
AD-AI06 750 STANFORD LINIV CA DEPT OF COMPUTER SCIENCE F/6 9/2
VE RIFICATION OF CONCURRENT PROGRAMS. PART 1. THE TEMPORAL PRAME--ETC(U)
U S Z MANNA, A PNUELI NOOOATA-C-0687

UNCLASSIFIED STAN-S-81-836

EEEllEEEllEEEE
IEIIEIIEEEEEEE
EEEIIIIEIIIII
*IIIIIIIIIIIIII

~ Verification of Concurrent Programst
PartL.The Temporal Framework

by

Zohar/Mantia/ / -

Q-~~ Amirfrnucli

Research sponsored by

Office of Naval Research DTIC
- nELECTE

/>.NOV 6 18

Department of Computer Science

>- Stanford University
CA. Stanford, CA 94305

* -, .- -This docurnent has been approved
f Ior public release and sale; its
distIiutiot is unlimited

£2) ~1-(

June 81

VERIFICATION OF CONCURRENT PROGRAMS:
THE TEMPORAL FRAMEWORK

by

ZOIIAR MANNA AMIR PNUELI
Computer Science Department Applied Mathematics Department
Stanford University The Weizriann Institute
Stanford, CA Rehovot, Israel
and
Applied Mathematics Department
The Weizmann Institute
Rehovot, Israel

ABSTRACT

This is the first in a series of reports describing the application of temporal logic to the
specification and verification of concurrent programs.

We first introduce temporal logic as a tool for reasoning about sequences of states. Models
of concurrent programs based both on transition graphs and on linear-text representations are
presented and the notions of concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe
properties of concurrent programs.

The set of interesting properties is classified into invariance (safety), eventuality (liveness),
and precedence (until) properties. Among the properties studied are: partial correctness, global
invariance, clean behavior, mutual exclusion, absence of deadlock, termination, total correctness,
intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
fair responsiveness, and precedence.

In the following reports of this series, we will use the temporal formalism to develop proof
methodologies for proving the properties discussed here.

A preliminary version of this paper appears in The Correctness Problem in Computer Science (R.
, S. Boyer and J S. Moore, eds.), International Lecture Series in Computer Science, Academic Press, .n

London, 1981.

This research was supported in part by the National Science Foundation under grants MCS79-
09495 and MCS80-06930, by the Office of Naval Research under Contract N00014-76-C-0687, and
by the United States Air Force Office of Scientific Research under Grant AFOSR-81-0014. '

y

nn or
1 pvec ia

, .*

INTRODUCTION

Temporal logic is a special branch of logic that deals with the development of situations in
time. Whereas ordinary logic is adequate for describing a static situation, temporal logic enables
us to discuss how a situation changes due to the passage of time. An execution of a program is
precisely a chain of situations, called execution states, that undergo a series of transformations
determined by the program's instructions. This suggests that temporal logic is an appropriate tool
for reasoning about the execution of programs. The special advantage of this approach is that it
enables us to formalize the entire execution of a program and not just the function or relation it
computes.

The temporal logic approach offers special advantages for the formalization and analysis of
the behavior of concurrent programs. Concurrent programs have long been a difficult subject to
formalize and have often defied generalization of methods that worked perfectly for sequential
programs.

One inherent difficulty in analyzing a concurrent program is that when combining two processes
to be run in parallel, we cannot infer the input-output relation computed by the combined program
from just the input-output relations computed by each of the individual component processes. The
obvious reason for this is that, running in parallel, the processes may interfere with one another,
altering the behavior each would have when run alone. Consequently, in order for any approach
to stand a chance of success, it must deal with more than the input-output relation computed by
a program. It should be concerned with execution sequences in one form or another, as well as be
able to discuss mid-execution events.

Another inherent difficulty is the discontinuity associated with the simulation of concurrency
by multiprogramming. A very convcnient and widely used model of real concurrency is to regard
the participating events as composed of many atomic basic steps. Then instead of requiring that
these basic steps occur concurrently, we consider sequences in which these steps are interleaved in
all possible ways. The problem with modelling concurrency by multiprogramming (interleaving)
is that without further restrictions a certain process can be discriminated against by having its
execution continually delayed. Disallowing this discrimination introduces a discontinuity into the
set of interleaved execution sequences.

Consequently, any approach which is based strongly on the concept of continuity, such as
the denotational approach or equivalent relational ones, is bound to face severe difficulties when
extended to deal with concurrency.

Temporal logic avoids both these difficulties by (a) being geared from the start to analyze
and formalize properties in terms of execution sequences, and (b) not being based on limits and
assumptions of continuity. In fact, it can very easily and naturally express such concepts as
"eventually" which describes an event arbitrarily ahead in the future, but still a finite duration
away.

In this report we introduce the framework and language of temporal logic and demonstrate
its appropriateness for describing properties of programs.

We start with an exposition of modal logic whose domain of interpretation is a set of states
and (general) accessibility relations connecting these states. We then specialize to temporal logic
which requires that the states form a linear discrete sequence. Linear discrete sequences can be

2

I

used to describe a dynamic process that goes through changes at discrete instants. Conaquently,
temporal logic is suitable for reasoning about such dynamic processes and their behavior in time.

Next, we present a model of concurrent programs. The basic model is based on several
concurrent processes, each of which is given in the form of a transition graph or a linear-text
program. Executions of concurrent programs are defined to be an interleaving of execution steps,
each taken from one of the processes. We discuss the conditions under which an interleaved
execution faithfully represents real concurrency. One of these conditions calls for the interleaving
to be fair in that no process is neglected for too long.

We then show how the language of temporal logic can be further specialized to reason about
execution sequences of programs. In this way, properties of programs which are expressible as
properties of their execution sequences are readily formalizable.

The rest of the report overviews in a systematic manner the different properties of interest.
They are classified into:

* Invariance properties, stating that some condition holds continuously throughout the computa-
tion.

9 Eventuality properties, stating that under some initial conditions, a certain event (such as the
program's termination) must eventually be realized.

• Precedence properties, stating that a certain event always precedes another.

For each class of properties, we present several typical and useful properties together with
sample programs illustrating these properties.

3

1. THE GENERAL CONCEPTS OF TEMPORAL LOGIC

In the development of logic as a formalization tool, we can observe an increasing ability
to express change and variability. Propositional Calculus was developed to express constant or
absolute truth, stating basic facts about the universe of discourse. The propositional framework
mainly deals with the question of how the truth of a composite sentence depends on the truth of
its constituents. In Predicate Calculus we deal with variable or relative truth by distinguishing the
statement (the predicate) from its arguments. It is understood that the statement may be true
or false according to the particular individuals it is applied to. Thus we may regard predicates
as parameterized propositions. The Modal Calculus adds another dimension of variability to this
description by predicates. If we contemplate a major transition in which not only individuals,
but also the meaning of functions and predicates are changed, then the modal calculus provides
a special notation for this major change. For instance, any chain of reasoning which is valid on
Earth may become invalid on Mars because some of the basic concepts naturally used on Earth may
assume completely different meanings (or become meaningless) on Mars. Conceptually, this calls
for a partition of the universe of discourse into worlds of similar structure but different contents.
Variability within a world is handled by changing the arguments of predicates, while changes
between worlds are expressed by the special modal formalism.

Consider for example the statement: "it rains today". Obviously, the truth of such a statement
depends on at least two parameters: The date and the location at which it is stated. Given a specific
date to and location t o, the specific statement: "It rains at to on to" has propositional character,
i.e., it is fully specified and must either be true or false. We may also consider the fully variable
predicate rain(l, t): "It rains at I on t" which gives equal priority to both parameters. The modal
approach distinguishes two levels of variability. In this example, we may choose time to be the
major varying factor, and the universe to consist of worlds which are days. Within each day we
consider the predicate rain(l) which, given the date, depends only on the location. Alternatively,
we can choose the location to be the major parameter and regard the raining history of each
location as a distinct world.

As is seen from this example, the transition from predicate logic to modal logic is not as sharp
as the transition from propositional logic to predicate logic. For one thing it is not absolutely
essential. We could manage quite reasonably with our two parameter predicate. Second, the
decision as to which parameter is chosen to be the major one may seem arbitrary. It is strongly
influenced by our intuitive view of the situation.

In spite of these reservations there are some obvious advantages to the introduction and use of
niodal formalisms. It allows us to expliciily make one parameter more significant than all the others,
and makes the dependence on that parameter implicit. Nowadays, when increasing attention is
being paid to the clear correspondence between the syntactical structure of a program and its
functional decomposition (as is repeatedly stressed by the discipline of structured programming), it
seems only appropriate to introduce extra structure into the description of varying situations. Thus
a clear distinction is made between variation within a world, which we express using predicates and
quantifiers, and variation from one world to another, which we express using the modal operators.

Another way to view the generalization offered by modal logic is to claim that predicate
calculus is appropriate for describing static situations. It gives statements about basic objects and
their interrelation. The additional dimension provided by the modal logic is that of dynamic change
from one situation into the other. One of the characteristics of changes d1e to time transitions is
the fact that the same basic objects and entities exist in each of the static situations but that their

4

. # •

attributes and interrelations may change. Thus modal logic faithfully and conveniently portrays

for us a dynamic situation consisting of a set of static situations and rules of change between them.

THE MODAL FRAMEWORK

The general modal framework (IHCJ) considers a universe that consists of many similar
states (or worlds) and a basic accessibility relation between the states, R(s, s'), which specifies
the possibility of getting from one state s to another state a'.

Consider again the example of rainy days, with time taken to be the major parameter. There,
each state in the universe is a day. A possible accessibility relation might hold between two days
s and s' if s ' is in the future of s.

The main notational idea is to avoid any explicit mention of either the state parameter (date in
our example) or the accessibility relation. Instead we introduce two special operators that describe
properties of states which are accessible from a given state in a universe.

The two modal operators introduced are 0 (called the necessity operator) and 0 (called the
possibility operator). Their meaning is given by the following rules of interpretation in which we
denote by IwkJ the truth value of the formula w in a state s:

IOwl, = Vs'[R(s, s') IlJ1, 1I

I0 wl = 3s'[R(s, 3') A Iwl,,I

Thus, 1O w is true at a state s if the formula w is true at all states R-accessible from s. Similarly,
0w is true at a state s if w is true in at least one state R-accessible from s. Usually, R is taken
to be reflexive, so that every state is R-accessible from itself and thus R(s, s) always holds.

A modal formula is a formula constructed from proposition symbols, predicate symbols (in-
cluding equality), function symbols, individual constants and individual variables, the classical
operators and quantifiers, and the modal operators. A formula without any modal operators is
called a static formula. A fully modal (dynamic) formula is conveniently viewed as consisting of
static subformulas to which modal and classical operators are applied. The truth value of a modal
formula at some state of a given universe is found by a repeated use of the rules above for the
modal operators and evaluation of any static subformula on the state itself. It is assumed that
every state contains a full interpretation of all the classical symbols in the formula, which fully
determines the truth value of every static formula.

For example, the formula

rain(l) D 0 ,-rain(l)

is interpreted in our model of rainy days as stating: For a given day and a given location t, if it
rains on that day at I then there exists another day in the future on which it will not rain at t;
thus any rain will eventually stop. Similarly,

rain(l) D 0 rain(t)

claims that if it rains on that day it will rain everafter. Note that any modal formula is always
considered with respect to some fixed reference state, which may be chosen arbitrarily. In our
example, it has the meaning of "today".

5

Consider the general formula

0- =_- 0w.

As we can see from the definitions this claims that all R-accessible states satisfy -- w if and only
if there does not exist an R-accessible state satisfying w. This formula is true in any state for any
universe with an arbitrary R.

We now give a more precise definition. A universe U for a modal formula w consists of
a nonempty domain D, a set of states (or worlds) S, and a binary relation R on S, called the
accessibility relation. Each state s provides a first-order interpretation over the domain D for
all the proposition symbols, predicate symbols, function symbols, individual constants, and (free)
individual variables in w. A model (U, so) is a universe U with one of the states of U, so E S,
designated as the initial or reference state. In short,

(domain - D
universe of w = set of states - S

faccessibility relation between states - R

where

state = assignment to symbols of w over D

We define the truth value of a modal formula w at a state s (denoted by IwIa) in a given
universe U inductively:

1. If w is static, i.e., contains no modal operators, then its truth value
jwj8 is found by interpreting w in a.

2. 10 l , is Vs'[R(s,s') D lIsl'J.

3. IOw wl. is 3s'[R(s, s') A IwI.,1.

4. IWI V w21s is true iff either Iwi, is true or IW21 is true.

5. I-wi, is true iff Iw!. is false.

Note that by our rules of interpretation

* IO(Olw)I) means that lOwl, is true at some state s', R-accessible from s. That is,

O 1W

stands for: we can get to a point where w is true everafter; i.e., there is a state s' R-accessible from
s such that s' itself and all of its R-descendants satisfying w.

* 0'(O w)j1 means that io wl' is true for all states s', R-accessible from a. That is,

3 O0 w

stands for: wherever we go w is still realizable; i.e., for every state s' accessible from s it is possible
to find an R-descendant of s' which satisfies w.

6

1 O(w 0 0 w)I, means that 1w 0 0 wI5, is true for all states a', R-accessible from a. That is,

0(wi 0 W)

stands for: if w ever becomes true in some s' accessible from 8, it remains true for all descendants
of a'.

If a formula w is true in a state so in a universe U we say that (U, So) is a (satisfying) model
for that formula, or that the formula is satisfied in (U, 8o).

A formula w which is true in all states of every universe is called valid; that is, for every
universe U of w and for every state s in U, Iwj.o is true. For example, the formula

is a valid formula. This formula establishes the connection between "necessity" and "possibility".

