2832 27.318 6.2832(10) | 10° |0.23(10%)
1 lo.233 6.2832 26.967 6.2832(10%)] 10° [0.233(103)
1 0.2333 6.2832 26.932 6.2832(10%)| 10 |o0.2333010%)
1 0.2333...3 6.2832 26.927 6.2832(10"){ 10" 10.233...3(10")
N e’ Ny o’/
n digits n digits
103 |0.233(10%) 6.2832(1073)0.26967(1073) |6.2832 103 10.233(10%)
10* {o0.2333010% 6.2832(10~%) |0.26932(10"%) |6.2832 1% 0.2333010%)
10° 10.23333(10°)  |6.2832(10°3)|0.26932(107°) |6.2832 10° [0.23333(10°)
n n -n -n n n
10" |0.23333....3(107) |6.2832(10™) [0.26927(10™") |6. 2832 10" {0.233...3(10M)
n digits n digits
Note that when w; = 1, T+ = as n » =, and when w, = 10", T, » 0 but T = 6.2832

as n » o,

Hence, from a numerical integration point of
jinfinite amount of integration steps in order to obtain

1

view, it will take an
the periodic solution xss(t)

when n + =, Since M+ and pp >®@as N > in both cases, the larger the values
of ) and Py» the more computer time will be required. Hence, ) and Py give a

measure of numerical efficiency of the shooting method.

the following:
Theorem 1
The steady state response xss(t) in (1.4) is periodic of frequency w if each

frequency v, can be expressed as a rational number

where

-k

s k=
M

Yk

1,2,...

,M

This observation motivates

(1.6)

Moreover, if M and n, are relatively prime integers for all k = 1,2,...,M,
then the period T & 2n/w of x (t) is given explicitly by

Ts= Zw(%)

-r

ndL.cM {n] .nz,....nM}

m46.C.0. {m,m,,

...,mh}

(1.7)

(1.8)
(1.9)

+L.C.M. and G.C.D. denote Least Common Multiple and Greatest Common Divisor,

respectively.
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and

BT (G (1.10)

where Tk = 2n/vk.

Conversely, if there are at least 2 frequencies vj and Ve where vj is rational
but 2 is irrational, then fss(t) is not periodic.
Proof. Rewriting (1.4) as

fss(t) = §ss(v]t,v2t,...,vnt) (1.11)

to emphasize the M periodic components of frequency VysVpseaesVys We obtain

Xss (t4T) = %o (0 (44T),up (£4T) oL yup (£4T))

= xgs (v (tr2m() vy (t42m(D)) . . vy (t42m(D)))

= xgg (v (thg (D) (;’-,—’1')) Wyt (D) (3—;) Yoo e oyl EHuy(D) (ga) )

m m
= Xgg(vp(t+ ’%(%)Tl)"’z(“ E%(%)Tz),...,vM(H :‘E(%)TM))
= Xgo (V1 (T T )aup(t4N,T,) 0o oy (E4N,T)) (1.12)
where
Meny _ (Tky 0

Ny AW("_‘) - (-m—)(q). k=1,2,....,M (1.13)

is an integer in view of (1.8) and (1.9). It follows from (1.13) and (1.4) that
§ss(t+T) = §ss(v1t,v2t,...,th) = §ss(t) (1.18)

Hence x  (t) is periodic of period T. Moreover, since m and n, are relatively
prime, T is the smallest period and hence, T = 27/w.

Finally, if vy is rational but Vi is irrational, we can represent Vg by (1.6)
with N = = Consequently, n = L.C.M.{n],...nj,...,nk,...nM} = o and 5ss(t) has
an infinite period; i.e., it is not periodic. =

It follows from Theorem 1 that if 5ss(t) is periodic, its frequency is given by

_m G.C.D.{ml,mz,...,mM} 1.15)
@ h LTC.M.{n1,n2,...,ﬁ§T .




and its period T is bounded by:
max{T,,Tos..,Tp} < T < 2m(nyn,...ny) (1.16)

It also follows from (1.8)-(1.10) that since m is typically a small integer
(m=1 if all m, are relatively prime), the period T can be many orders of magnitude
larger than that of Tk. Typically, T increases by an order of magnitude if we
increase the number of significant figures in representing the component frequencies
Vs k =1,2,...,p by one.

Observe that in solving (1.1) by numerical integration, the step size h is
determined by the period of the highest frequency component [3], namely,

h < g mn{Ty T 0T} (1.17)

It follows from (1.16) and (1.17) that both the brute force method and the shooting
method are usually impractical when there are multiple input frequencies.

To overcome the problems associated with existing methods, we will present two
new efficient algorithms in this paper. The basic idea in both algorithms is to
find an initial state x(0) 4 5; so that the transient component

Xeo(t) = 0 for all t >0 (1.18)

regardless of whether the steady state response 5ss(t) is periodic or not. In both
algorithms, 56‘15 found by a Newton-Raphson mehtod. However, unlike the shooting
method [11], (1.3) is solved numerically only over a small fraction of the period T
(in the periodic case) per iteration. This is why our algorithms are computationally
quite efficient.

The algorithm to be presented in Section II is completely general and is appli-
cable regardliess of the number "p" of input frequencies, provided p < =,

The algorithm to be presented in Section III is restricted only to the 2-input
frequency case (p=2). We will see that this restriction leads to a significantly
more efficient algorithm than that of Section II.

II. Almost-Periodic Solution Algorithm 1: Multiple-Input Frequencies
Since our algorithm does not depend on whether §ss(t) is periodic or not, let
us assume that the exact steady-state response

M
Xgs(t) = 25 + kz]{QZk_] cos vt + 3, sin vt} | (2.1)

-5-
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is not periodic for the sake of generality. Consequently, we will call the co- :
efficients a as generalized Fourier coefficients.

Even though the number M of frequency components in (2.1) could be quite large
(M may equal =!) in most practical cases,

A A/ Nag, (12 + 12y 12 =0 for all k > N (2.2)

where -1 denotes Euclidean norm.
Hence, we will seek to find an approximate solution

N
xy(t) = a5+ k£1 {ag,_q €os vt + a, sin vt} (2.3)
whose N < M.
A. Calculating a, when transient component is zero |
In section II-B, we will present an algorithm for finding an initial state fF
0 such that the transient solution component xtr(t) in (1.3) is zero for t > 0.

In this subsection, let us assume x0 has been found so that the solution of (1 1)
starting from xO is x(t) = x.((t) for t > 0.

To minimize computation time, we will often choose a relatively small N so
that (2.2) is not necessarily satisfied. In this case, the following theorem is
important:

Theorem 2. Properties of Generalized Fourier Coefficients

Let N < M be any positive integer.

(a) For any (not necessarily optimum) N-frequency component approximation

N
xy(t) 8 by + Z {byy_y €0 vt + by sin vt} (2.4)

to xss(t) in (2.1), the mean-square error

%, (t) 12 1"y 124t '
Mlxgg(t)-Xy(t)]7 A }iﬂ T’Jo %gs(t)-xy(t)

is given explicitly by:f

Twe define the mean of x(t) by

M(x(t)} A lim + JT x(t)dt
il SR I




N
Mltgs (10T = Mz 0FF - o - § T ta0? + a2 o } T tant? 25)

(b) Among all possible coefficients {90’91""’92N} in (2.4), the coefficients
which result in a minimum mean-square error are precisely the first 2N+1 generalized
Fourier coefficients; namely

b

b = s k =0,1,2,...,2N (2.6)

(c) The minimum mean-square-error is given by:

M (D =1 T 1at? 2.7
[xgs(t)-xy(t)]° = 5 k=£+] 3 (2.7)

Proof. It suffices to prove the scalar case.
N
2 _ : 2
(a) M[x (t) xN(t)] M{xss(t) - by - Z [bZk_]cos v tHby sin vkt]}
= M[xss(t)] - ZbOM[x (t)] 2M{x (t) Z [b2k 1698 Vi t+by sin vkt]}

+b2

+ M Z (bZk | €08 v t+b2k sin v, t1}2 (2.8)
where we have made use of the fact that
M{sin vt} =0 for all v (2.9)
M{icos vt} =0 forall v#0 (2.10)
The last term in (2.8) can be further reduced:
1
M{ Z [b2k 1608 vy ttbyy sin v t] E-kz (b2k 1+b2k) = — Z b (2.11)
Substituting (2.1) for Xg (t) in the second and third terms in (2.8), we obtain
2boMIx ()] + 2M{x,s(t) Z [b2k 1608 v, t¥b,, sin vkt]}
N
=2 aobo + [ (bzk 122k- 1+b2k“2k) 2a0b0 + Z 2 (2.12)
Substituting (2.11) and (2.12) into (2.8), we obtain'
MIx_ (t)-xy(t)]12 = M[x (t)]2 - 2ab Z ab, + b2+ Z b
sS N $S 00 ~ k k 0 k
. 2 _ A 2 2 (2.13)
M[xss(t)] a Z ak + (a0 bo) f Z (ak-bk)

which is just the scalar version of (2.5).

