AD-A106 779 FLORIDA INST OF TECH MELBOURNE DEPT OF PLECTRICAL AN==ETC F/G 14/2 " -
IMPLEMENTATION OF THE RECOMMENDATIONS MADE ON THE TECHMNICAL REPe=ETC(U)
JUN 81 J HADJILOSIOU AFOSR=81=0120

UNCLASSIFIED AFOSR=TR=81-0704

3

AFC

coes

WN;“&'

L3}

&

‘Wuﬁnﬂ'ﬁ!ﬂ"i‘l‘.‘l“lﬂ'ﬂ%ﬁwﬂw . - e e e -

.

R. 81 -0702 - g

LV (o

IMPLEMENTATION OF THE RECOMMENDATIONS

MADE ON THE TECHNICAL REPORT TITLED

\ANALYSIS OF ADVANCED SIMULATOR FOR PILOT TRAINING“/

FINAL REPORT

TO ..,

Air Force Office of Scientific Research
Bolling Air Force Base, DC 20332

PREPARE UNDER:

Grant 4SPUNESEPNE
AF0Se- 5/-(/2 ¢

Submitted By:

John Hadjilogiou, Ph.D., P.E.
Department of Electrical & Computer Engineering
Florida Institute of Technology
Melbourne, Florida 32901
-y (305) 723-3701
30 June 1981

Por ph1 i podease)
distributionunlimited.

81 11 06 036

.

MIS PAGE (When Ilulu Faotered)

EFTS S

EPORT DOCUMENTATlON PA(‘E

M PREAD INSTRUCTIONS

BEFORE COMPLETING FORM

ACC ESSION NO.

TR—21-070 [/4 D-A106 77

3. ?&NENT'S CATALOG NUMBER

} IMPLEMENTATION OF THE_RECOMMENDATIONS
~MADE ON THE TECHNICAL REPORT,EITLED‘Anﬂgq%F

/h. TITLE (and Subtitle)

TVEG-0P REPORTH-PERIOD COVERED

s
Final ert.
.// ina ’Rép.tJ/V

. PERFORMING O03G. REPORT NUMBER

OF ADVANCED STMULATOR FOR_PILOT
TNTMG{ S =

Jo ﬁn,Hadjlloglou

- Y e

8. CONTRACT OR GRANT NUMBER(:)

%Fdsn— 81- a1 267 r

9. PERFORMING ORGANIZATION NAME AND ADDRESS

10. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBER

Air Force Office of Scientific Resch/NU_,

Florida Institute of Technology é/VC”«Lf’

Dept of Electrical & Computer Engineering ~>:7, - <

Melbourne, Florida 32901] T Z
1. CONTROLLING OFFICE NAME AND ADDRESS . _REPORT DALE

Bolling AFB, DC 20332

une &5/,
NUMBERCTVRCES
/09

43

14. MONITORING AGENCY NAME & ADDRESS(/! different from Contro“lug Olhce)

15. SECURITY CL ASS. (of this report)

Unclassified

/JL///

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution

/€, 2313

unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side i[neceasary and identily by block number)

Microprogrammable processor, control logic
mocro coding of ASPT simulator.

for 32175 computer

20. ABSTRACT (Continue on reverss side If necesasary and identify by block number)

computer.

This project resulted in a report detailina specific quidelines
for writing and testlng custom micro-programs for the 32/75

The micro-program instruction format is analyed in
detail and then illustrated by a concrete example.

i ."Q&”dikrﬁﬁmﬂﬁz’ﬁbuﬁﬂﬁ>4479’7@&%ﬂ#)~kﬁ‘*afbpﬂ&?

FORM
JAN T

oD , 1473

EDITION OF 1 NOV 63 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent

SRCPY ‘r“ ’0"'" »

VIR A4

DR RS .‘_""'.,u- -t

a

voum s e

-

¥ |

v

TR
(R

te e g e

. - ow v e e
® . . b
R ~ .t
.

]
»

T AR ATEIRLNEE Rt e I N SR TIOR8 © o B W e e

%

N

'L

> 3

B

ABSTRACT

Y

This study which was Cond%EEfSJat Florida Institute of Technology was

"Analysis of Advanced Simulator for Pilot Training".

= to implement some of the recommendations made on the technical report titled

The final report specify guidelines for writing custom micro-programs

routine for the 32/75 computer. It includes the hardware feature of the

digital system with special emphasis on micro-program control section. The

micro-instruction format is analyzed in detail to al

low the reader to follow

the example of the SEL report reproduced on the Appendices.

T

DTIC T+3 0

Unannoeunneqd

Justification.

By ___
_Distribution/

AYgilability Codeﬁ
rvatl and/or
Dizt ! gpecial

!

Accession Tor '
NTIS errar |

- e o

s e

e g

FOREWARD

The study was conducted by the faculty of the Electrical and Computer
Engineering Department at Florida Institute of Technology.
Dr. John Hadjilogiou Professor and Principle Investigator and Dr. Kofi Torku,
Assistant Professor of the Department were the major contributors of this

investigation.

The Final Technical Report was typed by Stella Stehno and Marjorie Quaiel.

! "irjﬁ " l"‘-‘lﬁ‘ P S M I 8 M SO N L ¢ e %

—m s —

1.

2.0 HARDWARE FEATURE OF THE 32/75 COMPUTER

3.0

TABLE OF CONTENTS

0 INTRODUCTION

1.1
1.2

.
.
AW

NN NPNPNMNMOMNNNMMNODNNNNODNNNDNONNDNDNODRN
a4 & s e 8 a2 e e . e . e * e e & e
NNNRNDNRNPNNNNNNRNODNNN S e e
o« o e « s e e e . . . s ¢« &

. .
et p e =t D OO WN

WO

THE 32/75 MICROINSTRUCTION FORMAT

.1
.2
.3

uuuuuuuuuuwyuwwuuuuuu
.« . e s e+ s e « s s ® s =

.

-

Next Address Control
The 32/75 Microprogram Timirg

Microprogrammable Processor (MP)
Control Read-Only Memory (CROM) & Writable Control Store (WCS)
Test Structure

Sequence Control-

CROM & WCS Addressing

Order Structure

Decode ROM

Data Structure

Arithmetic Logic Unit (ALU)
A-Multiplexer (A-Mux)
B-Multiplexer (B-Mux)

Literal Multiplexer

General File Register

Memory Address Register (MAR)
Program Counter Register (PC)
N-Counter

Shift Register (S REG)

Temporary Register/Data Output Register (T REG)
Data Input Register (DI)
Instruction Register 0 (I0)
Instruction Register 1 (I1)

e

Introduction
Microinstruction Word

Primary Test Field (CROM 00 - CROM 03)
Sequence Control Field (CROM04-06)

Control Field (M-Field) CROM (07-09)

A-MUX Select (A) Field (CREG10-CREG12)
Literal Select Field (CREG10-12)
B-Multiplexer Select (B) Field (CREG 13-15)
ALU Control (+) Field (CROM16-19)

ALU Destination (D) Field (CROM20-23)

File Read Select (R) Field (CREG 24-26)
Y-order (Y) Field (CREG 27-31)

X-order((X) Field (CREG 32-35)

U-order (U) Field (CREG 32-35)

W-Test (X) Field (CROM 32-35)

S-Test (X) Field (CROM 32-35)

Summary of Use of Microinstruction Bits 32-35
Microinstruction Bits 36-39

Z2-Test (P) Field (CROM 36-39)

Extended Test (PC) Field (CROM 36-43)
Flip-flop Field

w-t P R i

TABLE OF CONTENTS (Cont'd)

3.18.4 FPU Orders Group 2 (CREG 36-39)

3.18.5 CC Select Field (P) CREG 36-39

3.19 Microinstruction Bits 40-43

3.19.1 Shift Select Field (C)

3.20 Microinstruction Bits 44-47

3.20.1 Conditional Orders (PCH) Field (CREG 44-47)
3.30.2 FPU Orders Group 1 (CREG&44-47)

Appendix A: Firmware Coding
Appendix B: WCS Firmware Techniques

Appendix C: WCS Sample Programs

i

‘: Ei ,%‘ 5 [#“fh"tthlhﬁﬂwﬂm;w" EY IR IR ored s A

e

e

| 1.0 INTRODUCTION

: Routines coded in microprogram are similar to those coded in Assembly

or high level language in that a coherent sequence of instructions is used

to execute various commands required by the computer in both cases. However,

speed improvement as high as 16:1 can be obtained when routines are coded in

microcode.
A microinstruction usually has two parts:

a) The definition and control of all elemental microoperations to be

carried out.

b) The definition and the control of the address of the next micro-

instruction to be executed.

The elemental microoperations to be carried out are a function of the

machine being controlled and, as such, a good knowledge of the data structure

and architecture of the machine is required. For the SEL 32/75 the definition

of the various micro-operations to be carried out included such things as the

ALU, A-MUX, B-MUX, Literal Generator, etc.

1.1 Next Address Control

It is necessary to execute sequences of microinstructions as defined by a

microinstruction Sequencer. The Sequencer must provide for:

a)

Continuing from one instruction to the next sequential microinstruction.
In this mode the Sequencer simply acts as an address counter.
b) Microprogram jumping. This feature allows the Sequencer to select

a microinstruction other than‘the next microinstruction.

-
“i* 3 s R tin B BN bk RS IRGRY. WS S ot % d

-
}
t
'

s

c) Conditional jumping. This feature enables a jump to be made to a
specified address based on the result of some test.

b) Subroutining in microprogram. This allows a block of microcode (or
a single microcode) to be shared by several microinstructions.
This requires the sequencer to store the address to which the sub-
routine should return when it has completed its execution.

To be conversant with any microprogrammed machine and be able to write

microcode, one needs to study how the above four functions of a sequencer are

implemented.

For example, in the case of the 32/75 computers, the S-field is used to
control the address sequencing. Conditional branching is obtained by using

the S-field in conjunction with the T-field. We will return to this later.

1.2 The 32/75 Microprogram Timing

Two j-cycles or machine cycles are generally required to execute-a
microinstruction. These are called the CROM-cycle and CREG-cycle.
Each p-cycle is 150 nanoseconds long. During the CROM cycle, the basic
tests and sequencing are done while all other orders are executed during
the CREG cycle. Because of the pipelining nature of how the instructions
are fetched and executed, there is an overlap of how the instructions are
executed. This is shown in Fig. 1.0 - While one instruction is going
through the CREG cycle, the next one is going through its CROM cycle simul-
taneously. This allows a shorter microcode cycle and speeds up execution

of the microprogram.

-\

LR R X

e e ——

drysuotieray 21240 (STYI/RO¥) 0°T

= — e ——

| St WOWD
e ——f e ————
1oy omE0 | owp :omo"

| I

€# OMAD | €4 KWOUD

2an8T14

i OT¥D

Z# WO¥D

T# WO¥D

— et —

SRR R R TR ST e v

uoyr3oniisur

z

o —_— e, - = —
vy

~

z

= _——— - —————

(=]

O

l
|
! I
I _
| [
wzrnq mzhom SN

o— ==

ONIKWIL

 —y

VT e AT TP W N eearmgn

R Lk R

S

-4 -
2.0 HARDWARE FEATURE OF THE 32/75 COMPUTER

The 32/75 series computer is divided into two sections as far as the

hardware 1is concerned:
a) Microprogrammable Processor (MP)
b) Data Structure (Section)

2.1 Microprogrammable Processor (MP)

The Microprogrammable Processor executes the microprogram to control the

32/75 computer.

The major functional elements of the Microprogrammable Processor (MP),
organized around the Control Read-Only Memory (CROM) are:

1. Control Read-Only Memory (CROM)

2. Test Structure

3. Sequence Control

4. CROM Addressing

5. Order Structure

6. Decode ROM(DROM)

A block diagram of the Microprogrammable Processor is given in Fig. 2.1

‘2.1.1 Control Read-Only Memory CROM) & Writable Control Store (WCS)

The CROM consists of several Read-Only Memories which are used to store
the microprograms used to decode and execute the computer instruction set.
The microprograms in CROM also provide general housekeeping functions such as
recognizing and vectoring to trap and interrupt servicing routines, and

interrupt prioritizing.

The Writable Control Store (WCS) consists of one or two 64x2K RAM boards

that are interfaced to the CROM and serve as a user programmable CROM expansion.

ool sl Bt A6 o 2Rl

T

vaoomv I3Yylzang pue

TINLOMALS *ASTSSY Ad
sx9podad i otbot 01
YIVd OL -~ zepxo |0 10° 'SAITUS T0x3u0) a093sTH3Y
1¢13u0D NIV Ol WOd 8=uwq HON uot3
0-00KWOY¥a c(e{onC (0] ’
m M £0=00 ad o spooag -ona3suz TE-00T1T
<)
“l|lm..U|H>|I.“ a1did CE=Cct_Wodo
. _ 5 LSAL-S| _ saufrT 3sey Axeun 91
- === :
_ Av wmg S (dwar)
HS
WO¥D | m MMNM& saufT 3s9L Axeun 971
r————= T == =77 a
|
— | SE-Z¢ WOdD
TOHLNOD | seufT 3sal Axeun 9T
“ LSHL
¥ALSIOAY | orsve (avaT) sauTq
ssauaay . [1 o1bo1 alifON [1S14 P12T4d 3591 Xaeun £
Wo¥D | Laouu:ou LS3IL-2Z
o) b
o x €1 = | uanbag ' 3 -
qoe3S-p w | 6£-9EWOYD
m “ L £0-00WO¥D
| {3OH)
]
XOH I pIatd SaUTT
ss3y¥aqy “ ofnIONIAIS LSL IS3L 3sayl Aaeun 1¥
WOYdD | 31S9% apuaix
] _ +
“ EP-9€KHOY¥D
“ I
_ LY-SEWOND
Tox3ucd v {dung JIDOT | -
~— mmwwmwm UszmmDQ<_ TETOTHS
A ~—{ysnd WO¥D

Figure 2-1 Block Diagram - CPU Microprogrammable Processor

\\A

ALY S L R

Microprograms written for execution in the WCS are virtually the same as those
written for the CROM. Benc; in the next sections when describing the microprogram,
reference will be made only to the CROM,
2.1.2 Test Structure

The basic tests are the first portion of the Micro-Instructions to be
executed. There are one basic test field and four secondary test fields
associated with the test structure. They are: The Primary Test field, the
Extended Test field, the Z-Test field, the W-Test field, and the S-Test field.
All Micro-Instruction testing is completed prior to execution of microcer
orders.

A block diagram of the test structure is shown in Fig. 2.2

21n3oNI3I$ 3891 G/L/TE 77 2an814

WO¥D
— | JA0D
T¥NIOMALS VIV yaqwo X sizg LY
OL S3NIT 91 X " T m
QIYVHS
&
940 SYAQ¥0
X €
-« [0 SYIqyo 1€
FWNLONYIS VIV w3aquo ‘ X
oL saNI1 /€] g Le
1oa1as ¢ qum,tlumaqa vIva
avad I11d v LOTTES [} —— 18915 | VO¥d SIANIT 81
(%44 5
Sizﬁmuo& S)
1 XM . 0V 5 ke 10a74g] FENIOMELS VIV
FYNLONULS VIV e o.— 91 188 1saL-p [NO¥I SANTT 8T
N1 avad 3114 oL <1 ‘\
2340 XY €1 ,
p— 1SVe LoaTas[t g viva
X . 1541~
- o1 AFJ I1-Z | HO¥d SANIT 8T
6 !
SENTT waquq 3000%d| TOMINOD * 1Xd _
TYNNAIND 8T | oo b9 TOUINOD £
T MLINDYT]
| TOYLNOD TO4INOD
[FONANDIS ¥ TvIiINGNDYS
WOY
Maommo ssayaav | | 1
LSAL JDISVH O 7 Wod
— 30003a
d3aav SSTYAAR{ XOK
¢ $STYAAY
.._ 0¥ 300030
TANLONILS VIVa

WO¥d Q3LO3TEAS

2.1.3 Sequence Control

The Sequence Control logic comprises 'that portion of the hardware that
selects the next CROM address for use by the microcode. This logic 1s interfaced

with the output of the Decode ROM, the Sequence Control logic, and the CROM Address -
Mux. (Fig. 2.1) !

2.1.4 CROM &WCS Addressing "

The CROM and WCS Addressing logic provides the capability of addressing |
the CROM (and WCS) from one of several sources. The logic circuitry consists l
of the CROM Address Mux, CROM Address Register, a J-Stack and a CROM Address
Adder (Fig. 2.1).

1. The CROM Address Mux is a 4:1 multiplexer which selects one .

of four address sources to formulate the next CROM Address.

) 2, The CROM Address Mux is influenced by the Sequence Decode
circuit. With a Sequence Control field of one (JUMPJ), the next

microinstruction address will be conditionally taken from the top of

the J-Stack. This effectively is a Return instruction from

a branch.

3. The J-Stack is a 4-deep push-down stack with a usable depth

of three which is pushed or popped by a jump takem as a result

of an instruction execution. A JUMPJ instruction gates the

BJOO-12 bits to the inputs of the CROM Address Mux, The JUMPZ ?
with the test met disables the CROM Address Mux forcing the

next instruction to be obtained from address O.

. eremne o arbmnr

The CROM Address Register holds the CROM Address that is currently

being executed.

The CROM Address Adder is used to generate addresses that are applied to

the J-Stack and the CROM Address Mux. !

2.1.5 Order Structure

The Oxrder Structure contains the logic necessary to decode the CROM

and/or CREG bits for the direction and control of the operation to be performed.

The Order Structure consists of the following: (Fig. 2.3)

1.

40

Y-Order

X-Order

U-Orxrder

- Conditional Order

The various fields of the microinstruction that control the respective

orders are discussed in later sectionms.

2.1.6 Decode ROM

The Decode ROM (DROM) and associated logic (Fig 2.1) are used to enable

each Macro-instruction fetched from main memory to vector to the location in CROM

microroutine that executes that particular Macro-instruction.

 is ke - B AR T LA 1 % s

e e g e T

Pty Ayt AATE s DR

- 10 -

aanlonalg aapig weaderq yoolg €' ‘914

AUNIONYLS AUNIONYLS
TYNLONYLIS VIVA OL yIva o0 g o
L z1 6 oﬁ#. z¢
“NZO
3000 WIQUO
NOTLOVSNVNL TYNOILIANOD uaddo-n LERLE g LERLLgSS
* * *‘EVD SO *
N R N =
_muv .m
& e
£9-04
1€-8Z97¥D LY=4yOTED 1€-6299¥D
974D
8y
T T 777
| |
i SOM {
L
WO¥D

e A .ni~

-

[S

-1 -

2.2 Data Structure

The Data Structure, shown in Figure 2.4, contains a 32 x 32-bit General File
register, hardware registers and two multiplexers organized around an Arithmetic
Logic Unit, and a 256 x 32-bit Local Store. The hardware registers are used for

SelBUS communications, temporary storage, and shifting. The Data Structure

consists essentially of the following:
1. Arithmetic Logic Unit (ALU)
2. A-Multiplexer (AMUX)
3. B-Multiplexer (BMUX)
4. Literal Generator (LIT)
S. General File Registers (FILE)
6. Memory Address Register (MAR)
7. Program Counter Register (PC)
8. N-Counter Register (NCTR)
9. Shift Register (S)
10!/ Temporary Register (T)
11. Data Input Register (DI)
12. Instruction Decode Register (10)
13. Instruction Pipeline Register (Il)
14. Local Store (SCRATCH)
15. Bit Mask Generator (BMG)

2.2.1 Arithmetic Logic Unit (ALU)

The ALU is a 2-input, 32-bit Arithmetic and Logical Function Generator
utilizing four lookahead carry generators for increased speed of operation. The

ALU can generate 15 Arithmetic and Logical Functions for two inputs selected by

Las e i e e, S oA . R

the A-Mux and the B-Mux. The outputs from the ALU are distributed to the follow-

ing destination registers:

R T S L N P

———— e -

I‘ﬂ" \ - i ——— ‘I\
———— _E. - S —)' —— e e = o . - e = _—— _
R N N P ~ WA puis g s e 5t R ATOMTARR TR PTG W UEAVE LS TS .:lﬂs.,«..h. §EW LT w&ﬁ
s
w
i
ViVO ROM i
: . ONISSINOOY KM P
, _ . m
PR —— w
TTRNee 16003N1G !
T 3
WSahe |
n — !
. M —— B
101410 Y e 00us 1C00us (17T} _<
t i
El
2 !
1") 'R) Jsunmemsus $NLY L8 m 8
sneo o}
XN v (%]
itoonw ¢ L] 1oL . peaun n
EER 1 ppumm—— -l
T lindw Y [recodvd L3
4 0oy avevy |4 TCooRnRY 100440 . wenn a
My e . vOAVWINID 2
s ¥ tomm agvm 410 S
1|ll||J ¥$IUINNOD W - 1£0oNn W '
o
! e : wusow o k]
g ¢ (Y wIANAQD ¢on
H VESORNNE . nﬂa.”..c:H wn SetoNin LAL . nYE0ue v e
‘ 155)u00v) . d
41 OxNNY Q
PR L] Qe | co——— —
ti90%vn o
13210
H
L . n _
v i e " oLt L) - . — a-
. niva : ’ o . -~
1RILNO : 0 1NaNt " 19110uq ¥0Ve
: 4 o5 e e St e ¢ 10us 20 AT ITTT ow TS o oy -
W 00SN0 | Qvendiveds 1000RANS M A v
8 ¥ 16004 8 3
xfw o Fo0vs0 o
Y @ 1C00uWL g 1T} — [V
Ul (C0ONIWIVO | o L oo Y
! D3v 10
T TN v LA 160070 e -
[3¥TLI14
) " E Mvive | IANO vava
! o ¥OLLYNIL330 T¢ 000! 1C0NTviva iva s - .
v Ny k iNaiNO
. B 1] TS viva ifleni
WL o 1t 000Y A
\\ - e Viv0 tNewr
T
h
M
o . A -

—— -
s P

The ALU is controlled by the ALU Control Field which chooses the
function the ALU 4is to perform on the input data,

also be chosen from the DROM bits @@ - 04,

A .
- 13 -
1. General File Register
2. Memory Address Register
3. Program Counter Register
4, N-Counter Register
5. Shift Register
6. Temporary Register (T Reg)
7. Instruction Register O

Control Pield has the value F in it. These are discussed in Chapter

Three.

