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\iéi ABSTRACT

The problem of designing muttivariable control systems 1{s addressed
thro gh the use of model-follouwing methods. A number of different
modei-following techniques are discussed, and their advantages and dis-
advantages are presented. It is shoun that model-follouing theories can
provide useful structural insight to the designer, and that they can
help to integrate the methods of “classical” and “modern” control. A
new design method is presented which, wuhen implemented, uses model fol-
lowing and full-state feedback to keep the dominant roots of a system
constant. Under favorable circumstances, it can do thif even in the ﬂ

presence of arbitrarily large parameter uncertainties. The method has

the attractive feature that the parameter~insensitivity and disturbance-

rejection characteristics of the system can be selected independently

from the no-disturbance, nominal-plant performance. Application is made

to several aircraft flight control problems.
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ABSTRACT

The problem of designing multivariable control systems is addressed
through the use of model-following methods. A number of different
model-following techniques are discussed, and their advantages and dis-
advantages are presented. It is shoun that model-follouing theories can
provide useful structural insight to the designer, and that they can
help to integrate the methods of “classical” and “modern” control. A
new design method is presented uwhich, when implemented, uses model fol-
lowing and full-state feedback to keep the dominant roots of a system
constant. Under favorable circumstances, it can do this even in the
presence of arbitrarily large parameter uncertainties. The method has
the attractive feature that the parameter-insensitivity and disturbance-
rejection characteristics of the system can be selected independently
from the no-disturbance, nominal-plant performance. Application is made

to several aircraft flight control problems.
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Chapter I

INTRODUCTION

1.1 BACKGROUND

”Model following” refers to a number of very general control-system
design techniques which can be used to solve a wide variety of control-
system problems. In the typical model-following problem, it is desired
to force some or all of the states of a plant to “match”, to a greater
or lesser degree, the states of an ideal model. This model could be an
actual harduare system; however, it is normally a mathematical model of

the desired closed-loop plant behavior.

Tuwo of the most common applications of model follouwing have been in

the area of aircraft flight control. The first type of problem involves :
the design of the flight control system for a new aircraft. Frequently,

by referring to the Military Specifications for aircraft flying quali-

ties, through simulator studies, or from past experience, the designers
have established desired time-history responses to pilot commands. The
objective is then to select the control-system structure and the control
gains so that the aircraft will bhave responses which match the desired
ones as closely as possible. Such a problem is ideally suited to the
application of model~-follouing techniques. In the second type of prob-
lem, we would like to make one kind of aircraft “feel” to the pilot like

a different kind of aircraft. There are several reasons why we might

snsiank i bl sl enn o it s St i riiiat




want to do this. For example, it is then possible to conduct systematic
studies of different aircraft characteristics to determine their impact
on handling qualities or the usefulness of new control modes. Also, it
is often very helpful to be able to provide pilot training and’/or ini-
tial evaluations for a neuw aircraft before the aircraft itself is avail-
able. By using special “variable-stability aircraft,” preliminary test-
ing has been accomplished on a number of recent development programs,
such as the Supersonic Transport (SST), the F-16 fighter, and the Space
Shuttlie, long before the final prototypes were completed. Such efforts
are cl;ssic examples of model-follouing problems since the goal is to
make the first aircraft (the plant) act like the second aircraft (the

model).

Although many papers have been uritten on the model-following prob-
lem, the question of hou model following relates to control-system sen-
sitivity has not been fully addressed. The purpose of this thesis is to
review the various types of model-following techniques, to show how they
are related to each other and to other design methods, and to shou hou

model following can be used for designing insensitive controllers.

1.2 LITERATURE REVIEU

There are tuo ways to approach the actual implementation of a model-
following system. In the first method, Implticit Model! Following (also
knoun as “Model in the Ferformance Index”), the model equations are only
used during the design process to aid in the determination of the con-

trol gaine. After the design is complete, the mode! is no longer




needed, and it is not necessary to impliement the model equations in the
actual system. The second method, knoun as Explicit Model Follouwing
(also called “Real Model Following” or “Model in the System”), requires
the model equations to be incorporated as part of the control system.
The model states are then assumed to be available, along uith some or
all of the plant states, for formulation of the control signals.
Kreindler{16] and others have compared the explicit and implicit model-
follouing methods for particular aircraft examples; houwever, conclusions
on the overall merits of the tuo approaches have usually been rather

subjective.

Whether a system uses an implicit model-following approach or an ex-
plicit one, it is clear that the ideal result would be to have the plant
dynamics exactly match the model dynamics. Such a capability is re-
ferred to as “perfect model follouwing.” If perfect model following is
possible (and the control gains are selected correctly), then uhen the
plant and model are started at the same initial conditions and with no

unknown disturbances, one or more of the plant states will identically

match the corresponding model states. Erzberger[10] developed suffi-
cient conditions and an expression for the control gains to obtain per-
fect model following for one class of implicit model-follouing systems,
while Chan(5] and Morrow and Balasubramanian{20] gave the appropriate
control laus for the explicit formulation. Asseol[3] and Motyka and
Rynaski[22] extended some of these perfect-model-follouing ideas, while
Curran[8] developed the related concept of “equicontrollability”, and
showed hou perfect-model-following theories could be made more useful by

allowing slight modifications of the model.




Tyler(29] examined the wuse of optimal control theory for solving
model-follouing problems. He was followed by a number of researchers,
including Kriendler(16], Gran, Berman, and Rossilll], Kriechbaum and
Stineman{[17]), Markland{19]), Tiroshi and Elliot[27], and VYorel[32].
Rediess and Whitaker[25] and Peled(24) aiso used models to formulate
their optimal-control cost functions, but their methods uere really par-
ameter-optimization schemes which required the designer to determine the
control system’s structure and the appropriate form of any required com-
pensation. Trankle and Bryson[28] developed a variation of earlier
methods which they found useful for solving some classes of model-fol-

lowing problems.

Many of the above authors stated their “intuitive” feelings that ex-

plicit model-follouing systems had potential for reducing the sensitiv-

ity of control systems to parameter uncertainty. Nevertheless, there
have been few if any attempts to quantify this capability, or to formu-
Jate an appropriate design method. Winsor and Roy[31] attempted to
tackle the sensitivity issue, but their design method was compliex and

was limited to small parameter variations. In addition, they concluded

that it was not possible to desensitize more than one variable at a
time. Landau and Courtiol[18] apparently endorsed HKinsor and Roy’s
findings and stated their belief that an adaptive system, even uith its
inherent complexity and nonlinearities, was the best approach.
Kamiyal15] was probably the first to study the use of model-follouing
systems specifically for parameter-insensitive control; houwever, he used

a different structure than the one proposed in this work.




Since one of the major contributions of this work relates to parame-
ter-ingsensitive controllers, it is important to mention briefly some of
the other, non-model-following efforts in this area. Palsson and
Whitaker[23] and Hadass{12] developed the technique of treating the un-
certain parameters as random vectors. Harvey and Popel13] and
Vinkler[30] compared several different methods 1in their works, uhile
Shenkar[26] and Ashkenazi[2] extended the most promising methods for the
output-feedback case. In general, all of the methods proposed required
large, time-consuming computer programs and used gradient-search algor-
ithms to obtain the final results. Even so, the resulting systems had
the unfortunate characteristic that the system performance and/or con-
trol use for the nominal system was typically degraded from what would
have been obtained had the design been accomplished without regard to

the parameter variations.

1.3 CHAPTER OUTLINES

Chapter 11 defines perfect model following and discusses hou it re-
lates to other methods such as pole placement. The criteria for achiev-
ing perfect model following are presented, and it is shoun that they can
provide useful insight into the structure of a control-system problem,

even when other design methods are used.

