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INTRODUCTION

Radomes significantly reduce missile guidance accuracy by producing boresight error
(BSE), an error in target direction as determined by a seeker or radar system. Despite
decades of development and use, radomes are a problem because newer missiles require
small angular rates of change of BSE and becatise newer seekers have greater frequency
bandwidths. The electromagnetic design process, for boresight error and bandwidth, is
largely empirical because radome shapes are non-separable, making analysis
approximate. The need for improving radome performance motivates efforts to improve
analytical methods.

The purpose of the research is to develop improved methods for analyzing radome
electromagnetic effects. The main goals are as follows:

'f. Develop a geometric theory of diffraction (GTD) for dielectrics and in
particular hollow dielectric shells

-4r Extend the moment method for use with hollow dielectric shells.

The GTD is intended to be relatively simple, and the moment method is intended to be
accurate although more complex than the GTD.
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SUMMARY

Section 1 reviews the concept of transmittance, the complex-valued wave distribution in
a radome bounded volume, and give measured and computed values of transmittance for
pointed, axially-symmetric radomes and for wedge radomes. The transmittance has
intensity variations that are not described by analytical methods that utilize a flat sheet
transmittance to locally approximate the radome. These flat sheet methods omit wave
mechanisms, namely guided waves and vertex scattering. To quantify these mechanisms
the moment method was applied to a finite slab for grazing incidence. We postulated
guided waves and waves scattered by a slab edge. The amplitudes and phases of these
waves were determined by interpreting maxima and minima computed by the moment
method in terms of the postulated waves. Thus we have solved numerically a canonical
problem for a geometric diffraction theory of dielectrics.

Section 2 extends the moment method to a hollow cone with a scalar Green's function
approach, and Section 3 gives numerical results. Section 4 gives measured results for a
hollow cone. Section 5 compares the numerical and computed results. Agreement is
generally good. The shapes of measured and computed curves agree, but the maximum
phase is somewhat in error. Polarization dependence is correct. The formulation
decomposes the cone into cells that are sectors of annuli. This decomposition utilizes to
advantage the constant values of fields in a cell.

Section 6 describes a tensor Green's function formulation for a hollow cone. The cells
are spheres. This decomposition treats polarization more simply than does the annular.
Section 7 compares measured and computed results for a rod and a ring.

Appendix A shows the theoretical equivalence of the two formulations.

During the coming year we plan to test further the two formulations for off-axis
incidence on hollow dielectriq wedges and on hollow dielectric cones. Numerical data

. will be generated for c, e1 nd tested against measured values. The numerical data will
be interpreted to develop geometric diffraction theory for hollow cones, which
approximate radomes.

1
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1. GEOMETRIC DIFFRACTION THEORY FOR DIELECTRICS

1.1 APPROACH

The central concept is the wavefront distribution, of phase and intensity, produced in a
radome-bounded region by an externally incident plane wave. This distribution, called
the transmittance T, depends on incidence direction, wavelength, and polarization, and
the radome configuration and composition. The transmittance strongly influences the
output voltages of an antenna enclosed by a radome. Physically, the phase variations of
T are aberrations; in fact, wavefront tilts are, to a first approximation, proportional to
boresight error. 1 Figure 1-1 suggests aberrations. Analytically, the transmittance T is a
function that is a factor in the integrand of a diffraction integral for the patterns of an
enclosed antenna. The quantities that are measured with an antenna are intensity IERI 2

and phase, arg ER, where ER is a rectangular field component

ER = TEIF dA,

where EI is the incident field component, F is the receiving near-field distribution, and
the integration is over the region such that F is non-negligible.

The transmittance T helps in radome development. For externally incident waves,
nearfield values of T directly link boresight error (via wavefront tilts) and the radome
shape and its thickness variations. Thickness variations and shape modifications are
limited in extent, but they are the main parameters available for design. The link
provided by T is more direct than that between boresight error and farfield patterns
because diffraction smooths phase variations. Of course, farfield patterns are signifi-
cant for missile performance; in fact, boresight error and aberrations were related
analytically through polynomial expansions of T in diffraction integrals. 1

We approach a GTD for T by measuring and computing transmittance near hollow
dielectric shells, hollow wedges, and a flat slab. A slab is an idealized model of half of
an axially-symmetric radome for high incidence angles. We seek to decompose the
complicated transmittance into a sum of simpler, constituent waves, as in Figure 1-2.
Identifying constituent waves and estimating their magnitudes and phases generates
conical solutions, an important part of GTD. The measurements are done with a small,
scanning probe antenna. The calculations are done by two radome analysis methods, one
a direct ray method and the other a surface integration; in addition, we apply the
moment method fo- infinitely long cylinders. 2

The approach to the second goal, extending the moment method, is to analyze a hollow
cone. Two formulations are used. One uses a scalar Green's function; the other a tensor
Green's function. The two are equivalent, but the numerical procedures differ. The
scalar Green's function method decomposes the cone into circular cylinders and

I decomposes the cylinders into angular sectors. The tensor Green's function method
decomposes the cone into spheres. The formulations differ in two practical ways. One is
in the number of cells because of cell size. The other difference involves polarization
dependence.

.. ° ° • .
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Figure 1-1. Distorted Wave front
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1.2 BACKGROUND: ANALYTICAL METHODS BASED ON FLAT SHEET APPROXI-

MATION

A simple way to analyze radomes is sketched in Figure 1-3. This direct ray method
associates a single incident wave normal (ray) with a point on the receiving aperture.
The method is adequate for designing radomes big enough to enclose an antenna that is
an order of magnitude larger than the wavelength, provided the aperture also is
considerably larger than the wavelength. However this method fails for smaller antennas
and radomes; in these cases, a surface integration approach has been successful. 3

Figure 1-4 suggests surface integration, which can be interpreted in terms of rays
converging to an aperture point.

In both the direct ray and surface integration methods the transmittance for each ray is
approximated by the values for a plane sheet that locally approximates the curved
radome, as in Figure 1-5. Surface integration more densell, amples the variation of the
surface normal direction. Figure 1-6 shows the variat, n in the normal. For the
simplest case of axial incidence, a converging set of rays spanning the tip has
transmittance that is a sum of terms with distinct individual transmittance. One term
arises from each converging ray in Figure 1-4. The value of each term depends on the
direction of the surface normal for the associated ray because the normal direction
determines the angle between it and the field and thus the resolution of the field into
parallel and perpendicular components. The direct ray method sparsely samples the
variation of the surface normal direction, but dense sampling is significant near the

radome tip where the normal varies rapidly.

Note that transmittance depends on position within the radome. Figure 1-6 suggests how
this variation occurs. On the Y-axis a direct ray projected from the radome gives the
transmittance value for parallel polarization, and on the X-axis it gives the value for
perpendicular polarization. The variation with position requires surface integration to
describe accurately the mixture of terms.

In addition to position dependent polarization variation relative to the surface normal for
fixed polarization direction, another variation occurs when the field orientation is
changed from horizontal to vertical. Consider Figure 1-7 which compares measured
phase with values computed by the direct and surface integration methods for off-axis-
incidence. It shows that surface integration is more accurate than the direct ray
method. It also suggests how a polarization change influences transmittance, even for a
fixed point in the volume bounded by the radome.

1.3 MORE BACKGROUND: EXAMPLES OF TRANSMITTANCE FOR AXIALLY
SYMMETRIC AND WEDGE RADOMES

Although Figure 1-7 and the results in Reference 3 suggest that surface integration is
more accurate than the direct ray method, these results are for radomes that were, to a
good approximation, a half wave thick. For wide frequency bands, surface integration,
as described in Figure 1-4, also has limited accuracy. To illustrate this point,
Figures 1-8 and 1-9 show boresight error of a radome with thickness 0.125 in. for
frequencies from 8 GHz to 18 GHz. The antenna was an array of two horns. For

8-12 GHz each horn aperture was 1.95 in. by 1.7 in. The results show rather small

U 1-3
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Figure 1-3. The Direct Ray Method. A Single Incident Wave Normal (or Ray) is
Associated with a Point on the Receiving Aperture. The Radome is

a Surface of Revolution, but only a Plane is Sketched.

ANNO

Figure 1-4. Surface Integration Method. The Radome is a Surface of Revolution.
Integration is over a Portion of the Incident Wavefront.
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Figure 1-5. Approximate Description of Radome at a Point by a Flat Sheet.
Multiple Internal Reflections are Included.

discrepancies for some frequencies but larger discrepancies at other frequencies. For
example in Figure 1-8, for the E-plane, frequency 12 GHz, and gimbal angle -16" the
discrepancy is 0.3. The discrepancies for 10 and 14 GHz are smaller for the same angle,
but they are larger for 8 GHz.

To understand the discrepancies in boresight error, we have compared measured and
computed transmittance values for the radome of Figures 1-8 and 1-9. Figure 1-10
shows an example, for 12 GHz, 16" gimbal angle, and the E-plane. The point of this
figure is that it illustrates the magnitudes of transmittance discrepancies (in
Figure 1-10) that correspond to those of boresight error in Figure 1-8.

