
AO-A106 779 FLORIDA INST OF TECH MELBOURNE DEPT OF FLECTRICAL AN--ETC F/G 14/2'
IMPLEMENTATION OF THE RECOMMENDATIONS MADE ON THiE TECHNICAL RFP--ETC(U)
JUN 81 J HADJILOGIOU AFOSR-81-0120

UNCLASSIFIED AFOSR-TP-81-0704 NL%uuuuiI i

-a_,e __.T ___. _ - 0 7"0" 4--~

IMPLEMENTATION OF THE RECOMMENDATIONS

MADE ON THE TECHNICAL REPORT TITLED

1'ANALYSIS OF ADVANCED SIMULATOR FOR PILOT TRAINING
"

FINAL REPORT

TO

Air Force Office of Scientific Research
Bolling Air Force Base, DC 20332 ECTEr

PREPARE UNDER: NoV 6 1981
Grant/

Submitted By:

John Hadjilogiou, Ph.D., P.E.
Department of Electrical & Computer Engineering

Florida Institute of Technology

Melbourne, Florida 32901
- (305) 723-3701

30 Jume 1981

~g~s N1) I I '

distribution unlimited.

81 11 06 036

..- -

4 9

~TITLE t(end Subtitle) 5/ TWF 91e0* 4" DCOE D

- I)PLEMENTATION OF THE_,ITCOMMENDATIONS /Final epet.
,MADE ON THE_,TECHNICAL .REPORTTITLED An a ,.sj EFRIGO REPORT NUMBER

OM ~ ~ ~ ~ ~ EFOMN OFAVNCD91G.TRFO IO

-. 8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0PRGAELMNROCTAS

I1I. MONTRORING AGENCY NAME AN ADDRESSdfre, ot onolnjOh) I. RECUIT CAS.-(fti eo

irFrc DSRBTO fc TTMN of Scti.entific Rec/,,/ J4n dg

17. DISTRIBUTION STATEMENT (of the abs tract entered In, Block 20, it different from, Report)

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue an raeese side It necessary and identify by block number)

Microprogrammable processor, control logic for 32175 computer
mocro coding of ASPT simulator.

20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

This project resulted in a report detailinq specific quidelines
for writing and testing custom micro-programs for the 32/75
computer. The micro-program instruction format is analyed in *

detail and then illustrated by a concrete example.

DD 1473 EDITION OF I NOV 65 IS OBSOLETE ttni'Q I cc ifia
SECURITY CLASSIFICATION OF THIS PAGE (147en Deta Enteff

* ~~ ~ ~ ~ .~~ tie. s-.* .

K..

ABSTRACT

This study which was conducted at Florida
Institute of Technology was

'",to implement some of the recommendations made on the technical report titled

"Analysis of Advanced Simulator for Pilot Training".

The final report specify guidelines for writing custom micro-programs

routine for the 32/75 computer. It includes the hardware feature of the

digital system with special emphasis on micro-program control section. The

micro-instruction format is analyzed in detail to allow the reader to follow

the example of the SEL report reproduced on the Appendices.

Accession 7or

DTIC T43
U:]a'nt,:ou e 8d _

!u7tlfication -

Distribution/

Availab2ity Codes
i~~v.'Ijand/or

Dizt 1pec ial

FIC

FOREWARD

The study was conducted by the faculty of the Electrical and Computer

Engineering Department at Florida Institute of Technology.

Dr. John Hadjilogiou Professor and Principle Investigator and Dr. Kofi Torku,

Assistant Professor of the Department were the major contributors of this

V, investigation.

The Final Technical Report was typed by Stella Stehno and Marjorie Quaiel.

4

* S

| --.

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Next Address Control
1.2 The 32/75 Microprogram Timifig

2.0 HARDWARE FEATURE OF THE 32/75 COMPUTER

2.1 Microprogrammable Processor (MP)
2.1.1 Control Read-Only Memory (CROM) & Writable Control Store (WCS)
2.1.2 Test Structure
2.1.3 Sequence Control
2.1.4 CROM & WCS Addressing
2.1.5 Order Structure
2.1.6 Decode ROM
2.2 Data Structure
2.2.1 Arithmetic Logic Unit (ALU)
2.2.2 A-Multiplexer (A-Mux)
2.2.3 B-Multiplexer (B-Mux)
2.2.4 Literal Multiplexer
2.2.5 General File Register
2.2.6 Memory Address Register (MAR)
2.2.7 Program Counter Register (PC)
2.2.8 N-Counter
2.2.9 Shift Register (S REG)
2.2.10 Temporary Register/Data Output Register (T REG)
2.2.11 Data Input Register (DI)
2.2.12 Instruction Register 0 (10)
2.2.13 Instruction Register 1 (Il)

3.0 THE 32/75 MICROINSTRUCTION FORMAT

3.1 Introduction
3.2 Microinstruction Word
3.3 Primary Test Field (CROM 00 - CROM 03)
3.4 Sequence Control Field (CROM04-06)
3.5 Control Field (M-Field) CROM (07-09)
3.6 A-MUX Select (A) Field (CREGlO-CREGl2)
3.7 Literal Select Field (CREGl0-12)
3.8 B-Multiplexer Select (B) Field (CREG 13-15)
3.9 ALU Control (+) Field (CROMI6-19)
3.10 ALU Destination (D) Field (CROM20-23)
3.11 File Read Select (R) Field (CREG 24-26)
3.12 Y-order (Y) Field (CREG 27-31)
3.13 X-order((X) Field (CREG 32-35)
3.14 U-order (U) Field (CREG 32-35)
3.15 W-Test (X) Field (CROM 32-35)
3.16 S-Test (X) Field (CROM 32-35)
3.17 Summary of Use of Microinstruction Bits 32-35
3.18 Microinstruction Bits 36-39
3.18.1 Z-Test (P) Field (CROM 36-39)
3.18.2 Extended Test (PC) Field (CROM 36-43)
3.18.3 Flip-flop Field

A

W!,, I I 4$ h

TABLE OF CONTENTS (Cont'd)

3.18.4 FPU Orders Group 2 (CREG 36-39)
3.18.5 CC Select Field (P) CREG 36-39
3.19 Microinstruction Bits 40-43
3.19.1 Shift Select Field (C)
3.20 Microinstruction Bits 44-47
3.20.1 Conditional Orders (PCH) Field (CREG 44-47)
3.30.2 FPU Orders Group 1 (CREG44-47)

Appendix A: Firmware Coding

Appendix B: WCS Firmware Techniques

Appendix C: WCS Sample Programs

4

i

1.0 INTRODUCTION

Routines coded in microprogram are similar to those coded in Assembly

or high level language in that a coherent sequence of instructions is used

to execute various commands required by the computer in both cases. However,

speed improvement as high as 16:1 can be obtained when routines are coded in

microcode.

A microinstruction usually has two parts:

a) The definition and control of all elemental microoperations to be

carried out.

b) The definition and the control of the address of the next micro-

instruction to be executed.

The elemental microoperations to be carried out are a function of the

machine being controlled and, as such, a good knowledge of the data structure

and architecture of the machine is required. For the SEL 32/75 the definition

of the various micro-operations to be carried out included such things as the

ALU, A-MUX, B-MUX, Literal Generator, etc.

1.1 Next Address Control

It is necessary to execute sequences of microinstructions as defined by a

microinstruction Sequencer. The Sequencer must provide for:

a) Continuing from one instruction to the next sequential microinstruction.

In this mode the Sequencer simply acts as an address counter.

b) Microprogram jumping. This feature allows the Sequencer to select

a microinstruction other than'the next microinstruction.

A.

L

T7

-2-

c) Conditional jumping. This feature enables a jump to be made to a

specified address based on the result of some test.

b) Subroutining in microprogram. This allows a block of microcode (or
5

a single microcode) to be shared by several microinstructions.

This requires the sequencer to store the address to which the sub-

routine should return when it has completed its execution.

To be conversant with any microprogrammed machine and be able to write

microcode, one needs to study how the above four functions of a sequencer are

implemented.

For example, in the case of the 32/75 computers, the S-field is used to

control the address sequencing. Conditional branching is obtained by using

the S-field in conjunction with the T-field. We will return to this later.

1.2 The 32/75 Microprogram Timing

Two p-cycles or machine cycles are generally required to execute-a

microinstruction. These are called the CROM-cycle and CREG-cycle.

Each p-cycle is 150 nanoseconds long. During the CROM cycle, the basic

tests and sequencing are done while all other orders are executed during

the CREG cycle. Because of the pipelining nature of how the instructions

are fetched and executed, there is an overlap of how the instructions are

executed. This is shown in Fig. 1.0 • While one instruction is going

through the CREG cycle, the next one is going through its CROM cycle simul-

taneously. This allows a shorter microcode cycle and speeds up execution

of the microprogram.

- -* --

-3-

U, -

00
cn4

U, -
ot

414

41.

Id, A l

-4-

2.0 HARDWARE FEATURE OF THE 32/75 COMPUTER

The 32/75 series computer is divided into two sections as far as the

hardware is concerned:

a) Microprogrammable Processor (MP)

b) Data Structure (Section)

2.1 Microprogrammable Processor (MP)

The Microprogrammable Processor executes the microprogram to control the

32/75 computer.

The major functional elements of the Microprogrammable Processor (MP),

organized around the Control Read-Only Memory (CROM) are:

1. Control Read-Only Memory (CROM)

2. Test Structure

3. Sequence Control

4. CROM Addressing

5. Order Structure

6. Decode ROM(DROM)

A block diagram of the Microprogrammable Processor is given in Fig. 2.1

2.1.1 Control Read-Only Memory !ROM) & Writable Control Store (WCS)

The CROM consists of several Read-Only Memories which are used to store

the microprograms used to decode and execute the computer instruction set.

The microprograms in CROM also provide general housekeeping functions such as

recognizing and vectoring to trap and interrupt servicing routines, and

interrupt prioritizing.

The Writable Control Store (WCS) consists of one or two 64x2K RAM boards

that are interfaced to the CROM and serve as a user programmable CROM expansion.

1IH

Neso

-5-P

~411

U$4- 0)4-

NO 0 2

U)L C14

z wUo w 4) 4

0RMO0 0 0- L)) <0 MI na

r- 0 MA

4j4J 44
004a,

44 1)

r. 0 0-4

4)i 4 00

4)- 0 0

0~~~ z- -

42 02 0
0 0

L)- H w 0L 0 r-

V) H n0 E- Inj C-' E-q

H Wl L) 2 0 0 3I e
en~ E-4 0) 00)) 1 I>

W -4 n -0 M -
0 0) 0~ H)0

CUU U) 4J 4J 0
H) a) U) En U) '

/I H HI EU H) H

Figure ~ ~ ~ ~ ~ ~ ~ ~~~- 2- lc iga -CuMcorgamal rcso

K -6-

Microprograms written for execution in the WCS are virtually the same as those

written for the CROM. Hence in the next sections when describing the microprogra,

reference will be made only to the CROM.

2.1.2 Test Structure

The basic tests are the first portion of the Micro-Instructions to be

executed. There are one basic test field and four secondary test fields

associated with the test structure. They are: The Primary Test field, the

Extended Test field, the Z-Test field, the W-Test field, and the S-Test field.

All Micro-Instruction testing is completed prior to execution of microcode

orders.

A block diagram of the test structure is shown in Fig. 2.2

F- -

0-It

C) L) w

12))

E-4C)

1) 24 O0 - 4f.

L) U)94 =) H U t-

43 0 0 'nL1z) CD CU-

102

41M2.

CY L)

____ ____ ___ ____ ____ ___

Li3

-8-

2.1.3 Sequence Control

The Sequence Control logic comprises'that portion of the hardware that

selects the next CROM address for use by the microcode. This logic is interfaced

with the output of the Decode ROM, the Sequence Control logic, and the CROM Address

mux. (Fig. 2.1)

2.1.4 CROM &WCS Addressing

The CRO and WCS Addressing logic provides the capability of addressing

the CROM (and WCS) from one of several sources. The logic circuitry consists

of the CROM Address Mux, CRO Address Register, a 3-Stack and a CRO Address

Adder (Fig. 2.1i).

1. The CROM Address IMux is a 4:1 multiplexer which selects one

of four address sources to formulate the next CROM Address.

2. The CRO Address Mux is influenced by the Sequence Decode

circuit. With a Sequence Control field of one (JUHPJ), the next

microinstruction address will be conditionally taken from the top of

the J-Stack. This effectively is a Return instruction from

a branch.

3. The J-Stack is a 4-deep push-down stack with a usable depth

of three which is pushed or popped by a jump taken as a result

of an instruction execution. A JUHPJ instruction gates the

BJOO-12 bits to the inputs of the CROM Address Mux, The JUMPZ

with the test met disables the CROM Address Mux forcing the

next instruction to be obtained from address 0.

The CROM Address Register holds the CROM Address that is currently

being executed.

The CRO Address Adder is used to generate addresses that are applied to

the J-Stack and the CROM Address Mux.

-9-

2.1.5 Order Structure

The Order Structure contains the logic necessary to decode the CRO

and/or CREG bits for the direction and control of the operation to be performed.

The Order Structure consists of the following: (Fig. 2.3)

1. Y-Order

2. X-Order

3. U-Order

4. Conditional Order

The various fields of the microinstruction that control the respective

orders are discussed in later sections.

2.1.6 Decode RON

The Decode ROM (DROM) and associated logic (Fig 2.1) are used to enable

each Macro-instruction fetched from main memory to vector to the location in CRO

microroutine that executes that particular Macro-instruction.

.0| . .| e I i. ..

103

-4 M4

0 0 0

41

o 0

I 0

'-4

'-4-4

L)L

C4

OHH

HF-4U

- 11 -

2.2 Data Structure

The Data Structure, shown in Figure 2.4, contains a 32 x 32-bit General File

register, hardware registers and two multiplexers organized around an Arithmetic

Logic Unit, and a 256 x 32-bit Local Store. The hardware registers are used for

SelBUS communications, temporary storage, and shifting. The Data Structure

consists essentially of the following:

1. Arithmetic Logic Unit (ALU)

2. A-Multiplexer (AMUX)

3. B-Multiplexer (BMUX)

4. Literal Generator (LIT)

5. General File Registers (FILE)

6. Memory Address Register (MAR)

7. Program Counter Register (PC)

8. N-Counter Register (NCTR)

9. Shift Register (S)

10J Temporary Register (T)

11. Data Input Register (DI)

12. Instruction Decode Register (10)

13. Instruction Pipeline Register (II)

14. Local Store (SCRATCH)

15. Bit Mask Generator (BMG)

2.2.1 Arithmetic Logic Unit (ALU)

The ALU is a 2-input, 32-bit Arithmetic and Logical Function Generator

utilizing four lookahead carry generators for increased speed of operation. The

ALU can generate 15 Arithmetic and Logical Functions for two inputs selected by

the A-Mux and the B-Mux. The outputs from the ALU are distributed to the follow-

ing destination registers:

OT1

'+

l I n.

-12-

x -

I. -93'9

Fiue 24 BokDaam P aaSrcue-

0C

- 13 -

1. General File Register

2. Memory Address Register

3. Program Counter Register

4. N-Counter Register

5. Shift Register

6. Temporary Register (T Reg)

7. Instruction Register 0

The ALU is controlled by the ALU Control Field which chooses the

function the ALU is to perform on the input data, The ALU function can

also be chosen from the DROM bits 00 0 4, This option holds if the ALU

Control Field has the value F in it. These are discussed in Chapter

Three.

yi

-- i

-14-

2.2.2 A-MULTIPLEXER (A-Mux)-

The A-Mux selects one of five data sources for input to the ALU.

The five A-Mux sources are:

1. General File Register

2. Literal Multiplexer

3. Status

4. Shift Register (S Reg)

5. Bit Mask Generator

2.2.3 B-MULTIPLEXER (B-Mux)

The B-Muz: selects one of six data sources for input to the ALU. The

six B-MKuL sources are:

1. General File Register

2. Temporary Register (T Reg)

3. Data Input Register (DI)

4. Instruction Register 0 (10)

5. N-Counter

6. Memory Address Register (MAR)

The B-Mux also performs data manipulation functions, such as swapping

halfwords and aligning address components.

2.2.4 LITERAL MULTIPLEXER

The Literal Multiplexer forms a 32-bit constant from an 8-bit value in

the microprogam able processor. The literal formed is used primarily as a mask

or an absolute number.

2.2.5 GENERAL FILE REGISTER

The General File Register is a 32-word by 32-bit file memory. Each

register in the file is directly addressable and can either be accessed or

- I--- ------ --

-15-

written. The first eight registers are used for the user general purpose

registers, RO through R7; the remaining registers are used by firmware to

hold internal information.

2.2.6 MEMORY ADDRESS REGISTER(MAR)

The Memory Address register is a 24-bit register used to address memory

or an I/O device by the destination bus. The MAR is used also for temporary

storage.

2.2.7 PROGRAM COUNTER REGISTER (PC)

The Program Counter register (PC) is a 22-bit binary counter which contains

the virtual address of the most recent instruction fetched from memory. When the

Prcgram Counter is used, the formatted address is expanded to a full 24 bits.

Incrementing the Program Counter is under the control of firmware; the PC may be

incremented by one (for halfword instructions) or by two (for word instructions).

2.2.8 N-COUNTER

The N-Counter is an 8-bit binary up/down counter used by firmware as an

iteration counter for repetitive operations, such as shift, multiply, divide,

and load and store file.

2.2.9 SHIFT REGISTER (S REG)

The Shift register is a 32-bit temporary register used to perform the

following types of shifts:

1. Shift Right - Arithmetic, Logical, and Circular

2. Shift Left - Arithmetic, Logical, and Circular

3. Shift Right - Nibble

4. Shift Left - Nibble

2.2.10 TEMPORARY REGISTER/DATA OUTPUT REGISTER (T REG)

The Temporary register is a 32-bit multi-use register. This register

is used to temporarily hold all data to be written into the General File register.

On all microinstructions which specify one of the General File registers in the

-16 -

destination field, the destination data actually goes to the T-register.

During the next cycle, the contents of the T-register are automatically written

into the appropriate General File register. The T-register is also called

Data Output register when it is used to transmit data to memory or I/0 devices over

the data bus. £

2.2.11 DATA INPUT REGISTER (DI)

The Data Input register is a 32-bit register used to receive operands

from memory, or data and status from I/0 devices. It can also be used as a bit

shift register either by itself or coupled with the S-register. 'hen coupled,

the DI register is the least significant register.

2.2.12 INSTRUCTION REGISTER 0 (10)

Instruction register 0 is a 32-bit register which contains the current

instruction being executed. The 10 register is also a shift register which swaps

the right and left halfwords of the register to provide for halfword instruction

execution.