Chapter 111 shoxs how we can combine model-follcwing techniques and
optimal control theory to take advantage of the respective strengths of
7classical” and “modern” control. Both state-matching and dynamics-

matching systems are developed, and the advantages and disadvantages of

each type of system are presented.
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Chapter IV beging with & review of past efforts in parameter-insensi-
tive control. A neu design method using model following is then pre-
sented which is showun to have significant advantages over previous tech-

niques.

Chapter V gives conclusions and recommendations for future research.

1.4 SUMMARY OF CONTRIBUTIONS

1. A number of different model-following design techniques are 3
evaluated, and their advantages and disadvantages and rela-

tionships to other methods are presented.

2. The relationship betueen feedback and feedforuard control is

demonstrated. ’

3. A neu desian method is presented which uses model following
and full-state feedback to keep the dominant roots of a system
constant. Under favorable circumstances, it can do this even
in the presence of arbitrarily large parameter uncertainties.
The method has the attractive feature that the parameter-in-
sensitivity and disturbance-rejection characteristics of the
system may be selected independently from the no-disturbance,
nominal-parameter performance. The method is applicable to
systems in which the plant can be made ”uwell-damped” and “sub-
stantially faster” than the final system characteristics re-

quired by the model.
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Chapter I1

PERFECT MODEL FOLLOWING AS A MULTIVARIABLE DESIGN TOOL

2.1 REVIEW OF POLE-PLACEMENT TECHNIQUE

The use of full-state feedback, either by measurement or by estima-
tion, gives the control-system designer great flexibility, since the
roots of the closed-loop system’s characteristic equation may be placed
arbitrarily with the proper choice of control gains. This has led to a
very simple, easy~to-use design technique for single-input, single-out-
put systems. In this technique, knoun as pole placement, the character-
istic equation of the desired closed-loop system is compared to the
characteristic equation of the open-loop plant, modified so that there
are feedback gains on all of the states. By matching the coefficients
of the Laplace variable ”s”, a set of algebraic equations results which

allous for solution of the control gains.

Llet us take a simple, second-order system as an example. The differ-
ential equation of motion of an open-loop plant is given by X+x=u, or in

state-space form,

X4 0 1 X ¢ 0] u.

1]
+




e v

Suppose the desired system has a natural frequency of 2 radssec and a

damping ratio of .7. The desired characteristic equation is then

s2 +2.8s +4=0.

Using full-state feedback, the control law is given by usCx, so we have

*1 0 1 X4

iz -1+c, c2 X2

with a characteristic equation given by

$2 - ¢c8 + 1 - ¢y = 0.

v
nbiddios

Comparing coefficients, we see that

-c2 = 2.8

and

1 - ¢y = 4.

This yields




and

[{}
i
~N

c2 .8.

Unfortunately, the technique breaks doun for multiple inputs and out-
puts. In the above example, there are two degrees of freedom from the
two control gains, and tuo equations resulting from comparing the coef-
ficients of “s”. Houever, with additional controls, additional degrecs
of freedom are added through additional control gains, but there are no
additional equations, thus preventing a unique solution. Suggestions
for circumventing this problem include arbitrarily setting some of the
control gains equal to 2ero, or assuming that some of the entries in the
dynamics matrix are small enough to be neglected. In either case, sev-
eral iterations are usually required, since there is no guarantee that

the resulting system will have desirable response characteristics.

2.2 DERIVATION OF PERFECT-MOBEL-FOLLOWING CONTROL

Suppose that rather than matching the characteristic equations, wue
try to match the entire dynamics matrices. Repeating Erzberger’s

derivation[ 10}, but with our notation, uwe let the plant be described by




The model, which describes the desired system behavior, is given by

Xm = FaXg.

For y and x4 to have the same dynamics, we require that

; = Flly = F.Hx.

Also,

= Hx = HFx + HGu.

<

Thus, ue have

HFx + HGu = FuHx.

Snlving for u, we obtain

u = [(HGIYCHG) 1= Y (HG) t(F H-HF)x.

We define the pseudo-inverse of HG as:

- 10 -
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(HG)™ = [(HG) Y(HG) ]~ '(HG) L.

Then,

u = (HG)*(FuH - HF)x.

By substituting this expression for u into the equation for y, ue get

y = HFx + (HG) (HG)®(F qH-HF)x.

Then, in order for § to equal Funy, We must have

HFx + (HG)(HGI*(FyH - HF)x = FpHx

n
o

[HF + (KG)(HGI®(F H-HF) - FpHlx

n
o

(HG) (HG)™(F yH~HF) = I(FuH - HF)

[(HGYCHG)I* - T][F,H - HF] = 0.

The final equation above, known as Erzberger’s condition, gives a suffi-
cient ccndition for exactly matching the dynamics of the plant and the

model for this class of problem. Such matching is knoun as “perfect

model follouwing”.




We can generalize the above procedure to handle inputs to the model,
E as well as the matching of only a subset of mode! states. Let the plant

again be described as

Fx + Gu

He
"

The desired system dynamics are given by the model equations:

S FaXm + Gpum

»
a
[}

Yo = HnXm.

We would like to have

X

"
<
3

Thus,

HFx + HGu = ”mrmxm + Hmsmum

HGu = HmFme - RFx + HmeUm

(HG)*HpFmXm - (HGI*HFx + (HG}*HrGmtim.

=4
n

-12-
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or,

U = Cyx + Caxg + Caugy,

where
Cy = =(HG)*HF
Cz = (HG)*Hnfm
and
C3 = (HG)™Hpbm-

Notice that this general expression for the perfect-model-following con-
trol contains three terms: a feedback of plant states x, a feedforuard
of model states xpn, and a feedforward of model inputs up. However, this
does not mean that we are restricted to this type of structure. I1f uWe
are able to successfully make a plant state exactly follow a model
state, then obviously the tuo signals are equivalent, and we can substi-
tute one of them for the other in the control law. For example, suppose
we are working a problem in which the number of states to be matched is
equal to the number of model states (i.e., Hny is square). Then Hp!

will normally exist.

Since HX = HmXm»

- 13 -




Xg = “-.'"x.

The perfect-model-following control law can then be uritten as

CHE)*HpF mHm™ THX = C(HG)™HFxX + (HG)*HyuCalm

[ -4
1"t

(HG)*[HpFmHm  TH = HF]X + (HG)*HoGgUm-

Thus for this case, we can achieve perfect model follouing with only
feedback from the plant states, wuwithout having to implement the model

system. For Hp=l and 64,=0, we are left with
u = (HG)*[F,H - HFlx,
which is the control law derived by Erzberger.
1f the number of states to be matched is equal to the number of plant

.states (i.e., H is square), than H-' will normally exist.

Thus,

H  'HeX m

x
"

and

(HEY* i mFmXm = C(HG)®HFH " "HpXm + (HG)”HmOmum

[ =
"




s (HG)'IH.F. - HFH"H.]”. + (HG).H-G.U.-

This control law can therefore be implemented with only feedforuard from

T TEREE T T TVTRETERE Ay (AT TR TR e T TN

the mode! states, without the need for measuring any plant states.

Finally, if gll of the plant states are matched to gll of the model
states, then both H and H, are square and invertible, and either of the
above control laus can be used. As a result, it is possible to imple-
ment the control system with either feedforward or feedback, or a comhi-

nation of the tuwo.

By substituting the general expression for u into the equation for v,

we get

. : y = HFX + (HG)(HG)*[HpFaXm = HFX] + (HG) (HG)*H g plm.

We would also like to have

;‘ S HafmXm + HnGmUm.
|
Equating the two expressions, l
i
!
HFx + (HG) (HG)®*[{HpFmxm = HFX] + (HG)(HG)*HpGpm = HpFmXm + Hulmig

(HG)(HG)'[HmFme - HFX] + [HFX - HmFme’

+ (HG)(HG)'Hmeum - HmeUm = 0

- 15 -




‘("6)("6). - !“H.F.x. - ”F’l + l(HG)(HG)' - l]“.ﬁ.u. s

Since uy is arbitrary, uwe must require that

[("G)(HG)* - ll“‘l.?.x. - “Fxl s o
and

3 [CHGI(HG)® -~ I]HuGm = 0.