The ALU function can

This option holds if the ALU

— e

Cen ek -—-&.y- .

[}

- 14 -

2.2.2 A-MULTIPLEXER (A-Mux) -

The A-Mux selects one of five data sources for input to the ALU.
The five A-Mux sources are:

1. General File Register

2. Literal Multiplexer

3. Status

4. Shift Register (S Reg)

5. Bit Mask Generator

2.2.3 B-MULTIPLEXER (B-Mux)

The B-Mux: selects one of six data sources for input to the ALU. The
six B-Mux sources are:

1. General File Register

2. Temporary Register (T Reg)

3. Data Input Register (DI)

4. Instruction Register 0 (I0)

5. N-Counter

6. Memory Address Register (MAR)

The B~Mux also performs data manipulation functions, such as swapping ,
halfwords and aligning address components.

2.2.4 LITERAL MULTIPLEXER

The Literal Multiplexer forms a 32-bit constant from an 8-bit value in
the microprogammable processor. The literal formed is used primarily as a mask

or an absolute number.

2.2.5 GENERAL FILE REGISTER
The General File Register is a 32-word by 32-bit file memory. Each

register in the file is directly addressable and can either be accessed or

¥

-y

- 15 -
written. The first eight registers are used for the user general purpose
registers, RO through R7; the remaining registers are used by firwware to
hold internal informatiom.

2.2.6 MEMORY ADDRESS REGISTER(MAR)

The Memory Address register is a 24-bit register used to address memory
or an I/0 device by the destination bus., The MAR is used also for temporary
storage.

2.2.7 PROGRAM COUNTER REGISTER (PC)

The Program Counter register (PC) is a 22-bit binary counter which contains
the virtuval address of the most recent instruction fetched from memory. When the
Prcgram Counter is used, the formatted address is expanded to a full 24 bits.
Incrementing the Program Counter is under the control of firmware; the PC may be
incremented by one (for halfword instructions) or by two (for word instructions).

2:2.8 N-COUNTER

The N-Counter is an 8-bit binary up/down counter used by firmware as an
iteration counter for repetitive operations, such as shift, multiply, divide,
and load and store file.

2.2.9 SHIFT REGISTER (S REG)

The Shift register is a 32-bit temporary register used to perform the
following types of shifts:

1. Shift Right ~ Arithmetic, Logical, and Circular

2, shift Left - Arithmetic, Logical, and Circular

3. Shift Right - Nibble

4. Shift Left - Nibble

2.2.10 TEMPORARY REGISTER/DATA QUTPUT REGISTER (T REG)

The Temporary register is a 32-bit multi-use register. This register
is used to temporarily hold all data to be written into the General File register.

On all microinstructions which specify one of the General File registers in the

-

oy —

=

- 16 -

destination field, the destination data actually goes to the T-register,
During the next cycle, the contents of the T-register are automatically written

into the appropriate General File register. The T-register is also called

Data Output register when it is used to transmit data to memory or I/0 devices over

the data bus.

2.2.11 DATA INPUT REGISTER (DI)

The Data Input register is a 32-bit register used to receive operands
from memory, or data and status from I/0 devices. It can also be used as a bit
shift register either by itself or coupled with the S-register. When coupled,
the DI register is the least significant register.

2.2.12 INSTRUCTION REGISTER 0 (I0)

Instruction register O is a 32-bit register which contains the current
instruction being executed. The IO register is also a shift register which swaps
the right and left halfwords of the register to provide for halfword instruction
execution.

2.2.13 INSTRUCTION REGISTER 1 (T1)

Instruction register 1 is a 32-bit buffer register which receives
instructions as they return from memory. The Il register contains the next

instruction to be executed.

= o w——— smam i -
qeat -

Ml ey

- 17 -

3.0 THE 32/75 MICROINSTRUCTION FORMAT

The 32/75 series computer's microinstruction is 48 bits wide (there is
an additional 12 bits optional Floating ﬁoint). These microinstructions are
stored in the Control Read Only Memory (CROM). The 48 bits of the micro-
instruction are broken down into 11 fields as shown in Fig. 3.1 and 3.2.
3.1 Introduction

The Control Read-Only Memory (CROM) is the control section of the Central

Processor Unit (CPU). The CROM contains permanently stored microinstruction

words or Elementary Operations (E0) (these two terms are used interchangeably

throughout this text). Groups of EOs form microprograms which are read and
decoded to generate the signals necessary to control the CPU operations, The

EOs are stored in the Micro Control Unit of the CPU (also referred to as the

personality board).

This section describes how the EOs control the function of the CPU, The
word format of the ROM is described showing the number of bits assigned to each
functional field of an EO. This description is followed by a description of
the EO Format Chart showing how the chart is sectionalized, A detailed arnalysis

of the EO fields describes how each field is assigned special control functions.

3.2 Microinstruction Word

The individual microinstructions or EOs that are stored in the Control

Read-Only Memory (CROM) control the data paths and the execution of CPU functions.

The CROM contains 4,096 48-bit words. The microinstruction word format is shown

in Figures 3-1 and 3-2.

Each microinstruction contains the following fields:

T Primary Tests

S - Sequence Control

M - Control/Extended Control
A - A-mux Select
’ B - B-mux Select

- 18 -
ALU Control
Destination
File Read Select
Y-Orders
X-Orders
U-Orders
S-Orders
W-Tests
S-Tests
12-Bit Branch Address
Z-Tests/
8-Bit Branch Address
Extended Test/
4-Bit Branch Address
8-Bit Literal/
Conditional Orders
cC's/
Shift Code/
FPU Order 1
Reg. No./
ROM Page
Flip-Flop 1/
Bus Transfer
Flip-Flop 2
Flip-Flop 3
13-Bit Branch Address

FPU Order 2

&

& "W e

:oﬂumuaw«mcoo 379 2F9Y3l pue SPISTJ UOTIINIISUTOIDIN Z°'€ '81d

::

-uuuT |

-19 -

lll_Mllllllllllllllllllll e S R Rl o) [y Sy iy ity
17 59 Sy wp €y Ty v Ov|GE B€ (€ OC|SE ¥ €€ ZE[IE OC & 87 (Z[92 GZ ¥Z[€T 2Z 1Z OZ[6L 8L L1 9L[SL ¥ EL|ZL Il OL|60 80 (0]%0 SO ¥O
(m°n ‘s)
] d X A ¥ a + 9 v W s

SpTaT4d UOTIONIISUTOIITH T'€ 2anBI1d

HOd X _ A _m —\o_ + q _< R S L PT®T1d
A Yy € € % % € € € € H 8374 jo
aaquny

€0 0 10 00 118

N .

a3ig

ey

——— ey — =

P

- 20 -

The following description is an attempt to explain the basic functions
of the various fields and how they are related. This should be studied together
with the material in the reference (2).

From Fig. 3.2 it can be seen that the microinstruction Bits are numbered
from 0 to 47. We will use the notation of the manuals and refer to the Bit
Configurations as CROM 00 - CROM 47. The T-field is the first field and
occupies CROM 00 - CROM 03 while the last field CROM 44 - CROM 47 belongs to the
H-field.

3.3 Primary Test Field (CROM 00 - CROM 03)

This field contains basic test conditions that are used to make decisions

/

during the execution of the microprogram. The entries indicate the type of

test being performed. When the test condition pointed to by this field is

true or false then a decision can be made by the computer.

If the entry in this field is 0000, no test is selected and is used for
unconditional branch by the S-field. This means that the condition selected
by the S-field for branch is always true if T=0.

If the entry in this field is 1111, no test is selected. This combination
should be used as default value for the T-field.

The following Alinstruction fields are influenced by the T-field:

1. The Control Field (M), CROM bits 07-09.

2, The STEST Field (X), CROM bits 32-35.

3. The FPORDER]1 Field (H), CROM bits 44-47.

4, The ZTEST Field (P), CROM bits 36-39.

5. The Extended Test Field (PC), CROM bits 36-43.
6. The FPORDER2 Field (P), CROM bits 36-39.

7. The Conditional Order Field (H), CROM bits 44-47.

-

‘ P

1

-

e o e e e o~ = et At

- 21 -

Both the "true" and "false" conditions are used by the T-field and
should be carefully noted. For the case of a "false" test, the condition is
true if the test addressed by the T-field is false.

The bit combinations of the T-field that select various tests is
explained in Table 3.1. |

One point needs clarification in Table 3,1. The S-Test and W-Test use
the same fields in microprogram i.e. CROM 32-35. From Table 3.1, when writing
ucode, we know that CROM 32-35 will be interpreted as W~test %; the T-field has
value 3 or 5. On the other hand CROM 35-35 will be interpreted as S-test only

if T has the value 4.

-y —) e : : o o

Bit 9123

Value

- 22 -
Table 3.1

Syntax

Basic Test (T) Field (CROM0OO-03) (2)

Description

B i

0000 0

0000 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

True

Extended Test True

Z-Test True

W-Test True

S-Test True

W-Test False

Z-Test True and
Extended Control

NOEXTUNIV

Enable Floating-
Point Unit Order,
Group 1

Extended Test False

This condition always provides a 'true'
test and is used for the unconditional
branch.,

This condition is met if the test
addressed by the extended test field,
CROM36-43, 1is true.

This condition is met if the test addressed
by the Z-Test field, CROM36-39, is true.

This condition is met if the test addressed
by the W-Test field, CROM32-35, is true.
Since the X-Order field is used for the
W-Test field, X-Orders are inhibited during
the CREG cycle of this microword.

This condition is met if the test addressed
by the S-Test field, CROM32-35 is true. The
X-Orders are inhibited during the CREG cycle
of this microword.

Note: No provision is provided for testing
the 'False' condition of the S-Test.

This condition is met if the test addressed
by the W-Test field (CROM32-35) is false.
The X-Orders are inhibited during the CREG
cycle of this microword.

This condition is similar to Z-Test True (2);
however, it also causes the M-field, CROM07-09
to be interpreted as an Extended Control
field.

The No External Universal Condition test is
met if both of the following conditions are
present: (1) The Enable Interrupt flip-flop
(ENAINTFF) is reset, (2) an External Event
Global condition is not present.

This condition is always met and causes the
H-field (CROM44-47) to be interpreted as
Floating-Point Unit Order, Group 1.

This condition is met if test addressed by
the Extended Test field, CROM36-43, is
false.

- 23 -

Table 3-1. Basic Test (T) Field (CROMO0O-03) Cont'd.

Value Syntax Description l
2
1010 A Z-Test False This condition is met if the test addressed by the ?
Z~-Test field (CROM36-39) is false. ‘
1011 B ALUZ The ALU Zero test is met if the ALU output was
equal to zero during the CREG cycle of the second
preceding microinstruction.
1100 C NALUZ The Not ALU Zero test is met if the ALU output
was not equal to zero during the CREG cycle of
the second preceding microinstruction.
1101 D Enable This condition is always met and causes the
Floating~ P-field (CROM36-39) to be interpreted as
Point Floating-Point Order Group 2, and the H-field
Order (CROM44~47) to be interpreted as Floating-Point
Groups 1 Unit Order Group 1.
and 2
1110 E Z-Test False This condition is similar to Z-Test False (A);
And Extended however, it also causes the M-field (CROMO7-09)
Control to be interpreted as an Extended Control field.
1111 F FALSE This test is never met and is used to inhibit

branches, jumps, and conditional orders. The
FALSE function is frequently used with *JUMPZ
to allow the unconditional logic initialization
provided by *JUMPZ, while inhibiting the actual
jump to location zero.

Note: If the T-field (CROMOO-03) is equal to
'7', the M-field (CROMO7-09) is interpreted

as a Floating~Point Unit Control field

(vectored jump control field); the P-field
(CROM36-39) is interpreted as Floating-Point Unit
Order Group 2; and the H-field (CROM&44-47) is
interpreted as Floating-Point Unit Order Group 1.

i i o e I“. wrvesweay s sy Comsrinantdiarab iR S dh i

A e DB~

- 24 -

3.4 Sequence Control Field (CROM04-06)

The Sequence Control Field (S-field) is used to effect branching in
microcode. Each branch that can be taken is considered conditional depending on
the results of the test selected by the T-field, Fig. 3,1. This arrangement
when used with the T-field value of 0 provides for unconditional branch in
microcode. The branch address is external to the microinstruction being executed
if the value of the S-field is less than or equal to 3.

1f the S-field has value O then no branch is taken and this value should
always be used as the default value.

The bit combinations of the S-field that select various branch modes

are summarized in Table 3.2.

R

.-

PV T A o - b -
- 25 -

Field T S

Bit 00 01 02 03 04 05 06

Primary Tests Sequence

0 True 4] NOP

1 Extended Test True 1 JUMPJ

2 Z-Test True 2 JUMPB

3 W-Test True 3 JUMPZ

4 S-Test 4 HOP
4-Bit

5 W-Test False 4 LEAP
8-Bit

6 2-Test True 6 Branch

& Extd. Control 12-Bit

7 No Ext Univ 7 JWCS
13-Bit

8 Eﬂable FPU Group l Branch Code

9 Extended Test False

A Z-Test False

\

B ALUZ

C NALUZ

D Enable FPU Groups

E Z-Test False & Extd.

Control
F Not Used

Selected Eondition

for

Conditional Branch

Fig. 3.3 Conditional Branch Codes of

Microinstruction

L iaen g A D

—_———— -
; P

s

g4

- 26 -
Table 3-2 Sequence Control (S) Field (CROM04-06)

Influenced by: Results of the Basic Test field

Influences: 1., Conditional Order field (CROM44~47) 2. The
address length interpretation of CROM35-47

General: Each sequencing order which can cause a jump is
considered conditional on the result of the test
selected by the Basic Test (T) field (CROM00-03).
S-field values 0-3 specify that the source of the
jump target address is external to the microword
(J-stack, Decode ROM, and etc.). Since these
types of jumps require no additional resources
from the microword, the H-field is interpreted
as a Conditional Order field. S-field values
4-7 specify that the source address for the
jump is the X-, P-, C-, and H-fields (CROM35-37).
Thus, the Conditional Order interpretation of the
H-field is inhibited and the H-field is interpreted
as the least significant four bits of the jump
address. The remaining bits of the X-, P-,
and C-fields may have simultaneous multiple inter-
pretations as long as no specific bit conflicts
exist. For example, the P-field is used to supply
the four most significant bits of a 12-bit jump
address and, at the same time, may provide a
4-bit file address, as long as the file address
bits exactly match the four most significant bits
of the 12-bit branch address.

Bit 654 Value Syntax Description

)

000 0 No operation This value implies that no jump will occur, regard-
less of the specified test condition status. The
Conditional Order field (CROM44-47) is the only
part of the microword which uses the test results.

001 1 *JUMPJ The Jump based on the J-Stack function implies that
the next micro-instruction address is conditionally
taken from the top of the J-stack (last address
stored in the J-stack). This function provides a
micro-instruction equivalent RETURN from a Branch-
and-Link. The J-stack is a pushdown stack with a
depth of 3, and is only pushed (*LINK function) or
popped ("JUMPJ function) by the 'Test True' result
of micro-instruction execution. The *JUMPJ function
provides a 13-bit jump address so that the target
jump address may be in main CROM or Writable Control
Storage (WCS).

JESPIE -

Bit 654 Value

Syntax

- 27 -
Table 3-2 Sequence Control (S) Field (CROM04-06) Cont'd.:

Description

010 2

011 3

*JUMPD

*JUMPZ

The Jump based on the Decode ROM value implies that
the next micro-instruction address is conditionally
taken from bits 08-20 of the Decode ROM (D-ROM).
This function provides a 13-bit jump address

which may point to main CROM or WCS. The D-ROM
supplies the jump address for the macro instruction
decode process.

The Jump to CROM Location Zero condition implies
that the next micro-~instruction address is,
conditionally, location zero. Since the 13-bit
CROM address is forced to zero, the *JUMPZ function
may be used to jump to location zero from main
CROM or WCS.

The *JUMPZ function is the basic exit path of
each macro-instruction and, as such, performs
some additional implied functions to clean up the
microengine in preparation for the execution of
the next macro~instruction. Some of the clean-up
functions are performed unconditionally (regard-
less of the status of the specified test) and some
are performed conditionally (specified test must
be true). The following list describes the
unconditional and conditional functions performed
at the time that they occur, relative to the
*JUMPZ micro-instruction.

UNCONDITIONAL AND CONDITIONAL JUMPZ FUNCTIONS:

CROM CYCLE Only conditional functions are
performed at this time.

CREG CYCLE 1. Clear Left Shift Overflow flip-flop

2, Shift right hand flag history registers

3. Clear page select register (force

D-ROM decode of 11 register bits 00-05)

CREG 1. Set Enable Zero Detect flip~flop
CYCLE+ 30 ns
2. Clear Multiply Previous flip-flop

3. Clear S-register

4]

Value

Table 3-2

Syntax

- 28 -

Sequence Control (S) Field (CROM04-06) Cont'd:

Description

100

101

110

111

*HOP
*GO TO
(4-bit)

*LEAP
*GO TO
(8-bit)

*BRANCH
*GO TO

*JWCS
*GO TO
(13-bit)

This branch 4-bit value causes the four least
significant bits of a conditional branch address

to be taken from the H-field (CROM44-47). The nine
most significant bits of the 13-bit branch address
are derived from the CROM address register after

the contents of the CROM address register have

been incremented by one. The Branch 4 function
provides for a branch within a 16~ location absolute
range.

This branch 8-bit value causes the eight least
significant bits of a conditional branch address

to be taken from the C- and H-fields (CROM40-47).
The five most significant bits of the 13-bit branch
address are derived from the CROM address register
after the contents of the CROM address register

have been incremented by one. The Branch 8

function provides for a branch within a 256-location
absolute range.

This branch 12-bit value causes the 12 least
significant bits of a conditional branch address
to be taken from P~ , C~ , and H-fields (CROM36-47).

The most significant bit of the 13-bit branch
address is derived from the CROM address register
after the contents of the CROM address register
have been incremented by one. The Branch 12
function provides for a branch within a 4096-
location absolute range.

This 13-bit value causes the 13 bits of a
conditional branch address to be taken from the
X- , P- , C- , and H-fields (CROM35-47). The
Branch 13 function provides for a branch within
an 8192-location range and may be used to branch
from main CROM to WCS or from WCS to main CROM.