We also considered another radome, with thickness tapered between 0.45 in. and 0.40 in.
This thickness is a half-wave wall at 10 GHz, but it is 20 percent greater at 12 GHz.
Calculated and measured transmittance values for an axial position that would be
occupied by an aperture are shown in Figure 1-11. Consider two horns centered at
X = * . The phase difference between these two points is greater in Figure 1-11 than in
Figure 1-10. Therefore boresight error discrepancies should be larger than for the case
of Figure 1-10, and boresight error measurements have verified this expectation.

To study this radome (of Figure 1-11) further, we measured the transmittance through
the radome enclosed volume. Figure 1-12 shows power transmittance (intensity) for 16"
gimbal angle.

This graph shows transmittance variations between +1 dB and -4 dB. An antenna would
be illuminated by a wave that is non-uniform.

1-5
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In Figure 1-12 the transmittance near the wall, for Y < 0, is shown in Figure 1-13. This

figure shows a quantity As, where

As = 2 ir (kg - ko sin) - 1 . (1-1)

This quantity is the spacing of fringes produced when a plane, free-space wave interferes
with a coherent slab-guided wave. Therefore the transmittance in Figure 1-12 appears
to result to some extent from a guided wave, as was suggested in Figure 1-2. The
quantitative question of guided wave magnitude remains as does the reason for the -4 dB
transmittance minima. We return to these questions subsequently.

We see that the transmittance of a radome is complicated. The direct ray and surface
integration methods omit some propagation mechanisms suggested in Figure 1-2. We
have seen in Figure 1-13 evidence for guided waves. Reference 4 gave evidence for
guided waves in two and three dimensional radomes. In an earlier report, Reference 5,
we determined guided wave amplitude on a finite slab by postulating functional forms for
guided waves.

To study the effects of polarization and dielectric constant, we measured the intensity
transmittance of a ceramic radome, dielectric constant 5.5, for the H-plane; see
Figure 1-14. The minima are very deep so an antenna would be immersed in a very non-
uniform field. However the minima spacing are irregular and do not help identify a
guided wave.

4

2

4/ % -

-/ ' I,

/ /
/ \ / \,

I
-2 -- /

0 2 4 6 8 10

e|

.. AML007TA S (INCH) J

.. Figure 1-13. Transmittance, from Figure 1-12 at End Points of Scans |
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To separate the effects of curvature we measured the intensity behind a hollow wedge.
Figure 1-15 shows IT12 for a curved wall wedge for the E-plane. Because T is high for

j parallel polarization, the minima are shallower than those in Figure 1-14.

Moment method calculations were made for a wedge with flat walls; see Figure 1-16.
The deep minima and their spacing suggest the exponential decay (with distance from the
wall) that characterizes slab-guided waves. In Figure 1-16 the decay with distance is
approximately that for a slab, but only near the wall.

We conclude that guided waves exist on radomes. Their significance depends on the
thickness-to-wavelength ratio because this ratio largely determines the transmittance of
the direct wave. For a half-wave thickness, the direct wave transmittance magnitude is
large; but at a frequency 20 percent higher than that for a half wave the direct wave
transmittance is low. The perturbation caused by the guided wave depends on its own
magnitude as well as that of the direct wave.

However, the guided and direct waves do not seem to be an adequate description.
Guided waves are exponentially dumped so they fall to small magnitudes within
approximately a half-wavelength from the wall. Therefore, in Figure 1-12, guided waves
do not seem to explain the transmittance minima and maxima at distances approximately
a wavelength from the radome. An additional mechanism seems necessary.

A plausible mechanism is a vertex-scattered wave. Some experimental evidence exists
for a vertex wave in wedge radomes. 6 However, the situation is less clear for an axially-
symmetric, pointed radome. We reduced transmittance discrepancies by adding a vertex
wave to direct ray calculations 7 , but this result was obtained before surface integration
was developed. The vertex wave may be a construct that corrects the direct ray
method.

Because the transmittance minima and maxima in Figure 1-12 seem significant we
explore a vertex wave as a possible explanation. The approach is to analyze a flat finite
slab with the moment method.

1.4 A GEOMETRIC THEORY OF DIFFRACTION FOR FINITE DIELECTRIC SLABS

This section considers grazing incidence on a finite dielectric slab in order to model
approximately some of the waves scattered by a hollow shell. The model is partial
because the field in a shell contains a constituent wave that propagates through the
illuminated side, but this wave does not occur for a slab at grazing incidence. Some or
all of the other waves shown in Figure 1-2 may be present. In particular a guided wave is
excited in either the slab or the shell; of course, the magnitude of the guided waves
differ. The slab is an idealization also because it has not circumferential curvature;
consequently, neither the incidence angle nor the polarization direction vary. Moreover,
the discontinuity at the slab edge differs from that at a radome tip, but the discontinuity
distinguishes both from an infinite slab. The slab approximates one side of an axially
symmetric radome, and a wedge approximates both sides.

The purpose of this section is to explain power transmittance minima like those in
Figure 1-12. Because of these minima a seeker antenna would be illuminated by a non-
uniform field so boresight error and antenna patterns would be affected. The minima are
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not given accurately by surface integration calculations; see Figure 1-11. Several
mechanisms may exist. Reflection from the left side of the profile in Figure 1-12 isI ruled out by ray diagrams. Although Figure 1-13 shows evidence for guided waves, the
lowest order slab guided mode would decay to negligible values within a wavelength of
the radome wall.* Therefore, another mechanism seems necessary to explain the
minima, which are separated from the wall by more than a wavelength.

To study possible mechanisms we start by computing the field in and near a two-
dimensional slab with the moment method of Richmond. Coordinates are shown in
Figure 1-17. The slab has infinite extent in the plane orthogonal to the figure, and
incidence is in the X-Y plane. The slab is approximated by a set of infinite, circular
cylinders, and the fields at the centers of the cylinders are determined. Figure 1-18
shows the total field intensity at each cylinder center and the total field outside the
slab.

To check the computed field, measurements were made with a dipole probe. The dipole
scanned several paths parallel to the slab. Measured intensity is shown in Figure 1-19.
Agreement is good. In Figure 1-18, the fringe spacing for Y = 0.54 in. agrees with As
computed from Equation 1. This spacing is evidence that guided waves were excited on
the slab. The shallow oscillations with period 0.5 in. result from interference of guided
waves travelling in opposite directions.

*A calculation later in this section gives the decrease with distance from the wall.

YI
VA

GE028A

Figure 1-17. Coordinates for a Slab
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The scattered field magnitude (the total field minus the incident) is shown in

Figure 1-20. The field is not uniform, indicating that the scattered field in the slab
contains more constituents than just a guided wave. Since the spacing of peaks in
Figure 1-20 is As to a good approximation, the field in the slab apparently consists
mainly of a guided wave and a plane wave with free space propagation constant. In
addition, a small amplitude reflected guided wave is also present. The free space
propagation constant ko rather than nko , when n is the index of refraction, is I
remarkable. Apparently ko occurs because the slab is thin, not a volume in which n
modifies the wavelength.

To test the guided wave hypothesis and to estimate its excitation, we examine the curve
fo: Y = 0 in Figure 1-20. Consider the oscillation of 1ESJ. The value varies from 2.7 to
approximately 0.1, where lEIJ has unit value. Now smooth the variation with period
0.5 in.; 1Es varies from 2.3 to 0.1, or 1.2 *1.1. We assume the amplitude 1.2 represents
that of a guided wave propagating in the positive X direction. Now consider the
variation of a slab-guided wave with Y. In the slab, the field has the form

EGi = 1.2 cos u y; (1-2)

outside for Y 0 the field has the form

EGo = 0.96 e - v(y - b) (1-3)

where v is computed from boundary conditions as 1.12 inches and b is half the siaL,
thickness. The scalar amplitude 0.96 was computed from Equation 1-2, with
u = 1.65 inches. The values computed from Equations 1-2 and 1-3 are shown in
Figure 1-21. For comparison, estimates of guided wave amplitude derived from
Figure 1-20 and additional calculations by the moment method are shown in Figure 1-21.
The agreement in Figure 1-21 is additional evidence for a slab guided wave and verifies
the estimate of excitation magnitude.

The apparent value of ko rather than nko discourages a simple ray picture that assumes
nk o for an internal ray; however, outside the slab a free-space plane wave (plus an
evanescent guided wave) seem reasonable.

To determine the form of the wave that combines with the guided wave, we graph the
phase increment of the scattered field between adjacent points on the X-axis. Inside the
slab at Y = 0, Figure 1-22 shows wide variations. Outside, the free phase increment is
reached approximately for Y = 0.94 in. The phase increment koAx is 71.5" for
AX = 0.25 in. At even larger distances (6 in.) the amplitude of the scattered field is
below 0.1.

To obtain a comprehensive view of the fields near the slab we plotted the contours of
computed phase and intensity of the scattered field for grazing incidence. See
Figures 1-23 and 1-24. The total field phase and intensity contours are plotted in

Figures 1-25 and 1-26.
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Figure 1-23. Computed Scattered Field Phase Contours Near 1/4 in. Thick,
10 in. Wide Slab with K= 2.6; Wavelength: 1.26". Incidence: Grazing.