Another valid formula is

D(w1 D W2) (DOW1 D OW2),

i.e., if in all accessible states wl D W 2 holds and if w, is true in all accessible states, then w2 must
also be true in all of those states.

Both formulas are valid for any accessibility relation. If we agree to place further general
restrictions on the relation I?, we obtain additional valid formulas which are true for any model
with a relation satisfying these restrictions. According to the different restrictions we may impose
on R, we obtain different modal systems. In our discussion we stipulate that I? is always reflexive
and transitive; i.e., we consider a formula to be valid iff it is true in all states of every universe
with a reflexive and transitive accessibility relation.

For example, the formula

Ow D w

is valid since it is true for every reflexive model. It claims for a state s that if all states accessible
from s satisfy w, then w is satisfied by s itself. This is obvious since s is accessible from itself (by
reflexivity).

The formula

0 0w w,

which stands for (0(0) w)) D (0 w), is valid since it is true for all transitive models. It claims for
a state so: if there exists an S2 accessible from sl which is accessible from so such that S2 satisfies
w, then there exists an 83 accessible from so which satisifies w. This always holds in a transitive
model since by transitivity, 82 is also accessible from so and we may take S3 = 82.

TIE TEMPORAL FRAMEWORK

The framework of temporal logic is a modal framework in which we impose further restrictions
on the models of interpretation ([PRI], [RUI). The interpretation given by temporal logic to the

7

basic accessibility relation is that of the passage of time. A world s' is accessible from a world a
if through development in time, s can change into s'. We concentrate on histories of development
which are linear and discrete. Thus, the models of temporal logic consist of w-sequences, i.e.,
infinite sequences of the form o = so, sI, In such a sequence, s, is accessible from a, if i <
j. Due to the discreteness of the sequences we can refer not only to states that lie in the future
of a given state, but also to the (unique) immediate future state or next state. This leads to the
introduction of an additional operator, the next instant operator denoted by 0.

Relating these concepts to the general modal framework, a universe for temporal logic consists
again of a collection of states (worlds). On these states we define an immediate accessibility relation
p which is required to be a function. That means that every world s has exactly one other world S'
such that p(s, s'). This corresponds to our intuition that in a discrete time model each instant has
exactly one immediate successor. R - p*, the transitive reflexive closure of p, is the accessibility
relation discussed under the general modal framework and is indeed both reflexive and transitive.
Intuitively R(s, s') holds when s' is either identical to s or lies in the future of s.

Given the restrictions imposed on R, the resulting model (U, so) can be represented as an
infinite sequence of states,

U = SO, S1, S2,

where p(s,, s,,-) is true for i > 0. This intuitively corresponds to the temporal development of a
process observed at a sequence of discrete points in time.

We will now give a more complete definition of the language we are going to use. Note that
this language is designed specially for the application we have in mind, namely reasoning about
programs, and is not necessarily the most general temporal language possible.

Symbols. The language uses a set of basic symbols consisting of individual variables and constants,
and proposition, function and predicate symbols. The set is partitioned into two subsets: global
and local symbols. The global symbols have a uniform interpretation over the complete universe
and do not change their value or meaning from one state to another. The local symbols, on the
other hand, may assume different meanings and values in different states of the universe. For our
purpose, the only local symbols that interest us are local individual variables and local propositions.
We will have global symbols of all types.

Our symbols are further partitioned into different sorts. Each sort corresponds to a different
domain, and the interpretation will associate a domain with every sort. Corresponding to a sort we
may have individual constants that are interpreted over the associated domain, individual variables
that assume values from that domain, function symbols that represent functions over the domain,
and predicate symbols that represent predicates over the domain. The symbols used for individual
constants, functions and predicates will be typical of the first-order theory of the domain we wish
to formalize. For example, in dealing with the theory of natural numbers we use the conventional
symbols:

(0, 1, ... ,+ ,- , ,)

Note that some functions and predicates may have a non-homogenous signature, i.e., they
may have different sorts associated with different argument positions. A typical example is the
if-then-else function which accepts one boolean argument and two arguments of possibly another
sort.

Operators and quantifiers. We use the regular set of boolean connectives: A, V, i, =, and
together with the equality operator = and the first-order quantifiers V and 3. This set is referred
to as the classical operators. The modal operators are:

0, 0, 0 and U;

they are called respectively the always, sometime, next and untiloperators. The first three operators
are unary while the U operator is binary.

The quantifiers V and 3 are applied only to global individual variables.

Terms. Terms are constructed from individual constants and individual variables to which we
apply functions. The application must conform with the arity and sort signature restrictions
associated with each symbol. An additional rule is that if t is a term so is 0 t - referred to as
the next (value of) t. Note that we use the next operator 0 in two different ways - as a temporal
operator applied to formulas and as a temporal operator applied to terms.

Formulas (sentences). Formulas are constructed from atomic formulas to which we apply the
boolean connectives, the modal operators and quantification over global individual variables. Atomic
formulas consist of propositions and predicates (including the '=' operator) applied to terms of
the appropriate sorts.

Recall that a formula is said to be classical (static) if it involves no modal operators.

We will sometimes regard propositions and (closed) formulas as integer-valued functions yield-
ing I for true and 0 for false. These functions can then be combined arithmetically in order to
provide a compact representation for equivalent but longer propositional formulas. For example,
for propositions pl, .. •, p , the statement

n

Pi- +P,- or Zpi=l
s=1

states that exactly one of the p,'s is true. This is of course equivalent to the formula

V P, A A -(,A^ p,).
l<i<n l~i<j~n

MODELS (ENVIRONMENTS)

A model (I, a, a) for our language consists of an (global) interpretation I, a (global) assignment
a and a sequence of states a.

The interpretation I specifies a nonempty domain D, corresponding to each sort, and assigns
concrete elements, functions and predicates to the (global) individual constants, function and
predicate symbols.

]9

The assignment a assigns a value over the appropriate domain to each of the global free
individual variables.

The sequence a = so, s1, .. is an infinite sequence of states. Each state a, assigns values to
the local free individual variables and propositions.

For a sequence

=, 801t ...

we denote by

a (i) sz Sl i 1 + .

the i-truncated suffix of a.

Given a temporal formula w, we present below an inductive definition of the truth value of
w in a model (I, a, a). The value of a subformula or term r under (I, a, a) is denoted by rja, I
being implicitly assumed.

Consider first the evaluation of terms:

e For a local individual variable or local proposition y:

i.e., the value assigned to y in so, the first state of a.

For a global individual variable or global proposition u:

i.e., the value assigned to u by a.

* For an individual constant the evaluation is given by I:

= I[c].

* For a k-ary function f:

S.f(t1,.. ,tk)j oa = S(f](t I I .a ,Itkl or

i.e., the value is given by the application of the interpreted function Itf] to the values
of tl, ... ,tk evaluated in the environment (I, a, a).

* For a term t:

0 ti = tta(I)

i.e., the value of 0 t in a = so, si, .. is given by the value of t in the shifted sequence
Or(l) -"Sly 82P

10

" . .A _. ..'.. :. . . - -'... .' ". ' ' , : ., , . .

Consider now the evaluation of sentences:

* For a k-ary predicate p (including equality):

A~t, ... , = /[pl(tl , I .I , tk[a).

Here again, we evaluate the arguments in the environment and then test I[p] on them.

* For a disjunction:

(wI Vw 2)1a = true iff w iI = true or w21a - true.

* For a negation:

c= true iff wl false.

* For a next-time application:

Owl" = wla(I).

Thus O w means: w will be true in the next instant - read "next w".

* For an all-times application:

OwIa = true iff for every k > 0, w1a(k) = true,

i.e., w is true for all suffix sequences of a. Thus Ow means: w is true for all future
instants (including the present) - read "always w" or "henceforth w".

e For a some-time application:

OwIa = true iff there exists a k > 0 such that wIa(k) = true,

i.e., w is true on at least one suffix of a. Thus '>w means: w will be true for some
future instant (possibly the present) - read "sometimes w" or "eventually w".

9 For an until application:

U W21 = true if for some k > 0, W21o(k) = true and

for all i, 0 < i < k, w, 0 (s) = true.

Thus w, W w2 means: there is a future instant in which W 2 holds, and such that until
that instant w, continuously holds - read "w, until w2 "([KAM], [GPSS]).

* For a universal quantification:

(Vu.w)l = true iff for every d E D., wI ' = true,

where a' = a o [it -- di is the assignment obtained from a by assigning d to u. Di is
the domain corresponding to the sort of u.

11

* For an existential quantification:

(3u.w)IO = true if for some d E D,, wI = true,

where a' = a o [u +- dl.

Following are some examples of temporal expressions and their intuitive interpretations:

ui Ov - If u is presently true, v will eventually become true.

O(u D 0 v) - Whenever u becomes true it will eventually be followed by v.

O Ow - At some future instant w will become permanently true.

O(w A 0 -- w) - There will be a future instant such that w is true at that instant and false
at the next.

o > w - Every future instant is followed by a later one in which w is true, thus w is
true infinitely often.

O(u D 0 v) - If u ever becomes true, then v is true at that instant and ever after.

Ou V (u U v) - Either u holds continuously or it holds until an occurrence of v. This is the
weak rorm of the until operator that states that u will hold continuously
until the first occurrence of v if v ever happens or indefinitely otherwise.

0 v D ((--.v) U u) - If v ever happens, its first occurrence is preceded by (or coincides with) u.

If w is true under the model (1, a, a) we say that (I, a, a) satisfies w or that (I, a, a) is a

satisfying model for w. We denote this by

(Ia,a) I W.

A formula w is satisfiable if there exists a satisfying model for it.

A formula w is valid if it is true in every model, and we write

I- WI.

Sometimes we are interested in a restricted class of models C. A formula w which is true for
every model in C is said to be C-valid, denoted by

CO w.

Example:

The formula O(wi A w2) D (0 wi A 0 w2) is valid, i.e.,

>(Wj A U12) D (0 wi A 0 W2)2
12

It says that if there exists an instant in which both wt and W 2 are true then there exit ts an instant
in which w, is true and there exists an instant in which W2 is true.

The D-converse of this formula is not valid, i.e.,

S(0 wt A W 2) O(wi A W2).

For, consider an interpretation in which wt is true and W 2 is false at state s, and in which wt is
false and W 2 is true at state 82, and S2 is accessible from s, (also clearly a, from 81 and s2 from
s2)

wt : true w1 :false
12 :false W2 : true

Then at state sj:

" o; is true (since w is true at s1)

w W2 is true (since w 2 is true at s2)

SO(wi A w2) is false (since w1 A W 2 is false at s, and at 82).

Therefore, the formula is false under this interpretation. 1i

A REPERTOIRE OF VALID TEMPORAL STATEMENTS

In this section we present a list of valid temporal statements (schemata) which we justify by
semantic considerations. There are two reasons for presenting them here. First we would like to
illustrate the type of temporal reasoning we will later use. Second, the statements presented here
will later be taken to be established valid statements and used freely in proofs. When, in a later
part of this work, we present a formal deductive system for temporal reasoning, we will take some
of the valid statements listed here as axioms and deduce the others as theorems.

In the following list, whenever we write a valid temporal statement in form I- A : B and not
o A = B, it implies that its i-inverse is not valid, i.e., P B D A. That is, a model can be found
under which an instance of B D A will be false.

1. 1 --.w - - W

2. 1 -. o .- 0w

3. 1 O---w -- Ow

These statements point out the duality between the operators.

Statement I says that w is false in all states (instants) of a sequence if" there is no state in
which to is true.

13

IZ

Statement 2 says that there is a state in which w is false iff it is not the case that w is true in
all states.

Statement 3 says that w is false in the next state iff it is not the case that w is true in the
next state. This statement restricts each state to have a single successor.

4. 1= w D 0 w

5. 1= 0w J w

6. I= Ow D 0w

7. 1= l w D Ow

8. 1= 0lw D w

9. 1= w 00w

10. 1= wIUw 2 D OW2

11. I= 00w 3 00w.

Statement 4 says that if w is true now, then it will be true sometime in the future. This is an
immediate consequence of the fact that the present is considered to be part of the future.

Statement 5, a dual of 4, says that if w is true in all future instants it is also presently true.

Statement 6 says that if w is true at the next instant it will sometime be true. This is because
the next instant is also a part of the future.

Statement 7, a dual of 6, says that if w is true in all future instants it is also true for the next
instant.

Statement 8 says that if w is always true then it is sometimes true.

Statement 9 says that if w is true in all future instants it is also true for all future instants of
the next instant, i.e., all future instants excluding the present.

Statement 10 says that if w, is true until w2 will happen then w 2 will eventually happen.

Statement 11 says that if w is permanently true beyond a certain instant then w is true
infinitely often.

12. 1= Ow 00w

13. = Ow 00w.

The statements 12 and 13 say that both 0 and 0 are idempotent. Intuitively speaking both imply
that the future is equivalent to the future of the future. Note that a corresponding statement does
not hold for 0, sinceboth VOw D 00w and IYOOwD Ow.

14. 1= 00w 03w

15. I= Ow O0w

14

16. 0 ((o WI,) U (0 ,W2)) - o(,,, U ,W2).

Statements 14 to 16 indicate the commutativity of the next operator 0 with each of the others. It
amounts to a shift of our reference point from the present to the immediately next instant.

Statement 14 says that w holds for the instant next to every future instant iff w holds for all
future instants, barring the present.

Statement 15 says that w is realized in an instant next to some future instant iff it is realized
sometimes in the future, excluding the present.

Statement 16 says that Owl holds until an instance of O w 2 if wl holds until W2 starting
from the next instant.

17. 1 O(wiAw 2) (OwIAOw 2)

18. O C(w vw 2) (0 W1 VC'w 2)

19. O(wiAw 2) (OwlAOw2)

20. (o(wIVw2) (0w 1 V0w 2)
21. O(W Ww2) -(OwlDOW2)

22. O(W -W2) =(OW=-OW2)

23. ((wi A W2) U W3) ((W, I w3) A (W U W3))

24. 1- (W1 U (W2 V U3)) ((WI wU2) V (W, U W3)).

