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: INTRODUCTION

Radomes significantly reduce missile guidance accuracy by producing boresight error
(BSE), an error in target direction as determined by a seeker or radar system. Despite
decades of development and use, radomes .are a problem because newer missiles require
small angular rates of change of BSE and becauvse newer seekers have greater frequency
bandwidths. The electromagnetic design process, for boresight error and bandwidth, is
largely empirical because radome shapes are non-separable, making analysis
approximate. The need for improving radome performance motivates efforts to improve
analytical methods.

The purpose of the research is to develop improved methods for analyzing radome
electromagnetic effects. The main goals are as follows:

~f. Develop a geometric theory of diffraction (GTD) for dielectrics and in
particular hollow dielectric shells

£ Extend the moment method for use with hollow dielectric shells.

The GTD is intended to be relatively simple, and the moment method is intended to be
accurate although more complex than the GTD.

Al




aw

SUMMARY

Section 1 reviews the concept of transmittance, the complex-valued wave distribution in
a radome bounded volume, and give measured and computed values of transmittance for
1 pointed, axially-symmetric radomes and for wedge radomes. The transmittance has
intensity variations that are not described by analytical methods that utilize a flat sheet
transmittance to locally approximate the radome. These flat sheet methods omit wave
mechanisms, namely guided waves and vertex scattering. To quantify these mechanisms ;
the moment method was applied to a finite slab for grazing incidence. We postulated i
guided waves and waves scattered by a slab edge. The amplitudes and phases of these

waves were determined by interpreting maxima and minima computed by the moment

E-. method in terms of the postulated waves. Thus we have solved numerically a canonical !
‘ - problem for a geometric diffraction theory of dielectrics.

Section 2 extends the moment method to a hollow cone with a scalar Green's function
. approach, and Section 3 gives numerical results. Section 4 gives measured results for a
3 hollow cone. Section 5 compares the numerical and computed results. Agreement is
4 generally good. The shapes of measured and computed curves agree, but the maximum
] phase is somewhat in error. Polarization dependence is correct. The formulation
3 decomposes the cone into cells that are sectors of annuli. This decomposition utilizes to
‘ advantage the constant values of fields in a cell.

Section 6 describes a tensor Green's function formulation for a hollow cone. The cells
are spheres. This decomposition treats polarization more simply than does the annular.
Section 7 compares measured and computed results for a rod and a ring.

Appendix A shows the theoretical equivalence of the two formulations.

During the coming year we plan to test further the two formulations for off-axis

incidence on hollow dielectric wedges and on hollow dielectric cones. Numerical data
.. will be generated for co,yerwand tested against measured values. The numerical data will

be interpreted to develop geometric diffraction theory for hollow cones, which
N approximate radomes.
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1. GEOMETRIC DIFFRACTION THEORY FOR DIELECTRICS

1.1 APPROACH

The central concept is the wavefront distribution, of phase and intensity, produced in a
radome-bounded region by an externally incident plane wave. This distribution, called
the transmittance T, depends on incidence direction, wavelength, and polarization, and
the radome configuration and composition. The transmittance strongly influences the
output voltages of an antenna enclosed by a radome. Physically, the phase variations of
T are aberrations; in fact, wavefront tilts are, to a first approximation, proportional to
boresight error.l Figure 1-1 suggests aberrations. Analytically, the transmittance T is a
function that is a factor in the integrand of a diffraction integral for the patterns of an
enclosed antenna. The quantities that are measured with an antenna are intensity |ER|2
and phase, arg ER, where Ep, is a rectangular field component

Eg = TEIF da,

where E! is the incident field component, F is the receiving near-field distribution, and
the integration is over the region such that F is non-negligible.

The transmittance T helps in radome development. For externally incident waves,
nearfield values of T directly link boresight error (via wavefront tilts) and the radome
shape and its thickness variations. Thickness variations and shape modifications are
limited in extent, but they are the main parameters available for design. The link
provided by T is more direct than that between boresight error and farfield patterns
because diffraction smooths phase variations. Of course, farfield patterns are signifi-
cant for missile performance; in fact, boresight error and aberrations were related
analytically through polynomial expansions of T in diffraction integrals. !

We approach a GTD for T by measuring and computing transmittance near hollow
dielectric shells, hollow wedges, and a flat slab. A slab is an idealized model of half of
an axially-symmetric radome for high incidence angles. We seek to decompose the
complicated transmittance into a sum of simpler, constituent waves, as in Figure 1-2.
Identifying constituent waves and estimating their magnitudes and phases generates
conical solutions, an important part of GTD. The measurements are done with a small,
scanning probe antenna. The calculations are done by two radome analysis methods, one
a direct ray method and the other a surface integration; in addition, we apply the
moment method fo: infinitely long cylinders.2

The approach to the second goal, extending the moment method, is to analyze a hollow
cone. Two formulations are used. One uses a scalar Green's function; the other a tensor
Green's function. The two are equivalent, but the numerical procedures differ. The
scalar Green's function method decomposes the cone into circular ecylinders and
decomposes the cylinders into angular sectors. The tensor Green's function method
decomposes the cone into spheres. The formulations differ in two practical ways. One is
in the number of cells because of cell size. The other difference involves polarization
dependence.
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Figure 1-1. Distorted Wavefront
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Figure 1-2. Wave Mechanisms in Hollow Dielectric Shell. The
Fields Near a Radome Consist of Constituent Waves.
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1.2 BACKGROUND: ANALYTICAL METHODS BASED ON FLAT SHEET APPROXI-
MATION

A simple way to analyze radomes is sketched in Figure 1-3. This direet ray method
associates a single incident wave normal (ray) with a point on the receiving aperture.
The method is adequate for designing radomes big enough to enclose an antenna that is
an order of magnitude larger than the wavelength, provided the aperture also is
considerably larger than the wavelength. However this method fails for smaller antennas
and radomes; in these cases, a surface integration approach has been successful.3
Figure 1-4 suggests surface integration, which can be interpreted in terms of rays
converging to an aperture point.

In both the direct ray and surface integration methods the transmittance for each ray is
approximated by the values for a plane sheet that locally approximates the curved
radome, as in Figure 1-5. Surface integration more denselv samples the variation of the
surface normal direction. Figure 1-6 shows the variat. n in the normal. For the
simplest case of axial incidence, a converging set of rays spanning the tip has
transmittance that is a sum of terms with distinct individual transmittance. One term
arises from each converging ray in Figure 1-4. The value of each term depends on the
direction of the surface normal for the associated ray because the normal direction
determines the angle between it and the field and thus the resolution of the field into
parallel and perpendicular components. The direct ray method sparsely samples the
variation of the surface normal direction, but dense sampling is significant near the
radome tip where the normal varies rapidly.

Note that transmittance depends on position within the radome. Figure 1-6 suggests how
this variation ocecurs. On the Y-axis a direct ray projected from the radome gives the
transmittance value for parallel polarization, and on the X-axis it gives the value for
perpendicular polarization. The variation with position requires surface integration to
describe accurately the mixture of terms.

In addition to position dependent polarization variation relative to the surface normal for
fixed polarization direction, another variation occurs when the field orientation is
changed from horizontal to vertical. Consider Figure 1-7 which compares measured
phase with values computed by the direct and surface integration methods for off-axis-
incidence. it shows that surface integration is more accurate than the direct ray
method. It also suggests how a polarization change influences transmittance, even for a
fixed point in the volume bounded by the radome.

1.3 MORE BACKGROUND: EXAMPLES OF TRANSMITTANCE FOR AXIALLY
SYMMETRIC AND WEDGE RADOMES

Although Figure 1-7 and the results in Reference 3 suggest that surface integration is
more accurate than the direct ray method, these results are for radomes that were, to a
good approximation, a half wave thick. For wide frequency bands, surface integration,
as described in Figure 1-4, also has limited accuracy. To illustrate this point,
Figures 1-8 and 1-9 show boresight error of a radome with thickness 0.125 in. for
requencies from 8 GHz to 18 GHz. The antenna was an array of two horns. For
8~12 GHz each horn aperture was 1.95in. by 1.7 in. The results show rather small

1-3




Figure 1-3. The Direct Ray Method. A Single Incident Wave Normal (or Ray) is
Associated with a Point on the Receiving Aperture. The Radome is
a Surface of Revolution, but only a Plane is Sketched.

N7

ANBOOS
Figure 1-4. Surface Integration Method. The Radome is a Surface of Revolution.
Integration is over a Portion of the Incident Wavefront.
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Figure 1-5. Approximate Description of Radome at a Point by a Flat Sheet.
Multiple Internal Reflections are Included.

discrepancies for some frequencies but larger discrepancies at other frequencies. For
example in Figure 1-8, for the E-plane, frequency 12 GHz, and gimbal angle -16° the
discrepancy is 0.3°. The diserepancies for 10 and 14 GHz are smaller for the same angle,
but they are larger for 8 GHz.

To understand the diserepancies in boresight error, we have compared measured and
computed transmittance values for the radome of Figures 1-8 and 1-9. Figure 1-10
shows an example, for 12 GHz, 16° gimbal angle, and the E-plane. The point of this
figure is that it illustrates the magnitudes of transmittance discrepancies (in
Figure 1-10) that correspond to those of boresight error in Figure 1-8.