The Contours are Spaced by 3600.

The phase of the scattered field shown in Figure 1-23 suggests a cylindrical wave from
the edge nearest the source. Within the slab, the phase changes rapidly near X equal
5 in. This behavior was shown graphically in Figure 1-22; see the graph for Y = 0 near
X = 5 in.

We conclude that the scattered field consists of guided waves, a cylindrical wave from
an edge, and an approximately plane wave at larger distances from the slab. However
the analysis does not explain why the second constituent of Es should travel as Ko x in
the slab.

Consider the total field in Figure 1-26. For the region outside the slab, we assume the
total field consists of the incident field and a cylindrical wave centered at the origin,
which is at X = 0, Y = 0. The field is thus

E = eikox + Ceikor (1-4)

where r was approximated by x + (y2 /2x), and C is as yet an undetermined constant. To
test Equation 1-4 we computed loci such that the two terms are in phase. Figure 1-27
shows two such loci superimposed on moment method calculations. To obtain this
agreement we choose C to be -1. That is, the cylindrical wave suffers a phase reversal
on its excitation. Since amplitudes were not computed, the magnitude of C was not
determined by using Equation 1-4.
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Figure 1-25. Phase of Total Field for Slab

In Figure 1-26, the maxima and the minimum near the slab resemble the variations in
Figure 1-12. Therefore the analysis of the slab seems relevant to analysis of radomes so
that some additional analysis on estimating amplitudes near the slab seems warranted.

Now consider Figure 1-28. It shows the variation of the fields with Y the transverse co-
ordinate for X fixed at 5 in. For the total field E computed by the moment method,
maxima occur at Y equal 2.4 in. and 4.8 in., and a minimum is Y equal 0.6 in. The two
maxima in IEI coincide with bright regions in Figure 1-26, and the arrows indicate
maxima positions determined by assuming a cyclindrical wave, see Equation 1-4.

*For the scattered field, iESj computed by the moment method is also shown in
Figure 1-28. We see a minimum for Y equal 0, despite the maximum of JEI of a guided
wave and a wave with propagation constant Ko .

The magnitude of the scattered field's guided wave constituent I EG I was graphed in
Figure 1-21. It is shown in Figure 1-28 on another scale.

The magnitude of the cylindrical wave constituent 1Ec I is shown also in Figure 1-28.
The value 1.1 for Y equal 0 was estimated from the interference behavior of the
scattered field; Figure 1-20. For values of Y greater than 0.6, lEC I was taken as IEs I
because EG has decayed to negligible values. For Y equal 0.6 we assumed
IEc I = IEsI - IEGI because the value of IESI was nearly zero.

The phase variation at Y equal 5 in. is shown in Figure 1-29. The moment method value
of arg Es is well matched by the assumed cylindrical wave phase except at Y = 0, where
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Figure 1-27. Computed Loci of Constructive Interference

the guided wave amplitude is high. This guided wave component is apparently present in
the moment method results, but it is of course absent from the cylindrical wave
constituent of the scattered field.

The preceding analysis leads to a geometric diffraction theory description of scattered
fields near a finite width slab for grazing incidence. This description is summarized in
Figure 1-30. The field consists of the waves in Table 1-1.

Table 1-1. Constituent Waves

MAGNITUDE AT X
WAVE TYPE VARIATION E.QUAL 5 IN.

Incident exp (i KoX) 1

Guided waVe (forward) exp (i Kgx) 1.2

Guided wave (reflected) exp (-iKgX) 0.2

Cylindrical wave exp (K or + 1r) 1.1 for Y = 0

0.37 for Y = 2 in.

We thus have solved a canonical problem.
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2. SCALAR GREEN'S FUNCTION FORMULATION

2.1 INTEGRATION OF MAXWELL'S EQUATIONS

The starting point is Maxwellts equations. 8 The symbols have their usual meanings, and
the time variation has the form exp (-iwt); thus,

VxjE = iwJ;s H (2-1)

VxH = -iweE (2-2)

A scattering object is represented by considering the permeability E to be a function of
position. To solve Eqs. 2-1 and 2-2, let the total fields E and H be decomposed into
incident fields, without the scatterer, and the scattered fields; thus,

E Es (2-3)

HH I +_Hs (2-4)

where the I superscript denotes incident, and the s denotes scattered.

Note that

Vx1' = iWMoH 1  (2-5)

vxI = -iJ EI  (2-6)
0-

Now rewrite Equation 2-2, with e = e + E - E 0 subtract Equation 2-5 from Eq. 2-1 and
Eq. 2-6 from Eq. 2-2, and obtain

Vx S . s (2-7)

VxH s = -i.~oES i(- o (2-8)
V- -e we -)

0 0

Eqs. 2-7 and 2-8 show that E and 11s satisfy the free space form of Maxwell's equations,
except for the term -iW (e - e )E, which is a polarization current

! r 0

S= -iWE c-I)E (2-9)
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where K is the dielectric constant. If we apply the equation of continuity, the
polarization charge is

S- e V. c-1) (2-10)
0

S S

A wave equation for g results by applying the curl operation to Equation 2-7 and
eliminating H5 with Equation 2-8. Thus

VxVxE$-k 2ES=k 2 (K_)E iWJ (2-11)

Notice that the left side contains e but the right side has . Since Eq. 2-11 can be
expressed with J on the right side to replace ], we expect to derive E from potentials as

E s = -74¢ + iwoA, (2-12)

where the potentials are

= (4 7re) -1fP g dv (2-13)
0

A =%/4-) f gdv (2-14)

and g is the free space, scalar Green's function r-1 expikr, with r the distance between
integration and observation points.

Although the field in Eq. 2-12 seems intuitive with the currents in Eqs. 2-13 and 2-14,
the classical deviations 9 start with wave equations (like Equation 2-11) that contain a
single field quantity such as Es, not Es and EI. The use of J suppresses this distinction,
which may be questionable when differential operators are used to derive Equations 2-13
and 2-14 from Equation 2-11. Therefore we give a direct integration of Equation 2-11.
The procedure follows that of Stratton and Chu1 0 .

In Eq. 2-11 let Y represent Xs, = Q i where * is g or r-1 expikr, and a is an arbitraryj constant vector. Apply Green's identity.

f (Q.VxVx P-P.vxvx) dV= f (PxVx! - QxVxP).n dA (2-15)

V S
The left side can be written as

k2 [ f ( f -(-1)EdV] - f (n. E s (a .VP)dA L.S. (2-16)

V V S
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where the integration is bounded by a large sphere and5 by a small sphere about the
observation point. The derivation used the facts that V. .E is V . (K-1)E and the identity

Z-Va -V() = 7 [(a .74P)E ( v] 1 s

For the right side we obtain

R.S. a . f [V x (Es xn.)+iw ° (nx Hs)] dA (2-17)

S
From Equations 2-15, 2-16 and 2-17, we obtain

2f l vvfv .ZEV g)v ~(s) (2-18)

V V S

+ iWA 0 V (.xgs dA

'Me right side of Eq. 2-18 tends to 4 r s when integrations are done over a large sphere
and over a small sphere about the observation point. The integral over the large sphere
tends to zero because of the properties of g and the fields, and the integration over the
small sphere gives 4 7r F s. We obtain

4 7rES = k2 f -l) g Edv -Vfg. [(K-1) E] dV (2-19)
0

which is the result obtained by assuming Equations 2-9, and 2-12 through 2-14 as a
starting point.

The integral equation for the electric field is obtained from the definition of the
scattered field in Equation 2-3.

The integral equation is

=E I

where Es is given by Equation 2-19.
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2.2 SIMULTANEOUS ALGEBRAIC EQUATIONS

The integral equation is solved for the interior of the dielectric object by changing it to
a set of simultaneous algebraic equations. A hollow cylinder is divided into rings and
subdivided into cells as in Figures 2-1, 2-2 and 2-3. A hollow cone is subdivided into
rings as in Figures 2-4 and 2-5, and the rings are divided as in Figure 2-3. The integral
equation is evaluated at the center of each cell to generate as many equations as there
are cells. At the center of a particular cell, labelled with index m, the integral equation
for each rectangular component is

E -Es = EI
m m m (2-20)

for lKn-N, where N is the number of cells. Fs is a sum of contributions from all cells,
so

EE - s  = E I
E Z I M n (2-21)

This equation is put into matrix form by writing

Em - I(Es/E EI (2-22)

or

SC E = E I(2-23)mn n m

where

c =In (E /E
mm m ) (2-24)

and

C f-Es /E
mn mn n (2-25)

The next step is to evaluate the scattered fields Es n Formulas are derived in the
following sections. Diagonal and off-diagonal matrix elements are separately given, and
the vector and scalar potentials are separately evaluated.
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Figure 2-1. Dielectric Ring and Coordinate System

y

Figure 2-2. Subdivision of Hollow Cylinder Into Rings. An observation point has
coordinates (xt, y', z9); it may be inside or outside the cylinder.