The above conditions give the general criteria for perfect model follou-
ing to exist. By examining specific cases, it is possible to use these

relations to get meaningful conditions. For example, if Ha=1 and G4=0,

ue get

L e e i o A ————— it

((HG)(HG)* - !l‘F.Xn - HFX] = 0.

Since xm=Hg" THx=HxX, we can urite

[CHG)C(HG)™ = I1[FaH - HFlx = 0.

Therefore,

[(HG)(HGI® - I][FaH - HF] = O, {

- 16 -
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which is Erzberger’s condition.

2.3 INTERPRETATION OF CONDITIONS FOR PERFECT MODEL FOLLOMING

It is interesting to note that a sufficient condition for perfect

model following to exist is

[(HG)(HG)* -~ I] = 0.

First, let us define the term “directly controllable” to mean that a
state has at least one non-zero entry in the corresponding rou of the

control matrix, 6. For example, in the system

X2 F2q Faz2| |x2 1

x2 is directly controllable, while x4 is not. The fact that a state is

directly controllable therefore means that it is possible to modify that 4

row of the dynamics matrix. With this definition, the above condition

can be understood as requiring that each plant state to be matched must

be directly controllable, and that the number of controls be equal to
the number of plant states to be matched. The reason that this is a
sufficient condition and not a necessary one relates to the fact that

even if a state is not directly controllable, sometimes the row of the

- 17 -




plant dynamics matrix is already the same as the corresponding row in
the model dynamics matrix, so no additional control effort is required

to force the match.

Even though the perfect-model-follouwing gains are straightforward and
easy to calculate, it might at first appear that the criteria to be sa-
tisfied are quite stringent, and that perfect model follouwing is there-
fore rather limited in use. However, uWith some slight modifications,

the theory can be extended to cover a much broader range of problems.

To restate the sufficient condition for perfect model following:

Plant states can be made to match model states exactly
if they are directly controllable and if the number of
controls is equal to the number of states to be matched.

1 the number of controls is greater than the number of states to be
matched, one can simply delete the extra controls. 1f the number of
controls is less than the number of states to be matched, then the
mathematics does yield a solution, but it represents only an approximate
match of the plant and model states. Actually, it is a “least-squares”
compromise of the desired matches. Whether this represents an accepta-
ble solution depends upon hou different the open-loop plant and mode!

dynamics are.

- 18 -
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In many aircraft, actuators are used to drive the control surfaces.
For such systems, the primary plant states are not “directly controlla-
ble” as defined above, thus precluding the straightforuard application
of perfect-modeli-following theory. Fortunately however, the dynamics of
aircraft contrel actuators are usually much faster than the vehicle dy-
namics. As a result, they can normally be neglected for the initial

control-system designs.

Even if a plant state is not directly controllable, it will stil}
match a model state if its dynamics are the same as the model state, and
the state(s) through which it is indirectly controliled are made to match
the model. For example, in aircraft equations of motien, roll angle is
normally just the integral of roll rate for both the plant and the
model. As a result, even though roll angle is not a directly controlla-
bie state, it will match the model if roll rate is made to match (assum-
ing the initial conditions are the same). If we have a situation where
a plant state is not dir;ctly controllable and there are no correspond-
ing higher-order states in the model, then it will be necessary to can-
cel the extra plant states in order to get an exact match. For example,
the only uay to get a 1/s2 system to behave like a 1/s model is to some-
houw get rid of an #“s”, such as by adding a differentiator. With a noisy
system, a solution of this type uwould probably not be practical. Alter-
natively, as Curran has shoun([8], the plant can be made to match a modi-
fied model, which consists of the original model plus a number of addi-
tional arbitrarily fast roots. In other words, we could have our 1/s2
system behave like a mogel with dynamics given by 1000/8(s+1000). of

coursz, the faster the additional roots are (and hence the closer the

- 19 -
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modified mode! is to the original one), the greater the control gains

and control effort which will be required.

Even if the actual selection of control gains in a system is done by
a different method, applying perfect-model-~following philosophy can of-
ten allow the control-system designer to gain some helpful structural
insight into the problem. For example, the number of controls should be
based on the number of states for uhich a particular time response is
required (as opposed to simply being stable). Even though the standard
control-theory criteria may indicate that all of the states of a system
are “controllable” with only a single control, if it is desired to spe-
cify precisely the responses of more than one state, additional controls
will probably be necessary. Using an aircraft as an example, if the
elevator is the only longitudinal control, then it is only possible to
guarantee a particular response for a single output variable - uhether
it be pitch rate, or normal! acceleration, or a linear combination of the
two. I1f it is desired to specify the responses for both pitch rate and
normal acceleration, then a second Jongitudinal control, such as a ca-
nard or maneuver flaps, would be required. Along the same lines, the
control-system designer should strive to have each state of interest be
directly controllable. If this is not possible because an actuater is
in the system, the control-system designer should push for as “fast” an
actuator as possible. This not only makes the designer’s job easier, it
also allouws him to design a control system which will provide the maxi-
mum flexibility and best total performance. In the end of course, cost

or other constraints may not permit the control-system designer to have

the final say.
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2.4 EXAMPLE: LATERAL-DIRECTIONAL DECOUPLING OF A I=33 AIRCRAFT

As an example of the application of perfect-model-following theory,
consider the problem of decoupling the lateral-directional axes of a
T-33 aircraft. This example has been solved by geometric methods in [6]

and with an explicit model-following technique in {20].

Lateral-directional decoupling refers to the desire to make the yau
and sideslip motions of an aircraft independent from its rolling mo-
tions. 1f this can be accomplished, the pilot workload is significantly
reduceﬁ. resulting in improved safety for commercial operations or
greater weapons-delivery accuracy for military aircraft. The particular
aircraft for this example is a T-33 which has been modified for flying-
qualities research. In addition to the normal! rudder and aileron con-
trol surfaces, it has hydraulically operated “drag petals” on the wing-
tip fuel tanks. These surfaces can be differentially extended in flight

in order to generate significant yawing moments, if required.

The equations of motion of the unaugmented T-33 are given by

i = Fx + Gu,

shere

xt=(p ¢ r B)
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DR

r b
-3.13 0 .63 -10.6
1. 0. 0. 0.

F =
-.06 0. -.27 4.18
L.ozz .0644 -.998 -,151

-

A )
-14.4 1.5 0.
0 0. 0

6 =
0. -2.59 -.96
Lo. .037 0. |

and

ut = [8a &r spl.

The state vector consists of roll rate, roll angle, yaw rate, and side-
slip angle, while the controil vector is made up of aileron position,

rudder position, and drag petal position.

The model equations were obtained by replacing the undesirable cou-
pling terms in the plant equations with 2eros. The resulting model is

described by

Xm = FuxXm + Guum,

with

th = [pm ¢||| rm Bm]
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-3.18 0. © 0
1 0 0. 0
Fm =
0 0 -.27 ¢
0 0 . -.151
- o
[ ]
-14.4 0 0
] 0. 0
Gm =
0 0 -.96
c. .037 0.
L a

and

Unt = [6an 6rm 6pal.

Since there are three controls, and the roll rate, yauw rate, and
sideslip angle are all “directly controllable,” we are guaranteed that
all three of these states can be made to match the model! states exactly.
In addition, since roll angle is simply the integral of roll rate, it
will also match if roll rate is made to match. Thus, we are able to
match exactly all four plant states to the four model states. Note that
this system may be implemented either uith feedforuward or with feedback.

The plant-state-feedback or model-state-feedforuward gains are

-.0619 -.1813 2.8534 -.7361

Cy or C; = |~-.5946 -1.7405 26.9730 0.