Statements 17 to 24 indicate distributivity relations between the temporal operators and the boolean
connectives.

The 0 operator has a universal character - stating w for all future instants, and the 0 operator
has an existential character - stating w for some future instant. Consequently 0 distributes with
A (17) stating that both wl and w2 hold in every future instant if wl holds for all future instants
and so does w 2 . The C' operator distributes with V (18) stating that there will be an instant in
which either wl or W2 hold if" there either will be an instant in which wl holds or there will be an
instant in which w2 holds.

The 0 operator has both universal and existential character because it refers to a unique
instant - the next one. Therefore it distributes with both A and V, as is shown by statements 19
and 20.

Since the 0 operator has been shown to distribute with the basic boolean connectives '-,

A, V, it will also distribute over any other boolean connective such as i and =. For example,
Statement 21 says that if in the next instant wl implies w2 and wl is known to hold at the next
instant then so does w2 .

The until operator has a different character with respect to its two arguments. It is universal
with respect to its first argument which appears in the semantic definition under a Vi(O < i < k)
quantification. It is existential with respect to its second argument which appears in the semantic
definition under a 3k(k > 0) quantification.

15

Iq

Statement 23 says that w, and W2 both hold until an instance of w3 if 1 holds until an
instance of W3 and W2 holds until an instance of W3. To justify the implication from right to left,
we are guaranteed of having a t1 such that W3 is true at tj and w, holds until then, and a t2 such
that tW3 is true at t2 and W2 holds until then. By considering the earliest of these two instants
t = min(t 1 ,t 2) we know that W3 is true at t and both w, and W2 hold until then.

Statement 24 says that w, holds until an instance of either W2 or W3 if either w, holds until
an instance of W2 or w, holds until an instance of w3.

25. I= (OwIVOw2) D O(wIVuj 2)

26. Ir- *(wi AW2) D (OwtAOW2)

27. 0 ((W,, w)V(W2 UW 3))) (WivW2)UW

28. I (U U (W2 A 3)) D ((o, U ,,,2) A (,,, U 103)).

Statements 25 to 28 indicate implications that hold when we interchange the order between
temporal operators and the boolean connectives. They are not equivalences and only the direction
of the given implication is true.

Statement 25 says that if either w is true for all future instants or W2 is true for all future
instants then in every future instant either w, or W2 holds.

Statement 26 says that if there exists an instant in which both wl and W2 are true then there
exists an instant in which w, is true and there exists an instant in which W2 is true.

Statement 27 says that if either w holds until W3 or W2 holds until W3 then there is an instance
of W3 such that until then either w, or w2 holds.

Statement 28 says that if w, holds until an instant t in which both W2 and W3 are true then
both w, holds until W2 at t and w, holds until W3 at t implying the conjunction.

29. 1-- O-(wI D W2) D:: (rlwt D D-W2)

30. 0 O(I 1 D W2) :) (0 W01 D 0 W1,2)

31. 1 0(W1 D W2) D (O O D 01W2)

32. 1 O(wI 2) D ((WI U 3)) (W2 U W3))

33. 1 O(WI D 12) D ((WO U W) D (WO U ,,2)).

Statements 29 to 33 indicate the monotonicity of each of the temporal operators; that is, if
its application to a formula w, is true and w, universally implies W2 (for all instants) then its
application to W2 is also true.

This property is stated respectively for 0 in 29, 0 in 30, 0 in 31 and the two positions of Ui
in 32 and 33.

34. In (-wiAOw2) D O(wiAW2)

35. P (nw1 A<>w 2) * <>(wtAi 2)

16

.......

36. (Wi A (W2 U W)) (iA U2) U (wi A W).

Statements 34 to 36 are frame rules. They say that if wt is known to hold for all states then wt
may be added as a conjunct under any other temporal operator. This is respectively stated for 0
in 34, for 0 in 35 and for both argument positions of U in 36.

37. 0 (w AO(w~ D0w)) : Ow
38. 0 (wA*-w) D O(wAO-w).

39. 1 (OwiAOw2) D [*(wjAOw 2) V O(w 2 A Owi)].

Statements 37 and 38 are induction rules and Statement 39 describes the linearity property.

Statement 37 (corresponding to computational induction) says that if the fact that w holds at
any instant implies that it also holds at the next instant, and w holds in the present, then u; holds
at all future instants.

Statement 38 (corresponding to the least number principle) is the dual of 37. It says that if w
is true now and is false sometime in the future, then there exists some instant such that w is true
at that instant and false at the next.

Statement 39 says that if w, and W2 are both guaranteed to happen, then either wt will
happen first, followed by w 2 or w 2 will happen first, followed by wl.

40. 1= Ow (wAO3w)

41. 1-- Ow (wVOOw)

42. 1- W1 U W2 W2 V(wi A O(wi U U2))

Statements 40 to 42 explain the 0, 0, and U operators respectively by distributing their effect
into what is implied for the present and what is implied for the next instant.

Statement 40 says that w is true for all future instants iff w is true for the present and for all
instants lying in the future of the next instant.

Statement 41 says that w is true in some future instance iff it is either true now or true at an
instant not earlier than the next.

Statement 42 says that 'w1 until w 2 ' is presently true iff either w 2 is true now or w, holds
now and 'w1 until W2 ' is true for the next instant.

43. 0 (-w U w) = < w

44. 0 (0-w, A <W2) D (W, U W2)

45. 0 ((wl Dw2)Uw3) D ((w1Uw3)D(w 2 Uw3))

46. 1 ((wI U W2) A (-W 2 U W3)) D (WI U w3)

47. I (W1 U (W2 A W3)) ((Wo U W2) U w1)

17

.

48. 1- ((wI U W2) U W3) ((1 V W2) U u3)

This list of statements illustrates some properties of the until operator.

Statement 43 says that w is guaranteed to happen iff there is an instant in which to is true
and until this instant w is false. This states that w happens iff there is an earliest occurence of w.

Statement 44 says that if w2 is guaranteed to happen and w1 is constantly true, then it will
be true until a guaranteed occurence of W2.

Statement 45 says that if w, implies w2 until W3 happens and w, is true until an instance
of W3 (not necessarily the same instance) then w 2 will hold until an instance of W3 (which can be
taken as the earlier of the two).

Statement 46 says that if w, holds until W2 and w2 is false until W3 then w, is true until W3 .
To justify this let (a) W I Uw 2 and (b) -W 2 U w3 be the two clauses given as premises. By (b) we
know that W3 will happen say at t 3 and w2 will be false until then. By (a) W2 must happen, say at
t2 and wt must be true until then. By (b) t 2 _> t 3 so that w, must certainly be true until t3 , an
instance of w3 -.

Statement 47 can be justified as follows. The premise guarantees an instant t 2 such that W2

and W3 are both true at t 2 and wl is true until then. Clearly, taking any 0 < t1 < t 2 we know
that W2 will be true at t 2 and w, is true for every t, t, t < t 2 , thus w, U W2 at tl. Since wt U W2

is true for every ti, 0 < t, < t 2, and W3 is true at t2 , w1 U W2 is true until W3.

Statement 48 says that if w Itw 2 is continuously true until an instance of W3 then so is wIVw 2.

Statement 49 says that if both w, and w2 are guaranteed to happen then one of them will
happen "first"; that is, either W2 happens first and wt is false until then, or w, happens first and
W2 is false until then. (In both cases we allow the possibility that both w, and w2 occur for the
first time at the same instant.)

50. I0 0 3xw 3x 0w

51. 1-- OVxw Vx 0w

52. 1- O 3xw 3z w

53. 1= OVxw Vx OwI

54. 0 ((VxwI)U w2) VX(wi i w2) provided x is not free in W2

55. = (w, U (3XW 2)) - 3x(w, U W2) provided x is not free in wl

Statements 50 to 55 indicate the commutativity relations between the temporal operators and the
quantifiers. They follow from our restriction that the quantifiers V and 3 are to be applied only to
global individual variables. Statements 50 and 51 are known as Barcan's formulaa.

Statement 50 demonstrates once more the existential character of the operator 0. It says that
in some instant there exists an z satisfying w(z) iff there exists an x such that at some instant
w(x) is satisfied.

18

- .. ' r-~' ~ -

-_--_i_.... .. __l_______________.___I . . -, I-

'-'-. 2 o... 1. - ,

Statement 51 demonstrates the universal character of the 0 operator. It says that w is true
in all instants for all values of x iff it is true for all values of z for every instant.

Statements 52 and 53 demonstrate the dual character of the 0 operator, which is both
universal and existential.

Statements 54 and 55 demonstrate that the until operator has a universal character with
respect to its first argument and an existential character with respect to its second argument.

The preceeding statements were all of the form

and they stated formulas which are true in every model. The next list of statements contains
inferences of the form

0 Wt1 =4 = w 2 .

They state that if Wl has been shown to be a valid statement then so is W2 . The inference
statements enable us to deduce the validity of one formula from the other. For every valid formula
0 o 1 D W2 there is a corresponding inference 1= wl = W w2 , and this is a standard way of justifying
an inference. However, there are inferences I= wl 0 w2 such that P Wl D W2 is not a valid
statement (see, for example, the following inference 56).

56. 1 w 0 w 0-insertion

57. w = 0 w 0-insertion

58. 1 w 1= 0 w O-insertion

Inference 56 states that if w is valid then so is 0] w. The fact that w is valid means that it is true
for every sequence and therefore for all suffixes aW of a given sequence. Thus 0 w is true for every
sequence a and is therefore a valid statement.

Inference 57 may be deduced by inferring first 1= D-w and then using the valid statement
1- 0 w D 0 w (number 8 in our list) to infer 1= ow.

Inference 58 may be deduced similarly by using Statement 7, I= " w D 0 w.

59. 0 wl D W2 = 1 Ow 1 D 0 w 2 0 0 -insertion

60. W wl D W2 D 0 W2 0 0 --insertion

61. Wl :t) W2 4 OwL n Ow2 00 -insertion

These inferences are all obtained by infering first 1= 0(wl D W2) by Inference 56 and then using
statements 29 to 31, respectively.

62. 0Wi Ow 2 1 Wl D 0 W3 0-concatenation

63. 0 Wl OW2 o wl:) Ow 3 *-concatenationI0 W2 D '0 W3

19

Inference 62 is obtained by first deriving I= 0 W2 D 00 W3 by Inference 59, observing that
0 w3 =0 [w 3 , and then using propositional reasoning. Inference 63 is obtained similarly by

applying Inference 60. Note that the corresponding 0-concatenation inference does not hold.

PIfl w2

64. t W2 n 0w3 WI 1: 3 Ow 4 0-consequence
1=W3 DW 4 J

?- W1 D W2

65. 1 W2 D OW3J WI D O>W4 0-consequence
0 10 D W4 '

66. 0 w2 D 0w 3 W1 Di Ow 4 0-consequence
I= W 3 D W 4

Inference 64 is obtained by deriving first I 0 w3 D 0lW4 by 0 0-introduction (59) and
then applying propositional reasoning. Similarly, inferences 65 and 66 are obtained by deriving
= <W3 D 0 W4 and 0 0 W3 Ow 4 by 60 and 61, respectively.

20

....

2. CONCURRENT PROGRAMS AND THEIR EXECUTION

In the following we introduce the model of concurrent programs that we will study here. (For
simpler models see [KEL] and [LAMI].)

Pi P2 0 0 0 P,,

In our modcl, a concurrent program

):= [pill.., lP.]
consists of an initial value assignment y := fo(Y) followed by the parallel execution of m, m > 1
processes P1, ... , P,. The processes operate on a set of program variables Y = (Yt, ...)
which are shared between the processes. The variables - are accessible to all the processes for
both referencing and modifying. Each process Pi, i = 1, ... , rn, is an independent transition
graph with nodes (locations) labeled by 1', 1', ... , 1'. The sets of labels L, .. ,A}
of the different processes are disjoint. The edges (or transitions) in each process are labeled by
instructions of the form:

a

where cn(y) is a condition called the enabling condition of the transition a, and fa is the transfor-
mation associated with the transition a. If c,(l) is true we say that the transition a is enabled for

For a given node I with k outgoing transitions

ci(y) -- [Y := f(Y)] -

Ck(2) [-:= f()l

2.1

we define Et(y) = c(y) V ... Vc,(y) to be the full-exit condition at node 1. We do not require that
the individual conditions are exhaustive, i.e., that Et(y) = true for every V; thus, deadlocks (or
blockings) are allowed in our semantics. Nor do we require the conditions to be exclusive; thus, each
process can be nondeterninistic. A location whose individual conditions are mutually exclusive is
called a deterministic location. If E(1) is true, i.e. at least one of the a,, i - 1, . . . , k, transitions
originating from I is enabled, we say that the location I is enabled for - . If a process P, is
currently at I E L, which is enabled, we say that the process is enabled.

The set of program variables y = (y, y,,) is accessible and shared by all the processes.
This model of concurrent programs is therefore called the shared-variables model. In this model,
communication and synchronization between processes are managed via the shared variables.

The initial assignment y := fo(Y) assigns initial values to the shared program variables prior
to the beginning of the concurrent execution. The parameters Y = (x1, ... , xt) that appear in
this initial assignment, as well as other parameters appearing in the bodies of the processes, are
the input parameters of the program. The behavior of the program naturally depends on the input
parameters.

We will often represent a process in a linear-text form instead of a graph. In such a case the
nodes are the places (labels) just before each statement, and the transitions are the statements
themselves.