2-5



ADR003A

Figure 2-3. Coordinates for a Cell. A typical cell has dimensions as follows:
radial 2 8p, circumferential 284 and longitudinal 28z

Figure 2-4. Hollow Cone Composed of Rings. Half angle is 14° .
Dielectric Constant was 2.6.
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Figure 2-5. Dimensions of Rings. Cell lengths 28z were 0.215t?.
Thickness 2 8p were 0.065"?.
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'p.3 SCATTERED FIELD FOR DIAGONAL ELEMENTS

2.3.1 VECTOR POTENTIAL

The scattered field from the vector potential is

E s= k 2(K-1) (47r)-f jgEdV. (2-26)

Let us assume horizontal polarization both incident and within the ring. This assumption
is reasonable for thin rings and axial incidence. For the cell labelled m we have

= k 2(K-1) (4) 1lf g EdV (2-27)

To simplify notation let

'Am f fg d (2-28)

Since the integration extends only over the cell labelled m,

r P 2 P -- 2pp Cos(4 +0 -(Z-Z )2/
L m m In Mh (2-29)

with integration limits Pm - 8pP~ :' Pm + 8p, zm - ft < zz + 8z, O' m 8-
:S S On + 84'. Introduce abbreviations 0 4'i z m n

a P Pm. he on assuming~P Om is small, we have

1/z:rm=(2 p 2 2 (2-30)

so that

I 6 61 6PE r-1 eirm P+aCo0d Odt (-1Am f f f ~x m Inocs ddd ~ (-1
65z -60 -6p
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The factor cos 0 in the integrand arises from first expressing the x-component of field in
polar coordinates, expanding cos (0 + Okm) and sin (8+ Om), and then using small angle
approximations for sin 0 and cos 0. Now assume rm is small; that is, o* and C are small.

Moreover, assume Ex is constant Em in the cell. Thus we can expand the exponential, to

1.Am Am Am '(2-32)

where
6z 6~ 6P

(2)~ ik E jf f f (pm a) cos 0da d d 2-3
m m -6 Z -6 0 -6 P ( - 3

This integral is, if we omit a- in Pm + a-,

()= ik (8 6z dpp 60) E (-4A m m m (-4

The factor in parentheses is the volume of the cell.

The term i(1) is more complicated. We omit limits, which equal those in Equation 2-31Am /
i(= ff P + -)P 0 - 0- (0 -ca) cos 8 dade d E (2-35)

Am ifiii ni [( m in

The integral over leads to a logarithmic function so
(pifn( - a) cos 0 log [(R-1)/(R-1)] da dOEm(36

Iwhere R is [1 + (sl/82)]1/2, and

whee s is[a- + Pm a- P~02]/2.Assuming s+ 6 2 to expand the square root,
I we obtain

1 (1) 4=f2S2 (s/6z a OE (-7J ~Am ff (P + a.) cos 0 log +45z 11 [i (s2z2}drOE (-

(P+r 2If M cpa)os 0 log (26/s+) adEm

I+ f f (s/26z )2 (pm + a) cos 9 da' Em

* We assume that cos 0 - 1 and a-«<Pm to carry out the integrals. We finally have that
I the x component of the scattered field is

(1 2 2 6 p6( 2 (-8I Am R [1 log (s/26z) Ps(-8

U 36 z

ii 2-9



where

2 2 2 2
s= p + P m

Equations (2-27), (2-32), (2-34) and (2-38) give the scattered field in the cell labelled m

E =k2 22r (2-3")

ES k (K-1) imkz6ppm66 + T 6P60s i 2 -log (sE/26z)- E( 2- 3 9)

For brevity we omit the details of the integrations over o- and 8. The integral was done
by integrating over local polar coordinates. In effect then our cells are small right
circular -cylinders not the truncated wedges defined by Pmd~d . This approximation
procedure is described near the end of Paragraph 2.3.

2.3.2 SCALAR POTENTIAL

The scattered field from the scalar potential is

Es 1 ' (2-40)
~s 4 r 2

where

12 = fg 7 • (K-1) E dV (2-41)

To represent the dielectric constant we use the unit step functions as functions of p
only. That is, we shall understand,

(K-1) = (K-1) [H (Pm - 6p) - H (Pr - 6p)] (2-42)

where on the right side (K -1) is a constant, but on the left K is a function of p. Because
we have assumed Ez = 0, it is unnecessary to specify the z dependence. Finally, K is

assumed independent of 4'. Therefore
ilr

er 7 - ) H (p- 6 - H (P + 6p) ( cos I sin dV (2-43)

where 1 and 1 are unit vectors in the r and 4' directions respectively.r

We assume div E = 0, in the cell so

I2 f (K-) Em (I(1)- I(2) 1 (3)) (2-44)
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where [41) - f g6 (pI - 5p) cos dV M (2-45)

12) fg6 (PM - 6p) cos 0 dV (2-46)

1(3) fg cos 0 dp do dz (2-47)

Sintegras, and approximately 2anel To see this consider 1)22
Assume kr is small and expand expicr. Thus

I(1) ik) 6 ( p- 6 ) cos0 dV
2 f M

The second term of the integrand, with factor ik, gives -4ik (Pm - 8 p) 8z 8* cos 6m-
This term is omitted because it approximately cancels the term -4ik (Pm + 8p) Sz 84
that arises from I(2) The first term with factor r-1 , gives

2 2
(1) cos *m f 2)2 -( "p ) (i 2 1/2 (2-48)

recall 0 and were defined earlier. Following integration on C we have

i1) " (1_L)cam SftnP+-LnP )cos0dodC (2-49)

where 2P

qhdz P - 6P,) a (2-50)
P m 2qand P

2 (2-51)

The evaluation of l(2) proceeds in the same way. The result is that2

where 2 P(

(pin 6P) o (2-53)
-2- (q1*,

Ill .kjR li- 9 -



Now consider

() (2) fn (L /Lp \ (2-54)
2 2 L} jfl( L)d

where

s 2 s-6z 92 Pm 6  9 4 6z 6P 2  (2-55)-- 2 2s m

M  4s m

Inspection of L+/L_ shows that it tends to unit value for small 0. For example, at 9 = 0
the value is 1; for 9 = 0.2, the value is 1.046. Therefore the logarithm is small so the
contributions of I( 1) and i2) from Es are omitted.

2 2 Am
To evaluate A3), expand the exponential, expikr, in the integrand as 1 + ikr. The first
term is omitted because it is independent of the observation point coordinates so the V'operator yields zero. From the second term we obtain

43) f r cos 0 dp do dz (2-56)

Again we use substitution z - zm = , P - Pm - - Om - 9 to obtain

)  cS~b_ fff+a (pr2 2]-1/2
= [a2 ) cos 9 dp dO dt. (2-57)

We assume 9 is small so cos 0 - 1. Integration on gives

Co P ff l .1 2  (2 2 ]dd,(-8
46z P +) PmP

a 0 2 /46 z

in the integrands. The integrations on or and 0 give

I(3 )  -pm I  [1z)2] s2 6p 60 (6z)-2 2 (2-59)
7P cos 4m  - log (Sm/ z6 s s 3 " Cos (Pm

in 3 m

.... ...... .. .. .....2-12_



where

S = (6P2 + m2 6,2)

To obtain the field apply the VI operator to 3.The p and (A components are as follows:
2

42
(ESm) =-(K-I) 6zL6

P12 1 (1 log (')2( 2m 64)

In 2JCos 4, (2-60)

(Es) = - (K-1) (7 )2 f [l log s..2]+ pm }p6 sin (Pm E (-1

From Equations 2-60 and 2-61, the contribution of the scalar potential to the x
component of the scattered field is

92 2
ES c~ - K-i ) _1dG f] 'f 524

xM(-) K 112 L \ 2p 2 6  , 2 ,jm
In (2-62)

where

2
d I -log (~) (2-63)

* and

2 (2-64)
f n6p do /(3r 6z)
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2.4 SCATTERED FIELD FOR OFF DIAGONAL ELEMENTS

2.4.1 VECTOR POTENTIAL

The scattered field is

Es = k2 (K-1) (4i) - 1 f gEdV (2-65)

where the integral extends over the shell, and g is r - 1 expikr, where r is the distance
between integration and observation points. The shell is subdivided into cells, as shown
in Figures 2-1 and 2-3; the subdivision is into rings, defined by increments along the
z-axis of symmetry, and further division of each ring into angular sectors. The center of
a cell has coordinates (Pm, Om, zm) for an internal observation point; integration cells
have coordinates (Pn, On, Zn)- In these coordinates

r2= 2 * -2 ppm cos(4 - 0m) + (z - Zm) 2 . (2-66)

We let p = Pn + 07, z zn + C, and 0 = On + 9, and utilize a binomial expansion so that

r = B + o" ] B- 1 + 4(zn - zm)B-1, (2-67)

where B2=p 2 +p2p- 2 nmCnm +(zn - zm)2 "

and [ -= PmcOS(n - On).