We also considered another radome, with thickness tapered between 0.45 in. and 0.40 in.
This thickness is a half-wave wall at 10 GHz, but it is 20 percent greater at 12 GHz.
Calculated and measured transmittance values for an axial position that would be
occupied by an aperture are shown in Figure 1-11. Consider two horns centered at
X = A, The phase difference between these two points is greater in Figure 1-11 than in
Figure 1-10. Therefore boresight error discrepancies should be larger than for the case
of Figure 1-10, and boresight error measurements have verified this expectation.

To study this radome (of Figure 1-11) further, we measured the transmittance through
the radome enclosed volume. Figure 1-12 shows power transmittance (intensity) for 16
gimbal angle.

This graph shows transmittance variations between +1 dB and -4 dB. An antenna would
be illuminated by a wave that is non-uniform.
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Ratio 1.8, Dielectric Constant 2.5. Measured (—), Computed
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Figure 1-9. H-plane Boresight Error of 0.125 in. Thick Shell, Fineness
Ratio 1.8, Dielectric Constant 2.5.
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Figure 1-10. Phase Delay and Power Transmittance for Pointed Radome, Length to
Diameter Ratio 1.8, Thickness: 0.125 in. Frequency: 12 GHz; E-plane; Gimbal
Angle: 16°. Measured (—); Direct Ray Caleculation (- -); Surface
Integration with 49 Points Spaced by 0.75" (x). Surface
Integration with 49 Points Spaced by 1.0" (°),
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In Figure 1-12 the transmittance near the wall, for Y <0, is shown in Figure 1-13. This
figure shows a quantity As, where

as = 27 (kg - ko sin)~1. (1-1)

This quantity is the spacing of fringes produced when a plane, free-space wave interferes
with a coherent slab-guided wave. Therefore the transmittance in Figure 1-12 appears
to result to some extent from a guided wave, as was suggested in Figure 1-2. The
quantitative question of guided wave magnitude remains as does the reason for the -4 dB
transmittance minima. We return to these questions subsequently.

We see that the transmittance of a radome is complicated. The direct ray and surface
integration methods omit some propagation mechanisms suggested in Figure 1-2. We
have seen in Figure 1-13 evidence for guided waves. Reference 4 gave evidence for
guided waves in two and three dimensional radomes. In an earlier report, Reference 5,
we determined guided wave amplitude on a finite slab by postulating functional forms for
guided waves.

To study the effects of polarization and dielectric constant, we measured the intensity
transmittance of a ceramie radome, dielectric constant 5.5, for the H-plane; see
Figure 1-14. The minima are very deep so an antenna would be immersed in a very non-
uniform field. However the minima spacing are irregular and do not help identify a
guided wave.
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Figure 1-13. Transmittance, from Figure 1-12 at End Points of Scans
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Figure 1-14. H-plane Transmittance for a Ceramic Radome at Frequency 20%
Above That for Which the Thickness is a Half Wave
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To seperate the effects of curvature we measured the intensity behind a hollow wedge.
Figure 1-15 shows IT|2 for a curved wall wedge for the E-plane. Because T is high for
parallel polarization, the minima are shallower than those in Figure 1-14.

Moment method calculations were made for a wedge with flat walls; see Figure 1-16.
The deep minima and their spacing suggest the exponential decay (with distance from the
wall) that characterizes slab-guided waves. In Figure 1-16 the decay with distance is
approximately that for a slab, but only near the wall.

We conclude that guided waves exist on radomes. Their significance depends on the
thickness-to-wavelength ratio because this ratio largely determines the transmittance of
the direct wave. For a half-wave thickness, the direct wave transmittance magnitude is
large; but at a frequency 20 percent higher than that for a half wave the direct wave
transmittance is low. The perturbation caused by the guided wave depends on its own
magnitude as well as that of the direct wave.

However, the guided and direct waves do not seem to be an adequate desecription.
Guided waves are exponentially dumped so they fall to small magnitudes within
approximately a half-wavelength from the wall. Therefore, in Figure 1-12, guided waves
do not seem to explain the transmittance minima and maxima at distances approximately
a wavelength from the radome. An additional mechanism seems necessary.

A plausible mechanism is a vertex-scattered wave. Some experimental evidence exists
for a vertex wave in wedge radomes.6 However, the situation is less clear for an axially-
symmetrie, pointed radome. We reduced transmittance discrepancies by adding a vertex
wave to direct ray calculations?, but this result was obtained before surface integration
was developed. The vertex wave may be a construct that corrects the direct ray
method.

Because the transmittance minima and maxima in Figure 1-12 seem significant we
explore a vertex wave as a possible explanation. The approach is to analyze a flat finite
slab with the moment method.

1.4 A GEOMETRIC THEORY OF DIFFRACTION FOR FINITE DIELECTRIC SLABS

This section considers grazing incidence on a finite dielectric slab in order to model
approximately some of the waves scattered by a hollow shell. The model is partial
because the field in a shell contains a constituent wave that propagates through the
illuminated side, but this wave does not occur for a slab at grazing incidence. Some or
all of the other waves shown in Figure 1-2 may be present. In particular a guided wave is
excited in either the slab or the shell; of course, the magnitude of the guided waves
differ. The slab is an idealization also because it has not circumferential curvature;
consequently, neither the incidence angle nor the polarization direction vary. Moreover,
the discontinuity at the slab edge differs from that at a radome tip, but the discontinuity
distinguishes both from an infinite slab. The slab approximates one side of an axially
symmetric radome, and a wedge approximates both sides.

The purpose of this section is to explain power transmittance minima like those in
Figure 1-12. Because of these minima a seeker antenna would be illuminated by a non-
uniform field so boresight error and antenna patterns would be affected. The minima are
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Thickness 0.315" at 12 GHz
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" not given accurately by surface integration calculations; see Figure 1-11. Several

mechanisms may exist. Reflection from the left side of the profile in Figure 1-12 is
ruled out by ray diagrams. Although Figure 1-13 shows evidence for guided waves, the
lowest order slab guided mode would decay to negligible values within a wavelength of
the radome wall.* Therefore, another mechanism seems necessary to explain the
minima, which are separated from the wall by more than a wavelength.

To study possible mechanisms we start by computing the field in and near a two-
dimensional slab with the moment method of Richmond. Coordinates are shown in
Figure 1-17. The slab has infinite extent in the plane orthogonal to the figure, and
incidence is in the X-Y plane. The slab is approximated by a set of infinite, circular
cylinders, and the fields at the centers of the cylinders are determined. Figure 1-18
shows the total field intensity at each cylinder center and the total field outside the
slab.

To check the computed field, measurements were made with a dipole probe. The dipole
scanned several paths parallel to the slab. Measured intensity is shown in Figure 1-19.
Agreement is good. In Figure 1-18, the fringe spacing for Y = 0.54 in. agrees with As
computed from Equation 1. This spacing is evidence that guided waves were excited on
the slab. The shallow oscillations with period 0.5 in. result from interference of guided
waves travelling in opposite directions.

*A calculation later in this section gives the decrease with distance from the wall.

GE028A

Figure 1-17. Coordinates for a Slab
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Figure 1-18. Total Field Intensity in Slab for Grazing Incidence. Length 10 in.;
Thickness 0.25 in.; Wavelength 1.26 in.; Polarization: Perpendicular;
Dielectric Constant 2.6.
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The scattered field magnitude (the total field minus the incident) is shown in
Figure 1-20. The field is not uniform, indicating that the scattered field in the slab
contains more constituents than just a guided wave. Since the spacing of peaks in
Figure 1-20 is As to a good approximation, the field in the slab apparently consists
mainly of a guided wave and a plane wave with free space propagation constant. In
addition, a small amplitude reflected guided wave is also present. The free space
propagation constant k, rather than nky, when n is the index of refraction, is
remarkable. Apparently k, occurs because the slab is thin, not a volume in which n
modifies the wavelength.

Te test the guided wave hypothesis and to estimate its excitation, we examine the curve
fo: Y = 0 in Figure 1-20. Consider the oscillation of |ES|. The value varies from 2.7 to
approximately 0.1, where IEII has unit value. Now smooth the variation with period
0.5 in.; |ES| varies from 2.3 to 0.1, or 1.2 £1.1. We assume the amplitude 1.2 represents
that of a guided wave propagating in the positive X direction. Now consider the
variation of a slab-guided wave with Y. In the slab, the field has the form

EGi =1.2 cosuy; (1-2)

outside for Y 0 the field has the form

-v(y - b)

E., = 0.96¢ (1-3)
0

G

where v is computed from boundary conditions as 1.12 inches and b is half the slai

thickness. The scalar amplitude 0.96 was computed from Equation 1-2, with

u = 1.65 inches. The values computed from Equations 1-2 and 1-3 are shown in

Figure 1~21. For comparison, estimates of guided wave amplitude derived from

Figure 1~20 and additional calculations by the moment method are shown in Figure 1-21.
. The agreement in Figure 1-21 is additional evidence for a slab guided wave and verifies

the estimate of excitation magnitude.

The apparent value of ko, rather than nk, disccurages a simgle ray picture that assumes
nk, for an internal ray; however, outside the slab a free-space plane wave (plus an
evanescent guided wave) seem reasonable,

To determine the form of the wave that combines with the guided wave, we graph the
phase increment of the scattered field between adjacent points on the X-axis. Inside the
slab at Y = 0, Figure 1-22 shows wide variations. Outside, the free phase increment is
reached approximately for Y =0.94in. The phase increment ko Ax is 71.5° for
AX =0.25in. At even larger distances (6 in.) the amplitude of the scattered field is
below 0.1.

