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ARMA SPECTRAL ESTIMATION:

AN EFFICIENT CLOSED FORM PROCEDURE

by

JAMES A. CADZOW

ABSTRACT

In this report, an effective procedure for effecting on ARMA

spectral model of a time series is described. This procedure is

predicated on minimizing as set of "basic error" terms as generated

from an ARMA model that is hypothesized as characterizing the time

series under analysis. The spectral estimation performance achieved

in using this approach has been empirically found to be generally

superior to that obtained using such contemporary methods as maximum

entropy and the periodogram.
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I. INTRODUCTION

In this report, a description of the high performance ARMA spectral

estimator, as in-part developed under the AFOSR contract 80-0069, shall

be given. To begin, the main objective of the project was that of deve-

loping an effective method for estimating the ak and bk coefficients

governing the ARMA model

p q
x(n) + I akx(n - k) = 7 bkc(n - k) (1)

k=l k-O

in which the excitation time series {((n)} is taken to be white. These

coefficients are to be selected so that this ARMA model is "most consis-

tent" with a set of time series observations.

x(l),x(2),",x(N). (2)

which are available. The term "most consistent" is here being used in the

sense that the hypothesized ARMA model is most compatable with the task of

minimizing a set of "basic error terms". A brief description of this pro-

cedure shall be now given while a more detailed description is to be found

in the appendix.
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II. DESCRIPTION OF ARMA MODELING METHOD

The basis for the ARMA method is dependent on the so-called basic

error terms. These terms are generated by first multlplyinq each side

of relationship (1) by the delayed entity x*(n - M) to obtain

p

e(m,n) = x(n)x*(n - m) + I akx(n - k)x*(n - m) (3)

k=l

q+l <m<N

max (mp) < n < N

It can be shown that these basic error terms £(m,n) are each zero mean

when the underlying time series in an ARMA process of order less than or

equal to (q,p) and the ak coefficients in expression (3) correspond to

the exact process'. autoregressive coefficients.

With this in mind, a method for selecting the ARMA models ak

coefficients is suggested. Namely, they are chosen so as to cause the

basic error terms (3) to be as close to their mean value of zero as

possible. This objective may be realized by introducing the following

quadratic functional

f(a) = e (4)

in which e is a column vector whose elements are appropriate arrangements

of the ensemble of basic error terms (3), W is a nonegative matrix, a is

the autoregressive coefficient vector with elements ak, and, t denotes the

operation of complex conjugate transposition. It is readily shown that

the minimization of functional (4) will result in a set of consistent
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linear equations for the optimum ARMA model autoregressive coefficients.

Once the ak coefficients have been obtained, the ARMA model's

movinq average coefficients are estimated by first generattnq the so-

called residual sequence {c(n)} according to

p

e(n) = x(n) + I akx(n - k) p + 1 < n < N (5)

k=l

The spectrum of this residual time series is theoretically given by
q

I bke-jkw 12. A technique for obtaining a moving average estimate

k=O
of this residual time series is fully described in the appendix and

entails the utilization of the smoothed periodogram. Once this smoothed

periodogram has been generated, the required ARMA spectral estimate is

achieved,. Empirically derived results indicate that this report's pro-

cedure provides a superior spectral estimation performance than that

achieved by such contemporary alternatives as the maximum entropy method,

and the periodogram.

III. CONTRACT PUBLICATIONS

The following two refereed publications resulted from the sponsored

AFOSR contract.

[ll " Autoregressive Moving Average Spectral Estimation: A Model

Equation Error Procedure", IEEE Trans. on Geoscience and

Remote Sensing, vol. GE-19, No. 1, Jan. 1981, pp 24 - 28.

