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I. INTRODUCTION

The finite element method has become a popular numerical

tool in the analysis of fluid flow problems (1, 2, 3, 4, 5).

Particularly in the regime of incompressible flow this method

has become very competitive with the more established finite

difference methods due to its simplicity of implementation

and generality of handling mixed boundary conditions for com-

plex geometries which favor nonuniform meshes at points of

singularities. Accordingly, the finite element discretization

process is used herein to characterize the flow of a polymeric

melt under various geometric conditions. The particular approach

is the Galerkin weighted residual formation of the non-symmetric

integral equations (6,2), with the penalty method used for the

pressure term via an approximation of the incompressible con-

tinuity equation (1,3,7). Steady, two dimensional flow is treated

and viscoelastic fluid effects are modeled by employing an

Oldroyd codeformational stress derivative in a modified Maxwell

constitutive equation (8).

The motivation for this analysis stems from the development

of low cost, medium performance, plastic gyroscopic instruments

at the Charles Stark Draper Laboratory. With the exception of

the momentum wheel and electromagnetic parts, a complete single

degree of freedom integrating gyroscope has been designed using

glass filled polyphenylene sulfide parts. Performance goals

are in the range of 1 - 10 degrees/hour drift rate. Cost ad-

vantages derive from elimination of precision secondary machining
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of metallic components as well as basic material costs. However,

the need for uniform physical and mechanical properties (e.g.,

dimensional stability, thermal conductivity, mechanical compli-

ance) of the parts to provide the required performance after

possible long-term storage in unair-conditioned warehouses

necessitates the correlation of the final material state to

processing parameters. Such knowledge will permit the rationale

selection of extrusion parameters, post fabrication treatments,

and subsequent analysis of storage and service environmental

effects on instrument performance. Figure 1 shows a picture

of the typical plastic gyroscope under consideration. Figure 2

depicts a typical injection molding process for these gyroscopic

parts.

Roylance (9) has pointed out that the information the

engineer is seeking in a flow analysis is the location of regions

of elevated shear deformation, which can lead to mechanical de-

gradation and higher residual stresses, regions of stagnation

and recirculation, at which overlong material residence and

thermal degradation might occur, and power requirements for the

fabrication process itself. Also of interest for the gyroscope

application are the effects of the flow field on the distribution

of the filler fibers which are carried along by the drag of the

fluid. It is possible that the zones of filler depletion or

enhancement which are observed in molded parts, can be predicted

and controlled by evaluation of the calculated velocity field.

2
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In the above regard the numerical analysis of polymer

melts cai be broken down into two general categories. First is

the evaluation of the accuracy of the solution themselves.

Calculations are made and compared to known exact or approximate

analytic solutions. Typical of these are the pipe/channel flow,

drag flow, and die entry flow. By far most of the numerical

studies have been in this category. In the second category is

the application of numerical solutions to real problems. Only

three studies are known to this author which have aimed at apply-

ing numerical results to actual polymer processing. The first

is the work of Bigg (10) who used the Marker and Cell Finite

Difference Scheme to specify preferred operations for the mixing

of polymer solutions in a single screw extruder. The second is

the National Science Foundation/Industry supported work at Cornell

University (10), also using finite difference methods to evaluate

mold filling and control the location and orientation of weld

lines. Thirdly is the work of Caswell and Tanner (12) who effec-

tively used the finite element method to redesign wire coating

dies to eliminate recirculation.

The current work falls into the first category described

above, but the intention of applying the numerical model, once

assessed for accuracy and utility, is kept firmly in mind and

discussed throughout this report. To conclude the introduction,

it is also necessary to describe how the current analysis fits

into the completely general solution. In the injection molding

process, the flow is non-steady and non-isothermal (but approxi-

mately adiabatic within the fluid boundaries), with advancing

free surfaces until the mold is completely filled. Upstream of

3



the flow front the fluid is completely surrounded by either

rigid boundaries or adjacent fluid. For an incompressible

fluid, a complete numerical model must therefore account for

unsteady, non-isothermal, free surface effects. In addition,

the observance of a finite recoverable shear in the rheological

data of polymer melts indicates the nee to include viscoelastic

effects in the model. For unsteady effects, since the Reynolds

number (Re) of flow is always much less than unity, a good ap-

proximation is achieved by ignoring inertia and employing the

linear "creeping" flow solution. The model that we are eventually

striving for then is an adiabatic, viscoelastic solution with

changing surface boundaries. Time is included only as temperature

is conducted and convected and as the velocity field is perturbed

by the changing boundary. The current work investigates the

viscoelastic effects with the simplifying assumptions of two

dimensional, steady state flow.