To obtain a comprehensive view of the fields near the slab we plotted the contours of
computed phase and intensity of the scattered field for grazing incidence. See
Figures 1-23 and 1-24. The total field phase and intensity contours are plotted in
Figures 1-25 and 1-26.

1-21




:-‘—'—-——‘*-—— - = e e —
20
Ya 25 D
S
1of- <
1] o
Y= 15
3
10
i L —re ) | |
Y=0
- oT 20}
). . eS
‘?\ . .
1 104
| 1 L 1 i L
l 0 2 4 6 8
X (INCH)
l AMLOJ8
Figure 1~20. Scattered Field Magnitude Near Slab Computed by Moment Method ]
1 ~
| ' 1-22




1.5

13

1.2 ¢

11

1.0

8
1 E ;
N ;h
-~ 8 !
L 1
5
7
-
4
!
E 3
3
2
1 1
1 0 L ] i 1 1 1 | 1 1 J
0 5 10
» Y (INCH}

Figure 1-21. Computed Decay of Guided Wave Amplitude for Slab. The Curve
is from Equations 1-2 and 1-3. The Points are Moment Method Calculations.




o ey

B e e

Y=0
100 r—
i
o
-100 3 R T 15 7
10c » . e . . . .
Y= 25 e KgAx
A (arg ES) . : .
(0EG.)
1] =
-100 | 1 ] |- 1 i i
. 100
- Y= 94 Kkpdx
g !
oL )
L 1 | 4 | — 1
=100 0 2 4 6 8 10 12
X (INCH)
AMLO40
Figure 1-22. Phase Increment for Grazing Incidence on Dielectric Slab
Computed with Moment Method. Slab: 10" Long, 1/4" Thick, .
k= 2.6, Wavelength: 1.259", {
. 1-24
‘S
!

B S RN 2 v TPV X . R
- MR LS

VRt & ¢ 5o -




—p 0
INCIDENT
WAVE
NORMAL

. 10
AMLOS1 X (CM)

Figure 1-23. Computed Scattered Field Phase Contours Near 1/4 in. Thick,
10 in. Wide Slab with = 2.6; Wavelength: 1.26". Incidence: Grazing.
The Contours are Spaced by 360°.

The phase of the scattered field shown in Figure 1~23 suggests a cylindrical wave from
the edge nearest the source. Within the slab, the phase changes rapidly near X equal
5in. This behavior was shown graphically in Figure 1-22; see the graph for Y = 0 near
X =5in,

We conclude that the scattered field consists of guided waves, a cylindrical wave from
an edge, and an approximately plane wave at larger distances from the slab. However
the analysis does not explain why the second constituent of ES should travel as ¥, x in
the slab.

Consider the total field in Figure 1-26. For the region outside the slab, we assume the
total field consists of the incident field and a cylindrical wave centered at the origin,
whichis at X =0, Y = 0. The field is thus

ikgx ikor (1-4)

E=e + Ce
where r was approximated by x + (y2/2x), and C is as yet an undetermined constant. To
test Equation 1-4 we computed loci such that the two terms are in phase. Figure 1-27
shows two such loci superimposed on moment method ecalculations. To obtain this
agreement we choose C to be -1. That is, the cylindrical wave suffers a phase reversal
on its excitation. Since amplitudes were not computed, the magnitude of C was not
determined by using Equation 1-4.
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Figure 1-25. Phase of Total Field for Slab

In Figure 1-26, the maxima and the minimum near the slab resemble the variations in
Figure 1-12. Therefore the analysis of the slab seems relevant to analysis of radomes so
that some additional analysis on estimating amplitudes near the slab seems warranted.

Now consider Figure 1-28. It shows the variation of the fields with Y the transverse co-
ordinate for X fixed at 5in. For the total field E computed by the moment method,
maxima occur at Y equal 2.4 in. and 4.8 in., and a minimum is Y equal 0.6 in. The two
maxima in |E| coincide with bright regions in Figure 1-26, and the arrows indicate
maxima positions determined by assuming a eyelindrical wave, see Equation 1-4.

For the scattered field, |ES| computed by the moment method is also shown in
Figure 1-28. We see a minimum for Y equal 0, despite the maximum of |E| of a guided
wave and a wave with propagation constant ¥,.

The magnitude of the scattered field's guided wave constituent IEC;,I was graphed in
Figure 1-21. It is shown in Figure 1-28 on another scale.

The magnitude of the cylindrical wave constituent |EC| is shown also in Figure 1-28,
The value 1.1 for Y equal 0 was estimated from the interference behavior of the
scattered field; Figure 1-20. For values of Y greater than 0.6, |[Ec | was taken as |ES|
because Eg has decayed to negligible values. For Y equal 0.6 we assumed
|Ec| = |Es? - |Eg| because the value of |ES| was nearly zero.

The phase variation at Y equal 5 in. is shown in Figure 1-29. The moment method value
of arg ES is well matched by the assumed cylindrical wave phase except at Y = 0, where
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Figure 1-27. Computed Loci of Constructive Interference

the guided wave amplitude is high. This guided wave component is apparently present in
the moment method results, but it is of course absent from the ecylindrical wave
constituent of the scattered field.

The preceding analysis leads to a geometric diffraction theory desecription of scattered
fields near a finite width slab for grazing incidence. This description is summarized in
Figure 1-30. The field consists of the waves in Table 1-1.

Table 1-1. Constituent Waves

MAGNITUDE AT X
WAVE TYPE VARIATION EQUAL 5 IN.
Incident exp (ixyX) 1
Guided wave (forward) exp (ixgx) 1.2
Guided wave (reflected) exp (-ikgx) 0.2
Cylindrical wave exp (Kor + ) liforY = 0
0.37for Y = 2in.

- We thus have solved a canonical problem.
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2. SCALAR GREEN'S FUNCTION FORMULATION

2.1 INTEGRATION OF MAXWELL'S EQUATIONS

The starting point is Maxwell's equations.8 The symbols have their usual meanings, and
the time variation has the form exp (-iwt); thus,

VXE (2-1)

i w#oﬁ

(2-2)

VxH ~iw€eE

A scattering object is represented by considering the permeability € to be a function of
position. To solve Egs. 2-1 and 2-2, let the total fields E and H be decomposed into
incident fields, without the scatterer, and the scattered fields; thus,

E = E+F (2-3)
B o= g+g (2-4)

where the I superseript denotes incident, and the s denotes scattered.
Note that

V}(E-I = iwp_oﬁl (2-5)
oxal = -twe gl (2-6)

Now rewrite Equation 2-2, with € = € + €~ € subtract Equation 2-5 from Eq. 2-1 and
Eq. 2-6 from Eq. 2-2, and obtain

VxE' = iwuoﬂs (2-7)
Vxl;ls = -iwyogs-iw(e- eo)g_ (2-8)

Egs. 2-7 and 2-8 show that f’ and Lis satisfy the free space form of Maxwell's equations,
except for the term -iw(e - eo)E, which is a polarization eurrent

4 = -iwe &-UE (2-9)




where « is the dielectric constant. If we apply the equation of continuity, the
polarization charge is

p= -e v.®DE (2-10)

A wave equastion for Es results by applying the curl operation to Equation 2-7 and
eliminating H~ with Equation 2-8. Thus

2 (2-11)

VXVXE -k E = k°2 (k-1)E = iwpJ

Notice that the left side contains Es but the right side has E. Since Eq. 2-11 can be
expressed with J on the right side to replace E, we expect to derive E from potentials as

ES - - v’@ + iOJA- (2'12)

where the potentials are

(2-13)

L: )
]

(4me ) 'lfP g dv

(2-14) !

A = (n/4m [ Igdv

and g is the free space, scalar Green's function r-l expikr, with r the distance between
integration and observation points,

Although the field in Eq. 2-12 seems intuitive with the currents in Egs. 2-13 and 2-14,
the classical deviations9 start with wave equations (like Equation 2-11) that contain a
single field quantity such as ES, not ES and E}. The use of J suppresses this distinction,
which may be questionable when differential operators are used to derive Equations 2-13
and 2-14 from Equation 2-11. Therefore we give a direct integration of Equation 2-11.
The procedure follows that of Stratton and Chul0,

In Eq. 2-11 let P represent Es, Q = Ya where Vis g or r‘l expikr, and a is an arbitrary
constant vector. Apply Green's identity.

f (QVxvxP-B-vxvxQ) dV = [ (PxvxQ - QxvxB)n dA (2-15)
v S
The left side can be written as
(2-16)

2 ’ S _
a- [ f VOBV -V [oT- o) gdv] -f @-EY@-voda-Ls.
\'s v S




where the integration is bounded by a large sphere and_by a small sphere about the
observation point. The derivation used the facts that V- E is V- (x-1)E and the identity

E; Via.ve)=Vv- [(g_ -W)Es] -(@.-vo) v gs

For the right side we obtain

_

R.S. =a- f [V¢ X (ES Xﬂ) + iwuo (~ X ‘[is)] dA (2-17)
S

From Equations 2-15, 2-16 and 2-17, we obtain '

k:f (K‘l) edv - V‘ f‘PV . (K-l) Edv = f [(n . Es) Vo + Vo X (Esxﬂ) (2-18)
A Vv S )

+ iwuow (_rlx_Igs)] dA

The right side of Eq. 2-18 tends to 4 = Es when integrations are done over a large sphere
and -over a small sphere about the observation point. The integral over the large sphere
tends to zero because of the properties of g and the fields, and the integration over the
small sphere gives 4 7E". We obtain

s_ .2 . . (2-19)
4mE =k JwngRav- vfev - (k-1 E] av
which is the result obtained by assuming Equations 2-9, and 2~12 through 2-14 as a
starting point.
The integral equation for the electric field is obtained from the definition of the

scattered field in Equation 2-3. 1

The integral equation is '

where ES is given by Equation 2-19.