2.2.13 INSTRUCTION REGISTER 1 (II)

Instruction register 1 is a 32-bit buffer register which receives

instructions as they return from memory. The I1 register contains the next

instruction to be executed.

'77

-17-

3.0 THE 32/75 MICROINSTRUCTION FORMAT

The 32/75 series computer's microinstruction is 48 bits wide (there is

an additional 12 bits optional Floating point). These microinstructions are

stored in the Control Read Only Memory (CROM). The 48 bits of the micro-

instruction are broken down into 11 fields as shown in Fig. 3.1 and 3.2.

3.1 Introduction

The Control Read-Only Memory (CROM) is the control section of the Central

Processor Unit (CPU). The CROM contains permanently stored microinstruction

words or Elementary Operations (EO) (these two terms are used interchangeably

throughout this text). Groups of EOs form microprograms which are read and

decoded to generate the signals necessary to control the CPU operations, The

EOs are stored in the Micro Control Unit of the CPU (also referred to as the

personality board).

This section describes how the EOs control the function of the CPU. The

word format of the ROM is described showing the number of bits assigned to each

functional field of an EO. This description is followed by a description of

the EO Format Chart showing how the chart is sectionalized. A detailed analysis

of the EO fields describes how each field is assigned special control functions.

3.2 Microinstruction Word

The individual microinstructions or EOs that are stored in the Control

Read-Only Memory (CROM) control the data paths and the execution of CPU functions.

The CROM contains 4,096 48-bit words. The microinstruction word format is shown

in Figures 3-1 and 3-2.

Each microinstruction contains the following fields:

T - Primary Tests

S - Sequence Control

M - Control/Extended Control

A - A-mux Select

B - B-mux Select

- 18 -

+ - ALU Control

D - Destination

R - File Read Select

Y - Y-Orders
I

X - X-Orders

U-Orders

S-Orders

W-Tests

S-Tests

PCH - 12-Bit Branch Address

Z-Tests/

8-Bit Branch Address

Extended Test/

4-Bit Branch Address

8-Bit Literal/

Conditional Orders

CC's/

Shift Code/

FPU Order 1

Reg. No./

ROM Page

Flip-Flop 1/

Bus Transfer

Flip-Flop 2

Flip-Flop 3

13-Bit Branch Address

FPU Order 2

i n i i | i r

19-

; I

, I J

0

Le

~I I

-:4

R I 0

- i: I "AN I -

n c-4

- ,--I-4

m I .03

0 elf

4-I1

1 -4

w 00

to.. .4

) 0

C-.' I -,

!I

S-m Pe I -

4-4

-I 8 I

Z 0 r1-4•

8

, II

!
-

C-S Cifl C

-20-

The following description is an attempt to explain the basic functions

of the various fields and how they are related. This should be studied together

with the material in the reference (2),

From Fig. 3.2 it can be seen that the microinstruction Bits are numbered

from 0 to 47. We will use the notation of the manuals and refer to the Bit

Configurations as CROM 00 - CROM 47. The T-field is the first field and

occupies CROM 00 - CROM 03 while the last field CROM 44 - CROM 47 belongs to the

H-field.

3.3 Primary Test Field (CROM 00 - CROM 03)

This field contains basic test conditions that are used to make decisions

during the execution of the microprogram. The entries indicate the type of

test being performed. When the test condition pointed to by this field is

true or false then a decision can be made by the computer.

If the entry in this field is 0000, no test is selected and is used for

unconditional branch by the S-field. This means that the condition selected

by the S-field for branch is always true if T=0.

If the entry in this field is 1111, no test is selected. This combination

should be used as default value for the T-field.

The following/instruction fields are influenced by the T-field:

1. The Control Field (M), CROM bits 07-09.

2. The STEST Field (X), CROM bits 32-35.

3. The FPORDER1 Field (H), CROM bits 44-47.

4. The ZTEST Field (P), CROM bits 36-39.

5. The Extended Test Field (PC), CROM bits 36-43.

6. The FPORDER2 Field (P), CROM bits 36-39.

7. The Conditional Order Field (H), CROM bits 44-47.

-21-

Both the "true" and "false" conditions are used by the T-field and

should be carefully noted. For the case of a "false" test, the condition is

true if the test addressed by the T-field is false.

The bit combinations of the T-field that select various tests is

explained in Table 3.1.

One point needs clarification in Table 3,1. The S-Test and W-Test use

the same fields in microprogram i.e. CROM 32-35. From Table 3.1, when writing

ucode, we know that CROM 32-35 will be interpreted as W-test if the T-field has

value 3 or 5. On the other hand CROM 35-35 will be interpreted as S-test only

if T has the value 4.

i- _ - ,2 - f2 _ .. .7 __ -- : . - , -..,.. ,.

- 22 -

Table 3.1 Basic Test (T) Field (CROMOO-03) (2)

Bit 0123 Value Syntax Description

0000 0 True This condition always provides a 'true'
test and is used for the unconditional
branch.

0000 1 Extended Test True This condition is met if the test
addressed by the extended test field,

CROM36-43, is true.

0010 2 Z-Test True This condition is met if the test addressed
by the Z-Test field, CROM36-39, is true.

0011 3 W-Test True This condition is met if the test addressed
by the W-Test field, CROM32-35, is true.
Since the X-Order field is used for the
W-Test field, X-Orders are inhibited during
the CREG cycle of this microword.

0100 4 S-Test True This condition is met if the test addressed
by the S-Test field, CROM32-35 is true. The
X-Orders are inhibited during the CREG cycle
of this microword.

Note: No provision is provided for testing
the 'False' condition of the S-Test.

0101 5 W-Test False This condition is met if the test addressed

by the W-Test field (CROM32-35) is false.
The X-Orders are inhibited during the CREG
cycle of this microword.

0110 6 Z-Test True and This condition is similar to Z-Test True (2);
Extended Control however, it also causes the M-field, CROM07-09

to be interpreted as an Extended Control
field.

0111 7 NOEXTUNIV The No External Universal Condition test is
met if both of the following conditions are
present: (1) The Enable Interrupt flip-flop
(ENAINTFF) is reset, (2) an External Event
Global condition is not present.

1000 8 Enable Floating- This condition is always met and causes the
Point Unit Order, H-field (CROM44-47) to be interpreted as
Group 1 Floating-Point Unit Order, Group 1.

1001 9 Extended Test False This condition is met if test addressed by
the Extended Test field, CROM36-43, is
false.

-23 -

Table 3-1. Basic Test (T) Field (CROMOO-03) Cont'd.

Value Syntax Description

1010 A Z-Test False This condition is met if the test addressed by the
Z-Test field (CROM36-39) is false.

l011 B ALUZ The ALU Zero test is met if the ALU output was
equal to zero during the CREG cycle of the second
preceding microinstruction.

1100 C NALUZ The Not ALU Zero test is met if the ALU output
was not equal to zero during the CREG cycle of
the second preceding microinstruction.

1101 D Enable This condition is always met and causes the
Floating- P-field (CROM36-39) to be interpreted as
Point Floating-Point Order Group 2, and the H-field
Order (CROM44-47) to be interpreted as Floating-Point
Groups I Unit Order Group 1.
and 2

1110 E Z-Test False This condition is similar to Z-Test False (A);
And Extended however, it also causes the M-field (CROMO7-09)
Control to be interpreted as an Extended Control field.

1111 F FALSE This test is never met and is used to inhibit
branches, jumps, and conditional orders. The
FALSE function is frequently used with *JUMPZ
to allow the unconditional logic initialization
provided by *JUMPZ, while inhibiting the actual
jump to location zero.

Note: If the T-field (CROMOO-03) is equal to
'7', the M-field (CROMO7-09) is interpreted
as a Floating-Point Unit Control field
(vectored jump control field); the P-field
(CROM36-39) is interpreted as Floating-Point Unit
Order Group 2; and the H-field (CROM44-47) is
interpreted as Floating-Point Unit Order Group 1.

_0 ----
-- .

-24-

3.4 Sequence Control Field (CROM04-06)

The Sequence Control Field (S-field) is used to effect branching in

microcode. Each branch that can be taken is considered conditional depending on

the results of the test selected by the T-field, Fig. 3,1. This arrangement

when used with the T-field value of 0 provides for unconditional branch in

microcode. The branch address is external to the microinstruction being executed

if the value of the S-field is less than or equal to 3.

If the S-field has value 0 then no branch is taken and this value should

always be used as the default value.

The bit combinations of the S-field that select various branch modes

are summarized in Table 3.2.

.-. . ".. -

-25-

Field T S

Bit 00 01 02 03 04 05 06

Primary Tests Sequence

0 True 0 NOP

I Extended Test True 1 JUMPJ

2 Z-Test True 2 JUMPB

3 W-Test True 3 JUMPZ

4 S-Test 4 HOP
4-Bit

5 W-Test False 4 LEAP

8-Bit

6 Z-Test True 6 Branch
& Extd. Control 12-Bit

7 No Ext Univ 7 JWCS
13-Bit

8 Enable FPU Group 1 Branch Code

9 Extended Test False

A Z-Test False

B ALUZ

C NALUZ

D Enable FPU Groups

E Z-Test False & Extd.
Control

F Not Used

te ndition
for Conditional Branch

Fig. 3.3 Conditional Branch Codes of
Microinstruction

lall Bi i I i i l i |iIIIIlL

4-,

-26-

Table 3-2 Sequence Control (S) Field (CROM04-06)

Influenced by: Results of the Basic Test field

Influences: 1. Conditional Order field (CROM44-47) 2. The
address length interpretation of CROM35-47

General: Each sequencing order which can cause a jump is
considered conditional on the result of the test

selected by the Basic Test (T) field (CROMO0-03).
S-field values 0-3 specify that the source of the
jump target address is external to the microword
(J-stack, Decode ROM, and etc.). Since these
types of jumps require no additional resources

from the microword, the H-field is interpreted
as a Conditional Order field. S-field values
4-7 specify that the source address for the
jump is the X-, P-, C-, and H-fields (CROM35-37).
Thus, the Conditional Order interpretation of the
H-field is inhibited and the H-field is interpreted
as the least significant four bits of the jump
address. The remaining bits of the X-, P-,

and C-fields may have simultaneous multiple inter-
pretations as long as no specific bit conflicts
exist. For example, the P-field is used to supply
the four most significant bits of a 12-bit jump
address and, at the same time, may provide a
4-bit file address, as long as the file address
bits exactly match the four most significant bits
of the 12-bit branch address.

Bit 654 Value Syntax Description

000 0 No operation This value implies that no jump will occur, regard-
less of the specified test condition status. The
Conditional Order field (CROM44-47) is the only
part of the microword which uses the test results.

001 1 *JUMPJ The Jump based on the J-Stack function implies that
the next micro-instruction address is conditionally
taken from the top of the J-stack (last address
stored in the J-stack). This function provides a
micro-instruction equivalent RETURN from a Branch-
and-Link. The J-stack is a pushdown stack with a

depth of 3, and is only pushed (*LINK function) or
popped ("JUMPJ function) by the 'Test True' result
of micro-instruction execution. The *JUMP3 function
provides a 13-bit jump address so that the target
jump address may be in main CROM or Writable Control
Storage (WCS).

-27-

Table 3-2 Sequence Control (S) Field (CROM04-06) Cont'd.:

Bit 654 Value Syntax Description

010 2 *JUMPD The Jump based on the Decode ROM value implies that
the next micro-instruction address is conditionally
taken from bits 08-20 of the Decode ROM (D-ROM).
This function provides a 13-bit jump address
which may point to main CROM or WCS. The D-ROM
supplies the jump address for the macro instruction
decode process.

011 3 *JUMPZ The Jump to CROM Location Zero condition implies
that the next micro-instruction address is,
conditionally, location zero. Since the 13-bit
CROM address is forced to zero, the *JUMPZ function
may be used to jump to location zero from main

CROM or WCS.

The *JUMPZ function is the basic exit path of
each macro-instruction and, as such, performs
some additional implied functions to clean up the

microengine in preparation for the execution of
the next macro-instruction. Some of the clean-up
functions are performed unconditionally (regard-
less of the status of the specified test) and some
are performed conditionally (specified test must
be true). The following list describes the
unconditional and conditional functions performed
at the time that they occur, relative to the
*JUMPZ micro-instruction.

UNCONDITIONAL AND CONDITIONAL JUMPZ FUNCTIONS:

CROM CYCLE Only conditional functions are
performed at this time.

CREG CYCLE 1. Clear Left Shift Overflow flip-flop

2. Shift right hand flag history registers

3. Clear page select register (force
D-ROM decode of 11 register bits 00-05)

CREG 1. Set Enable Zero Detect flip-flop
CYCLE+ 30 ns

2. Clear Multiply Previous flip-flop

3. Clear S-register

28 - 4
Table 3-2 Sequence Control (S) Field (CROMD4-06) Cont'd:

Value Syntax Description

100 4 *HOP This branch 4-bit value causes the four least
*GO TO significant bits of a conditional branch address

(4-bit) to be taken from the H-field (CROM44-47). The nine
most significant bits of the 13-bit branch address
are derived from the CROM address register after
the contents of the CROM address register have
been incremented by one. The Branch 4 function
provides for a branch within a 16- location absolute
range.

101 5 *LEAP This branch 8-bit value causes the eight least
*GO TO significant bits of a conditional branch address

(8-bit) to be taken from the C- and H-fields (CROM40-47).
The five most significant bits of the 13-bit branch
address are derived from the CROM address register
after the contents of the CROM address register
have been incremented by one. The Branch 8
function provides for a branch within a 256-location

absolute range.

110 6 *BRANCH This branch 12-bit value causes the 12 least
*GO TO significant bits of a conditional branch address

to be taken from P- , C- , and H-fields (CROM36-47).

The most significant bit of the 13-bit branch
address is derived from the CROM address register
after the contents of the CROM address register
have been incremented by one. The Branch 12
function provides for a branch within a 4096-
location absolute range.

i11 7 *JWCS This 13-bit value causes the 13 bits of a
*GO TO conditional branch address to be taken from the
(13-bit) X- , P- , C- , and H-fields (CROM35-47). The

Branch 13 function provides for a branch within
an 8192-location range and may be used to branch
from main CROM to WCS or from WCS to main CROM.

- - mI l l

-29-

3.5 Control Field (M-Field) CROM (07-09)

The M-Field, CROM bits 07-09 is used for two purposes:

Control Field

Extended Control Field

These fields are used in controlling various operations in the data

structure of the 32/75 computer.

If the value of the T-Field equals 06H or OEH then the M-field is interpreted

as extended control and the meaning of the various bit combinations is given in

Table 3.4. Otherwise, the M-field is interpreted as Control Field and the

various bit combinations have the meaning given in Table 3.3.

a4 II

-30-

Table 3.3 Control Field (M-Field) CROM07-09)

Influenced by: Results of the Basic Test Field

Influences: None

General: The following Control field interpretation of
the M-field (CROM07-09) only exists if the value
of the Basic Test (T) field does not equal'6' or

'E'. If the T-field does not equal '6' or 'E',
the M-field is interpreted as an Extended Control
field.

Bit 987 Value yntax Description

000 0 No Operation This value inhibits the Control field.

001 1 SETCC(#) The Overlay and Set CC's from the D-ROM value causes
the D-ROM bits 03-07 to overlay CREG36-39 in order
to define the rules by which Condition Codes (CC's)
are set. The SETCC (#) function provides the
capability for the macro instruction being
executed to define the rules for setting CC's.
(See Table 3-23)

010 2 SHIFTS(#) The Overlay Shift Control and Decrement N-Counter
SHIFTDI(#) value in the Control field causes D-ROM (bits 04-07)
SHIFTD(#) to overlay the Shift Control field (CREG40-43).

The Overlay Shift and Decrement N-Counter function
provides the macro instruction being executed with
the capability of defining the shift type
(arithmetic or logical) and the shift direction
(left or right). An additional capability is pro-
vided to automatically decrement the N-Counter
which should contain the shift iteration count.
The Overlay Shift and Decrement N-Counter may be
used with a shift S-register (SHIFTS(#)); a Shift
DI register (SHIFTDI(#)); or a shift double-precision.
of the S-register and the DI register (SHIFTD(#)).
(See Table 3-24.)

011 3 DECRN This value causes the N-Counter to be decremented
at the end of the CROM cysle of the microinstruction.

100 4 DECODE(X) The Load Lower Decode value causes the page select
PROM, at the location specified by 'X', to be
loaded into the page select register. The value
'X' must be in the hexadecimal range of '0' to
'F', and stored in bits 40-43 (PROM Page field) of
the microinstruction. For this value the most
significant bit of thd 5-bit page select PROM
address is forced to a logical Zero.

m m |

-- 31-

-31-

101 5 DECODE(IX) The Load Upper Decode value causes the page select
PROM, at the location specified by 'IX', to be
loaded into the page select register. The value
'lX' must be in the hexadecimal range of '10' to
'IF', and the value 'X' must be stored in bits 40-
43 (PROM Page field). For this value, the most
significant bit of the page sleect PROM address is
forced to a logical One.

110 6 DECODE(#) The Load Decode value causes the page select
register to be loaded from bits 00-07 of the D-ROM.
The DECODE(#) value provedes the capability of
specifying additional sublevels of decode and
CC's, Shifts, and Arithmetic Logic Unit (ALU) over-
lays for the macro instruction being executed.

111 7 PUSHJ The Push the J-Stack value causes the current CROM
*LINK address plus one to be pushed into the top level

of the J-stack if a branch taken condition is
established. If no branch or jump is specified by
the S-field, or if the test specified by the T-field
is false, the J-stack is not pushed.

iI

4In~-- .77> .ir'I7.l 7ll

- 32 -

Table 3-4. Extended Control Field (M-Field) (CROMO7-09)

Influenced by: Results of the Basic Test field

Influences: 1. The File Read Select field (CROM24-26)

General: 2. The Sequence Control field (CROM04-06)

The following Extended Control field interpretation

of the M-field (CROMO7-09) only exists if the value
of the Basic Test (T) field is equal to '6' or 'E'.
If the T-field does not equal '6' or 'E', the
M-field is interpreted as the Control field.

Value Syntax Description

0 REGSEL The Register Select value causes the three least

FR(X) significant bits of the value 'X' to be storedin the File Read field (CROM24-26) and to be used
as the three least significant bits of the file
address. The most significant bit of the 4-bit
file address is forced to a logical One. The value
'X' is used to represent a file address and must be
number or a name equated to a number which has a
value within the range of '8' to 'F'.