-l
The

- 29 -

3.5 Control Field (M-Field) CROM (07-09)

The M-Field, CROM bits 07-09 is used for two purposes:
Control Field
Extended Control Field
These fields are used in controlling various operations in the data
structure of the 32/75 computer.
If the value of the T-Field equals 06H or OEH then the M-field is interpreted
as extended control and the meaning of the various bit combinations is given in
Table 3.4. Otherwise, the M-field is interpreted as Control Field and the

various bit combinations have the meaning given in Table 3.3.

o S o~ ey Ty T L T T T et e+ e i T ~ it

- 130 -

| . Table 3.3 Control Field (M-Field) CROMO07-09)

Influenced by:
Influences:

General:

Bit 987 Value Syntax

Results of the Basic Test Field
None

The following Control field interpretation of

the M-field (CROMO7-09) only exists if the value
of the Basic Test (T) field does not equal'6' or
'E'. If the T-field does not equal '6' or 'E',
the M-field is interpreted as an Extended Control
field.

Description

000 0 No Operation

001 1 SETCC(#)

010 2 SHIFTS(#)

SHIFTDI(#)
SHIFTD(#)

011 3 DECRN

100 4 DECODE(X)

This value inhibits the Control field.

The Overlay and Set CC's from the D-ROM value causes
the D-ROM bits 03-07 to overlay CREG36-39 in order
to define the rules by which Condition Codes (CC's)
are set. The SETCC (#) function provides the
capability for the macro instruction being

executed to define the rules for setting CC's.

(See Table 3-23)

The Overlay Shift Control and Decrement N-Counter
value in the Control field causes D-ROM (bits 04-07)
to overlay the Shift Control field (CREG40-43).

The Overlay Shift and Decrement N-Counter function
provides the macro instruction being executed with
the capability of defining the shift type
(arithmetic or logical) and the shift direction
(left or right). An additional capability is pro-
vided to automatically decrement the N-Counter
which should contain the shift iteration count.

The Overlay Shift and Decrement N-Counter may be
used with a shift S-register (SHIFTS(#)); a Shift

DI register (SHIFIDI(#)); or a shift double-precision
of the S-register and the DI register (SHIFTD(#)).
(See Table 3-24.)

This value causes the N-Counter to be decremented
at the end of the CROM cysle of the microinstruction.

The Load Lower Decode value causes the page select
PROM, at the location specified by 'X', to be
loaded into the page select register. The value
'X' must be in the hexadecimal range of '0' to
'F', and stored in bits 40-~43 (PROM Page field) of
the microinstruction. For this value the most
significant bit of the 5-bit page select PROM
address is forced to a logical Zero.

R 2

AN A L e el

101

110

111

—— ey

DECODE(1X)

DECODE(#)

PUSHJ
*LINK

- 31 -

The Load Upper Decode value causes the page select
PROM, at the location specified by '1X', to be
loaded into the page select register. The value
'1X' must be in the hexadecimal range of '10' to
'1F', and the value 'X' must be stored in bits 40-
43 (PROM Page field). For this value, the most
significant bit of the page sleect PROM address is
forced to a logical One.

The Load Decode value causes the page select
register to be loaded from bits 00-07 of the D-ROM,
The DECODE(#) value provedes the capability of
specifying additional sublevels of decode and

CC's, Shifts, and Arithmetic Logic Unit (ALU) over-
lays for the macro instruction being executed.

The Push the J-Stack value causes the current CROM
address plus one to be pushed into the top level

of the J-stack if a branch taken condition is
established. If no branch or jump is specified by
the S-field, or if the test specified by the T-field
is false, the J-stack is not pushed.

P ~Eme % : . - e ——— -

- 32 -

Table 3-4, Extended Control Field (M-Field) (CROM0O7-09)

-

Influenced by:
Influences:

General:

Results of the Basic Test field
1. The File Read Select field (CROM24-26)
2, The Sequence Control field (CROM04-06)

The following Extended Control field interpretation i
of the M-field (CROMO7-09) only exists if the value .
of the Basic Test (T) field is equal to '6' or 'E'.
If the T-field does not equal '6' or 'E’, the
M-field is interpreted as the Control field.

Value Syntax

Description

0 REGSEL
FR(X)

1 *JUMPS

2 MPROM

e o gy e

The Register Select value causes the three least
significant bits of the value 'X' to be stored

in the File Read field (CROM24-26) and to be used
as the three least significant bits of the file
address. The most significant bit of the 4-bit
file address is forced to a logical One. The value
'X' is used to represent a file address and must be
number or a name equated to a number which has a
value within the range of '8' to 'F'.

The Jump Based on the S-Register function causes
the next micro-instruction address to be condition-
ally taken from the S-register (bits 19-31).

This value provides the capability of generating j
a CROM Address in the data structure and then trans-
ferring this address to the CROM address Mux,

Since this value is in the Extended Control field,

only Z-tests may be used for conditional jumps

from the S-register. If the specified test is

true, 13 bits are transferred from the S-register

to the CROM Address Mux, so that the target jump :
address may be in main CROM or in WCS. !

The Multiply PROM value primarily assists the
Firmware Multiply function and causes the File

Read Select field (CROM24-26) to be overlayed with
the output of the Multiply Assist PROM. Since the
Multiply Assist PROM is addressed by the four least
significant bits of the T-register and the value

of Multiply Previous flip-flop, the file address
selected by the MPROM order and the Multiply Assist
PROM is coordinated with the four least significant
bits of the multiplier. The MPROM order also
causes the value of the Multiplier Next bit to be
supplied by the MPROM and to be saved in the
Multiply Previous flip-flop.

Son e epmewe—g e mepe— o nive

N 3“',f}}fi-l;_..s'{ven,,{..’-é».:.'- .

.

;*

Value

- 33-

Table 3-4, Extended Control Field (M-Field) (CROM07-09) Cont'd.

Syntax

Description

— gy e -

DIVMSW

DIVLSW

REPEAT

SCALE

NORM

The Divide Most Significant Word value causes the

File Read Bank Select bit to be switched for a single

file access 1f the S-register (bit 00) is equal to
a logical Zero.

The Divide Least Significant Word value causes the
File Read Bank Select bit to be switched for a
single file access if the last bit of the quotient
being developed (Divide Register, bit 31) is a
logical Zero.

The Repeat the Current Micro-instruction value
causes the micro-instruction in which it is coded

to be repeated, and the N-counter to be decremented
until the N-Counter count is equal to Zero. When
the N-Counter reaches Zero, normal micro-instruction
sequencing is resumed.

The Floating-Point Scale value is used with the
firmware Floating-~Point to assist in the alignment
of operands for add/subtract Floating-Point macro
instructions. This order causes a 4-bit branch
where the 4-bit branch address is supplied by

the Floating-Point Assist Scale PROMS.

Note: The SCALE order should not be coded in WCS.

The Floating-Point Normalize value is used by
the firmware Floating-Point to assist the post-
normalization of Floating-Point results. This
order causes a 4-bit branch where 4-bit branch
address is supplied by the Floating-Point Assist
Normalize PROM.

Note: The NORM order should not be coded WCS.

— sy o -

-~ 34 -

3.6 A-MUX Select (A) Field (CREGI1O-CREG12)
The A-Multiplexer (A-MUX) selects one of eight data sources for inputs to
the Arithmetic and Logic Unit (ALU). These eight sources are:
1. General File Register (FILE)
2. Literal Generator (LIT)
3. Status
4. Shift Register (S)
5. S~Register shifted Left 1 bit (SLEFT)
6. S-Register Nibble shifted Right (SNIBR)
7. S-Register Nibble shifted Left (SNIBL)
8. Bit Mask Generator (BMG)
These eight sources are selected ﬁy the 3-bit A-field of the microinstruction
(CREG Bits 10-12).

The various bit combinations that select each input are given in Fig. 3-5,

The A-~field is also used as literal select field. When A=7, we have the

.
"short literal" (see details Table 3-5). When the Y field = 2, we have the long

literal.

-

sl

Influenced by:
Influences:

General:

; A-Mux Syntax:

Table 3-5.

- 35 -

A-Mux Selett (A) Field (CREG10-12)

Y-Order (CROM27-31)
None

The A-Mux Select field chooses the source of the A input
to the ALU and the sou -e of addressing for the 256

by 32 Scratchpad. When the Y-Order LONGLIT order is
present, the A-Mux Select field provides the fill bit
and byte select code for the literal generation to the
A input of the ALU.

The Micro Assembler generates A-Mux Select values when
the A-Mux is implied as a resource to the operation to
the operation to be performed. In general, two types
of A-Mux resources may be specified or implied. The
first resource type is using the A-Mux to supply the A
input to the ALU. The syntax of the ALU expression is:

DEST=AMUX ALU FUNCTION BMUX

The second resource type is using the A-Mux to supply
the Scratchpad address. The syntax of the Scratchpad
address is:

DEST=SCRATCH (AMUX) or SCRATCH(AMUX)=BMUX

In the above expressions, DEST must equal a valid ALV
Destination term as described in the Destination field
description. ALU FUNCTION must equal a valid ALU

term as described in the ALU field description. The
BMUX term is optional; however, if it is present, it
must equal a valid BMUX term as described in the B-Mux
Select field description. The AMUX term may be either
a 32-bit literal or a valid A-Mux Select field term as
described in the following discussion.

12,11,10 Value

Syntax

Description

000 0
001 1
010 2

SLEFT

SNIBL

The S-Register value selects the 32-bit S-register as
the input to the AMUX.

The S-Register Left Shifted One Bit value selects the
32-bit S~register left shifted one bit as the input
to the AMUX. The vacated bit position (bit 31) is
filled as determined by the Shift Control field
(CREG40-43). The contents of the S-register are not
modified unless the S-register is selected as the
destination register of the ALU operation.

The S-Register Left Shifted One Nibble value selects
the 32-bit S-register left shifted four bits as the
input to the AMUX. The vacated nibble (bit positiomns
28-31) is filled from the T-register (bits 00-03).
The bits shifted out of the S-register (bits 00-03
are lost. The contents of the S-register are not

———— .

-

- 36 ~

Table 3-5. A-Mux Select (A) Field (CREG10-12) Cont'd.:

Value Syntax Description

—— ety s = e

010 2 SNIBL modified by this function unless the S-register is
selected as the destination of the ALU operation

011 3 SNIBR The S-Register Right Shifted Four Bits value selects
the 32-bit S-register right shifted four bits as the
input to the AMUX. The vacated nibble (bit positions
00-03) is filled with the S-register sign bit (bit 00).
The bits shifted out of the S~register (bits 28-31)
are lost. The contents of the S~register are not
modified unless the S-register is selected as the
destination of the ALU operation.

Note: The S—-Register source data through this mux

is not affected by any other concurrent shift orders
(e.g., if S contains 1 and the A-Mux order is 2,
with Y-order SHIFTS, the A-Mux will pass 10).

12,11,10
100 4 R(X) The Selected File Register Output value selects the

FR(Y) 32-bit file output as the input to the AMUX. For

) 'R(X)' term, the file register address is specified
by the File Read Select field (CROM24-26) or the
Register Number field (CROM36-39). For the 'FR(Y)'
term, the Extended Control, Register Select method
is used to address the file, and only file registers
'8' through 'F' may be used.

Note: This AMUX code causes a File read and must not
be used in a micro-instruction following a File write
micro-instruction.

101 5 STATUS The CPU Status value selects the CPU PSW1 Status bits
as the input to the AMUX. The Status bits are formatted
as follows:

Bit 00 Privilege Bit
Bits 01-04 Condition Code Bits 1-4

Bit 05 Extended Operand Indexing (Extended
Addressing)

Bit 06 Last Instruction Executed was in the
Right Halfword

Bits 07-08 Not Used _
Bit 09 MAP Not Valid (LVALID)
Bit 10 MAP Write Protected

Note: Bits 09-10 pertain to the
map entry addressed by MAR bits 04-08.

Bits 11-15 Not Used

Bits 16-31 Contents of the Memory Protect
Register Addressed by MAR bits 05-08.

Table 3-5. A-Mux Select

Value Syntax

- 37 -

(A) Field (CREG10-12) Cont'd.:

Description

110 6 BMG

111 7 LITERAL FILL
BYTE SELECT
@FFFFFFYZ

-y S ——— st - +sem e = Rt o N SRV

The Bit Mask Generator value selects the 32-bit Bit
Mask Generator as the input to the AMUX. If the AMUX
term is used without the Y-Order 'BMGMR', the byte
select code for the Bit Mask Generator is supplied

by the 10 register, bits 14-15. If this AMUX term

is used with the Y-Order 'BMGMR', the byte select

code for the Bit Mask Generator 1is supplied by the
MAR virtual register C-bits (LFCIV and LFC2V signals).
In either case, the bit mask code within the byte

is supplied by the 10 register bits 06-08.

This value selects the Literal Generator as the input
to the AMUX. The actual literal value 'YZ' is
supplied by the 'P' and 'C' fields (CREG36-43),

and must be within the hexadecimal range of 'O’

to 'FF'. Note that the fill bits for this literal
(bits 00-23) must be all Ones and that the literal
byte is in byte position 3 (bits 24-31).

T AR AR a el v o o

- 38 -

3.7 Literal Select Field (CREG10-12)

Two types of literals (constants) are generated using the A-MUX field:

A)

B)

1. Short Literal - A-mux field equal to 7
2. Long Literal - Y-Order field equal to 2
Short Literal

With the A-Mux field equal to 7, the literal
value generated from the microinstruction is
selected. The byte, CREG36-43, is presented
to the Literal circuitry right justified

(byte 3) with the most significant three bytes

forced to Ones.

Long Literal

With the Y-Order field equal to 2, a long literal

is constructed according to the state of CREG bits

10-12 as follows:

CREG10 is the fill bit (One or Zero) which is
forced into all 24-bit positions not
directly specified in the microinstructiom.

CREG11-12 select the byte position in the word where

the bits of CREG36-43 are inserted. The

CREG 11 and 12 byte selection is shown below.

Table 3.5.B Long Literal-CREG Bits 11 and 12

CREG Bits
11 12 Byte Selected
0 0 Byte 1
0 1 Byte 1
1 0 Byte 2
1 1 Byte 3

s

VEL LN o 9 T

-39 -

A summary is provided as follows:

When the "LONGLIT" order is used, the Literal Select field, CREG bits
10-12, is interpreted as the fill bit and byte select code for the literal
generator. The most significant bit of field, CREG bits 11-12, are used as

the byte select code. The actual byte literal is always placed in the P- and
C-fields, CREG bits 36-43.

LITERAL SELECT FIELD SYNTAX

The following Select Field orders do reflect the correct Assembler Syntax.
@XY0O00000 (A=0)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero and the byte select code is zero.

@00XY0000 (A=1)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The f111 bits are zero and the byte select code is one.

Q0000XYO00 (A=2)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF,
The fill bits are zero, and the byte select code is two.
@00000XY (A=3)
Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero, and the byte select code is three.
@XYFFFFFF (A=4)

.
Long Literal where the "XY" term must be in the hexadecimal range of 00-FF,
The fill bits are one, and the byte select code is zero.
@FFXYFFFF (A=5)
Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are one, and the byte select code is one.
@FFFFXYFF (A=6)
Long Literal where the "XY" term must be in the hexadecimal range of O00-FF.

The f111 bits are one, and the byte select code is two.

@FFFFFFXY (A=7)

Short Literal where the "XY" term must be in the hexadecimal range of 00-FF.

The Micro-Assembler evaluates this literal as a short literal so the Literal
Select field is interpreted as the A-mux Select field. However, if the "LONGLIT"
Y-order is manually generated, this becomes a long literal with a fill bit of

one and a byte select code of three.

Notes

In the example above, the "@" preceding the literal value indicates to
the Micro-Assembler that hexadecimal notation is being used. Literals may also
be expressed in decimal, binary, or an evaluatable expression,

L

4
1 - 40 -

3.8 B-Multiplexer Select (B) Field (CREG 13-15)

The B-mux selects one of nine data sources for input to the ALU.

i Some of the nine B-mux sources are:
1. General File Register (FILE)
2. General File Register, Halfword Swapped (FILE, HWS)
! 3. Temporary Register (T)
e 4. Data Input Register (DI)
5. Instruction Decode Register (I0)
The various bit combinations that select each source are given in

Table 3-6.

ks

Table 3-6.
Influenced by:
Influences:

General:

o —— e e e ——

B-Mux Syntax

A B WA i e e i . - -

- 41 -

B-Mux Select (B) Field (CREG13-15)

None
None

The B-Mux Select field chooses the source of the B
input to the ALU. The ALU function specified does
not require a B-Mux term for this field to be valid.

The Micro Assembler default value for this field

is '1'. This value selects the 8-bit N-Counter and
the 24-bit MAR register as the B-Mux input.

The Micro Assembler generates the B-Mux Select field
values when the B-Mux is specified or implied as a
resource to the operation to be performed. In
general, two types of B-Mux resources may be implied
or specified. The first resource type utilizes the
B-Mux to supply the B input to the ALU. The syntax
of the ALU expressions are:

1. DEST=AMUX.NAMES ALU FUNCTION BMUX.NAMES;
2. DEST=BMUX.NAMES;

The second resource type occurs when a B-Mux input

is required for direct bit tests and the ALU function
specified does not require a B input resource. The
syntax for this type of expression is:

1. DEST=AMUX.NAMES, BMUX=BMUX.NAMES;

In this expression, DEST must equal a valid ALU
Destination term as described in the Destination

field description. AMUX.NAMES must equal a valid

A-Mux term, as described in the A-Mux Select or the
Literal Select field descriptions. ALU FUNCTION

must equal a valid ALU term, as described in the ALU
field description. The BMUX.NAMES terms must be a

valid B-Mux term as described in the following discussion.

Value Syntax Description
0 T The T-Register value selects the 32-bit T-register
as the input to the B-Mux.
1 N/ The N-Counter and Memory Register value select the
MAR 8-bit N-Counter and the 24-bit MAR register as the

input to the B-Mux.
The N-Counter and MAR input port is formatted as follows:

Bits 00-07 N-Counter bits 00-07

Bits 08-16 Logical MAR bits 00-08

Bits 17-29 MAR bits 09-21

Bits 30-31 Virtual MAR bits 22-23 (C-bits,

LFC1V and LFC2V signals)

4

PR)

Value

- 42 -

Table 3-6. B-Mux Select (B) Field (CREG13-15) Cont'd.:

Syntax

Description

10

D1

rR(xY
FR(Y)

R(X,HWS)
FR(Y,HWS)

Note 1. 1If the U-Order ('RDMAP') is true, B-Mux Input
bits 08-16 contain Physical MAR bits 00-08. If MAR

was loaded by the 'FULLMAR' destination term or if the
MAP is turned OFF, both Logical and Physical MAR values
will be equal, If the MAP is turned ON and MAR was
loaded by the 'MAR1X' or 'MAR' destination terms,
Logical MAR bits 04-08 contain the MAP register. Bits
00-03 of Logical MAR are not used by the mapping
algorithm,

2. The DI or T-register data input through this
Mux is not affected by any other concurrent shift orders.

3. Virtual MAR and MAR 22-23 should agree unless a
SelBUS transaction has occurred that causes these bits
to act as F~ and C-bits.

The 10 Register value selects the 32-bit 10 register
as the input to the B-Mux.

The D1 Register value selects the 32-bit Dl register
as the input to the B-Mux. If this B-Mux term is
used while a memory operand read or an I/0 final
transfer is in progress, the CPU automatically enters
a WAIT state until the memory or I/0 DRT is received
and the CREG cycle of the current micro-instruction
can be completed using the DI register data just
received from memory or I/0.

The Selected File Register Output value selects the
32-bit File output as the input to the B-Mux, For

the 'R(X)' term, the file register address is
specified by the File Read Select field (CROM24-26)

or the Register Number field (CROM36-39). For the
'FR(Y)' term, the Extended Control Register Select
method is used to address the File and only File
registers '8' through 'F' may be used. (See Table 5-4.)

Note: This B-Mux code causes a File Read and must
not be used in a micro-instruction following a File
Write micro-instruction.