LR

2.2 SIMULTANEOUS ALGEBRAIC EQUATIONS

The integral equation is solved for the interior of the dielectric object by changing it to
a set of simultaneous algebraic equations. A hollow cylinder is divided into rings and
subdivided into cells as in Figures 2-1, 2-2 and 2-3. A hollow cone is subdivided into
rings as in Figures 2-4 and 2-5, and the rings are divided as in Figure 2-3. The integral
equation is evaluated at the center of each cell to generate as many equations as there
are cells. At the center of a particular cell, labelled with index m, the integral equation
for each rectangular component is

s I
Ep"Em = Ep (2-20)

for 1<m<N, where N is the number of cells. Fqsn is a sum of contributions from all cells,
so

s I
Em~ 2 Eon = En (2-21)
This equation is put into matrix form by writing
- s = E! (2-22)
Em 2<Emn/En) En E:m’
or
Z C_E =E (2-23)
mn n m
where
- 1 (%S
Cmm 1 (Emm/Em) ' (2-24)
and
c__=-E° /E
mn mn’ " n (2-25)

The next step is to evaluate the scattered fields Ep,,» Formulas are derived in the
following sections. Diagonal and off-diagonal matrix elements are separately given, and

the vector and scalar potentials are separately evaluated.
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Figure 2-2. Subdivision of Hollow Cylinder Into Rings. An observation point has 1}
coordinates (x', y', 2'); it may be inside or outside the cylinder. o
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Figure 2-3. Coordinates for a Cell. A typical cell has dimensions as follows:
radial 25p, circumferential 264 and longitudinal 28z

Figure 2-4. Hollow Cone Composed of Rings, Half angle is 14",
Dielectric Constant was 2.8.
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Figure 2-5. Dimensions of Rings. Cell lengths 25z were 0.215".
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2.3 SCATTERED FIELD FOR DIAGONAL ELEMENTS

2.3.1 VECTOR POTENTIAL
The scattered field from the vector potential is

2 -1
B’ =k (x-1)ém) [ gEdV. (2-26)

Let us assume horizontal polarization both incident and within the ring. This assumption

is reasonable for thin rings and axial incidence. For the cell labelled m we have

s 2 -1
= - '27
E, =K (1) (4m) [ gE dv_ (2-27)

To simplify notation let

I = E dv
Am [ e m (2-28)
Since the integration extends only over the cell labelled m,

1/2

J[2.2 “
r={p -pm-_ppmcos(¢-‘.bm)‘-'(z'?m)_, (2-29)

with integration limits P, ~8p < P < P, + 8p, 2, - 8z2<2<2
< ¢ < ¢m + 8¢, Introduce abbreviations 6 = ¢ - d’m, én
o = p - Py. Then on assuming $- d’m is small, we have

f,
e - (0'2 . o2 §2>1/~ (2-30)
m Ppm !
so that
5z 8¢ Sp 1 ikrm
IAm = j‘ f f Ex r e (pm + 0)cos 6dodbdg . (2-31)

-5z  -8¢p -bp
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The factor cos @ in the integrand arises from first expressing the x-component of field in
polar coordinates, expanding cos (§ + ® ) and sin (0+ %), and then using small angle
approximations for sin # and cos 8. Now assume rp, is small; that is, o and { are small.
Moreover, assume Ey is constant Ej, in the cell. Thus we can expand the exponential, to
obtain

I = I(1) . I(2) )

Am Am Am ’ (2-32)

where

@) oz 8¢ Sp
I''/ =4k E r +
n f f (p, = 0) cos 0 do df d¢

Am (2-33)
-6z -6¢ -5p
This integral is, if we omit o in pp, + o,
@) _ . . .
IAm = ik (8 4z dp P 69) Em (2-34)

The factor in parentheses is the volume of the cell.

)

m
1 X 2 2 2
Tam = ff[[(pm "0 P8 o -t

The integral over { leads to a logarithmic function so

1
If‘u)n - ff (b, = 9) cos 8 log ((R-1)/(R-1)} do dO E (2-36)

where R is [1 + (53/6§>]1/2, and

where s, is [0-2 + (pp + @) Py 02]1/ 2. Assuming s,z, << 822, to expand the square root,
we obtain

The term lg is more complicated. We omit limits, which equal those in Equation 2-31

-1/2
] (o ~0o)cos §dordodsE_ (2-35)
m m

1&1; = ff (o, +0) cos 6 log [46z2 s:2 [1 - (s+/25z)2]} dod8 E_ (2-37)
= f f (P, * 0) cos 9 log (2f5/s+)2 dodoE

+ [f (s+/26z)2 (pm + @) cos 6 do df Em

We assume that cos 6 ~ 1 and 0 <<A to carry out the integrals. We finally have that
the x component of the scattered field is

1y _ 2 2 6 2
Tam = 78, [L-108 (s/262) 1 = p_ "dg ., (2-38)
36z
2-9
- = h ey st . N - o e

,,,,,




N N

2 2 2
= 6p + pm 59
Equations (2-27), (2-32), (2-34) and (2-38) give the scattered field in the cell labelled m

.)
s _ .2 .2 pm 2 s” o 2| | (2-39)
E = k (x-1) 1;1{ 6z 6p pm6¢ + 5pbd s vy El - log (52/—62) ] ] Em

[ S V]

Am 12162°

For brevity we omit the details of the integrations over o and 6. The integral was done
by integrating over local polar coordinates. In effect then our cells are small right
circular cylinders not the truncated wedges defined by ppdf@do. This approximation
procedure is described near the end of Paragraph 2.3.

2.3.2 SCALAR POTENTIAL
The scattered field from the scalar potential is

s _ 1 o, (2-40)
Es 41rv I?.
whgre
= . - 2"41
L, = [gv - (-DHEQ . (2-41)

To represent the dielectric constant we use the unit step functions as functions of p
only. That is, we shall understand, '

(k-1) = (k-1) [H (o - 60) - H (p_ - 5p)] (2-42)

where on the right side («-1) is a constant, but on the left « is a function of p. Because
we have assumed E; = 0, it is unnecessary to specify the z dependence. Finally, « is
assumed independent of . Therefore
ikr
e .
% | ——C . (k= - - -1 dav (2-
L [ — V- (k-1) [H (o 5p) H(pm+6p)1§(irc08¢ L sin ¢) (2-43)

where l}' and % are unit vectors in the r and 9 directions respectively.

We assume divE = 0, in the cell so

) W@ (3 (2-44)
I, = «-DE_ (12 -1y -1, )

2-10
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where

1

I(2 ) - fgé (pm - hp) cos ¢ de , (2-45)
2

I; ). /gﬁ (P, ~6p) cos ¢ AV, | (2-46)
3

1_(2)=/gcos<pdpd¢dz. (2-47)

The first two integrals, 1(21) and K2), approximately cancel. To see this consider 1(21).
Assume kr is small and expand expikr. Thus

1 -1 .
I_(,_)=f(r *xk)o(pm-ép)coscpdvm

The second term of the integrand, with factor ik, gives -4ik (P, - 8p) 6z 8¢ cos P,
This term is omitted because it approximately cancels the term -4ik (P, + 8p) 6z 8¢

that arises from 1(22). The first term with factor r~1, gives

- =-1/2 (2-48)
L _ 6o\ . 2 2 [ _sp\ 2 :
12 = ( -E) cos ¢m /[(C/Pm) *‘(GP/Pm) (1 Tn) g J cos §.d9 d¢;
recall # and { were defined earlier. Following integration on { we have
2-49)
1(21)= (1-.:_")cos¢m [(!nP -4n P )cos 9d0 d¢ (
J + -
where m
2
TN oy, = 8p) 0 (2-50)
+ 2
and Pm q

q= \ /622 + sz (2-51)

The evaluation of 1(22) proceeds in the same way. The result is that

I;Z) = (1 +_:_p)cos ¢m /(tn Q# -InQ )cos 8d6 dl (2-52)
where m

+ 8p) 2-53

Q _(q*az)f"m %0) ( )

* P 2q
m
2-11
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Now consider
) @) _ _ 8p (2-54)
R L f fn (L /L) d6
where m
2
2 5.2 P, 0
L =.§_._(.5_Z_+92+-m____. 94i§_z_£_p 92 (2'55)
ES 2 2 :
P 4s m

Inspection of L./L- shows that it tends to unit value for small 8. For example, at 8 = 0
the value is 1; for # = 0.2, the value is 1.046. Therefore the logarithm is small so the
contributions of 1(21) and 1(22) from Eim are omitted.

