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ABSTRACT

This thesis describes a study of the problem of

antipodal signalling through a nonlinearly distorting

channel. Maximin design criteria are presented, and

general expressions are derived for the robust filter

and its performance in terms of the eigenfunctions and

eigenvalues of certain additive noise autocorrelations.

In particular, the results of baseband detection in

triangular-kernel noise, ideally bandlimited noise; and

the Wiever noise processes are presented.
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ABSTRACT

This thesis describes a study of the problem of antipodal signalling

through a nonlinearly distorting channel. Maximin design criteria are

presented, and general expressions are derived for the optimum filter and

its performance in terms of the eigenfunctions and eigenvalues of certain

additive noise autocorrelation functions. In particular, results for

baseband detection in triangular-kernel noise, ideally bandlimited noise,

and Wiener noise processes are presented.
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CHAPTER I

GENERAL DEVELOPMENTS

This thesis is a study of the demodulation of antipodal signals

transmitted through a nonlinearly distorting channel. The motivation for

this work is the related research effort by Poor, reported in [11 and [2].

General expressions will be drawn freely from this literature.

An antipodal signalling problem involves the discrimination between two

mutually exclusive events. To illustrate, consider the following pair of

hypotheses for an observation Z a CZ(t); 0:5 t < T]:

H oZ(t) = (t)-s(t) ; 0 t-fT

versus

H Z(t) = (t)+s(t) ; 0_ tS T, (1.1)

where ts(t); 0 t < T] is the known deterministic signal, and

('(t); 0 : t < T) is a sample function of a zero-mean additive Gaussian

noise process.

To discriminate between H0 and HI in (1.1), consider the decision rule:

1 ; if <h,z) a 0

y(h;z) ,

- ; if (h,z) < 0 , (1.2)

where h a (h(t); 0 : t _ T) denotes the impulse response of a linear time-

invariant filter, and the operation <h,z) is given by

T
(h,z> f0 h(T-t)z(t)dt (1.3)

J0
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For a value of y(h;z) = 1, the decision rule indicates the choice HI,

while y(h;z) - -1 will indicate the choice HO. Assuming H0 and H1 are

equally likely to occur, the probability of error using decision rule

y(h;z) is given by the equation

pe(h) - 1 - [(h,s)/[(h,RNh)]h), (1.4)

where §CxI is the unit normal cumlative distribution function

x 2
=x) I exp[-u2 /2du , (1.5)

(h,s) is as in (1.3), and

T T
(h'Nh J h h(T-t) I RN(t,u)h(T-u)du dt, (1.6)

0 0

where R - (R(tu); 0 - t; u !- T) is the known autocorrelation function

of the additive noise process CI(t); 0- t 5 T)

The probability of error P (h) is a primary measure of system

performance for digital data communications. For optimal design with

respect to this measure, signal detection is assumed to be accomplished

by a linear receiver. Synchronous, or coherent, detection in an additive

Gaussian noise background requires a matched-filter, or equivalent

correlation detection, to achieve minimum probability of error for fixed

signal and noise conditions. The matched-filter impulse response h(t)

is known to be the solution to the integral equation

T
s(t) 0 RN(t,-r)h(T-T)d" , (1.7)

a Fredholm equation of the first kind. Here the functions s(t) and

RN(t, ) are as previously described.
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The choice of antipodal signalling also minimizes probability of error,

since this signal design becomes optimal for general binary receivers by

maximizing signal-to-noise ratio (SNR). The signal interval and the

receiver observation interval are also assumed to coincide.

The nonlinear channel distortion is modelled to affect the signal

structure alone, not the noise covariance. Examples of this phenomenor

include transmitter or receiver generated noise, improper phase locking,

channel fading, and multiple transmission paths. It is usually convenient

to model all distortions in the communications channel, and to assume an

ideal transmitter and receiver. This channel distortion motivates the

following model for the received signal class of as found in the work by

Poor (11:
T 0

W s EL 2[0,Tj: STIs(t)-SO0(t)12 dt SA)-8
0

where Cs0 (t); 0: t 5 T) is a known nominal signal model, L2 [0,T] denotes

the square-integrable functions on the interval [0,T], and A is the degree

of channel distortion.