-7-
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(b) Since bk occurs only in the last 2 terms of (2.13), the minimum of (2.13)
occurs when (2.6) holds.

M
2 2,1 2
(¢) M[xss(t)] =3ty Z 2y (2.14)
Substituting (2.6) and (2.14) into (2.13), we obtain:
M

2 _1 2
MIx_ (t)-x4(t)] = > a (2.15)

sst /7y z k=§+] k

which is just the scalar version of (2.7). @

Theorem 2 shows that regardless of the integer N, the generalized Fourier co-
efficients {30’91""’52N} in (2.3) can be obtained by minimizing the means-square-
error between fss(t) and gﬁ(t). Hence, increasing the number of frequency compo-
nents from N to N+1 does not affect the previously calculated coefficients.

Since by assumption, §tét)==g for t>0, we can calculate fss(t) by solving
(1.2) numerically. Assuming a uniform step size At, let us calculate (Z+1) time
steps to obtain §SS(At), fss(ZAt)"‘"fss(kAt)""’fss[(2+])At)’ where Z is some
integer to be chosen later.

Since Theorem 2 implies that the jth components 3. k =0,1,...,2N, of each
generalized Fourier coefficient 2, can be determined in%ependent]y of the coef-
ficients of the remaining components of the vector 5N(t)’ it suffices for us to
derive a formula for calculating these coefficients in the scalar case. To simplify
our notation, define the vectors

_ - _ - ~ - — -
X4 (0) xy(0) 3, a,(2)
xgq (At) xy (4t) 3, al(Z)
xgs(Z) A | Xgg(28t) [,xy(Z) A xy(28t) (s | @, |, and &(Z) 2 |ay(2) (2.16)
Lxss(ZAtU fN(ZAtL | 2y | EZN(Zl ?
|
and the Z x (2N+1) matrix
1 1 0 1 o
1 cos v]At sin v]At ... COS vNAt sin vNAt
ra } cos 2v]At sin 2“1At ... COS ZvNAt sin ZVNAt (2.17)
i cos Zv1At sin iv]At ::: cos ivNAt sin ivNAt




: ,_,,,.W.m....j

Theorem 3
The (2N+1) generalized Fourier coefficients {ao,a],...,ak,...,aZN} of xN(t)
(scalar version of (2.3)) are given by

a=a(2) +e(2) (2.18)
where

a(2) a ') 1T x(2) (2.19)

and €(Z) is an error vector satisfying

E(Z) +0 asl+w ' (2.20)

The (2N+1) x (2N+1) matrix (ETE) in (2.19) is non-singular for all positive

frequencies v],vz,...,vN and for any step size At if, and only if

2nm
At # (2.21)
Vidv]

for all i, k = 1,2,...,N, and for any integer n.
Proof. T

Mixg (t)xy(8)12 = Tim 3 | Dx o ()xy(0)]? at

3 S o SS N
= lim L % [x__(kat)-x (kAt)]2 At
y (Z+1)at ksg | SS N

Z
n-}ﬁ{kgo [xss(kAt)-xN(kAt)]z} + e(2) (2.22)

where
e(Z) > 0 denotes the error resulting from taking only a finite number Z of time
steps.

Now substituting t = kAt in (2.3) and using the notations in (2.16) and (2.17),
we can write

JA
kgo[xss(kAt)-xN(kAt>Jz =[xy (D)-xy (DT Ix (D)% (D)]

[xes()-Ta(2)1 D1y (2)-Ta(2)]

=T T T (7yr2
= g (2)%,(2) = 8 (DT (7)) - x.(2)Ta(2)

+ gT(z)ngg(Z) (2.23)




Taslnn=1 Ta-1 ‘

After adding and subtracting g G G6 ‘g =SG gto (2.23), where
GATT  and o4 rlx (2) (2.24)
- =92 i=.01ss ’

e S A e et A n s e

we obtain

z 2 _ T ~T -1 Tea=12 AT 7yn2
kgotxss(kzst)-xN(kAt)] = x55(2)x(2) - 2 (2)667"0 - 076G "a(Z) + a (2)Ga(7)

+ '8 e - o767

tQ

= D596 (A(D-5T0) + 2 (Dx, (1) - 08T (2.25)

Since only the first term of (2.25) depends on E(Z), and sincé G as defined
in (2.24) is clearly positive semi-definite, it follows from (2.22) and (2.25)
that the mean-square error M[xss(t)-xN(t)]2 attains its minimum when

a(2) = 67 = (r'0)7'rTx  (2) (2.26) |
It follows from Theorem 2 that as Z - =, a(Z) + a and hence €(Z) ~ 0 in (2.18).

The proof showing (g'z)is nonsingular if and only if (2.21) holds involves
same cumbersome determinant expansions. The details are given in Appendix B. ®

Theorem 3 gives us an explicit formula for calculating (approximately) the
(2N+1) generalized Fourier coefficients {°0’a1""’aZN} for any N; namely,

2= (0’077 x (2) (2.27)

This approximate formula becomes exact as the number Z of integration time ‘
steps tends to =, f

Since (2.21) applies only at a countable set of isolated points, it is easy
to choose a suitable At satisfying (2.21). Once At is chosen, T can be calculated
from (2.17). The vector 555(2) in (2.17) represents (2N+1) "samples" taken from {
the exact steady-state solution fss(t) from (2.1) at a regular time interval equal t
to 4t.

In practice, Xg (Z) is of course calculated numerically by solving (1.1)
starting from any inftial state 50 which results in a zero transient component

Finally, note that (2.27) gives the (2N+1) generalized Fourier coefficients
of only one component of the state vector Xs (t) Hence, (2.27) must be applied

This implicit system of differential-algebraic equations can be solved using the
Backward Differentiation Formula (BOF) as described in [3].

=10~




n times for the "n" state variables in X. Since T remains unchanged, each calcu-

lation involves only changing 555(2) in (2.27) corresponding to each component of

5ss(t)'

B. Finding the initial state X0
If we let xN.(Tb) denote the ith component of §N(t) from (2.3) at any time

t =T, then !

*

N
XNi(TB) = aoi + kZl{aZK_]icos Wb * aZki sin v T} (2.28)

when L denotes the ith component of a - Substituting (2.27) for a; in (2.28),
we obta}n

y, (To)= Y'(T, ), = f(rb)[ng)"ngssi(u] . gs]_m ('m0,
i=1,2,...,n (2.29)

where §Is (Z) denotes the x. (Z) (as defined in (2.16)) associated with the ith
component 'of xs(t), and

¥(h,) 8 00 cos vyTy  sin T, ..oy cos v T sin vy 1T (2.30)

Since E(ETE)°]I(Tb) in (2.29) remains unchanged for all i = 1,2,...,n, we can
combine all n components of 5N(t) from (2.29) into a single matrix equation:
- - - — _ao(Tb;At,Z,N)ﬂ
xN](Tb) "ss](o) xss](At) xssl(ZAt) xSS](ZAt)

xNz(Tb) b xssz(O) xssz(At) xssz(ZAt) cet xssg(ZAt)

az(Tb 3At,Z,N)

XN (Tb) Lxss (0) Xeg (At) Xss (2at) ... X (ZAt)
L n _ n n n n B .
~———— ~ - v aZ(Tb 3At,Z,N)

* * L _
fN(Tb;fo ) E(At,z; 50 ) ———
A 38620 (5 31
where the (Z+1)-vector
. T.y-1
a(Tp3at,Z,N) 4 T(I'T) " 'y(T,) (2.32)

depends only on T ,At,Z, and N (since T in (2.17) depends on At,Z,and N) but not
x _ -~ ——
on x

-N-




We can recast (2.31) into an exact equation by introducing a slack variable
EN(Tb;At’Z); namely,

N(T .xo) - X(At I xo) a(T 3At,Z,N) = -EN(Tb;At,Z) (2.33)
Observe that EN(Tb;At’Z) > g if the following 3 conditions are satisfied:

1) 2=

2) ~Ss(t) is calculated by solving (1.1) numerically with x0 as the initial

state, where xo* is any initial state which satisfies (1.18).
~Ss(t) is calculated with infinite precision and zero local truncation
error.

