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Ivy Dewey Cook, Jr., Ph.D., Major, USAF,
The University of Texas at Austin, 1981, 239 pages.

Supervising Professor: J. Wesley Barnes

A practical technique is presented for determining the exact

probability density function and cumulative distribution function of

a sum of any number of terms involving any combination of products,

quotients, and powers of independent random variables with H- function

distributions. The H- function is the most Veneral named function,

encompassing as special cases most of the other special functions of"

mathematics and many of the classical statistical distributions. Its

unique properties make it a powerful tool for statistical analysis.

In particular, the product, quotient, and powers of independent

H- function variates are also H- function variates, and the Laplace

and Fourier transforms and the derivatives of an H- function are AC on For

readily-determined H- functions. P7

This dissertation 4 provides background material, includ -g , . .
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history on H- functions and the algebra of random variables

_ .. and dnfrinition, properties and

special ca:;es of the H- function. For (!trmining, wh,'ther convt-'-

gence of a general Mellin- Barnes integral or an If- function occurs

with left-half-plane versus right-half-plane summation of residues,

evaluation guidelines are formally established and applied to th,.

known special cases, the Laplace transform, and the derivatives of

the H- function. Then, a nw, improved formulation for evaluation of

an H- function by summing residues is derived.

The definition, special cases, and transformation theorem., for

the H- function distribution are presented. A new formula for find-

ing the constant of an H- function distribution is detrived. Also,

the cumulative distribution function of an H- function distribution

is shown to be a convergent H- function, and a mor( -fficienrt way to

compute it is found.
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ABSTRACT

THE H- FUNCTION AND PROBABILITY DENSITY FUNCTIONS OF CERTAIN

ALGEBRAIC COMBINATIONS OF INDEPENDENT RANDOM VARIABLES

WITH H- FUNCTION PROBABILITY DISTRIBUTIONS

Ivy Dewey Cook, Jr., Ph.D.
The University of Texas at Austin, 1981

Supervising Professor: J. Wesley Barnes

A practical technique is presented Por determining the exact

probability density function and cumulative distribution function of

a sum of any number of terms involving any combination of products,

quotients, and powers of independent random variables with H- function

distributions. The H- function is the most general named function,

encompassine as special cases most of the other special functions of

mathematics and many of the classical statistical distributions. Its

unique properties make it a powerful tool for statistical analysis.

In particular, the product, quotient, and powers of independent

H- function variates are also H- function variates, and the Laplace

and Fourier transforms and the derivatives of an H- function are

readily-determined H- functions.

This dissertation first provides background material, including
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history on H- functions and the algebra of random variables,

definitions and properties of integral transforms, theorems on

transformations of random variables, and definition, properties and

special cases of the H- function. For determining whether conver-

V Fence of a general Mellin- Barnes integral or an H- function occurs

with left-half-plane versus right-half-plane summation of residues,

evaluation guidelines are formally established and applied to the

known special cases, the Laplace transform, and the derivatives of

the H- function. Then, a new, improved formulation for evaluation of

an H- function by summing residues is derived. This formulation is

combined with a Laplace transform numerical inversion method to give

a second new formulation.

The definition, special cases, and transformation theorems for

the H- function distribution are presented. A new formula for find-

ing the constant of an H- function distribution is derived. Also,

the cumulative distribution function of an H- function distribution

is shown to be a convergent H- function, and a more efficient way to

compute it is found. Demonstration of the practical technique for

handling sums is accompanied by an implementing computer program.

Some examples of areas of application are discussed.

Throughout this dissertation, a number of new H- function

formulas are found, including relations between given H- functions

and other named functions or lower order H- functions, special-case

derivative rules, and improved transform and derivative formulas.
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CHAPTER 1

INTRODUCTION AND REVIi

1.1. PURPOSE AND SCOPE

Suppose one wishes to determine the exact probability density

function of the sun of N independent random variables, X .*,XN,

with known probability density functions fi(xi), i z1, ...,N, respec-

tively, such that fl(xi)=O0 for xiSO, i-l..N That the desired

answer is the inverse Laplace transfor of the product of the N

Laplace transforms of the fi is well-established. This transform

technique has been used for many special cases of fi, particularly

when the fi are identical. To date, due to the integrations needed

to find both the Laplace transforms and the inverse Laplace transform,

each special case has been handled individually.

Now, supposm one has a general function which has as special

cases all of the probability density functions fi in some group of

interest. If the transform technique is applied to the problem with

each taking the form of the general function, then the resulting

solution covers all those problems involving any combination of the

special cases. This is the motivation for using a general function.

urther, suppose an added bonus. Suppose that the product

M P
7= Yj , where each random variable Yj has a probability density
J-1

function expressible in the general function form and each Pj is a

positive or negative rational constant, j 1,...,N, is known to be a

p1
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random variable with a probability density function that is easily

and immdiately expressible in the general function form. Then,

the problem of finding the probability density function of

jul jai

where the independent random variables Xjj an have general function

forms for their probability density functions and PiJ are rational

constants, reduces to finding the probability density function of

ial

where the independent random variables Yi all have general function

forms for their probability density functions, a problem already

covered by the general function transform solution.

The primary purpose of this dissertation is to develop a general

technique, presented in Chapter 4, for determining the probability

density function and the cumulative distribution function of the

random variable

Mi Pl
z= ),
jal Jul

where the Xj are independent random variables with probability

density functions expressible as H- functions and the PiJ are rational

constants. The general function known as the H- function is chosen

for several reasons. First, the H- function is the most general of

the special functions and includes nearly every named function as a

special case. Second, the H- function distribution, presented in

I



Chapter 4, has the added bonus that the products, quotients and

rational powers of independent H- function variates are also

H- function variates and are easily characterized. Third, the

Laplace transform of an H- function is a related, known H- function,

which means an integration is not needed for finding Laplace trans-

forms for H- functions.

In the course of developing the above general technique, some

secondary purposes became evident. One is the attempt, in Chapter 2,

to relate H- functions to known elementary or special functions and

to other simpler H- functions. The general form for H- functions is

a contour integral containing gamma functions and is not readily

identified by this form. The H- function contour integral can be

evaluated using residues under certain convergence conditions. The

aim of Chapter 3 is to develop practical guidelines for when left

half plane residues versus right half plane residues should be summed

in order to evaluate a given H- function. These guidelines are then

applied to known formulas for the H- function that represent special

cases, the Laplace transform, or the derivative.

Chapter 5 presents an improved formulation for using residues to

numerically evaluate the H- function. This numerical evaluation is

needed both to implement the general technique and to just evaluate

a single given H- function.

Determination of distributions of algebraic combinations of

independent random variables has application in virtually every

aspect of probability and statistics. The few applications given in

n a



Chapter 6 are intended to prod the imagination as to the vast number

of potential areas of application and not to limit the extent of

possible usage.

Some important limitations to the scope of this dissertation

must be stated. For instance, only independent random variables are

considered, though distributions of functions of dependent variates

may be expressed as H-functions. Also, no exact method has been

found to deal, in general terms, with certain linear combinations of

independent random variables, particularly differences and also the

product, quotient, or powers of sums and differences. Although many

attempts were made, there was no success; general evaluation of such

combinations will require some theoretical breakthroughs.

After much effort, no closed-form solution for the general tech-

nique has been found. The accompanying computer program, however, can

be used to find values of the desired probability density function to

any desired accuracy.

The only alternatives at present to the exact determination of a

probability density function are various approximating methods based

upon either the moments of a distribution or simulation. Such methods

have many disadvantages and have been addressed extensively by others !

(7,21). Obviously, an exact, complete determination of a probability

density function is preferable to any approximation, therefore these

approximating methods will not be treated here.

Only real-valued variates and functions are considered. When

inverting the Laplace transform, the computer program can handle



complex values of the transform arg nt, but it is not designed to

handle random variables or probability density functions that assume

complex values. Also, the general H- function definition permits

some parameters to be complex numbers, but the computer program can

only handle real parameters.

The H- function is not defined for a zero or negative real

value of its argument. Therefore, only probability density functions

that are defined to be zero for nonpositive arguments are treated.

Probability density functions defined non-zero for both positive and

negative argument values can be handled by dividing such functions

into two components, a technique presented by Epstein (8) for the

case of two variables and extended by Springer and Thompson (320,321)

to n variables. The computer program can then be used to evaluate

pieces of the component derivation, for H- function components.

Since the general technique requires a Laplace transform

inversion method, a review of such methods was made, and one was

chosen that seemed suitable to H- function evaluation. However, the

numerical inversion of the Laplace transform is a considerably large

area to study by itself. The scope of this dissertation is not meant

to include a comparison of the various methods or to find the best

inversion method. Instead, the intent is to demonstrate feasibility

of the general technique with at least one inversion method.

When background on the R- function and the H- function distribu-

tion is presented, the mathematical proofs have been omitted. Full

understanding of the H- function requires a high level of mathematical

IfI
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knowledge and maturity. Not burying main ideas in non-contributory
I

mathematical details should help bring out the power and imlicity

inherent in usage of the H- function. Of course, the mathematical

details are presented for all new material. New material is

indicated by asterisks throughout this work.

The algebra of random variables is a vast field of study,

so that a complete coverage is not reasonably within the scope of

this dissertation. However, combining the advantages of a general

function and of certain properties of the H- function with a

practical technique for finding the exact probability density

function of any member of a large class of algebraic combinations

of independent random variables is, hopefully, a meaningful

contribution to this field of study.

A.i
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1.2. LITERATURE SURVEY

The development of probability and statistics has focused

primarily upon the analysis of probability distributions of random

variables and of algebraic combinations of random variables. Since

the 1920's, many mathematicians and statisticians have directed their

attention to the algebra of random variables, that is, to the problem

of determining the probability distributions of sums, differences,

products, quotients, and rational powers of random variables. In a

recent book, Springer provides an excellent discussion and complete

bibliography on this subject (21).

Considerable attention has been given to deriving the distribu-

tions of sums and differences of random variables, so that systematic,

well-defined procedures now exist. Many early authors, including

Aroian (243), Baten (244,245), Church (249), Craig (250), Cramer (212,

213,251), Dodd (252), Irwin (258), Levy (259), and Wintner (229,267),

have presented detailed discussions concerning sums and differences

of independent random variables. The usage of Fburier and Laplace

transforms as powerful tools for dealing with sums and differences of

independent random variables is well-established, and a large number

of fine references are available, including Lukacs (217-219), Kawata

(215), and Newcomb and Oliveira (220). Section G of the bibliography

lists some of the basic references on integral transforms (224- 228).

Papers on particular cases of sums of random variables are given

in section I of the bibliography. Many of these treat the distribu-

tion of quadratic forms, such as the sums of squares of normally
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distributed variates (247,253,255- 257,263- 265).

The problem of deriving the distribution of products and

quotients of random variables has not received the same extensive

treatment as sums and differences (21:1). From 1929 to 1942,

concentrating on normal variates, Craig made some of the early

investigations into the distribution of the product and quotient of

two random variables (270- 272). 1A used an approximation method

involving moments or semi-invariants. In 1930, Geary (275) developed

an approximation for the quotient of two normal variables that became

widely-used. Other approximations were developed: Tukey and WilJs

(288) in 1946 for the product of beta variables, Aroian (268) in 1947

for the product of two normal variables, and Shellard (287) in 1952

for the product of several random variables.

In 1939, .untington (278) presented the proofs of four theorems

resulting in a mathematical formulation for determining distributions

of the sum, difference, product, and quotient of to random variables.

Other early contributors to the theory of products and quotients of

random variables, including Camp (269), Curtiss (273), Gurland (276),

Haldane (277), Levy (281), Riets (285), and Sakamoto (286), dealt

with specific probability density functions, usually normal.

In finding the distribution of a product or quotient of two

random variables, the vourier integral transform, or characteristic

function, was useful for a number of special cases, beginning with

studies by Kullback (279,280) in the 1930's and continuing through

the 1960's with the references listed in section K of the bibliography.

It
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A few general results for certain distributions were found using

characteristic functions. For example, Kullback (279) in 1934

determined the distribution of the geometric mean for n uniform or

gamma variates, and Jambunathan (293) in 1954 derived the distribu-

tion of products of special cases of beta and gama independent

random variables. Using a logarithmic transformation, Schulz-Aren-

storff and Morelock (299) found the probability density function of

the product of n uniform independent random variables.

The first practical, systematic, general approach for dealing

with products and quotients of independent random variables was

presented in 1948 by Epstein (8). His approach was the first usage

of the Mellin integral transform to analyze the distribution of the

product or quotient of two variates. Epstein demonstrated that the

Mellin integral transform is a natural and powerful tool for finding

the probability density function of products and quotients of indepen-

dent random variables, by deriving directly and easily the probability

density functions of the Student t and Fisher F statistics and of the

product of two standardized, normal variates. His work was limited

to two random variables. Surprisingly, additional application of the

Pellin transform did not arise until the 1960's.

In 1959, Levy (282,283) derived some results for products of two

independent random variables and posed the question of constructing a

general theory for multiplication of random variables. Zolotarev

(289) began this construction in 1962, focusing on a sequence of

theorems, without proofs, that showed the similarities and differences

• m m m m m l I I I
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between the results for addition of independent random variables and

the results for multiplication. Then, in 1964, Springer and Thompson

(320,321) presented a general method for determining the probability

density function of the product of n independent random variables

that are not necessarily non-negative nor identically distributed.

They applied the Mellin transform to analyses of products, quotients,

and geometric means of rectangular, monomial, Cauchy, Gaussian, and

gamma variates. Mellin transforms were then employed by Lomnicki

(310) in 1967 to products of beta, gamma, Weibull, and normal vari-

ates.

A nuber of authors in the 1960's, as shown in section L of the

bibliography, used the Mellin transform to treat the product and

quotient of independent random variables. Most of the work was for

two variables: Wells, Anderson and Csll (323) for central and for

non-central chi-square variates, Srodka (322) for generalized gamma,

Maxwell, and Weibull variates, Kotz and Srinivasan (309) for Bessel

variates, Malik (311- 314) for generalized gamma, non-central beta,

and Pareto variates, and Pruett (317) for some nonstandardized

variates, including the nonstandardized normal.

A significant contribution to analyzing algebraic combinations

of independent random variables was made in 1970 by Prasad (223).

He provided formulas for finding the Mellin transform of a function

directly from its Laplace or Fourier transform, and vice versa,

without having to determine the function itself. For example, if one

wants to find the probability density function h(y) for the random

V
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variable Y given by 'I

Y =X 1 +
4

where the independent random variables X have known probability

density functions V(xi), i 1,2,3,4. The analysis is considerably

simplified if one can convert the Laplace (or Fourier) transform of

the density function gl(u) for U = X2 + X3 into a Mellin transform,

and then convert the Mellin transform of the density function g2 (v)

for V U/X4 into a Laplace (or Fourier) transform. Prasad's formulas

can be used for these conversions, so that the probability density

function h(y) can be determined directly without first determining

the probability density functions g1 (u) and g2 (v) (21:4-5).

Another important development in the analysis of the algebra of

random variables has been the use of the 0- and H- functions. These

functions are general forms of many of the common and special func-

tions of mathematics, including most of the common probability density

functions. As early as 1958, Kabe (333) expressed some multivariate

test statistics' density functions as G- functions, after recognizing

that the moments of these statistics could be expressed as products

of gamma functions. Similarly, Consul (328) in 1967 expressed the

distributions of likelihood ratio criteria for testing independence

as G- functions. In the early 1970's, Mathai (16,335- 344) indicated

many statistical applications for the G- function, including finding

the distributions of various multivariate test statistics, the distri-

bution of the product of independent beta variates, and examples

4¢
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to counter some proposed characterizations of probability laws.
A

Using Mellin transforms, a few authors expressed the probability

density functions of products and quotients of selected independent

random variables in terms of G- or H- functions. Duivedi (303,304)

, in 1966 and 1970 introduced a confluent hypergeometric density func-

tion and demonstrated that the distribution of a product or quotient

of variates each with such a density function was expressible as an

H- function. Also, in 1970, Springer and Thompson (352) expressed

the distributions of the products of beta, gamea, and Gaussian vari-

ates as G- functions. And, in 1974, Shah and Rathie (319) showed

that distributions for products of generalized F- variates could he

expressed as 0- and H- functions.

Gupta and Jain (12) in 1966 proved that the Mellin convolution

of two H- functions is another H- function. This led to the most

significant advances in the usage of H- functions in statistical

analysis, by Bradley D. Carter in 1972 (4,5). He tied together the

physical science work on H- functions and the probability work on

Mellin transform into a meaningful general theory.

Carter introduced a new probability distribution, the H- function

distribution, which is simply an H- function multiplied by a constant

that makes the integral over the relevant range equal to unity. He

showed that the H- function distribution includes, as special cases,

ten comon classical distributions - gamma, exponential, chi-square,

Weibull, Rayleigh, Maxwell, half-normal, beta, half-Cauchy, and

general hypergeometric. Most important, Carter proved that the

A'
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probability density functions of products, quotients, and rational

powrs of independent H- function variates are also H- functions.

This closure property does not hold for the classical distributions

and thus makes the H- function a powerful general form.

- In 1979, Eldred (7) implemented Carter's results by developing

an operational computer program to calculate H- function values to

any desired accuracy and to calculate values for the probability

density function of combinations of products, quotients, and powers

of H- function variates. He also expressed the half-Student and F

distributions as H- function distributions. Springer (21) has

reproduced the results of Carter and Eldred.

Additional background is in order with respect to the H- function

history. The H- function is a ellin-Barnes integral first introduced

in 1961 by Charles Fox (10) as a syometric Fourier kernel to the

Heijer G- function, which is also a ellin-Barnes integral and a

special case of the H- function. ellin-Barnes Integrals have been

used extensively in physics and engineering and are considered the

most important of all integrals containing gams functions in their

integrands (9:9). Such contour integrals, introduced in 1888 by

Pincherle (9:49), have long been used in solving differential equa-

tions, starting with Barnes (2) in 1908 for complete integration of

the hypergeometric differential equation and Mellin (19) in 1910.

In the 1940's, Meijer (360) introduced the G- function, in terms of

which all significant particular solutions of a hypergeometric

differential equation can be expressed.
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Much work has been done on the G- function, notably by Luke (14)

and by Hathaiand Saxena (16), who provide an extensive bibliography.

Nearly every special function of applied mathematics is a special

case of the G- function and of the H- function. The bibliography

for this dissertation (1,9,section N) lists the basic references for

special functions. Mathai and Saxena (18:10- 11,151- 159) provide

R- function formulas for the following special functions: Gauss'

hypergeometric function, the confluent hypergeometric function, the

generalized hypergeometric function, the generalized hypergeometric

functions of Wright and Maitland, MacRobert's E- function, Vijer's

G- function, the functions of Mittag-effler and Boersm a (357), the

Bssel and associated functions, and Wright's generalized Bessel

function. Of course, all special cases of the above functions are

also special cases of the H- function, including the elementary power,

exponential, trigonometric, inverse trigonometric, and logarithmic

functions.

In the same way that the work of Meijer (360- 362) formed the

basis for much of the later work on the G- function, Braaksma (3)

presented properties, identities, asymptotic expansions and analytic

continuations which became the foundation for H- function work. The

decade following Braaksma's 1964 paper brought great numbers of works

on differentiation, integration, identities, recurrence relations,

expansions and series involving H- functions. For the H- function of

one variable, these works are listed in bibliography sections A to F.

The most prolific contributors were Anandani, Bajpai, K. C. Gupta,

II
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Kalla, V. C. Nair, R. K. Saxena, Shah, and Taxak. Some of the more

significant contributions were the Laplace transform of an H- function

by K. C. Gupta (11), identities and recurrence relations by K. C.

Gupta (11) and Anandani (Yi- 37), and derivative formulas (section B,

35), especially those by A. N. Goyal and G. K. Goyal (25) and by

K. C. Gupta and U. C. Jain (26). Most of the H- function work of

recent years has been for H- functions of more than one variable and

for the H- function transform. The bibliography does not list these,

but many are given by Mathai and Saxena (18).

The majority of H- function work has been highly theoretical,

unwieldy, and usually directed to special cases instead of development

of general theory. Almost no applications are given in the literature

and the few given are for physics and engineering, particularly for

heat production in a cylinder and differential equation solution.

Most of the articles are by authors from India and are published in

foreign or little known journals, often not easily accessible to the

U. S. researcher. Comparison of the Mathai and Saxena bibliographies

(16,18) shows that much of the H- function work simply extends earlier

G- function results to the H- function by directly paralleling the

earlier developments. Often articles will duplicate or involve only

minor changes to previous articles by the same or another author.

Due to the lack of general theory development and instead the treat-

ment of many special cases, there is continual repetition of the same

techniques. Most formulas have been derived by switching the order of

the H- function contour integral and another operation, such as a
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differentiation, a summation, or another integration. Recurrence

relations are often found by equating different derivative formulas.

One must be cautious when dealing with H- function literature

because of the frequent errors. While some errors are probably just

misprints, many are due to the failure to verify the existence or

convergence conditions that enable evaluation of an H- function or

permit switching of the order of operations. For example, a check

against H- function convergence conditions easily shows that six of

the H- function special case formulas tabulated by Mathal and Saxmna

(18:146,154,156) diverge for all values of the arguments.

Other errors result from the failure to check theoretical

results by presenting at least one special case with known results.

For example, in one of the few H- function papers concerning the

algebra of random variables, Mathai and Saxena (17) cosmtted the

following error. Their equation (16) has a term based upon Braaksua's

series expansion for the H- function, which has the form

( f(ihk) ) ) , where, in their notation,
k=O

ji:k and g and f are functions of the integer k and the i-th and h-th

parameters of the H- function. They wrongly factor the second term

out of the summation, so that their derivation for the density func-

tion of a linear combination of n variates each with a density func-

tion of a form involving an H- function, has a term

(a+t) ;?_ f(ighk) , which is meaningless with

kwO
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the part depending on k that is outside the sumation. Any attempt

to use the derivation on even the simplest example would have shown

this error to the authors.

Once Carter showed that the distribution of the products,

quotients, and rational powers of H- function variates could be

easily expressed as another H- function distribution, then practical

application of H- function required only the ability to evaluate the

H- function inversion integral. For an H- function where no denomi-

nator singularity in the integrand coincides with any pole, Mathai

and Saxena (16:177-185; 18:70-75) in 1973 and 1978 presented a

somewhat complicated computable representation. In 1977, Lovett (13)
attempted a numerical evaluation of the general H- function inversion

integralg but fell far short of success. In 1979, Barry S. Eldred

(7) performed the first successful H- function evaluation by develop-

ing a simpler model and a computer program to calculate to any desired

accuracy the values for a general H- function inversion integral.

When numerical inversion of a Laplace transform involving a

product of H- functions is desired, two methods seem well-suited:

one by Crump (231) which is an improvement of that by Dubner and Abate

(232) and another by Jagerman (234) based on the well-known Widder

inversion formula. Piessens (237,238) provides a bibliography on this

subject and other good references are listed in section H of the

bibliography of this dissertation; however, the appropriateness of

these other techniques with H- functions has not been investigated.

44
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1.3. INT GRAL TRANFORMS

1.3.1. Definitions (7:68-72; 21:27-31).

Laylace Transform: A real function f(x), defined and single-valued

almost everywhere for x 10, with x a real variable, is said to be

Laplace transformable if the integral

If(x)I e_' dx

0

converges for some real value k. Then,

Lr {-()} a fo e' X f(x) dx (1.1)

is the Laplace transform of f(x), where r is a complex variable.

The inverse Laplace transform or inversion integral is given by

f(x) = (1/21ri) frx Lr {(x)) dr. (1.2)
o- ieo

Equations (1.1) and (1.2) constitute a transform pair. The function

f(x) is determined uniquely by (1.2) if Lr{f(x)} is analytic in a

strip consisting of that portion of the plane to the right of and

including the Bomwich path (c- ieo,c+ -oi). This strip may or may

not include the entire right half plane.

Fourier Transform: A real function f(x), defined and single-valued

almost everywhere for -0o< x1<o, with x a real variable, is said to

be Fourier transformable if the integral

f n f (X) I • i kcx dx

f 0 0 en d

converges for sone real value k. Then,

--t - I m | I - -,
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t f x = f •'t f(x) dx (1.3)
-00 al

is the Fourier transform of f(x) and is called the characteristic

function of f(x), while eitx is called the kernel. The inverse

Fourier transform or inversion integral is given by

f(x) = (1/21Y} "  Ft{tf(x))dt. (1.4)
)-00

Many authors, including ldred (7), Springer (21), and Tranter (227),

use the transform pair defined above by equations (1.3) and (1.4).

However, others, including Erdelyi (9), Titchmarsh (226), and

Whittaker and Watson (368), use the transform pair with kernal e'itx

Ft(f(x)l f •e f(x) dx
-00

f(x) = (1/27r)f0 ei t x Ft~f(x)}dt.

Which transform pair is used is not important as long as consistency

is maintained. Changing from one pair to the other moves the poles

of the transform from a strip in the right half plane to a strip in

the left half plane, or vice versa.

Mellin Transform: A real function f(x), defined and single-valued

almost everywhere for x _O, with x a real variable, is said to be

Mellin transformable if the integral

f0 If(x)l k-I

converges for some real value k. Then,

-" i i i I4
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iste ::uu raso ff± (x, whee is a complex nzbr h
Melntransformuneso integral, or inverse tMellin transform,

isgiven by

a0+ £00

f(x) = (i/2Wri) f x- K5 {i3 3f(x)} d3. (1.6)

1.3.2. Properties (7:76- 78; 21:34-~ 3§).

1.3.2.1. Linearity:

L1.(c1±'1Cx) + c2 f2 (x)) = ciLr ffi(x)} + c2 L {f 2 (x)l

Ft(cif,(x) + c2 f 2 x))~ = clFt ifl(x)) + c2 Ft'(f2(X)}'

aM '{clfl(x) + c2 f 2 (x)) = c1M 5 {fl(x)} + cM f(~

1.3.2.2. First translation or shifting:

Lr (aea f(x)} = Lr-af(x)3)

Ft fea f(x)} = Ft_.(f(x)}

M5{-a f(x)} Ms.a f(X)}

1.3.2.3. Second translation or shifting:

Lr f(x-a)Y =ear Lr .{f(x) I, x >a

Ft f(x-a) =eiat t fx

1.3.2.4. Scaling with a >0:

Lr{f(ax)) - a'l Lr/affCX)l

Ft {f(ax)j = a-'" /ffx)
M 5 {f(ax)J' - a" M5 {f(x))
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1.3.2.5. Multiplication by xn:

Lr{ X f(x)} = (.) n L (n)(f(X)}

Ft(.xn f(x)} (_,) n Ft(n){f(x)}

Me ( x f(x)} = M .(f(x)}

1.3.2.6. Division by x, provided lim (f(x)/x) exists:

L 1 .{f(x)/x} a fo L, (f (X))dr

t f(x)/x} =ft Ft ( f()} dt

H.(f(x)f)} = M'- t(fw)

1.3.2.7. Transform of an integral:

Lrfx f(u) du = Lr(f(x)j/r

0

Ft (f f(u) du) = Ft(f()/(it)
0

1.3.2.8. Argumnt to a power:

; {f(Xa)) = a"1 lisa~f(X)}

1-3.3. Relations between transforms.

To obtain the Laplace or Fourier transform of a function

directly from its Mellin transform, and vice versa, one can use the

following relations, derived by Prasad (223) and presented formally

by Low (216) and Springer (21:412-417).

I I [ n I I ii II "ta - i
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If the Laplace transform of f(x), x)0, is analytic and of

order O(r-k), k >1, for all r such that Re(r)>b, b<0, then the

Mellin transform of f(x) is given by

M5{f(x)} -Ml..SL(I.!{(x)}}/ !"(1-s)o4 ioo

(P s / ~ c- +10 Lr f(x) (.,.) -s dr,

Re(s)>O, boc<O.

If the Fourier transform of f(x) is analytic and of order

O((t)k), k>1 and Im(t)#0, then the Mellin transform of f(x) is

given by

M 8 {f(x)) (I'(s)/27r)fo' [Ft~f(x)}(itr) I
+ (-I), t(- I c-it)-s  dt

If (1) the Mellin transform of f(x) is absolutely convergent on

a(Re(s)(b, a<1 (216:582), or (2) f(x) is of bounded variation and

measurable on (0,1) and on (1,..) and, for a<b,

fo Ixa-* f(x)l 2 d<c and f x fb-f fWx2d()12

0

(21:175), then,

Lrkf(x)} = (1/2Ti)f 14{f(x)}r'(1-s) r ds,
cO- i0

a<c(min(1,b), and

Ft f (x)} (1/21ri)f c+io ;{f(x)}r(1-s) (it) da.
e - ico
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1.4. TRANSFORMATIONS OE RANDOM VARIABLES

Primary emphasis in this work is on the use of integral trans-

forms to obtain probability density functions and cumulative distri-

bution functions for certain transformations of independent random

variables, that is, for algebraic combinations. First, a review of

related basic probability concepts should be made.

A one-to-one transformation h(x) from a set S into a set T

means that for each y, element of T, there exists one and only one

x, element of S, such that h(x)-y. When a function h(x) is a

one-to-one transformation from S into T, then the inverse trans-

formation h'l(y), from T onto S, exists and h 1(h(x))ux. The set

of positivit for a transformation h(x) is the set of values x for

which h(x) is positive.

Two random variables X and Y are independent if and only if

their joint probability density function fy(x,y) equals the product

of the individual densities fx(x) ad fy(y), associated with X and Y,

respectively. That is,

fx,y( x,y) = fx(x) * fy(y) , for all (x,y).

This means that any variation in the outcome of X will in no way

affect the outcome of Y, and vice versa. Or, knowledge of the value

taken by X yields no information about nor affects the probability

distribution of Y, and vice versa.

THRMI.Ii Let X be a random variable with continuous probability

density function fx(x) and y= h(x) be a one-to-one transformation

from S, the set of positivity of fx(x), onto T, the image of S under

-__ ___ __ ___ __ I a - -I-
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h(x). If h'(y) is differentiable and its derivative is continuous

on T, then the probability density function of Y is given by

f() ffx(h'(y)) ld(h 1'(y))/dyl , yET
fy(y) 0o , otherwise.

I1W _ .2: Let X= (XI, .. ) be a set of k random variables

having the joint continuous probability density function fx(x).

Let Ah()=(h2(X), ...,hkX) be a set of relations forming

a one-to-one transformation from S, the k-dimensional set of positiv-

ity of f onto T, the k-dimensional image of S under h(X). The

inverse transformation, 4= h'(I)= (gj(j),g2(j),..',g())" If the

partial derivatives of h'1 (Y) exist and are continuous,

gij = a(gi(Q))/aYJ ,

then the joint probability density function of Y is given by

= X(g1(Z), 2(Z),...,k(Z))'ljI , yET

{¢ .o , otherwise,

where J is the Jacobian, the determinant of first partial derivatives,

g1 912  • gik

g21  g22  . . . g2k

gkl k2 "-" gkk

Exka le: Suppose the probability density function of Z s X + Y is

desired. Let W=Y, so that X=Z-W and Y=W and

j Ia X/ alz ax/4Wl Ii -Ii
a 4 . I1 -1I = 0 1by/az zlawj jo ij
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By Theorem 1.2, for the appropriate ranges of z and w,

f z,w(Z,-) - t'x,y(z - -.- ) ! I •

If X and Y are independent, then

f Z,W(Z,w) = ffx(Z- )-f y(w)

The marginal distribution of Z- X Y is found by integrating the

above joint distribution fzw(z,w) over the proper range of wt

f z(Z)= fo fx(z- y)fy(y) dy
-0

Using Theorem 1.2 similarly to find the distributions for the

difference, product, and quotient of two independent random variables

gives the following theorem (278).