For horizontal polarization and axial incidence the volume integral

I= fg Ex dV (2-68)'

becomes

I = Zn eikB B- 1 PnEnfeiko, [ A/Beik4(zn - zm)/B d o-d4 (280) (2-69)

where the integral over 40 yielded 2 5 '. We also approximated the factor Pn + 0which

multiplies the exponentials by Pn- This approximation means that radome thickness is
smaller than radius. We obtain

Esx =k 2 (K-1) (2/7 )8p0Sz Z En PneikBB-l sine k [ 8pB-1 sinekZnm8zB-1 (2-70)

where Znm is Zn - Zm, and sincz is z-1 sinz.

2.4.2 SCALAR POTENTIAL

The scalar potential generates a scattered field

E = (470 - 1 V'12 (2-71)
s

2-14



where

12 fg V. (K-1)Z dV, (2-72)

and V is taken at the observation point. The integral extends over the cells described in
the preceding section, so

12 = gV -(K -09ndV. (2-73)

The function (K -1) is constant within the dielectric and thus in every cell; it depends only
on radius, which changes from one cell to another. We describe the inner and outer radii
by step functions so that

(K -1) = IK1i1 [H(Pn - 8)- H(P n + SP)], (2-74)

where H(x) is zero for x negative and unity for x positive, and Pn is the radius of the cell
with index n. For horizontal polarization we obtain

12 f g V -IK -11 [H(Pn - 8p) - H(Pn + SP)] Eon(c')pst4 4 dV, (2-75)

where 4 and a p re unit vectors. The symbols IK-11 denote the magnitude of the
dielectric constant within the dielectric.

Within the dielectric cells we assume V*E is zero because the field is assumed constant.
The derivative on p of the divergence operator leads to Dirac 6 functions, but the
derivative on 0 operates only on sin 0,

because K -1 is independent of 4. We obtain

12 = IK-1i 1En 12n, (2-76)

where the integral over any cell is

12n IK-11 I(l) - I(2) -l3)] (2-77)S2n 2n 2

where

p = fgaopn - 6p) cos6pd p ddz; (2-78)

p = fg8(pn + 6p) cos 0pd pdpdz; (279)

(3)= g cos dpd 4dz. (2-80)

2-15
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As before

r = [p2 + p 2 m 2pp mcOS(,O- Om) + (z zm)2] 1/2; (2-81)

with z - zn = , and P-p n = o ; a binomial expansion gives

r = s + bs-l + ZnmS-'C

where b is Pn - Pm CoS(n - 4 m), and znm is zn - zm.

To evaluate I(3 ) let 4) be On + 6, where 9 is small in each cell, so cos(On + 0) is
2napproximately cosi)n . The integrals over 0 and ( are well known, so we have

(3 = 88p 808z eikSs-leoson sinc (kb 8ps - 1) sine (kznm8Zs-1), (2-82)

or approximately

I3) = 88&ps 8z eikss-1 cos4) (2-83)

For p , we have

21) = eikSs-1 f eikb(cr/s)e ikznm(C/s) 8(o-+ 8P) Cos(4 n + e)dO d C

= 4 8 z8O (P n - 8P) eoso n eiks - I e- ikb 8P/s, (2-84)

where sine (k Znm8z/s) has been approximated by unit value.

In addition,

J(2) = 4 8 z 84 (Pn + p) cOs On eikSs-1 eikb 8p/s. (2-85)
2n

Therefore

(1) - l(2) = -8 8 z 8 -Ocos Oneikss- 1 [8peos (kb 8p/s) + i p nsin (kb8ps- 1]  (2-86)
2n 2n

with small argument approximations, we obtain

I(1) - I{2) = -88z 80'8p cos4)neikss-1 (1 + ikp n bs- 1 ) (2-87)
2n 2n

The electric field from 2n Equation 2-83, is given by the gradient in Equation 2-12,

Es ((3)) = -(K-1)(4) - 1 V'1(3 ). (2-88)ps 2n 2n

2-16
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The partial derivative on Pm gives a radial component,

Es (I(3)) = -(2/ir) (-1) 8p64 8Z cosn eikss 2 (ik -sl)b, (2-89)
sp 2n

and differentiation on Om gives

Es (1(3)) = (2/77) (K-1) 8p8o8z cos4 n eiks- 2(ik-s-1)pn sin('n0-m). (2-90)

The x component is

Es (I(3)) = Es (I(3))coson - E( 3) (I(3)) sin4 n (2-91)
sx 2n sp 2n so 2n

The electric field from I(l) - 1(2) is given by applying the gradient operator to the
expression in Equation 2-8"/? The ?nst term, that is the factor multiplying 1, is identical

to E3 (I(3)) in Equation 2-91. The second term gives a radial component
sx 2n
Es  (1I - 12)' = -F eiks s 3 b[2bs+Cnm+ikb] (2-92)

sP

when Cnm is cos(On - 0m), and F is -2(i/r) (K-1) kPnSZ8S4Pcosn. The prime denotes
that the contribution of the first term is absent. The second term gives a 4 component

Es(I 1 - 12)' = -F eiks s- 2 sin(On - Opm) 1 + bs-p n (ik)bPnS2 ] (2-93)

If we combine-the results we obtain for the x-component:

= [-2 s-l(ik -2- 1)bcos4O -2 s-l(ik-s-1)Pnsin(On-m)sinc 'm

+i S-2kp1nb 2bs-l+ cos(q4n - Oin) - ikb] cos m  (2-94)

+1 s-kPn sin(On - 01m) [2b pn-S 2-1 -ibks -1 Pn] sinm] G,

where G is [(2/10 IK-11 8p846 8z cos-On eikss- 1]

Equation 2-94 reduces to the formula developed for the hollow cylinder; where all the Pn
have equal magnitude.

1
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2.5 EXTERNAL FIELDS

The field outside the dielectric region is found by evaluating Equations 2-26 and 2-40.
The integration extends over the dielectric region. It can be done after the total field
inside the dielectric is determined by solving the integral equation.

The field near a cylinder is evaluated to test the approximations in the derivations. The
near field also is useful in understanding the effects of a dielectric cylinder or a radome
on an antenna.

The field from the vector potential is

ES (A) = i wA.

A measurement requires a probe. We consider a half-wave dipole and weight the
contribution of each cell by the far-field pattern. To simplify the expressions, consider
the field on the z-axis. The vector potential gives for the x component (from one ring)

Es (A1) f (K-i) k2 (4r)-1 fg Ex cos cos 9) (sin e)- 1 pdpd Pdz (2-95)/x

where the factor cos (7/2 cos e)/sin 0 is the far-field pattern of the probe. Consider the
distance large enough so that

r = R + (aa - ap cos -zz') R 1  (2-96)

where a is the mean radius of the cylinder and R is (a2 + z'2)1/ 2 . Furthermore
approximate sin 0;

2 2
sin = 1 - (a/R) cos (2-97)

2.5.1 FROM AVERAGE INTERNAL FIELD

To develop a simple formula we omit the dependence of E on & and use an average value
Eo . The integrations are elementary, so that

s  2 ikR -1
(A 2 (K-1)k a6p 6z E e R sinc (ka 6p/R) sinc (kz' 6z/R) P

P - (a/2R) (2 - 1)(2-98)

P is the probe correction.

The field from the scalar potential is
Es

(4) = (47r) 147 g 7 (K-1) E xdV (2-99)

2-18

! . -



The procedures are like those in Paragraphs 2.3.2 and 2.4.2. So
A2 ikR

x (4 ) = (K-1) E feik Cos2 dado dz (2-100)
x 2 R2 o

where

= (aa - ap cos - zz') R - 1  (2-101)

and

-11
= [6 (a+6p)-6 (a-6p)-a 1. (2-102)

After doing the integrals, we have
s  ) = i(K-) ikR 2 - 2 ika
E(zdpe (R X) + J -'P - sinc (-,PI E

(2-103)

Note the probe correction P' is [ 1 - 3/8 (7r2 /4 - 1) a 2 /R 2]; it differs from that in
Equation 2-98.

The total field is

T I s sE = E + E (A) + Es (4') (2-104)
X X

The observable quantities are intensity I ETI 2 and phase, the argument of ET .
x

This theory does not include the effects of fields reflected from the probe to the
scatterer and scattered back to the probe.

The formulas generalize readily to several rings forming a cylinder. For example for two
rings

s  s  i ikz' z/R ikz' 6z IR
E( = (A ) E e + E02 e (2-105)

where E0 1 and E0 2 are the fields in each of the rings and Es (A 1 ) is from Equation 2-98.
The scalar potential gives

E s  E s  (E eikz' 6z/R +E eikz' 6z/R (-16
x 2 (4'2 ) ( 0 1 e +E 0 2 e (2-106)

where Es (402) is from Equation 2-102.
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2.5.2 FROM CIRCUMFERENTIALLY VARYING INTERNAL FIELD

The external scattered field is computed from a general formula, which gives

ES=AZ cos( 1 n (Pnagn/axn +gaPn/eXn), (2-107)n n nn n

where A is -4 ( K - 1) 8 z 806p/ir, the probe correction factor is

p = [-( - x )2r-2 -1/2 cos [nx~ x xr)/2r~]

and gn is g with rn equal to (xn - xl) 2 + (Yn - 1)2 + (zn - zl)2] 1/2.

