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A practical technique is presented for determining the exact
probability density function and cumulative distribution function of
a sum of any number of terms involving any combination of products,

quotients, and powers of independent random variables with H- function

distributions.

The H- function is the most peneral named function,
encompassing as special cases most of the other special functions of
mathematies and many of the classical statistical distributions. Its

unique properties make it a powerful tool for statistical analysis.

In particular, the product, quotient, and powers of independent
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H- function variates are also H- function variates, and the Laplace
and Fourier transforms and the derivatives of an H- function are

readily-determined H- functions.
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history on H- functions and the algebra of random variables

T

’ drenetormabioninihabosdanniisniainpoey ani dafinition, properties and
special cases of the H- function. For determining whether conver-
’ gence of a general Mellin- Barnes integral or an H- function occurs
with left-half-plane versus right-half-plane summation of residues, ;
evaluation guidelines are formally established and applied to th: }
?‘y
known special cases, the laplace transform, and the derivatives of N
the H- function. Then, a n'w, improved formulation for evaluaticn of
an H- function by summing residues is derived. 1
!
The definition, special cases, and transformation theorems for }
|
the H- function distribution are presented. A new formula for find- !
ing the constant of an H-~ function distribution is derived. Also,
.
the cumulative distribution function of an H- function distributioun 1
is shown to be a convergent H- function, and a more «fficient way to 5 1
compute it is found. 3
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ABSTRACT

THE H- FUNCTION AND PROBABILITY DENSITY FUNCTIONS OF CERTAIN
ALGEBRAIC COMBEINATIONS OF INDEPENDENT RANDOM VARTABLES
WITH H- FUNCTION PROBABILITY DISTRIBUTIONS

Ivy Dewey Cook, Jr., Ph.D.
The University of Texas at Austin, 1981

Supervising Professor: J. Wesley Barnes

A practical technique is presented for determining the exact
probability density function and cumulative distribution function of
a sum of any number of terms jinvolving any combination of products,
quotients, and powers of independent random variables with H- function
distributions. The H- function is the most general named function,
encompassing as special cases most of the other special functions of
mathematics and many of the classical statistical distributions. Its
unique properties make it a powerful tool for statistical analysis.
In particular, the product, quotient, and powers of independent
H- function variates are also H- function variates, and the Laplace
and Fourier transforms and the derivatives of an H- function are

readily-determined H~ functions.

This dissertation first oprovides background material, including
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history on H- functions and the algebra of random variables,
definitions and properties of integral transforms, theorems on
transformations of random variables, and definition, properties and
special cases of the H- function. For determining whether conver-
gence of a zeneral Mellin- Barnes integral or an H- function occurs
with left-half-plane versus right-half-plane summation of residues,
evaluation guidelines are formally established and applied to the
known special cases, the laplace transform, and the derivatives of
the H=- function. Then, a new, improved formulation for evaluation of
an H- function by summing residues is derived. This formulation is
combined with a Laplace transform numerical inversion method to give
a second new formulation.

The definition, special cases, and transformation theorems for
the H- function distribution are presented. A new formula for find-
ing the constant of an H- function distribution is derived. Also,
the cumulative distribution function of an H- function distribution
is shown to be a convergent H- function, and a more efficient way to
compute it is found. Demonstration of the practical technique for
handling sums is accompanied by an implementing computer program.
Some examples of areas of application are discussed.

Throughout this dissertation, a number of new H~ function
formulas are found, including relations between given H- functions
and other named functions or lower order Y- functions, special-case

derivative rules, and improved transform and derivative formulas.
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CHAPTER 1

INTRODUCTION AND REVIEW

1.1. PURPOSE AND SCOPE

Suppose one wishes to determine the exact probability density
function of the sum of N independent random variables, XyseooesXyy
with known probability density functions f,(x;), i=1,...,N, respec-
tively, such that f;(x;)=0 for x; €0, 1=1,...,N. That the desired
answer is the inverse Laplace transform of the product of the N
Laplace transforms of the f; is well-established. This transform
technique has been used for many special cases of f;, particularly

when the f; are identical. To date, due to the integrations needed

to find both the Laplace transforms and the inverse Laplace transform,

each special case has been handled individually.

Now, suppos? one has a general function which has as special
cases all of the probability density functions f; in some group of
interest. If the transform technique is applied to the problem with
f; each taking the form of the general function, then the resulting
solution covers all those problems involving any combination of the
special cases. This is the motivation for using a general function.

Further, suppose an added bonus. Suppose that the product

M P

poy Yy © , where each random variasble Yy has a probability density
J=1

function expressible in the genersl function form and each PJ is a

positive or negative rational constant, j=1,...,M, is known to be a

1
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random variable with a probability density function that is easily
and immediately expressible in the general function form. Then,
the problem of finding the probability density function of

where the independent random variables xij all have genersl function

forms for their probability density functions and Py y are rational

constants, reduces to finding the proba_bility density function of
=

where the independent random variables Y, all have general function

forms for their probability density functions, a problem already

covered by the general function transform solution.

The primary purpose of this dissertation is to develop a general
technique, presented in Chapter 4, for determining the probability
density function and the cumulative distribution function of the
random variable

& Woop,
2= _ (T X3 "),
1=1 j=1
where the Xy j are independent random variables with probability
density functions expressible as H- functions and the Pij are rational
constants. The general function known as the H- function is chosen
for several reasons. First, the H=- function is the most general of

the special functions and includes nearly every named function as a
special case. Second, the H- function distribution, presented in

- A - s
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Chapter 4, has the added bonus that the products, quotients and
rational powers of independent H- function variates are also

H=- function variates and are easily characterized. Third, the
laplace transform of an H- function is a related, known H- function,
which means an integration is not needed for finding Laplace trans-
forms for H- functions.

In the course of developing the above general technique, some
secondary purposes became evident. One is the attempt, in Chapter 2,
to relate H- functions to known elementary or special functions and
to other simpler H- functions. The general form for H- functions is
a contour integral containing gamma functions and is not readily
identified by this form. The H- function contour integral can be
evaluated using residues under certain convergence conditions. The

aim of Chapter 3 is to develop practical guidelines for when left

half plane residues versus right half plane residues should be summed

in order to evaluate a given H- function. These guidelines are then
applied to known formulas for the H- function that represent special
cases, the Laplace transform, or the derivative.

Chapter 5 presents an improved formulation for using residues to
numerically evaluate the H- function. This numerical evaiuvation is
needed both to implement the general technique and to just evaluate
a single given H- function.

Determinagtion of distributions of algebraic combinations of
independent random variables has application in virtually every
aspect of probability and statistics. The few applications given in

| . o
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Chapter 6 are intended to prod the imagination as to the vast number
of potential areas of application and not to limit the extent of
possible usage.

Some important limitations to the scope of this dissertation
must be stated. For instance, only independent random variables are
considered, though distributions of functions of dependent variates
may be expressed as H- functions. Also, no exact method has been
found to deal, in general terms, with certain linear combinations of
independent random variables, particularly differences and also the
product, quotient, or powers of sums and differences. Although many
attempts were made, there was no Success; general evaluation of such
combinations will require some theoretical breakthroughs.

After much effort, no closed-form solution for the general teche-
nique has been found. The accompanylng computer program, however, can
be used to find values of the desired probability density function to
any desired accuracy.

The only alternatives at present to the exact determination of a
probability density function are various approximating methods based
upon either the moments of a distribution or simulation. Such methods
have many disadvantages and have been addressed extensively by others
(7,21). Obviously, an exact, complete determination of a probability
density function is preferable to any approximation, therefore these
approximating methods will not be treated here.

Only real-valued variates and functions are considered. When

inverting the Laplace transform, the computer program can handle

4
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complex values of the transform argument, but it is not designed to
handle random variables or probability density functions that assume
complex values. Also, the general H- function definition permits
some parameters to be complex numbers, but the computer program can
only handle real parameters.

The H- function is not defined for a zero or negative real
value of its argument. Therefore, only probability density functions
that are defined to be zero for mnpos:l.tiva arguments are treated.
Probability density functions defined non-zero for both positive and
negative argument values can be handled by dividing such functions
into two components, a technique presented by Epstein (8) for the
case of two variables and extended by Springer and Thompson (320,321)
to n variables. The computer program can then be used to evaluate
pieces of the component derivation, for H- function components.

Since the general technique requires a Laplace transform
inversion method, a review of such methods was made, and one was
chosen that seemed suitable to H- function evaluation. However, the
numerical inversion of the Laplace transform is a considerably large
area to study by itself., The scope of this dissertation is not meant
to include a comparison of the various methods or to find the best
inversion method. Instead, the intent is to demonstrate feasibility
of the general technique with at least one inversion method.

When background on the H- function and the H- function distribu-
tion is presented, the mathematical proofs have been omitted. Full
understanding of the H- function requires g high level of mathematical

R RY S
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knowledge and maturity. Not burying main ideas in non-contributory
mathematical details should help bring out the power and simplicity
inherent in usage of the H- funection. Of course, the mathematical
det"ails are presented for all new material. New material is
indicated by asterisks throughout this work.

The algebra of random variables is a vast field of study,
so that a complete coverage is not reasonably within the scope of
this dissertation. However, combining the advantages of a general
function and of certain properties of the H- funetion with a
practical technique for finding the exact probability density
function of any member of a large class of algebraic combinations
of independent random variables is, hopefully, a meaningful
contribution to this field of study.
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1.2. LITERATURE SURVEY
The development of probability and statisties has focused

primarily upon the analysis of probability distributions of random
variables and of algebraic combinations of random variables. Since
the 1920's, many mathematicians and statisticians have directed their
attention to the algebra of random variables, that is, to the problem
of determining the probability distributions of sums, differences,
products, quotients, and rational powers of random variables. In a
recent book, Springer provides an excellent discussion and complete
bibliography on this subject (21).

Considerable attention has been given to deriving the distribu-
tions of sums and differences of random variables, so that systematic,
well-defined procedures now exist. Many early authors, including
Aroian (243), Baten (24k4,245), Church (249), Craig (250), Cramer (212,
213,251), Dodd (252), Irwin (258), Levy (259), and Wintner (229,267),
have presented detailed discussions concerning sums and differences
of independent random variables. The usage of Fourier and Laplace
transforms as powsrful tools for dealing with sums and differences of
independent random variables is wellwestablished, and a large number
of fine references are available, including Lukacs (217 - 219), Kawata
(215), and Newcomb and Oliveira (220). Section G of the bibliography
lists some of the basic references on integral transforms (224 - 228).

Papers on particular cases of sums of random variables are given

in section I of the bibliography. Many of these treat the distribu-

tion of quadratic forms, such as the sums of squares of normally

N




distributed variates (247,253,255« 257,263 - 265).

The problem of deriving the distribution of products and
quotients of random variables has not received the same extensive
treatment as sums and differences (21:1). From 1929 to 1942,
concentrating on normal variates, Craig made some of the early
investigations into the distribution of the product and quotient of

two random variables (270 - 272). He used an approximation method

involving moments or semi-invariants. In 1930, Geary (275) developed
an approximation for the quotient of two normal variables that became
widely-used. Other approximations were developed: Tukey and Wilks
(288) in 1946 for the product of beta variables, Aroian (268) in 1947
for the product of two normal variables, and Shellard (287) in 1952
for the product of several random variables.

In 1939, Huntington (278) presented the proofs of four theorems
resulting in a mathematical formulation for determining distributions
of the sum, difference, product, and quotient of two random variables.
Other early contributors to the theory of products and quotients of
random variables, including Camp (269), Curtiss (273), Gurland (276),
Haldane (277), levy (281), Rietz (285), and Sakamoto (286), dealt
with specific probability density functions, usually normal.

In finding the distribution of a product or quotient of two
random variables, the Fourier integral transform, or characteristic
function, was useful for a number of special cases, beginning with

studies by Kullback (279,280) in the 1930's and continuing through
the 1960's with the references listed in section K of the bibliography.

-




A few general results for certain distributions were found using
characteristic functions. For example, Kullback (279) in 193%
determined the distribution of the geometric mean for n uniform or
garma variates, and Jambunathan (293) in 1954 derived the distribu-
tion of products of special cases of beta and gamma independent
random variables. Using a logarithmic transformation, Schulz-Aren-
storff and Morelock (299) found the probability density function of
the product of n uniform independent r_andon variables.

The first practical, systematic, general approach for dealing
with products and quotients of independent random variables was
presented in 1948 by Epstein (8). His approach was the first usage
of the Mellin integral transform to analyze the distribution of the
product or quotient of two variates. Epstein demonstrated that the
Mellin integral transform is a natural and powerful tool for finding
the probability density function of products and quotients of indepen-
dent random variables, by deriving directly and easily the probability
density functions of the Student t and Fisher F statistics and of the
product of two standardized, normal variates. His work was limited
to two random variables. Surprisingly, additional application of the
Mellin transform did not arise until the 1960°s.

In 1959, Levy (282,283) derived some results for products of two
independent random variables and posed the question of constructing a
general theory for multiplication of random variables. Zolotarev
(289) bagan this construction in 1962, focusing on a sequence of
theorems, without proofs, that showed the similarities and differences

e illivinmpisontisisimagitifvativiiin
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between the results for addition of independent random variables and
the results for multiplication. Then, in 1964, Springer and Thompson
(320, 321) presented a general method for determining the probability
density function of the product of n independent random variables
that are not necessarily non-negative nor identically distributed.
They applied the Mellin transform to analyses of products, quotients,
and geometric means of rectangular, monomial, Cauchy, Gaussian, and
gamma variates. Mellin transforms were then employed by Lomnicki
(310) in 1967 to products of beta, gamma, Weibull, and normal vari-
ates.

A number of authors in the 1960's, as shown in section L of the
bibliography, used the Mellin transform to treat the product and
quotient of independent random variables. Most of the work was for
two variables: Wells, Anderson and Cell (323) for central and for
non-central chi-square variates, Srodka (322) for generalized gamma,
Maxwell, and Weibull variates, Kotz and Srinivasan (309) for Bessel
variates, Malik (311~ 3i4) for generalized gamma, non-central beta,
and Pareto variates, and Pruett (317) for some nonstandardized
variates, including the nonstandardized normal.

A sigmificant contribution to analyzing algebraic combinations
of independent random variables was made in 1970 by Prasad (223).

He provided formulas for finding the Mellin transform of a function
directly from its Laplace or Fourier transform, and vice versa,

without having to determine the function itself. For example, if one
wants to find the probability density function h(y) for the randem

1
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variable Y given by
X, +X
Y=X +-—-—22x“ ’

where the independent random variables Xy have known probability
density functions f(x;), 1=1,2,3,4. The analysis is considerably
simplified if one can convert the Laplace (or Fourier) transform of
the density function gl(u) for u=x2+x3 into a Mellin transform,
and then convert the Mellin transform of the density function g,(v)
for V=U/xu into a Laplace (or Fourier) transform. Prasad's formulas
can be used for these conversions, so that the probability density
function h(y) can be determined directly without first determining
the probability density functions gj(u) and g,(v) (21:4-5).

Another important development in the analysis of the algebra of
random variasbles has been the use of the G- and H- functions. These
functions are general forms of many of the common and special func-
tions of mathematics, including most of the common probability density
functions. As early as 1958, Kabe (333) expressed some multivariate
test statistics® density functions as G- functions, after recogmizing
that the moments of these statistics could be expressed as products
of garma functions. Similarly, Consul (328) in 1967 expressed the
distributions of likelihood ratio criteria for testing independence
as G- functions. In the early 1970's, Mathsi (16,335- 34) indicated
many statistical applications for the G- function, including finding
the distributions of various multivariate test statistics, the distri-
bution of the product of independent beta variates, and examples
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to counter some proposed characterizations of probability laws.

Using Mellin transforms, a few authors expressed the probability
density functions of products and quotients of selected independent
random variables in terms of G- or H- functions. Dwivedi (303,304)
in 1966 and 1970 introduced a confluent hypergeometric density func-
tion and demonstrated that the distribution of a product or quotient
of variates each with such a density function was expressible as an
H- function. Also, in 1970, Springer and Thompson (352) expressed
the distributions of the products of beta, gamma, and Gaussian vari-
ates as G- functions. And, in 1974, Shah and Rathie (319) showed
that distributions for products of generalized F- variates could be
expressed as G- and H- functions.

Gupta and Jain (12) in 1966 proved that the Mellin convolution
of two He- functions is another H- function. This led to the most
significant advances in the usage of H- functions in statistical
analysis, by Bradley D. Carter in 1972 (4,5). He tied together the
physical science work on H- functions and the probability work on
Mellin transforms into a meaningful general theory.

‘Carter introduced a new probability distribution, the H- function
distribution, which is simply an H- function multiplied by a constant
that makes the integral over the relevant range equal to unity. He
showed that the H- function distribution includes, as special cases,
ten common classical distributions - gamma, exponential, chi-square,

Weibull, Rayleigh, Maxwell, half-normal, beta, half-Cauchy, and

general hypergeometric. Moat important, Carter proved that the
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probability density functions of products, quotients, and rational
powers of independent H- function variates are also H- functions.
This closure property does not hold for the classical distributions
and thus makes the H- function a powerful general form.

In 1979, Eldred (7) implemented Carter's results by developing
an operational computer program to calculate H- function values to
any desired accuracy and to calculate values for the probability
density function of combinations of products, quotients, and powers
of H- function variates. He also expressed the half-Student and F
distributions as H- function distributions. Springer (21) has
reproduced the results of Carter and Eldred.

Additional background is in order with respect to the H- function
history. The H- function is a Mellin-Barnes integral first introduced
in 1961 by Charles Fox (10) as a symmetric Fourier kernsl to the
Meijer G- function, which is also a Mellin-Barnes integral and a
special case of the H- function. Mellin-Barnes integrals have been
used extensively in physics and engineering and are considered the
most important of all integrals containing gamma functions in their
integrands (9:49). Such contour integrals, introduced in 1888 by
Pincherle (9:49), have long been used in solving differential equa-
tions, starting with Barnes (2) in 1908 for complete integration of
the hypergeometric differential equation and Mellin (19) in 1910.
In the 1940°'s, Meijer (360) introduced the G- function, in terms of
which all significant particular solutions of a hypergeometric
differential equation can be expressed.
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Much work has been dons on the G- function, notably by Luke (14)
and by Mathai and Saxena (16), who provide an extensive bibliography.
Nearly every special function of applied mathematics is a special
case of the G- function and of the .H- function. The bibliography
for this dissertation (1,9,section N) lists the basic references for
special functions. Mathai and Saxens (18:10- 11,151 - 159) provide
H~- function formulas for the following special functions: Gauss'
hypergeometric function, the confluent hypergeometric function, the
generalized hypergeometric function, the generalized hypergeometric
funections of Wright and Maitland, MacRobert's E - function, Meijer's
G - function, the functions of Mittag-Leffler and Boersma (357), the
Bessel and associated functions, and Wright®s generalized Bessel
function. Of course, all speclal cases of the above functions are
also special cases of the H- function, including the elementary power,
exponential, trigonometric, inverse trigonometriec, and logarithmic
functions.

In the same way that the work of Meijer (360~ 362) formed the
basis for much of the later work on the G- function, Brasksma (3)
presented properties, identities, asymptotic expansions and analytic
continuations which became the foundation for H- function work. The
decade following Braaksma®s 1964 paper brought great numbers of works
on differentiation, integration, identities, recurrence relations,
expansions and series involving He- functions. For the H- function of
one variable, these works are listed in bibliography sections A to F.

The most prolific contributors were Anandani, Bajpai, K. C. Gupta,
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Kalla, V. C. Nair, R. K. Saxena, Shah, and Taxak. Some of the more
significant contributions were the lLaplace transform of an H- function
by K. C. Gupta (11), identities and recurrence relations by K. C.
Gupta (11) and Anandani (% - 37), and derivative formulas (section B,
35), especially those by A. N. Goyal and G. K. Goyal (25) and by

K. C. Gupta and U. C. Jain (26). Most of the H- function work of
recent years has been for H- functions of more than one variable and
for the H- function transform. The bib;l.iognphy does not list these,
but many are given by Mathai and Saxena (18).

The majority of H- function work has been highly theoretical,
unwieldy, and usually directed to special cases instead of development
of general theory. Almost no applications are given in the literature
and the few given are for physics and engineering, particularly for
heat production in a cylinder and differsntial equation solution.

Most of the articles are by authors from India and are published in
foreign or little known journals, often not easily accessible to the
U, S. researcher. Comparison of the Mathai and Saxena bibliographies
(16,18) shows that much of the H- function work simply extends earlier
G~ function results to the H- function by directly paralleling the
earlier developments. Often articles will duplicate or involve only
minor changes to previous articles by the same or another author.

Due to the lack of general theory development and instead the treat-
ment of many special cases, there is continual repetition of the same

techniques. Most formulas have been derived by switching the order of

the H- function contour integral and another operation, such as a
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differentiation, a summation, or another integration. Recurrence
relations are often found by equating different derivative formulas.

One must be cautious when dealing with H- function literature
because of the frequent errors. While some errors are probably just
misprints, many are dues to the failure to verify the existence or
convergence conditions that enable evaluation of an H- function or
permit switching of the order of operations. For example, a check
against H- function convergence conditions easily shows that six of
the H- function special case formulas tabulated by Mathai and Saxena
(18:146,154,156) diverge for all values of the arguments.

Other errors result from the failure to check theoretical
results by presenting at least one special case with known results.
For example, in one of the few H=- function papers concerning the
algebra of random variables, Mathai and Saxena (17) committed the
following error. Their equation (16) has a term based upon Braaksma's

series expansion for the H- function, which has the form

i ( £(1,h,k) * (‘+t)8(1,h,k)
k=0

) , vwhere, in their notation,

Vi=k and g and f are functions of the integer k and the i-th and h-th
parameters of the H- function. They wrongly factor the second term
out of the summation, so that their derivation for the density fune~
tion of a linear combination of n variates, each with a density funce

tion of a form involving an H- function,has a term

g(1,h,k)
B i £(i,h,k) , which is meaningless with
k=0

(a+t)
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the part depending on k that is outside the summation. Any attempt
to use the derivation on even the simplest example would have shown
this error to the authors.

Once Carter showed that the distribution of the products,
quotients, and rational powers of H- function variates could be
easily expressed as another H- function distribution, then practical
application of H=- function required only the ability to evaluate the
H=- function inversion integral. For an H- function where no denomi-
nator singularity in the integrand coincides with any pole, Mathai
and Saxena (16:177 - 185; 18:70 = 75) in 1973 and 1978 presented a
somewhat complicated computable representation. In 1977, Lovett (13)
attempted a numerical evaluation of the general H- function inversion
integral, but fell far short of success. In 1979, Barry S. Eldred
(7) performed the first successful H- function evaluation by develop-
ing a simpler model and a computer program to calculate to any desired
accuracy the values for a general H- function inversion integral.

When numerical inversion of a Laplace transform involving a
product of H- functions is desired, two methods seem well-suited:
one by Crump (231) which is an improvement of that by Dubner and Abate
(232) and another by Jagerman (2% ) based on the well-known Widder
inversion formula. Piessens (237,238) provides a bibliography on this
subject and other good references are listed in section H of the
bibliography of this dissertationy however, the appropriateness of

these other techniques with H- functions has not been investigated.
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1.3. INTEGRAL TRANSFORMS
1.3.1. Definitions (7:68 - 72; 21:27-31).

apla ansform: A real function f(x), defined and single-valued
almost everywheres for x20, with x a real variable, is said to be

Laplace transformable if the integral

fa frx)l o™ ax
0

converges for some real value k. Then,

00
L{f(x)} = fo e £(x) dx (1.1)

is the Lsplace transform of f(x), where r is a complex variable.

The inverse laplace transform or inversion integral is given by
c+ico rx
) = (/2 [ e L {£(x)} ar. (1.2)
¢~ ioo

Fqustions (1.1) and (1.2) constitute a transform pair. The function
f(x) 1s determined uniquely by (1.2) if L. {f(x)} 4s analytic ina
strip consisting of that portion of the plane to the right of and

including the Bromwich path (¢~ ieo,c+i0c0). This strip may or may

not include the entire right half plane.

Fourier Transform: A real function f(x), defined and single-valued
almost everywhere for -oo€ x<00, with x a real variable, is said to
be Fourier transformable if the integral
oo
[ 1] o ax
=00

converges for some real value k. Then,
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o0
RlrY = [ ! r(x) ox (1.3)
-Q0

is the Fourier transform of f(x) and is called the characteristic
function of f(x), while e1'X is called the kernel. The inverse

Fourier transform or inversion integral is given by
® Litx
t(x) = (1/2m) [ oM p {r(x)}at. (1.4)
~00

Many authors, including Eldred (7), Springer (21), and Tranter (227),
use the transform pair defined above by equations (1.3) and (1.4).
However, others, including Erdelyi (9), Titchmarsh (226), and

Whittaker and Watson (368), use the transform pair with kernal o-itx,

F{f(x)} =f°° o itx f(x) dx
-00

t(x) = (1/2m) [ ® oA g L0} ot
-00

Which transform pair is used is not important as long as consistency
is maintained. Changing from one pair to the other moves the poles

of the transform from a strip in the right half plane to a strip in

the left half plane, or vice versa.

Mellin Transform: A real function f(x), defined and single-valued
almost everywhere for x20, with x a real variable, is said to be
Mellin transformable if the integral

foo | £(x) | =1 ax
0

converges for some real value k. Then,

— et -
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(o o]
M L £(x)} = fo =1 £(x) ax (1.5)

is the Mellin transform of f(x), where s is a complex number. The
Mellin transform inversion integral, or inverse Mellin transform,
is given by
¢+ ioo
£(x) = (1/2«1)]’ x~8 M, {£(x)} ds. (1.6)

¢c= o0

1.3.2. Properties (7:76- 78; 21:34 - 36).

1.3.2.1. Linearity:
Le{eqfy(x) + cofa(x)} = oqL {£3(x)} + L {fo(x)}
Ft{cifl(x) + epf5(x))} = qFy {fy(x)} + c,F, {r(x)}
My Legfy(x) + exfa(x)) = e M, {£3(x)} + e Mg {£(x)}
1¢3.2.2. First translation or shifting: |
L. (o (0} = 1, {f(x)} |
Fp {e** £(x)} =F,_ {£(x)}
M L™ £(x)} = M {£(x)}
1.3.2.3. Second translation or shifting: |
Lr{f(x-a)} = o 8T L.{f(x)}, x>a
Fe{f(x~a)} = o-iat Ft{f(x)}
1.3.2.4. Scaling with a>0:
L{f(x)} =at L/ {rx)Y -
Fe {f(ax)} = a”t Py {£(x)} -!»
Mg {f(ax)} = a7 M {(x)} '

S
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1.3.2.5. Multiplication by x":
L{ ) = -0 LM {20}
Fo {x" 1)} = (-1)" F‘t(n){f(x)}
M {x" £(x)} =M, {f(x)}

1.3.2.6. Division by x, provided 1lim (f(x)/x) exists:
x>0

Lr{f(x)/x} = f“ Ll_{f(x)} dr

r{r)/x} = f:° r, {£(0} at
M {r(x)/x} =n _,{r(x)}

1.3.2.7. Transform of an integral:

L,.{f: f(u) du} = L. {f(x)}/r

X
Ft{fo £(u) au} = F {r(x)}/(1¢)

1.3.2.8. Argument to a power:
M (MY = a7t {r(x)}

1.3.3. Relations between transforms.
To obtain the Laplace or Fourier transform of a function
directly from its Mellin transform, and vice versa, one can use the

following relations, derived by Prasad {223) and presented formally

by Lew (216) and Springer (21:412-417).

—{ |
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If the Laplace transform of f(x), x 20, is analytic and of
order O(r-k), k >1, for all r such that Re(r)>b, b<0, then the

Mellin transform of f(x) is given by
M )Y =My {L.{f(x)}}/ D(i-9)
¢ +lo0 -
= (D(s)f2m) [ L. {f(x)} (-r)"° dr,
c=ioo

Re(s)>0, b<€c <0,
If the Fourier transform of f(x) is analytic and of order
0((1t)"¥), k>1 and Tm(t) #0, then the Mellin transform of f(x) is

given by

a1} = (r'<s)/z1r)j°° [F {rYau™|
o - * In(t) >0

Jee.

If (1) the Mellin transform of f(x) is absolutely convergent on

+ 07 {200} (-12)7° |
Im(t)<0

a<€Re(s)€b, a1l (216:582), or (2) f(x) is of bounded variation and

measurable on (0,1) and on (1,00) and, for a{b,
1 oo
f Ix‘-* £(x)|? ax<eo and f ‘xb-t £(x)|? dx<eo
0 i
(21:175), then,
c+ioco s-1
L{tx} = (1/2m) [ M Cr)} D (1-8) 257 L s,
c-ioo
adc€min(1,b), and

c+io0 s=1
F{r(0)Y = (1/21r1)f . ML f(x)} I (1-5) (it) ds.
Cc= 100
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Primary emphasis in this work is on the use of integral trans-
forms to obtain probability density functions and cumulative distri-
bution functions for certain transformations of independent random
variables, that is, for algebraic combinations. First, a review of
related basic probability concepts should be made.

A one-to-one transformation h(x) from a set S into a set T
means that for each y, element of T, ttxere exists one and only one
x, element of S, such that h(x) =y. When a function h(x) is a
one-to-one transformation from S into T, then the inverse trans-
formation h.l(y), from T onto S, exists and h’l(h(x))sx. The set
of positivity for a transformation h(x) is the set of values x for
which h(x) is positive.

Two random variables X and Y are independent if and only if
their joint probability density function fx’Y(x,y) equals the product
of the individual densities fx(x) and fY(y), associated with X and Y,
respectively. That is, '

fx,Y(x,y) = fy(x) ° fY(y) s for all (x,y).
This means that any variation in the outcome of X will in no way
affect the outcome of Y, and vice versa. Or, knowledge of the value
taken by X ylelds no information about nor affects the probability
distribution of Y, and vice versa.
THEOREM 1.1: Let X be a random variable with continuous probability
density function fx(x) and y=h(x) bs a one-tc-one transformation

from S, the set of positivity of fx(x), onto T, the image of S under
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h(x). If h-1(y) is differentiable and its derivative is continuous
on T, then the probability density function of Y is given by

e lan /eyl , yer
fy(y) =
0 , otherwise.

IHEOREM 1.2: Let X=(Xyy.+.,X,) be a set of k random variables
having the joint continuous probability density function fx(;_:_).
Let Y= h(X)=(h4(X),hs(X),.c0,h (X)) be a set of relations~foming
a one-to-one transformation from S, the k-dimensional set of positiv-
ity of fE onto T, the k=-dimensional image of S under h(‘)_['). The
inverse transformation, X= h'l(x) = (g1(x),gz(z),...,gk(z)). If the
partial derivatives of h'l(z) exist and are continuous,

g1y = d(es(¥))/3yy,
then the joint probability density function of Y is given by

={fz(gi(z).sz(z).---.gk(z))'lJl » JET

fy(x)
z 0 , otherwise,

Y

where J is the Jacobian, the determinant of first partial derivatives,
€11 812 ¢+ ¢ By

521 522 o o o EZk

fx1 B2 ° ° °  Bkk
Example: Suppose the probability density function of Z=X+Y is

desired. Let W=Y, so that X=2-W and Y=W and

1 -1
= =1.

o 1

aX/ 3z  3ax/ aw
AY/ 32  3Y/ W

e

-
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By Theorem 1.2, for the appropriate ranges of z and w,

fz’w(zﬂw) = fx’Y(z'w’w) 'JI .
If X and Y are independent, then

fz’w(z,w) = fx(z-w)-fY(w) .
The marginal distribution of Z=X+Y is found by integrating the
above joint distribution fz w(z,w) over the proper range of wi

9

00

f (2) = f oofx(z-y)°fy(y) dy .

Using Theorem 1.2 similarly to find the distributions for the
difference, product, and quotient of two independent random variables
gives the following theorem (278). |
THEOREM 1.3: If X and Y are continuous independent random variables
with probability density functions fx(x) and fx(y), respectively, then

(1) the probability density function of the random variable
Z=X+Y is given by

00 o0
) = [ txle-n)tyiay = [ ty(x) ty(a- xax,

(2) the probability density function of the random variable
Z=X-Y is given by
00 00
£a(z) = f fy(z +y)Ty(y)dy =f fy(x) fy(z +x)dx,
-00 =00
(3) the probability density function of the random variable
W=XY is given by

Q0 o0
a0 = [ It ryGhax = [ 1y eyGhey(riey,
=00 -Q0

—+
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(4) and the probability density function of the random
variable W= X/Y is given by

00 o0
gq0) = [ ity eyteax < [ Ity ry(ryey.

Theorems 1.2 and 1.3 have been applied to many distribution
problems. However, each case must be treated separately and special
care must be taken to determine the proper integration limits and
ranges for the variables. Integral trgnsfom can help simplify

the process. (Consider the following formulas:

F {0} P {e(M} = Ft{f: f(x) g(y-x) dx}
L{fx)} - L. {e»} = Lr{f: £(x) g(y=-x) dx}

M, (1)) u,{en)?} = Hs{f:o =1 1(x) gty/x) dx} .

Combining these formulas with Theorem 1.3 gives Theorems 1.4 to
1.8 below. The following integral transform theorems are straight-
forward, powerful tools for determining probability density functions
of sums, differences, products, quotients, and powers of independent
random variables. A distinet advantage to transform use is the
convenient extension of Theorem 1.3 to more than two variables.
However, even though integral transforms have assisted considerably
in analyzing probability density functions and have been used a
great deal, each case must still be handled separately becauss of

the requirement of finding the transforms.
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THEOREM 1.4: stribution o mbination. If XqyXpyeeeyXy

are continuous independent random variables with probability density

functions fl""’fN' respectively, then the probability density

function of the random variable
I= i 44Xy 5 320, 1=1,.00,N,
i=1
is given by

.| .
fyly) = Fy {g ngt{fi("i)})‘ ’

where Fy_1 is the inverse Fourier transform operation.

IHEOREM 1.5: Given the same conditions as in Theorem 1.4 and

P{Xi< 0)Y=0 for i=1,...,N, then the probability density function
of Y is given by

-1, N
Ly {;n; Ly, » (£ ()3} 5 v 20,
where Ifi-l is the inverse Laplace transform operation.

THEOREM 1.6: Distributjon of a Difference. If X; and X, are

continuous independent random variables with probability density
functions fy(xy) and f,(x,), respectively, then the probability
density function of the random variable Y = X; -~ X, is given by

fy(Y) = Fy-i{rt {f1(x1)}' Ft{fz('xg)}} U

where Fy-1 is the inverse Fourier transform operation.

ﬁ'a.’.:

-~
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THEOREM 1.7: Distribution of Product. If X{s+eeyXy are continuous
independent random variables with probability density functions
fyyeeesfyy respectively, where P{X;€0}=0 for i=1,.0.,N, then
the probability density function of the random variable
N
Y= ;1;1;' uX , 320, i=1,...,N,

is given by

e N L
£y(y) =W ‘{'113; s L u L1, (x>}, ¥20,

where l(y.l is the inverse Mellin transform operation.