None of these conditions can be exactly met in practice. Moreover, even if
sN(T ;At,Z) = 0, we still can not solve (2.33) for xo* since we do not as yet have
the 1nformat10n (1 e., the coefficients 32315395 - EZN) needed in (2.3) to cal-
culate xN(T 3%g )

Instead of (2.33), however, suppose we define the following system of "n"
related equations as a function of the "n" components Xg. *Xgo** -2 2%g of the
initial vector Xg _A=_[x01 %227. Q_.]T [x](O) xz(O) ..! xn(O)]T . n

3)

_ rao(Tb;At:zsN) —_—

-

% (Tp3%g) xO] xq(atixg) %y (28t5x4) ... x; (2AL3 xo) o (T, 588,2,N) 0
xZ(Tb;fo) " 1%, xZ(At§§0) Xo(20t3x5) . . .%o (Z8E30) (T, 388,2,N) = ?
X, (T, ,xo) 1 X, Xn(Atixg) %, (28t5x0). .. x, (28E5x4) ' L0

[ ~— J] az(Th;At’ZsN)
x(T 31X ) X{at,2;x.) - -
°20 ~ ~0 .
T ;At.Z,N
o - a(T )_J . J
5(50 ;Tb !At)Z,N) = 9

2.34)
where xi(t;fo) denotes the ith component of the complete solution §(t) = 5tr(t)

+ fss(t) of (1.1) starting from the initial state Xg for t = 0, At,2At,...,IAt,
and T,. Observe that unlike (2.31), both §(TB;§0) and §(At,Z;5o) can be calculated
by solving (1.1) numer1ca11y

Now at Xg = %p xtr(t) 0 fort>0 (by definition) and hence we can write

*
MTying ) = xes(Tyisg ) = Hy(Tyixg) + Xey(y 3% ) - (2.39)
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where x (Tb,x0 ) = Xg (T ) and AN (T b %0 ) (Tb) as defined in (2.1) and (2.3)
respectively, and where xM N(T ,x ) denotes the remaining (M—N) terms of x. (T )
which have been excluded from xN(Tb) Consequently, at Xg = x0 » (2.34) can be
written as follows:

* * *
x(Toixg ) = X(at,Zixg JalTy3at,2,N) = -xy (T, 5%, ) (2.36)

Comparing (2.33) and (2.36), we find

en(Ty3at:2) = Xy M (T, 5%, ) ' (2.37)

Equation (2.37) is remarkable because it says that EN(Tb;At’Z) + 0 when
N > M. In other words, if the exact steady state response Xg (t) in (2.1) has
only M < «» frequency components, and if we choose N = M in (2 3), then
~N(T'b,At,Z) =0 and (2.31) becomes exact for any Z.

Indeed, when M= Nand Z = 2M + 1, ' becomes a square matrix and the gen-
eralized Fourier coefficients can be calculated exactly from (2.27):

= )
a ="' () (2.38)

Similarly, (2.32) in this case (Z=2M+1) reduces to
g(Tb;At,Z) = ETZ(Th) (2.39)

Of course in practice, we will normally choose N << M in order to save compu-
tation time. This choice is often necessary anyway because M = «~ for most prac-
tical circuits. Fortunately, the amplitudes of the higher-order terms [5] in
many practical circuits satisfy (2.2) so that the error vector E(Tb;At,Z) remains
relatively small even though N << M.

Let us summarize the preceding observations as follow:

Remarks:

1. The solution ;0 of the nonlinear equation
F(xg3ThsatsZ,N) = 0 (2.40)

as defined in (2.34) for fixed At and Z represents, a good approximation to X *
provided the number of frequency components N and/or the number of time-step
samples Z are chosen to be sufficiently large. In particular,

=13~




~ *

Xg* X as N> and/or Z +» = (2.41)

2. Since (2.40) is not given in closed analytical form, it must be caluclated
numerically for each Xg> At, and Z.

3. Equation (2.40) can be solved for X0 (for fixed At and Z) by the Newton-Raphson
method [3]: .

1) = o8 - DT RS ) (2.42)
s F(xns T, At ,Z,N
where gF(féJ)) 4= 0 320 ) ) (2.43)
- % ~ Zo

denotes the Jacobian matrix of f(fo;Tb,At,Z,N) at Xg = §éj). This can be evalu-
ated by the method given in Section II-C.
4. Once the initial state Xg is found, we solve (1.1) numerically with 50* as ‘
the initial state to obtain 5ss(At), 5ss(2At),..., 5SS(ZAt). Substituting the ith ‘
component, i = 1,2,...,n, of these data into (2.27), we obtain the first (2N+1)
generalized Fourier coeeficients a 87 seeealoy of the ith component xss_(t) of
the steady state response :555(1:).'r 'Theisteady-slate response §N(t) at ggxftime
t= Tj can now be obtained by calculating (2.3) at t = Tj.
C. Evaluating the Jacobian matrix ﬂpifgill

Since the most time-consuming part in solving for X via the Newton-Raphson
method is the numerical calculation of the Jacobian matrix QF(féj)), it is
essential to develop efficient computational methods. Taking the Jacobian of
f(fo;At.Z,N) in (2.34), we obtain

ax(Ty, 3Xa) /4 ax(kat;x,)
Jp(xfd)) = =220 - T o (Tysat,2) == (2.44)
~F- 2 caxld) k=0 0 L)
<020 5020
Hence, we need to calculate
ax(t;x5)
-_ax—o_' % =x(j) at t = OQAt’ZAt,o-.,ZAt, QNd Tb (2-45)
- <0 %0

These (Z+2) n x n matrices can be calculated by the numerical differentiation
method described in Section 17-5-2 of [3]. If the circuit associated with (1.1)

“1f xgs(t) 1s periodic and its period T is not too large‘ we can replace this step
by numerically solving (1.1) fromt = 0 to t = T with Xg as the initial state.

-14-




is given, the most efficient method for calculating (2.45) is the sensitivity
network approach given in Section 17-5-3 of [3].

However, if (1.1) is available only ana]yticallyf, the sensitivity network
approach is not applicable. In this case, the following method is much more
efficient and accurate than that of numerical differentiation:

In vector form, (1.1) becomes

f(x x,y,w] ".th’ )wpt) = 0 (2.46)

~ o a

Applying Taylor Expansion about ( (J)(t) y(J)(t)) at the jth stage of the iteration,
where E J)(t:) y( (t)) denotes the solution of (2.41) with initial state

Xy = X~ » we obtain _ _
n(t)
f 3f of
£ (2)x 9 (2) .y 090 () s st st {5; = -3:} n(t)
I R0
_ _
Y 2 2y .
where
n(t) & x(t) - x4 (), y(v) 4 y(e) -y () (2.48)

The first term in (2.47) is identically zero because (f(j)(t),y(j)(t)] is a solu-
tion of (2.46). Neglecting the higher-order terms, (2.47) can be recast as
follow:

n(t) af af ] af A

The first component equation of (2.49) is a linear time-varying differential
equation

Tour algorithms in this paper are valid for any equation of the form (1.1), which
need not be associated with a circuit.
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Fj(t) = Al () n(e) (2.50) !

where A(J)(t) is an n x mmatrix functton of time. We wil] henceforth refer to
(2.50) as the variational equation associated with {2.46).
The solution of (2.50) corresponding to any initial state n(0) is given by
[13] )
n(t) = 8l3)(¢) n(0) (2.51)

where Q(J)(t) is the fundamental matrix solution of (2.50).+ 1f we choose

n(0) = [00...0 n(0) 00 ... o] (2.52)

then )
ny(t) = 2§ () 0 (0), 3 = 12,000 (2.53)

where o.k(t) denotes the ikth element of ¢(t). It follows from (2.52) that

ax; (t) ni(t)
ka 0) - (U) o5 (t) (2.54)

Hence we have proved that

ag(t;xo)
X .
<0 = (J)
X0~%0

~

= g(j)(t) (2.55)

It follows from (2.54) that JF(x(j)) in (2.44) can be calculated accurately
in 3 steps:

1) Form the variational equation (2.50) at each iteration.

2) Calculate the fundamental matrix so]utio;_grj)(t) of (2.50).

3) Calculate (2.44).
D. Initialization Guidelines

To initiate the algorithm for finding the initial state xo , it is necessary
to choose the 5 parameters N, Z, At, Ty and X9 for constructing the nonlinear
equation (2.34). Since a good choice of these parameters depends on both the
nature of the problem (number of state variables, degree of nonlinearity,
amplitudes of input signals, number of input frequencies, etc.) and the computer
being used (word length, single or double precision, etc.), we can only offer

q'The %ﬁh column of the fundamental matrix solution is simply the solution of (2 51) 4
with the initial state

n(0) = [00...010...0]
£ jth position
-16-
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some guidelines which have been found useful in our numerous numerical experiments
conducted using our algorithm.
a) Choice of N.
Recall N < M is the number of frequency components used in the truncated
steady state solution §N(t) in (2.3). For typical communication circuits
(amplifiers, mixers, modulators, etc.) the number of significant frequency compo-
nents is usually known from previous analysis and N should be chosen to include
all such components.
If the number of significant frequency components is not known from previous
experience, we simply make an intuitive guess. If this guess is unrealistic, it
will show up in the subsequent error analysis (to be discussed in Section II-E)
and we will have to repeat the analysis with a larger N.
b) Choice of Z, At, and T}.
Recall that At is the uniform sampling step size used in "sampling" the
numerical solution of (1.1) and Z is the total number of samples taken. It is ;
important to note that "At" is not the same as the integration step size "h"
used in solving (1.1).
In most of our numerical experiments, we solve (1.1) using a 4th-6th order
BOF_algorithm [3] with a step size h = Tminlso’ where Tmin is the smallest period ét
of the N frequency components. This choice usually gives a very accurate numerical
solution for 5(t).
Our sampling step size At is usually chosen within the range

7h < At < 13h (2.56)

[
provided (2.21) is satisfied. In practice, ill-conditioning could occur if At is }
chosen to be too small, or if it contains some frequency. components vy and Vg such !
that [vJ. -y [=0. (See Appendix B) !