To design a suitable filter for detection within the distortion model of

(1.8), we consider a maximin design criteria as in [1], i.e., we seek a

solution to

max in (h,s)/[h,Rh)] ) . (1.9)
h sE W

A solution to (1.9) will have the largest possible minimum output signal-to-

noise ratio and thus its worst-case performance will be the best possible

within the tolerances set by the uncertainties in the signal structure.

Such a filter is known as a robust, or optimally stable, matched filter.

* ',-,.,-J -
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Given the problem of interest, with a known noise autocovariance

function [%) and a signal structure as given in (1.8), the robust filter

solution is that impulse response h R(t) which is the solution to the

equation

0- + R )hR (1.10)

This is a general result as given in [21, where s is the nominal signal

waveform, I denotes the identity operator on L2 [0,T], and a0 is a non-

negative constant determined by the equation

2 T lR(t) 12
R2 dt = A (1.11)

0

Further, it is shown that the impulse response hR(t) is the matched-filter

corresponding (or matched) to the least favorable signal s 2(t) E W given by

sL(t) = s0 (t) -'0hR(t) , (1.12)

and it follows in [2] that the worst filter performance over the class of

signals a and noise [R.) is

a Pe(hR(t))_ I min ( hRs)/[(hR,RNhRl]

s(t) E e s(t) Ed

SI -O S sLhR> ]  •(1.13)

Note that (1.10) specifies the robust filter, and (1.13) specifies the worst

performance of this filter. Poor [Il points out that since the identity

operator I corresponds to white noise, the effect of distortion of the type

of (1.10) is equivalent to the effect of adding white noise of spectral

height a 0 to the communications channel.

S -
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Equation (1.10) is written explicitly as
T

h (t) -ahR (T-t) + f0 (tu)h R(T-u)du; (0 - t t T) , (1.14)

which is a Fredholm equation of the second kind. Properties of this

equation as well as solution techniques are found in the literature [3].

This thesis will employ the mthod of Hilbert and Schmidt. In particular,

if (t,u) is continuous on [0,T] 2 , then a contiuous, square-integrable

solution for hR(t) will always exist.

Moreover, R(t,u) has a Mercer expansion on (0,T]2 given by

RNYtu) - N E1N*N(t)*N(u) (1.15)
N= 1

with uniform convergence on [0,T]2 . The constants EXN; N - 1,2,3,...]

and the functions 1*N(t); n - 1,2,3,...] are the eigenvalues and eigenfunctions,

respectively, of [%]; they are the solutions to the homogeneous equation

T
RN R..(tu)#(u)du; 0 <5 t - T , (1.16)

0

with the *N(t)'s being orthonormal; i.e.,

b T

0 *N(u)*M(u)du 
(1.17)

L0 N N M•

It is desirable to obtain series solutions to the quantities of

interest which will represent a unique solution to (1.14). In Lovitt [31,

it is shown that the unique solution hR(t) is given by the series

hR(T-t) a a0 [s (t) - E cN(l+aO0/kN) *N(t)];0 5 t S T, (1.18)
n=1
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where cN is the component of s (t) along *N(t),

CN 0 8 (t)*N(t)dt ; N - 1,2,3,.... (1.19)

Combining equations (1.18) and (1.11), it can be shown that the equation

specifying a0 is

I0 sO(t) 12dt 2(l+2a /N)(l+a0/XN) " 2 . (1.20)

The least-favorable signal of (1.12) becomes

SL(t) - E cN(l+aO/XN)'lN(t); 0 :5 t T , (1.21)
n=

and the quantity specifying the worst filter performance in (1.13) is

given by

TZ(h R, sL -11180(t12 dr - Z C 2 (1+O0 / ) ' -& -] (1.22)