We list below the types of statements that we allow in the linear-text form and their repre-
sentation in the graph model:

' I: f := f(y)
I' :

is represented as
S true--* [:= f(fj)] ,

I: if p(y') then go to m
I' :

is represented as

P : if p(yj) then y :f(y)
I' :

is represented as

22

• " . .~ ~ . .' ,- - 0 '

t: loop until p(g)

This statement loops until the condition p(qj) becomes true. It is represented as

W 1: loopwhilep(q)
I' :

This statement is the complement of the above statement: it loops until condition p(g) is false. It
is represented as

0 1: compute ul, ... ,u, using vt, ... Iv

This statement represents a segment of terminating computation in whose details we are not
interested. The only facts we assume about this segment are:

1. The segment may modify only the program variables u1, • ., u,, r > 0,
and may reference only the program variables vj, .. s, 8 > 0.

2. The segment must eventually terminate.

The statement is represented as

(i3II~ true -- [(ul, ... ,u,): f(v, .. . ,v)

where f represents an unspecified function.

We will often use compute segments of the form

I: compute

for the case r = s = 0 to refer to a segment of terminating computation that does not modify or
access any program variables.

23

1: execute ul, ... , usinl v , ... ,v
1' :

This statement represents an arbitrary program segment that may modify only the program
variables uI, ... , u,, r > 0, and may reference only v1, . .. , v,, s > 0. Here we do not require
that the segment must eventually terminate. Consequently its representation is given by:

-true R [ut, , .Ur) AV V

true -[

1, : halt

is represented as:

4

i.e., a node with no exits.

Note that for all the statements considered so far, except for the halt statement, the full-exit
condition is always identically true. Also all the instructions (and their corresponding locations),
except for the execute ut, , Ur instruction, are deterministic, i.e., they have mutually exclusive
transitions.

Example:

Consider the following concurrent program for computing the binomial coefficient (k) for
integers n and k, such that 0 < k < n:

Program BC (Binomial Coefficient):

yj := n, y2 :O, Y3 :=l

to if yi = (n - k) then go to mo : if y2 = k then go to m,

It Y3 :=Y3 Yt M 1 : Y2 := Y2 + 1

12: Y : Yt1 M 2: loop until y1 + Y2 _ n

13 : go to 10 m 3 :Y3 := Y3/Y2

, : halt M 4 : go to mO

me : halt

- Process P - - Process P2 -

The input parameters to this program are n and k. Note that n appears in the initial
assignment while both n and k appear in statements of the processes.

We have not yet discussed the execution of concurrent programs in our model. Assume for
a moment that each instruction in this program is atomic and that at any instant only one such

24

S,,."

atomic instruction is executed. Once it is completed, another instruction (from either process) is
executed to its completion, and so on. Under this assumption, the program BCo computes the

binomial c- ,fficient

(n) (n -1). (n -k +I)
k ~ 1 -2. k

The values of yl, i.e., n, n - ! .1 . , n - k + 1, are used to compute the numerator in P (the

last value of y, n - k, is not used), and the values of y2, i.e., 1, 2, . . . , k, are used to compute the

denominator (the first value of Y2, 0, is not used). The process !1 multiplies n.(n-l1) . (n-k+l)

into y3 while P2 divides Y3 by 1 • 2 .. k.

The instruction

M2 : loop until yi + Y2 _ n

guarantees even divisibility. It synchronizes I.'s operation with that of P, to ensure that Y3 is

divided by i only after it has been multiplied by n - i + I. We rely here on the mathematical
theorem that the product of i consecutive positive integers: k . (k + 1) . (k + i - 1) is always

divisible by i!.

Now, consider the intermediate expression at Mi2 :

n.(n-). (n-j+i)
y3 - 2y3 i-

where 1 < i < j n, y- n-j and Y2 = i. The numerator consists of the product of j
consecutive positive integers arid is therefore divisible by i since i < j . If j = i, we have to wait
until Yj is decreniented by the instruction in t 2 from n - i + 1 to n - i before we can be absolutely
sure that (n - i -- 1) has been multiplied into Y3. Thus, process P 2 waits at M 2 until Y1 + Y2 drops
to a value less than or equal to n. I

In order to keep track of the progress of the execution in each process we use a vector of
location variables if {7r, ... , 7r,,} where each 7r, ranges over the label set I,, of process P,.

y :-- fo(x)

// \

/ "/ 'Ir1 7r m ?

~(,

P " P11

25

*

The location variable ir, points to the location in P which is to be executed next.

CONCURRENCY AND ITS MOI)ELLING BY INTERLEAVING

Before defining the execution of concurrent programs in our model, we should first study in
more detail the actual behavior of a physically concurrent system.

As our motivating real-life situation we consider a system consisting of m physically separate
processors [i,, . .. ,11m. Each of the processors 11, is responsible for executing the process program
P,. The shared program variables y1, . . . ,y,, reside in a common memory M to which each of
the processors must gain access in order to retrieve or store a value of a shared variable. In
addition, each of the processors has its own set of private variables (registers). These are used
to hold intermediate results of the computation or values which are not needed by the other
processes. We will refer to these private registers as to, tI, We assume that the shared memory,
M, is hardware protected to allow only one processor to access a shared variable at a certain
instant. While the access is taking place, the particular variable accessed is unavailable to all other
processors. Each access is restricted to a single operation, a value retrieval or a value update, but
not both.

Consider for example the joint operation of two processors f1i and 12 which are executing the
following concurrent program:

Elementary Program EP

y:=0

to: t:- y MO: t2 :=y
11 t : t, - I MI : t2 :=t2 -'+ 1

12 Y y:tl M2: Y:-- t2

4. halt m, : halt

- Pi- PI2 -

Each processor 11, has its private register t,, i - 1, 2. This program has been carefully constructed
so that it uses only three standardized types of elementary instructions:

a. A shared retrieval (reference), transferring the current value of a shared variable
into a private register:

t, := y and t 2 := y.

b. A shared update (modification), storing the value of a private register into a shared
variable:

y :=t and y := t 2.

c. An internal computation of the form t, :- f(t) assigning to one register of a
processor a value which is a function of the registers t of the same processor:

tt:=t - and t 2 := t 2 + 1.

26

,14

We also frequently use a fourth type of elementary instruction:

d. An internal test of the form

if p(t) then go to 1,

where t are registers of the same processor.

With the execution of the instructions of types a and b we can associate a unique event which
is the actual access to the shared memory M. We refer to these events as shared access events.
For the simple program presented above we can associate the events r,, i = 1, 2, with the retrieval
of the value of the shared y at the instruction in locations to and mo respectively. Similarly, we
associate the events u,, i = 1, 2, with the updating of the shared variable y at the instructions 12

and m 2 respectively. No access event is associated with internal computations such as those at 11
and irn.

Since in our example all four accesses refer to the same variable y, no two of them can occur
exactly at the same time because of the exclusivity mechanism provided by the memory unit M.
Thus in any possible concurrent execution of this program we will observe a linear sequence of the
occurrences of these four events. The only possible sequences are:

ri, u1 , r 2 , u 2 leading to a final value of y = 0

r2, U 2 , ri, ul leading to a final value of y = 0

ri, r2 , u 1 , u 2 leading to a final value of y = 1

rti, r 2, u 2 , u 1 leading to a final value of y = -1

r 2, ri, u1 , u 2 leading to a final value of y = 1

r 2 , r1 , u2 , ul leading to a final value of y = -1.

For this program, the sequence of access events uniquely determines the final state of the computa-
tion.

While the access events themselves are constrained by the memory protection mechanism to
form a linear sequence in which no two events coincide, the execution of the non-accessing part
of the instructions will generally overlap in time. In fact, many different executions which greatly
differ in the timing and overlaps of their non-accessing parts and instructions correspond to the
same linear timing sequence of the accessing events, and hence yield the same final state. This
proliferation of executions which all yield the same result and display essentially the same behavior
makes the analysis of concurrent executions unnecessarily complicated.

Consequently, in order to reduce the complexity of analysis we use a simplified model in which
the executions are restricted to be interleaved. An interleaved execution is one in which at any
instant only one processor is executing an elementary instruction to its completion. Once the
elementary instruction is completed. another processor may initiate an elementary instruction and
proceed to complete it. Under this model, the execution proceeds as a sequence of discrete steps.
In each step one enabled transition (instruction) is selected in one of the processes and is executed
to completion.

The selection of the next process to be executed is personified by a scheduler who performs the
selection. At each step of the computation the scheduler selects one process which has an enabled

27

transition and lets that process execute one instruction (transition). For the sake of completeness
we also allow the scheduler to arbitrarily insert an idling step in which no process is scheduled, no
irstruction is performed, and the values of all program and location variables remain the same. In
the case that no enabled transition is available, an idling step is the only choice that the scheduler
has thereafter. In such a case we say that the program is deadlocked. A special case of this situation
is when the program has terminated, i.e., all the processes have terminated.

When first encountered the model of interleaved execution may appear to be artificial and
counterintuitive. In fact it seems to defeat the whole idea of concurrency - concurrent (overlapping)
execution of instructions in different processes. Therefore we emphasize that the interleaving model
is only a mathematical device for simplifying the analysis which proves to be adequate for the kind
of non-quantitative analysis we consider here. That is, as long as we are not interested in questions
about the timing of instructions and the running time of a program and make no assumptions about
the relative speeds of the processors, the model of interleaved executions faithfully represents all
the possible behaviors of the program.

We use the following definitions:

* An access to a variable in an instruction of a process P, is defined to be critical if it is either
a modification of a variable which is accessed by other processes or an access to a variable
which is modifiable by other processes.

e An instruction is said to obey the single (critical) access rule if it contains at most one critical
access.

We can then state the following result:

Proposition (single (critical) access): Interleaved executions of a program P, all of whose instruc-
tions obey the single (critical) access rule, faithfully represent all concurrent executions of
P.

Thus, it is possible to represent by interleaving all possible situations arising under concurrency.
Since this approach greatly simplifies the analysis, we will adopt this it in our treatment of
concurrent programs.

One necessary exception to the single access rule is semaphores.

SEMAPHORES

Semaphores are devices for achieving synchronization in concurrent systems ([DIJ1). They are
special atomic instructions denoted by request(y) (also known as P(y)), and releasc(y) (also known
as V(y)), operating on the semaphore variable y.

The request instruction

0 1 : request(y)
I' :

is equivalent to the single transition

28

Y > =L- I Y

The release instruction

t : release(y)
I':

is equivalent to the transition

true -. y :=y-I + -

Semaphores are considered atomic (primitive) even under concurrent execution. Therefore
when programs are transformed to single access form, the semaphore instructions should be
preserved as atomic and not broken up into single access instructions. No other operations can be
performed on semaphore variables.

Usually the semaphore variable y is initialized to 1. A process reaching a request(y) instruction
will proceed beyond it only if y > 0, and then it will decrement y by 1, setting it to 0. Thus a
location containing a request(y) instruction can be used as a checkpoint, synchronizing the process
with other processes containing request(y) and release(y) instructions operating on the same y.

Consider a concurrent program of form

y~l

11 request(y) 12 request(y) Ik request(y)

M1 release(y) M2 release(y) m k release(y)

P - -Ph-

Assume, for example, that P arrived first at I1 when y was 1. It then went beyond 11 and set y to
0. As long as P is between 11 and m 1 , y will remain 0, and any other process, say P 2, which will
attempt to go beyond its request statement 12 will be held there since the enabling condition y > 0
is false. It must wait there for y to turn positive, which can only be caused by P performing the
release(y) operation at m. Even if P, and P 2 reach t and 12 simultaneously, the atomicity of
the request instruction (which is required for exactly this reason) ensures that only one process can
gain access to its region lying between I and m. This region is called a critical section, and our use
of semaphores in this example ensures mutual exclusion of access to the critical sections; that is,
at most one of the processes may execute its critical section at any instant. Semaphores may also
be used for a variety of other signalling and synchronization tasks.

29

Mutual exclusion of critical sections is necessary whenever two or more processes need to access
a shared variable or device (such as disk) and wish to be protected from interference or attempts
by the other processes to access the same resource while doing so.

Example:

Consider once more Program BC 0 (Dinomial Coefficient). In order to recast it in the single
access form we notice that the variable V3 is the critically shared variable. Hence, we have to break
the instruction

11 : Y3: Y3iY

into the sequence
i: t :----- y'y

Ii: Y3 : tl

Note that y/ is modified only by PI; hence its access at 41 is non-critical.

Similarly we have to break the instruction

m 3 :-Y := Y3/Y2

into
Mr3 :t2 : Y3/Y2

3 Y3 t 2 .

Note that both the assignments yj := Y1 - 1, Y2 := Y+ 1 and the test Y1- + Y2 n already
satisfy the single access rule.

The problem now is that of interference between the two new processes. Consider for example
an execution which includes the sequence:

Following this execution we find that while the instruction at ', stores a certain value into Y3, it
is immediately overwritten by the value stored into it by the instruction at m. Thus the value of
the computation performed in 41 is completely lost and the result is of course invalid. To prevent
such a mishap we must protect each of the sequences (ti, £') and (m 3 , m') from interference by the
other. The protection is done by using a semaphore variable Y4; the modified programs appears
below:

Program BC (modified Binomial Coefficient):

yj := n, Y2 := 0, Y3 :=1, Y4 := I

t o : if1y = (n - k) then go tote t.s: if Y2 = k then go to m.

i1 : request(y4) M : Y2 := Y2"+ 1

t2: t = Y3 * Y1 m2 : loop until yt + Y2 n

13 : Y3 := t 3 : request(y4)

14 : release(y4) M 4 : t 2 := Y3/Y2

Is: Yl/:= Yl-1 inS: Y3 :=t 2

4: go to to M6: release(y4)

.: halt ro7 : go to MO

m,: halt

30

The mutually protected critical sections are (12,13,14) and (m4 ,ms,m) respectively. Their
exclusion ensures that each computed value of y3 is assigned to y3 without any interference. Under
interleaved executions, BC computes the binomial coefficient and is in single reference form.