To evaluate 1(3), expand the exponential, expikr, in the integrand as 1 + ikr. The first
term is omitted because it is independent of the observation point coordinates so the V'
operator yields zero. From the second term we obtain

I;?') = fr-l cos ¢ dp do dz (2-56)

Again we use substitutionz - zy, = §, p ~ Py = o, ¢ - d’m = 0 to obtain

I(23) = coson ff/ [‘724’(pm*'a)pm@z*'§2

We assume @ is small so cos @ ~1. Integration on § gives
2 2

(p +8)p 6 +¢o 46
1(23) = cos ¢ [[log 1+—2 = 2 do df (9-58)
m 2 2 2
46z Ep +8)p 8 +o ]
m m

Because wall thickness is much smaller than radius, we omit the term

-1/2
] cos 8dpdodt. (2-57)

2
6
crpme /462

in the integrands. The integrations on o and 6 give

2 6p6g (5z)°2 2 ° (2~59)
+ — 8 cos

1(3) = TP -1 cos¢ |1-1log (s /26 z)z s
2 m m m' m 3




2 2 2 2)
s (ap ro_"09°).

] To obtain the field apply the V' operator to Ig”. The p and 9 components are as follows:

P —=_ ] cos¢ |E (2-60)
2 m Xxm
3r 5z
2 2 p Op 6¢
S _ s £ m .
(Ed’m) = (k=1) (-z—p- ) l[l log 262] +—2 } sin ¢m Exm
¢ m 3ndz (2-61)

From Equations 2-60 and 2-61, the contribution of the scalar potential to the x
component of the scattered field is

2
S = 69 S
E_, (@) = - 1) [2 [1+d<1 2
m (2-62)

d=1- ]_og (Z_) (2‘63)

(2-64)




2.4 SCATTERED FIELD FOR OFF DIAGONAL ELEMENTS

2.4.1 VECTOR POTENTIAL

The scattered field is

ES = k2 (k-1) (4m)7) f gEdV (2-65)
where the integral extends over the shell, and g is r~l expikr, where r is the distance
between integration and observation points. The shell is subdivided into cells, as shown
in Figures 2-1 and 2-3; the subdivision is into rings, defined by increments along the
z-axis of symmetry, and further division of each ring into angular sectors. The center of
a cell has coordinates (pp,, ¢m, Zm) for an internal observation point; integration cells
have coordinates (pp, ®,, zp). In these coordinates

r2 = pZ+ p,2n - 2 ppm cos(® - Dy,) + (z - zpp)2. (2-66)
Weletp=pp+o,z=2,+ {,and ¢ = ¢n + 6, and utilize a binomial expansion so that

r =B+ ol ]Bl+ iz, -2,B1, (2-67)
where B2 = Pg + P?n - 2pnm Cam * (2n - zm)*
and [ ] = Py - pp cos (b, - D).

For horizontal polarization and axial incidence the volume integral

[ = fg Ey dV (2-68)
becomes
1 =2 ekBplpE, f eika [1] /Beiki(zn - 2m)/B g o d ¢ (254) (2-69)

where the integral over ¢ yielded 25¢. We also approximated the factor P +0 which
multiplies the exponentials by p,. This approximation means that radome thickness is
smaller than radius. We obtain

ES = k2 (c-1) (2/m) 5p846z Z Eyy PnelkBB-1 sine ; k(] 8pB71 sincgkznmSZB'lt (2-70)

where zn, is 2z, - 2, and sinez is 21 sinz.

2.4.2 SCALAR POTENTIAL
The scalar potential generates a scattered field

S _ ?
E = 4ml v

2-14




where
E Ig = fg V. (x-1)E 4V, (2-72)

and V' is taken at the observation point. The integral extends over the cells described in
the preceding section, so

g = Z f g V- (k-1)Eq dV. (2-73)

The function (k -1) is constant within the dielectric and thus in every cell; it depends only
on radius, which changes from one cell to another. We describe the inner and outer radii
by step functions so that

(1) = Je-1| [HGoq - 80) - H(pp + 8p)], (2-74)

where H(x) is zero for x negative and unity for x positive, and p,, is the radius of the cell
with index n. For horizontal polarization we obtain
Iy = f g Veilk-1] [H(p,, - 8p) - H(pp, + 6p)] Eon(c¢lp's¢1; "5€ dv, (2-75)

where 1,, and 1, are unit vectors. The symbols |k-1| denote the magnitude of the
dielectric constant within the dielectric.

Within the dielectric cells we assume V°E is zero because the field is assumed constant.
The derivative on p of the divergence operator leads to Dirac 6 functions, but the
derivative on ¢ operates only on sin ¢,

because ¥ -1 is independent of ¢. We obtain
I = [k-1] 2 Eplgp (2-76)

where the integral over any cell is

lon = Ie-1f [K) - 12 3] (2-77) 31
where

I%l) = J'ga(ﬂn - 6p) cosdpd p dbdz; (2-78)

1(22;') = f g5(p, + 6p) cos ¢ pd pdpdz; (2-79)

1(231) = f g cos ¢d pd pdz. (2-80)
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As before

r = [p2+ P2 - 20p peos(d - b)) + (z - zp)2]) 1/2
withz-zp = [,and p-p, = o ; a binomial expansion gives
r = s+bs”lo + zyps7ly

where b is Pp, - Py, cos(dp, - Py, and zpm is z, - zp.

(2-81)

To evaluate K3) let ¢ be d’n + 6, where ¢ is small in each cell, so coslp, + 9) is

approximately c%sd’n. The integrals over 6 and ¢ are well known, so we have

l(z:;) = 83p 545z elkSs~leosdy, sine (kb 5ps71) sine (kzgm52zs~1)

or approximately
3) = lk -1
l(2n 83p5¢ 8z elXSs™1 cosdy,

For 1(2];1), we have

1
1(2)

eiksg-1 f eikb(cr/s)eikzﬂm( {/8) 8@+ 5p) cosidp, +6)do d¢

4 5 289 (p,, - 3p) cosd, eiksg-1 g-ikb §p/s
where sine (k z,;, 82/s) has been approximated by unit value.
In addition,

1(2%]) = 482z8¢(p, +5p) cos P, eikss™1 eikb dp/s,

Therefore

-K2) = -85z scos éneikss=1 [8pcos (kb 5p/s) + i p osin (kbsps1] 5

2n  2n
with small argument approximations, we obtain

1(21;1) - '(22n) = -85z 545p cosdelkss-1 (1 + ikpp, bs™1)

(2-82)

(2-83)

(2-84)

(2-85)

(2-86)

(2-87)

The electric field from Iff;\), Equation 2-83, is given by the gradient in Equation 2-12,

S = - - [
E] (1(2:2) = - (x-1) (4myly 1),

2-16

B S bt AT Ay oau o AR k17

(2-88)




)

A - s e TR, W LA ARRPORTETLARA e >

it ostage S

The partial derivative on py, gives a radial component,
Ess , a3)) = ~2/m) (k-1) 5p5 5z cosdy elkSs2 (ik s, (2-89)
and differentiation on ¢, gives

ES, aBh = (2/n) (k-1) 5p5 52 cosdy elkSs2ik-s"1)p sin(dn-py). (2-90)

The x component is

Es (18)) = gs (3 - £G) 1(3) si i
sx( 2n) o (zn)cosd’n e (Zn)smd>n (2-81)

The electric field from K1) - I(Zn) is given by applying the gradient operator to the
expression in Equation 2-83’.l The tzxrst term, that is the factor multiplying 1, is identical
to Easx (1(2';)) in Equation 2-91. The second term gives a radial component

B§, Uy -Ip) = -F elks s=3 b [2bs1 + Cp, + ikb) (2-92)

when Cpp, is cos(d, - $), and F is -2(i/@) (k-1) kpy528¢8p cos¢ . The prime denotes
that the contribution of the first term is absent. The second term gives a ¢ component

ES (1 -Ip) = -F elks 572 sin(¢y, - ) [1 + bs7lpg (iks"1)-bpps~2 (2-93)
If we combine-the results we obtain for the x-component:
BRE B
= [-2 s7L(ik -2~ 1)beos by, -2 s~L(ik-s"1)p,sin(®~dy)sine é
+i s”2kppb 2bs™1+ cosdy, - ) - ikb] cosdy, (2-94)

+1 s-lkpn Sin((bn - ¢m) [2b pn- 5-2-1 -ibks-l Pn] Sin¢m] G’
where G is [(2/7) |x-1| 5p5¢ 8z cosdy elkSs™1]

Equation 2-94 reduces to the formula developed for the hollow cylinder; where all the pp,
have equal magnitude.

2-17




2.5 EXTERNAL FIELDS

The field outside the dielectric region is found by evaluating Equations 2-26 and 2-40.
The integration extends over the dielectric region. It can be done after the total field
inside the dielectric is deterniined by solving the integral equation.

The field near a cylinder is evaluated to test the approximations in the derivations. The
near field also is useful in understanding the effects of a dielectriec eylinder or a radome
on an antenna.

The field from the vector potential is

ES(A) =iwaA.