0 n-i

These quantities of interest can be determined when the eigenfunctions

and eigenvalues of the noise autocorrelation are known; subsequently, the

robust filter and its performance will be specified by equations (1.18)

through (1.22). The following chapters will investigate robust filter

performance when the noise process (,% is determined to be: 1) triangular

kernel noise, 2) ideally bandlimited noise, and 3) the Wiener noise process.
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CHAPTER II

THE TRIANGULAR KERNEL NOISE PROCESS

The "triangular" kernel noise process has been shown by Papoulis [41 to

be a model for random binary transmission. The autocorrelation function is

given by

o if t t-ut > TN

N;0'RN(t,u) 0 f--u (2.1)

1-It-uliTN if It-ul < TN

As an example of channel contamination by extraneous signals, such

noise pulses may have pulsewidths less than, equal to, or greater than the

binary signal of interest; i.e., TN in (2.1) is the pulsewidth of an

unwanted random binary signal in a conmnications channel and Ts  CTs # T N

represents the coincident interval of the robust filter and the binary

signal of interest.

Papoulis [4] and Thomas [6] have calculated directly from the binary

pulse structure the autocorrelation function of triangular noise processes.

Their procedures are readily applied to the case T. > TN for calculation

of [-]; however, for a Mercer expansion of Y(t,u) on [O,TN], the filter

solution of (1.18) cannot be expressed in terms of eigenfunctions and

eigenvalues of 1%) with absolute and uniform convergence assured on the

larger interval [O,Ts]. Hence, the case Ts > TN is not considered in

this study.

Kailath (5] examined in depth the triangular kernel for Ts < TN, as

an example of kernels with nonrational spectra. In particular, the power

spectral density function for (2.1) is given by

,L
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S(f) - NoTN sinc2 (fTN), (2.2)

where N0 is the noise power and fc T is the bandwidth. To derive the
o N

eigenvalues and eigenfunctions of [R., define the sequence [An; n - 1,2,3,...]

by

(N-1)r < 0 NTs < NIT , N = 1,2,3,... (2.3)

and

tan BNT =+- [Ts/(2-Ts)][k ONTa 8 1  (2.4)

where T 1 and thus 0 < T < 1. Then the eigenvalues of (2.1) are

given by

2
"N - 2 N0/N, N 1,2,3,... (2.5)

and the corresponding orthonormal eigenfunctions .are

CPN(t) -cpn(t)/[j' ,I n(t)12dt1 , 0 5 t : Ts ,

N - 1,2,3,... (2.6)

where

(t) = K1 sin(PNt)+cos (Nt); 0 _ t <_ Ts ,

N - 1,2,3,... (2.7)

and

K1 = [Ts/(2-T )1[k ONTsI

Figure 2.1 justifies the approximation implicit in the above derivation

ONTs o f N/2j 21?, N = 1,2,3,... (2.8)

where jx4 denotes the greatest integer less than or equal to x.

. .
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Tan1%IWi K Kt

I i 

Ij K

4 8

: -K
g0 N T

a E

2'

T/2 -f 37r/2 27-7 5r/? 3-w 77r/2 4-f FP'M

Figure 2.1 Graphical Solution of Transcendental Equation

Figure 2.1. Graphical solution of transcendental equation.
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Straightforward computation using (2.4) yields

T2
0 1 2(t)2dt - T /2 [ 1+con(PT )sin(20NT )/(20NT.) 1I +K 1;

N - 1,2,3,... (2.9)

It then follows to solve equations (1.18) through (1.22) for a nominal

signal s (t) and a given degree of distortion A to determine the associated

robust filter and its performance. Several root-finding techniques are

available to solve equation (2.4); however, in the case where T /TN << 1

(narrow-bandwidth noise), the approximation in (2.8) derived from the

graphical solution in Fig. 2.1 becomes highly accurate, and the two

sequences O NI and D,.1 have the following approximations:

2[Ts(2-T S)]' N - 1
N N/2* 2O/T- (_,)N[2/(2-Ts)][N/2rj]l 1 N > 1 (2.10)

h NoTs(2-T) ; N - 1
~XO (2.11l)

k N0 [Ts/(N/2Tr)] 2  ; N > 1

As an illustration of robust filter development, consider the nominal

baseband signal

0~ ~s 0(t)=E0 0  5 t< T

E0 > 0 . (2.12)

From (1.19) we have
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T
C= E 0 *N(t)dt

0

2 T (t) 2dtla! Eo (I + K )/sin(O T)OI %t) /[hN 2.3
0" 1 N N 0,,,..(.3

Note that (2.7) can be rearranged via (2.4) to yield

TN(t) - cos ON(t-T/2)/cos(N T8/2) (2.14)

The robust filter is then found from (1.18), specifically

h (T-t) - h (t)

= E0  1- (l+K) 2 coo 0 (t-T /2)]; 0:5 t!5 T (2.15)
90 n= N N a -8

where

YN- sin(~NT(S)(N(+a0/%W)) I/ 0 (t)1 2 dt N - 1,2,3,... (2.16)

The robust filter performance for triangular-kernel noise is plotted

in Figures 2.4 and 2.5. These measures can be compared with the filter

performance for the Gauss-Markov noise condition as the distortion in the

signal structure is increased. Results from the Gauss-Markov study by

Poor [] are plotted in Figures 2.2 and 2.3. An examination of the quantities

in equations (2.15) and (2.16) reveals that the filter impulse response,

normalized to aOE-lhR(t), depends chiefly on parameters (ao/NoT) and

bandwidth-pulsewidth product (Ts T 1 a o=T.; recall TN is defined as unity

in this development). The distortion factor (a0 /NoTs) is plotted versus

signal distortion in Figure 2.4, for the cases aTs - 0.1 and 1.0.
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the triangular-kernel noise.
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The robust filter is calculated via (2.15) for all conditions of

(OT) and (A/E0T). In all cases, h(t) is symetric about t - T1/2,

as predicted by (2.14). The impulse response is lower at this midpoint

than at the endpoints, but this amplitude differential in h (t) is reduced

2
as (AIE2Ts) increases. This reduction of endpoint singularities is

consistent with solution techniques for integral equations, where the

introduction of singularities into the kernel RN(t,u) (physically, a white

noise component in the noise) reduce or eliminate the need for singularities

in a continuous square-integrable solution such as h R(t).

To illustrate this concept, Kailath (51 has shown that the solution to

(1.7), with CRN(t,u)l being the triangular kernel, the signal of interest

being defined as in (2.12), and with A - 0, is an impulse response consisting

entirely of singularities at the endpoints.

h R(t) = A 8(t)+A 8(t-T ); 05 tS Ts  (2.17)

where A is a positive constant determined by boundary conditions. Thus,

the receiver disregards the signal over the entire observation interval

except at the endpoints of the interval. This surprising result is more

clearly understood when the triangular kernel is viewed as the model for

random binary coumunication. The filter solution (2.17) is then seen to

minimize the variance of the noise process; i.e., this impulse response

achieves optimal signal-to-noise ratio, assuming zero white noise

component (A - 0).

b 2
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At the opposite extreme, as the channel distortion increases without

bound, the slightly lower response of hR(t) at t - Ts/2 approaches the

maximum amplitude at the endpoints. The former singularities are

Rdecreasing in amplitude as h (t) becomes essentially a constant on the

Rinterval [0,Ts 1; i.e., h (t) approaches the matched filter solution for

detection in a predominantly white noise environment

R 0
ha(t) - k s (T-t) = k E0 - 0< t < Ts , (2.18)

where k is a scale factor irrelevant to threshold detection. Thus, for

both extremes of signal distortion, the robust filter computed by (2.15)

is seen to be the optimal impulse response for maximum signal-to-noise

ratio (SNR).

