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ABSTRACT

The problem of designing multivariable control systems is addressed

thro .gh the use of model-following methods. A number of different

modei-following techniques are discussed, and their advantages and dis-

advantages are presented. It is shown that model-following theories can

provide useful structural insight to the designer, and that they can

help to integrate the methods of "classical" and "modern" control. A

new design method is presented which, when implemented, uses model fol-

lowing and full-state feedback to keep the dominant roots of a system

constant. Under favorable circumstances, it can do this even in the

presence of arbitrarily large parameter uncertainties. The method has

the attractive feature that the parameter-insensitivity and disturbance-

rejection characteristics of the system can be selected independently

from the no-disturbance, nominal-plant performance. Application is made

to several aircraft flight control problems.
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ABSTRACT

The problem of designing multivariable control systems is addressed

through the use of model-following methods. A number of different

model-following techniques are discussed, and their advantages and dis-

advantages are presented. It is shown that model-following theories can

provide useful structural insight to the designer, and that they can

help to integrate the methods of "classical" and "modern" control. A

new design method is presented which, when implemented, uses model fol-

lowing and full-state feedback to keep the dominant roots of a system

constant. Under favorable circumstances, it can do this even in the

presence of arbitrarily large parameter uncertainties. The method has

the attractive feature that the parameter-insensitivity and disturbance-

rejection characteristics of the system can be selected independently

from the no-disturbance, nominal-plant performance. Application is made

to several aircraft flight control problems.
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Chapter I

INTRODUCTION

1.1 BACKGROUND

"Model following" refers to a number of very general control-system

design techniques which can be used to solve a wide variety of control-

system problems. In the typical model-following problem, it is desired

to force some or all of the states of a plant to "match", to a greater

or lesser degree, the states of an ideal model. This model could be an

actual hardware system; however, it is normally a mathematical model of

the desired closed-loop plant behavior.

Two of the most common applications of model following have been in

the area of aircraft flight control. The first type of problem involves

the design of the flight control system for a new aircraft. Frequently,

by referring to the Military Specifications for aircraft flying quali-

ties, through simulator studies, or from past experience, the designers

have established desired time-history responses to pilot commands. The

objective is then to select the control-system structure and the control

gains so that the aircraft will have responses which match the desired

ones as closely as possible. Such a problem is ideally suited to the

application of model-following techniques. In the second type of prob-

lem, we would like to make one kind of aircraft "feel" to the pilot like

a different kind of aircraft. There are several reasons why we might
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Mant to do this. For example, it is then possible to conduct systematic

studies of different aircraft characteristics to determine their impact

on handling qualities or the usefulness of new control modes. Also, it

is often very helpful to be able to provide pilot training and/or ini-

tial evaluations for a new aircraft before the aircraft itself is avail-

able. By using special "variable-stability aircraft," preliminary test-

ing has been accomplished on a number of recent development programs,

such as the Supersonic Transport (SST), the F-16 fighter, and the Space

Shuttle, long before the final prototypes were completed. Such efforts

are classic examples of model-following problems since the goal is to

make the first aircraft (the plant) act like the second aircraft (the

model).

Although many papers have been written on the model-following prob-

lem, the question of how model following relates to control-system sen-

sitivity has not been fully addressed. The purpose of this thesis is to

review the various types of model-following techniques, to show how they

are related to each other and to other design methods, and to show how

model following can be used for designing insensitive controllers.

1.2 LITERATIJR REVIE

There are two ways to approach the actual implementation of a model-

following system. In the first method, Implicit Model Following (also

known as "Model in the Performance Index"), the model equations are only

used during the design process to aid in the determination of the con-

trol gains. After the design is complete, the model is no lon.per

-2"
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needed, and it is not necessary to implement the model equations in the

actual system. The second method, known as Explicit Model Following

(also called "Real Model Following" or "Model in the System"), requires

the model equations to be incorporated as part of the control system.

The model states are then assumed to be available, along with some or

all of the plant states, for formulation of the control signals.

Kreindler[161 and others have compared the explicit and implicit model-

following methods for particular aircraft examples; however, conclusions

on the overall merits of the two approaches have usually been rather

subjective.

Whether a system uses an implicit model-following approach or an ex-

plicit one, it is clear that the ideal result would be to have the plant

dynamics exactly match the model dynamics. Such a capability is re-

ferred to as "perfect model following." If perfect model following is

possible (and the control gains are selected correctly), then when the

plant and model are started at the same initial conditions and with no

unknown disturbances, one or more of the plant states will identically

match the corresponding model states. Erzberger[10] developed suffi-

cient conditions and an expression for the control gains to obtain per-

fect model following for one class of implicit model-following systems,

while Chan[51 and Morrow and Balasubramanian[201 gave the appropriate

control laws for the explicit formulation. Asseo[31 and Motyka and

Rynaski[221 extended some of these perfect-model-following ideas, while

Curran[81 developed the related concept of "equicontrollability", and

showed how perfect-model-following theories could be made more useful by

allowing slight modifications of the model.

-3-



Tyler(291 examined the use of optimal control theory for solving

model-following problems. He was followed by a number of researchers,

including Kriendler[16], Gran, Berman, and Rossi[IlI, Kriechbaum and

Stineman'17], Markland[19], Tiroshi and Elliot[27], and Yore[32].

Rediess and Whitaker[251 and Peled(241 also used models to formulate

their optimal-control cost functions, but their methods were really par-

ameter-optimization schemes which required the designer to determine the

control system's structure and the appropriate form of any required com-

pensation. Trankle and Bryson[281 developed a variation of earlier

methods which they found useful for solving some classes of model-fol-

lowing problems.

Many of the above authors stated their "intuitive" feelings that ex-

plicit model-following systems had potential for reducing the sensitiv-

ity of control systems to parameter uncertainty. Nevertheless, there

have been few if any attempts to quantify this capability, or to formu-

late an appropriate design method. Winsor and Roy[31] attempted to

tackle the sensitivity issue, but their design method was complex and

was limited to small parameter variations. In addition, they concluded

that it was not possible to desensitize more than one variable at a

time. Landau and Courtiol[181 apparently endorsed Winsor and Roy's

findings and stated their belief that an adaptive system, even with its

inherent complexity and nonlinearities, was the best approach.

Kamiya(151 was probably the first to study the use of model-following

systems specifically for parameter-insensitive control; however, he used

a different structure than the one proposed in this work.

-4-



Since one of the major contributions of this work relates to parame-

ter-insensitive controllers, it is important to mention briefly some of

the other, non-model-following efforts in this area. Palsson and

Whitaker(23] and Hadass[12J developed the technique of treating the un-

certain parameters as random vectors. Harvey and Pope(131 and

Vinkler[301 compared several different methods in their works, while

Shenkar[261 and Ashkenazi[2i extended the most promising methods for the

output-feedback case. In general, all of the methods proposed required

large, time-consuming computer programs and used gradient-search algor-

ithms to obtain the final results. Even so, the resulting systems had

the unfortunate characteristic that the system performance and/or con-

trol use for the nominal system was typically degraded from what would

have been obtained had the design been accomplished without regard to

the parameter variations.

1.3 CHAPTER OUTLINES

Chapter Il defines perfect model following and discusses how it re-

lates to other methods such as pole placement. The criteria for achiev-

ing perfect model following are presented, and it is shown that they can

provide useful insight into the structure of a control-system problem,

even when other design methods are used.