A measurement requires a probe. We consider a half-wave dipole and weight the
contribution of each cell by the far-field pattern. To simplify the expressions, consider
the field on the z-axis. The vector potential gives for the x component (from one ring)

T

5 €os 6) (sin 9)-1 pdpd ¢dz  (2-95)

2 -
E@a) = -DE @n" [gE_cos(

where the factor cos (/2 cos @)/sin 9 is the far-field pattern of the probe. Consider the
distance large enough so that

r = R+ (acg - ap cos ¢ - zz") R.1 (2-96)

where a is the mean radius of the cylinder and R is (a2 + z'2)1/2, Furthermore
approximate sin 6;

sinf =1 - (a/l’l)2 cos2 ¢ (2-97)

2.5.1 FROM AVERAGE INTERNAL FIELD

To develop a simple formula we omit the dependence of E on ¢ and use an average value
Eo. The integrations are elementary, so that

-1

2
E® (A) = 2(-1)k adpbzE R 271 ginc (ka 60/R) sinc (kz' 52/R) P

2
P= [1 - (a/2R)’ (—Z— - )] . (2-98)

P is the probe correction.

The field from the scalar potential is

-1
Ei @) = @4m) T fg? (k-1 E_dV .




The procedures are like those in Paragraphs 2.3.2 and 2.4.2. So

2 ikR

' E] (@) = -1(,«-1);—;\‘;—2 E, [eM ) cos’paoapaz, (2100
where
(...) = (ac - ap' cos ¢ - 22") R-1 (2-101)
and
[..] = [6(+6p)~6(@-6p)-2a 7. (2-102)

After doing the integrals, we have

-1

s 2 ; .
E, (8)) = ir(c-Da sz6pe " RN (é . E) 7 (kap'> sinc <kzl'aéz) ol g
(o}

R o\ R
(2-103)

Note the probe correction P' is [1 - 3/8 (72/4 - 1) a2/R2]; it differs from that in
Equation 2-98.

The total field is

T I s
E, = E +E_(A)+E, (3) (2-104)

a

The observable quantities are intensity IE;I(‘| 2 and phase, the argument of EE.

This theory does not include the effects of fields reflected from the probe to the
scatterer and scattered back to the probe.

The formulas generalize readily to several rings forming a cylinder. For example for two
rings
ikz' 6z/R

E

02 (2-105)

s s ikz' 6z 1R
E. (A,) =
Ay = E°@a) (Eo1 e e )

where Eq; and Eg are the fields in each of the rings and ES (A) is from Equation 2-98.
The scalar potential gives

ikz' 6z/R .

S _ S / ikz' 6z/R
E, 3,) = E (,) (EOIe E,, e ) (2-106)

where ES (#9) is from Equation 2-102.
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2.5.2 FROM CIRCUMFERENTIALLY VARYING INTERNAL FIELD

The external scattered field is computed from a general formula, which gives

s— -
E=AZ cos¢n (Pnagn/a x + gnaPnlaxn), (2-107)

where Ais -4 ( x - 1) § z §98p/r, the probe correction factor is
P= [1 “x -x1)? r-z] 12 4o [ﬂ(x -« ],
n n n n

and gy, is g with r, equal to [(xp - x1)2 + (yp - y12 + (z; - 21)2) 1/2,

2-20
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3. RESULTS FROM SCALAR GREEN'S FUNCTION METHOD

3.1 CYLINDERS
3.1.1 INTERNAL FIELDS

The first example is a single ring, diameter 2a equal A, length 25z = 0.161\, dielectric
constant 2.6. Because incidence was axial, necessary conditions on the computed results
were that the field at ¢ = 0 equal that at ¢ =7 and that the field at ¢ = 7/2 equal
that at ¢ = 37/2. This condition was well satisfied.

Figure 3-1 shows computed internal values of ET for several values of N; the graph
suggests subdivision into 24 cells is adequate for stable values.

Figure 3-2 shows computed internal values of ET for a cylinder, also of diameter A, but
with length 0.32A. Two rings were utilized.

3.1.2
FIELDS

The approximation of Section 2.5 was utilized to compute external fields. Figure 3-3
shows computed values of ET outside the ring, on the z-axis, with and without probe

EXTERNAL FIELD FROM CIRCUMFERENTIALLY UNIFORM INTERNAL
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Figure 3-1. Phase and Amplitude of ET for Single Ring: 8§z = 0.100 in., 8p = 0.030 in.,
x = 2.8, frequency = 9.375 GHz. For ¢ = 0°(0), ¢ = 90°(-)
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Figure 3-2. Phase and Amplitude of ET for Two Rings. 6z = 0.1045 in.;
dp = 0.0313 in. at center of second cell. Symbols as in Figure 3-2.

corrections. Figure 3-4 shows computed valued of ET outside the cylinder. Figure 3-5
shows computed values for the cylinder, but the area of the cylinder cross section was
reduced by 80% in evaluating the external field integrals, Equations 2-105 and 2-106.
The area reduction makes the volume of the cylinder equal to that of the elementary
integration cells.

3-2

———— e s e e - * _—t




aw

10 3
+
Q

. -

=}

-l T 3

®
4 ]
3
1 ] I L
0.5 1.0 1.5 2.0
1.0

= | &

[=]

~ S b + )

-—

w
[ ]
[ ]
?
) I 1 j
0.5 1.0 ° 15 20

Z (A
ADROO7A L)

Figure 3-3. Total Field Behind Dielectric Ring. Length: 0.2 in.; thickness 26p:
0.06 in.; mean diameter 2a: 1.25 in.; dielectric constant 2.6. Measured with
dipole probe: (-); computed without probe corrections (0); computed with
.. probe correction (+). Internal field: 1.19 exp i 7.8° for N = 64




20
+
15
* +
2 ok
'2'1 =1 10 . +
[ ]
. +
L +
5 °
o o
+
i °
0 | 1 1
0.5 1.0 1.5 20
+
P +
10 [ ] + s
: ¢ *
- 8 j
-} :
-
"
- 05 ®
®
+
L 1 1
05 1.0 1.5 20
Z()
ADROCS
Figure 3-4. Total Field Outside Dielectric Ring. Length is 0.42 in.
with other parameters equaling those in Figure 4-6.

Measured (¢ ), calculated with probe correction (+)




t
[ J
+
10 :
®
@ '
%8 .
+
5} .
¢
®
t
\ ] 1
0.5 1.0 15 2.0
1oF . :
s %
[ J
= +
8 ©
o
—
Y oos5f ®
®
+
| 1 {
05 1.0 15 20
Z (A
ADROOS

Figure 3-5. As in Figure 3-4 but with 8p Reduced by 20 Percent




3.1.3 EXTERNAL FIELDS FROM CIRCUMFERENTIALLY VARYING INTERNAL
FIELDS

2 ' This section gives external field values computed from Equation 2-107, which includes
the circuinferential variation of the internal field. Figures 3~6 through 3~15 show the
intensity |ETI 2 and phase A¢ of the total field on transverse paths at distances 0.5,
0.75, and 1.0 wavelengths from the center of a ring of length 2§z = 0.21". Incidence
was axial.

Figure 3-16 shows axial dependence.

3.1.4 POLARIZATION DEPENDENCE OF INTERNAL FIELDS

Figure 3-17 shows computed values of |ET| 2 inside one or two rings. The graph shows
data for a cell in the E-plane and for a cell in the H-plane. The E-plane cells are at the
sides of the cylinder, and the H-plane cells are at the top and bottom; recall the field
was horizontally polarized. Clearly a polarization dependence exists.

RING EXTERNAL FIELD RT Z=B8.B83 [NCHES
1.a v —
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Figure 3-6. Total Field Intensity for a Ring; z = 0.5A; 26p = 0.625",
26z = 0.21", p = 0.594"; k = 2.6. (-): Computed; (X): Measured
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Figure 3-12. Total Field Phase for a Cylinder Composed of Two Rings;
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Figure 3-16. Total Field Behind Dielectric Ring with Dimensions Given in Figure 3-6.
Measured (- ); Computed with Equation 2-107(+).
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Figure 3-17. Computed Internal Values of IETI 2 for 1 and 2 Rings. 23p = 0.0625",
26z = 0.21", p = 0.594"; N = 64 Per Ring.
3.2 CONE

Calculations were done for the cone in Figure 2-4; dimensions are given in Figure 2-5.
Incidence was axial; frequency was 9.400 GHz; polarization was horizontal (parallel to
the x-axis of Figure 2-3, with the cone axis parallel to the z-axis. The cone had 13 rings
although the cone in Figure 2-4 has 15.

Calculations were first done for 11 rings as well as 13, with the subdivision given in
Table 3-1, and for thickness of all rings 28p = 0.63".

Computed values of total field intensity within the cone are shown in Figure 3-18.
The computed data in Figure 3-18 are for two generators. One is the E-plane; the other
the H-plane. The polarization dependence is large, especially near the tip. The nature

Table 3-1. Computational Parameters

NUMBER OF RINGS CELLS PER RING :
13 12
13 8 in smaller 6 rings, 16 in larger 7 rings
11 16
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y - 2z plane, the H-plane.
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of the dependence resembles that in Figure 3-17 for two rings of equal radii. The curves
in Figure 3-18 show that the numerical representation influences IET| 2, However,
these differences are smaller than those between the curves for the E and H planes.
Near the tip, in the region z < -1, the intensity is -10 dB below the incident intensity,
but the H-plane intensity is 4 dB to 5 dB above the incident. Near the base the intensity
exceeds the incident for both planes.

The H-plane curve for 8 cells in the smaller rings differs from the curves for the larger
number of cells per ring.