To this end, this report contains a brief review of the

finite element method, a discussion of the viscoelastic consti-

tutive models used in the finite element equations, the details

of the numerical schemes used in solving the equations, the

computer implementation of the numerical schemes, a discussion

of calculations conducted for four flow geometries to assess

the numerical model, and an evaluation of the application of

the numerical technique to the gyroscope fabrication.

4
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II. THE FINITE ELEMENT METHOD IN FLUID DYNAMICS

This section is not intended to be exhaustive in nature,

but rather to review some of the more important features of

the finite element method employed in this work. References

may be consulted for a more thorough treatment of the methods.

We begin by repeating that the finite element method is

an approximate method of solving the differential equations of

boundary and initial value problems (1,2). Field variables are

solved by dividing the bounded region into subsets (finite

elements) which themselves are governed by the differential

equations. By approximating the distribution of the variables

within each finite element by a trial function, the variables

at any point in the element can be determined by a linear com-

bination of the variable at specified points on the element

edges. These points are called the nodes of the element; the

variables at the nodes being determined by solving linear alge-

braic equations formed by assembling all of the elements into

a matrix equation of order pqm, where p is the number of elements,

q is the number of nodes per element, and m is the number of

variables per node. The coefficients of the variables in the

simultaneous equations are the integrals of the governing dif-

ferential equation taken over the region of the element which is

bounded by that node.

Mathematically, we write the discretization as:

Fdn - E FdYi 0 (11.i)

Yi

5



with prescribed boundary conditions. In equation II.1, F is

the governing differential equation, Q is the entire region

and 7i is the region of the finite element. Where physical

relations apply (such as the virtual work principle in solid

mechanics), the equations can be formed in that basis. This

is the approach used in references 1 and 9.

When the differential equation is self-adjoint (can be

written in the form (py')' + qy + f = 0) with appropriate

boundary conditions the equations can be formed by an abbreviated

variational principle by merely multiplying the differential

equation by the variation of the independent variables, i.e.

f (py') + qy + f)6ydYi = SI = 0 (11.2)

Yi

where I is the integral of the variational problem formed from

the governing differential equation. Of course, this is merely

stating that the euler equation of the variational principle

is identical to the governing differential equation (see [13)).

When the equations are not self adjoint, or the boundary condi-

tions are unsuitable, an extremum principle can still be found,

unless odd number derivatives are present. In that case, which

is the situation with the complete Navier-Stokes equation with

convection, a true extremum principle does not exist [14].

Pormation of the finite element equations by a variational

principle is the Ritz method. This method is most useful for

the "creeping" flow solution of viscous fluids where the govern-

ing differential equation is known to be the euler equation of

the proper extremum principle (15].

6



In the case of the complete Navier-Stokes equation, the

method of weighted residuals is used wherein the error which

remains after substituting appropriate trial functions into

the governing equation is orthogonally projected to a set of

weighting functions [2]. By setting the inner product of the

error and the weighting function equal to zero, the approximate

differential equation is then satisfied. Zienkiewicz (1] de-

scribes the two most popular methods of selecting the weighting

functions as the Galerkin and Collocation methods. Due to its

generality, the Galerkin method is the most popular for formu-

lating the finite element equations for fluid flow problems.

Selecting this method then the element variables are approximated

by m

a = Z N.C. (11.3)j=l J 3

where a is the field variable in the element, C. are the values

of the variable at the node points and N. are the set of trial

(basis) functions which satisfy the element boundary condition.

When equation 11.3 is substituted into the functional F of equation

II.1, we obtain in general:

n i n
iZl F(a)dyi  E f edyi 0 (II.4)

7
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where c is the residual error of the differential equation.

Now using the Galerkin method of forming the inner product

of the error and the trial functions we obtain:

nm
NkF(E NC)dYi - 0 (k-l,m) (11.5)

Yi

In this manner, we form m times n equations for the determi-

nation of the value of variable a at the points CJ.