The maximin error probability (?e) is a filter performance measure

equivalent to worst case SNR. The robust filter max P (h R), as given
s(t) Ed

by (1.13) and (1.22), is plotted in Figure 2.5 for the case aTs = 0.1 and

values of SNR0 = 10, 20, and 30. SNR0 is defined as

SNR = lim [(hR,sL 8 = c 2 /nX (2.19)
0 n-l

and

Pe(SNR0 ) - 1 -1[ (SNR0) k] (2.20)

The robust filter performance for the triangular-kernel noise,

measured by Pe' is qualitatively similar to the results in the Gauss-Markov

noise cases. Performance is seriously degraded for small values of channel

distortion; this supports the suggestion by Poor I11 that this detection

procedure is very sensitive to L2 distortion.

............... .......
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Computations to produce Figures 2.4 and 2.5 were performed by digital

computer, which required the truncation of infinite series [XN ) and E*N(t)].

T
To minimize truncation error, the quantity [J' Is0(t)I2dt] is approximated

N 2
by Z (c ), and (1.22) becomes

nwi n

For sufficiently large values of N, all significant eigenvalues are included

in the computations, and the error is inconsequential. The estimate in

(2.21) is less than the true value of (hR,sL) for all values of N, thus

providing an upper bound for probability of error. The difference term for

the estimate is the sumation

R L 2, L (222(h ,s> -(hR,sL = n (1n+X n/0 )  . (2.22)
n-N+l

This term is made sufficiently small by choosing the proper value of N.

The singular nature of the zero distortion filter, as seen in (2.17),

causes the detection to be sensitive to small amounts of distortion.

Helstrom [71 notes that this singularity can occur when the noise auto-

correlation function has no singular (or white noise) component. Such

sensitivity should be more pronounced as the noise processes under considera-

tion become more unlike the purely white noise case. A study which assumes

CN(t,u)] to be ideally band limited white noise provides a striking example

of a robust filter's increasing sensitivity.

CT * ..
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CHAPTER Il

THE IDEALLY BANDLIMITED NOISE PROCESS

A process is considered ideally bandlimited (or ideal low-pass) if it

has a power spectral density function defined such that

'50 , IV 1 < o

S x() - 1(3.1)

0 , IWI1 '-a

The corresponding covariance function of this process is given by

sin o(t-u)
( - o  (t-u) ( 3.2)

t,u are defined on the interval [-T/2,T/2]; the time interval has been

shifted to simplify notation. In the literature [8], Slepian and Pollak

describe a countably infinite sequence of bandlimited functions

*N(t) ; N = 1,2,3,...] with the properties:

1) In the interval t E [-T/2,T/2], the terms of the sequence are

orthogonal and complete in the class of complex valued functions which are

defined and square integrable in the interval -T/2 < t _ T/2, such that

T/2 X M
-T/2 *M(t)*N(t)dt -

0 , M 0 N; M,N- 1,2,3,.... (3.3)

2) For all values of t, real or complex,

-T/2 sin c(t-u)
Y1 W rr(t-u) *N(u)du; N- 1,2,3,... (3.4)

-T/2
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If the noise structure under consideration is to be second-order

stationary, with uniform spectral density in (-a,a) and zero elsewhere, then

equation (3.4) becomes the Karhunen-Loeve representation of that bandlimited

white noise. This representation has an expansion in term of the

eigenfunctions ($N(t); n - 1,2,3,...] and eigenvalues Exi; i M 1,2,3,...]

as defined in (3.3) and (3.4) on the interval -T/2 5 t 5 T/2.