The Select File Register Qutput, Halfword swapped
value selects the 32-bit file output, circular shifted
16 bits, as the input to the B-Mux. File output bits
00-15 are presented to B-Mux 16-31 and File output
bits 16-31 are presented to B-Mux bits 00-15. For

the 'R(X,HWS)' term, the File register address is

SR ST T ey et it e IR S S e

— i

3

—_—

- 43 -
Table 3-6. B-Mux Select (B) Field (CREG13-15) Cont'd.:

Value Syntax Description
5 cont'd. R(X,HWS) specified by the File Read Select field (CROM24-26)
FR(Y,HWS) or the Register Number field (CROM36-39). For the

'FR(Y,HWS)' term, the Extended Control Register
Select method is used to address the File and only
File registers '8' through 'F' may be used.

(See Table 5-4.)

Note: This B-Mux code causes a File Read and there-
fore, must not be used in a micro-instruction
following a File Write micro-instruction.

6 INTLVL The Interrupt Level and Panel Data value selects
PNLDATA the Serial Panel data input lines and current
interrupt polling level. The input lines to the
B~Mux are formatted as follows:
Bit 00 UART bit 03
Bits 01-03 Not Used
Bits 04-07 UART bits 04-07
Bit 08 Not Used
Bits 09-15 Interrupt Polling Level
Bits 16-31 Not Used
7 None Not Used

B
.

- o I sttt .

- 44 -
3.9 ALU Control (+) Field (CROM16-19)

The Arithmetic and Logic Unit performs fifteen arithmetic or logical
operations on the A and B input lines. The data on the A and B inputs is
selected by the A-Mux and B-Mux fields of the micro-inspection. The various
ALU functions selected by each bit combination of the + field are shown in
Table 3-7.

Table 3-7 ALU Control (+) Field

Influenced by: None
Influences: None

General: The ALU Control field chooses the function that the
ALU is to perform on the A and B input data lines.
The actual data on these lines is specified by the
AMux Select and B-Mux Selett fields of the micro-
instruction. :

The micro-instruction order structure provides for
speclal orders that either save ALU status or use
previously stored ALU status. ALU status includes
carry-out, result equal zero, and ALU output sign

bit. These orders provide the capability of executing
double-precision (64-bit) arithmetic and logical
functions in coordinated micro-instructions.

The Micro Assembler defaults the ALU Control field
to value '0'. This action causes the B-Mux input
to the ALU to be transferred to its output lines.

For ALU Syntax see reference (3). %

Value Function Description

0 Transfer B-Mux input to ALU output.

Transfer ones complement of the B-Mux input to the
ALU output.

2 Logical OR the ones complement of the A-mux input
with the B-Mux input and transfer the result
to the ALU output.

3 Add the A-Mux to the B-Mux inputs and transfer the
result to the ALU output.

4 Subtract one from the A-Mux inputs and transfer the
result to the ALU output.

5 Subtract the B-Mux inputs from the A-Mux inputs and
transfer the results to the ALU output.

6 Add one to the A-Mux inputs and transfer the result
to the ALU output.

7 Logically OR the A-Mux with the ones complement
of the B-Mux inputs and transfer the result to the
ALU output,

g L - W aakiig R R A SO

T e s e o

Table 3.7 ALU Control (+) Field

- 45 -

(CROM16~19) Cont'd.:

Value Function Description
8 Logically Exclusive OR the A~Mux inputs with the
B-mux inputs and transfer the result to the ALU output.
9 Transfer the ones complement of the A-Mux input to
the ALU output.
A Logically OR the A-Mux inputs with the B-Mux inputs
and transfer the result to the ALU output.
B Logically AND the B-Mux inputs with the ones complement
of the A-Mux inputs and transfer the result to the
ALU output.
C Logically AND the A-Mux inputs with the ones complement
of the B-Mux inputs and transfer the result to the
ALU output.
D Logically AND the A-Mux inputs with the B-Mux inputs
and transfer the result to the ALU outputs.
E Transfer the A-Mux inputs to the ALU outputs.
F The Overlay the ALU Control fiéld value causes

the output of the D-ROM, bits Q0-04, to overlay

the ALU Control field.
macro instruction being

This feature provides the
executed with the capability

of defining the ALU operation code.

D

EE——

- 46 -

3,10 ALU Destination (D) Field (CROM20-23)

The output destination of the ALU can be distributed to any of the

foYlowing eight Registers BUS:

1. General File Register (FILE)

2. Memory Address Register (MAR)

3. Program Counter Register (PC)

4. N-Counter Register (NCTR)

5. Temporary Register (T)

6. Instruction Pipeline Register (I1)

7. Data Input Register (DI)

8. DBUS (with following destination:)
a. Shift Register (S)
b. WCS Output Data

The output destination may not necessarily be specified. The default value
of '0' in the D Control Field indicates that no destination is desired.

The various bit combinations that route the ALU output to the desired
destination are listed and explained in Table 3-8.

{able 3-8 Destination (D) Field (CROM20-23)

None
None

The Destination field chooses the destination register
for the ALU output., When a register is chosen as the

destination register, it is strobed at the end of the '

CREG cycle of the micro~instruction.

Description

Influenced by:
Influences:
General:

Value Syntax
0 NOD

1 S

The No Destination term ensures that a register strobe
is not generated. This is the default value

The S-register condition causes the contents of the
32-bit D-bus to be strobed into the 32-bit S-register.
The D-bus normally contains ALU data unless the
Scratchpad or WCS was selected as a resource to the
micro-instruction. (See X-Order 6.)

"m; .

’Table 3-8

- 47 -

Destination (D) Field (CROM20-23) Cont'd.:

Value

Syntax

Description

PC

SCRATCH
(AMUX .NAMES) =

11

The Program Counter condition causes the contents of the

ALU output bus, bits 08-29, to be strobed into the

22-bit Program Counter.

The Program Counter is used

for the macro program address and is aligned to the
32-bit data structure so that addresses generated by
the PC are 24-bit memory word addresses. The two
significant bits, which would normally align to ALU
bits 30 and 31, do not exist since they are not
required for word type memory addresses.

The Memory Address Register (19-bit) condition causes

the contents of the MIN bus, bits 08-31, to be presented

to the Logical MAR.

mode is used, only bits 13-31 of the MIN bus are strobed

If the Nonextended Indexing CPU

into Logical MAR, bit 05-23.
mode is used, bits 08-31 of the MIN bus are strobed
The MIN bus normally contains
ALU data unless the 'PCTOMAR' order is present or

into MAR bits 00-23.

a 'FETCHPC' order is present,

If the Extended Indexing

If the Mapped mode is used during the CREG+1 operation,
Logical MAR bits 04-08 address the MAP registers. At
the end of CREG+l, the contents of the MAP register
are strobed into Physical MAR bits 00-08 to generate

a 24-bit real address in Physical MAR (00-08) and

Logical MAR (09-23).

If the MAR is used as a destination, and the output
portion of a previously coded SelBUS transfer is not
complete, the CPU enters an automatic WAIT condition.
This action is necessary to prevent the destruction
of the MAR contents which must be valid for the
successful completion of the SelBUS transfer.

With the Scratchpad condition, the contents of the
32-Bit B-Mux are strobed into the Scratchpad location
addressed by the A-Mux. (bits 08-15). The ALU functions
are disabled during this micro-instruction.

With the Il condition, the 32-bit contents of the
DATA/ALU bus are strobed into the I1 register. The
DATA/ALU bus normally contains SelBUS data until the
'I1' or 'DI' destination term is programmed. Because
of this conflict, the Il destination must not be used
under the following conditions:

1. If a memory operand fetch is in progress

2. If an instruction fetch is in progress

3. If a Read Status Transfer (RSTX) is in progress

4., If an Interrupt Control Transfer (ICT) is in

progress,

The Il destination term sets the CPU Il full condition
and clears any pending Il conditions that may be

present.

o

m— A vy — -

- 48 -

Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value

»

Syntax

Description

DI

MARIX

The DI register condition causes the contents of the
32-bit DATA/ALU bus to be strobed into the DI register.
The DATA/ALU bus normally contains SelBUS data until
the 'I1' or 'DI' destination term is programmed.
Because of this conflict, the 'DI' destination must
not be used under the following condtions:

If a memory operand fetch is in progress
If an instruction fetch is in progress
If an RSTX transfer is in progress

. If an ICT transfer is in progress

N
« e o

The DI destination term sets the CPU DI full condition
and clears any pending DI condtions that may be present.

The Memory Address Register Indexed (19-bit condition
causes the contents of the MIN bus (bits 08-31) to be
presented to the Logical MAR. If the Nonextended mode
1s used, only bits 13-31 of the MIN bus are strobed
into Logical MAR, bits 05-23. If the Extended Indexing
mode is used, bits 08-31 of the MIN bus are strobed
into Logical MAR, bits 00-23.

If theeMapped mode is used during CREG+I, Logical
MAR bits 04-08 address the MAP registers. At the
end of CREGH+I the contents of the MAP register are
strobed into Physical MAR bits 00-08 to generate a
24-bit real address in Physical MAR (00-08) and
Logical MAR (09-23).

The content of the MIN bus is determined by the
CPU Indexing algorithms. The ALU expressions for
the Indexing algorithms are as follows:

1. MARIX=R(X)+10;
2. MARIX+R(DIX)+D1;

Of the two expressions, the first expression is

used for preindexing and the File register,

addressed by 10 bits 09-10, is added to 10 bits
13-31. The ALU output is transferred to the MIN

bus. 1f the File address provided by 10 bits 09-10
is equal to zero, the ALU Add function is changed to
a Transfer B inputs to outputs function; thus 10 bits
13-31 are transferred to the MIN bus.

-

W

Table 3-8.

- 49 -

Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax

Description

7 Cont'd.:

8 R(Y)

-y —

The second expression 1s used with postindexing and a
memory indirect cycle must have previously occurred to
load an indirect word in the DI register. In this
case, the File register addressed by DI bits 09-10

is added to DI register bits 13-31. The ALU output

is gated to the MIN bus., If the File address provided
by DI bits 09-10 is equal to zero, the ALU add function
is changed to a Transfer B inputs function; thus, DI
bits 13-31 are transferred to the MIN bus.

Either of the Indexing expressions cause the F- and
C-bit calculations to occur according to the rules
for macro-instruction memory addressing. The source
for the Indirect bit and F- and C-bits is as follows:

1. B-mux bit 11 is the Indirect bit.
2. B-mux bit 12 is the F-bit.
3. ALU bit 30 is the CO bit.
4. ALU bit 31 is the Cl bit.

F- and C-bit manipulations are managed by the Virtual
MAR., These bits are not transferred to Physical MAR
until a SelBUS transaction occurs. The actual F-

and C~-bit configuration used may be modified by the
'FRCWORD' X-order and the 'FORCZF' Conditional order.

If the MAR is used as a destination, and the output
portion of a previously coded SelBUS transfer is not
complete, the CPU enters an automatic WAIT state to
prevent the destruction of the MAR contents, which
must be valid for the successful completion of the
SelBUS transfer.

The File Addressed by Register Number Field condition
(File Write destination term) causes the output of
the ALU to be strobed into the 32-bit T-register at
the end of the CREG cycle. During the CREG+1 cycle,
the contents of the T-register are strobed into the
File register addressed by the Register Number field,
CROM36-39. The 'Y' term may be any number or name,

which is equated to a number, in the range of '0'
to 'F'.

Note: A File Write micro-instruction should not be
directly followed by a File Read micro-instruction,
since the File Write/Read actually occurs in the

the CREG+l cycle and a File/Write/Read would exist.

T AR e peaa - -

>

Table 3-8.

Value Syntax

- 50 -

Destination (D) Field (CROM20-23) Cont'd.:

Description

e ST,

8 Cont'd. R(Y)

9 R(R)

I1f the 'OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction. This
coding is necessary so that the 'OTHERBANK' X-order
is active during the CREG+1l cycle of the File Write
instruction.

Since the File Write function changes the contents
of the T-register, if a File Write wicro-instruction
is coded before a previously coded Memory Write
SelBUS transaction has been successfully completed,
the CPU enters an automatic WAIT state until the
Memory Write is complete. This WAIT state prevents
the destruction of the T-register during the Memory
Write transaction.

The File Addressed by 10 bits 06-08 (File Write
destination term) causes the output of the ALU

to be strobed into the 32-bit T-register at the

end of the CREG cycle. During the CREG+l cycle,
the contents of the T-register are strobed into

the File register addressed by 10 bits 06-08. This
destination term is used to coordinate the macro-
instruction being executed and the File registers.

Note: A File Write micro-instruction should not be
directly followed by a File Read micro-instruction
since the File Write actually occurs in the CREG+1
cycle and a File Write/Read conflict would exist.

If the "OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction so that
'OTHERBANK' is active in the CREG+1 cycle of the
File Write cycle.

The File Write function changes the contents of the
T-register. Therefore, if a File Write micro-
instruction is coded before a previously coded Memory
Write SelBUS transaction has been successfully
completed, the CPU will enter an automatic WAIT state
until the Memory Write is complete. This WAIT state
prevents the destruction of the T-register during the
Memory Write transaction.

..—-—&:“-:.

Table 3-8.

~ 5] -

Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax

Description

A None

R(X)
R(NCTR)
R(S)
R(RO)
L R(RD)
" FR(Z)

|
l B R(DIX)
|
f

"

Not Used

The File Register Address Selected by the File Read
Select field (File Write destination term) condition
strobes the output of the ALU into the T-register

at the end of the CREG cycle. During the CREG+1
cycle the output of the T-register is strobed into
the File register whose address is selected by the
File Read Select field, CROM24-27.

Refer to the File Read Select field (Table 5-9)
description for a complete description of the Field
addressing methods provided by these destination
terms. For the 'FR(Z)' destination term, Extended
Control, Register Select File addressing methods

are used and the 'Z' term must be a File address in
the range of '8' to 'F'.

Note: A File Write micro~instruction should not be
directly followed by a File Read micro-instruction,
since the File Write actually occurs in the CREG+1
cycle and a File Write/Read conflict would exist.

If the 'OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction. This
coding is necessary so that 'OTHERBANK' can be active
during the CREG+1 cycle of the File Write micro-
instruction.

Since the File Write function changes the contents
of the 7-Register, the File Write micro-instruction
is coded before a previously coded Memory Write
SelBUS transaction has been successfully completed
and the CPU enters an automatic WAIT state until
the Memory Write is complete, This WAIT state
prevents the destruction of the T-register contents
during the Memory Write transaction.

The N-Counter Upper term causes the 8-bit N-Counter
to be loaded with ALU bits 00-07 at the end of the
CREG cycle.

The N-Counter Lower term causes the 8-bit N-Counter
to be loaded with ALU output 08-15 at the end of
the CREG cycle.

(Kt

A

—r

1 -5z -
Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

E FULLMAR The Memory Address Register (24-bit) term causes the
ALU output bits 08~31 to be strobed into the 24-bit
Logical MAR at the end of the CREG cycle. During
the CREG+l cycle, the contents of Logical MAR (bits
00-08) are strobed into Physical MAR (bits 00-08),

j bypassing the CPU MAP algorithm. The FULLMAR

' destination term provides for the loading of a full

24-~bit address into Physical MAR. Since two clocks

- are required to load Physical MAR, if the 24-bit

53 address is required for a SelBUS transaction, the

FULMAR destination term must be used in the micro-

[instruction prior to the SelBUS transaction term.

If the MAR is used as a destination and the output
portion of a previously coded SelBUS transfer is not
complete, the CPU enters an automatic WAIT state to
prevent the destruction of the MAR contents, which
must be valid for the successful completion of the
SelBUS transfer.

F T The T-register destination term causes the output
! of the ALU to be strobed into the 32-bit T-register
at the end of the CREG cycle.

Note: If the T-register is used as a destination and
a previously coded SelBUS Memory Write is not complete
the CPU will enter an automatic WAIT state to prevent
the destruction of the T-register contents. The WAIT
state is terminated when the Memory Write transaction
is complete.

o : : -

——

B S5 4 ‘4

TP

- 53 -

2

3.11 File Read Select (R) Field (CREG 24-26)

The R field (CREG24-26) indicates where the file address should be taken
from in order to be able to read the 32 x 32 file. If we consider the file as
32 registers, then the R field of the microinstruction points to where we can get
the register number from for reading the Register.
For example we want to Read either Register number 0 or 1 and bits 9 and 10
of DI register contain: Bit 910
00
01

If the R-field contains the value 1 then any file read will read RO or Rl depending

on bits 9 and 10 of the DI register.

The following description gives the meaning of each bit combination and is summarized

in Table 3-9.

Note that because of hardware restriction a file read should not follow a file write

in microcode.

e S e B T —— ot Y
- ——— g TR oo i k- e - - c- - .

o .y 3 e

- 54 -

Table 3-9. File Read Select (R) Field (CREG24-26)

General:

Influenced by:

Influences:

This field dictates the selection of the source

of addressing the file for a read during this cycle.
Since a write to the file is actually accomplished
by writing 'T' into the file, during the cycle
immédiately following the DS cycle of the instruction
requesting the write, care must be taken so that no
attempt is made to read from the file in the next
instruction following a write.

Control Orders REGSEL and MPROM.

Value Syntax Description
0 R(REG NO) Register Number is in CREG36-39.
1 R(DIX)D19-10 Register Number is in DI09~10. Register DI bits 9-10
2 R(X)109-19 Register Number is in 109-110 register IO bits 9-10
3 R(NCTR) Register Number is the ones complement of register N
bits 4-7
4 R(R) 106-8 Register Number is in register I0 bits 6-8
5 R(S) 109-11 Register Number is in register I0 bits 9-11
6 R(RP)106-7 Register Number is concatenation of regist I0
bits 6-7 and 'I'
7 R(RD)106-7 Register Number is concatenation of 1006-07 and DW.
Note: This address may only be used with a
LDMARIX order in the instruction proceeding 1it.
EXTENDED Dependent upon Control Orders REGSEL and MPROM.
REGSEL T=6 or E. M=0.
FR(REGNO) The least significant 3 bits of the FR(2) field
REGS8~F ONLY are initially Zero, with the most significant bit
always a One.
0 8
1 9
2 A
3 B
4 C
5 D
6 E
7 F

v A

RETIRE L Y o e

- 55 -

3,12 Y-order (Y) Field (CREG 27-31)

The microinstruction bits 27-31 are decoded from the CREG to perform various
control functions. These various functions and the bit combinations are shown in
Table 3-10.

3.13 X-order (X) Field (CREG 32-35)

Like the Y-order field, microinstruction bits 32-35 are decoded from the CREG

to perform various control functions in the data structure of the 32/75 computer.

However this field is forced to NOP (inactive) if the T field has the value 3, 4 or

5. The various functions with the respective bit combinations are shown in Table 3-~18.

Besides being used as the X-order field, mocroinstruction bits 32-35 are decoded
for these other purposes:

a) U-Order

b) W-test

c) S-test.

These uses of bits 32-35 are explained in the following sections.

.;&ﬁm. e e E et

T T e mae e

E | - 56 -
' ' Table 3-10. Y-Order (Y) Field (CREG27-31) (2)

: Influenced by: None
! Influences: None
Value Syntax Description
i 0 NOP This field is inactive, the default value
i SHIFTS This value causes the S-register to shift one bit position
i in the direction specified by the Shift Field. The vacated
i< , "bit is filled as specified in the shift code.
o 2, LITERAL (LONG) This value indicates that a long literal is to be used.
- (LITL) The literal is constructed as described under the A-Mux
section.
3 FILLEXP This order is used in conjunction with floating-point and

causes the output of the B-Mux to force BMUX0 into
positions BMUX01-07. This action eliminates the floating-
point exponent and results in the ALU input being a cor-
rectly signed 32-bit mantissa.

4 BMGMR This order gives control to the Bit Mask Generator (BMG) so
| that the byte decoded from I014-15 and/or the indexing
logic can be selected. Bit selection within the byte is by
decode of I1I006-08.

5 SETCAR This order saves the carry-out of the ALU for later use in
computing the most significant half of a doubleword operation.

6 USECAR This order uses the previously saved carry (SETCAR) to supply
the carry into the ALU.

L}

7 WRPMAP This order causes bits 16-31 of the file output to be written

into the Protect register addressed by MAR(05-08.
» 8 RELSW This Read Least Significant Word order is used with the

hardware Floating-Point.

9 RSTFP This order is used to reset the hardware Floating-Point.

TSFILL This order causes the sign bit (TREGCO) to be used as the

f11l bits when a T-register right nibble shift is selected
by X-order NIBLT.