The fact that |ET|2 is greater in the H-plane than the E-plane is reasonable because
the electric field is approximately parallel to a cell in the H-plane but approximately
orthogonal to a cell in the E-plane. However the large dependence on polarization is
smaller for a single ring.

The smallest rings have thickness approximately that of the radii, violating an assump-
tion. Therefore calculations were made by representing each of the three smallest rings
by a gair of concentric rings. Figure 3-19 shows the computed internal field intensity
| ET}2. The values for the E-plane depend on radial position, but those for H-plane
depend negligibly on radial position. The results in Figure 3-19 also differ from those in
Figure 3-18 near the base.

The external field was computed for a transverse path at z = 1.812", which is a half
wavelength behind the base of the cone. Figure 3-20 shows the results. The subdivision
of the three rings nearest the tip influences the field.
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4. MEASUREMENT

Intensity and phase near the cylinders and cone were measured with a setup that included
a half-wave dipole and a network analyzer. Measurements were made for horizontal
polarization in the system of Figure 2-1. The probe was scanned in the x direction or y
direction for fixed values of z.

For the cylinders Figures 3-3 through 3-6 show two observed values on the z axis; one {
value comes from each scan. Figures 3-6 through 3-15 show the data on transverse
scans,

For the cone, Figure 3-20 shows measured values of phase and intensity for z = 1.816"
as a function of x. This scan is half a wavelength behind that base of the cone.
Figure 4-1 shows intensity on two orthogonal scans at the center of the second largest
ring.
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Figure 4-1. Phase and Intensity Measured in Plane of 12th Ring, z = 0.86" for |
13-ring cone. The electric field was orthogonal to the y-z plane of Figure 1. :
The H plane is the y-z plane (x = 0) and the E plane is orthogonal to the

H plane (that is, y = 0). The probe was a half-wave dipole.
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5. DISCUSSION

5.1 CYLINDERS

Figure 3-1 suggests that convergence is obtained for a single ring divided into twenty-
four cells, but Figure 3-2 suggests that two contiguous rings may require a somewhat
larger number of cells per ring. The phase in the H-plane generator is the most sensitive
quantity.

The axial dependence in Figure 3-3 shows the phase of the external field is somewhat
overestimated. Discrepancies are 28 percent at the closest spacing of probe and ring but
are a few percent at wavelength spacing. Probe correction, in the theory, reduces
discrepancies. Figure 3-5 shows that a reduction of 8§p by 20 percent reduced discrep-
ancies to small values, comparable to the measurement precision. The reduction of 5p is
possibly related to the approximation made in evaluating the integral in Paragraph 2.3.1,
specifically to the integral over 4.

The axial dependence in Figure 3-16 is comparable to that in Figure 3-3 despite the
approximation of using circumferentially independent fields for the results shown in
Figure 3-3.

The transverse dependence in Figure 3-6 shows discrepancies of five percent in |ET| at
off-axis positions of approximately one inch. In general, phase discrepancies are
approximately 20 percent for small probe-ring separation. The shape of the measured
and computed curves agree well.

5.2 CONE

Figure 3-18 shows a polarization dependence of the internal field | ET|. The approxima-
tion that required ring radius to be much larger than thickness was tested. Figures 3-18
and 3-19 show that this approximation produces significant internal field changes.

The measured data in Figure 4-1 show a polarization dependence. The H-plane intensity
exceeds the E-plane intensity by approximately 1-1/2 dB. This difference is approxi-
mately that for the internal fields of the larger rings; see Figure 3-19. Figure 3-20
shows that discrepancies are reduced by performing calculations with smaller ring
thicknesses, for the rings near the tip of the cone. The differences between measured
and computed phase are large for the probe on the axis, but fall to smaller values at the
first minimum. The shape of the measured and computed curves agree, especially for
the graph computed with small values of §p near the tip. It is unclear whether the
discrepancies are caused by numercial or theoretical approximations.
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6. TENSOR GREEN'S FUNCTION FORMULATION

6.1 INTEGRAL EQUATION

Maxwell's equations for time harmonic electric and magnetic fields of angular frequency
w in the presence of a nonmagnetic scatterer of dielectric function « (r) can be combined
to yield a wave equation for the electric field E(r):

vxVxE - K’E = k2 @-1)E (6-1)

Here k = 2nAy =w¥c is the free space wavenumber, A, the free space wavelength, and c
the speed of light in vacuum. The tensor (or dyadic) Green's functionllT:

2

T&r, 0= (L+k* V') (exp (k| & -1 (4rlr - b7t (6-2)

{(where 63 (r - r') is the three-dimensional Dirac delta function) can be used to
immediately rewrite (6-1) as an integral equation:

Ek ) -E & +k> Sav Tk, 0 Ek ) [k - 1] (6-3)
A
S

Here gl is the incident electric field satisfying the homogeneous free space equation

I 2.1
VxVXE -k"E =0
and the integration extends over the volume V_ of the scatterer (everywhere k(r) = 1).

To begin the transition to the moment method approximation of (6-3), we partition V
into 1 subvolumes ("cells") each of volume V_; moreover, we assume x(r) = k = constan
inside the scatterer. Then (6-3) becomes:

Ek,r)= gl k, ) + K &-I)Z fdv Lkr,r) - E,r)

v
n=nr, n

w2 (k-1) f avr ,r’r) E(k,r) . (6-4)
7 =
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where Vn is the volume of the cell containing the observation point r". If r” is outside
the scatterer, the last integral in (6-4) is absent.

Now we introduce the essential assumption underlying the moment method: the nth cell
is assumed to be small enough that the electric field E(r) may be approximated as a
constant E, throughout the cell. As a consequence E(r’) may be removed from the
integral in (6-4):

1 2
Ek,r) = E (k,r) +k” &=1) E - Jdvr k,r,r)
> EJer

n=n,
(6-5)
+ k2 &-1E - de k,r’, 1)
n
A
n.
r
The major remaining task is the evaluation of the two integrals appearing in (6-5):
Lk, v, 0)=fdV I (k, ", 1) (6-6)
, Vo
Substituting (6-2) for I into (6-6):
1k, =6mt fav 1 +x 2 Vg k1) p) (6-7)
n

where gk, r'r) = (|r” -Ll)-l exp (ik r’ - r|) is the scalar Green's function. To actually
perform the integration (6-7) we approximate the nth cell as a sphere of radius a
centered at ¢ . If we temporarily exclude the case n = n_. so that the observation point
r_ is not within the cell, we may remove the gradient operators from the mtegral.

k,r*,n) = (4”1 (1+ k2 v'v) f dvglk, r’, )
- v
n

L

The integration over the spherical volume is conveniently carried out by Fourier
decomposing g; the result is

-2

Ik 0= k™3 (sink a - kacoska) L+k° vV9)gk, . rn) (Ir -~rnl_>.a) (6-8)

6-2
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When n =n,-, the source point r and observation point r” coincide in the integration
volume V, .and the integrand in (6-7) is formally divergent. However, a principal value
px'escriptionl2 may be applied to give (6-7) a unique value in this case:

(6-9)

1

k, r’, nr,) = -k.2 [§ (ika - 1) exp (ika) + 1] 1

In view of (6-6), (6-8), and (6-9), equation (6-5) becomes:

Ek )= EI (k, 1) + & 1) k! (sinka - kacosca)

xz E rQ+k 2 v9Igk ) (6-10)

nznr,

+ 10 [ 2 (ka - 1) exp Gka) + 1 g,

The last term is absent if r” is outside the scatterer. Rearrangement of (6-10) yields
"N - 2 . . -1 I »
Ek,r) = | 5& 1) (ika-1) exp (ika) + | " E (k, ")

+ - 1) k! (sinka - kacoska) [% ®- 1) (ika - 1) exp (ika) + x}'l (6-11)

X E E-Q+k2 vo)gkr,r)
-n ~ n
= N

r
(valid for r” within the scatterer)

Ek,r) = §I k, r’) + (- 1) k-1 (sinka - kacoska)

(6-12)

‘2 P ,
XXEn'(éH( Vv)g(k.r.rn)

(valid for ”external to the scatterer)




From (6-11) we obtain for the field in the mth cell in the scatter:

E_ = [Z0en) ke - 1) exp (ke |7 ;gfn + &-1) k! (sinka - kacoska)
(6-13)

[%(K-l) (ika - 1) exp (ika)+x]'1xz E - (1+k2 v, VJgk R
n=m

where

= -1 ;
g Kk, Rm ) = Rmn exp (ik Rm )

and

Since

-2 ) -2 -4 . 202
K vam g &, Rmn) =g &, Rmn) {k Rmn [3 (1 lkRmn) k an]‘gmn Emn

-2,
+ (kRmn) (1¢<Rmn -1) é} (Rmn = 0)

Equation (6-13) becomes

E = [% (-1) (ika - 1) exp (ika) + "]-1 .E.,TI,

+ D) k™ sinka - kacoska) [ £ (1) (tka - 1 exp (ika) + |

- 2
x> ghr ) IR [KRE cir -1
= mn mn mn mn -n

(6-14)

+r7? [3(1-ikR ) -k
mn mn

2p2 ](R . E)R
mn ~mn “Nn ~mn




Equation (6-14) is our main result. Note that for ka <«<1:
2 1) (ke - 1) exp (Gka) + % = (0423

k3 (sinka - kacoska) = a3/3
s0 that in this limit (6-14) is:

E,= 3002 'Ep + (0 1 o

2 (22 . -1
X Z gk.R_) } R [k RZ +ik Rmn] E_ (6-15)
= M
+p7¢ [3(1-ikR ) - k2R2 ](R CEJR__ !(ka<<1)
mn mn mn -~mn =~n Tmn

Now consider a collection of oscillating electric dipoles. The electric field at r due to
one such dipole is11:

EDipole - kZ %[(L/") XE] % (I'/r); g k, r)

+ {3 /) (@/r) - P) -B} «2- ikx:-l) g (k, r)

gk, r) %r-z [kzr2 +ikr - 1] P+ 4 [3 (1 - ikr) -k2r2] (r ‘B)Eg

—

where P is the dipole moment. If the dipole moment is induced by an electric field
ginternal we nave
?