*JUMPS The Jump Based on the S-Register function causes

the next micro-instruction address to be condition-
ally taken from the S-register (bits 19-31).
This value provides the capability of generating
a CROM Address in the data structure and then trans-
ferring this address to the CROM Address Mux,
Since this value is in the Extended Control field,
only Z-tests may be used for conditional jumps
from the S-register. If the specified test is
true, 13 bits are transferred from the S-register
to the CROM Address nux, so that the target jump
address may be in main CROM or in WCS.

2 KPROM The Multiply PROM value primarily assists the
Firmware Multiply function and causes the File
Read Select field (CROM24-26) to be overlayed with
the output of the Multiply Assist PROM. Since the
Multiply Assist PROM is addressed by the four least
significant bits of the T-register and the value
of Multiply Previous flip-flop, the file address
selected by the MPROM order and the Multiply Assist
PROM is coordinated with the four least significant
bits of the multiplier. The MPROM order also
causes the value of the Multiplier Next bit to be
supplied by the MPROM and to be saved in the
Multiply Previous flip-flop.

..---

33-

Table 3-4. Extended Control Field (M-Field) (CROM07-09) Cont'd.

Value Syntax Description

3 DIVMSW The Divide Most Significant Word value causes the
File Read Bank Select bit to be switched for a single
file access if the S-register (bit 00) is equal to
a logical Zero.

4 DIVLSW The Divide Least Significant Word value causes the
File Read Bank Select bit to be switched for a
single file access if the last bit of the quotient
being developed (Divide Register, bit 31) is a
logical Zero.

5 REPEAT The Repeat the Current Micro-instruction value
causes the micro-instruction in which it is coded
to be repeated, and the N-counter to be decremented
until the N-Counter count is equal to Zero. When
the N-Counter reaches Zero, normal micro-instruction
sequencing is resumed.

6 SCALE The Floating-Point Scale value is used with the
firmware Floating-Point to assist in the alignment
of operands for add/subtract Floating-Point macro
instructions. This order causes a 4-bit branch
where the 4-bit branch address is supplied by
the Floating-Point Assist Scale PROMS.

Note: The SCALE order should not be coded in WCS.

7 NORM The Floating-Point Normalize value is used by

the firmware Floating-Point to assist the post-
normalization of Floating-Point results. This
order causes a 4-bit branch where 4-bit branch
address is supplied by the Floating-Point Assist
Normalize PROM.

Note: The NORM order should not be coded WCS.

- 34 -

3.6 A-MUX Select (A) Field (CREGIO-CREGl2)

The A-Multiplexer (A-MUX) selects one of eight data sources for inputs to

the Arithmetic and Logic Unit (ALU). These eight sources are:

1. General File Register (FILE)

2. Literal Generator (LIT)

3. Status

4. Shift Register (S)

5. S-Register shifted Left 1 bit (SLEFT)

6. S-Register Nibble shifted Right (SNIBR)

7. S-Register Nibble shifted Left (SNIBL)

8. Bit Mask Generator (BMG)

These eight sources are selected by the 3-bit A-field of the microinstruction

(CREG Bits 10-12).

The various bit combinations that select each input are given in Fig. 3-5,

The A-field is also used as literal select field. When A-7, we have the

"short literal" (see details Table 3-5). When the Y field = 2, we have the. long

literal.

4 ____

-- -I-- - - -- - - _ _ _ _

_ - i - , _

1 - 35-

Table 3-5. A-Mux SeleCt (A) Field (CRECI0-12)

Influenced by: Y-Order (CROM27-31)

Influences: None

General: The A-Mux Select field chooses the source of the A input
to the ALU and the so. ce of addressing for the 256
by 32 Scratchpad. When the Y-Order LONGLIT order is
present, the A-Mux Select field provides the fill bit
and byte select code for the literal generation to the
A input of the ALU.

A-Mux Syntax: The Micro Assembler generates A-Mux Select values when

the A-Mux is implied as a resource to the operation to
the operation to be performed. In general, two types
of A-Mux resources may be specified or implied. The
first resource type is using the A-Mux to supply the A
input to the ALU. The syntax of the ALU expression is:

DEST=AMUX ALU FUNCTION BMUX

The second resource type is using the A-Mux to supply
the Scratchpad address. The syntax of the Scratchpad
address is:

DEST-SCRATCH(AMUX) or SCRATCH(AMUX)=BMUX

In the above expressions, DEST must equal a valid ALU
Destination term as described in the Destination field
description. ALU FUNCTION must equal a valid ALU
term as described in the ALU field description. The
BMUX term is optional; however, if it is present, it
must equal a valid BMUX term as described in the B-Mux
Select field description. The AMUX term may be either
a 32-bit literal or a valid A-Mux Select field term as
described in the following discussion.

12,11,10 Value Syntax Description

000 0 S The S-Register value selects the 32-bit S-register as
the input to the AMUX.

001 1 SLEFT The S-Register Left Shifted One Bit value selects the
32-bit S-register left shifted one bit as the input
to the AMUX. The vacated bit position (bit 31) is
filled as determined by the Shift Control field
(CREG40-43). The contents of the S-register are not
modified unless the S-register is selected as the
destination register of the ALU operation.

010 2 SNIBL The S-Register Left Shifted One Nibble value selects
the 32-bit S-register left shifted four bits as the
input to the AMUX. The vacated nibble (bit positions
28-31) is filled from the T-register (bits 00-03).
The bits shifted out of the S-register (bits 00-03
are lost. The contents of the S-register are not

-36

Table 3-5. A-Mux Select (A) Field (CREGlO-12) Cont'd.:

Value Syntax Description

010 2 SNIBL modified by this function unless the S-register is
selected as the destination of the ALU operation

011 3 SNIBR The S-Register Right Shifted Four Bits value selects
the 32-bit S-register right shifted four bits as the
input to the AMUX. The vacated nibble (bit positions
00-03) is filled with the S-register sign bit (bit 00).
The bits shifted out of the S-register (bits 28-31)
are lost. The contents of the S-register are not
modified unless the S-register is selected as the
destination of the ALU operation.

Note: The S-Register source data through this mux
is not affected by any other concurrent shift orders
(e.g., if S contains 1 and the A-Mux order is 2,
with Y-order SHIFTS, the A-Mux will pass 10).

12,11,10
100 4 R(X) The Selected File Register Output value selects the

FR(Y) 32-bit file output as the input to the AMUX. For
'R(X)' term, the file register address is specified
by the File Read Select field (CROM24-26) or the
Register Number field (CROM36-39). For the 'FR(Y)'
term, the Extended Control, Register Select method
is used to address the file, and only file registers
'8' through 'F' may be used.

Note: This AMUX code causes a File read and must not
be used in a micro-instruction following a File write
micro-instruction.

101 5 STATUS The CPU Status value selects the CPU PSWl Status bits
as the input to the AMUX. The Status bits are formatted
as follows:

Bit 00 Privilege Bit

Bits 01-04 Condition Code Bits 1-4

Bit 05 Extended Operand Indexing (Extended

Addressing)

Bit 06 Last Instruction Executed was in the
Right Halfword

Bits 07-08 Not Used

Bit 09 MAP Not Valid (LVALID)

Bit 10 MAP Write Protected

Note: Bits 09-10 pertain to the
map entry addressed by MAR bits 04-08.

Bits 11-15 Not Used

Bits 16-31 Contents of the Memory Protect
Register Addressed by MAR bits 05-08.

-37-

Table 3-5. A-Mux Select (A) Field (CREGIO-12) Cont'd.:

Value Syntax Description

110 6 BMG The Bit Mask Generator value selects the 32-bit Bit
Mask Generator as the input to the AMUX. If the AMUX
term is used without the Y-Order 'BMGMR', the byte
select code for the Bit Mask Generator is supplied
by the 10 register, bits 14-15. If this AMUX term
is used with the Y-Order 'BMGMR', the byte select
code for the Bit Mask Generator is supplied by the
MAR virtual register C-bits (LFCIV and LFC2V signals).
In either case, the bit mask code within the byte
is supplied by the 10 register bits 06-08.

il1 7 LITERAL FILL This value selects the Literal Generator as the input
BYTE SELECT to the AMUX. The actual literal value 'YZ' is
@FFFFFFYZ supplied by the 'P' and 'C' fields (CREG36-43),

and must be within the hexadecimal range of '0'
to 'FF'. Note that the fill bits for this literal
(bits 00-23) must be all Ones and that the literal
byte is in byte position 3 (bits 24-31).

-38-

3.7 Literal Select Field (CREGI0-12)

Two types of literals (constants) are generated using the A-MUX field:

1. Short Literal - A-mux field equal to 7

2. Long Literal - Y-Order field equal to 2

A) Short Literal

With the A-Mux field equal to 7, the literal

value generated from the microinstruction is

selected. The byte, CREG36-43, is presented

to the Literal circuitry right justified

(byte 3) with the most significant three bytes

forced to Ones.

B) Long Literal

With the Y-Order field equal to 2, a long literal

is constructed according to the state of CREG bits

10-12 as follows:

CREGIO is the fill bit (One or Zero) which is

forced into all 24-bit positions not

directly specified in the microinstruction.

CREG11-12 select the byte position in the word where

the bits of CREG36-43 are inserted. The

CREG 11 and 12 byte selection is shown below.

Table 3.5.B Long Literal-CREG Bits 11 and 12

CREG Bits
11 12 Byte Selected

0 0 Byte 1

0 1 Byte I

1 0 Byte 2

1 1 Byte 3

4

I
- 39-

A summary is provided as follows:

When the "LONGLIT" order is used, the Literal Select field, CREG bits
10-12, is interpreted as the fill bit and byte select code for the literal
generator. The most significant bit of field, CREG bits 11-12, are used as
the byte select code. The actual byte literal is always placed in the P- and
C-fields, CREG bits 36-43.

LITERAL SELECT FIELD SYNTAX

The following Select Field orders do reflect the correct Assembler Syntax.
@XYOOOOOO (A=O)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero and the byte select code is zero.

@OOXYOOOO (A=l)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero and the byte select code is one.

@0000XY0 (A=2)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero, and the byte select code is two.

@OOOOOXY (A=3)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are zero, and the byte select code is three.

@XYFFFFFF (A=4)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are one, and the byte select code is zero.

@FFXYFFFF (A=5)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are one, and the byte select code is one.

@FFFFXYFF (A=6)

Long Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The fill bits are one, and the byte select code is two.

@FFFFFFXY (A=7)

Short Literal where the "XY" term must be in the hexadecimal range of 00-FF.
The Micro-Assembler evaluates this literal as a short literal so the Literal
Select field is interpreted as the A-mux Select field. However, if the "LONGLIT"
Y-order is manually generated, this becomes a long literal with a fill bit of
one and a byte select code of three.

Notes

In the example above, the "@" preceding the literal value indicates to
the Micro-Assembler that hexadecimal notation is being used. Literals may also
be expressed in decimal, binary, or an evaluatable expression.

-40-

3.8 H-Multiplexer Select (B) Field (CREG 13-15)

The B-mux selects one of nine data sources for input to the ALU.

Some of the nine B-mux sources are:

1. General File Register (FILE)

2. General File Register, Halfword Swapped (FILE, HWS)

3. Temporary Register (T)

4. Data Input Register (DI)

5. Instruction Decode Register (10)

The various bit combinations that select each source are given in

Table 3-6.

-41-

Table 3-6. B-Mux Select (B) Field (CREGI3-15)

Influenced by: None

Influences: None

General: The B-Mux Select field chooses the source of the B
input to the ALU. The ALU function specified does
not require a B--Mux term for this field to be valid.

The Micro Assembler default value for this field
is '1'. This value selects the 8-bit N-Counter and
the 24-bit MAR register as the B-Hmux input.

B-Mux Syntax The Micro Assembler generates the B-Mux Select field
values when the B-Mux is specified or implied as a
resource to the operation to be performed. In
general, two types of B-Mux resources may be implied
or specified. The first resource type utilizes the
B-Mux to supply the B input to the ALU. The syntax

of the ALU expressions are:

1. DEST=AMUX.NAMES ALU FUNCTION BMUX.NAMES;

2. DEST=BMUX.NAMES;

The second resource type occurs when a B-Mux input
is required for direct bit tests and the ALU function
specified does not require a B input resource. The
syntax for this type of expression is:

1. DEST=AMUX.NAMES, BMUX=BMUX.NAMES;

In this expression, DEST must equal a valid ALU
Destination term as described in the Destination
field description. AMUX.NAMES must equal a valid
A-Mux term, as described in the A-Mux Select or the
Literal Select field descriptions. ALU FUNCTION
must equal a valid ALU term, as described in the ALU
field description. The BMUX.NAMES terms must be a
valid B-Mux term as described in the following discussion.

Value Syntax Description

0 T The T-Register value selects the 32-bit T-register
as the input to the B-Mux.

N/ The N-Counter and Memory Register value select the
MAR 8-bit N-Counter and the 24-bit MAR register as the

input to the B-Mux.

The N-Counter and MAR input port is formatted as follows:

Bits 00-07 N-Counter bits 00-07

Bits 08-16 Logical MAR bits 00-08

Bits 17-29 MAR bits 09-21

Bits 30-31 Virtual MAR bits 22-23 (C-bits,
LFCIV and LFC2V signals)

42 - I
Table 3-6. B-Mux Select (B) Field (CREGl3-15) Cont'd.:

Value Syntax Description

Note 1. If the U-Order ('RDMAP') is true, B-Mux Input
bits 08-16 contain Physical MAR bits 00-08. If MAR
was loaded by the 'FULLMAR' destination term or if the
MAP is turned OFF, both Logical and Physical MAR values
will be equal. If the MAP is turned ON and MAR was
loaded by the 'MARlX' or 'MAR' destination terms,
Logical MAR bits 04-08 contain the MAP register. Bits
00-03 of Logical MAR are not used by the mapping
algorithm.

2. The DI or T-register data input through this
Mux is not affected by any other concurrent shift orders.

3. Virtual MAR and MAR 22-23 should agree unless a
SeIBUS transaction has occurred that causes these bits
to act as F- and C-bits.

2 10 The 10 Register value selects the 32-bit 10 register
as the input to the B-Mux.

3 D1 The Dl Register value selects the 32-bit Dl register
as the input to the B-Mux. If this B-Mux term is
used while a memory operand read or an I/0 final
transfer is in progress, the CPU automatically enters
a WAIT state until the memory or I/0 DRT is received
and the CREG cycle of the current micro-instruction
can be completed using the DI register data just
received from memory or I/0.

4 R(X) The Selected File Register Output value selects the
FR(Y) 32-bit File output as the input to the B-Mux, For

the 'R(X)' term, the file register address is
specified by the File Read Select field (CROM24-26)
or the Register Number field (CROM36-39). For the
'FR(Y)' term, the Extended Control Register Select
method is used to address the File and only File
registers '8' through 'F' may be used. (See Table 5-4.)

Note: This B-Mux code causes a File Read and must
not be used in a micro-instruction following a File
Write micro-instruction.

5 R(X,HWS) The Select File Register Output, Halfword swapped
FR(Y,HWS) value selects the 32-bit file output, circular shifted

16 bits, as the input to the B-Mux. File output bits
00-15 are presented to B-Mux 16-31 and File output
bits 16-31 are presented to B-Mux bits 00-15. For
the 'R(X,HWS)' term, the File register address is

-43-
Table 3-6. B-Mux Select (B) Field (CREGI3-15) Cont'd.:

Value Syntax Description

5 cont'd. R(X,HWS) specified by the File Read Select field (CROM24-26)
FR(Y,HWS) or the Register Number field (CROM36-39). For the

'FR(Y,HWS)' term, the Extended Control Register
Select method is used to address the File and only
File registers '8' through 'F' may be used.
(See Table 5-4.)

Note: This B-Mux code causes a File Read and there-
fore, must not be used in a micro-instruction
following a File Write micro-instruction.

6 INTLVL The Interrupt Level and Panel Data value selects
PNLDATA the Serial Panel data input lines and current

interrupt polling level. The input lines to the
B-Mux are formatted as follows:

Bit 00 UART bit 03

Bits 01-03 Not Used

Bits 04-07 UART bits 04-07

Bit 08 Not Used

Bits 09-15 Interrupt Polling Level

Bits 16-31 Not Used

7 None Not Used

-44-
3.9 ALU Control (+) Field (CROMI6-19)

The Arithmetic and Logic Unit performs fifteen arithmetic or logical
operations on the A and B input lines. The data on the A and B inputs is
selected by the A-Mux' and B-Mux fields of the micro-inspection. The various
ALU functions selected by each bit combination of the + field are shown in
Table 3-7.

Table 3-7 ALU Control (+) Field

Influenced by: None

Influences: None

General: The ALU Control field chooses the function that the
ALU is to perform on the A and B input data lines.
The actual data on these lines is specified by the
A-Mux Select and B-Mux SeleCt fields of the micro-
instruction.

The micro-instruction order structure provides for
special orders that either save ALU status or use
previously stored ALU status. ALU status includes
carry-out, result equal zero, and ALU output sign
bit. These orders provide the capability of executing
double-precision (64-bit) arithmetic and logical
functions in coordinated micro-instructions.

The Micro Assembler defaults the ALU Control field
to value '0'. This action causes the B-Mux input
to the ALU to be transferred to its output lines.

For ALU Syntax see reference (3).

Value Function Description

0 Transfer B-Mux input to ALU output.

1 Transfer ones complement of the B-Mux input to the
ALU output.

2 Logical OR the ones complement of the A-mux input
with the B-Mux input and transfer the result
to the ALU output.

3 Add the A-Mux to the B-Mux inputs and transfer the
result to the ALU output.

4 Subtract one from the A-Mux inputs and transfer the
result to the ALU output.

5 Subtract the B-Mux inputs from the A-Mux inputs and
transfer the results to the ALU output.

6 Add one to the A-Mux inputs and transfer the result
to the ALU output.

7 Logically OR the A-Mux with the ones complement
of the B-Mux inputs and transfer the result to the
ALU output.

V WWI

m m • • m | | |A

-45

Table 3.7 ALU Control (+) Field (CROM16-19) Cont'd.:

Value Function Description

'I
8 Logically Exclusive OR the A-Mux inputs with the

B-mux inputs and transfer the result to the ALU output.

9 Transfer the ones complement of the A-Mux input to
the ALU output.

A Logically OR the A-Mux inputs with the B-Mux inputs
and transfer the result to the ALU output.

B Logically AND the B-Mux inputs with the ones complement
of the A-Mux inputs and transfer the result to the
ALU output.

C Logically AND the A-Mux inputs with the ones complement
of the B-Mux inputs and transfer the result to the
ALU output.

D Logically AND the A-Mux inputs with the B-Mux inputs

and transfer the result to the ALU outputs.

E Transfer the A-Mux inputs to the ALU outputs.

F The Overlay the ALU Control field value causes
the output of the D-ROM, bits 00-04, to overlay
the ALU Control field. This feature provides the
macro instruction being executed with the capability
of defining the ALU operation code.