1.5417 44,6958 -72.7708 4.3542




The gains on the model inputs are

As expected, the <closed-loop dynamics matrix using these gains ex-

actly matches the model dynamics matrix.

2.5 EXAMPLE: LATERAL-DIRECTIONAL CONTROL OF A B-26 AIRCRAFT

In the previous example, the plant had three controls and three di-

rectiy-controllable states, which made it possible to match exactly al}
of the model states. Houwever, often the designer will be faced with a
problem with fewer controls than states. Such a case is examined here.

The plant equations represent the lateral-directional equations of mo-

tion of a B-26 aircraft:




0. 1. 0. 0.
0. -2.93 -4.75 -.78
F =
.086 0. -. 11 =1,
0. -.042 2.59 -.39
g. ¢
0. -3.91
6 =
.035 0.
-2.53 .31
L |

and

ut = [6r S8al.

The state vector consists of roll angle, roll rate, sideslip angle, and
yaw rate, while the control vector is made up of rudder position and

aileron position.

The model was determined from simulator studies to provide improved

aircraft handling qualities:

im = Fme + GmUm:
with

Xnt = [#n Pm Bm ral !




0 1 0. 0.

0. -1 -73.14 3.18
F.=

086 0 -.n -1

.0086 .086 8.95 -.49
6w = 6

and

unt = (6rn Saml.

1f we try to apply Erzberger’s condition for perfect model follouing,

we find that it is not satisfied; thus both Erzberger{10] and Chan{5]

concluded that “perfect model following is not possible.” Houever, both

authors proceeded to solve for the perfect-model-following gains, and

found that since the plant and model equations were not too different, a

reasonably close “compromise” match of the four states could be
achieved.
The gains for this case uwere determined to be
-.0034 ~-.1110 -,3706 -.084%
Cy or C; = .
0. -.4930 17.4911 -1.0128

Since the plant and model control matrices

trix from the mode!

inputs, Cj,

is simply the

are the same,

identity matrix.

the gain ma-




In this particular problem, the plant and model equations uwere quite
similar, and the compromise solution which attempted to match all four
states is probably acceptable. Obviously, this will not aluways be the
case. Therefore, it is important to note that by using the generalized
perfect-model-following control law, it jg possible to achieve perfect
model following for a gubset of the plant states. Since there are tuc
controls, we are guaranteed to be able to match two states; houever,
since roll angle is simply the integral of roll rate, it will be matched
if roll rate is matched. If we want to match roll angle, roll rate, and

yauw rate, the selector matrix becomes

The resulting feedback gain matrix for the plant states is

6. -.1084 .8749% ~.1786
Cq = »
0. =-.7494 -1.2148 -,1995%

while the feedforward gain matrix for the model states is




-.0034 -.0027 -1.2455 .094¢
Cz = ' .
0. .2558 18.7059 -.8133

Roll-angle time histories of the d4-state “compromise” match and the
3-state ”“exact” match are given in Figure 1. The results for roll rate
and yau rate are similar, with the 3-state-match design duplicating the

mode]l system exactly. Although uwe do not have any guarantees as to what

kind of response we will get for the state we did pot try to match {
(sideslip anglel, in this particular problem it is very close to the

model response.

Obviousfy. other choices of H are possible if it is desired to match

a different subset of the states. Essentially, this control law uses

the feedback from the plant states to cancel the plant dynamics and the

feedforward from the model! states to obtain the desired responses. Note
that using Erzberger’s control law with this type of problem wuill not
yield exact matches, even with the same selector matrix as the one used

here.
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Figure 1: Comparison of B-26 Roll-Angle Responses
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Chapter 111

MODEL FOLLOWING AND OPTIMAL CONTROL

3.1 SELECTION OF WEIGHTING MATRICES EOR QPTIMAL CONTROL PROBLEMS

Many control-system problems can be formulated in such a uway that it
is desired to find the control gains which will minimize a cost function

of the form

(-]
J = I(x*Ax + utBurdt,
0

where A and B are weighting matrices uhich penalize state excursions and
control usage respectively. The mathematics for the solution of such
7optimal control” problems is uwell knoun, and is easily accomplished on
a digital computer. The resulting control laus have a number of favora-
ble properties, such as guaranteed stability. In addition, because of
the matrix structure, multivariable problems are no more difficult to
solve than single~input, single-output ones. Nevertheless, optimal con-
trol techniques have not seen uidespread'acceptance in industry, parti-
cularly for aircraft control problems. Part of the reason for this may
lie in the relative newness of the optimal control methods, and in the

availability of skilled classical designers whose experience and insight
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allow them to obtain excellent results with Root-Locus or Bode-Plot
techniques, even for very complicated problems. However, some of the
reluctance to use the modern control methods may be due to the diffi-
culty of selecting the weighting matrices A and B in order to obtain the
desired results. Increasing the ueighting on a state tends to speed up
the response of that state, while increasing the weighting on a control
tends to cut doun on the use of that control. Houwever, it is sometimes
difficult to translate such specifications as frequency, damping, rise
time, or overshoot into appropriate choices for the uweighting matrices.
Thus, many design iterations may be required before acceptable results
are obtained, if the system requirements are ones of this type. As with
classical design techniques, a great deal of experience and insight is

found to be helpful, if not required, to achieve the desired results.

In an attempt to provide some guidance for the selectiBn of the
weighting matrices, Bryson’s Rule was formulated(4]. Bryson’s Rule
states that A and B should be diagonal matrices with elements equal to
the inverse of the square of the maximum allowable state excursions for
A, and the inverse of the square of the maximum allouwable control usage
for B. Although such a procedure has been shown to provide a reasonable
first guess for the matrices, it by no means eliminates the trial-~and-
error process. In addition, it is really designed to handle the steady-
state regulator problem rather than the meeting of transient-response

specifications.

A different approach to the problem is knoun as destabilization. In

this method, the cost function is modified by the multiplication of the
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factor exp(at), with a>0. Since the optimal control solution is guaran-

teed to be stable, the resulting closed-loop roots are ”stabilized” or
”shifted to the left” in the s-plane, by an amount a. The problem with

this approach is that all of the roots are shifted, even the ones which

already have an acceptable response. Thus, control effort is wasted,

and some variables end up being over-damped ands/or faster than required.

By combining the techniques of model! following and optimal control,

i- it is possible to take advantage of the pouer and flexibility of the op-

timal control methods while also incorporating time-response informa-

tion, resulting in a more straightforuard design procedure. This proce-
dure, sometimes knoun as “Optimal Mode! Following”, may be accomplished ]

using either of tuo methods: state matching or dynamics matching.

3.2 STATE MATCHING

Let a plant be described by

Fx + Gu

e
(1]

Wwith the desired system performance being given by the model equations

Xm = FmXm

Ym = HpXm.
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The H and Hg matrices are “selector” matrices wuwhich identify which
states are to be matched. Since we would like to have y be as close as

possible to ya, uwe attempt to minimize the cost function

[--]
’ J = J[(Vm - y)talyn, - y) + utBuldt,
]

f with the system dynamics being given by

1f Wwe define a new state variable

then the cost function may be reuritten as

[ ]
J = J(Z*KE + utBuldt,
0
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swhere

HtAH ~Htan,

“HatAH  HatAH,

The resulting control lau will bhe

U =02 =Cqx + Coxp»

and therefore requires both plant states and mode! states to implement

it.

With the state-matching approach, it is the “”speed” of the plant
roots which is determined by the choice of weighting matrices in the
cost function. B8y making these roots fast enough, the plant transfer
function approaches unity. As a result, the plant ocutputs will accu-
rately “follow” any input signal. In this case, the input signal is

simply the output of our model system.