Chapter III shows how we can combine model-following techniques and

optimal control theory to take advantage of the respective strengths of

"classical" and "modern" control. Both state-matching and dynamics-

matching systems are developed, and the advantages and disadvantages of

each type of system are presented.
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Chapter IV begins uith a review of past efforts in parameter-insensi-

tive control. A new design method using model following is then pre-

sented which is shown to have significant advantages over previous tech-

niques.

Chapter V gives conclusions and recommendations for future research.

1.4 SUMMARY QF CONTRIBUTIONS

1. A number of different model-following design techniques are

evaluated, and their advantages and disadvantages and rela-

tionships to other methods are presented.

2. The relationship between feedback and feedforward control is

demonstrated.

3. A new design method is presented which uses model following

and full-state feedback to keep the dominant roots of a system

constant. Under favorable circumstances, it can do this even

in the presence of arbitrarily large parameter uncertainties.

The method has the attractive feature that the parameter-in-

sensitivity and disturbance-rejection characteristics of the

system may be selected independently from the no-disturbance,

nominal-parameter performance. The method is applicable to

systems in which the plant can be made "well-damped" and "sub-

stantially faster" than the final system characteristics re-

quired by the model.

-6-



Chapter II

PERFECT MODEL FOLLOWING AS A MULTIVARIABLE DESIGN TOOL

2.1 REVIEW OF POLE-PLACEMENT TECHNIQUE

The use of full-state feedback, either by measurement or by estima-

tion, gives the control-system designer great flexibility, since the

roots of the closed-loop system's characteristic equation may be placed

arbitrarily with the proper choice of control gains. This has led to a

very simple, easy-to-use design technique for single-input, single-out-

put systems. In this technique, known as pole placement, the character-

istic equation of the desired closed-loop system is compared to the

characteristic equation of the open-loop plant, modified so that there

are feedback gains on all of the states. By matching the coefficients

of the Laplace variable 's", a set of algebraic equations results which

allows for solution of the control gains.

Let us take a simple, second-order system as an example. The differ-

ential equation of motion of an open-loop plant is given by i+x=u, or in

state-space form,

I~l [ ::] [1 u

- . .-.. U.



Suppose the desired system has a natural frequency of 2 rad/sec and a

damping ratio of .7. The desired characteristic equation is then

sz + 2.8s + 4 =0.

Using full-state feedback, the control law is given by u=Cx, so we have

w ith a characteristic equation given by

s- c2s + 1-c, 0

Comparing coefficients, we see that

cz=2.8

and

I - c, 4.

This yields



l= -3

and

cz -2.8.

Unfortunately, the technique breaks down for multiple inputs and out-

puts. In the above example, there are two degrees of freedom from the

two control gains, and two equations resulting from comparing the coef-

ficients of "s". However, with additional controls, additional degrees

of freedom are added through additional control gains, but there are no

additional equations, thus preventing a unique solution. Suggestions

for circumventing this problem include arbitrarily setting some of the

control gains equal to zero, or assuming that some of the entries in the

dynamics matrix are small enough to be neglected. In either case. sev-

eral iterations are usually required, since there is no guarantee that

the resulting system will have desirable response characteristics.

2.2 DERIVATION OF PERFECT-MODEL-FOLLOWING CONTROL

Suppose that rather than matching the characteristic equntions. we

try to match the entire dynamics matrices. Repeating Erzbergor's

derivation[101, but with our notation, we let the plant be described by

x Fx + Gu

y Hx.

9 -



The model, wahich describes the desired system behavior, is given by

;M=Fmxo.

ror y and xm to have the same dynamics, we require that

y Fmy FHx.

Also,

y Hi HFx + HGu.

Thus, we have

HFx + HGu FmHx.

Solving for u, we obtain

U 2 (GtHz-(H~(,-Fx

We define the pseudo-inverse of HG as:

10n



(MG)* = [CHG)t(HG)I1'(HG)t.

Then.

u= (HO)*(FmH - Fx

By substituting this expression for u into the equation for ywe get

YHFx + (HG)(HG)-(FmH-HF)x.

Then, in order for ; to equal F.y, we must have

HFx + (HG)(HG)*(FmH - HF)x =FmHx

[HF + (HG)(HG)* F,~H-HF) - FmH]x= 0

(HG)(HG)*(FmH-HF) - I(FmH -HF) =0

[(HG)(HG)- - IIHFmH - HF] 0.

The final equation above, known as Erzberger's condition, gives a suffi-

cient condition for exactly matching the dynamics of the plant and the

model for this class of problem. Such matching is known as "perfec~t

model following".



we can generalize the above procedure to handle inputs to the model,

as well as the matching of only a subset of model states. Lot the plant

again be described as

x=Fx + Gu

y Hx.

The desired system dynamics are given by the model equations:

Fam Gm~x m

We would like to have

y Y 1m.

Thus,

Hrx + HGu FimFmxm + HmGmum

HGu =HFmx, - 14Fx + HmGmum

u (HG)*Ii.mf~xm (!HG)*Hrx + (HG)*IinGmum.

-12-



Or,

u Clx + CzxM + C3 um,

where

C, -(HG)*HF

Cz = (HG)*HFm

and

C3 = (HG)*HGm.

Notice that this general expression for the perfect-model-following con-

trol contains three terms: a feedback of plant states x, a feedforward

of model states xm, and a feedforward of model inputs um. However, this

does not mean that we are restricted to this type of structure. If we

are able to successfully make a plant state exactly follow a model

state, then obviously the two signals are equivalent, and we can substi-

tute one of them for the other in the control law. For example, suppose

we are working a problem in which the number of states to be matched is

equal to the number of model states (i.e., Hm is square). Then H,"'

will normally exist.

Since Hx Hrxm,

- 13 -



xe = NO'HX.

The perfect-model-following control lam can then be written as

u = HG)*H,FNH.1 Hx - (HO)*HFx + (HG)HGmtjm

= (HG)*[HmFmHm-tH - HFjx + (HG)*HmGwj.

Thus for this case, we can achieve perfect model following with only

feedback from the plant states , without having to implement the model

system. For 14m:! and G.=G, we are left with

u= (HG)*Itmi - NP Ix,

which is the control law derivedby Erzberger.

If the number of states to be matched is equal to the number of plant

states (i.e., H is square), than H-1 will normally exist.

Thus,

x =H'IH,xm

and

uz (HG)*ImFm~n- (IG)H HmHxm + (HG)'iGmm

-14-



= (HG)'[HF, - HFHI'Hix, + (HG)'H.GmU.

This control law can therefore be implemented with only feedforward from

the model states, without the need for measuring any plant states.

Finally, if jLj of the plant states are matched to all of the model

states, then both H and He are square and invertible, and either of the

above control laws can be used. As a result, it is possible to imple-

ment the control system with either feedforward or feedback, or a combi-

nation of the two.

By substituting the general expression for u into the equation for y,

we get

y HFx + (HG)(HG)*[HmFx. - HFxI + (HG)(HG)*HGu,.

We would also like to have

y HmFmXm + HmGmUm.

Equating the two expressions,

HFx + (HG)(HG)*tHmFmxm - HFxI + (HG)(HG)*HmGmUm HmFmxm + IlmGmUm

(HG)(HG)*[Hm~mxm - HVx] + IHFx - HmFmXml

+ (HG)(HG)*HmGmUm - HmGmum 0

-15 -
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I(HG)CNO) -I(HTx -lH~x Hrx) + I(HO)CNO) - IIJNu z 0.

Since um is arbitrary, we must require that

ICNG)(HG)- - ljIHmFmxo - HFxI 0

and

[(HG)(HG)* - IJHOGn 0.

The above conditions give the general criteria for perfect model follow-

ing to exist. By examining specific cases, it is possible to use these

relations to get meaningful conditions. For example, if HO=1 and Cm=0,

we get

((HG)(14)* - IIFoxm - Ixl 0.