In selecting the field variables to be approximated

Frecaut [16) provides an excellent review of the advantages and

disadvantages of the different formulations. The governing

equations in an eulerian reference frame are continuity

V-u 0 (11.6)

and momentum

p[u,t + (uVu b0 - Vp + V.0 (II.7)

where in rectilinear flow:

u is the velocity vector

b
b is the body force vector by

-- bz]

[j
i0



0 is the deviatoric stress vector Lo2li + 022)i + a23-k

! 31 + 0 32) + a 3k

p is the constant density

p is the hydrostatic pressure

V is the gradient operator -i + +ay_+ ! 39 -'

and the comma denotes differentiation with respect to time.

If the flow is purely viscous, the deviatoric stresses can be

written as explicit functions of the velocity gradients leaving

only velocity and pressure as independent variables. If both

are approximated by the Galerkin method, the number of unknowns

is relatively high (i.e. components of velocity at each node

plus the pressure). In addition, some of the diagonal terms

of the coefficient matrix become zero which limits the pivoting

techniques generally used for solving the equations.

Two methods have been devised for eliminating the pressure.

For two dimensional flow, the stream function u = *,y and v = - ,x

is used to satisfy continuity and results in the disappearance

of the pressure term when inserted into the momentum equation.

However, the application to mixed boundary value problems is

difficult, as shown by Tanner [17]. For incompressible problems,

the penalty function formulation has been developed. This method,

reviewed in detail in [7]. replaces the incompressible continuity

equation by the approximation

p = -a (V-u) (I1.8)

9

-~~~~~~~"os in ---- -------p - -



where a is a large positive number whose effect is to "penalize"

the error of not satisfying continuity. In reference [7], it is

shown that this method converges to the exact solution for "creep-

ing" flow and that the selection of a is determined from the

relation:

a = cu (11.9)

Where c is a constant equal to 107 and ji is the dynamic viscosity.

Furthermore, to avoid the trivial solution of u - 0 as a -

(see equation II.10) the coefficients determined from evaluation

of the integral must be singular. This is accomplished by employ-

ing reduced integration (quadrature rule of lower order than

the exact for a given element) for the pressure term. The other

terms can then be integrated at the optimum order (selective

reduced integration) or at the lower order (uniform reduced in-

tegration). While it is more accurate to employ selective

reduced integration (SRI), it is usually more convenient to use

uniform reduced integration (URI) in the computer programs.

Since it has been shown that 8 node quadrilateral elements

exhibit inferior behavior to 9 node elements even for SRI, it

is strongly recommended that when URI is used the 9 node

"Lagrange" isoparametric element be employed [7].

Bercovier (18] has recently concluded that the reduced

integration approach is only valid for straight-sided elements

(biquadratic) if the governing equation is linear ("creeping"

flow) and valid only for rectangular elements (vice bilinear

quadrilaterals) when the equation is non-linear (with convection).

Since most of our work concerns linear systems, this is not

viewed as a limitation.

10



For ease of implementation, economy, and accuracy, therefore,

we selected the penalty method with URI, 9 node Lagrange isopara-

metric elements. For comparison, some eight node "serendipity"

element cases were run and will be discussed in Section VI.

Applying the Galerkin formulation of the finite element

equations we obtain the following for two dimensional, recti-

linear, incompressible, viscous flow:
(A + +_K) _+ M u + f = o (11.10)

Where

u is a column vector of the two dimensional velocities

at the node points,

N is the matrix of trial (shape) functions,

KD DB dy
f= R = -d

~= fp N" (V*(N u)T)TN dy
E " j (r fm) Ta mT B dy

• NTZd

and

f -j f T bo dy r VT t dr

11I
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In the matrix definitions above, we used the further identi-

ties:

r20 01,D= 0 , 2 0 g = , where
1001 J

L is the differential operator matrix for two dimensional

flow a
ax 0

Lay ax

Also the second term in the expression for f is the surface

traction on the line element r which results from integrating

the viscous stress term by parts. (Throughout this report a

single underline denotes a vector quantity, and a double under-

line denotes a matrix quantity.)