Unfortunately, 1if the plant roots are not made sufficiently fast,
either because of control limitations or for other reasons, they may be-
come the dominant factor in the overall system response, overshadowing
the model roots. Thus, even if good steady~state performance is
achieved, the resulting transient response may be totally different from

the desired one. In addition, since it is not possible to have the
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plant output exactly follouw the input unless the transfer function is
identically one, we uwould not be able }o achieve perfect model follouwing
With this type of system unless the plant became infinitely fast.

3.3 DYNAMICS MATCHING

Suppose that instead of trying to minimize the error betueen the

plant and model states, we attempt to match the dynamics. Given a plant

Fx + Gu

Hx,

<
"

and a model
X. < me.'

e would like the dynamics of y to match the dynamics of xg. In other
words, we want y to be as close as possible to Fpuy. To accomplish this

We can minimize the cost function

J = I[(Q - Fay) YAty - Fav) + utBuldt,

which is equal to




™
[((er + HGu - F.Hx)‘A(HFx + HGu = FuHx) + utBuldt.
]

Multiplying out and regrouping terms, we get

J = [(x*((HF - FaM) YACHF = FuH)x ¢+ 2x t] (HG) tA(HF - Fa) 1tu

0

+ ut{(He) tACHG) + Bluldt.
Defining

~

R = [(HF = FoH) YA(HF - FuH)]
N
S = [(HG)ACHF = FaH)]

A
8 = [(HG) 'A(HG) + BI,

we can urite

©
A A
J = j(x‘ﬁx + 2xtsty + utBuddt.

0
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: . 1¥ the cross-product term could be made to disappear, the problem would
then be in the standard optimal control form. Kriendler[16] points out
that frequently the plant being worked on will contain actuators, which
isolate the plant states of interest from the control! inputs. In such

A A
cases, H6=0. Therefore, S=0 and B8=B, and we are left with

[
A
Jd = I(xtAx + utBu)dt,
0

which is easily solved in the standard uay. However, Wwith a little ad-

ditional manipulation (as suggested by Anderson and Moorel1]), even this

restriction can be removed. Completing the square,

©
J = J(u*gu + 2xtSty + x*g*S"gx - x*gfa"gx + x ot !

0 )
) 3

N z Jl(u + 8808w + 3-'2;() + x*(ﬁ - g*g";)xldt

1 §

| 0

: ]

ﬂ.' ' = J(xfix + uytBuyddt,

3 0 1

where
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and

1t is interesting to examine the case when perfect model follouing is i
possible (as discussed in Chapter II), and no weight is put on the con-
trol. For this problem A becomes 0, which in turn means that no weight-
ing will be assigned to the states. As a result, the output of an opti-
mal control program will be 2ero gains for uy (assuming the system was
stable to start with). 1f ue let A be the identity matrix (i.e., each

state match is equally important), then

o>

[(HG) t(HG) )

nd>

[CHG) tCHF ~ FaH) ],

and the contro) is given by

~{HG) YCHGI 1=V (HG) t(HF - Falldx

[~
[

(HG)I*(FpH ~ HF)x,




the same results which were achieved in Chapter 1I, although admittedly,
this time after a much more complex procedure. Thus, with the dynamics-
matching approach, we can achieve perfect model following when it is

possible, without the need for an infinitely fast plant.

3.4  GENERAL REMARKS

In the preceeding sections it was shoun houw the ideas of model fol-
lowing and optimal control could be combined to produce “Optimal Model
Following” design methods. With regular optimal control, selection of
the weighting matrices is a ”“black art” at best. Putting too little
weight on the control results in ridiculously fast roots and impracti-
cally high control levels, and changing the weighting on one state usu-
ally changes the response of other variables as well. With Optimal
Model Following, the designer need only formulate a model uhose dynamic
equations satisfy the time response specifications. Typically, we might
then let A be the identity matrix (in other words, all state matches are
equally important), and let B equal a very small number. 1f perfect
model following is possible and the dynamics-matchin§ method is used, B
can even be set to zero. in this case the control gains will not in-
crease past the finite gains which are required for the match, no matter
what A is, and the plant states uill exactly match the model states.
Kreindler(16] noted that with an actuator in the plant but not in the
model, use of a small B led to high feedback gains on the actuator, es-
sentially trying to “speed up” the actuator root. This makes sense when

we consider the perfect-model-following ideas of Chapter II. With an

actuator in the system, some of the plant states are not direciiy’
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controllable, so perfect model! following is not possible, in general.
Closer and closer matches can be achieved by speeding up the response of
the state through which the plant states are controlled (i.e. the actua-
tor). However, because of nonlinearities or actuator saturation, there
is usually a physical limit to the actuator speed of response. In any
case, whether perfect model following is possible or not, the designer’s
task is a very straightforuard one. Even if some iteration is required,
it is aluays obvious which direction to proceed. If the control use is
too high, just increase the B matrix. 1f the degree of matching is too
louw, just decrease B. In this way the designer can easily achieve a
balance betueen control use and the “goodness” of the match of the de-
sired time response. The method thus serves as a kind of link betueen
the time-response ideas of classical control theory, and the cost func-

tion and ”“control-oriented” approach of optimal control theory.

What are some of the problems or shortcomings of these methods? An
obvious disadvantage of all explicit model-follouing systems is the nec-
essity to implement the model equations. This requirement means that
the control computer will probably have to be larger and faster than it
otherwise would have to be. On the other hand, as we uill see in Chap-
ter IV, explicit model-following systems have advantages in disturbance
rejection gnd control-system sensitivity. (State-matching systems re-
quire an explicit formulation, while dynamics-matching systems may be
either explicit or implicit.) 1f a plant state is not directly cont-
rollable, attempts to match the model dynamics closely will result in a
speeding up of the transfer state (actuator) according to hou heavy the

weighting on the match was made. Finally, because the objective in
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optimal control problems is to minimize a cost function, there will
aluways be an ansuer, even if it is totally unacceptable. Thus, the use
of very ambitious models without the willingness to expend large am-
ounts of control, or the attempt to match many states wuith only a feu
controls, will likely yield disappointingly poor matches. As a result,
it is probably a good idea to review the perfect-model-follouwing crite-
ria to get a feel for what is possible before determining the objec-
tives. And, once a final design has been arrived at, system testing or
simulation is a necessity for verifying the performance of complex sys-

tems.

3.5 EXAMPLE: IWO MASSES AND A SPRING

As an example of the ease of the Optimal Model Following design pro-
cess, specifically the dynamics-matching method, consider the systen

consisting of tuwo masses and a spring shown in Figure 2.

The single contro! acts only on the first mass, but it is desired to

control the motion of the second mass.

The plant equations of motion are given by




fFigure 2: Tuo Masses and a Spring

We would tlike the second mass to behave like a second-order system
with a frequency of 2 radssec and a damping ratio of .7. The model is

therefore described by

Xm 0 1 Xm
’x.m ~4 -2.8 im

1f ue were trying to solve this problem with the standard Linear

Quadratic- Regulator (LQR) approach, we might initially try using an A
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matrix with unity weighting on the position of the second mass and ze-
roes elseuhere. We could then try several different values of B to see
what would happen. A 2lot of the resulting root locations is given in 4

Figure 3.

Since the cost function does not contain any direct information about

the desired transient response, it would have been a lucky coincidence
it the plant roots had ended up close to the model roots. 1t is no

doubt possible to do much better than we have done here, given enough

tries. We can increase the uweighting on one of the states to speed up
that state, or increase the weighting on the derivative of a state to
increase its damping. Houever, this is clearly a trial-and-error pro-
cess, and it may take a large ﬁumber of attempts before satisfactory re-

sults are achieved.

1f we use Optimal Model Following, the design process is greatly sim-
plified. Since we are trying to match the third and fourth plant states

to the model, the selector matrix is

The results are shoun in Figure 4.