THEOREM 1.8: Distributjon of Quotient. If X4 and X, are continuous
independent random variables with probability density functions

fy(x4) and f£5(x;), respectively, where P{X;<0}=P{x,40}=0,
then the probability density function of the random variable

Y = Xy/X, is given by

re(r) = M, g {1, eI M, , {02020} ), v 20,

where My"1 is the inverse Mellin transform operation.

THEOREM 1.9: Distribution of Ratjonal Power. If X is a continuous
random variable with probability density function fx, where

P{X<O0}= 0, then the probability density function of the random
variable Y = x‘, a rationsl, is given by

-1
fY(Y) = Hy {u‘s_ a+ 1{fx(x)}} y Y20,
where My'1 is the inverse Mellin transform operation.
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‘ THEOPEM 1.10: Moments of a Distributjon. If X is a continuous
random variable with probability density function fx(x), then

i,' ‘ : (1) if fx(x) is defined on the whole real line,
i

K
f; EC) = (1/4%) S— p, (¢ , and
. (x*) = ( )dtk . L x(X)}ItSO

}
i- (2) if P{x<0}Y= 0,

- (-1 =L {1t
E(XK) =0 ark Lr{rx(X)}_'rso L,.{ X(X)}Lso

= M_{ £y .
s{ XX)}'s=k+1 {




CHAPTER 2
THE H- FUNCTION

2.1. GENERAL REMARKS

Once the initiste to H- functions proceeds beyond the difficult
mathematical hurdles of understanding the definition, convergence,
and evaluation of an H- function (section 2.2. and chapters 3 and §5),
he can then begin to appreciate the unique advantages of using
H=- functions. Foremost, the H- function is the most general special
function, encompassing as special cases most of the other special
functions and elementary functions of mathematies. Thus, anything
accomplished with the general form for the H- function is valid for
all special cases and has been accomplished therefore for every
member of a large class of functions. When the accomplishment is &
procedure involving differentiation or integration, the general
nature of that procedure's applicability is particularly meaningful.

The properties of the H- function which are presented in this
chapter are readily seen to be no more than simple adjustments of
given parameters. The simple parameter changes needed to find the
Laplace, Fourier, and Mellin transforms or the derivatives of an
H- function are trivial compared to performing these same opsrations
for the various special cases. Treating the many different types of
special cases separately requires remembering a large number of

differentiation formulas and integration methods or compiling long
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tables of the results. Another advantage is that the derivatives,
Laplace transform, and Fourier transform of an H- function are
themselves H- functions. Formulas, procedures, and computer programs
used to handle an H- function can also be used to handle its deriva-
tives and integral transforms.

Chapter 4 presents the H- function distribution, a probability
density function, expressed in terms of an H- function times an
appropriate constant. Many of the classical statistical distribu-

tions are spescial cases of the H=- function distribution. Moreover,

use of this general H- function distribution has a singular advantage:

the probability density function of the products, quotients, and

- rational powers of independent H- function distributed variates is

another H- function distribution. This new H~ function is easily
determined by combining and adjusting the parameters of the given
H=- function distributions for the variates. This closure property
is not common to the classical distributions; for example, the
product of normally-distributed independent random variables is not
distributed normally.

On the other hand, the probability density function of the sum
or difference of two H- function variates is not in general an
H- function distribution. By making use of the simple relation for
finding Laplace transforms of H- functions, a straight-forward tech-
nique can still be used to determine the distribution of the sum of
H=- function variates. This technique, shown in Chapter U4, provides

a numerical evaluation to any desired accuracy.

o Lsd, s x -
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2.2. DEFINITION

The H~ function is defined by either of two forms (10; 4:35-
373 7:98- 1023 18:2- 33 21:195 = 198):

mn

H(z) =H Lz : {(a3,44)} 5 {(b5,B1)}]
pa

. f 'E.'T'(bii-Bis) 'InI'I"(l-ai-Ais)

= 2”8 ds
2mi
C 13.'I’(ai+Ais) 'n- 1"(1 by = Bys)
i=n+i
(2.1)
13.'1"(bi Bis) ﬂ'l"(i ai+Ais)
= i f z+s ds’
2Ti
C2 ‘.I.T]."(ai Ais) '.I:I.'I"(i by +Bss)
i=n+1 ( )
2.2

where z and all a; and by are real or complex numbers, all A; and

By are positive real numbers, and m, n, p and q are integers such

that 0¢m€q and 0€n&p. Empty products are defined to be equal

to unity (1). Cy is a contour in the complex s-plane running from
w=- 100 to w+ioco, such that all poles of IT I'(by +B;s) lie to the
left of Cy and all poles of IT I'(1=-a;=-A;s) lie to the right.

Similarly, C; is a contour running from veico to v+ieo, such that

PPNN

all poles of TI I'(bj - Bys) 1ie to the right of Cz and all poles
of II I'(1-ay+A4s) lie to the left.

Jpres

Form (2.1) above is that of a Mellin transform inversion i
integral (refer to section 1.3.1). Form (2.2) is that of a type
of the general Mellin-Barnes integral (refer to section 3.2)

1
- 5
a
*f,
i 8
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Form (2.2) above is easily found from form (2.1) by substituting

-s for s everywhere in (2.1), letting v equal -w and recognizing that
0 £(-s) d(-s) = 8 £(-s) d
a - b s S .

Form (2.1) of the H- function definition is used hereafter,
because of the direct relation for the Mellin transform, as shown

in the next section.

2.3. PROPERTIES
2.3.1. Reciprocal argument (L:363 7:101; 18:4; 21:196):

B Lzt LlapA)} s {55080} ]
P a

nm
=8 [d: {(1-54,B)) 5 ((1-a,A0)1.  (2:3)
qQPp

2.3+2. Argument to a real power:

mn

H [2X . {(ag,45)} 5 {(b4,B3)) 1
Pa

-1 mn

=k " H Cz: {(aiQM/k)} H {(bi’Bi/k)}] )
Pa
for k20 (4:36; 7:1013 21:196); (2.4)

or equivalently, for k>0 (18:4),

R :[z ¢ {(a3,h)Y 5 {533} ]
p
mn K
=k B [2°: {(ag,kay)Y 5 {(b3,kBs)YT.  (2.5)
Pa

P ST T
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Combining properties (2.3) and (2.4), when k<0,

mn

. B L% L(ag,a)} 5 {04,842 ]
P4
1 nm
= (-k)"" B [z : €(1-1b4,-B3/K)Y 5 {(1-ag,-43/K)}]
iP (2.6)
and, combining properties (2.3) and (2.5), when k<0,
mn
» i} Lz : {(a5,41)) ; {(b4,B4)})]
Pq
nm K
=<k H Cz® : {(1‘ bi"kBi)} s {(1’ aj_r'kA-i)}] .
qp
(2.7)
2.3.3. Multiply by the argument to a power k (4:36; 7:102; 18:4;
21:196):
mn
2“8 [z : {(a;, )} ; {(v4,B1)}]
Pq
mn
=H [z : {(ay+kas,a5)) 5 {(by +kB;,By)}] -
Pa

(2.8)
2.3.4. If one of the (aj,A;), 1€n, is equal to one of the
(bJ,BJ), j>m, or one of the (aj,A), 1>n, is equal to one of the
(bJ,BJ), j$m, then the H- function reduces to one of lower order:
mn
H Cz: {(ai’Ai)}; (b1951)y""(bq-ivaq-l)v(aisAl)]
P Q
myn-1
= H Cz : (329A2)1"'9(3p9Ap) 3'((bitBi))‘Jo
p-1,q-1

provided n>0 and q>m (18:4); (2.9)
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mn

* H Cz : (alaA]_),"'9(ap-19Ap-1)9(b1931) ’ {(biyai)}l
P Qq

= | [ z {(aj A‘j (bz 2 oo Bq ]
H . v * ’B 9 A b ? ]

. provided m>0 and p>n. (2.10)
2¢3+.5. Mellin transform.
Form (2.1) of the H- function definjtion is exactly that of
a Mellin transform inversion integral (refer to section 1.3.1),
so that the Mellin transform of the H- function is directly given
as (4:37; 7:1023 21:199):
m
MS{H(cz)} .o i ] TIT I'(by +Bys) 11" I'(1-ay - A5) .

‘rr' X' (a4 +Ais) 'J.'I' I‘(i by - Bys)
i=n+1

(2.11)
2.3.6. The Laplace and Fourier transforms of an H- function are

themselves H- functions (4:38- 393 7:102; 21:199- 201):

1,
LAH(cz)} = cly n ml:x'/c : {(1-by~B,B));

q,p+1
(0,1), {(1' ay - A-pAi)}J
(2.12)
n+1,m C
Fe{H(cz)) = clr C-it/e ¢ {(1-by-By,B)}; 1 ﬂ
q,p+l C 1

(Ovl)' {(i‘ai‘Ai’Ai)}] ;
(2.13) |

f &y

| - . - —o~ - an ey,
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2.3.7. Derivatives.
The r-th derivative of an H- function can be shown to be an

H- function by using Skibinski's derivative formula (20; 18:5- 7,

12-14):
r mn
z¥ i—r H Lz ; {(a3,44) ) 5 {(b1,B))]
dz pgq
my,n+l K
=H L2 (0,k), {(ai’Ai)} H {(bini)} ’(rlk)J
p+l,q+l
for k>0 and r a non-negative integer. (2.14)

Multiplying both sides of (2.14) by z © and then applying

property (2.8) to the right side gives, for k>0:

) ﬁ}- B(z¥) = Br)(zk)
8™ L6 s (erk)y Loy - BA )}
= 8" ¢ (-r,K), - s H
p+i,q+l r A ‘EAi Ai

{(by - £B1,B1) T, (0,K)1. (2.15)
Similarly, for k<€O0:

my,n+1

. BT (%) = (-1)F ® L2 ¢ (1,-K), (a3 +Fphsaiy)} 5

p+i,q+l
{(by +_—’;-ai,31)} J(1+r,-k)]. (2.16)
“hen r is zero, (2.14) through (2.16) reduce to the trivial
H(zk) = H(zk), using property (2.9) or (2.10). Skibinski's rule,
formula (2.14), will be used in section 2.5. to derive new
relations between H-~ functions and between H- functions and well-

known elementary functions.
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2.3.8. Parameters differing by an integer r (18:4-5):

m,n+1
H Cz : (cyC)y L(a4543)) 5 {(b4,B4)},(c+r,C)3
p+i,q+l )

m+i,n
= (_1)!‘ H Lz : {(3iiAi)} ,(C,C) H (c”'l‘,c), {(biij_)}]
p+l,q+l

(2.17)
m+l,n
H fz H {(ai’Ai)} ’(C'P’C) H (c,C), {(bj_)Bi)}]
p+i,q+l

myn+l

= (~1)" H Lz : (c-r,C),{(a5,4))F 5 {(b4,B)}s(c,C)]

p+l,q+l
(2.18)
2+3.9. Recurrence relations.
Throughout the literature, a great number of recurrence or
contiguity formulas relating H- functions of the same order
(myn,p,q) can be found (11; 33 to 53; 18:7-8,17-19). A few

typical examples are given below (18:7-8):

mn
(ag-az) H tz : (31’A1):(‘29‘\1)9(331A3)0'”’(ap’Ap) H

Pa
{(bitai)}]
mn
=H Cz : (31’51)’(‘2' 19A1)’(339A3)a"'9(ap’Ap) ;
Pq
{(v4,8:)}]
mn
-B [z: (31-1,A1),(a2,A1),(a3,A3),...,(ap.Ap) 3
Pa
{(x4,B))1

where n22 (note that Ay =40).

A R e o e
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mn
(b1Ay-ayBy+B) B Lz : {(ag,4)) 5 {(v1,B)}]
Pa o
mn
=B B Lz : (a3=1,41),(a2:42) ¢« s (apsp) s {(b4,8)}]
P a
mn

+ 4y B o q[z : {(ai’Ai)} H (b1+1,31),(b2932),-..,(bq,3q)3

where m21 and n21.

mn
(bgAy - ayBy + By) np q(z s {(ag,84) )5 {(b4,B8:)}]

mn
= Bq H [z : (31" 1,A1)a(32’A2),'",<3p’Ap) 3 {(bi:Bi)}J i
Pa
mn
- Ai H [2 : {(319A1)} 5 (bloB]_))“u(bq-l’Bq-l)v )
Pq
(b + 1,8 ]

where n21 and q>mn.

mn
(a.p-kai) B [z: (1+a1,A1),(az,A2),...,(ap_l,Ap_1),
P q

(1+an,kA) 5 {(54,B)}]

mn

=H [z (L+ag,A1),(a0,82) 0000 (ap 1285 1)s(apskAg) 5
Pa |
{(biiBi)}] : ‘
mn ‘ 1
+kH [z : (alsA1)"":(3p-195p-1);(1*3p’kA1) 5
Pa I
{(>4,B)Y 1]
where k>0 and 1€ n<p.
]




2.4, KNO SPE ES

An extensive list of elementary special funections expressed
as special cases of the H- function is given by Mathai and Saxena
(18:10- 12,145~ 159). The most important and most familiar of
these cases are given below:

2.4.1. Exponential and Power Functions.

10
e =H Lz : (0,1)] (4:40)
01
10
2eZ=H [z: (b1)] (18:151)
01
1/B 10
Fl/Bez =g [z : (bB)] (18:10)
01
10
=0 [z: (b+1,1) 3 (by1)] (18:152)
11
10
2® (1-2)" =fa+1) B [z : (a+b+1,1) 5 (b1)]
11
(183152)
11
22 (1+2)2 =R [z : (b-a+1,1) ; (b,1)1/T(a)
11
(18:10)

2.4.2. Trigonometric and Hyperbolic Functions and Their Inverses.
10 2
sin(z) = v B [2/4 : (4,1),(0,1)] (18:151)
02

10
cos(z) = VFF B ztzz/u : (0,1),(3,1)] (18:151)

10
sinh(z) = -1 VAP B L[-2%/b : (4,1),(0;1)F (18:151)
02

Y
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, 1o,
cosh(z) =y H . zf-z /& ¢ (0,1),(4,1) ] (18:152) Lo
* v . 12 ) |
) arcsin(g) = é‘ H ” 2['2 : (%’1)’(%91) H (0,1),(-%,1)]
. ‘ - (18:152)
) arctan(z) =4 B C2% : (1,1),(3,1) 5 (4,1),(0,1)3
o 22

L2 (18:152)
wresinh(z) = (1/2VW) § thz : (1,1),(1,1)5(4,1),(0,1)3
L 2 (18:152)
arctanh(z) = 4z B zc-zz : (3,1),(0,1) 5 (0,1),(3,1)3
(18:152)
Applying property (2.4) with k=2 to the above eight formulas:

10
L] sin(z) = i‘ﬁn 0 Zth : (é’o%)’(()’i’)]
10
L cos(z) = %ﬁﬁ 0 2(*5 H (ooé’))(fot)]
10
. sinh(z) = -H Y7 H 5 2|:4l1z : (4,4),(0,4)1
10
L cosh(z) = %ﬁﬂ 0 zthz H (O’%)’C*’*)]
12
- arcsin(z) = ¢ H , 2[12 : (4,8),(4,4) 5 (0,4),(-4,4)]
12
. arctan (z) =4 H \ ztz : (1,4),(4,4) ; (4,4),(0,4)1]

NN %5 T T
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: 41
i . arcsinh(z) = log(z+41+zz)
1 12

S = (1/4¥7F) R th : (1,3),(L,3) ¢ (4,4),(0,4)]

3

g . . arctanh(z) = 4 log((1+2)/(1-2))

: 12

=-4 H 2 2[12 : (1’%)’@'9%) H (*’*)9(1,‘!’)]

11
=-4i H . 1[12 : (%9%) H (%’é)]'
after also applying (2.9).
2.4.3. Logarithmic Function.

12
log(1¥z) =%Rr [%z2:(1,1),(1,1) ; (1,1),(0,1)]
22

(18:152)
2.4.4. Bessel Functions (18:10- 11,152 - 153).
Starting with Mathal and Saxena's formulas with &=0 and

applying property (2.4) with k=2:

10
* I 2z) =4 H ] ZC%Z: (4v,4),(-4v,4)]
20
. SOREE NS PRI NC Sk
20
* * Iv(z) =4 H ) 3[%2 : (~4(v+ 1)9‘!‘) H (*"’*)'(‘*‘7,*)’
('i'(v+ 1)’*)]
10
. Jg(z) =H Lz : (0,1),(~v,u)]
02

(Maitland's generalized Bessel function)

‘&4. .
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2447,

159; 21:
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Confluent Hypergeometric Function (1:506).
M(a,b,-z) = {Fi(a3b3-z)
k) 11

H Cz : (1-a,1) 5 (0,1),(1=b,1)1]
T(a) 12

Hypergeometrie Function (18:158).
" (a)I (b)+5Fy (a,b5c5-2)/T (c)
12

= HZ 2[2 H (1'3’1)’(1‘b91) H (0,1),(1"0,1)]

Generalized Hypergeometric Functions (4:40; 7:101; 18:11,
197 - 198).

q P
pFq( €81} s {3} 5 -2) = ( E.;'I"(bi)/ ;1_2_1; I (ay)) -

ip
*H Lz 3{(1‘3191)} 3 (0,1), ‘((i'biti)}]o
p q+l

for p€q or for p=q+1 and lzl €1.

{( ? )} * -
[ Eead s -]
ip
= H Cz : {(1-a3,0)}3 (0,1), {(1-14,B)} ]
p q+i
(Maitland's or Wright's generalized hypergeometric

function)
E(ps €a1Y 5 a5 (b} 5 2)
.1
=5 Lo (1,1, {8} s Layoa)}]
q+l,p

(MacRobert's E- function)

FAm
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2.4.8. Meijer's G- function (4:41; 7:101; 18:11,159; 21:197 = 168).

Gmn[z:{ai}3=nmn

Pq {b) P q

Extensive lists of elementary special functions expressed as

Cz : {(ay, 1)} 5 {(bg,1)}1

G- functions are given by Luke (14:225- 234) and Mathai and Saxena
(16:53‘ 68) .

2.5, NEW USE OF SKIRINSKI'S DFRJVATIVE RULE (Equation 2.14)

One of the more difficult aspects of dealing with H~- functions
is to relate the higher order H=- functions both to elementary
functions and to lower order H- functions. One tool for doing this
is the derivative rule that has been presented in section 2.3.7.
2.5.1. Consider, for example, from section 2.4.1.,

H ' o[z : (b,8)] = "1 ;b/B e"-ila. (2.19)
01
The derivative rule (2.14) can be applied to (2.19) to find some

new formulas:

11 10
B Lz: (013 (08,103 =258  Cz: (58))
12 £ 01
| -1 b/B -zllB
2 -a; (B z )
1/B 1/B

The above result combined with (2.17) gives the following new

relations:




T —

b
11
» H €z : (0,1) ; (b,B),(1,1)1
12
2 v/p -2 1/m
=B 2 e (b=-2*'5)
4 10 q 10
=bvB H Cz : (5B)3-B H Lz : (b+1,B)]
01 01

20
=« H 2(z : (0,1) 3 (1,1),(v,B)] . (2.20)
1

Multiplying (2.20) by z* and using property (2.8):

11
H 2tz : (a,1) ; (b+aB,B),(a+1,1)]
1

= g2 ,(b+aB)/B e'zila(b- zi/B) .

Substituting xl/As z, b=b+aB, and then B= AB, and using properties
(2.4) and (2.17) gives the following new relations:

11
* H 2£x= (a,A) 3 (b’B)’<a"lok)J
1

(bA- aB- Ax1/B)

1

-1 1
=B (bA-aB) H
0

0 -1 0
[x: (0,B)J-AB " H [x: (b+1,B)]
1 01

20
=-H . th : (a,A) ; (a+1,4),(5,B)T, (2.21)

Next, consider (2.19) with B=1; then, applying the derivative

rule (2.14):
11 dr
B Lz : (0,1) 3 (01),(r,1)3 2" 2 (z° ™) =
12 dz




YT

r arv by ¥ -
=zr§(;);z-r:;(z)§(°z)

r(b+1) zb-r+w(_1)w o2

r
=zr:(f,) .
w=0 D(b+l=-r+w)

The above result combined with (2.17) gives the following new
relations:
1

1
H [2 H (091) H (byl))(ril)]
12

#*

=T (b+1) 2° &% g (%) (=2)¥/ I'(b+1-r+w)

10
STE+ DI (5) OYE Lo (bewD)]
w=0 01
P(hriar+w)

20
= (-1)" H . ztz : (0,1) 5 (r,1),(b,1)],

for non-negative integer r. (2.22)
Multiplying (2.22) by z® and applying property (2.8):

11
H Lz : (a,1) 3 (b+a,1),(a+r,1)]
12

=T (b+1) 2272 72 i‘_’ (%) (~2)/ D'(b+t-r+w),
w=0

Substituting b=b+a and xllBs z, and using properties (2.4) and
(2.17) gives the following new relations:

11
- H . Z[X: (a,B) 3 (b,B),(&"'l‘,B)] =
(next page)

s

l”"ﬁ gt AT

M




e e e
Ter Y ..

IR TE———C L T ey e

46

ya
. = 5 ip (bea+ l)xblB e-‘ Zr: (:) (-xi/B)"/ IV (b=atler+w)
w=0

I (b-at+1) 10

B [x: (b+w,B)]
D(b-atl-r+w) 01

r
=2 (g -1
w0

20
= (-1)" H . 2[x : (a,B) ; (a+r,B),(b,B)],
for non-negative integer r. (2.23)

Note that, when r=0, (2.23) reduces to (2.19) by property (2.9).
Also, referring to section 2.4.5., if b=0, B=1 and ¢c=1-a,

then (2.23) becomes

& T(c-r)
. 1Fi(cseers-x) =X 3 _ () ———— (-x)",
w=0 T(c=-r+w)
for non-negative integer r. (2.24)

2.5.2. Following the same procedure as in section 2.5.1., but
starting with the following known H- function of section 2.4.1.,
1o b d-b-1
4 , 1[2 t (d,1) 5 (5,1)] = z2°(1-12) / T'(d-b) ,

then the following new relations are derived:

11
. Hz 2[x: (a,B),(d,B) ; (b,B),(a+r,B)]
r T'(b-a+1) («1)¥ x(®+W)/By_ ,1/Byd-b-1-w
=2 ()
w=0 D(b~a+ler+w) IP(d-b=w)
r I'(b=a+1) («1)¥ 10
= (v H : (d,B) .
g w) Tooasiorem 1 1fx (4,B) 3 (b+w,B)]
(next page)
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r 20
. = (-1)" H \ 2l:x : (a,B),(d,B) ; (b,B),(a+r,B)d,
* . for non-negative integer r. (2.25)
And, starting with the following known H- function,
. 11 b ~bta=1
H Cz : (a,1) 5 (5,1)) =T (b=-a+1) z° (1+2) .
11

then the following new relations are found:

12
. H , 2[x : (ay,B),(as,B) ; (b,B),(ay +r,B)]
r T (b-ay+1) T'(b=a,+1+w) x(O+W)/B
=3 @ - 2

P(b-ag+1l-r+w) (-1)¥ (1+x/Bjb-az+iew

w=0
r r(b-as+1) (-1)¥ 11

=3 ) ! B [x: (apB);(bw,B)]
w=0 I’(b-ai+1-r+w 11

21
=(-1)" & , 0% ¢ (32:3)(a1,B) 5 (5,B), (s +1,B)],
for non-negative integer r. (2.26)
2.5+3. DBecause the section 2.5.1. and section 2.5.2. results are
summations, the second application of Skibinski's derivative rule
produces somewhat more complicated results. Consider the p-th
derivative of (2.23) where B=1:
12
. HZ 3(2 H (0’1),(391) $ (bal)s(“"rti),(pvl)J
11

- zp% R Lz oz (a,1) § (by1),(atr,1)]=
S dz 12

- e e

B

L




P(b-a+l) (-1)¥ &

r
=22 ()
w=0

b+w -2z

g _ (2 e )

™(b-a+l-r+w) dzP
T'(b-a+1) (-1)¥

=PI ) — 2P -
w=0 I*(b=a+l-r+w)

11
‘R ztz : (0,1) 5 (b+w,1),(p,1) 3.

The above result provides the following new relations:

12

- H 3(2 : (091);(391) H (b,l),(a+r,1),(p,1)]
2

(1)¥*V D(b-a+1) D(b+w1) 22 o2

r
=33 @)
w=0 v=0

I'(bea+ler+w) IM'(b+w+l=p+v)

r (~-1)¥*V ' (bea+l) T(brw+1)
=>___ﬁ (GA1¢4) .
w=0 v=0 I'(beat+ler+w) I'(btwtl=-p+v)

10
*H [z: (brwev,1)]
01
D(b-a+l) (-1)¥ 11
=3 B Cz:(0,1) 5 (04w,1),(p,10]
w=0 P(Mh-a+l-r+w) 12

21
= ('1)p B Cz: (8,1),(0,1) 5 (Py1)y(by1),(a+r,1)]
23

30
(-1)P*T ' 3(z : (0,1),(a,1) 3 (a+r,1),(p,1),(b,1)3

21
(_1)1' H » Cz: (0’1)9(391) H (a+r,1),(b,1),(p,1)3,
3

for non-negative integers p and r, where the last three

He- functions are differing applications of (2.17). (2.27)
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Continuing with the section 2.5.1. procedure, the following new
relations are also found:

. 12

* H Cx: (a1,B),(ap,B) ; (b,B),(ay +r,B),(ap+p,B)1
23

r (-1)"*V D(b-a+l) D(b-a,+w+1)
S GG 2 :
w=0 v=0

I(b=aj+i-r+w) T'(b-as+wtl=-p+v)

. x(b +w+v)/B e-le'/B

r (-1)¥*V D(b-aj+1) D'(b=a,+w+1)
S 2p WA tes 2 :
w=0 v=0

I'(b-aj+ler+w) I'(b-ap+w+l-p+v)

10
*H Lx: (b+rw+v,B))
01

(~1)¥ r(b-ag+1) 11

T
=2 (@ H  [x:(ap,B);(b+w,B),(aptp,B)]
w=0 P(b-ay+1l-r+w) 12

21
= (_1)!' H » 3[X : (3213)9(3113) H (ai+rQB)9(bDB)'(‘2+P,B)J

21
= (-1)P § , [x: (ay,B),(ap,B) ; (ar+p,B),(b,B),(ay +r,B)]
3

30
= (-1)P*" g ) 3[x: (a4,B),(az,B) ; (b,B),(ay +r,B),(as+p,B)]

for non-negative integers p and r. (2.28)
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2.6. NEW REDUCTION FORNULAS

The well-known relation I'(z+1)=z I"(z) leads to a number
of simple reduction formulas for special cases of the H- function.
Using this relation,

I"(1+b+ I'(kb+k = (b+Bs) I'"(kb+kBs)
I"(b+Bs

= k" 1(kb +kBs) T'(kb+KkBs) = k- T'(1+Kkb+KkBs).
(2.29)
Applying (2.29) to the H- function definition (2.1), for k»O0:
o+2,n
» H Lz: {(ai.Ai)},(b.B) 3 (b+1,B),(kb,kB), {(b3,B)}]
p+i,q+2 .

-1 m+i,n

=k " H Lz : {(ags41)} s (1+kb,kB), {(b3,B)}]
pya+l
(2.30)

m+l,n+l

* H Lz : (1+ka,kA), {(a3,84)),(a,4) 5 (a+1,4), {(by,B)}]
p+2,q+1

-1 _ Myn+l . .
=-k " H " Cz @ (ka,kA), {(ag,41)} 5 {(b1,B1)}]
p+i,q (2.31)

m+i,n

. ):4 Lz {(aioki)} »(a +1,4),(ka,kA) 3 (a,n), {(biysi)}l
p+2,q+l

m,n

=k H :1 Cz : {(ag,A)} o (1 +ka,ka) 3 {(b3,B)}]
»q
F (2.32)
m+i,n

. H L= : ‘((aibA-l)} »(b+1,B) ; (b,B), {(biaai)} » (1 +kb,kB)]
p+l,q+2

men

=k H p:q+1tz : L(ag,A)F 5 L(bs,By)} , (kb,kB)]

(2.33)

N
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Simtlarly,

D(1-a-4s) I(-ka-kAs) _ kK~ (1 - ka-kas)
I (-a~-As)

leads to the following reduction formulas for k>O:
m, n+2

. H Lz : (a,A),(1 +ka,ka), {(‘isﬁi)} 3 {(bi’Bi)} s(a+1,A)]
pt2,q+l

m,n+l

H [z : (ka,kA), {(a3,44)) 5 {(b3,B;)}]
p+l,q :
(2.34)

= k-1

m+l,n+l

H Lz : (v,B), {(a4,4)} 3 (kb,kB), {(b3,B4)Y,(b+1,B)]
p+l,q+2

*

-1 m+l,n
=-k H 1[z : {(ag,84)F 5 (1+Kkb,kB), {(bg,B)}]
p,ar
(2.35)
myn+1
he H [z : (b+1,B), {(aioA-j_))’ 3 {(bj,,Bj_)} »(b,B), (1 +kb,kB)]
p+l,q+2

myn
=k H Lz : {(a3,A4)F s {(b1,B3)Y , (kb,kB)]
pPyq+l
(2.36)
myn+l
* H Lz : (a+1,4), {(ay,44)} ,(ka,kA) ; {(b5,B3)} ,(a,4)]
pr2,q+1

myn

= -k H :1 Lz : {(ay,8)), (2 +ka,ka) 5 {(bg,B:)}]
p+l,q
(2.37)

Using I’'(z+1) =2z I'(z) also results in the relation

D(b+Bs) I(1+kb+kBs) , V(1 +kb+kBs)
IT"(1+b+Bs) b+Bs

=k I'(kb+kBs), (2.38)

P .




——

A G A R e W o ——————

52
Applying (2.38) to the H- function definition (2.1), we have the
following reduction formulas for k>O0:
m+2,n
* H [z :{(31’Ai)} ,(b+1,B) 5 (b,B),(1+kb,kB), {(b5,B5)}]
ptl,q+2
m+l,n
=k H Cz : {(a3,4;)) 3 (kb,kB), {(b;,B5)}]
psqtl
(2.39)
m+1,n+1
* H EZ H (kagkA), {(3iiA-1)} ,(a+ 19A) ’ (a’A), {(bisai)}J
p+2,q+1
m,n+1
- Res(-a/A) = -k H . [z : (1+ka,ka), {(a5,4)} s {(b5,B,)}]
+ *
P (2.40)
m+i,n
. H Cz: {(aitAi)} ,(a,4), (1 +ka,kA) ;5 (a+1,4), {(bi'Bi)}]
pt2,q+i
1 Tn
=k H Lz : {(ag,40)} 5 (ka,kA) 5 {(by,B4)}]
p+l,q
’ (2.41)
m+l,n
*+ H [z : {(ay,4)) ,(b,B) 5 (b+1,B), {(bg,B)) ,(kb,kB)]
p+i,q+2
-1 _™n
= -k " H Lz :{<319A1)} ;{(biaBi)} 9(1+kb,kB)]
Pyqtl
(2.42)
Similarly,
I'(-a=-As) I (1=ka=kAs) , k I"(-ka-kaAs)
IP(l-a-As
leads to the following reduction formulas for k >0:
(next page)
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m,n+2
* H tz H (3 + lsA),(kaykA), {(31’Ai)} H {(biyni)} v(a',A)J
p+2,q9+1

myn+i

=k H Cz : (1+ka,kA), {(as,4) ¥ {(bs,B;)}]

ptl,q
(2.43)
m+1l,n+1
* H Cz : (b+1,B), {(as,44)) ;s (1+kb,kB), L(by,B4)} ,(b,B)]
p+l,q+2

m+l

on
+ Res(-b/B) = -k H +1tz s {(ay,4)} 5 (kb,kB), {(bs,B;)}1
Psq (2.)
m,n+1

» Lz : (b,B), {(agsA4)Y 3 {(by,B4)} ,(b+1,B),(kb,kB)]
ptl,q+2

-1 ™n

=k H 1[2 : {(ai’Ai)} ;‘((bi’Bi)} , (1 +kb,kB)]
P,q+t
(2.45)
m,n+1

* H Cz : (a,4), {(a3,4)}, (1 +ka,ka) 5 {(bs,By)} ,(a+1,A)]
p+2,q9+1

myn
= -k " H Lz : {(a5,40)} ,(ka,ka) 5 {(b3,By)}1]
p+l,q
(2.46)

Examples: Consider the derivatives of sin(z) and cos(z) from

section 2.“’02.’ using (2015):

& in(e) =L 3VEE Do (1), (0,5)]
dz dz 02

i1
= éﬁﬂ ) 3['2’2 : (-1,1) ; (01%),('%'é)1(°|1)3 * %o

(2.47)




BRI A S S i T S

2 e

Using (2.45) with (b,B) = (-1,1) and k=4, (2.47) becomes

10
g; sin(z) = (3)~! 4VwH , zrgz : (0,4),(1-4,4)1- 4

10
= 4+ 0 Zté“ : (osé)o(i"%)j ’

which, by section 2.4.2., is cos(z) as expected.

Similarly, 10
% cos(2) = & 4V H RS RRCHNCUE

11
= é‘ﬁn ) BE%Z : (~1,1) 3 ("!’0%)9“%%),(091)] 'é‘
(2.48)
Using (2.35) with (b,B) = (-1,1) and k=4, then (2.48) becomes:

q _ 10
az cos(z) = -(4) éﬁﬁo ztéz : (1-4,4),00,$)3 - %

10
= '%ﬁno 2:%1 H (*oé)p(ooé)] ’

which, by section 2.4.2., is =sin(z), as expected.

Consider the derivative of exp(-z®) from section 2.4.1.,
using (2.15):

10
g—z (e'za) =g—z- a-i H o ltz : (0,&'1)]

11
= I-l H Lz: (-1,1) ; ("-1a‘-1)’(°o1)30

12
(2.49)
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Using (2.35) with (b,B) = (-1,1) and k=1/a, (2.49) becomes
d (e‘za) = (-a) a1 H ' oEz : (1-a~1,a"1)3
dz 01

10
=< H Lz : (
01

—, )1,

a
which, by section 2.4.1, is (-a 221 =2 ) as expected.

2.7. SEECIAL DERIVATIVE CASES
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. The first derivative of an H- function H(z), by equation (2.15)

with k=1 and r=1, has a numerator term (aj,A;)=(-1,1) and a
denominator term (by,B;)=(0,1). Combining this observation with
equations (2.34), (2.35), (2.45), (2.46), where a=<-1 and b=-1,

leads to the following theorem.

* THEOREM 2.1: Given an H~- function of order (m',n',p‘,q'),
m® n'

H (2), where either a; =1 for any i, i=1,...,p*, or by =0
p' q'

for any 1, i=1,...,q9', then the derivative of this H- function,

H'(z), is also an H- function of order (m',n’,p',q') or less.