When the inertial effects are comparable to the viscous

ones, i.e., Reynolds No. greater than one, equations II.10 are

non linear and must be solved by some iterative scheme. A

discussion of these techniques will be postponed until the non-

linear viscoelastic effects are added in Section IV.

Of course equation II.10 is the well known "weak" form

of the Navier-Stokes governing differential equation which has

been derived elsewhere by the virtual work statement Il].

12
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III. VISCOELASTIC CONSTITUTIVE MODELS

The selection of a viscoelastic constitutive model (the

rheological equation of state) for use in the finite element

equations is generally a compromise between the accuracy of the

model and ease of implementation. Because all of the models are

nonlinear consideration must be given to the relative effects

on the numerical convergence of the solutions. In this study,

two general ground rules were used in selecting the appropriate

model. First, for the material under consideration (fiber-filled

polyphenylene sulfide), adequate rheological or viscometric data

do not exist to justify the use of multiple constant models, and

second only a first order effect on the flow field was being

sought. Once success is achieved in modeling viscoelasticity,

rheological data can be obtained and adjustments to the consti-

tutive model investigated.

As before, only essential elements for understanding the

behavior of the selected viscoelastic model are presented in

this report. For a thorough discussion of the continuum mechanics

of viscoelastic materials the references can be consulted (19,

20, 21, 22, 23).

For a fluid element, the resistance to deformation when a

force is applied can be thought of as a combination of viscous

and elastic stresses. Modeling these as a dashpot and spring

respectively as shown in Figure 3, we obtain the well-known

Maxwell Element for fluids. Using the nomenclature of Figure 3,

13



where u is the dynamic viscosity, G is the shear modulus of

elasticity, e is the infinitesimal strain and a is the applied

shear stress we obtain the stress-strain rate relation:

£ G +A (111.1)

Generalizing to a three-dimensional form, we have:

a+ A Tt ()= 2d (111.2)

where a is the Cauchy deviatoric stress tensor

U is the dynamic viscosity

X = U/G is a time constant known as the relaxation time

and d is the rate of deformation tensor whose components are

defined as:

dij - ' + au (i,j = 1,2,3) (111.3)

Equation 111.2 is suitable when the rate of deformation

in the flow is infinitesimually small. But for general motion,

in which the rate of deformation is not necessarily small, the

time derivative of the Cauchy stress tensor violates two funda-

mental requirements of any equation of state. These requirements

are that the equation describes material properties independent

of the frame of reference, and that the behavior of any material

element must depend only on its previous deformative history and

not in any way on the state of ne jhboring elements, or on rigid

body translation/rotation. These discrepancies are corrected by

substituting for the time derivative of the Cauchy stress either

an Oldroyd derivative [8] (known as a convected or a codeforma-

tional derivative) or a Jaumann derivative [24] (known as a

14



co-rotational derivative). These modifications will be

discussed shortly. Once the above requirements are satisfied

it only remains to tailor the equation so as to fit experimental

observations. This is done by introducing added parameters

which are multiplied by functions of the invariants of the rate

of strain tensor.

Han (23] presents a survey of the major refinements developed

for the two invariant stress derivatives along with the material

properties they predict. A two constant (A,V) model using an

Oldroyd derivative is known as a White-Metzner model. When the

Jaumann derivative is used, the equation is called a DeWitt model.

As multiple parameters are added, the general models are known

merely as n-order Oldroyd models. Two other models derived by

means somewhat different from the generalized Maxwell element

are the Spriggs model which builds many Maxwell elements at the

molecular structure level and the Rivlin Erickson fluid which

merely states that the fluid stress is a function of the invariants

of the gradients of displacement, velocity, acceleration, second

acceleration, and so on.

Returning to the invariant stress derivatives, we write them

explicitly for further discussion. For the Oldroyd derivative

in contravariant form (see (22] for a discussion of covariant

and contravariant tensors) we obtain:

u" aiJ ack all. ak xkJ u.
Wo.= i + t - a . ax k  (111.4)

t y kk axk xk

Where the range and summation indicial convention is used.
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Similarly the Jaumann derivative is:

Pa.. aau..
+ uk  1 + Wik ak A + wjk ik (111.5)

Vt at kaxk

1 aui au.
where 2ij ax_- u. are the components of the vorticity

tensor. Again, see Han [23] for an excellent discussion of the

physical significance of the terms on the right-hand side of

equations III.4 and 111.5.