2-20
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3. RESULTS FROM SCALAR GREEN'S FUNCTION METHOD

3.1 CYLINDERS

3.1.1 INTERNAL FIELDS

The first example is a single ring, diameter 2a equal X, length 28z = 0.16 \, dielectric
constant 2.6. Because incidence was axial, necessary conditions on the computed results
were that the field at 4) = 0 equal that at ( = ir and that the field at 4) = -r/2 equal
that at 4 = 31r/2. This condition was well satisfied.

Figure 3-1 shows computed internal values of ET for several values of N; the graph
suggests subdivision into 24 cells is adequate for stable values.

Figure 3-2 shows computed internal values of ET for a cylinder, also of diameter A, but
with length 0.32,. Two rings were utilized.

3.1.2 EXTERNAL FIELD FROM CIRCUMFERENTIALLY UNIFORM INTERNAL
FIELDS

The approximation of Section 2.5 was utilized to compute external fields. Figure 3-3
shows computed values of ET outside the ring, on the z-axis, with and without probe

1.50 - - 9.0

0-\

1.40 8.0

\

IETI

1.30 - 7.0

.PHASE

1.20 6.0

0

1.10 I I I I I I I

ADIOOS 1 24 32 40 48 56 64

N

Figure 3-1. Phase and Amplitude of ET for Single Ring: 8z = 0.100 in., 8p = 0.030 in.,
x = 2.6, frequenoy = 9.375 GHz. For 0 = 0° (o), 4 = 90(')
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1.6 45

1.5 - 44

1.4 -4

I ETI

1.32 4

PHASE a

1.1 41

I I I I i I 38
16 24 32 40 48 56 64

AORO6 N

Figure 3-2. Phase and Amplitude of ET for Two Rings. 8z = 0.1045 in.;
8P = 0.0313 in. at center of second cell. Symbols as in Figure 3-2.

corrections. Figure 3-4 shows computed valued of ET outside the cylinder. Figure 3-5
shows computed values for the cylinder, but the area of the cylinder cross section was
reduced by 80% in evaluating the external field integrals, Equations 2-105 and 2-106.
The area reduction makes the volume of the cylinder equal to that of the elementary
integration cells.
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Figure 3-3. Total Field Behind Dielectric Ring. Length: 0.2 in.; thickness 2 6p:
0.06 in.; mean diameter 2a: 1.25 in.; dielectric constant 2.6. Measured with

dipole probe: (.); computed without probe corrections (o); computed with
.. probe correction (+). Internal field: 1.19 exp i 7.80 for N : 64
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Figure 3-5. As in Figure 3-4 but with 8p Reduced by 20 Percent
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3.1.3 EXTERNAL FIELDS FROM CIRCUMFERENTIALLY VARYING INTERNAL
FIELDS

This section gives external field values computed from Equation 2-107, which includes
the circufnferential variation of the internal field. Figures 3-6 through 3-15 show the
intensity IETI 2 and phase A0 of the total field on transverse paths at distances 0.5,
0.75, and 1.0 wavelengths from the center of a ring of length 28z = 0.21". Incidence
was axial.

Figure 3-16 shows axial dependence.

3.1.4 POLARIZATION DEPENDENCE OF INTERNAL FIELDS

Figure 3-17 shows computed values of I ET 2 inside one or two rings. The graph shows
data for a cell in the E-plane and for a cell in the H-plane. The E-plane cells are at the
sides of the cylinder, and the H-plane cells are at the top and bottom; recall the field
was horizontally polarized. Clearly a polarization dependence exists.

RING EXTERNAL FIELD RT Z=0.153 INCHES
I. .

-0.0 -I. -1. -0X00 2. . .

X X X

-2,.0 -1 S" -1 .0z -0.5 0 .02 0. S: 1 1 .5' 2.0;'

X (INCHES)

Figure 3-6. Total Field Intensity for a Ring; z = 0.5k; 28p = 0.625",
28z = 0.21", p = 0.594"; K = 2.6. (-): Computed; (X): Measured

1
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RINE EXTERNAL FIELD AT Z=0.Ei3 INCHES

Mn x

Li
0r x

wi x
Ui x

L6 0X X X

Li

X CINCHES)

Figure 3-7. Total Field Phase for a Ring like that in Figure 3-6.

R ING EXTERNAL F IELDC FOR Z -2. SHE 1 NCHES

X CINCHES)

Figure 3-8. As in Figure 3-6 but z 0 .75k
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Figure 3-9. As in Figure 3- but z =X75
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RING EXTERNAL FIELD AT Z=I .26 INCHES
10 . . .

LI'
iiW
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WLO
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W

WLa
La

W
u.Jl'1

"r

-2.0 -I. - 10 -0. 0.0 2I. 1.0 I.E 2.0
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Figure 3-11. As in Figure 3-7 but z = X.

2 RINES EXTERNAL FIELD AT Z=.B3 INCHES
1.0 ..

-- x

x x

jI3-

x x 
x

2 . 0 4 : 1 0 - . 0.5 0 1 S .

X ( INCHES )

I Figue 3-12. Total Fiel8! Phase for a Cylinder Composed of Two Rings;

I Length 0.42". (-:Computed; (X): Measured.

~3-9



F
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I
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Figure 3-13. Total Field Intensity for a Cylinder Composed of Two Rings;
28z =0.21"; 2 8p = 0.0625;, P= 0.59411; 1c = 2.6. (-): Computed; (X): Measured.

2 RINGiS EXTERNAL FIELD AT Z=.I.21i INCHES
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Nj x

0.0 x xx

xx x x
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Figure 3-14. As in 3-12, but z =X.
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Figure 3-15. As in Figure 3-13, but z =A
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Figure 3-16. Total Field Behind Dielectric Ring with Dimensions Given in Figure 3-6.
Measured (-); Computed with Equation 2-107(+).
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I & 2 RIN5 INTERNFL FIELDS

22

Z CI[NCHES )

Figure 3-17. Computed Internal Values of I ETI 2 for 1 and 2 Rings. 26 p = 0.0625",
28z = 0.21??, p = 0.594"?; N = 64 Per Ring.

3.2 CONE

Calculations were done for the cone in Figure 2-4; dimensions are given in Figure 2-5.
Incidence was axial; frequency was 9.400 GHz; polarization was horizontal (parallel to
the x-axis of Figure 2-3, with the cone axis parallel to the z-axis. The cone had 13 rings
although the cone in Figure 2-4 has 15.

Calculations were first done for 11 rings as well as 13, with the subdivision given in
Table 3-1, and for thickness of all rings 2 8 p = 0.63".
Computed values of total field intensity within the cone are shown in Figure 3-18.

The computed data in Figure 3-18 are for two generators. One is the E-plane; the other

l the H-plane. The polarization dependence is large, especially near the tip. The nature

Table 3-1. Computational Parameters

NUMBER OF RINGS CELLS PER RING
13 12

13 8 in smaller 6 rings, 16 in larger 7 rings
11 16

3-12
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CONICRL SHELL INTERNRL FIELD

10

C%1

*13 rings; 12 cells/ring

-10 Q 13 rings; 8 or 16 cells/ring
x 11 rings; 16 cells/ring

-2.0 -I.5: -1 .0 -0.E 0.0 0.E 1.0 1I.E 2.0

AJN014AZ CINCHES)

Figure 3-18. Computed I E"T 2 inside conical shell. The inset shows the loci
of points. E refers to points in the x - z plane, the E-plane; H refers to

y - z plane, the H-plane.
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of the dependence resembles that in Figure 3-17 for two rings of equal radii. The curves
in Figure 3-18 show that the numerical representation influences I ET 2. However,
these differences are smaller than those between the curves for the E and H planes.
Near the tip, in the region z < -1, the intensity is -10 dB below the incident intensity,
but the H-plane intensity is 4 dB to 5 dB above the incident. Near the base the intensity
exceeds the incident for both planes.

The H-plane curve for 8 cells in the smaller rings differs from the curves for the larger
number of cells per ring.

The fact that IETI 2 is greater in the H-plane than the E-plane is reasonable because
the electric field is approximately parallel to a cell in the H-plane but approximately
orthogonal to a cell in the E-plane. However the large dependence on polarization is
smaller for a single ring.

The smallest rings have thickness approximately that of the radii, violating an assump-
tion. Therefore calculations were made by representing each of the three smallest rings
by a pair of concentric rings. Figure 3-19 shows the computed internal field intensity
I ET I . The values for the E-plane depend on radial fosition, but those for H-plane
depend negligibly on radial position. The results in Figure 3-19 also differ from those in
Figure 3-18 near the base.

The external field was computed for a transverse path at z = 1.812", which is a half
wavelength behind the base of the cone. Figure 3-20 shows the results. The subdivision
of the three rings nearest the tip influences the field.