Example:

Consider the following program CP modelling a consumer-producer situation:

Program CP (Consumer Producer) :

b:= A, s 1, cf :=0, ce := N

to compute Yi : request(cf)

11 request(ce) m,: request(s)

12 request(s) in2 Y := head(b)
13: t := boy 1 'M 3 t 2 :=tail(b)

14: b:=tj in 4 : b:=t 2

release(s) m 5 : release(s)

16: release(cf) , release(ce)

17 : go to 10 m 7 compute using Y2

mg: go to Me

- P : Producer - - P 2 : Consumer -

The program is in single access form. The producer P, computes a value into yj without using
any other program variables; the computation details are irrelevant. It then adds Yi to the end
of the buffer b. The consumer P2 removes the first element of the buffer into Y2 and then uses
this value for its own purposes (at ro7). It is assumed that the maximal capacity of the buffer b is
N > 0. The 'compute using Y2' instruction references Y2 but does not modify any of the shared
program variables.

In order to ensure the correct synchronization between the processes we use three semaphore
variables:

* The variable s ensures that the accesses to the buffer are protected and provides exclusion
between the sections (6, 14, 1s) and (M2 , M3 , M4 , Ms).

* The variable ce ("count of empties") counts the number of free available slots in the buffer
b. It protects the buffer b from overflowing. The producer cannot deposit a value in
the buffer if ce = 0, and when it does deposit a value, it decrements ce by 1. Since
we start with ce = N, the producer cannot deposit more than N items before the
consumer has removed any of them. The consumer, on the other hand, increments ce
by 1 whenever it removes an item and creates a new vacancy.

* The variable cf ("count of fulls") counts how many items the buffer currently holds.
It is initialized to 0, incremented by the producer whenever a new item is deposited,
and decremented by the consumer whenever an item is removed. It ensures that the
consumer does not attempt to remove an item from an empty buffer. 3

31

W

FAIRNESS

Another problem with modelling concurrency by interleaving is fairness. Consider first a pro-
gram with no semaphore instructions, and where the full-exit condition EI(y) at each nonterminal
location I (i.e., 1 - 1,) is identically true, i.e., Et(y) = true for every y. Note that the latter is
true for every linear-text program without semaphores. Under these restrictions every process that
has not yet terminated is enabled, i.e., it always has an enabled transition, and if selected by the
scheduler can always execute this transition. Running under true concurrency, every process will
go on executing until it reaches its termination label I.

In order to model the same property under interleaving execution we require the scheduler to
be fair. By that we mean that no process which is ready to run (i.e., enabled) will be neglected
forever. Stated more precisely, we exclude infinite executions in which a certain process which
has not terminated is never scheduled from a certain point on. Note that all finite terminating
sequences are necessarily fair. This will also prevent the scheduler from going on an infinite spree
of idling steps when at least one process is enabled.

Coming back to the more general situation which allows semaphore instructions, we have to
consider the possibility that a nonterminated process is not continuously enabled. Furthermore,
its being enabled may depend on the action of the other processes, since in general the full-exit
condition EI(q) depends on the shared variables y-.

Our requirement of fairness for this more general case will be formulated as:

We disallow infinite sequences in which a certain process is enabled infinitely
often and is scheduled only a finite number of times.

Example:

Consider the simplest case of two processes synchronized by a semaphore:

y:--1

to requcst(y) mo : request(y)

11: release(y) ml : release(y)

12: go to 0 m 2 : go torMO

Obviously the infinite execution sequence (where we only mention the label arrived at as a result
of the current transition)

Ii, 12, to, mi, in2 , O, fl, 12, to, ml, m n O, ...

is fair. On the other hand the sequence:

11, 12, 10, 11, 12, 10,..

while constantly -r2 = M 0 is unfair. This is because whenever ir l = to or irl = 12, P 2 is enabled.
Thus in this sequence, even though P2 is not continuously enabled (it is not enabled when wl 11),

32

. . . . t.. . ..

it is enabled infinitely often. Since P2 is never scheduled while being enabled infinitely often this
sequence is unfair.

In practice every scheduler which is fair satisfies a stronger requirement: it is fair within a
finite bound, i.e., no enabled process may be neglected for more than k instants of being enabled.
Here k is a constant, characteristic of the scheduler.

Generalizing the semaphore instruction request(y) which waits for y to turn positive and then
decrements it, we have the 'wait until p(tl)' and 'wait while p(y)' instructions. They are modelled
as follows:

I I : wait until p(W)
I' :

is represented by P M -I

and

1 I: waitwhilep(Y)
I':

is represented by

The wait instructions are similar to the request instruction in that the full-exit condition is
not identically true. Thus for the 'wait until p(y)' instruction, the full-exit condition Et(y) is equal
to p(p). Consequently fairness considerations ensure that if p(y) turns true infinitely often while a
process is waiting at I it will eventually be scheduled (exactly when p(y) is true) and proceed to t'.

Let us compare the 'wait until p(y)' instruction with the 'loop until p({)' instruction whose
graph representation is

Note that the full-exit condition for this instruction is Et = true. Thus even if P(Yj) turns
true infinitely often we are not assured of ultimately reaching 1'. This is so because the only
requirement implied by fair scheduling is that if E1 is infinitely often true the process waiting at t
must eventually be scheduled at an instant in which Et is true. However this instant may always
happen to be one in which p(y) = false and the instruction executed is a transition back to 1.

The only condition that will guarantee for a loop instruction the eventual exit to I' is that p(j)
becomes permanently true beyond a certain stage in the computation.

There are practical implications to the distinction between the wait and loop instructions. If we
wish to implement an actual fair interleaving scheduler, it is easier to be fair to the loop instruction
than to the wait instruction. Since for the loop instruction, E1 is identically true, in order to be fair

33

mai

to a process which is at 1, the scheduler just has to make sure it does not neglect it and eventually
comes around to scheduling it. In order to be fair to a wait instruction, whose full-exit condition
is p(y), we have to monitor the instants in which p(g) is true. Then when it is observed that p(Y)
is true many times the relevant process has to be eventually scheduled.

On the other hand, the use of a wait instruction implies greater efficiency since the scheduler
may place the process executing a wait instruction on a suspension list, from which it will be
removed only when p(y) is true and the scheduler decides to schedule that process.

34

3. THE TEMPORAL DESCRIPTION OF PROGRAM PROPERTIES

As we have seen, the behavior of a concurrent program is characterized by the set of its fair
execution sequences. We have also developed the formalism of temporal logic whose formulas are
interpreted over sequences. We now combine the two and utilize temporal logic to state properties
of the execution sequences of a given program, thus describing properties of the dynamic behavior
of the program ([PNU1], [MP]).

In order to apply the general temporal formalism to execution sequences, it is necessary to
introduce additional structure and special notation into the temporal language. For states we will
consider "execution states" which each consist of the vector of current locations in the program and
of the current values of all program variables at a certain stage in the execution. The accessibility
relation between execution states will represent "derivability" by the program's execution. We will
use predicates and propositions to describe properties of a single state, and modalities to describe
properties of the execution leading from one state to another.

Consider a typical concurrent program

P = y := fo(); [Pill ... liP.I]

with input parameters X = (xI, ... ,xk) and shared program variables = (yi, -.. y,,) over a
domain D. (For simplicity, we do not consider many-sorted domains.)

An execution state for this program has the general structure

where

* X = (Xj, ... , X,) is the vector of current values held by the location variables if. Thus
Xi E L, is the label of the node in the transition graph of process P, where execution is
to resume next. (It is the label of the next instruction to be executed in the linear-text
representation.)

* J = (771, •.., 7n) E D n is the vector of data values assumed by the program variables F in
the state s. Thus 77 E D is the current value of y, in s.

An execution sequence of a concurrent program is an infinite sequence of states:

a" = SO, , 2.

Corresponding to the structure of execution states and sequences we will consider temporal
formulas with the following individual variables:

(a) Local program variables: yl, . .. , y,.

These represent the current values of the program variables which of course may
vary from one execution state to the other.

(b) Local location variables: i, ... , 7r,.

35

These represent the location of each process in a given state. Each 7ir will range
over the set Li.

(c) Global variables: x1, ... , xk, UI, u2

These are the input parameters xl, . . • , Xk, and auxiliary variables ul, U2, ...

which stay constant over the complete execution, i.e., they do not vary from state
to state. The auxiliary variables are used to express relations between local values
in different states. For example:

Vu[(y = u) D 0(y = u + 1)1

expresses the statement that there will be a future instant in which the value of
the variable y will be greater by 1 than its current value.

For a label t E Lj, we abbreviate the atomic formula 7r, = I to art, i.e.,

at e is true iff 7r, = 1,

which may therefore be considered a local proposition. Thus, for a given state s # (;) and
location t E L,, att is true at s if the process P. is currently at 1, i.e., X = t.

More generally, for a set of labels L C L. the local proposition atL is defined to be true if P
is anywhere within L, i.e.,

at L is true iff 7ri E L.

If L consists of all the labels t, within a segment, i.e., L = {,4a±, .t . . ,b} for some 0 <
a < b, we will also write atL as atfa..b. Thus,

atta..b = at{4a,4+1, ... P,} = b

We proceed to give a precise definition for the set of legal execution sequences a, corresponding
to a given program P with input values Y - . There are three requirements which a legal
execution sequence ought to fulfill:

A. Initialization

An execution sequence

Or = 80, S1, 82 ...

is properly initialized if so = (TO; O) has the structure:

* o = (6 , ... ,I-), the set of initial locations in each of the processes;

* -- f(), the initial values assumed by the program variables on initialization.

B. State to state transitions

An execution sequence a is admissible if each s5 _+ - (V; ') is related to sk = 3 ;) by
one of the following rules:

36

(a) Idling step: k+1 - Sk (i.e., Y' = , ' =

(b) An i-step: For some i, I < i < m, we have the following: The process P, contains a
transition

such that 7r, = X,, c(#) = true (i.e., the transition is enabled) and i7' = f(j). For all
j,j / i, we have X' = Xj.

Note that in the presence of self loops, i.e.,

we cannot always uniquely decide whether an idling step or a trivial i-step led from state sk to
state Sk+1-

C. Fairness or Justice

e An admissible sequence a is just if there is no process Pt which is continuously enabled beyond
a certain state s in the sequerce a, and only a finite number of steps of a are i-steps.

Thus the notion of justice ensures that no process is indefinitely neglected. This notion is adequate
for programs with no semaphore instructions.

* An admissible sequence a is fair if there is no process 11 which is enabled an infinite number
of times in a, and only a finite number of steps of a are i-steps.

Note that a fair sequence is also a just sequence. In addition to the assurances given by
justice, fairness guarantees that no process will remain blockcd at a semaphore instruction whose
exit condition turns true infinitely often. For programs without semaphore instructions the notions
of fairness and justice coincide. Consequently, our treatment will concentrate on fair executions.

Note that in checking for fairness we are allowed to take a given step both as an i-step and as
a j-step if both interpretations are possible. Thus the following degenerate program

4 : go to m M: go to me

possesses the legal execution sequence

(('o, mo); O), (o, MO); ...

Each step here may be interpreted as an idling step, a 1-step or a 2-step. Because of this possible
multiple interpretation the sequence is indeed fair. *"

Consider the sequence corresponding to a terminating computation, i.e., all processes have
terminated. Since in a terminating state iri = I' the process P, is never enabled, the fairness
criterion does not require further scheduling of P,, and the only possible steps from that point on
are idling steps. Thus our representation of a terminating computation as an infinite sequence in
which from a certain point on all states are identical is consistent with fairness. This state, to
which the sequence has "converged," is the terminal state.

37

e Every suffix of a properly C-initialized, admissible, fair execution sequence is defined to be a
(P, Z)-computation. The set of all (P, 4)-computations is denoted by 7(P,). By definition,
this set is suffix closed, i.e., if a E 7(P,), then a(') E 7(P,) for every i > 0.

For a given program P let p(t) be a restriction (precondition) on the input parameters Y.

Usually V characterizes the inputs we expect the program to operate on.

" A computation is said to be a (P, V)-computation (proper computation) if it is a WPZY
computation for some Z such that V() is true.

" We define the set 7(P, W) to be the set of all (1, v)-computations. Obviously 7(P, (P) also
has the suffix closure property.

* A formula w is 7(P, p)-valid if it is true for every computation in 7(P, V). Such a formula
is obviously an established valid property of all (P, o)-coinputations. In the following
sections we study the expression of program properties as 7(1P, V)-valid formulas.

Since most of our reasoning will be done in the context of a fixed program P and a fixed
precondition 1, we introduce a special notation for 7(P, p) validity. We denote

7(P, V) w= w by ra w.

The statement 1r w thus means that w is true for every suffix of a fair, admissible execution of P
which is initiated at o = (t , ... , Cn) with V(j) holding and y = fo(t).

Facts of the form ra w will serve as the basic statements in our specification and description
of program properties. Consequently, we will discuss in later reports proof rules for deriving such
statements.

The following is an important derivation:

I= w = P w.

It states that if w is true for every possible sequence it is true in particular for every (P, W)-
computation. This enables us to transport all the generally known valid temporal statements
(l=-valid) into reasoning about a particular program (Is-valid). Thus the following are r=-valid
formulas:

IS C(W D W2) D(0 W1 : 0W 2)

0 O(wDOw)D(wJOw)

etc.

Another valid inference is

I2w = r 0 w

This rule states that if w is true for all the (P, e)-computations then 0 w is also true for them. This
rule is a direct consequence of the suffix closure property of 7(P, V). One can prove similarly that

38

-, , . . . - - -- - .. .- ... - '--- ,, - .- :... . I_' .

all the inference rules (numbers 56 to 66) proven in the earlier repertoire still hold after replacing
I by i.