We will also have occasion to discuss further the Rivlin-

Ericksen fluid so we list the general equation for an incom-

pressible fluid:

a A + 2 1+a3A +a4 A 2  +a( A +A)(,1 i(1) a2 A(1) +3 A(2) 4 (2) +a5 (A(1 )A(2 ) + (2
2 A 2 A 2

(A( 1 )A( 2 ) + A(2)A I))+7 (A( 2 )A( 1 ) + A(l)(2)

2 A2  2 2 2+oL8 (A ( )A (2) + A( 2 ) + A( 2 )A( 1 )) (111.6)

where the a. are functions of the invariants of A(1) and A(2)

and
(1)

Aij = 2dij

Aij(1) (1) auk  !1) auk
Aij a l' + a + (i) +A(

In passing, it is noted that the preceding discussion of

models has focused on the rate type. If equation 111.2 is inte-

grated with respect to time rheological equations of state of

the integral type are obtained. While this type proves useful

for some rheological investigation, it complicates finite element

calculations by requiring a complete time history of the strain

path of all elements.
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Finally, before we can discuss the relative merits of the

models, we must make some definitions. Steady simple shear

flow, also known as viscometric flow, is defined by the velocity

field

u = ly, v = w = o (111.7)

where $ is a constant shear strain rate and

u is the velocity normal to the y axis of the cartesian

coordinate system.

Substituting equation 111.7 into 111.3 we find the rate of

deformation tensor to be:

[ 2 o 0 (111.8)

For viscometric flow, viscoelastic fluids are observed to

exhibit three independent material properties, the standard

viscosity, and a first and second normal stress function written

consecutively as:

T12 = ('Y,°all - a22 = 1 (y)y , a22 - 033 = 42 (yy

(111.9)

Implicit in equations 111.9 is the further observation that

when a fluid behaves viscoelastically, the material parameters

are not constant, but vary with the rate of strain. This non-

newtonian behavior is generally observed to follou a power law

relation, written for the viscosity as:
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-1 (1-n) (III.10)
1 + (K/po) (y/ 2)

where Uo, K, and n are parameters selected emperically. When

the exponent n is less than zero, the viscosity varies inversely

to the shear strain rate and the fluid is termed shear-thinning.

When n is greater than zero the fluid is shear thickening. Most

real fluids are shear thinning. t1 and *2 on the other hand are

observed to increase exponentially with shear strain rate.

Before we continue, recall that equation III.10 was written

for simple shear flow. This equation is merely the specializa-

tion of the more commonly written general flow form:

Uo
1(Id) = -1 (l-n)/2 (III.11)

1 + (Klpo) d )

where IId is the second invariant of the rate of strain tensor

IId = dijdij, (111.12)

which in two dimensional rectilinear flow can be written explic-

itly as

rau 2 _ v 2] 2- u
d + k + 2 IV+ a(1

We are now prepared to make a selection of the constitutive

equation to implement in the finite element equations. The

choices have been narrowed to (i) White-Metzner (ii) DeWitt and

(iii) Rivlin-Ericksen as generally representative of the avail-

able models (Pipkin and Tanner (25] present a thorough review

of all the models for viscosmetric flow). Middleman [26] has

18



presented an excellent discussion of the correlation of the

properties predicted by the White-Metzner and DeWitt models

to experimental observations. In simple shear flow, the DeWitt

model is somewhat superior because the second normal stress func-

tion is finite whereas the White-Metzner model predicts that it

vanishes. However, in general flow fields the DeWitt model

varies appreciably from reality while the White-Metzner model

maintains consistency. Since *2 is generally small, the fact

that the White-Metzner model predicts a zero value is not con-

sidered a major drawback by Middleman and we agree. Han [23]

suggests that since the Oldroyd derivative takes a different

form if written in terms of covariant or contravaraint basis

vectors that it is inferior to the Jaumann derivative. Since

the work herein is conducted for a rectilinear coordinate

system, it is felt that this is less of a penalty than the

cited deviation of the Jaumann derivative model for general flow

fields. Therefore, the author concurs with Middleman's recom-

mendation that the White-Metzner model is preferred to the

DeWitt model.