- 46 -

3,10 ALU Destination (D) Field (CROM20-23)

The output destination of the ALU can be distributed to any of the
following eight Registers BUS:

1. General File Register (FILE)

2. Memory Address Register (MAR)

3. Program Counter Register (PC)

4. N-Counter Register (NCTR)

5. Temporary Register (T)

6. Instruction Pipeline Register (I)

7. Data Input Register (DI)

8. DBUS (with following destination-)
a. Shift Register (S)
b. WCS Output Data

The output destination may not necessarily be specified. The default value
of '0' in the D Control Field indicates that no destination is desired.

The various bit combinations that route the ALU output to the desired
destination are listed and explained in Table 3-8.

Table 3-8 Destination (D) Field (CROM20-23)

Influenced by: None

Influences: None

General: The Destination field chooses the destination register
for the ALU output. When a register is chosen as the
destination register, it is strobed at the end of the
CREG cycle of the micro-instruction.

Value Syntax Description

0 NOD The No Destination term ensures that a register strobe
is not generated. This is the default value

I S The S-register condition causes the contents of the
32-bit D-bus to be strobed into the 32-bit S-register.
The D-bus normally contains ALU data unless the
Scratchpad or WCS was selected as a resource to the
micro-instruction. (See X-Order 6.)

47

Table 3-8 Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

2 PC The Program Counter condition causes the contents of the
ALU output bus, bits 08-29, to be strobed into the
22-bit Program Counter. The Program Counter is used

for the macro program address and is aligned to the
32-bit data structure so that addresses generated by
the PC are 24-bit memory word addresses. The two
significant bits, which would normally align to ALU

bits 30 and 31, do not exist since they are not
required for word type memory addresses.

3 MAR The Memory Address Register (19-bit) condition causes
the contents of the MIN bus, bits 08-31, to be presented

to the Logical MAR. If the Nonextended Indexing CPU
mode is used, only bits 13-31 of the MIN bus are strobed

into Logical MAR, bit 05-23. If the Extended Indexing
mode is used, bits 08-31 of the MIN bus are strobed
into MAR bits 00-23. The MIN bus normally contains
ALU data unless the 'PCTOMAR' order is present or

a 'FETCHPC' order is present.

If the Mapped mode is used during the CREG+1 operation,
Logical MAR bits 04-08 address the MAP registers. At
the end of CREG+1, the contents of the MAP register

are strobed into Physical MAR bits 00-08 to generate
a 24-bit real address in Physical MAR (00-08) and

Logical MAR (09-23).

If the MAR is used as a destination, and the output

portion of a previously coded SelBUS transfer is not

complete, the CPU enters an automatic WAIT condition.
This action is necessary to prevent the destruction

of the MAR contents which must be valid for the

successful completion of the SelBUS transfer.

4 SCRATCH With the Scratchpad condition, the contents of the

(AMUX.NAMES)= 32-Bit B-Mux are strobed into the Scratchpad location

addressed by the A-Am(bits 08-15). The ALU functions

are disabled during this micro-instruction.

5 11 With the Ii condition, the 32-bit contents of the

DATA/ALU bus are strobed into the Ii register. The

DATA/ALU bus normally contains SelBUS data until the

'Il' or 'DI' destination term is programmed. Because

of this conflict, the Il destination must not be used

under the following conditions:

1. If a memory operand fetch is in progress
2. If an instruction fetch is in progress
3. If a Read Status Transfer (RSTX) is in progress

4. If an Interrupt Control Transfer (ICT) is in

progress.

The Ii destination term sets the CPU Ii full condition

and clears any pending Il conditions that may be

present.

48 -

Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

6 DI The DI register condition causes the contents of the
32-bit DATA/ALU bus to be strobed into the DI register.
The DATA/ALU bus normally contains SelBUS data until
the 'Il' or 'DI' destination term is programmed.
Because of this conflict, the 'DI' destination must
not be used under the following condtions:

1. If a memory operand fetch is in progress
2. If an instruction fetch is in progress
3. If an RSTX transfer is in progress
4. If an ICT transfer is in progress

The DI destination term sets the CPU DI full condition
and clears any pending DI condtions that may be present.

7 MARIX The Memory Address Register Indexed (19-bit condition
causes the contents of the MIN bus (bits 08-31) to be
presented to the Logical MAR. If the Nonextended mode
is used, only bits 13-31 of the MIN bus are strobed
into Logical MAR, bits 05-23. If the Extended Indexing
mode is used, bits 08-31 of the MIN bus are strobed
into Logical MAR, bits 00-23.

If thewMapped mode is used during CREG+I, Logical
MAR bits 04-08 address the MAP registers. At the
end of CREG+I the contents of the MAP register are
strobed into Physical MAR bits 00-08 to generate a
24-bit real address in Physical MAR (00-08) and
Logical MAR (09-23).

The content of the MIN bus is determined by the
CPU Indexing algorithms. The ALU expressions for
the Indexing algorithms are as follows:

1. MARIX=R(X)+I0;
2. MARIX+R(DIX)+Dl;

Of the two expressions, the first expression is
used for preindexing and the File register,
addressed by 10 bits 09-10, is added to 10 bits
13-31. The ALU output is transferred to the MIN
bus. If the File address provided by 10 bits 09-10
is equal to zero, the ALU Add function is changed to
a Transfer B inputs to outputs function; thus 10 bits
13-31 are transferred to the MIN bus.

-49-

Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

7 Cont'd.: The second expression is used with postindexing and a
memory indirect cycle must have previously occurred to
load an indirect word in the DI register. In this
case, the File register addressed by DI bits 09-10
is added to DI register bits 13-31. The ALU output

is gated to the MIN bus. If the File address provided
by DI bits 09-10 is equal to zero, the ALU add function
is changed to a Transfer B inputs function; thus, DI
bits 13-31 are transferred to the MIN bus.

Either of the Indexing expressions cause the F- and
C-bit calculations to occur according to the rules
for macro-instruction memory addressing. The source
for the Indirect bit and F- and C-bits is as follows:

1. B-mux bit 11 is the Indirect bit.
2. B-mux bit 12 is the F-bit.
3. ALU bit 30 is the CO bit.
4. ALU bit 31 is the C1 bit.

F- and C-bit manipulations are managed by the Virtual
MAR. These bits are not transferred to Physical MAR
until a SelBUS transaction occurs. The actual F-
and C-bit conflguration used may be modified by the
'FRCWORD' X-order and the 'FORCZF' Conditional order.

If the MAR is used as a destination, and the output
portion of a previously coded SelBUS transfer is not
complete, the CPU enters an automatic WAIT state to
prevent the destruction of the MAR contents, which
must be valid for the successful completion of the
SelBUS transfer.

8 R(Y) The File Addressed by Register Number Field condition
(File Write destination term) causes the output of
the ALU to be strobed into the 32-bit T-register at
the end of the CREG cycle. During the CREG+l cycle,
the contents of the T-register are strobed into the
File register addressed by the Register Number field,
CROM36-39. The 'Y' term may be any number or name,
which is equated to a number, in the range of '0'
to 'F'.

Note: A File Write micro-instruction should not be
directly followed by a File Read micro-instruction,
since the File Write/Read actually occurs in the
the CREG+1 cycle and a File/Write/Read would exist.

- 50 -

Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

8 Cont'd. R(Y) If the 'OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction. This
coding is necessary so that the 'OTHERBANK' X-order
is active during the CREC+l cycle of the File Write
instruction.

Since the File Write function changes the contents
of the T-register, if a File Write micro-instruction
is coded before a previously coded Memory Write
SelBUS transaction has been successfully completed,
the CPU enters an automatic WAIT state until the
Memory Write is complete. This WAIT state prevents
the destruction of the T-register during the Memory
Write transaction.

9 R(R) The File Addressed by 10 bits 06-08 (File Write
destination term) causes the output of the ALU
to be strobed into the 32-bit T-register at the
end of the CREG cycle. During the CREG+I1 cycle,
the contents of the T-register are strobed into
the File register addressed by 10 bits 06-08. This
destination term is used to coordinate the macro-
instruction being executed and the File registers.

Note: A File Write micro-instruction should not be
directly followed by a File Read micro-instruction
since the File Write actually occurs in the CREG+1
cycle and a File Write/Read conflict would exist.

If the 'OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction so that
'OTHERBANK' is active in the CREG+l cycle of the
File Write cycle.

The File Write function changes the contents of the
T-register. Therefore, if a File Write micro-
instruction is coded before a previously coded Memory
Write SelBUS transaction has been successfully
completed, the CPU will enter an automatic WAIT state
until the Memory Write is complete. This WAIT state
prevents the destruction of the T-register during the
Memory Write transaction.

A - 51-

Table 3-3. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

A None Not Used

B R(DIX) The File Register Address Selected by the File Read
R(X) Select field (File Write destination term) condition
R(NCTR) strobes the output of the ALU into the T-register
R(S) at the end of the CREG cycle. During the CREG+l
R(RO) cycle the output of the T-register is strobed into
R(RD) the File register whose address is selected by the
FR(Z) File Read Select field, CROM24-27.

Refer to the File Read Select field (Table 5-9)
description for a complete description of the Field
addressing methods provided by these destination
terms. For the 'FR(Z)' destination term, Extended
Control, Register Select File addressing methods
are used and the 'Z' term must be a File address in
the range of '8' to 'F'.

Note: A File Write micro-instruction should not be
directly followed by a File Read micro-instruction,
since the File Write actually occurs in the CREG+1
cycle and a File Write/Read conflict would exist.

If the 'OTHERBANK' X-order is used with a File Write
function, it must be coded in the micro-instruction
following the File Write micro-instruction. This
coding is necessary so that 'OTHERBANK' can be active
during the CREG+I cycle of the File Write micro-
instruction.

Since the File Write function changes the contents
of the 7-Register, the File Write micro-instruction
is coded before a previously coded Memory Write
SelBUS transaction has been successfully completed
and the CPU enters an automatic WAIT state until
the Memory Write is complete. This WAIT state
prevents the destruction of the T-register contents
during the Memory Write transaction.

C NU The N-Counter Upper term causes the 8-bit N-Counter
to be loaded with ALU bits 00-07 at the end of the
CREG cycle.

D UL The N-Counter Lower term causes the 8-bit N-Counter
to be loaded with ALU output 08-15 at the end of
the CREG cycle.

-52-

Table 3-8. Destination (D) Field (CROM20-23) Cont'd.:

Value Syntax Description

E FULLMAR The Memory Address Register (24-bit) term causes the
ALU output bits 08-31 to be strobed into the 24-bit
Logical MAR at the end of the CREG cycle. During
the CREG+l cycle, the contents of Logical MAR (bits
00-08) are strobed into Physical MAR (bits 00-08),
bypassing the CPU MAP algorithm. The FULLMAR
destination term provides for the loading of a full
24-bit address into Physical MAR. Since two clocks
are required to load Physical MAR, if the 24-bit
address is required for a SelBUS transaction, the
FULMAR destination term must be used in the micro-
instruction prior to the SelBUS transaction term.

If the MAR is used as a destination and the output
portion of a previously coded SelBUS transfer is not

complete, the CPU enters an automatic WAIT state to
prevent the destruction of the MAR contents, which
must be valid for the successful completion of the
SelBUS transfer.

F T The T-register destination term causes the output
of the ALU to be strobed into the 32-bit T-register
at the end of the CREG cycle.

Note: If the T-register is used as a destination and
a previously coded SelBUS Memory Write is not complete
the CPU will enter an automatic WAIT state to prevent
the destruction of the T-register contents. The WAIT
state is terminated when the Memory Write transaction
is complete.

-53-

3.11 File Read Select (R) Field (CREG 24-26)

The R field (CREG24-26) indicates where the file address should be taken

from in order to be able to read the 32 x 32 file. If we consider the file as

32 registers, then the R field of the microinstruction points to where we can get

the register number from for reading the Register.

For example we want to Read either Register number 0 or 1 and bits 9 and 10

of DI register contain: Bit 910
00

01

If the R-field contains the value 1 then any file read will read RO or RI depending

on bits 9 and 10 of the DI register.

The following description gives the meaning of each bit combination and is summarized

in Table 3-9.

Note that because of hardware restriction a file read should not follow a file write

in microcode.

• m • m • • • i 1 1II

- 54 -

Table 3-9. File Read Select (R) Field (CREG24-26)

General: This field dictates the selection of the source
of addressing the file for a read during this cycle.
Since a write to the file is actually accomplished
by writing 'T' into the file,'during the cycle
immediately following the DS cycle of the instruction
requesting the write, care must be taken so that no
attempt is made to read from the file in the next
instruction following a write.

Influenced by: Control Orders REGSEL and MPROM.

Influences:

Value Syntax Description

0 R(REG NO) Register Number is in CREG36-39.

1 R(DIX)DI9-1O Register Number is in DI09-10. Register DI bits 9-10

2 R(X)109-19 Register Number is in 109-110 register TO bits 9-10

3 R(NCTR) Register Number is the ones complement of register N
bits 4-7

4 R(R) 106-8 Register Number is in register 10 bits 6-8

5 R(S) 109-11 Register Number is in register 10 bits 9-11

6 R(RP)106-7 Register Number is concatenation of regist 10
bits 6-7 and 'I'

7 R(RD)106-7 Register Number is concatenation of 1006-07 and DW.

Note: This address may only be used with a
LDMARIX order in the instruction proceeding it.

EXTENDED Dependent upon Control Orders REGSEL and MPROM.
REGSEL T-6 or E. M-0.

FR(REGNO) The least significant 3 bits of the FR(2) field
REGS8-F ONLY are initially Zero, with the most significant bit

always a One.

0 8
1 9
2 A
3 B
4 C
5 D
6 E
7 F

- 55 -

3.12 Y-order (Y) Field (CREG 27-31)

The microinstruction bits 27-31 are decoded from the CREG to perform various

control functions. These various functions and the bit combinations are shown in
I!

Table 3-10.

3.13 X-order X) Field (CREG 32-35)

Like the Y-order field, microinstruction bits 32-35 are decoded from the CREG

to perform various control functions in the data structure of the 32/75 computer.

However this field is forced to NOP (inactive) if the T field has the value 3, 4 or

5. The various functions with the respective bit combinations are shown in Table 3-18.

Besides being used as the X-order field, mocroinstruction bits 32-35 are decoded

for these other purposes:

a) U-Order
b) W-test
c) S-test.

These uses of bits 32-35 are explained in the following sections.

I i i I I

-56-

Table 3-10. Y-Order (Y) Field (CREG27-31) (2)

Influenced by: None

Influences: None

Value Syntax Description

0 NOP This field is inactive, the default value

1 SHIFTS This value causes the S-register to shift one bit position
in the direction specified by the Shift Field. The vacated
bit is filled as specified in the shift code.

2. LITERAL (LONG) This value indicates that a long literal is to be used.
(LITL) The literal is constructed as described under the A-Mux

section.

3 FILLEXP This order is used in conjunction with floating-point and
causes the output of the B-Muz to force BMUXO into
positions BMUX01-07. This action eliminates the floating-
point exponent and results in the ALU input being a cor-
rectly signed 32-bit mantissa.

4 BMGMR This order gives control to the Bit Mask Generator (BMG) so
that the byte decoded from 1014-15 and/or the indexing
logic can be selected. Bit selection within the byte is by
decode of 1006-08.

5 SETCAR This order saves the carry-out of the ALU for later use in
computing the most significant half of a doubleword operation.

6 USECAR This order uses the previously saved carry (SETCAR) to supply
the carry into the ALU.

7 WRPMAP This order causes bits 16-31 of the file output to be written
into the Protect register addressed by MAR05-08.

8 RELSW This Read Least Significant Word order is used with the
hardware Floating-Point.

9 RSTFP This order is used to reset the hardware Floating-Point.

A TSFILL This order causes the sign bit (TREGOO) to be used as the
fill bits when a T-register right nibble shift is selected
by X-order NIBLT.

B INCRN This order causes the N-Counter (NCTR) to be incremented

by 1.

C RSTRHF This order resets the Right Half Flag (RHFLG) flip-flop.

D INHLHW This order inhibits the write into bits 00-15 of the file.

E INHRHW This order inhibits the write into bits 16-31 of the file.

F CLKDIV This order causes SREGOO to be clocked into the least
significant bit of the Quotient register.

L-

-57-

Table 3-10. Y-Order (Y) Field (CREG27-31) (Cont'd)

alue Syntax Description

10 SELSPARE This order selects the Quotient register on the Data bus in
positions 16-31. Bits 00-15 are unspecified, and the ALU
and scratchpad are disabled during this cycle.

11 RESETFF This order resets all three groups of Level orders.

12 SAVESIGN This order causes the sign bit of the ALU (bit 00) to be
clocked into a flip-flop for later examination by the
test condition structure.

13 Not Used

14 UPACK User Panel Acknowledge (Clear Serial and Parallel panel
interface).

15 CLRTO This order clears the Bus Timeout flip-flops and sets the
Ready Pending flip-flop.

16 RETAEXP This order clears the Arithmetic Exception Pending flip-flop.

17 Not Used.

8-IF These orders used in conjunction with CREG40-43 to control
SelBUS transactions as follows:

Y-Order CREG40-43 Transaction

19 8 FETCHPC (also increments PC
by 4 or 1 word)

IC 1 ICT
lC 4 RSTX
1C 8 READ
1C A READ AND LOCK
ID FETCHV (Fetch Instruction If

Not Indirect, DRT --11. Fetch
Indirect Word If Indirect,
DRT-90D1).

1E 0 WDOT
1E 1 AICT
1E 4 ARSTX
1E 8 WRITE

~1I

-58-
Table 3-11. X-Order X) Field (CREG32-35) (2)

Influenced by: The Basic Test Codes 02, 4, 6-F, and U-Order flip-flop.

Influences:

General: The X-order does not exist if basic test codes 3 or 5
have been selected in this instruction. These bits address
the W-test field (when selected) and the X-field is forced
to a NOP. The Enable U-Order flip-flop must be reset
(F/F=O).

Value Syntax Description

0 NOP This field is inactive (default)

1 FRCWORD The SEL transaction requested in this microinstruction is
forced into the Word mode, regardless of the F- and C-bits
of the computed address.

TNIB LThis transaction causes the T-register (TREG) to be nibble
R shifted in the direction specified by the shift code. The

vacant nibble is filled with zeros if the direction is left,
and with the contents of SREG28-31 if the direction is
right.