3
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4. MEASUREMENT

Intensity and phase near the cylinders and cone were measured with a setup that included
a half-wave dipole and a network analyzer. Measurements were made for horizontal
polarization in the system of Figure 2-1. The probe was scanned in the x direction or y
direction for fixed values of z.

For the cylinders Figures 3-3 through 3-6 show two observed values on the z axis; one
value comes from each scan. Figures 3-6 through 3-15 show the data on transverse

scans.

For the cone, Figure 3-20 shows measured values of phase and intensity for z = 1.816?
as a function of x. This scan is half a wavelength behind that base of the cone.
Figure 4-1 shows intensity on two orthogonal scans at the center of the second largest
ring.

1
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Figure 4-1. Phase and Intensity Measured in Plane of 12th Ring, z =0.86"1 for
13-ring cone. The electric field was orthogonal to the y-z plane of Figure 1.

The H plane is the y-z plane (x z 0) and the E plane is orthogonal to the

H plane (that is, y a0). The probe was a half-wave dipole.
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5. DISCUSSION

5.1 CYLINDERS

Figure 3-1 suggests that convergence is obtained for a single ring divided into twenty-
four cells, but Figure 3-2 suggests that two contiguous rings may require a somewhat
larger number of cells per ring. The phase in the H-plane generator is the most sensitive
quantity.

The axial dependence in Figure 3-3 shows the phase of the external field is somewhat
overestimated. Discrepancies are 28 percent at the closest spacing of probe and ring but
are a few percent at wavelength spacing. Probe correction, in the theory, reduces
discrepancies. Figure 3-5 shows that a reduction of 8p by 20 percent reduced discrep-
ancies to small values, comparable to the measurement precision. The reduction of 8P is
possibly related to the approximation made in evaluating the integral in Paragraph 2.3.1,
specifically to the integral over 0.

The axial dependence in Figure 3-16 is comparable to that in Figure 3-3 despite the

approximation of using circumferentially independent fields for the results shown in
Figure 3-3.

The transverse dependence in Figure 3-6 shows discrepancies of five percent in I ETI at
off-axis positions of approximately one inch. In general, phase discrepancies are
approximately 20 percent for small probe-ring separation. The shape of the measured
and computed curves agree well.

5.2 CONE

Figure 3-18 shows a polarization dependence of the internal field I ETI. The approxima-

tion that required ring radius to be much larger than thickness was tested. Figures 3-18
and 3-19 show that this approximation produces significant internal field changes.

The measured data in Figure 4-1 show a polarization dependence. The H-plane intensity
exceeds the E-plane intensity by approximately 1-1/2 dB. This difference is approxi-
mately that for the internal fields of the larger rings; see Figure 3-19. Figure 3-20
shows that discrepancies are reduced by performing calculations with smaller ring
thicknesses, for the rings near the tip of the cone. The differences between measured
and computed phase are large for the probe on the axis, but fall to smaller values at the
first minimum. The shape of the measured and computed curves agree, especially for
the graph computed with small values of 8 p near the tip. It is unclear whether the
discrepancies are caused by numercial or theoretical approximations.

5-1
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6. TENSOR GREEN'S FUNCTION FORMULATION

6.1 INTEGRAL EQUATION

Maxwell's equations for time harmonic electric and magnetic fields of angular frequency
o in the presence of a nonmagnetic scatterer of dielectric function K (r) can be combined
to yield a wave equation for the electric field E(r):

vxvx, -k 2z k 2 (K-1)F (6-1)

Here k = 2viAo =c4c is the free space wavenumber, Xo the free space wavelength, and c
the speed of light in vacuum. The tensor (or dyadic) Green's functionllr:

r(k, r', r) = (1 + k 2 V'V') (exp (ik I f"-r) (4Ir -rl)-  (6-2)

satisfying

VxVx E-k 2 r = 3 (r-r')

v.r= O(r * r')

(where 6 (r - r') is the three-dimensional Dirac delta function) can be used to
immediately rewrite (6-1) as an integral equation:

E(k, r-) -E (k, r') + k2 f dV r (k, r', r) E (k, r) [KW) - 1] (6-3)
Vs

Here EI is the incident electric field satisfying the homogeneous free space equation

Vx,7xE I- k 2E I= 0

and the integration extends over the volume Vs of the scatterer (everywhere K(r) 1).

To begin the transition to the moment method approximation of (6-3), we partition V
into n subvolumes ("cells") each of volume V n; moreover, we assume K(r) = K = constanI
inside the scatterer. Then (6-3) becomes:

n *n A Vr n

k 2(K-1) f dvr (k,r',r) £(k,r) (6-4)
V -

r ,

I
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where Vn  is the volume of the cell containing the observation pointrK If r is outside
the scatterer, the last integral in (6-4) is absent.

Now we introduce the essential assumption underlying the moment method: the nth cell
is assumed to be small enough that the electric field g(r) may be approximated as a
constant An throughout the cell. As a consequence (r') may be removed from the
integral in (6-4):

F(k, r') z E I (k, r") + k 2 (K- 1) "fdV r- (k, r-, 0)
V Z

nlf, nn

(6-5)

+ k2 (-1)n • fdV (k, r', r)
Vn r ,

The major remaining task is the evaluation of the two integrals appearing in (6-5):

_ (k, r', r)fffdV r (k, r', r) (6-6)
V

n

Substituting (6-2) for E into (6-6):

i(k, r', r) = (41r)1 fdV (1 + k-'2 V) V) g (k, r', r) (6-7)
-" V

n

where g(k, r r) = (Jr" -rE)- 1 exp (ik If -. r1) is the scalar Green's function. To actually
perform the integration (6-7) we approximate the nth cell as a sphere of radius a
centered at.. . If we temporarily exclude the case n = n .so that the observation point

r
is not within the cell, we may remove the gradient operators from the integral:

I(k, r', n) = (4,r)- 1 (1 + k-2 V' ) f dVg(k, r', r)
" n

** = The integration over the spherical volume is conveniently carried out by Fourier
decomposing g; the result is

[ (k, r =k (sink a - kaeoska) ( + k-2 V'V') g (k, r'. r) (jr -O n I a) (6-8)
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When n =nr~ the source point r and observation point C' coincide in the integrationI volume Vn .and the integrand in (6-7) is formally divergent. However, a principal value
prescriptioni1 may be applied to give (6-7) a unique value in this case:

I(k, r". n -k-' [I (Oka - 1) exp (ika) + ~1(6-9)

In view of (6-6), (6-8), and (6-9), equation (6-5) becomes:

E (k, r') z:E (k, 0) + ('c- 1) k- (sinka - kacosca)

x E -En + k 2 vVIg (k, r,r ) (6-10)
n *n

+ (1-4 ~ (ika - 1) exp (ika) + 11 E

The last term is absent if r' is outside the scatterer. Rearrangement of (6-10) yields

g (k, r') [Z. (K-i1) (ika - 1) exp (ika) +(1K E I (k, '

+ (K- 1) k 1 (sinka - kacoska) 2~ (K- 1) (ika - 1) exp ika) + (-1

-2 g
x~~n zl *(4k vV)(k,r',r

r
(valid for r' within the scatterer)

1I-E (k, r') E (k, r') +(K- 1) k (sinka - kacoska)

(6-12)

+ (ik 2 Vv1') g(k. r'. r)

* (valid for Z external to the scatterer)
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From (6-11) we obtain for the field in the mth cell in the scatter:

(ic-I) (ika - 1) exp (ika)+ KI_' , (c-i) k 1 (sinka - kacoska)

(6-13)

(sc-1) (ika -1) exp ika) + K x gn.(1+ k 2 7V Vm)g(k, Rmn) (

ns m

where

g (k, Rmn) m Rmnl exp (ik R )
n mn

and

R mn M Imn IMI  S- Ini

Since

k- 2 VmVm g (k, R ) g(kR) nk2 R [3 (1 - ikRmn) -k 2 p2n] mn.Brn

+ (kRmn) (ikR -1) 1 (Rmn 0)

Equation (6-13) becomes

E - 2 . 1-1
-m U (Q-I)(ka - 1) exp (ika) + K Em

]11
+ (K-1) k- 3 (sinka - kacoska) L (K-1) (ika - 1) exp (ika) + K

(6-14)

g (k, Rn) R2 [kR + ikRmn - 1] En

+-4 [3 (1 - ikR -k2R 2 ( -inn
mn 3 mn)- mn](Rmn'-n) mn
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Equation (6-14) is our main result. Note that for ka <<1:

2*-) (ka - 1) exp (ika) + ) Z (K+2)/3

k- 3 (sinka - kacoska) = a 3/3

so that in this limit (6-14) is:

Now consider a ollection of oscillating electric dipoles. The electric field at r due to
one such dipole is11:

EDipo le = k2 t)(rlr) xP] m (Ir)} g(k,r)

S+ 3 (r/r) [(r/r) '.P ] -P (r 2 - ik -)g (k,'r)

g g k. )- Ikr iR-1] [k2?+k R3(1 Ekr(6k1r)

where P is the dipole moment. If the dipole moment is induced by an electric field
I ~Einternal, we have itra

P --~ ntra
where V is the "molecular" polarizability (i.e., the polarizability of the dipole when
immersed in the collection of all the other dipoles). By the Claussius-Mossotti

I equation' 4 :
E = (4rN - 1 3 P-) (l)+2)1 .where N is the number of dipoles per unit volume. Assuming each dipole occupies asphere 

of radius 
a,

~N (4 ra 3/3) -I
"

implying 
'

Y = (K-2)- 3 (K+I) a3  
"\\

-, 6-5 "
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Therefore,

E Dipole Q (+2)- 1 (K-1) a 3 g (k, r) r(2 [k 2 r2 + ik - 1] E nteral

(6-16)
+~ r 221k- 3( i nternal+ r 3- ikr) -k)j

Further, if EI is the incident field in free space, then the internal field E internal in any
dielectric sphere due to E1 isl 5 :

Sinternal 3 (K+2) - E (6-17)

Comparing (6-16) and (6-17) to (6-15), we observe that for ka<<l, the moment
approximation consists of replacing a dielectric scatterer3 by a collection of interacting
electric dipoles each occupying a spherical volume 41r a /3 and whose induced dipole
moments obey the Clausius-Mossotti equation. This result is the same as that of Purcell
and Pennypacker 16 (with the exception of the incident field term, where they assume
El internal = El), and so constitutes an independent verification of our main result (6-14)
in the long wavelength limit.