Considering the Rivlin-Ericksen fluid, Tanner [17) notes

that for a simple shear flow equation 111.6 reduces to:

a. *= oA (i) + OP' + (1) (1) - l Ai 2 ) (111.11)

1 1 + 4#2 "Aik ki 3

Clearly equation III.6 is overly complicated for our initial

work. But sin.a the simplification to 111.11 presumes simple

shear flow, it is disqualified as a candidate for this effort.

It is interesting to note, however, that of the three models
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considered, the Rivlin Ericksen fluid alone permits the de-

viatoric stress to be written as an explicit function of the

velocities and nth order derivatives of velocities. The ad-

vantages of this fact will become obvious in the next section

when we discuss the formation and solution of the complete

finite element ecuation.

Let us recapitulate before concludina this section. A

White-Metzner modified Maxwell element was selected for the

rheological ecuation of state because of its ability to approxi-

mate real viscoelastic fluid behavior while requiring only two

model parameters. In addition, the two parameters V and X are

taken to be functions of the second invariant of the rate of

strain tensor as defined in equation III.11.

For plane, steady flow where w = W= g= o, the nine

equations of 111.2 reduce to four which are written explicitly

below with the use of equation III.4.
x + + x + v 3u xx B a y x  2u U_ (III.12a)

,aca a au au av\_auav
xy -ax By XXBy xy xy ay ax

(III.12b)

yy =y w - -2 - x w x -g 2

(III.12d)
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These equations are identical to those used by Perera and Strauss

[27] in their finite difference formulation of similar problems

when account is made of the reduction of the four-constant model

they used vice the two parameter model used herein.

The reader is reminded that the stresses in equations 111.12

are the deviatoric ones and differ from the complete stresses by

the hydrostatic pressure. Since the momentum equation always

expresses these two stresses separately, they are not combined

here either.

21
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IV. VISCOELASTIC FINITE ELEMENT EQUATIONS

The governing differential equations for an incompressible

viscoelastic fluid are as presented in equations 11.6 and 11.7.

Continuity and momentum are repeated:

V'u - o (IV.la)

p [ut + (u - V)u] - b_o - Vp + V.a_ (IV.1b)

The boundary conditions of course will be for the independent

variables and gradients of these variables. However, for many

flow problems, it is more convenient to specify the tractions

(stresses) on some boundaries and the independent variables on

others. This is the mixed boundary condition formulation and

is of course mandatory for finite element equations which are

reduced to a set of inhomogeneous linear algebraic equations.

While specification of the variables (u, *, p, a depending on

the type of equations used) at the boundaries is straight

forward, the specification of boundary tractions must be con-

sistent with the type of problem. For example, Chang [15)

discusses the difference in specifying the surface traction,

for a number of flow cases, between a non-newtonian viscous

fluid and a generally viscoelastic one. Understanding these

differences is particularly important when a specific type of

flow is prescribed (e.g., fully developed entry flow) for an

assessment of the accuracy of the finite element model. We

defer further comment on the boundary conditions until Section VI

when specific flow problems are considered.
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Briefly reviewing the past work on finite element modeling

of viscoelastic flow, it is noted that no investigations, known

to the author, have been conducted using the "penalty" method

for incompressible fluid flow. Tanner [17J and Caswell and

Tanner [12) have used the formulation with velocities and pressure

as the independent variables, with a Rivlin-Ericksen fluid for

viscometric flow. Results have been excellent for power law

fluids, but only Poiseuille flow has been considered for the

viscoelastic case. Kawahara and Takeuchi [28] applied a mixed

method where the total deviatoric stress (viscous and elastic)

was independently interpolated along with the velocities and

pressure. The White-Metzner constitutive equation was then

solved simultaneously with the Navier-Stokes equation for in-

compressible fluids. Using six-node triangular elements in

plane flow, this gives rise to eighteen additional unknowns

per element and is felt to have limitations for general problems

because of the computer capacity required for large, complicated

geometric problems. However, they did achieve good results for

expanding and bending flow through channels for relaxation times

up to 0.1 seconds.

In the work most similar to the current effort, Chang et. al.