2.7.1. m+i,n

Let H(z) = H th : {(a3,44)} 5 (0,k), {(by,B;)}];
Psq

then, by (2.15), H'(z)=
m+l,n+1

: p+1,q+2[z : (=1,1), Clag~As,44)) 5 (-k,k), {(b4-84,8,)},(0,1)]
(2.50)
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Using (2.35) with (b,B) = (-1,1), (2.50) becomes:
-1 m+i,n
. . H'(z) = -k " H +1[Z 3{(51'A-1aki)} ;3 (1-k,k), {(bi‘Bi:Bi)}]'
R P.q
(2.51)
. The cos(z) and exp(-z2) examples of section 2.6. are in this class.
2720 m,n
let H(z) = H Lz : {(31’“1)} ; {(bioai)} 9(011‘)] H
pyq+l
then, by (2.15), H'(z)=
myn+1
H [z : (‘191)’ {(ai‘AisAi)} H {(bi'Bj_:Bi)} a('kak)’(oyi)] .
p+i,q+2
Using (2.45) with (b,B) = (-1,1),
myn
s w()=x'H 1I'.z : (a3-24,44)F 5 {(5-By,By) Y, (1-k,k) T «
Pyq+
(2.52)
The sin(z) example of section 2.6. is in this class.
2e7e30 myn+1 :
Let H(z) = H . Lz : (1,k), {(ag,A5)Y 5 €(by,B) )]
ptl,q
then, by (2.15), H'(z)=
myn+2
B [z : (-1,1), (1~k,k), {(‘1'&[9‘1)} ; {(bi'BiSBi)} » (0, 1)] .
. p+2,q+1
- Using (2.34%) with (a,A) = (~1,1),
’ -1 myn+l
* H'(z) = k H ) [z : (=k,k), {(ai'Ai’Ai)} H {(bi'Eiogi)}]°
. p+l,q
(2.53)
A At e, PR L
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2e7l4e n

m,
let H(z) = H Lz : {(aioAj_)} » (1,k) ;{(bioai))];
p+l,q
then, by (2.15), B'(z) =
myn+l
H Cz : ('131)’ {(ai'Ai’Ai)} s (1-k,k) ; {(bi‘B;pBl)} 9(0)1)] .
p+2,q+l
Using (2.46) with (a,A) = (-1,1),

myn

o BG) =k H Lz o:{(ag-Ay, A}, (<kok) 5 {(5-By,B)3] .

p+l,q

(2.54)
2.7.5. Examples.

Theorem 2.1 applies to most of the known special cases of the
H=- function that are given in section 2.4. Besides the sin(z),
cos(z) and exp(-z?) derivatives already treated in section 2.6.,

the following derivative formulas are a consequence of Theorem 2.1:

*  d(arcsin(z))/dz = (1-22)" %
=n n: jtiz L (0,),0,) 1 (B, (-1,H].
*  d(arctan(z))/de = (1+22)72
-3 a: jcz L @4,9,0.) ; 0,,d,h1,
which reduces further, using equation (2.9), to
*  d(arctan(z))/de = (14+22)"!
11

= 4 H1 1tz : (0,4) 5 (0,4)].

W'” e O
f



. d(aresinh(z))/dz = (1+22).%

12
= (1/2ﬁ)‘n ) ZEZ : (%s%)p(%’%) H (o!})Q(it*)J ’

which reduces further, using equation (2.9), to
. d(arcsinh(z))/dz = (1+22)-§

11
= (1/2+4FF)° H , 1tz : (4,4) 5 (0,4)].

The arctan(z) and arcsinh(z) results above can be verified by
using the argument 22 in the section 2.4.1. formula for zb(1+z)",

with b=0 and a=1 or %, and then applying equation (2.4) with k=2.

Using Theorem 2.1, the derivatives for the Bessel functions

of section 2.4. with v=0 are:

10
d(Jo(Z))/dz = ‘% H 0 2(‘1‘2 H (%9%)9(‘%3%)3 = ‘J1<z)

10
RIS RIC DRCOEREMOE

using first derivative formula (2.51) and then (2.52);

20
d(Ko(z))/dz = -4 H . 2l:tz : (3,4),(-3,1) ] = Ky(2),

20
and d(YO(z))/dZ'z 'é’ H L jt%z : ("1,‘})5(é’!%)|('éoé)g(‘lvé)J "!1(')

using (2.51). Jgo'=-J1=J_q, Ko'==Kq and Y,'=-Yy are known results
(1:376,361)« Also, using (2.52),

20
* Ty'(z) =-Yy'(2) =% H . 3(%2 : (-h4) ;5 (-1,3),(0,4),(4,H)],
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and, using (2.54),
20
- La'(z)--'IB'(z) = -‘k‘ H ' 3t%z H ('*’é) H ('zyi)’(laé)p(ffé)n .
For Maitland's generalized Bessel function, using (2.51),
u 10 u
] J,'(z) = -8 ZEz : (0,1), (-v=u,u) ] = -J _ (2),
0
from which, for v=0,
10

Jg"(z) = -Ja(z) = - H ztz : (0,1),(~u,u)3d,
0

which is also, by (2.52), equal to -1 10

u  H Lz : (-1,1),(1~u,u)].
02

Repeated application of (2.51) gives the r-th derivative of

the hypergeometric functions of sections 2.4.:

ar aF
d,}' “(a,b,-Z) = ;z—r- 1F1(a.b,-z)

11
= (1) B g [z: (1-a-r,1) 5 (0,1),(1=b=7,1)]

IP(a) 12
D(b) T'(a+r)
a (-1)F 1Fi(a+riberi-z).  (1:507)
™(a) T'(b+r)
Qr_ P (b ) = (1) I ()T (a#+r) D (btr) e -
a,bjc;-z) = (- +r,birs ;-
af 21 T a) Do) D(owmy 2 Lmomiessiod
I"(c) 12

2 (1) e _ H Lz : (1-a-r,1),(1-b=-r,1);
I"(a)D(b) 22
(0,1),(lec-r, 1) Y« (1:557)
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r )
* g_r qu({ai} ;{bi} j=z) = (~ 1)1‘ ? bi
dz N I’(&i)
- - 1,p
; . -8 Lz :{(1-ag-r0)}5 (0,1), {(1=by-r, 1))
k. p,q+i
. T (by )/ T (by+r)
b =(1)? Fo(Las+ry s {by+r} 3-2) .
{-. . '.IE'I‘(ai)/I"(aiﬂ)pq Lastr) p b
L [ S [{uimi MY
az” OB Loyreny,B)3
1,p
= (-1)' H +1lIz : {(1-a3-rA;,44)} 5 (0,1), {(1-by-rB;, BN}
P»q
The hypergeometric function examples above demonstrate the
following corollary to Theorem Z2.1:
* COROLLARY 2.1: If the conditions of Theorem 2.1 are met so that
one of the equations (2.51) or (2.52) is applicable, then Theorem
2.1 can be used repeatedly to find the r-th derivative when k=1,
For example, using (2.51)or (2.52) repeatedly:
r m+in
L i‘—; H [z : {(31'51)}; (0,1), {(bi931)}]
dz p,q+1
m+l,n
. = (-1)" K th : {(ay-ray,4,)} 5 (0,1), {(bg-rB;,B0]
PsQ
[ (2'55)
[ r my,n
. = WA1) Y5 {(b1,B1)} (0,1
s p,qﬂtz s {(as,44)} 3 {(b1,B3)},(0,1)1]
. (2.56)
myn
= H [z : {(ag-rAs,A4)} 5 { (b2-rBy,By)} »(0,1)]
4 pyqt+l .
0'4!»— - . . - . ST G T N S J‘wt\w“vﬁ e
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CHAPTER 3
* CONVERGENCE OF MELLIN-BARNES INTEGRALS

3.1. GENERAL REMARKS

Convergence conditiuns for the general Mellin-Barnes integral
were proven in 1936 by Dixon and Ferrar (6:81- 96) and were later
restated by Erdelyl (9:49-50). Luke (14:v.1) and Braaksma (3:
239~ 341) provide extensive theoretical treatment of convergence
for the Mellin-Barnes subeclasses G- functions and H- functions,
respectively. However, none of the above references gives any
straight-forward, practical, easily understood guidelines for when
a given Mellin-Barnes integral should be evaluated as the sum of the
left half plane (LHP) residues versus the negative of the sum of the
right half plane (RHP) residues.

The derivation of evaluation guidelines which is presented
below has been accomplished with the assistance of Dr. Barry S.
Eldred and Dr. J. Wesley Barnes.

lovett (13) stated that Jordan's lemma is generally applicable
to the H- function, which would allow the use of the residue
theorem for all positive real values of the function variable.
lovett's attempted proof of this statement, reproduced by Springer
(21:431 - 440), overlooks the oscillatory growth nature of 1/I(x)
for negative values of real x. Thus, as given below, the correct

development and results are somewhat more complicated than Lovett's.
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As a particular example of the flaw in lovett's proof,
consider the form g(s)=I"(1-s) I’'(s) I"(b+s). Then, g(s) is a
valid H- function kernel and

lim g(s) = lim I (b+s)T/sin(sTr).
5400 s+00

This limit does not exist, since sin(s ) oscillates between -1
and +1 and I"(b+s) is unbounded as s»ee. However, Lovett's
approach would indicate that |I"(1-b=-s)| has a positive lower
bound, so that he has

lim g(s)=1lim 1r2/(sin(s‘lr) sin(bfr+ sTr) I"(1-b-s))
S900 5900

=0 .
lovett's approach is thus seen to be false by the oscillatory
growth nature of 1/I"(1-b-s) as s+00; that is, |IT'(1- b~ s)| has

no positive lower bound (1:255).

3.2. DERIVATION QF CONVERGENCE CONDITIONS
3¢.2.1. Definitions.

The general Mellin-Barnes integral is defined as (9:49):

zs ds ,

m n
wtieo T IV(by - Bys) II P(ai"’Ais)

1 A=t i=1

() = 391 f Q P
w-100 TI I'(cj +Cys) TT I'(dy - Dys)

i=1 i=1

where w is real and all Ay, By, C4 and Dy are positive real

constants. The path of integration is a straight line parallel
to the imaginary axis with indentations, if necessary, to avoid

the poles of the integral. When the poles of II I'(by - B;s)
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lie entirely to the right of this path of integration and the
poles of IT I'"(ay +A;s) lie entirely to the left, then this
integral represents an H- function.
We wish to derive the conditions for which each of the
following two relations are valid:
w+ loo

£(z) = =2 f (e) ds = - Um k- fmm(-) ds

w=-1ioco N <> o0

[}

- 3 RHP residues of (e); (3.1)

1 w+ioo( ) 1
£f(z) = ——f o) ds = lim — f (e) as
2mid . ioo N ->o00 27 ABEFA

=Y LHP residues of (), (3.2)
where the integrand (e) is that of a Mellin-Barnes integral as

defined above and the contours ADCBA and ABEFA are as shown below.

w=N [ w wN > x
1 |t 4
F - I D
SRR T = L lige a

%.\-: (e
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For simplification, the following parameters are defined:
n mn i P
D=2 A +2_B -2 C-2_D;
i=1 i=1 i=1 i=1
n m P
TP P b b RS b
i=1 i=1 i=1 i=1
n n
L=Re(Q_ ay-4n+2d _ bi-%m-ﬁ c1+%0-£ d +4P)
i=1 i=1 i=1 i=1
n P m . Q
r = TraM 1m0, B/ B T ) > o
i=1 i=1 i=1 i=1
n Re(aj)-% m Re(by)-%
TT Ay 1B
i = #(n+m-Q-P) . i=1 _4=1
(2m) Q  Re(cs)=% P  Re(dy)-%
TIICy TIDg
i=1 i=1
K=Rlz] >0
@ = arg(z)
let s=u + vi, u and v real, and note that
125) = 12|® VO
Using formula 6.145 in Abramowitz and Stegun (1:257), for b
complex and B positive real, and noting lim |Im(b+Bs)|= lim Blv|:
jvi-»e0 jvi+e
b) ¥ Bu-
lim  |T(b ¥ Bs)| = 1im -J"‘zw(alvl)Re( )Em-d
tvisoo iviseo
« exp(~3MBlvl) .
Then, m Re(by )=Byu-%
IT VZT(Byivl) exp(-317By [vf)
lim (¢) = lim i=1 T
|vl 900 vl 200} Q Re(ci)’ci“‘
:n;,l?ﬁ(cilvl) exp(-31rcy Jvi)
(next page)
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Re(a ~4
’FI;-JE#(Ailvl)e 1)+ exp(-$maslvl)
i=

P Re(d,) - Dy ~ %
. TV/TRG, 1D D Ay el)

2| o™v8

Collecting similar terms and using the parameters defined above:

lm  {(o)] = 1im  kivIETEY exp(-4 DIV - vo) K
(vl o0 {vieoo

(3.3)

where (®) is the integrand of the Mellin-Barnes integral and
el <.

Since the Mellin-Barnes integral diverges for all z when
D<€0 (6:83; 9:50), hereafter we can restrict our attention to
non-negative values of D. Also, the branch point 2=0 is excluded.
3.2.2. Right Half Plane.

The equality

w+ 100
SORE W IO LR - W NOL

w=- 100 N + 00

-f:(O) ds -f;(O) ds -fz(‘) ds)

will reduce to equation (3.1) if all of the last three integrals
each approach zero as N tends to infinity.

Consider first the integral over the line AD, for which
s=x-Ni where w€xSw+N. Using equation (3.3),

D D
] li s =
A

(next page)
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W+ N

lim f

N->oo" w

kK NLtEx exp (-4 TN + N8) K~ dx

L w+ N E_.\x
k lim exp(-+TMDN+Ne) N f (NTK) ax
N «+00 w

k K* 1im L+8w

N 00

oxp(~3 TN + N8) N (B r)Y-1)/10g (" K))

(3.4)

Since we know that
0, if e<47D

lin  exp(-3WmN+Ne) N TEV =

0, if 6=24TWD and L<-Bw
N <00

1, if 9=4WD and L2-Bw
oo, otherwise
0, if £€0O

lim ((N‘K)N-i)/log(NEK)=
N -» oo

-1/log(K) » ifE=0 and 0<K<1
oo, otherwise

and lim  (KY-1)/10g(k) = ¥,

K1
then (3.4) will equal zero under one of the following conditions:
(1) >0, <0, e<4wD .
(2) 20, E<O, e=4wD, LS~Ew.
(3) m>0, E=0, 8<47WD, 0KK<1 .
(4) D20, E=0, 0=4WD, 0<Kk<1, L<O.
(5) o020, E=0, 8$4WD, k=1, L€-1 .
Next, consider the integral over the line CB, for which

s=x+Niwhere w&x€w+N. Using equation (3.3) again,
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W

B
Ln [ (o) asl €2n [k NUFEXexp(dmmn- No) KX ax
N 00 o] N<+se w+\N

=k K" 1in  exp(-47mN-10) NU* B¥ (1. (wE )M /10¢(vE k)
N =00

(3.5)
Using the same analysis as applied to (3.4), we find that
(3.5) will equal zero under the same conditions as for (3.4),
except 8> -4WD and ©=-4WD replace 8<$WD and 6= 4D,

respectively. Therefore, both (3.4) and (3.5), and thus both

D B
1im f (¢) ds and lim f () ds, will equal zero if:
N <00 A N<oo" C

CASE 13 D>0, E<0, Jei<4WD .

CASE 2: D20, E<0, |6]=4"D, LS-Ew .

CASE 3: D>0, E=0, |e}< 41D, 0CK<1 .

CASE 4: 20, E=0, Je}=4yD, 0<K<1, 1L<O .

CASE 5: D20, E=0, |e|S#1¥D, k=1, L<~1 .
Additionally, from (3.3), for all cases, |8] <.

Finally, consider the integral over the line DC, for which
s=w+N+y4i where -NSy&N. Using equation (3.3),
un | f “(0) as] € 11m f" Kyt Y EO Mo dmp 5 - yo) K™y
N+oo " D Noco™ -N

Substituting t =~y for -N€y<0 and t=+y for OfysN,

c -
Ln | [ (0) asl € k 1im x“*“f“ fo1 DL te, -tey o
N oo "D N o0 0

=k un K'Y yO gy (e, aMEN+on) + T'(ﬁ,ﬂ(rmg Ny,

N -»00
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Y
where =1 + B(w+N)+1 and T‘(ﬂ,Y)=(f¢/1"(¢))f° r¢' 17" gr.

(3.6 0ont.)
#* is the incomplete gamma function given in 6.5.4 of

Abramowitz and Stegun (1:260 - 261).

When E# 0, (3.6) is dominated hy Nﬂand thus diverges for

E)O but converges to zero for E€O. Therefore, (3.6) and
N-+oe " D

c
1lim f () ds will equal zero and relation (3.1) is valid under

the Case 1 and Case 2 conditions above for which both (3.4) and
(3.5) equal zero.

When D>0 and E=0, (3.6) is dominated by K* ' and converges

to zero for 0K<1, or, if L£~1, for K=1. For L2-1 and K=1,

(3.6) converges to a non-zero value. If D=E=6=0, (3.6)
reduces to

N
kum KV [t ae =g ue VTV NIE
N =00 o] N +>o00
which converges to zero if 0KK<1 or if K=1 and L -1.
Therefore, (3.6) and lim
N + 00

’ L*'19

j‘g (¢) ds will equal zero and

relation (3.1) is valid under the conditions above for Cases 3, 4,
and 5 for which both (3.4) and (3.5) equal zero.

L
a
Thus far, we have shown that the Mellin-Barnes integral may be |

.
evaluated as the negative of the sum of the RHP residues for : ;
Cases 1 through 5 above. For these cases, the last three integrals 3
in the first equation in this section have been shown to approach ‘

'?i 4
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zero as N tends to infinity.
3.2+3. left Half Plane.

The conditions for which (3.2) is valid can be found in the
same manner as those for (3.1). Or, better, we can note that
substituting £=-s into a Mellin-Barnes integral yields another
Mellin-Barnes integral for which RHP evaluation is equivalent to
LHP evaluation of the original integral. This new integral has
parameters ﬁ=m, ﬁ=n, a=P, ,l;= Q, G=-w, 6=I), ﬁ=-8, ‘i.= L,
= 1/R, and 2=1/z. Applying the RHP results to these new
parameters and then transforming back to the original parameters
will yield the following conditions for which equation (3.2) is
valid:

casE 11 D>0, E>0, lel< 40D .

CASE 2: D20, E>0, lel=41D, L&-Bw .

CGASE 3: D>0, E=0, |el<3TD, K>1 .

casE &: ©20, B=0, l8l=47D, K>1, 1<0 .

CASE 5: D20, E=0, [8|$4WD, K=1, L<-1 .

Additionally, for all cases, |@1<1W.

Therefore, the Mellin-Barnes integral may be evaluated as the
sum of the LHP residues for Cases ? through ?. Note that when
D=0 then arg(z) =0 must equal zero. That is, D=0 limits the

evaluation of the Mellin-Barmes integral to real peositive values

of the function variable. This is true also for the RHP evaluation.

"
.
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3.2.4. Summary of Evaluation Guidelines,

Combining results for the RHP and the LHP, we have the
following guidelines for evaluating a Mellin-Barnes integral
f(cz), where c is a positive real constant:

If D>0 and L>-Bw, f(cz) may be evaluated for any z #0
such that larg(z)l < min(7,4WD), except at )z} =1/(cR) when E=0.

If D20 and L<-Ew, f(cz) may be evaluated for any z#0
such that Jarg(z)| € min(Tr,4WD), except at Jz) =1/(cR) when E=0
and L2>-1.

When f(cz) may be evaluated, f(cz)=- Z RHP residues when
E <0 or when E=0 and 120 €1/(cR), and f(cz)=2__ LHP residues
when EDO or when E=0 and {z|>1/(cR). Either RHP or LHP
residues may be used to find f(cz) at Izl =1/(cR) when D20, E=0,
and L€-1.

These guidelines may be stated in terms of six basie
evaluation types:

mi_p_ E _L flcz) igl larg(z)l
I 50 <0 >-Ew =-2_ RHP res >0 <M <inp
II 20 <0 &-Ew =) __ REP res » <mM,<imp
III >0 >0 >-Ew +2_ LHP res 0 <T,<3MD
IV 20 >0 <-Ew +2_ LHP res 0 <mW,<iWD
-Z: RHP res «1/(cR) < < WD
+¥)_ LWP res »1/(cR) <M, L 4WD
2 -ZR}P res <«£1/(cR) LT, <$4WD
#2_ LHP res >1/(cR) <W,<4WD

v >0 =0 320

_k




g S

I G TR} AV L I o . v g e €

71

 Note that if D=0 (Types II, IV, VI), then arg(z)=0.
2 For Type VI, f(cz) is defined at fzl=1/(cR) by the sum of
residues in either half plane if L<-1,

Due to the treatment of E and of the limiting value
Iarg(z)i =4WD, none of the evaluation types given above is
exactly equivalent to the convergence types given by Erdelyl
(9:50). The first type of Erdelyi is divided among all six
types above, the second iy included in Types II and IV, and the
third and fourth are included in Type VI with note 2.

When the Mellin-Barnes integral 1s expressed in terms of

the Mellin transform inversion integral,

W + 100 'E‘ I"(by +Bys) ‘FI' TV (ay - Ay5)
i=1 i=1

2 ° ds ,

5'17'_1_/ Q P
w=ioco IT I’(ci- Cis) -Ir P(di*‘Di’)
i=1 i=1

then, using the same definitions given in section 3.2.1. for
D, E, L, and R, the evaluation guidelines given above remain
valid with the interchange of RHP and LHP wherever these occur,
and +Ew instead of =Ew in the first four types. For example,
Type I would become: D>0, EL0, LY +EBw, Z LHP res.

Overall, for all known convergence conditions except one,
a Mellin-Barnes integral can be evaluated by summation of residues.
The one situation for which summation of residues does not work
is when D»0, E=0, L2-1, and lzl=1/(cR). This is not a severe
limitation since only a circular arc of complex z values and only

one real z value for Types V and VI are involved.
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303. [O]\ K. 9] ’S FO - N
Since the H- function is a Mellin-Barnes integral, the ». ’
¢ results of section 3.2. may be used to determine convergence
conditions and application of the residue theorem for the
. H- function. For an H- function as defined by form (2.1), the
' parareters of section 3.2.1. and evaluation types of 3.2.4 are:
ol Mol m-u-Sm
deng1
e E=i Ay -iBi
i=1 1=1
|
L=ne()i'i;b1 iq - iiﬂb) |
R= '.LT AiAi/ "n' 3131 x
i=1 ‘
IE D € _ L __ H(cz) Azt _larg(a)l |
i
|
I >0 <0 >Ew +)__ LHP res >0 <, < 4o i
II 20 <0 <Ew +)_LHPres >0 <, <40
ITI >0 >0 DEBw -2 _RHP res D0 <Tr, < 47D
Iv 20 >0 SEw -2 _RHP res 0 <Tr, <40
+Y _ LHP res £1/(cR)
v >0 =0 20 <M, <47p ;
. -2__RHP res >1/(cR) C
. +Y_ LWP res <1/(cR) ° ‘
: vil 20 =0 <o <, <o -
<Y REP res >1/(cR) ;!
. 1 If L<-1, may use sum of either LHP or RHP res at |z|=1/(cR).
w
“
g
%
&
-y FEENRVET ¥ R o Ry - -
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3.4, CONVERGENGE QF SPE ES

h -

3.4.1. Exponential and Power Functions of Section 2.4.1.

10 1/B
For B(z) =B [z : (6,B)) =51 :Be® pa=pdo
01
and E=-B<0. From section 3.3., H(z) is a Type I or Type II
and converges by summing of LHP residues for all positive real z
(and for complex z#0 such that farg(z)| < min(TV,47rB)).
10

For H(z) = H [z : (a+b+1,1) 3 (b,1)T = 22(1-2)2/T(a + 1),
11

D=E= arg(z)=0, Lz~a=-1 and R=1, If ad-1, H(z) is a Type VI and
converges by summing of LHP residues only for positive real z <1
and, if a>0, for z=1. There are no RHP poles, so that H(z)=0
for real z >1. If af-1, H(z) does not converge for any 2.
11

For H(z) = H 1 1t:z : (b=a+1,1) ; (b,1)] = I'(a)z(1+2)7%,
D=2, E=0, L=a~-1 and R=1. H(z) is Type V if a21 and Type VI
if a<€1. Thus B(z) converges by summing of LHP residues for
positive real z<€1 (and complex z #0 where |z)< 1 and |arg(z)}<1T)
and by the negative of the sum of REP residues for real z»1 (and
complex z where [zl »1 and Jarg(z)| €Tr). If a<0, H(z) is not a
properly defined H=- function, because the LHP snd RHP poles overlap.

3.4.2. Cases of Section 2.4.2.

10
For H(ke)=H Ckz s (a,%),(b,4)], D=0, E=-1 and L=a+b-1.
02

The contour parameter w must be greater than ~2a, the rightmost

.

N
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pole of H(kz), by definition of an H- function. Also, H(kz) will
converge (Type II) only if L 8w or, equivalently, a+b~- 1$-w.
That 1is,
-2aw€=-a-b+1 .

If a+1>b, such a w can be found. Then, H(kz) will converge by
sumning of LHP residues for all positive real kz. Therefore,
when a+1>b, the H- functions representing sin(z), cos(z) and
J,(z), having k=4, converge by suming of LHP residues for all
positive real z. But, the H- functions for sinh(z) and cosh(z)
have k=41 and converge only for negative pure imaginary z, not
for any real z.

Next, consider those H- functions representing the inverse

functions of sin, tan, sinh and tanh, with form

12
H(kz) = H ) 2[1(2 : (3)%)!(13’%) H (csé)’(d’%)] ’

vhere D=1, E=0, L=c+d=-a=b, and R=1. H(kz) is Type V if L20
and Type VI if L<O0.

For the arctan(z) H- function, L=~1 and k=1 so that this
H(kz) is Type VI and converges by summing of LHP residues when
0<€ 120 <1 and Jarg(z))€ #T and by the negative of the sum of RHP
residues when fz|? 1 and larg(z)ls.%". Thus, this H(kz) converges
for all positive real z#1.

With L==1.5 and k=1, the arcsinh(z) H- function is Type VI
and converges by summing of LHP residues when 0< Izl €1 and

larg(2){ € # and by the negative of the sum of RHP residues when

L
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lz1>1 and |arg(z)) € 477,

For the aresin(z) H- function, L=-1.5 and k=4i. This H(ka)
is Type VI and converges with the sum of LHP residues for 0<|zI< 1
and -7 € arg(z) €0 and.with the negative of the sum of RHP
residues for 1z 21 and - arg(z)$0. Thus, this H(kz) converges
for real z#0.

The arctanh(z) H- function has L=0 and k=31. This H(kz) is
Type V and converges with the sum of LiP residues for 0L 1z1< 1
and = arg(z) €0 and with the negative of the sum of RHP residues
for §z1>1 and -Tr<€arg(z)€ 0. Thus, this H(kz) does not converge
using summation of residues for any real z.
J.te3. logarithmic Function of Section 2.4.3.

12

H(z)=H , ztz ¢ (1,1),(1,1) 5 (1,1),(0,1)3 =log(1+2) ;
D=2, E=0, L=-1 and R=1. H(z) is Type V and converges with the
sum of LHP residues for 0€ )z} €1 and Jarg(z)}I<1r, and with the
negative of the sum of RHP residues for lz|>1 and larg(z)}{ <.
Thus, H(z) converges for all positive real z# 1.
3.4.4. Bessel Functions of Section 2.4.4.

Jy(z) has been considered in the first paragraph of 3.4.2.

Ky(z) has D=1 and E=-1, is Type I or II, and converges by summing
of LHP residues for all positive real z (and for complex z#0 such
that [arg(z)}{<41). Y,(z) has D=0 and E=L=-1 and will converge
(Type II) only if w€1. Since the rightmost pole of Y,(z) is v,

a valid w exists only if v&€1. Thus, Yy(2z) converges by summing of
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LHP residues only if v<1 and then only for positive real z.

For Jy(z), D=1-u, E==u-1 and L==v=-1. Since D must
be non-negative for convergence and u must be positive, then, for
0<ugi, J:(z) as an H- function is Type I (u<€1 and v€-1) or
Type IT (v>-1) and converges by summing of LHP residues for all
positive real z (and complex z#0 such that larg(z)l< 41 (1-u)<470).
3.4.5. Confluent Hypergeometric Function of Section 2.4.5.

D=1 and E=-1, so that the H- function representing
M(a,b3~2z) is Type I or II and converges by summing of LHP residues
for all positive real z (and complex z#0 such that |arg(z)l<417).
3.4.6. Hypergeometric Function of Section 2.4.6.

D=2, E=0, R=1, and L=a+b-c-1. This H- function is Type V
or VI and converges by summing of LHP residues for 0< Iz1<€ 1 and
Jarg(z)| <M and by the nogative of the sum of RHP residues for
Izl >1 and |arg(z)I €. If a+b<e, then L€-1 and this Be function
converges for |zl =1 and farg(z)| <17, using either LHP or RHP
residues.

347, Generalized Hypergeometric Function of Section 2.4.7.

The H- function that represents ,F, when p&q+1 will converge
only if D=p+1~-q20, that is, if p2q-1. Thus, this B~ function
really represents qu only when p is q~-1, q or q+1, a fact that
has not been noted by those who have shown qu as an H- function
(L:40; 7:1013 18:11,159; 21:197 - 198) or as a G- function (14: 143-
147; 16:61). Since E=p-q=-1, this H- function is Type V or VI

if p=q+1 and is Type I or II if p<€a+1.
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3.4.8. Meijer's G- function of Section 2.4.8.

Because all Ay, i=1,..e,p, and By, 1=1,...,9, are equal to
one, D=n+m=- (p=n)=-(g-m)=2n+2m-p-q, E=p-q and R=1,
Using these values for D, E and R, the six convergence types of
section 3.3. agree with known convergence conditions given by
Luke, where D=2§ and L=Re(v)-4q+3p (14:144),

34.5. Comment

In the above sections, the H- functions representing sinh(z),
cosh(z) and arctanh(z) have been found not to converge for real
values of z. Also, the H=~ function for the Bessel function Iv(z)
does not converge for v21 and t.at for the generalized hyper-
geometric function qu does not converge for p€£q=- 1. These items
have not been noted in the literature.

Throughout the literature on G= and H- functions, there are
a number of important errors and omissions. Quite often such
errors or omissions are due to failure to check that convergence
conditions are met. In order to avoid using invalid H- functions
or relations or arriving at invalid or improperly restricted
results, convergence is verified and discussed throughout this
dissertation. For example, derivatives and laplace transforms

of H- functions are used often; therefore, the next sections will

treat convergence of both.
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3.5. CONVERGENCE OF THE TPANSFOUM OF AN H- FWI N

The following theorem is of utmost importance to finding the
probablity density function of the sum of two or more He function
variates. Application of Theorem 1.5 depends on existence,

meaning convergence, of the Laplace transform.

Theorem 3.1: Given that an H- function H(ez), ¢ a positive real
constant, converges using the sum of LHP or RHP residues for some
positive real values of z, then the Laplace transform of H(cz),
L‘.{H(cz)},converges using the sum of LHP or RHP residues for all
complex r#0 such that |arg(r)| € T, except at |rl=cR when
L2-1.5 and E=-1,

From property (2.12),

n+l,m

Lr{H(CZ)} = c'l B 1F!'/c :{(1-%-51,31)};

q,P+
(0,1), {(1- ay - A0)3] -
If D, E, 1L and R are the convergence parameters for H(cz) as
defined in section 3.3. and Dqp, Eq, Lp, and Rpare the
corresponding parameters for I’.{H(cz)} , then the following
relations are immediately found:
Dp=D+1, Ep=-E-1, Lp=L-E-%, Re=R1l.
First, if H(cz) is Type III, IV, V, or VI, or if H(cz) is
Type I or II withED»-1, then we know that D20 and E>-1. This
means that Dp21 and Eq>0. By section 3.3., L.{H(cz)} is
Type I or II and converges using the sum of LHP residues for all
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r#0 such that farg(r)I< 4Dy . Since DTZI, the convergence
region includes [arg(r)|< $V.

Second, if H(cz) is Type I or II with E<-1, then Dp21 and
Ep>0. In this case, L.{ H(cz)} is Type III or IV and converges
using the negative of the sum of RHP residues for all r#0 such
that |arg(r) { #WMDgp, which includes the region |arg(r)|< 4TV.

Third, if H(cz) is Type I or II with E=-1, then®Dp21 and
Ep=0. Thus, referring again to section 3.3., Lp{H(cz)} is
Type V or VI and converges using the sum of LHP residues for r#0
such that |arg(r)/<#WD¢ and Ir|<1/(Rp/c) = ¢R, and using the
negative of the sum of RHP residues for r such that [arg(r)|< #WDq
and )Jr|{> oR. Again, larg(r)l(%'ﬂ'm'r includes the region
larg(r)l € $7, since I)TZL L. {H(cz)}converges using LHP or RHP
residues for Irl=cR and farg(r){< $T only when Lo<-1 or,
equivalently, LE-1.5.

The primary method used in this work  to numerically evaluate
the inverse Laplace transform of the product of laplace transforms
of H=- functions requires finding the Laplace transform values at
r=a+kbi for k=0,1,2,.... Theorem 3.1 guarantees that, for
some value a >0, these lLaplace transform values will all be
calculable using residues. For example, a can be chosen to be
greater than the largest value of c¢R for any of the H- funections
for which E=-1 and L2-1.5. Then, the Laplace transform values
of all of the H- functions can be calculated at r=a+kbi, k=0,

1,2,+¢., using residues, since |arg(a+kbi){< 4T for a>0.
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3.6, 0 9) - ()

By property (2.15), the r-th derivative of H(z) is given by:
p+1,q+1[z : (-r,1),{(aj-ra;,44)} 5 {(b4-rBy,B;)}, (0, 1)1,
From section 3.3., if O, E, L, and R are the convergence
parameters for H(z), then the corresponding parameters for H(r)(z),

o', B', L', and R', are seen to be related as follows:
0'=D, B'=€, L'sL+r(E+1), and R'=R .

If D>0, then D'>0 and H(")(z) will be one of the six
convergence types of section 3.3.

However, if D=D'=0, then L' must be LE'w' when E'#0 and
L' must be €0 when E'=0 in order that H(r)(z) converge (Type II,
IV, or VI). That is,

L+r(€+1) = L'SE'w' =E(w+r) or L{Ew-r , when E$0;
and L+r =1'¢€0 or L{-r, wvhenE=0 .

In summary, H(r)(z) converges when H(z) convergence parameters

meet one of the following conditions:
CASE A: [ >0,
CASE B: D=0, E4+0, and LEEw-r.
CASE C: D=E=0, and LL-r.