[2] "Two Dimensional Spectral Estimation", IEEE Trans. on Acoustics,

Speech and Signal Processing, vol. ASSP-29, No. 3, June 1981,

pp 396 - 401.
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Autoregressive Moving Average Spectral Estimation:
A Model Equation Error Procedure

JAMES A. CADZOW, SENIOR MEMBER, IEEE

Abrt-A liocaduuis Im sod for gsteeatiq a autorgrusuve I. INTRODUCTION
moving saeme (ARMA) I aodl of a statiomary time m I N this paper, we shall be concerned with the task of esti-
beid spon a alft set of time sad.' al I'm- The ARMA model's
latmleulod coefficliets a estiited by mimnumin3 a quamtlic .1mating the statistical characteristics of a stationary random

functiom of a st of basc saw terms. In eumples treated to dat, this time series {x(n)} from a finite set of observations. For many
method has damo ated a exceptio m al ability in reacing dosely applications, knowledge of the time series' underlying autocor-
,ead nrow band aW" in a low signllI-noln envlromemnt where relation sequence as formally defimed by

othe proeeduees such an U. maximum entrop method often fail. Its
effeedeuu omn ot cimamm a d ime W is w promits and a r. (n)-E {x(n + k) x*(k)}

Move Iur evaluation Is pmasently baling coaductad. With this i r()~~~~~ 1
mind, he new ARMA peohdue promma to be an important sema
seddon 21. conveys all the information required. In this expression, E and

* denote the expected value and complex conjugation opera-

Mmuctipt received Aprl 27, 1"a0. This work was supported in part tions, respectively. It is often advantageous to equivalently
by the Office of Naval Research under Contract N00014-80-C-0303 characterize stationary time series in the frequency domain
and the Air For= Office of Scientific Re a4 under Grant AFOSR where their intrinsic properties may be more discernible. This
0-0069.
The author is with de Department of Eletriclngineering, Virgini is particularly true for so-called narrow-band processes. The

Polytechnic Institute, lacks bu , VA 24061. vehicle for this characterization is the associated power spec-
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tral density as given by In this paper, a generalization of a recently developed closed-
form ARMA method shall be presented [71 and [81. This

Sx (w) =  rx(n) e'"" (2) new procedure has been empirically found to provide signifi-
n--- candy better spectral estimation performance than the above

which is recognized as being the Fourier transform of the two ARMA approaches as well as the maximum entropy
autocorrelation sequence. method. In what is to follow, a time domain.approach for de-

Upon examination of expressions (1) and (2), it is apparent tertmining the ARMA model's AR ak coefficients will be given.
that the required time series characterization will generally en. This in turn will be followed by a frequency domain proce-
tail complete knowledge of the generally "infiite" length dure for estimating the effects of the moving average bk coef-
autocorrelation sequence. Here, we shall be concerned with ficients on the overall spectral estimate. Use will be made of
extracting this information from the following "finite" set of the well-known fact that the power spectral density corre-time series observations sponding to ARMA model (4) is specified by

x(l),x(2),'",- x(N). 2 (3) s.(W)= lbo +bIe jw +" +bqe W!e

Unless some constraints are imposed upon the time series' 1 +a1 eiw+. . . +a p e"t ,, ! o
basic nature, it is clear that there exists a fundamental incom- C7IB()2 

2(5

patability in estimating the required statistical knowledge from =A(w)
this finite set of measurements. In accordance with well ac-
cepted practices, this dilemma is here resolved by postulating a II. AUTOREGRESSIVE COEFFICIENT ESTIMATES
finite parameter linear model to represent the random phe- An effective method for estimating the ARMA model's AR
nomenon. Specifically, the response of this model to "ran- coefficients from the set of given observations will be now pre-
dom" shock excitations will be conceived of as generating the sented. This first entails multiplying each side of expression
time series under study. (4) by the entity x*(n - m) to yield the "basic error terms"

In terms of parameter parsimony, the causal autoregressive
moving average (ARMA) model of order (p, q) as specified by p

e(m, n) x(n) x*(n - m) + E akx(n - k) x*(n - m) (6a)
p q 1 k-i

x(n) + F, akx(n - k) E bke(n - k) (4)
k-i k-o bke(n - k)x*(n - m), for q+1 m<N

is generally the most effective linear model. In this representa- -omax (mp)n N
tion, the unobserved excitation {e(n)} is taken to be a white
noise time series with zero mean and variance 02. It is impor- (6b)
tant to appreciate the fact that the more specialized autore- where the range on the m and n variables is dictated by the
gressive (i.e., bk 0 for k * 0) linear model will generally en-
tail a much higher order choice so as to achieve a comparable random variables e(n - k) and x*(n - m) be uncorelated. tf
statistical representation. Conceptually, the more efficient the time series is in fact an ARMA process of order less than orARMA model is the logical model choice when the exact na- equal to (p, q) it fows that the basic error terms e(m, n) are
ture of the time series is unknown. each zero mean random variables.' This is a consequence of