[15] solved the equations using the White-Metzner model with

velocities and pressure the field variables for the finite ele-

ment equations. In two-dimensional, steady state, convective,

isothermal flow, the slip stick problem was solved for material

cases of Weissenberg numbers up to 0.2.
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The Weissenberg number is a dimensionless ratio of re-

coverable or elastic shear stress to total shear stress in

steady flow. It is written

WS = XU (IV. 1)

L

where X is the relaxation time in seconds,

U is a characteristic steady velocity in cm/sec,

and L is a characteristic length in cm.

Han [23] presents rheological data for high and low density

polyethylene at various shear strain rates (U/L) at 200°C.

For high density polyethylene, the Ws varies from 35 at 0.025

cm/cm-sec down to 0.01 at 100 cm/cm-sec. On the other hand,

the Ws for low density polyethylene varies between 5 at the low

strain rate and 0.01 at the high strain rate. We note that this

is essentially the range of interest for practical problems

(0.01<Ws<35). A major difficulty in the finite element method

has been obtaining numerical convergence for problems of rela-

tively, high Ws as evidenced in the above review. It appears

that Chang's work has provided the highest value. Without dis-

cussion, it is noted that with this convergence problem, the

added numerical problems associated with evaluation of the

pressure term in the tangent stiffness matrix for the penalty

method may suggest some limitations in the future for applica-

tion to viscoelasticity.

Now using the Galerkin formulation with the penalty method,

equations IV.l become for steady state

p(V*(N u)T)TN + (mT B)T B mT B)dv L 1dv-o (IV.2)

v v
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Where all terms have been defined in equation II.10, the

body forces are assumed to be zero, and two-dimensional recti-

linear flow is treated so that the plane stress vector a is:

S yy (IV. 3)

.ax y

We now split the deviatoric stess into a viscous and elastic

portion

a= av + ae (IV.4)

substitute into .equation IV.2, and apply Green's divergence

theorem to obtain

~ (~B+NP(V.u) T)TN + (mTB )TamTt)v1~

v v (IV.5)

where the viscous stress has been written explicity as

a=DLN U DBu (IV.6)

and the last term is the traction on the boundary. From equation

111.2 we can writeha
(Ov + AOe)+ I = 2 (IV.7)

or since av = 2uij

ae = - A (IV.8)

where e is the 2D rate of deformation vector.
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From equations 111.12, we see that for steady state equation

IV.8 is of the following functional form

e = g(u, ae , av , 1 , , U', X, y) (IV.9)

Where the prime denotes differentiation with respect to x and y.

But since av is a unique function of u' we can further state

e = h Ue eu
. = h(u, u', u x, y, a , a ). (IV.10)

Equation IV.10 now makes equation IV.5 not only non-linear

(even for creeping flow), but inexpressible in an explicit form.

The equation must, therefore, be solved simultaneously with

equation IV.5. This is the same point reached by Chang [15]

and Perera [27]. Let us examine the method of solution proposed

in [15]. Although convection was included in that analysis, it

is easier to consider creeping flow (without loss of generality).

The creeping, viscoelastic flow can be written as:
^ e^ A ^ e qe'

K u + K (u, u , , , )=f (IV.ll)

where the terms Ke are the functional form of the internal elastic

forces. Newton-Raphson iteration can not be employed to solve

IV.l1 because of the implicit dependent variable ae. Instead

the common method is to use successive substitution where an

initial value of ae is guessed and substituted into equation

IV.10. Assuming u has first been solved for the linear problem,

Ke can now be calculated, substituted into equation IV.l1 and
A P

a new value of u found. This new value of u is than used with

the latest value of ae to calculate an updated value of ge and

the process is repeated until some convergence criterion is
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satisfied. In terms of a solution for u at iteration s+l, we

have:

K us+l + Ke

es = (is ^S -I'S eS-i e' S-1)

and as, u , x, e (IV.12)

The actual calculation on the computer was performed at the iteration

es S+ls+l by subtracting E  from f and solving K u s . Therefore,

the computer equation is:

A f Ke s  K ^

where Au = S- u. If the convection non-linearity is in-

cluded the Picard substitution can be nested within a Newton-

Raphson iteration.

If we momentarily disregard the issue of convergence, the

only problem which remains is the calculation of the elastic

stress gradient at the s-1 iteration. Chang [15] is completely

silent on this issue and it is felt that it was ignored. Later

on, we will discuss possible situations where this might be valid.