Although Theorem 3 shows that the generalized Fourier coefficients can be
calculated exactly only if Z +~ = (see Eq. (2.20)), our numerical experiments show
that good results can be obtained in many practical cases with a considerably
smaller Z. In particular we have found the following range to be adequate for
the many examples we have tried so far:

(2N+1) < Z < 2(2N+1) ] (2.57)
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Finally, the choice of Tb is somewhat arbitrary as it does not affect the
theory in Sec. II-A from which our algorithm is based. However, since the gener-
alized Fourier coefficients are estimated by samples taken over the time interval
[0,2At], we choose

T, > Iat (2.58)

so that the data §(Tb;§0) would not be redundant.
¢) Choice of Xg

To assure and to hasten the convergence of the Newton-Raphson jteration, it
is desirable to pick a good initial guess 580). Unfortunately, no intuitive guide-
lines are available especially when the steady state solution §ss(t) is not
periodic.

One approach which has worked well for our examples is to rep]ace the 1nput
frequencies {v],vz, -3Vy } by an approximate set of frequencies {v1,v2, “esVy } so
that the associated steady -state waveform is periodic with a relatively small
period T = 2n(n/m), where m and n are defined in (1.8)-(1.9) and is bounded by
(1.16). Using this approximate set of frequencies, we thsn apply the shooting

method [11], or any other efficient method for finding Xg for periodic solutions, 'l
* * ~
to calculate Xg - We then take this approximate Xg as our initial guess 560).

If we let m . A max{m ,m,,...,m} and n .
suggests the following algorithm for reducing T:

) If Yy T mk is an integer for all k = 1,2,...,N, then we 1ncreasehmmaxA
until it is not a prime number and then increase Vie? k =1,2,...,N, until ma /vk
is an integer.

Example 1. Let vy = 2, v, = 3, and vy = 7. Then {m],mz,m3} = {2,3,7} and we
have from (1.7) ‘

- 2m -

T2t 03,77 - %"
Now increase Meax = 7 to 33 = $3 = 8, and then increase Vo to 4. The new period
associated with {3] ,32,33} = {2,4,8} is

A min{n],nz,...,nN}, then (1.7)

e e

A

T G (2.59)

{(2) 1If Vi * mk/"k is not an integer, we first change m, as in (1) and then
change Nes k=1,2,...,N until it becomes a mulitiple of Amin®

Example 2. Let vy ® 2/5, vy = 3/8, and vy = 7/9. Then {m],mz,m3} = {2,3,7}
as in Example 1 and {n].nz.n3} = (5,8,9}. From (1.7), we find
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_ L.C.M.{5,8,9} | _ ‘
T=2n [G.C.D. 737 ] 7207 (2.60)
Since Mmin = 5, we change ny and ny to ;2 = 10, and ;3 = 10 so that

s L.C.M.{5,10,10} | _
T=2n |: G C.0.(2.48 ] = 10r (2.61)

Note that dramatic reduction in period from 7207 to 10mt 7
(3) If Ve is an irrational number, we first approximate it by a rational
number and then proceed as in (2).
Example 3. Let vy = 0.404040..;, vy = 0.%75010101..., and vy = 0.7777... .
We can approximate VysVas and Vg by vy = 2/5, vy = 3/8, and vy = 7/9 and then pro-
ceed as in Example 2. Note the period changes from T = = to T = 10w.
E. Termination Guidelines
Since our choice of N may not be realistic in the sense that one or more
significant frequency components may have been inadvertently excluded from (2.3),
our algorithm does not terminate when the Newton-Raphson iteration in (2.42)
converges to an initial state x *. We must further validate our answer as
follows: )
(1) If the steady-state response Xs (t) is periodic w1th a reasonablly
small period T, we simply solve (1.1) numer1ca11y for x(t x0 ) (with x0 as
initial state) fromt = 0 to t = T and verify that 5(0 3Xg ) = x(T; 50)
(2) If the steady-state response fss(t) is not periodic, or if it is
periodic with an unreasonably large period T, we can carry out the following ;
heuristic validation procedure in view of (2.7) of Theorem 2. lﬂ
(a) So]ve (1.1) numerically for §(t.§o*) (with 50* as initial state) from }
=Qtot=1T, where T is chosen to be sufficiently large. !
(b) Solve for xN(kAt xo) using (2.31) where Ty = kAtand theentries x_ (kat) in the
matrix X(At Z; Xq *) are substituted by X; (t; 3Xg ), = 0, at, 2At LIt
(c) Calculate the ggggg

Z *
€; ,L;,/%{ )] [XJ- (kAt:;i(0 )- -Xy (kAt g )]} (2.62)

We could reduce T further by decreas1ng (instead of increasing) n, and n
n, = 5 and n3 5. However, the Vo and vy No longer represent a ggod app;ox1mat1on
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for each component j = 1,2,...,n.

If max{e],ez,...

wise, increase N and/or Z and start all over again.

F. Summary of Multi-Frequency Algorithm

Step 0.

Step 1.

t
Step 3.

d

Step 4.

Step 5.

Specify the 4 parameters N, Z, At, and T, (See Section II-D) and
calculate the vector g(Tb;At,Z,N) using (2.32).

Set j = 0. )

Choose initial state X5 = 563) (for j = 0, see Section II-D) and
solve (1.1) numerically to obtain §(At),§(2At),...,§(ZAt).

Calculate E(fo;Tb’At’Z’N) from (2.34). 1If ﬂf(fo;T At,Z,N)I <*€
whose ¢ is a sufficiently small positive number, call X9 = Xg and
go to Step 4.

Compute the Jacobian matrix J (xéJ)) in (2.43). (See Section II-C).
Compute x(J 1) via the Newton -Raphson iteration (2.42).

Go to teg with j -3+ 1.

Solve (1.1) for x(t) with x0 as initial state fromt =0 to t =Ty
where Tb period if Xs (t) is periodic, orTb is a sufficiently large
number.

Case 1. (t) is per1od1c with small per1od T:
Calcu]ate €5 = x (o, Xg ) X5 (T 3Xg ) = 1,2,...,N
Case 2. (t) is not per1od1c or is per10d1c with large T:

Calculate €5 using (2.62), j = 1,2,.
If max{e].ez,...,en} > €
where € is a sufficiently small positive number, increase N and/or
L and repeat Steps 0-4.
STOP.

G. I[llustrative Examples

Numerous examples have been solved successfully using the 2 algorithms pre-

sented in Sections II and IIl. Because of its widespread interest, let us apply

the preceding algorithm to solve the forced Duffing's equation [14-15]:

X + kx + Cyx + c2x3 = f(t)

This equation arises in many physical problems (e.g., ferro-resonance circuits)

.sn} is smaller than some perscribed tolerance, stop. Other-

(2.63)

and is known to exhibit many interesting phenomena; including subharmonic, almost-
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periodic, and chaotic solutions [16].
To apply our algorithm, let us recast (2.63) into the form of (1.1), which
in this case is just the state equation

i L
-kx2 - CyXy - czxf + f(t) (2.64)

)

To be specific, let us choose a 3-frequency-input signal

f(t) = A.I cos m]t + A2 cos wzt + A3 cos m3t (2.65)

and k = 0.1, ¢y = 2.0 and Cy = 1.0.

We have solved (2.64) using many different combinations of amplitudes and
frequencies, 4 of which are listed in Table 2.
Table 2. Four combinations of Ai and ws and their respective periods.

_en _ T _2n oD
case A'I A2 A3 wyl W, w3 T-l— &= T2- T3 == T-Zn(ﬁ‘—)

- Wy | 3wy
1 |o0.4]0.4]0.4|1]0.35]0.155 | 6.283 | 17.951| 40.54 400m
2 {o0.4{0.4{0.4{10.85]|0.170 | 6.283 | 7.392] 36.96 200m
3 |0.5]/0.5|0.5|1]/0.35]0.155 | 6.283 | 17.951| 40.53 400m
4 |0.5{0.5{0.5(1{0.85(|0.170 | 6.283 | 7.392]| 36.96 2001

From previous experience, we know all frequency components

Vi = My + Mgy + My wa (2.65)
with

[my |+ lmZkl + [mak[ <3 (2.66)
are likely to be non-negliigible. Since these are 30 frequency components satis-
fying (2.66), we choose N = 30 in (2.3). Applying the preceding algorithm with

*

at = N T]/SO, Z = 1.5(60) = 90, and Tp= 23 Ty we obtain the initial state X0

Tisted in Table 3 corresponding to the 4 cases in Table 2. Also listed is the
error e calculated using (2.62)




Table 3. Initial state computed using multi-frequency algorithm with a 6th order

BOF algorithm [3].