Since x.=IH.'Hx:Hx, we can write

[(HG)(HiG)* - li(F.H - HFIx 0.

Therefore,

((HG)(HG)* - l[VmH -F 0,

-16 -



which is Erzberger's condition.

2.3 INTERPRETATION 2F CONDITIONS f_ PERFECT ODEL FOLLOWING

It is interesting to note that a sufficient condition for perfect

model following to exist is

[(HG)(HG)* - I] = 0.

First, let us define the term "directly controllable" to mean that a

state has at least one non-zero entry in the corresponding rou of the

control matrix, 6. For example, in the system

[:]: [2: 2:] Li] + [01
;Z F11 FIZ Xl 2U

xZ is directly controllable, while xj is not. The fact that a state is

directly controllable therefore means that it is possible to modify that

row of the dynamics matrix. With this definition, the above condition

can be understood as requiring that each plant state to be matched must

be directly controllable, and that the number of controls be equal to

the number of plant states to be matched. The reason that this is a

sufficient condition and not a necessary one relates to the fact that

even if a state is not directly controllable, sometimes the row of the

- 17 -



plant dynamics matrix is already the same as the corresponding row in

the model dynamics matrix, so no additional control effort is required

to force the match.

Even though the perfect-model-following gains are straightforward and

easy to calculate, it might at first appear that the criteria to be sa-

tisfied are quite stringent, and that perfect model following is there-

fore rather limited in use. However, with some slight modifications,

the theory can be extended to cover a much broader range of problems.

To restate the sufficient condition for perfect model following:

Plant states can be made to match model states exactly
if they are directly controllable and if the number.of
controls is equal to the number of states to be matched.

If the number of controls is greater than the number of states to be

matched, one can simply delete the extra controls. If the number of

controls is less than the number of states to be matched, then the

mathematics does yield a solution, but it represents only an approximate

match of the plant and model states. Actually, it is a "least-squares"

compromise of the desired matches. Whether this represents an accepta-

ble solution depends upon how different the open-loop plant and model

dynamics are.

- 18 -



In many aircraft, actuators are used to drive the control surfaces.

For such systems, the primary plant states are not "directly controlla-

ble" as defined above, thus precluding the straightforuard application

of perfect-model-following theory. Fortunately however, the dynamics of

aircraft control actuators are usually much faster than the vehicle dy-

namics. As a result, they can normally be neglected for the initial

control-system designs.

Even if a plant state is not directly controllable, it will still

match a model state if its dynamics are the same as the model state, and

the state(s) through which it is indirectly controlled are made to match

the model. For example, in aircraft equations of motion, roll angle is

normally just the integral of roll rate for both the plant and the

model. As a result, even though roll angle is not a directly controlla-

ble state, it will match the model if roll rate is made to match (assum-

ing the initial conditions are the same). If we have a situation where

a plant state is not directly controllable and there are no correspond-

ing higher-order states in the model, then it will be necessary to can-

cel the extra plant states in order to get an exact match. For example,

the only way to get a l/sz system to behave like a 1/s model is to some-

how get rid of an "s", such as by adding a differentiator. With a noisy

system, a solution of this type would probably not be practical. Alter-

natively, as Curran has shown[8J, the plant can be made to match a modi-

fied model, which consists of the original model plus a number of addi-

tional arbitrarily fast roots. In other words, we could have our 1/sz

system behave like a model with dynamics given by 1000/s(s+1000). Of

course, the faster the additional roots are (and hence the closer the

- 19 - t
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modified model is to the original one), the greater the control gains

and control effort which will be required.

Even if the actual selection of control gains in a system is done by

a different method, applying perfect-model-following philosophy can of-

ten allow the control-system designer to gain some helpful structural

insight into the problem. For example, the number of controls should be

based on the number of states for which a particular time response is

required (as opposed to simply being stable). Even though the standard

control-theory criteria may indicate that all of the states of a system

are "controllable" with only a single control, if it is desired to spe-

cify precisely the responses of more than one state, additional controls

will probably be necessary. Using an aircraft as an example, if the

elevator is the only longitudinal control, then it is only possible to

guarantee a particular response for a single output variable - whether

it be pitch rate, or normal acceleration, or a linear combination of the

two. If it is desired to specify the responses for both pitch rate and

normal acceleration, then a second longitudinal control, such as a ca-

nard or maneuver flaps, would be required. Along the same lines, the

control-system designer should strive to have each state of interest be

directly controllable. If this is not possible because an actuator is

in the system, the control-system designer should push for as "fast" an

actuator as possible. This not only makes the designer's job easier, it

also allows him to design a control system which will provide the maxi-

mum flexibility and best total performance. In the end of course, cost

or other constraints may not permit the control-system designer to have

the final say.

- 20 -
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2.4 EXAMPLE: LATERAL-DIRECTIONAL DECOUPLING oFl Ar3 AIRCRAFT

As an example of the application of perfect-model-following theory,

consider the problem of decoupling the lateral-directional axes of a

T-33 aircraft. This example has been solved by geometric methods in [6]

and with an explicit model-following technique in 1201.

Lateral-directional decoupling refers to the desire to make the yau

and sideslip motions of an aircraft independent from its rolling mo-

tions. If this can be accomplished, the pilot workload is significantly

reduced, resulting in improved safety for commercial operations or

greater weapons-delivery accuracy for military aircraft. The particular

aircraft for this example is a T-33 which has been modified for flying-

qualities research. In addition to the normal rudder and aileron con-

trol surfaces, it has hydraulically operated "drag petals" on the wing-

tip fuel tanks. These surfaces can be differentially extended in flight

in order to generate significant yawing moments, if required.

The equations of motion of the unaugmented T-33 are given by

x Fx + Gu,

where

xt = (p $ r 01

-21-
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-3.18 0 .63 -10.6

1. 0. 0. 0.
F=

-.06 0. -.27 4.18

.022 .0644 -.998 -.151

-14.4 1.5 0.

0. 0. 0.
G=

0. -2.59 -.96

0. .037 0.

and

ul =ISa Sr Spi.

The state vector consists of roll rate, roll angle. yaw rate, and side-

slip angle, while the control vector is made up of aileron position,

rudder position, and drag petal position.

The model equations were obtained by replacing the undesirable cou-

pling terms in the plant equations with zeros. The resulting model is

described by

x. F*X, + Gmum,

with

xMt (Pm Om rm B.]
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-3.18 0. 0. 0.

1. 0. 0. 0.
Fm

0. 0. -. 27 0.

0. 0. 0. -.151

-14.4 0. 0.

0. 0. 0.
G0 =

0. 0. -.96

0. .037 0.

and

Um [Sam Srm Spml.

Since there are three controls, and the roll rate, yaw rate, and

sideslip angle are all "directly controllable," we are guaranteed that

all three of these states can be made to match the model states exactly.

In addition, since roll angle is simply the integral of roll rate, it

will also match if roll rate is made to match. Thus, we are able to

match exactly all four plant states to the four model states. Note that

this system may be implemented either with feedforward or with feedback.

The plant-state-feedback or model-state-feedforward gains ore

-.0619 -.1813 2.8534 -.7361

C1 or Cz -. 5946 -1.7405 26.9730 0.

1.5417 4.6958 -72.7708 4.3542
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The gains on the model inputs are

1. .1042 0.

c3 0. 1. 0.

0. -2.6979 1.

As expected, the closed-loop dynamics matrix using these gains ex-

actly matches the model dynamics matrix.