B INCRN This order causes the N-Counter (NCTR) to be incremented
by 1.

C RSTRHF This order resets the Right Half Flag (RHFLG) flip-flop.

D INHLHW This order inhibits the write into bits 00-15 of the file.

E INHRHW This order inhibits the write into bits 16-31 of the file.

F CLKDIV This order causes SREGOO to be clocked into the least

significant bit of the Quotient register.

T N A ettt b i W0 o gt o -

- 57 -

Table 3-10, Y-Order (Y) Field (CREG27-31) (Cont'd)

Value Syntax Description

10 SELSPARE This order selects the Quotient register on the Data bus in
positions 16-31, Bits 00-15 are unspecified, and the ALU
and scratchpad are disabled during this cycle.

11 RESETFF This order resets all three groups of Level orders.

12 SAVESIGN This order causes the sign bit of the ALU (bit 00) to be
clocked into a flip-flop for later examination by the
test condition structure.

13 Not Used

14 UPACK User Panel Acknowledge (Clear Serial and Parallel panel
interface).

5 CLRTO This order clears the Bus Timeout flip-flops and sets the
Ready Pending flip-flop.

16 RETAEXP This order clears the Arithmetic Exception Pending flip-flop.

17 Not Used.

18-1F These orders used in conjunction with CREG40-43 to control

SelBUS transactions as follows:

Y~Order CREG40-43 Transaction
19 8 FETCHPC (also increments PC
by 4 or 1 word)

1C 1 ICT

1c 4 RSTX

1cC 8 READ

1C A READ AND LOCK

1D FETCHV (Fetch Imnstruction If

Not Indirect, DRT —3I1. Fetch
Indirect Word If Indirect,

DRT—$DI).
1E 0 WDOT
1E 1 AICT
1E 4 ARSTX
1E 8 WRITE

[——

mhuho.

- 58 -

Table 3-11. X-Order (X) Field (CREG32-35) (2)

General:

Influenced by:

.1Influences:

The Basic Test Codes 02, 4, 6-F, and U-Order flip-flop.

The X-order does not exist if basic test codes 3 or 5)
have been selected in this instruction. These bits address
the W-test field (when selected) and the X-field is forced
to a NOP. The Enable U-Order flip-flop must be reset
(F/F=0).

Value

Syntax

Description

NoP
FRCWORD

L
TNIBR

SHIFTDI
BLKCARS
TOGRHF

SDEST

11TOIO
PCTOMAR

SHIFTIO

RDLOCSTR

FIXEXP

|

This field is inactive (default)

The SEL transaction requested in this microinstruction is
forced into the Word mode, regardless of the F- and C-bits
of the computed address.

This transaction causes the T-register (TREG) to be nibble
shifted in the direction specified by the shift code. The
vacant nibble is filled with zeros if the direction is left,
and with the contents of SREG28-31 if the direction is
right.

This transaction causes the DI bit to be shifted as deter-
mined by the shift code.

With this transaction, no carry propagation is allowed
between ALUO8 and ALUO7.

This transaction causes the RHFLG flip-flop to assume the
state opposite its current setting.

This transaction causes the output of the ALU to be trans-
ferred into the S-register (SREG). This action dupli-
cates the choosing of the SREG as the Destination regis-
ter in the Destination field. It also allows the SREG

and another Destination register to obtain the ALU data
simul taneously.

This transaction transfers the contents of Il into IO.

This transaction transfers the contents of the Program
Counter (PC) into the virtual Memory Address Register (MAR).

With this transaction, I0 16-31 replaces I0 0o-15 for exe-
cution of right halfword instructions. 10 16-31 receives
I0 00-15 except for I-30 which receives a logical Zero.

The Read Local Store order enables the scratchpad contents
(required for a read or write) to be outputted onto the
Data bus (DBUS). This ALU and SELSPARE commands are dis-
abled during this cycle.

This transaction is used with floating-point. If the T-
register (TREG) is negative, the most significant byte of
the ALU B input is complemented, and the three least sig-
nificant bytes are passed straight through. The micro-
word must supply the F=B function, and the result should
adjust the exponent from positive to the sign of the result.

B -

PR—

- l““ \\
- 59 -
Table 3-11, X-Order (X) Field (CREG32-35) (Cont'd)
Value Syntax Description
C SETRHF This transaction causes the Right-Hand flag to be set.
OTHERBANK This transaction causes a single cycle switch of the register
bank setting. This switch is effective during the CREG
cycle of the OTHERBANK command and therefore, effects the
read specified in this command or the write specified in
the previous instruction.
BMUXSE This transaction causes bit 16 of the B-Mux output to fill
bits 00-15 for sign extension of halfword operands.
BMUXZE This transaction causes bits 00-15 of the B-Mux output to

be unconditionally forced to Zeros.

e attar - [T e A SR TR) LY Pt

T I T ARSI " B - . s 4 -

- 60 -

3,14 U-order (U) Field (CREG 32-35)

When the Enable U-order flip=flop is set then microinstruction bits

32-35, decoded from the CREG are interpreted as the U-order. The meaning ,

’

of the various bit combinations is then as given by Table 3-12 not table

3-11. This multiple use of the same field does not need to confuse the

person writing microcode,

One only need to be sure that the condition

for interpreting the field in the way desired is fulfilled; the hardware

takes care of the rest.

The enable U-order F/F is reset using microcode when H=5, P=0 and

T=0.

See Figure 3-6 Below and microinstruction bits 36-39.

P

c

H

36 37 38 39 40 41 42 43 44 45 46 47

14 600 ----0000

Figure 3-6 .

Enable U-Order

*If bit 36=0 then the
FjF is set, else it is
reset!

v

- 61 -

Table 3-12. U-Order (U) Field (CREC32-35) (2)

General: The Enable U-Order flip-flop must be set (F/F=1),
otherwise the X-order test will be performed.

Value Syntax Description

0 NOP This field is inactive.

1 RUN This order causes the Run/Halt flip-flop to be set to
the Run state.

2 HALT This order causes the Run/Halt flip-flop to be set to
the Halt state.

3 RESETIO The Reset 1/0 order causes the SelBUS interface to poll
the 1/0 reset line on the bus to reset the 1/0 controllers.

4 RSTPROTV The Reset Protect Violation order resets the Protect
Violation and MAP Invalid flip-flops.

LDMAP The Load MAP order loads the MAP registers.

6 RDMAP The Read MAP order enables the MAP mux (B-Mux),

- LDWCS The Load Writable Control Storage order loads the WCS
registers.

8 RDWCS The Read Writable Control Storage order enables the WCS
Address Interdace flip-flops.

9 LDSTOP The Load Stop order is used to clock the Stop Address
compare "A" and "B" circuits.

A RDLOCSTR The Read Local Store order enables the output of the

. scratchpad (required for Read or Write) onto the Data

bus (DBUS). The ALU and SELSPARE commands are disabled
during this cycle.
Not Used

C Not Used

OTHERBANK This order causes a single cycle switch of the register bank

setting. This switch is effective during the CREG cycle
of the OTHERBANK command and, therefore, effects the read
specified in this command or the write specified in the
previous instruction.

E BMUSE The B-Multiplexer Sign Extend order causes bit 16 of the
B- Mux output to fill bits 00-15 for sign extension of
halfword operands.

F BMUXZE The B-Multiplexer Zero Extend order causes bits 00-15 of

the B~ Mux output to be unconditionally forced to Zeros.

- 62 -

3,15' W-Test (X) Field (CROM 32-35)
’ When the T field (CROM 00-03) has the value 3 or 5, then microinstruction bits
32-35 are interpreted as W-test field. This field is decoded from CROM. Both the
X-order (Table 3-11) and the U-order (Table 3-12) are disabled when the W-Test is
selected.

The various tests selected by the bit combinations is given in Table 3-13.

The Enable U-order flip-flop must be reset (F/F=0) and T=3 or 5 for the W-test

to be executed.

) -y
e g et e e e e —_—

. - Rt i U oy

- 63 -
| Table 3-13. W-Test (X) Field (CROM32-35) (2)

» Influenced by: The Basic Test (T) Field (CROMOO-03) values 3 and 5.
i Influences:
' . General: The W-Test field is interpreted out of CROM and disables

the X- and U-order fields during the DS cycle of the
instruction.

Value Syntax Description

0 EXTLW This condition is met if one of the following conditions
exist: INSTTIMEOUT, OPNDTIMEOUT, INSTNORESP, OPNDNORESP,
MUXINSTER, MUXOPNDER, NOTRUN, FFINT, FFSYSR, PWRFAIL,
IPLSW, UPNLATTN, or PROTV.

1 SIGNSAVE This condition is met if the sign saved during the last
f' SAVESIGN order was negative.

2 ALUNEGW This test is met if the sign bit of the ALU in the second
preceding instruction was One (negative).

3 FFRUN This test is met if the Run/Halt flip-flop is in the Run
state.

4 BMUX00 This test is met if bit 00 of the B-Mux was Zero.

Note: Although most tests cannot be performed in the in-
struction immediately following the creation of the value,
because of the pipelining of the processor, the B-Mux
tests indicated by * must be performed during the next
executable instruction. Data being tested on the B-Mux
is in complement form.

5 NORC This test is met based on the contents of the PROM which
examines ALU00-07.

6 ' Not Used

LFCIV This test is met if bit 30 of the F- and C-bit extension
of the MAR is a One. This bit normally corresponde to
the most significant C-bit in a memory address.

BMUX16 This test is met if bit 16 of the B-Mux is Zero.
BMUX17 This test is met if bit 17 of the B~Mux is Zero.
BMUX18 This test is met if bit 18 of the B-Mux is Zero.
BMUX19 This test is met if bit 19 of the B-Mux is Zero.

LATERRW This command indicates that a SelBUS operand fetch parity
error or an arithmetic exception occurred during a previous
instruction; or that an instruction fetch parity error or
instruction has occurrad with the current instruction.

~

O w »>» W ®

D DWORD This test is met if the previous transaction was a double-
word operand.

E HWORD This test is met if the previous transaction was a half-
word operand.

F BYTE This test is met if the previous transaction was a byte
operand.

- 64 -

3.16 S-test (X) Field (CROM 32-35)

CROM bits 32-35 are decoded 4s the S-test field when CROM 00-CROM 03

(T field) has the value 4. Only the true condition is tested in this field.

The bit combinations that define the various tests are given in Table 3-17.

q
3.17 Summary of Use of Microinstruction Bits 32-35

We summarize the various conditions that are used to interpret micro-~

instruction bits 32-35.

Conditions Bit 32-35 Meaning
T field (CROMO0O-03) Enable U-order F/F
0,1, 2, 6, 7 0 X-order
don't care 1 U-order field
3or 5 0 W-test field
4 0 S-test field

PO

PP SR ——--r T - S oA

- 65 -

Table 3-14. S-Test (X) Field (CROM32-35)

Influenced by: The Basic Test Field (CROMOO-03) value of 4 only.
There are no provisions for S-Test False.

Influences: None

Value Syntax . Description

0 ZBLKTIMEOUT No interrupt block mode timeout has occurred.

1 ZWCS Writable Control Storage not enabled.

3 Not Used

4 Not Used

5 Not Used

6 Not Used

7 Not Used

8 UNBLOCK The external interrupts are not blocked.

9 Not Used

A ENBL.AXEP Enable Arithmetic Exception flip-flop is set.

B Not Used

c MODE75S The CPU PSD mode flip-flop is set.

D Not Used.

E Not Used.

F EXTMAPERR The External MAP Error (Map Write Protect Violation)

test is presently not being used.

O T et oy

S T

etid

Sow L e T S

- 66 -

q

3,18 Microinstruction Bits 36-39

‘Bits 36-39 of the microinstruction has multiple use depending on the

value in the T, S, Y fields and CREG 44-47, These are summarized below:

Meaning of Bits 36-39

1. Z-test field
2. Flip Flop Group ! Field
3. Flip Flop Group 2 Field
4. Flip Flop Group 3 Field
5. Extended Test (PC) Field
(CROM 36-43)
6. FPU orders Group 2
7. Branch address (CROM 35-47)
8. Literal generation
(CROM 36-43)
9. CC Select (P) Field

3.18-1 Z-Test (P) Field (CROM 36-~39)

Microinstruction bits 36-39 are decoded from CROM as Z-test if the T

field (CROM 00-03) has value 2 or 6.

various bit combinations.

Condition

T=2, 6, A or E

C-order (CREG 44-47) =4
C-order =5

C-order =6

T=1 or 9

T=D
S (CROM 04-06)2 4
Y (CREG 27-31) =02

M=1 or S<4, (CREG 44-47)

=] and the presence of a conditional
test.

Table 3-15 gives the meaning of the

i

e
‘

- 67 -

Table 3-15. Z-Test (P) Field (CROM36-39) (2)

Influenced by:

Basic Test (T) Field (CROMO0-03) values of 2, 6,
A, and E.

Influences:

General: This test 1is selected when primary test CROMO-3
specifies a Z-Test true or false.

Value Syntax o Description

0 TRUE This test is always met.

EXTL This condition is met if one of the following conditions
exists: INSTTIMEOUT, OPNDTIMEOUT, INSTNORESP, OPNDNORESP,
MUXINSTER, MUXOPNDR, NOTRUN, FFINT, FFSYSR, PWRFAIL, IPLSW,
UPNLATTN, and PROTV.

2 NHMPREV This condition is met if the bit supplied during the last
Multiply PROM order was Zero.

3 MODE?75 This condition is met when the 75 Mode flip-flop equals
One.

4 SIGNSAVEZ This condition is met if the sign saved during the last
SAVESIGN order was negative.

5 CCTEST This condition is met if the user addressed test of the
Condition Codes (CC's) is true.

6 LATERRZ This condition, when met, indicates that a SelBUS operand
fetch parity error or arithmetic exception occurred during
a previous instruction, or that an instruction fetch parity
error or instruction nonresponse (nonpresent memory) has

. occurred with the current instruction.

7 ALU4-72Z This test is met if ALU bits 4-7 are Zero.

8 ALUNEG This test is true if ALU sign bit (ALUOO) is One.

9 NCTRZ This test is true if NCTR00-07 is Zero.

A RHFLAG This test is true if the Right-Hand flip-flop equals one.

B NCTR4 This test is true if N-Counter bit 04 is One.

c INDIR This test is true if the indirect bit was set by the last
MARIX Destination order.

NCTRC This test is true if NCTR bit 00 is One.

E FC1V This test is met if bit 30 of the F~ and C-Bit Extension
of the MAR is a One. This bit normally corresponds to the
most significant C-bit in a memory address.

F Not Used.

s TETTT T TR VK | AT ey T s e e ——— - ave s

D

- 68 ~

3.18-2 Extended Test (PC) Field (CROM 36-43)

When the T field has the value 1 or 9 bits 36-39 are combined with bits 36-43

to become the Extended Test (PC) field. This field is decoded from the CROM. The ’

various tests selected by the bit combination are given in Table 3-16.

3.18-3 Flip-flop Field

When the C-order (CREG 44-47) has the values 4, 5 or 6, bits 36-39 is defined
as the flip~-flop field.

The flip/flops are divided into three groups:

4 selects groups 1

CREG 44-47 = 5 selects groups 2

= 6 selects groups 3

Bit 36 is used to set or reset the selected flip-flop while bits 37-39 are used as

Ty
the address of the F/F. That is when

Bit 36

1 The F/F selected by bits 37-39 is set to 1
0 The F/F selected by bits 37-39 is reset to 0.

The various flip flops selected in each group are shown in Tables 3-17, 3-18 and 3-19.

]

3-16-4 FPU Orders Group 2 (CREG 36-39)

Do
When the T-field (CROM 00-03) contains D (1101) microinstruction bits .
36-39 are used for floating point operations.

The various operations are
defined in Table 3-20,

L T

B Y R EVEE B

PR

I

Yivie B~

2
-

Lﬁ:;;}'ﬂé uFH

|

e

A

oy

F]‘ o

|+

- 69 -

Table 3-16. Extended Test (PC) Field (CROM36-43) (2)

Influenced by:

Influences:

General:

The Basic Test (T) Field (CROMO0-03) values of 1 and 9.

The Extended Test field allows "hops" or 12-bit externally
supplied jumps based on a total of 40 separate tests.
These 40 tests are further divided into eight groups of
four. Within each group of five tests, individual lines
or any OR subset of the give test lines may be tested.

BIT 36=0 enables the following tests addressed by bits 41-43:

Syntax

Description

HIREG

BADSCALE

IORESPRDY

IONORESP

INSTNORESP

OPNORESP

PROTV

SONETO

The File Bank Control flip-fiop test is true when the CPU
is currently using the uppper file bank.

This test is true if the Exponent field (bits 00-07) of
the last ALU operation contained a significant mantissa bit.

The 1/0 Response Ready test is met for a single cycle as

an IOM response to either an Advance Read Status Transfer
(ARSTX) or an Advance Interrupt Control Transfer (AICT)
sequence. This test indicates that the data requested has
been assembled and that the CPU can enter an uninterruptible
sequence to obtain the data from the IOM.

The 1/0 No Response flip-flop is set by the SelBUS inter-
face to indicate to the system that the I/0 transfer

% attempted had no response (i.e., there was no Transfer
Acknowledge).

The Instruction No Response flip-flop is set by an in-
struction fetch to indicate to the system that the in-
struction attempted had no response.

The Operand No Response flip-flop is set by an operand

read to indicate to the system that the operand attempted
had no response.

The Protect Violate flip-flop is set when the hardware
detects a write in protected memory and changes that

write to a read. The flip-flop is reset by a Reset PROTV
order. (V value of 4)

S-register bit 0 is not equal to the T-register bit 0
(the sign bit is different).

BIT 37=0 enables the following tests addressed by bits 41-43:

PRIVBIT

PWRFAIL

Privileged Bit. When the Privileged Bit flip-flop is O,
the system is operating in the privileged state.

The Power Fail signal warns of impending power loss. This
signal allows the system to placc volatile information into

core. The volatile information will be utilized when a
restart command is executed.

TR TSRS e, TT PRI T T -

PR

Skt WP @ N N R

L

O

PR wdidie ke

&"3'!' -

— e e —
LI .

Ll

LD st o - - e

- 70 -

Table 3-16. Extended Test (PC) Field (CROM36-43) (Cont'd)

Value

Syntax Description

UPREQ The User Panel Request signal indicates that the user
panel (Turnkey Panel) has information to be transmitted
to the CPU, The panel keeps this line high until it
receives a User Panel Acknowledge (UPACK) signal. The
UPACK signal indicates that the firmware has accepted
the input.

TOCHBUSY The I/0 Channel Busy signal indicates that the response
to an I/0 transfer was "Channel Busy."

TO3SIG The "To 3 Signal" test indicates that the values of
TREGOO and TREGO3 are different, implying significance to
TREGO3 (used for normalizing).

BIBUSY The Bus Interface Busy signal comes from the SelBUS inter-
face to the firmware. This signal indicates that the SelBUS
interface has outstanding transactions to be completed/

LATERR The Late Error signal indicates that a SelBUS operand
fetch parity error or arithmetic exception occurred during
a previous instruction; or that an instruction fetch parity
error or instruction nonresponse (nonpresent memory) has
occurred during a current instruction.

AEXP The Arithmetic Exception condition is true when the
Arithmetic Exception flip-flop is set.

BIT 38=0 enables the following tests addressed by bits 41-43.

AN s W

EXFLAG The Execute Flag flip~flop is used by the firmware to
indicate that it is an execute command.

UARTTBMT ¢ The UART Transmitter Buffer Empty condition indicates
that the UART Transmitter buffer is empty and ready to
receive additional information.

FFINT The Interrupt flip-flop records the status of the external
interrupt circuitry. This flip-flop is set by an Input/
Qutput Micrqprogrammable Processor (I0M) winning the poll
and requesting an interrupt. It is reset by either no one
polling or the poll winner not requesting an interrupt.

IOTIMEOUT These three tests indicate that the SelBUS interface received
INSTTIMEOUT a response in a read transfer, but an inordinate amount of
OPNDTIMEOUT time has passed without a Data Return Transfer (DRT).

FLAG The Flag flip-flop is used by the firmware to flag
internal events.

INTRENA The Interrupt Enable flip-flop is set.