From section 3.5., the Laplace transform of an H=- function is
an H- function with D21, and, by CASE A above, Lp'®){ H(cz)}
converges for all non-negative integer t. Moreover, since the
Laplace transform has a (bj,B;) term equal to (0,1), Corollary 2.1

and equation (2.55) are applicable, giving the following theorem:

AN R = T Y VTN SO BTSN o T NIV AL SN L M e
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THEQOREM 3.2: - The Laplace transform of an H- function may be
differentiated any number of times using equation ¢2.55) and all
of its derivatives are convergent H- functions of the same order,

or less, as the laplace transform.

3.7. IMPROVED TRANSFORM AND DERIVATIVE FORMULAS

The right side of equations (2.12) through (2.15) with k=r=1

does not give a valid H- function when any of the values -by/By is

. not lessthan one, i=1,...,m, “and by real. This is because one or

more of the poles assoclated with the (bi’Bi) overlap one or more’
of the poles associated with the new (-1,1) or (0,1) term in the
numerator, and no contour exists to properly separate the poles.

However, the Laplace and Fourier transforms and derivatives
of an H- function are still able to be represented as valid
H- functions. Simple modifications in the developments of these
formulas can correct the problem.

For example, in the development of the Laplace transform of
an H- function, the order of integrations is reversed and per-
forming the inside integration introduces the term I'(1-s).

If -by /B, 21 for any 4, i=1,...,m, then therp')oles of I'(by +Bys)
overlap those of I'(1-s). This overlap can be eliminated by
replacing I"(1-s) by the equivalent expression

(«1) T (T-s+1) D(s-1) / T(s+1) ,

where I =maximum ( O , largest integer less than =b;/By ). (3.7)
i = 1, ...’m

Now, no poles of I"(bj +Bys) and I'(s=1I) are greater than or

i
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equal to any of the poles of I’(I-s+1) and I"(l-aJ-Ajs),

i=1,.00ym and j=1,.¢.,n. The Laplace transform equation (2.12)

and, by the same argument, the Fourier transform equation (2.13)
are thereby changed to:
: : daeny = S8 e s ), (e s}
q+1,p+2 7
(1,1), ‘[(1' a4 - A‘l’Ai)} »(0,1)],

(3.8)

-1 I n+l,m+l _
and, F, {H(cz)} = Sc_) 1 il _t_" (I,1), {(1-by = B;,B)}

- (1,1)’{(1"1'A19A1)} s(°91)J ’
(3.9}

where I is given by (3.7).
In the development of the formula for the derivative of an
H- function, the order of differentiation and integration is
reversed and performing the differentiation introduces the term
; (=8) into the integrand. Equation (2.15) is obtained by
replacing { - s) by the equivalent form I"(1-5s)/I"(=s).. When
-bi/Bi?.lssmallest pole of I"(1=38), use instead the equivalent
form -s=- I'(1+8)/T°(s). Since the largest pole of I'(b;y +Bys)
. is at least one and all poles of I’(1+s) are smaller, there is no
. overlap of poles of I'(1-ay~Ays) with those of I"(1+s). Thus,
| the derivative formula (2.15) should be stated as two distinct
N cases, dependent on preserving the existence of a contour that

properly separates the poles:

il
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m,n+1
H Cz : (-r,1), {(a3=-rA,A)) 5
p+l,q+l
{(bi-l'Bi,Bi)} ’(0’1)] ’
if I=03
H(r)(z) = {
m+l,n
-H Lz : {(ag-rAj A1)} ,(-1,1) 3
p+l,q+l
(0,1), {(by - rBy,B,) Y],
if I>0
- ’ (3-10)
or, alternatively,

m+l,n+1

[z : (-I-1,1), {(ai’rA-ioAi)} v("rvi) H
p+2,q+2

(-I-n,1), {(bi-rBi’Bi)} 9(091)1 ’
(3.11)
Note that when I=0, by property (2.9), equations (3.8), (3.9),

H(r)(Z) = (_1)I g
where I is defined by (3.7).

and (3.11) reduce to the earlier formulas, respectively, (2.12),
2.13), and (2.15). Moreover, the H- functions for the Laplace
transform, Fourier transform, and derivative, as given by these
improved formulas, have convergence parameters that are identical
to those given by the earlier formulas. Therefore, the results
of sections 3.5. and 3.6. are unchanged, except that Theorem 3.2
should indicate that differentiation of the lLaplace transform

is done using (2.56) when I>0. ’
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CHAPTER 4

THE H- FUNCTION DISTRIBUTION

4.1. DEFINITION

| Consider a random variable X with probability density function |
4
'r‘f 1 v given by

. KeH(ex) , cxES
5 fx(X) =
0 , otherwise

where H(cx) represents an H=- function as defined in section 2.2.,

K and c are real constants such that

oo
’ f fx(x)dx=1 ’

-00

and S is a subset of the positive real values z for which H(z)

is convergent. The random variable X will then be called an

H=- function variate or a random variable with an H- function

distribution (4:41; 7:103; 21:200).

4.2. EKNOWN SPECIAL CASES

Carter (4:44 - 503 21:202- 206) and Eldred (7:103- 108; 21:206)
‘ demonstrated that twelve of the classical non-negative probability

distributions are H- function distributions. The standard form and P

the He function form of the probability density functions for each
L

of these distributions are given below:
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Gamma Distribution:
fx)= x®" 1 o"%/0/® 1 (g)

10
= (¢ T'(e))"} B Lx/8: (8-1,1)3, x>0, 6,4>0.

(4.1)
Exponential Distribution (Gamma distribution with @=1):
f(x) = g1 &%/
L 10
= ¢ no 1l_'x/¢ : (0,1)1, x>0, g>o0.
(4.2)
Chi - Square Distribution (Gamma distribution with g#=2 and @=3e):
rx) = 2071 o1 b ey
4 10
= (2 I'({0)) HO 1Eix : (40-1,1)3,
x>0, @=integer 0. (4.3)

Weibull Distribution:

fx)= o¢ x¢- 1 e'u’

10
= 91/’ Ho 1[91/¢ x 3 (1-¢'1,¢‘1)J, x>0, 0,§>0.

(4.4)
Rayleigh Distribution (Weibull distribution with f=2):
f(x) = 20xe® <
$ 10 4
= o " [ x: (1], x>0, e>o0.
o (4.5)

s R Dt B OO AR LN BB e 5t i e

 E




86

Maxwell Distribution:

2.2
f(x) = & 0'3‘#'* x2 o X fe

10
= 2 9-1"-4} Ho 1l.‘x/e : (1,13, x>0, 8>0.

(4.6)
Half - Normal Distribution:

2,..2
f(x) = 2 6'1(2‘”)-% o~ /28

10
= e‘i(zw)‘* B o 1l:e‘1 2’* x: (0,4)], x>0, 8>0.

(4.7)
Beta Distributiong

{xe‘ 1(1-::)”" 1/B(e,¢) , 0¢x%1, 6,§>»0
fi(x) =
0, x€0 or x>1

10
r(e+g) .

.l TE M (e+¢-1,1) 5 (8-1,1)7,
0<¢x%€1
0, x>1
(4.8)

Half - Cauchy Distribution:

t(x) = 2 e (e +xH)7!

11
=(em ' n Lo o) s ©0,4)1, x>0, 8>0.

(4.9)
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Half - Student Distribution: ‘ 1
£x) = 2 k T (a+4) (1+ (/20 @+ h :
‘. 11 |
‘ = kR [VE: G-ad 5 (D],
. where k=1/(v2e I"(8)), x>0, >0. | d
' (4.10)
F- Distribution:
o 01-1
x) =
6.°1 T"(0;) T(95) (1+03x/0)%1 " %2
o1/ " Leyn/oy t (<01) 5 (93-1,1)]
= B 0,x/65 : (=65,1) ; (84-1,1)7,
1"2915 I"Zezs 11 %2 2 1
x>0, ©1,6,>0. (4.11)
General Hypergeometric Distribution:
£x) = d %/ T (b) k x° ! M(b, r,-axd)/T (r)
11 o
= oAy g , zta”dx: (1-b+(c-1)/d,1/d) ; '
({e~ 1)/d' 1/d)’(1' r+(c- 1)/d91/d)] ’
where k=T (r - ¢/d)/("(c/d) I"'(b~-c/d)), xD>O0.
. (8.12) I
. SR}
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* 4.3. CONVERGENCE OF SPECIAL CASES

4.3.1. The gamma, exponential, chi-square, Weibull, Rayleigh,

Maxwell, and half-normal distributions are all of the form:
10
f(x) =k H [ex: (b,B)].
01
Using the results of section 3.4.1., f(x) is Type I or IT and
converges using the sum of LHP residues for all positive real x.
4.3.,2. Beta distribution.
10
f(x) =k H . 1{:: : (a+b+1,1) 5 (b,1)],
where a=@-1 and b=@~1. Using the results of section 3.4.1.,
f(x) is Type VI if a>-1,0r §>0. Then f(x) cc;nverges using the sum
of LHP residues for positive real x<1 and, if @§>»1, for x=1.
There is no restriction on @, and, f(x)=0 for real x>»1. These
results agree with known characteristics of the beta distribution.
4.3.3. Half- Cauchy distribution.

1

1
£(x) = (em) "l m LA 0,4) ; (0,4)]

Using the convergence parameters defined in section 3.3.,
D=1, E=0, L=0, and R®=1. Thus f(x) is Type V and converges using
the sum of LHP residues for 0 x<€@ and using the negative of the

sum of RHP residues for x>@. Most important, f£(x) does not

converge using residues for x=@, since L»-1.
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4.3.4., Half-Student distribution.
11
. f(x) =k H ) 1[1/'“ 29 (é'eoi) H (09%)11 820.
l -

D=1, €E=0, L=6-% and R=1. Since 8>0, L>-1 and f(x) does not

converge using residues for x=+v¥26. But, f(x) converges using the
’ sum of LHP residues for 0< x€¥28 and using the negative of the sum

of RHP residues for x>‘f§3, being a Type V or VI.
h'03950 F" distribution-

1
f(x) =k H 1E91x/92 H ("9291) H (91' 111)3 ’ 919°2>0'
1 .

D=2, E=0, L=0, +63-1>-1, R=1. Like the Half - Student, f(x)
. 1is Type V or VI and does not converge using residues for x= 92/91.

But, f(x) converges using the sum of LHP residues for 0€x<6,/04

and using the negative of the sum of RHP resicdues for x)92/91.‘

4.3.6. General hypergeometric distribution.

For the He function in formula (4.12), the convergence

parameters of section 3.3. are D=1/d and E=-1/d<€0. Thus, f(x)
is Type I or II and converges using the sum of LHP residues for
all positive real x.

All twelve of these classical distributions have probability
. density functions that can be expressed as H- functions that are

validly defined with properly separated poles for all given ranges

of the parameters. Wor a well-defined H=- function, the condition

a, b, d>0 must be added for the general hypergeometric distribution.
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Carter (L:52- 65) proved that the nrocduct of independent
H=- funetion w2v*ates has an H- function distribution, that the
guotient, of two independent H- function variates has an H- function
distribution, and that the rational power of an H- function variate
has an H- function distribution. These theorems make the H- func-
tion distribution a very powerful tool for analyzing probability
density “unctions of algebraic combinations of independent random
variables, Hecause none of the classic-:al distributions has all of
these closure properiies. The theorers cue to Cartzr are stated

“elow (4:82 - A83 21:208 - 217),

THEOREM 4.1: Distribution of Procducts. If Xy3Xpye0eyXy are
independent H=- “unction variates vith probability density functions
£4(x1)sfo(X5)5 oo oy fy(xy), respectively, vhere, for j=1,...,N, x3>0

and

MiygN:
fylx3) = ky H pJ- ch"j".ﬂ_ R (CRILI) SR (CTRIED 2 B
hARS!

N
then the probability density function of Y="II xj is given by
j=

N v 1 )
fY(y)=(;I=Ii' k) " [(IT ey vy

{(aiJ!Aij)} yi= 1""injiqj= 1ye04,N, {(3ij’Aij)} ’ 1=nj+1’
"'lpjijzl"”iﬂ ;{(biJ’BiJ)} ,i=1,.--,m-,j=1,...,N,
{(bﬁ.aﬁ)} ci=matlyeoeeqqed = 1ie. N J , for y>o0.

cd Amws o e o




9N

TUEQREM 4.2: Diciritution of a Quotient. If Xy and Xp are
indepencdent Ha function variates -ith nrobability density furnctions
fi(xy) ard fo(xp), respectivelv, uhere, for j=1,2, xJ->O and
MsyNa
£ixp) =y B 0 CCegxy : L(agzohs D} {032 R0 2T,
P3»9j
then the orobability density function of Y=X;/Xp is civen by
S N R T
P1+42,Q1+pP2
{(ail’Aii)} yi=1,..0,nq, {(1-Db4p- 2B12’Bi2)} yi=1,..0,mp,
{(ail,Ail)},i=n1+1,...,pl,{(l-biz-ZEiz,Biz)},i=m2+1,...,q2 s
L(b51,By1)} 1 =1, 0cesmy, (1= 255~ 2455,412)F 41 =1,..0,00,
{(b;1,B;1) }»i=m+1, seesqq,{(1-a;,-284 0,452}, 1 = nptl, eeesp2]
for y>0.

THEQREM 4.3: Distrihution a Rational Power. f X is an H- function
variate with orobability deasity function
mn
fx(x) = k H Cex :{(ai’Ai)} H {(bisai)}]’ x>0,
Pq

then the nrotahility density function of Y= XP, for P rational, is

siven by
P 1 mn P ’
fy(y) =k ¢ " " H L™y ¢ (a3~ MP+ALAP)Y S -
5 .
) Los - 7P+ 3, 3P}, P05 ;
nm 3!
and, gyy) =k &7t Ly {(1-by+B8P-8,-B.P)}s :

E L(1-a,+A;P-54,-44P)} ], PLO.

'y
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Notinge that Xl/X?=X1(X2-1), then Theorems L.1, 4.2 and 4.3 ’
can he corined into the followirg theorem. "
*
.
* TUROREM 4.4: If XysXps e ooy Xygy Xyggps oo o» Xy are incezendent rancom
. variables with probanility density furctions fj(xj), J=1,2,.04,V, '
|
’ respectively, “here x;20 and |
mj,nj i
fj(xj) = kj Hp‘ a‘[c X {(al,,A1 )} {(bl,)’BIJ)}] t
3278 '
and if Pj are nositive ratioral numbers for J=1yeeeyU and are i
nerative rational numbers for j=U+1,...,V, then the probability ‘
density function of the randonm wvariable Y, where \
v PJ ;
Y=T1I X5, ;
J=1 1
is ~iven by ;
ij+zngszn1 ij !
v Pi-1 J= J=U+1 3=U0+1 {
foly) = (IT kie3 J ) H ;
T =1 35 1] |
Z Z 3 » Z qj+ : Pj “
J=1 J=U+1 J= J=u+1
[('IT ey J)y : (ax,—A. Pj+A,lJ,AiJPj) »i=1y 000405, 571, 000, T,
J—
(1-b1:+Biij-BlJ’ B:LJPJ) ,l 1’.oo,mJ,J—U+1,--o,V,
(aij-Aiij*'Aij,Aiij) ’i=nj+1’ . "vpj:j=1o eesy Uy
, (1'bij+3ijpj'aij”5ijpj) ,i=MJ+1,...,qj,j=U+1,...,V;
. (bij'Bj-’,P-:"“Bi~"B~‘L%Pi) ,i=1"°°:mj’j=19"'aux
(1"311"'A~ 4Pj'Aijo'Aij ) ,i=t -.-,nj,j=U+1,...,V, f
. (bij-e"-,:‘Pj+Bij’EijP;‘.) ,"anj"'-,---,qu,j=1,-.-.U,
(1_aij+A‘lej-Aij’-Aiij) 9i=nj+19 "‘vpj)j=U+19 . ")V] ’
;‘ for y>O0.
T —— e
Tt —
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Theorem 4.4 has been programmed as part of the computer proeram
of Appendix B to implement the practical technique of section 4.5.
Yereafter, Theorems 4.1 through 4.4 will be used extensively. Carter
(4,5), Eldred (7), and Springer (21) provide many examples of usage
of these theorems. In particular, Carter (4:57- 65) derives the
chi-square distribution of the square of a standard half-normal
variate with Theorem 4,3 and the half-Cauchy distribution of the
quotient of two independent half-normal variates with Theorem 4,2,
Eldred (7:107 = 102) and Soringer (21:207) indicate the use of Theorems
L,2 and 4.3 to derive both the half-Student and F distributions. The
followings examples also demonstrate the straight-forward, simple
application of these theorems.

Applying Theorem 4.1 (or Theorem L.4 with U=V=2 and P;=P,=1)
to two half-normal variates with form (4.7) immediately gives the
distribution of the product of two half-normal variates as

-1 20
(27re,0,)" " H . 2l:z/(29192> : (0,%),(0,4) 7.
By section 2.4.4., this equals the Bessel distribution given as
(2/(179192))4(0 (2/9192) and agrees with known results obtained
without H- functions (21:160).

Similarly, applying Theorem 4.2 (or Theorem 4.4 with U=1, V=2,

Py=1, and P,=-1) to two gamma variates with form (4.1) gives the

quotient of two ramma variates as

11
(8,/8,T(69)T7(8,)) H , 1[¢2z/¢1 : (-65,1) 3 (8,-1,1)].

forian o~ -
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Bv section 2.4.1., this is equal to

(8,/8,)%1 (T (8, +8,)/T° (61)T(6,)) 2°17 (1 + (Bp0/81)) 172
which is known as the beta distribution of the second kind and agrees
with known results obtained without H- functions (21:164). A special
case of the above is the quotient of two exponential variates with
the resulting probability density function

62/9,
(1+ (Bp2/8,0)°
As a final example, consider the distribution fY('Y) for the

11
(¢2/¢1) H L 1[¢22/¢1 s (-1,1) 3 (091)] =

quotient of two power variates that are independent but identically
distributed with probability density function
10
£y, (%) = £y, (x) = (a+1)x® = (a+1) H . 1l.'x : (a+1,1)3(a,1)]
for 0€x<€1. By Theorem 4.2, the probability demsity function of
Y= )I]_/)(2 is given directly as
2 11
fy(y) = (a+1)” H ) Zty : (-a-1,1),(a+1,1) ; (a,1),(-a-2,1)]
for 0y €oo. From the section 3.3. convergence conditions, D = E=0,
=~2, and R=1, so that the H~ function above is Type VI. It con-
verges by summing of LHP residues for 0€y €1 and by summing of RHP
residues for y21, There is only one LHP pole at s=«a with residue
y'('a)/(Z(a+1)) and only one RMP pole at s=a+2 with residue
y'(a+2)/(-2(a+1)). Therefore, agreeing with known results (21:161),
4(av1) y* , 0¢Cy &1

fy(y) =
ry $(a+1) y'a"2 , ¥21 .
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* 4.5. PRACTICAL TECHNIQUE FOR FINDING THE DISTRIBUTION OF A SUM
4.5.1. General Technique.

. Thus far, only products, quotients, and rational powers of
indeperdent H=- function variates have been considered (section L.4).
This section will demonstrate a practical technique for determining
the probability density function of a sum of products, quotients and
rational powers of independent H- function variates. This technique
has been implemented and verified by an operational computer program,
shown in Apperndix B.

The general problem is to find the probability density function

of the random variable Z given by
Z = g K, ":El" &13 » K420, (4.13)

where, for J=1,...,My, 1=1,0..,N, K; are known constants, Pij are
known rational constants, and XiJ are independent random variables
with known H- function distributions.

For 1*1,...,N, let Y; be the random variable such that
P
Y = X, Y.
=1

The probability density function for each Yi is immediately found as

an H- function H:l(yi)’ 1=1,.e0,N, by applying Theorem 4.4. This

¢ reduces the problem to that of finding the probability density
function of the random variable Z given by

z’ix Yy K1>°’
i=1 1
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where K, are known constants and Yy are independent random variables
with known H- function probability density functions Hi(yi),
. 1=1,00e,N, respectively.

Since each of the Hi(yi) is an H- function, each of the

corresponding laplace transforms are also H- functions, H.l'(r).
These H, *(r) are immediately found using property (2.12) or equation
(3.8).

Now, by Theorem 1.5, the probability density function f(z) of

the random variable Z is given by

- N - N
£z) = 1, 1[:1;1; Ly, {BOD}T =1, 1[;!31; B (x,)],

where L;i is the inverse Laplace transform operation. Equation

(5.14), with (5.15), (5.8), (5.9) and (5.10), can be used to find
H'(r), i=1,..¢,N, for any desired value of r for which the Laplace
transform converges using the sum of LHP or RHP residues. Then,
£(z) can be found for specific values of 2z through any Laplace
transform inversion technique that is based upon selected values of r.
By Theorem 3.1, Hi'(Kir) converges using the sum of LHP or RHP
residues for all complex r#0 such that |arg(K;r)} <417, except at
FKgrl=cyRy when L2 -1.5 and B ®-1, where [E;, L, and Ry are the
E, L and R convergence paramsters of section 3.3. for Hi(z) and
¢y is the constant in the argument of H;(z), i=1,...,N. A number of
numerical inversion techniques exist that depend only upon values of
r within this convergence region. For instance, tha method by Dubner

and Abate (232) uses only such complex values of r. An improvement

Al

e




97

on their method by Crump (231) uses complex values of r with
0<arg(r)<417. Crump's method is used in the computer program
of Appendix B and is explained below after an example that will
demonstrate the irmitial steps of the ganeral technique.
L4.5.2., Demonstration Example.

Determine the probability density function of the random
variable T = WeX 2+ (Y/Z), where W, X, Y, and Z are independent

random variables with the following probability density functions:

Hy (W) = w2°5(1-w)0.5
10
= (I'(5)/T°(3.5)) H . 1[w : (4,1) 5 (2.5,1)],
0<w<€1 (beta distribution, section 4.2.)

10
Hy(x) =3 exp(-3x) =3H [3x:(0,1)], x>0
01

10

0.5 H 1IIO.S y: (0,1)], y>0
0

Hy (y) = 0.5 exp(-0.5 ¥)

10
O.4 R Cos 2
01

He (z) = 0.4 exp(~0.4 2)

(091)]) z2>0

(exponential distributions, section 4.2.)
By applying Theorem 4.4, the probability density functions of

U=Wex%amd V = Y/7 are found to be:

20
Hy(u) = (9 T°(5)/T7(3.5)) K . 2t9 u s (4,1) 5 (2.5,1),(-1,2)], u0

11
Hy(v) = 1.25 H [1.25 v : (-1,1) 3 (0,1)], v>0 .
v 11
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Using property (2.12), the Laplace transforms for Hy (u) and
Hy (v) are:

12
Hy *(r) = (I (5)/T(3.5)) H , 2[x-/9 : (=2.5,1),(0,2) ;

(0,1),(-4,1)]
21

Hy'(r) = H Cr/1.25 : (0,1) 5 (0,1),(1,1)].

v 12

By Theorem 1.5, the probability density functionof T= U+ V
is given by:

£2(t) = L, CHy t(r) « Hy'(n), tD0,

where Lt‘l is the inverse Laplace transform operation.
4.5.3. Crump's Numerical Inversion of a Laplace Transform.
According to Crump'’s method (231), a function f(z) can be

evaluated for 0<z< % and C = T/.88 by the convergent series:

£(z) = (e“/-aﬂ){ﬂ,(l) + ;im Cr.(a+kct) ] cos(kcz)

- Im [I..r(a +kci)] 'sin(kCz)}}, a>0,

where L = f .
i ),

In the general technique for determining the distribution of a

sum of products, quotients and rational powers of independent

H~ function variates,
N
L.(ro) = ;r_:; Hy "(Kyrg) »

and for the demonstration example above: L.(r,) = Hy *(rg)*Hy *(ry).

! m-f POV Tgrep. PRy RTE LTl el ettt




9

The rate of convergence of Crump's inversion series depends upon
the choice of the constant a., Crump recommends
. a = log(1/E)/(1.68) ,
vwhere E is the largest decimal error desired in the final f(z) value.
Computationally, the I.r(ro) terms for r =a + kCi, k=0,1,2,...,
are calculated once and stored. Then they are reused in computing
£(z) for each different value of z thet is desired..

Let Ayg, be the largest value of °1R1/K1 for those Hi(yi) where
the convergence parameters E; =-1 and [3j2-1.5, i1=1,...,Ne Then
the constant a should be chosen to be greater than A ... This is
to make sure that Hj.'(xiro) can be evaluated by summing residues
for all r,=a + kCi (per discussion in section 4.5.10)e
4.5.4. An Alternative Laplace Transform Inversion.

A mmerical inversion of the lLaplace transform by Jagerman (234)
is based upon the Widder (228) inversion theorem:

k =» oo

£2) = 1m  ((-1)9/k1)((k+1)/2)< 1 1.,""{1-(:)}, ot
i

Because the Laplace transform and its derivatives are H- func-
tions for an H- function, the Widder theorem leads to a formula that
, has no transforms when L. {f(z)} is a product of Laplace transforms
. of H- functions, as in the general techmique here for finding the
distribution of a sum.
. For example, if X and Y are independent H- function variates,
then the probability density function f(z) of Z = X + Y is given by:

£(z) = L, (L {Hy ()Y Le{Hy (ND}] .

R

O
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Then, the k-th derivative of L {f(z)} is:

k
j:_o (‘3) %(R-J){Hx (x)} . 11-('1){“!(3')} .

By Theorem 3.2 of section 3.6., each term above exists because the
Laplace transform of an H~- function can be differentiated any number
of times with the resulting H- function still being convergent.
Before proceeding further, let us derive an expression for the
t-th derivative of the Laplace transform at r=(k+1)/z for the
H= function
mn
H(z) = H [cz :{(‘1.“«1)}3 {(bioai)}]'
Pq
For simplicity, assume I=0 in formula (3.7) of section 3.7.; then,
by using properties (2.12) and (2.8) and the Laplace transform
property -103.2.5.,
n+i,m
L)y = 0t/ s [r/e
q,p+l
{(1-by,B)} 5 (t+1,1), {(1-a5,0)}]oc"
n+i,m
= -ttty [r/c : {(1-b4,B)}s
q,p+!
(t+1,1), {(1- ‘1!‘1)}]‘
And, at r=(k+1)/z, L.V H(z)}
P L re(k+1)/2
myn+l
= (181t R '1 Lez/(k+1) ¢ (-t,1), {(aghy) } 5
p+l,q

{(v,8))}] .

Note the similarity to the original H- function H(z).
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Thus, the k-th derivative of L. {f(z)} at r=(k+1)/z is:
. ;Li; 0 I/ 0 I I(a/ (ke 134
‘ - 8 nx.nx+1[ X gy, Loy } 5 {030 By} ]
) Prtlyay k+1
° H ::Z; :i: 2 (=51)s {(a3pa4 )} 5 {(byysBiy)} ] -

Denote the He- functions above by Hx"(&/(kif 1)s(~k+3,1)) and
Hy ¥(z/(k +1):(-3,1)), then f(z) is given by the Widder inversion
theorem as:
k
£(2) = Lim  (2/k3(k+ 103 (§) By *(2/(k+ 1)1(-ke3y1))
k <» 00 J=0
* Hy N2/ (k4 1):(=3,1)) «
As the number of terms in the original problem increases, the
complexity of this inversion technique increases considerably. The
probability density function of the random variable W= X+ Y + Z,
where X, Y, and Z are independent H- function variates, is given by:

K
£00) = Um  (P/itlkr 1)2) 2 () Hy (2/(k+ 1):(-k+3,1))
k <» 00 3=0

. . é () Hy *(s/(k# 1) (=3+1,1))+Hg *(2/(k + 1)2(-1,1)).

This inversion technique has not been programmed for computer
implementation and cannot really be compared to Crump's as yet.
Both techniques have the disadvantage now of there being no criteria

for selecting the upper limit on the summations.
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b.6. 'WW
The cumulative distribution function Ha (x) of a probability

density function H(x) is defined as
x
He (x) = fo H(t) dt .

Using a well-known Mellin transform relation from Erdelyi
(9:307), Eldred (7:139) and Springer (21:243) derive the expression
W+ ioo

Ho(x) =1 - (2r1)"? st x5 M, LH(x)} ds
w=-ioco

(L4.15)
Eldred (7) developed a computer program that evaluates an

H- function probability density function and its cumulative distri-
bution function by summing residues. In the first pass through the
basic program, for the desired values of x, he finds the corresponding
values of a probability density function given by
mn

H(x) = K°H ; q[c:ic : {(a3,4)) 5 {(v4,B;)}], K a constant.
Then, in the second pass through the basic program, he determines the
values of Hs (x) by summing the residues of

mn

(K/c) H o a Cox : {(ay +A5,4)F 5 {(by +By,B))], (4.16)

but (1) multiplying each residue by 1/sk. where s, is the pole for the

residue and (2) adding the pole s, =0 (or increasing by 1 the order of

cwb md

an existing pole at s, =0 for (4.16)) (7:140- 141). Once the result
of the second pass is subtracted from one, Eldred completes the

implementation of (4.15) for H(x) an H- function density.
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He (x) can be found more efficiently. First, substitute in
(4.15) for s7! the equivalent form I"(s)/I"(s+1) so that

m+1l,n

He(x) =1 - (K/c) H Lox : {(ag +A4,44)),(1,1) 5
p+l,qg+1
(0,1), {(bs +B;,B;)}],
and then apply property (2.8) with k=1 so that
m+i,n
. Hc (x) =1-KxH 1[cx 3{(‘1:&[)}0(001) ; (-1,1),

p+l,q+ {( )}]
b. ’ .
15 (4.17)

As indicated by (4.17), He (x) can be found at the same time as
H(x) by using the calculations for the residues of H(x), multiplying
each residue by 1/(sy - 1), and then adding the pole s, =1 (or
increasing by 1 the order of an existing pole at s, = 1). This single
pass procedure is used in the computer program of Appendix B.

Another formula for the cumulative distribution function of an
H- function probability density can be derived using the Laplace

transform.

THEOREM 4.5: The cumulative distribution function for an H- function

probability density function is an H- function.
Using Laplace transform property 1.3.2.7., that is,

"{f; £(w) du} = L (e} /r

and the Laplace transform formulas (2.12) and (3.8), with f(x) =

H(x), the H~ function defined above, then

S A - e AR+ LN G T St ¢ NN e
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n+l,m
(K/re) H [r/c: {(1‘bi‘51931)}; (0,1),
TP (a3, 10
~as - [} ’ = ;
L {Hc (0} = ik

n+l,m+l

(K/re)(-1)T H Cr/e v (I,1), €(1-by=B;, By ) } 5
q+i,p+2

(1,1), {(1-a3-A4,44)F , (0,1)], IDO.
And, using properties (2.8) to (2.10), with k=-1,

/%) 1 e Cr/e : {(1-1y-2 0¥ »(0,1) 3
qrl,p+2 i At

(0,1),(-1,1), {(1'31’2A1’Ai)}1t I=03
n+l,me2
(x/e?)(-1)! 1 Cr/e : (0,1),(I~1,1),
q+2,p+3
{(l'bi'zaioal)} H (I'lo 1). {(1‘.1°2A1’A1)} ]
(=1,1),(0,1)], I>0 .

Then, using formulas (2.12) and (3.8) to find the inverse transforms,

L.{H, ()} =

myn+1
(K/e) H Lex: (1,1), {(ag #+A5,00) )3
p+i,q+l
{(bi"'BioBi)} »(0,1)], I=0;
* Hc (x)z
m+l,n
(-K/e) H Cox s L(ag +A4,A)),(1,1) 5
p+i,q+l
(0,1), {(by +B;,84)}],1>0 .
(4.18)

Also, from property (2.8) with k=1, and equation (3.7) for I,

myn+1
PHGO) = () H 1[cx: (0,1), {(a3,4)} 5 {(b4,B) ¥, (-1,1)]
+1,q+
P : all -bi/Bi< 1' 1'1;0...‘ H
(4.19)
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m+i,n
* Hc(x) = (-Kx) H [cx 3{(31’A1)} »(0,1) 3 ('1’1),{(biv31)}]
p+l,q+l
L if any 'bi/3121’ i'I,...,m .
(4.20)
. GAMMA CUMULATIVE DISTRIBUTION FUNCTION: Applying (4.18) to the
. gamma probability density function given by (4.1),
. HgG) = (° Tt [ 07t &t
0
4 11
= (I(9)) H ) 2[x/¢ : (1,1) 3 (991)9(0)1)] ’
x>0, 6,0 . (4.21)
Also, I'(G)-Hc (z) is called the incomplete gamma function,
¥(6,2), (1:260) so that
11
. $(,2) =H [s: (1,1) ; (8,1),(0,1)), >0 ,2>0 .
12
(4.22)
HALF - NORMAL CUMULATIVE DISTRIBUTION FUNCTION: Applying (4.18) to
the half -~ normal probability density function given by (4.7),
x
. Ho(x) = 2 lem? [ em(-t?/26%) ot
0
4 11
=1r H L thl(e'&) s (1,1) 3 ('},4}),(0,1)],
‘ x>0, 6>0 . (4.23)
.‘ Also, Hg(x) is equal to erf(x/ev?Z) (18:140), so that
-* 11
. . erf(z) =1 H [z : (1,1) 3 (%9*)’(0’1)]9 220 .
12
(s.20)
- i SR— I

—=
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VE DIS N ON: Applying (4.18) to the beta
probability density function given by (4.8),

* He(x) = (la(e,qﬁ))'lf;t 8~ 1 (1- t)¢' !at

= (I"(8+g)/T" (8)) H: :[x : (1,1),(e+4,1) 3
(6,1),(0,1) 1,
0<x<1, 0,§<0 . (4.25)
The incomplete beta function (1:263) is given by
Be(8,8) = B(6,8) * Hc(x) , Hg(x) given by (4.25).
Although the above results, equations (4.18) to (4.20), were
found using the Laplace transform, they could also be achieved by
switching the order of integration of the cumulative distribution
function integral and the H~ function contour integral. Let
W+ oo
H(x) = K (o) (ex) as
w- oo
where (®) represents the gamma products in the H- function definition
(2.1), which do not depend on the variable x. Then,
x w + 100

- -5
Hc(x) -fo K "~ 100 (®) (ct) ~ ds dt

W+ 100

X
= =S
wa- too (o) fo (ct)™" dt ds

+1
=xfw > (o) (ex)1= 5 (e(1-8))"1 as
we=1io00

W+ 100 -1 -
= Kx (®) (1-s8) ~ (ex) " ds . (4.26)
w= 100

PRI PN
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In equation (4.26), if I'(1-s)/T"(2-s) is substituted for
(1-5)-1, then (4.26) becomes (4.19). And, if -I'(s-1)/T(s) is
substituted for (1- s)'i, then (4.26) becomes (4.20).

The probability density function f(z) for the random variable 2,
given in the general problem form (4.13), can be evaluated by using
equation (4.14). The cumulative distribution function FC (z) can
be found in the same manner by replacing Lr(ro) in (4.14) by
Lr(ro)/"o for r,=a+kCi, k=0,1,.... With this procedure, all
calculations for f(z) apply to FC (z) and both are determined in the
same pass through the computer program in Appendix B. Thus, Crump's
nethod for numerical inversion of a Laplace transform has the added
advantage of simultaneous inversion of transforms that are closely
related, as f(z) and Fe (z) are by Laplace transform property

1.302-7.