The equation (3.4) has been investigated, and its solutions, called

prolate spheroical wave functions, have been tabulated. These eigenfunctions

are seen to depend on the product c - otT/2, or 2c - cyT. Note that, since the

solutions are defined on a fixed time interval [-T/2,T/2], a change in the

constant c denotes a change in the bandwidth of the noise process. It will

be seen that a progressive study of the aforementioned singular nature of

a zero distortion filter is possible as the robust filter performance is

determined for c = 0.5, 1.0, 2.0, and 4.0.

Numerical computations for this study, as specified by (1.18) through

(1.22), will be in terms of the first four eigenvalues and eigenfunctions

only, but the properties of the above series of bandlimited functions reduce

the effects of truncation errors. In particular, we have that the model

for the signal class defined in (1.8), and the assumed noise process are

real signals, and as such are both timlimited and bandlimited. This

consideration is justified in work (111 by Slepian. It follows from

Property 1 that representation of real signals by the bandlimited functions

t*N(t)] will achieve goodness of fit in the interval [-T/2,T/21; i.e.,

given a member of the signal class s(t) E &0 and

N
sN(t) - c N *N(t) (3.5)

ninl
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with the CN] given by (1.19), then the error in the fit of sN(t) to s(t) is

T/2 2 2
-T/2 J' ((t) - N (t)) dt - E cN 'XN* (3.6)

14+1

The [%N] sequence is seen to approach zero rapidly for sufficiently large N,

thus (3.6) will be small for such N. Accuracy requirements and the behavior

of the eigenvalues determine N. The behavior is discussed in [121, which

makes the statement that, given a process timelimited to a T second interval

and bandlimited to (-ae,cl), there are only (aT/f) + 1 significant eigen-

values. Confirmation and mre precise statements are in (8], (91, and [101.

The highest value of aT in this work is eight; therefore, the value N - 4

insures that all significant eigenvalues are included in the computations.

The robust filter performance shows a departure from trends established

earlier by triangular and Gauss-Markov noise models for the parameter

(a 0 /NOT). In Figure 3.1, the normalized distortion factor for a given

fraction of signal distortion is seen to increase with increasing product

(ctT). Note that, unlike the previous noise cases, the computations for a 0

in the ideal bandlimited case use a pulsewidth which is constant for all

values of aT. Thus, dissimilar performance measures are anticipated for

this normalized parameter; yet Figure 3.1 is of interest because the

equation (1.20) defining a0 represents the imposition of an energy

restriction upon the signal of interest, resulting in a least favorable

signal as defined in (1.21). It is seen that, for a given value of aT, the

factor a0 is invariant to changes in E0 ; i.e., changes in the energy
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11s 0,12 . It is apparent in Figure 3.1 that this energy restriction a0 varies

with the product aT. More precisely, a0 is a function of the eigeavalues

and of the terms IcN), which represent the distribution of signal energy

in the eigenvectors.

The increase in a signal energy restriction with increase in aT should

affect maximin error probabilities, and be apparent in a comparison of PE

attained by filters designed for noise models of different ctT. The

variation of PE vs. aT shown in Figure 3.2, however, reveals that any

effect on relative SNF by this trend in a0 /NOT vs. ctT is masked by the

singular characteristics of the zero-distortion filter. Figure 3.2 plots

error probabilities for SNR0 = 10 and ctT - 1, 2, 4, and 8. The calculations

from SNR - 20 and 30 showed similar performance characteristics, namely

that signal detection becomes increasingly sensitive to small amounts of

channel distortion as aT decreases toward the narrowband case. For the

bandlimited white noise process, a decrease in atT is a measure of the

process' departure from a purely singular autocorrelation; therefore,

severe performance degradation is predicted as the filter itself must

become increasingly singular in nature.