* *
Xg 4 x (0) Error

case « *
Xy (0) Xo (0) € €o

1 |o.69667 | -0.18304 [0.53(1073)|0.99(1073)
0.78298 | -0.13834 |0.14(1072){0.22(107%)
0.82931 | -0.32269 |0.92(1073){0.14(107%)
0.81562 | -0.46932 |0.33(1072)|0.57(1072)

£wN

Using the initial states from Table 3 and (2.27), we have calculated the 60
generalized Fourier coefficients 3153p5-.+53g, in (2.3) corresponding to N = 30 for
cases 1 and 2. The waveforms of x](t) for these 2 cases are plotted {using (2.3)) as
the solid waveforms in Figs. 1(a) and 2(a), respectively. As a check over the
accuracy of our solutions, we solve (1.1) using the same initial states and the
solution at each integration time step is shown as "dots" in Figs. 1(a) and 2(a)
respectively. Note the remarkabile accuracy in both cases.

To compare the amplitudes of the 30 frequency components, we use (2.27) to
plot the discrete frequency spectrum for these 2 cases in Figs. 1(b) and 2(b),
respectively.

Finally, to obtain a measure of the rate of convergence of the Newton-Raphson
iteration (2.42), the error

£ 5/ Faxgd )3T, wat 2N F2 (xSt Lat,2,N) (2.67)

at each iteration is plotted in Fig. 3 for cases 1 and 2, respectively. Nate that
both converges rapidly in 4 iterations.

IIT. Almost-Periodic Solution Algorithm 2: Two Input Frequencies i
In this section, we assume the circuit or system is driven by no more than 2
frequencies; i.e., P < 2 in (1.1). Hence, let us rewrite (1.1) and (1.5) as

follows:
Fx,x,y501 thapt) = 0 (3.1)
Vi T mlkm] + mkaZ, k=1,2,...,M ‘ . (3.2)




Substituting (3.2) into (1.4) and making use of standard trigonometric identities,
we can recast the steady-state response fss(t) as follow:

M
Xss{th = 3p * kgl {EZM cos (my uy myyp )t + 35 5‘"("‘1k‘*’1+'“2k‘*’2)t}

M
=g+ kgl {EZk'] [(cos my wyt)(cos my wyt)-(sin my wyt)(sin my wyt)]
+ EZk[(Si“ m1km1t)(cos mkazt)+(cos m]kw]t)(sin mkazt)i}
M
"9t 2 {[ézm CoS My t+ay, sin mywyt] cos mywyt

+ [§2k cos mlkwlt'EZk-l sin m]kw1t] sin m2km2t:} (3.3)
If we Tet B denote an integer bound such that
Imy |+ Imgy | < B : (3.4)

then the number M of non-zero frequency components Vi is given in Table 4 for
B =1,2,...,10.

Table 4. The integers M, 2M + 1, and 2B + 1 as a function of B.

B 1 2 3 4 5 6 7 8 9 10

M 2 6 12 20 30 42 56 72 90 110
M+ 5 13 25 4 61 85 113] 145 | 181} 221
2B+1 3 5 7 9 111 13 15 17 19 21

This table can be easily verified hy counting the number of solid dots subtended
by an isosceles triangle of base length 28 in Fig. 4. For example, we can enum-
erate the following frequency components when B = 3:
V] T Wy Vg T wpy Vg = Zw], Vg = 2w2, vg = 3w1, Vg = 3w2, Vg =Wy + Wy s
Vg T Wy = Wys Vg T W + sz, Vig = @y - 2w2, Vi1 * Zm] * Wy and V9o T Zm.I - Wy
Hence, M(3) = 12,

Observe that all solid dots on the mi-axis in Fig. 4 denote harmonics of
Wy - Likewise, thoseon the mzfaxis denote harmonics of Wy - A1l other solid dots
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denote intermodulation components. In particular, all solid dots on a horizontal

line through Moy = N, N=1,2,..., correspond to frequency components of the form
Vi T My + N“Z' Hence, if we regroup all frequency components in (3.3)
corresponding to dots on a horizontal line together, we can recast (3.3) into
the form

B
xs5(t) = gg(t) + kgl { 9op_q(t) cos kuyt + gy (t) sin kuyt} (3.5)

where go(t), g](t), gz(t)""’QZB(t) contain only cosine and since components
which are harmonics of wy and are therefore all periodic functions of period

T] = 2n/w]. Since this observation is the basis of Algorithm 2, we will restate
it as a theorem:

Theorem 4.

The steady-state response 5ss(t) in (3.3) which contains (2M+1) generalized
Fourier coefficients can be recast into the form of (3.5) containing only (2B+1)
coefficient functions of time go(t), g](t), Ez(t)’-'-’gza(t) which are all
periodic of period T] = 2w/w].

A comparison between the number of coefficients describing (3.3) and (3.5) is
given in Table 4. Observe that (3.5) has much fewer coefficients compared to that
of (3.3) specially for large B. For example, when B = 8, Algorithm 1 from Section
1I would entail solving for 145 generalized Fourier coefficients, whereas only
17 coefficient functions need be specified in (3.5). Our objective in this
section is to develop a new algorithm which takes full advantage of this remark-
ably concise form of solution.

A. Calculating gk(o) when transient component is zero.

In Section III-B, we will present an algorithm for finding an initial state
fo* such that the transient somponent ftr(t) in (1.3) is zero for t > 0. In this
subsection, let gs assume X, has been found so that the solution of (3.1)
starting from Xg 1s f(t) = fss(t) for t > 0, where fss(t) is given by (3.5).

For reasons that will be clear in Section III-B, we need to derive a rela-
tionship for calculating gk(o), k =0,1,2,...,2B, in terms of "(2B+1)" samples
Xss(0)s X (1), %, (2T1) 4000 uX (2BT) taken at Ty = 2n/w, intervals. Since each
component x. (t) of fss(t)’ i=1,2,...,n, can be calculated separately, it
suffices for us to derive the ith component gi’k(O) of gk(o).

Substituting t = 0, T;,2T;,...,28T, into (3.5)

and using

9y (kTy) = g5 (0), Kk =1,2,...,28 (3.6)

in view of Theorem 4, we obtain
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B
%55, (0) = 95,0(0) *+ 1 94 5y (0)

B
%os i) = 95,000 + {:91,2k-1(°) cos ku,Ty + 95 5, (0) sin ksz]j}

; &
= 3 3.7
xssi(ZTl) gi,O(O) + kZ] {gi’2k4(0) cos 2k“’2T1 *+ g; ’2k(0) sin 2kw2T.|} (3.7)

. . B .
xssi(ZBTl) = gi‘o(o) +,k£1{%i’2k_](0) cos 2kBu, Ty + gi,2k(°) sin ZkBuZTE}

J

Equation (3.7) consists of 2B+1 equations in terms of the 2B+1 coefficients

9; (0).9; 1(0),9; 5(0),....9; o5(0).
If we define the (2B+1)-vectors

XSS1(0) g-i ,0(0)
xSSi(T]) 91,1(0)
xssi(B) A xssi(ZTl) and gBi A 91’2(0)
X5 (28T7) 9 ,28(0)
and the (2B+1) x (2B+1) square matrix
R 1 0 1
1 cos(ubT1) sin(uhT]) cos(Ba2T1)
1 cos(ZubT]) sin(ZuET]) cos(ZBu?T])
(8) 4
] cos(Bsz]) sin(Bw2T]) cos(BszTl)
| 1 cos(2Bu,Ty)  sin(2BuyTy) cos (28%,T,)

then (3.7) assumes the condensed form

9(8)931 = fssi(B)’ i=1,2,...,n
-25-
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Theorem 5
The 2B+1 coefficients g, 0(0),gi ](0),91 2(0),...9i 28(0) describing the
steady-state response (3.5) can be calculated exactly from

-1
9, = 9B) X (B) |, 1= 1.2, (3.11)

The matrix Q(B) is non-singular if, and only if, there does not exist an integer
L2 such that

W L
a—f# [% Ly = Th2,...,28 (3.12)

Proof. Eq. (3.11) follows directly from (3.10). The proof that (3.12) is a
necessary and sufficient condition for Q(B) to be non-singular is given in
Appendix C. ® |

Corollary
1. g(B) is always non-singular if Wy and wy are incommeasurable.
2. 1If wy and w, are both rational numbers, we can make g(B) nonsingular by {
choosing ‘
B < 2{_ (3.13)

1
where T is the period denfined in (1.7).
Proof. Corollary 1 follows directly from (3.12). Corollary 2 is proved in
Appendix D.

*

B. Finding the initial state X0

Consider the ith component of (3.5) at t = (28+1)T]:

Z
ss, ((28+1)7)]) = g4 4(0) + kg] {g,mk_](O} cos(2B+1)u,Ty + 94 5, (0) sin(28+1)m2T.|}

(3.14)
Substituting (3.11) for g k(0) in (3.14), we obtain
LT = Tiara-]
xssi[(28+])Tl) S (B)gsi =8 (82 (3)5551(3)
-1
= xi_ (8)a" (B)s(B) (3.15)
Tss 0 °

where
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T
§(B):Q [E cos[(28+1)w2T1] sin[(28+1)w2T]] cee cos[(ZB+1)Bw2T]] sin[(ZB+1)Bw21{j

(3.16)
Since [2'(B)]™1 (B) in (3.15) remains unchanged for all 1 = 1,2,...,n, we
can combine all "n" components of fss(t) from (3.15) into a single matrix equation:

- - - - reo(s) n
xss‘((ZBH)T]) xssl(O) xss1(T1) xss](ZT]) xss](ZBT]) o
8
%55, (BT ]| xgg (00 xgg (1) wgg (277) oo xeg (287)) ‘ (3.17)
- : : : % : B,(B)
xssn((ZBH)T]) xssn(o) xssn(Tl) xssn(2T1) xssn(zml) :
— — — o K
x o ((28+1)T,) X(B) 8(8)
where the (2B+1) - vector
8(8) A [2'(8)]7" &(8) (3.18)

depends only on B.