Due to the relatively difficult task of estimating the ARMA the causality of model (4) and the whiteness of the excitation
model's ak and bk parameters from the given observations (3), which results in the random variables e(n - k) and x*(n - m)
however, the preponderance of activity has been directed to- being uncorrelated.
wards the specialized autoregressive (AR) model. This is a di- With these thoughts in mind, relationship (6) provides an
rect consequence of the simpler AR parameter estimation ideal vehicle for determining a set of AR coefficients which are
problem which results. In particular. the basically equivalent consistent with the given time series observations. Specifi-
maxiimum entropy, linear predictive coding, and AR methods cally, the ak coefficients will be selected so as to cause each of
have been developed for efficiently obtaining the AR model the basic error terms (6a) to be as close to their mean value of
parameters [II. Nonetheless, the inherent superiority of an zero as possible. This goal is achieved by minimizing a squared
ARMA model representation is widely recognized and a num- error criterion of the form
ber of procedures for estimating the ARMA model parameters
have been advanced. These include the whitening filter ap- f(a) = el We A (7)
proach which is iterative in nature, generally slow in conver- in which e is a column vector whose elements are appropriate
gence, and typically requires a relatively long data length N tobe efecive[21and 3].A mre esiablecloed-ormap-arrangements of the ensemble of basic error terms (6a). It' is abe effective [2) and [3). A more desirable closed-form ap-

proach which is based on the autocorrelation relationship 'As a side note, it may be shown that the basic error terms have iden-

governing ARMA processes has also been developed [41-[6]. tical variances given by
This approach often provides good estimates and does not re- q
quire N to be excessively large. Unfortunately, its perfor- rx(O) a' F Ibkl2 .
mance is not always as good as that provided by AR methods. k-0
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nonnegative definite square matrix, and, I denotes the opera- where t = 1 + max (n, p) and c is a p X I vector with elements
tion of complex conjugate transposition. This criterion is ci " -c10. for 1 4i 4 p. (I b)
readily shown to be a function of the AR coefficients upon
substitution of expression (6a) into criterion (7). Thus the optimum set of ARMA autoregressive coefficient

The weighting matrix W is to be selected based on statistical estimates are obtained by solving the linear system of equa-
reasoning which must be tempered by an appreciation that lit. tion (10). It is possible to utilize the Hermitian structure of
tie is generally known about the time series' statistics. To ius- matrix C to yield an efficient solution procedure.
trate this point, let us consider the usually hypothesized condi- A. Forward and Backward Data Approach
tion that the excitation {e(n)} is a Gaussian white process. In

One can more effectively use the observed data (3) to achievethis case, if" the m atrix W is se t equal to E {ee t }-z th e m in u a A R s e t l etim atebs n h t d t ' a k a d v r
zation of criterion (7) will result in a maximum likelihood esti- an a spect ie ba
mate of the AR coefficients. Unfortunately, the generation of
this particular matrix requires knowledge of the time series' i( 1),i(2)," ,.i(N) (12)
{x(n)} second-order statistics. This statistical information, in whichi(n)=x(N+ I - n). In particularone formulatesa
however, is precisely what we are seeking to estimate via the
ARMA model (4).2 This dilemma has arisen due to the unreal- mean-squared error criterion as given by
istic desire to seek a maximum likelihood ARMA model. N-1 I N 2
More modest objectives must be sought if a tractable proce- f(A) = w(m) e(m, n)
dure is to be evolved. " 1 fin -I -max (,p)

A reasonable implementation of the above autoregressive N
coefficient selection philosophy then depends on a prudent + ir(m, n) 1 (13)
choice for the weighting matrix. In this paper, we will be con- n - I + max (,n,p)
cerned exclusively with a choice that results in the following where i(m, n) denotes the basic error term associated with the
mean-squared error criterion: backward sequence (12). It is a simple matter to show that

the AR coefficient vector which minimizes this forward-
fa) = E e(m, n) (8) backward criterion must satisfy the linear system of equations