THEO L-3: If X and Y are continuous independent random variables

with probability density functions fx(x) and fy(y), respectively, then

(1) the probability density function of the random variable

Z-X+Y is given by

fz¢) f fX(z-y)-fy(y)dv f. f,(x)'fy(zx)dx,

(2) the probability density function of the random variable

Z=X-Y is given by

fz() f- fx(Z+Y)'f(y)dyzffi  fX(x)'fY(z+x)dx,

(3) the probability density function of the random variable

W=Xey is given by

fw(v)= f. Ix'I1fx(x)'fy(I)dx f y I 1 fX(Y)fy(y)dy,
-00 -00
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(4) and the probability density function of the random

variable W aI T is given by

fW(-) -f. If'x(x)-'y(vx)dx f yjfx(Wy)-f(y)dy

Theorems 1.2 and 1.3 have been applied to many distribution

problems. However, each case must be treated separately and special

care must be taken to determine the proper integration limits and

ranges for the variables. Integral transforms can help simplify

the process. Consider the following formulas:

?t(f(x)}- Ft(g(y)} a fx) g(y-x) dx

L (f¢W)1" L1 .(g(y)j Lrf f(x) g(y-x) dx

M{f(f)). 1,((y)} Mf{fo )e f(x) g(y/x) dx} 

Combining these formulas with Theorem 1.3 gives Theorems 1.4 to

1.8 below. The following integral transform theorems are straight-

forward, powerful tools for determining probability density functions

of sums, differences, products, quotients, and powers of independent

random variables. A distinct advantage to transform use is the

convenient extension of Theorem 1.3 to more than two variables.

However, even though integral transforms have assisted considerably

in analyzing probability density functions and have been used a

great deal, each case must still be handled separately because of

the requirement of finding the transforms.

I I I I I
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THEOM 1.4: Distrbution of Linear Combination. IfX9 2*Vx

are continuous independent random variables with probability density

functions f1, .**'fN, respectively, then the probability density

function of the random variable

Y-j~ i~j, %7;O, im1,,eNq

is given by

N
y(Y) Fy 7'(-= Fa fi(x0}},

where F.I is the inverse Fourier transform operation.

THDUM15 Given the same oonditions as in Theorem 1.4 and

PC ( O<0)'- 0 for i- 1, .. ., N, then the probability density function

of T is given by

N

-1 a
where LY7 is the inverse Laplace transform operation.

THOEM16 Distribution of a Difference. If X, and X2 are

continuous independent random variables with probability density

functions fl(x1 ) and f2 (x2 ), respectively, then the probability

density function of the random variable Y z X, - X2is given by

whiere F. is the inverse Fourier transform operation.
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THEDREM 1.7: Distribution of Product. If X19 ... 9XN are continuous

independent random variables with probability density functions

f11'.. IN, respectively, where Pk(Xi<0) - 0 for i-1..N then

the probability density function of the random variable

Y=Iajyk , ai >0, iuI , ... ' N,

is given by

UN

fy(y) - y '{Tr &is M fix)- yto
i= 1

where My -1 is the inverse 14.11Th transform operation.

TOM 1.8: Distribution of Quotient. If X, and X2 are continuous

independent random variables with probability density functions

f1 (x 1 ) and f 2 (x 2 ), respectively, where P(X 01 = P1,..,N 3- 0,

then the probability density function of the random variable

Y ' is given by

fy(y) =MY71{I45 (f 1Cxl)}M5..+2{f 2 (x2)} ,Y~h,

-i=

where My-1 is the inverse Mellin transform operation.

THERM 1.8e Distribution of Rational Pover. If X is a continuous

random variable with probability density function f., where

P {X< 0} 0, then the probability density function of the random

variable T a, a rational, is given by

fy(y) My'{ m. -_ + (fx(x)} , y to,

where My is the inverse Mellin transform operation.



29

TH0OPMA. 1.10: Moments of a Distribution. If X is a continuous

random variable with probability density function fX(x), then

(1) if fx(X) is defined on the whole real line,

d k

dt -to
(2) if P{X<O}= 0,

(X _ =()k d rf ()} LrCX fx(x)1dr k L fx)ir- = 0O

{fx(x) Isk+1

E

rA



CHAPTER 2

THE H- FUNCTION

2.1. GENERAL REMARKS

Once the initiate to H- functions proceeds beyond the difficult

mathematical hurdles of understanding the definition, convergence,

and evaluation of an H- function (section 2.2. and chapters 3 and 5),

he can then begin to appreciate the unique advantages of using

H- functions. Foremost, the H- function is the most general special

function, encompassing as special cases most of the other special

functions and elementary functions of mathematics. Thus, anything

accomplished with the general form for the H- function is valid for

all special cases and has been accomplished therefore for every

member of a large class of functions. When the accomplishment is a

procedure involving differentiation or integration, the general

nature of that procedure's applicability is particularly meaningful.

The properties of the H- function which are presented in this

chapter are readily seen to be no more than simple adjustments of

given parameters. The simple parameter changes needed to find the

Laplace, Fourier, and Mellin transforms or the derivatives of an

H- function are trivial compared to performing these same operations

for the various special cases. Treating the many different types of

special cases separately requires remembering a large number of

differentiation formulas and integration methods or compiling long

3

,
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tables of the results. Another advantage is that the derivatives,

Laplace transform, and Fourier transform of an H- function are

themselves H- functions. Formulas, procedures, and computer programs

used to handle an H- function can also be used to handle its deriva-

tives and integral transforms.

Chapter 4 presents the H- function distribution, a probability

density function, expressed in terms of an H- function times an

appropriate constant. Many of the classical statistical distribu-

tions are special cases of the H- function distribution. Moreover,

use of this general H- function distribution has a singular advantage:

the probability density function of the products, quotients, and

rational powers of independent H- function distributed variates is

another H- function distribution. This new H- function is easily

determined by combining and adjusting the parameters of the given

H- function distributions for the variates. This closure property

is not comon to the classical distributions; for example, the

product of normally-distributed independent random variables is not

distributed normally.

On the other hand, the probability density function of the sum

or difference of two H- function variates is not in general an

H- function distribution. By making use of the simple relation for

finding Laplace transforms of H- functions, a straight-forward tech-

nique can still be used to determine the distribution of the sun of

H- function variates. This technique, shown in Chapter 4, provides

a numerical evaluation to any desired accuracy.

____ ___ ____ ___ ____ ___ ____ __ 4
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2.2. D NITION

The H-function is defined by either of two forms (10; 4:35-

37; 7:98- 102; 18:2- 3; 21:195- 198):

m n

H(z) - H Ez : ((ai,Ai)} ; {(bj,B0)}J
pq

m n

r '(bi+ Bs) 7r rt(1-ai-Ais)
21 5 i=1 -= 1-s do

C1  rr 1'(ai+Ais) =T11 (1-bi-Bis)
i--nl1 i=m+l

(2.1)

M n

'TT r(b -Bis) = r(1 -ai +Ajs)
= 1.. .i=1 z+s ds,

2Wi J p q sd,
C2 7rr=(ai-Ais) 1rI'(1-bi+Bis)

i--n+l i--1
(2.2)

where z and all a i and b i are real or complex numbers, all Ai and

Bi are positive real numbers, and m, n, p and q are integers such

that 0.m-q and OS nSp. Empty products are defined to be equal

to unity (1). C1 is a contour in the complex s-plane running from

w-ieo to w+ioo, such that all poles of -I l(bj+Bis) lie to the

left of C1 and all poles of -I" (1- ai-Ais) lie to the right.

Similarly, C2 is a contour running from v- ioe to v +iee, such that

all poles of I= r (bi - Bs) lie to the right of C2 and all poles

of I"(-ai+Ais) lie to the left.

Form (2.1) above is that of a Mellin transform inversion

integral (refer to section 1.3.1). Form (2.2) is that of a type

of the general Mellin-Barnes integral (refer to section 3.2).
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Form (2.2) above is easily found from form (2.1) by substituting

-s for s everywhere in (2.1), letting v equal -w and recognizing that

$b f(-s) d(-s) ; Sa f(-s) ds

Form (2.1) of the H- function definition is used hereafter,

because of the direct relation for the Mellin transform, as shown

in the next section.

2.3. PROPERTIS

2.3.1. Reciprocal argument (4:36; 7:101; 18:4; 21:196):

zn
9 ,. z {(,j,Ai)}; ((bi,Bi)1
pq

nm 1
= H C;: -(1- b,Bi)) ; V(1- ai,.i))3. (2.3)

qp

2.3.2. Argument to a real power:

H tk :{(ai,Ai)} ; ((bi,Bi)13
pq

m n

k H E z : {(ai,Ai/k)j ; {(bi,B/k))J,
pq

for kO (4:36; 7:101; 21:196); (2.4)

or equivalently, for kO (18:4),

m n
H Lz : {(ai,AI)) ; {(bi,B.)I

pq

k H Cz : {(ai,kAk)) ; {(bi,kBi)13. (2.5)
pq

4-
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Combining properties (2.3) and (2.4), when k <0,

*H Ez k -(iA1;(bi)
p q

n m
=(-k)-' H z : f(1 -bi,-Bi/k)j (; ~,-ik)

qp (2.6)

and, combining properties (2.3) and (2.5), w~hen k <0,

*H tz : (ai,Ai)); ((bi,Bi)}]

--k H (Ik { -bi,-kBj) ;(1 -aj, -kAj)}J.
q p

2.3.3. Multiply by the argument to a power k (4:36; 7:102; 18:4;

21:196):

z i k ~ {Cz ai,Aj)3. ; ((bi,B.±)}3
p q

p (2.8)

2.3.4. If one of' the (ai,Aij), i~n, is equal to one of' the

(bj,Bj), j> m, or one of' the (ai,ki), i> n, is equal to one of' the

(bj,Bj), j Sm, then the H- function rediuces to one of' lower order:

m n
H tz : {(ai,Ai)} ;b,,,.,b-IB-)(lA)
p q

m,n-1
=H p9q1Cz : (a 2 .A2),...,(ap,Ap) ; {(bipB)}J,

provided n >0 and q >m (18:4); (2.9)
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pq

H m C z : ((ai,Ai)) ; (b2,B2),...,(bq,Bq) ,
p-l,q-1

provided m)0 and p>n. (2.10)

2.3.5. Mellin transform.

Form (2.1) of the H- function definition is exactly that of

a Mellin transform inversion integral (refer to section 1.3.1),

so that the Mellin transform of the H- function is directly given

as (4:37; 7:102; 21:199):

m n"-F r (bi + Bi s ) "=" rI (- ai - Ais)
Ms{H(cz)l = c-' i=1 J=1

p q
=r r(a± +Ais) = rI(1 -b- Bis)

in+l iuM+1
(2.11)

2.3.6. The Laplace and Fourier transforms of an H- function are

themselves H-functions (4:38-39; 7:102; 21:199-201):

Hn4-l,m

Lr{H(cz)} = c"1 H flr/c : (1-b - ,k)
q,p+l

(0, 1), C(1- a.- Ai,Ai) 3
(2.12)

Ft(H(c)) =c - 1 H n4im f-it/c : {(-bi- Bi,Bi ))
q,p+l

(0, 1), {(1- ai- Ai,Ai)} 3

(2.13)

9 i un n n I



36

2.3.7. Derivatives.

The r-th derivative of an H- function can be shown to be an

H- function by using Skibinski's derivative formula (20; 18:5-7,

12 - 14):

m n
z _ H Lz : {(ai,Ai)) ; {(bi,Bi)Y3dzr p q

mn+l
= H l zk : (O,k), {(ai,Ai)1 ; {(bi,Bi)j,(r,k)3

for k O and r a non-negative integer. (2.14)

Multiplying both sides of (2.14) by z-r and then applying

property (2.8) to the right side gives,'fork00:

r 4 H(z k) = H(r)(zk)
dzF

m,n+l
H rk (-rk), {(ai-Pi, ))

p+l,q+l
r

{(bi- Bj,Bj)},(O,k)3. (2.15)

Similarly, for k<0:

(r)n k

H (r)(zk ) = ('1)r H mzk : (1,-k), _(ai -,',A±)};
p+l,q+1

f(bi+ .--rp k)), (I+r,-k)3. (2.16)

'hen r is zero, (2.14) through (2.16) reduce to the trivial

H(zk) = H(zk), using property (2.9) or (2.10). Skibinski's rule,

formula (2.14), will be used in section 2.5. to derive new

relations between H- functions and between H- functions and well-

known elementary functions.



2.3.8. Parameters differing 
by an integer 

r (18:4-5): 
3

H mz : (c,C), ((ai,Ai)}; {(bi,B)),(c + r,C)]
p+l,q+l

m+1,n
- (_,)r H rz *{(ai,Ai) ,(c,C) ; (c+r,C), {(bi,Bj)}

p+l,q+l

(2.17)
m+l,n

HC : (ai,Aj) ,(c-r,C) ; (c,C), {(bi,Bj)}3
p+t,q+l

m,n+1
= (-I)r H lz : (a-rC),{(a,A3.) ;{(bj,Bj)},(c,C)]

p+l,qq+1

(2.18)

2.3-9. Recurrence relations.

Throughout the literature, a great number of recurrence or

contiguity formulas relating H- functions of the same order

(m,n,p,q) can be found (11; 33 to 53; 18:7- 8,17- 19). A few

typical examples are given below (18:7-8):

m n(al- a2 )  C z : (alAl),(a2,Al),(a3,AA3)..(p);

pq
{(bi, B) }]

m n
R pT q z : (ai,A1),(a 2 -  ,A),(a3,A3), ... ,(aPAp)

- H Cz : (al- 1,A 1 ),(a 2 ,A l ),(a 3 , A3 ),...,(a P AP )
p q

{(bi, B))]

where n !2 (note that A,= A2).

_____i__ ___



(blAl -a1B1 +BI) H En : {(ai, i)} ; (bj,Bj))3
p q

m n
-B1 H Cz :(al- 1,Al),(a29A2)9...,(ap,Ap) ; bgiJ

p q

*~ in
+ A1I H rz :{(aj,Aj)) ; Cbl+ 1,Bl),(b2 ,B2)9 ... 9(bqgBq)3

p q

where m?*l and nl~l.

(b qAl -aBq +B) H Cz {(ai, Aj)};(bi, Bi)
p q

~Bq H q z : (a,- 1,A1),(a29A2),...,(apAp) ; (,B)]

mn

-A1 H rz :{Cai, i)} ;bglg..g~qI~-
p q

(bq + 19 Ba)

where n~I. and q>in.

m n
(ap- kal) H Cz :(I +a1 ,Ai),(a2,A2),...,Capl,Ap-1),

p q

n
-H cz : (I +al,Al),(a 2,A2)'.,(ap_.lAp..l),(ap,kAl)

p q {(bj, B5)) 3

+ k R cz (a1,A1),...,(ap_,.,Ap_,.),( +aplkAl);

where k>O and 1in~p.
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2.4. KNa.P SPECAL CASES

An extensive list of elementary special functions expressed

as special cases of the H- function is given by Mathai and Saxena

(18:10- 12,145- 159). The most important and most familiar of

these cases are given below:

2.4.1. Exponential and Power Functions.

ez  H z : (0,1)3 (4:40)

010

zb e-  = H 1 z : (b,1)3 (18:151)

0 1

I/B 1 0
B r b/B e z  = H Cz : (b,B)3 (18:10)

01

zb  0H z : (b+1,1) ; (b,1)3 (18:152)

11

zb (l-z) +a = V(a+l) H 1 z : (a+b+l,1) j (b,1)3
11

(18s152)
11

zb (I+z)a = H 1z : (b-a+1,1) ; (b,1)3/"(a)
11

(18:10)

2.4.2. Trigonometric and Hyperbolic Functions and Their Inverses.

10

sin(z) = ifW H 0z 2/4 : (1,1),(0,1)3 (18:151)
02

10 
2cos(z) = -w H z2/4 (0,1) (f,),(1)J (18:151)

02

sinh() =-i H 10_ 2 /4 (1,1),(OiI) (18:151)
0 2
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1 0
cosh(z) =9I H 10 (0,I),(+,1)J (18:152)

02

12
aosin(z) = H H - (_2 ,1),(*,1) ; Co,11,(- ,i)J

S22
(18:152)

1 2
arctin(z) =( H z 2 .

22 2
(18:152)

aresinh(z) = (12 -s 2) H z2 ( ,,1),(0,1)
22
1 2(18:152)

,a.etah(z) = * HI C-za:(,)(,1;(,1 1
2 2

(18:152)

Applying property (2.4) with k-2 to the above eight formlas:

10
sin(z) -* -"WH (l : (1,1),(o,*)3

02

10
cos(s) = I -MH C*s : (0,1,(1,03

02

10

sinh(s) - - 'i4WH iiz : (1,1),(0,1)3
02

10
cosh(z) - ff-rH CHfi : (0,1),(*,*)3

S02

12
arsin(z) = E H Cis : (1,J),(I,*) ; (o,;),(-1,1)3

22

12
arctan (z) = H H ( : (1,+),C,+) ; (f,+),(o,+) 3

22

I
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arcsinh(z) log(z + 477)

12
(1/4.'W) H C. : (1, ),(1,+) ;(, ),(o,1)'22

aretanh(z) a log((1+z)/(1- z))

12
= -=- H Ci: : (Li),(+,+) ,

22

11
=-i H Ci : ( M)) 3

11

after also applying (2.9).

2.4.3. Logarithmic Function.

12
log(1+z) = R H Ct z : (1,1),(1,1) ; (1,1),(o,i)3

22
(18:152)

2.4.4. Bessel -mctions (18:10- 11,152- 153).

Starting with Mathai and Saxena's formulas with O 0 and

applying property (2.4) with k -2:

10
J,(z) H H Cis: (f, ),(-v,)

02

20
Kv(z) - * H C' : (*v,),(-IVA)3

02

20
*T(:) = H CIi : (-I(v+ ),) ; (fvI),(-I,,),

1 3
(-I(v + 1), )3

10
, (-) -H Cz : (0,1),(-v,u)3

02
(Maitland's generalized Bessel function)

i"I
4
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2.4.5. Confluent Rypergeometric Function (1:506).

M(a,b,-s) - 1F1 (a;b;-z)

r (b) 1 1
H Cz :(1-a,1) ; (0,1),(1-b,1)3

r'(a) 1 2

*2.4.6. IHpergeometric P'unction (18:158).

r' (a)I' (b)*2F1 (a,b;c;-z)/I' Cc)

1 2

2 2

2.4.7. Generalized IHypergeometric Functions (4:40; 7:101; 18:11,

159; 21:197- 198).

qp

p'r [Cj -b) ; ..z)]1(i

I'p
R r z : {- ai, ; (0, 1), (- bi,)}

p q+1

foraiaor'sor Wright' gnerazedhyreoeti

* Ep; q aj ;~i q;) (b4

Ip1

H Ez : (1,1) {i,i); (1,(A4.)} 0)-pq+1p
(McotsE-function)
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2.4.8. Meijer's G-function (4:41; 7:101; 18:11,159; 21:197-198).

m n jai) m n
G C- • 3 - H E z : (ai,1) 1; {(b, I) 1 3

p q {b) p q

Extensive lists of elementary special functions expressed as

G- functions are given by Luke (14:225- 234) and Mathai and Saxena

(16:53- 68).

2.5o NEW USE O SKIBINSKI'S DERIVATIVE RULE (Equation 2.14)

One of the more difficult aspects of dealing with H- functions

is to relate the higher order H- functions both to elementary

functions and to lower order H- functions. One tool for doing this

is the derivative rule that has been presented in section 2.3.7.

2.5.1. Consider, for example, from section 2.4.1.,

10 -1 i/
H tz : (b,B)3 = - b/B e- . (2.19)
0 1

The derivative rule (2.14) can be applied to (2.19) to find some

new formulas:

11 dH10 :(,)
H 1 1z (0,1) ; (bB),(1,1) 3 d 1 0

12 01

1/B
= 2 L (Ef1 zbfB e5 )

1/B 1/B
= bB 2 zb/B e-z B-2 z(b+1)/B e-5

The above result combined with (2.17) gives the following new

relations:



H Cz (0,1) ; (b,B),(l,1)3
12

1/B 1/BJ
t- = B 2 zbl B 8-z1/ (b- zi/B)

b H z (b, B- H tz • (b+1,B)2

2 0=-H Ez : (0,1) ; (1,1),(b,B) . (2.20)

12

Multiplying (2.20) by zR and using property (2.8).

11

H Ea : (a,l) ; (b+aB,B),(a+1,1)3
12

j-2 z(b+ aB )/B - /B(b - zl/B )

Substituting x I/A z, b=b+ aB, and then B- AB, and using properties

(2.4) and (2.17) gives the following new relations:

11
H Ex- (a,A) ; (b,B),(a+I,A)3

12

-"2 xb/B e x /B A1./B)

= 2 x e (bA- aB-Ax 1

-110o- 10
= B (bA- aB) H Ex: (b,B)3-AB H Cx: (b+ 1,B)3

01 01

20
-- H Lx : (a,A) ; (a+1,A),(b,B) . (2.21)

S12

Next, consider (2.19) with B= 1; then, applying the derivative

* rule (2.14):

1 1 dr b-H E z  (0,1) ; (b,1),(r,1)3 r . (z e
12 z.
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r r dr-W wr w _ (5b) d- (e-Z)

W=O dz

r r' (b +1) b.r w eZr 7 ( r ) . b -. .l w
W--O r(b I- r w)

" * The above result combined with (2.17) gives the following new

relations:

H tz : (0,1) ; (b,1),(r,1)3
12

I" b 1) zb e-2E: (w ) (z)W/ 1l (b + I- r +w)
w=O

r 10
I' (b+ 1) - ( ) (_)w H C: (b+w,1)3

w=O 01
1-(b+ l- r +w)

20S(_,) r  Ez[ : (0,I) ; (r, Il,(b,Q)3,
12

for non-negative integer r. (2.22)

Multiplying (2.22) by za and applying property (2.8):

11

H [z : (a,I) ; (b+a,1),(a+r,1)3
12

r(b+1) z b ~ e-z Ar- ( r ) (-z)w II(b+i-r+w).

w=O

Substituting b- b +a and x'/B. z, and using properties (2.4) and

(2.17) gives the following new relations:

H x: (a,B) ; (b,B),(a+r,B) -
12

(next page)
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C B1I(b- a+ 1)x/e r Za

-- (r )w P(b-a~i) 1 0

w ) [x (b+WB)
W-0 P (b-ai-1-r+W) 0 1

r 2 0
= (- 1) H E x : (a,B) ; (a+r,B),(b,B) ,

12

for non-negative integer r. (2.23)

Note that, when r=0, (2.23) reduces to (2.1f) by property (2.9).

Also, referring to section 2.4.5., if ba0, B-I and c- 1-a,

then (2.23) becomes

r r (c - 0)SiFl(c;c- r;-x) = " - r r (-x) o ,

w=O 11(c- r +w)

for non-negative integer r. (2.24)

2.5.2. Following the same procedure as in section 2.5.1., but

starting with the following known H- function of section 2.4.1.,

I0H C : (d,1) ; (b,1)J z b(l- )d'b-1/ r'(d-b),

then the following new relations are derived:

11
• x x: (aB),(d,B) ; (b,),(a+r,B)3

22

r 1L(b-al) (-1) w  (1- x

w=0 1(b-a+ 1-r+w) l'(d-b-w)

r r(b-a+1) (-i)w  1 0

• = () Ex : (d,B); (b+w,B)3
wWO l1(b- a + - r +w) I 1

(next page)

r,

L_*

.. . ... 1 I I Sll I4
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20
(_1) r H E x :(a,B),(d,B) ; (b,B),(a+r,B) ,

22
II

for non-negative integer r. (2.25)

And, starting with the following known H- function,

1 1 1 +Z)b+a. 1

H Ez : (a,1) - (b,1)3 =r(b-a+1) b (1+
1 1

then the following new relations are found:

12
22x : (aj,B),(a 2,B) ; (b,B),(a 1 +r,B)3

r )1(b-al+I) T9(b-a2 1+w) x ( b4W)/ B

W= 1(b-al+l-r+w) (-I);; (I+xl/B)b-a2+ 1+ w

r 11(b-al+l) (-i)w 1 1
57- (r) H Ex : (a2 ,B);(b+w,B)3
U- (b- al+ 1-r+w I11

211
1) H Ex : (a 2 ,B),(aj,B) ; (b,B),(a 1+r,B)l,

22

for non-negative integer r. (2.26)

2.5.3. Because the section 2.5.1. and section 2.5.2. results are

summations, the second application of Skibinski's derivative rule

produces somewhat more complicated results. Consider the p-th

derivative of (2.23) where B- I-

12
H Cz : (0,1),(a,1) I (b,1),(a+r,1),(p,1) 3

S23

11
=J- H [z : (a,l) ; (b,1),(a+r,1)-J

dz p  1 2

s | |
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= zP r'- (r) l"(b-a+i) (-I) di ) 
b + w O-Z)

W--O l"(b- a + 1- r+w) dzp

r 1(b-a,1) (-)w, .,~p 1-- W) P.
W=O lI(b- a+ I- r +w)

* 11

H z : (0,1) ; (be+w,1),(p, 1)3.
12

The above result provides the following new relations:

12
H Ez : (0,1),(a,1) ; (b,1),(a+r,1),(p,1)3
23

r t r)(p(- 1) w + v 11 (b- a+ 1) r"(b+ w+l1) zb +w + v e- Z

w=O v=O r'(b-a+-r+w) l(b+w+l-p+v)

r ._(-i) w, + v r (b- a+ 1) 1- (b+wv+ 1)

Wr-O V--O (b-a+1 -r+w) (b+w+-p+v)

1o0
[z : , (b+w+v, 1)3

01

r_ r (b - a + I) (-l)w  1 1
= (r, E z :(0,I) (b+w,I),(p,1)1

W=O 1"(b - &,+1- r+w) 1 2 ,

2H E : (a,1),(,1) ; (, 1),(p,1)b

23

_,pr 3 0= (1)p r x Cz :(o,1),(a,l) I (a+r,l),(p,l),(b,1)3
23

2t 1
= (-Ir  H z :(0,1),(a,l) ;(a+r,1),(b,i),(p,1)3],

2 3

for non-negative integers p and r, where the last three

H- functions are differing applications of (2.17). (2.27)

,Hi1 ii i-i . u - I 4 i .. .
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Continuing with the section 2.5.1. procedure, the following new

relations are also found:

*~ 12
* H Ex : (aj,B),(&2 ,B) ; (b,B),(aiI-r,B),(a 2 +p,B)2

2 3

r~ (p (1)w +V v r(b- a +1) r (b-a&2 + w+1)

W=Ov r= 1(b-a1 4-1-r4-w) I(b-a2 +w+1-P+V)

4~ w + v) /B -1/

-=O V00 r)(b-al+l-r+w) I'(b-a 2 +w+l-P+v)

1 0
H r~x : (b4-w+v,B)3
0 1

W=0 I'(b-aj+1-r+w) 1 2

Ex :.jrHL (a 2 ,B),(a 1 1 B) ; (a, + r, B), (b, B), (&2 +p,B) 3
2 3

2 1
U(...)P H Ex : (a 1 ,B),(a 2 ,B) ; (a 2 4p,B),(b,B),(a 1+r,B)3

2 3

3 0
. (jI)PIr H [x:- (aj,B),(a2,B) ; (b,B),(alt r,B),(a2 .p,B)3

2 3

for non-negative integers p and r. (2.28)
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z.6. NIW REDUCTION OPULAS

The well-known relation I (z +I) z 1'(z) leads to a number

of simple reduction formulas for special cases of the H- function.

Using this relation,

r(Ib +Bs+ ) l"(kb+kg) = (b+Bs) r'(kb+kBs)
r' (b + Bs)

k 1k (kb+ kBs) r'(kb + kBs) = k- r (I+ kb+kBs).

(2.29)

Applying (2.29) to the H-function definition (2.1), for k>O:

m+-2, rn
* H Cz • ((aitA)m,(b,B) ; (b+I,B),(kb,kB), {(bi,Bj))3

p+-,q+2

m+1,n
k H [z {(ai,k)}; (1+kb,kB), {(bi, B)13

p,q+l
(2.30)

m+l,n+l

H Cs : (1+ka,kA), ((ai,Ai))-,(a,A) ; (a+1,A), f((bi,)
p+2,q-I

m, n+l

a-k'1 H n z : (ka,kA), (aj,Aj)} ; ((bi,Bi)13
(2.31)

m+l,n

H sz : {(aj,Aj)),(a+ 1,A),(ka,kA) , (a,A), {(bi,Bi)j1
p+-2, q4.

kRmnC z :((ai, Ai)},(I +ka, kA) ; ((bi, Bi)J3
p+1i,q

(2.32)

Tr+l, n
H HC : ((ai,Ai). ,(b+1,B) ; (bB), {(bi, ) ,(I4+kb, )kB)
p+1, q+2

= -k H , C : {(ai,Aj) ; {(bi,k)) ,(kb,kB)3
p,q+1
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Similarly,

d a - As) r (-ka - kks) k-1 !(1 -ka -kAs) I

I(-a - As)

leads to the following reduction formulas for Ik >0:

m,n4-2
* H r z : (a, A), (1 +ka, kA), J{(a1, Aj ; {(biBi)} ,(a +1, AM

p+2,q+l

k= H mn rz : (ka,kA), ((ai,Aj)) ; {(bi,Bj)} 3

(2-34)

m+1, n+l
* H r z (b, B) , J(aj,Aj)} (kb, kB) , (bj, Bj) ,(b+1, B) 3

p44,q4-2

- Hi p4,n :z (ai,Aj)j ; (1+kb,kB), {(bj,Bj)}j

(2.35)

m,n+l
* H rz (b +1,B), {(j,). (bj,B.1 )j , (b,B), (I +kb,kB)3

p+1,q+2

k Rc mI :z (aj,Aj)}, ; {C(bj,Bi)y ,(kb,kB)3

p~q~l(2.36)

m, n+1
* H Cz :. (a+1,A),{((aj,kj)Y,(ka,kA) ;{(bj,B&)},(a,A)3

p*2,q44

=-k H m, s :{((a1 ,Aj)).,(i4-ka,kA) ;{ (bj,Bj))J
p+l,q

(2.37)

Using 1r(z 1) -z T(z) also results in the relation

r(b4Bs) r(14-kb~kn) r(lkb.kBs)
r I(1b + Bs) b+ Be

k r '(kb + kD.). (2.38)
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Applying (2.38) to the H- function definition (2.1), we have the

following reduction formulas for k> 0:

m4-2,n
* H {(,i) ,(b-l,B) ; (b,B),(i4-kb,kB), {(bj,B0)3~

p+l,q+2

k H - ul-,n n : {C(ai,Ai)y ; (kb,kB), {Cbik)13
p, q+i

(2.39)

- 1724- : (ka,kA),{-(ai,Ai.}(a+ 1,A) ; (a,A), ((bi,Bi)3}3

Res(-&/A) - -kc H p~~ z: (I+i-ka,kA), {.(aj,Aj)j ; {(bi,Bi)3

(2.40)

H {z:-(ai,Ai)} ,(&,A), (1 + ka,kA) ; (a+i1,A), -{(b.1, Bi)J
p. 2 , q-t-

kI1 H m~ rz : {((ai,Aj)} ,(ka,kA) ; {(bi,Bi))3

(2.41)

* H m nCs z {(ai, Ai) ,(b, B) ; (b+ 1, B), {(bi,B) ,(kb, kB) 3

-k -1H m Csr : -(ai,Ai)} ; {(bi,Bi)j,(1I+kb,kB)3
p ,q+i

(2.42)

Similarly,

* Z(-a - As) J! (i-ka-kAs) .c k 1(-ka - kAs)
'(-a - As)

leads to the following reduction formulas for k >O:

(next page)

OM-EEN"
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* * (a -l,A),(la,kA),{((ai,Aj)) ; ((biBi)) ,(a,A)3

Mn, n4ll
=k H rz (I (+ka,kA),-{(ai,Ai)}-; ((b±, Bj) 3

p4i, q
(2.43)

m4l,n4-i
* H Cs : (b+l1, B),{ (aj, Aj); (I + kb, kB),{C(bi, Bj)}y, (bB)]

p+l, q42

+ Res (-b/B) =-k H (s : {(ai,kj)}; (kb,kB), <(bij)) 3}
p, q+l2

(2.44)

* H Cs~ [z (b, B), { (aj, Ai) C (bi, Bi)3 , (b +1,B), (kb, kB) 3
p+1,q+2

-c H zs :{_(ai, Aj) Y{(b, Bj)),(I +kb, kB) 3
p~q~l(2.45)

m,n4-1
* H Es (a. A),{j(ai, Ai)},(I +ka, kA) ;{-r(bj, Bj)) (a +1, A)]

p4-2,q+1

-k H zs (ai,k)} ,(ka, kA) ; (bi, BO)}
p~l,q (2.46)

Examples: Consider the derivatives of~ sin(s) and cos(z) from

section 2.4.2., using (2.15):

d- sin(s) = d-* H ~
II dz I- 02 lz ( M0

+ 'I H : (-1.1) ;(0,*),(-M,),(0,1)3

13 (2.47)
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Using (2.45) with (b,B)- (-1,l) and k-=* (2.47) becomes

dL sin(s) =or r*) t. 1 C : (04i),(1 -+M) 3 1
*dz 0 2

1 0

*~ 02

which, by section 2.4.2., is cos(s) as expected.