Observe that (3.17) is exact provided the integer bound B in (3.4) includes
all "M" frequency components of the exact steady-state response 5ss(t) in (3.3).
In this case, the entries Xe (t) t= OI],ZT], 28T, in X(B) can be obtained
by solving (3*1) using xo as the initial state.

Since Xg is precisely what we are seeking, let us define the following
system of "n” related equations as a function of the "n" components

of the initial vector

X sXn seessX
0y°70, 0,

%0 4 Uy, %o oo xon]T = [x,(0) %,(0) ... x (0)]:




_ - ~leo®) | o]
x]((ZB+I)T];§0} x](O) x](T1;§0) (ZT xo) e (ZBT],xO)
8,(B)
X, ((2B41)T, 3%,) Xp(0)  x(Ty3%g) 2(2T1,x0) . %p(2BTy3x,) L
: i} . . . 8,(8) | {0
xn((28+1)T];§o)—] x,(0) x (Ty3%) x (27, ixg) e X (28T0x) ||
) i ~1828t®)) |
\ —~ -~/ L. —~ J X ;7 w
x((28+1)7, o) X(8ix) L, s
EG&B) (3.19)

where
xi(kT1’§0)’ k=0,1,...,2B+1 denote the ith component of the complete solution
x(t) = x. (t) + x . (t) of (3.1) starting from the initial state xg» for t = 0,
Ty:2T),... 28T, ,(2B+1)T,. Observe that unlike (3.17), both, x((2B+1)T,:x ) and
X(B xo) can be calculated by solving (3.1) numerically

Since (3.19) reduces to (3.18) when Xy = x0 , it follows that x0 can be found
by solving

F(xq38) = 0 (3.20)

by Newton-Raphson iteration as in (2.42), with F( } replaced by F(x sB).

The Jacobian matrix gF( (J)) can be evaIuated by the sens1t1vi;y network
approach [3] if the circuit is given. If only the equation (3.1) is given,
the Jacobian matrix can be calculated from

. ax((2B+1)T, ;x 2B ax(kT, 3x4)
J (x(J)) = ~( 1 ~°) - Z 8, (B) ~ 1’07 (3.21)
~F~0 %% k=0 K %
x.=x\d) x0=§(J)
ax ((28+1)7, 3x,)
where — ™ =~— can be evaluated using (2.55).
~0

To save computation time, the integer bound B is chosen to include only the
significant frequency components in (3.3). In this case, the initia) state xo*(B)

computed from (3.20) will depend on B and is therefore not exactly equal to xg -
Clearily, )




* * - (3.22)
Xg (8) - Xq as B -8B

where B* denotes the integer which is large enough to include all frequency com-
ponents of (3.3).
C. Initialization Guidelines

Since (3.1) must be solved many times numerically fromt =0 to t = (ZB+1)T1,
we always choose Wy to be the larger of the 2 input frequencies. OHCE(J] is
identified, we can calculate 5(50;8) in (3.19) by specifying the 2 parameters
B and Xg-

a) Choice of B.

The integer bound B in (3.5) should be chosen equal to at least the order of
the highest significant harmonics of wz in the steady-state response. It is
independent of Wy This important property allows us to analyze a large class of
communication circuits where the "signal" frequency at wy is much smaller than
the "carrier" or “pump" frequency wy - In such cases, harmonics of wy will usually
be quite small even though the input signal at frequency Wy is usually very large
(thereby generating many higher harmonics of wl) so that accurate answers can often
be obtained with B = 3,

If the order of the highest significant harmonics is not known, we simply
make an intuitive guess. If this guess is unrealistic, it will reveal itself in
the subsequent error analysis (to be discussed in Section III-D).

b) Choice of X

The same procedure presented in Section I1-C also appliies here.

D. Termination Guidelines.

Recall that in practice, the solution X9 (B) of (3.20) is not the exact
solution xo . Consequently, we must va11date this answer before terminating.

(1) If the steady-state response Xg (t) is periodic with a reasonab]y
small period T (see(1.7)) then we simply solve (3.1) numer1ca11y for x(t,xo (8))
(with Xq (B) as initial state) and verify that x(O Xq (B» = x(T Xq (B»

(2) If the steady-state response fss(t) is ggg per1od1c, or 1f it is
periodic with an unreasonably large period T, we can estimate the error with the
help of (2.51). If the "approximate” solution x(t Xq (B» is indeed close to the

exact solution x(t.x0 ) for all t > 0, then it fo]lows from (2.42) and (2.51) that

Ix(t;x ) - 5(t;§o «BHI E.IQ(t)I I50 - X (B)I (3.23)
for all t > 0.

If we let 9 (0) and gk(O) denote the "exact" (computed using (3.11) with
B = B and exact X9 ) and "approximate” (computed using (3.11) with a approximate’
(B)} values, then
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*

%* * * B * B

»*

* B . B *
< gy (0) - gglo)0 + kzll 9o-1(0) = gy 1 (0)E + kZBH LRI (L (3.24)

Since the coefficients gk*(o) and gk(o) can be interpreted as the Fourier co-
efficients associated with: the frequency k“z at t = 0, it is reasonable to assume
that if ng(o)l is sufficiently small for k > 2B + 1, the computed initial state

(8) will be sufficiently close to x0 , and hence

Szk-1(°) = Gpi-1(0)s k = 2-,1,2,...,3 | (3.25)

It follows from (3.23), (3.24), and (3.25) that we can approximate (3.23) by
*
» * B * *
Ix(tsx,) - x(t;xo(B))l f'|°(t)l{k g 1I92k-1(0)l + €(B,§0(B))} (3.26)
-~ -~ -~ -~ g =+

where e(B,go* (B)) is an error from the first two terms in (3.24).

Even though the right hand side of (3.26) can not be calculated from avail-
able data, the following heuristic procedure has been used successfully in all
examples we have investigated so far:

(1) Solve (3.1) numerically for x(tix, (8)) from t = 0 to t = 2(B+2)T,.

(2) calculate 9 i=1,2,...,n, using (3.9) and (3.11) with B replaced

by B+2 and w?th X (t) replaced by xi(t;fo*(B)] for t = 0,T,,2T;,...,
2(842)7,. ™
(3) If
B+1%8+2 & 192847 (0)1 + Tgpp,5(0)1 (3.27)
is smaller than some prescribed tolerance, stop.
Otherwise, increase B and start all over again.
E. Summary of Two-Freguency Algorithm ‘

Step 0. Choose wy to be the larger of the 2 input frequencies. Specify the
integer bound B (see Sectfon III-C). Set j = 0.
Step 1. Choose initial state Xy * xgj) (for j=0, see Section II-0) and solve
(3.1) numerically to obtain x(T Y x(ZT ) x(ZBT ).
Calculate F(x ;B) from (3. 19) If IF(xO,B)l < € where ¢ is a
sufficiently small positive number, call Xg * X (B) and go to Step 4.
) Step 2. Compute the Jacobian matrix J F(x(j)) in (3.21) (see Section [I-C).

P
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\Steg 3. Compute féj+1) via the Newton-Raphson iteration (2.42) with F(-) re-
placed by E(EO'B)‘ Go to Step 1 with j + j+1.

Step 4.
Case 1. (t) is periodic with small period T:
Solve (3.1) for x(t) with Xq (B) as initial state fromt =0 to t = T.
Calculate

€5 = xj(O,fo*(B)} - xj(T;fo*(B)), j=1,2,...,n

Case 2. Xg (t) is not periodic or is periodic with large T:
Solve (3.1) for x(t) with x0 (B) as initial state fromt = 0 to
t= 2(B+2)T Calculate B+15B+2 38 defined in (3.27). If

max{e],ez,....en}> €9 (case 1)

B"']EB"'Z > 50 (Case 2)

where €0 is a sufficiently small positive number, increase B and
repeat Steps 0-4.
Step 5. Stop.