We will now review the expression of program properties by temporal formulas. The properties
will be classified according to the form of the temporal formulas expressing them.

INVARIANCE (SAFETY) PROPERTIES

Consider first the class of program properties that hold continuously throughout all computa-
tions. They are expressible by formulas of the form:

I Ow.

Such a formula states that O w holds for every computation, i.e., w is an invariant of every
computation. By the gencralization rule this could have been written as I0 w, but we prefer the
above form since it emphasizes the invariant character of the properties in this class.

Note that the initial condition associated with the proper computation is:

atlo A =f o(Y) A eP(t)

which characterizes the initial state for inputs X satisfying the precondition P(:t). Here, lo -

(I , ... , t') is the set or initial locations in each of the processes. To emphasize the precondition
w(Y) we sometimes express r= Ow as

W.

A formula of this form therefore expresses an invariance property. The properties in tiiis class
are also known as safety properties, based on the premise that they ensure that "nothing bad will
ever happen" ([LAM1]).

More generally, invariance properties can be expressed by formulas of the form

r • WO j w.

This form may be used to state that a certain event implies the invariance of some other condition
from that moment on. Under this interpretation w0 is the triggering event whose occurrence causes
the subsequent invariance of the property w.

We give below a sample of important properties falling under this category.

a. Partial Correctness

This property is meaningful only for programs in which each process contains a terminal
location 1e. We call such programs terminating programs, in contrast with continuous (or cyclic
programs) whose proper behavior does not call for termination and therefore do not contain terminal
locations.

39

Let V(X) be the precondition that restricts the set of inputs for which the program is supposed
to be correct, and O({, y) the statement of its correctness, i.e., the relation that should hold between
the input values Y and the output values y. Then in order to state partial correctness with respect
to a specification (V, i) we can write:

r {t) D O(at D O(T,

where , = (-I! ,. is the vector of terminal locations in each of the processes. This formula
claims that if the initial state satisfies the precondition, then in any state accessible from it: If
that state happens to be an exit state, i.e. X = -, then the relation O4x,V) holds between the
input parameters x and the current values of 9. rhus this formula states that all convergent V-
computations terminate in a state satisfying t, but it does not guarantee termination itself. Note
that we rely on t being global and retaining its original value throughout the computation.

Example:

Let us consider as a concrete example, a single process program for computing x! over the
nonnegative integers.

Program F (Factorial Program):

Y1 := X, Y2 := 1

to: if y,-=0 then goto I

It : (Y1, Y2) := (Y1 - I, Y1. Y2)
12 : goto 1o
1, halt.

The statement of its partial correctness is

0 (x > 0) D O(at, Dy 2 = X%

where the initial condition associated with the proper computation is actually

atto A y 1 =x A Y2-1 A x>0.

We are justified in regarding partial correctness as an invariance property since t is actually
a part of a "network of invariants" normally used in the Invariant-Assertion Method; namely, for
the Program F above:

Sx > 0) D C{ [art0 D { I >!0)}A (YYO=X!}]
A [att D {Y >0) A(Y2.Y !X!)]
A [at12 D (Y 0) A (y 2 Y! = 4x!}i
A tatt4 D (Yi =0)A(y2 =x!}.

And in fact, in order to prove the partial correctness property, we usually prove the invariance of
this larger formula, from which partial correctness follows. |

Example:

40

' -•- . .- =2 '_ 2 -

As another example consider a program TN counting the number of nodes in a binary tree X.

Program TN (Counting the nodes of a tree):

S := (X), C:=0

to: if S==() then goto 1,
11 (T, S):= (hd(S), tl(S))
12: if T =A then goto t o
£3: C:=C+1

14: S := (T).r(T).S
15 : goto to
1, : halt.

The program operates on a tree variable T and a variable S which is a stack of trees. The input
variable X is a tree. The output is the value of the counter C. Each node in a tree may have zero,
one or two descendants.

The available operations on trees are the functions I(T) and r(T) which yield the left and right
subtrees of a tree T respectively. If the tree does not possess one of these subtrees the functions
return the value A.

The stack S is initialized to contain the tree X. Taking the head and tail of a stack (functions
hd and tl respectively) yields the top element and rest of the stack respectively. The operation in
11 pops the top of the stack into the variable T. The operation at 14 pushes both the right subtree
and the left subtree of T onto the top of the stack.

At any iteration of the program, the stack S contains the list of subtrees of X whose nodes
have not yet been counted. The iteration removes one such subtree from the stack. If it is the
empty subtree, T = A, we proceed to examine the next subtree on the stack. If it is not the empty
subtree we add one to the counter C and pushes the left and right subtrees of T to the stack.
When the stack is empty, S = (), the program halts.

Denoting by ITI the number of nodes in a tree T we can express the statement of partial
correctness of the program TN by:

l O[att. i C = Ixll.

The actual initial condition associated with the proper computation is

atto A S=(X) A C=O.

Example:

As a more complex example consider again the program BC for the concurrent computation
of a binomial coefficient.

The statement of partial correctness to be proved there is:

i (0 < k < n) :D O(att. A atm.) D Y3=()J.

41

That is, every properly initialized execution of the program BC that terminates satisfies Y43 = (7)
at its termination point. The actual initial condition associated with the proper computation is

atto A atmo A yV=n A Y2=0 A Y3=1 A Y4=1 A O<k<n. I

b. Clean Behavior

For every location'in a program we can formulate a cleanness condition that states that
the instruction at this location will execute successfully and will generate no execution faults
(exceptions). Thus if the statement contains a division, the cleanness condition will include the
clause specifying that the divisor is nonzero or not too small (to avoid arithmetic overflow). If
the statement contains an array reference, the cleanness condition will state that the subscript

expressions are within the declared range. Denoting the cleanness condition at location I by at,
the statement of clean behavior is:

t

The conjunction is taken over all "potentially dangerous" locations in the program.

Example:

The factorial program F above should produce only natural number values during its com-
putation. A cleanness condition at tl, which is clearly a critical point, is (under the precondition
x > 0)

M (> 0) D 0[atl , > 0)],

guaranteeing that the subtraction performed at 11 always yields a natural number. Note that we

have not indicated that Yi is an integer; such type considerations will be ignored in our discussions.
I

Example:

If a program contains the instruction

I: if Y1 > Y2 then y, := (S[i] + Y2),

where + is the integer-division operator and the range of the array subscript i is between 1 and
m, then the cleaness condition at t can be expressed as follows:

Is[{[all A (t > Y2)] D [(1< i< M) A (Y2 34 0)1} .

Example:

A clean behavior statement for the tree node counting program TN is given by:

P Oatt D S 3()) A (a1 4 D T 6 A)].

42

This ensures that no attempt is made to pop an empty stack or to decompose an empty tree. I

Example:

In the binomial coefficient program BC an appropriate and crucial cleanness statement is given
by:

Pi (0 < k < n) D O{atm 4 D [(Y2 - 0) A (Y3 mod Y2 = 0)1.

That is, whenever we reach the location m 4 in a proper computation of BC, Y3 is evenly divisible
byY 2 . I

A general concern in the considerations of clean behavior is the compatibility of values with
types. In the presence of dynamic types we should also worry about the compatibility of types.

c. Global and Local Invariants

Very frequently, invariant properties are not related to any particular location. In general, some
properties may be invariant independent of the location. In these cases we speak of global invariants,
i.e., invariants unattached to any particular location. The expression of global invariance is even
more straightforward. Thus, we write

to state that property P holds at all times during a proper computation.

Example:

In the factorial program F above, to claim that yj is always a nonnegative integer, we may
write:

P (X > 0) D 0(y, > 0).

Another valid global invariant for this program is:

In(X>0) D O(y2 .YO = X!),

which states that Y2 • YI! = x! at all steps of the execution. I

Example:

For the binomial coefficient program BC, an appropriate global assertion would be:

1 (0 < k < n) D 01(n-k< y < n) A (0 < Y2 k)]. s

Another interesting set of properties are invariance properties which are attached to particular
locations, but not necessarily to the exit locations of the program. These properties are particularly
important for programs which have no exits and are expected to run indefinitely.

43

I

We refer to such properties as local invariants and write

IN 0(att D)

to indicate that a statement P is true whenever we are at a certain location 1. Partial correctness
is actually a local invariant referring to the exit locations.

Example:

In the TN program for counting the nodes in a tree, we can express as a local invariant the
fact which is true whenever we visit the location to; namely,

a 0atto (Zlt + C = IXI)l,
tES

i.e., the sum of the number of nodes in all the subtrees currently in the stack plus the current value
of the counter C is invariant at t o and equals tile number or nodes in tile tree X. I

Invariants can also be used in the context of a program whose output is not necessarily apparent
at the end of the execution; for example, a sequential program whose output is printed on an
external file during the computation.

Example:

Consider the following program PR for printing the infinite sequence of successive prime
numbers

2, 3, 5, 7, 11, 13, 17,

Program PR (Printing the prime numbers):

to print(yi)
I: Y1:=-Y1+l

12: Y2 := 2

13 : if (Y2) 2 > yl then goto to
t4 : if (y, mod Y2) = 0 then goto 41
4 2: y2 :y2--
16 : goto 13

A part of the correctness statement for this program is:

isn(atl0 :) prime(y,));

it indicates that only primes are printed. I

Next we will examine some properties which are meaningful only for concurrent programs.

44

----- -.....--

d. Mutual Exclusion

The notions of critical sections and mutual exclusion were introduced earlier, but let us briefly
review them.

Consider two processes P, and P2 being executed in parallel. Assume that each process contains
a section C, C Li, for i = 1, 2, which includes some task critical to the cooperation of the two
processes. For example, it might access a shared device (such as a disk) or a shared variable. If
the nature of the task is such that it must never be done by both of them simultaneously, we call
these sections critical sections. The property stating that the processes will never simultaneously
execute their respective critical sections is called mutual exclusion with respect to this pair of
critical sections.

The property of mutual exclusion for C, and C 2 can be described by:

is p() D 0-.(atCi A atC2).

This states that it is never the case that the joint execution of the processes reaches C and C2
simultaneously.

Example:

Consider again the consumer-producer program CP. The sections

C1 = {3,4, t} in PI

and

C 2 = {m 2 ,7m 3 , m 4 , m 5 } in P2

are obviously critical sections since they make several accesses to the shared variable b. In order
to obtain the correct result it must be ensured that no other accesses to b are made during the
computation involving b.

The mutual exclusion property in this case can be expressed by:

t l"s],-(atC1 AatC2),

where the initial condition associated with the proper computations is:

atto A atmo A b=A A s=I A cf =O A ce=N.

The formula states that we can never simultaneously be in both critical sections C1 and C2. Note
that actually it suffices to prove

In 0 -(att3A^atm2).

This is so because there exists an execution in which at 3 A atm 2 in some state if and only if there
exists an execution in which atC1 A atC 2 in some state. U

45

. , :.7 - " .

Example:

Similarly a statement of mutual exclusion for the program BC computing the binomial coefficient
is given by:

is (0 < k < n) D O,-.(at12..4 A atm4..).

Here, we follow our convention,

att2.. 4 denotes 7r1 E {12,t3,4}

and

atm4..6 denotes Ir2 E {m 4,ms,ms}.

e. Deadlock Freedom

A concurrent program consisting of m processes is said to be deadlocked if no process is enabled.
This leaves the idling step as the only possible choice of the scheduler. The rest or the computation
will therefore consist of an endless repetition of the current deadlocked state. Clearly in a deadlock
situation each process P, must be blocked at a location t E L, whose full-exit condition E, is false
for the current value # of 9. Therefore the only potential deadlock locations are those t for which
Ef is not identically true. We refer to such locations as waiting locations. The terminal location 4.
is also considered to be a waiting location. However, the special case in which all processes are at
their respective , locations is not considered to be a deadlock but rather a lermination.

Let us therefore consider a tuple £ = (11, .. . , ") of waiting locations, V E Lj, not all of
which are terminal locations. Let El, ... ,E,, be their associated full-exit conditions. To prevent
a deadlock at I we require:

0 ()D O(Aatij V jy.
j=I j=1

This indicates that whenever all the processes are each at 1V, j = 1, . .. , m, at least one of them
is enabled. The corresponding process can then proceed and deadlock is averted.

In order to eliminate the possibility of a deadlock in the full program, we must impose a similar
requirement for every possible n-tuple of waiting locations, excluding - (t., . . .

Example:

In the consumer producer program CP, the complete deadlock freedom condition will be
expressed as

0 O{ [(atIt A atmo) D (ce > 0 V cf > 0)]
A [(atli A atm) D(ce > 0 V s > 0))
A [(atl 2 A atmo) D(s > 0 V cf > 0)]

46

A I(att 2 A ati) f (a > 0)] }. I

f. generalised deadlock

We may generalize the definition of waiting locations to also include looping instructions of
the form:

t: loop until p(y) or 1: loop while -p(q).

Obviously, being trapped at a tuple (e1 , . . . ,) some of whose locations are looping locations,
with V = such that p(fj) = false for their escape conditions, is just as bad as a deadlock. Formally
such a situation is not a deadlock since the execution of the self-transitions in the looping locations
is not officially an idling step. But it is also self-evident that these steps cannot alter the state and
the computation will remain trapped forever.

Let us therefore call a generalized deadlock situation to be a state s = (l 1, .,m; f) such
that each 11 is either a waiting location or a looping location, and such that e,(#) = false for
each i = 1, ... , m. The escape condition e,(y) corresponding to location P is taken as the exit
condition Et.(y) if t' is a semaphore location, false if V' is a terminal location t, and the condition
for getting out of the self-loop if P' is a looping instruction of the form

: loop until C,) or I' : loop while ' ,().