3 SHIFTDI This transaction causes the DI bit to be shifted as deter-
mined by the shift code.

4 BLKCAR8 With this transaction, no carry propagation is allowed
between ALU08 and ALU07.

5 TOGRHF This transaction causes the RHFLG flip-flop to assume the
state opposite its current setting.

6 SDEST This transaction causes the output of the ALU to be trans-
ferred into the S-register (SREG). This action dupli-
cates the choosing of the SREG as the Destination regis-
ter in the Destination field. It also allows the SREG
and another Destination register to obtain the ALU data
simultaneously.

7 IITOIO This transaction transfers the contents of II into 10.

8 PCTOMAR This transaction transfers the contents of the Program
Counter (PC) into the virtual Memory Address Register (MAR).

9 SHIFTIO With this transaction, 10 16-31 replaces 10 oo-15 for exe-
cution of right halfword instructions. 10 16-31 receives
10 00-15 except for 1-30 which receives a logical Zero.

A RDLOCSTR The Read Local Store order enables the scratchpad contents
(required for a read or write) to be outputted onto the
Data bus (DBUS). This ALU and SELSPARE commands are dis-
abled during this cycle.

B FIXEXP This transaction is used with floating-point. If the T-
register (TREG) is negative, the most significant byte of
the ALU B input is complemented, and the three least sig-
nificant bytes are passed straight through. The micro-
word must supply the F=B function, and the result should
adjust the exponent from positive to the sign of the result.

! L A

-59-

Table 3-11. X-Order (X) Field (CREG32-35) (Cont'd)

Value Syntax Description

C SETRHF This transaction causes the Right-Hand flag to be set.

D OTHERBANK This transaction causes a single cycle switch of the register
bank setting. This switch is effective during the CREG
cycle of the OTHERBANK command and therefore, effects the
read specified in this command or the write specified in
the previous instruction.

BMUXSE This transaction causes bit 16 of the B-Mux output to fill
bits 00-15 for sign extension of halfword operands.

BMUXZE This transaction causes bits 00-15 of the B-MuX output to
be unconditionally forced to Zeros.

II I | i i i

-60-

3.14 U-order (U) Field (CREG 32-35)

When the Enable U-order flip-flop is set then microinstruction bits

32-35, decoded from the CREG are interpreted as the U-order. The meaning

of the various bit combinations is then as given by Table 3-12 not table

3-11. This multiple use of the same field does not need to confuse the

person writing microcode. One only need to be sure that the condition

for interpreting the field in the way desired is fulfilled; the hardware

takes care of the rest.

The enable U-order F/F is reset using microcode when H=5, P=0 and

T=0.

See Figure 3-6 Below and microinstruction bits 36-39.

P C H

36 37 38 39 40 41 42 43 44 45 46 47

'6 0 0 0 - - - -0 0 0 0

*If bit 36=0 then the
Figure 3-6 . Enable U-Order F/F is set, else it is

reset!

-61-

Table 3-12. U-Order (U) Field (CREG32-35) (2)

General: The Enable U-Order flip-flop must be set (F/F=1),

otherwise the X-order test will be performed.

Value Syntax Description

0 NOP This field is inactive.

1 RUN This order causes the Run/Halt flip-flop to be set to
the Run state.

2 HALT This order causes the Run/Halt flip-flop to be set to
the Halt state.

3 RESETIO The Reset I/O order causes the SelBUS interface to poll
the I/0 reset line on the bus to reset the I/O controllers.

4 RSTPROTV The Reset Protect Violation order resets the Protect
Violation and MAP Invalid flip-flops.

5 LDMAP The Load MAP order loads the MAP registers.

6 RDMAP The Read MAP order enables the MAP mux (B-Mux).

7 LDWCS The Load Writable Control Storage order loads the WCS
registers.

8 RDWCS The Read Writable Control Storage order enables the WCS
Address Interdace flip-flops.

9 LDSTOP The Load Stop order is used to clock the Stop Address

compare "A" and "B" circuits.

A RDLOCSTR The Read Local Store order enables the output of the
scratchpad (required for Read or Write) onto the Data
bus (DBUS). The ALU and SELSPARE commands are disabled
during this cycle.

B Not Used

C Not Used

D OTHERBANK This order causes a single cycle switch of the register bank
setting. This switch is effective during the CREG cycle
of the OTHERBANK command and, therefore, effects the read
specified in this command or the write specified in the
previous instruction.

E BMUSE The B-Multiplexer Sign Extend order causes bit 16 of the
B-Muxoutput to fill bits 00-15 for sign extension of
halfword operands.

F BMUXZE The B-Multiplexer Zero Extend order causes bits 00-15 of
the B-Mux output to be unconditionally forced to Zeros.

-62-

3,15 w-Tesijr FLeld (CROM 32-35)

When the T field (CROM 00-03) has the value 3 or 5, then microinstruction bits

32-35 are interpreted as W-test field. This field is decoded from CROM. Both the

X-order (Table 3-11) and the U-order (Table 3-12) are disabled when the W-Test is

selected.

The various tests selected by the bit combinations is given in Table 3-13.

The Enable U-order flip-flop must be reset (F/F=O) and T=3 or 5 for the W-test

to be executed.

9~. -- - -ii-- Iv , ----.

~-63-

Table 3-13. W-Test (X) Field (CROM32-35) (2)

Influenced by: The Basic Test (T) Field (CROMOO-03) values 3 and 5.

Influences:

General: The W-Test field is interpreted out of CROM and disables
the X- and U-order fields during the DS cycle of the
instruction.

Value Syntax Description

0 EXTLW This condition is met if one of the following conditions
exist: INSTTIMEOUT, OPNDTIMEOUT, INSTNORESP, OPNDNORESP,
MUXINSTER, MUXOPNDER, NOTRUN, FFINT, FFSYSR, PWRFAIL,
IPLSW, UPNLATTN, or PROTV.

I SIGNSAVE This condition is met if the sign saved during the last
SAVESIGN order was negative.

2 ALUNEGW This test is met if the sign bit of the ALU in the second
preceding instruction was One (negative).

3 FFRUN This test is met if the Run/Halt flip-flop is in the Run
state.

4 BMUXOO This test is met if bit 00 of the B-fux was Zero.

Note: Although most tests cannot be performed in the in-
struction immediately following the creation of the value,
because of the pipelining of the processor, the B-Mux
tests indicated by * must be performed during the next
executable instruction. Data being tested on the B-Mux
is in complement form.

5 NORC This test is met based on the contents of the PROM which
examines ALUOO-07.

6 Not Used

7 LFCIV This test is met if bit 30 of the F- and C-bit extension
of the MAR is a One. This bit normally corresponde to
the most significant C-bit in a memory address.

8 BMUX16 This test is met if. bit 16 of the B-Mux is Zero.

9 BMUX17 This test is met if bit 17 of the B-Mux is Zero.

A BMUX18 This test is met if bit 18 of the B-Mux is Zero.

B BMUX19 This test is met if bit 19 of the B-Mua is Zero.

C LATERRW This command indicates that a SelBUS operand fetch parity
error or an arithmetic exception occurred during a previous
instruction; or that an instruction fetch parity error or
instruction has occurre with the current instruction.

D DWORD This test is met if the previous transaction was a double-
word operand.

E HWORD This test is met if the previous transaction was a half-
word operand.

F BYTE This test is met if the previous transaction was a byte
operand.

-64-

3.16 S-test (X) Field (CROM 32-35)

CROM bits 32-35 are decoded as the S-test field when CROM 00-CROM 03

(T field) has the value 4. Only the true condition is tested in this field.

The bit combinations that define the various tests are given in Table 3-17.

3.17 Summary of Use of Microinstruction Bits 32-35

We summarize the various conditions that are used to interpret micro-

instruction bits 32-35.

Conditions Bit 32-35 Meaning

T field (CROMOO-03) Enable U-order F/F

0, 1, 2, 6, 7 0 X-order

don't care 1 U-order field

3 or 5 0 W-test field

4 0 S-test field

-65-

Table 3-14. S-Test (X) Field (CROM32-35)

Influenced by: The Basic Test Field (CROMOO-03) value of 4 only.
There are no provisions for S-Test False.

Influences: None

Value Syntax Description

0 %BLKTIMEOUT No interrupt block mode timeout has occurred.

1 %WCS Writable Control Storage not enabled.

3 Not Used

4 Not Used
5 Not Used

6 Not Used

7 Not Used

8 UNBLOCK The external interrupts are not blocked.

9 Not Used

A ENBL.AXEP Enable Arithmetic Exception flip-flop is set.

B Not Used

C MODE75S The CPU PSD mode flip-flop is set.

D Not Used.

E Not Used.

F EXTMAPERR The External MAP Error (Map Write Protect Violation)
test is presently not being used.

-66

3,18 Microinstruction Bits 36-39

Bits 36-39 of the microinstruction has multiple use depending on the

value in the T, S, Y fields and CREG 44-47. These are summarized below:

Meaning of Bits 36-39 Condition

1. Z-test field T=2, 6, A or E
2. Flip Flop Group 1 Field C-order (CREG 44-47) =4
3. Flip Flop Group 2 Field C-order =5

4. Flip Flop Group 3 Field C-order =6
5. Extended Test (PC) Field- T=1 or 9

(CROM 36-43)
6. FPU orders Group 2 T=D
7. Branch address (CROM 35-47) S (CROM 04-06). 4
8. Literal generation Y (CREG 27-31) =02

(CROM 36-43)
9. CC Select (P) Field M-1 or S<4, (CREG 44-47)

-1 and the presence of a conditional

test.

3.18-1 Z-Test (P) Field (CROM 36-39)

Microinstruction bits 36-39 are decoded from CROM as Z-test if the T

field (CROM 00-03) has value 2 or 6. Table 3-15 gives the meaning of the

various bit combinations.

Slm | |

-67-

Table 3-15. Z-Test (P) Field (CROM36-39) (2)

Influenced by: Basic Test (T) Field (CROMOO-03) values of 2, 6,

A, and E.

Influences:
General: This test is selected when primary test CROMO-3

specifies a Z-Test true or false.

Value Syntax 4 Description

0 TRUE This test is always met.

1 EXTL This condition is met if one of the following conditions
exists: INSTTIMEOUT, OPNDTIMEOUT, INSTNORESP, OPNDNORESP,
MUXINSTER, MUXOPNDR, NOTRUN, FFINT, FFSYSR, PWRFAIL, IPLSW,
UPNLATTN, and PROTV.

2 NMPREV This condition is met if the bit supplied during the last
Multiply PROM order was Zero.

3 MODE75 This condition is met when the 75 Mode flip-flop equals
One.

4 SIGNSAVEZ This condition is met if the sign saved during the last

SAVESIGN order was negative.

5 CCTEST This condition is met if the user addressed test of the
Condition Codes (CC's) is true.

6 LATERRZ This condition, when met, indicates that a SelBUS operand
fetch parity error or arithmetic exception occurred during
a previous instruction, or that an instruction fetch parity
error or instruction nonresponse (nonpresent memory) has
occurred with the current instruction.

7 ALU4-7Z This test is met if ALU bits 4-7 are Zero.

8 ALUNEG This test is true if ALU sign bit (ALUOO) is One.

9 NCTRZ This test is true if NCTROO-07 is Zero.

A RHFLAG This test is true if the Right-Hand flip-flop equals one.

B NCTR4 This test is true if N-Counter bit 04 is One.

C INDIR This test is true if the indirect bit was set by the last
MARIX Destination order.

D NCTRO This test is true if NCTR bit 00 is One.

E FCIV This test is met if bit 30 of the F- and C-Bit Extension
of the MAR is a One. This bit normally corresponds to the
most significant C-bit in a memory address.

F Not Used.

- --- - -v----------------- ---

-68 -

3.18-2 Extended Test (PC) Field (CROM 36-43)

When the T field has the value 1 or 9 bits 36-39 are combined with bits 36-43

to become the Extended Test (PC) field. This field is decoded from the CROM. The

various tests selected by the bit combination are given in Table 3-16.

3.16-3 Flip-flop Field

When the C-order (CREG 44-47) has the values 4, 5 or 6, bits 36-39 is defined

as the flip-flop field.

The flip/flops are divided into three groups:

- 4 selects groups 1

CREG 44-47 = 5 selects groups 2

= 6 selects groups 3

Bit 36 is used to set or reset the selected flip-flop while bits 37-39 are used as

the address of the F/F. That is when

Bit 36 = 1 The F/F selected by bits 37-39 is set to 1
= 0 The F/F selected by bits 37-39 is reset to 0.

The various flip flops selected in each group are shown in Tables 3-17, 3-18 and 3-19.

3-16-4 FPU Orders Group 2 (CREG 36-39)

When the T-field (CROM 00-03) contains D (1101) microinstruction bits

36-39 are used for floating point operations. The various operations are

defined in Table 3-20.

4

- : | m I ml I |

-69-

Table 3-16. Extended Test (PC) Field (CROM36-43) (2)

Influenced by: The Basic Test (T) Field (CROMOO-03) values of 1 and 9.

Influences:

General: The Extended Test field allows "hops" or 12-bit externally
supplied jumps based on a total of 40 separate tests.
These 40 tests are further divided into eight groups of
four. Within each group of five tests, individual lines
or any OR subset of the give test lines may be tested.

BIT 36=0 enables the following tests addressed by bits 41-43:

Value Syntax Description

0 HIREG The File Bank Control flip-flop test is true when the CPU

is currently using the uppper file bank.

I BADSCALE This test is true if the Exponent field (bits 00-07) of
the last ALU operation contained a significant mantissa bit.

2 IORESPRDY The I/O Response Ready test is met for a single cycle as
an IOM response to either an Advance Read Status Transfer
(ARSTX) or an Advance Interrupt Control Transfer (AICT)
sequence. This test indicates that the data requested has
been assembled and that the CPU can enter an uninterruptible
sequence to obtain the data from the IOM.

3 IONORESP The I/O No Response flip-flop is set by the SelBUS inter-
face to indicate to the system that the I/0 transfer
attempted had no response (i.e., there was no Transfer
Acknowledge).

4 INSTNORESP The Instruction No Response flip-flop is set by an in-
struction fetch to indicate to the system that the in-
struction attempted had no response.

5 OPNORESP The Operand No Response flip-flop is set by an operand
read to indicate to the system that the operand attempted
had no response.

6 PROTV The Protect Violate flip-flop is set when the hardware
detects a write in protected memory and changes that
write to a read. The flip-flop is reset by a Reset PROTV
order. (V value of 4)

7 SONETO S-register bit 0 is not equal to the T-register bit 0
(the sign bit is different).

BIT 37=0 enables the following tests addressed by bits 41-43:

0 PRIVBIT Privileged Bit. When the Privileged Bit flip-flop is 0,
the system is operating in the privileged state.

I PWRFAIL The Power Fail signal warns of impending power loss. This
signal allows the system to placL volatile information into
core. The volatile information will be utilized when a
restart command is executed.

- --

- 70 -

Table 3-16. Extended Test (PC) Field (CROM36-43) (Cont'd)

Value Syntax Description

2 UPREQ The User Panel Request signal indicates that the user
panel (Turnkey Panel) has information to be transmitted
to the CPU. The panel keeps this line high until it
receives a User Panel Acknowledge (UPACK) signal. The
UPACK signal indicates that the firmware has accepted
the input.

3 IOCHBUSY The I/0 Channel Busy signal indicates that the response
to an I/0 transfer was "Channel Busy."

4 TO3SIG The "To 3 Signal" test indicates that the values of
TREGOO and TREG03 are different, implying significance to
TREGO3 (used for normalizing).

5 BIBUSY The Bus Interface Busy signal comes from the SelBUS inter-
face to the firmware. This signal indicates that the SelBUS
interface has outstanding transactions to be completed/

6 LATERR The Late Error signal indicates that a SelBUS operand
fetch parity error or arithmetic exception occurred during
a previous instruction; or that an instruction fetch parity
error or instruction nonresponse (nonpresent memory) has

occurred during a current instruction.

7 AEXP The Arithmetic Exception condition is true when the

Arithmetic Exception flip-flop is set.

BIT 38=0 enables the following tests addressed by bits 41-43.

0 EXFLAG The Execute Flag flip-flop is used by the firmware to
indicate that it is an execute command.

I UARTTBMT s The UART Transmitter Buffer Empty condition indicates
that the UART Transmitter buffer is empty and ready to
receive additional information.

2 FFINT The Interrupt flip-flop records the status of the external
interrupt circuitry. This flip-flop is set by an Input/
Output MicrQprogrammable Processor (IOM) winning the poll

and requesting an interrupt. It is reset by either no one

polling or the poll winner not requesting an interrupt.

3 IOTIMEOUT These three tests indicate that the SelBUS interface received
4 INSTTIMEOUT a response in a read transfer, but an inordinate amount of
5 OPNDTIMEOUT time has passed without a Data Return Transfer (DRT).

6 FLAG The Flag flip-flop is used by the firmware to flag

internal events.

7 INTRENA The Interrupt Enable flip-flop is set. *

BIT 39=0 enables the following tests addressed by bits 41-43.

0 TRACE The Trace flip-flop is a firmware flag used to trap the
firmware out at location 0. This firmware flag has a
variety of meanings, which are determined by the setting
of additional flags maintained in the file.

4f
!1 -

-71-

Table 3-16. Extended Test (PCH) Field (CROM36-43) (Cont'd)

Value Syntax Description

1 PPATTN The Serial or Parallel Control Panel Attention test indicates
that the Serial or Parallel Control Panel needs service from
the CPU.

2 IPLSW The Initial Program Load Switch test indicates that the
IPL switch has been depressed.

3 IORETRY The 1/0 Retry test indicates that the response to an
I/0 transfer was a Retry.

4 INSTMIUERR The Instruction Memory Interface Unit Error condition
indicates that a parity error occurred during the execution
of the current instruction.

5 OPNDMIUERR The Operand Memory Interface Unit Error condition signi-
fies that a parity error occurred during the execution of
the preceding instruction.

6 EXTG The External Global test indicates an External Global
condition exists.

7 ADDRSTOP The Address Stop condition indicates that the Serial
or Parallel Control Panel has detected an address stop
indication. This condition is caused by the Address Stop
flip-flop being set.

BIT 40=-0 enables the following tests addressed by bits 41-43.

0 UARTERR The UART Error test indicates that a UART error has
been detected.

1 UARTDAV The UART Data Available test indicates that an entire
character has been received and transferred to the UART
Receiver Holding register.

2 FFSYSR The System Reset flip-flop is set by a System Reset
command. It remains set until the firmware issues a Clear
Systems Reset (CLRSYSR) order. This condition indicates
that the firmware has completed its portion of system
initialization.

3 ENBL55 The Enable 55 option automatically enables the 55 mode.
If this option is not used, the 55/75 mode is selected
by IPL or Program Control.

4 SERIAL PANEL The Serial Panel option allows information to be entered
from the Serial Panel. If this option is not used, data
must be entered from the Parallel Panel.

- - .-. rL27 ~ A.