F. Illustrative Examples
Example 1. Duffing's Equation with 2 frequency inputs:

We have used the preceding algorithm to solve (2.64) when f(t) contains only
2 input frequencies. The results corresponding to 3 different combinations of
parameter k, ¢y, C,, and f(t) are summarized in Table 5 for B = 9, 11, 13, and
17 respectively.
Table 5. Examples Applying the Two-Frequency Algorithm

(1) f(t)=0.5 cost |(2) f(t)=0.3 cast |(3) f(t)=(1+cos 0.115t) cost
+0.5 cos 0.81t +1.5 cos 0.115t
8 * > ¥ * * -
xn (BY} x. (B) | Xq. (B)] x4 (B) X, (B) X, (B)
9 1.04898 | 0.26642 |1.27285} 0.27251 1.36899 -0.34537
N 1.11403 | 0.64204 | 1.24281 | 0.17135 1.39967 0.00736
13 1.12986 | 0.63906 | 1.22548 | 0.30906 1.34835 0.16875
15 1.11865 | 0.63562 | 1.21332 | 0.33872 1.35403 0.15168
]se]7=0.0021 ]6e17=0.0083 ]4e]5=0.023
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In each case, an error estimate using (3.27) is calculated and the results
are also listed in Table 5. For example, in case 1, we have

16517 = 193(001 + 1g5,(0)1

4 1955 1(0)] + 1932’2(0)I + |934’](0)| + Ig34,2(0)l

= 0.000853 + 0.000444 + 0.000244 + 0.000554 = 0.0021 (3.28)

The rate of convergence for these 3 cases are shown in Fig. 5. The conver-
gence rate for case 3 is not as good as the cases 1 and 2 because we have delib-
erately chosen a poorer initial guess for constrast.

The steady-state waveforms corresponding to the 3 cases listed in Table §
are shown in Figs. 6(a), 7(a), and 3(a), respectively. The corresponding frequency
spectrum calculated by the FFT algorithm [17] are shown in Figs. 6(b), 7(b), and
8(b), respective1y.+ For all cases, the higher-order harmonic and with modulation
components are negligible, as is typical in many practical examples.

Example 2. Transistor Modulator Circuit:

Consider the differential-pair amplitude modulator circuit shown in Fig. 9(a),
where e](t) and ez(t) denotes the carrier and signal input, respectively. Using
the algorithm described in Appendix A, and the Ebers-Moll circuit model [3] shown
in Fig. 9(b) for the transistors, we obtain the following system of 4 implicit
differential-algebraic equations for this circuit:

V

-C ;r— ﬁ- - i, = I [e Y -1] + al [e*VA- 11=0

A(v,yte,) Ae,-V._ ) A(vy-v__)
A(v+e,-Ve) Av
e T2 Ealsarfe d1=0  (3.28)
Alv,+e,-V.)
-Is[exv3-]] + aIs[e 472 E 1] + ﬁ]g [VCC-VE+ez-v3] = 0
d1
-L T - = 0

Note that the first 3 equations in (3.28) correspond to KCL applied at nodes
®,® , and @ respectively, whereas the 4th equation corresponds to KVL applied
around the lToop formed by the inductor L.
rs

‘Note that unlike in the Multi-Frequency Algorithm, the generalized Fourier co-
efficients are not directly ava.lable in this algorithm.
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Setting e](t) and ez(t) to zero, we first solve (3.28) for the following dc
operating point:

v, =0, 1, =0.155 x 1073, v; = 0.259, vg_ = 0.241 (3.29)
Q Q

Q Q

We then choose x (0) 4 v;(0) = v; and x,(0) A i,(0) = i, as our initial
guess géo and apply the tuo-freqyencyqalgorithm for 2 different amplitudes V2
for the signal ez(t); namely V2 = 4.0 and 5.3, respectively. For V2 = 4.0, we
choose B = 6. However, for V2 = 5.3, we choose B = 13 to account for the
additional harmonics that are likely to be significant in view of the larger in-
put signal amplitude. In both cases, our algorithm converges in 2 iterations and
the results are summarized in Table 6.
Table 6. Results obtained with two-frequency algorithm using a 4th order BDF
method [3] with a step size h = 4n(10'8) sec.

1

Initial State Error Estimate
case v](O) 12(0) B+1°B+2 for Yy B+IEB+2 for 12
(1) | v,=4.0] 8=6 | -3.927 0.2387(10°3)|  0.78(1073) 0.59(10°7)
(2) | v,=5.3 B=13| -3.422 0.1138(10°3){  0.23(107") 0.95(107%)

Using the 2 initial states in Table 6, the steady-state waveforms correspond-
ing to the modulator output voltage vo(t) and the base-to-emitter-vo]tagesVEB(t) for
transistors T] and T3 are shown in Figs. 10(a),(b),(c) and 1¥(a),(b),(c), respec-
tively. Note that the modulator output waveform in Fig. 10(a) is typical of those
composed of a carrier and 2 side band frequencies wy *ow,. Even the waveforms
VEB(t) in Figs. 10(b) and (c) are quite smooth, indicating the absence of sig-
nificant higher-order frequency components. Consequently, very accurate results
were obtained with only a relatively small B = 6.

On the other hand, the corresponding waveforms for case 2 in Fig. 11
indicate the presence of many more frequency components. Consequently, a much
larger B will be needed to obtain results of acceptable accuracy. We found
B = 13 is adequate for this purpose.

The normalized frequency spectrum corresponding to the output waveforms
vo(t) in case 2 as obtained by the FFT method [17] is shown in Fig. 12.
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IV. Concluding Remarks

Two efficient algorithms have been presented for finding almost periodic
steady-state response of nonlinear circuits and systems.

The multi-frequency algorithm is very general as it allows any number of
commensurable or incommensurable input frequencies W) sy s e e e Although the
output normally includes only harmonic and inter-modulation frequency components
of the form Vi T My e, ol 4 Moy Wp s where mjk are integers, other
frequency components, such as subharmonics, may also be included in this algorithm
if their presence are suspected.

The two-frequency algorithm is applicable only if there are no more than 2
input frequencies. This restriction, however, is more than compensated by its
greatly increased computational efficiency, specially when the steady-state
response contains many frequency components. That this algorithm is significantly
better than algorithm 1 (when applied in the 2-frequency case) is best seen by
comparing the number of respective coefficients in Table 4. Note that for
B=10, Algorithm 1 must calculate 221 coefficients whereas Algorithm 2
needs to calculate only 21. Note that 2B + 1 increases only by 2 as
we increase B by 1; consequently, the two-frequency algorithm remains comput-
ationally quite efficient even with a larger B, thereby allowing stronger
nonlinearities. This is particularly useful when the amplitude of the higher-
frequency 1nput(w])'s much larger than that of Wy, as is common in communication
circuits where w, denotes the carrier frequency and w, denotes the signal
frequency. In this case, the number of significant harmonic components of

wy will be relatively small so that a small B suffices.
It is also interesting to note that in the limiting case where we have only

one frequency input (P=1), then (3.5) reduces to fss(t) = go(t). In this case,
the two-frequency algorithm reduces to the usual shooting method [3,11].

Certain numerical ill-conditioning could occur in the Algorithm 1 when
the step size At is chosen to be too small. The ill-conditioning problem is due
to loss of number of significant digits and therfore depends strongly on the
choice of the computer.

Finally we remark that if the steady state-solution is not periodic so that
the brute-force method is impractical (since we must in theory integrate for all
t > 0), or if the nonlinearity is not sufficiently weak for the Perturbation and
Volterra series methods to converge, then our algorithms are presently the only
methods available for finding steady-state solutions, let alone their good compu-
tational efficiency.
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V. Appendix

Appendix A. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled
2-terminal resistors, voltage-controlled 2-terminal capacitors, current-
controlled 2-terminal inductors, as well as independent and controlled sources.
Mutual couplings are allowed so long as they are restricted to elements belonging
to the same class. Let each independent source be considered as part of a
"composite" branch as in [3]. Adoping the notations in Section 17-2 of [3], we
obtain the following tableau equation for N:

n-1 KCL equations (A O G (i AJ 0 i
b KVL equations {}0 1 -QT v i- |E =10 (A-1)
b elements consitu-{| K; K, 01|v, g(ic,iL,v,i) 0

tive relations N S ST e

Equation (A-1) consists of a system of (n-1) + 2b implicit equations of the form
(1.1) where "b" denotes the number of composite branches and "n" denotes the
number of nodes. Our goal in this section is to derive an equivalent system of
implicit equations containing fewer number of equations and variables for an
important subclass of networks.

In particular, we assume that N contains no loops of capacitors and indepen-
dent voltage sources, no cut sets of inductors and independent current sources
and that all controlled sources are current sources depending on either resistor

or capacitor voltages. Consequently, there always exists a normal tree T con-
taining all capacitors and no inductors t3].