6.2 COMPUTATIONAL TECHNIQUE

Eq. 6-14 may be written more compactly as

E =6 1E I +6 -a 1: Ja (~E + mn. (6-18)
-m -m tim n -n

n~m

where

a - (K-I) k- 3 (sinka - kacoska)

S g (k, R n R2 [k 2R2 -1]
amn mn mn mn + ikRmn1

m g(kR R- 4 [3(1-ikR )-k 2R2  R R
mn mn mn mn mnj lmn--mn

6 -(K-1) (ika - 1) exp (ika) + K3Note that 3 and Y are symmetric 1 by n matrices.
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Introduce i, j for 3-vector indices. In component form (6-18) becomes:

= 6 1 EI .+ 6-o + ) Enj (6-19)

mi mi , mn 6ij +mnaj
nom j

By defining

A

Omn - mn l"mn)

A = m.(1-6
'mmj mj mn

we may formally extend the sum in (6-19) to include n = m:

6-1E + -1c C, A ^E .= E'.+6 ( )3 )E
mi mi " 7 mnij + "mnij nj

n j

or:
7 3

EI A

mn:j .)] E.j(-0
Emi n [6M [ ij mn- 6 ijVmnijJ j(-0

i-il

If we introduce "composite" indices M, N by the mapping

M = 3(m-1)+i (1IM, N< 371)

N = 3(n-l)+j

Eq. (6-20) takes the form
371

M  = MN N (6-21)
N=1

where eI eI[3m- li].E l

M = 3 (m- 1)+i mE Mi

CN = 3( )+i nj

MN = A [3 (m - 1) +i] 3(n-l)+J] 8 8 a( AA

MN I MN ii &(~N 8i + NNij)
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AMN is a symmetric 3,q by 37 matrix.

According to (6-21), the moment method approximation has reduced the problem of
finding the electric field in a dielectric scatterer to the algebraic task of solving 317
simultaneous equations for 3n complex unknowns. A variety of practical computational
techniques exist for solving such a system of equations for 71 as large as 103 - 104 cells.

The only remaining latitude in the approximation is the selection of a, the radius of the
spherical cells, and 71, the total number of such cells. Since we require that Z be almost
constant in any one cell, we make this requirement quantitative by asking that the phase
change in g across any cell diameter 2a be less than .2 radians. Thus:

2a/(o/) < .2

or

a < A0AI OJf) (6-22)

If we further assume that the total volume of the 77 spherical cells equals the volume V
of the scatterer:

77 V -r ~a > V, 10 V() (623)
3 3 so3
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7. RESULTS FROM THE TENSOR GREEN'S FUNCTION FORMULATION

An earlier report 1 0 treated scattering from a dielectric rod and dielectric ring utilizing
the scalar Green's function technique. In this section, we reexamine those cases using
the Green's tensor formulation developed in Section 6 of this report. The measurements
shown below are taken from reference 10, where they are discussed in more detail

7.1 ROD

The first example considered was a dielectric rod (K = 2.6) of length 1.9 inches and
diameter 0.139 inches aligned lengthwise along the z-axis. Figure 7-1 shows the rod and
its approximation as 15 overlapping spheres, each of radius .0765 inch. The incident
wavelength was 1.259 inches and both parallel and perpendicular incident polarizations
were considered. Figures 7-2 and 7-3 display the computed internal fields for the two
polarizations. For comparison, note that the internal field in an infinite rod of the same
diameter and dielectric constant is 1.4 dB above the incident field in the case of parallel
polarization. Figures 7-4 through 7-11 exhibit the calculated and measured external
fields at two different distances from the rod. With the exception of Figure 7-9, the
agreement between theory and measurement is good. Since we would expect the
measured phase difference to vanish as z becomes large, the discrepancy in Figure 7-9 is
evidently a systematic measurement error.

AJN015

Figure 7-1. Dielectric Rod as Approximated by 15 Dielectric Spheres.
Rod Length: 1.9", Rod Diameter: 0.139"; Sphere Radii: 0.0765".
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Figure 7-2. Computed Internal Field Intensity for the Dielectric Rod of Figure 7-1.
(0): El Parallel to Rod; (*): El Perpendicular to Rod.
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Figure 7-3. Computed Internal Field Phase for the Dielectric Rod of Figure 7-1.
(0): El Parallel to Rod; ()El Perpendicular to Rod
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Figure 7-4. Total Field Intensity for the Dielectric Rod of Figure 7-1 for EI

Parallel to Rod and x = .5k. (-): Computed; (X): Measured.
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Figure 7-5. Total Field Phase for the Dielectric Rod of Figure 7-1 for
Parallel to Rod and x = .5k. (-): Computed; (X): Measured.
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Figure 7-6. As in Figure 7-4, but x 1 .5Xk.
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Figure 7-7. As in Figure 7-5, but x =1.5k.
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Figure 7-8. As in Figure 7-4, but EI Perpendicular to Rod.
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Figure 7-9. As in Figure 7-5, but E Perpendicular to Rod.
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Figure 7-10. As in Figure 7-4, but EI Perpendicular to Rod and x 1.5X.
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Figure 7-11. As in Figure 7-5, but E Perpendicular to Rod and x = 1.5X.
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7.2 RING

The second example was a dielectric ring (K = 2.6) lying in the x-y plane, as shown in
Figure 2-1. The incident wavelength was again 1.259". Figure 7-12 shows the ring
approximated as 36 overlapping spheres, each having radius 0.0684". Figures 7-13 and
7-14 depict the computed internal fields Ell and E. as functions of angle around the ring.
Figures 7-15 and 7-16 display the computed and measured external field along the ring
axis. The agreement is quite good for z>:\, with small discrepancies for z< X. However,
it should be pointed out that no attempt has been made in the calculations to compensate
for the non-isotropic receiving pattern of the field probe. Thus, as the probe moves
closer to the scatterer, the solid angle subtended by the scatterer at the probe grows
larger, and the effect due to the non-isotropy of the probe becomes more and more
pronounced. This non-isotropy in combination with the field disturbances caused by the
mere existence of the probe probably suffices to account for the near field discrepancies
exhibited in Figures 7-15 and 7-16.

AJN026

Figure 7-12. Dielectric Ring (as in Figure 2-1). Approximated by 36 Spheres.
Sphere radii: 0.0684".
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Figure 7-13. Computed Internal Field Intensity as a Function of Azimuth for the

Dielectric Ring of Figure 7-12. (0): Component of ET Parallel to EI;
(*): Component of ZT Perpendicular tong I.
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Figure 7-14. Computed Internal Field Phase as a Function of Azimuth for the
Dielectric Ring of Figure 7-12. (0): Component of ET Parallel to V;
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Figure 7-15. Total Field Intensity Behind Dielectric Ring.
(0): Computed; (X): Measured.
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Figure 7-16. Total Field Phase Behind Dielectric Ring.

(0): Computed; (X): Measured.
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EQUIVALENCE OF TENSOR AND SCALAR FORMULATIONS
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In Equation 2-19 use Equations 2-9 and 2-10 so that

4 1 -Es [oogi+.;l ,,, ) dV (A-1)

The equation of continuity gives p (i1) V.J; thus

4v *aEi S [K~g _(V.j)Vg]dV9  (A-2)

where K is W2 e , and observe the vi -vg.
0 0

The second term in Equation A-2 is 17

( V. )vg 7( )j. V)vg (A-3)ax

In the volume integral of Equation A-1 the first term of Equation A-3 can be changed to
surface integral. The surface integral vanishes outside a sphere that contains the
sources. Therefore, Equation A-2 yields.

Es = i(4 iTDe )-1flk2gJ + J. VVgldV (A-4)
- 0 L0J

This expression is given in several references (see e.g., Reference 9).
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