Similarly, d =o~z L IFFn 1 i' 0 :f 0*)(T cs- s dz
0 2

11H Eiz(,) (,1

1 3
(2.48)

Using (2.35) with (b,B)-(-1,1) and kc'' then (2.48) becomes:

3- cos(s) = * Ciz : (1-i',i',t)3

- -i4 4-rH ri's (Mm,*,03) ,
0 2

which, by section 2.4.2., is -sin(s), as expected.

Consider the derivative of exp(-za) from section 2.4.1.,

using (2.15):

a a d 1 10
~(e-z) dsa H 01 C (0,C 1 )2

A-s : (r,1 z (-a- ta 1),(0,i) 3.

(2.49)
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Using (2.35) with (b,B) (-1,1) and ku 1/a, (2.49) becomes

d a 10
d (e-') = (-a) a-' H rs : (1a-',a-i)

01

a-1 1
= - H rz - 7 ,

01

which, by section 2.4.1, is (-& za' l e- 1a) as expected.

2.7. SPECIAL DERIVATIVE CASES

* The first derivative of an H-function H(z), by equation (2.15)

with kin1 and r-l, has a numerator term (ai,Ak)= (-1,1) and a

denominator term (bi,B) - (0,1). Combining this observation with

equations (2.34), (2.35), (2.45), (2.46), where as-1 and b -I,

leads to the following theorem.

* IWQEi2.1: Given an H- function of order (m',n'P'qt),

me no
R (z), where either ai=1 for any i, ii1,...,p', or bi=O

p' q'

for any i, i1 1,...,q', then the derivative of this N-function,

HO(z), is also an H- function of order (m',n',p',q') or less.

2.7.1. m+l,n
Let H(s) H C : {(ai,Ai)} ; (0,k), f(bj,Bj));p,q+1

then, by (2.15), H'(z)

9t

m+ln+l
H : (-1,1), ((ai-Ai,Ai)} ; (-k,k), {(bi-kBi)} ,(0,1)3
p+tq+2

(2.50)

k.;
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Using (2.-35) with (b, B)-1, 1), (2.-50) be come s:

HI H(z) - -k- I H t~ z :{-(aj-Aj,Aj))r ; (1-k,k), <(bij-BiB.))3.
p ,q41.

(2.51)

* The cos(z) and exp(-za) examples of section 2.6. are in this class.

K2.7.2. m'n
Let H(z) - H : {((ai, A)} ;(bi, BI)Y , (0, k)~

then, by (2.15), H'(z)-

H mnlCz (-1,1), J(aj-Aj,Aj)3.;-{(bi-B±,Bi)j ,(-k,k),(0,1)3.

Using (2.45) with (b,B)=(-1,1),

* H'(s) = k1H L z : f{(ai-ki, A) ; {(bi-B1 ,Dj)) ,(1-k, k) 3
p, q4-

(2.52)

The sin(z) example of section 2.6. is in this class.

Let H(z) = H zs : (1,k), (Cai,A )l; C(bi,Ei)}3;

then, by (2.15), HI(z)i

ni,n+2
H Es : (-I,I),(1-k,k), {((ai-Ai,A±)j ; {(bi-Bi,E))! (0,1) 3

p4-2, q4.

* ~~Using (2.34) with (&,A)='n(1 )

HI H(z) uk -1H m tslr (-k,k), {((ai-Ai, j)3 (iBi3)-

(2.53)
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2.7.4. m,n
Let H(z) = H Cz : {(ai,A)} ,(1,k) ;((bi,Bi) 1;

p+1,q

then, by (2.15), H'(z)=

m, n+1
H Cz : (-1,1), {(ai-Ai,A )j ,(l-k,k) ; {(bi-Bi,Bi) ,(0,1)3 .p 2, q+1

Using (2.46) with (a,A)= (-1,1),t m,n

H'(z) = -k'1 H Cz : (ai-Ai,A)} ,(-k,k) ; {(bi-Bi,913 .
p+1'q

(2.54)

2.7.5. Examples.

Theorem 2.1 applies to most of the known special cases of the

H- function that are given in section 2.4. Besides the sin(z),

cos(z) and exp(-z a) derivatives already treated in section 2.6.,

the following derivative formulas are a consequence of Theorem 2.1:

d(arcsin(z))/dz - (I- z2 )-f

12
= - H Liz : (oj),(oj) ; (1,),-1, 0

22

d(arctan(z))/dz (I z2) i

12
H Cz : (M),(Oj) ;(0,I),(M) ,
22

* which reduces further, using equation (2.9), to

* d(arctan(z))/dz - (1+z2) "I

H 1*H C- : (o,*) ; (o,j)3.
11

4

*" -II - frl i it -
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* d(arcsinh(z))/dz = (1 *z2)
-

12
= (I12"I). z : (1,}), (1,+) ; (0,}), (,4) ,

22

which reduces further, using equation (2.9), to

* d(arcsinh(z))/dz = (1+z2) -

. = (1/2W)- H Cz : (,4) ; (0,1)3.
11

The arctan(z) and arcsinh(z) results above can be verified by

using the argument z2 in the section 2.4.1. formula for zb(l+,)-a,

with b=0 and a= I or +, and then &pplying equation (2.4) with ks2.

Using Theorem 2.1, the derivatives for the Bessel functions

of section 2.4. with v-0 are:

10
I H 1 0 E + (,4),(- ,)3 -J1 z)

02

10
4 H t Cz :(-4,4),(4, ) 2 = t¢,

, 02

using first derivative formula (2.51) and then (2.52);

20
d(Ko(z))/dz = -H j , ( -,)), -,) :3 = (

02

20
and d(Yo(z))/d. = 4 1 3 :-,

• 13

* using (2.51). JO' -J 1 =J-1 , KO'-K 1 and TO --Y, are known results

(1:376,361). Also, using (2.52),

20
-T'C() = -Yl'(z) = H H r}z : (-,4) ; (-IJ),(o,J),(,+)3,

13

I
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and, using (2.54),

20
. y., u(.--3,(z) - H 1 : (-,) (

• 13

For Maitland's generalized Bessel function, using (2.51),

10
JV,(z) = . 2 Cz (O,1),(-v-u,u)3 "Ju+2(Z)'

02

from which, for v 0,

10

J0(z)= -J (z) =- H 2 z (o,1),(-u,u),

which is also, by (2.52), equal to 1 0
u H rz : (-1,1),(1-u,u)3.

02

Repeated application of (2.51) gives the r-th derivative of

the hypergeometric functions of sections 2.4.:

dr- dr

dr M(a,b,-z) 
drd r  dzr

11
=(.)r r(b) H Es : (1-a-r,1) ; (0,1),(1-b-r,1)3

1"(a) 1 2

11(b) r' (a + r)
(a) ,.~b~r) ~1F(a+r;b4r;-z). (1:507)

1 (a) 1 (b r)

r 14 (c)l' (a&r)r (b+r)
dr 2FI(a,b;c;.z) =(-I)

r  F~~~~~+-

d. 14(a) 1'(b) r (c+r)

• r(c) 1 2:

= (I)r H rs : (1-a-r,1),(1-br,l)
"'(a)I (b) 2 2

(0,1),(1-c-r,1) . (1:557)

F
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- pFq((ail ;Cbj) ;-z) = (.l)r
dzW !(a,)

"P
S tz "{(1"ai-r,1)} ; (0,1), {(1-b- r,1))]
pq i

1. (aj)/I' (aj4r) pFq({ai+r} ; bi+r )

d[ r (ai ,k) ] ( aO / ( _r [.[ (ai+rAi Ai)}

dzr  q ((bi,Bi)} (bj+rBi, B)}

a (-)r H , • {(1-a-rAi,Ai)} ; (0,1), ((1-bi-rBj,BjM
p,q~l

The hypergeoetric function examples above demonstrate the

following corollary to Theorem 2.1:

*C0gLLAgY 2.1: If the conditions of Theorem 2.1 are met so that

one of the equations (2.51) or (2.52) is applicable, then Theorem

2.1 can be used repeatedly to find the r-th derivative when k- a.

For example, using (2.51)or (2.52) repeatedly:

r m+l,n
H Cz : { ,Ai)}; (0,1), C(bi,B)13

dzr p,q+l
m+l, n

- p K Cz : ((ai-rA,A)} ; (0,1), ((bj-rBj,B*]

(2.55)
dr ms n

,,s :z{(ai-rAi,A} I{ (bi-ri ,Bi) ,(0,1)3

p,q+

-- | (a {(ir=±J.{b-~ ,) ,, 1...
,|m |pq 4



CHAPTER 3

IICONVERGENCE OF EWI-BARNES INTEGRALS

3.1.

Convergence conditit.ns for the general Mellin-Barnes integral

* were proven in 1936 by Dixon and Ferrar (6:81- 96) and were later

restated by Erdelyi (9:49- 50). Luke (14:v.1) and Braaksma (3:

239- 341) provide extensive theoretical treatment of convergence

for the Mellin-Barnes subclasses G- functions and H- fAnctions,

respectively. However, none of the above references wives any

straight-forward, practical, easily understood guidelines for when

a given Mellin-Barnes integral should be evaluated as the sum of the

left half plane (LHP) residues versus the negative of the sum of the

right half plane (RHP) residues.

The derivation of evaluation guidelines which is presented

below has been accomplished with the assistance of Dr. Barry S.

Eldred and Dr. J. Wesley Barnes.

Lovett (13) stated that Jordan's Lemma is generally applicable

to the H- function, which would allow the use of the residue

theorem for all positive real values of the function variable.

Lovett's attempted proof of this statement, reproduced by Springer

(21:431- 440), overlooks the oscillatory growth nature of I/I (x)
e

for negative values of real x. Thus, as given below, the correct

development and results are somewhat more complicated than Lovett's.

61
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As a particular example of the flaw in Lovett's proof,

consider the form g(s)1'(1 -s) r (s) r (b+s). Then, g(s) is a

valid H- function kernel and

lir g(s) = lir (b+s)/sin(sT).
S+00 +0

This limit does not exist, since sin(slr) oscillates between -1

and +1 and l"(b4s) is unbounded as s+ew. However, Lovett's

approach would indicate that 11(1-b- s)I has a positive lower

bound, so that he has

lim g(s)_ lim 7r2 /(sin(slT) sin(b1T+ sli) r(1-b- s))
s400 so0

=0

Lovett's approach is thus seen to be false by the oscillatory

growth nature of 1/l(1-b-s) as soo; that is, Ir(1-b-s)i has

no positive lower bound (1:255).

3.2. DERIVATION OF CONVERGENCE CONDITIONS

3.2.1. Definitions.

The general Mellin-Barnes integral is defined as (9:49):

Mnrw+i n s)

2WiJ Q P
w-io Ir'(ci + Cis) P(di- Dis)i=t1 i:1 -

* where w is real and all Al, Bi, Ci and Di are positive real

constants. The path of integration is a straight line parallel

to the imaginary axis with indentations, if necessary, to avoid

the poles of the integral. When the poles of -r 1'(bi- Bis)
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lie entirely to the right of this path of integration and the

poles of 7I=r (ai 4Ais) lie entirely to the left, then this N

integral represents an H- function.

We wish to derive the conditions for which each of the

a following two relations are valid:

-- (e) ds =-lim -_dsf 2z) i- w- ie@ N - 0 2 i

S- RHP residues of (e); (3.1)

f(Z) = ds li -1 (0) ds
21ri w - i N -A

E LHP residues of (0), (3.2)

where the integrand (a) is that of a Mellin-Barnes integral as

defined above and the contours ADCBA and ABEFA are as shown below.

iy

B C

v-N 0 w w+N

A

FAD

i"

w4
ti.m ~ . a -I i i I I I -I 

° II
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For simplification, the following parameters are defined:

t=1 i=1 i=1 i=1

n m P
ff r Ai - 3 k :-C :D

t=1 i=1 i=1 i=1

n mL = Re ai- In + - bi- I,- ci+ IQ- di +1P)
i=1 i=1 i=i =

n 
a)P m

=1 1=1 1 i

n Re (ai) - I x Re(bi)- I

i=1 i=i

K = RIZI > 0

0 = arg(z)

Let s=u + vi, u and v real, and note that

I s'I - II U eV .

Using formula 6.145 in Abramowitz and Stegun (1:257), for b

complex and B positive real, and noting lim Im(b+Ds)l- lia Bivi:lvl,.-e0 IVl .10-60

lim '(b t Bs)I = lim -R (BIvI)Re ( b ) I B-1' •

exp(-"ffBlvI)

Then, F _m Re(bi)-Bu-I'~( I "z Vl 1) exp(4wBlvD
Urn (.) lir . 1=.
Ivl + 0 MI 00 ,, | Q .- Re(ci) Ciu-+

[ 2_' r( Cilv I) e (- lrl' vl )

(next page)

- . . . .. . - .- w,.
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n Re (ai) + Ai - @

r 47W(ilv ) e (- I.AiI v) }

i=1 lzi U - •
* P Re(di) - D-

S 2-W (Di I v ) exp(-t1Ivl)
i=1

Collecting similar terms and using the parameters defined above:
0

lim l() I = IU kjvI E
u exp(-r©DlvI -vo) Ku

lVI +00 jvI*06

(3.3)

where (f) is the integrand of the Mellin-Barnes integral and

lei <'r.

Since the Mellin-Barnes integral diverges for all z when

0<0 (6:83; 9:50), hereafter we can restrict our attention to

non-negative values of I. Also, the branch point z= 0 is excluded.

3.2.2. Right Half Plane.

The equality

2F fw+io N-(.) I ADCBA.
f(s) = ds = - lirn z - ( f( ) di

fD fC B
()ds 0 ds ()ds)

will reduce to equation (3.1) if all of the last three integrals

each approach zero as N tends to infinity.

Consider first the integral over the line AD, for which

sx-Ni where wSxSw+N. Using equation (3.3),

*lim, (f ) dsl :5 lin fj do
N.. A N -0 A

(next page)

1,
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lim fW k 1L L+8x exp(- W + Ne) Kx dx
N .& oe w

" k nli exp(-I?=+ NO) NL (N) d

= ic K li, exp(-I"n + N6) N L+Bw((NEK)Nl)/log(NMK))
N -o- o

(3.4)

Since we know that
O , if O< Jiro

lim exp(-JITIN+Ne) NL+ w = 0 , if e= fru, and L<-Kw

1 , if e= 0 and -w(

Lo@, otherwise
li ((NZK)N 1)IlogC(N8K) I rO , if 1E<o

N- l-1/log(K) , if 19- and 0<K41

eo, otherwise

and li (KN-1)/log(K) = N

then (3.4) will equal zero under one of the following conditions:

(1) 0>0, RIo, e<+iir

(2) I_>o, e<0, e=*ID, LS-Uv.

(3) 0e>o, rE-0, 90 M, O<K<l

* (4) ID1o, 8-o, e-7TI, o<K<1, L<o.

* (5) O_>, 8=0, el.WD, K-1, L<-1 .

Next, consider the integral over the line CB, for which

s=x+Niwhere w!.xw+N. Using equation (3.3) again,

1 - II _ _ _ _ _ _ _-_ _ _ _ _
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Urn Af ds i mn f k NL+ exp(7TlDN N) KCd
N400 C N *,so W4-N

- I Kw rn ep(- 14"N- Ne) N L+ w( 1 - (NEK)N)/log(NeK)
N -P o

* (3.5)

Using the same analysis as applied to (3.4), we find that

(3-5) will equal zero under the same conditions as for (3.4),

except 0>41-r and . -jTIr) replace e( I'I and e -ir),

respectively. Therefore, both (3.4) and (3-5). and thus both

rm fD(.) ds and l f(.) ds, will equal zero if:

N -0 A N -ta*C

CASE 1: I2>0, MCO, leI<IWID

CASE 2: ID.0, M<0, IeI=+1r©, L.-Ew

CASE 3: 02>0, M=0, Iel<1D, O<K<

CASE 4: ID?0, E=0, jel =-Ir, o<,<1, L<O

CASE 5: D>.0, E=0, IelOCS , K=1, L<-1

Additionally, from (3.3), for all cases, lelOr.

Finally, consider the integral over the line DC, for which

s=w+N+yi where -NySN. Using equation (3-3),

lim If(.) dal -i m k ly JL+(w+ N)exp(-1"79) y -y) K Ndy
N -*D D N-0-0 -

Substituting t-y for -NSy<O and t=+y for Oy N,

lir IJ(O) dsI 1- k lim Kw+N o - I e-Prt(e+e-te) dt

N -.oo (3.6)
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where 0L +5(w+N) +1 and ) (1 0 /1()f ro1 e-r dz.

(3.6 oont.)

f* is the incomplete gama function given in 6.5.4 of

* Abramowitz and Stegun (1:260-261).

When E 0, (3.6) is dominated by NO and thus diverges for

9)0 but converges to zero for 8<0. Therefore, (3.6) and

C
ur (o) ds will equal zero and relation (3.1) is valid under

the Case 1 and Case 2 conditions above for which both (3.4) and

(3.5) equal zero.

WhenE)>0 and E=0, (3.6) is dominated by Kw . and converges

to zero for 0<K<, or, if L<-1, for 11. For L!-1 and K[1,

(3.6) converges to a non-zero value. If M=E=i0, (3.6)

reduces to

k lir Kw+ N J tL dt= k li-Urn a INNL+ L#-1,
N -bee 0 N 100

which converges to zero if 0<K<I or if K=1 and L< -1.

Therefore, (3.6) and lir fC (0) ds will equal zero and
N -. ee D

relation (3.1) is valid under the conditions above for Cases 3, 4,

and 5 for which both (3.4) and (3.5) equal zero.

0 Thus far, we have shown that the Mellin-Barnes integral may be

evaluated as the negative of the sum of the RHP residues for

Cases I through 5 above. %or these cases, the last three integrals

in the first equation in this section have been shown to approach

• +. . .. ... - -- + ::.,+- in - T2". t-
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zero as N tends to infinity.

3.2.3. Left Half Plane.

The conditions for which (3.2) is valid can be found in the

same manner as those for (3.1). Or, better, we can note that

A
substituting s _-s into a Mellin-Barnes integral yields another

Mellin-Barnes integral for which REF evaluation is equivalent to

LHP evaluation of the original integral. This new integral has

parameters A = m, in n, A A Anmn, Q=P, P=Q, w=-w, E =E, 5=-K, L=L,

R1 a/R, and * = 1/z. Applying the RHP results to these new

parameters and then transforming back to the original parameters

will yield the following conditions for which equation (3.2) is

valid:

A
CASE 1: [)>o, E>o, 1e<110•
CASE 2: ID>t0, IE> 0, 1 e I =I'rI, L.-,Ew.

A

CASE 3: Um>o, 3=0, Iel< WI , K>1

CASE t: t.0, 3=0, Iel=-1fiV, ,>1, L<0•

CASE 5: [I>_O, 5:0, lel< SID, K1, L<-1

Additionally, for all cases, 1el<?(.

Therefore, the ellin-Barnes integral may be evaluated as the

sum of the LHP residues for Cases 1 through 5. Note that when

)= 0 then arg(z) = must equal zero. That is, ID0 limits the

* evaluation of the Mellin-Barnes integral to real positive values

of the function variable. This is true also for the RHP evaluation.

7

---- -- I It I_ __t_ __in_ _iii_ __I7I
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3.2.4. Summary of Evaluation Guidelines.

Combining results for the RHP and the LHP, we have the

following guidelines for evaluating a Mellin-Barnes integral

f(cz), where c is a positive real constant:

* If V>0 and L>-Ew, f(cz) may be evaluated for any z#0

such that larg(z)j < min(7Tr,17 ), except at Izl = 1/(cR) when 9- O.

If IDkO and L<-Cw, f(cz) may be evaluated for any z#0

such that larg~z)l !5min(r,IwI), except at I = 1/(cR) when =0

and L>-l.

U en f(cz) may be evaluated, f(cz)= - 7-- RHP residues when

EO0 or when E=O and Iz|I</(cR), and f(cz)=E-LHP residues

when 9>0 or when M=0 and tzl>1/(cR). Either REP or LHP

residues may be used to find f(cz) at |z|= 1/(cR) when C):0, S=0,

and L<-i.

These guidelines may be stated in terms of six basic

evaluation types:

EII L , f (cz) 10, lara(z~l

I )0 (0 )-Bw - RHP res >0 <lf,<1im

II >0 <0 :j-w - REP res >0 <Ir,< firm

III >0 >0 >-Ew +-LH res >0 <1, < MD

IV 0 >0 _-tEw +-LHP res >0 <7r,<+wD

. -- RH res (1/(cR) 41r,< JIrD
"V >0 -0 1_0 >0E0 L0W res >1/(cR) -Wr, < JIM

-0 R res <1/(cR) <r,_7rD

+I- LH4 res )1/(cR) < Ir, 7ru
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1 Note that if )=O (Types I, IV, VI), then arg(z)=O.

2 For Type VI, f(cz) is defined at |zI = 1/(cR) by the sum of

residues in either half plane if L<-I.

Due to the treatment of 6 and of the limiting value

|arg(z) =IrD, none of the evaluation types given above is

V exactly equivalent to the convergence types given by Erdelyi

(9:50). The first type of Erdelyi is divided among all six

types above, the second i included in Types II and IV, and the

third and fourth are included in Type VI with note 2.

When the Mellin-Barnes integral is expressed in terms of

the Mellin transform inversion integral,

m n

w +ioa -- rl (b.+Bs) r T(ai-kAs)i--1 i=1 -s
Q z dsw-I wica Tr r (ci - cqs) r r(di + Ds)

i=1 i=1

then, using the same definitions given in section 3.2.1. for

1), 3, L, and R, the evaluation guidelines given above remain

valid with the interchange of REP and LEP wherever these occur#

and +5w instead of -w in the first four types. For example,

Type I would become: V)>0, 9<0, L>i.w, I- LHP res.

Overall, for all known convergence conditions except one,

a Mellin-Barnes integral can be evaluated by summation of residues.

* The one situation for which summation of residues does not work

is when I)>O, 2=0, L>-1, and Iz sI-/(cR). This is not a severe

limitation since only a circular arc of complex z values and only

one real z value for Types V and VI are involved.

- 4t"rnJV
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3-3- CONVERGENCE CONDITIONS MR T9 H- FUNCTION

Since the H- function is a Mellin-Barnes integral, the

* results of section 3.2. may be used to determine convergence

conditions and application of the residue theorem for the

SM- function. For an H- function as defined by form (2.1), the

parameters of section 3.2.1. and evaluation types of 3.2.4 are:

n

i=1 i:1 i.

) Ai + - - Aj +

t=1 i=1

p A q Bi
R - =Ai = Bi

i=1 i=1

T I L H(cz) Izl larx(z)l

I >0 <0 >Ew +_ LHP res >0 <Wr,<I jh)

11 2o <0 SEw +J- LHP res >0 <Or,~f<_

III >0 >0 >3w - RHP res >0 <7r, < P1

IV >o >0 <Iw - R res >0 <r,<51I'i

+1- LHP res <1/(cR)
. 0 --RHP res >1/(CR)

*= < 7- LP res <1/(cR).vI >0o =0 <o0 < Tr,< JIM-7- RHP res >1/(cR)

If L'-1, may use sum of either LW or RHP res at Is1 =1/(R).
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3.4. CONVERGENCE O' SPECIAL CASES OF TTE H- FUNCTION

3.4.1. Exponential and Power Functions of Section 2.4.1.
1 0 1 /B

For H() = H [ : (b,B)3- = B71 zb/B e" , VB>0

* and 2=-B<0. From section 3.3., H(z) is a Type I or Type II

and converges by summing of L1P residues for all positive real z

(and for complex z#0 such that jarg(z)I 4min(1r'rB)).

For H(z) = H Cz : (a+b+1,1) ; (b,l)3 = zb(1-Z)a/(a+l),
11

0=I= arg(s) aO, L--a- 1 and R=1. If a>-1, H(z) is a Type VI and

converges by simnong of LHP residues only for positive real z <I

and, if a>0, for z- 1. There are no RIP poles, so that H(z)-0

for real z >1. If a<-1, H(z) does not converge for any z.

11

For H(z) = H Cz : (b-a+1,1) ; (b,1)) = r (a)zb(l+.z) "a,

0=2, 8=0, L-a- 1 and R= 1. H(z) is Type V if aZ:I and Type VI

if a(1. Thus H(z) converges by stming of IHP residues for

positive real z<1 (and complex z#0 where Izs< 1 and jarg(z)j< T)

and by the negative of the sum of RHP residues for real z> 1 (and

complex z where Izi >1 and larg(z)l <IT). If a<0, H(z) is not a

properly defined H- function, because the LHP and RHP poles overlap.

3.4.2. Cases of Section 2.4.2.

1 0
For H(k-)aH [k. : (a,j),(b, ) , ID0, M=-1 and L-ab- 1.

S02

The contour parameter w must be greater than -2a, the rightmost

* I ___________________________
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pole of H(kz), by definition of an H- function. Also, H(kz) will

converge (Type II) only if L 8 w or, equivalently, a+b- 1 -w.

That is,

-2a<w!_-a-b+1

" If a+ I >b, such a w can be found. Then, H(kz) will converge by

sutiing of LHP residues for all positive real kz. Therefore,

when a+ 1> b, the H- functions representing sin(z), cos(z) and

Jr(z), having k-j, converge by suming of LHP residues for all

positive real z. But, the H-functions for sinh(z) and cosh(z)

have k= 4i and converge only for negative pure imaginary z, not

for any real z.

Next, consider those H- functions representing the inverse

functions of sin, tan, sinh and tanh, with form

12

(kz) = H kz : (a,J),(b,J) ; (c,j),(d,+)3 ,
22

where =1, E=O, L=ced-a-b, and R-1. H(kz) is Type V if LkO

and Type VI if L<O.

For the arctan(z) H-function, L=-1 and k1 - so that this

H(kz) is Type VT and converges by sumuing of LHP residues when

O( Iz<1 and larg(z)15 _i and by the negative of the sum of RHP

* residues when IzsI and jarg(z)|!-11. Thus, this H(kz) converges

• for all positive real z #.

With L=-1.5 and k 1, the arcsinh(z) H-function is Type VI

and converges by summing of LHF residues when O< W! I and

Iarg(z)j5 and by the negative of the sum of FMW residues when

m ! I n I I I I II '
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zI >I and larg(z)l 1.

For the arcsin(z) H-function, L=-1.5 and k=i. This H(ks)

is Type VI and converges with the sum of LEP residues for 0 IzI' I

and -?r I arg(z)l 0 and with the negative of the sum of RHP

, residues for IzIk I and -I7r:arg(z)IO. Thus, this H(kz) converges
for real z#O.

The arctanh(z) H- function has L=0 and k=i. This H(kz) is

Type V and converges with the sum of LIT residues for O 11<,1

and -WrCarg(z)<O and with the negative of the sum of REP residues

for zi12> and -7r<arg(z)C0. Thus, this H(kz) does not converge

using summation of residues for any real z.

3.4.3. Logarithmic Function of Section 2.4.3.

12
H(z)=H Cz : (1,1),(1,1) ; (1,1),(0,1)3 =log(1+z)

22

I)-2, E-0, L--I and R= 1. H(z) is Type V and converges with the

sum of LHP residues for O(Iz<1 and Iarg(z)I1T , and with the

negative of the sum of RHP residues for IzI >1 and Iarg(z)<I'ff.

Thus, H(z) converges for all positive real z# 1.

3.4.4. Bessel Functions of Section 2.4.4.

Jv(z) has been considered in the first paragraph of 3.4.2.

Kv(z) has 0I and E= -1, is Type I or II, and converges by summing

of LHP residues for all positive real z (and for complex z# 0 such

that jarg(z)l< 1T). Yv(z) has ID-O and 6- L=-1 and will converge

(Type II) only if w.I. Since the rightmost pole of Yv(z) is v,

a valid w exists only if v<1. Thus, Yv(z) converges by summing of

- -~-- - - ~ - ~ ~ -- ~tt* ~ .. r

Lh
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LIW residues only if v <1 and then only for positive real z.~a
For Jr(z), =1-u, M=-u-I and L=-v-I. SinceiMmust

I be non-negative for convergence and u must be positive, thenfor

0(u~1, JU(z) as an H- function is Type I (u<I and v_-1) or

Type II (v>-1) and converges by summing of LHP residues for all

positive real z (and complex z#0 such that |arg(z)|<11r(1-u)<IT).

3.4.5. Confluent Fqpergeometric Function of Section 2.4.5.

0)= I and E-i, so that the H- function representing

M(a,b;-z) is Type I or II and converges by summing of LHP residues

for all positive real z (and complex z#0 such that jarg(z)I<fTr).

3.4.6. Hypergeometric Function of Section 2.4.6.

D=2, 8=0, R=1, and L=a+b-c-1. This H-function is Type V

or VI and converges by summing of LHP residues for 0< IzI( I and

larg(%)I'l, and by the nogative of the sum of RHP residues for

Izj>1 and jarg(z)jIIT. If a+b<c, then L<-1 and this H-function

converges for Izi= 1 and larg(z)14CT, using either LHP or RHP

residues.

3.4.7. Generalized Hypergeometric Function of Section 2.4.7.

The H- function that represents pFq when p _q + 1 will converge

only if 0=p+1-q?0, that is, if pt.q- 1. Thus, this H-function

really represents pFq only when p is q- 1, q or q +1, a fact that

has not been noted by those who have shown pFq as an H- function

(4:40; 7:101; 18:11,159; 21:197- 198) or as a G- function (14: 143-

147; 16:61). Since E=p-q-1, this H-function is Type Vor VI

if p-q+l and is Type I or II if p~q+1.

-, . w- - -,--.+.--- ~ ' - -
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3.4.8. Meijer's G- function of Section 2.4.8.

Because all Ai, i=l,...,p, and Bj, i= 1,...,q, are equal to

one,D =n+m- (p-n)- (q-m)=2n+2m-p-q, E=p-q and R=1.

Using these values for V, 6 and R, the six convergence types of

section 3.3. agree with known convergence conditions given by

Luke, where 1=2S and L=Re(v)-q+ Jp (14:144).

3.4.9. Comment

In the above sections, the H- functions representing sinh(z),

cosh(z) and arctanh(z) have been found not to converge for real

values of z. Also, the H- function for the Bessel function t,(z)

does not converge for v tl and tAiat for the generalized hyper-

geometric function pFq does not converge for p< q- 1. These items

have not been noted in the literature.

Throughout the literature on G- and H- functions, there are

a number of important errors and omissions. Quite often such

errors or omissions are due to failure to check that convergence

conditions are met. In order to avoid using invalid H- functions

or relations or arriving at invalid or improperly restricted

results, convergence is verified and discussed throughout this

dissertation. Fbr example, derivatives and Laplace transforms

of H- functions are used often; therefore, the next sections will

treat convergence of both.
4

1.1
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3-5. CONVE-QGENCE OF TTE LAPLACE TPANSMOI OF AN H- T'fl!CTION

The following theorem is of utmost importance to finding the

probablity density function of the sum of two or more H- function

variates. Application of Theorem 1.5 depends on existence,

meaning convergence, of the Laplace transform.