Lowering the weighting on the control causes tuo of the plant roscts

to proceed rapidly touard the model roots, while the remaining rlant
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roots become very fast. Since the second mass is not directly controll-
able, the first mass acts like an sctuator and becomes faster and faster
as the uweighting on the control is decreased. The designer needs only
to decide upon the maximum acceptable control use, wghich will then det-
ermine houw closely the plant states will come to achieving the desired
time response. It should be noted that Optimal Model! Following is not a
pole-matching technique, and therefore the plant roots may not aluays
proceed directly to the model roots. However, the time responses of the
plant states will get closer and closer to the time responses of the
mode! as the control uweighting is decreased. A plot of the impulse res-
ponse of the second mass with an LQR design is given in Figure 5, while

the results for tuwo OMF designs are presented in Figure 6.
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Chapter 1V

MODEL FOLLOWING FOR INSENSITIVE CONTROL

4.1 REVIEW OF PAST EFFORTS

Unknown or varying parameters have aluays been a concern to control-
system designers. Classically, this was handled by conservatively se-
lecting the control-system gains and structure so that the predicted
gain and phase margins, damping ratios, and time constants indicated
that adequate performance could be achieved even for “uorst case” condi-
tions. This was then confirmed through simulation or system test, and

if necessary, changes were made to the design.

On the surface, optimal control techniques appeared to make the de-
sign process much more objective. It was only necessary to input a feu
weighting parameters to the computer, and the “optimum” solution would
be calculated. The key question of course, is 7“0Optimum with respect to
what criteria?” Kalman{14] has shoun that almost any control law can be

shown to be an optimum one, given the proper choice of cost function.

The sensitivity of a control system may be defined in many different
ways, such as trajectory sensitivity, eigenvalue sensitivity, or cost
function sensitivity. Typically though, the problem is that while con-
trol systems designed using standard linear quadratic regulator tech-
niques may perform very well for the “nominal” conditions, with only

small errors in the parameters, system performance can be significantly
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degraded or even unstable. This has no doubt led to much confusion and
embarrassment among neuwly graduated engineers, trying to apply the
theory they learned in school to real-world problems. 1t has probably
also helped to prevent more widespread use of modern control techniques

in the aerospace industry. Actually, sensitivity is not an inherent

characteristic of the optimal control approach, but rather a result of
the designer failing to incorporate all of his design requirements into
the criteria. As ue shall see in a later example, the standard LQR
theory can wusually be used very successfully to give designs with as
much stability as desired, even for large parameter uncertainties, as
long as the designer takes these uncertainties into account during the

design process. Although the resulting system no longer behaves “opti-

mally” at the nominal parameter values, at least the instability problem

- - is avoided.

Over the past few years, there have been a number of attempts to
somehow automatically incorporate sensitivity characteristics into the

design process. Palsson and Whitaker[23] and Peled[24] applied random-

vector approaches with some success. Harvey and Popel13] and
Vinkler!30) produced excellent comparisons of a number of the most com-
mon methods for sensitivity reduction. Although some of the methods ap-

pear to be better than others, no single technique has been found to be

clearly superior to the others in all cases. Almost all of the methods
shared tuwo common characteristics. First, computational requirements

were very great. Most of the algorithms required the use of gradient-

' : search routines to find the minimumn of a cost function, and many itera-

tions were sometimes required. Second, and most importantly, system
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performance ands/or control wuse at the nominal parameter values uas
degraded, wuwith the amount depending on how insensitive the system was
asked to be. In addition, although stability uwas guaranteed in some of
the methods, system eigenvalues could vary dramatically with changes in
the parameters. The model-following method discussed later in this

chapter is shoun to avoid these undesirable characteristics.

4.2 FEEDFORWARD/FEEDBACK EQUIVALENCE

Suppose uwe have a plant

x = Fx + Gu,

and a model, of the same dimension,

Xm = F.,x,,. + GnUm.

Let us impltement an explicit model-following control system, with con-

trol lau of the form

U = Cyx + CaxXym + Caup.

The system structure is then as shoun in Figure 7.

By adding and subtracting C;x, the control lau may be reuritten as
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Figure 7: Explicit Model Follouing System

Y

U = C4x + Caxq + (C2x = C2x) + Caup.

Thus;

u=(C; + Calx + Ca(xp = x) + Cauy.

Defining e3xpy-x, we obtain

u = (Cq + C2)x + C2e + Caugp.

¢ .
S i ol i i, S




The block diagram in Figure 8 can thus be seen to be equivalent to the

one in Figure 7.

u X
-+ +
o o5 [ Plant >-
-+
]
1
¢ C1+C2‘
{
1
] e -
SRS
-+
Xm
Model

Figure 8: Equivalent System

Suppose the quel and the closed-loop plant are exactly the same, and
the initial conditions are also identical. Then x and xun will always be
equal, and the error, e, will aluways be zero. In this case, as Figure 8
makes clear, it is (Cq4+C) which has determined the closed-loop plant
dynamics. The match of plant and model states could therefore have been
achieved uith only feedback from the plant states (C2=0), uith only
feedforward from the model states (€41=0), or with any corbination of the

tuo, as long as the sum of €y and C; remained the same.
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As the above discussion indicates, fmplicit Model Following is just
as effective as Explicit Model Following in terms of matching dynamics
(assuming plant and model are of the same dimension and all of the
states are matched). Thus, in cases where the plant parameters are wel)
known and there are no unknouwn disturbances, or where a conservative de-
sign is acceptable, there is no need to implement the model. Where this
is not the case, the explicit formulation should be used. as discussed

in the following sections.

4.3 DESCRIPTION OF IHE DESIGN METHOD

Many authors have stated their “intuitive” feelings that explicit
model-folloning systers should have some advantages in terms of system
sensitivity, at least as compared to Implicit Model Following systems.
It certainly seems reasonable that the ability to generate an error
signal betueen the plant and a model system and using it as part of the
control input would help to keep plant states “close” to the mode!
states. However, unless the system roots are selected carefully, the
transient response of the plant may bear no resemblence to the model

N response.

Tyler[29]) and others formulated the explicit model-following problenm

} . as finding the control which minimized the cost function

[
Jd = j(e*Ae + ulBuidt.
0

T aa, sk




Thus, they reasoned that an optimal tradeoff could be accomplished bet-

ween the error and the control effort used.

Actually, the above cost function was usually computed using

[
J = Jltx. - x)talx, - x) + utBuldt.
0

As a result, optimal gains were computed for both x and xa, even though,
as we saw in the preceeding section, the model-following ability of a
system is not dependent on whether it is implemented with feedforward,
feedback, or a combination of the two. In other words, the gains which
minimize the above cost function do not wuniquely determine the plant
response, and different combinations of feedforward and feedback gains

will have substantially different effects for off-nominal conditions.

Kriendler[16) noted the poor dynamics-matching abilities of this tvpc
of system, which caused him to prefer Implicit Model Follcuing. The
poor matches really had nothing to do with whether the system was expli-
cit or implicit, but rather was a function of using state matching in-
stead of dynamics matching. Kriendler also acknowledged that Expiicit
Mode! Following might have better sensitivity properties, al thouoh,
since he used Tyler’s method (state matching) to calculate the gains, he
found no significant difference in sensitivity betueen the tuo methods.
In ary event, to incorporate the advantages of both explicit and imrla-
cit model-following systems, he proposed (although he did not invecti- -

gate) the cost function




e —— o _ — o " g
B S ———— o ﬁ ,_;__,_,,._m.____.__.ﬁ,:q

[ ]
J = Ju; - Fay)tAqly = Fay) + (ym = VItW2lyy - v) + utBuldt
0

This does appear to represent a great improvement over the standard

state-matching formulation. The error-rate term tends to match the dy-

namics, wWhile the error term tends to speed up the plant states by in- 1

{
creasing the feedback gains. This increased feedback tends to desensi- ?
tize the system to parameter errors. The disadvantage is that changes

in A; to adjust system sensitivity will also result in changes to the
nominal plant dynamics/transient response. Instead, it is claimed that
the design process should be accomplished tuice: once to establish the

plant dynamics at the nominal parameter values, and once to establish

the error dynamics (and therefore the system sensitivity). By doing the
design in this manner, system performance at the nominal parameter val-

ues becomes independent of the sensitivity.