-72-

Table 3-16. Extended Test (PCH) Field (CROM36-43) (Cont'd)

Value Syntax Description

5 OPRNDPE The Operand Parity Error test is used to perform
operand error detection (operand parity error in-current
instruction).

6 MAPINVALID The MAP Invalid test is used when an invalid MAP
condition is detected.

7 MAPMODE The MAP Mode test indicates that the MAP mode is
active.

K . ______ ~ ..

- 73 -

Table 3-17. Flip-Flop Group 1 (C-Order-4) CREG 36-39 (2)

Flip-Flop Number Micro Listing Definition
Functional Name

0 HIREG When reset, selects register addresses
00-07, 08-OF. When set selects file
register addresses 10-1F.

1 EXFLAG/EXFF The execute Flag flip-flop is used by
the firmware to indicate that it is an
execute command.

2 PRIV Privileged Bit: When reset, enables
the Privileged mode. When set, enables
the Nonprivileged mode (User's mode).

3 TRACE Trace flip-flop: When set, indicates
the contents of R (TRACE) are valid and
causes an external global event.

4 DPEFF Display Parity Error flip-flop (illumi-
nates Parity Error indicator on the Serial
Control Panel).

5 DINTRA Display Interrupt Active flip-flop
(illuminates Active Interrupt indicator

on the Serial Control Panel).

6 DWAIT Display Wait flip-flop (illuminates Wait
Indicator on the Serial Control Panel).

7 ENAINTFF Enable Interrupt flip-flop: When reset,
internally inhibits interrupts. When
set, internally enables interrupts.

-d

-74-

Table 3-18. Alter Flip-Flop Group 2 (C-Order-5) (CREG36-39) (2)

Flip Flop Number Micro Listing Definition
Functional Name

0 ENAUORD Enable U-order when set.

1 UARTDS UART data strobe.

2 UARTDAV UART data available condition is
set or reset.

3 MAPMODE MAP mode operation is set or
reset.

4 ENATBMT The UART Transmitter Buffer Empty
flip-flop is set or reset.

5 Not Used

6 Not Used

7 FLAG Flag flip-flop (see Table 5-18
bit 38/6).

141

.5

• " + j i , g . . " -- - ' "

A. m

-75-

Table 3-19. Alter Flip-Flop Group 3 (C-Order=6) (CREG36-39) (2)

Flip-Flop Number Micro Listing Definition
Functional Name

0 MODE75 75 mode flip-flop is set or reset

I HUNBLOCK Unblock flip-flop is set or reset.

2 Not Used

3 ENBL-AEXP Enable Arithmetic Exception
flip-flop is set or reset.

4 Not Used

5 ENASORD Enable S-order flip-flop is set
or reset.

6 FPDWORD Floating-Point Doubleword
flip-flop is set or reset.

7 DIS.BLKTIMEOUT Disable Block Timeout flip-flop
is set or reset.

tS

-76-

Table 3-20. FPU Orders Group 2 (CREG36-39)

General: This Group is enabled by a D in Test field bits 0-3.

Value Syntax Description

0 NOR1 This order is used to normalize an unnormalized answer.

1 NOR2 This order is used to normalize an unnormalized answer.

2 CORRZEROW The Correct a Zero Word order is used when an operand
equals 0. When this condition occurs, the number 40 is
added as bias to the exponent field.

3 NOR4 No Operation

4 DSFPW The Disassemble the Floating-Point Word order is used to

load data into the Exponent and Fraction registers.

5 ASFPW The Assemble the Floating-Point Word order is used to
assemble the Floating-Point Word from the Exponent and
Fraction registers for transmission to the CPU.

6 MASK The Mask order is used to mask out bits not used for a
specific operation. Bits 29-63 are masked for single-
precl-ion and bits 57-63 for double-precision.

7 PLUSONE The Plus One order adds a carry bit to the exponent

operation.

8 Not Used

9 FP.RST This order is used to reset the Floating-Point.

- 77-

3-18,5 CC Select Field (P) CREG 36-39

This field is decoded from CREG bits 36-39 when one of two bit combin'tions

occur in a microinstruction.

1) When control-field CROM (07-09) is set to 1.

2) S-Field (CROM (04-06) does not contain any of the values 4, 5, 6, or 7;

conditional-order (CREG 44-47) is set to 1; and the presence of a true

test as defined by the T-field (CROM 04-03).

The various condition codes selected are defined in Table 3-21-

-78-

Table 3-21. CC Select (P) Field (CREG36-39) (2)

Influenced by: Overlayable CREG. from Decode ROM

Influences None

General: This field exists when either of two situations occur.
The first is the presence of Control Order I (overlay
CC's); the second is the absence of Sequence Orders 4
through 7, the presence of Conditional Order I (Set CC's),
and the presence of a true condition as defined by the
basic test field and appropriate subtest fields (Z-Tgst
W-Test, and Extended Test).

Value Description SYNTAX CCI CC2 CC3 CC4

0 Arithmetic & Logical AL Arith Ovflow Result Pos Result Neg Result=0

1 Left Arithmetic Shift V Shift Ovflow 0 D 0

2 Masked Compare E 0 0 0 Result=O

*3 1st Zero D 0 0 0 Result=O

(for double operands)

4 Bit Manipulation BIT ResultJO Old CCI Old CC2 Old CC3

5 S Reg S SROI SR02 SR03 SR04

6 AEXP AEXP Old CCl Result Pos Result Neg Result=O

7 Arithmetic Compare C 0 A)B A<B A=B

8 Floating-Point FP

9-F Not Defined

*Note: Invoking Code 3 (1st Zero) is the for lower half of double word operations

A

-79-

3-19. Microinstruction Bits 40-43

Bits 40-43 of the microinstruction has two meanings.

1) When the T field (CROM 00 - 03) equals 1 or 9, bits 40-43 are combined

with bits 36-40 to define the extended test field.

Otherwise it is used as

2) Shift select (C) field and is decoded from CREG 40-43.

When used as shift select field, a complete description of this field is

given in Table 3-22 (A) and (B).

ii prese tI ieis deoe rmiRGbt 4043 A dsrp io tisfedi

3.19.1 Shift Select Field (C) - 80

This field Is decoded from CREG bits 40-43. A description of this field is

presented in Table 3-22.

Table 3-22A. Shift Select (C) Field (CREG40-43)

Influenced by: Overlayable CREG, from Decode ROM

Influences: None

General: This field exists when one or more of Y-Order 1 (shift
S-bit), X-Order 2 (Shift T-nib), or X-Order 3 (shift
DI bit) are present. It may not be present when either
Sequence Order 5 (Br 8) or Sequence Order 6 (BR 12) is
present unless Control Order 2 (OVLY shift) is also
present.

The shift code specifies the direction (R or L), mode
(arithmetic or logical), and the fill information for S
and DI. T is normally used only in the double mode, with
S shifting by the A-mux; hence, the fill information for
T is predetermined.

Bit Shift Table

Syntax Code Type Reg Involved S-Fill DI Fill
(per X, Y ord)

SLL 0 Left Logical singular S or DI '0' *SR31
SLC 1 Left Circular singular S or DI SROO *SR31
SLLD 2 Left Logical double S and DI DIOO '0'

SLCD 3 Left Circular double S and DI DIOO SROO
4 *Left S or DT *SR31 *11'

*Left S or DI *D131 *SR31
SLAD/ 6 Left Arith double S and DI DIOO '0'

-SLA 7 Left Arith singular S or DI '0'

SRL/ 8 Right Logical A and/or DI '0' SR31
SRLD singular or double
SRA/ 9 Right Arith, S and/or DI SROO SR31
SRAD singular or double (sign)

A *Right S and DI *DIOO '0'
B *Right S and DI *DIOO *SROO

SRC C Right Circular singular S and DI SR31 *'I'

SRCD D Right Circular double S and DI D131 SR31
E *Right S or DI *DIOO *0'

F *Right S or DI *101 *111

*Note: These codes and associated fill information are not used for 86 Emulavu

4

rr -_ _ _ _ _ _ _ _ _ _ __ _

- 81 -

Table 3-22B. NIB Shift Table

Note that the S-Reg Nibble shift is accomplished by the A-mux paths indep endently
of the Shift Code and the Shift T-order.

Shift Code Type T-Fill Nibble

0 through 7 Left '0'

8 through F Right SR28-31

A-mux Code Type S-Fill Nibble

2 Left TROO-03
3 Right arithmetic SROO (sign bits)

Additional Left Shift S-Reg Path (A-Mux Code 1)

Assembler Shift Type A-Mux 31
Syntax Code (Fill Bit)

SLL 0, 8 Left Logical singular '0' A-Mux 00-30=SR01-31
SLC 1, 9 Left Circular singular SROO " " " "

SLDD 2, A Left Logical double DIOO " " " "

SLCD 3, B Left Circular double DIO0 " " " "
-- 4, C *Left *D131 "

SLAD 6, E Left double arithmetic DIOO o: f

SLA 7, F Left double arithmetic '0' " of

*Note: These codes and associated fill information are not used for 86 Emulation.

4

-82-

3-20. Microinstruction Bits 44-47

Bits 44-47 of the microinstruction play a dual role:

They are used as

1) The Conditional Orders (PCH) field

or 2) The FPU orders Group 1.

3-20-1. Conditional Orders (PCH) Field (CREG 44-47)

If bit 04 of the S-field (CROM04-06) is set to 0 and T field does not equal

to 8 or D then microinstruction bits 44-47, decoded from the CREG are interpreted

as the Conditional Order field.

The various conditional orders are described in Table 3-23.

The relevant microinstruction bits are illustrated in Figure 3-7

I

I

L-.

-83-

Table 3-23. Conditional Orders (PCH) Field (CREG44-47)

Influenced by: Basic Test (T) Field (CROMOO-03) and Sequence Control
(5) Field (CROM04-06) Value of 0 through 3.

Influences:

General: The Conditional Order field exists if the Sequencing field
contains codes 0 through 3, and the order is issued only if
the test condition was met during the CROM cycle of this
command. The S-Field must not equal 4 -- 7.

Value Syntax Description

0 NOP This instruction implies that no sequence change is to be
made, regardless of the addressed test condition status.
The Conditional Order field is the only part of the cir-
cuit which uses the test result.

1 SETCC This instruction conditionally causes the Condition Codes
to be set as requested by the CC Select Field (See Table
5-23).

2 FORCEFZ This instruction conditionally forces the F-bit to Zero in
the current memory read. It is used by floating-point
commands where the F-bit is part of the op code.

3 CLRSYSR/ This instruction conditionally clears the System Reset
IGNSTOP flip-flop and sets the Disable Address Stop flip-flop.

4 ALTERFF1 This order conditionally causes the setting or resetting of
one of the eight General Purpose (GP) flip-flops. The Flip-
Flop field (CREG36-39) provides the input to the flip-flop
in bit 36, and flip-flop address in bits 37-39. (Group 1)

5 ALTFRFF2 This order conditionally causes the setting or resetting of

GP flip-flop 2. (Group 2)

6 ALTFRFF3 This order conditionally causes the setting or resetting of
GP flip-flop 3. (Group 3)

7 CLRS This order conditionally clears the S-register.

8 ABSDI This order, in conjunction with a microstep of DEST=O+DI,
changes the function to DEST=O-DI if DIOO is One; there-
fore, the ALU output is the absolute value of DI.

9 ABST The Absolute Value of the T-register order, in conjunction
with a microstep of DEST=0+TREG, changes the function to
DEST-0-TREG if TREGOO is One; therefore, the ALU output is
the absolute value of TREG.

A DIVIDE This order changes the ALU function from + to - if S-regis-
ter bit 0 is Zero.

B MPY This order conditionally changes the ALU function from + to
- if HMPREV is One.

C SETXCC This order conditionally sets the Condition Codes from S-
register bits 1-4 and sets the Extended Address mode from
S-register bit 5.

D CLDNU This order conditionally loads the N-Counter from ALUOO-07.

E CDECRN This order conditionally decrements the N-Counter.

F SETAEXP Set Arithmetic Exception flip-flop conditionally.

_-'-

-84-

FIELD T H

BIT 00 01 02 03-------------------------------------444546 47

Conditional
0 0 0 0 True Orders

0 0 1 1 W-Test True 0 NOP

0 1 0 0 S-Test 1SETCC

0 1 0 1 W-Test False 2 FORCEF2

-1 0 1 1 AIUZ 3CLTSYSR

1 1 0 0 NALUZ 4IGNSTOP

0 11 1 NOEXTUNIV
4ALTERFF
5ALTERIF2

Test Selected 6 ATERFP3
T Field #8, D or F 7 CLRS

8 ABSO I

9ABST

CSETXCC

Dco

ECDECRN

F SETAEXP

Figure 3.7 Conditional Orders (General)

-85-

3-20-2. FPU ORDERS GROUP 1 (CREG44-47)

When the T-field (CROM 04-03) contains the value 8, D or F, bits 44-47 L
become the FPU Orders Group 1.

Table 3-24 gives the meaning of each bit combination in this mode.

-86-

Table 3-24. FPU Orders Group 1 (CREG44-47)

General: This group is enabled by either 8, D, or F in Test Field

bits 0-3.

Value Syntax Description ,

0 NOP This field is inactive.

1 RND The Round order causes a One to be added to the Normalized

answer.

2 CORRMNG The Correct Maximum Nagative order corrects the answer if
a -1 has occurred as an answer.

3 DELSHF This order speeds execution of add and subtract operations
by using only hardware methods. This order operates
in four steps:

1. It takes the difference of exponents.

2. It shifts the mantissa with the smaller exponent.

3. It adds the mantissas together.

4. It checks for an overflow condition and corrects
that condition, if necessary.

4 OVFMOPEZ This order is used by the divide instruction. It sets
the overflow flag when the divisor is equal to Zero.

5 COMPLAN This order is used when the operand is negative. When
this condition occurs, the B-register is subtracted
from Zero.

6 COMPLAP This order is used when the operand is positive. When
this condition occurs, the B-register is subtracted from
Zero.

7 COMPLAF This order is used to complement the answer when the sign
flip-flop is set during a Multiply or Divide operation.

T

• • m ii

-87-

References

1. WCS Users Manual
Publication No. 301-322344-00, March '79
Systems Engineering Lab. Inc.

2. Technical Manual
32/70 Series Computer. Publication
No. 303-320070-000, April '79

3. SEL32 Technical Manual

CPU Text Vol. 1-3. Publication
No. 303-322000-000, April '76.
Systems Engineering Lab.

-.

- 88 -

Appendix

Included as an Appendix to this report is very useful

information on microcoding. These are taken from reference
number one and are organized as follows;

Appendix A: Firmware coding

Appendix B: WCS Firmware Techniques

Appendix C: WCS Sample Programs

II.

Ii -89-

Appendix A

FIRMWARE CODING

INTRODUCTION

~~js~p~eferre_ thttebeInn Microprogramne _ntly write firmware in a serial
mnewith one opera ion per microwor -statmt Th- a ows for easier debugn' ote

:Pro edure, and* whe th ogc peaonhs een v e rifed to be correct, then statWnets7
can be'combined for p~arallelism to reduce iecu tion time

Thebegnnig fnw Repgramner will find it enuh fa task to learn the Data Structure
peratidn- and- 6ntro1. r o6-fa3 69 e rcs tejiial~.~c 32

SERIES of Ccxnputers supporting the WCS option is the problem of field conflicts within themi'_co;rd-ue io'ii~u1 ipi e usage-of som e ite-jfel ds, The M;ic-ro-Assembl er-wi'1 rde-Tc-WJ7
report any field conflicts* for the user who attempts to utilize the_parallelsm . Hiowever, in
aisentangling t heis -theiiuser ris ks geeriainig les ef f Iiein rog rams thiilf he had pro-
ceeded in the recommended direction of serial coding first, and then looked for the obvious
opportunities for parallel processing.

J2trLg~b Da ta utr SfeLr ures43a.instakniy small Fo instance.
dqtinin~ a 32-bit constant valuyeguing a 1 ti aenrao cian mu~7 iJi1teiicr- p.

_ _q _gnrao ca=

-This-Is _dueto the__imiT ofn only being_ able toseiy one it byte at a 'time to t~Literal Generator._1_- 1-ai& aal -e_ sequnce - ipl Ytotejl o 1i-'
to l~c eTrgister with the hexadecimal valuei121L68;

T=@12000000;
T=@00340000+T;
T=00005600+T;
T-@00000078+T;

In some special cases, more than one byte may be defined in a single statement by making use
of the ALU functions +1 and -1. For example.

T=@00100000-1;

will produce the 20-bit hexadecimal mask OOOFFFFF.

T-@FF7FFFFF+l;

will produce the hexadecimal mask FF800000.

This level of detai ed specification is oaly one aspect of concern to theMicroprojrammer.
XntWeVr siiinficant concer isteinnt otktming. Referri.g back to the desrplno
etC0 and CREG acycles of. Micro-instruction execut1W f le dsi can.unde-Fstand wh te

J61 owing_ sequence is valid for checking if the S-register is Zero.''th

1. NOD-S;
2, *NOP.
3. IF KALUZ *GOTO SNONZERO;

Cycle 1: CR014 1 Implied Primary Test "If True' is successful

Cycle 2: CREG 1 Data From S-register gated to ALU

CR014 2 NOP

90-

Oycle 3: CREG 2 NOP

CROM 3 Test state of ALU output, select next CROM address

Cycle 4: CREG 3 NOP

CRO 4 or CRO of SNONZERO

Thus we see that ALU tests must be specified In the statement tw-o instructions later than

t'.e statement wh.ich -pecified the ALU function being tested.

Bz. tests differ in twoways;_tbe state is available for testing on cle after the B-mux
data is specified, and the B-mu~xne-o--sevral inver-ige ements in the Data Structure,
which requires that the test be inverted. To determine if the sign bit is set in a halfword
value held in the T-reglster, the statement sequence might be:

1. BMUXT;
2. IF %BMUX16 *GOTO SIGN.BIT.SET;

Cycle 1: CRO I Implied Primary Test "If True" successful

Cycle 2: CREG I Data from T-register gated to 8-mux

CROM 2 Test B-mux output state, select next CROM address

Cycle 3: CREG 2 NOP

CROM 3 or CRO of SIGN.BIT.SET statement

This example also demonstrates that a B-mux selection can be specified independently of any
ALU operation, and in fact, both may be specified in a single statement:

BMX-T,DI=S+1;

Another situation where timing of the Microengine is significant, is in the use of the
General File register. The following statement is possible.

R(1)=S+R(1);

That Is, the same register may be specified as a sourc' of data and as a destination in a

single statement in spite of the fact that the General File registers cannot be Read and
Written at the same time. This is possible because the source file is selertd JIM theC--'

e e, the data Is gated from the General File register, the ALU function is performed, and
e AL.'U ouatgattd to t l". =T_r e CR e_ (refer to the Data Structure,

Figure 5-47) and the data is gated into the File register from the T-register on the CREG+1
cycle.