Theorem 3.1: Given that an H- function H(cz), c a positive real

constant, converges using the sum of LHP or RHP residues for some

positive real values of z, then the Laplace transform of H(cz),

.{H(cz),converges usin! the sum of UP or RHP residues for all

complex r#O such that Iarg(r)l<17, except at IrI-c R when

LZ-1.5 and 1=-1.

From property (2.12),

n4-1,m

L.{H~cs)} = c- H Er/c : {(- bi- Bi,B)};
q,p 1

(0,1), {(l - •i-Aj
If ID, E, L and R are the convergence parameters for H(cz) as

defined in section 3.3. and 'DT, T, LT, and RTare the

corresponding parameters for Lr{H(cz)}, then the following

relations are imediately found:

• TE)I, T'' , LT=L-E-* , RT=R "

First, if H(cz) is Type InI, IV, V, or VI, or if H(cz) is

Type I or II with B)-1, then we know that 0) 10 and C>-1. This

means that VT?1 and ET>O. By section 3.3-, LrH(cz)}is

Type I or II and converges using the sum of LHP residues for all
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r#O such that Iarg(r)!< D'IDT • Since IDTt 1 , the convergence

region includes larg(r)I< 1Ir.

Second, if H(cz) is Type I or II with C< -1, then T?:I and

E T>O. In this case, Lr{ H(cz)} is Type III or IV and converges

, using the negative of the sum of REP residues for all r40 such

that larg(r)l < WD T , which includes the region jarg(r)< 17r.

Third, if H(cz) is Type I or II with -=-, then'E)T>_i and

ET = 0. Thus, referring again to section 3.3-, Lr-{H(cz)3 is

Type V or VI and converges using the sum of LHP residues for r#0

such that Iarg(r)I < 1"D T and IrI< I/(RT/c) = a R, and using the

negative of the sum of RHP residues for r such that arg(r)|< IWT

and |rI>oR. Again, Jarg(r)|<+7rI T includes the region

larg(r)i<f, since I)T!i Lr {H(cs)lconverges using LHP or RHP

residues for |ric=R and jarg(r)|(jW" only when LT<-l or,

equivalently, L<-1 .5.

The primary method used in this work to numerically evaluate

the inverse Laplace transform of the product of Laplace transforms

of H- functions requires finding the Laplace transform values at

r=a+kbi for k=0,1,2,.... Theorem 3.1 guarantees that, for

some value a>0, these Laplace transform values will all be

calculable using residues. For example, a can be chosen to be

greater than the largest value of cR for any of the H- functions

for which E = -i and Lk-1.5. Then, the Laplace transform values

of all of the H- functions can be calculated at r=a+kbi, k=0,

1,2,..., using residues, since jarg(a+ikbi)I<jWr for a>O.

i-14- . | m|
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3.6. CONVERGENCE OF DERIVATIVES OF AN H- FUNCTION

By property (2.15), the r-th derivative of H(z) is given by:

m, n+lH~r)(,) = H, : (,),airi)3;{(j- j,),0).
p4l,q+l

From section 3.3., if ED, 3, L, and R are the convergence

parameters for H(z), then the corresponding parameters for

0)', 8', L', and R', are seen to be related as follows:

01-1) , 1=3 , L'=L+r(E+I) , and R'=R

If D>0, then DI >0 and H(r)(z) will be one of the six

convergence types of section 3.3.

However, if D=D'-0, then L' must be :5E'w' when E'#0 and

L' must be 40 when E'=0 in order that H(r)(z) converge (Type II,

IV, or VI). That is,

L~r(8+1) = L'S_'w' =IE(w4r) or L<Ew-r , when1E#O;

and L~r = L'<O or L<-r, when 3=0

In summary, H(r)(z) converges when H(z) convergence parameters

meet one of the following conditions:

CASE A: r >0 .

CASE B: )=0, E#0, and LEw-r.

CASE C: 0=190, and L(-r.

From section 3.5., the Laplace transform of an H- function is

an H- function with )1, and, by CASE A above, 1 1 (t)-{H(cz)}

converges for all non-negative integer t. Moreover, since the

Laplace transform has a (b.,Bi) term equal to (0,1), Corollary 2.1

and equation (2.55) are applicable, giving the following theorem:

- --.- *9*m~ n I ,... I hI-



81

THEORDM 3.2" The Laplace transform of an H- function may be

differentiated any number of times using equation (2.55) and all

of its derivatives are convergent H- functions of the same order,

or less, as the Laplace transform.

3.7. IMPROVED TRANSFORM AND DERIVATIVE FORMULAS

The right side of equations (2.12) through (2.15) with k sri

does not give a valid H- function when any of the values -bi/Ej is

not lessthan one, i1,...,m, and b1 real. This is because one or

more of the poles associated with the (bi,Bi) overlap one or more

of the poles associated with the new (-1,1) or (0,1) term in the

numerator, and no contour exists to properly separate the poles.

However, the Laplace and Fourier transforms and derivatives

of an H- function are still able to be represented as valid

H- functions. Simple modifications in the developments of these

formulas can correct the problem.

For example, in the development of the Laplace transform of

an H- function, the order of integrations in reversed and per-

forming the inside integration introduces the term !"(1-s).

If -bi/BitI for any i, is1,...,m, then the poles of r (bi+Bi s )

overlap those of i"(1- s). This overlap can be eliminated by

replacing 1"(1-s) by the equivalent expression

(-)I 1q I - + ) 1) ( - I  + 1" (~ ) ,
where I =maximum ( 0 , largest integer less than -bi/Bi ). (3.7)

i = 1, • • .,a

Uow, no poles of l' (bji is) and l' (s -I) are greater than or
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equal to any of the poles of r (I-s+1) and r (1-aj-Ajs),

i1,...,m and J=1,...,n. The Laplace transform equation (2.12)

and, by the same argument, the Fourier transform equation (2.13)

are thereby changed to:

L. (H(cz) = H Cr/c (1,1), bi-BiBi);
q+i,p+-2

(1,1), -(1- ai- Ai,A)},(o,1) ,

(3.8)

(.1) fl1, m 4
and, Ft{H(cz)) = H 1 L it : (1,1), j(1-bi - Bi,Bi)}

q*l,p4-2 c

(1, 1) , f(1- a i - Ai, Ai) ) (0, 1) 3

(3-9)

where I is given by (3.7).

In the development of the formula for the derivative of an

H- function, the order of differentiation and integration is

reversed and performing the differentiation introduces the term

(-4) into the integrand. Equation (2.15) is obtained by

replacing (-s) by the equivalent form r(I - s)/l(-s). When

-bi/Bil1 - smallest pole of 11(1- a), use instead the equivalent

form -s- -l'( +s)/1"(s). Since the largest pole of 11(bj+ Bs)

* is at least one and all poles of r (1+ s) are smaller, there is no

overlap of poles of l"(1-ai-.s) with those of l (1+s). Thus,

the derivative formula (2.15) should be stated as two distinct

cases, depenelent on preserving the existence of a contour that

properly separates the poles:

4- -I I III I I I I •IIIIII I I I II ..
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m, n 1
H Es : (-r,1), {(ai-rk,k))

p+l,q+l
< (b- rBj,B)), (0, 1) 3,

, " if I=O;H(r)(Z) =

- H Ez : {(ai-rAi ,A)},(-r,1)
p+l,q+l (0,1), ((bi- r,Bj)),

if 1>09. ifI>O,(3.10)

or, alternatively,

H(r)(,) = (_,)I H Es : (-I-r,1), {(aj-rAj,Aj)) ,(-r,l)
p+2,q+2

(-I-i,1), {(bi-rBi,Bi)} (0,1)3 ,

where I is defined by (3.7). (3.11)

Note that when I=0, by property (2.9), equations (3.8), (3-9),

and (3.11) reduce to the earlier formulas, respectively, (2.12),

2.13), and (2.15). Moreover, the H-functions for the Laplace

transform, Fburier transform, and derivative, as given by these

improved formulas, have convergence parameters that are identical

to those given by the earlier formulas. Therefore, the results

of sections 3.5. and 3.6. are unchanged, except that Theorem 3.2

should indicate that differentiation of the Laplace transform

is done using (2.56) when 1>0.

a!

I'I

l 1 I I I I1 ! ! II I I



CHAPTER 4

THE H- FUNCTION MSTRIBUTION

" ~4.1. DEFINITO~i

Consider a random variable X with probability density function

given by

[I KN(Qx) , cxE S
fx(x) 0 , otherwise

where H(cx) represents an H- function as defined in section 2.2.,

1 and c are real constants such that

f1(x) dx= 1
-00

and S is a subset of the positive real values z for which H(z)

is convergent. The random variable X will then be called an

H- function variate or a random variable with an H- function

distribution (4:41; 7:103; 21:200).

4.2. KNWN SPECIAL CASES

Carter (4:44- 50; 21:202- 206) and Eldred (7:103- 108; 21:206)

demonstrated that twelve of the classical non-negative probability

distributions are H- function distributions. The standard form and

the H- function form of the probability density functions for each

of these distributions are given below:

84
V
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Gamma Distribution:

f(x)a X9- I e-x//0e r(e)

*# 10
= ( 1(e)) "1 H x/0 (0- 1,1), x>O, 0,00.

01

V Exponential Distribution (Gamma distribution with = 1):

f(x) = - /o

1 0

=f H rx/o : (0,1)3, x)0, f~o.0 1"

(4.2)

Chi- Square Distribution (Gamma distribution with 0-2 and 0- iS):

f(x) - .X 1 oIX(2" r(*))

M(2 r(4e))- s 0  x 00: ( )- 1,03 ,

011

x>O, @ integer>O. (4.3)

Weibullh Distribution:

Sf(x)i 2x-I oexi

e=1* H g x (,-), ) , 0. e,>o

M 1 0 /

Rayleigh Distribution (Weibull distribution with 0 -2):

• f~x) = 2 e x e9- X2

- H Ce I • (1,1)3 , X>o, 8>o
0o1"

(4.5)

11

- - --- *-- --..---il-II I-
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Maxwell Distribution:
' -.o3.,- 2/2 A

f(x) =4 e7ir-4 x2 6eNZ/9

S10
a 2 e r" H r xle (1,1)3, xO0, e>0.

01
e (4.6)

Half- Normal Distribution:

f(x) = 2 e-(21r)"+ 
" /2

10

- e-1(2w)" H 1 E 1 2"  x : (0,1)., x>0, 0>0.
01

(4.7)

Beta Distribution:

f(x) 0 0 , x.o or x>1
Sr(&+$) 1 o

(e)- Ex : (e+-1,1) (e-1,1)3,

0 , x>XI

(4.8)

Half- Cauchy Distribution:

f(x) = 2 -(e2' +x
2)-I

- (e7)-1 H E.x/O : (o,1) ; (0,)3, x>o, 9>o.
(4.9)

;4,
A
-4

*1 _____

~1~ .
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Half- Student Distribution:

f (x) = 2 k 1 I(S +) (I +(x2/29)f(e +)

1 1
- Ic C :lr' 9f-, ) *,(,1

where k=1/(VOW1T(Q)),x>0, 9>0.

(4.10)

F- Distribution:

f(x) 01 1 1'(01 +02) x+2,

0201 r(0 1) 1'(0j) (1+ OIX/02 ) 1

(01/ 02 1 1

X>0, 01,02>0. (4.11)

General Rypergeometric Distribution:

f(x) a ld T7(b) kc x0  1 M(b,r,-axd)/II(r)

=a~I k H Ca xd: (1-b+(o-)/d,1/d);
1 2

((c- 1)/d,/d),(-r+(c- 1)/d,l/d)3

where kIc(r-cd)/("'(c/d) I'(b-c/d)), x>0.

(4.12)

'6,m 40
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* 4.3- CONVERGENCE OF SPECIAL CASES

4.3.1. The gamma, exponential, chi-square, Weibull, Rayleigh,

Maxwell, and half-normal distributions are all of the form:

~10
f(x) = k H cX : (b,B) 3.

"~ 01

Using the results of section 3.4.1., f(x) is Type I or 11 and

converges using the sum of LHP residues for all positive real x.

4.3.2. Beta distribution.

10
f(x) =k H rx: (a+b+1,1) ; (b,1)3.,

11

where a= -I and bO- 1. Using the results of section 3.4.1.,

f(x) is Type VI if a>-1,or 0>0.. Then f(x) converges using the sum

of LHW residues for positive real x<1 and, if 0>1, for x=1.

There is no restriction on 0, and, f(x)z0 for real x>1. These

results agree with known characteristics of the beta distribution.

4.3.3- Half- Cauchy distribution.

f(x) - (e1' tx/B : (0,) ; (o,)3
1 1

Using the convergence parameters defined in section 3.3.,

O i1, 8-0, La0, and R=I. Thus f(x) is Type V and converges using

the sum of IN residues for O<xe<0 and using the negative of the

sum of HR residues for x>Q. Most important, f(x) does not*

converge using residues for x- , since L>-l.

.45

-wo
-1- i i I I i i ,- ll -- - i I i i iil.--~ i . .. .
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4.3.4. Half- Student distribution.
I

11
f(x) - k H Exf1': (*-e,") ; C0,()3, e7,o.

11

D=1, E-0, L=G-+ and R=I. Since e,0, L,-I and f(x) does not

converge using residues for x= 12. But, f(x) converges using the

sum of LP residues for 0< x46 and using the negative of the sum

of RHP residues for x '42, being a Type V or VI.

4.3.5. F- distribution.

1 1
f(x) = k H 1 ex/e2 

= (-02,1) ; (91- 1,1)'3, 01,02>0.
11

0=2, 9=0, L=0 1 +9 2 - 1>-i, R=1. Like the Half-Student, f(x)

is Type V or VI and does not converge using residues for x= 0 2/01.

But, f(x) converges using the sum of LP residues for O<x<0 2 /0 1

and using the negative of the sum of RHP residues for x>02/01.

4.3.6. General hypetgeometric distribution.

For the H- function in formula (4.12), the convergence

parameters of section 3.3. are I= I/d and 9 = - I /d(O. Thus, f(x)

is Type I or II and converges using the sum of LIP residues for

all positive real x.

4 All twelve of these classical distributions have probability

.density functions that can be expressed as H- functions that are

validly defined with properly separated poles for all given ranges

of the parameters. or a well-defined R- function, the condition

a, b, d'O must be added for the general hypergeometric distribution.

i 2.4

1 j _, n
i nI ! m il
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L.-). TrWAISFMATIONS OF H - FUN4CTION VXRIATES

Carter (4:52- 65) proved that the nrotduct of independent

H- flunctior *-ates has an H- function d4istribution, that the

auiotiert or' two independent H- function variates has an H- function

distribution, and that the rational power o4' an H- function variate

has an H- function distribution. These theorems make the H- func-

tion <distribution q very powerful tool for analyzing probability

d4ensitv "unctions of alrebraic coribinations of independient randorr

variables, b-ecause none of' the classical dlistributions has all or

t'nese closu;re properties. P'he ~r r: u to Cn-t~r are stated

TFEOREM 4.1: Distribution of Prodlucts. If XlX 2 ,...,XN are

incepend~ent H- "unction variates vith probability density functions

fl(xi),f2(x2), ... f(XN), respectively, vwhere, f'or j=i, ...,N, xj'>O

andl

fjx)= kj H E cjx. : (aijqAjj)j ; -(uijqDijIJJ
p :FI9qjL

N
then t~.e probability density function of Y Xj is --iven by

J=i

N N

Nj
f - kj) H C -I j) Y

Y =1N N j=1

J=1 __i

E(aij,Aij)). 1,1...nj,j 1 19...,qN, X(aij,Aij))} i=nj 4 ,

{(1j 1,B((bjjBjj),.)-q'1 1.. .. ' ' W 1,o yO

fo y>O.
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THEOR.E!A 4.2: T-ntri-utio. o'' a Quotient. If X, and X2 are

1~,~ndr~t i- furctlon vp~r-ates '4h rolabili ty density fun~ctions

f, x. and f2(x2) respectilrel, fe~,4 or j =1,2, xj>0 and

f f'(xj) = kj H cx (ajA ~ Cb 1i~]

tl-en th e crobability cdensity function of' Y=X1 /X2 A-s FAiven by

f'y(y) = (klk2 /c 2 
2 ) H Tq~2n~2rc/2

Pi4~q2tql+P2

"or y>O.

THEOR4- 4.: Distrib-ution a Rational Pol-er. If X is an H- function

viria te 'it r-ob. hilitvy le nsit~l~ -Punction

n

fx(x) = k H Ccx : {C(ai,k,)] ; {((bj,Bj))3, X'>O,
p q

then the prothabilitl, density function or Y~Xp, for P rational, is

7iven by

p- I n F
=yy k c H cy : {(ai -AjP +Aj, AjP)j

pqb {b- ip + Bi, BiP)A, P >0;

*and, fy(y) k c 1H tcpy -((I -bi+ BiP - , -B-P)}
q p

-r-(-aiAjPA~j-A-P)1, P0.
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Notir that X1/X2=Xl(X2
1) then Theorers -'.1, 4.2 and 4-3

can I-)- co- ed into the following~ theorem.

* TMORM4 4.4: If X ar-i~zecetrnc~orr

v-ari;ables ,.-ith -prob~ability risity functions fj(xj), J=1,.,V

respoectively, -1-pre x >O0 a nd

fi(xj) = kjR 'c x.--~ij i) rtbij Bfl 3

and ill Pj are positive rational nuriber's for j= 1,...,U anc4 are

neg7ativp rational numbers for j=U + 1,...V, then the probability

density,. function of the random variable Y, where

V P.

J=1

is Iven by U V U V

E: Mj + I- f 2 n * + Z_
VI kj=1' JLT+1 j=1 j~U+1

E: pj~ + 3-j 7 qj4 + 7 Pj
j=1 =U+- j=1 j tJ+ I

V

j jy (aj. 1 Pj+AjqAjjPj) r j t

*(j-AjBP+ ,S..P) i--j1,..,mj,j1,...,U,

(bij-P-. jPj+BjJ'PA'P;) ,i=Mj+i, ...,q1,jlj, .*'U,

for y>O0.
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Theorem 4.4 has been programmed as part of the computer program ,

of Appendix B to implement the practical technique of section 4.5.

Hereafter, Theorems 4.1 through 4.4 will be used extensively. Carter

(4,5), Eldred (7), and Springer (21) provide many examples of usage

of these theorems. In particular, Carter (4:57- 65) derives the

chi-square distribution of the square of a standard half-normal

variate with Theorem 4.3 and the half-Cauchy distribution of the

quotient of two independent half-normal variates with Theorem 4.2.

Eldred (7:107- 109) and Sorinyer (21:207) indicate the use of Theorems

4.2 and 4.3 to derive both the half-Student and F distributions. The

following examples also demonst-ate the straight-forward, simple

application of these theorems.

Applying Theorem 4.1 (or Theorem 4.4 with U=V = 2 and Pl=P 2
= 1)

to two half-normal variates with form (4.7) immediately gives the

distribution of the product of two half-normal variates as

-1 20

(21ree 2 )- H 0 z/(20102 ) : (0, ),(0,1) 3b 02

By section 2.4.4., this equals the Bessel distribution given as

(2/(7 0192)).K0 (Z/01@ 2) and agrees with known results obtained

without R- functions (21:160).

Similarly, applying Theorem 4.2 (or Theorem 4.4 with U =1, V = 2,

Pl = 1, and P2 =-1) to two wamma variates with form (4.1) gives the

quotient of two imma variates as

00
( 21m~e~r(2))H [ 2z/ 1 : (-e 2,1) ; (e 1 - 1,1)).

11
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By section 2.4.1., this is equal to

which is known as the beta distribution of the second kind and agrees

* with known results obtained without H- functions (21:164). A special

case of the above is the quotient of two exponential variates with

the resulting probability density function

(02101) H 1 1 (-Z/ 1 ,1 (0,1)1] = (+02/1)
11I (1 + (4z/I4))

As a final example, consider the distribution fy(y) for the

quotient of two power variates that are independent but identically

distributed with probability density function

10

fx(x) = fx2(x) = (a+1)xa = (a+1) H 1 x : (a+1,');(a,1)31 1

for 0(x (. By Theorem 4.2, the probability density function of

Y=X1/X2 is given directly as

2 1
fy(y) = (a+1) H Ey : (-a-1,1),(a+1,1) ; (a,l),(-a-2,1)3

22

for O(y(eo. From the section 3.3. convergence conditions, D = C0,

L=--2, and R=-1, so that the H-function above Is Type VI. It con-

* verges by summing of LHP residues for O(y 1 and by summing of RHP

* residues for y ?I. There is only one LP pole at s --a with residue

y'<'a)/(2(a+1)) and only one R9U pole at s= a+2 with residue

y-(a+2)/(-2(atl)). Therefore, agreeing with known results (21:161),

+ (,+,) ya , O<yj 1

fy(y) =
f~a+1 y-'- , y9
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* 4.5. PRACTICAL TECHNIQUE FOR FINDING THE DISTRIBUTION OF A SUM

4.5.1. General Technique.

Thus far, only products, quotients, and rational powers of

independent H- function variates have been considered (section 4.4).

This section will demonstrate a practical technique for determining

the probability density function of a sum of products, quotients and

rational powers of independent H- function variates. This technique

has been implemented and verified by an operational computer program,

shown in Appendix B.

The general problem is to find the probability density function

of the random variable Z given by

z- i Pi j  Ki>O'  (4.13)
i=1 J=1

where, for jz 1,...,Mj, irnl,...,N, Ki are known constants, Pij are

known rational constants, and Xj are independent random variables

with known H- function distributions.

For i- i,...,N, let Yj be the random variable such that

Ii - - XIj.'-

.1=1

The probability density function for each Yi is immediately found as

an H- function Hi(Yj), i1,...,N, by applying Theorem 4.4. This

reduces the problem to that of finding the probability density

function of the random variable Z given by

Z = LKi Yi , Ki>O,

I=14
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where Ki are known constants and Yi are independent random variables

with known H- function probability density functions Hi(Yi),

i=1,...,N, respectively.

Since each of the Hi(yi) is an H- function, each of the

corresponding Laplace transforms are also H- functions, Hi' (r).

These Hi'(r) are immediately found using property (2.12) or equation

(3.8).

Now, by Theorem 1.5, the probability density function f(z) of

the random variable Z is given by

NN
f (z) L 5  j Jii Lr { Hi (Yi)1 Hi -5 1 i (Kir)J

-1
where L. is the inverse Laplace transform operation. Equation

(5.14), with (5.15), (5.8), (5.9) and (5.10), can be used to find

Hk'(r), i 1,...,N, for any desired value of r for which the Laplace

transform converges using the sum of LH or RHP residues. Then,

f(z) can be found for specific values of z through any Laplace

transform inversion teohnique that is based upon selected values of r.

By Theorem 3.1, Hi(Kir) converges using the sum of LHP or RW

residues for all complex r#O such that jarg(Kir)j< l*T, except at

iKirlcjRi when Li>.-1.5 and i -I, where Mi, i and R1 are the

E, L and R convergence parameters of section 3-3. for H;(s) and

ci is the constant in the argument of Hi(s), i= ,...,N. A number of

numerical inversion techniques exist that depend only upon values of

r within this convergence region. For instance, the method by Dubner

and Abate (232) uses only such complex values of r. An improvement

I'#
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on their method by Crump (231) uses complex values of r with

O<arg(r)<f' . Crump's method is used in the computer program

* of Appendix B and is explained below after an example that will

demonstrate the initial steps of the general technique.

4.5.2. Demonstration Example.

Determine the probability density function of the random

variable T - W.X 2+ (Y/Z), where W, X, Y, and Z are independent

random variables with the following probability density functions:

HW  (w) = 2 5(1 .W) 0 . 5

2 0
= (1(5)/r(3.5)) H 1 w : (4,1) ; (2.5,1)]3,

1 1

O<w<1 (beta distribution, section 4.2.)

10
Hx (x) = 3 exp(-3 x) = 3 H 0 3 x : (0,1)3, x>0

01I

10
H Y(y) = 0.5 exp(-0.5 y) = 0.5 H r0.5 y : (0,)3, y>O

01

10
HZ(z) - 0.4 exp(-0.4 z) =0.4 H E 0.4 z : (0,1)3 , O0

0 1

(exponential distributions, section 4.2.)

B applying Theorem 4.4, the probability density functions of

U =W ' X2 a n d V -Y/Z are found to be:

- 20
Hu (u) (9 1'(5)I'(3.5)) H C9 u : (4,1) ; (2.5,1),(-1,2)3 , u)O

1 2

HV(v) = 1.25 H rl.25 v : (-1,1) 1 (0,1)), v>0 .

11l

__J__ILI_____ A
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Using property (2.12), the Laplace transforms for H U (u) and
H V (v) are:

HUOr= (1(5)I70-5)) H Er19 (-2.5.1),(0,2)
.2 (0, 1), (-4, 1)3"

2 1

HvO(r) = 1', [r/1.25 : (0,1) ; (0,1),(1,1)J.r 12

By Theorem 1.5, the probability density function of T = U + V

is given by:

fT(t) = Lt' Hu'(r) - Hv'(r)J', t>0,
-1

where L is the inverse Laplace transform operation.

4-5.3. Crump's Numerical Inversion of a Laplace Transform.

According to Crump's method (231), a function f(z) can be

evaluated for 0<z< and C = r/.89 by the convergent series:

f(s) = (eaS/.81){,t(a) + Lf Re Lr(a+kCi ) 3-oos(kCz)

- Im ELr(a +kCi)3 .sn(kC) , a>0,

where Lr(ro) = Lrf(z)}I) o(L.L.r = 0 (4.14,)

In the general technique for determining the distribution of a

Sm of products, quotients and rational powers of independent

H- function variates,

N
Lr(ro) = " HT Hi '(Kiro) ,

and for the demonstration example above: Lr(ro) = HU '(ro)*H V '(ro).

I

_ _ _ _ _ _ _ _n ,A,,,m -
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The rate of convergence of Crump's inversion series depends upon

the choice of the constant a. Crump recommends

a = log(1/E)/(1.6%)

where E is the largest decimal error desired in the final f(z) value.

Computationally, the Lr(ro) terms for ro a + kCi, k =091,2,.6.,

are calculated once and stored.* Then they are reus3ed in computing

f(z) for each different value of z that is desired.

LeSt A... b the largest value of jiK for those Hi(y 1) where

the convergence parameters k - - and Li:15 i=1,..,N. Then

the constant a should be chosen to be greater than Am, This is

to make sure that 1il~(K iro) can be evaluated by summing residues

for all ro =a +. kCi (per discussion in section 4.5.1.).

4.5.4. An Alternative Laplace Transform Inversion.

A nmmrical inversion of the Laplace transform by Jagerman (234)

is based upon the Widder (228) inversion theorem:

f~s) urn ((_I)k/k,)( lfk + I k).f(5~

Because the Laplace transform and its derivatives are H- func-

tions for an H - function, the Widder theorem leads to a formula that

has n~o transforms when Lr-Cf(z)l is a product of Laplace transforms

of H- functions, as in the general technique here for finding the

distribution of a sum.

For example, if X and Y are independent H- function variates,

then the probability density function f(z) Of Z =X + Y is given by:

f~) L-j[Lr{HX(X)]} Lr(Hy(y))3
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Then, the k-th derivative of Lr {f(Z)} is:

k (k L(k j) H(

J-0

By Theorem 3.2 of section 3.6., each term above exists because the

Laplace transform of an H- function can be differentiated any number

of times with the resulting H- function still being convergent.

Before proceeding further, let us derive an expression for the

t-th derivative of thm Laplace transform at r- (k 1)/z for the

H- function

m n
H(s) = H C cs : {(a, Ai); {(bi, Bi)}J3

pq

For simplicity, assume 1-0 in formula (3.7) of section 3.7.; then,

by using properties (2.12) and (2.8) and the Laplace transform

property 1.3.2-5.,

n+l,m

Lr (t)H(z)}= (-1 )t(/c)(r/c)
"t'1 H (r/c

q,p+l

((1-bi, }  (t+ 1,1), ((-aj,A)j'fl-c t

n+l,m

(..jt -t-1 R tpr/c .:{(1-bi,B_)};
q,p+ I

• And, at r (k+1)/z, Lr(t){(H(Z)}. Iv(k +1)/z

m,n+1
(-I)t(z/(k +1))t 1 H (cz/(k4l) :(-t,1),(aiA)j-,

p+l,q

Note the similarity to the original H- function H(s).

It

I I I
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Thus, the k-th derivative of Lr f(z)} at r- (k +1)/z is:
k

* - (C)(.I)k-J(z/(k ))k'J+,(-l)J(s/(k+ j))J 4
• J=OJ

mx nx+1 cX 2

pX+lpqx k + 1

py+l,qy k + I

Denote the H- functions above by H X+(r,/(k + 1): (-k+J, 1)) and

H T+(z/(k +):(-J,)), then f(z) is given by the !iidor inversion

theorem as:

k
f(s) = lim (z/kI(k + 1))j: €k) Hx+Cs/¢k + 1):(-k+j,l))

k- oo J=O

H Y *(zl(k+ 1):(-J,1))

As the number of terms in the original problem increases, the

complexity of this inversion technique increases onsiderably. The

probability density function of the random variable W = X + Y + Z9

where X, Y, and Z are independent H- function variates, is given by:

2/kX+I (k+CX )

f(w) = li ( - ) {( z/(ky l).-(-k ,l))

k-o ot J=O

H- ( ) io n (s(k + 1)a (-Jei, 1))-HZ (/(k + 1): (- , 1)).

1=O

This inversion technique has not been programmed for computer

implementation and cannot really be compared to Causp's as yet.

Both techniques have the disadvantag e nal oblbeing no criteria

for selecting thi ippersion the sceations.
k-*e j=O|
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4.6. CtUULATIVE DISTRIBUTION 1UNCTION

The cumulative distribution function RH (x) of a probability

* density function H(x) is defined as

HC(x) = H(t) dt~0

Using a well-known Mellin transform relation from Erdelyi

(9:307), Eldred (7:139) and Springer (21:243) derive the expression

Hc(x) = - (2i) 1 fr -1 j 5  
+ I H (x )) d s

w- iO (4.15)

Eldred (7) developed a computer program that evaluates an

H- function probability density function and its cmulative distri-

bution function by summing residues. In the first pass through the

basic program, for the desired values of x, he finds the corresponding

values of a probability density function given by

m n
H(X) = K.H [cx : {(ai,Al)] ; {(bi,Bi)), K a constant.

pq

Then, in the second pass through the basic program, he determines the

values of H C (x) by summing the residues of

(K/c) H Ecx : {(ai + ,Ai)) ; ((bj+ BS, B)j3, (4.16)

p q

but (1) multiplying each residue by I/Sk, where sk is the pole for the

* residue and (2) adding the pole sk O (or increasing by I the order of

an existing pole at sk - 0 for (4.16)) (7:140- 141). Once the result

of the second pass is subtracted from one, Eldred completes the

implementation of (4.15) for H(x) an H- function density.

1

r
L _III I
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Hc (x) can be found more efficiently. First, substitute in

(4.15) for s" I the equivalent form r (s)/lT(s+1) so that

* m+ 1,n
HC(x) = 1- (K/c) H Eox : {Cai+ , A)},(1,l)

p+ 1,q + I
. (0,1), {(bi + Bi,B)},

and then apply property (2.8) with k= I so that

m+l,n
Hc x) = 1 - Kx H q cx : .(aj,A)..,(0,1) ; (-1,1),

p+1,q+1
{(bi,Bj)}3.

(4.17)

As indicated by (4.17), H C (x) can be found at the same time as

H(x) by using the calculations for the residues of H(x), multiplying

each residue by 1/(sk- 1), and then adding the pole s k =
1 (or

increasing by I the order of an existing pole at s k  1). This single

pass procedure is used in the computer program of Appendix B.

Another formula for the cumulative distribution function of an

H- function probability density can be derived using the Laplace

trans form.

THEOR 4.5: The cumulative distribution function for an H- function

probability density function is an H- function.