2.5 EXAMPLE: LATERAL-DIRECTIONAL CONTROL OF A B-26 AIRCRAFT

In the previous example, the plant had three controls and three di-

rectly-controllable states, which made it possible to match exactly all

of the model states. However, often the designer will be faced with a

problem with fewer controls than states. Such a case is examined here.

The plant equations represent the lateral-directional equations of mo-

tion of a B-26 aircraft:

x Fx + Cu,

wi th

xt =# p B r]

- 24-
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0. 1. 0. 0.

0. -2.93 -4.75 -. 78

.086 0. -.11 -1.

0O. -.042 2.59 -.39j

0. 0.

0. -3.91

.035 0.

-2.53 .31

and

Ut [Sr Sal.

The state vector consists of roll angle, roll rate, sideslip angle, and

yaw rate-, while the control vector is made up of rudder position and

aileron position.

The model was determined from simulator studies to provide improved

aircraft handling qualities:

Xm= Fmxm + Gmum,

wi th

Xmt [Om pm Bm rmj
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0. 1. 0. 0.

0. -1. -73.14 3.18
F,

.086 0. -.11 -1.

.0086 .086 8.95 -.49

6, = G

and

Umt = (sr. 6a,].

If we try to apply Erzberger's condition for perfect model following,

we find that it is not satisfied; thus both Erzberger(10] and Chan(51

concluded that "perfect model following is not possible." However, both

authors proceeded to solve for the perfect-model-following gains, and

found that since the plant and model equations were not too different, a

reasonably close "compromise" match of the four states could be

achieved.

The gains for this case were determined to be

ci orcz [0034 -.1110 -.370G -0846]

-.493G 17.4911 -1.0128

Since the plant and model control matrices are the same, the gain ma-

trix from the model inputs, C3 , is simply the identity matrix.

- 26 -
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In this particular problem, the plant and model equations were quite

similar, and the compromise solution which attempted to match all four

states is probably acceptable. Obviously, this will not always be the

case. Therefore, it is important to note that by using the generalized

perfect-model-following control law, it "s possible to achieve perfect

model following for a subset of the plant states. Since there are two

controls, we are guaranteed to be able to match two states; however,

since roll angle is simply the integral of roll rate, it will be matched

if roll rate is matched. If we want to match roll angle, roll rate, and

yaw rate, the selector matrix becomes

H 1 0 0 0

H 0 1 0 0.

0 001

The resulting feedback gain matrix for the plant states is

0. -.1084 .8749 -.1786

0. -.7494 -1.2148 -.1995

while the feedforward gain matrix for the model states is

- 27 -



0034 -. 0027 -1.2455 .0940
CZ =

.2558 18.7059 -.81331

Roll-angle time histories of the 4-state "compromise" match and the

3-state "exact" match are given in Figure 1. The results for roll rate

and yaw rate are similar, with the 3-state-match design duplicating the

model system exactly. Although we do not have any guarantees as to what

kind of response we will get for the state we did not try to match

(sideslip angle), in this particular problem it is very close to the

model response.

Obviously, other choices of H are possible if it is desired to match

a different subset of the states. Essentially, this control law uses

the feedback from the plant states to cancel the plant dynamics and the

feedforward from the model states to obtain the desired responses. Note

that using Erzberger's control law with this type of problem will not

yield exact matches, even with the same selector matrix as the one used

here.
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Figure 1: Comparison of B-26 Roll-Angle Responses
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Chapter III

MODEL FOLLOWING AND OPTIMAL CONTROL

3.1 SELECTION 2F WEIGHTING MATICES FOR OPTIMAL CONTROL PROBLEM

Many control-system problems can be formulated in such a way that it

is desired to find the control gains which will minimize a cost function

of the form

j x tAx + utSu)dt,

where A and 8 are weighting matrices which penalize state excursions and

control usage respectively. The mathematics for the solution of such

"optimal control" problems is well known, and is easily accomplished on

a digital computer. The resulting control laws have a number of favora-

ble properties, such as guaranteed stability. In addition, because of

the matrix structure, multivariable problems are no more difficult to

solve than single-input, single-output ones. Nevertheless, optimal con-

trol techniques have not seen widespread acceptance in industry, parti-

cularly for aircraft control problems. Part of the reason for this may

lie in the relative newness of the optimal control methods, and in the

availability of skilled classical designers whose experience and insight

- 30 -
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allow them to obtain excellent results with Root-Locus or Bode-Plot

techniques, even for very complicated problems. However, some of the

reluctance to use the modern control methods may be due to the diffi-

culty of selecting the weighting matrices A and B in order to obtain the

desired results. Increasing the weighting on a state tends to speed up

the response of that state, while increasing the weighting on a control

tends to cut down on the use of that control. However, it is sometimes

difficult to translate such specifications as frequency, damping, rise

time, or overshoot into appropriate choices for the weighting matrices.

Thus, many design iterations may be required before acceptable results

are obtained, if the system requirements are ones of this type. As with

classical design techniques, a great deal of experience and insight is

found to be helpful, if not required, to achieve the desired results.

In an attempt to provide some guidance for the select-TMn of the

weighting matrices, Bryson's Rule was formulated[4]. Bryson's Rule

states that A and 5 should be diagonal matrices with elements equal to

the inverse of the square of the maximum allowable state excursions for

A, and the inverse of the square of the maximum allowable control usage

for B. Although such a procedure has been shown to provide a reasonable

first guess for the matrices, it by no means eliminates the trial-and-

error process. In addition, it is really designed to handle the steady-

state regulator problem rather than the meeting of transient-response

specifications.

A different approach to the problem is known as destabilization. In

this method, the cost function is modified by the multiplication of the

- 31 -
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factor exp(at), with 0)0. Since the optimal control solution is guaran-

toed to be stable, the resulting closed-loop roots are "stabilized" or

"shifted to the left" in the s-plane, by an amount ca. The problem with

this approach is that all of the roots are shifted, even the ones which

already have an acceptable response. Thus, control effort is wasted,

and some variables end up being over-damped and/or faster than required.

By combining the techniques of model following and optimal control,

it is possible to take advantage of the power and flexibility of the op-

timal control methods while also incorporating time-response infor.na-

tion, resulting in a more straightforward design procedure. This proce-

dure, sometimes known as "Optimal Model Following", may be accomplished

using either of two methods: state matching or dynamics matching.

3.2 STATE MATCHING

Let a plant be described by

x Fx + Gu

y Hx,

with the desired system performance being given by the model equations

;m = FmXm

Ym Z Hmxm,

- 32 -
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The H and Hg matrices are "selector" matrices which identify which

states are to be matched. Since we would like to have Y be as close as

possible to ym, we attempt to minimize the cost function

j J[(ym y)tA(y* y) + utBuldt,

with the system dynamics being given by

If we define a new state variable

x]

then the cost function may be rewritten as

J J(ztAS! + ut8u)dt,
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where

A 1i [ AH -H tAH1 1
_N.*AH HmtA..IJ

The resulting control law will be

u = Cz = CIX + Czx,

and therefore requires both plant states and model states to implement

it.

With the state-matching approach, it is the "speed" of the plant

roots which is determined by the choice of weighting matrices in the

cost function. By making these roots fast enough, the plant transfer

function approaches unity. As a result, the plant outputs will accu-

rately "follow" any input signal. In this case, the input signal is

simply the output of our model system.

Unfortunately, if the plant roots are not made sufficiently fast,

either because of control limitations or for other reasons, they may be-

come the dominant factor in the overall system response, overshadowing

the model roots. Thus, even if good steady-state performance is

achieved, the resulting transient response may be totally different from

the desired one. In addition, since it is not possible to have the

- 34 -
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plant output exactly follow the input unless the transfer function is

identically one, we would not be able to achieve perfect model following

with this type of system unless the plant became infinitely fast.