The robust filter impulse response h(t) is symmutric about the time

interval midpoint, with evidence of suppressed singularities on interval

endpoints. There is also evidence of local maxima and minima in the inter-

val of the response, but the resolution of the tabulated data and graphs

of the CN(t)) functions did not allow plotting of h (t) vs. tim with

sufficient accuracy for a detailed study of impulse response. Nor could

data sources support closed form analytical expressions for the eigenfunctions
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or the robust filter, prompting development of useful error bounds for

calculations. Such bounds were supplied by: 1) assurance that four

eigenvalues provide sufficient accuracy for the included values of aT;

2) the proper truncation of the eigenvalue summations in the computations,

providing reasonable lower and upper bounds for signal-to-noise ratio and

maximin error probability, respectively. The truncation is as described

in (2.21) and (2.22).



26

CHAPTER IV

THE WIENER NOISE PROCESS

The Wiener noise process was developed as a model for Brownian motion.

It is of interest because a large class of processes are generated from

the Wiener process: many others can be transformed into a Wiener process.

As an example, a binary signal scheme is input to an integrator before

transmission; it can be shown that if the signal is corrupted by a white

noise process, e.g. thermal noise, the noise output of the integrator is

t
Y(t) N(r)dr (4.1)

0

where N(t) is white noise witih covariance

R.N('r) - 2 8(') . (4.2)

Y(t) is a sample function of a Wiener-Levy (or Wiener) process with the

properties:

Y(O) - 0

E(Y(t)] = 0 (4.3)

E[Y(t)] - a 2t (4.4)

and the density function

py[Y(t) ] - (21 a2t)'_k exp[-Y2 (t)/(2e2 ] (4.5)

The Wiener process, then, is a nonstationary random process. Using the

above properties, the covariance kernel is found as

, r . . . . . . . .. . . . . ... ... .
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K(tu) a a2min(t,u) =I a: ~ (4.6)

This function will be continuous on a given interval, thus the

2Karhunen-Loeve expansion exists for 0:5 t,u 5 T in [0,T] . The equation

of interest to generate the series expansion (1.15) becomes

X *(t) = a 2 it u4(u)du + a t T 4(u)du .(4.7)

0 t

The solution sequences EN]' £*N(t)], and CN) needed to represent the

robust filter for the Wiener noise process become

N 4N0 (T/Tr)2/(2N-l) ; N - 1,2,3,... (4.8)

2
WN = No1),N (4.9)

The nominal signal is the integrator output

a 0 (t) - E 0  ; 0 St:5 T (4.10)

and the coefficients CcN; N - 1,2,3,...) become

T -(-1) N 3 /2 25/2
cN Et N(t)dt 2 20 (4.11)

We also have from (1.18) that

h(t) - 10 EG[(T-t) -2T ~ ~Cos (N1 t) (4.12)
0 n=l
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where

kN (1 (+o/XN) (N - ) 2 2  
. (4.13)

The expressions for XN *(t), cN, and h R(t) are uncomplicated, which

will allow the robust filter performance to be derived analytically. An

inspection of (4.12) and (4.13) reveals that the normalized impulse response

0a E-1 hR(t) will depend on the parameter (a /N6T) only. This distortion

factor is specified in (1.20) and can be expressed analytically by defining

a variablep

PE[0,0.5]:A - ii is 1s(t)12 dt ;(4.14)

using the significant terms in the suimmation in (4.12), the following

approximation determines a 0 as a function of (A/l1s0II2), where

11sJI2 _ T Is 0(t)I 2 dt E ET 3 /3 ,(4.15)

yielding

a 0 o 4 N T 2 /Tr 2 (l-P) (4.16)

The worst case filter performance is specified by the quantity (hR,sL).