Using Laplace transform property 1.3.2.7., that is,

Lr f(u) du} = Lr.{(x)} /r

and the Laplace transform formulas (2.12) and (3.8), with f(x) =

H(x), the H- function defined above, then

m w m • m e | | |j
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(K/re) H n+-1,m inrc -(-b-i (0, 1),
q,p4-1

.C(1-a-Ai, i)}], 1=0

(Krc(-) HC cn (X I11,{1bjBj

q4-1,p+2

* (1,1), {((1-aj-Aj,Aj)) , (0,1)3] I>0.

And, using properties (2.8) to (2.10), with k =-I,

(K /c2 ) H n C, r/c :{-(1-bi.-2Bi,BjIS3 ,(0,1)
q4-1,p#2

L1.{H(X)}(0,1,(-1), (1-ai-2Ai,Ai)3-], 1=0

n4-1,r+2
(K/c )(-I) 'q H r/c

q4-2,p4-3

(-b-2B,Bij) ; (I-11), f(-aj-2Aj,Aj)},

(1, 1).,(0, 1))3 , I1>0

Then, using formulas (2.12) and (3.8) to find the inverse transforms,

m,n+l
(K/c) H [cx (11,(ai-+ A, Ai)}

p4-1q+1 (bi +Bi, Bi)}(0, 1)3, 1-0;

HC W -K/c) H m C~n Icx {(aj*A , Aj)},(1 1)

p+l,q+i

(4.18)

Also, from property (2.8) with k 1, and equation (3.7) for 1,

*~ mn+l
0 H C(x) *(Kx) H [~~qlcx: (0, 1), ((ai, Ai) ;{(bi, i) I, (- 1, 1)

alp-+/1<1,1 91'

(4.19)
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R C (x) = (-Kx) H cx :{(ai,Aj)},(0,1) ; (-1,C),{(bi,B)}]
p+1,q+1

* if any -bi/ --"I, il,...,m

(4.20)

, GM~A CUMULATIVE DISTRIBUTTON FUNCTION: Applying (4.18) to the

• gamma probability density function given by (4.1),
x

H (x) = ( I ) t "  e-t/ dt
C0

(P,(e)) H (x/O • (1,1) ; (9,1),(o,1)
12

x>O, e, o). (4.21)

Also, I (0)'Hc (z) is called the incomplete gamma function,

1(0,z), (1:260) so that

(,S) = H ES : (1,1) ; (o,1),(o,1)3, 0>0 ,,>o
12

(4.22)

HALF - NORMAL CUMULATIVE DISTRIBUTION FUNCTION: Applying (4.18) to

the half-normal probability density function given by (4.7),

SC (x) = 2 '(2r)' fX exp(-t 2/202 ) dt
0H11

fr- H 1 xl(e4 ) • (1,1) ; (M), (0, 1) 3
12

x)O, 0)0 • (4.23)

Also, HC (x) is equal to erf(x/0
4O) (18:140), so that

erf(z) W H (z (1,1) ; (,4),0(,1), z70
12

(4.24)

- _ . ' - _ .- - w :..,, : - .: :" '- " -" .,
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BETA CUMULATIVE DISTRIBUTION FUNCTION: Applying (4.18) to the beta

probability density function given by (4.8),

C HC(x) = (B(0,0))'If x t@ " I (I-t) "  dt
0

1 1
S= (I'( )IP ( H)) H Ex (1,1),CO+€,1)

22 (0,1), (o,1) 3,

0(x<, 0,0<0 . (4.25)

The incomplete beta function (1:263) is given by

NC@,¢)= B(0,0) - H C(x) , HC (x) given by (4.25).

Although the above results, equations (4.18) to (4.20), were

found using the Laplace transform, they could also be achieved by

switching the order of integration of the cumulative distribution

function integral and the H - function contour integral. Let

+ 4 ioo

H(x) = i ieo (x) " ds

where (0) represents the gamua products in the H- function definition

(2.1), which do not depend on the variable x. Then,

H C (x) fx Kf (0) (ct) "s ds dt
0 ( - leo

w + ioo
Kf o J (ct) -s dt ds
fw- lee 0 .

_w + leo",
=Kfw- o (0) (cx) 1 "  (¢(I - sl) "I ds-ioo

fw iOo-1 -

- Wcxf (0) (1-s)"  (cx)" ds . (4.26)
w- ioO

'-'



107

In equation (4.26), if P(I - s)/1r(2-s) is substituted for

(1-s)" , then (4.26) becomes (4.19). And, if -r (s- 1)/r (s) is

substituted for (1-s) "I , then (4.26) becomes (4.20).

The probability density function f(z) for the random variable Z,

given in the general problem form (4.13), can be evaluated by using

equation (4.14). The cumulative distribution function F C (z) can

be found in the same manner by replacing Lr(ro) in (4.14) by

r(ro)/r o for ro=a+kCi, k-0,1,.... With this procedure, all

calculations for f(z) apply to FC (z) and both are determined in the

same pass through the computer program in Appendix B. Thus, Crump's

method for numerical inversion of a Laplace transform has the added

advantage of simultaneous inversion of transforms that are closely

related, as f(z) and FC (z) are by Laplace transform property

1.3.2.7.

0 4.7. EVALUATION OF THE H- FUNCTION DISTRIBUTION CONSTANT

Carter (4), Eldred (7), and Springer (21) presented special

cases of the H- function distribution and the definition of the

general H- function distribution. However, they gave no method to

determine the constant K in definition 4.1. One approach to finding

K is to investigate RC (x) for large x, since

lim HC (x) = lim K(H- function given by (4.18)) = I
x-A x-.

That is, if K.H(cx) is a proposed H- function probability density,

use (4.18) to find the associated H- function for the cumulative

distribution function, which for large x will approach 1/K.
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The numerical approach to finding K is not nearly as appealing

as an exact method that has been found. Setting the right sides of

(4.17) and (4.19) equal to each other immediately yields:
" m,n+1

l Ccx : -C (ai, Ai) , (0, 1) 1 , 1), {(biBi)}3

p+1,q4l

""m4-,n 1

+ Hpml,q E cx : (0,1),{(aiAi)}; .(bi,B.)}-,(-1,1)3 = ,
p4-1,q4-(i1A) 

-(iB) 1

where all -bi/Bi<l, jl,...,m, (1-aj)/Al>l, i=1,...,n. (4.27)

Compare the residues of the two H- functions in (4.27). Each RHP

residue of the first H- function has a matching RHP residue of the

second H- function that is exactly equal but opposite in sign, except

the residue at sk= I. Similarly, each LHP residue of the second has

a matching residue of the first that is exactly equal but opposite in

sign, except again the residue at Sk= I. Therefore, whether (4.27)

is evaluated by summation of LHP or of RHP residues, it reduces to

only one term on the left side:

(- RHP residue at Sk= 1 ) = (+ LHP residue at Sk= 1) = 1/(Kx)

If the probability density function H(x) has no pole at sk = 1, then

the cumulative distribution function HC (x) has a pole of order 1 at

Sk= I and equation (4.27) reduces to:

m n
IN P(bi + Bi) -n- I(1-ai- Ai )

S i=1 J=1 (.28 = ) .8

P q cx Kx
-7T r'(ai + Ai ) "7r rI' (- bi - Bij)

4 i~n+l i--mil

Solving for K and noting property (2.11), K- (I/Ms(H(x)1)I I
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The above result is summarized in the following theorem.
N

* T Oq-EM 4.6: If H(x) is an H- function probability density defined

by

H(m) = K • H [c : {(ai,Ai) j (bi, B)j3

pq

such that -bi/B<1, i-1,...,m, am (1-aj)/Aj>1, i"n,...,n,

(which implies that H(x) has no pole at s 1)

then

K =(I/Ms{H(x)) s

p q' "1"=1" l(a i + A0 _ -r (I - bi - Bi )i=n+I i(A m+l (4.29)
= C

m n717r r(bi + B) Tr (I- ai- Aj)
i=i i=i

The twelve classical distributions given as special cases of

the H- function distribution in section 4.2., equations (4.1) to

(4.12), all meet the conditions of Theorem 4.6 and their constants

agree with (4.29).

Another way to arrive at equation (4.29) is to consider Theorem

1.10 with k=0, that is, the zero moment of a probability density

function K.H(x), where P{XSO}= 0 and M,(H(x)) has no pole at s= 1:

E(X0 ) fee K.H(x) dx 1=M 5{K.H(x)}
0 s=O +I

K Ms{H(x)}I

L
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4 4.8. CONVERGENCE OF THE CLULATIVE DISTRIBUTION jNCrTION

If D, 1E, L, R, and w are convergence parameters for a given

* H- function probability density H(x) and )C, 9 C , LC, RC and wc

are the corresponding parameters for the cumulative distributionI.

* function HC (X), then the application of the section 3-3- formulas

to (4.18) yields the followinw relations:

Dc - ID MC = E L C - L- I- , RC R,

wC = w- 1, and if L<w thenLc<c -wc- 1 •

Therefore, if H(x) is Type I or II then H C(x) is also Type I

or II. If H(x) is Type III or IV then HC (x) is also Type III or IV.

If H(x) is Type V then Hc (x) is Type V or Type VI without convergence

at x- 1/(cR) by summation of residues. And, if H(x) is Type VI then

HC (x) is also Type VI with convergence at x = 1/(cR) by summation of

either LHF or RHW residues. Overall, if H(x) converges then H C(x)

also converres.

- i I i I i n I I l i i -



CHAPT 5

EVALUATION OF THE H- FUNCTION

5.1. MATHAI AND SAXENA FORMILATIOS

In 1973, Mathai and Saxena presented a theoretical computable

. representation of a G- function which involves a series expansion

and the summation of residues at LHP poles, using psi and poly-

gamma functions (16:177- 185; 15). The psi and polygamma functions

are the first and higher order derivatives of the gama function

(1:258- 260). Due to the series expansion and no obvious simplifi-

cations, this formulation is lengthy and complicated. One of the

two terms in the series formula contains 9 nested levels of

summation and the other term has 11, where the fourth level also

involves an infinite sum.

Mathai and Saxena presented some details on handling poles for

the H- function and stated that their G- function formulation is

extendable to the H-function. They later gave more details for

their H- function representation (18:70- 75).

No indication is given that the Mathai and Saxena formulations

have actually been programmed for computer usage. Such an effort

will not be an easy task. Moreover, their G- and H- function

representations are limited to cases where no denominator singularity

. coincides with any pole. This is a severe limitation since such

coinciding occurs quite often.

111

I-
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5.2. ELDRD FOMATION (7:119 - 136; 21:227 - 241)

In 1979, Eldred presented a simpler formulation for the

numerical evaluation of the H- function, accompanied by an

operational computer program. Eldred treats LHP and RHP evaluation

separately. Following his LHP derivation, assume the poles sk,

k= 1,2,3,..., are ordered from largest, most positive or least

negative, to smallest, most negative. And, assume rk is the order

of pole sk and rdk is the number of singularities for 8 wsk in the

denominator of the H- function integrand. Then,

m n
H(s) =H £z: (ai,Aj)); ((bi,Bj)}J3

pq

E __I dr" C(O) (s) (0)

kc (rk-, dar =S

where n rdk
C(0(Is-=rr (1- -Aiss)/C(S-Sk)

izi

q P
i= 1 i=1

and ~ -(-k~: and rk + rdk m
- =r (bj+Bis) . (5.1)
jiI

Eldred applies Leibnitz's rule for differentiation of products

* and obtains:
rk- I-

H~z 1 ( W (r C S (w) U(r)8

d WV

L~k m . , _ , J (5.2)
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The next step is the main contribution of Eldred. He notes that

c(o)(s) and u(O)(s) are products of terms fi(s) whose derivatives

* can be expressed in the form fil(s)sfi(s)'gi(s). Thus, the first

derivatives with respect to s, C(
1 )(s) and U(1)(s), are of the form

d( '-fi(s) )Ida = i- gi(s) • fi(s)
i i i

Eldred then uses this simpler product rule to develop recursive

formulas for finding higher order derivatives, C(t)(s) and u(t)(s),

in terms of C(O)(s), (0)(s), psi functions and polygamma functions:

(0 s) n q Jik

cC°)(sk = Ir(1-ai-ksk) _=(-B0(-0 Jik:i=1 i=m41
l-bi-Bisk- Jik

P Jik q P
• "- (-I) J :I ( r(I-bl-Bs k) -=- r(ai+As k) )

i n+l i=M+l i--n+1
ai Ask=- Jik 1"bhi'slk#- Jik a+A!Sk# - Jik

= m m i

°(3 r P(bi+Bs k ) / fl(B(-1) J.r)
bi %i ski*" Jik bi*BSk- - Jik

(r)(sk) = - (r;1) C(r-l-t)(sk) ( )
t=0

(r) = (r- (r t)(sk) v(t+l)
tMO

dr( (-log Z)r z
dsr | s5 -k

(next page)

m iII I I - "



114

x =I 3 ~(4Ai)t+1 ~()(£ is)

(-BO t+1t4 M ~t(1-£biBisc) + f- kit 1 Y'(t)(+ISk)
i-M+1i=n44

1-bi-B4.sk# - ik £i+Aisk*- Jik

K (-Bi) i(1) + *(-i)t1

Jik-I

whereAi and i() re th stndr psAit+ ad polygamma-

functons 18 -6).Tecodtoa oain eet h

*~ the terms(1 +'1a.s whic give~ the 0-40poles.

wedredeservesan condr)ablte stnred forsiganiicaly

fusicplifying:the-- fun)tion evalutiona anoidng bnat worin

compte progr treo Elet his esasiia formulation

fo h umto fRPrsdus hr ,)i opsdo

the erm 1"(-ai-Ais whch gve he RP ples

Eldrd dservs cnsidrabe ceditforsignficntl
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* 5.3. N FORMULATION

A simplified version of Eldred's formulation can be obtained

* by applying the simpler product rule used by Eldred immediately to

equation (5.1), instead of applying Leibnitz's rule.

SDefine V(O)(s) 9 C(O)(s).U(O)(s).z-s . V(O)(s) can be expressed

as a product of terms fi(s) with derivatives of the form fi'(s) =

fi(s)'gi(s), as shown below. Let Ij=0 when ci+disk is not a

negative integer, and let I = 1 when ci +disk - Jik, for some

non-negative integer Jik" Then, near any pole sk of the H- function

integrand, v(O)(s) may be considered the product of the following

(p+q+ 1) functions fi(s):

fp+q+1(s) = z5 with gp+q+(s)=- log(-) (5-3)

For i= z,...,m+ n,

r "(ci +dis ) , if 1i=O

(s) = Fi(s) - (s-sk) '(ci+ dis) =

:r (Jik+l~ci+dis)
di(ci +d js7 1 (1 el+dis ) .. (Jik" 1+el+dis)7

if I =  1 •

(0)diT(e +dis) ,Ii-O k-

, i(s) - Gi(0)(s) | dilt,( , , ) -- --

if Ii= .

dir+1?(r)(,i+ds) if Ii=OGi (r)(s) Ji-

dir+1 [lr(r)(Jik+1+ci+dis)+r! _ (. ..d,.j)-r- 1
1 if lia I .JO (5.6)

.... -i J-1~~T

L
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For i=m+ n+ l,...,p+q,

fi(s) = 1/7i(s) with gi(s) =- Gi(O)(s) , (5.7)

where Fi and Gi(0) as defined above in (5.4) and (5.5).

There will be rd+rdk occasions when Ii= 1, for i-1,...,m+n,

since there must be this many numerator singularities for the order

of the pole sk to be rk with rdk denominator singularities. And,

for i=m+n+,...,p+q, there will be rdk occasions when Ii= 1, since

there are rdk singularities for s = skin the denominator.

Evaluation of (5.4), (5-5) and (5.6) at 5 =sk yields:

{, '(ci +disk) , if I o
(di(-I}J k Jt)-' , if I =.1

(di(ci + disk) , if I,00
(i) sk)G, (80sk " W(Jik + 1) , if Iz. ,-1(.)

if1z (5.9)

(r) di +(r)( disk) ,if I=O
Gi r(Sk0 = dr+l[ e(r)(j) +(-1)r(%p(r)(Jkl I

L. - u,.(r)(1) )) , if Ii (1(5.10)

To complete the development, the derivatives of V(O)(s) are

needed. Paralleling Eldred's formulation, V(t) is found recursive-

ly with a formula of the same form as that for C(t) or u(t)

m+n
If we define w(O = - G )(s) - G( O(s) - log(t) ,

(5.11)
M+n

then, r>0, (r)(s) a Gi(r)(s) _ E)(s )( .

(5.12)

j
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Now, VM1 (s) =VMo(s).W(O)(s), and

t- 1

*v(t) (S) = Z (t;,) V~t - I-rJS.W(s) _,r (5.13)
* r=0

Combining the results of (5.3) through (5.13) provides the

following new formulation for the sum of LHW residues:

m n
H(s) =H Es : (a.i,A) ; (bi, Bi)

p q

k

where p+q+1 m+n p+q
V(O)(30) fi~sic) = s -8 I Fi(sk) I11 ;F (sk),

Fi(Sk) are defined by (5.8), an

for i1,..m ci=bj , di=Bj

for iuqn+l,...,p+q: ci=&J..q dikq

(5.14)

Additionally,

-v(O)(sk) t ~ i~0 )(80c Gij 0O(sk) - log(z)3
*inl im+n+1

where Gi~(k) are defined by (5.9); and, for rk>2, V('k- 1C)

is found recursively, using

V~~t)(sk) - I± (t- t r)sk r)

(next page)
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where, for r >0, £

i=1 i=m+n+l

and G(r(k) are defined by (5.10). (5.15)

One advantage of this formulation over others is that it may

be used for either LHE or RHW evaluation without changes. For RHP

evaluation, the poles are ordered from smallest to largest and the

negative of the final result is taken.

Computationally, this formulation has the advantage that all

Fit, Gi ( 0 ) , Gi(r), and W(r) for r>0 depend only upon the pole s k

and not upon z. Thus, for a given pole, these values are computed

once and used to find V(O) without (Z-Sk), W( 0 ) without (-log z),

and the other W(r), r= l,...,rk- 2, which are stored. Then, V(rk- 1)

is found recursively using z, V( 0 ) , and the W(r), for as many values

of z as desired.

Comparing the number of computer manipulations required,

Appendix A shows that the total number of operations saved by the

new formulation over Eldred's is

NP NP
4 Y= rk(r k - 1) + (8 NZ + 3) E rk - NZ-N1

k-i k-i

where NP is the number of poles evaluated, NZ is the number of z

values considered, and Ni is the number cf poles evaluated where

rk>i. If all poles are order 1, then NP(8 NZ + 3) additions,

subtractions, multiplications, and divisions are saved, and if all

poles are order r> 1, NP( NZ(8r- 1) + 3r) calculations are saved.

- _ l • a a m
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5.4. EXWA2LES OV W. FORMULATION

10
* 5.4.1. (z) = H z: (b, B) , B>O.
" 0 1

From section 3.4.1., H(z) converges for all z 0, Iarg zi <

min(,lrB), using the sum of the LHP residues. There are an

infinite number of LHW poles of order 1 at sk--(k .b)/B, k=O,,...,

so that equation (5.14) yields:

H(z) = I1(sk) z-sk
k=O

I, = 1 , F= (B(-1)k.kt) 1

H(0) = I (B(-1)kkz)"  
5 (k+b)/B = B'1lb/B E z''/B)k/k

k-O k=O

Recognizing, the well-known series for an exponential function,

H(z) = pr1 zb/B exP1z l /B )

which agrees with the known formula in section 2.4.1.

5.4.2. H(z) -H 0 [z (a,A)] , A>O.

10

B section 3-3. convergence conditions, H(z) converges for all

S 0, targ zsImin(jflA), using the negative of the sim of the

RHP residues. There are an infinite number of RHP poles of order 1

at sk - (k+ 1-a)/A for k=O,1,..., so that equation (5.14) yields:

H(z) - F1 (sk) ,5
sk , 1 = i, F 1 -(-A(-1)kk) I

k= O

H(z) = A71 2(a - 1)/A :t (_2-1/A)k /k! "

k-O
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Recognizing once again the series for an exponential function,

* H(z) = A "- z(a- 1)/A exp(-z-1/A)

Another way to reach this result is to use property (2.3) to change

01 10
H tz : (a,A) 3 to H z. (1-a,A)3,
10 01

and then apply the result of section 5.4.1.

10
5.4.3. H Cz : (a,B) ; (b,B)3 , 3>O.

11

W section 3-3- convergence conditions, with ID = E = 0 and

L = b-a, H(z) is Type VI only if L(O, that is, a>b, and then H(z)

converges using the sum of LHP residues for real z, O< z< 1. There

are no RHP poles.

If a- b equals some integer I, there are I poles in the LHP,

each of order 1; else, there are an infinite number of LHP poles of

order 1 at sk=-(k+b)/B, k=0,1,.... In either case, by equation

(5.14):

H(z) - z sk FI(sk)/F2(sk)
k

= (k + b)/B (1)k kl)-l/r (a- b- k)

k

.b//= 'z(a b  ' (a -b- 1)'"(a- b- k)'(-z 1/B k /k1
-- 11-F) -- )

Whether finite or infinite, the series above equals (1-zl/B)a -b-1

so that

H(z) = (B'l (a- b)) "1 sbB (1-z ) B , a)b.

- - - - - *
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0 1
5.4.4. H [z : (a,A) ; (b,A)3, A>O.

Using property (2.3), this H- function is also equal to

1 0

H(z) = H Ez 1  (I-b,A) ; (I-,a,A)].
I1

Then, using the result of section 5.-.3.,

H~z) = (A.Z (a -b)) "- t~-1/ &1zlAab >b.

hn, sing th( ) , the result simplifies to

H(z) = (A-T(a-b)) "1 zb /A (zl/A-1)a- b - I , a>b.

1 1

11

by section 3.3. convergence conditions, with I = 2, E = 0 and

L = b-a, H(z) is Type V or VI with LHP convergence for 0<Izs< 1 and

jarg zs<7? and RHP convergence for izI >1 and Iarg z<Tr. There

is not convergence using residues for jz| a 1, because L must be >-1

for the LIU poles of this H- function to be properly separated from

the RHP poles.

Using equation (5.14) to sum LHP residues yields:

H(z) = Z z sk Fl(sk) F2 (sk)
k
= 7 ( k + b ) / B (B(1k.kt

" - 1 -abk

k
. V-1 z b / B 17 (1- a +b) 5'- zk / B (_1) k (1 - a+b) "(k - a +b)/k!

k

= B"1  b/B 1,(1-a+b)F (zl/B)k (a-b- 1)...(a-b-k)/kt
k
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The above series is a binomial series that equals (1 +z/B)a- b-I

so that

H(z) = B"r r(1-a-b) 7b/B (1 +z1/B)-
(l -a + b).

Using equation (5.14) to sum RF residues yields:

H(z) = . ,"s  FI(Sk) F2(sk)
k

- E z-(k- 1+a)B 1 ,(1 .a+b+k) (.B.(_l)k.kt)-k

= B z1 zCl a)/B r'(1-a+b) - (z-/B)k (a-b- 1)..-(a-b-k)/kl
k*O

The above series is a binomial series that equals

(1+z-/B)-(1- a+b) ,, (Z-I/B (,/B+ ))-(1- a+b)•

After substitution for the series and simplification, the result for

the RHP is exactly the same as that above for the LHP.

Therefore, for all z such that s0, 1zI 1, and Iarg z j<I

and for (1-a~b)>O:

11
H ['z (a.,B) ; (b, B) 3
11

B 1 T"(1-a+b) zb/B (I+ z/B)(1-a+b)

10
5.4.6. H [- : (b,B),(b++,B)], B>O.

02

By the argument in section 3.4.2., H(z) converges using LHP

residues for all real z >0. There are an infinite number of LHP

poles of order I at sk= -(k+b)/B, k=0,1,..., so that equation

(5.14) yields:

E u (k+b)/BB
H(z) _," ( . -)k k )'/ "( + r

k,,C
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Replacing kIE •(k +) with the equivalent expression r (f)(2k)1/2&,

H(z) = (B.l"(f))1 b/B :E (.1)k (2zl/2B)2k/(2k) •
k=O

Recognizing a series for a cosine function,

* H(s) = (Br'(*))"1 cb/D os(2s L 2C)

Following the same steps,

H Es - (bB),(b-,B)3 = (B.r( ))-1 z("4)/B sin(2 z1/2B)0O2

NO
5.4.7. H Is • ((1,1) C0 ; {(0,1)}].

NN

By Theorem 4.1, H(z) is the probability density function of the

product of N identical, independent, uniformly-distributed random

variables. The uniform distribution is a beta distribution with

* 1, which, from section 4.2., is thus given by:

10

H Ex : (1,1) ; (0,1)3.
1 1

By section 3-3- convergence conditions, with CI = - 0 and

L = -N, H(s) can be evaluated by suming LHP residues for real t,

0 z 1. There are no RHP poles, and there is only one LHP pole of

order N at sm0. Equation (5.14) is evaluated as follows:

H(s) - V(N- 1)(O)/(N- 1)1

Fi(o) = 1 for i-1,...,2N and v(°)(o) = 1

W (0) = (0 N'(1) - NY(1) - log(s) - - log(&)
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W(r)(0) 0= N Y(r) (1) ) (-l)r(yCr)(1) - (r)(i) - N(r)(1)

- v(1)(o) = - log(z), V(2)(o) = (-log(z))2,

(N-I1) N- I
V (0) = (-log(s))

N-I1 N- I
- H(z) = (-log(s)) A(N- 1)1 - (log(1/s)) I(N- 1)1 ,

for O< z S1, which agrees with known results obtained without using

H- functions (21:101- 102). This also provides a set of H- function

identities not found in the literature:

20
log(s)la -H z : (1,1),(1,1) ; (0,1),(0,1)3 . 0(s- z .

22

(log(s)) N = (_,)N NI H N1, : {(1,1)} ;(0,1))3,

N+I,N+I
0 s1.

And, by property (2.3) for a reciprocal argument,

02
log(s) = H Cz : (1,1),(1,1) ; (,1),(0, 1)J, 3 >.

2 2-

22
5.4.8. H Is : (0,3),(o,) ; (03),(03) 3

22
By section 3-3. convergence conditions, with ) = 2 and E=LO, 

H(z) converges for all z such that z#0, 1z 1# 1 and Iarg z I ,

using LHP residues for 121< 1 and RHP residues for IzI>1I.

There are an infinite number of LHP poles of order 2 at sk =-2k

k=O,1,..., so that equation (5.14) yields:

H(s) = ( v1)(-2k) = v(°)(-2k) w()(-2k)
k-O k-O

E ¢ a
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Fl(sk) = F2(sk) = (+.(.)k.kI)1

S3(sk ) = F4(sk) = r (k+1) = kI

(0)(0G 3((S) = G2 (0)(Sk) = '(k+ 1)

G3(0)(Sk) = G4(0)(Sk) = - 't'k * 1

(0) 2 / (2kV (-2k) = (kI)2 z2k/ *I( -)kk) 2 =z

w(0) (-2k) = Y(k+1) - 't(k+1) - log(z) = - log(z)

H(Z) = t 4z, (-log(,)) = -4log(s) (52)k
k-O k-O

* H(z) = -4log(z)/(l-z 2) = 2 log(z2 )/(z2 -1)

There are an infinite number of RHP poles of order 2 at sk =2k,

k= 1,2,..., so that the negative of equation (5.14) yields:

H(s) =.- v(1 )(2k)
k=1

Fl(s k ) =F2(sk) = (k- 1)I and 0 (0
)  (0)

Fls~ 2Ik (sk) -G 2  (sk) = *rt(k)

==k-1 -1 (0) (0)F 3(sk ) =F4(sk ) = -" -lkl(k-1)9)'l; G3(O(s ) = G4(O(sk ) =-P (k)

V(O)(2k) = 4z2k and w(O)(2k) =- log(s)

H(s) = - " ,, 2k (-log(z) = + 4 log(s) t2 I' (.-2)k

k-I k-O

* H(s) = 4 log(t)/(z2(1- 2-2)) = 2 log(.2)/(s2 - 1)

H(s) converges to the same function for Isi < 1 and IsI >1.

This particular H- function also is the probability density function

of either the product or the quotient of two Half-Cauchy variates,

-' -.- -
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and the above result agrees with the known result obtained without

using H- functions (21:158).
b

* 33
5.4.9. H z -. ((o,1)};((0,)33, z00, z #1, larg zI n.

33

This H(z) is the probability density function of the product of

three Half-Cauchy variates, by Theorem 4.1, and, as in section 5.4.8.,

LHP evaluation for |z C I and RH evaluation for Isi > 1 converge to

the same elementary function. For example, there are an infinite

number of LHP poles of order 3 at skz=-2k, k=0,1,..., so that

equation (5.14) gives the following:

H(s) = ( 1 (1-r) (r)

H() -- Y) V (s1 ()W (50(/21
'= 21 k(2 r=O

g(O)(sk ) = (kS) 3 22k / ( -()k:kI)3 = 8(-z2) k

W(O) sk) 3 (k+1) - 3Pt'(k+1) log(s) lag(s)

W(I) (Sk ) = 31( tM(0)/4) - V 3(t(1) (k+ 1)/4)

+ X + 3(t()(k +1)/4)

V (s 3/2) V'(1)(1)

V(Sk) = (-8 lol(zs)(-)

(2) 2)k( - log(z) + 8(-z 3/2) (1)

H(z) = 8 C(lor(z))2 + (3/2)'f(' 1)(1)J" 3 (-z2)k /2t

H(Z) ((log(z 2 )) 2 +Tr 2 )/(1+ Z2) , as expected (21:159).

| | || | |II ammm*
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* 5.5. SECOND N5 FORMULATION

The Laplace transform of an H- function is another H- function.

This fact combined with any numerical inversion technique for the

Laplace transform provides a second formulation for evaluating an

H- function inversion integral.

Instead of using equations (5.14) and (5.15) directly to find

H(z), one can do the following steps, providing H(z) is of exponen-

tial order, that is, IH(z)IIM exp(Az), M and A constants:

1. Use equation (2.12) or (3.8) to determine the form for

the Laplace transform of H(z), H'(r).

2. Use equations (5.14) and (5.15) to evaluate H'(r) at

the values r=a + kl'i/.8a, k=0,1,2,...,N, where 9 is the maximum

value of z for which H(z) is desired.

3. Using these values of H'(r) in equation (4.14), find

H(z) for desired values of z with Crump's method for numerical

inversion of the Laplace-transform, section 4.5.3., where

a = A + log(l/E)/(l.69)

and E is the maximum desired decimal error. If H(z) is a probability

density function or a cumulative distribution function, then A = 0.

H(u) du, use the values H'(r)/r

in equation (4.14) in place of the values H'(r). If H(z) is a

probability density function, then this represents the cumulative

distribution function.
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CAPTE, 6

APPLICATIOS FOR PRACTICAL TECHNIQUE

6.1. GENERAL REMARKS

SfDetermining the distributions of algebraic combinations of

independent random variables has applications in virtually every

area of probability and statistics. Therefore, the applications in

this chapter are intended to prod the imagination as to the many

potential usages and not to delineate the extent of possible usages.

The practical technique presentee in section 4.5. and implemn-

ted by the computer program of Appendix B can be used to find the

probability density function and the cumulative distribution function

for any of the following cases:

1. A single H- function variate. In fact, the computer

program may be used to evaluate any H- function.

2. Any combination of products, quotients, and rational

powers of any number of independent H- function variates. It is not

required that the variates have identical or even similar distribu-

tions.

3. The sum of any number of independent H- function

variates. Again, the variates do not have to have identical or

similar distributions.

4. The sum of any number of terms that each have the form

above for case 2.

128

______________________________________



129

Eldred (7) has treated distributions of the present worth of

probabilistic cash flow profiles that involve products, quotients,
b

and powers. He also indicated the need for treating such distribu-

tions that involve sums. Mathai and Saxena (18:82- 91) and Springer

(21:6- 9) present a number of potential applications in statistics

that involve algebraic combinations of random variables. For exam-

ple, from queueing theory, consider a service facility which is an

N- step process, where the distributions are known for the service

time X, of the i-th step, i= 1,...,N. Then, with no queues between

steps, the total service time for the service facility is given by

xt= Xi.
i=1

For a Monte Carlo simulation of this service facility, knowing the

exact cumulative distribution function of Xt is more desirable than

handling the N X, separately. If the distributions of the X, are

H- function distributions, this is case 3 above and the practical

technique of section 4-5. can be used to assist in the simulation.