M-q-l n -i+max(m.p) [(C1 =C+,F (14)

although other choices are suggested in Section V. In this ex- where C and C are each p X p nonnegative definite Hermitian
pression, the w(m) are nonnegative parameters which are log matrices given by relationship (I Ia) with the forward (3) and
cally selected to be inversely proportional to the variance of backward (12) data used, respectively, and, the p X I vectors
the term which they multiply. A general expression for these c and i are given similar interpretations.
variance entities, unfortunately, also reveals a dependency on It is important to note that the rank of matrix [C + C] at
the time series' unknown second-order statistics and the least equals the rank of either of its constituent nonnegative
ARMA model coefficients. Empirical evidence suggests, how- defmite matrices C or C. Thus, in using this forward and back-
ever, that a choice of the weighting parameters as given by ward approach to estimate the AR coefficients, one is typi-

cally able to use a higher order model (i.e., larger value of p)
w(m) - [N- m] q + 1 •m 4N- 1 (9) than would be the case for the forward or backward models

only. Moreover, it has been empirically found that the for-
results in satisfactory performance. An examination of otherony Mrevithsbnemrcalfudtathef-

ward and backward approach usually results in better spectral
weighting parameter selections is currently being conducted. estimates.

Using standard calculus, it is readily shown that the set of
AR coefficients which render criterion (8) a minimum must 11. NUMERATOR DYNAMICS
satisfy the following linear system of equations: A variety of procedures exist for determining the numerator

dynamics of an ARMA time series once the AR coefficients
c e (10) have been estimated [4]-[9]. In this section, a procedure

where i is the p X I AR coefficient vector estimate with ele. which has been found to produce improved results will be pre-

ments ak, C is a p X p nonnegative definite Hermitian matrix sented. It makes use of the characteristic equation (4) which

with elements can be interpreted as generating the auxiliary "residual" se-
quence {e(n)} according to

N-I N N p -
c,, ' F .F, E iw(m)x(n-k)x(s-m) e(n)=x(n) + T akx(n-k) (I a)

mq+i no t kset(

x*(n-m)x*(s-i), for i,ka1,2,"•.,p (lla) q
= bk e(n - k). (15b)

kc-o
In the special case of an AR model, however, it is possible to obtain One may straightforwardly show that the spectrum of the mov-

the maximum likelihood estimate. ing average residual time series Se(w) is given by 1B()1 2 '2
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This observation in conjunction with relationship (5) provides 
27

the vehicle for obtaining the underlying time series spectral es-
timate, that is

Sx(w)=Se()/IA(w))12. (16)

With this in mind, a method will be now given for obtaining a
qth-order moving average spectral estimate of the residual se-
quence. This estimate will be based on the specific residual
elements

e(p+ l),e(p + 2),'.. ,e(N) (17)

which are calculated using relationship (15a) and the given
time series observations (3). The AR coefficient used in (15a)
will correspond to the ak estimate obtained upon solving ex-
pression (14).

The approach to be now presented in an adaption of the
well-known method of Welch for obtaining smoothed peri-
odogram estimates [101. In essence, one first segments the
calculated residual elements (17) into L segments each of
length q + I as specified by

ek(n)=a(n)e(n+ I +p+kd), O n~q A
O<k'L- 1 (18) 0.00 0.20 0.40 0.60 0.80 1.00

where a(n) is a data window and "d" a positive integer which Normalized Frequency
specifies the time shift between adjacent segments. These in- Fig. 1. Fifteenth-order ARMA spectral estimate of two sinusoids at

normalized frequencies f, a 0.4 (10 dB) and f = 0.426 (0 dB) based
dividual segments will overlap for a shift selection of d <q. upon individual sequencs of length 64.
Furthermore, to include only observed data, the relevant pa-
rameters must be selected so that p + q + 1 + (L - 1) d < N.
Finally, the periodogram of each of the L segments is taken
and these are averaged to obtain the desired smoothed qth.
order periodogram, that is 1

YSjq -+II a(n) e(n + p + kd)- /' | mOnO n

(19)

The data window is to be normalized according to 2 al(n) = 1.
In using this segmentation, the variance of the estimate S (w)
is reduced. The price paid for this reduction, however, is a loss A...

in frequency resolution, an increased bias of the estimate, and,
a possible deterioration in power level estimates. It must be . . .. . .
noted, however, that the overall resolution capability of this
ARMA procedure is predominately influenced by the AR co-
efficient selection. If one is basically interested in resolution
performance, an examination of the ARMA model's pole loca.
tions then need only be considered.