BIT 39=0 enables the following tests addressed by bits 41-43.

TRACE ’ The Trace flip-flop is a firmware flag used to trap the
firmware out at location 0. This firmware flag has a
variety of meanings, which are determined by the setting
of additional flags maintained in the file.

» ” ~

- 71 -

Table 3-16. Extended Test (PCH) Field (CROM36-43) (Cont'd)

1 Value Syntax Description

)

i 1 " PPATTN The Serial or Parallel Control Panel Attention test indicates
that the Serial or Parallel Control Panel needs service from
the CPU.

2 IPLSW The Initial Program Load Switch test indicates that the
IPL switch has been depressed.
3 IORETRY The 1/0 Retry test indicates that the response to an:
1/0 transfer was a Retry.
g 4 INSTMIUERR The Instruction Memory Interface Unit Error condition
R indicates that a parity error occurred during the execution
i of the current instruction.
5 OPNDMIUERR The Operand Memory Interface Unit Error condition signi-
fies that a parity error occurred during the execution of
‘ the preceding instruction.
' 6 EXTG The External Global test indicates an External Global
condition exists.
7 ADDRSTOP The Address Stop condition indicates that the Serial

or Parallel Control Panel has detected an address stop
indication. This condition is caused by the Address Stop
flip-flop being set.

BIT 40=0 enables the following tests addressed by bits 41-43.

0 UARTERR
|
1 UARTDAV |
2 FFSYSR
3 ENBL55
4 SERIAL PANEL

- P -

The UART Error test indicates that a UART error has
been detected.

The UART Data Available test indicates that an entire
character has been received and transferred to the UART
Receiver Holding register.

The System Reset flip-flop is set by a System Reset
command. It remains set until the firmware issues a Clear
Systems Reset (CLRSYSR) order. This condition indicates
that the firmware has completed its portion of system
initialization.

The Enable 55 option automatically enables the 55 mode.
If this option is not used, the 55/75 mode is selected
by IPL or Program Control.

The Serial Panel option allows information to be entered
from the Serial Panel. If this option is not used, data
must be entered from the Parallel Panel.

> -—

N PR

-

s

RN

.*’

B

--‘-"*--—m& -t
- 72 -
Table 3-16. Extended Test (PCH) Field (CROM36-43) (Cont'd)
Value Syntax Description
5 OPRNDPE The Operand Parity Error test 1is used to perform
operand error detection (operand parity error in-current
instruction).
6 MAPINVALID The MAP Invalid test is used when an invalid MAP
condition is detected.
7 MAPMODE The MAP Mode test indicates that the MAP mode is
active.
1}

e T e M A YT L e e

1y X T —_— -

- 73 -

Table 3-17. Flip-Flop Group 1 (C-Order=4) CREG 36-39 (2)

| Flip-Flop Number Micro Listing Definition
Functional Name

0 HIREG When reset, selects register addresses
00-07, 08-0F. When set selects file
register addresses 10-1F,

1 EXFLAG/EXFF The execute Flag flip-flop is used by
the firmware to indicate that it is an
execute command.

2 PRIV Privileged Bit: When reset, enables
the Privileged mode. When set, enables
the Nonprivileged mode (User's mode).

3 TRACE Trace flip~-flop: When set, indicates
the contents of R (TRACE) are valid and
causes an external global event.

4 DPEFF Display Parity Error flip-flop (illumi-
nates Parity Error indicator on the Serial
Control Panel).

5 DINTRA Display Interrupt Active flip-flop
(illuminates Active Interrupt indicator
on the Serial Control Panel).

6 DWAIT Display Wait flip-flop (illuminates Wait
Indicator on the Serial Control Panel).
7 ENAINTFF Enable Interrupt flip-flop: When reset,
internally inhibits interrupts. When
) set, internally enables interrupts.

- 74 -

Table 3-18. Alter Flip-Flop Group 2 (C-Order-5) (CREG36-39) (2)

PR

Laven S9SN bR

wo.

Flip Flop Number Micro Listing Definition
Functional Name
0 ENAUORD) Enable U-order when set.
UARTDS UART data strobe.
2 UARTDAV UART data available condition is
set or reset.
3 MAPMODE MAP mode operation is set or
reset.
N 4 ENATBMT The UART Transmitter Buffer Empty
- flip-flop is set or reset.
Not Used
Not Used
FLAG Flag flip-flop (see Table 5-18
bit 38/6).
L]
\]
' HBEFUE -~ o~
N .) R i 0

Table 3-19.

- 75 -

Alter Flip-Flop Group 3 (C-Order=6) (CREG36-39) (2)

Flip-Flop Number

Micro Listing
Functional Name

Definition

w N O

o

MODE?5
HUNBLOCK

ENBL-AEXP

ENASORD

FPDWORD

DIS.BLKTIMEOUT

75 mode flip-flop is set or reset
Unblock flip-flop is set or reset.
Not Used

Enable Arithmetic Exception
flip-flop is set or reset.

Not Used

Enable S-order flip-flop is set
or reset,

Floating~Point Doubleword
flip-flop is set or reset.

Disable Block Timeout flip-flop
is set or reset.

L. -

i

—

el

- 76 ~

Table 3-20. FPU Orders Group 2 (CREG36-39)

General:

This Group is enabled by a D in Test field bits 0-3.

Value Syntax Description

0 NOR1 This order is used to normalize an unnormalized answer.

1 NOR2 This order is used to normalize an unnormalized answer.

2 CORRZEROW The Correct a Zero Word order is used when an operand
equals 0. When this condition occurs, the number 40 is
added as bias to the exponent field.

3 NOR4 No Operation

4 DSFPW The Disassemble the Floating~Point Word order is used to
load data into the Exponent and Fraction registers.

5 ASFPW The Assemble the Floating-Point Word order is used to
assemble the Floating-Point Word from the Exponent and
Fraction registers for transmission to the CPU.

6 MASK Tae Mask order is used to mask out bits not used for a
specific operation. Bits 29-63 are masked for single-
preci=ion and bits 57-63 for double-precision.

7 PLUSONE The Plus One order adds a carry bit to the exponent
operation.

8 Not Used

9 FP.RST This order is used to reset tiie Floating-Point.

- 77 -
3-1875 CC Select Field (P) CREG 36-39
This field is decoded from CREG bits 36-39 when one of two bit combinztions

occur in a microinstruction,
1) When control-field CROM (07-09) is set to 1.
2) S-Field (CROM (04-06) does not contain any of the values 4, 5, 6, or 7;
conditional-order (CREG 44-~47) is set to 1; and the presence of a true
test as defined by the T-field (CROM 04-03).

The various condition codes selected are definmed in Table 3-21-

i<

P %

Table 3-21.

- 78 ~

CC Select (P) Field (CREG36-39) (2)

Influenced by:

Influences None

Overlayable CREG. from Decode ROM

General: This field exists when either of two situations occur.
The first is the presence of Control Order 1 (overlay

CC's); the second is the absence of Sequence Orders 4
through 7, the presence of Conditional Order 1 (Set CC's),
and the presence of a true condition as defined by the

basic test field and appropriate subtest fields (Z2-Test

W~Test, and Extended Test).

Value Description SYNTAX CCl cc2 CcC3 CC4

0 Arithmetic & Logical AL Arith Ovflow Result Pos Result Neg Result=0
Left Arithmetic Shift V Shift Ovflow 0 0 0

2 Masked Compare E 0 0 Result=0

*3 lst Zero D 0 0 0 Result=0
(for double operands)

4 Bit Manipulation BIT Result#0 01d ccC1 01d CC2 014 CC3

5 S Reg S SRO1 SRO2 SRO3 SRO4

6 AEXP AEXP 014 cCl Result Pos Result Neg Result=0

7 Arithmetic Compare c 0 AJB A A=B

8 Floating-Point FP

9-F Not Defined

*Note: Invoking Code 3 (lst Zero) is the for lower half of double word operations.

PN

[VP

T

-79 -

3-19. Microinstruction Bits 40-43

Bits 40~43 of the microinstruction has two meanings.
| 1) When the T field (CROM 00 - 03) equals 1 or 9, bits 40-43 are combined '
; with bits.36—40 to define the extended test field.
| Otherwise it is used as
1 2) Shift select (C) field and is decoded from CREG 40-43.

When used as shift select field, a complete description of this field is

|
given in Table 3-22 (A) and (B). E

e

e

SR LI KL R BT

.

!’ Influences: None
‘_ General: This field exists when one or more of Y-Order 1 (shift
by S-bit), X-Order 2 (Shift T-nib), or X-Order 3 (shift
i DI bit) are present. It may not be present when either
o Sequence Order 5 (Br 8) or Sequence Order 6 (BR 12) is
= present unless Control Order 2 (OVLY shift) is also
: present.
The shift code specifies the direction (R or L), mode
(arithmetic or logical), and the £111 informatiom for §
and DI. T is normally used only in the double mode, with
S shifting by the A-mux; hence, the fill information for
. T is predetermined.
Bit Shift Table
Syntax Code Type Reg Involved S-Fill DI Fill
(per X, Y ord)
SLL 0 Left Logical singular S or DI 'Q! *SR31
SLC 1 Left Circular singular S or DI SROO *SR31
SLLD 2 Left Logical double S and DI D100 '’
SLCD 3 Left Circular double S and DI DIO0O SROO
' 5. *Left S or DT *SR31 L
5 *Left 3 or DI *D131 *SR31
SLAD/ 6 Left Arith double S and DI DIOO '’
P SLA 7 Left Arith singular S or DI 'o! ']
SRL/ 8 Right Logical A and/or DI 0! SR31
SRLD singular or double
SRA/ 9 Right Arith, S and/or DI SRO0O SR31
SRAD singular or double (sign) _
' A *Right S and DI *DI00 0" :
B *Right S and DI *DI00 *SRO0 ;
SRC c Right Circular singuldar 'S and DI SR31 *x']°? A
SRCD D Right Circular double S and DI D131 SR31 .
E *Right S or DI *DI00 x'Q° v
F *Right S or DI *1Q" x1]! f
*Note: These codes and associated fill information are not used for 86 Emular
;
’ i
‘ 3
m - — e 4
i
- e

‘3.19.1 Shift Select Field (C)

- 80 ~

This field is decoded from CREG bits 40-43.

presented in Table 3-22.

A description of this field is

Table 3-22A. Shift Select (C) Field (CREG40-43)

Influenced by:

Overlayable CREG, from Decode ROM

-~

LY

=

- 81 -

Table 3-22B. NIB Shift Table

Note that the S-Reg Nibble shift is accomplished by the A-mux paths indep endently
of the Shift Code and the Shift T-order.

Shift Code Type T-Fill Nibble
0 through 7 Left 'o’
8 through F Right SR28-31
A-mux Code Type S-Fill Nibble
2 Left TR0O0-03
3 Right arithmetic SROO (sign bits)
Additional Left Shift S-Reg Path (A-Mux Code 1)
Assembler Shift Type A-Mux 31
Syntax Code (Fil1l1 Bit)
SLL 0, 8 Left Logical singular 'o' A-Mux 00-30=SR01-31
SLC 1, 9 Left Circular singular SROO " " " "
SLDD 2, A Left Logical double DIOO " " " "
SLCD 3, B Left Circular double D100 " " " "
- 4, C *Left *D131 " " " "
- 5, D *Left *DI31 " " " "
SLAD 6, E Left double arithmetic DIOO " " " "
SLA 7, F Left double arithmetic 0! " " " "
*Note: These codes and associated fill information are not used for 86 Emulation.
)
—— g - T TR T TTTO LITwm et TP ERRAC e L SISl m a eem L e s e sl L ety weran:

- 82 -

3-20. Microinstruction Bits 44-47

Bits 44-47 of the microinstruction play a dual role:

They are used as

1) The Conditional Orders (PCH) field

or 2) The FPU orders Group 1.

3-20-1. Conditional Orders (PCH) Field (CREG 44-47)

If bit 04 of the S-field (CROM04-06) is set to O and T field does not equal

to 8 or D then microinstruction bits 44-47, decoded from the CREG are interpreted

as the Conditional Order field.

The various conditional orders are described in Table 3-23.

The relevant microinstruction bits are illustrated in Figure 3-7

'
i

e

Jracma S B Ly oA .

B

|

‘\\ -
! - 83 -
{
Table 3-23. Conditional Orders (PCH) Field (CREG44-47)
[

Influenced by: Basic Test (T) Field (CROMOO-03) and Sequence Control
(5) Field (CROMO4-06) Value of 0 through 3.

Influences:

General: The Conditional Order field exists if the Sequencing field
contains codes 0 through 3, and the order is issued only if
the test condition was met during the CROM cycle of this
command. The S-Field must not equal 4 - 7.

Value Syntax Description

4] NOP This instruction implies that no sequence change is to be
made, regardless of the addressed test condition status.
The Conditional Order field is the only part of the cir-
cuit which uses the test result.

1 SETCC This instruction conditionally causes the Condition Codes
to be set as requested by the CC Select Field (See Table
5-23).

2 FORCEFZ This instruction conditionally forces the F-bit to Zero in
the current memory read. It is used by floating-point
commands where the F-bit is part of the op code.

3 CLRSYSR/ This instruction conditionally clears the System Reset

IGNSTOP flip-flop and sets the Disable Address Stop flip-flop.

4 ALTERFF1 This order conditionally causes the setting or resetting of
one of the eight General Purpose (GP) flip-flops. The Flip-
Flop field (CREG36-39) provides the input to the flip-flop
in bit 36, and flip-flop address in bits 37-39. (Group 1)

5 ALTFRFF2 This order conditionally causes the setting or resetting of
GP flip-flop 2. (Group 2)

6 ALTFRFF3 This order conditionally causes the setting or resetting of
GP flip-flop 3. (Group 3)

CLRS This order conditionally clears the S-register.

8 ABSDI This order, in conjunction with a microstep of DEST=(HDI,
changes the function to DEST=0-DI if DIOO is One; there-
fore, the ALU output is the absolute value of DI.

9 ABST The Absolute Value of the T-register order, in conjunction
with a microstep of DEST=04+TREG, changes the function to
DEST=0-TREG if TREGOO is One; therefore, the ALU output is
the absolute value of TREG,

A DIVIDE This order changes the ALU function from + to - if S-regis-
ter bit 0 is Zero.

B MPY This order conditionally changes the ALU function from + to
- 1f HMPREV is One.

C SETXCC This order conditionally sets the Condition Codes from S-
register bits 1-4 and sets the Extended Address mode from
S-register bit 5.

CLDNU This order conditionally loads the N-Counter from ALU00-07.
CPECRN This order conditionally decrements the N-Counter.
SETAEXP Set Arithmetic Exception flip-flop conditionally.

R e A T

FIELD

- 84 -
T H
BIT 00 01 02 03--——— - 44 45 46 47
Conditional
0 0 0 0 True Orders
0 0 1 1 W-Test True 0 NOP
0 1 0 0 S-Test ! serce
0 1 0 1 W-Test False 2FORCEFZ
1 0 1 1 ALUZ “3cLTSYSR
1 1 0 0 NALUZ Zﬂ‘i@’—
0 1 1 1 NOEXTUNIV -S-AL—TWJ-"—
\ 7 ALTERFF2
Test Selected 6ALTERFF3
T Field #+ 8, D or F 7CLRS
Samsor _ _ _
apsT _ _ _
“pivide _ _
By _
CsETRCC
Deronu
E DECRN
FoETAEXP

Figure 3,7 . Conditional Orders (General)

- 85 ~

3-50-2. FPU ORDERS GROUP 1 (CREG44-~47)

When the T-field (CROM 04-03) contains the value 8, D or F, bits 44-47
become the FPU Orders Group 1.

Table 3~24 gives the meaning of each bit combination in this mode.

LTS N

P R ST

W i

v 1

""‘

- 86 -

Table 3-24. FPU Orders Group 1 (CREG44-47)

General:

This group is enabled by either 8, D, or F in Test Field
bits 0-3.

Value Syntax

Description

0 NOP

2 CORRMNG

3 DELSHF

4 OVFMOPEZ

5 COMPLAN

6 COMPLAP

7 COMPLAF

This field is inactive.

The Round order causes a One to be added to the Normalized
answer,

The Correct Maximum Nagative order corrects the answer if
a -1 has occurred as an answer.

This order speeds execution of add and subtract opefations
by using only hardware methods. This order operates
in four steps:

1. It takes the difference of exponents.

2, It shifts the mantissa with the smaller exponent.
3. 1t adds the mantissas together.
4

It checks for an overflow condition and corrects
that condition, if necessary.

This order is used by the divide instruction. It sets
the overflow flag when the divisor is equal to Zero.

This order is used when the operand is negative. When
this condition occurs, the B-register is subtracted
from Zero.

This order is used when the operand is positive. When
this condition occurs, the B-register is subtracted from
Zero. . -

This order is used to éomplement the answer when the sign
flip~-flop is set during a Multiply or Divide operation.

I XY T

R P

1 s

‘ :??

- 87 -

References

1.

WCS Users Manual
Publication No. 301-322344-00, March '79
Systems Engineering Lab. Inc.

Technical Manual
32/70 Series Computer. Publication
No. 303-320070-000, April '79

SEL32 Technical Manual

CPU Text Vol. 1-3. Publication
No. 303-322000-000, April '76.
Systems Engineering Lab.

TN

e T W e

Pr——

- 88 ~

Appendix

Included as an Appendix to this report is very useful
information on microcoding. These are taken from reference
number one and are organized as follows;

Appendix A: Firmware coding

Appendix B: WCS Firmware Techniques

Appendix C: WCS Sample Programs

- 89 -
_Appendix A

FIRMWARE CODING

INTRODUCTION

1t s _preferved that the beginning_Microprogrammer Jnitially_write_fimware_ in a_serial
manner, with one operation per microword statement. This allows for easier debugging of the~
procedure, and when the logical operation has been verified to be correct, then statements
“can be_combined for parallelism to_reduce exccution time;” "~~~ T 7T T

The beginning firmware programmer will find it enough of a_task to_Jearn the Data Structure
Speration” and control.” Ine_primary obstacle to_exercising _the parallel_power_of the 32
SERIES of Computers supporting_the WCS option is_the problem of field conflicts within the
Microword due to multiple_usage of_some_of the_fields, IThe Micro-Assembler wiil detect and_
report any field conflicts for the user who attempts to uti)ize the parallelism. However, in
disentangling these, the user risks generating 16éss efficient programs than if he had pro-
ceeded in the recommended direction of serial coding first, and then looked for the obvious
opportunities for parallel processing.

Contro} of the Data Structure_ often reguires_painstakingly_small_steps. For instance,
defining a 32-bit constant value using_a literal generator can take multiple micro-steps.
his is due_to the limitation of only being_able to specify one 8-bit byte at a time to the

“Literal_Genérator. Ip particular,_a. 4-step sequence,.similar.to the_following; Js réqu ired

—— -

o)oad"the T-register with the hexadecimal Value 12345678;

T=012000000;

T=@00340000+T;
T=000005600+T;
T=000000078+T;

In same special cases, more than one byte may be defined in a single statement by making use
of the ALU functions +1 and -1. For example,

7=00100000-1;

will produce the 20-bit hexadecimal mask OOOFFFFF,
T=BFF7FFFFF+1;

wil) produce the hexadecimal mask FF800000,

This Jevel of detatled specification fs only one aspect of concern to_the Microprogrammer.
Another significant_concern is the _elemcnt_of_timing, Referring back to the description of
the 'CROM “and CREG cycles of Micro-Instruction execution, the user can understand why the

-

following sequence is valid for checking if the S-register_is Zero.

1. NOD=S;

2. *NOP;

3. IF NALUZ *GOTO SNONZERQ;
Cycle 1: CROM 1 Implied Primary Test "If True" is successful
Cycle 2: CREG 1 Data From S-register gated to ALU

CROM 2 NOP

o e v —— . - P L e T P [.~ e

o’

- e -

- -

- 90 -
Oycle 3: CREG 2 NOP
CROM 3 Test state of ALU output, select next CROM address
Cycle 4: CREG 3 NOP
CROM 4 or CROM of SNONZERO

Thus we see that ALU tests_must be specified In the statement ¢ structions later than
tlﬁ_Etatment whiich specified the ALU function being tested.