Then again the statement ensuring prevention of generalized deadlock at a tuple 1 - (t ,
., 1'm)

is the requirement

s I](A ate' D V el~
j=1 j=1

Example:

Consider the binomial coefficient program BC. A statement of the impossibility of general
deadlock at the potentially dangerous locations is given by:

1 (0<k n) O{ [(atliAatm 3))(y 4 >0)
A [(atl 1 A atm,) D (Y4 > 0)1

A [(atte A atm 2) : (YI + V/2 _ n)]
A [(ati, A atm 3) D (Y4 > 0)]
A [(at4A atm2) (4 > 0 V Y1 + V2 < n)}.

This statement ensures that if execution is at (1, n3) then Y4 > 0 and one of the processes is
able to proceed; if one of the processes is ever at its terminal location the other process is not
deadlocked at its request instruction or trapped at its loop instruction; and if the execution is ever
at (l,rM2) then either Y4 > 0 or y3/ + Y2 _ n, thus either enabling P, or permitting P2 to exit
from its self-loop. I

47

EVENTUALITY (LIVENESS) PROPERTIES

A second category of properties are those expressible by formulas of the form:

IN WDOW2.

This formula states that for every proper computation, if w, is initially true then W2 must eventually
be realized. In comparison with invariance properties that only describe the preservation of a
desired property from one step to the next, an eventuality property guarantees that some event
will finally be accomplished. It is therefore more appropriate for the statement of goals which may
need many steps to be realized.

Note that because of the suffix closure of the set of proper computations this formula is
equivalent to:

0' O(WIiD 0W2)

which states that whenever w, arises during the computation it will eventually be followed by the
realization of w2.

A property expressible by such a formula is called an eventuality (liveness) property ([OLJ).
Following are some samples of eventuality properties.

a. Total Correctness

This property, like partial correctness, is meaningful only for programs with terminal locations,
i.e., programs that are expected to terminate in contrast to continuous (cyclic) programs.

A program is said to be totally correct with respect to a specification ((p, 0), if for all input
values Y satisfying V(x), termination is guaranteed, and the output values y upon termination
satisfy O(X,y). Once more, let T, denote the exit points of the program. Total correctness w.r.t.
((p, 4) is expressible by:

is (p() : *(at! A 4(,i)).

This says that if we have an admissible execution sequence beginning in a state which is at locations
to and has values y = fo(T) where po(I) is true, then later in that execution sequence we are
guaranteed to have a state which is at - and satisfies P(X,).

Example:

The statement of total correctness for the factorial program F is:

in (x > O) D 0(atte A Y2 = X!). |

Example:

The expression of total correctness for the tree node counting program TN is given by:

0 0(at. A C =IX). I

48

I -

Example:

The statement of total correctness for the binomial coefficient program BC is given by:

I (O<k<n) D O A atm. A Y3= (

b. Intermittent Assertions

Eventuality formulas enable us to express a causality relation between any two events, not
only between program initialization and termination but also between events arising during the
execution. This becomes especially important when discussing continuous (cyclic) programs, i.e.,
programs that are not supposed to terminate but are to operate continuously. The general form
of such an eventuality is:

0 att A q D 0(att: A q'

and it claims that whenever (in a proper computation) 0 arises at t we are guaranteed of eventually
reaching I' with 0' true. This is the exact formalization of the basic Intermittent-Assertion
statement ([BUR], [MWI):

"If sometime 0 at I then sometime 0' at t'."

Example:

Consider the program TN for counting the number of nodes in a tree. An important intermit-
tent assertion that serves as a basis for the proof of its correctness is:

01 [atto A S = u. s A C = c D c[ateo A S=s A C=c+lull.

Here, u, s and c are used in the role of global variables, while S and C are local program variables.
This statement says that being at to with a nonempty stack ensures a later arrival to to. In a
subsequent arrival (not necessarily the next one), the top element of the stack will be removed and
the value of C will have been incremented by the number of nodes in the top element.

Example:

Consider again the program PR for printing successive prime numbers. Under the invariance
properties we expressed the claim that nothing but primes is printed

(1) 1 1](atlo D prime(y,)).

Now we can state that the proper sequence of primes is produced. The property that every prime
number is printed can be expressed by

(2) in [atto A yt =2 A prime(u)] D 0Z(atto A Yt u).

49

In conjunction with the invariance property (1), this statement guarantees that all printed
results are primes

2, 3, 5, 7, 11, 13, 17,

but they do not guarantee that some primes are not printed more than once or out of sequence.
For example, the sequence of integers

3, 2, 5, 3, 7, 5, 11, 7, 13, 11, ...

T T t I T

satisfies the statements above.

We thus have to add an additional statement that will guarantee that the printed sequence is
exactly the desired one. We have to be careful in devising a solution: Note that the statement

[ato A Y =] D O(atio D yl > u)

does not resolve the problem! Why?

The property that the primes are printed in order can be expressed by

(3) 0 JatiA: = u> D (atfo D y u).

This ensures monotonicity for any future visit to £o. I

The following properties are of interest mainly for concurrent programs having more than one
process.

c. Accessibility

Consider again a process that has a critical section C. In the previous discussion we have shown
how to state exclusion (or protection) for that section. A related and complementary property is
accessibility. That is, if a process wishes to enter its critical section it will eventually get there and
will not be indefinitely held up by the protection mechanism. Obviously a foolproof protection
mechanism is worthless if it does not eventually admit the process into its critical section.

Let t1 be a location just before the critical section. The fact that the process is at t, indicates
an intention to enter the critical section. Let C be the set of locations in the critical section. The
property of accessibility can then be expressed by

0artf D 0 atC;

namely, whenever the program is at 41, it will eventually get into C.

A correct construction of critical sections should ensure these two complementary properties:
protection (exclusiveness) and accessibility.

50

I - .

Example:

For the consumer-producer program CP, we wish to express the property that whenever
the producer is at 11 it will eventually get to 13 and be able to deposit yi in the buffer. A
symmetric statement expresses accessibility for the consumer: whenever the consumer is at m0 it
will eventually get to in2 . The conjunction of these two properties, expressing the accessibility
property of the program, is given by:

is [all 1 D 0 at1 3] A [atmro D 0 atm 2].

d. Liveness

A more general class of eventuality properties arises when we consider the notion that the
computation of any particular process must eventually progress. H-ere we do not necessarily restrict
ourselves to locations containing semaphore instructions.

Consider an arbitrary non-terminal location t in some process P,, i.e., 1 $ 4, for that process.
If the computation of this process is to proceed we cannot remain blocked at f due to a failure
of the schoduler to schedule process P.. Assuming that our program contains self-loops only for
waiting purposes, such as in the loop instruction, progress in P, is observable by seeing P, moving
from a state of atf to a state of - ati. Consequently, the property of liveness for a general location
1, 13 1,, can be expressed by:

i.e., if we arrive at this location we will eventually move out. In fact we can simplify this formula
to

which is equivalent to

meaning that we cannot ret blocked at the location Z.

The property of livv|is.,;s is also known as absenco of livelock or frcedom from individual star-
vation. A livtoc.' (or :,d,!:'ie1 stei-v, ioa) is defined as a situation in which some processes which
are not in a terminal location cannot proc,.-d even though the full program may still progress by
having some other processes execute. Note that this is a stronger requirement than the absence or
a (generalized) deadlock. As long as at least one of the processes can proceed the program is not
deadlocked.

e. Responsiveness

A very important class of programs that are usually modeled as concurrent programs are
operating systems and real-time programs such as airline reservation systems and other online

51

.

data-base systems. These programs can conveniently be considered as continuous (cyclic) pro-
grams which are to run forever. A halt in these programs usually indicates an error condition.
Consequently these programs are not run for their end results but for the effects produced during
their endless operation. Thus the notions of total and partial correctness are meaningless and have
to be replaced by statements about the programs' continuous behavior.

A property usually expected of such programs is responsiveness.

Example:

Consider a continuous program (granter) G modelling an operating system. Assume that it
serves a number of customer programs (requesters) RI, . . . , Rt by scheduling a shared resource
between them. The resource here can be a shared disk, main memory, etc. Let the customer
programs communicate with the operating system concerning the resource via a set of boolean
variables {r1, g,}, for i = 1, ... , t. Here, r, is set to true by the customer program R. to signal a
request for the resource; g, is set to true by G signalling to 14 that it has been granted (allocated)
the resource. After using the resource, the customer R, releases the resource back to the system
G by setting r, to false. This release is then acknowledged by the system G by setting g, to false.

To summarize:

R, signals a request = r, := true

G allocates a resource = g, :z- true

R, releases the resource r, := false

G acknowledges the release == g, : false.

The statement that the operating system fairly responds to the customer requests - respon-
siveness -- is given by:

a, : r. D <0 gi,

i.e., whenever r, becomes true, eventually g, will turn true. Note that this statement does not
stipulate that r, becomes true when G is at a particular location. Consequently it can express
events such as interrupts or unsolicited signals which may occur at any arbitrary moment.

Similarly we have to ensure that the system acknowledges the release of tile resource by turning
g, to false:

b, : _'r, D 0,-gs.

Furthermore, the system cannot hope to operate successfully if it does not enjoy the cooperation
of the customer programs. For example, the system cannot promise R2 an eventual grant of the
resource if RI, who currently holds the resource, does not ever intend to release it. Consequently
we will expect the R,'s to satisfy some proper behavior requirements, namely for each i:

ci : g, D O-ri.

52

. -=. ,.

This statement ensures that when the resource is granted to R,, it will eventually be released.

To these statements we will usually add some invariance statements ensuring the correct
continuous behavior of G. One such statement is

d: O(E g, 1)

meaning that at any particular time the system grants the resource to at most one requester. This
is a type of a mutual exclusion.

Denote the correct behavior statement of G by

t i

= Aa, A AbN Ad
S=1 l

and the correct behavior expected from the R,'s by

t
73 A Ci

The problem of proving the correct behavior of G can be approached in two different ways:

e Consider a concurrent program P that consists of G alone. The ri's and g,'s are then
considered as input/output variables, where the r,'s are supposed to be set by the external
agents R1 , . . . , R.

For this program we would prove:

rz OVoiO4.

That is, provided the external communication V continuously behaves properly we can
promise the correct behavior 0 of G.

* As another alternative consider the concurrent program P that consists of G running together
with R 1 , ... ,Rt, i.e.

P =) (false, ... ,false); [GIIR1 1l... IIRtI.

For each R, here we substitute a simplified model that guarantees to maintain 0 ci. Such
a model can be represented as:

to : execute
1j: r := true
12 : wait until gi
13 : compute {use resource}
14: r, := false
Is: wait until -,gj

53

t6 : go to 10

- Customer Program R, -

If we believe that our model for R, faithfully represents the real R, as far as communication
with G is concerned, we can proceed to prove

n(V A 0)

to ensure the correct behavior of P.

Thus the two modelling alternatives available to us are the following: either considering G
alone communicating with the external world via the r,, g, variables, or considering a combined
system of G together with R 1, .. . ,Rt. In the first case the proper behavior of the external world
has to be promised through a continuous maintainance of o. In the second case the proper behavior
of the R,'s is proven at the same time as the proper behavior of G.

The same analysis can of course be conducted for other situations where a program communi-
cates with external devices and is expected to respond properly to incoming signals. I

The application of the temporal formalism to the problems of responsiveness points out its
power. Invariances and total correctness are long-known properties and many special formal
systems and methodologies have been proposed and successfully implemented for their analysis and
proofs. The temporal logic contribution to this problem is a uniform treatment and an explicit
direct expressibility. In contrast, the discussion of responsiveness is relatively recent; no prior
formalism addressed itself to the description and proof of these properties.

PRECEDENCE (UNTIL) PROPERTIES

The third class of properties to be considered are those properties which are expressible using
the until operator.

L In their simplest form they will be expressed by statements of the type:

W, UW 2 .

This statement says that in all proper computations of P there will be a fNiture instance in which
w2 holds and such that w, will hold until that instance. Recall that the formal meaning of the
until operator was given by

Ifor all i, 0 < i < k, wm,(,) = true.j

Note that we require i < k and not i < k. Thus, the formula w1 U w 2 expresses the exclusive form

of the until operator since w, is required to hold until the instant that w2 becomes true but not
including that instant. The corresponding inclusive until property that requires w, to be true up
to and including the instant in which w2 becomes true can be expressed by the formula

wi U (wt A w2).

54

.l

The until operator is also very useful in expressing precedence relations between events. We
define the derived precede operator P by:

Ut1 P to2 is -. ((.-WI) U to2).

This makes P the dual of U in a similar way to 0 being the dual of 0. The statement w, P W 2,
read wt precedes W 2 , states that if W 2 ever happens it will not happen until w1 happens first. This
is equivalent to stating that the first instance of w1 (observed from the present) strictly precedes
the first instance of W2. The formal meaning of the precede operator can be given by

ifW1C(,t) = true
W=I P 1 C2' true iff for everyk > 0, [

[then for some i, 0 < i < k, w,(,) = true.

Note that we have again i < k and not i < k. Thus, the precedes operator P is again an exclusive
operator, expressing strict precedence between w, and W 2.

If we wish to express inclusive precedence, allowing the first instances of wi and w2 to coincide,
we may use

wt P (-w, A W2).

To show that this indeed expresses inclusive precedence, we may substitute -w A W 2 for U12 in
the definition above to obtain after some manipulation:

[for every k > 0,

1 P (--i AAW2)1a(k) = true if and only if if W 2 t0(k) = true
a]then wlja(k} = true

or for some i, 0 < i < k, wIjO) = true

showing that the first instance of w2 either coincides with an instance of w, or is preceded by such
an instance.

While W 1 U w2 implies that w2 is bound to happen, this is not guaranteed by w1 P W2. In fact,
if W2 never happens then t 11 P W2 holds for every Wl.