An especially useful characteristic of the practical technique

is that the variates need not have identical or even similar types

of H- function distributions. This characteristic and the general

properties of the H- function can be exploited in the application

areas of the sections that follow. Each of these areas are vast

fields of study so that only a few examples are viven to indicate

the potential applications. However, even the examples cover a wide

range of special cases that until now had to be treated individually.

1'
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6.2. DIEVErOP,).T7 A:*9 STUD)Y or GEN.pAIIZED DiST R aIzS
I

Although the H- function distribution is the most general

distribution, there is still much study that can be done for given

types of i- functions. For instance, by Theorem 4.6, the function

10

H(x) - K * H cx : (b,B)) (6.1)
0 1

is a probability density function if K= c/ (b+ B). Letting a= I/B,

p-(b+B)/B, and q=c -i/B, (6.1) becomes

a(qp/a T'(p/a))-1 xp- I emp(_xa/q) ,

which is the reneralized gamma statistical distribution introduced

by Stacy (22). The H- function form is not only "nicer", but much

more can be done using H- function properties and theorems. This

generalized gamma distribution is easily seen to have the following

special cases:

Gamma distribution (0,0) when cu 1/0, b0- 1, B = 1.

Exponential distribution when c= i/0, b-0, B- i.

Chi-square, 0 degrees of freedom, when cm+, b+ 0-1, B 1.

Weibul] distribution for ca 01 / , b=---1, B=0-1.

Rayleigh distribution for cm0, b= , B=+.

Maxwmll distribution for c = -/0, ba a, Bmj.

Half-normal distribution for c= (0-) , b=O, B=+.

By systematically varying the inputs b, c, and B into the computer

program of Appendix B, the shapes for the family of distributions

represented by (6.1) can be studied.

IS

I i -- " + + . m + m+ m~ t m i T -- . ... 1 % mmm . . . . . .
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Also, the computer program can be used systematically to study

the distributions of algebraic combinations of independent random

variables with densities of the form given by (6.1). For example,

investigation of the class of H- functions of the form

NNO

(c/I-(b+ B)).H N. R • {(b,B)}] (6.2)
ON

is equivalent to investigation of the distribution of the product of

N independent, identically-distributed generalized gamma variates,

using Theorem 4.1.

Or, by Theorem 4.3, if Xi is a random variable with (6.1) for

its probability density function, then Yi Xi2 has the probability

density function

10
(c2 /r(b+B)) H [c2 Yi : (b-B,2B)3. (6.3)

if Xi is a standard half-normal variate, (6.3) reDresents a chi-

square distribution with one degree of freedom. Thus, (6.3) can be

used in a "generalized chi-square test", which is just like the

well-known chi-square test except that the deviations Xi may be from

any common generalized gamma distribution. Then, the generalized

chi-square test statistic becomes

2L* w. 2 Yi•i=1 il

with probability density function, from section 4.5., given by

fWwW)=L.7' (( H  E lrlc2 .(1-b-B,2B) (0,1)3I/ (b+B))N). (6.4,)

1L

I |I
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And, similarly, an even more generalized chi-square test is

possible, using the practical technique of section 4.5. and the

computer program of ADpendix B, by allowing the X to have any

H- function distribution.

6.3. CHARACTERIZATION Or PROBABILITY LAWS

The simple, straight-forward rules for finding distributions of

algebraic combinations of H- function variates permits rather easy

construction of examples to check proposed probability laws. For

instance, consider the proposal that only the quotient of two normal

variates will follow a Cauchy distribution. Much work has been done

by various authors to construct counter-examples (292,294,295,296,

300,305,307,342). Such counter-examples are easily found and checked

using H- functions.

By equation (4.9), the half-Cauchy distribution is

-1 1

(er) " H cy/e (0,+) ; (0,)], (6.5)
I1

and, by Theorem 4.2, the quotient Y= X1i/X2 of two generalized gamma

variates is

(cli(c21" 3Bll~b+B)) "

. 11
H cly/C2 : (1-b -2B 2,B2) ; (bl,B 1)J . (6.6)
1 
1

Equating (6.5) and (6.6) immediately gives 0 =c 2/cl, bj b2 -O, and

B R2 = . Therefore, the only two generalized gamma variates whose

quotient is Cauchy-distributed are half-normal variates.

I,!
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Yowever, one can find many other types of H- function variates

whose quotient has a half-Cauchy distribution. Consider X1 and X2

having probability density functions, respectively,

10
(c 11(1-b-B)/P (1)) H Ecjxj : (0,J),(b,B)3, and

02

20

(c 2 /(l (I)l (1-b- B))) H Ec 2 x 2 : (O,J),(1-b-2B,B).
02

Then, by Theorem 4.2, the probability density function of Y= X1 /X2 is

12
(cl/c 2 Wr) H Ecly/c2 : (0,J),(b,B) ; (0,J),(b,B) ,

22

which, using property (2.9), reduces to the half-Cauchy distribution.

Or, consider the case where X1 and X2 have probability density

functions that are the same type of M- functions,

1 1
(cj11(b4)/('( )'(1-a-j))) H 2 c1 Ix : (a,J),(b,J) ;

21i

(o,) 3, and

I1

(c21'(-a+j)/C7(j)r (1+b-1))) H 2 c 2x 2  (-b, 4 ),(-a,I) ;
21I

Then, by Theorem 4.2, the probability density function of Y= XI/X 2 is

22

(cl/c 2l) H Ec 1 Y/c 2  (a,),(O,),(b,) ;(A)
33

which, usinc properties (2.9) and (2.10), reduces to the half-Cauchv

distribution. If an-b and ci= c2, then X, and X2 are identically

distributed. If a =b = 0, then the distributions for X1 and X2 reduce

to the form (ci/rT(+))H 01 [cixi O,+)3.

J l li | | 0 I
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As another example of using H- functions to study probability

laws, consider the question of whether a distribution exists such

that, if the random variables X, and X2 follow this distribution,

then the distribution of X1.X2 is identical to that of Xl/X2.

Irom Theorems 4.1 and 4.2, it is evident that the desired distribu-

tion must have the following form, with m=n, p=q, and c= 1:

m m
K'H C x : (ai,Ai)) ; {(bi, Bi)}J

q q

Next, equating the product and quotient formulas in those theorems,

2m 2m
K-H [y : {(ai,Ai)} ,i 1,...,m, {(ai,9A)} ,i =1,...,m,

2q 2q

{(ai,Ai)} ,i=M+l,9...,'q9 -(ai,Ai) } ,i=m+l,...,q

{(biB )) , = I, ... ,9M, {(bi,B:)}  9 i = ,...,M9
{(h~h} , =re~, .. ,, (hi,j)} ,i =mr+l, ... ,q ]

2m 2m
= K-H [y {(a,A)} ,i= 1,...,m, ((1-bLI-2B.,B)} ,i- ,...,n,,

2q 2q

{(bi,Bi)}, i 1,...,m, {(1-a.i-2 ,A±)} , i= 1,...,,,

{(bi,Bi)} ,im+l,...,q, {(1-ai-2AAi)} ,i=m+1,...,qJ.

Thus, for all i =1,...,q, ai=-b-2Bi or, equivalently, bi= 1-a-2Ai,

so that the desired distribution is

4~ Mm
• K.H ry: {(aj,Ai)} ; {(i- aj- Ai,Ai)}J.

qq

For m=q= I and (a,A) (1-a-2A,A)= (0,), this is the half-Cauchy

distribution, for which this probability law was known (298).
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* Also, consider the use of the practical technique of section

4.5. to determine the probability density function h(w) for

m• I/Bil k
* ~w = (ciNi)/B/,

i=1

where the Independent random variables X, all have Peneralized eamma

distributions of the form (6.1), that is,

fi(xi) = (ci/l-(bi+Bi)) H [cx i : (bi,Bi)]
0 1

1/Bi

By Theorem 4.3, the probability density function of Yi=Xi 
is

1/B./ 1b i) I0 1IBi

gi(Yi) = (ci 
1/i(bi+eB)) H 1 ci Yi : (bi2.i-1,1) -

0 1

Then, from (2.12) and section 5.4.5.,

L (IBi rk) i ( y )  L i r {gi(Yi)}(ci  rk

(Ib,+10) H Cr/k : (1-bi-Bi,l) ; (0,1)3
I I

= (r/k) (1 +(r/k))

Letting S (bi+Bi) ,

N
LIL r{gi(Yi)} = (1 + (r/k))

= (11(S)) H (r/k (-S, 1) ; (0,1),

110

so that h(w) L .-(1+(rlk)) ) (k/r'(S)) H [kw (S-1,i)].
0 1
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Therefore, W as defined above represents a class of sums of

independent generalized gamma variates that are generalized gamma

variates. If Bi= 1 and ci= k, i =I,...,N, then we have the well-

known fact that the sum of independent gamma variates with common

parameter 0 is gamma-distributed with parameter 0, where 0= i/k here.

if Bi=B and ci=k B, i=1,...,N, then we have a probability law that

the sum of the p-th powers of independent generalized gamma variates

ulth parameter B = 1/p is a Feneralized gamma variate with parameter

B= 1. A well-known case of this is the chi-square variate, where

the are normal variates with bi=0 and B=B=I (or p=2). And,

if Bi= 1 and cik/N, then f(w) gives the distribution of the mean

of N independent gamma variates with common parameter O= N/k.

H- functions do not simply assist in a more general characteri-

zation of a probability law, but may also lead to a different type

of characterization. By first definin a generalized beta variate

as a random variable with probability density function of the form

10
H(x) = (c r (a+A)/T(b+B)) H cx : (a,A) ; (b,B)3

1

(see section 5.4.3. and (4.8) for known special cases), then an

H- function distribution with parameters m+ntp and m+n~q can be

characterized as a distribution for a product of p- n generalized beta

variates times m+n-p generalized gamma variates divided by the product

of q-m generalized beta variates times m+n-q generalized gamma vari-

ates. For example, while not derived in terms of products of such

variates, the multivariate test criteria of the next section appear so.

- -a-. - - -m... -
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6.4. !,LITIVARATE TEST CRITE.IA

To test various hypotheses on the parameters of a multivariate

statistical distribution, one of the standard procedures is the

likelihoot ratio principle. A number of' multivariate test criteria

based upon likelihood ratios, first introduced by Wilks (354), have

the property that their moments are expressible in terms of products

and quotients of vamma functions. Using the formula

f(x) = (2Wi)" f, E(x.S') x- s ds, (6.7)

the probability density function f(x) of such a test criteria can

often be expressed as an H- function.

Vilks defined the determinant of the covariance matrix as a

scalar measure of scatter in a multivariate distribution, using

U = InSi where S is the sample sum of product matrix with n degrees

of freedom. Then, following Mathai (338), if the sample is from a

multivariate normal distribution (central case), then

Es- )  2P(s71) p
E( )= -s- ((n+i-i) + s- 1)/P( (n+i-i))

i=1

Thus, from (6.7),

p0
f(7) = K.H U/2 P : (I(n- 1- 1),), ... ,(f(n- 1- p),1)3,

0p

where K is given by (4.29).

To test the hypothesis that the diagonal elements are equal

given that the covariance matrix in a multinormal distribution is

diagonal, the statistic W is used. W is the likelihood ratio to the

power 2/N, where N is the sample size. From Mathai (339), vith ninN-1,
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=p(s- 1) r P(++ s - i) r(+np)
E(Ws-1 Pp p(*n) r (jnp p(s-1))

and, from (6.7), with K again viven by (4.29),

p 0

f(W) = K*H tW/p p : ( p-pp) ; {(jn- 1,1)}.
'p

Similarly, from Mathai and Rathie (34O), for the criterion WI

to test the hypothesis that the covariance matrix of a multinormal

distribution is diagonal,

P(s-i) I"(+np) p I1( (n+l-i)+s-1)E(Wj s = ) ==-
11 (+np + p(9-1)) = ( ( ~ ~ )

pO0

and, f(W1 ) = K.H EW/pP (fnp-p,p) ; {(i(n-1-i))1 ,imi,...,pJ,

where K is given by (4.29).

Consul (327) showed that, for Wilk's likelihood ratio criteria

for testing the linear hypothesis about regression coefficients,

E(UTs 1 ) = K.T ( (n+1-) + s - 1)/11 ((n++l-i) + s - 1).

Nair (349) referred to U as Wilk's generalized correlation ratio.

Applying (6.7), with K again given by (4.29),

p0
f(u) = K.H Lu : ) {((n-1-i),I)}J,

pp

* where is1,...,p. Consul (327) expressed f(U) in terms of other

known special functions for p- 1, p- 2 , p= 3 with m- 1,...,8, and

p=4 with ms 1,...,8. For examples:

If pml, then f(U) = C1 U+n - 1(1-U) O<U<

If p=2, then f(U) = C2 U*(n-3)(l U*)1' , < U

= - ) 0u~l -A
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If p = 3 and m=3, then, for O<U<I, f(U)=
c3 Ul!n-2(( .U)1/2_ 3U'aresin (I U) +3U-log(l] +(t-'.I) ))

And, if p=3 and m=4, then, for O<U<I,

. f(U) = C4 Un-2(1 -U 2 +8U+(1-U)- 6U-logU) ,

* where C1 , C2, C3, and C4 are constants.

Also expressible as H- functions are the distributions of

Votaw's criteria for testing compound symmetry of a covariance

matrix (329) and Bartlett's criteria for testing equality of the

covariance matrices in a set of independent multinormal populations

(18:87). The sum of independent variates defined by likelihood

ratios was the subject of a recent study on the detection of radar

targets of unknown Doppler frequency (21:6).

6.5. SYSTU4 EFFECTIVENESS

An extremely important area of application for determining

distributions of algebraic combinations of independent random

variables is the usage of hypothesis testing and other statistical

methods in analyzing system effectiveness, particularly for research

and development or for operational testing and evaluation within the

U. S. Department of Defense. The problems associated with evaluating

weapon system effectiveness were sufficiently important for the Air

4 orce Systems Command to form the Weapon System Effectiveness Industry

Advisory Committee (VSEIAC) in 1963, comprised of both industry and

Department of Defense personnel, each approved by the Secretary of the

Air Force. A primary objective of the VSFIAC effort was to recommend

-r" - "" " -'- . ... ........... ..
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a methodology for measurinp and Dredictinv system effectiveness in

all phases of the life of a weapon system. The V'SEIAC findings were

published in eleven volumes in 1965 (353:v.65-6,1- 3).

The WSEIAC methodology was based upon defining effectiveness E

as the product of three random variables: availability A, dependa-

bility D, and capability C. A is a measure of the condition of the

system at the start of a mission, when the mission is required at an

unknown (random) point in time. D is a measure of system condition

during the performance of the mission, given its condition at the

start. And, C is a measure of the results of the mission, given the

system condition during the mission. Thus, knowing the effectiveness

of a weapon system for accomplishing a given mission depends on being

able to determininp the distribution of a product of three variates,

E= A.D.C (353:v.65-6,8- 9). The V'SEIAC volumes contain many examples

based upon this effectiveness model, including a tactical fighter

bomber system, a radar surveillance system, a spacecraft system, and

an intercontinental ballistic missile system (353:v.65-2-2,72-97;

353:v.65-2-3,22-50,67-132).

Each of the random variables A, D, and C may also be expressed

as a product of the corresponding factors, Ai, Di, or Ci, for the

sub-systems or components of the system. For example, the effect-

iveness of the ri~hter bomber system depends upon the effectiveness

of many avionics sub-systems, including communications, navigation,

engine, flight controls, target identification, penetration, and

delivery method. The effectiveness of a system with N sub-systems is
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given by

N N N N N
E A.D.C - T Ai. 7= D.- ci = AiDiC i = -n Ei

i= i=1 i=1 i=1 i=1

Thus, if the distributions of availability, dependability, and

capability are known for the sub-systems, then the overall system

effectiveness distribution is equal to the distribution of the

product of 3N random variables.

fnother SEIAC consideration is total mission effectiveness.

If a mission can be accomplished by more than one weapon system or

by more than one method of using the same system, then the total

mission effectiveness can be expressed as a linear combination of

the effectivenesses of the different systems or methods. That is,

E =  Pk'Ek , where I- Pk = 1

k k

Using the fighter bomber system as an example (353:v.65-2-3,22- 50),

there are three possible bomb delivery systems: lay-down with

effectiveness EL, visual-toss with E V , and blind-toss with EB.

Then the delivery mission effectiveness is given by

E = PL.EL + PV"Ev + PB "EB, where FL +PV + PB =  
,

and P L' P VI and P B are constants as defined below:

PL= probability of daytime mission x probability of

*visual flight conditions x probability that the

lay-down system is preferred over visual-toss.

PV P(daytime mission) x P(visual flight conditions)

x P(visual-toss preferred over lay-down).

P B- P(night mission) x P(instrument flight required).

I, • • •m
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The WSEIAC study also addressed the treatment of costs as

variables. Cost effectiveness of a system or a sub-system can be

defined as the quotient of system effectiveness and the total system

cost. Yany different models with system cost equal to algebraic

combinations of variates are presented. ror example, the total cost

of a small, mobile, short-range weapons launcher is given by

CT =M'Ci + C f + Cs + CM,

where Ci = incremental cost separate from fixed costs, for

producinc, supporting, and maintaining one unit,

Cf= fixed or sunk costs for production,

Cs = total system support cost,

Cm= total system maintenance cost,

M = number of units, may be considered as a constant

or as a variate (353:v.65-6,128 - 136).

Abraham and Prasad (325) also consider cost as a random variable

equal to an algebraic combination of independent random variables and

provide examples with some simple distributions for estimating

manufacturing cost. Other aerospace applications involving products

and quotients of independent random variables are discussed by

Donahue (291,330).

i

U
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CHAPTER 7

CONCLUSION AND RECHMNDATIONS

The main purpose of this dissertation has been to demonstrate

y a practical technique for determining the probability density

function and the cumulative distribution function of a sum of any

number of terms involving any combination of products, quotients

and powers of H- function variates. This has been accomplished in

section 4.5. and the implementing computer program of Appendix B.

On the road to accomplishing this purpose, other contributions have

resulted.

In trying to learn everything now known about H- functions and

the H- function distribution, one quickly becomes aware that this

study area has tremendous potential for new discoveries. Just from

an effort to understand basic H- function properties, many new

formulas have been found, including relations between H- functions

and known named functions or lower order H- functions in sections

2.3. through 2.7., 4.6. and 5.4., derivative formulas for special

cases in section 2.7., and improved transform and derivative formulas

in section 3.7.

Similarly, investigation of the evaluation of the H- function

by summing residues has led to an improved formulation, given in

q section 5.3., and has pointed out the need to formally establish

Eguidelines for when left-half-plane versus right-half-plane summation

143
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of residues will converge. Hence, in chapter 3, evaluation guide-

lines have been established for the general Mellin- Barnes integral

and the H- function and have been applied to known special cases,

the Laplace transform, and the derivatives of the H- function. For

a convergent H- function, the Laplace transform and all derivatives

of the Laplace transform have been shown to converge. Since the

Laplace transform of an H- function is also an H- function of

readily known form, a second new formulation for evaluating the

H- function has been addressed in section 5-5. This consists of

using the first new formulation to find values for the Laplace

transform, which are in turn used to numerically invert the Laplace

transform. The first new formulation can also be used to find more

relations between H- functions and other named functions, such as

the new relations found in section 5.4.

A remarkably rewarding area has been the study of the cumulative

distribution function of an H- function distribution. First, by

section 4.6., the cumulative distribution function has been shown to

be an F- function, and, by section 4.8., it has been shown to con-

verge. Second, a more efficient way to compute the cumulative

distribution function of an H- function variate or of a sum of

H- function variates has been employed, by using those calculations

* made for the probability density function. Third, expressing the

cumulative distribution function as an H- function not only has led

to new relations in section 4.6. between particular R- functions and

other named functions, but has also filled in a gap for understanding

- ,-- -.-



certain orders of H- functions. And, fourth, the study of the

cumulative distribution function has led to a formula for finding

the constant for the H- function distribution, given in section 4.7.

The following recomendations are made for directions of future

work on H- function distributions:

1. A practical technique needs to be developed for finding the

probability density function of the difference of two H- function

variates. A method is also needed to find the probability density

function of the product or quotient of sums of H- function variates.

2. H- functions have not yet been applied to the study of

combinations of dependent variates. It is possible that multi-

variable H- functions or H- functions of matrix argument might be

useful here. Mathai and Saxena (18) list references for such types

of H- functions and devote a few chapters to them.

3. Usage of H- functions to treat probability density functions

defined over the entire real line is another unexplored realm. The

positive-negative component methods developed by Epstein (8) and

Springer and Thompson (320,321) should accommodate such usage,

particularly for distributions symmetric about zero.

4. For evaluation of an 7- function by summation of residues,

analysis is needed to relate the number of poles evaluated to the

error in the Ut- unction value, especially for large values of the

arpunent. Error analysis could also be Oone for numerical inversion

of the Laplace transform, where the Laplace transform is a product of

H- functions.

7
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5. Including the two methods presented in section 4.5., the

various methods for numerical inversion of the laplace transform

(230- 242) could be compared with respect to their appropriateness

and computational efficiency for inverting a product of Laplace

transforms of H- functions.

6. The more one studies thc H- function, the more suited it

seems for analyzing probability distributions. Some additional

theoretical advances would be most welcome. For example, for the

distribution of a sum of H- function variates, a closed-form

solution would be very desirable, since this would eliminate the

numerical inversion requirement and possibly lead to a method for

handling products and quotients or sums of i- function variates.

Also very worthwhile would be the establishment of the conditions

on the F- function parameters that are necessary for the sum of

H- function variates to have an H- function distribution. At present

only certain special cases are known, such as the sum of gamma vari-

ates being a gamma variate and the sum of normal variates being a

normal variate. The H- function parameter conditions necessary for

an H- function to be a probability density function also need to be

established.

7. Prom the section 3.3. convergence conditions, when an

* H- function is Type VI with Li -i or is Type V, then it cannot be

evaluateO at the point 1/(cR) by summation of residues. Another

means should be found to compute the H- function value at this point.

Many H- functions, including the half-Cauchy, half-Student, and F

440
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distributions, fall into this category.

8. The application of H- functions to the fitting of curves

to data should definitely be studied. Being the most veneral of

the special functions and having easily-determined derivatives and

moments, the H- function appears to be as suitable for curve-fitting

as it has been for analyzing probability density functions of

algebraic combinations of independent random variables.

During this research effort, to quote Isaac Newton, "I seem

to have been only like a boy playinv on the seashore, and diverting

myself in now and then finding a smoother pebble or a prettier shell

than ordinary, whilst the great ocean of truth lay all undiscovered

before me." I must thank God, the Creator, for this new world to

which He has introduced me. This research area should be equally

exciting and rewarding to everyone that pursues it. Hopefully,

each new pursuer will discover, as I have, that there is just as

much excitement and reward in the pursuit as in the actual attain-

ment of any objective.

d3
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APPENDIX A: COMPUTER MANTPULATIONS REQUIRED FO F VALUATION
OF AN H- WUNCTION

let NP = number of poles evaluated

NZ = number of values of z (independent variable)

sk = k-th pole

rk = order of the k-th pole

rnk = order of H(z) numerator poles at s k

rdk = order of H(z) denominator poles at sk

A.I. ELDRED'S %ORMULATION (section 5.2.)

To compute Sk, k= 1,...,'P:

NP(q+p) +'s (additions and subtractions)

NP(q +p) *'s (multiplications)

To compute v(t)(sk) and x(t)(sk) for t= 1,...,rk-, k=1,...,NP:

(q+p) (rk-1) + I ((rk-1)/2) - (rk+rdk)
k=1 k=1

+'s, *Os, and /'s (divisions),

where INT(x) is the integer part of x.

(q p) E (rk-l) + INT((rk-l)/2) V's (psi functions)
k=l

To compute C(O)(sk) and U(O)(sk) , k= 1,...,NP:

NP(m+n) + 1 (rnk+ 3 rdk) *'s
• k=1

NP(q - m + p- n) 4. rk /'s
k=1

NP(q+p) rT's (gamma functions and factorials)

* - - - .,~ ,v.
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(rk+ r d **Is (powers)

To compute c(t)(sk) anid U(t)(sk) for t 1,...,rkl1, k= 1,...,NP:

rk(rk-1) +Is

2 k=1 (rk-l) *I

I rk(rk-1) I's

To compute WSUM(w,s) I- (w (v')W

WZ (0)(-1ogrz)1 k =sk 1,..,rP

NP
NZ( 11 JI(rk +1) ) +Is and 19s

k= 1

3NZ( L+rk(rk +1) + +NZ E rk S

To compute H(z) (z 6k/(rk 1)1)[(rk.1) C(rk-lw)(Sk)

WSt7M(v,z)J:

NP t's (factorials)

NP e NZ **Is

NPNZ +- NZLr +0

NP.NZ + (NZ +2) *I "S

NPoNZ + rk /I
k--
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A.2. NEW rOP14MATIO (section 5.3.)

To compute sk, k = 1,...,NP: same as Eldred's for s k '

To compute W(t)(sk) for t=O,...,rk-2, k- 1,...,NP, without

the (-log(z)) term on w(O)(sk):

Same as Eldred's for v(t)(sk) and x(t)(sk).

To compute V(O) (sk) without the z-Sk term, k= 1,...,NP:

Same as Eldred's for C(O)(sk) and V(O)(sk), except that,

when rk >1, there are an additional NZ +'s for adding (-log(z)) in
w(O)(sk).

To compute V(rk') (sk):

NP•NZ **Is

NZ A *rk(rk-1) +'s and /I's

NP-NZ + 3 NZ N frk(rk-1) *Is

k=1

To compute H(W) = ± Y- V(k) (sk)/(rk-1):

k

NP'NZ +'s and I's

NP L's

j2

.4

rvm I I II



152

A.3- NUMBER OF OPERATIONS SAVED BY NDI PORMMATION

+'s : rk(rk-1) + NZ (2rk-I) ,
k=1 k--

where 1=1 if rk)I and I=0 if rk  1 ;

minimum saving occurs when all rkn 1 and then is 2-NP-NZ.

*'s: 2 rk rk1) + (5NZ + 2) - rk ;

minimum saving when all rkl 1 is NP(5"NZ + 2)

/'s: * rk(rk-1) + (NZ + 1) f rk ;
k--1 k=1

minimum saving when all rk = 1 is NP(NZ + 1)

Total operations saved:

4 rk(rk -) + (8NZ + 3) rk - NZ-IM01
k--1  k=1

where NPG1 is the number of poles evaluated with rk I

If all poles are order i, then NP(8-NZ + 3) additions, subtrac-

tions, multiplications and divisions are saved. If all poles are

order r'> 1, then NP( NZ(8r'-1) + 3r') operations are saved.

For large NZ compared to r', the total number of operations saved

by the new formulation is of the order NP.N(8r'- 1)

If all poles are order r, the number of operations saved will

increase linearly with r, but savings will be a decreasing percentage

of total operations, which increase as r
2. For example, with q p- 20

and NZ= 100, the percent savings for O's, *'s and /'s combined for

r 1,2,5,10 are 62.41%, 56.54, 40.?(, 25.74, respectively.
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S APPENDIX B: COUT PROGRA B.. M LISTIN

THIS I"ROiGRAM MAY BE USED TO EVALUATE A GIVEN H-FUNCTTON
C. * .L)r I DEFERMINE THE FROID'" IILITY DENSITY FUNCTION (P.D.F
C...AND THE CUMULATIVE DISTRiRUTION FUNC1I7N tC.Di.F.) FOP
C... THE SUM OF ANY NUMBER OF TERMS INVULVING ANY COMBINATION
C... OF PRODUCTS, OUOTIENTS, AND RATIONAL FOUIFR' (IF ANY NLIMLi,
C... OF INDEFENDENT RANDOM VARIABLES WINH H-FUNCTiON DISTRIDUrlUNu.
C
C
C...IVY 11. COOK, JR., PH.r. DISSERTATION, MAY, i]'sI
C... THE UNIVERSITY OF TEXAS AT AUSTIN
C
C
C... INPUT DATA CARDS (FREE FORMAT)
C ...... CARD 1: ZO,ZN,DZ,NS.IDIt,MP,MI,F'CT,NY,NF'
C
C ZO - FIRST POINT FOR EVALUATION- MUST BE A NON-NEGATIVE
C PEAL VALUE OR THE PROGRAM WILL GIVE A DEFAULI VALUZ
C OF ZO IDZ, INPUT OF ZO-;O.0 IS PERMITTED FOR USER
C CONVENIENCE, BUT FIRST 7 VALUE EVALUATED WILL BE DZ.
C ZN = LAST POINT FOR EVALUATION, MUST BE A POSITIVE REAL
C VALUE GREATER THAN ZO BY AT LEAST I.E-I0.
C DZ STEP SIZE, MUST BE A POSITIVE REAL VALUE NOT LESS
C THAN 1.E-10 OR THE PROGRAM WILL GIVE A DEFAULT
C VALUE THAT RESULTS IN 100 STEPS. IF DZ IS SUCH
C THAT THERE WOULD BE MORE THAN 1000 STEPS, THEN THE
C PROGRAM LOWERS ZN TO THE VALUE FOR 1000 STEPS
C (DUE TO DIMENSION OF PROGRAM ARRAYS).
C NS NUMBER OF TERMS IN THE SUM, MUST BE A POSITIVE
C INTEGER.
C IDT= 1, IF ALL TERMS IN THE SUM ARE IDENTICALLY DISTRIBUTED;
C OTHERWISE, LET IDT=0 (OR ANY INTEGER VALUE EXCEPT 1).

C IF NS=I, PROGRAM WILL SET IrT=O.
C MV = MAXIMUM NUMBER OF POLES TO BE EVALUATED, MUST BE A
C POSITIVE INTEGER. IF MP IS GREATER THAN 100, THE
C PROGRAM WILL GIVE A DEFAULT VALUE OF 100.
C MI = NUMBER OF COMPLEX VALUES EVALUATED IN THE CRUMP METHOD
C FOR NUMERICAL INVERSION OF A LAPLACE TRANSFORM, ANY
C INTEGER VALUE CAN BE ENTERED IF NS:=I AND NY=i, BUT
C MUST BE A POSITIVE INTEGER VALUE IF NS IS GREATER
C THAN 1. IF NS= AND MI IS LESS THAN 1, THE PROGRAM
C WILL SET NY=I. IF MI IS GREATER THAN 1001, THEN THE
C PROGRAM WILL GIVE A DEFAULT VALUE OF 1001 (DUE TO
C DiMENSION OF PROGRAM ARRAYS).
C PCT= PROPORTION OF MAXIMUM Z VALUE TO BE USED TO FIND THE
C VALUE FOR THE CRUMP AXIS POINT, MUST BE A POSITIVE
C REAL VALUE BETWEEN 0.05 AND 2.1 OR THE PROGRAM WILL
C GIVE A DEFAULT VALUE OF 1.0.
C NY = 1. IF THE P.D.F. AND C.D.F. FOR EACH TERM UF THE SUM
C ARE DESIRED; OTHERWISE, LET NY=O (OR ANY INTEGER
C VALUE EXCLPT 1).
C
C FOR MI GREATER THAN 0 AND NS1l, THE PROGRAM EVALUATES
C THE H-FUNCTION BY SUMMATION OF RESIDUES IF NY'l AND
C BY THE CRUMP METHOD FOR NUMERICAL INVERSION OF A

a C LAPLACE TRANSFORM IF NY IS NOT 1 (WHERE THE LAPLACE
C TRANSFORM VALUES ARE FOUND BY SUMMATION OF RESIDUES).
C
C NP = 1, IF PLOTS OF THE P.D.F. AND THE C.D.F. ARE DESIRED;
C OTHERWISE, LET NY=O (OR ANY INTEGER VALUE EXCEPT 1).