*4.7. EV ON H - FUK STR N

Carter (4), Eldred (7), and Springer (21) presented special
cases of the H- function distribution and the definition of the
general H- function distribution. However, they gave no method to
determine the constant K in definition L4.1. One approach to finding
K is to investigate H. (x) for large x, since

1im He (x) = 1lim K(H=- function given by (4.18)) =1,
X < o9 X = OO

That is, if K+H(ex) is a proposed H- function probability density,
use (4.18) to find the associated H- function for the cumulative

distribution function, which for large x will approach 1/K.
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The numerical approach to finding K is not nearly as appealing
as an exact method that has been found. Setting the right sides of
(4.17) and (4.19) equal to each other immediately yields:

m,n+1
*+ H Cox : {(a5,44)},(0,1) 3 (=1,1), {(b,B;)} ]
p+l,q+l
m+i,n 1

+ H Cox : (0,1), {(ay,a9) )5 {(bs,8)},(-1,1)] ==,

p+i,q+l

where all -by /By <1, i=1,.00,my (1-24)/A3>1, 1=1,000,n0 (4.27)
Compare the residues of the two H- functions in (4.27). Each RHP
residue of the first H- function has a matching RHP residue of the
second H~- function that is exactly equsl but opposite in sign, except
the residue at s =1. Similarly, each LHP residue of the second has
a matching residue of the first that is exactly equal but opposite in
sign, except again the residue at sy =1. Therefore, whether (4.27)
is evaluated by summation of LHP or of RHP residues, it reduces to
only one term on the left side:

(- RHP residue at s, =1) = (+ LHP residue at sp=1) = 1/(Kx) .
If the probability density function H(x) has no pole at s, =1, then
the cumulative distribution function i (x) has a pole of order 1 at
s, =1 and equation (4.27) reduces to:

m n
T I’(by +B;) TT I'(1-a5 - Ay)
i=1 _i=1

4 _ 1 (us.28)
cx Kx

q
T T(ag +A;) TT D (1-by - B)
i=m+1

=n+1

Solving for K and noting property (2.11), K= (IIHS{H(X)} )I .
is=1
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The above result is summarized in the following theorem.

THEQOREM 4.6: If H(x) is an H- function probability density defined
by
mn
H(x) =K « H . q[mt : {(ag,44)} 5 {(b4,B4)}],
such that =by/By<1, i=1,.ee,m, and (1-84)/A3>1, i=1,..0,n,
(which implies that H(x) has no pole at s=1)

then

K= (1/us{H(x)})| .
s=

p
aIr I"(ai +-Ai) 'PI" IP(1-by-B)
i=m+1

=n+1

(4.29)

nm n
TIT I'(bg +By) TT D (1-ay-4Ay)
i=1 i=1

The twelve classical distributions given as special cases of
the H- function distribution in section 4.2., equations (4.1} to
(4.12), all meet the conditions of Theorem 4.6 and their constants
agree with (4.29).

Another way to arrive at equation (4.29) is to consider Theorem
1.10 with k=0, that is, the zero moment of a probability density
function K+-H(x), where P{X %0} =0 and MS{H(J:)} has no pole at s=1:

EQC) = f“ K-H(x) dx = 1 = M,{K-H(x)}l
0 s=0+1

=K . MS{H(x)}' L
s=




-
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* 4,8, CONVERGENCE OF THE CUMULATIVE DISTRISUTION FUNCTION

IfD, E, L, R, and w are convergence parameters for a given
H=- function probability density H(x) and D¢, Eg, Lgs R and wg
are the corresponding parameters for the cumulative distribution
function Hc (x), then the application of the section 3.3. formulas
to (4.18) vields the following relations:
Do =D, Ec=E, Lg=L-1-E, Rg =R,
wo=wv-1, and if L<BW then Lo €<Eg-wg - 1.
Therefore, if H(x) is Type I or IT then Hs (x) is also Type I
or IT. If H(x) is Tyve III or IV then He (x) is also Type IIT or IV.
If H{(x) is Type V then He (x) is Type V or Type VI without convergence
at x=1/(cR) by summation of residues. And, if H(x) is Type VI then
H¢ (x) is also Type VI with convey;gence at x=1/(cR) by summation of
either LHP or RHP residues. Overall, if H(x) converges then Hq (x)

also convercges.

RN GRS e B el




CHAPTER 5
EVALUATION OF THE H- FUNCTION

5.1. MATHAI AND SAXENA FORMULATIONS

In 1973, Mathai and Saxena presented a theoretical computable
representation of a G~ function which involves a series expansion
and the summation of residues at LHP poles, using psi and poly-
gamma functions (16:177 - 185; 15). The psi and polygamma functions
are the first and higher order derivatives of the gamma function
(1:258 = 260). Due to the series expansion and no obvious simplifi-
cations, this formulation is lengthy and complicated. One of the
two terms in the series formula contains 9 nested levels of
summation and the other term has 11, where the fourth level also
involves an infinite sum.

Mathai and Saxena presented some details on handling poles for
the H- function and stated that their G- function formulation is
extendable to the H- function. They later gave more details for
their H- function representation (18:70 - 75).

No indication is given that the Mathai and Saxena formulations
have actually been programmed for computer usage. Such an effort
will not be an easy task. Moreover, their G- and H- function
representations are limited to cases where no denominator singularity
coincides with any pole. This is a severe limitation sinece such

coinciding occurs quite often.
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5.2. ELDRED FORMULATION (7:119~ 136; 21:227 - 241)
In 1979, Eldred presented a simpler formulation for the

numerical evaluation of the H- function, accompanied by an
operational computer program. Eldred treats LHP and RHP evaluation
separately. Following his LHP derivation, assume the poles 81
k=1,2,3,++4, are ordered from largest, most positive or least
negative, to smallest, most negative. And, assume r is the order
of pole s, and Tak is the number of singularities for s=s, in the

denominator of the H~ function integrand. Then,

Bz) =B 2t {lagah)} 5 454,500
Pa

1 a1l 00y g0y o '
’Zk:&k-i)'cds"k‘i(c (s) 08%¢s) =] -

he
e C(o)(s) = ;I%P(l-ai-ﬁs)/t(s-sk)rdk .
-frr'(i b )'I’E'r'( +08)]
. ~b; = Bs s
) 3~ By o Tl Ao
and
U(o)(s) = (s-sk)rk+rdk;% I'(by +Bs) - (5.1)

Eldred applies Leibnitz's rule for differentiation of products

and obtains:
rk - 1

- 1 re-1 (rk' 1"") hod w (V) .
He) = 3 rk-m[ =MD OP MGRAG
dw-v -8
. (dsw_,,z )] (5.2)

G’Sk
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The next step is the main contribution of Eldred. He notes that
c(o)(s) and U(o)(s) are products of terms fy(s) whose derivatives
can be expressed in the form fy'(s)=f,(s)*gi(s). Thus, the first

derivatives with respect to s, c(l)(s) and 0(1)(3), are of the form

d( -Erri(s) )/as = Zi: gy(e) * IF £3(s) .

Eldred then uses this simpler product rule to develop recursive
formulas for finding higher order derivatives, C(t)(s) and U(t)(s),

in terms of c(o)(s), U(o)(s), psi functions and polygamma functions:

(0o y 2 o I (1oaioneon) (B ) (-1) X .
C (sk) ?;I; (1 ay Aisk)i:m."g le 1) Jik!
1-bi-Bisk=- Jik
| J q P
T Ay (1) T Jyt / (TF T (-by-Bysy) TT T(aythisy) )
i=n+l i=mt+l i=n+i
ay+Ay s == Jyk 1-by-Byspb- Jyk  aythAssyf- Jay
n m Jar
¢ (sy) = I T epaing) [ TG B Tt

by +By st - Iy by +By 8p= = Jyi
r-1

(e = b (72ly o1t (g ) x4 ()

r-1
U(r)(sk) - %E% (rzl) U(rﬁl-t)(sk) v(t+1)(sk)

ar(z7%) = (-log 2)" 27K
dsr s =8

(next page)
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n
x(t+1)(3k) = - ('Ai)t+1 Y(t)(l_‘i-ksk)

S )t ¢ (1bepis) + S Aﬁ“ ¥ (agenyny)

i=m+l i=n+1
. 1-by-By )c# = Jyyc a3 +As st - i
> )t (0 ;_'1{131“1 £t (3-9y0°%13
i=m+l J=0
i-bi-Blsks- Jik

Z]?:lIAgf"+1 w1y + Z (-a)¥1 £1 (o007 13

i=n+l
a3 Ay s = Jyy
n
V(tﬂ)(sk) = g Bj.‘l:4-1 *(t)(bi"'nisk)

by +By sy ¥ = Jsx
Jy-1

+;‘:1- et ¥ M) g -5 1 (3may0) %13

by +By 5= - Jak

where *(0)3’. and *(r) are the standard psi and polygamma
functions (1:258 - 260). The conditional notations beneath the
product and surmation signs, f(i,k)=<-Jy and £(i,k)=<Jy, are
read Mequal to any negative integer or zero®™ and "not equal to any
negative integer or zero." Eldred derives a similar formulation
for the summation of RHP residues, where U(o) is composed of
the terms I"(1-ay-A4s) which give the RHP poles.

Eldred deserves considerable credit for significantly
simplifying the He- function evaluation and providing a working

computer program to implement his formulation.

di e
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* 5.3. NEW FORMULATION

A simplified version of Eldred's formulation can be obtained
by applying the simpler product rule used by Eldred immediately to
equation (5.1), instead of applying Leibnitz's rule.

Define V(o)(s) 5 C(°>(s)'u(°)(s)~z’s. V(o)(s) can be expressed
as a product of terms fj(s) with derivatives of the form f,'(s) =
f3(s)-gs(s), as shown below. Let I; =0 when c; +dsSi is not a
negative integer, and let I; =1 when ¢y +disi ==~ Jyi, for some
non-negative integer Jy, . Then, near any pole s, of the H- function
integrand, V(o)(s) may be considered the product of the following

(p+q+1) functions fy(s):
forqet(s) =270 With gpiquq(s) = - log(z) (5.3)

For i=1,e.eym+n,

I'(ci+dis) s if Ii=0

fi(S) = Fi(S) = ' (S-Sk) r(Ci+diS) =
r (J;l_g+1+<=i*dis) ,
di ci+dis 1+ci+d18)°'°—(Jik‘1+ci+diS)
1f I,=1.
t (5.4)
dy W( s) , I;=0
g1 (s) = 01(0)(8) e d1T(cavdy 1 Jy-1 n
& [ ¥ (Jgp+14cy+dys) + ;L;_; (=c3-dys-3)""1,
if =1.
= (5.5)
di"“\r(")(ci +dys) , A I; =0

Jix-1
d1r+1[ *(r)(J1k+1+ci+dis) +rt Z ('ci'di"d)-r-ll

3=0
ifIy=1. (5.6)

64 (M) (s) =

4]
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For i=m+n+1l,.se,p+q,

£1(s) = 1/Fy(s) with g(s) = - 6, O(s) , (5.7)
where Fy and Gy (%) as defined above in (5.4) and (5.5).

There will be ry +rg occasions when I;=1, for i=1,...,mtn,
since there must be this many numerator singularities for the order
of the pole s, to be r with r;  denominator singularities. And,
for 1 =mén+l,...,ptq, there will be rq occasions when I; =1, since
there are r,, singularities for s =sy in the denominator.

Evaluation of (5.4), (5.5) and (5.6) at s=s; yields:

. T(cy +dys ) , if I, =0
Fi(sk)’{ cy +dysy i

@10, gl ar =1 (5.8)
dyW(cy #d38,) , if I, =0
5 (ay) = { 1oy +d38, 1
Wy +1) , AL I =1 (5.9)

dirf-l*(!‘)(ci,.disk) y £ I,=0
dir+1[ w1y . (-1)r(Y(r)(Jik"1)
Sy )T, se 1, e

Gi(r)(sk) =

(5.10)
To complete the development, the derivatives of V(o)(s) are
needed. Paralleling Eldred's formulation, v(t) is found recursive-
ly with a formula of the seme form as that for c“) or U(t):

+
If we define W(o)(s) = nz: Gi(o)(s) - E Gi(o)(s) - log(z) ,
i=

immenel
(5.11)
ne+n
then, r>0, W(F(s) = 3 ,(F)(yy - E‘ ey
i=1 1*"’“% (5 12)

alitipimisbibail bt B ds o X
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Now, V(l)(s) = v(°)(s)-w(°)(s), and
t-1
vt(s) = 5= (¢l vt 1m D)y L (5.13)
=0
Combining the results of (5.3) through (5.13) provides the
following new formulation for the sum of LHP residues:
m

n
H(z) =H [z : (a5,A3) 5 (by,By)]
Pq

-3 vk Vg )/ (- 11,

where v(°)( _ pta+l g N pHq
s) = ;‘E; £3(sg) = 2 ;:EI; F3 (sy) Iifmﬁ(sk) ’

Fy(sk) are defined by (5.8), and

for 1=1,.00ym2 c3=by , d3y =By 3

for 1=m+lyeeeymtn: cy=leay_p, dy==Ay pn 3

for i=m+n+1l,eee,qtn: cy=1=by_, o d4=~By_p 3

for 1=q+n+l,eee,P+Q: Cy=84_4q dy=Asq-

(5.14)

Additionally,

viD(g) = v0(sy) « WO (sy)

VO o) € 3 60 - S 61 Xay) - 108(2)]
1=1 j=m+n+1

where Gy (©)(s,) are defined by (5.9); and, for n>2, V(&™) (g)

is found recursively, using

t-1
(8 gy = $= (b1 ((t=1-
Ve = 2 (Th v T W)y

(next page)
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where, for r>0,
w(r)(ﬁk) = g Gi(r)(sk) - E Gi(r)(ﬁk)
i=1 i=men+1
and G, F)(s, ) are defined by (5.10). (5.15)

One advantage of this formulation over others is that it may
be used for either LHP or RHP evaluation without changes. For RHP
evaluation, the poles are ordered from smallest to largest and the
negative of the final result is taken.

Computationally, this formulation has the advantage that all
Fys 649, 6,¢7), and W(T) for r>0 depend only upon the pole s
and not upon z. Thus, for a given pole, these values are computed
once and used to find V(o) without (z7%k), W(o) without (-log z),
and the other W¥), r=1,...,r - 2, which are stored. Then, V(rk~ 1)
is found recursively using g, V(o), and the W(r), for as many values
of 2 as desired.

Comparing the number of computer manipulations required,
Appendix A shows that the total number of operations saved by the

new formulation over Eldred's is

NP NP
4y r(re-1) + (8NZ+3)2 1, - NN,
k=1 k=1

where NP is the number of poles evaluated, NZ is the number of 2z
values considered, and N1 is the number cf poles evaluated where
ry>1. If all poles are order 1, then NP(8 NZ + 3) additions,
subtractions, multiplications, and divisions are saved, and if all
poles are order r>1, NP( NZ(Br- 1) + 3r) calculations are saved.
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S4. E oF

10
S.A.. H(z) = R [z : (b,B)], B>0O.

01

From section 3.4.1., H(z) converges for all £#0, larg z|<

min(Tr ,47B), using the sum of the LHP residues. There are an
infinite number of LHP poles of order 1 at s, =-(k+b)/B, k=0,1,...,
so that equation (5.14) yields:

Hs) = 3o Fy(sy) 2K
k=0

I =1, F, = (B(-1) )™

00 00
B(z) = 3 (B(-1)Kekt)™t g *+BY/B - g1, b/B 5= 1Bk,
k=0 k=0
Recogniging, the well-known series for an exponential function,

B(z) = B! 2%/B axp(-21/B) ,
which agrees with the known formula in section 2.4.1.
01 -
50“02. H(Z) = H [z : ("A)J ’ A>0.
10
By section 3.3. convergence conditions, H(z) converges for all

240, |larg zi¢ min(W,47MA), using the negative of the sum of the

a .

RHP residues. There are an infinite mmber of RHP poles of order 1 E

LT X

at sy =(k+1-a)/A for k=0,1,..., so that equation (5.14) yields:

H(z) = -g Fy(sy) ek, 1=1, !"1--‘(-1\(--1)1"1(!)'1

B(z) = a1 o(0= /A SE (L =1hykp
k=0

#
.i .
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Recognizing once again the series for an exponential function,

o H(z) = o~} L(8-1)/A -I/A) .

exp(~-z
Another way to reach this result is to use property (2.3) to change
01 1o _,
H Lz : (a,A)] to H 2" : (1-4a,4A)],
10 01
and then apply the result of section S5.4.1.
10

5.4.3. H . 1(2 : (a,B) 5 (b,B)1, B>O0.

By section 3.3. convergence conditions, with D =[E = 0 and
L =b-a, H(z) is Type VI only if L0, that is, a>b, and then H(z)
converges using the sum of LHP residues for real z, 0{z<1. There
are no RHP poles.

If a-b equals some integer I, there are I poles in the LHP,
each of order 1; else, there are an infinite number of LHP poles of
order 1 at s =-(k+b)/B, k=0,1,.... In either case, by equation
(5014):

H(z) = g 2" %K P, (s,)/Fa(sy)

=3 K *D)/B (g g)Kuky Y (a-b-k)
k

b/B
= 'B-_I:W ; (a=b=-1)***(a=-b=-k)*(~2

1/B)k [kt

Whether finite or infinite, the series above equals (1- zi/B)‘- b- 1,
so thst

. H(z) = (BT (a-b))" 1 £2/B (1. ,1/Bya=b=1 5y,
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01
S.lle H Lz : (ayA) 3 (b,A)], AD>O.
11
Using property (2.3), this He- function is also equal to
10 1
H(z) = H Cz"" : (1-b,A) 5 (1-4a,A)].
11

Then, using the result of section 5.4.3.,
H(z) = (AT (a-b))" 1 (8= 1A (4 _p=t/aya=b=1 o\

Since (1- z‘l/A) = 2'1/A (zilA- 1) , the result simplifies to

. H(z) = (AP (a-b))"t /A (z1/A_1)2-b=1 oy,
11

5.“.5. H [z H (I,B) H (b’B)J, B>O0.
11

By section 3.3. convergence conditions, with D=2, E = 0 and
L =Db-a, H(z) is Type V or VI with LHP convergence for 0< |z|< 1 and
Jarg 2)<Tr and RHP convergence for |zl >1 and jarg z|<TF. There
is not convergence using residues for |z| =1, because L must be »-1
for the LHP poles of this H=- function to be properly separated from

the RHP poles.
Using equation (5.14) to sum LHP residues ylelds:

H(z) = % 2K Fy(s,) Fylsy)
=5 KB (p ey p1eaebek)
K
= Bl 2B (1-asb) S */B (c1)¥ (1-a+b)*o*(k=-a+b)/kt
K

= 51 %/Br(1-a4b) S (21/B)¢ (a-be1)eee(a=-b-k)/kt .
k
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The above series is a binomial series that equals (1 +21/B)a- b- 1’
so that
H(z) = B! D'(1-a-b) 2*/B (1+z1/B)-(1-n+b).
Using equation (5.14) to sum RHP residues yields:

H(z) = - % z "% F,(5,) Fp(sy)
= - % g (k-1+a)/B I'(1-a+b+k) (-Be(-1)*k1)~?
=51 (1=8)B nii a4y g (2=1/B)k (a-b-1)ese(a-beok)/ki .
The above series is a binomial series that equals

(142-1/B)~(1-a4Db) , (-1/B (,1/B, yy=(1-a+b)

After substitution for the series and simplification, the result for
the RHP is exactly the same as that above for the LHP.

Therefore, for all z such that z#0, |zl#1, and Jarg z <1V,
and for (1-a+b)>0:

11
. H [z : (ayB) 3 (b,B)]
11 .
=5l P(1-a+b) zb/!a (“21/3)-(1-.+b) .
10
S.4.6. H [z : (b,B),(b+4,B)], B>O.
02

By the argument in section 3.4.2., H(z) converges using LHP
residues for all real z >0. There agre an infinite number of LHP
poles of order 1 at sks-(k+b)/B, k=0,1,400, S0 that equation
(5.14) yields:

H(z) = g JLEEOB o Cykekt) Y Dk d)

- AR T e

€ B

~—
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Replacing k1+T"(k +4) with the equivalent expression I"(%)(2k)1/2%,
H(z) = (B-T ()" zb/"g (-1)* (201/2By2 ) (z)1

Recognizing a series for a cosine function,

. H(z) = (BTV($))"! 2%/® cos(2:1/2B) ,

Following the same steps,

10
R ztz : (b,B),(b=4,8)3 = (BT (1))} 2(4)/B 53n(2,1/2By |
0

NO
5.4.7. H . N[z : (1,1} 5 {(0,1)}].

By Theorem 4.1, H(z) is the probability density function of the
product of N identical, independent, uniformly-distributed random
variables. The uniform distribution is a beta distribution with
@ = ¢ =1, which, from section 4.2., is thus given by:

10

H  [x: (4,1) 3 (0,1)].
11

By section 3.3. convergence conditions, with D= = 0 and
L = -N, H(z) can be evalusted by summing LHP residues for real g,
0 2z 1. There are no RHP poles, and there is only one LHP pole of

order N at s=0., BEquation (5.14) is evaluated as follows:

(N-1)

H(z) = Vv (0)/(N~ 1)1

F(0) = 1 for 1=1,.00,2N and v(%)(0) = 1

W(o)(o) = NY(1) « NV(1) - log(z) = - log(z)
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W0y =0 = 8l ¥ 1) ¢« 07 F ) - ¥ T - v
vi(0) = - 10g(z), v{2(0) = (-20g(2))2, .. ,
v Yoy = (c0gen"

. H(z) = (-log(e)"~ /(N-1)1 = (og(1/2)" H/(N-1)1 ,
for 0< z<€1, which agrees with knoﬁn results obtained without using
H- functions (21:101~ 102). This aiso provides a set of H- function
identities not found in the literature:

20
log(z)=~H [z ¢ (1,1),(1,1) ; (0,1),(0,1)], 0Kz €1,
22

N N N+1,0
. (log(z))" = (-1)" Nt H Ce s {(1,1)} 5 L(0,1))],
N+1, N+l
0<z$1.
And, by property (2.3) for a reciprocal argument,
02
. log(z) = H [z : (1,1),(1,1) 5 (0,1),(0,1)], £>1.
2 2

54.8. H z zh : (0,3),(0,4) 5 (0,4),(0,4)] .

By section 3.3. convergence conditions, withD =2 and E=1L=0,
H(z) converges for all z such that z#0, |z|#1 and larg z(< TV,
using LHP residues for |z{< 1 and RHP residues for Izl > 1.

There are an infinite number of LHP poles of order 2 at s, =-2k,
kz0,1,.., So that equation (5.14) ylelds:

H(z) = 3 v c20) = 3= v (eamy + W€ (o)
k=0 k=0

Ot Al PA A wA. - L&
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Fy(sy) = Fp(s) = (3 (-1)Ket)™
Fy(sy) = Fu(s) = T(k+1) = kt

6 (s = 6,V (5) = ¥4 1)
65 (50) = 6, (s) = ¥k 4 1)
VO iy = (k192 22/ (3o (1)K e1)? = 4o
W) = Fxe) -
-2k) = - W(k+1) - log(z) = - log(z)

B(z) = 3 42%(-log(s)) = ~4log(z) 3o (x2)K
k=0 k=0

. H(z) = -4log(z)/(1- 22) = 2 log(2?)/(z2-1) .
There are an infinite number of RHP poles of order 2 at sk = 2k,

k=1,2,..., 80 that the negative of equation (5.14) yields:
Hz) = - S v 2
k=1
Fy(s) = Fp(s) = (k= D1 and 6,0s) = 0,(s,) = $¥1k)
Fy(oie) = Fy(oed = (0" Lo k=0)17%5 6,( (510 = 6,005 ) = -4 W)
VO (2) = 42" ang W(2k) = - 1o0g(2)
00
H(z) = - D_ hz'Zk(-log(z) = + 4 log(z) 22 i (z'z)k
=1 =0

. H(z) = & log(z)/(22(1-2"2)) = 2 log(2)/(22~1) .
H(z) converges to the same function for |z) <1 and Jz|>1.
This particular H- function also is the probability density function

of either the product or the quotient of two Half=-Cauchy variates,




. H(z) = ((log(zz))2 +772)/(1+z2) s as expected (21:159).
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and the above result agrees with the known result obtained without
using H- functions (21:158).

33
5.4.9. H 3 3[3 2{(091')};{(0’%)}31 z#oa (] *1’ larg zI4T.,

This H(z) is the probability density function of the product of
three Half-Cauchy variates, by Theorem 4.1, and, as in section 5.4.8.,
LHP evaluation for |z} <1 and RHP evaluation for {z| > 1 converge to
the same elementary function. For example, there are an infinite
number of LHP poles of order 3 at s, =-2k, k=0,1,4s., S0 that

equation (5.14) gives the following:

oo 1
Bz) = 3o v () = 3o 5 v e ) w5 ) /21
k=0 — 33 k=0 r=0

v0(s) = (k1)3 22X / (d+(=1)ek1)3 = B(-22)¥
WO (s) = 33 P+ 1) - 33 ¥(k +1) - log(z) = - log(z)

(s = 3D ) my - 3D s 1))
+ Py ¢ 3D e 1) /)

= (32 ¥ (1)
v (s,) = (-8 Log(z))(-22)¥

v@(s,) = (-8 log(2))(-22)% (- 1og(2) + B(-22)*(3/2)¥{1)(1)

Leas

.ﬁ!hmxﬁ&.ayo;}-'.x: -
\ - PR

H(z) = 8 L(loe(2))? + /2 (13- g (-22)k /21

R A e afittian AN Il fn el T g - (T3 SRE
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* 5.5. SE NEV AV}

The laplace transform of an H- function is another H=- function.
This fact combined with any numerical inversion technique for the
Laplace transform provides a second formulation for evaluating an
H- function inversion integral.

Instead of using equations (5.14) and (5.15) directly to find
H(z), one can do the following steps, providing H(z) is of exponen-

tial order, that is, |H(z)|€M exp(Az), M and A constants:

1, Use equation (2.12) or (3.8) to determine the form for
the laplace transform of H(z), H'(r).

2. Use equations (5.14) and (5.15) to evaluate H'(r) at
the values r=a + kMTW4i/.88, k=0,1,2,+..,N, where & is the maximum
value of z for which H(z) is desired.

3. Using these values of H'(r) in equation (4.14), find
H(z) for desired values of z with Crump's method for numerical
inversion of the Laplace-transform, section 4.5.3., where

a = A+ log(1/E)/(1.68)
and E is the maximum desired decimal error. If H(z) is a probability
density function or a cumulative distribution function, then A = 0.

4, To find values for ‘f: H(u) du, use the values H'(r)/r
in equation (4.14) in place of the values H'(r). If H(z) is a
probability density function, then this represents the cumulative

distribution function.

R Y PR e

s




;"‘..

Y 3

(e
»

CHAPTEP. 6
APPLICATIONS FOR PRACTICAL TECHNIQUE

6.1. GENERAL REMARKS

Determining the distributions of slgebraic combinations of
independent random variables has aprlications in virtually every
area of probability and statistics. Therefore, the applications in
this chapter are intended to prod the imagination as to the many
potential usages and not to delineate the extent of possible usages.

The practical technique presented in section 4.5. and implemen-
ted by the computer program of Appencdix B can be used to find the
probability density function and the cumulative distribution function
for any of the following cases:

1. A single H- function variate. In fact, the computer
program may be used to evaluate any H- function.

2. Any comtination of products, quotients, and rational
powers of any number of independent H- function variates. It is not
required that the variates have identical or even similar distribu-
tions.

3« The sum of any number of independent H- function
variates. Again, the variates do not have to have identical or
similar distributions.

L. The sum of any number of terms that each have the form

above for case 2.

128
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Eldred (7) has treated distributions of the present worth of
probabilistic cash flow profiles that involve produets, quotients,

and powers. Ye also indicated the need for treating such distribu-

tions that involve sums. Mathai and Saxena (18:82-91) and Springer
o R (21:6~ 9) present a number of potential applications in statisties

that involve algebraic combinations of random variables. TFor exam-

ple, from queuveing theory, consider a service facility which is an
N- step process, where the distributions are known for the service ]
time xi of the i-th step, i=1,...,N. Then, with no queues between
steps, the total service time for the service facility is given by

B3

i=1

For a Monte Carlo simulation of this service facility, knowing the
exact cumulative distribution function of X, is more desirable than
handling the N Xy separately. If the distributions of the Xy are !
H=- function distributionF, this is case 3 above and the practical

technique of section 4.5. can be used to assist in the simulation.

An especially useful characteristic of the practical technique
is that the variates need not have identical or even similar types
of Y- function distributions. This characteristic and the general
properties of the M- function can be exploited in the application ] 4

. areas of the sections that follow. Each of these areas are vast
fields of study so that only a few examples are given to indicate
the potential applications. However, even the examples cover a wide

range of special cases that until now had to be treated indivicdually.

~
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Although the Y~ function distribution is the most general
cdistribution, there is still much study that can be done for given

types of H~ functions. For instance, by Theorem 4.£, the function
10
H(x) =K * H [Lex : (b,B)] (6.1)
01

is a probability density function if K=¢/I'(b+B). Letting a=1/B,

p=(b+B)/B, and q=c'1/B, (6.1) becomes
a(qP/ rp/a))"t -1 exp(-x*/q) ,

which is the generalized gamma statistical distribution introduced
by Stacy (22). The H- function form is not only "nicer®, but much
more can be done using H- function properties and theorems. This
generalized gamma distribution is easily seen to have the following
special cases:
Gamma distribution (€,8) when c=1/¢, b=@-1, B=1.
Exponential c'i;tribution when ¢=1/¢, b=0, B=1.
Chi-square, © degrees of freedom, when c=4, b=40-1, B=1,
Weibull distribution for c=ol/%, be1-g71, B=g-l.
Rayleigh distribution for cset, b=4, B=4.
Maxwell distribution for c=1/8, b=1, B=4,
Half-normal distribution for c= (Gﬁ)-l, b=0, B=4,
By systematically varying the inputs b, ¢, and B into the computer
program of Appendix B, the shapes for the family of distrjibutions

represented by (6.1) can be studied.
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Also, the computer program can be used systematically to study
the distributions of algebraic combinations of independent random
variables with densities of the form given by (6.1). For example,

investigation of the class of H~ functions of the form
N YO  w
(/T (b+B))" 'R [z : {(b,B)}] (6.2)
ON

is equivalent to investigation of the distribution of the product of
N independent, identically-distributed generalized gamma variates,
using Theorem 4.1.

Or, by Theorem 4.3, if X; is a random variable with (€.1) for
its probability density function, then Yi==x12 has the probability

density function
2 10
(¢°/T'(b+B)) H - [y, : (b-B,2B)]. (6.3)

If X; is a standard half-normal variate, (6.3) reoresents a chi-
square distribution with one degree of freedom. Thus, (6.3) can be
used in a "generalized chi-square test®™, which is just like the
well-known chi-square test except that the deviations Xy may be from
any common gzeneralized gamma distribution. Then, the generalized
chi-square test statistic becomes

Wedogle3on

i=1 i=1

with probability density function, from section 4.5., given by

11
fw(w)=1-.,'1{(ﬂ1 1l_'r/c2 : (1-b-B,2B) 5 (0,1) J/T(o+B)" }. (6.4)

EY
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And, similarly, an even more peneralized chi-square test is
possible, using the practical technique of section 4.5. and the
computer program of Appendix B, by allowing the X; to have any

H=- function distribution.

6.3. CHARACTER N OF PRO

The simple, straight-forward rules for finding distributions of
alpebraic combinations of H- function variates permits rather easy
construction of examples to check proposed probability laws. For
instance, consider the proposal that only the quotient of two normal
variates will follow a Cauchy distribution. Much work has been done
by various authors to construct counter-examples (292,294,295,296,
300,305,307, 342). Such counter-examples are easily found and checked
using H- functions.

By equation (4.9), the half-Cauchy distribution is

1

1
em) ' ® RN RNCR D R (6.5)

and, by Theorem 4.2, the quotient Y= xl/xz of two generalized gamma

variates is

(cq/ (X (by+By )T (bp+By))) *
11
+ H . [ciy/cz s (l'bZ'ZBZ’BZ) : (bl,Bl)J « (646)
1
Equating (6.5) and (6.6) immeciately gives @=cy/cq, by=by=0, and
By = 528‘}. Therefore, the only two generalized gamma variates whose

quotient is Cauchy-distributed are half-normal variates.




133

However, one can find many other types of H- function variates
whose quotient has a half-Cauchy distribution. Consider Xy and X,

having probability density functions, respectively,
10
(eyT(1-b-B)/T(#)) H 2|:c1x1 : (0,%),(5,B)], and
0

20
(cx/ (T ()T (1-b-B))) H o2 Lepx, : (0,4),(1-b-2B,B)] .

Then, by Theorem 4.2, the probability density function of Y= x1/x2 is
12
(31/02‘") H 2[°1Y/C2 H (0,%),(‘0,3) H (09%)9(13,3)]’
2

which, using property (2.9), reduces to the half-Cauchy distribution.
Or, consider the case where Xy and X, have probability density

functions that are the same type of H- functions,

11
(e () /(T ($)T(1-2-3))) H , 1[c1x1 : (a,4),(b,4) 5

(0,4)]), and
° 11
(epP (~a+d) /(T ($)T (1+b-4))) H , 1I:c?xz : (-b,4),(-a,%) 3
(Or*)] .

Then, by Theorem 4.2, the probability density function of Y=X,/X, is
22

(cy/cM) H ; 3|:c1y/02 : (a,4),(0,4),(b,%) 5 (b,4),(0,4),(a,4)],

which, using properties (2.9) and (2.10), reduces to the half-Cauchv

distribution. If a=-b and ¢y =cp, then Xy and X, are identically

distributed. If a=b=0, then the distributions for X; and X, reduce

to the form (/T (3))H ] Leyxy 1 (0,11




134
As another example of using H=- functions to study probability
laws, consider the question of whether a distribution exists such
that, if the random variables Xy and X, follow this distribution,
then the distribution of X;+X, is identical to that of X;/X,.
¥rom Theorems 4.1 and 4.2, it is evident that the desired distribu-
tion must have the following form, with m=n, p=q, and c¢=1:
mm
Ko [x s {(ag,4)} 5 (65,81
q4q
Next, equating the product and quotient formulas in those theorems,
2m 2m
K-H 2 ?q[y : {(a5,49)} si=1,0000m, {(a5,44)},i=1,000,m,

{(a3,44)} yi=m1,000q, (5,450} 1=+, 000,q
{(bg,B)}, i=1,.00,m, {(b5,B5)}, i=1,0.0,m,
{(bs,3)} ,i=mrl,0e0,q, {(b3,B4)} ,i=m+1,.000q]
2m 2m
= K+H % Zq[y : {(a3,49)} 1= 1,.00,m, {(1-b4-2B,,B;)} ,i=1,.00,m,
{(a5,8:)Y ;i=m+1,...,q, {(1-b;-2B;,B, )} si=m+1,...,q ;
| L(05,3)), 1=1,.00,m, {(1-05-284,4)F, i=1,.00,m,
{(b5,B)} yi=m+1,c0eyq, {(1-a3-245,44)} ,i=m+1,.005q],
Thus, for all 1=1,...,q, a4 = 1-b;-2B; or, equivalently, by = 1-a;~2A;,
so that the desired distribution is
. KeH : :[y : {(ag,A) Y 3 {(1-a3-44,4)}]
For m=q=1 and (a,A) = (1-a-24,A) = (0,4), this is the half-Cauchy

distribution, for which this probability law was known (298).
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. Also, consider the use of the practical technique of section

L.5. to determine the probability densityv function h(w) for

1/B
W= f’: (ey%s) /i,

2

i=1
where the independent random variables X all have pgeneralized ecamma

distributions of the form (6.1), that is,

10
£i(x3) = (c;/T"(b4#B3)) H - Cegxg ¢ (b5,B3)] -
1/By
By Theorem 4.3, the probability density function of Yi=xi is
1/By 10 1/B
gi(ys) = (eg /T (bg#3)) H o 1[01 yi ¢ (bg+B-1,1)] .