B-mux tests differ in two ways; the state is available for testing one cycle after the B-mux
data is specified, and the .B-mug_i,s_nn&ofmseveralmmg eTements in the Data Structure,
which requires that the test be inverted. To determine if the sign bit is set in a halfword
value held in the T-register, the statement sequence might be:

1. BMUX=T;
2. IF 2BMUX16 *GOTO SIGN.BIT.SET;

Cycle 1: CROM 1 Implied Primary Test "If True" successful
Cycle 2: CREG 1 Data fram T-register gated to B-mux

CROM 2 Test B-mux output state, select next CROM address
Cycle 3: CREG 2 NOP

CROM 3 or CROM of SIGN.BIT,SET statement

This example also demonstrates that a B-mux selection can be speciffed independently of any
ALU operation, and in fact, both may be specified in a single statement:

BMUX=T,DI=5+1;

Another situation where timing of the Microengine is significant, 1s in the use of the
General File register. The following statement is possible.

R(1)=S+R(1);

That s, the same register may be specified as a sourcs of data and as a destination in a

single statement in spite of the fact that the General File registers cannot be Read and

Written at the same time., This is possible because the source file i

cycle, the data is gated from the General File register, the ALU function is performed, and
e ALU output gated ta the J-r e CR e (refer to the Data Structure,

Figure 5-47) and the data s gated into the File register from the T-register on the CREG+]l

cycle,

Some of the_implications of this General File register timing, which must be considered,

- re: P e e - ———

1. A_Genera) File Read statement may not follow_a General File Write statement. This
is because data cannot be read from and written into the General File registers s imml-
taneously. For a Write statement, the data is stored in the General File Register in
the CREG+]l cycle {which is the same as the CREG cycle of the following instruction) se
the General File register may not be sourced in the following Micro-statement., Twe
Micro-Assembler does not detect or flag an error of this type since ststements oce
independent items to the assembler.

- ——

e —a —

AD=AlG6 779

UNCLASSIFIED

FLORIOA INST OF TECH MELBOURNE DEPT OF PLECTRICAL AN==ETC F/G 14/2

IMPLEMENTATION OF THE RECOMMENDATIONS MADE ON THE TECHNICAL REPe=ETC(U)

JUN 81 J HADJILOSIOU AFOSR-G!-OIZI’)
AFOSR=TR=81=0704

- 9] -

The data written into the General File register on the CREG+l cycle is available to be
sourced from the T-register on any cycle after the CREG cycle, specifically including
the CREG+1 cycle. That is,

R(1)=S+R(1);
R(2)=1+T;

produces the same results as
R((l))=S+R(l) 3
R(2)=1+R(1),

2. he_file selection may be_specified in the data structure rather than in n_the

Micro-] Instruction.
R(R)=S*R(R);

where the (R) indicates that the file number is specified by the data in the 10 reg-
ister, bits 06-08. The File register selection {is accomplished in the CROM cycle,
which implies that the proper value must be established in 10 prior to this time. This
requires that the order 117010 must have been issved sometime previous to, but not in,
the preceding statement. An I1T0I0 order in the immediately preceding statement would
be effected in that statements CREG cycle which overlaps the CROM cycle of this state-

ment, and would not be correct for selecting the General File register in this state-
ment.

3. _The_32_General File_registers are divided 1into two banks of 16 registers each,
“addressed as 00-OF, with the NIREG flip—flop defintng which bank of 16 reglsters.

L et e S —

R(1)=S+R(1);

would source from and store data into File register 1 of the Lower Bank 1f HIREG is not
set, and register 1 of the Upper Bank if HIREG is set. It is important to note that
the HIREG flip-flop must be set or reset mnrg_LLEE.Eﬂs_illtemen&-p:Jor to this state-
ment, as the setting of the flip-flop fs done on the CREG cycle, Assuming that the
HIREG f1ip-flop is reset, the following statement sequence:

SET(HIREG) ;
R(1)=STR(1);

wil) result in File register 1 on the Lower bank being sourced and added to the S-reg-
ister with the result stored in File register 1 of the Upper Bank, because HIREG f1ip-
flop was reset at the beginning of the CROM cycle, but set on the CREG cycle of the
second statement. If the intention is to source the File register in the Upper Bank in
this situation, it could be accomplished as follows (assuming that HIREG is reset):

SET(HIREG) ;
R(1)=S+R(1) ,0THERBANK;

The OTHERBANK order is effective in the CROM cycle, when the File register 1 is se-
lected, sc the Upper Bank Rl is sourced. In the CREG cycle, when the File Write is

selected, the OTHERBANK is not in effect, but HIREG is set, so the File Write goes into
the Upper Bank also.

If HIREG §s reset and the Upper Bank regfister 1 is to be modiffed, the following se-
quence allows this without altering the HIREG flip-flop:

R(1)=S+R(1) ,0THERBANK;
OTHERBANK ;

UL

s

»

Y

i

5“&4 b ED Tobie Dk BB S TS Lt Ko Vo MM S LSR5

_l

- 92 -

. In this case, the secon! OTHERBANK Order is in effect during the CREG cycle of the

first statement, when D:stination register selection {is accomplished. A summary of
the timing for this statenent:

R(1)=S+R(1);
CROM CYQLE;

File selection of reg.ster 1 for source utilizing the state of the HIREG fl1{p-fiop and
the OTHERBANK s ignal if specified in this statement.

CREG cycle:

Data from selected File register added to S-register contents, ALU output stored in the
T-register, file selection of Register 1 for Destination, utilizing HIREG state and
OTHERBANK if specified in the following statament,

CREGH] cycle:

Data is strobed from the T-Register into the File register selected during the pre-
vious cycle,

INTERLOCKS

The Register Interlocks are another timing consideration. These are hardware imposed inter-
Tocks on the MAR, T-, DI, and Il registers, which inhibit access to these registers while
certain bus transactions are in process, An instruction attempting to access one of these

registers, when an interlock is in effect, will "hang® for one or more machine cycles, until
the interlock condition is ended,

The interlock is imposed on loading the MAR register when any Memory Read or Write bus
transactfon is initiated; this interlock will inhibit any micro-order attempting to load the
MAR (such as MAR, FULLMAR=, MARIX=, or FETCHPC) until the bus transaction f§s complete,

whether successful or not. This perfod is normally two clocks, but may be longer due to
heavy bus activity or bus memory,

An interlock on loading the T-register is imposed for any Wrfite bus transaction, from the
clock following the CREG cycle of the transfer request, to the clock following the Transfer
Acknowledge on the bus. This interlock will block any attempt to change the T-register
{such as T=, TNIB shift, or a Genera) File Write).

An interlock is imposed on sourcing the DI-register for any Read bus transaction, from the
CREG cycle of the Read request until one clock after the data is strobed into the DI reg-
ister. This finterlock inhibits any sourcing of the Dl register through the B-mux only.

SHIFTD] orders and use of DI contents for File register selection are not inhibited by the
interlock.

The I1 interlock is similar to the DI interlock, but is imposed for any instruction fetch

fron memory. When in effect, it blocks the I1TOI0 order and the JUMPZ (which implies an
117010 order).

mﬂfd‘ﬂ‘»ﬁmu e e e B

4 - — - - v < e e ———

aard Swvmu s o

t

- 93 &
o RIGHT-HAND FLAG
The Right-Hand Flag f1ip-flop {is a hardware assist to aid_in processing the halfword fn-

structions. in_the 32 SERIES Macro-Instruction set. The state of the” Right-Hand Flag
“[RHFLAG) affects several events: ~

1. A1l bus transfer requests are ignored if issued when RHFLAG is set,

2. Jhe 117010 order is not ~ffective whcn RHFLAG fs set.
3. The SHIFTIO order is not effective when RHFLAG is reset.

- e e s e Sn—— -

In addition, TOGRHF does not execute if the right half of 10 is a NOP instruction and the
EXFLAG flip-flop is set.

DATA SHIFTING

The 32 SERIES of Computers supporting the WCS option provides for a variety of data shifting
in four registers. The are S-, DI, T-, and 10 registers. In addition to these, the B-mux
supports halfword swapping of the General Ffile registers, and the A-mux provides for an

input of shifted data from the S-register. Some of the registers may be coupled for double-
word shifts.

The S-register can be shifted one bit Left, Right, or Circular by a SHIFTS Y-Order.
The DI-register can be shifted one bit by a SHIFTDI X-Order, but the DI-register is not

normally used for single register shifting because the carry-in or fill bits are not what
would normally be expected,

The S and DI-registers may be combined as a left and right pair for doubleword shifting with
the syntax element SHIFTD. This 64-bit shift may be left, right, or circular, specified by
a shift code enclosed in parenthesis following the shift order. For example,
SHIFTS(SRA);
specify shifting the S-register right one arithmetic bit.
SHIFTD(SLCD);
specify shifting the S and DI-registers as one 64-bit register left circular one bit.
The general form for the shift code is:
Left Arithmetic
S Circular [Doubie]
Right Logical

where only the "D" for double is optional, The fill bits for the various shift codes are:

SHIFT CODE S-FILL DI-FILL
SLL "0* *
SLC S00 *
SLLD D100 Q"
SLa 0100 $00
SLAD D100 0"
SLA "0* *
SRL "0* $31
SRLD ' $31
SRA S00 $31
SRAD S00 s
SRC S31 hd
SRCD D131 s31

*= Unspecified

- e
P oy

m A BRNAD il e 30143 A Fr K it K A d i ¢

~

- 94 -
Appendix B
' ﬁ‘ <
Y - WCS FIRMWARE TECHNIQUES
INTRODUCTION

The Microprogrammer writing a_WCS_routine is able to_achieve great program efficiency be-
gause his program_is in direct control of the Data Structure of "the computer CPU.” This
superior_power_is” balanced by the critical responsibility “of carefully exercising_ that
control, Once control_of the CPU_has been_ passed to_a user program_ in_WCS_by means of a_
YWCS Macro-Instruction, the WCS_routine _is_in_total_control_of the computer, The WCS pro-
.gram directs the entire Data Structure until control is yielded back to the CPU CROM firm-
ware. When running a WCS program, there is nothing in_the computer to protect it from any
program errors in the WCS program, or_take over_if the program should run improperly. _Any
.WCS. programming error_is 1ikely to_result in_a_machine "Hang" condition_which may_only be

—recovered from by a Power Down/Power Up_sequence.
STATE OF DATA STRUCTURE

The WCS programmer needs j:q_be__ _aware of two general areas:. the state of the Data_Structure
when the user obtains~coitrol, —and” the_consequences_of .any_changes to the Data Structure,

.state made under MWCS. control, When a WCS Microprogram is entered fram a JWCS Macro-
Instruction, the following conditions are known:

1. HIREG flip-flop is reset.

2. ENAUORD flip-flop is reset,

3. EXFLAG fl1ip-flop is reset,

4. RHFLAG flip-flop 1s reset,

5. Register 10 contains the JWCS Macro-Instruction.

6. Register I1 contains the Macro-Instruction in the memory location following the
JWCS, .

7. Register PC contains the address of the memory location two words past the JWCS.
8. Register MAR contains the final computed effective address of the JWCS instruction.
9. Register T contains the least significant 6 bits of the MAR, left zero filled.

10. Register T contains the hexadecimal value 1000 added to the contents of the
T-register.

11, Register DI, only if the JWCS instruction specified an indirect address, contains
the effective address of the JWCS instruction prior to any post-indexing adjust-
ment, .

.o e e
b v a

e

b i AN e D A

Qi a1t 61 vy

t

|
|

.'h“.

- 95 -

+The following general purpose registers have dedicated usage, and should not be altered:

BANK FILE LABEL CONTENTS OR USAGE

Lower 8 PCMASK DD07FFFC

Lower 9 STMASK FEO00000

Lower 12 ALEVEL Highest active interrupt
Lower 15 TRACE _Status flags

Upper 15 ZERO 0

In addition, if MAPMODE 1is 1in effect, Lower Bank general file registers 10, 11, and 13
should not be altered.

The Microprogrammer coding WCS routines may alter the contents of the_I0, MAR, BI,-J-, and
S-registers without concern. Any changes made to PC or to 11 must be compensated for either
by restoring the original values, or by substituting other valid values. At the time of
exit fram the WCS routine, I1 should contain the next Macro-Instruction to be decoded and
executed, and PC should contain the Macro address of the next following instruction. The
Microprogrammer should check and save the state of any of the flip-flops which his process
is required to alter, and he should not fail to restore those flip-flops to their original
state prior to his exiting the WCS routine.

- WCS ENTRY

The entry to WCS {is accomplished by a JUMPS Micro-Instruction in the CPU firmware segment
which processes the JWCS Macro-Instruction. Thus, upon entry to WCS, the S-REG contains the
WCS entry point, which is 100016 greater than the WCS address specified in the JWCS Macro-

Instruction, This reflects the fact that the WCS is viewed as an extension to the
CROM by the Microprogrammer, with addresses ranging from 1000 to 1FFF added onto the CROM
addresses 000 to FFF, This is in contrast to the fact that a macro-level programmer views
WCS as a separate entity, with addresses ranging from 000 to FFF. If the macro-level pro-
grammer does specify an address in the range of 1000 to 103F in a JWCS instruction, the
correct entry point §s computed because only the least significant bits are utilized in
computing the entry point.

The CPU firmware segment which processes the JWCS Macro-Instruction also contains a PUSH)
Control order, which stores in the first level of the J-Stack a CROM address to which the
WCS programmer may return. This return is accomplished with a JUMPJ Sequence order. At the
return CROM location, the CPU firmware initiates a load of the instruction pipeline regfister
(11), and sets up to decode the next Macro-Instruction, which is currently in the pipeline
register (11). Maintaining this CROM return address in the J-Stack effectively reduces from
three to two the number of J-Stack levels available to the WCS programmer. Thus he may 1ink
to and return from subroutines only two levels deep. These subroutines may be in either WCS
or CROM areas, as the J-Stack functions with 13-bit CROM addresses,

USEFUL CROM SUBROUTINES

Some useful subroutines exist in the CPU firmware, which may_be ut{ilized by the WCS Micro-
programmer. ' In order to make use of any of these routines, the user must know the exact
CROM address of ‘the routine, and assemble this address Into the user WCS routine with an $EQ
statement, The addresses of these routines can be obtained from the CPU Firmware Manual,
These routines are:

1. €D.DUD Returns immediately by means of a JUMPJ; essentlal'ly.
a one-cycle delay,

2. DOUBLE.DUD A two-cycle delay,

3. TRIPLE.DUD A three-cycle delay,

4, TEST.BIBUSY Returns one cycle after last outstanding bus transaction
campletes,

5. DELAYED.BI.BUSY.TEST Enters TEST.BIBUSY after a one-cycle delay,

| A e DA AL b 21 A i NN SBE DN DAIRMIS s L4 5. 5an 4B b ASI B’ i 4

Cm S P e W

——— e g

'»AF“

e -
B
- 96 -
- 6. MEMORY.READ Inftiates a 32-bit memory read from the address con-

N,

tained in the MAR register; returns after data fis re-
turned to DI register.
7. MEMORY.WRITE Writes contents of T-register to memory address desig-
nated by contents of MAR register; waits for campletion,

8. READ.WCS Reads an address in WCS from WCS.

Note

To use Write WCS, address is placed in the
S-register and Data is in the T-register.

In the case of Read WCS, the address is
placed in the S-register and data is returned
in the S-register.

9. WRITE.WCS Writes an address in WCS from WCS.

CAUTIONS

Certain orders should not be used in WCS firmware. These are the Extended Control orders:
REPEAT, SCALE, and NORM. These particular orders require a relatively large portion of the
machine cycle time to execute, When canbined with the time required for the RAM access to
fetch the Micro-Instruction from WCS, these orders may not complete within the 150-nanosecond
time limitation. The Read/Write of WCS from WCS cannot be accomplished using the U-Orders.

MACRO- /MICRO-LEVEL COMMUNICATIONS

Several_alternatives exist for communication of data between the Macro-level programs (soft-
v_c_are) and the Micro-level routines (firmware). B

The most direct method of communicating_data or data addresses_ js_through.use of the
Jeneral. purpose_registers.” These registers are accessible by the software as R(0) through
R(7). They-.are_also -accessible by -the-software-as~R(0)~ through-R(7). They are also
accessible to firmware as file registers 0 through 7 of the lower bank. This dua) accessi-
bil ity provides a direct means of transferring data or data addresses between software and
firmware. There is also the implication that the firmware programmer in WCS should be aware
that by altering any of these eight registers in his routine, he could adversely affect the
software program which called him,

Another means_of_communication, is by the Condition Codes. The state of these four bits may

set in firmware by means of anv of the SETCC orders. Upon return to the software level,
the state of these four bits may be tested indivudually or in combination., Thus the con-
dition codes may be utilized for transferring limited information from WCS routines to
macro-level programs.

In, the case where the amount of information to be transferred_exceeds the capability of
these methods, a_useful technique would be the argument 1ist, Jn this_method, the macro-

Yevel programmer creates a sequential 1ist_ of data and/or_data addresSes_in_memory. Jhe,

Jocation' of ~this~11st-may~ bé predefined and thus know_to the firmware routine, or it may:
be _relative_ to _thé current _contents of the PC register, or it may be passed to the fimm-
ware routine in one of the general purpose registers, rmware_rout in€_ in WCS may_ then,
acquire the data’ it requires” by means of successive memory accesses. Jt_may also store,
tomputed results” in allotted list entries, or in memory locations designated by a_list
entry. ' DO STRIIED 0P YL)

Another possible means _of. passing data from software to fimware is within the JWCS state-
went itself, Since the JWCS op code,_ index register designation, and indirect bit occupy
bits O through 11 -in .the .instruction,. and the WCS entry point occupies only bits 26
through 31, the programmer has available bits 12 through 25,_ Information {in these bits,
Is" available to the firmware routine because the entire JWCS fnstruction is held in the
Decode register (10). : coT T

- 0.0

oh. ¢ i T S

¥y F

it

1 ¥ B

[

Eib.an lf‘e‘:f [s

<

- 97 -

Appendix C

WCS SAMPLE PROGRAMS

INTRODUCTION

This section contains_a_collection of WCS coded routines for use in_assisting the user in
_!ritlng Hv'croprog&ms in WCS,

SAMPLE PROGRAM 1

This frogv:am function is to invert the order of bits in @ general purpose register; e.g.,
Yo put the™valué of bit 00 in place of bit 31, the value of bit DI 5a prace of it 305 and
so forth until all 32 bits have been moved. This function is used in some signal processing
applications and in machine conversions.

The algorithm is straightforward. Each bit is checked, copied into the result, and then
shifted in opposfite directions. A flowchart representation of the program is presented in
Figure 10-1. The first and final program generations are shown on Figures 10-2 and 10-3.

The N-Counter, the obvious choice for count control, is so used here, Less obvious is the
choice of registers to shift,

The choice of registers is based on the fact that specific bits may be checked in the B-mux
in the first Micro-Instruction following a data transfer through it. Referring to the Data
Structure (Figure 5-2), only the DI and T-registers are available for use. It is desired to
shift 1 bit at a time, so the selectfon is Timited to the DI register. The T-register is
directly shiftable only by 4-bits at a time. The target value register is then selected,
The T-register and the S-register are available, but since the S-register is the only one
capable of 1-bit shifts, it is the register selected., The T-register is then left to hold a
single "ON* bit for generation of the target.

In the implementation of this program, the first three Micro-Instructions (refer to the
bit-swap program following this discussion), lines 12, 13, and 14, are used to set up
initial conditions in the structure. The use of NU= at line 13, rather than NL= is merely
an historic convention.