3.3 DYNAMIC MATCHI

Suppose that instead of trying to minimize the error between the

plant and model states, we attempt to match the dynamics. Given a plant

x Fx + Ou

y Z 14X,

and a model

- xmX,

we would like the dynamics of y to match the dynamics of xm,. In other

words, we want y to be as close as possible to Fmy. To accomplish this

* we can minimize the cost function

J- F.y)tA(; - FraY) + u tBuldt,

0

which is equal to
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J(HFX + HGu -FmHx)
t A(HFX + HGU- FHx) + U tBulIdt.

Multillyinlg out and regrouping terms, 
we get

j (0101(F -F.H)tA(HF - FmH)x + 2x0t(HG)tA(HF - THfltu

0

+ utl(HiG) tA(HG) + Blu)dt.

Defining

A [(HF -FmH)tA(HF -FmH)1

S = CHG) tA(HF -F.H)J

A
B =((HG)tA(HG) + B1,

we can write

J j(XtAx + 2xtstu + Ut~u~dt.

0

-36



If the cross-product term could be made to disappear, the problem would

then be in the standard optimal control form. Kriendlert 161 points out

that frequently the plant being worked on will contain actuators, which

isolate the plant states of interest from the control inputs. In such
A A

cases, HG2O. Therefore, S=O and B=B, and we are left with

J j(xtAx + ut~u)dt,

which is easily solved in the standard way. However, with a little ad-

ditional manipulation (as suggested by Anderson and Moore[1J), even this

restriction can be removed. Completing the square,

rA A AA. A AA. A A
J= J(UtBu + 2xtStu + xtStB ISx xtStB ISx + XtAx)dt

0

=r[( AAAt A A A A AA
B~ S B xtB(u + S"1 Sx) + x t (A -S tS-'S)xldt

0

J~xAx uiBui)dt,

where
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- A AA A
A3A -StB IS

and

3l u + 8 Sx.

It is interesting to examine the case when perfect model following is

possible (as discussed in Chapter 11), and no weight is put on the con-

trol. For this problem A becomes 0, which in turn means that no weight-

ing will be assigned to the states. As a result, the output of an opti-

mal control program will be zero gains for u1 (assuming the system was

stable to start with). if we let A be the identity matrix (i.e., each

state match is. equally important), then

A
B = (HG)t(HGfl

A
S =[(HG)O(lI - FH)I,

and the control is given by

u = jlGot(HG)1PI(HG)t(HF Fmll)x

- (HG)*(FmN HFx

-38



the same results which were achieved in Chapter II, although admittedly,

this time after a much more complex procedure. Thus, with the dynamics-

matching approach, we can achieve perfect model following when it is

possible, without the need for an infinitely fast plant.

3.4 GENERAL REMARKS

In the preceeding sections it was shown how the ideas of model fol-

lowing and optimal control could be combined to produce "Optimal Model

Following" design methods. With regular optimal control, selection of

the weighting matrices is a "black art" at best. Putting too little

weight on the control results in ridiculously fast roots and impracti-

cally high control levels, and changing the weighting on one state usu-

ally changes the response of other variables as well. With Optimal

Model Following, the designer need only formulate a model whose dynamic

equations satisfy the time response specifications. Typically, we might

then let A be the identity matrix (in other words, all state matches are

equally important), and let B equal a very small number. If perfect

model following is possible and the dynamics-matching method is used, B

can even be set to zero. In this case the control gains will not in-

crease past the finite gains which are required for the match, no matter

what A is, and the plant states will exactly match the model states.

Kreindler[16] noted that with an actuator in the plant but not in the

model, use of a small B led to high feedback gains on the actuator, es-

sentially trying to "speed up" the actuator root. This makes sense when

we consider the perfect-model-following ideas of Chapter II. With an

actuator in the syster,, some of the plant states are not directly"
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controllable, so perfect model following is not possible, in general.

Closer and closer matches can be achieved by speeding up the response of

the state through which the plant states are controlled (i.e. the actua-

tor). However, because of nonlinearities or actuator saturation, there

is usually a physical limit to the actuator speed of response. In any

case, whether perfect model following is possible or not, the designer's

task is a very straightforward one. Even if some iteration is required,

it is always obvious which direction to proceed. If the control use is

too high, just increase the B matrix. If the degree of matching is too

low, just decrease B. In this way the designer can easily achieve a

balance between control use and the "goodness" of the match of the de-

sired time response. The method thus serves as a kind of link between

the time-response ideas of classical control theory, and the cost func-

tion and "control-oriented" approach of optimal control theory.

What are some of the problems or shortcomings of these methods? An

obvious disadvantage of all explicit model-following systems is the nec-

essity to implement the model equations. This requirement means that

the control computer will probably have to be larger and faster than it

otherwise would have to be. On the other hand, as we will see in Chap-

ter IV, explicit model-following systems have advantages in disturbance

rejection and control-system sensitivity. (State-matching systems re-

quire an explicit formulation, while dynamics-matching systems may be

either explicit or implicit.) If a plant state is not directly cont-

rollable, attempts to match the model dynamics closely will result in a

speeding up of the transfer state (actuator) according to how heavy the

weighting on the match was made. Finally, because the objective in
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optimal control problems is to minimize a cost function, there will

always be an answer, even if it is totally unacceptable. Thus, the use

of very ambitious models without the willingness to expend large am-

ounts of control, or the attempt to match many states with only a few

controls, will likely yield disappointingly poor matches. As a result,

it is probably a good idea to review the perfect-model-following crite-

ria to get a feel for what is possible before determining the objec-

tives. And, once a final design has been arrived at, system testing or

simulation is a necessity for verifying the performance of complex sys-

tems.

3.5 EXAMPLE: TWO MASSES AND A SPRING

As an example of the ease of the Optimal Model Following design pro-

cess, specifically the dynamics-matching method, consider the system

consisting of two masses and a spring shown in Figure 2.

The single control acts only on the first mass, but it is desired to

control the motion of the second mass.

The plant equations of motion are given by

x1 0 1 0 0 x, 0 u.

-1 0 1 0 1

2x 0 0 0 1 xz 0

1 0 -1 0 x
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xl x2

= K 1

Figure 2: Two Masses and a Spring

We would like the second mass to behave like a second-order system

with a frequency of 2 rad/sec and a damping ratio of .7. The model is

therefore described by

0" 1

If we were trying to solve this problem with the standard Linear

Quadratic Regulator (LQR) approach, we might initially try using an A

- 42 -
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matrix uith unity weighting on the position of the second mass and ze-

roes elsewhere. We could then try several different values of 8 to see

what mould happen. A plot of the resulting root locations is given in

Figure 3.

Since the cost function does not contain any direct information about

the desired transient response, it would have been a lucky coincidence

if the plant roots had ended up close to the model roots. It is no

doubt possible to do much better than we have done here, given enough

tries. We can increase the weighting on one of the states to speed up

that state, or increase the weighting on the derivative of a state to

increase its damping. However, this is clearly a trial-and-error pro-

cess, and it may take a large number of attempts before satisfactory re-

suits are achieved.

If we use Optimal Model Following, the design process is greatly sire-

plified. Since we are trying to match the third and fourth plant states

to the model, the selector matrix is

:[: : ]C 0 10
H =

0 0 01

The results are shoun in Figure 4.