Then, from (2.12) and section SelbeSa,
(e, B8 LoD 3 = Lg, r {e3(vs)2

1

- 1
= (I (by+B;)) ! H . 1I:r/k : (1~by-By,1) 3 (0,1)]

. e
- el (e el TR

Letting S=ﬁ (by+By) »
i=1

-

o1y {e)} = @i
=1 1

1

1
= (re) [ Lres s 0 0,13,

- - 10
so that h(w) = L, YL+ (e/i)) 5} = /TGN H L[hw: (s-1,1)3.
01

Ced e T,

—_—
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Therefore, W as defined above represents a class of sums of
independent generalizecd pamma variates that are generalized pamma
variates. If B, =1 and ci=k' i=1,+..,N, then we have the well-
known fact that the sum of independent gamma variates with common
parameter @ is gamma-distributed with parameter @, where $=1/k here.
If Bi =B and ci=kB, i=1,...,N, then we have a probability law that
the sum of the p-th powers of independent generalized gamma variates
with parameter B=1/p is a peneralized pamma variate with parameter
B=1. A well-known case of this is the chi-square variate, where
the X; are normal variates with by =0 and Bi=B=*} (or p=2). And,
if B, = 1 and ci=k/N, then f(w) gives the distributien of the mean
of N independent gamma variates with common parameter P=N/k.

H- functions do not simplv assist in a more general characteri-
zation of a probability law, but may also lead to a different type
of characterization. By first definine a generalized beta variate
as a random variable with‘probability density function of the form

10

H(x) = (c T"(a+A)/T"(b+B)) H . 1[cx : (a,4) 3 (b,B)]
(see section 5.4.3. and (4.8) for known special cases), then an
H- function distribution with parameters m+n2p and m+n2q can be
characterized as a distribution for a product of p~ n generalized beta
variates times m+n-p generalized gamma variates divided by the product
of Q= m generalized beta variates times m+n=q generalized gamma vari-
ates. For example, while not derived in terms of products of such

variates, the multivariate test criteria of the next section appear so.
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bols MIITIVARIATE TEST CRITER
To test various hypotheses on the parameters of a multivariate "
statistical distribution, one of the standard procedures is the
likelihood ratio principle. A number of multivariate test criteria
based upon likelihood ratios, first introduced by Wilks (354), have

the property that their moments are expressible in terms of products

and quotients of gamma functions. Using the formula
f(x) = (2m1)~1 fc E(x*"1) xS s, (6.7)

the probability density function f(x) of such a test criteria can

often be expressed as an H- function.
¥ilks defined the determinant of the covariance matrix as a i
scalar measure of scatter in a multivariate Jdistribution, using |
U= InS| where S is the sample sum of product matrix with n degrees
of freedom. Then, following Mathai (338), if the sample is from a
multivariate normal distribution (central case), then
g(usly = 2P(s71) ;rpl; T ($(n+1-1) + s = 1)/ ($(n+1-1)) . 1
Thus, from (6.7),
poO
£f(m =k-n  [0/2P : (4(n-1-1),1),..,(#(n~1-p), )T,
Op
where K is given by (4.29).
To test the hypothesis that the diapgonal elements are equal : é
given that the covariance matrix in a multinormal distribution is !
diagonal, the statistic W is used. W is the likelihood ratio to the

power 2/N, where N is the sample size. From Mathai (339), with n=N-1,
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.. pP0D) PPUnes- 1) T (dmp)
EMWY) = 5 ’
T""(4n) I (4np + p(s-1))

and, from (6.7), with K again given by (4.29),

0
£(W) = K-Hj Cw/eP & Gmp-p,p) : {n-1,1}1.
P

Similarly, from Mathai and Rathie (340), for the criterion W,
to test the hypothesis that the covariance matrix of a multinormal
distribution is diaponal,
oP(S=1) P dnp) p D (B(n+1-1)+s-1)
I‘(%np*rp(s-l))g T (3(n+1-1))

Ew,*" )

poO
and, £(W;) = K-H \ Lw,/pP : (3rp-p,p) 5 {(3(n-1-1),1)} ,i=1,...,p],
P

where K is given by (4.29).
Consul (327) showed that, for 1"ilk's likelihood ratio criteria

for testing the linear hypothesis about regression coefficients,

E(U°1) = K-TV 63 (n+1-1) + 5= 1)/T (B(n+meted) + 5= 1),
Nair (349) referred to U as Wilk's generalized correlation ratio.
Applying (6.7), with K again given by (4.29),

0
£(U) = K-H F LU : {(3(nm-1-1),1)) ;5 {(#(n-1-1),1)}],
PP

where i =1,...,p. Consul (327) expressed f(U) in terms of other
known special functions for p=1, p=2, p=3 withm=1,...,8, and

p=4 withm=1,...,8, For examples:

If p=1, then £(U) = C, u'k““(i-u)'*""1 , 0<ULL 3

If p=2, then f(U) = C» v.x'l‘(""l’)u-u‘})““’1 , 0CULL §

[YRTE
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If p=3 and m=3, then, for 0< U<, £(U)=

ey V%10 2 sttarcsin(i-n)?

+3U'10g(U-%+(U-1-1)%)) :
And, if p=3 and m=4, then, for 0C UK,
£f(u) =, U 201 1 + 8u¥ (1 - U) - 6U-1ogU) ,

where Cq, Co, 03' and C, are constants.

Also expressible as H- functions are the distributions of
Votaw's criteria for testing compound symmetry of a covariance
matrix (329) and Bartlett's criteria for testing equality of the
covariance matrices in a set of independent multinormal populations
(18:87). The sum of independent variates defined by likelihood

ratios was the subject of a recent study on the detection of radar

targets of unknown Doppler frequency (21:6).

6.5. S { S

An extremely important area of application for determining
distributions of algebraic combinations of independent random
variables is the usage of hypothesis testing and other statistical
methods in analyzing system effectiveness, particularly for research
and development or for operational testing and evaluation within the
U. S. Department of Defense. The protlems associated with evaluating
weapon system effectiveness were sufficiently important for the Air
Force Systems Command to form the Weapon System Effectiveness Industry
Advisory Committee (WSEIAC) in 1963, comprised of both industry and
Department of Defense personnel, each approved by the Secretary of the

Air Force. A primary objective of the VSEIAC effort was to recommend
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a methodoloey for measuring and oredicting system effectiveness in
all phases of the life of a weapon system. The VSEIAC findings were
published in eleven volumes in 1945 (353:v.65-6,1- 3).

The VSEIAC methodology was based upon defining effectiveness E
as the product of three random variables: availability A, dependa-~
tility D, and capability C. A is a measure of the condition of the
system at the start of a mission, when the mission is required at an
unknown (random) point in time. D is a measure of system condition
during the performance of the mission, givern its condition at the
start. And, C is a measure of the results of the mission, given the
system condition during the mission. Thus, knowing the effectiveness
of a weapon system for accomplishing a given mission depends on being
able to determining the distribution of a product of three variates,
E= A+DeC (353:v.55-6,8-9). The VWSETAC volumes contain many examples
bhased upon this effectiveness model, including a tactical fighter
bomber system, a radar surveillance svstem, a spacecraft system, and
an intercontinental ballistic missile system (353:v.65-2-2,72-97;
353sv,.65=2-3,22-50,67-132).

Each of the random variables A, D, and C mav also be expressed
as a product of the corresponding factors, Ai’ Di’ or Cy, for the
sub-systems or components of the system. For example, the effect-
iveness of the firhter bomber svstem depends upon the effectiveness
of manv avionies sub-systems, including communications, naviration,
engine, flipght controls, target identification, penetration, and

cdelivery method. The effectiveness of a system with N sub-systems is

P s
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given by
N N N N N
E = A:D+C =TT Ay« TT Dy IT ¢4 =TrAiDiCi ='I'1'Ei .
i=1 i=1 i=1 i=1 i=1
Thus, if the distributions of availability, dependability, and
capability are known for the sub-systems, then the overall system
effectiveness distribution is equal to the distribution of the
product of 3N random variables.
Another WSEIAC consideration is total mission effectiveness.
If a mission can be accomplished by more than one weapon system or
by more than one method of using the same system, then the total

mission effectiveness can be expressed as a linear combination of

the effectivenesses of the different systems or methods. That is,
E=2 P B, where >_P =1,
k k

Using the fighter bomber system as an example (353:v.65-2-3,22-~ 50),
there are three possible bomb delivery systems: lay-down with
effectiveness Ey , visual-toss with Ey, and blind-toss with Eg-
Then the delivery mission effectiveness is given by

E= PL'EL + Py 'EV + PB 'EB' where PL + PV + PB' 1,

and Py, Py, and Py are constants as cdefined below:

PL = probability of daytime mission x probability of
visual flieht conditions x probability that the
lay-down system is preferred over visual-toss.

Py = P(daytime mission) x P(visual flight conditions)

x P(visual-toss preferred over lay=-down).

P p= P(night mission) x P(instrument flight required).

-
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The WSEIAC study also addressed the treatment of costs as
variables. Cost effectiveness of a svstem or a sub-syvstem can be
defined as the nuotient of system effectiveness and the total system
cost. Many different models with system cost equal to algebraic
combinations of variates are presented. TVor example, the total cost

of a small, mobile, short-range weapons launcher is given by

Cp = MeCy + Cp+ Cg + Cp

where C; = inecremental cost separate from fixed costs, for
producing, supporting, and maintaining one unit,
Ce = fixed or sunk costs for production,
Cs = total system support cost,

total system maintenance cost,

o
] "

number of units, may be considered as a constant
or as a variate (353:v.65-6,128- 136).

Abraham and Prasad (325) also consider cost as a random variable
equal to an alpebraic combination of independent random variables and
provide examples with soig simple distributions for estimating
manufacturing cost. Other aerospace applications involving products
and quotients of independent random variables are discussed by

Donahue (291,7330).
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CHAPTER 7
CONCLUSION AND RECOMMENDATIONS

The main purpose of this dissertation has been to demonstrate
a practical technique for determining the probability density
function and the cumulative Aistribution function of a sum of any
number of terms involving any combination of products, quotients
and powers of H- function variates. This has been accomplished in
section 4.5, and the implementing computer program of Appendix B.
On the road to accomplishing this purpose, other contributions have
resulted.

In trving to learn everything now known about H- functions and
the H- function distribution, one quickly becomes aware that this
study area has tremendous potential for new discoveries. Just from
an effort to understand basic H- function properties, many new
formulas have been found, including relations between H- functions
and known named functions or lower order H- functions in sections
2.3. through 2.7., 4.6. and 5.4., derivative formulas for special
cases in section 2.7., and improved transform and derivative formulas
in section 3.7.

Similarly, investigation of the evaluation of the H~ function
by summing resicdues has led to an improved formulation, eiven in
section 5.3., and has pointed out the need to formally establish

guidelines for when left-half-plane versus right-half-plane summation
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of residues will converge. Hence, in chapter 3, evaluation guide-
lines have been established for the general Mellin- Barnes integral
and the H- function and have been applied to known special cases,
the laplace transform, and the derivatives of the H- function. For
a convergent H- function, the Laplace transform and all derivatives
of the Laplace transform have been shown to converge. Since the
Laplace transform of an H- function is also an H- function of
readily known form, a second new formulation for evaluating the

H- function has been addressed in section 5.5. This consists of
using the first new formulation to find values for the Laplace
transform, which are in turn used to numerically invert the Laplace
transform. The first new formulation can also be used to find more
relations between H- functions and other named functions, such as
the new relations found in section 5.4,

A remarkably rewarding area has been the study of the cumulative
distribution function of an H=- function distribution. First, by
section 4.6., the cumulative distribution function has been shown to
be an H- function, and, by section 4.8., it has been shown to con-
verge. Second, a more efficient way to compute the cumulative
distribution function of an H- function variate or of a sum of
He function variates has been employed, by using those calculations
made for the probability density function. Third, expressing the
cumulative distribution function as an Y- function not only has led
to new relations in section 4.6. between particular H- functions and

other named functions, but has also filled in a gap for understanding
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certain orders of H~ functions. And, fourth, the study of the
cumulative distribution function has led to a formula for finding
the constant for the H- function distribution, given in section 4.7.

The following recommendations are made for directions of future
work on H- function distributions:

1. A practical technique needs to be developed for finding the
probability density funection of the difference of two H- function
variates. A method is also needed to find the probability density
function of the product or quotient of sums of H=- function variates.

2. H- functions have not yet been applied to the study of
combinations of dependent variates. It is possible that multi-
variable H- functions or H- functions of matrix argument might be
useful here. Mathai and Saxena (18) list references for such types
of H- functions and devote a few chapters to them.

3. Usage of H=- functions to treat probability density functions
defined over the entire real line is another unexplored realm. The
positive-negative component methods developed by Epstein (8) and
Springer and Thompson (320,321) should accommodate such usage,
particularly for distributions symmetric about zero.

4. Por evaluation of an Y- function by summation of resicues,
analysis is needed to relate the number of poles evaluated to the
error in the Y- function value, especially for large values of the
argument. Error analysis could also be done for numerical inversion

of the laplace transform, where the Laplace transform is a product of

H- functions.
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5« JIncluding the two methods presented in section 4.5., the
various methods for numerical inversion of the laplace transform
(230 = 242) could be compared with respect to their appropriateness
and computational efficiency for inverting a product of Laplace
transforms of H- functions.

6. The more ore stucies the H- function, the more suited it
seems for analyzing probability distributions. Some additional
theoretical advances would be most welcome. For example, for the
distribution of a sum of H- function variates, a closed-form
solution would be very desirable, since this would eliminate the
numerical inversion requirement and possibly lead to a method for
handling products and quotients of sums of H- function variates.
Also very worthwhile would be the establishment of the conditions
on the H- function parameters that are necessary for the sum of
H=- function variates to have an H- function distribution. At present
only certain special cases are known, such as the sum of gamma vari-
ates being a gamma variate and the sum of normal variates being a
normal variate. The H- function parameter conditions necessary for
an H- function to be a probatility density function also need to be
established.

7. From the section 3.3. convergence conditions, when an
H- function is Type VI with L2-1 or is Type V, then it cannot be
evaluated at the point 1/(cR) by summation of residues. Another
means should be found teo compute the H- function value at this point.

Many H- functions, including the half-Cauchy, half-Student, and F
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distributions, fall into this category.

8. The application of H- functions to the fitting of curves
to data should definitely be studied. Being the most general of
the special functions and having easily-determined derivatives and
moments, the H- function appears to be as suitable for curve-fitting
as it has been for analyzing probability density functions of
algebraic combinations of independent random variables.

During this research effort, to quote Isaac Newton, "I seem
to have been only like a boy playing on the seashore, and diverting
myself in now and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all undiscovered
before me." T must thank God, the Creator, for this new world to
which He has introduced me. This research area should be equally
exciting and rewarding to everyone that pursues it. Hopefully,
each new pursuer will discover, as I have, that there is just as
much excitement and reward in the pursuit as in the actual attain-

ment of any objective.
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APPENDIX A

COMPUTER MANIPULATIONS REQUIRED
FOR EVALUATION OF AN H- FUNCTION
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* APPENDIX A: COMPUTER MAN ONS_REQUIRED FOR EVALUATIO
* AN H- FUNCTION
'_ let NP = number of poles evaluated
NZ = number of values of z (independent variable)
* s = k-th pole
i T = order of the k-th pole
rpk = order of H(z) numerator poles at s,
rdk = order of H(z) denominator poles at Sic
A.l. 'S ¥O ON (section 5.2.)
To compute s,, k=1,4..,NP;
NP(q+p) +'s (additions and subtractions)
NP(q+p) *'s (multiplications)
To comp“te V(t)(Sk) and x(t>(5k) for t=1,ooo,!‘k-1, k=1,ooo,NP=
(q +p) g (rg-1) + ﬁ INT((rk-l)/Z) . (rnk"'rdk)
k=1 k=1
+'s, *'s, and /'s (divisions),
where INT(x) is the integer part of x.
(a+p) ﬁ (re-1) + IN‘I‘((rk-l)/Z) ¥'s (psi functions)
k=1
. To compute C(o)(sk) and U(O)(sk), k=1,...,NP:
. NP(m+n) + ﬁ (rpgc* 3 rak)  *'s
) k=1
‘ NP(q-m+p-n)+£rk /s
k=1
NP(q+p) TI''s (gamma functions and factorials)

T LA
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ﬁ(r +r, ) =='s (powers)
o1 e dk

To compute c(t)(sk) and U(t)(sk) for t=1,eeeyr =1, k=1,00.,NP:

(1) +*
ﬁl Pk X‘k s

%ﬁ re(re-1) *'s

k=1

4 g relre=1) /'s

W
To compute WSIM(w,2) = 3_ (¥)(-log(z)™" u(V)(5,) for
v=0

w=0'.oo,rk-1, k= 1,.0.’NP:

NP
NZ( D _ %rk(rk+1) ) +'s and /'s
k=1
BNZ(ﬁ‘}'rk(rk+1))+NZ§rk .ty
k=1 k=1

To compute H(z) =:>:’_f (2K =) [ H (s -
=1

. WSUM(w,z)] :
NP $'s (factorials)
NP « NZ  *»'s
NP*NZ + N2 ﬁ re  +'s
k=1

NPeNZ + (NZ +2) )E re  *'s
k=1

NP*NZ +£rk /.S

k=1
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A.2. NEW YORMULATION (section 5.3.)

To compute s, .y k=1,...,NP: same as Eldred‘'s for s,.

To compute W(t)(sk) for t=0yeeeyry =2, k=1,...,NP, without
the (-log(z)) term on W(o)(sk):

Same as Eldred's for V(t')(sk) and x(t)(sk).

To compute V(o)(sk) without the 2™k term, k=1,...,NP:
Same as Eldred's for C(O)(sk) and V(o)(sk), except that,

when r, . >1, there are an additional NZ +'s for adding (-log(z)) in
0
w®(s,).

To compute V(rk°1)(sk):
NPeNZ **'s

Nz i frk(rk-l) +'s and /'S

NPeNZ + 3 N2 f- dr (re-1) *'s
k=1
(re-1)
To compute H(z) = + 2V (sk)/(rk-i)! :
k

NP*NZ +'s and /'s

NP i's

@
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Ad3e PE S SAVE NEW

+'s

r(r-1)+NZ£(2r -1)
=1 KOk =t 7

where I=1 if rk>1 and I=0 if r =1 3

minimum saving occurs when all ri, =1 and then is 2<NP-NZ,
w5 e 2£ r(re=1) + (5-N2 + 2)£1‘ 3

241 & k=1 K

minimum saving when all r =1 is NP(5°NZ + 2) .

/s

4 % r(re=1) + (N2 + 1) % re 3
i1 =1

minimum saving when all r, =1 is NP(NZ + 1) .

Total operations saved:

4 £ rk(rk-l) + (B8°NZ + 3) ﬁ r =~ NZ-NPG1 ,
k=1 k=1

where NPG1 is the number of poles evaluated withr, 1.

If all poles are order 1, then NP(B+NZ + 3) additions, subtrac-
tions, multiplications an;i divisions are saved. If all poles are
order r*>1, then NP( NZ(8rt=1) + 3r') operations are saved.

For large NZ compared to r°', the total number of operations saved
by the new formulation is of the order NP-NZ(8r'-1) .

If all poles are order r, the number of operations saved will
increase linearly with r, but savings will be a decreasing percentage
of total operations, which increase as r2. For example, with q+p=20

and NZ =100, the percent savings for +'s, *'s and /'s combined for

r=1,2,5,10 are 62,48, 56.5%, 40.2%, 25.7%, respectively.
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* APPENDIX B: COMPUTER PROGRAM - B.1. FORTRAN LISTING

Ve s o THIS PROGRAM MAY RE USED TO EVALUATE f GIVEN H~-FUNCTTON
CovvOk TO DETERMINE THE PROEBARILITY DENSITY FUNCTION (F.D.F.)
Ceo s AND THE CUMULATIVE DISTRIRUTION FUNCTION (C.L.F.) FOF

C...THE SUM OF ANY NUMEKER OF TERMS INVULVING ANY COMBINATION
C...0F FRODUCTS. QUOTIENTSs AND RATIONAL FOWERYS OF ANY NUMEEH

C.e. OF INLEFENDENT RANDOM VARIABELES WITH H-FUNCTION DISTRIBUTIUNSG.
c

c

CoeaeIVY D, COOR» JR.» FH.D. DISSERTATIDNs MAY» 1v81
C...THE UNIVERSITY OF TEXAS AT AUSTIM

c

C

C...INFUT DATA CARDS (FREE FORMAT)

CeeerveoCARD 10 ZOyZNsDZyNSeINTsME s MIsHCToNY s NF

20 - FIRST FOINT FOR EVALUATION- MUSY KE A NON-NEGATIVE
FEAL VALUE OR THE FROGRAM WILL GIVE A DEFAULY vALUZ
OF ZO=IZ, INFUT OF Z0D-0.0 IS FERMITTED FOR USER
CONVENIENCE» EBUT FIRST 7 VALUE EVALUATED WILL RE DI,

ZIN = LAST FOINT FOR EVALUATION, MUST BE A FOSITIVE REAL
VALUE GREATER THAN Z0O EY AT LEAST 1.E-10.

LZ = STEF SIZEs MUST EE A FOSITIVE REAL VALUE NOT LESS
THAN 1.E-10 OR THE FROGRAM WILL GIVE A DEFAULT
VALUE THAT RESULTS IM 100 STEFS. IF DZ IS SUCH
THAT THERE WOULD RE MORE THAN 1000 STEFSs THEN THE
PROGRAM LOWERS ZN TO THE VALUE FOR 1000 STEFS
(IUE TO DIMENSION OF FROGRAM ARRAYS).

NS = NUMRER OF TERMS IN THE SUM» MUST EE A FOSITIVE
INTEGER.

IDT= 1, IF ALL TERMS IN THE SUM ARE IDENTICALLY DISTRIRUTED;
OTHERWISEs LET IDT=0 (OR ANY INTEGER VALUE EXCEFT 1),
IF NE=1» FROGRAM WILL SET IIT=0.

MF = MAXIMUM NUMERER OF FOLES TO BE EVALUATEDs MUST BE A
FOSITIVE INTEGER. IF MF IS GREATER THAN 100y THE
FPROGRAM WILL GIVE A DEFAULT VALUE OF 100,

MI = NUMBER OF COMFLEX VALUES EVALUATED IN THE CRUMF METHOD
FOR NUMERICAL INVERSION OF A LAFLACE TRANSFORMs ANY
INTEGER VALUE CAN RE ENTERED IF NS=1 AND NY=1, RUT
MUST BE A FOSITIVE INTEGER VALUE IF NS IS GREATER
THAN 1., IF NS=1 AND' MI IS LESS THAN 1, THE FROGRAM
WILL SET NY=1. IF MI IS GREATER THAN 1001y THEN THE
FROGRAM WILL GIVE A DEFAULT VALUE OF 1001 (DUE TO
DIMENSION OF PROGRAM ARRAYS).

FCT= FROFORTION OF MAXIMUM Z VALUE TO RE USED TO FIND THE
VALUE FOR THE CRUMF AXIS FOINTy MUST BRE A FOSITIVE
REAL VALUE BETWEEN 0.035 AND 2.1 Ok THE FROGRAM WILL
GIVE A DEFAULT VALUE OF 1.0.

NY = 1, IF THE F.D.F, AND C.U.F, FOR EACH TERM UF THE SUM
ARE DESIKEDS OTHERWISE, LET NY=0 (OR ANY INTEGER
VALUE EXCEFT 1),

FOR MI GREATER THAN O AMND N5=1,» THE FROGRAM EVALUATES
THE H-FUNCTION BY SUMMATION OF RESIDUES IF NY=1 AN
BY THE CRUMF METHOD FOR NUMERICAL INVERSIUN OF A
LAFLACE TRANSFORM IF NY IS NOT 1 (WHERE THE LAFLACE
TRANSFORM VALUES ARE FOUND' BY SUMMATION OF RESIDUES).

NF = 1, IF FLOTS OF THE F.0O.F. AND THE C.D.F. ARE DESIREDS
OTHERWISEy LET NY=0 (OR ANY IMNTEGER VALUE EXCEFT 1).

OO0 COo0O00O0O0000O000000000N00O000OnNacoOOnNDO00O0O0On00000n
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C
Y Coveee s CARD 20 NILT(IS)»IS=1sNS

NLT(IS) = THE NUMBER OF THE LAST VARTATE (COUNTING ANY '
CONSTANTS) IN THE I1IS-TH TERM OF THE SUM, !
MUST BE FOSITIVE 1INTEGERS SUCH THAT !
NLT(IS) IS GREATER THAN NLT(IS~1),IS=2sNS.

AP

IF IDT=1y ONLY NLT(1) NEEDS TO BE ENTERED.

-——
o
.

eeeoesCARII T TO CARD NLT(NS)+2! NVy THETAYFHI»FUW

NV = TYFE OF VARIATE (SEE RELUW)s MUST BE A FOSITIVE
INTEGER FROM 1 TO 14,

THETA = VARIATE FARAMETER, MUST BE A FOSITIVE KEAL VALUE
GREATER THAN 1.E-10 UNLESS NV=4 OR NU=Y,

FHI= VARIATE FARAMETER» MUST EBE A NOM-NEGATIVE REAL VALUE
ANDYy IF NVU= 2y Sy 79 OR 10y MUST RBE GRENTER THAN
1.E~10.

FOW= FOWER TO WHICH VARIATE IS TO BE RAISED, MUST RE A
FOSITIVE OR A NEGATIVE (QUOTIENT) NON-ZERU KEAL
VALUE. IF THE MAGNITUDE OF FOW 18 LESS THAN 1.E-10»
THE FROGRAM WILL GIVE A DEFAULT VALUE OF 1.0.

« o+ TYFES OF VARIATES
NV = 1y, RAYLEIGH VARIATE (WEIERULL WITH FHI=2)
FOF(X) = 2 % THETA % X & EXF(~ THETA X XXX2)

NV = 2, WEIRULL VARIATE

NV = 3, CONSTANT THETA
NV = 4, H-FUNCTION VARIATE

|
|
!
|
POF(X) = THETA X FHI % XXk(FHI-1) % EXF(~ THETA % XXXFHI) '
POF(X) = THETA % H(FHI % X) ‘
IF NV=4, THE REMAINMING H~FUNCTION FARAMETERS MUST EE i
ENTERED AS ANDITIONAL CARDSG:
EXTRA CARD 1! MsNsF»Q (NON-NEGATIVE INTEGERS) !
F NOT LESS THAN N+ Q NOT LESS THAM M. '
M+N AND F+Q NOT ZERQ AND NOT GREATER THAN 20
(DUE TO DIMENSION OF PROGKRAM ARRAYS, IN FACT THF i
SUM OF F40 FOR ALL VARIATES IN A TEKM MUST NOT ,
EXCEED 20), '
EXTRA CARD 23 (ACT)»GALI)) »I1=1sF |
ALL REALs GACI) FOSTTIVE,
DELETE THIS CaRD IF F=0, i
EXTRA CARD 32 (RCI)yGRCIV) 151,50 !
ALL REAL» GE(I) FOSITIVE. l
DELETE THIS CAKD IF (=0, !
!
\

FOR NV=4, IF DESIREDs ENTER THETA=0 AND THE FROGRAM
WILL COMFUTE THE H-FUNCTION DISTRIEBUTION CONSTANT

[z HeNsNsEasNeYoNsNaNaoleNeNslsRasloNoRsNolsNekelsNe s s NalasialsirieNake N e No s Ne N NelNas Ne s Re R ReRaeRe N Re Ne Ne Re e N o}

FOR NV=4, A NEGATIVE THETA MAY BE ENTEREDN. .
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NV = 5y EXFONENTIAL VARIATE (GAMMA WITH THETA=1)

FOF(X) = (1/FHI) % EXF(- X / FHI)

NV = 6y CHI-SQUARE VUARIATE WITH THETA DEGREES OF FREEDOM

(GAMMA WITH FHI=2 AND THETA=THETA/2)

NV = 79 GAMMA UARTATE

FHF(X) = XXX(THETA~1) % EXF(- X / FHI)
JOPHIKXTHETA % GAMMACTHETA))

NV = 8, UNIFOURM VARIATE

FOF(X) = 1/THETAsy FOR X IN (0>THETA)} = O» OTHEKWISE.

NY = 9+ BETA VARIATE

FIOF(X) = XkX(THETA-1) X (1-X)¥X(FHI-1) / RETA(THETA,FHI)
FOR X IN (0y1)5 = Oy OTHERWISE.

FOFE A BETA VARIATE ON (0,K3)» USE THE FRODUCT OF AN NVU=9
AND AN NV=3 WITH THETA=1/K.,

NV = 10, F DISTRIBUTION WITH [EGREES OF FREEDOM (THETA»FHI)

NV = 11, MAXWELL VARIATE

FOF(X) = 4 % XKK2 ¥ EXF(- (X/THETA)%%2)
/(THETAXX3 % SORT(FI))

NV = 12, HALF-NORMAL VARIATE

FOF(X) = 2 % EXF(- (X/THETAIXX2 /2) / (THETA % SQRT(2 % FI))

NV = 13y HALF-CAUCHY VARIATE

FOIIF(X) = 2 ¥ THETA / (FI x (THETAX¥2 + X¥%x2))

= 14, HALF-STUDENT VARIATE
FOF(X) = 2 * GAMMA(THETA + .5) / ( SOKT(2 % THETA % FI)
X CAMMACTHETA) % (1 + XXX2/(ZXTHETA) IXX(THETA + .5) )

COMMON/CHFLF “RA(21) sCDO(21) yGEA(21) sGCIH(21) »CAY ITs LKy My MN s QF
COMMON/CHOML Y/ TR TRy NsNAY» TR

COMMON/ETE 1 /HEDF (1001 ) yHOCBF (1001) 2 ZK1¢1001)
COMMON/FDF2/CCsCNyDZsKEY s KFMeMI s ME o NF - ZM,FSI1(20)

DIMENSION NLT(S0)sXL(21)yXG(21) ¢ TLR(1001)9TLT(1001)+6C1(21)
DIMENSION A(21)sH(21)sGA(21)»GR(21)9yA1(21)9C1(21)96A1(21)
DIMENSION IFM(190)

INTEGER Fs»FF,Q+QF Q0
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. c
‘. . C..« INFUT ANDN CHECK THE FROELEM ILIMITS AND RFQUIREMENTS.
c
READ(S, Y} ZOeZNsDZ e NSy IDTyMFPoMIyECT ¢ NY s NF
, | IF (NS.LT.1.0KR.MF.LT.1) GO TOD 46
3 3 [} IF (NS.GT.1.AND.MI.LT.1) 60 TO 46
. | IF (NS.EQ.1.AND.MI.LT 1) NY=1
< ' . IF (MF.GT.100) MF=100
IF (MI.GT.1001) MI=1001
. IF (NS.EQ.1) IDT=0
{ IF (Z0.LT.0.0) Z0=0.0
- ZT=ZN~20
IF (ZT,LT.1.E-10) GO TO 48
IF (DZ. LT 1.6-10) D7~ (ZN-ZD) /1, E42
ZT=ZD402%1.E+3
IF (ZT,LT.ZIN) ZN=2T
IF (FCT.LT.0.05.0R.FCT.GT.2.1) FCT=1.0
T=FCTXZN
C=ALOG(2.E+8)/(2.,0%T)
ZC=3,14155265358979/T
IF (ZO.LT.1.E-10) 2Z0=DZ
WRITE(65910) Z0OsZNsDIZsNS
) 910 FORMAT(1HL +//+% DETERMINE F.DI.F.(Z) ANI CoD.Fo(Z)Xy/y
1% FOR VALUES OF Z FKOM X»FB.4:% TO XyF8.4,% WITH STEF SIZ2E ¥,
2FB.4s»/9% FOR THE SUM OF %,I2y% TERMS, WHEREX://)
IF (IDT.EQ.1) WRITE(6,912)
912 FORMAT(44H THE TERMS ARE IDENTICALLY DISTRIBUTEIs AND )
WRITE(65915) MF+MIsFCToC
915 FORMAT(//+% THE MAXIMUM NUMEER OF FPOLES TO BE EVALUATED IS X,
114sK.Xy//+%  CRUMF FARAMETERS: NUMEER OF COMFLEX VALUES = X»
214+ %1%y // 97X XFERCENT OF HIGHEST Z VALUE = %,F4.2y
3%s AXIS FOINT A = %X)F8.4,//)
c .
C...INFUT THE NUMRER OF THE LAST ELEMENT FOR EACH TERM OF THE SUM
C...AND CHECK FOR AN ASCENDING ORDER.
C
NT=NS
IF (IDT.NE.1) GO TO 8
X NT=1 .
WKITE (&y ) 41H FORM FDR EACH TERM (WHERE YJ = XJX¥FJ)!
GO TD 9
8 WRITE (6 ) 47H FORM FOR DVERALL FROKLEM (WHERE YJ = XJXXFJ)3
9 READ(S, ) (NLT(I)+I=1sNT)
IF (NLT(1).LT.,1) GO TO 50
IF (NS.E0.1.0K.IDT.EQ.1) GO TO 13
. DO 10 I1G=2,NE
NLYL ~NLTCIS)
NETS=M T(TG-1)
. 10 IF (NLTS.GE.NLTL) GO TO 50
13 15-1
0 & J=1,%
J1= -1
. 1J=10%.01
. 10 S 1=1+10
11=]-1
IF (1J.£QG.0) GO TO S
. IF (IJ.GT.NLT(NT)) GO TO 7
b
+
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IF (J1,EQ.0) IE=3%I}
IF (J1.6T.0) IE=(4AXI.)-9
IF (TJLLT.NLTCIS)) 60 TO 2
IF (TJ.EQ.NLI(NT)) IL=IE-]
IFMCIE) =1H+
1S=[5+1
GO T0 3
IFMCIE) =1HX
TE=IE~1
IFM(TE) =11
IF (J1.EQ.0) GO TO 4
IE=1E-1
IFMCIE)Y =01
4 TE=1£-1
IFMUIE ) =1HY
1J=1041
CONTINUE
IF (NLT(NT).LT.50) GO TO 7
IL=190
IFM(150)=0
IFM(189)-5
IFM(188)=1HY
7 WRITE(6,520) (IFM(I)»I=1,IL)
920 FORMAT(/sk Z = Xs9(A1»I1+A1)s16(AL12110A1) v/ /rb6Xr25(A1s2I11A1))

(ORI N

o

c
C.o o INITIALTIZE THE OVERALL FROELEM CONSTANT ANI' RANGE FARAMETERS.
c

CNF=1.0

KFM=1

NE=1

KR=0

RU=0.0

RL.=0.0
c
CeeoFIND THE FSI FUNCTION VALUES TO RE USED
C...WHEN THE ORDER OF A FOLE IS MORE THAN 2.
c

no 15 1=2,20,2

15 FSTI1(I)=2.,0%FSI(I~-1+1.0)

00 44 15=1sNS
C
C...INITIALIZE THE FARAMETLRS FOFR THE IS-TH TERM OF THE SUM.
c

NL=NLT(IS)

. CC=1.0

N=1,0

rrr'::"'azxn
[
nh OO OCC
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DU
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D0 144 NH=MF,NL

NEUT THE H-FUNCTION FARAMETERS FOR THE NH~TH VARIATE.,

€. AND SET UF THIS H-FUNCTION.