P = YE

~—

internal

where 7 is the "molecular" polarizability (i.e., the polarizability of the dipole when
immersed in the collection of all the other dipoles). By the Claussius~-Mossotti
equationl4:

Y= (47Nl 3 k-1 e L

where N is the number of dipoles per unit volume.
sphere of radius a,

N = (amady!

Assuming each dipole occupies a

implying
Y= (e2)! o) ad




Therefore,

-

EDPOI® 2 (i)™ -1 2% g k1) {r-z [k2r2 + ikr - 1] ginternal

(6-16)

w7 [3(1 - ikr) -k2r2] Emternal or }

Further, if 1-:_[ is the incident field in free space, then the internal field gl internal in

dielectric sphere due to gl isld;

any

gI internal _ , (+2)”1 .EI (6-17)

Comparing (6-16) and (6-17) to (6-15), we observe that for ka<<l, the moment
approximation consists of replacing a dielectric scatterer by a collection of interacting
eleetric dipoles each occupying a spherical volume 47 a /3 and whose induced dipole
moments obey the Clausius-Mossotti equation. This result is the same as that of Purcell
and Pennypacker16 (with the exception of the incident field term, where they assume
gl internal - gl), and so constitutes an independent verification of our main result (6-14)
in the long wavelength limit.

6.2 COMPUTATIONAL TECHNIQUE

Eq. 6-14 may be written more compactly as

E =5'11-:I + 671y Z
=m ~m m~n

ns*m

BryrEn * Ymn 'gn‘ (6-18)

where
a = K1) k-3 (sinka - kacoska)

-2 2,2 R
g, R IR [kRmn+1kRmn 1]

mn
-4 . 2,2
= - - R
Jmn = gk, Rmn) Rmn [3 ( 1kRmn) K Rmn] RBonZmn

5 = %(x—l) (ika - 1) exp (ika) +
Note that 8 and Y are symmetric m by » matrices.




Introduce i, j for 3-vector indices. In component form (6-18) becomes:

o o Aoty o

nam j

1.1
=6 6
E i Bt

By defining

A

Pmn = Bn 1~ Sy

N

mnij Ymnij ¢~ mn)

we may formally extend the sum in (6-19) to include n = m:

A
- A
[démn éij a( an 6ij ¥ Ymnij)] I':nj

If we introduce "composite" indices M, N by the mapping
M 3(m-1+i (1<M,N=3M

N 3(n-1)+]

Eq. (6-20) takes the form

el [3 (m - 1)+ i].aEmi
e[3 (n-1)+j] E,;

A

)

. A
A[3 (m-1)+l] [3 (n-1)+j] ‘66MN6ij- “(BMN 8'j+ yMNij




AMN is a symmetrie 37 by 37 matrix.

According to (6-21), the moment method approximation has reduced the problem of
finding the electric field in a dielectric scatterer to the algebraic task of solving 37
simultaneous equations for 3n complex unknowns. A variety of practical computational
techniques exist for solving such a system of equations for 7 as large as 103 - 104 cells.

The only remaining latitude in the approximation is the selection of a, the radius of the
spherical cells, and 7, the total number of such cells. Since we require that E be almost
constant in any one cell, we make this requirement quantitative by asking that the phase
change in E across any cell diameter 2a be less than .2 radians. Thus:

2a/(0 /[K) < .2

or

a <A /10f6) (6-22)

If we further assume that the total volume of the 7 spherical cells equals the volume Vs
of the scatterer:

3

=v 2.3 3,4 -
M=V /g Ta’) 2V (10/k) /G A ") (6-23)
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7. RESULTS FROM THE TENSOR GREEN'S FUNCTION FORMULATION

An earlier report10 treated scattering from a dielectric rod and dielectric ring utilizing
the scalar Green's function technique. In this section, we reexamine those cases using
the Green's tensor formulation developed in Section 6 of this report. The measurements
shown below are taken from reference 10, where they are discussed in more detail.

7.1 ROD

The first example considered was a dielectric rod (x = 2.6) of length 1.9 inches and
diameter 0.139 inches aligned lengthwise along the z-axis. Figure 7-1 shows the rod and
its approximation as 15 overlapping spheres, each of radius .0765 inch. The incident
wavelength was 1.259 inches and both parallel and perpendicular incident polarizations
were considered. Figures 7-2 and 7-3 display the computed internal fields for the two
polarizations. For comparison, note that the internal field in an infinite rod of the same
diameter and dielectric constant is 1.4 dB above the incident field in the case of parallel
polarization. Figures 7-4 through 7-11 exhibit the calculated and measured external
fields at two different distances from the rod. With the exception of Figure 7-9, the
agreement between theory and measurement is good. Since we would expect the
measured phase difference to vanish as z becomes large, the discrepancy in Figure 7-9 is
evidently a systematic measurement error.
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Figure 7-1. Dielectric Rod as Approximated by 15 Dielectric Spheres.
Rod Length: 1.9", Rod Diameter: 0.139"; Sphere Radii: 0.0765".
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Figure 7-2. Computed Internal Field Intensity for the Dielectric Rod of Figure 7-1.
(0): El Parallel to Rod; (*): E! Perpendicular to Rod.
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(0): El Parallel to Rod; (*) EI Perpendicular to Rod

l Figure 7-3. Computed Internal Field Phase for the Dielectric Rod of Figure 7-1.
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Figure 7-4. Total Field Intensity for the Dielectric Rod of Figure 7-1 for EI
Parallel to Rod and x = .5A. (=): Computed; (X): Measured.
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Figure 7-5. Total Field Phase for the Dielectric Rod of Figure 7-1 for EI

Parallel to Rod and x = .5A. (-);: Computed; (X): Measured.
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Figure 7-6. As in Figure 7-4, but x = 1L.5A.
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Figure 7-7. As in Figure 7-5, but x = 1.5A.
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Figure 7-8. As in Figure 7-4, but EI Perpendicular to Rod.
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Figure 7-9. As in Figure 7-5, but El Perpendicular to Rod.
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Figure 7-10. As in Figure 7-4, but I:ZI Perpendicular to Rod and x = 1.5A.
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7.2 RING

The second example was a dielectric ring (x = 2.6) lying in the x-y plane, as shown in
Figure 2-1. The incident wavelength was again 1.259". Figure 7-12 shows the ring
approximated as 36 overlapping spheres, each having radius 0.0684". Figures 7-13 and
7-14 depict the computed internal fields Ej and E; as functions of angle around the ring.
Figures 7-15 and 7-16 display the computed and measured external field along the ring
axis. The agreement is quite good for z>\ , with small discrepancies for z<A\. However,
it should be pointed out that no attempt has been made in the calculations to compensate
for the non-isotropic receiving pattern of the field probe. Thus, as the probe moves
closer to the scatterer, the solid angle subtended by the scatterer at the probe grows
larger, and the effect due to the non-isotropy of the probe becomes more and more
pronounced. This non-isotropy in combination with the field disturbances caused by the
mere existence of the probe probably suffices to account for the nearfield diserepancies
exhibited in Figures 7-15 and 7-16.

Figure 7-12. Dielectric Ring (as in Figure 2-1). Approximated by 36 Spheres.
Sphere radii: 0.0684".
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Figure 7-13. Computed Internal Field Intensity as a Funetion of Azimuth for the
Dielectric Ring of Figure 7-12, (0O): Component of ET Parallel to EI;
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Figure 7-15. Total Field Intensity Behind Dielectric Ring.
(0): Computed; (X): Measured.
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Figure 7-16. Total Field Phase Behind Dielectric Ring.
(O): Computed; (X): Measured.
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APPENDIX A
EQUIVALENCE OF TENSOR AND SCALAR FORMULATIONS




In Equation 2-19 use Equations 2-9 and 2-10 so that
angs [iamog._l' et pva] av (A-1)
The equation of continuity gives p = (icm)-l V.d; thus
] 2
41r¢u¢°§ =i § [Kog‘.l-(v.g)vg] av, (A-2)
2. 2 -
where Ko isw K, € and observe the vg = - vg.

The second term in Equation A-2 is 17

(v.g)vg=§iav%,1%g--(g.v)vg (A-3)

Xa

In the volume integral of Equation A-1 the first term of Equation A-3 can be changed to
surface integral. The surface integral vanishes outside a sphere that contains the
sources. Therefore, Equation A-2 yields.

E=itree) S [kggg»«g. va]dV (A-4)

This expression is given in several references (see e.g., Reference 9).
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