Lowering the weighting on the control causes two of the plant roots

to proceed rapidly touwrd the model roots, while the remaining r1ant

- 43 -



0000001

400001

Ct)

.001

aE:
.00001 Roo+. "r

.0001.0 \

.001

6.0 -5.00 -q.00o -3.00 -2.00 -1.00 0.0?
BERL RXJS

figure 3: Locus of Roots v.s. Control Weighting -LQR Design

-44-

- - - --. ---- - -- ~----------- ___________



U;

.00i

0

V3)

.0001

.o

Model Rot .c

001
/ .001

A.. 00 -3.00 -2. 0 -I.C 0. a0

REAL FI. S

Figure 4: Locus of Roots,. v.s. Control W~eighting -oN'F Design

45

. . . . " .. . ..-. . . . . -- , .....: . . . ..- .- -r -



roots become very fast. Since the second mass is not directly controll-

able, the first mass acts like an actuator and becomes faster and faster

as the weighting on the control is decreased. The designer needs only

to decide upon the maximum acceptable control use, which will then det-

ermine how closely the plant states will come to achieving the desired

time response. It should be noted that Optimal Model Following is not a

pole-matching technique, and therefore the plant roots may not always

proceed directly to the model roots. However, the time responses of the

plant states will get closer and closer to the time responses of the

model as the control weighting is decreased. A plot of the impulse res-

ponse of the second mass with an LQR design is given in Figure 5, while

the results for two OMF designs are presented in Figure 6.
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Chapter IV

MODEL FOLLOWING FOR INSENSITIVE CONTROL

4.1 REVIEW 2L PAST EfFORTS

Unknown or varying parameters have always been a concern to control-

system designers. Classically, this was handled by conservatively se-

lecting the control-system gains and structure so that the predicted

gain and phase margins, damping ratios, and time constants indicated

that adequate performance could be achieved even for "worst case" condi-

tions. This was then confirmed through simulation or system test, and

if necessary, changes were made to the design.

On the surface, optimal control techniques appeared to make the de-

sign process much more objective. It was only neeessary to input a few

weighting parameters to the computer, and the "optimum" solution would

be calculated. The key question of course, is "Optimum with respect to

what criteria?" Kalman[141 has shown that almost any control law can be

shown to be an optimum one, given the proper choice of cost function.

The sensitivity of a control system may be defined in many different

ways, such as trajectory sensitivity, eigenvalue sensitivity, or cost

function sensitivity. Typically though, the problem is that while con-

trol systems designed using standard linear quadratic regulator tech-

niques may perform very well for the "nominal" conditions, with only

small errors in the parameters, system performance can be significantly

- 49 -
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degraded or even unstable. This has no doubt led to much confusion and

embarrassment among newly graduated engineers, trying to apply the

theory they learned in school to real-world problems. It has probably

also helped to prevent more widespread use of modern control techniques

in the aerospace industry. Actually, sensitivity is not an inherent

characteristic of the optimal control approach, but rather a result of

the designer failing to incorporate all of his design requirements into

the criteria. As we shall see in a later example, the standard LQR

theory can usually be used very successfully to give designs with as

much stability as desired, even for large parameter uncertainties, as

long as the designer takes these uncertainties into account during the

design process. Although the resulting system no longer behaves "opti-

mally" at the nominal parameter values, at least the instability problem

is avoided.

Over the past few years, there have been a number of attempts to

somehow automatically incorporate sensitivity characteristics into the

design process. Palsson and Whitaker[231 and Peled[24] applied random-

vector approaches with some success. Harvey and Pope[131 and

VinklerI301 produced excellent comparisons of a number of the most com-

mon methods for sensitivity reduction. Although some of the methods ap-

pear to be better than others, no single technique has been found to be

clearly superior to the others in all cases. Almost all of the methods

shared two common characteristics. First, computational requirements

were very great. Most of the algorithms required the use of gradient-

search routines to find the minimum of a cost function, and many itern-

tions were sometimes required. Second, and most importantly, system
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performance and/or control use at the nominal parameter values was

degraded, with the amount depending on how insensitive the system was

asked to be. In addition, although stability was guaranteed in some of

the methods, system eigenvalues could vary dramatically with changes in

the parameters. The model-following method discussed later in this

chapter is shown to avoid these undesirable characteristics.

4.2 FEEDFORWARD/FEEDBACK EQUIVALENCE

Suppose we have a plant

= Fx + Gu,

and a model, of the same dimension,

Xm mXm + Gmum.

Let us implement an explicit model-following control system, with con-

trol law of the form

U = Clx + CZXm + C3um.

The system structure is then as shown in Figure 7.

Ey adding and subtracting Czx, the control law may be rewritten as
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Figure 7: Explicit Model Following System

U CiX + C2xm + (CZX- C2x) + C3M

Thus,

U CCI + CZ)X + C2(xI -X) + C3Um.

Defining t:xm-x, we obtain

u (CI + Cz)x + Cle + C~un.

-52-



The block diagram in Figure 8 can thus be seen to be equivalent to the

one in Figure 7.
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As the above discussion indicates, Implicit Model Following is just

as effective as Explicit Model Following in terms of matching dynamics

(assuming plant and model are of the same dimension and all of the

states are matched). Thus, in cases where the plant parameters are well

known and there are no unknown disturbances, or where a conservative de-

sign is acceptable, there is no need to implement the model. Where this

is not the case, the explicit formulation should be used, as discussed

in the following sections.

4.3 DESCRIPTION QF THE DESIGN METHOD

Many authors have stated their "intuitive" feelings that explicit

model-following systems should have some advantages in terms of system

sensitivity, at least as compared to Implicit Model Following systems.

It certainly seems reasonable that the ability to generate an error

signal between the plant and a model system and using it as part of the

control input would help to keep plant states "close" to the model

states. However, unless the system roots are selected carefully, the

transient response of the plant may bear no resemblence to the model

response.

Tyler[29] and others formulated the explicit model-following problem

as finding the control which minimized the cost function

0

J = f(etAe + utBu)dt.

0
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Thus, they reasoned that an optimal tradeoff could be accomplished bet-

ween the error and the control effort used.

Actually, the above cost function was usually computed using

U

J = iJ[(x. - x)tA(xm - x) + utBuldt.

0

As a result, optimal gains were computed for both x and xm, even though,

as we saw in the preceeding section, the model-following ability of a

system is not dependent on whether it is implemented with feedforward,

feedback, or a combination of the two. In other words, the gains which

minimize the above cost function do not uniquely determine the plant

response, and different combinations of feedforward and feedback gains

will have substantially different effects for off-nominal conditions.

Kriendler[161 noted the poor dynamics-matching abilities of this t'pe

of system, which caused him to prefer Implicit Model Following. The

poor matches really had nothing to do with whether the system was expli-

cit or implicit, but rather was a function of using state matching in-

stead of dynamics matchinc. Kriendler also acknowledged that Explicit

Model Following might have better sensitivity properties, although,

since he used Tyler's method (state matching) to calculate the gains, he

found no significant difference in sensitivity between the two ethods.

In any event, to incorporate the advantages of both explicit and inril-

cit model-following systems, he proposed (although he did not invct,-

gate) the cost function

- -.



U

J J(Y - Fmy)itA(; " Fay) + (ym - y) t Az(yo - Y) + utBuldt

0

This does appear to represent a great improvement over the standard

state-matching formulation. The error-rate term tends to match the dy-

namics, while the error term tends to speed up the plant states by in-

creasing the feedback gains. This increased feedback tends to desensi-

tize the system to parameter errors. The disadvantage is that changes

in AZ to adjust system sensitivity will also result in changes to the

nominal plant dynamics/transient response. Instead, it is claimed that

the design process should be accomplished twice: once to establish the

plant dynamics at the nominal parameter values, and once to establish

the error dynamics (and therefore the system sensitivity). By doing the

design in this manner, system performance at the nominal parameter val-

ues becomes independent of the sensitivity.