€

?30

80

?0

100

102

104
106

108

110

112
114

116

READ(Gy ) NV» THETAYFHI»FFOW

IF (ABRG(FOW) LT, 1.E~10) FOW=1,0

WRITECS5+930) NHsNUs THETASFHI»FOW

FORMAT (/v VARIATE XXeJ29¥ IS TYFE NUMBER X»12,//,
1x  INFUT FARAMETERS ARE THETA =XsF10.5+%y FHI =¥,F10.%,
Xy AND FOWER =%»F10.5)

IF (THETALLT.1.E-10.ANDL.HV.LT.4) GO TO 148

IF (THETALLT 1.E-10.AHDNV.GT.S) GO TO 148

IF (FHILLE.-1.E-10) GO TO 148

ACY=1,E+3

GA(L)=1.E+3

GO TO (10251045132,134,80580580+80,80,80,80,80,80+y80),NV
GB(1)=1.0

NVU=NV-4

GO TO (1085110,112y11651185122+90+,20+90+90) 4NV
R(1)=0.0

GRB(1)~0.5

NVU=NU-§

GO TO (124+126+1005100) NV
NN=1

FF=1

GA(1)=0.5

NV=NY~-2

GO TO (128,130)sNV

FHI=2,.0

GO TO 106

IF (FHI.LT.1.E-10) GO TO 148
GE(1)=1.,0/FH]

E(1)=1.,0~GR(1)
TIN=THETAXXGE 1)

TC=TN .

GO TO 134

IF (FHI.LT.l.E-10) GO TO 148
TN=1.0/FH]

TC=TN

k(1)=0,0

GO TO 134

THETA=THETAX0.T

FHI=2.0

GO TOD 114

IF (FH1.LT.1.E-10) G0 10 148
TC=1.0/FH)
TN=TC/NGAMMACTHETA)

K1) =THETA-1.0

GO 7O 136

TN=1.0/THETA

TC=TN

A(1)=1.0

B(1)=0,0

G0 TO 120

A Res ctm e

i
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. 113 TN=DGAMMA(THETA+FH1) /IGAMMA(THETA)
TC=1.0
. ACL) =THETA+FH1-1.0
R E(1)=THETA-1.,0
H . 120 GA(1)=1.0
- FF=1
: GO TO 13¢&
° 122 IF (FHI.LT.1.E-10) GO TO 148
TC=THETA/FH1
TN=TC/ (DGAMMA CTHETA) XNIGAMMA (FHI )
NN=1
FR=1
ACL)=-FHI
GAC1)=1.0 )
E(1)=THETA~1.0
GO TO 134
LO/THETA
=T(/ BB6226925452758
E(1)=1.0
G0 TD 134
j 126 TN=,398942280401433/THETA
| TC=.707106781184543/ THETA
; GO TO 136
! 128 TN=.3183098846183791/THETA \
TC=1,0/THET#
AC1)=0,0
GO TO 136
130 TN=(THETAX6,28318530717958)%%(~0,5) /DGAMMA(THETA)
TC=(2.0%THETA) XX (-0.,5)
A1) =0,5-THETA
GO TO 134
132 CN=CN/THETA
CC=CC/THETA
GO TO 144

[
Cos o IF NVU=4y INFUT THE REMAINING H-FUNCTION FARAMETERS.
C

134 READ(S, 3 MMsNNsFE,QQ

IF (MMJ.LT.0.OR.NN.LT.0) GO TO 149

IF (OQ.LT.MM.OR.FF.LT.NN) GO TO 150

IF (FF.LT.1.AND.QQ.LT.1) GO TO 152

IF (FE.LT.1) REAI(Sy Y (ECD) WGE(TY v I2150Q)

IF (QU.LT.1) READ(Sy Y (ACI)sGACI) s 1=19FF)

IF (FP.GT.O.ANILOR.GT.0) KEADC(Ss ) .
1 CACI) sGACTY » 1719 FF ) » (RCI) yGE(IIyI1,0Q)

TN=THFTA %
TC-FHI M

. c ¢
C...FOR NV=4 AND THETA=0y THE FROGRAM COMFPUTES
Ce. . THE CONSTANT FOR THE H-FUNCTION DISTRIEUTION.
c

IF (ARSCTN).GT.1.E-10) GO TO 136
R TN-TC

IF (QQ.LT.1) GO TO 730

DO 720 I=1,QQ
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IF (I.G6T.MMY GO TO 7310
THN=TN/IGAMMACH (1) +GELT)Y )
GO TO 720

710 TN=TNXDGAMMA(1 . O~RB(I)~GR( L))
720 CONTINUE

730 1F (FFP.LT.1) GD TO 174

no 750 I=1,FF
IF CI.GT.NMY GO YU 740
TN=TN/DGAMMACL . O-ACT ) ~uBACL))
GO TO 750

740 TN= THRDGAMMACACTI) +GACT )
750 CONTINUE

C. o o FRINT THE H-FUNUTIOM FOR THE NH-TH VARIATE

c

C

Ce. oBASED UFON THE FOWER TO WHICH THE NH-TH YARIATE IS RATISED,

136 WRITE(&y¥40) NH

@40 FURMAT(//s% THE F.It,F. FOR

?42

?45
P47

IF (FFL.EQ.Q) WHITE(62947) MMy Nt

IF (FF.GT.0) WRITE(6994T) MMsNNs CCACT ) vBACI))
WRITE(&9942) TN TC
FORMAT(FI10,5s2Xo XHK 97Xy ¥ (X FL10.5e% XD 1¥)

IF (QGQ.EQR.0) WRITE(4»947) FF,QQ

IF (QQ.GT.0) WRITE(Ae940) FFyQQy ((ECI)yGRT))
FORMAT (14X,2I37 15Xy (K (KyFB.3r Ko XsFEL.Iy¥IX))
FORMAT (14X 213)

IF (ABRSITM) LT 1.E~-10.0R. TC.LT 1.E-10) GO TO

Ce oo ITS H-FUNCTION FARAMETERS ARE ADJUSTED aND USED

c

140

142

144

FS1=F0OW-1.0

IF (ABS(FS1).L.T.1.E~10) GO TO 140
TN=TNXTC¥%(F51)

TC=TCxXFOW

CN=CNXTN

CC=CCxTC

IF (FOW.LT.0.0) GO TO 142

CALL SETUF(OsMM«MyLMy1.0,FOWsEyGRsRA,GHA)
CALL SETUF(MMsQR+GrILOy~1.0,F0WsBHsGEyCDy GG
CALL SETUF(GyNNsNsL Ny =1, 0+FOUWrAsGASAL ALY
CALL SETUF (NN FFsFslLFy1.0sFOWsA»GAYCLly1CT)
GO 10 144

CALL SETUF(OsMMsMsLNs1.0sTOWrEyGRsALyGA1)D
LCALL GETUF (MM RQvF sl Me=1,0yFOWs Ky GRsCLy(GCLS
CALL SETUF(OsNNsMyLMs~1.0sFOWsA+GAYEAYGEN)
CALL SETUR/MNFFyQsLOy 1. 0sFRW A2 GAY LD GCT
CONTINUE

IF=-N

I0:0-M

IF (INGNELLE)Y WRITE (A Y 17H SETUFP ERROE.

IF CIQ.NE.LOY URLITE (& ) 178 SETUF ERROK»
MMM

QFr-1Q
CALL SETUF(OsNyMNsLM11.0+1,0rA1+GAL+RAYGRA)
CALL SETUF(O,»IF»Q0FsLQr1.0+1,0vC1+GC1sCIH»GCI)

y1=1+FF)

»I=1yQQ)

152

TO FIND

LF
La

VARTATE XxsI7e¥ 1S5 GIVEN RYIXs/)

C...THE FARAMETERS OF THE H-FUNCTION DISTRIEBUTION OF THE I$-TH TERM.

161

4}
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C
C.o o PFRINT THE H-FUNCTION FOR THE IS-TH TERM
C
WRITE(S,950) 1&
L0 FORMAT(//s% THE P ,D.F. FOR YEKRM XyI2»
1% OF THE SUM IS GIVEM RYI%y/)
WRITE(S:251) MeNsONPEC 0
P51 FORMATC(1AXy2I3y/sF1O.392X e kHX» 7Xo X (KyFL1O.S9% Z)y WHEREX,
1/v14Xs2139/7)
IF (MN.GT.0) WRITE(&EOSG2) ((BACL)»GRACIN) »1=1yMN)

PUT FORMAT(XRK (BACT) v GRACIII IXy (H(K (RKyFB.BrkyXeFB. 39 X)X 9 /516X

IF (QF.GT.0) WRITE(6¢2T3) ((CDCD)yGCICLY) v I=LyQF)

P33 FORMAT (R (CD(I) »GCD(TI I tXo CHCK (KyFB.Ir ks ¥sFB. 3o X)N) 0/ 916X))

162

GO TO 156
148 WKTTF (&4 Y 27H  THETA OR FHI NOT FOSITIVE
6o TO U2
149 WRITE (4, ) 17H M QR N NEGATIVE
GO TO 52
150 WRITE(6y ) 27H Q(OR P> LESS THAN M(OR N)
GO TO 52
152 WRITE (&y y 30H  FARAMETERS F AND G EBOTH ZERO
GO TO S2
153 WRITE (4 ) 27H ZERD OR NEGATIVE CONSTANT

GO TO

C.eoCHECN T
C.. .CONVERG
c

e
o2

HAT THE H-FUNCTION IS VALIDLY DEFINEDy DETERMINE ITS

ENCE TYFF,

ANDs IF NEEDEDNy ALJUST THE RANGE FARAMETIRS.

155 CALlL CRHECK

IF (NAY.EQ.1) GO TO 52
ZT7=1.0/(CCXTR)
IF (LR.NE.D) GO TO 157
IF (N.LT.1) RU=RU+ZT
IF (N.LT.1) KR=KR+1
IF (M.LT.1) RL=RL+2T

c

Ceo IF DESIREDs THE F.D,F. AND C.I.F. OF THE IS-TH TERM ARE FOUND.

C.. IF NS=1 AND NY=0, THESE ARE FOUND BY LAFLACE TRANSFORM INVERSION,

C
157 IF (NY.NE.1) GO TO 18
IM=7T
KEY=0

IF
Ir
IF
IF

(NS.NE.1) GO TO 12
(LELWNELO) GO TO 1t
(NeLT 1.ANDZT.LTWZNY ZN=ZT
(ML T 1. ANDLZT . GT . Z0) 20=2T

IF

(ZNLLT.ZM)

GO TO 48

11

CalL FRFCLF CZ00ZN)

GO TO

S
S

12 IF
IF

(LELEQ.O.ANDLN.LT. 1)
ALELEG O ANDL M LT L)

GO T 14
GO 1O 1o

ZT=DZX1.F+3

14 IF (ZM,LT.ZT) ZT=2ZN
CallL FIFCOF(NZZT)
GO TG 18

16 IF (Z0.GT.ZT) ZT=20
IF (ZN,LT7.2T) GO TO t8
CAll FOFCLF(ZT,ZN)

S K . X000 LRGN - YT e 1
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c
C...SET UF THE LAFLACE TKANSFORM H-FUNCTION FOR THE IS-TH TERM.
C

18 (H-N+1
IF (MN.LT.1) GO TO 28
no 20 I1=1.MM
. XL¢I)=RACT)
20 XG(I)=GRAC(T)
IF (N.LT.1: GO TO 24
Do 22 I=2sdN
J-M+I-1
BALL)Y=XL D IXGOD
2 GEACL)= -XG (D)
4 IF (M.LT.1) GO 70 28
LD 26 1=1sM
NEN)
BACH =Y (IX4XG(I)
26 GRAC(J): -XGOL)
28 BAC1)=0.0
GEAL1)=1.0
IF (QF.LT.1) GG 0 38
no 30 I1<1.QF
XL(1)=Ch<I)
30 XG(IH)=GLDT)
1IF (IF.LT.1) GO TO 34
ng 32 I=1.1F

J=I+1
COHC)=XL(II+XG())
32 GCD(I)=-XG(.D

34 IF (I0.LT.1) GO TO 38

[0 36 T=1,1IR

J=1F+1

COCH=XL (D) +XG( D)

36 GCD( I =-XG (1)
38 N=M
M= JD
Ju=IF
IF=10Q
I8=00
FaN+TF
Q=-M+I10
MN=MN4 1
CN=CN/CC
CC1.0.CC
WRITE (49520
954 FORMAL (LHT & LAFLACT TRANSFORMIXy /)
C MRITE(65951) HelisON2CCsF a0
IF (MMLGT.0 WRITE (6p902) (DALY s GLACT 1) ¢ In1y MN)
IF (QF.GT.0) WRITE(4,75%3) ((CHCT)sUCHCL) ) v I=1,QF)
CALL CHECK
IF (NAY.FO.1) GO TO 52
GNE = CHF KON
2M=1.0/(CLXIR)
c

C.. .USF FOFCDF TO FIND THF MI VALUES OF THE LAFLACE TRANSF ORM
C...0F THE 1S-TH TERM! HFDF(I) HAS THE REAL FPARTS AND

C...HCDF(I) HAS THE IMAGINARY FAKTS OF THE TRANSFORM VALUES.
c

e
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NEY=1
CALL FDFCDF(C,2C)
c
C...FINI THE FROIMICT OF THE LAFPLACE TRANGFORMS AT EACH VALUE,
C
Lh=1
IF (IDT.EQ.1) LK=NS-1
0o 42 I=1,M1
IF (IS.NE.1) GO TO a0
TLRCT) =HITE (1)
TLICEY=HCDI (1)
IF ¢(IDT.NE.1) GO TO 42
40 D 41 J=1sLK
Y= TLRCT)
TLROTY=YXHFDF (T )~TLI (T )KHCDIF (1)
a1 TLICTY=TLICI)KHFDF (1) +YKHCDF (1)
42 CONTINGE
IF (IDT.EQ.1) GO TO 45
44 NF=NL+1
C
C...CEUMI* METHOD FOR NUMERICAL INVERSION OF A LAFLACE TRANSFORM
c
45 IF (KR.EQ.NS.ANILRULLT.ZN) ZN=RU
IF (20.LT.RL) ZO=RL
IF (IDT.NE.1) GO 70 43
IF (KR.EQ.1.AND.RU.LT.ZN) ZN=RU
CNF =CNFXXNS
43 CNF=CNF /T
K=1
WRITE(61955) KI'M
955 FORMAT(IBH1 MAXIMUM NUMEER OF FOLES EVALUATED = »ISs//»
¥ z FLF(Z) COF(Z) %y /)
602 ZK=Z04FLOAT(K-1)%NZ
IF (ZK.GT.ZN) GO TO 406
HEDE (K) =0, SRTLR(1)
HCDE (KD =HFDF (K ) /8
IF (MI.EG.1) GO TO 605
D0 604 T=2,MI
ZI=ZCAFLOAT (F-1)
Z1-C0S(ZT¥ZK)
Z2=SIN(ZIXZK)
T1=TLR(I)
T2=TILI(D
HFDF (R) =HF Ut (K)Y4T1XZ1-T2# 20
HCDF (1) s HCIF (R # CCTIRCHT I 2T ) RZ I+ CTIHZT-T2RC)IKZ2) / (CHCHZIXZT)

604 CONTINUE
60T CHFE=CNE XEAF (CRZK)
HELIE (RO HFLF (F) XCHFE
HEDF (RO =HEDE (1) ¥ CNFE
Zh1 Ky =28
WETTECAr 960 ZR1(NY sHE D (P y HCDIF (b))
P60 FOKMAT(F11.,4,2112,6)
IF (HFIF (RO W LT 0,00 HFDE (R) = =AkTE (K)
IF (HCDF(R).LT,0.0) HCDF (h)=-HCLF (N)
R=K+1
GO TG 602
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v 60& TF (NF,NE.1) GD TO 52
. Nek-1
WKITE (699610
961 FORMATC(IHL »% FROEARILITY DENSITY FUNCTION®,/)
. CALL FLOTCZKI sHFDF 5K
WRITE(4s562)
962 FOKMAT (1H1 +* CUMULATIVE DISTRIBUTION FUNCTION¥+/)
’ CALL FLOT(ZK1yHCDF 1K)
GO 70 52
46 WRKITE(Ss ) 27H NSy ME,GE MI LESS THAN ONE
GO TO S2
48 WKITE(&s ) 42H  LAST Z-VALUE LESS THAN OR EQUAL TO FIRST
GO TO 52
50 WKITE(&y ) 34H NLT(I+1) NOT GREATER THAN MLT(I)
52 S10F
END
SURKOUTIME SETUF(I1sJ19k1,L1s51¢FWRSE sGEsFGF)
c
C...ADJUST AND ORDER THE H-FUNCTION FARAMETERS FOR THE IS-TH TERN
C...INTO ARRAYS THAT AKE CONVENIENT FOR CALCULATING RESTDUES,
c
DIMENSION E(215+GEC21),F(21)sGF(21)
I2=11+1
J2=41
K1=h14J2
IF (J2.LT.12) GO TO 160
§2+51
§3=1.0--§2
S4-52KFUR
FM17FWk=1.0
DO 158 II= 12,47
L1=L1+1
FOLL) S3/2.0 + SOKCE(II)~GECIIIXEML)
158 GF(L1)=GAKGE(LIT S
160 EETUKN
LMD
v
L)
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oo o CHECKN FOI
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FINL CONVERGENCE 1YFE

COMMON/CHPDE SBAC21) «COC21 0 yGEAC21) v GEOCT1) 9 CA» ITo LIy My MN« QF

COMMON/CHONLY/LF s IQsNsNAY» TR
INTEGER QF
I7T=0
LR=0
Th1::0,0
TH2=0,0
TL=FLUOAT (AF-MNY /2,0
TR=1.0 .
Ch=1.E+2
CE=~1,E+3
IF (NLLT.1) GO TO 204
JTM+ 1
Do 202 I=JsMN
G=-GRall?}
IF (G.LT.1,E-10) GO TO 228
CH=RA(I) /G
IF (CH.LT.CA) CA=CH
TD1=TI'1 46
TL=TLHEACD)
TR=TR¥ (GX%G)
IF (M.LT.1)> GO TO 208
DO 206 I=1,M
G=GERA(I)
IF (G.LT.1.E-10) GO TO 228
CH=-RBA(1) /G
IF (CH.GT,CR) CE=CH
TD2=TI24G
TL=TL+RACL)
TR=TR/ (GX*(»
IF (IF.LT.1) GO TO 212

J=IQ+1 -
Do 210 {=J.QF
G=6CnCD

IF (G.LT.1.E-10) GO TO 228
Tn2=102-6
TL=TL~CDCI)
TR=TR¥ (GXXG)
IF (IQ.LT.1) 60 TO 216
DO 214 I=1,10
G- -GCUCI)
IF (G.LT.1.[~-10) GO TO 20Y
101 =T01~G
TL=TL-CD( 1)
TR-TI/ (GRXG)
Th=1014702
TE=TD1-TD2
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IF (TH.GC.-1.E-10) GO TO 218
WRITE(6, ) 37H D IS LESS THAN ZEROr NO CONVERGENCE
GO 70 232
218 IF (CA.GT.CH) GO TO 220
WRITE(G ) 38H NUMERATOR FOLES NOT FROFERLY DIVIDEL
GO TO 232
QWO IF (TFLLE.-1.,E-10) GO TO 222
IF (TF.GE.1.E-10) GO TO 224
CH=0,0
IT=5
GO 710 22¢
222 CH=TF*CA
IT=1
LR=-1
GO TO 226
224 CH=TFXCE
IT=3
LR=1
2246 1IF (TD.LT.1.E-10.ANO.TL.GE.CH) GO TO 230
IF (TL.LT.CH) IT=IT+1
IF (IT.EQe&6 ANDI.TL.LT.=1,0) IT=7
G0 TO 234
229 WRITE(6» ) 38H ALFHA Ok RETA FARAMETER NOT POSITIVE
GO TO 232 .
230 WRITE (6 ) 334 It IS ZERD ANDI' L IS GREATER THAN
WRITE(6» ) 29H E TIMES W s NO CONVERGENCE
IT=0
232 NAY=1
234 WRITE(S,965) IT
965 FUORMAT(//s% CONVERGENCE TYFE = %»I1)
WRITE(49970) TI TFsTLH TR
970 FORMAT(/ 37X XDt =XyF&6295XsKE =XyFE&.295Xs XL =X9sFb. 2y
15Xy XR =X9F7.4)
RETURN
ENIt
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. SURROUTINE FDFCDFC(ZFF»ZLF)
c
C...CALCULATION OF H-FUNCTIDN VALUES RY SUMMATION OF RESIDUES:!
Cov o THE F.DILF. AND C.TI F. ARE FOUND JF KEY=0+ THE KREAL AND
C.+ « IMAGINARY FARTS (OF THE LAFLACE TRANSFORM IF KEY=1,
C
COMMON/CHFDF/BA(21)yCD(21) sGRAC21) yGCI(21) s CA» 1Ty LR» My MN» QF
COMMON/FDF 1/HFLF (1002) yHCDF (10013 ,2K1(1001)
. COMMON/FRF2/CCyCNy DZsKEY s KFMyMI o MF o NF » ZM e F°S11¢20)
DIMENSION ID(21)50S(21)yFILC(21) V(22929 W(2152)9ZLN(1001)
LIMENSION GARGH(21) »GARGL(21)yZR2(1001)
INTEGER QFsERRUK
ZF = ZFF
ZL-ZLF
DO ZO1 I=1sMN
INCT)Y=0
JS(1)=0
301 FL(T)=0.C

KF=1

KMX=KEYXMI+(1-KEY)R(INT((Z1.-ZF)/DZ+1.E~10)+1)
KL=KMX
00 304 K=1sKL
HFIF (K)=0.0
HCDF (K)=0.0
IF (KEY.EQ.1) GO TO 302
IN1(R)=ZF+DZXFLOAT (K-1)
ZR2(K)=ALOG(ZK1 (K)XCC)
GO TO 304
302 ZIMK=ZLXFLOAT(K~-1)
ZK1(K)=SART{ZFXZF +ZIMR¥ZIMK)
ZK2(K)=ATAN(ZIMR/2ZF)
ZULNC(K) =ALOG(ZK1 (K)*CCH
304 CONTINUE

c
C...SETUF FOR LHF OR RHF EVALUATION
c
IF (LK.EQ.-1> GO TO 312
IF (LR.EQ.1) GO TO 30e&
IF (ZM.GT.ZF) GD TO 308
LR=1
306 MF=M+1
ML=MN
SV=-1.0
GO TO 214
308 IF (KEY.EQ.1) GO 10 310
IF (ZM LT ZL) LL=INT((2M-2ZF)/DZ+1,E~20)+1
. IF (ZM.GE.ZL) Lk=-1
GO 10 311

310 KRM=INT(SQRT CZM¥YZN-2F%ZF) /71 +1JE~10) 41
IF (NEY.EQ.1) WKITLCé, ) 31H  AXIS FOINT A IS LESS THAN ZM
IF (RM.LT.KL) Kl <hM
. IF (KM,GE,KL) LK=-1
3311 IF (MN.EQ.M) LR--1
IF (MJ.EG.0) GO TO 360
‘. 312 MF=1
ML =M
8U=1.,0
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. C
C.o .FIND THE RIGHTMOSY (LHF) OR LEFTMOST(RHF) UNEVALUATEDR NUMERATOR
. C.e .FOLE S AND ITS ORDER KN IN THE NUMERATOR
c
314 DO 314 T=Mf ML
. JS(1)=0
316 FL{I)==RACT) /ARS(GRA(I D))
KF=0
. KFZ-0

218 KF=KF41
DO 319 I=1-MN
319 INc1)>=0
Do 326 I=nMF Ml
1F (I.FR.MF) GO TO 322
SMFL =S -FL (1)

IF (ABS(SMFL) (GT.1.E-10) GO 10 320

RN=KN+1
GO 7O 324
320 IF (SHMFL.GT.1.E-10) GD 70D 324
22 S=FL(1)
KN=1
124 INKN) =T

326 CONTINUE
IF (LR.EQ.1) S=-§
IF (KEY.EQ.1) GO 10 328
SM1=5-1.0
IF (ARS(SM1).G6T.1.E-10) 5O TO 328
KN=KN+1
KS1=1
c
Ceso.CALCULATE VZERO(WITHOUT FOWER TERM) AND
C
328 FROD2=1.0
FROD4=1,0
KO=0
IF (QF.LT.1) GO TO 334
[0 332 I=1,04
X=CDCIHHGON ) %S
GARGQ(I) =X
TF (ERROR(X) JEQ.O.ANIN X, 1L.T.0.5) GO TO 330
FPRODA-FRODAXDGAMMA(X)
GO TO 232
130 KO=KD+1
IF (KDLEQ.KN) GO TO 342
IX=INT(-X4+0.1)
FRODD=FROD2XDFACT CIXO K (-1 0 XK X RKGCD(T)
332 CONTINUE
334 FROI1=1,0
. FRODI=1.0
KB=1
IF (MN.LT.1) GO To 339
Do 338 I=1+MN
IOES=10(kE)
IF (1.EQ.IDKE)Y GO TO 336
LY GARGN(I)=EA(TI)+GRA(1) %S
FRON1=FROD1XNGAMMA CGARGN (1))
GC TO 338
A 336 PROO3=FRON3XDFACT (JSCI)IX((=1.0)%XKJS(I))XGERACT)
KS=KS+1
338 CONTINUE

THE ORDER KT OF FOLE S.
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h
339 KNF1=KN+1
IF (hS1.EQ.1.ANII.KS.NE.KN) GO TO 701 .
IF (KS1.NE.1.ANL.KS,NE.KNF1) GO TO 701 i
GO TO 702 {
701 WRITE(&y ) 28H ERROR IN VZERO CALCULATION '
702 VF1=FROD1¥FROD2/ (FROD3%FRODA)
VF2=YF 1
IF (KEY.EQ.O0.ANDLKS1.NE.1) VUF2=UF2/S5M1
KT=KN-KIt
I1=hT-1
DF1=DFACT(I1)%SV
DF2=DFACT (RT-2)¥8Y
UMX=0,0
C
C...CALCULATE WZERD(WITHOUT LOG TERM) THKOUGH W SUPERSCRIFT KT-2.
c
IF (KT,LT.2) GO TO 416
VZ1=1,0
N0 414 L=1,11
VZ21=1,0-YZ1
LMi=L-1
W(Ly1)=0.0
IF (MN.LT.1) GO TO 406
K8=1
D0 404 I=1sMN
IDKS=ID(KS)
IF (I.EQ.IDKRS) GO TO 402
WELp 1) =W L 1)+ (GRACTI¥XL)IXFST (LML » GARGN(I))
GO TO 404
400 WL 1) =WLs 1) =( (~GRACT) ) RAL)KFST (LML yFLOAT(JS(I)+1)) |
IF (VZ1.GT7.0.5) W(Ls1)=W(Ls1)+((GRACI)IXKLIKFSIL(L)
KS=hS+1 ‘
404 CONTINUE 1
406 IF (QF.LT.1) GO TO 412
D0 410 I=1,QF
X=GARGI(T) (
IF (ERROR(X).EQ.0.AND.X.LT.0.5) GO T0O 408
WCLs1)=W(Lo1)~(GCII(I) KL IXKFST (LML, X)
GD TO 410 X
408 WL s 1) =W s 1)+ ((~GCOT)IRKLIKFST (LML »1.0~X) C
IF (VZ1.67.0.5) WCLy1)=W(L 1)~ ((BCDCI) ) RRL)KFSTL(L) .
410 CONTTNUL f
412 IF (KEY.EQ.1) GO TO 414
W(Ls2)=W(Lv1)
IF (KS1.NE.1) W(Le2)=W(Ls2)+DFACT(LM1)/((1.,0~5)%%L)
414 CONTIMULC
WR1=W(1y1)
WR2=W(1s2) ;
c * :
C...Alt THE FOWFR TERM TO VZERD AND THE LOG TERM TO WZERO. N
C...COMFUTE V SUFERSCKIFT KT-1 AND THE RESIIUE VDK, L
c ;
416 K1-0 ¢ 1
IF (ABS(ZR1(KLY~ZM).LT.L1.E-5) Kil=1 T
KKM=KAM+ (K1 XKEY XKL ) .
D0 340 K=KFsKL :
Z1=ZR1(K)*CC
22=2K2(K) .
VI1v1)=VH1%(Z1%kR(~8))
V1, 2)=UFDR(Z1%%(~5))
é
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C

C.+.CHECK TERMINATION CONNITIONS,
C...NUMERATOR FOLES» AND DETERMINE WHETHER THE RESINUE AT

340

IF (KEY.EQ.1) GO TO 3502
IF (KT,EQ.1) GO TO 510
W(lry1)=WR1~-Z2
W1y 2)=WR2~22
WI=0.0
G0 7O 504
V(1,1)=V101+1)%KCOS(-S%Z22)
V(1 2)=V (1 2)RKEINC(-SXITD)
IF (KT.EQ.4) GO TO 510
W(lr1)=URL~ZLNC(NY
WI=-22
DO 508 I=1,I1
IF1=T+1
VIIF1y 1=~V (Iy2)%WI
VIIFP1y2)~V(Is1)%UWI
EN=1.0
L0 S06 J=1s1
L=I-J+1
IF (J.EQ.1.0R.I.EQ.1) GO TO 505
EN=ENXFLOAT (L} /FLOAT (J-1)
VCIF1y1)=V(IF1y1)+ENKVC(Ly 1) ¥ C S 1)
VOIFP192)=V(IF1y ) +BNRV(L» 2) %W (I K2)
CONTINUE
IF (K,LT.KL.OR,K1.EQ.0)> GO TO 512
IF (IT.E0G.S) GO TO 341
IF (IT.EQ.6.AND.KEY.EQ.1) GO TD 341
VDK=V(KT»2)/DF 1
IF (ABRS(VIK) .GT.ARS(UMX)) VMX=VULK
HCDF (N =HCDF (K) +VDK
IF (R,LT.KL.OR.K1.,EQ.0> GO TO 514
IF (IT.EQ.6) GO TO 341
VIK=0,0
IF (KS1.,NE.1) VDK=UV(KTs1)>/DF1
IF (KS1.EQ.1.AND.KT.6T.1) VUDK=U(IIs1)/DF2
IF (ARS(VDK) JGT.ARS(UMX)) UMX=VDK
HEDF (N) =HFDF (K) +VIK

C..s8=1 IS NEEDEDR FOR THE C.O.F.

c

341

342

344

346

IF (AKRG(UMX) .GE.1.E-15) KFZ=0
IF (ABS(VUMX) W LT.1.E~19) KFZ=KFZ*t1
IF (KFZ.GT.10) GO TO 348
IF (KF.EQ.MF) (GO 1O 348
IF (K51.NE.1) GO TO 344
KN<hN-1
£G1=2
LU0 3446 KO=1shN
I"INCRS)
JECI=U5CI) 41
FLOD) =~ CBACI) 4FLOAT(ISCI)) ) /ARS(GERACI))
GO TO 318

T | S
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348

350
352

275

ase
?80

785
360

362

364

990

?9S

399
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IF (KEY.EQ.1) GO TO 360

RES=0.0

TF (QF.LT.13 GO TO 352

o 350 I=1,0F
X=CNCIY+GENCT)
IF (ERROR(X).NE.O) GO TO 330
IF (X.GT.0.5) GO T0 350
RES=1.0
Ga 10 342

CONTINUE

IF (KS1.EQ.2) RFS=1.0

IF (LRJLTV1,AND.CALLT.1.0) RES=1.0

IF (LR.EQ.1.AND.CAGT1.0) RES=1.0
WRITEC(S9y973)
FORMAT (1H1 s X Z [RURES] CUF(ZI*y /)
0o 358 K=KF skl

HFIF (FOD =HEDIF (K)XCH

HCDF (R =RES~ (ZRK1 (K)XCN¥HCDF (X))

WRITE(6:980) ZK1(K) yHFNF (K) s HODF (K)

IF (HFDF(K) LT, 0,0) HFDF (K)=~HFPDF(K)

IF (HCOF(K) . LT.0.0) HUDF(K)=~HLCDF (K)
FORMAT(F11.4y2F12,.6)

WRITE (5,983) KF
FORMAT (//y¥ NUMBER OF FOLES EVALUATED = %sI4)
IF (KF.GT.KFPM) KFPM=KF

IF (LK.NE.Q) GO 1O 362

Lk=1

KF=kL+1

KL=KMX

GO TO 304

TF (IT.EQ.7.0R.IT,.LT.9) GO YO 364

IF (KKM.LT.2) GO TO, 364

HFDF (KKM) = (HFLF ¢KKM+1) +HPDF (KKM=-1)) /2.0

HCIF (KKM) = (HCDIF (KKM+1)+HCDF (KKM-1)) /2,

IF (KEY.EQ.1) GO TO 399
IF (NF,NE.1) GO TO 399

WRITE(6y7920)

FORMAT(1H1 »X

CALL FLOT(ZK1yHPDOF»KMX)
WEITE(699935)

FORMATC1H1 9%

PROBABILITY DENSITY FUNCTIONXs,

CUMULATIVE DISTRIKUTION FUNCTIONXs/)
CALL FLOT(ZR1 +HCDF »RMX)