IV. NUMERICAL EXAMPLE - kA
In order to compare the effectiveness of the new ARMA

spectral estimator with the maximum entropy method, the, j A A A k
classical problem of resolving two closely spaced (in fre- 0.00 0.20 0.40 0.60 0.8o 1.00
quency) sinusoids in white noise will be considered. Specifi- Normalized Frequency
cally, the time series under study is specified by Fig. 2. Thirtieth-order maximum entropy AR spectral estimate of two

sinusoids at normalized frequencies f, a 0.4 (10 dB) and f2 n 0.426

x(n) a ,/2 cos (0.4frn) + r" cos (0.426frn) + w(n) (20) (0 4B) based upon individual sequences of length 64.

where {w(n)} is a white Gaussian noise process of zero mean 0.4 and 0.426 are readily calculated to have a signal-to-noise
and unity variance. The sinusaids of normalized frequencies ratio (SNR) of 10 dB and 0 dB, respectively. A sequence of

. ,1
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apparent. In addition, a thirtieth-order AR spectral estimate
8th order which arises from this 640-length sequence is shown in Fig. 4.

Clearly, the new ARMA method has outperformed the AR
maximum entropy method in both the short and long data

0.00 0. 20 0.40 0.60 0. 0 1.00 length examples here considered.

V. CONCLUSIONS

15th order A generalization of a recently developed ARMA spectral esti-
mation method has been presented. This has included the in-

,. 0.0 0..6 o -, troduction of an error weighting matrix, the concept of using
forward and backward data, and, the utilization of Welch's

Fig. 3. ARMA spectral estimates of two sinusoids at normalized fr method for obtaining estimates of the spectrum's numeratorquencies m = 0.4 (10 dB) ande stma0.426 (0 dB) based upon all 640
observations. dynamics. Empirical evidence suggests that this new proce-

dure has an improved spectral resolution performance when
compared to popular contemporary methods. Its full poten-
tial will be realized, however, only after a number of relevant
issues are resolved. These include the task of determining

0.0 0.20 0.40 0.60 0.80 L. 00 good choices for the weighting matrix W, obtaining a data de-

Fig. 4. Thirtieth-order maximum entropy AR spectral estimate of two pendent procedure for estimating the ARMA model order,
inusoids at normalized frequencies f, = 0.4 (10 dB) and f2 = 0.426 and, investigating other numerator dynamics methods.

(0 dB) based upon all 640 observations. In addition to the specific weight matrix selection consid-
ered in this paper, the following two choices of criterion

length 640 defined over 0 -4 n - 639 was next generated using N -1 N 2

this relationship. Furthermore, in order to provide a statistical T F je(m, n)l

basis for our comparison, this 640 length sequence was then m.q i m.m+i 1

decomposed into ten dioint sequences each of length 64 de- and N w2 ( )
an Z w(n) N-I m n

fined on 0 4 n • 63, 64 • n • 127,- • •, 576 • n • 639. An +

ensemble consisting of ten subsequences each of length 64 has
thereby been generated with each subsequence having a differ- have given preliminary evidence of providing satisfactory spec-
ent noise sample and a different initial phase between the two tral estimation performance. Further investigation of this
sinusoids. This latter condition is useful in revealing any po- most critical weighting matrix choice is now being conducted
tential sensitivity to initial phase that the new ARMA spectral and will be subsequently reported upon.
estimation method may possess. REFERENCES
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its effectiveness on other classes of time series aloo shows promise and a more
general evaluation is presently beii., conducted. With this in mind, the new
ARMA procedure promises to be an important spectral estimation tool.
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