The proposed design method, which we call Model Following for Insen-

sitive Control, is then as follows:

1. Perform a design, using any method (root locus, model follow-

ing, optimal control, etc.), to select the nominal plant res-

ponse. These gains become Ct=Ci+Cz and C3 .

2. Implement a model of this closed-loop system.-

3. Do another design to select the error roots, which should be

chosen faster than the plant roots. These gains become C1 .

- SG -
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4. Calculate Cz=Ct-Cl.

5. Implement the control law as u=Cix+CzXm+C3um.

4.4 THEORETICAL DEVELOPMENT

Let the behavior of a plant with nominal parameter values be given by

= Fx + Gu.

However, due to parameter uncertainty and/or slowly varying parameters,

suppose the plant actually responds according to

( CF + AF)x + Gu.

Throuch the use of model-following techniques, optimal control, root lo-

cus, or any other method, assume that a satisfactory closed-loop control

law can be obtained for nominal values of the parameters. Let this con-

trol Inw be given by

u C x + C3um.

Then, for nominal values of the parameters, we have

x Fx + G(Ctx + C3um)

57
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-(F + OCt)x + GC3u.

Build a math model of this system, i.e.,

Cm (F + GCt)x, + GC~uN

-Fmx, + Gum.

For the second design, we again may use whatever method we desire, butl

the objective this time is to select the error roots. For an insensi-

tive design, these roots should be chosen faster than the nominal-plant

roots. The resulting gains are designated C1.

We then use a control law

u CIX + CZXm + C3um

-Ctx + Cle + C~um,

where Cxm-x and Ct=C1+Cz.

This results in

x (F + tLFix + C(Ctx + C2e + C~u.)

-(F + VF + GCt)x + GCze + GC3um.

- S



Subtracting. we got

e (F + GCt)e - AFx - GCze

(F + GCt - GCz)e - AFx.

The system is thus described by

F+AF+GCt GCZ urn,

-AF F+GCt-GCz e 0

uith a characteristic equation given by

sI-F-AF-GCt -GCz I

r s-rI-F-GCt+GCzI

Since the determinant of a matrix is not changed by elementary row and

column operations, we can write

sI-F-GCt sI-F-GCt

lar sI-F-GCt+GCZ

and
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sI-F-OCt 0 =

I s!7AF-CtGCzI

This can be written as

(sl F - GCt)(sI - F -ar - Gcc + 0ce) o,0

or equivalently,

Csl - Fm)(sI - F - AF GCI) =0.

Thus, given an appropriate choice for C1, the roots of (sl-F-AF-0C1 )

can usually be made fast enough to keep the roots of (sI-Fm) as the dum-

inant system roots, even for arbitrarily large AF. If the error roots

are made sufficiently fast, they will not significantly affect the sys-

tern response, regardless of the value of ar. Also, if the plant and

model start with identical initial conditions and AF=O, the error roots

will never even be excited, since the system equations will be

[x F+GC t ::CZ [x] [03] ur.-
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4.5 EXAMPLE: FIRST-ORDER YT

In order to get a better understanding of how Model Following for In-

sensitive Control works, let us consider the simple, first-order system

used by Shenkar[261. The plant is described by

x -(1 + Ar)x + u,

where AF represents the uncertainty in a plant parameter. The value of

AF may be anything from -1 to 1, with 0 being the nominal value. Three

different design techniques were evaluated: the standard Linear Quad-

ratic Regulator (LQR) technique, the Average Cost Function (ACF) ap-

proach (representative of the methods of Vinkler, Asikenazi, and

Shenkar), and Model Following for Insensitive Control (MrIC).

For the LQR design, we assume that our design requirements are met by

letting A=B=l for the nominal plant. However, as might be expected, the

system dynamics are very dependent on the value of the uncertain parame-

ter. The impulse responses for the nominal and extreme valuc of F are

shown in Figure 9.

With the Average Cost Function design there is definitely smem im-

provement, but we still have a wide range of responses for the different

values of ar. Also, even if AF=0, the response is now different fr'orn

the nominal LQR design. Results for this design are shown in Figure 10.
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For the Model Following for Insensitive Control design, the closed-

loop root for the nominal plant was chosen to be the same as the nominal

LQR system, while the error root was arbitrarily chosen to be at s=-10.

With this system, the impulse responses are almost identical, regardless

of the value of AF. The responses are shown in Figure 11.

If a more insensitive design is required, one can simply select a

faster error root. Without disturbances, the control levels required

are directly related to the transient response. Thus, the control mag-

nitudes for the MFIC design are essentially the same as the control mag-

nitudes which would have been required for a design in which AF was

known in advance. Control bandwidth however, obviously must be in-

creased as the error roots are speeded up (which may be costly).

To understand what is happening physically, it is helpful to think in

terms of the system transfer functions. The open-loop plant is des-

cribed by 1/(s+1). The desired closed-loop system, which is attained

with the nominal LQR design, has a transfer function of 1/(s+1.414).

The ACF design has a slightly higher feedback gain, resulting in a

transfer function of 1/(s+1.689). With the MFIC design, the plant is

greatly speeded up, in this case to 1/(s+10). However, the feedforward

from the model and the model input form a prefilter or "command condi-

tioner" with a transfer function of (s+10)/(s+l.414). Thus, with noi-

nal paranmeters, the speeded-up plant root is exactly cancelled, result-

ino in the desired system transfer function. With a non-zero Ar,

perfect cancellation is not attained, but because the pole and zero are

close to each other and both are much faster than the rest of the sys-

tem, they do not significantly affect the response.
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The beneficial effects of this design method stem from two factors:

first, the increased feedback gains, which have a desensitizing effect

well-known to classical designers, and second, the cancellation of the

speeded-up plant roots. Note that either of these items by itself would

not yield the desired results. Just increasing the feedback gains would

lower the system sensitivity, but the system response would be over-

damped or faster than desired. On the other hand, just cancelling the

plant roots would allow us to achieve the desired closed-loop roots, but

it does nothing for the sensitivity problem.

The MFIC design procedure is primarily oriented to obtaining a desir-

able transient response, rather than to disturbance rejection. On the

other hand, disturbance rejection is a very important part of the Aver-

age Cost Function approaches. To try to compare the two methods from a

different perspective, the same first-order example was used. but with

the addition of a process-noise source, with a power-spectral-density

and a process-noise distribution element of 1. The two components of

the cost function - state excursions and control use - were then plotted

against feedback gain in Figures 12 and 13.

As might be expected, the greater the negative feedback gain, the

tighter the control system is able to regulate the state, and hence the

smaller the state excursions. Likewise, the greater the feedback gains

are, the higher the control level that is used to handle the distur-

bance. By adding these two terms together, the total value of the cost

function is obtained. Plots of this total cost function versus the un-

certain parameter are presented for the LQR design, the ACF design, and

two r FIC designs in Figure 14.
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The advantage of the ACF design is supposed to be that by accepting a

slightly higher value of the cost function for positive and zero values

of the uncertain parameter, a substantial improvement can be achieved

for negative values of the parameter. However, the MFIC design, which

had much better transient responses, shows significantly higher values

of the cost function (which contains control effort) for any AF. In

fact, the faster the error root is made, (and hence the more insensitive

the resulting system), the higher the cost function becomes.