RETURN
END

FUNLTION DFACY (N)

c
Cos .CALCULATE N FACTORIAL

c

1202
1204

DPFACT=1.0

IF (NJLE.1) GO TU 1203
0 1202 I=1sN
DFACT=TIFACT*FLDAT (1)
RETURN

END
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INTEGIZIR FUNCTION ERROR (X)
C

Ceoeo AN INTEGZR FUNLTIIN <HICHM RETURNS THI COJII <RROR=D IF X IS AN
Cooo INTEGERe ANO ERROR=z] JTHERWISE (4 CHICK FOR PRECISION PRIBLEMS)

4
ERROA=]

IF (XelLTe0ez*0) YzXeSeE=1
IF (XoGLo0osEe0) JsNeSef=]

2=ABS(X=FLNAT(J))
IF (2sLTe1,2+10) T2RQ0R=0

RETURN
£NO

FUNCTION DGAMMA (XEP)

DIMENSINN CX(2a)
_INTZGZP ESRRIP

DATA CK/14%+40400577215664901533y=0.6558780715202549-0404200263503¢

95 ee 3 329=4 37134 4435=29= 3 9715217377+350072
2183432466631~1e16351675518591€=3922,1524167411495=4414230502323392E
38, «2.01348587307,-5, =1e250433482):~69101330272320€=64=2:0563384
0175-1.6.1160950€-9.5.00200755°?o-1-18127&:5-9-1.0&34275-13.;-13235
5=12323:69685~12:54L002132=2 - - - 4w Ta -

X=XFP
2=X

IF (XeLTe0eE*0) Jz=K=SeE=1l
IF (XeGie0efEe0) J3XNeBer~]

IF ((Z230R(X)eZ760)aANDeXeLTeSez=l) GO TO 1614
IF CERROR(XDeZ300) 50 T0 16316

PROC=14E90
IF (Xe5Telef*0) 63 TO 1602

IF (XelTe0a£¢0) GO TO 1606
50 10 1630

1602 MzINT(X)
D0 160 I=1,¥

1608 PROD=PROD#(X=FLOAT(I))
2=X=FLOAT (M) -

60 TO 1610
_L606 MEINTCABS(X)bs]

00 1608 I=1.M
1603 PROD=PROD/(XeFLIATCI=110)

2=X+FLOAT (M)
—J610 SUM=GQeiel

00 1612 X=1426 .
vSUMeLK(K)eZeeK

OGAYMA=PROD/SUN

RETURN
1614 WRITE (6+1618)
RE TURN
1616 DGAMMAZOFACT(J=1)
RETURY
1618 FORMAT ( 1Me=e JOHATTEMPT TO FIND GAMMACX) FOR NONPOSITIVE INTZGER
1 _ARGUMINT X IN SUSPIJGRAM DGAMMA)
EnD
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1702

1704

1705
1706

1708
1710

1712
1714
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FUNCTION FSI (NFEZFF)

DIMENSION ZETA(100)

INTEGER ERROR

DATA ZETA0.E+0s.644934066848226y ,202056903159594, 8230303371113
182E~1, .369077551433699F -1, .173430619844491E-1r  834927735192281
2E-2r.407735619794434E-2, ,200839282608221E-2, L 994S75127518085E -3
35.494188604119465E-3, . 245086553308048E-3, 1227133475 78489E -3, .4
412481350587048E-4> . 3058823630702045E~4y L 1G2820594086519E-4y 7637
S19763789974E -5, . 381729326499984E- 54 . 190821 271655394E~5, , 95394620284
672BCE~61.47693298678781L-6+.23845050272773E-57 . L19219925965310-65 ,
75960818905126E-75 . 2980350351 465E 71 . 14901 5548283767+, 745071 1 76794
8E-Br.372023402479E8y . 1362859 72351E -85 , 931327430426~ , 46566090650
FE~91 . 23283118337E~9, . 116415501 73E-95 ,5620772080E 10y . 291038504 4F -1
X0y 1455152189E~-10y . 727595984E~115 . 363797955E 111 . 18189E965E-115 .90
X9A49478E-12,,45474738E-125 , R27IT7IELL ~12, 5EX0  E40/

N=NFF

Z=2FF

DO 1702 1=42,100

ZETACI) =S, E-1XZETACI-1)

FSI=0.E+0

IF (N.EQ.0) FSI=-.577215664901533

TERM=0.[H4C

X=1.E+0

RN1=( (=X 7R (N+1) ) KDFACT (N)

SUM=0,E+0

IF (Z.LT.0.E+0) J=Z-5.E-1

IF (Z.GE.0.E+0) J=Z+5.E-1

IF (ERROR(Z).EQ.0) GO TO 1726

IF (ARS(Z-1.,E+0).LE.5.E-1) 60 T0 1704

IF (Z.LT.5.E-1) GO TO 1712

SUM=SUM+ (Z~X) RK(=N-1)

X=X+1.0

IF (ARS(2-X).GT.5.E-1) GO TO 1704

TERM=-RN1XSUM

SUM=0.E+0

I=1

XZ=X-Z

W=DFACT (N)

IF (NJNE.O) GN 10 1710

W=x2

I=141

DUMMY = SUM

SUM=SUMHWHWYZETA (N4T)

W=WEXZAFLOAT (N41) /FLOAT (1)

IF (ABSCSUM-DUMMY).GE.1.E-15) GO TO 1708
FSI=FSIH(-1,0) 9K (N+1) ) RSUMHTERN

FETUKN

X=-1.0

X=X41.0

SUMmSUME(Z+X) ¥R -N=~1)

IF (AES(Z14),GT.5.E~1) GO 10 1714

TERM=RN1XSUM

X=-x

GO TO 1705
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. . 1724 WRITE (691734)
! RETUKN
! 1726 IF (J.LE.O) GO 10 1,24
! NEENES
‘_ - IF (N.EQ.O) GO TO 1731
¥ IF (J.EQ.1) GO TO 1729
t: D0 1726 I=1,d4
: . 1728 SUM=SUMAFLOAT (1) kX(-N=-1)
1729 PRT=FNIX(1.E40-5UM+ZETACNELY)
{- RETURN
; 1731 1IF (J.Ed.1) GO TO 17F3
| 00 1732 I=1s04
1732 SUM=SUM+1.E4+O/FLOAT(I)
FS1=F5145UM
1733 RETURN
1736 FORMAT iH~y BYHATIEMFT TO FIND FSI(Z) Ok DERIVATIVE FOR NONFOSL
1TIVE INTEGER ARGUMENT Z IN SURFROGIKAM FS1Y
ENI
SURROUTINE FLOT (ZrHyNFOINTS)
o
CovPLOT THE F.D.F, OR CoDI.F. VALUES CALCULATEL BY FDECDF
c
4 REAL Z(NFUINTS) yH(NFOINTS) s SCALEC11)
INTEGER GRAFM(S1v101) yCHAR(S) yLINE(101)
DATA CHARZ /o ¥ g’ m y’ o g =f JLINES W g @K =/ g R e Oh =7 o K’ 9K =%y ' X
IS SRS ST TS T SRS ST AERES TFL-1 SRS T TSRS ST S
AR 34
II=NFOINTS
KR=101
LL=51
D0 1802 I=1,KK
Do 1802 J=1,sLL
GRAFH(JrI)=""
1802 CONTINUE
XMIN=2,0%Z(1)-2(2)
IF (ABS(XMIN).GT,1.E-~10) XMIN=Z(1)
XMAX=ZCT1)
YMAX= 0.0
b YMIN=H(TD) -
1O 31804 I=1,11
IF (HOD).GT.YMAX) YMAX=H(I)
IF (HCL) WLTL.YMIN) YMIN:H(1)
1804 CONTINUE
XSTEF (XMAX~XMIN) /FLUAT (RE=-1)
s TF CTHAXLGT 0.5 ANDLYMAXL LT, 1,0) YHAX=1.0
IF (YMTINLLTL0.1) YMIN:O.O
YSTEF= (YMaX- fMING /FLOATCLL-1)
. 1F (0.0.GT.YMIN) GO TD 1B1Y
DU 1806 L=1stl
R L INTCCZ O - XMTNDY /XETTR40.4%)
LoLHINTCOMMAX -HCL) D) ZYSTER O 50)
GRAFI(L s R)=CHAK(2)
| 1806 COUNTINUE
Al
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1808

1810

1812

1814
1814
1818
1826
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N==1+INTCALOGLO CAMAXT CABS CAMAX) s AES (XMLINI ) ) )
TP (=2 LEJRGANDL DV GE LR L= 0
L-=1+INTLALOGLOCYMAX) )
IF (-2, LE.L.ANDLL.2WGE.L) 'L=0
MM=0
ng 12308 I=tstL
SCALE (1)= (YMAX-FLOATC(I-1)YKYSTEF)Y/(10,0%¥L)
IF (MMLEQ.O) WEHITE (651314 SCALE (1) y (GRAVH(T» J) y J=1 s KK
IF (MMJHE.C) WRITE (451818 (GRAIHIy )y =l e Rk
MM=MM41
IF (MMJEQ.S) MM:0
CONTINUE
SCALEC(L1)Y=YMIN/(10.0%%L)
WRITE (45,1814) (LTHECT) » 121 KK
DO 1810 1=1,11
SCALE(T)=(XMINF(FLOATC(I ~1) ¥ 10 OKKSTEFY 2/ (10, 0%XK)
CONTINUE
WRITE (6¢1818) (SCALE(I)yI=i1s11)
WRITE (&651320) 10.0%KKs10,0¥%%XL
RETURN
WRITE (6s) 32H NEGATIWE VALUE OF H OCCURSs FLOT TERMINATES
KE TURN
FORMAT (2XsF8.4y, 2H ¥*,10141)
FORMAT (10Xy 2H 1,10101)
FORMAT (9Xy11(F&.294X))
FORMAT (//910%y 25HHORIZONTAL SCALE FACTOR= sEB.1v/» 10Xy 2SHVERT I
1AL SCALE FACTOR= +E8.1)
END
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DFACT(N) = function that computes N factorial.
' DGAMMA(XFP) = function that computes gamma of XFP.

n ERROR(X) = integer functicon that returns the value zero if
. : X is integer and one if X is not integer.
1 PDFCDF = subroutine for calculation of H=- function values
i by summation of residues.
' PLOT = subroutine that plots the PDF and CDF.
¢ PSI(NFP,ZFP) = function that computes the NFP- th derivative of
f- the psi function evaluated at ZFP.
' SETUP = subroutine that adjusts ami orders H- function
; parameters into arrays convenient for calculating
: residues.
: A(21) = Array for a;, i®l,...,n, the first elements of ordered
¢ pairs in an H- function parameter list, for a single
s variate.
¥ A1(21) = Temporary holding array for second part of array BA.
! B(21) = Array for by, i=1l,...,m, the first elements of ordered
: : - pairs in an H- function parameter list, for a single :
é variate. '
y BA(21) = Array for a term of the sum, arranged for convenient
! computing of poles and residues; BA(i)=by for i=1,...,m
: and BA(m+i)=1-a; for i=i,...,n.
;{ BN = Binomial coefficient(PDFCDF only).
i C = Crump constant A.
k CA = Upper bound-for W, the intercept of the contour integral.
: CB = Lower bound for W(CHECK only). :
: cc = Coefficient in H~ function argument for term IS of sum.
: cD(21) = Array for a term of the sum, arranged for convenient
N computing of poles and residues; CD(i) =1~ by.4, i=1,...,
: q-m=IQ and CD(i+IQ)=an+ ' i=1,.-.,p-n=n’-

CH = Check value used to find CA and CB and to compare

' convergence parameter L and E"W (CHECK only).

CN = Distribution constant for term IS of the sum.
_ CNF = Leading constant for Crump method, without exponential
- ‘ : _part. _ ,
g CNFE = Leading constant for Crump methed, with exponential part.
E TTe1(21) = Temporary holding array for second part of arrayv CD.
0o DF1 = t the factorial of KT-1 (PDFCDF only).
ﬁ Dr2 = ¥ the factorial of XT-2, used for PDF with pole at s= 1
: (PDFCDF only).

DZ = Step size for 2 (see input data card 1).
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B.2. GLOSSARY OF IDENTIFTERS IN COMPUTER PRCGRAM
SUBROUTINES:
CHECK = subroutine that checks for a validly defined

H- function and finds the convergence type.
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GA(21)

GARGD(21)
GARGN(21)

GA1(21)
GB(21)

GBA(21)

6c1(21)
GeD(21)

GE(21)

GF(21)
HCDF(1001)
HPDF(1001)
I

ID(21)
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Input array of first elements of H- function ordered
pairs for SETUP.

Output array of first elements of ordered pairs(SETUP).
Alphanumeric array used to print the form of the problem
{(1imit of 50 variates and constants).

Second element of an H=~ function ordered pair(CHECK).
Array for Ay, i=1,...,n, the second elements of ordered
pairs in an H- function parameter list, for a single
variate.

Array for the values of denominator gamma arguments at
a given pole(PDFCDF only).

Array for the values of numerator garma arguments at a
given pole(PDFCDF only).

Temporary holding array for second part of arrav GBA.
Array for By, i=1,...,m, the second elements of ordered
pairs in an H- function parameter list, for a single
variate.

Array for a term of the sum, arranged for convenient
computing of poles and residues; GBA(i) =By for i=l,...,
m, and GBA(m+1i)==Ay for i=1,...,n.

Temporary holding array for second part of array GCD.
Array for a term of the sum, arranged for convenient
computing of poles and residues; GCD(i)=-Bp+4 for i=1,
veey,q-m=JIQ, and GCD(IQ+i)=Am,% for 1=1,...,p-n=IP.
Input array of second elements of H~ function ordered
pairs for SETUP.

Output array of second elements of ordered pairs(SETUP).
Array for intermediate and final answers, CDF if KEY=0.
Array for intermediate and final answers, PDF if KEY=0.
Generally used counter.

Array giving the locations of numerator singularities
for a given -pole(PDFCDF only).

ID(KS).

Indicator for identically distributed terms (see input
data card 1).

Counter used to fill in array M.

Counter in SETUP, = KT-1 in PDFCDF.

Counter used to fill in array M.

Last element in FM.

pP=n, for a term of the sum.

I+ 1 (PDFCDF only).

q-m, for a term of the sum.

Cour.ter for terms of the sum, IS=®1,...,NS.

Convergence type, IT=0,1,...,7 (CHECK).

Counter in SETUP, = I-1 to fill in array ™.

Counter in SETUP.

Generally used counter.

Temporary holding place for an integer value.

Array for Jyx, where =~Jyx is the next sineularity of the
i-th gamma term in numerator (PDFCDF only).
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Nearest integer value of -X (PDFCDF only).

Counter in SETUP, = J=-1 to fill in array FM.
Counter in SETUP.

Counter for Z, HPDF and HCDF values.

Order of denominator singularities for a given pole

0 if PDFCDF is used to find the PDF and CDF of a term;

1 if PDFCDF is used to find the real and imaginary parts
of a laplace transform.

1 or KM+1, first value of K for a LHP or a RHP
evaluation(PDFCDF only).

0 if HPDF(KL) is to be evaluated by summing residues;
KL otherwise (PDFCDF only).

KM or KMX, last value of K for a LHP or a RHP evaluation

Last value of K for LHP evaluation when both LHP and RHP
evaluations are made(PDFCDF only).

Maximum possible value of K (PDFCDF only).

Order of numerator singularities for a given pole

KN +1 (PDFCDF only).

Counter for number of poles evaluated (PDFCDF only).
Maximum number of poles evaluated for all terms in a sum.
Counter for number of consecutive times that there is a
negligible value for a residue(PDFCDF only).

Counter for the number of terms in the sum with an upper
bound on range; if the final value is not equal to NS,
there is no upper bound on range for the sum.

Counter for number of singularities considered in the
numerator for a given pole(PDFCDF only).

Indicator for status of pole at s=1; 0 if not yet
considered, -1 if under consideration, 2 if has beern
considered (PDFCDF only)e.

Order of a given pole(PDFCDF only).

Counter in SETUP; = O in PDFCDF if ZK1(KL) # ZM, else =1.
2~ KEY (PDFCDF only).

Counter in PDFCDF.

NS-1 if IDT=1, = 1 otherwise; number of required
products of Laplace transform values.

Counters used to check SETUP.

L-1 (PDFCDF only).

0, if both LHP and RHP evaluation is required;

1, if only RHP evaluation is required;

-1, if only LHP evaluation is required.

Counter in SETUP.

m for a term of the sum.

1 or M1, first value for a counter on BA or GBA(PDFCDF).
Number of Crump values (see input data card 1).

- . “ﬁ - .
JX =
Ji =
J2 =
K =
XD =
(PDFCDF only).
KEY =
KF =
KKM =
KL =
(PDFCDF only).
M =
KX =
KN =
(PDFCDF only).
KNP1 =
KP =
KPM =
KpPZ =
KR =
KS =
Ks1 =
KT =
K1 =
K2 =
L =
1X =
IM,1IN,LP,1Q=
M1 =
IR =
=
L1 =
M =
ME =
M =
ML =

M or M+N, last value for a counter on BA or GRA(PDFCDF).
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PROD1,PROD2,
PROD3, PRODY=
PSI1(20) =

PS1

B gee~y®

RU
S
SMPL

SM1 =
sy =
$1,52,53,S4=
T =

TC =

™ =
TD1,TD2 =
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m for a sinpgle variate.

M+N.

Maximum number of poles (see input data card 1).

n for a term of the sum.

Indicator for an error requiring program termination.
Number of first variate/constant for term IS of the sum.
Counter for variate/constant under consideration;

1, ooo,NLT(NS)'

Number of last variate/constant for term IS of the sum.
Array for values of NL (see input data card 2).
Temporary values used to check ascending order of NLT.
n for a single variate.

Indicator for plotting requirement (see input data

card 1).

Number of terms in the sum (see input data card 1).

1 if IDT=1, = NS otherwise.

Type of variate (see input data cards).

p for a term of the sum.

Proportion of maximum Z (see input data card 1).
Variate parameter (see input data cards).

Array for the next value of the pole for the i-th term
in the numerator(PDFCDF only).

PWR~- 1 (SETUP only).

Power to which variate is raised (see input data cards).
p for a single variate.

Products used in computing VZERO(PDFCDF only).

Psi function values (I,1), used when order of a pole is
more than 2.

PW° 1.

POW (SETUP only).

q for a term of the sum.

IP+IQ = p~n+qg-m, number of denominator gamma terms.
q for a single variate.

1, if residue at s=1 is not included in finding CDF;
0, otherwise (PDFCDF only).

lower bound on range of Z, if one exists that is » Z0.
Upper bound on range of Z, if one exists that is <« ZIN.
Value of the pole under consideration({PDFCDF only).
Difference between poles of gamma functions, used to
determine the unevaluated pole with smallest magnitude
and its order in the numerator (PDFCDF only).

S=1 (PDFCDF only).

1 for LHP evaluation, == 1 for RHP (PDFCDF only).
Values used in SETUP.

Crump constant T.

Coefficient in H- function argument, for a single
variate.

Convergence parameter D (CHECK only).

Values used to compute TD and TP (CHECK only).

PPN

FY A
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THETA

TL
TLI(1001)
TIR(1001)
™

TP

TR

T1,T2
v(22,2)
VIK

M
VP1,VP2
vz1

w(21,2)
WI
WR1,WR2

X
XG(21)
XL(21)

Y

2¢

ZF

21

2IMK

z
ZK1(1001)
zK2(1001)

zL
ZLN(1001)
™
ZN
20
zT

21,22
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Variate parameter (see input data cards).

Convergence parameter L (CHECK only).

Imaginary parts of Laplace transform values.

Real parts of Laplace transform values.

Distribution constant for a single variate.
Convergence parameter € (CHECK only).

Convergence parameter R .

Temporary values of TLR(I) and TLI(I).

VZERO through V(KT = 1) array(PDFCDF only).

Final value of the residue for a given pole and a
given K (PDFCDF only).

Maximum residue for a given pole and for all K
(PDFCDF only).

Vv(1,1) and V(1,2) without Z**-S term(PDFCDF only).

0.0 if counter L is odd, PSI1 term not added to W(L,1);
1.0 if L is even, PSI1 term added to W(L,1) (PDFCDF).
WZERO throuch W(KT- 2) (PDFCDF only).

Imaginary part of WZERO (PDFCDF only).

WZERO, or W(1,1) and W(1,2), without -logZ term(PDFCDF).
Argument of a gamma function for a given pole(PDFCDF).
Temporary holding array for GBA and GCD elements, used
to set up GBA and GCD for the laplace transform

H- function for term IS of the sum.

Temporary holding array for BA and CD elements, used to
set up BA and CD for the Laplace transform H- function
for term IS of the sum.

Temporary holding place for old TLR(I) value when
computing new TLR(I) and TLI(I) values.

Constant for argument increments in Crump method.
Starting 2 value (PDFCDF only).

Imaginary part of Crump complex number.

Imaginary part of Crump complex number(PDFCDF only).
ZK1(K).

Array for values of 2.

Array for arctan or log values(PDFCDF only).

Final 2 value if KEY=0, = 2C if KEY=1 (PDFCDF only).
Array for log values(PDFCDF only).

Z value that separates LHP and RHP evaluations.

Llast Z value (see input data card 1).

First Z value (see input data card 1).

Value used to change or test reascnableness of 20, 2ZN,
and DZ inputs and ZF, ZL, and ZM values.

Temporary values used in Crump method.
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* APPENDIX C: EXAMPLES OF COMPUTER PROGRAM OUTPUT

The following examples were run at The University of Texas at

Austin on a CYBER 170/750B, using the computer program of Appendix B.

C.1. SUM OF TWO IDENTICALLY DISTRIBUTED EXPONENTIAL VARIATES
Problem requirements:
Variates have exponential distributions with PHI=2.0
20=0.0 ZN=10.0 Z=0.2
Distribution of individual variate is desired
Plots are desired
Input data cards:
0.0 10.0 0.2 2 1 100 1001 1.0 1 1
1
5 0.0 2.0 1.0

Computer Time:

I/0 Time = 3.939 * .8 = 3.151 seconds
CPU Time = 7,792 * 1.6 = 12,467 seconds
™ Time = 15,618 seconds

caihs - S o

.

v

——— g —




ﬂ .J s el T “—— ————y
h .- e — - - e e m e — EREETI - 4
,. F A NP ERY WRPICRE o Lot i TR ] ?duht..lrwﬂalﬁg.&i .
§
L
3

(000*1 $000°0 ) I 0 L
(X 00005° } H 0000%° :
0o 1 J
U

$A9 N3IATY ST T X JLVIMNYA MO4 *d°d°d THL

00000°T = MAM0A 1INV 00000°*C = IHd4 €00000°0 = QLIHL 3MY SMILANYNYL LNJANT

S MIFUAN A4AL ST 1T X JLVIHYA

TA = 27

SRk X = A FMIHM) WHAL HIVI HOA WMOA

556" = G INIQd SIXY 00T = 3NN Z LSIHIIH 40 IN3IDHAA

ST00T = SANTVA XATAWOD A0 MIFWAN SMIALARNUNEYA AWNND

‘ CO0T ST JILYNIVAR 39 0L S37104 40 M3IHWAN WNAWIXYW GHL
INY AOFALNFIMISTT ATIWITINTIT AMY SHM3IL FHL 4

AMIHM SGWHAL € 40 WNS AHL M¥Od

01014 Fulg AZI8 4318 HLIM 0000°0T 0l 000&° ROMA Z 40 S3ANTVA MO

CZY A0 ANY (Z) 4 ANTWHILAT

' ’ M - L 4
L
: \
3 % T A
L- -+~ . . e a1C - i . —— T




- - —— - - \1

185

S 2 K

b 43

. e i
e e e e o ey
|
j
;
0000°T = N 00°0 = " 00°0 = 3 00°c = 1 :
;
o = 3d4AL IINIONIANOD i
) (000°T- €000°T ) (000°'T  4000°'0 ) :((IIYI94(I)yd) :
1
T 1 f
INIHM £ (Z 00000°T ) H 00000°T
1 1
SWMOASNYNL 30V 1497
0000°T = M 05t~ = 7 00° T~ = 3 00°1 = 1
T = 34AL IINTOMIANOD
) (000°*T  €000°0 ) $((IH)VAD4 (1))
1 0
ANTHM 4 (Z 00005 ) H 0000G*
o 1
tAd NAATO ST WNS FHL 40 T  WMIL MOd4 *440°d 3ML
I 4 ’ a L




186

o m

CRELAG”
LOLTSHE"
QLLTIAS®
L06066°
8v46686°
148886°
CCLLBE?
TEr986
vOOaBse”
LEVEBL?
(2SN R T 0
BGLO6LO?
LERLLA"
FLEBLS®
FLRCLA
£08696°
LTRTTE
L1TE96”
8¢¢

15605

£IT05 %.
LLO6VYVS®
06T 6ES"
YHLTT !

TALYNIAT S3104 40 MIFHAN

628£00°
£CLE00
STIV00*
gvrav00”
FC0500°
V55500
6ETF00°
v8.900°
84V L00"
8RB0
8L1600°
TCTOT0!r
G8T1I10*
oerLrI0”
CReLTI0
660510°
£89910°
cve8IO0”
8eo0co”

pid et

...u?..x.-lqko ¢
vesyao®
IR0
L0020
£09¢££0°
LETLEO?

000001
0008* 6
000%*6
000¥* 6
000 6
0000*6
00088
Qo098
000y '8
0008
00008
Q008" L
0007

000 * L
000&* L
0000° £
0008°*9
0009*9
000V 9
00o0s

00009
00085
00065
000t * %
000& 5

Q16416°
CBEL06°
TvL668°
614688
A4 TA4: N
S99v58
eV 058"
TosbE8"
RS WAL A
o186l
0LBSLL
FOYESL
8vicLl
08869
GETLSS
| 98 34 2"
LN SRR
T49065°
SIVvE0G:
88IIGE
6FVELE”
08%6CE
342 ¥-1oTol

47181
£91560°

(Zyd4a3

cvOTvoO”
65L5V0°
&CTO0GL0°*
cOviS50"
8Ic190"
899L90"°
v8LYLO
49280
chve160°
8ve001 "
1%1Hﬁa.
84CECT?
CA LA N i
LOEGOST?
FARAAA
ovegLst”’
o8CLOC!
?00¢41.
g6E8VE

OV L’
(oL 0 2 ¢ ) W
09 TLEL "
A0V0LE
10@?0¢.
6TYTLY

(LrAd

00005
0008'Y
000%'%
000V ¢
000C* Y
0000 %
0008 ¢
000% 'L
000b* L
000e g
0000 L
0008°*<c
0009 ¢
000V ¢
0004.4
0000*

00081
0009°T
030V * T
000

Q000°*T
Q008"

0009

000t

000

Z

P A Y R T e - gty e

e




— S S E—— g
o -
- e — - 1)
4 A |
+
)
|
i
i
i
00°01 004 00°'8 00°¢ 0049 00°'S 00y 00'F 00°1 00°0
L R e T R T R R % - -kl
mAIv LRI % 0000°
- £ XX 5 %KX KX K I
(2R IR I I A 1
LI 1
L3 1
X X & CSY0°
L3R 1
X x 1
* 1
b 1
X # 5060°
3 1
X 1
1
¥ 1
¥ L5FT /
1 ;
x 1 :
x 1 .
1 3
L x olgl’ 2
1 :
* 1 §
I
1
] * I9CC
1
* 1
1
1
x [ PO
1
{
. I ,
* 1 :
X LI
1
* 1
I
1
X 8199
* 1
1
1
1
]  cLove
1
1
1
1
LI N AR .
NOTL BOAVTSNBL A1 T
. ¢ - .
! . R T ———




e
— > 1‘
. R ‘T
;
00° 01 00°6 00°8 00+ 00°'9 00°'S 00°v 00°¢ 00°C 001 Q0°0 '
Rt EESE e T SR B et D et S e T LT *1 5
© . :
® % 0000°0 -
i 1
! .
1
1
* » 00OT*
I :
I .
I :
x 1
x 000C* H
y .
1 §
* 1 i
: '
* 000f"
X 1
I
1
1
x x 000¢"*
1
T
X 1
1
X ¥ 0005°
1
I
* I
i
x % 0009°
1
x 1
e 1
1
* ¥ 000s°
¢ ¥ 1
! 1
X 1
N * 1
® P VIV
X 1
3 I
X x 1
xx I
% & 0006°
x X ]
x X % 1
L R I ) I
(AN R AN BN AN BN BF 5N 2% A ] 1
& & 4 4 ¢ w0t
| & NOTLINAA NOTLAATYISLT 3ATIVINMG !
i
i ¥
)
te
| %
i
iz
i » ' - .



Rpu——
]

P

189

e A

ELL6H6Y FLOGTO" 000001 £0LETL” 165801 0000° 5
GROFRE " PRLFTO! 0008° 4 655169 sHU880T 0008 ¢
80006 086810 00054 SUT1699° LBELSTT 0009 b
FA E: T GOS0 000V * & OEvLEe:* GL8TETY 000t * v
OTLEvS” GRECEO! 0008 6 S6205%° oA s Toll 000C 'Y
T068L6 " POEYTO" 0000 & PoHSELR® CELRET” 0000y
COLERS” ISR AR 00088 1GLE99%° S80CHT 0008*%
L8083 &048E0" Q0098 R A OBV T 0009°¢
NA COTIL0" 000k * 8 GLLG05 " 8LELGTY 000Y* %
08bLTS” CHRELEO® 00088 650544 AT A 0008 ¢
CoEBRO6” FEEIEO " 00008 SLITHE ! T WA RN 0000°¢
GI8006° ERELE0! 0008* 2 L9180V FIFTLT 0008*2
TERsaa” £oEevo? 00092 LLTSLE! bUTLLT 00092
Q0BLER " L8550 000t * 2 £LEEE? 5T2087° 000k * g
TI8v/8" 6506V0* 000C £ 146008 80881 0005 &
crrvsa:. CVLERO" 0000 £ Tvaveo: HE658T 0D00* T
aeILGa:. 0LYSL0° 00089 BIGLEE" PLESRT 00081
covrIve:” LBLOFO 0009 % ROTTHT? 182641 00091
b6LBTB" £915%0° 000t * % HOBLGT* voBgsT! 000t * 1
BOELIBY 6LL6S0" 000y T06TCT CEUGT 00081
£L8008! 169640 00009 vOT040° CEPTHT 0000 T
0TvaBL” 1G4640° 0008°* 1 anL190" rPObET 0008
CTHBYLY LOTGBO 0009 * 5 PL6950° gorrree 0009
AT EsPA GOLO60 " 000t * 5 CTHLIO CLBTRO 000
GISEEL” LE6LP60° 000 6LPV00° SYTavo:. 0008

(Z) A0 (Z) 14 p
ve LALLM AT 63704 40 MATUAN WART XY
R
A L — — . ¢




190

008

e

00°¢

00°¢ 00°C 00°'1
Rl BEEEt R L S
]
X
¥
)
* %
% *
3
3 3
L% 3

NOTLONGIA ALISNIT ALT VIRWAONA

B B gy e e B bt Kt i R e Pt Pee B b e ot et N bt gt b 0t B i ht et 6t e o

0000°

¥810°

89¢£0°

9£L0°

0Cs0°

vort”

8aclt”

[ 14 2 &

IS4

st

. oo .AMAWN )




4 -~

161

001 00°6 00°8 00°/ 00°9 00°'% 00y 00°'g 00'c

O Kemom oo R . BT O R i * ---%

001 oo

% %K

NCOILINNS NOTANGIMIG DT

* - --#1

L Rl ol Sallalal ol Salalalal Aol ol Aol e R N R RN R R W

IAT Y T

0000°0

0001°

000Z°

ooo0g *

o00v*

0008°

0009

000¢Z°

2008*

0006°

0000° ¢

 a—— i —




&

3 OIS S ot

p—— e rr—— — e

o

<

192

C.2. SUM OF TWO EXPONENTIAL VARIATES, NOT IDENTICALLY DISTRIBUTED
Problem requirements:
Exponential distributions have parameters $;=2.0 and $,=3.0
20 = 0.0 ZN = 15.0 DZ = 0.2
Distributions of individual variates are not desired
Plots are desired
Input data cards:
0.0 15.0 0.2 2 0 100 1001 1.0 O 1
1 2
5 0.0 2.0 1.0
5 0.0 3.0 1.0

Computer Time:

I/0 Time = 4.003 * .8 = 3.202 seconds
CPU Tdme = 16.204 * 1.6 = 25.926 seconds
™ Time = 29.128 seconds
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) MAXIMUM NUMERER OF FOLES EVALUATED
Z FOF(Z) COF (2>

+ 2000 + 030675 +003154

’ +4000 056439 011942

+ 6000 077912 +023444

+ 8000 095611 + 042885

1.0000 + 109999 + 063467

1.2000 . 121508 + 086863

1.4000 +130306 +111903

1.6000 +137316 +138719

1.8000 142242 + 1686704

2.0000 + 1433540 + 1935508

2.2000 « 147433 224826

2.4000 .148134 + 254402

2.6000 +147821 + 284012

2,8000 1146642 + 313472

3.0000 +144748 + 342622

3.2000 1422460 + 371332

3.4000 «139273 + 399492

3.6000 +1358%4 +427015

3.8000 +132204 + 453829

4.0000 + 128260 +479879

4,.2000 + 124139 + 505122

4.4000 +119895 + 529527

4.56000 + 1153554 + 533072

4.8000 111176 375746

5.0000 + 106797 v 597543

5.2000 +102418 + 45184464

5+4000 + 098089 + 638514

5.6000 093838 + 657705

5.8000 . 089638 676051

46,0000 . 085542 + 693568

. 46.2000 081369 + 710277
6.4000 077873 726199

6.6000 + 073911 + 741357

6.8000 + 070298 7507735

7.0000 066770 7692479

. 7.2000 063382 + 782494
7+4000 +0601463 + 794845
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74.4000
7.8000
8.0000
8.2000
8.4000
8.46000
8.8000
?.0000
?.2000
?.4000
?2+46000
?.8000
10.0000
10,2000
10.4000
10.46000
10.8000
11.0000
11.2000
11.4000
11,6000
11.8000
12,0000
12.2000
12.4000
12,6000
12.8000
13.0000
13.2000
13,4000
13.46000
13.8000
14,0000
14,2000
14,4000
14.46000
14.8000
15,0000

0587018
+.054013
051194
048424
045788
043356
+ 040937
038637
+ 036573
+034474
032475
2030753
028937
027192
025795
024225
022683
021598
020238
018844
.018048
+ 0146887
+018571
015118
+ 014091
+ 012771
012673
«011783
+010348
+ 010667
+009911
+ 008210
+00%043
008441
1006262
2007755
007364
004394

+806560
+B17663
.828181
.838138
+ 847561
8356472
+864896
» 872857
+ 8803795
. 887473
+8924173
+ 200493
+ 206454
+ 212074
«?217371
s 223460
927062
+ 9231489
935656
+ 9239580
243272
+ 246743
250011
9353084
+PT5969
+ 2358686
2261239
1763633
+ 2465889
948008
+ 269990
971861
973617
9735254
+276804
+ 978260
+ 979609
+ 280892
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