The proposed design method, uwhich we call Model Following for Insen-

sitive Control, is then as follows:

1. Perform a design, using any method (root locus, model follou~-

ing, optimal control, etc.), to select the nominal plant res-

ponse. These gains become C4=C1+C2 and Cj. i
2. Implement a model of this closed-loop system.:

3. Do another design to select the error roots, wuhich should be i

chosen faster than the plant roots. These gains become Cy.
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4. Calculate C2=C¢-Cq.

5. Implement the control law as u=Cyx+Cyxg*Cauy.

4.4 THEORETICAL DEVELOPMENT

Let the behavior of a plant with nominal parameter values be given by

= Fx + Gu.

x s
]

Houwever, due to parameter uncertainty and/or slouwly varying parameters,

suppose the plant actuzlly responds according to

x = (F + OF)x + Gu.

Throuch the use of model-follouwing techniques, optimal control, root lo-
cus, or any other method, assume that a satisfactory closed-loop control
Yaw can be obtained for nominal values of the parameters. Let this con-

trol law be given by

U = Cix + Chupy.

Then, for nominal values of the parameters, we have

X = Fx + G(Cy¢x + Caup)




= (F + 6Ce¢)x + GCauy.

Build a math model of this system, i.e.,

*®
»
]

= (F + GCQ)X, + GC:U.

FmXm * GmUm.

For the second design, uwe again may use uwhatever method we desire, but
the objective this time is to select the error roots. For an insensi- i
tive design, these roots should be chosen faster than the nominal-plant

roots. The resulting gains are designated Cy.

e i = e

We then use a control lauw

-

c
]

= Cyx + Caxm + Caup

Ci¢x + C2e + Caup,

where e=xp~x and C=C4+C;.

This results in

(F + AF)x + G(C¢x + Cze + Caup)

»
1]

s (F + AF + GC¢)x + GCze + GCaum.
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Subtracting, uwe get

e = (F + GCyle - AFx - GCgze
= (F + GC¢ - GCz)e - AFx.
3 The system is thus described by
-
X F+AF+6Cy  G6C; X 6C3| Um»
= +
H e -0F  F+6C4-6C2| le 0

with a characteristic equation given by

SI-F-AF-GCy -6C; .
= 0.
AF sI-F-GC 4+6C;
N Since the determinant of a matrix is not changed by elementary rou and

column operations, we can urite

$1~-F-GCy sI~F-GCy

oF S1-F~GC4+6C;

e -




; P — - . ...

sl~-F-GCy 0

oF sI1-F-AF-GC¢+6C;

This can be uritten as

(s] - F - 6C¢)(sl - F - &F - GC¢ + GCp) =0,

or equivalently,

(sl = Fp)(sl - F -~ AF - GC4q) = 0.

Thus, given an appropriate choice for C4, the roots of (sI-F-AF-GC4)
can usually be made fast enough to keep the roots of (sl-Fp) as the dum-
inant system roots, even for arbitrarily large AF. If the error roots
are made sufficiently fast, they will not significantly affect the sys-
tem response, regardiess of the value of AF. Also, it the plant and
mode! start with identical initial conditions and AF=0, the error roots

Will never even be excited, since the system equations uill be

X F+GC¢ GC, b GCaj Ump.

e 0 F+GC¢~GCy e 0




4.5 EXAMPLE: FIRST-QRDER SYSTEM

In order to get a better understanding of how Model Following for In-
sensitive Control works, let us consider the simple, first-order system

used by Shenkar{26]. The plant is described by

Xx = =(1 + &F)x + u,

where AF represents the uncertainty in a plant parameter. The value of
4F may be anything from -1 to 1, with 0 being the nominal value. Three
different design techniques were evaluated: the standard Linear Quad-
ratic Regulator (LQR) technique, the Average Cost Function (ACF) an-
proach (representative of the methods of Vinkler, Ashkenazi, and

Shenkar), and Model Following for Insensitive Control (M7IC).

For the LQR design, we assume that our design requirements are met by

letting A=B=1 for the nominal plant. Houever, as might be expected, the
system dynamics are very dependent on the value of the uncertzin parare-
ter. The impulse responses for the nominal and extreme valucs of AF are

shoun in Figure 9.

With the Average Cost Function design there is definitely some im-
provement, but uwe still have a uide range of responses for the different
values of Af. Also, even if 8F=0, the response is nouw different from

the nominal LQR design. Results for this design are shoun in Figure 10.
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For the Model Following for Insensitive Control design, ¢the closed-
loop root for the nominal plant uas chosen to be the same as the nominal
LQR system, while the error root was arbitrarily chosen to be at s=-10.
With this system, the impulse responses are almost identical, regardless

of the value of AF. The responses are shown in Figure 11,

If a more insensitive design is required, one can simply select a
faster error root. Without disturbances, the control levels required
are directly related to the transient response. Thus, the control mag-
nitudes for the MFIC design are essentially the same as the control mag-
nitudes which would have been required for a design in uwhich AF uwas
known in advance. Control! bandwidth houever, obviously must be in-

creased as the error roots are speeded up (which may be costly).

To understand what is happening physically, it is helpful to think in
terms of the system transfer functions. The open-loop plant 1is des-
cribed by 1/(s+1). The desired closed-loop system, wuhich is attained
with the nominal LQR design, has a transfer function of 1/(s+1,.414),
The ACF design has a slightly higher feedback gain, resulting in a
transfer function of 1/(s+1.689). With the MFIC design, the plant is
greatly speeded up, in this case to 1/7(s+10). However, the feedforuward
from the model and the model input form a prefilter or “command condi-
tioner” with a transfer function of (s+10)/(s+1.414), Thus, with nomi=~
nal parameters, the speeded-up plant root is exactly cancelled, result-
ing in the desired system transfer function. With a non-zero AF,
perfect cancellation is not attained, but because the pole and zero are
close to each other and both are much faster than the rest of the sys-

tem, they do not significantly affect the response.
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The beneficial effects of this design method stem from two factors:
first, the increased feedback gains, which have a desensitizing effect
well-knoun to classical designers, and second, the cancellation of the
speeded-up plant roots. Note that either of these items by itself would
not yield the desired results. Just increasing the feedback gains would
lower the system sensitivity, but the system response would be over-
damped or faster than desired. On the other hand, just cancelling the
plant roots would allow us to achieve the desired closed-loop roots, but

it does nothing for the sensitivity problem.

The MFIC design procedure is primarily oriented to obtaining a desir-
able transient response, rather than to disturbance rejection. On the
other hand, disturbance rejection is a very important part of the Aver-

age Cost Function approaches. To try to compare the tuo methods from a

different perspective, the same first-order example was used, but with

the addition of a process-noise source, With a pouer-spectral-density
and a process-noise distribution element of 1. The two components of
the cost function - state excursions and control use - were then plotted

against feedback gain in Figures 12 and 13.

As might be expected, the greater the negative feedback gain, the
tighter the control system is able to regulate the state, and hence the
smaller the state excursions. Likewise, the greater the feedback gains
are, the higher the control level that 1is used to handle the distur-
bance. By adding these tuwo terms together, the total value of the cost
function is obtained. Plots of this total cost function versus the un-
certain parameter are presented for the LQR design, the ACF design, and

two I'FIC designs in Figure 14.
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The advantage of the ACF design is supposed to be that by accepting a

slightly higher value of the cost function for positive and 2zero values

of the uncertain parameter, a substantial improvement can be achieved
for negative values of the parameter. Houwever, the MFIC design, wuwhich
had much better transient responses, shous significantly higher values
of the cost function (which contains control effort) for any AF. In
fact, the faster the error root is made, {and hence the more insensitive

the resulting system), the higher the cost function becomes.