Some of the implications of this General File register timing, which must be considered,
are:

1. .A-General. File Read statement may not follow _a General File Write statement. Thts

is because data cannot be read from and written into the General File registers siml-
taneously. For a Write statement, the data is stored in the General File Register to

the CREG+1 cycle (which is the same as the CREG cycle of the following instruction) to
the General File register may not be solirced in the following Micro-statment. l

Micro-Assembler does not detect or flag an error of this type since ststopt% o-
independent items to the assembler.

-]. - -- _.___ __

AD-AIOb 7?9 FLORIDA INST OF TECH MELBOU*R DEPT OF FLECTRICAL AN--ETC F/6 14/2
IMPLEMENTATION OF THE RECOMIATONS MAnE ON THE TECHNICAL RFP--ETC(U)
JUN 81 J HAOJILOIOU AFOSR-81-012n

UNCLASSIFIED AFOSR-TR-8I-?070 NL

23ffffffffffffKI7WN

-91-

The data written into the General File register on the CREG+1 cycle is available to be
sourced from the T-register on any cycle after the CREG cycle, specifically including
the CREG+1 cycle. That is,

R(1) S+R(1);
R(2)-I+T;

produces the same results as

R(1)-S+R(I);
*NOP;

R(2)-1+R(1);

2. T[he_file selection may be specified in the data structure rather than In the

M icr-Ins_truction:

R(R)=S+R(R)-;

where the (R) indicates that the file number is specified by the data in the 10 reg-
ister, bits 06-08. The File register selection is accomplished in the CRON cycle,
which implies that the proper value must be established in 10 prior to this time. This
requires that the order IITOIO must have been issued sometime previous to, but not in,
the preceding statement. An IITOIO order in the immediately preceding statement would
be effected in that statements CREG cycle which overlaps the CROM cycle of this state-
ment. and would not be correct for selecting the General File register in this state- .2

ment.

3. The_32 General File registers are divided-into two banks of 16 registers each,
addressed as 00-OF, with the HIREG flip-flop defining which bank of 16 registers.'

R(1)-s+R(1);

would source from and store data into File register I of the Lower Bank if HIREG is not
set, and register I of the Upper Bank if HIREG is set. It is important to note that
-he HIREG flip-flop must be set or reset m en n e e r to this state-
ment, as the setting of the flip-flop Is done on h CREG cycle. Assuming that the
HIREG flip-flop is reset, the following statement sequence:

SET(HIREG);
R()STR(1);

will result in File register I on the Lower bank being sourced and added to the S-reg-
ister with the result stored in File register I of the Upper Bank, because HIREG flip-
flop was reset at the beginning of the CRON cycle, but set on the CREG cycle of the
second statement. If the intention is to source the File register in the Upper Bank in
this situation. it could be accomplished as follows (assuming that HIREG is reset):

SET(HIREG);
R(1)..S+R(1) ,OTHERBANK;

4

The OTHERBANK order is effective in the CRON cycle, when the File register I is se-
lected, so the Upper Bank RI is sourced. In the CREG cycle, when the File Write is
selected, the OTHERBANK is not in effect, but HIREG is set, so the File Write goes into
the Upper Bank also.

If HIREG is reset and the Upper Bank register I is to be modified, the following se-
quence allows this without altering the HIREG flip-flop:

R(I)-S+R(I) ,OTHERBANK;
OTHERBANK;

7,

-92-

In this case, the second OTHERBANK Order is in effect during the CREG cycle of the
first statement, when D..stination register selection is accomplished. A summary of
the timing for this statenent:

R(1)-S+R(1) ;

CROM CYCLE;

File selection of reg.ster I for source utilizing the state of the HIREG flip-flop and
the OTHERBANK signal if specified in this statement.

CREG cycle:

Data from selected File register added to S-register contents, ALU output stored in the
T-register, file selection of Register 1 for Destination, utilizing HIREG state and
OTHERBANK if specified in the following statement.

CREG+1 cycle:

Data is strobed from the T-Register into the File register selected during the pre-
vious cycle.

I NTERLOCKS

The Register Interlocks are another timing_ consideration. These are hardware imposed inter-
locks on the MAR, T-, DI, and I registers, which inhibit access to these registers while
certain bus transactions are in process. An instruction attempting to access one of these
registers, when an interlock is in effect, will "hang* for one or more machine cycles, until
the interlock condition is ended.

The interlock is imposed on loading the MAR register when any Memory Read or Write bus
transaction is initiated; this. interlock will inhibit any micro-order attempting to load the
MAR (such as MAR, FULLMAR=, MARIX-, or FETCHPC) until the bus transaction is complete,
whether successful or not. This period is normally two clocks, but may be longer due to
heavy bus activity or bus memory.

An interlock on loading the T-register is imposed for any Write bus transaction, from the
clock following the CREG cycle of the transfer request, to the clock following the Transfer
Acknowledge on the bus. This interlock will block any attempt to change the T-register
(such as T-, TNIB shift, or a General File Write).

An interlock is imposed on sourcing the DI-register for any Read bus transaction, from the
CREG cycle of the Read request until one clock after the data is strobed into the DI reg-
ister. This interlock inhibits any sourcing of the DI register through the B-mux only.
SHIFTDI orders and use of DI contents for File register selection are not inhibited by the
interlock.

The I1 interlock is similar to the DI interlock, but is imposed for any instruction fetch
from memory. When in effect, it blocks the IITOIO order and the JUMPZ (which Implies an
IITOIO order).

*

ii

-93

.- RIGHT-HAND FLAG

The Right-Hand Flag flip-flop is a hardware assist to aid in processing the halfword in-
tict on- i te 32 SERIES -Fro-Z1struction The-state-of-the-RM - -1

TRHFCAG)4ffe~ts ierafl events:

1. All bus transfer requests are ignored if issued when RHFLAG is set.

2. he ITO!O order is not P.ffective when RHFLAG is set.

3. The SHIFTIO order is not effective when RHFLAG is reset.

In addition, TOGRHF does not execute if the right half of 10 is a MOP instruction and the
EXFLAG flip-flop is set.

DATA SHIFTING

The 32 SERIES of Computers supporting the WCS option provides for a variety of data shifting
in four registers. The are S-, DI, T-, and 10 registers. In addition to these, the B-mux
supports halfword swapping of the General File registers, and the A-mux provides for an
input of shifted data from the S-register. Some of the registers may be coupled for double-
word shifts.

The S-register can be shifted one bit Left, Right, or Circular by a SHIFTS Y-Order.

The DI-register can be shifted one bit by a SHIFTDI X-Order, but the DI-register is not
normally used for single register shifting because the carry-in or fill bits are not what
would normally be expected.

The S and DI-registers may be combined as a left and right pair for doubleword shifting with
the syntax element SHIFTD. This 64-bit shift may be left, right, or circular, specified by
a shift code enclosed in parenthesis following the shift order. For example,

SHIFTS(SRA);

specify shifting the S-register right one arithmetic bit.

SHIFTD(SLCD);

specify shifting the S and DI-registers as one 64-bit register left circular one bit.

The general form for the shift code Is:

Left I Arithmetic)

RihtCircular [Double]
Right Logical

where only the "D" for double is optional. The fill bits for the various shift codes are:

SHIFT CODE S-FILL 01-FILL

SLL m0rn
SLC So0 *
SLLD 0100 w0 j
SLCD 0100 So0
SLAD 0100 ow
SLA son *

SRL N0 531
SRLD u S31
SPA SOo S31
SRAD SOo 531
SRC 31 *
SRCD D131 S31

• Unspecified I

-94-

Appendix B

* WCS FIRMWARE TECHNIOUES

INTRODUCTION

The Microprogrammer writing a WCS routine is able to achieve great program efficien~y be-
causehis progamiln dir~ect .control of -theDataStr-ucture of tihe comp~uter CPU. 'Thiu
superiorpoe is balar~ed' b- the-iri~iia--esposilbllt-ircrefuilyT&rcsi tiatpw rWS -
control. Once-control of the CPU'hifei a -sein.WC by means of aj
OWCS. Marontruc on-theCS' i.utine.Js. intotal _controLottheconpu ter, The WCS pro-
gram directs the entire Data Structure until. control. is yielded back to the CA CROM..Jliu;:

-ware., When running a WCS program, there is .nothing in the computer to protect it from any
program errors in heWC prgam, or tae~er if the program shul run ipoely. y

*WCS-jprogramng error is likely' ti-r-ul--i'-mac'hiJne "Hang'_-conditio-t-wkih ayonly-'be
-recovered from by_ a Power Down/Power Up-_seque~nce.

STATE OF DATA STRUCTURE

The WCS prora r needs to be aware of two generAlareas: .the.tate-of .the DataStructure.
whnIeue ban-oirbl,-n he-iiiqecso any changes to the Data. Structure.

state made under IJCS..c'ontrol. When a- WCS Microprogram is-e'ntered' from- a JWCS Macro-
Instruction, the following conditions are known:

1. HIREG flip-flop is reset.

2. ENAIJORD flip-flop Is reset.

3. EXFLAG flip-flop is reset.

4. RHFLAG flip-flop is reset.

5. Register 10 contains the JWCS Macro-Instruction.

6. Register II contains the Macro-instruction in the memory location following the
JWCS.

7. Register PC contains the address of the memory location two words past the JWCS.

8. Register M4AR contains the final computed effective address of the JWCS instruction.

9. Register T contains the least significant 6 bits of the MAR, left zero filled.

10. Register T contains the hexadecimal value 1000 added to the contents of the
T-reg ister.

11. Register DI, only if the JWCS instruction specified an indirect address, contains
the effective address of the JWCS instruction prior to any post-indexing adjust-
ment.

* -- "%.

-95-

*The following general purpose registers have dedicated usage, and should not be altered:

BANK FILE LABEL CONTENTS OR USAGE

Lower 8 PCMASK 007FFFC
Lower 9 STMASK FEOOOOOO
Lower 12 ALEVEL Highest active interrupt
Lower 15 TRACE Status flags
Upper 15 ZERO -0

In addition, if MAPHODE is In effect, Lower Bank general file registers 10, 11, and 13
should not be altered.

The Microprogrammer coding WCS routines may alter the contents of the 10, MAR MI. T , and
S-registers without concern. Any changes made to PC or to 11 must be compensated for either
by restoring the original values, or by substituting other valid values. At the time of
exit from the WCS routine, 11 should contain the next Macro-Instruction to be decoded and
executed, and PC should contain the Macro address of the next following instruction. The
Microprogrammer should check and save the state of any of the flip-flops which his process
is required to alter, and he should not fail to restore those flip-flops to their original
state prior to his exiting the WCS routine.

WCS ENTRY *

The entry to WCS is accomplished by a JUMPS Micro-Instruction in the CPU ffinmware segment
which processes the JIJCS Macro-Instruction. Thus, upon entry to WCS, the S-REG contains the
tCS entry point, which is 100016 greater than the tiCS address specified in the JWCS Macro-

Instruction. This reflects the fact that the tiCS is viewed as an extension to the
CRO by the Microprogrammer, with addresses ranging from 1000 to 1FFF added onto the CRON
addresses 000 to FFF. This is in contrast to the fact that a macro-level programmer views
tiCS as a separate entity, with addresses ranging from 000 to FFF. If the macro-level pro-
grammer does specify an address in the range of 1000 to 103F in a JWCS instruction, the
correct entry point is computed because only the least significant bits are utilized in
computing the entry point.

The CPU firmware segment which processes the JWCS Macro-Instruction also contains a PUSHI
Control order, which stores in the first level of the J-Stack a CRON address to which the
WCS programmer may return. This return is accomplished with a JUMPJ Sequence order. At the
return CRON location, the CPU firmware initiates a load of the instruction pipeline register
(11), and sets up to decode the next Macro-Instruction, which is currently in the pipeline
register (I1). Maintaining this CRON return address in the J-Stack effectively reduces from
three to two the number of J-Stack levels available to the WCS programmer. Thus he may link
to and return from subroutines only two levels deep. These subroutines may be in either WCS
or CROM areas, as the J-Stack functions with 13-bit CRON addresses.

USEFUL CROM SUBROUTINES

Some useful subroutines exist in the CPU firmware,..whichmaybe utilized by the WCS Micro-
programmer. In order to make use of any-of these routines, the user must know the exact
CRON address of the routine, and assemble this address Into the user WCS routine with an SEQ
statement. The addresses of these routines can be obtained from the CPU Firmware Manual.
These routines are:

1. CD.DUD Returns immediately by means of a JUMPJ; essentially,
a one-cycle delay.

2. DOUBLE.DUD A two-cycle delay.

3. TRIPLE.DUD A three-cycle delay.

4. TEST.BIBUSY Returns one cycle after last outstanding bus transaction
completes.

5. DELAYED.BI.BUSY.TEST Enters TEST.BIBUSY after a one-cycle delay.

_

-96 -

6. MEHORY.READ Initiates a 32-bit memory read from the address con-
tained in the MAR register; returns after data is re-
turned to DI register.

7. MEWIRY.WRITE Writes contents of T-register to memory address desig-

nated by contents of MAR register; waits for completion.

8. READ.WCS Reads an address in WCS from WCS.

Note
j

To use Write WCS, address is placed in the
S-register and Data is in the T-register.
In the case of Read WCS, the address is
placed in the S-register and data is returned
in the S-register.

9. WRITE.WCS Writes an address in /CS from WCS.

CAUTIONS

Certain orders should not be used in WCS firmware. These are the Extended Control orders:
REPEAT, SCALE, and NORM. These particular orders require a relatively large portion of the
machine cycle time to execute. When combined with the time required for the RAM access to
fetch the Micro-Instruction from WCS, these orders may not complete within the 150-nanosecond
tine limitation. The Read/Write of WCS from WCS cannot be accomplished using the U-Orders.

MACRO- /MICRO-LEVEL COMMUNICATIONS

Several-a!.ternatives exIst.for~communication of data between the acro-level.-programs. (soft-
ware) and the Micro-level, routines (firmware).".

The most direct method of communicating data or data addresses is through.use of thet
.eneraT purose.--jegsters'.-'hese registers area essIble by thesoftware as R(O) through
R(7). They.are.also -accessible -by.-the--software- s-R(O)-through.-R(7). They are also
accessible to firmware as file registers 0 through 7 of the lower bank. This dual accessi-
bility provides a direct means of transferring data or data addresses between software and
firmware. There is also the implication that the firmware programmer in WCS should be aware
that by altering any of these eight registers in his routine, he could adversely affect the
software program which called him.

Another means of communication, is, by the Condition Codes. The state of these four bits may
We' set 'In ftiware by means of any of the SETCC orders. Upon return to the software level,
the state of these four bits may be tested indivudually or in combination. Thus the con-
dition codes may be utilized for transferring limited information from WCS routines to
macro-level programs.

in. the case where the.amount of_ information to be transferredexceeds tecapablityof
these methods, a usefuL techni9ue w6uld -bethe argument.list. In this-method, the macro-
level programmer creates a sequntial-It, of data and/or data adrii ein ory. jhe.
)ocatton" of-this tst-MafbDe predeined iand thus know to-The ffrmware rout ine, or .t may.
be relattve to the currentcontents of the PC register-,ori f'-ay be issed to the fim-
6are routine "in'one of the general purpose registers. jLf4.rmwareroutin jni. WCS may.then.
acquire th6data- itrequires-by means of successive memory, accesses. Jt.may also store.
omputed resultstry allotted _list entries, or in memory locations designated by a list.intry,

Another possible means-of- passing data from software to firmware is within the JWCS state-
eni itself. Since the JWCS op code,-index register. designation, and indirect bit occupy
bits 0 through 11 .in-the,.4nstruction,. and the WCS entij point occupies only bits 26
through 31, the programmer has available bits 12 through 25._ Information in these bits.
Is available to the.firmware routine because the entire JWCS instruction is held in the
Decode register (10).

iLi

-97-

Appendix C

WCS SAMPLE PROGRAMS

INTRODUCTION

This section contains a codedc~o rotnsnou assistino the user in
writ ---- ic opro rams -in Wc doC.sa-"

SAMPLE PROGRAM I

This program function is to invert the order of bits in a generaljpurpose register; e.g.,
To_'iQthiCviltu fii 0 ~ litI' i ef b fD i pTS-e~ bf-blfr30:-nd
so forth until all 32 bits have been moved. This function is used in some signal processing
applications and in machine conversions.

The algorithm is straightforward. Each bit Is checked, copied into the result, and then
shifted in opposite directions. A flowchart representation of the program is presented in
Figure 10-1. The first and final program generations are shown on Figures 10-2 and 10-3.

The N-Counter, the obvious choice for count control, is so used here. Less obvious is the
choice of registers to shift,

The choice of registers Is based on the fact that specific bits may be checked in the B-mux
in the first Micro-Instruction following a data transfer through it. Referring to the Data
Structure (Figure 5-2), only the D and T-registers are available for use. It is desired to
shift 1 bit at a time, so the selection is limited to the DI register. The T-register is
directly shiftable only by 4-bits at a time. The target value register is then selected.
The T-register and the S-register are available, but since the S-register is the only one
capable of 1-bit shifts, it is the register selected. The T-register is then left to hold a
single *ON* bit for generation of the target.

In the implementation of this program, the first three Hicro-Instructions (refer to the
bit-swap program following this discussion), lines 12, 13, and 14, are used to set up
initial conditions in the structure. The use of NU- at line 13, rather than NL- is merely
an historic convention.

Inside the loop, lines 15-18, the input data from the DI register is gated so it can be
checked quickly. In line 15, the D register is shifted, which takes place independently of
and apparently after the NOD"DI transfers. Checking further in the flowchart (Figure 10-1),
it is discovered that the noncompeting, invariant operation N-i- N (Bubble J) could be
executed in the same Micro-Instruction with Bubbles E and F. The shift of the D register
is Left Logical, which disregards the old bit 00 and shifts a Zero into Bit 31.

In line 16 the old O register bit 00 is checked, having been Zero as it was transferred
through the B-mux in the preceding Micro-Instruction. Note here that the condition is true
and thus the branch is taken when BMUXO0 is Zero (this is an opposite sense to the typical
logical test).

Since the S-register is cleared in line 14, it can be ignored if it Is desired to place a
new Zero into the S-register. Otherwise, a single bit is copied from the T-register into
the S-register, bit 00. This is done by using the ALU, A-mux, B-mux, and the Destination 4'
order S-S: T, which merely reloads the S-register with the logical summation of the S- and
T-registers.