This expression of SNR, derived from (1.21), becomes

(h Rs L a~ E-1 [E 2 T 3(1- (4.17)

Using (4.16), this performance measure becomes

<R L) T2 E2 T'l - A 2 /(12 N) (4.18)

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ __0

-174
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This result can be verified by considering the derivation for the zero

distortion case; i.e., using equation (2.19), the limiting case as (A- 0)

Urm (hRBL),. (c 1 ) 2 /X 1  ; (4.19)

only the first eigenvalue is considered significant. This approximation,

which is derived independently, is practically identical to (4.17) for

6&A 0):

(h ,sL) (T 2/12)(E0 T/N0 )
A00

(c1) 2/. 1 - (8/r2) (E2 T/NO) . (4.20)

The derivation (4.17) has been proven accurate; however, the bounds for

the approximation error for (4.18) are a function of the convergence of a

p-series. The series' first term is proportional to the first eigenvalue

and is seen to produce error bounds too large to allow confidence in

computations using (4.17) or (4.18); consequently, the analytical derivation

is useful only when general trends are to be investigated, or in the special

case where the transmitted signal s0 (t) is proportional to the N-th

0eigenfunctions of CRN(t,u)); e.g., s (t) - a *N(t). Poor [1] has shown

that the solution to (1.14) becomes

hR -1 -1
h (t) - a XN (I+aO/XN) ,N(T-t), 0 5 t 5 T ; (4.21)

which is matched filter solution for coherent detection, with scale factor

(1+aO/N) . Such a solution would have no p-series involved in the

calculations; thus, the results would possess both accuracy and tight

error bounds based upon truncation of insignificant terms.

.1!
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The robust filter performance in noise modelled as a Wiener process

is demonstrated in Figures 4.1 and 4.2. These performance measures have

error bounds obtained by truncation of the insignificant higher eigen-

values (N > 20). The parameter (a0/N0T) is calculated as accurately as

possible, and plotted in Figure 4.1 vs. [A/I~sI2]. This term is then used

in (1.22) to calculate a lower bound for worst performance (h R,s .

Finally, this lower bound for SNR is used in (1.13) to yield an upper bound

for the maximin error probability, which is plotted in Figure 4.2 for

values of SNR0  10, 20, and 30.

The performance of this filter continues the trends noted earlier

for the robust filter. In particular, the detection method appears sensitive

to the 12 distortion, as SNR is greatly reduced for small fractions of signal

structure distortion. The impulse response of h R(t) is essentially that of

the matched filter for a signal defined as in (4.10); however, the increase

in signal distortion produces a decrease in the peak amplitude of the

response. This is similar to an estimation problem where the robust

filter must operate on an increasingly distorted signal to obtain an

estimate of the signal waveform with which to "match", for optimum SNR.

The filter's confidence in the received waveform will diminish as distortion

increases, and a signal estimate must be derived by the designed optimization

scheme; e.g., minimum mean-square error point. The decrease in peak

amplitude of a response hR(t) generated by such procedures thus yields

evidence of both the desired signal structure and its increasing distortion

by channel noise.

L_ ,
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CHAPTER V

SUMMARY AND SUGGESTIONS

Matched filtering is seen to be sensitive to L2 signal distortion when

designed for three noise structures: the triangular-kernel noise, ideally

bandlimited noise, and Wiener noise processes. It should be noted that

pessimistic scenarios have been presented: 1) the quantity (hRsL) specifying

the worst performance was used to calculate signal-to-noise ratios; 2) in all

cases, an upper bound for maximin error probability was plotted as the

actual filter performance.

If the robust filter detection procedure is to be pursued, it would be

advantageous to consider L2 -norm distortion signal models such as (1.8)

which limit the effective maximum A. Successful research in radar pulse

design is an example of improved signal structure modelling.

In addition, future noise models to be considered might feature a

singular (white noise) component in the noise autocorrelation function;

e.g., if the noise structure is ideally bandlimited as in (3.1), define a

new noise process

( N/2+So' Iwi < <

Sy (w) - Sx(w) +N0/2 N (5.1)

No/2 ,lw c.

This technique may reduce the robust filter sensitivity to L2 distortion,

although the Mercer expansion of Ry(tu) or the solution to the

Karhunen-Loeve expansion might become difficult to determine.
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