The message from this example is that it is important for the de-

signer to be sure that he has chosen the cost function which properly

represents the problem he is trying to solve. In this case, by using a

model-following structure and increased feedback gain, it was possible

to achieve a significant improvement in transient response compared to

the so-called "optimal" design. The cost of this improvement was the

increased control usage due to the process noise, which may or may not

be important to the designer.

4.6 EXAMPLE: SECOND-OROER iYSTE

ror our next example, consider the second-order system studied by

Vinkler[301:

x Fx + Gu,

wi th

- 70 -
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0 1
F= L

-2 w, l+uz

and

-1£u £ 1

-1 1 J 1.5.

With weighting matrices of

A [ ]and B 10,

a standard LQR design yields an unstable system for some values of Qi.

Vinkler evaluated several design techniques which have been suggested

for handling uncertain parameters. He then described two methods for

obtaining better results: the Multistep Guaranteed Cost Control method

(110CC) and the Modified Discrete Expected Cost method (MDEC). Bocth

methods require substantial computational effort and special computer

programs during the design stage. Actually, in many problems the de-

signer can obtain satisfactory results with standard LQR techniques, as

- 71 -
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long as they are used properly. If the designer is aware that the

system has uncertain parameters, he should make his nominal design more

stable than he ordinarily Mould. Then, even in the presence of destabi-

lizing values of the parameters, an adequate degree of damping is still

obtained. For example, in the present problem, if we choose

A = ]and B = 10,
0 s

the closed-loop response is stable for all allowable values of (J. The

disadvantage with this approach (as well as with Vinkler's) is that in

order to get a satisfactory stability level with "unfavorable" values of

the uncertain parameter, we have to accept overdamped or faster than de-

sired responses for nominal or "favorable" values of the uncertain par-

ameter. By using Model Following for Insensitive Control, we can avoid

this result. For this example, the nominal-plant roots were chosen to

be the same as for the original LQR design. The error roots were arbi-

trarily chosen to both be at s=-5. The resulting eigenvalues for each

method are shown in Table 1.

Notice that with the MFIC design the dominant eigenvalues remain con,-

stant, and in fact, are identical to the desired nominal LQT1 roots. I1

a more insensitive design is desired, faster error roots can be selected

(with correspondingly increased control effort), so that their effect on

the system response becomes negligibly small.
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4.7 EXAMPIL: SIMUJLATION f 91 SUPRSOIC TRANSPOR&T

As a final example, we apply the IIFIC design method to the problem of

simulating the longitudinal motions of a supersonic transport. This

problem has appeared at least twice in the technical literature: Uinsar

and RoY!311 used it to demonstrate *A trajectory sensitivity method, and

Landau and CourtiolI181 gave a solution for an adaptive-control op-

proach. The plant aircraft is the Total In-Flight Simulator (TIFS), a

modified Convair C-131B which has side-force generators and direct-lift

flaps in addition to the normal control surfaces.

The plant equations of motion are given by

x Fx + Gu,

wi th

19 q a. v)

0. 1.0 0. 0.

1.401xl104 tq -1.9513 .0133

-2.505Xl0-4 1.0 -1.3239 -.0238

-.5610 0. .3580 -.0279

r
'a. 0. a.

-5.3307 6.447x10-3  -.2669

0. . lOGO .0862

-74 -



and

ut 16(e 6t Sf I.

The state vector consists of pitch angle, pitch rate, angle of attack,

and velocity. The control vector is made up of elevator deflection,

throttle position, and flop deflection.

The model equations are

;Mi rFixM + OMUm,

with

xM [0m qm, am Pm1

0. 1.0 0. 0.

5.318x0 7  -.4179 -. 12D2 2.319X1O-3

-4.619x0 9  1.0 -. 7523 -2.387x0 2

-. 5614 0. .3002 -1.743x0 2

0. 0.

-. 1717 7.451xl10'

-. 0238 -7.783x0 5

0. 3.685x!0-3

and
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Unt  16.i 6tiI.

The parameter Mq has a nominal value of -2.038, but it is assumed to

vary from -.558 to -3.558, which represents a variation of approximately

75X around the nominal value. Since perfect model following is possible

for this system, the plant will exactly match the model responses for

nominal Mq. However, with Mq=-3.558, the responses change signifi-

cantly. By using the MFIC design method, we can obtain much better re-

sults. Time histories for a step elevator input for the model, the

off-nominal plant, and the off-nominal plant using a MFIC design are

given in Figures 15-17. The error roots were arbitrarily chosen to be

at s=-10, -10, -2, and -2, with the faster roots corresponding to the

pitch-angle and pitch-rate errors. As shown in Figure 18, the maximum

pitch-angle error was less than .005 degrees. The angle-of-attack and

velocity responses had zero error. This represents a considerable im-

provement over the trajectory-sensitivity method tried by Winsor and Roy

and the adaptive design given by Landau and Courtiol. Control uses are

reasonable and are presented in Figures 19-21.

The system response to an initial error between the plant and the

model pitch angle was also investigated, with nominal values for tho

parameters. The results are shown in Figure 22. The errcr is driven

rapidly to zero, arid unlike the previously published efforts, errors Ire

not excited in the angle of attack and velocity states.
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4.6 LITAIONS

The Model Following for Insensitive Control design method is based on

the beneficial effects of increased feedback gains on system sensitiv-

ity. As a result, it is only practical for those systems which have

sufficient control authority and control bandwidth to allow the plant to

be made "well-damped" and 'substantially faster" then the desired final

system characteristics.

The problems studied here have all assumed full-state feedback. As

has been shown, many such systems have quite different responses and

even instabilities in the presence of parameter uncertainties. Another

large class of control-system sensitivity problems has to do with the

estimator design. Some work has been done in this area (see for example

191), with the basic conclusion being that greater insensitivity can be

achieved by speeding up some of the estimator roots. The penalty for

doing this is a decrease in the filtering action of the estimator, thus

resulting in a noisier output.

Only uncertainties in the dynamics matrix were addressed in this re-

search. No attempt has been made to desensitize systems to errors in

the control matrix, and additional work is needed in this area.

il . a5
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Chapter V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 CONCLUSIONS

Model following can be an extremely useful tool for the control-sys-

tem designer. The ideas of perfect model following can provide simple,

algebraically determined control laws for some problems and a useful un-

derstanding of system structure for almost any application. By combin-

ing model following with optimal control theory, the process of select-

ing weighting matrices is greatly simplified and a very straightforward

design procedure results. Model following can also be used to design

control systems which provide protection against the adverse affects of

parameter uncertainties. The Model Following for Insensitive Control

design method allows the designer to select the insensitivity and dis-

turbance-rejection characteristics of the design independently of the

no-disturbance, nominal-parameter performance. It takes advantage of

the favorable effects of high feedback gains, and then cancels the

speeded-up plant roots by using a model system as a prefilter. The

method is most effective for systems in which the plant can be made to

be "well-damped" and "substantially faster" than the responses required

by the model to be followed.
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5.2 RECOMMENDATIONS OR FUTURE RESEARCH

1. The parameter uncertainty problems investigated here have as-

sumed full-state feedback; however, many control system sensi-

tivity problems are related to the design of the estimator.

Model following, and in particular the MFIC design method,

should be studied for possible application to estimator, and

controller-plus-estimator problems.

2. Additional research is needed on the best way to handle uncer-

tainties in the control matrix, which is a fundamentally dif-

ferent problem than the one addressed here.

3. The problems examined in this research involved errors in the

dynamics matrix of a system with a known structure. Model

following may also provide benefits in problems where higher-

order structural modes have been ignored, or are not well

known. Further research should be done to investigate this

possibility.
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