.______________________,___ _ .,
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C
* C ...... CARD' 2: NLT(IS),IS=1,NS

C
C NLT(IS) = THE NUMBER OF THE LAST VARIATE (COUNTING ANY

C CONSTANTS) IN THE. IS-TH TERM OF THE SLIM,
C MUST BE POSITIVE INTEGERS SUCH THATV g C NLI(IS) IS GREATER THAN NLT(IS-1),IS=2,NS.
C
C IF IDT=, UNLY NL.T(1) NEEDS TJ BE ENT'ERED.
C
C ...... CARD 7 TO CARD NLr(NS)+2: NV,FHEIA,F'HI,PUW
C
C NV = TYPE OF VARIATE (SEE BELOW), MUST BE A FOSITIVE
C INTEGER FROM I TO 14.
C THETA VARIATE PARAMETER, MUST BE A POSITIVE REAL VALUE
C GREATER THAN 1 .E-10 UNLESS NV -4 OR NV=';.

C PHI= VARIATE PARAMETER, MUST BE A NON-NEGATIVE REAL VALUE
C AND, IF NV': 2, 5, 7. OR 10, MUST BE GREotER IHAN
C .E-10.
C POW= POWER 10 WHICH VARIATE IS TO BE RAISED, MUST BE A
C POSITIVE OR A NEGATIVE (QUOTIENT) NON-ZERO REAL
C VALUE. IF THE MAGN[TUDE OF POW IS LESS THAN I.E-10,
C THE PROGRAM WILL GIVE A DEFAULT VALUE OF 1.0.
C
C...TYFES OF VARIATES
C
C NV = 1, RAYLEIGH VARIATE (WEIBUL.L WITH PHI-2)
C
C PDF(X) 2 * THETA * X * EXP(- THETA * X**2)
C

C NV = 2, WEIBULL VARIATE
C
C PI'F(X) = THETA * PHI * X**(PHI-1) * EXP(- THETA * X**PHI)

C
C NV = 3, CONSTANT THETA
C
C NV = 4, H-FUNCTION VARIATE
C
C PDiF(X) = THETA * H(F'HI * X)

C
C IF NV:4, THE REMAINING H-FUNCTION PARAMI!TERS MUST BE

C ENTERED AS ADLITIONAL CARDS:
C EXTRA CARL, 1: M,N,', (NON-NLGATIVC INILGERS)
C P NOT LESS THAN N, 0 NOT LESS THAN I",
C M+N AND P+O NOT ZERO AND NOT1 GREAIER IHAN 20
C (DUE TO DIMENSION OF PROGRAM ARRAYS, IN FACT THE
C SUM OF P+O FOR ALL VARIAIES IN A TERM MUST NOT
C EXCEED 20).
C EXTRA CARD 2: (All),GA(I)),Ifl,.'
C ALL REAL, GA(I) F'OSITIVE.
C DELETE THIS CARD IF F=0.
C EXTRA CAR' 3: (3 1) ,GI'(I)I,0
C ALL REAL, GB(I) P'OSITIVE.

* C DELETE THIS CARD IF 00.
C
C FOR NV=4, IF DESIRE', ENTER THETA=O AND THE PROGRAM
C WILL COMPUTE THE H-FUNCTION DISTRIBUTION CONSTANT
C
C FOR NV=4, A NEGATIVE THETA MAY BE ENTERED'.

A. 
...
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C NV =5, EXPONENIIAL VARIATE (GAMMA WITH THETA=1)
C
C FDrF(X) =(I/P'HI) * EXF'(- X / PHI)
C

IC NV =6, CHI-SOUARE VARIATE WIm 1HHETA D'EGREES OF FREEDOM
C (GAMMA WITH PHI=2 AND THETAMTHFAA/2)

C NV =7v GAMMA VAKIATE
C
C F'VF(X) - X**(THETA-I) * EXF - X / PHI)
C /(FHI**THETA * GAMMA(rHETA))
C
C NV =8, UNIFORM VARIATE
C
C F'DF(X) =1/rIIETA, FOR X IN (O.THETA); 0, OTHERW.ISE.
C
C NV =9, EULTA '.ARIATL
C
C F'EF(X) =X**(THETA-1) * (1-X)**(F'HI-1) / ETA(lHETA,F'HI)
C FOR X IN (0,1); =0? O1HERWISE.
C
C FOF: A BIETA VARIATE ON (0,K), USE IHE F'r-OLILCT OF AN NV=9
C ANT, AN NV-3 WITH THETA=l/K.
C
c NV = 10, F DISTRIBUTION WITH DEGREES OF FREEDOM (THE1A.P*HI)
C
C NV =11, MAXWELL VARIATE
C
C PDF(X) = 4 * X**2 * EXF(- (X/THETA)**2)
C /(THETA**3 * SQRT(PI))
C
C NV = 12, HALF-NORMAL VARIATE
C
C F'DF(X) = 2 * EXP(- (X/THETA)**2 /2) / (THETA *SQRf(2 *P1))
C
C NV = 13, HALF-CAUCHY VARIATE
c
C PFI() = 2 * THETA / (P1 * (THErA**2 + X**2))
C
C NV = 14, HALF-STUDENT VARIATE
C
C PDF(X) = 2 * GAMMA(IHETA + .5) /(SQRl(2 * THETA * PI)
C UAMMA(THETA) * (1 f X**2-/(2*THEIA))**(THEIA + .5)

C

r .