The message from this example 1is that it is important for the de-

3 signer to be sure that he has chosen the cost function which properly
] represents the problem he is trying to solve. In this case, by using a
model-follouwing structure and in;reased feedback gain, it was possible
to achieve a significant improvement in transient response compared to

the so-called “optimal” design. The cost of this improvement was the i

increased control usage due to the process noise, which may or may not I

be important to the designer. i

4.6 EXAMPLE: SECOND-ORDER SYSTEM

F For our next example, consider the second-order system studied by

Vinkler{30]:
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With ueightiné matrices of

A= and B = fO.

a2 standard LQR design yields an unstable system for some values of «.

Vinkler evaluated several design techniques which have been suvgested
for handling uncertain parameters. He then described tuc methods for
obtaining better results: the Muitistep Guaranteed Cost Control methed
(MGCC) @and the Modified Discrete Expected Cost method (MDEC). Both
methods require substantial computational effort and special computer
programs during the design stage. Actually, in many problems the de-

signer can obtain satisfactory results with standard LQR techniques, as
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long as they are used properly. 1f the designer is aware that the
system has uncertain parameters, he should make his nominal design more
stable than he ordinarily would. Then, even in the presence of destabi-
lizing values of the parameters, an adequate degree of damping is stil!

obtained. For example, in the present problem, if we choose

A = and B = 10,

the closed-loop response is stable for all allowuable values of w. The
disadvantage with this approach (as uwell as with Vinkler’s) 1is that in
order to get a satisfactory stability level with “unfavorable” values of
the uncertain parameter, we have to accept overdamped or faster than de-
sired responses for nominal or “favorable” values of the uncertain par-
ameter. By using Model Following for Insensitive Control, ue can avoid
this result. For this example, the nominal-plant roots were chosen to
be the same as for the original LQR design. The error roots were arbi-
trarily chosen to both be at s=-5. The resulting eigenvalues for each

method are shown in Table 1.

Notice that with the MFIC design the dominant eigenvalues remain con-
stant, and in fact, are identical to the.desired nominal LQR roots, 14
a more insensitive design is desired, faster error roots can be selected
(with correspondingly increased control effort), so that their effect on

the system response becomes negligibly small.
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4.7 EXAMPLE: SIMULATION OF A SUPERSONIC TRANSPORY

As a final example, ue apply the MFIC design method to the problem of
simulating the longitudinal motions of a supersonic transport. This
problem has appeared at least twice in the technical literature: Winsor
and Roy[31] uged it to demonstrate a trajectory sensitivity method, and
Landau and Courtiol[18] gave a solution for an adaptive-control ap-
proach. The plant aircraft is the Total In-Flight Simulator (TIFS), a
modified Convair C-131B which has side-force generators and direct-1ift

flaps in addition to the normal control surfaces.

The plant equations of motion are given by

x = Fx + Gu,
with

xt =16 q ¢ v]

-0. 1.0 0. g. W
1.401x10°" Mg ~1.9513 .0133
T -2.505x10°* 1.0 ~1.3239 ~-.0238
-.E610 0. . 3580 -.0279
r 1
G. 0. 0.
-5.3307 6.447x10°? -.2669
6 =

-.1600 =-1.155x10-2 -.2511

0. .10G0 .0862




; : and

ut = [se st &¢].

The state vector consists of pitch angle, pitch rate, angle of attack,
and velocity. The control vector is made up of elevator deflection,

throttle position, and flap deflection.
The model equations are

Xm = FoXm + GmUmn

with

Xm = [0n aGm @m Vnl

r L

0. 1.0 0. 6.
5.318x10°7  -.4179 -.1202 2.319x10°3

o -4.619x10°% 1.0 -.7523 -2.387x10"2 :
~.5614 0. .3002 -1.743x10-2J J
0. o T !
-.1717 7.451x10-6

Gn =

-.0238 =-7.783x10"5

0. 3.685x10'3J

and




u.t = l8.. St.].

The parameter Mg has a nominal value of -2.038, but it is assumed to

vary from -.558 to -3.558, uwhich represents a variation of approximately

75% around the nominal value. Since perfect model following is possible
for this system, the plant will exactly match the model responses for
nominal Mq. Houever, with Mg=-3.558, the responses change signifi-
cantly. By using the MFIC design method, we can obtain much better re-
sults. Time histories for a step elevator input for the model, the
off-nominal plant, and the off-nominal plant wusing a MFIC design are
given in Figures 15-17. The error roots uere arbitrarily chosen to be
at s=-10, -10, =2, and -2, with the faster roots corresponding to the

pitch-angie and pitch-rate errors. As shoun in Figure 18, the maximum

pitch-angle error uwas less than .005 degrees. The angle-of-attack and
velocity responses had 2zero error. This represents a considerable im-
provement over the trajectory-sensitivity method tried by Winser and Roy

and the adaptive design given by Landau and Courtiol. Control uses are

reasonable and are presented in Figures 19-21.

The system response to an initial error between the plant and the
model pitch angle was also investigated, with nominal values for the
parameters. The results are showun in Figure 22. The errcr is driven
rapidly te 2ero, and unlike the previously published efforts, errors arc

not excited in the angle of attack and velocity states.
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4.8  LIMITATIONS

The Model Following for Insensitive Control design method is based on
the beneficial effects of increased feedback gains on system sensitiv-
ity. As a result, it is only practical for those systems which have
sufficient c;ntrol authority and control banduidth to allou the plant to
be made “well-damped” and “substantially faster” than the desired final

system characteristics.

The problems studied here have all assumed full-state feedback. As
has been shoun, many such systems have quite different responses and
even instabilities in the presence of parameter uncertainties. Another
large class of control-system sengitivity problems has to do with the
estimator design. Some work has been done in this area (see for example
[9]), uith the basic conclusion being that greater insensitivity can be
achieved by speeding up some of the estimator roots. The penalty for
doing this is a decrease in the filtering action of the estimator, thus

resulting in a noisier output. .

only uncertainties in the dynamics matrix were addressed in this re-
search. No attempt has been made to desensitize systems to errors in

the control matrix, and additional work is needed in this area.
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Chapter V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1  CONCLUSIONS

Model following can be an extremely wuseful tool for the control-sys-
tem designer. The ideas of perfect mode! following can provide simple,
algebraically determined control laus for some problems and a useful un-
derstanding of system structure for almost any application. By combin-
ing model following with optimal control theory, the process of select-
ing weighting matrices is greatly simplified and a very straightforuard
design procedure resu]ts. Model following can also be used to design
control systems which provide protection against the adverse affects of
parameter uncertainties. The Model Following for Insensitive Control
design method allows the designer to select the insensitivity and dis-
turbance-rejection characteristics of the design independentiy of the
no-disturbance, nominal-parameter performance. It takes advantage of
the favorable effects of high feedback gains, and then cancels the
speeded-up plant roots by using a model system as a prefilter. The
method is most effective for systems in which the plant can be made to
be “well-damped” and “substantially faster” than the responses required

by the model! to be folloued.
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5.2

RECOMMENDATIONS FOR FUTURE RESEARCH

The parameter uncertainty problems investigated here have as-
sumed full-state feedback; however, many control system sensi-
tivity problems are related to the design of the estimator.
Model following, and in particular the MFIC design method,
should be studied for possible application to estimator, and

controller-plus-estimator problems.

Additional research is needed on the best way to handle uncer-
tainties in the control matrix, which is a fundamentally dif-~

ferent problem than the one addressed here.

The problems examined in this research involved errors in the
dynamics matrix of a system with a knowun structure. Mode!
following may also provide benefits in problems where higher-
order structural modes have been ignored, or are not uell
knoun. Further research should be done to investigate this

possibility.
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