If we let i, and v, denote the current and voltage vectors of all inductors
in N, and let i, and v, denote the current and voltage vectors of the remaining
elements, then (A-1) can be recast as follows:

- | 1o M. 'l ol :
1o by o b o] feew] o i
l , Iy ] : 1
0 0 9 10 (Ll 0
0 T TT T W -E T - Y] (-2)
T
0 0 0 T I 0
——————————— b o] e e —— — -
A, A, 10 0! 0 v AJ 0
i—~] ~2 ' ~ ~ l ~-J ~nJ h—~~ . ~—‘
where the reduced incidence matrix A is similarly partitioned into A = [A] A2], h

and where 5(12) denotes the incremental inductance matrix. Substituting

A-1




. . _ T .
iy = Yoyg ¥ 90Vev) = YAy +E) + g(ve,y) (A-3)
into the last equation in (A-2), we obtain the following reduced system of
equations:
. T _ .
Agig * (AYpAY, = ~AYLEy - Ajg(¥eay) + AJ (A-4)
vy = Ay + Ep = Llip), (A-5)

Let Vr denote the branch voltage vector associated with the normal tree T,
and let v, denote the corresponding cotree voltages. Since all capacitors are
assigned in T, Ve is a subvector of Vo Similarly, since all inductors are
assigned in the cotree, 2] is a subvector of i Let the reduced incidence
matrix 5 be partitioned accordingly into éT and QL’ so that KVL assumes the form

T
v A E

v AT 2Ty e 2T (A-6)
il 1AL EL

Since the columns of AT correspond to tree branches, AT is non-singular [3].
Hence we can solve for the node-to-datum voltage vector n from (A-6) to obtain

~ raTe~1

o * Tty - £ o)
R P

v = ALAT [vp - ER1 +E| (A-8)

Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor
current vector 12 by iL’ we obtain

T
. Tyral ~ e .
Al * (AT ADIAT] (vp = Eq) + AYEy + Ag(Veavr) - AJ = 0 (A-9)
AlAr 1" (yp - Ep) + B - LI = 0 (-10)
where
3¥s¥) A gly .y
gCT =~C~!_£!T!LJT

and 2 is given by (A-8),

Equations (A-9)-(A-10) constitute a reduced system of implicit equations in

terms of the state variables x A [gciL]T and the non-state variables contained
within y..




Equation (A-9) can be interpreted as the nodal equation of N with all
inductor currents iL. considered as independent sources, and with all node-
to-datum voltages exﬁressed in terms of the normal tree voltage vector v;.
Similarly, (A-10) can be interpreted as the fundamental loop equations (relative
to the normal tree T) formed by the inductor links. These interpretations allow
us to write down the reduced system of implicit equations of simple nonlinear
networks -- such as that considered in section IIl -- by inspection. If N
contains loops of capacitors and independent voltage sources, or cut sets of
inductors and independent current sources, the above procedure can be easily
generalized by first expressing the cotree capacitor voltages in terms of tree
capacitor voltages, and tree inductor currents in terms of cotree inductor
currents [3].

APPENDIX B
The matrix ETE in Theorem 3 is non singular if, and only if,

2nm

At # T_—l'vitvk

where T is a Zx(2N+1) matrix, where Z > 2N+1.

Proof. FTT ijs clearly symmetric and positive semi-definite and hence its
eigenvalues A kz, s, are real and non-negative. Hence det (rTF)

= AlT AZ,.. A # 0 »all eigenvalues are positive 0'“ [ is positive definite «
~T(E r) x>0 for all x # 0

Hence, we have

det (QT[) £0 <« columns of [ are linearly independent. (B-2)
The matrix [ in (2.17) can be recast as follows:

o -~ o

] 1 DA 1 .

1 ed®1 eI I8N o8N Mg B.5-50.5]...0 0 |
p=|1 o201 320 28y "% {1 |05 jo.5| .. .0 0 !
. . . . . . . . i

. . . o o0 0 [o.s-jo.sﬁ L‘

L d
o
9O
(=]

1 o381 328y | QIIBN 38y

— i oy S -
Y 4 . J
o —_— |

Fl

-

where 9, 8 ViAt. Since g is clearly non-singular,
Columns of T are linearly independent

A-3




e i

Columns of I'' are linearly independent

S LA PR T R At B TR T any i # X

- 9; ¢ ek # =22nm and 8; # £2nm, for any integer n

* 5, £ 8 #20m  for any integer n (8-4)

It follows from (B.2) and (B.4) that

nm

T“
det(zi)fo "\)iAt:vKAt#thr -~ At#w

APPENDIX C

The matrix Q(B) in (3.9) is non singular if, and only if, there exists an in-
teger L2 such that

2 , k2
W 4 _
Proof. We can recast 2(B) in (3.9) as follows:

s by = 1,2,...,28 (C-1)

1 IR I N TR T R S
oL Q3B 3B g
aey = |1 O &I B 3B g os jos) L0 0

| %o 5o ejzach e‘J'ZBZ‘P 0O 0 0 {o.s —J'O.a]

LO 0 0 9.5 j0.5
— _J — g
2'78) v (c-2)

where ¢ Jw,T,. Since D is non-singular,

Q(8) is non-singular

Colums of 2'(B) are linearly independent

o oI 3% 40 for 1,k = 0,51, 22,...2B, 1 £ k
- ] .edl1® 40 for L, = 1,2,...,2B

* Ly ¢# 2, for any integer L, (C-3)

-»

Substituting ¢ s “ZTI = Zmuz/u1 into (C-3), we obtain:
Q(B) is non-singular
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APPENDIX D .
If wy and wy are rational numbers, we can make 9(8) non-singular by choosing

T
B < (0-1)
I
Proof. Let w & mj/n] and “2 mz/n be irreducible fractions. Then T]
= Zn\nl/m1) T2 = Zn(nzlmz), and T = 2n(n/m), where n = L.C.M. {ny,n} and
5.C.D. {mI,mz} Hence my = mm1 » My = mm2 » Ny = kn] » Ny = kn2 , and
ns= kn]'nz' for some integer k.
Now, since G.C.D.{my’ ,my'} =1, G.C.D. {m",ny"} =1, and G.C.D.{m
we have G.C.D.{mz‘n1',mf,nzﬁ = 1. It follows that if
max{L]} = 2B < m]'nz' (D-2)

w n, n-
L](G% =L T" - L](fz ;) Ll( ' ) # integer (0-3)

But (D.2) is equivalent to
n,'Ty = my'n,’ A TAPRN Nz kny -4
ZBT] <m'n, T] =m'n, (n1/m])(m/n)T =\ ~ / T = kn1 nz. T=T (D)

o' WDy’ }= 1,

then

Hence, if ZBT] < T, then (C.1) hoids. .
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FIGURE CAPTIONS

Steady-state waveform for Duffing's equation X + 0.1x + 2x + x3

= 0.4 cost + 0.4 cos 0.35t + 0.4 cos 0.155¢.

(a) Solid waveform represents approximate solution obtained with
multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from X * = (0.69667,-0.18304)
from Case 1.

(b) Discrete frequency spectrum obtained from (2.27).

Steady-state waveform for Duffing's equation X + 0.1x + 2x + x3

=0.4cos t++ 0.4 cos 0.85t + 0.4 cos 0.17¢.

(a) Solid waveform represents approximate solution obtained with
multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from 50* = (0.79298,-0.13834)
from Case 2.

(b) Discrete frequency spectrum obtained from (2.27).

The rate of convergence for Case 1 (shown dotted) and Case 2 (shown
solid) in the Examples in Table 2. Horizonta) axis indicates the
iteration number j. Vertical axis indicates the error e(J) computed
at the jth iteration using (2.67).

Geometrical interpretation of (3.4) for 8 = 1,2,...,10. Each solid
dot denotes one frequency component m ey * My o -

The rate of convergence for Cases 1, 2, and 3 in the Examples in
Table 3. Horizontal axis indicates the iteration number j. Ver-
tical axis indicates the error estimated by

&) 2 ST ) + W)

(a) Steady-state waveform for Duffing's equation X + 0.06x + x + x
= 0.5 cos t +0.5cos 0.81 ¢t (Case 1)
(b) Normalized frequency spectrum of (a).

3

3

(a) Steady-state waveform for Duffing's equation X + 0.05x + x + x
= 0.3cos t+1.5¢c0s0.115¢ (Case 2)




(b) Normalized frequency spectrum of (a).
3

Fig. 8  (a) Steady-state waveform for Duffing's equation X + 0.1x + x + Xx
= (1 +cos 0.115 t) cos t (Case 3)
(b) Normalized frequency spectrum of (a).

Fig. 9 (a) Differential-pair amplitude modulator circuit, Vc = 10V,
vE =5V, L =2mi, C=500pF, R = 20 kg, Rg = 15 kQ e1(t) =
= 0.01 cos 0.115(106)¢t and e,(t ) =V, cos 0. 1150108)t.

(b) Ebers-Moll transistor circuit model with the 2 diodes described
by 1y = I[e Yk 11, I_ = 1078, A = 40, « = 0.99.

Fig. 10 (a) Steady-state output voltage waveform v (t) for Case 1: carr1er
signal e, (t) = 0.1 cos 106 t, input signal ez(t) 4.0 cos 0. 115(10 )t
(b) Corresponding base-to-emitter voltage waveform vEB(t) for ,

transistor T}_
(c¢) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T3.

Fig. 11 (a) Steady-state output voltage waveform V (t) for Case 2: carrier
signal e, (t) = 0.1 cos 108 t, input signal ez(t) = 5.3 cos 0. 115(106)t
(b) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T1.
(c) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T3.

Fig. 12 Normalized frequency spectrum for the modulator output voltage wave-
form in Fig. 11(a) (Case 2)
|
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Normalized Frequency Spectrum of x(t)
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Normalized Frequency Spectrum of x(t)
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