COMMON/CHNFlF/FA(2.1) ,CD1(21),GBA(21 ,GCL'(211) CA, IT,LR<,MMN.OF'
COMMON/C1401,t Y,/TP * IO,NNAY,*TR
COMMoN/FurI/fHFDEF(I001),HCIP(I.001),ZR1(1001.)
COMMnN/FDF'2rfl,CN,tz,KEY,RF'M,M1,MI-.NF.? M,FPSII(20)
EIIMFNSIUJ NI.! (50) .XL(21) ,XG(21 ),TLR(IU0l),TL! 1001) ,GCE(21)

* ~~~~~DIMENSION (1 (1).A1 G(l)A(1 C2lAI2
DIMENSION IFM(190)
INTEGER PFPPQ,OPv0O
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c£

C... INPUT AND CJIECk THE PROBLEM LIMITS AND RF (IIREMENTS.
C

READ(I, ) ZU,ZN,DIZ,NS,IDT,MF',MI,F'CI,NY,NFR

IF NS.LT.1.OR.M.LT.) GO TO 46
IF (NS.GT.1.ANi.MI.LT. 1) Ga TO 46
IF (NS.EO.I.ANE'.MI.LT.I) NY=I
IF (MP.GT. O0) MF1O0

IF (MI.GT.1001) MI:-O-01
IF (NS.EO.1) IBT=O
IF (ZO.LT.O.0) ZU::O.O
ZTZN-,.O

IF (ZT.LT.1.E- O '0 O 48

IF (Z.LT.I.E--l0) I' (ZN-ZO)/1.E42

ZT=ZO+4121 .1E3
IF (ZT.Lr.ZN) ZN=ZT

IF (PCT.LT.O.0S.OR.PCT.GT.2.1) PCT=1.0
T=PCT *ZN
C=ALOG(2.E+8)/(2.0*T)

ZC=3. 14159265358979/T
IF (ZO.LT..E-1O) ZO=DZ
WRITE(6,910) ZOZNDrZ,NS

910 FORMAT(lH1 ,/D, DETERMINL F'..F.(Z) AND C.D.F.(Z)*,/,
1* FOR VALUES OF Z FROM *,F.4,* TO *,FS.4,p* WITH STEP SIZE *,*

2FB.4,/,* FOR THE SUM OF *,12,* TERMS, WHERE*,//)

IF (IDT.E0.1) WRITE(6,912)
912 FORMAT(44H THE TERMS ARE IDENTICALLY DISTRIBUTED, AND

WRITE(6,915) MP, MI, FCTLC
915 FORMAT(//,* THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS :.

114,*.*,//,* CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES

214,*v*,//,7Xii*PERCENT OF HIGHEST Z VALUE = *,F4.
-

,
3*, AXIS FOINT A = *,F8.4,//)

C.. INPUT THE NUMBER OF THE LAST ELEMENT FOR EACH TERM OF THE SUM

C... AND CHECK FOR AN ASCENDING ORDER.

NTnNS
IF (IDT.NE.1) GO TO 8
NT=I
WRITE(6, ) 41H FORM FOR EACH TERM (WHERE YJ = XJ**PJ):

GO TO 9
8 WRITE(6, ) 47H FORM FOR OVERALL PROBLEM (WHERE YJ = XJ:*PJ):
9 READ(,, ) (NLT(I),I=INT)

IF (NI.T1I).LT.1) 00 TO 50
IF 6 TEO..OR.IDT.EO,1) GO 10 13

EgO 1(' IS=2,NS
NLTL 'NL. I(IS)
NI TS-Nl I T( ,- 1)

10 IF (NLIS.GE'.Nt TL) GO TO 50
13 IS-i

ltO 6 J-1,5

lJloJ-

D1O 5 1=1.10
a 11-1-1

IF (IJ.EQO.) GO TO 5
IF (IJ.GT.NLT(NT)) GO TO 7

... • u ,, m ilI I -II II II I &
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IF I(J1.F-0:0) IF-3*I[I

IF (Jl:GT:0O) tE:7(4*1jY.-9

IF (IJ.EO.NI-f (Nr ) IL IE-1

GO TO 3
2 IFM(IE)=lN*
3 TE=IE-1

IF ( JI.E0.O) 0O TO 4
IE ~lE-1
IFM(XE )=Jl

4 IE=]E-l

I J IJ41
6 CONTINUE

IF (NLT(NT).LT.5O) G0 TO 7
IL =190
IFM( 190)=O
IFM( 109)-S
IFM(188 )=IHY

7 WRITE(6,920) (IFM(I).I=1,IL)
920 FORMAT(/,* Z =*,9(A1II,A1).16(Al,2I1,Al) ,//,6X,2-5(Al,2II1A1))

C

CNF:1 .0

KPM-1
N= I

KR=0
RU=O *
RL=O *

C.....FIND' THE PSI FUNCTION VALUES TO BE USED'
C. ..WHEN THE ORDER OF A POLE is MORE THAN 2.

rIO 15 1I 2,2O'2

15 PS11(I) =2.0*F'I(1-1,1.0)
110 44 IS INS

C ... INITIALIZE THE PAR~AMETERS FOR.. THE? IS-TH TERM OF THE SUM.
C

NL=NLT( IS)
CC=1.0
CN7i .0
M=O

A NWO

0=0
* LM-O

LN=O

NAYw0
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* C 110 144 NI-tNF.NL

C,... INPUT THE H-F'JNCTION PARAMETERS FOR THE NH-TN VARIATE.
C.....ANDI SET UP THIS N-FUINCTION.

READ(5, INVTHETA.F'HI,FOW
IF AF*OJL~iE-o OW=1.o
WR17E(6.930) NHNV,THE'TA,PHI ,POW

930 FORMAT(/,',* VARIATE X*,]2.* IS TYPE NUMBIE.R *.i2,1,'/
* 1* INPUT PARAMETERS AFRE THETA PHI

2* , AND POWER =*,Fl .5)
IF <THECTA.L.T.I.E-IO.,LI.FiV.LT.4) GO TO 148
IF (THETA.1-T.I.F-10.A'l-fi.NV.GT.S;) GOn TO 148
IF (FHI.LE.-1.E-lO) C3O TO 148
A (1-,1 .E
GA] 11-1.E+3
MM=1
NN 0O

LID= 1
GO TO (102.104, 132.134,80,80,80,80.80.80,8O,80,so,80) ,NV

NV-=NV-4
GO TO (108,1l0,1l2,116,l18,122,9O,0,90,909) NV

90 1(1)=0.0
Gb'] ) 0.5
NV=NV-i5
GO TO (124,124P100,100)PNV

100 NN=t
PPF' I
GA]! )=0.5
NV=-NV-2
GO TO (128,130),NV

102 PNI=2.0
GO TO 106

104 IF (PHI.LT.I.E-10) GO TO 148
106 GEt ( 1)1 .O/PH I

14 ) =1. 0-G4( 1)
7NnTHETA**G4( 1
TL=TN
GO TO 136

108 IF (FNI.LT.1.L-10) GO TO 148
TN=1 .0/PN]
TC TN
It ( I =0.* 0
GO TO 136

110 THETA -TH1.TA*O.n
PHI -2. 0
GO TO 114

112 IF (PHI.LT.I.E-1I0) 0O TO 148

TN TC/IIGAHMA( THETA)
I4(l ) tHE TA-1 . 0

* GO TO 136
116 TN-1.0/THETA

* TC TN
A(l1)-1.0

On TO 120
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113 TN=LIGAMMA( THE I +PH I) /LIGAMMA( THEI A)

A( )THETA+PH1-1 .0
P(1) THETA-1 .0

0 120 GA(1)=1.0
P = 1

GO TO 13L
122 IF (FHI.LT.l.E-10,) GO TO 148

TC- THETA/flH1
TN7TC/(iGAmmA(THEUlf)*r~iAmm.A(FI))
NNIl

A( 1 )=-F'HI
GA( 1 )=i .0
P(1)=THETA--1.0
GO TO 136

124 TC=1 .0/THETA
TW: Y C/. 806226925452758

GO TO 136
126 TN=.* 3989422 80401433/THETA

TC=. 7071067011136548/THE'TA
GO TO 136

12,3 TN .318309886183791/'THETA^
TL=1 .0/THETA
A(l1)=0.0
GO TO 136

130 TN--(THETA*6.2831053717958)**(-0.)/GrMAe(THETA)
TC=(2.0*'THETA)**(-0. 5)
A (1) -0. 5-THET(A
GO TO 136

132 CN=CN/THETA
CC=CC/THETA

GO I TO 144

C .FNV=4, INPUT THE REMAINING H-FUNCTION PARAMETERS".

134 READ (5, ) MMNNHPF.Hf
IF (MM.LT.0.OR.NN.LT.0) GO0 TO 149
IF (OOl.LT.MM.OR.PFF.LT.NN) GO TO 150(
IF (FF.LT.1.ANEI.Qa.Lr.1) GO TO 152
IF (FP.LT.1) REAII(5. I(-I)fE((,~,O
IF (OO.L1.1) REAE'(5. AIAi11.P
IF (Fif.GT .0.ANII.OQ.GT.0) REAI(5,

TN T HF TA

C.....FOR NV=-4 AND' THE Tio , THE PROGRAM COMrPUTES
C... .THE CONSTANT Fou THE H-FUNCTION IIISTRIBUTION.
C

IF (ABtS(TN).GT.1.E-10) 80 TO 136
TH-TC
IF (OO.LT.1) GO TO 730
DO 720 I1,0
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IF (I.GT.MM) GO To) 730
TN TN/DGAMMA, li( 1 )464% 1))
GO TO 720

7-10 TNrTN*IlIAMM(1.0E(I )-rGbI))
720 CONTINUE
730 1iF (PP.LF.1) GO TO Vx/

110 750 I=1,F'F
- If (I.GT.H*I) GO 10 740

I N= IN/EIGAMMA ( 1 . 0-A (I)> -GA ([f
GO TO 750

740 TN IN*lDG~oMA(A(I)*GAIm
750 CONTINUE

C
C ... FPRINT THE- H-FUNCTrION FOR MHE NH-TN VARIAIE
C

136 WRITE(trY4O) NH
940 FURMAT(//.* THE F 1'.F. FUR VARiAIE X*,I?'.* IS GIVEN I-Y:*./)

IF PR*E 0)WRIE (6,947) MM.NPI
IF (FF.GT.0) WRITL(6,945) MNU~,GAI)11F-
WRITE(6,Y42) TH,TC

942 FURMA)T(FIO.U.,2X,*Hl*,7X,*c*,F1O.5,* XK:*)
IF (OO.EO.0) WRITE(6,947) PP.00
IF (00l.01.0) WRIVC -(6.94UP.0. IIiE()3,=,0

945 FORMAT (14X,213,15X,(* (,83**F.,))
947 FLRMAT U 4X,21.3)

IF (AIS(INq).LT.1.E-10.OR.TC.LT.1,E-10) GO TO 153
C
C.....E'ASEI' UPON THE FOWER TO WHICH THE NH--iN 'ARJIC IS RAIS;ED,
C... IT1S H-FUNCi ION P'ARAMETERS ARE ADJUSTED tMi USED'1TO FIND
C.....THE PARAMETERS OF THE H-FUNCTION DISTRIIJUTION OF THE IS-TN TERM.
C

P51=1-OW-i .0
IF (AllS(Sl).LT.1.E-10) GO) TO 140
TN=TN*TC**(P51l)
T C=TC **F'OW

140 CN- CN*TN
CC=CC*TC
IF (POW.LT.0.0) GO TO 142
CALL STPOM..M 0FWF.DF.R
CALLSEU(M,0.,C.-*0,PWF'GF C.(C)
CALL SETLIP'(C. NN.H.L N,-) .O.P'OW,.Alt ,GAE
CALL SETUF(Hs FF,LF,1 .0,FOW.A,CA,Cl,HCI
GO 10 144

142 CALL S;ETUF'(0.MM,H1,LN..o,r~ow.E.OE,,,AI .0]
CALL ,ETUPF(MM(JF, .- 0FW[IE.G1

-CALL SCTUF(0.NN,CM-1. . OWA-GA, CA, UEA)
CAL L SETUIP'"N.,Of, L-0,1 .*0.POW A,GACDI, (CE)

144 CONT INUE
I Ft-- H
IO :0-14
IF 'If .NF .LT ) WRITE (6. I 17H SE TUP EF*R01-- *i P
IF11 (IO.HC.LO) WR1TE 6, 17ti SETUP ERROR, LQ

CALL SETUNO(,NMN,LM,..0. ovAl.GA1.'A.G'A)
CALL SETUPO(,IPGF-,LQ,1 .0,1.O.C1 .OCl .CD.GC')
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C
r.. SINT THE H-FUNCTION FOR: lNC IS-TN TERM

WE! T"(6,950) IS
9',0 FORMAT(//,* THE P.ti.F. FOR TERM *,12,p

1* UP THE SUM IS GIVEN E'Y:*,/)
WRJ IT1V(6 ,951 ) M.N.CN.C,,,

971 FORMAT( 14X,2I3,/,F10.5.2X.*HI 7X.*(*PFIO.5,* Z), WHERE*,
I1/ ,14X.2I3,/)
IF (MH.GT .0) WRITE(L,

0
52) (Gl)~B(i iH

952 FOR"MfT(* (BA(I),GEiA(I)):*,(6(* *F.,*FS3*))/lX

IF (OF.OT.0) WRITE(6.953)(CII)CII)Ii,)
953 FORMAT(* (C~lI)GCT'T) ):*.(6~*(*,S3*,H.,)/ltx

143 WKTIFCA. )2HTHETA OR FRI NOT POSITIVE
GO TO S2

149 WR ITFIA 1 7H M OR N NEGATIVE
GO TO s2

150 WRITECA. 27H tHOR P) LESS THAN M(OR N)
GO TO 52

152 WRITE (6, 30 PO AFAMETERS F AND 0 BOTH ZERO
GO TO 52

153 WkITE(6, )27H ZERO OR NEGATIVE CONSTANT
GO TO 52

C
C.....CHECK THAT THE H-FUNCTION IS VALIDLY DEFINED,. DETERMIOL IIS
C... .CONVERGENCE TYFF. AND, IF NEEDED', ALIJUST THE RANGE FARAMETLRS.
C

156 CALL CHEEK
IF (NAY.EL4.I) GO TO 521
ZT=1 .O/(CC*TR)
IF (LR.NE.0) GO TO 157
IF (N.LT.1) RtJ=RU+Zl
IF (N.LT.1) KR=KR+l
IF (M.LT.1) RL=RL+ZT

C
C.....IF DESIRED, THE F.t'.F. AND' C.I'.F. OF THE IS-TH TERM ARE FOUNt'.
C ... IF NS=1 AND NY=O. THESE ARE FOLUND BY LAPLACE TRANSFORM INVERSION.

C
157 IF (NY.NE.1) GO TO 18

ZM-ZT
KEY=O
IF (HS.NE.1) GO TO 12
IF (LF,HE.0) Go TO 11
IF (N.LT.1.rHlI.ZI.LTZN) ZH=ZT
IF (M.LT.1.AN1l.ZT.OT.ZO) ZO=LT
IF (ZN.LT.ZO) GO TO 413

11 Cr1LL F~teFCIF (/0, ZN)
GO TO 5 2

12! 1F (LR?.FO.O.ANi.N.LT.) FGO TO 14
I F 'L D AE 1.1) GO TO 16
ZTn-i/n .E43

14 IF (ZN.LT.ZT) ZT=ZN
CALL Pl1* LIFT(DZ.ZT)

GO TO 18
16 IF (ZO.GT ZT) ZT=ZO

IF (ZN.LT.ZT) 0O TO 18
CAI.I Ft'iFCl'rczT,ZN)
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U C

C.. .SET UP THE LAPLACE TRANSFOPM H-F-UNCTION FOFR THE IS-Tli TERM.
C

1s iri-N+l
IF (MN.LT.1) GO TO 29
D1O 20 i=].MN

20 XG(I)=GBA(I)

IF N.LT. 1) GOC TO 24

J-M+I-I
P t I) XL (J) 4 XG (J)

22 G il) ( I)- -Xb(J)

24 IF (M.LT.1 30 I G 28
26 D 26 1-1,M

JLI I ) FC I I

3(XG():C'U) I)

2 GINA " )'xL I J)
28 A)O.

IF (C]P.LT.i) Go r0 38
DO: 30 iI ',

XL (I )C-( i)
30 XG(1)=GCI,(T)

IF (IF'.LT.1) GO TO 34
Ila 36 1= 1.'

J=l10+I
CD(I )vXL(J)+XG(J)

32 GC[,( I )=-XG (J)
34 IF (IO.LT.1) G0 TO 38I

110 36 TIl,lfn
J=IF*+l
Cli(.J) XL ( I)+XG(I )

36 GCD(J)=-XG(I)
38 N=M

Jll IF

I F- 10J
I10=J11

F- N+I P
O:-M+IT
MN'MN+ I
CN=CN/CC
CC71.0CC
WKRITE (15. ?." -1"

954 FORMAI (il31 ..1 L rF'I. .t[ TFANSi ORM: ,/)
WRITE (6, 9t-) V, , CN,CC",FP,r1)

IF (MN.-, . 0 JRI Tfr(I, ,9',2) ( ((:' 1. (I., ,I11,MN)
IF (OF.',1 .. ) WRI rE( !,,3) I(CIII ),LICI 1) ,1=1,0P)
COLL CHLI,

IF (NAY.F 0. 1 ; TO 52
CWN -( 2NF* CN

C

C... USF F"gFCtiF TO FINDi 3HF MI VALUES OF THE LAFLACF TRANSFORM
C... OF THE IS-TH TERM: HF'IF(I) HAS THE REAL PARTS AND
C... HCDF(I) HAS THE IMAfIINARY FARIS OF THE TRANSFORM VALUES.
C
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I\EY=1
CALL FIFCE'F (C ZC)

C .. FIND141 THE FECRoic r OF THE LAPLACE TRANSFOJRMS AT EACH VALUL.
p C

I V (IIT.EO.J.) LI\=NS-1
110 42 P=IM]

Ir (IS.NE.1) GO TO 40
T LP( I ) rHrTlF (1I)I
TL I Ci ) HCDI (1)
IF (nr'.NE.I) GO TO 12

40 rDO 41 J=1,LK
Y= T1 F<(T)
TLR ( T )=Y*HFOF( I)-TI1 )*iCi'( 1.

42 CONTINUE
IF (IIIT.E0.1) (GO TO 45

44 NF=NL+l

C.. .CFR.UMF' ME:THOD FOR NUMERICAL INVERSION OF A LAPLACE TRANSFORM
C

45, IF (KR.E0.NS.AN[I.RUL.LT.ZN) ZN=Rui
IF (ZO).LT.RL-) ZO=RL
IF (111C.NE.1) 00 70 43
IF U.R.D. 1 .ANI,.F U.LT.ZN) ZNHFLU
CNF-CNF**NS

43 CNF=CNF/T
K=l
WRITE(6t955) KPM

9555 FOF:MATC38Hl MAXIMUM NUMBER Or POLES EVALUATEDI = 15,//,
1* z P~iF (Z) CF (Z),)

602 ZK=ZO+FLOAT(K-1 )*rZ
IF (ZK.rT.ZN) 00 TO 606
HFf',F(K)=0.5*TLR( 1)
HE.Dr-K) =HF'IIF R) /C
IF (MI.EO.1) GO TO 605
LDO 604 J=.,MI

ZImZC*FL)(iT( I-1)
Z1-COS(ZI*ZK)
Z2=SINC ZI*fl,)
T1=TLR.( I )
T2=TLI(I)
HELIF(KL)-Hfli (K)+Tl*zl-T2t,7:
HCi'FI (1HCEif I +C( TI *C+TV:'*ZT) *ZI C C 1*ZI-12!*.) *Z2)/(C mC+ZI*Zl)

604 r:UHT I HUE
.40 ; rLr =CHC *E. /V C C*ZR)

HFL HI FLIF C k I*CfJF E
HUL'F CL) -Hf;ji'f I)~N

WF. TF (6. 961) ) Z R Ci LIHl
Y60 FCl,'MAt(F1I.4,A' 12.6)

IF CHFIIF (K) .LT. 0. 0) HFLrif t C) z--111i (K)
IF (HLF(K).LT.0.0) HCLiFRK)-HCb1'(R)

GO TG 602
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606 IF (NF-.NE .I GO 10 52

WRiTE (6 ,961)

9S1 FORMAT~li ,* P'ROBABILITY LDENSITY FUNCTION*,/)

0 WRITE(I6, 962)

962 Ff~hMAT(1Hi CUMULA11VE TIIC;TRIBULTION FUNCTION)?,/)

CALL FLGT(ZI~1,HC1'F.,K)
00 TO 52

46 WRITE(6, 2/H NSMP'(if MI LESS THAN ONE
GO TO 5

48 WR1TE(6, 42H LAST Z-VALLJE LFTSS TH.iA) OR EUUAL TO FIRST
GD TO 52

50 WkITEC6, )34H NLT(X+Il) NOT GREATE R THAN NLT(I)
52 Slor,

END

SUBROIJTINL SETUPF( IlJl1 ,A,L1,SlrWR,LGEP,GFO)
C
C.....ALJUS7 AND ORDER THE H--FUNCTION PARAMETERS FOR THE IS-TH TERM
C ... * INTO ARRAYS THAT ARE CONVENIENT FOR CALCULATING RESIDUES.
C

DIMENSION E(21),GE(21 ),F(21) ,GF(21)

J2=-J1
Kl~tEl+J2
IF (J2.LT.12) GO TO 160

S452 * F W

FMT-F*WRl.

Pio IS II'w- 1.J
L1 1 LiE I 12 X.

F(L1) S3,12.0) $ S2*(F(II)--GL(II)*F'Ml)

160 RETURN
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SUBROUTFINE CHECK

C
CONMON/tHtF/F?(21 )*CE'(2l .GE'A(21 ) UCL'(21 ),CA,I1 .LRt1,MN.UF'
COMMON/L:HONtLY/IF.,IO,N,NAY,TR
INTEGER OF'
ITm0
LR =0
TDI'0.O
TI'.. .0.0

Ttc-[LUAT(0f-MNb/2.0
TRc=:.0
Cflfl.E+3

C=I.J.M

IF (.LT.1.O) GO 228

IF (CH.LT.CA) CA=CH

TL=TLfE3C( I)
202 TR=TR*(Gfl G)
204 IF (M.LT.1) GO TO 200

[D0 206 I=1,M

IF (G.LT.1.E-10) On TO 228
CH=-BA( I /0
IF (CH.GT.CI) CE'=CH
Tte2= T[2+G
TL=TL+4A( 1)

206 TR=TR/(G**C
208 IF (IF.LT.1) GO TO 212

J=I0+1-
[D0 210 i'J.OF'

GELK (I)
IF (G.LTI1.E-10) GO TO 228
TE'2=TD12-G
TL:IL-LI( j)

210 TR=TN*(G**CD
212 IF (HE.LT.) GO TO 216

['0 214 W,110

IF (G.LI .1 .[-10) GO TO 22S
7I-TI'l-G
TL=TL-CIJ( I)

214 TR -TT/(G**U)
216 14' '11'+TI'2

* TTEI'1-TDZ



167

IF (TD.GL; -1.-I10) GO TO 21a
WRITE(6, ) 37H E IS LESS THAN ZERO, NO CONVERGENCE
GO TO 232

218 IF (CA.GT.CE) GO TO 220
WRITE(6, ) 3SH NUMERATOR POLES NOT PROPERLY DIVIIiED
GO TO 232

220 IF (TP.I.E.-1.E-I0) GO TO :22
IF (TF.GE.I.E-1O) GO TO 224

CH=O.0
IT=5
GO 10 226

222 CH=TF,*CA
IT=1
LR=-1
GO TO 226

224 CH=TF'*C1

IT=3
LR=1

226 IF (TI.LT..E-IO.AND.TL.GE.CH) GO TO 230

IF (TL.LT.CH) IT=IT+i

IF (IT.EO.6.ANII.TL.LT.-1.0) IT=7
GO TO 234

228 WRITE(6, ) 3SH ALPHA OR BETA PARAMETER NOT POSITIVE

GO TO 232
230 WRITE(6, )33H It IS ZERD AND L IS GREATER< THAN

WRITE(6,9 29H E TIMES W , NO CONVERGENCE
IT=O

232 NAY=I
234 WRITE(6,965) IT

965 FORMAT(//,* CONVERGENCE TYPE = *,I1)
WRITE (6,970) Tri,,TF', TL., Tk

970 FORMAT(/,7X,* =*,F6.2,5X,*E =*,F6.2,5XP*L =*,F6.2,
15X,*R =*,F7.4)
RETURN

END

i

9,

9i

kg
. . . . . . . . .
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SURRkOLITINE PDIFCDF(ZFF,,ZLF,)

C ... CALCULATION OF H-FUNCTION VALUE.S BlY SUMMATION OF RESIDUES:
C.-*THE F.t'.F * ANDI C .t.F . ARE FOUND IF KEY n0. THU (CAlL AND'
C.... IMAGINARY PARIS OF THE LAPLACE TRANSFORM Ir KEY~l.
C

* COMMON/CF'iF/FlA(21) ,Crl(21),GOlA(21),.GCDI(2H .'A, 11 LR,MMNQI-
COMMON/friF 1/HPFLIF1001), HC'F (1001) .7K (1001)
COMMON /P F'F/ CC, CN, DZ,KEY,K1M,M I MP,NP,ZM,FI'11(1-0)
DIMENSION IDI(21),.JS(21),.I-L(2.1).V(22,'2),W(2.1,2),ZLN(1001)
DIMENSION GAROIJ(21),GARUi'(21)ZI.2(1,01)

INTFEER IF, ERROP
ZF-ZF F
ZL -!LF

r1o : O)I I=l.MN
11.' ( T ) '=0
JS (I )

301 FL ( T) -0.C

KKM=0
KSt 0
KF 1

KMX=KFY*MI+(1-KEY)*(INT((71--ZF)/IZ+1.E-10)+1)
KL. KMX
LD 304 K 1,KL

NPF-~ (K) =0. 0
HCtIF(K)=0.0
IF (KEY.EO0.1) GO TO 302
ZtKl(K)=ZF+IIZ*FLOAl(1-1
ZK2( K )ALOG(ZK1 (K )*CC)
GO TO 304

302 ZIMK=ZL*FLOAT(K-1I)
ZK1 (K)=SFRT (ZF*ZF+ZIMK*ZIMK)
ZK2(K)=ATAN(ZIMK/ZF)
ZLN(K)=ALOG(ZKI(K)*CC)

304 CONTINUE
C
C... .SETUP FOR LHP OR RNP EVALUATION

IFC .El - OT 1
IF (LR.EO.-1) GO TO 31&

IF (ZM.GT.ZF) GO TO 308
LR~1

306 MF=M+l
MLrMN

GO TO 314
308 IF (KEY.En.l) GO TO 310

IF (ZM.LT.ZL) I.L=1N7 I(2M-ZF)/IIZ+1.E-10)+l
* IF (ZM.GL.ZL) 1I14-1

GO TO 311
310 KM-]HT(SIF~t(ZM*Zr *-7r*Zl (/71-1 .E-10)+t

IF (NEY.E0.1) WI~iTL(6, )31H AXIS f'OINT A IS LESS THAN ZM
IF (KM.L-T.KL-) KI -IN
IF (KM.GE.KL) LRm--1

311 IF (MN.E0.M) LR -
IF (M.E0.0) GO TO 360

312 MF=1
ML =M
SuJ-I.0
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£
C: :FSIND THE R IGHTMUS I (LHP*) OR LEP IMOSTI (RHP) UNEVALUATED NUMERA TOR

*C C..OLE S ANDl ITS ORDER (N 1N THE NUMERATOR
C

314 EIO 3164 1=MF,ML

316 PL( I I)=-'A)ABS(GFA( I))
KP=0
KR 7 0

318 KFKF4lI
flU 319 I=IyMN

319 II''I)=O
DO 326 1=MF ML

IF 1I.Efl.MF) GO TO 322
SMF(_="-FL1 (I )
IF (A1S(S;MPL).GT.i.E-1I0) 130 10 320

KN = tKN+ 1
GO TO 324

320 IF (SMFL.GT7.1.E-1O) GO TO 326

322 S=P'L(I)
KN1l

324 Ilt(KN)=1
326 CONTINUE

IF ( LR.Ea.1) 5=-S
IF (KE.EO.1) GO 10 3218
SMl=S-1 .0
IF (ARS(8M1).GT.1.E-10) GO TO 328
KN=KN+ 1
KS1ll

C ..CALCULATE VZERO(WITHOUT POWER TERM) AND' THE ORDER KsT OF POLE S.

C
32-8 PROD2=1.O

PRO14= I .0
Kt= 0
IF (UP.LT.1) GO TO 334
['0 3321 1=1,81

GARGDe(1) tX
IF (EFRRO(X).EO.0.ANIi.X..S.) GO TO 330
PR004-.FRf<04*1.GAMMA IX)
GO TO 332

330 KI1=h1+1
IF (tst.EIJ.KN) GO TO 342
JX=INT(-X+0. 1)
F'ROD'.!=PRO[I2*IIF ACT (IX) * (I *0) **.JX ) OC'( (I

332 CONTINUE
334 PROO1=1.0

PRUI'3= 1. 0
Ssl

IF (MN.LT.l) GOU To 339

['0 338 1-' I ,MN

IF (1.FO.II'tSS) GO In 336
It GARGN(I)=EIA(1)+GI'A(1l*S

FROTiI=PROII*rAMMA(GAKGN( I))
Or TO 339

336 PR0D3=R013*IFACT(JS())*((-.0)**JS(I))*GEIA(I)
KS-KS+i

339 CONTINUE
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339 KNF1 =KN+ 1
IF (KSi.EO.1.ANIi.KS.NE.KN) 00 TO 701
IF (KS1,NE.1.ANUf.KSNE.NP1) 00 TO 701
GO To 702

701 WRITE(6, I28H ERROR IN VZERO CALCULATION
72VP1I=PRODI1*PR0D02/ (PROD3*FROti4)
72VF2-VF'1

IF (NEY.EQ.0.ANtI,1.NE.i1 V'F'2/SM1
NT =KN- 1<1

t'FltFACT(II )*SV

IF2, IFACi di.T-2)*'J

c

IF (NT.LT.2) GO TO 416
VZ1l.0
110 414 L=1,II

vz1=1 *0-vz1
LN 1=L.-1
W( L, 1) =0 *

IF CMN.LT.i) GO TO 406
KS=1

GOD O 404 IM

GO TO 404
402 (1 1)=W(L,1)+( (-6511(11)**L)*FSI(LMIPl.0-)(SIl)

IF (VZl.GT.0.5) W(L,1 )'L.(L.1)-(( (OiC) )t*L)*1-SI1(L)

44 CONTINUE
46 IF (KE.EO.1) 0 TO 414

IF ( ERRX.Q0.N..T05 LO 10 2)408 L
IF(Nl.N.) (.)=W(L ,2-(CI()+I'FAC1 (LM1,)(10S*L

414 CONTNUE

,WR1=W( 1,1)
1R2=W(1.2)

UC1 =PI(IS-)

C .. CMPTEVSUERCIP K- AD H RSIU VD .".
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IF (NEY.EO.1) GO TO 502I: IF (KT.EO.I) GO0 TO 510
W(1rI)- JR1-Z2
W ( 1 ,2)=WRZ-Z2
wI=O.O
GO TO 504

502 V (1,1) =V 1-*1 )*EOS (-S*Z2)

IF (KT.EO i) GO TU 510
W(l I1)W1ZNk
WI=-Z2

504 r1o 5oP I=i.,II

VIF11)V12*W

V ( TPl ,2)-V(I I *W]
PN=1 .0
Dto 506 J=1,I

L1I-J+1
IF (J.EO.1.OR.I.EO.1) GO TO 5O5
14N=EN*FLOAT (L )/FLOAT ( .- 1)

505 V(IF1l I)=V(IF1l I1)+[,N*V(Lt I)*J(Jvi
506 U' IF1.2)=V( IF1,2)+BN*V(L,p2)b(J,'2)
508 CONTINUE
510 IF (K.LT.hL.OR.K1.EO.0) GO TO 512

IF (IT.EUJ.5) GO TO 341
IF (IT.EO.6.AND.KEY.EUl.1) GO TO 341

512 VII=V(RT,2)/IIF1
IF (AIIS(VIIK) .GT.ABS(VMX)) VMX=VIDK
NEW> LK) =HCEDF (K) +VDI\

IF (K.LT.KL.OR'.K1.EO.O) GO TO 514
IF (I1.EO.6) GO TO 341

514 VI'K=0.0
IF (KS91.NE.1) VDiK=V(I\T,1)/DiF1
IF (KSI.EP.I.A)ND.KT.GT.I) VLI :iS>I,1)/11F2
IF (ABtS(VDIK).GT.ABiS(VMX)) VMX=VDK

340 NPTIFU(K)=NtiIF (K) +VtK
C
C.....CHECK TERMINATION CONDITIONS, tiEDTE THE ARRAYS FOR TH4E
C.....NUMERAtOFK POLES, AND DETERMINE WHETHER THE RESIDUE AT
C... .S=1 16 NEEDED FOR THE C.D.F.
C

341 IF (ADI0(YMX).GE.1.E-15) KPZ=O
IF (ASVMX).LT.1.E-i5) KFZZKPZtl
IF (KF'Z.61.IO) GO TO 348

342- IF (KF'.EO.NFl) GU 10 348
*IF (KS'I.NE.1) GO0 TO 344

344 VO 346 k1, N

JS( I )-J 3( 1)+I
346 FL(I),- (A(U4)FLOAT(.S(I /AIS(GEA(I)

GO TO 318
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348 IF (k<EY.EO.1) GO TO 360
RES-0.0
I F (CIF.LT.1) GO 10 352
rio 350 1-1i14FV ~x=rCtl( +GcI'( I)

IF (ERROR(X).N:.0) GO TO 350
IF (X.GT.O.5) GO 1() 35()

* RES=1.0
GO TO 352

3!50 CONTINUE
352 IF (KS1.FO.2) RFS 1.0F. IF (Lk.LT.l.AND:.CA.LT.i.O0) RES=1.0

WF< 1TE (6, 775)
975 FORMAT(113* z frlr (Z) JFQ

11o 358 \R4.
NPtiF (1, )HF (K) *CN

WRITE(l6-980) Zhi (R) ,HFr~F (K) ,HCtIF(K)
IF (HF'iF I(t) LT .0.0) HFL'F(K )=-HPrlI (K)

358 IF (HCDF(K).LT.0.0 ) NCDF ( K) =-HCD~F (
980 FORMAT(Fl11.4.2F 12.6)

WRITE(6,985) NP
985 FORMATh//Y* NUMBER OF POLES EVALUATED *,14)
360 IF (KF.GT.KF'M) KF'MIKF'

IF (LR.NE.0) GO 'TO 362

KF=I'L+l
KL=KMX
GO TO 306

362 IF (IT.E9.7.OR.IT.LT.n) GO TO 364
IF (KKM.LT.2) (3O TO 364
NILF(KKM=HPFFKKM )+Nf'riF(KKM-1)> /2-.0
HCrIF(KNM)=(NCrIF(KKM+1)+HCriF(KKM-1))/2.0

364 IF (IKEY.EG.l) GO TO 399
IF (NP.NE.1) GO TO 399
WRITE(6,9YO)

990 FORMAT(lNl PFROBABILITY DENSITY FUNCTION*,'*,
CALL . O.T (ZF,1. NF'ri,KMX)
WRITE(6.995)

995 FORMAT(IH ,* CUMULATIVE DISTRIBUTION FUNCIION*v/)

CALL F'LOT(ZKl.NCOFvKMX)
399 RETURN

f NiD

* FU14LTION rIFACI (N)
C
C.. .CAtCUL-(,TF N FACIC)F:IAL
C

IFACT~wI .0
IF: (N.LE.1) GO TO 1204
Tin 1202 I1t,N

1202 IlFACT=t'FA(LT*FLOAT( 1)
1204 RETURN

END



173

INTEGZP FU'dCTI1jN ERROR (1)

C.o.AN INTCG:R FuNCTvI' WM1CN RETUR~NS TH- C03 LRRORzO IF x IS AA
C..1Pd1CER9 AND~ ERRORM1 T'ERwrsc (A ciCK F;R PRECCSIOU PR30LEIS)

CRROR~l

* IF CXLT.0.*') J:E.-5.E-1
IF CXGLC.01 J=-.F41
ZZABS(X-FLI)AT(J)b{.IF (Z.LT.1.: '10) RO

FUNCTLIN DGAMPA (XcPI
DimrNs:014 CK(26)
!NT 7GEP ERROP
DATA CKtI. .0 ,0.577215664901533,- 0.655878fl52O254,-0.O42002635034
1095.l6566I3292,-4.2117l34i555443 '-2.-. 009621 l52?1?T3&-Mi.
2193463-. 16119-41.280502823392E

X=XFP

I(X.LT.0.E*01 J=X-5.E-1

IF (XgG~q0qE*O)
IF ((EqRORMX. .0l.ANO.ELT&5..-.Il GO TO 1614

IF (EROA(l.!20O T; 1616
PROC.E*0
IF (XwjT.1.(.0) 60 TO 1602

I I (X*LT*..C'0 0 TO 1606
6O TO 1610

1602 MzNMT(Xl
DO 1604 I110

1604 PNODPOD*tX.FL3AT(!))
Z=X-F OAT (41
60 TO-1610
16 MIT(ABS(3C)I.

DO1608 12141'
1608 PROO?( X.FLlAT(I1f)
ZxX*FLOA1 C MI

1610 SU'4:p. .0
00 1612 K=1#26

1612 SlJStSIJ*4CI( IOZ..g

RET URN
1614 WRITE (6*16181

RE TURN
1616 DGAMAzOFACTf.I-1)

RETUR4
1618 FOR 0A T ( 104, 3OI4ATTEMPT TO FIND GAMMAMK FOR Nomposirive INUrGER

1 ARGU!?NT X IN SUSPIOGRAM OGAMMA)
EN
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FUNCTIJON 'S (NFF * 7F*F)
DIMENSION ZETA(100)
INTEGERF ERROR~
DATA ZETA'0.E+O0aS44934O6698226, .20205690315,9594, .8232323371113

7944E2 1703986021E2 .995422E,1000-

3-44180 4196E3 .268533E4E3 .12134504Y -, '

IF (N.ErG0) F0SIE-.577'1566496070533 .4v,.,582948b9-4,7
TERM-0 7F-,38.2324994 -.'-1 21 27,534E5 9300
X1 .E+0 .- 192877 I -6 .340O7!7Ee .129295 1 -,
7N961 8905*~(12 Fl*E'FACT(N)-,1405.'4'.'3F:7 .-'t0?lc'?3

IF . E.0.E+0) J=ZI,.'-551 4 -1.6-'75L-1,l)0 95.1,

IF (Z.LT.12.-) 00 TO 112.273,Pl12z*.L/

D7 O 1702UM+1=42,100--l

170 (EA1(Z5-).GTA.E-1) G O10

TEkMV O.P SO1

175SUM=O.E+O

IF (N.NE.O)-1 GO TO 171

W=X+7.
170 I AS7-)GT5E-*GOT 10

1705 DIJM=I''-S

W=W*X*FOA (H )FLAT(1
IF (A1S(UMtIMY)GL1. ) G10 70 1700

4 170812 =111
1714 XX+1 .0SU

SIMr!UM+(Z+X**(--(N+J)

IF (AVS(?~lMI).GT.5.-G1-J') GO TO 17 I

IF GO TO 1704
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172 4 WRITE (6, 173A)

1Z26a IF ('J.LE.0) O U 10
Jj)t-.i -I

IF (N.EO.0)) GO TO 1731
IF J.VI~l GOTO172Y

DOU 1728,~,J
1728 SUMCSUN+F1.or, T ( I)* (-N- I

1''$' P-SI = N 1AI*EOS AA-E rN I
RET UR-N

131 IF (J 7.1) GO0 TOI 175J3
110 1732 T'1 9 JJ

I-SI=FSI+SUMi
1733 RE TURN
1736 FORMAT ( IN-, 89HA TiEMFI TO FIN 11' fIl(Z) OR flERIVt-iT1YE FOR NONFUSi

ITTVE INTEGER ARGUMENT Z IN S~LJisJI<JAIAM PSI)
END'
SLJFROUTENE PLOT (ZN,NPUINTS)

C . PLOT THE: F' .LD*F OR C * i *F. VALUES CAL CULATELI LIY FLIT USE:

REAL Z(NFUINTS),Hi(NI'OINTS),SCALE(l.1)
INTEGER' GRAPIH(51.101),CHAR()LI-NE( 101)
DATA CHAR"'','*,'t'''./IE*,*-,*y*-.*,*-

11O 1802 I=1,RR

182CONTINUE
XMINr2.O*Z(l1 -7(2)
IF (ALS(XMIN).GT,1.E--iO) XMtN=Z(i)
XMAX=7( II)
YMAX,:0.0
VMINH(1I I
L'O 18104 I'1,l1

IF (N(I).0I.VMAX) YMAX=N(1)
IF (N(Ii.LT.VMIN) YMIN Fk1)

1804 CONTINUE
XSTEF'A(XMAX-XMIN)/LLAT(I-,-i)
IF (YNA)X.IiT.O.9.ANLI.YMAiX.LTi,10) VMAX1-.0
IF (VMIJJ.LE,0.i) VMIN-0.0
YSTEF= (YMAX- YIMN /FLIIA(LL -1
IF (0.0.51 .YNIT) (;0 TO 1812
DO IU106 [: i * I

F 1 + [NT ((V(I) -XTIN I /x2 iFF40.*451)
LAI+INT I((YMAX-Hf I I/Y SIR:[t0.t0-,)
GRA'110 K)-=CHARY2)

1806 CONTINUE
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I\ 1+ NI(ALLLUGIO(AMAX1 (AtS( XMAX) AXM I N))

U---1+JN7(ALOiIO(YMAX))
IF (-.ELAI..E LL O
tim -O
DUt 1308 LI.tLL

SCALE(I) (YMAXFLOATUl( - )*YSEF/ o;U.**L.) ~ ,

IF_(MN ,NL .0) WR IT E (6, 11 (~i I J 1\1I,X)
MMtMM4 1

IF (MM.EO.5z-) lMOI.1808 CONTINUE
£CALE(1VtYMIN'( 10. 0**L)
WRITE (6.IUIA)(LTHEi (1), I ,i
11O 1810 1=1,11

SCALE(I)=XMN+F LOT (1I I1. *XSTEP 1 .**K)
1810 CONTINUIE

WRITE (6.1818)(SLEI,1ll

WRITE (e.1320) 10.0**K,10.0**L
RETURN

1812 WRITL (6,) 52H NEGATIVE VALUE OF H OCCURS, PLOT TERMINATES
PC fliRN

1814 FORMAT (2X.FII.4. 2H *,101A1)
1816 FORMAT (l0X, 2H I,1O1A1)
1818 FORMAT ( 9X,11F6. 2 ,4X))
1820 FORMAT (//,10X, 25HHURIZONTrAL SCALE FACTOR= ,E8.1./,IOX, 25NVERlIL(.

lAL SCALE FACTOR= .EB.l)
END
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B.2. GLOSSARY OF IDENTIFIERS IN COMPUTER MRQCA

-SUBROUTINES:

CHECK = subroutine that checks for a validly defined
H- function and finds the convergence type.

DFACT(N) = function that computes N factorial.
DGAMMA(XFP) = function that computes gamma of XFP.
ERROR(X) = integer function that returns the value zero if

X is integer and one if X is not integer.
PDFCDF = subroutine for calculation of H- function values

by summation of residues.
PLOT = subroutine that plots the PDF and CDF.
PSI(NFP,ZFP) = function that computes the NFP-th derivative of

the psi function evaluated at ZFP.
SETUP = subroutine that adjusts and orders H- function

parameters into arrays convenient for calculating
residues.

A(21) = Array for ai, inl,...,n, the first elements of ordered
pairs in an H- function parameter list, for a single

', variate.
A1(21) = Temporary holding array for second part of array BA.
B(21) = Array for bi, i ,...,m, the first elements of ordered

pairs in an H- function parameter list, for a single
variate.

A BA(21) = Array for a term of the sum, arranved for convenient
computing of poles and residues; EA(i)=b i for i1,...,m
and BA(m+i) = I- a for iml,...,n.

BN = Binomial coefficient(PDFCDF only).
C = Crump constant A.
CA Upper bound-for W, the intercept of the contour integral.
CB = Lower bound for W(CYECK only).
CC = Coefficient in H- function argument for term IS of sum.
CD(21) = Array for a term of the sum, arranged for convenient

computing of poles and residues; CD(i) U1- b+i, i=l,...,
q - m = IQ and CD(i+IQ) = an+i, i-,..,pI- nP .

CH = Check value used to find CA and CB and to compare
convergence parameter L and E*W (CHECK only).

CN = Distribution constant for term IS of the sum.
CNFT = Leadinr constant for Crump method, without exponential

part.
CNFE = Leading constant for Crump method, with exponential part.

-C1(21) = Temporary holding array for second Dart of array CD.
DF1 = + the factorial of KT-1 (PDFCDF only).
DF2 = ± the factorial of KT-2, used for PDF with pole at s= I

(PDFCDF only).
DZ = Step size for Z (see input data card 1).
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E(21) = Input array of first elements of H- function ordered
pairs for SETUP.

F(21) = Output array of first elements of ordered pairs(SETUP).
FM(190) = Alphanumeric array used to print the form of the problem

(limit of 50 variates and constants).
G = Second element of an H-function ordered pair(CHECK).
GA(21) = Array for Ai, i=1,...,n, the second elements of ordered

pairs in an H- function parameter list, for a single
variate.

GARGD(21) = Array for the values of denominator gamma arguments at
a given pole(PDFCDF only).

GARGN(21) = Array for the values of numerator gamma arguments at a
given pole(PDFCDF only).

GAI(21) = Temporary holding array for second part of array GBA.
GB(21) = Array for Bj, i1,...,m, the second elements of ordered

pairs in an H- function parameter list, for a single
variate.

GBA(21) = Array for a term of the sum, arranged for convenient
computing of poles and residlues; GBA(i)=Bi for i1,...,
m, and GBA(m+i)- -Ai for i=l,...,n.

GCi(21) = Temporary holding array for second part of array GCD.
GCD(21) = Array for a term of the sum, arranged for convenient

computing of poles and residues; GCD(i)=-Bm+i for i=1,
...,q-m=IQ, and GCD(IQ+ i)=An+ for i=1,...,p-n-IP.

GE(21) = Innut array of second elements of H- function ordered
pairs for SETUP.

GF(21) = Output array of second elements of ordered pairs(SETUP).
HCDF(1001) = Array for intermediate and final answers, CDF if KEY- O.
HPDF(iO01) = Array for intermediate and final answers, PDF if KEY- O.
I = Generally used counter.
ID(21) = Array giving the locations of numerator singularities

for a given-pole(PDFCDF only).
IIKS = ID(KS).
IDT = Indicator for identically distributed terms (see input

data card 1).
IE = Counter used to fill in array FM.
II = Counter in SETUP, - KT-1 in PDFCDF.
IJ = Counter used to fill in array FM.
IL = Last element in FM.
IF = p-n, for a term of the sum.
IPi = I+ I (PDFCDF only).
IQ = q-m, for a term of the su..
IS - Counter for terms of the sum, IS- 1,...,NS.
IT = Convergence type, IT=Oi,...,7 (CHECK).
Ii = Counter in SETUP, = I-1 to fill in array PH.
12 = Counter in SETUP.
J = Generally used counter.
JD Temporary holding place for an integer value.
JS(21)' Array for Jik, where -Jik is the next sinvularity of the

i-th ramma term in nurerator(PDFCDF only).

_ • 4
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JX = Nearest integer value of -X (PDFCDF only).

Ji = Counter in SETUP, = J-1 to fill in array FM.
J2 = Counter in SETUP.
K = Counter for Z, HPDF and HCDF values.
KD = Order of denominator singularities for a given pole

.,i (PDFCDF only).
KEY = 0 if PDFCDF is used to find the PDF and CDF of a term;

= 1 if PDFCDF is used to find the real and imaginary parts
of a Laplace transform.

KF = I or KM+I, first value of K for a LH or a RHP
evaluation(PDFCDF only).

KKM = 0 if HPDF(KL) is to be evaluated by summing residues;
= KL otherwise (PDFCDF only).

KL = KM or KMX, last value of K for a LHP or a RHP evaluation
(PDFCDF only).

KM = Last value of K for LHP evaluation when both LHP and RHP
evaluations are made(PDFCDF only).

KMX = Maximum possible value of K (PDFCDF only).
KN = Order of numerator singularities for a given pole

(PDFCDF only).
KNP1 = KN+ 1 (PDFCDF only).
KP - Counter for number of poles evaluated (PDFCDF only).
KPM = Maximum number of poles evaluated for all terms in a sum.
KPZ = Counter for number of consecutive times that there is a

negligible value for a residue(PDFCDF only).
KR = Counter for the number of terms in the sum with an upper

bound on range; if the final value is not equal to NS,
there is no upper bound on range for the sum.

KS = Counter for number of singularities considered in the
numerator for a given pole(PDFCDF only).

KS1 = Indicator for status of pole at s- 1; 0 if not yet
considered,-1 if under consideration, 2 if has been
considered (PDFCDF only).

KT = Order of a given pole(PDFCDF only).
Ki = Counter in SETUP; = 0 in PDFCDF if ZK1(KL)#ZM, else =I.
K2 = 2- KEY (PDFCDF only).
L = Counter in PDFCDF.
LK = NS- I if IDT 1, = I otherwise; number of required

products of Laplace transform values.
LM,LN,LP,LQ= Counters used to check SETUP.
LM1 = L- I (PDFCDF only).
LR - 1, if both LHP and RHP evaluation is required;

1 Q, if only RH evaluation is required; T
= -1, if only LHP evaluation is required.

Li = Counter in SETUP.
M - m for a term of the sum.
KY = I or M+1, first value for a counter on BA or GBA(PDFCDF).
Mi = Number of Crump values (see input data card 1).
ML a M or M+N, last value for a counter on BA or GBA(PDFCDF). A

-A.
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MM = m for a single variate.
MN = M+N.
MP = Maximum number of poles (see input data card 1).
N = n for a term of the sum.
NAY = Indicator for an error requiring program termination.
NF = Number of first variate/constant for term IS of the sum.
NH = Counter for variate/constant under consideration;

= 1,...,NLT(NS).
NL = Number of last variate/constant for term IS of the sum.
NLT(50) = Array for values of NL (see input data card 2).
NLTL,NLTS = Temporary values used to check ascending order of NLT.
NN = n for a single variate.
NP = Indicator for plotting requirement (see input data

card 1).
NS = Number of terms in the sum (see input data card 1).
NT = 1 if IDT 1, = NS otherwise.
NV = Type of variate (see input data cards).
P = p for a term of the sum.
PCT = Proportion of maximum Z (see input data card 1).
PHI = Variate parameter (see input data cards).
PL(21) = Array for the next value of the pole for the i-th term

in the numerator(PDFCDF only).

PM1 = PWR- 1 (SETUP only).
POW = Power to which variate is raised (see input data cards).
PP = p for a single variate.
PROD1, PROD2,
PROD3,PROD = Products used in computing VZEO(PDFCDF only).
PSI1(20) = Psi function values (1,1), used when order of a pole is

more than 2.
PSi = POW- 1.
PWR = POW (SETUP only).
Q - q for a term of the sum.
QP = IP+ IQ = p- n +q- a, number of denominator gamma terms.
QQ = q for a single variate.
RES = 1, if residue at s- i is not included in finding CD?;

= 0, otherwise (PDFCDF only).
RL = Loer bound on range of Z, if one exists that is > ZO.
RU = Upper bound on range of Z, if one exists that is < ZN.
S = Value of the pole under consideration(PDFCDF only).
SMPL = Difference between poles of gamma functions, used to

determine the unevaluated pole with smallest magnitude
and its order in the numerator(PDFCDF only).

SM1 = S- I (PDFCDF only).
SV = 1 for LHP evaluation, u- 1 for REP (PDFCDF only).
SI,S2,S3,s4- Values used in SETUP.
T = Crump constant T.
TC = Coefficient in H- function argument, for a single

variate.
TD a Convergence parameter J (CHECK only).
TD1,TD2 = Values used to compute TD and TP (CHECK only).
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THETA = Variate parameter (see input data cards).
TL = Convergence parameter L (CHECK only).
TLI(1001) = Imaginary parts of Laplace transform values.
TLR(1001) = Real parts of Laplace transform values.
TN = Distribution constant for a single variate.
TP = Convergence parameter U (CHECK only).
TR = Convergence parameter R
T1,T2 = Temporary values of TLR(I) and TLI(I).
V(22,2) - VZERO through V(KT- 1) array(PDFCDF only).

VBK = Final value of the residue for a given pole and a
given K (PDFCDF only).IVIVC - Maximum residue for a given pole and for all K
(PDFCDF only).

VP1,VP2 = V(1,1) and V(1,2) without Z**-S term(PDFCDF only).
VZ1 = 0.0 if counter L is odd, PSI1 term not added to W(L,1);

U1.0 if L is even, PSIl term added to W(L,1) (PDFCDF).
W(21,2) = WZERO throuvh W(KT- 2) (FDFCDF only).
WI = Imaginary part of WZER0 (PDFCDF only).
WR1,VM2 = WZERO, or W(1,1) and W(1,2), without -logZ term(PDFCDF).
X = Argument of a gamma function for a given pole (?DFCDF).
XG(21) - Temporary holding array for GBA and GCD elements, used

to set up GBA and GCD for the Laplace transform
H- function for term IS of the sum.

XL(21) - Temporary holdinR array for BA and CD elements, used to
set up BA and CD for the Laplace transform H- function
for term IS of the sum.

T = Temporary holding Place for old TLR(I) value when
computing new TLR(I) and TLI(I) values.

ZC = Constant for argument increments in Crump method.
ZF - Starting Z value(PDFCDF only).
ZI = Imaginary part of Crump complex number.
ZIMK = Imaginary part of Crump complex number(PDFCDF only).
ZK = ZK1(K).
ZK1(1001) aArray for values of Z.
ZK2(1001) =Array for arctan or log values(PDFCDF only).
ZL = Final Z value if KEY=, ZC if KEY- 1 (PDFCDF only).
ZLN(1001) = Array for log values(PDFCDF only).

zM = Z value that separates LHP and RHP evaluations.
ZN a Last Z value (see input data card 1).
Zo = First Z value (see input data card 1).
ZT x Value used to chan~e or test reasonableness of ZO, ZN,

and DZ inputs and ZF, ZL, and ZM values.
Z1,Z2 = Temporary values used in Crump method.
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5

APPENDIX C: EXAMPLES OF COMPUTER PROGRAM OUTPUT

The following examples were run at The University of Texas at

Austin on a CYBER 170/750B, using the computer program of Appendix B.

C.I. SUM OF TWO IDENTICALLY DISTRIBUTED EXPONENTIAL VARIATES

Problem requirements:

Variates have exponential distributions with PHI = 2.0

ZO=0.0 ZNa 10.0 DZ=0.2

Distribution of individual variate is desired

Plots are desired

Input data cards:

0.0 10.0 0.2 2 1 100 1001 1.0 1 1

1

5 0.0 2.0 1.0

Computer Timet

I/O Time = 3.939 * .8 = 3.151 seconds

CPU Time = 7.792 * 1.6 = 12.467 seconds

TM Time = 15.618 seconds

i
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C.2. SUM OF TWO NENTIAL VARIATES. NOT IDENTICALLY DISTRIBUT

Problem requirements:

Exponential distributions have parameters 01=2.0 and 02=3.0

ZO = 0.0 ZN = 15.0 DZ - 0.2

istributions of individual variates are not desired

Plots are desired

Input data cards:

0.0 15.0 0.2 2 0 100 1001 1.0 0 1

1 2

5 0.0 2.0 1.0

5 0.0 3.0 1.0

Computer Time:

I/O Time = 4.003 * .8 - 3.202 seconds

CPU Time = 16.204 * 1.6 = 25.926 seconds

TM Time = 29.128 seconds
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MAXIMUM NUMBER OF POLES EVALUATED 100

Z PF'F(Z) CDF(Z)

•.2000 .030675 .003154
.4000 .056439 .011942
.6000 .077912 .025444
.8000 .095611 .042855

1.0000 .109999 .063467
1.2000 .121508 .086663
1.4000 .130506 .111903
1.6000 .137316 .138719
1.8000 .142242 .166704
2.0000 .145540 .195508
2.2000 .147433 .224826
2.4000 .148134 .254402
2.6000 .147821 .284012
2.8000 .146642 .313472
3.0000 .144748 .342622
3.2000 .142260 ,371332
3.4000 .139273 .399492
3.6000 .135894 .427015
3.8000 .132204 .453829
4.0000 .128260 .479879
4.2000 .124139 .505122
4.4000 .119895 .529527
4.6000 .115554 .553072
4.8000 .111176 .575746
5.0000 .106797 .597543
5.2000 .102418 .618464
5.4000 .098089 .638514
5.6000 .093836 .657705
5.8000 .089638 .676051
6.0000 .085542 .693568
6.2000 .081569 .710277
6.4000 .077675 .726199
6.6000 .073911 o741357
6.8000 .070298 .755775
7.0000 .066770 .769479
7.2000 .063382 .782494
7.4000 .060163 .794845

4.
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7.6000 .057018 .806560
7.8000 .054013 .817663
8.0000 .051194 .828181
8.2000 .048424 .838138
8.4000 .045788 .847561
8.6000 .043356 .856472
8.8000 .040937 .864896
9.0000 .038639 .872857
9.2000 .036573 .880375
9.4000 .034474 .887473
9.6000 .032475 .894173
9.8000 .030753 .900493
10.0000 .028937 .906454
10.2000 .027192 .912074
10.4000 .025795 .917371
10.6000 .024225 .922360
10.8000 .022683 .927062
11.0000 .021598 .931489
11.2000 .020238 .935656
11.4000 .018844 .939580
11.6000 .018068 .943272
11.8000 .016887 .946743
12.0000 .015571 .950011
12.2000 .015118 .953084
12.4000 .014091 .955969
12.6000 .012771 .958686
1.2.8000 .012673 .961239
13.0000 .011783 .963633
13.2000 .010348 .965889
13.4000 .010667 .968008
13.6000 .009911 .969990
13.8000 .008210 .971861
14.0000 .009043 .973617
.4.2000 .008441 .975254
14.4000 .006262 .976804
14.6000 .007755 .978260
14.8000 .007364 .979609
15.0000 .004396 .980892

I
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