Several obvious properties of the precedes operator may be derived from corresponding properties
of the U operator and the definition of P. Among them are:

1. 0 wPw t C,-w

2. 0 wIPw2 A w 2 PUw3 D W1 PW3

3. m Wt1 PUw2 = --W 2A 1 VO(tiPW2)j

4. = 1-W 2 D wtPw 2

5. 0 WtPw12 V W2 PtW V (wtiAW2)

6. 0 WIPto2 V W2 P(-'w2 Awi)

7. Is 1Uto2 = (-WIPW2).

55

Statement 1 says that w may precede itself iff it never happens, since no event can come before
the first occurrence of that event.

Statement 2 indicates the transitivity of the precedence relation. It says that if w, precedes
W2 which precedes w3 then wi precedes w3.

Statement 3 gives an inductive characterization of the P operator. It says that wj precedes
w2 iff w2 is presently false and either w, is true now or w, precedes w 2 when observed from the
next instant.

Statement 4 says that if w2 never happens then obviously w, precedes w2 , for every wl.

Statements 5 and 6, each characterizes the linearity of time. Statement 5 says that for every
two events w, and w2 , either w, precedes w 2 or w2 precedes w, or both occur at the same time.
Statement 6 says that for every two events w, and w 2 , either w, strictly precedes w2 or w 2 weakly
precedes wl.

Statement 7 shows that the ii operator itself is expressible by the P operator.

We will consider formulas involving the P operator as belonging to the class of until properties.
We discuss below several subclasses of properties involving the Li and P operators.

a. Safe Liveness

We may interpret invariance properties as an assurance that nothing bad will happen, and
liveness properties as a promise that something good will eventually happen. Consistent with this,
we may want to ascertain that nothing bad happens until something good happens. This is exactly
expressible by

w W1 W2,

where w, is a safety property that we wish to maintain (e.g., clean behaviour and global assertions),
while W 2 is a liveness property that we want ultimately to achieve (e.g., termination and correct-
ness). It is recommended that a full specification of a program should always be expressed as an
until expression r w 1 L w2, i.e., achieve w2 while maintaining wl.

In some cases the "until" notation is just a conveniently expressed combination of safety and
liveness properties since:

0 (OwiA*w 2))wL1 w 2.

However the more interesting case is when w, holds up to but not including the instant in which
w2 happens. Then it is no longer true that O w is a program-valid statement.

The until operator can also be used to express "first-time" properties. Recall that a formula
of form

M (atWAO¢) D (atlYA ')

expresses the some-time property: If the program is at I and 0 is true, then sometime (eventually)
the program must reach I' with 0b' being true. Similarly, a formula of form

0 (ate A) I [(. atI') U (at I' A ')J

56

expresses the first-time property: If the program is at I and 4' is true, then sometime the program
must reach 1, and on the first visit, 4' will be true.

Example:

The safety and liveness properties for the binomial coefficient program BC can be stated as:

S(0<k<n) D
{ [(atm 4 D (Y2 $ 0) A (y3 mod Y2 = 0))

A (n-k n) A (0 <Y2 k))
U
[att. A atme A Y3= (k).

That is, achieve termination and correct result while maintaining clean behavior and global in-
variances. I

b. Absence of Unsolicited Response

Let W 1 D w2 be a statement of responsiveness which guarantees that to every situation in
which w, is true the program responds by making w2 true. We often wish to complement this
statement by requiring that on the other hand, w2 will never happen unless preceded by Wl, i.e. the
program does not respond unless explicitly requested. This of course is expressible as:

) w 1 P W2,

meaning that there is always a wt preceding every W2.

There is however a problem associated with the interpretation of the formal statement above
as expressing our intuitive requirement. Assume a situation in which w, occurs at tj and W 2 indeed
follows at t 2 , t 2 > t1, and neither w, nor w2 is true between tl and t2. If we try to test the
statement: "w, precedes W 2 " at any t3 , ti < t 3 < t 2, it will turn out to be false, since the first
event following t3 is w2 rather than wl. Thus we have to be careful to restrict our statement to
only such reference points from which the precedence relation can be safely observed.

Thus a more careful description of the no-request-no-response statement is:

0 (atto D W1 P W 2) A [(w2 A 0 w2) D O(w1 P W2)1.

This selects as good reference points from which the precedence of w, to w2 may be observed either
the starting point of the computation, or an instant in which W 2 is true and is changing to false in
the next instant. In the later case w, P w2 begins to hold only in the next instant.

In most practical cases we have additional information about the behavior of w1 and to2 that
helps us formulate the requirements in simpler terms. Thus if we knew that once w, was raised
and not yet answered by a w2 it stays true until answered, the above problem would not have risen.
Instead we could use the simpler

Pi (atto V, wl) D W1 Pw2 7
5T

Example.

Let us reconsider the example of the operating system model: an allocator (granter) G that
allocates a resource between customers (requesters) R 1 , . . , Rt. Customer R, signals its requests
by setting r, to true. The allocator G eventually responds by setting g, to true. The customer
eventually releases the resource by setting r, to false which the allocator acknowledges by setting
g, to false.

This simple communication protocol between a particular customer R, and the allocator can
be specified by the following four invariants:

1. M (r, A -9,) D 0 ri.

This says that if r, is true and g, is false, meaning that R, is requesting the resource but has not
yet been granted its request, R, should persist in its request by leaving r, on for the next instant.
Note that we exclude instantaneous response by using the current values of r. and g, to determine
the next value of ri.

2. ra (r, A 9.) D 0 g,.

This states that if the resource has been granted to R,, then the allocator is not allowed to withdraw
its grant until the resource is released by R,, by setting r, to false.

3. P (-r A 9,) D 0---r,.

This states that if the allocator has not yet acknowledged the release of the resource by R,, then
R, may not issue a new request.

4. is (-r A -"g) D O-g.

This states that if the resource is not currently allocated to R, nor is R.requesting it, the allocator
should not grant the resource to a process which is not requesting it. This is exactly our requirement
of no unsolicited responses for this case.

These four demands with the additional responsiveness requirement

5. I ri D 0 gi

6. in g, D 0-r,

7. M -g.

ensure the correct and proper behavior of the system.

The four statements 1-4 above characterize the behavior of the program by immediate transi-
tion rules. Since it is not always obvious what are the global consequences of such local constraints,
we would prefer to specify them in a more global style. Such specifications can be given by:

(a) M r, D [r U (g, A r,)]

(b) M g, D Igs U (,-r A 9i)]

58

. .

(c) is -r, D -r, U (-g, A -r,)

(d) P,-iD(r i

which replace 1-7.

Statement (a) says that if r, is true it will remain true until g, is granted. Statement (b) says
that if the resource is granted it will remain granted until released. Statement (c) says that if the
resource has been released it will ", be requested again until the release has been acknowledged.
Statement (d) says that if g. is noi. 1irrently allocated, its next allocation must be preceded by a
request. I

c. Fair Responsiveness

In many situations we have the precedence of two events V)l and 42, i.e., 01 precedes 0'2 only
when two earlier events 01 and 0)2 occurred in the same order, i.e. 0'i precedes 02. We will refer
to such situations as conditional precedence. It is expressible by the statement:

Is(01 P 02 (01 P 02).

This says that if 01 (strictly) precedes 02 then ?u1 will (strictly) precede 4'2.

Coupled with the implications

i 4)iDZ¢ and M 02D002

which ensure responsiveness, the conditional precedence sharpens our committment to fair respon-
siveness. That is, if we interpret 1-= D T and 0 02 D 0 02 as describing a response

0, to a request 0,,, then responsiveness says that every request will eventually be honored by a
response. The fair responsiveness establishes a first-come-first-serve discipline by ensuring that if
4b1 preceded 02 then the response to 4)1, namely ?P1, will precede the response to 02, i.e. IP2.

Example:

Let us consider again the problem of the granter (allocator) and his serviced customers (requesters).
We may impose a fairness requirement on his responsiveness obligations by insisting on a first-
come-first-serve policy. This would be expressed by:

. (ri P rA) (gi P Mi.

This means that if customer R, placed his request before customer R, he will be serviced prior to
customer R1. However, we again must be careful to state this only in "quiescent" reference points.

For example, if gj is currently true, while both r, = r3 = false, a situation which may occur just
at the end of a granting period to R,, we certainly cannot promise that g, will precede gj.

A reasonable set of reference points is such instants in which gj is currently false. Thus the

conditional precedence statement restricted to these observation points is:

le (-gj) [(r, P r,) (g P g)]

59

Example:

Consider a pair of processes where the critical sections C1 {12, 13} and C2 = (m 31m3 } are
mutually protected by semaphores:

y:

to : execute mo : execute

4t : request(y) m, : request(y)

compute M2 : compute 1
: release(Y) 3 release(y)

14 : go to to M4 go to mO

A- P - - P2 --

We discussed previously the statement of accessiblity for such a program; namely, that if P
is waiting at 41 it will be eventually admitted into C1 . This ensures only the absence of infinite
overtaking, i.e., the possibility of Pi waiting at 41 forever while P2 enters its own critical section
infinitely often. Yet, can we prevent overtaking altogether; i.e., can we prevent P2 from overtaking
P and entering C2 even though P reached 1 before P2 reached inl?

We may impose fair responsiveness on this situation by requiring that the first process to reach
its request instruction will be the first to be admitted into its critical section. We may attempt to
state this property by:

i [(atil P atm) : (atCt P atC2)] A [(atm, P atli) D (atC2 P atCj)j.

This states that if P1 gets to 11 before P2 gets to mi then P will gain access to C, before P2 gets
to C2 , and similarly for the dual case in which P2 gets to mt before P gets to t.

However we again face the question of appropriate reference points. The statement would
certainly not be true if P2 is currently at C2 . In the above example we may be aided by the location
variables in order to select appropriate reference points. One correct specification of fairness of the
semaphores in this case is:

is [(a1t1 A at{M4 ,mo}) (at12 P atm2)] A [(atmi A at{14 ,to}) (atm2 P ate2)).

This says that if we are at an instant in which P1 is already at 41 while P2 is both out of C2 and
has not yet arrived at m, then P will be admitted to its critical section first, and similarly for the
dual case. i

One should not be confused by the double appearance of the notion of fairness, once when
discussing fair scheduling and fair execution sequences, and here when discussing fair responsiveness
as a program property. The concepts are very similar, but previously we assumed fairness as
a restriction on execution sequences, since we were interested only in fair execution sequences.
Here we consider (and later prove) fairness as a property of the program that gives rise to those
sequences. A badly designed program could fail to achieve fairness in responding even when each

of the executions we examine is fair as a computation, i.e., the scheduler may be doing its best
but the program failed to ensure correct (and timely) response to each request.

60

! --

- - .-...- ,.

Consequently, when we prove that a program has the fair responsiveness property for every
proper computation, we assume that the computation is scheduled fairly and prove that it responds
fairly.

Acknowledgement

We thankfully acknowledge the help extended to us by Yoni Malachi, Ben Moszkowski, Richard
Schwartz, Pierre Wolper, Frank Yellin, Rivi Zarhi, and the CS256 students (Spring 1981) at
Stanford University in reading the earlier drafts of the manuscript. Special thanks are due to
Connie Stanley and Evelyn Eldridge-Diaz for TEXing the infinitely often (0 0) changing versions
of the manuscript.

61

REFERENCES

[BUR) Burstall, R.M., "Program proving as hand simulation with a little induction," Proc.
IFIP Congress, Amsterdam, The Netherlands (1974), North Holland, pp. 308-312.

IDIJI] Dijkstra, E.W., "Cooperating processes," in Programming Languages and Systems (F.
Genvys, ed.), Academic Press, New York, NY (1968), pp. 43-112.

[DIJ2] Dijkstra, E.W. "A constructive approach to the problem of program correctness,"
BIT 8 (1968), pp. 179- 186.

[GPSS] Gabbay D., A. Pnueli, S. Shelah, and J. Stavi, "The temporal analysis of fairness,"
Proc. 7th POP,, Las Vegas, NV (January 1980), pp. 163-173.

[IC] Hughes, G.E. and M.J. Cresswell, An Introduction to Modal Logic, Methuen & Co.,
London, 1968.

[KAM] Kamp, H.W., "Tense logic and the theory of linear order," Ph.D. Thesis, University
of California, Los Angeles, 1968.

[KEL] Keller, R.M., "Formal verification of parallel programs," CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

[LAMI] Lamport, L., "Proving the correctness or multiprocess programs," IEEE Transactions
on Software Engineering, Vol. SE-3, No. 7 (March 1977), pp. 125-143.

[MANI Manna, Z., "Logics of programs," Proc. IMIP Congress, Tokyo and Melbourne
(October 1980), North Holland, pp. 41--51.

NIP] Manna, Z. and A. Pnueli, "The modal logic of programs," Proc. 6th International
Colloquium on Automata, Languages and Programming, Graz, Austria (July 1979). Lecture
Notes in Computer Science, Vol. 71, Springer Verlag, pp. 385-409.

[MW] Manna, Z. and R. Waldinger, "Is 'sometime' sometimes better than 'always'?: Intermit-
tent assertions in proving program correctness," CACM, Vol. 21, No. 2 (February 1978),
pp. 159-172.

[OL] Owicki, S. and L. Lamport, "Proving liveness properties of concurrent programs,"
unpublished report (October 1980).

[PNUIJ Pnueli, A., "The temporal logic of program," Proc. 18th FOCS, Providence, RI
(November 1977), pp. 46-57.

[PNU2] Pnueli, A., "The temporal semantics of concurrent programs," Proc. Symposium
on Semantics of Concurrent Computations, Evian, France (July 1979), Lecture Notes in
Computer Science,Vol. 70, Springer Verlag, pp. 1-20.

[PRIJ Prior, A., Past, Present and Future, Oxford University Press, 1967.

[RU] Rescher and Urquhart, Temporal Logic, Library of Exact Philosophy, Springer Verlag,
1971.

62