Under this plan, the new bit 00 data is moved further and further to the right until the ',
S-register is filled. Line 18 accomplishes this plan by shifting the S-register Right

41,

98-

JWCS 0. ENTRY ENTRY IS INDIRECT THROUGH A'G0T0
IN WCS ENTRY VECTOR AREA ILOCATIONS 043)

A 32 -N

C R17)- of

D PATTERN -

E CHECKC MSS
OFD01

SHIFT of LEFT
F ONE PLACE

NO 01
SIT ON

4
G

WA

YES

14IMERGE TPATTERN
HINTO

SHIFT S
RIGHT ONE PLACEj

J N-I-N

K

N-0 NO

YES

L. S-R16)

Figure 10-1. Sample Microprogram I Flowchart

-99-

SJOB MICRORUN
iASSIGNI 80-CCI
$EXECUTE MICRO

SUSE DEF.75F;

(0100) *G0T0 BITINY;
M ICROROUTINE W~HOSE FUNCTION IS TO DO A BIT BY BIT SWAP

* OF THE CONT7NTS OF R7.
* EXAMPLE, THE CONTENTS OF BIT 0 ARE MOVED TO BIT 31,
* THE CONTENTS OF BIT 1 ARE MOVED TO BIT 30, ETC
* NOTE: THIS PROGRAM HAS A BUGI

BITINV Dl=R(7);
NU=@20000000 ;COUNT OFF 32 BITS FOR SHIFT
T=@8OOOOOOO,CLRS ;SET NEW BIT INTO T AND CLRS S

BT2BT2 NOD=0I,DECRN,SHIFTDI(SLL) ;
IF BMUXOO *GOTO $+2 ;CHECK FOR BIT ON
S-S:T ;BIT WAS SET ME.RGE A NEW ONE INTO THE RESULT
SHIFTS(SRL).IF %NCTRZ *GOTO BT29T2 ;
R(6)-S,*JUMPJ ;DONE--REflJRN SHIFTED BITS TO R6 AND
SHIFTDI (SLL)
$END

$ASSIGNI Bl-CCd
WEECUTE MICROLD1
$OPTION 2 5
$EXECUJTE ASSEM4BLE

PROGRAM TESTWCS
* PROGRAM TO TEST WCS ROUTINE WHICH IS TO INVERT THE

BITS IN R7.
INPDTA DATAW X'0F5A6670' INPUT PATTERN
OUPOTA DATAW 0 OUTPUT PATTERN
START BOUND 1W

LIE 7.[NPOIA
TRR 7,4
JWCS 0
NOP TO FIT ONTO PROPER BOUNDARY
GEN 16/X'FAOO',16/X'00OO' FAK-E WCS INSTRUCTION
STN 6.OUPDTA SAVE RESULT OF WCS ROUTINE
LW 5,-C'JWCS'
CALM X'57' ABORT TO FORCE CORE DUMP
END START

$EXECUTE GO
$EOJ

Figure 10-2. First Generation of Bit Swap WCS Routine

-100-

$JOB MICRORUQ
SASSIGNI BO-CCd
$EXECUTE MICRO

$USE DEF.75F;

(POO GOTO BITINV;

* MICROROUTINE WHOSE FUNCTION IS TO DO A BIT BY BIT SWAP
* OF THE CONTENTS OF R7.
* EXAMPLE, THE CONTENTS OF BIT 0 ARE MOVED TO BIT 31,
* THE CONTENTS OF BIT 1 ARE MOVED TO BIT 30, ETC
* THIS IS A FIXED VERSION OF THE EARLIER VERSION
* THE EARLIER VERSION OVER SHIFTED THE OUTPUT
* BECAUSE OF THE SHIFTS(SRL)
* THE NEW VERSION BRINGS THE BIT INTO THE BOTTOM
* AND THEN SHIFTS IT TO BIT 00-- THEREFORE WE
* DON'T OVERSHIFT AND VERY IMPORTANTLY
* WE DON'T LOSE ANY OF THE BITS

BITINY 01=R(7);
NU=@200OOOOO ;COUNT OFF 32 BITS FOR SHIFT
T-EJOOOOOO1,CLRS ;SET NEW BIT INTO T AND CLR S,

BT2BT2 NOD=DI ,DECRN,SHIFTDI(SLL) ;
IF BIIJXOO *GOTO Sf2 ;CHECK FOR BIT ON
S=S:T ;BIT WAS SET MERGE A NEW ONE INTO THE RESULT
SHIFTS(SRC).IF %NCTRZ *GOTO BT2BT2
R(6)=S.-JUMPJ ;DONE--RETURN SHIFTED BITS TO R6 AND
$END

$ASSIGNI BI-CCI
$EXECUTE MICROLDI
$OPTION 2 5
$EXECUTE ASSEM4BLE

PROGRAM TESTWCS
* PROGRAM TO TEST WCS ROUTINE WNiCH iS TO INVERT THE
* BITS IN R7.

INPDTA DATAW X'OF5A667O' INPUT PATTERN
OUPDTA DATAW 0 OUTPUT PATTERN
START BOUND 1W

LW1 7,INPDTA
TRR 7.4

HO TO FIT ONTO PROPER BOUNDARY

GEN 16/X'FAOO',16/X'0OOO' FAKE WCS INSTRUCTION
STW 6,OUPDTA SAVE RESULT OF WCS ROUTINE
LW 5,=!"'JWCS'
CALM X'57' ABORT TO FORCE CORE DUMP
END START

$OPTION DUMP
$EXECUTE GO
SEOJ

Figure 10-3. Final Version of Bit Swap WCS Routine

-101

'Logical (S-register bit 00 gets a Zero fill) and at the same time checking whether the
N-Counter has been decremented to Zero as a result of having gone through the loop 32
times. If not done, a backward HOP is accomplished and the process is repeated.

If done, the S-register results are transferred to R(6) and then control is given back to the

CROM driven Microengine.

When first run with the listed test programs and the binary input of:

00001111010110100110011001110000

the result was:

000001110011001100101 10101111000

instead of the desired:

00001110011001100101101011110000

This indicated that the output has been overshifted. The first reaction Is to check the
count loop for the possibility of executing 33 times instead of 32. Careful desk checking
reveals no logic or timing problems.

NU=Count

Li

L2

DECRN

13

L4

IF NCTRZ

will cause the execution of the paths LI, L2, L3, L4, exactly Count number of times.

A better logical analysis of the S-register data flow reveals that there Is only a 31 shift
difference between bit position; 00 and 31 of the S-register.

Therefore, shifting the S-register 32 bits will result in the initial bit 00 value being
shifted out of bit position 31.

Obviously, this is the explanation for the data patterns seen.

The first cure thought of may be finding a way to get a 33-bit wide register. This is
impractical, however, since its logical mate, the DI register, is being shifted in the
opposite direction because of the algorithm requirements.

It is apparent that a 32-bit register, when shifted circular, can seen to be a 33-bit reg-
ister with only the last 32 bits saved. Therefore, line 18 is changed from a SHIFTS (SRL)
to a SHIFTS (SRC), and the placement of the generation bit in the T-register is changed
from bit 00 to bit 31, because when shifted Circular, bit 31 is also bit 01.- The code at
line 14 is changed from T-@80000000 to T-@00000001.

The reassembly and retest for an input of:

00001111010110100110011001110000

yielded the following:

00001110011001100101101011110000

--- ---- ---

-102-

CHECKLIST

This problem covered the following Microprogramming applications:

1. Literal Generation

2. Count Control

3. Shift Techniques

4. Register Assignment

5. Debugging Analysis

SAMPLE PROGRAM 2

The following program (Figure 10-4) takes an integer number in R(7) and converts it into a
Floating-Point format equivalent in R(7). This routine is fully comnented, therefore no
textual support is presented.

SAMPLE PROGRAMS 3 AND 4

The following two programs (Figures 10-5 and 10-6) are presented to illustrate programming
formats and the use of WCS to ad._andjor _Ur t -U4iNempty _from WCS. Both programs are
adequately commented, so no furt ertextual support is given.

m m i m - - --

-103-

SJOBMI CR0. IR
$ALLOCATE 30000
$EXECUTE MICRO

-USE DEF.75F; ESTABLISH LANGUAGE DEFINITION SET
(@OOOj *GOTO WCSC.RI; VECTOR TO CONVERSION ROUTINE

* MICROROUTINE THAT WILL TAKE AN INTEGER NUMBER IN R(7) AND
* CONVERT IT INTO A FLOATING POINT FORMAT EQUIVALENT IN R(7).

WCSC.RI T-R(7),SAVESIGN; GET INPUT AND HOLD SIGN
T0D+T,ABST; USE INTEGER ABSOLUTE VALUE ONLY
NU=ta46OOOOOO,IF ALUZ *JUMPJ; INITIALIZE EXPONENT FOR BASE POINT

* OF INTEGER, BUT IF INITIAL INTEGER ZERO, RETURN ZERO IMMEDIATELY

LARGE NOD=@FFOOOOOO&T; TEST FOR LARGE NUMBER
*NOP; DELAY ONE CYCLE FOR TEST
IF ALUZ *GOTO SMALL; BRANCH IF NOT LARGE NUMBER
TNIBR,INCRN,*HOP LARGE; DIVIDE BY 16, BUMP EXPONENT, RETRY

SMALL NOD-@OOFOOOOO&T; CHECK FOR NORMALIZED FORM
FULLKAR=T; MERGE FRACTION & EXPONENT
S=O-MAR,IF NALUZ *GOTO CHEKSIGN; BRANCH IF NORMALIZED FORK

*BUT FIRST SET UP TWO'S COMPLEMENT IN CASE INTEGER WAS NEGATIVE
TNIBL.DECRN,*HOP SMALL; INTEGER * 16, EXPONENT-i, RETRY

CHECKSIGN R(7) -MAR, IF %SIGNSAVE *JUMPJ; ALL FINISHED IF INTEGER POSITIVE
R (7) S,*JUMPJ; TWO'S COM4PLEMENT IF INTEGER NEGATIVE
$END

$EXECUTE MICROLDI
$OPTION 2 5
$EXECUTE ASSEMBLE

PROGRAM TESTWCS
* THIS TEST PROGRAM DRIVES THE WCS ROUTINE FOR C.IR
* IT TESTS FOR INPUT :.0,1,2.3,4,5,6,7,8,9,10,15,16,17, ETC.

BEGADDR ACW $
DATAW C'BEGINNING OF TEST DATA INPUT'

TDTA DATAM 0,1,2,3,4,5,6,7,8,9,10,15,16,17,32,64,128,256.;
512,1024,2048,4096,8192,16384,32768,65536,;
131072 ,262144,524288,1048576,2097152,4194304.;
8388608,16777216,33554432,67108864,.134217728,-;
268435456,536870912,1073741824,2141483647

DATAW -1.,-2,-4 ,-8,415,-46-47, -8388608,-1073741824
TDTACNT EQU $-TDTA LENGTH OF THE TEST TABLE

DATAW C'BEGINNING OF TEST DATA OUTPUT'
TDTO REZ TDTACNT SAVE SPACE FOR RESULTS
TESTCNT DATAW 0

DATAW V'END OF TEST DATA AREAS'
ENDADDR ACW $
START BOUND 1W

1MW TESTCNT COUNTER FOR CONTROL
INLOOP LW 1,TESTCNT WHERE WE ARE IN TEST TABLE

LW 7,TDTA,1 GET ONE TEST ITEM
* JWCS 0 GOTO CONVERSION ROUTINE IN WCS
LW I,TESTCNT
STW 7,TDTO,1 STORE RESULTANT
ABM 29,TESTCNT2
LW 1,TESTCNT
CI 1 ,TDTACNT
BLT INLOOP DO THE WHOLE LIST
LW 6,BEGADDR

Figure 10-4. Integer to Floating-Point WCS Routine (Sheet 1 of 2)

-104-

LW 7,ENDADOR
ZR 5
CALM X'4F' CALL FOR DUMP OF ONLY OUR AREA
LW 5,=C'JWCS'
CALM X'57' ABORT TO FORCE CORE DUMP~
END START

WEC4JTE GO

Figure 10-4. lntegerto Floating-Point WCS Routine (Sheet 2 of 2)

SJOb MICREAD
SALLOCATE 30000
$EXECUTE MICRO

$USE DEF.75F;
$FORM 1.0

* THIS MICROROUTINE IS ENTERED WITH JWCS 2
(@002)

(@66 GOTO WCS.READ;

* THIS IS A MICROUTINE TO READ MEMORY FROM AN ADDRESS
*SPECIFIED IN RI.
* RAW MEMORY WORD IS LOADED INTO R4

WCS.READ MAR=R(l), READ, FRCWORD; FORCES LOGICAL MEM SPACE READ OF WORD
THE READ WILL NOT GET STARTED UNTIL THE NEXT MICROINSTRUCTION

*CYCLE. SO SINCE WE HAY: NOTHING TO DO WE MST JUST KILL TINE
*NOP
R(4)=D1 ;CONTROL WILL WAIT AT THIS POINT UNTIL MEMORY IS

* COMPLETED WITH THE READ
* THE DATA FROM MEMORY IS NOW IN R4

*JUMPJ; GO BACK TO 1MACRO LEVEL
$END

$EXECUTE MICROLDI
$OPTION 2 5
$ EXECUTE ASSEMBLE

PROGRAM TESThICS
BEGADDR ACW $

DATAW C'BEGINNING OF TEST DATA INPUT'
MENDATA DATAW C' ABCD' DATA TO BE LOADED

DATAW CIBEGINNING OF TEST DATA OUTPUT'
ODATA DATAW 0 OUTPUT SPACE

DATAW C'END OF TEST DATA AREAS'
ENDADDR ACW S
START BOUND 1W

LW 4,-C'XXXX' FILLER TO SEE EFFECT OF WCS ROUTINE
LEA 1,MEMDATA ADDRESS OF DATA TO GO TO RI
JWCS 2 TRANSFER CONTROL TO WCS ENTRY ADDRESS
STW 4,ODATA
LW 6,BEGADDR
LW 7,ENDABDR
ZR 5 i
CALM X14F' CALL FOR DUMP OF ONLY OUR AREA
LW 5,-C'JWCS'
CALM X'57' ABORT TO FORCE CORE DUMP
END START

$EXECUTE GO
$EO

Figure 10-5. Memory Read from WCS Routine

-105-

$J08 MICWRITE
$ALLOCATE 30000

' a ~$EXECUTE ICRODF1F; I NEEDIIHWS

$UST BEPRVIUSYLODE ITOR

THMRR) N ISENEEWTH ADDRES OFDT3RT
(@003)~~NT

TGT
CSWIE

** AT THE SAME TINE THAT WE FORCE THE WR
WRITE OF THE FULIWORD

*HOPV THIS MOP WILL GIVE T TIME TO GET ONTO
* THE BUS--WE MAY CODE ANY OTHER MICRO
** INSTRUCTION HERE THAT DOES NOT LOAD T

OR THE REGISTER FILE
* ANY SUCH ATTEM4PTED LOADING
* WILL FORCE A CONTROL STRUCTURE WAIT
* UNTIL THE SELBUS HAS COMPLETED
* TAKING THE DATA FROM T.
*JUMPJ: GO BACK TO MACRO LEVEL
$END

$EXECUTE MICROLDI
$OPTION 2 5
$EXECUTE ASSEMBLE

PROGRAM TESTWdCS
BEGADOR ACW $

DATAW C'BEGINNING OF TEST DATA INPUT'
MEMOATA DATAW C'ABCD' DATA TO BE OVERWRITTEN

DATAW C'BEGINNING OF TEST DATA OUTPUT'
DATAW CVEND OF TEST DATA AREAS'

ENDADOR ACW $
START BOUND 1W

LW 4,=C'XXXX' FILLER TO SEE EFFECT OF WCS ROUTINE
LEA IMEMDATA ADDRESS OF DATA TO GO TO RI
JWCS 3 TRANSFER CONTROL TO WCS ENTRY ADDRESS
LW 6,BEGADDR
LW 7,ENDADDR
ZR 5
CALM X*4F' CALL FOR DUMP OF ONLY OUR AREA
LW 5.C-'JNCS'
CALM X'57' ABORT TO FORCE CORE DUMP
END START

$EXECUTE GO
$EWJ

Figure 10-6. Memory Write frani WCS Routine

p

V I
S

AD-AlOb 779 FLORIDA INST OF TECH MELBOURNE DEPTSOF4ELECTRICAL AN--ET C F/6 14/2
IMPLEMENTATION OF THE RECO0MMENDATIONS MADE ON THE TECHNICAL REP--ETC(U)

JUN lJHAOJILOGI10J AFOSR 80-0120

UNCLASSIFIED AFOSR-TR-81-070 4 NL

UPPLEMENTA~RY

INFORMATION

SECURITY CL.,SWICATION Of THIS PA"E (nWm mg t

REPORT DOCUMENTA.TIO PAGE ag 4mofvos

T'- -31 -0704 ACELW £ . IJE

4. TIrL E (and Subtitlo) 4- TYPE OF REPORT & PERIOD COVERED

IMPLEMENTATION OF THE RECOMUBDATIONS Final Report
MADE ON THE TECHNICAL REPORT TITLED S kFR141 R EOTNME
"ANAYSIS OF ADVANCED SIMULATOR FOR PILOT RPOTNMR

AUTHR~s. aCOWVTARdANTUMSER(a)

John Hadjilogiou uoR~O~

PERilFRMIG ORGANIZATION NAMIE AND ADDRESS RaMas TJ.SN PROJ EC T. T ASK i
Florida Institute of Technology 4927TNUMBERS
Dept of Electrical & Computer Engineering
Melbourne,_Florida__32901 Z>7___________

11. CONTRDLLkNG OFFICE NAME ANO ADDRESS 1%. REPORT DATE
Air Force Office of Scientific ReschAIL
Rolling APB, DC 20332 11,NMR FlA49

T.MONITORING AGENCY NAME aADft9SS(I diatfftm i. Contm.ilnt Office) IS. SECURITY CL (f koap"

'11Tm111UUICqSTATEMENT f~t. ICATO WORADON

Approved for public release; distribution unlimited.AI
4 .1

ISUPPLEMENTARY NOTES

It. KEY WORDS (Contiuea F9 8 ,e ol ff 000000Wi OWd id"810~ 6Y Neok %L101W)

Microprogrammable processor, control logic for 32175 computer
mocro coding of ASP' simulator.

A,

ASST RACT (Com'ewou an roed m uagoe""~ ;2 U 14"1111 mb 11

This project resulted in a report detailiniq specific quidelines
for writing and testing custom micro-program. for the 32/75
computer. The micro-program instruction £omat is analyed in
detail and then illustrated by & concrete OX&Mle.

SD ~1473ss'oe# '~vesrow,

3 go"" for I"V