Inside the loop, 1ines 15-18, the input data from the DI register fs gated so it can be
checked quickly. In line 15, the DI register is shifted, which takes place independently of
and apparently after the NOD=DI transfers. Checking further in the flowchart (Fiqure 10-1),
it is discovered that the noncompeting, invariant operation N-1— N (Bubble J) could be
executed in the same Micro-Instruction with Bubbles E and F. The shift of the DI register
is Left Logical, which disregards the old bit 00 and shifts a Zero into Bit 31,

In line 16 the old DI register bit 00 is checked, having been Zero as it was transferred
through the B-mux in the preceding Micro-Instruction. Note here that the condition is true

and thus the branch is taken when BMIX00 s Zero (this is an opposite sense to the typical >
logical test). 1
Since the S-register is cleared in line 14, it can be ignored if 1t is desired to place a .;‘ f
new Zero into the S-register. Otherwise, a single bit is copied from the T-register into o
the S-register, bit 00, This is done by using the ALU, A-mux, B-mux, and the Destination 1 1
order $=S: T, which merely reloads the S-regfister with the logical summation of the S- and 3}
T-registers, * ’
Under this plan, the new bit 00 data is moved further and further to the right until the ll
S-register is filled. Line 18 accomplishes this plan by shifting the S-register Right F
- 1
.— »)
¥
. -
T A T -2 b = DBy il SN SR ’

N o

L

4

gy

:
D

ENTRY IS INDIRECT THROUGH A *GOTO
IN WCS ENTRY VECTOR AREA (LOCATIONS D-83)

[+ R(7)—~ DI

K J

M PATTERN —T

§¢__~

CHECK MsB
OF DI <

v

SHIFT D! LEFT
ONE PLACE

" MERGE T PATTERN
INTOS
SHIFTS
! RIGHT ONE PLACE
3 N1—=N
X
NO
L ves
L S—R(6)

~

Figure 10-1. Sample Microprogram 1 Flowchart

R, ST et A 0 HL 3L b . 0 e e

—— e

b

- 99 <

JOB MICRORUN

ASSIGN] BO=CC1

SEXECUTE MICRO ,
$USE DEF.75F;
*GOTO BITINV;

{
- MICROROUTINE WHOSE FUNCTION IS TO DO A BIT BY BIT SWAP

* OF THE CONTZNTS OF R7.

* EXAMPLE, THE CONTENTS OF BIT O ARE MOVED TO BIT 31,

* THE CONTENTS OF BIT 1 ARE MOVED TO BIT 30, ETC
* NOTE: THIS PROGRAM HAS A BUGI

BITINV DI=R(7);

NU=820000000 sCOUNT OFF 32 BITS FOR SHIFT

T=80000000,CLRS ;SET NEW BIT INTO T AND CLRS S
BT2BT2 NOD=DI,DECRN,SHIFTDI(SLL) ;

IF BMUX0O *GOTO $+2 sCHECK FOR BIT ON

S=S:T sBIT WAS SET MFRGE A NEW ONE INTO THE RESULT
SHIFTS{SRL),IF %NCTRZ *GOTO BT2BT2 s

R(6)=S,*JUMPJ ;DONE--RETURN’SHIFTED BITS TO R6 AND
SHIFTDI(SLL) H
$END

$ASSIGN1 BI=CCl
$EXECUTE MICROLD1
$OPTION 2 5
$EXECUTE ASSEMBLE
PROGRAM TESTWCS
* PROGRAM TO TEST WCS ROUTINE WHICH IS TO INVERT THE
- BITS IN R7.
INPDTA DATAW X'0F5A6670" INPUT PATTERN
OUPDTA DATAW 0 OUTPUT PATTERN
START BOUND 1

LW 7,IKPOTA
TRR 7,4

* JWCS 0
NOP TO FIT ONTO PROPER BOUNDARY
GEN 16/X'FAGO’ ,16/X'0000° FAKE WCS INSTRUCTION
STW 6 ,0UPDTA SAVE RESULT OF WCS ROUTINE
LW 5,=C'JWCS’
CALM X'57° ABORT TO FORCE CORE DUMP
END START

$EXECUTE 60

$E0Y

$$

- e e+ e

Figure 10-2. First Geperation of Bit Swap WCS Routine

[y

B I e e L

L FERCA PPN o i I VY

- oap v

. - 100 -

$J0B MICRORUN2
$ASSIGN1 BO=CCl
$EXECUTE MICRO
$USE DEF.75F;
*GOTO BITINV;

MICROROUTINE WHOSE FUNCTION IS TO DO A BIT BY BIT SWAP
OF THE CONTENTS OF R7.
EXAMPLE, THE CONTENTS OF BIT O ARE MOVED TO BIT 31,
THE CONTENTS OF BIT 1 ARE MOVED TO BIT 30, ETC
THIS 1S A FIXED VERSION OF THE EARLIER VERSION
THE EARLIER VERSION OVER SHIFTED THE OUTPUT
BECAUSE OF THE SHIFTS(SRL)
THE NEW VERSION BRINGS THE BIT INTO THE BOTTOM
AND THEN SHIFTS IT TO BIT 00-- THEREFORE ME
DON'T OVERSHIFT AND VERY IMPORTANTLY
WE DON'T LOSE ANY OF THE BITS
BITINV DI=R(7);
NU=€20000000 ;COUNT OFF 32 BITS FOR SHIFT
T=£00000001,CLRS ;SET NEW BIT INTO T AND CLR S
BT28T2 NOD=DI,DECRN,SHIFTDI(SLL) ;
IF BMUXO0 *GOTO $+2 sCHECK FOR BIT ON
$=5:T ;BIT WAS SET MERGE A NEW ONE INTO THE RESULT
SHIFTS(SRC) ,IF ZINCTRZ *GOTO BT2BT2 H
:(6)=S.*JUMPJ ;DONE--RETURN SHIFTED BITS TO R6 AND
END
$ASSIGN1 BI=CCl
$EXECUTE MICROLD1
$OPTION 2 5
$EXECUTE ASSEMBLE
PROGRAM TESTHCS
* PROGRAM TO TEST WCS ROUTINE WHICH IS TO INVERT THE
* BITS IN R7.
INPDTA DATAW X' OF5A6670" INPUT PATTERN
OUPDTA DATAW 0 OUTPUT PATTERN
START BOUND 1W

{e100)

L2 B3N B NN N BN B AR A

w 7,INPOTA
TRR 7,4
* JHCS 0
NOP TO FIT ONTO PROPER BOUNDARY
GEN 16/X*FA00*,16/X ' 0000" FAKE WCS INSTRUCTION
STH 6,0UPDTA SAVE RESULT OF WCS ROUTINE
LW 5,=""JWCS’
CALM X'57" ABORT TO FORCE CORE DUMP
END START
$OPTION DUMP
$EXECUTE GO
$EQ
31

Figure 10-3, Final Version of Bit Swap WCS Routine

R o £ e R A

¥out L

ke Al b iy RS

——t

- 101 -

*Logical (S-register bit 00 gets a Zero fil11) and at the same time checking whether the

N-Counter has been decremented to Zero as a result of having gone through the loop 32
times. If not done, a backward HOP s accomplished and the process is repeated.

If done, the S-register results are transferred to R(6) and then contro)l js given back to the
CROM driven Microengine. '

When first run with the listed test programs and the binary input of:
00001111010110100110011001110000
the result was:
00000111001100110010110101111000
instead of the desired:
00001110011001100101101011110000
This 1indicated that the output has been overshifted. The first reaction is to check the
count loop for the possibility of executing 33 times instead of 32, Careful desk checking
reveals no logic or timing problems,
NU=Count
L1
L2
DECRN
13
L4
IF NCTRZ
will cause the execution of the paths L1, L2, L3, L4, exactly Count number of times.

A better logical analysis of the S-register data flow reveals that there is only a 31 shift
difference between bit positions 00 and 31 of the S-register.

Therefore, shifting the S-register 32 bits will result in the inftial bit 00 value being
shifted out of bit position 31,

Obviously, this is the explanation for the data patterns seen,
The first cure thought of may be finding a way to get a 33-bit wide register. This is
impractical, however, since ijts logical mate, the DI register, is being shifted in the
opposite direction because of the algorithm requirements.
It 1s apparent that a 32-bit register, when shifted circular, can seem to be a 33-bit reg-
ister with only the last 32 bits saved. Therefore, l1ine 18 is changed fram a SHIFTS (SRL)
to a SHIFTS (SRC), and the placement of the generation bit in the T-register is changed
from bit 00 to bit 31, because when shifted Circular, bit 31 is also bit 01, The code at
1ine 14 {s changed from T=@80000000 to T=€00000001,
The reassembly and retest for an input of:

00001111010110100110011001110000
yielded the following:

00001110011001100101101011110000

PR N Y A

B -

. - 102 -

CHECKLIST
L3

This problem covered the following Microprogramming applications:
1. Literal! Generation
2. Count Control
3. Shift Techniques
4. Register Assignment
8. Debugging Analysis
SAMPLE PROGRAM 2
The fc;llwing program (Figure 10-4) takes an integer number in R(7) and converts it into a

Floating-Point format equivalent in R(7). This routine is fully comnented, therefore no
textual support is presented.

SAMPLE PROGRAMS 3 AND 4

The following two programs (Figures 10-5 and 10-6) are presented to i1lustrate programming
formats and the use of WCS to l%%ad and/or Mrite to MaisMemory from WCS. Both programs are
adequately commented, so no further textual support is given.

-l

- 103 -
$J0BMICRO, IR
$ALLOCATE 30000
$EXECUTE MICRO
$USE DEF.75F; ESTABLISH LANGUAGE DEFINITION SET
%gggg *GOTO WCSC.RI; VECTOR TO CONVERSION ROUTINE

* MICROROUTINE THAT WIL. TAKE AN INTEGER NUMBER IN R(7) AND

*

WCSC.RI

*+ OF

»

LARGE

*

SMALL

* CONVERT IT INTO A FLOATING POINT FORMAT EQUIVALENT IN R(7).

&S X

T=R(7),SAVESIGN; GET INPUT AND HOLD SIGN
T=0+47,ABST; USE INTEGER ABSOLUTE VALUE ONLY
NU=@46000000,1F ALUZ *JUMPJ; INITIALIZE EXPONENT FOR BASE POINT
INTEGER, BUT IF INITIAL INTEGER ZERO, RETURN ZERO IMMEDIATELY

NOD=@F FODOOO0RT; TEST FOR LARGE NUMBER

*NOP; DELAY ONE CYCLE FOR TEST

IF ALUZ *GOTO SMALL; BRANCH IF NOT LARGE NUMBER
TNIBR,INCRN,*HOP LARGE; DIVIDE BY 16, BUMP EXPONENT, RETRY

NOD=@00FO00004&T ; CHECK FOR NORMALIZED FORM
FULLMAR=T; MERGE FRACTION & EXPONENT
S=0-MAR,I1F NALUZ *GOTO CHEKSIGN; BRANCH IF NORMALIZED FORM

* BUT FIRST SET UP TWO'S COMPLEMENT IN CASE INTEGER WAS NEGATIVE

»

TNIBL ,DECRN,*HOP SMALL; INTEGER * 16, EXPONENT-1, RETRY

CHECKSIGN Rﬁ?;-MAR. IF XSIGNSAVE *JUMPJ; ALL FINISHED IF INTEGER POSITIVE
R(7

$EXECUTE

=§,*JUMPJ ; TWO'S COMPLEMENT IF INTEGER NEGATIVE
$END
MICROLD1

SOPTION 2 5

SEXECUTE

BEGADDR
TOTA

TDTACNT

T0T0
TESTCNT

ENDADDR
START

INLOOP

ASSEMBLE

PROGRAM TESTMCS

THIS TEST PROGRAM DRIVES THE WCS ROUTINE FOR C.IR

IT TESTS FgR INPUT =0,1,2,3,4,5,6,7,8,9,10,15,16,17, ETC.

ACH

DATAN C'BEGINNING OF TEST DATA INPUT'

DATAW 0,1,2,3,4,5,6,7,8,9,10,15,16,17,32,64,128,256,;
$12,1024,2048,4096,8192,16384,32768,65536, ;
131072,262144 ,524288,1048576,2097152,4194304 ,;
8388608,16777216,33554432,67108864,134217728,;
268435456 ,536870912,1073741824,2147483647

DATAW -1,-2,-4,-8,-15,-16,-17, -8388608,-1073741824

EQU $-TDTA LENGTH OF THE TEST TABLE
DATAW C'BEGINNING OF TEST DATA OUTPUT’

REZ TDTACNT SAVE SPACE FOR RESULTS

DATAN]

DATAR C'END OF TEST DATA AREAS'

ACW $

BOUND by

ZMW TESTCNT COUNTER FOR CONTROL

W 1,TESTCNT WHERE WE ARE IN TEST TABLE
LW 7,TDTA,1 GET ONE TEST ITEM
" JWCS 0 GOTO CONVERSION ROUTINE IN WCS
LW 1,TESTCNT

ST™ 7,1070,1 STORE RESULTANT

ABM 29,TESTCNT

LW 1,TESTCNT

Cl 1,TOTACNT

BLT INLOOP DO THE WHOLE LIST

LW 6,BEGADDR

figure 10-4, Integer to Fioating-Point WCS Routine (Sheet 1 of 2)

NP R

1 -

- 104 -
LW 7 ,ENDADDR
IR 5
CALM X'4f! CALL FOR DUMP OF ONLY OUR AREA
LW 5,=C'JWCS'
CALM X*57° ABORT TO FORCE CORE DUMP
END START
5EXECUIE GO
$ELY
3

Figure 10-4, Integer-to Floating-Point WCS Routine (Sheet 2 of 2)

$JOE MICREAD
$ALLOCATE 30000

$EXECUTE MICRO
$USE DEF.75F;
$FORM 1,0
» THIS MICROROUTINE 1S ENTERED WITH JWCS 2
(e002)
. *GOTO WCS.READ;
{8200)
* THIS IS A MICROUTINE TO READ MEMORY FROM AN ADDRESS
- SPECIFIED IN R1,
» RAW MEMORY WORD 1S LOADED INTO R4
WCS.READ MAR=R(1), READ,FRCWORD;FORCES LOGICAL MEM SPACE READ OF WORD
i THE READ WILL NOT GET STARTED UNTIL THE NEXT MICROINSTRUCTION
- _ CYCLE, SO SINCE WE HAVZ NOTHING TO DO WE MUST JUST KILL TIME
*NOP
R{4)=D1 ;CONTROL WILL HAIT AT THIS POINY UNTIL MEMORY IS
* COMPLETED WITH THE READ
» THE DATA FROM MEMORY 1S NOW IN R4
. %JUMP); GO BACK TO MACRO LEVEL
* $END
$EXECUTE MICROLD1
$OPTION 2 5
$EXECUTE ASSEMBLE
PROGRAM TESTWCS
BEGADDR ACW
DATAW C'BEGINNING OF TEST DATA INPUT'
MEMDATA DATAW C' ABCD' DATA TO BE LOADED
DATAW c BEGINNING OF TEST DATA OUTPUT'
ODATA DATAW OUTPUT SPACE
DATAW c END OF TEST DATA AREAS®
ENDADDR ACW $
START BOUND U]
LW 4,=C'XXXX* FILLER TO SEE EFFECT OF WCS ROUTINE
LEA 1,MEMDATA ADDRESS OF DATA TO GO TO Rl
JUCS 2 TRANSFER CONTROL TO WCS ENTRY ADDRESS
STW 4 ,0DATA
LW 6,BEGADDR
] 7 ,ENDADDR
IR 5 .
CALM X'4F' CALL FOR DUMP OF ONLY OUR AREA
Lw 5,=C'JWCS*
CALM X‘57¢ ABORT TO FORCE CORE DUMP
END START
$EXECUTE 60
$E0)
$$

Figure 10-5. Memory Read from WCS Routine

R

2d 00 Rpd M L Sl

\i;ﬁ oo o A, . e e T

. .

—— -
f Ut

N .
~

- 105 -

$J08 MICWRITE
$ALLOCATE 30000
SEXECUTE MICRO
SUSE DEF.75F;
$FORM 1,0
. THIS MICROROUTINE IS ENTERED WITH JWCS 3
{©003)
*GOTO WCS.WRITE;
{8300)
* THIS 1S A MICROROUTINE TO WRITE MEMORY FROM AN ADDRES
» SPECIFIED IN R1, :
* DATA TO BE WRITTEN MUST BE PREVIOUSLY LOADED INTO R4
WCS.WRITE MAR=R(1) sGET ADDRESS OF DATA WRITE
T=R(4) ,WRITE, FRCWORD ;AND PLUG THE DATA INTO T
* AT THE SAME TIME THAT WE FORCE THE WR
. WRITE OF THE FULLWORD
*NOP H
* THIS NOP WILL GIVE T TIME TO GET ONTO
» THE BUS--WE MAY CODE ANY OTHER MICRO
» INSTRUCTION HERE THAT DOES NOT LOAD T
» OR THE REGISTER FILE
» ANY SUCH ATTEMPTED LOADING
» WILL FORCE A CONTROL STRUCTURE WAIT
» UNTIL THE SELBUS HAS COMPLETED
» TAKING THE DATA FROM T,
;JUMPJ: GO BACK TO MACRO LEVEL
END
$EXECUTE MICROLD1
$OPTION 2 §
SEXECUTE ASSEMBLE
PROGRAM TESTWCS
BEGADDR ACW $
DATAW C'BEGINNING OF TEST DATA INPUT'
MEMDATA DATAW C*ABCD' DATA TO BE OVERWRITTEN
DATAW C'BEGINNING OF TEST DATA OUTPUT®
DATAW C'END OF TEST DATA AREAS'
ENDADOR ACW $
START BOUND U]
U] 4,=C'XXXX* FILLER TO SEE EFFECT OF WCS ROUTINE
LEA 1,MEMDATA ADDRESS OF DATA TO GO TO R1
JNCS 3 TRANSFER CONTROL TO WCS ENTRY ADDRESS
LM 6 ,BEGADDR
LW 7 ,ENDADDR
IR 5
CALM X*4F* CALL FOR DUMP OF ONLY OUR AREA
4 5,C=*JNCS’
CALM X's7* ABORT TO FORCE CORE DUMP
END START
$EXECUTE GO
$EO)
$$

Figure 10-6, Memory Write from WCS Routine

!

| Msmw‘wa (o S o A2y el AN, e

AD=A106 779 FLORIDA INST OF TECH MELBOURNE DEPT OF ELECTRICAL AN=-=ETC F/6 14/2
IMPLEMENTATION OF THE RECOMMENDATIONS MADE ON THE TECHNICAL REP==ETC(U)
JUN 81 U HADJILOGIOY AFOSR=80-0120

UNCLASSIFIED AFOSR-TR-81-0704 NL

END
fhor
0 \ BL

-
— - e e e et ¢ —t— s —
-
.
-
.
»
<
»
» e A
K okd
o
. {
”
P“--
-~ i
i
]
.

SECURITY CL . 3SIFICATION OF THIS PAGE (When Bntorad)

REPORT DOCUMENTATION PAGE

[] % 2
| SKTR- 81 -0704 |AA y
§8. TITLE cand Subtitie) §. TYPE OF REPORT & PERIOD COVERED
| IMPLEMENTATION OF THE RECOMMENDATIONS Final Report
S yors ot TECHNI REPORT TITLED $. PERFOAMING 0N, REPOAT NUMBER

"ANAYSIS OF ADVANCED SIMULATOR FOR PILOT

B — S

John Hadjilogiou /4/’-03/‘7‘30__0/&@ ‘ HOB%M
— . ,

. PROGR ELEMENT, PROJECT, TASRK

| T PERFORMING ORGANIZATION NAME AND ADDRESS ROGR, !OA’K_W“' Ao TLIA
Florida Institute of Technology ‘/) 02r

Dept of Electrical & Computer Engineering
Melbourne, Florida 3290} 73713 /D7

11. CONTROLLING OFFICE NAME AND ADORESS

Air Force Office of Scientific Resch/NL

Bolling AFB, DC 20332 . AGES
TTMONITORING AGENCY NAME & ADDNESS(IT different frem Centroiling Office) | 16, SECURITY ‘c‘.!g (of shia repart)
2

Uné

C 1ICATION NORADING
$Cw L

TRIBUTION STATEMENT (of tie

T Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entored in Block 30, if different frem Report) »

TS, SUPPLEMENTARY NOTES

9. XEY WORDS (Continue an revarse slde i necosswry and identity by Mesk mumber)

H
] Microprogrammable processor, control logic for 32175 computer
mocro coding of ASPT simulator.

:). ABSTRACT (Continue an reverss aids if negesasty and idontify by bleek numbeg)

This project resulted in a report detailing specific quidelines
for writing and testing custom micro-programs for the 32/7%
computer. The micro-program instruction format is analyed in
detail and then illustrated by a concrete exampls.

L R R S S S R

3 'm1
B0 2 T3 sormon or 1nevesmpiayaTs

LI,]

l""' |

.- o ‘eas
MCAPLS

-
~

"‘!z! , TR e mn