To aid in the discussion, let us write equation 111.12 in vector

form by recognizing axy = a yx It can be verified that the equa-

tion becomes:

e = A A - (u V)a] (IV.13)

r
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129u 0 2 au

0

Where A 0 23V 2a

av Du (au +av

and aa Do
(u • V)a = u + v

For one-dimensional flow equation IV.13 becomes

aaae = e _ u -- xx+b(I.4
xx xx x.

au
where a and b are the appropriate functions of u and It is

convenient to use this equation to discuss the methods of solution

for the first order non-linear differential equation.

Equation IV.14 is the identical form of the Picard method
e

of first order euuations namely [29]: dx F(x,y) where a cor-

responds to y and a, u, and b are functions only of x. The

equation is integrated yielding
x

Y = YO +f F(x,y)dx

xo

where yo is the initial value at x0

Equation IV.14 would become:

x

ae ae 1 r(a-1)a + b dx (IV.15)
xx XXo 0  u I
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Assuming the integral could be evaluated numerically

ae could be solved by the same successive substitution schemexx

used for the complete finite element equations. An initial

guess is made for ae in the integrand and the right-hand side
xx

is solved for an updated value of axxe That value is then

substituted into the integrand and the procedure repeated until

convergence is achieved. Let us now write IV.13 in this form

1 e
(u.V)a x (a -A a), (IV.16)

and upon integrati6n by taking the dot product of both sides

with dA = dxi + dy_
A

(u + v)af = a( + (e - A ).dA (IV.17)

Ab

While in theory, IV.17 could be solved, it is felt that in a finite

element formulation, it would be impractical to use such a system

that requires an initial value to be calculated at a corner of

each element (ao) and separate integration of the spatial derivatives,

i.e.,

A x y Af 1 - A ) =f ae A E)dx +f QeA f -A2a)dxdy

A0 x0  YO Ao

Due to the difficulties encountered, another method was

sought for the solution of IV.13. If the derivative is approxi-

mated by a Taylor series, then a standard finite difference

equation is achieved and usual relaxatica methods can be employed

for the solution. Referring to Figure 4 and using central dif-

ferences we have for the first component of ae
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ij = - .- 1 ij .u ij. -e 2
xx Wx xx

j 2 2
- u j 11i 3 u ' , i i,j ad2i,j u i ' 3 xx v i' j 3a xaxy xay

(IV.18)

Where

and

(IV. 19)

Equations IV.19 are derived in Appendix I.

A few words about equations IV.18 and IV.19 are in order.

While central differences are expected to give higher order

accuracy, Roache [30] notes that the numerical stability is much

poorer than backward (upwind) differencing and for a non-uniform

mesh (special mesh system), it is very likely that the approxi-

mation deteriorates from third order accuracy in the mesh point

spacing to first order accuracy. In IV.18, the viscous stress

is expressed in terms of the equivalent rate of strain through

30
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equation IV.6. Also the expressions for the gradient of viscous

stresses appear to treat the dynamic viscosity as independent of

x and y. This is not the case. Rather it can be seen upon

Sjudifferentiation of the products a (xx,y) for example, that

for a power law fluid the term (h ) is of higher order and,

therefore, is neglected. Finally all terms in IV.19 are elastic

xx stresses. The subscripts and superscripts have been dropped

so as to not severely encumber the equations. Equation IV.18

is a first order derivative counterpart to the steady, convection-

dissipation finite difference equation which gives rise to

classic under and over-relaxation methods. However, we do not

have an equivalent Courant number so we merely employ Richardson/

Jacobi iteration. Calling the left-hand side of IV.18 iteration

k+l and the elastic stress terms on the right-hand side iteration

k (which is known) we sweep through the entire solution domain

ein the relaxation process. As in most cases, a at the first

iteration k=l is assumed to be zero. The issues which we must

discuss in solving IV.18 by this technique are the selection of

mesh points i,j, evaluation of the second derivative of the

velocity, convergence of the iteration, and treatment of boundary

elements where boundary conditions must be invoked. We will take

these in the listed order.

Since all the terms involving the field variable u in

equation IV.18 are routinely calculated, in the evaluation of

the integrals of the finite element equations, at the Gauss

points in the Gauss quadrature it is natural to select these

points as the mesh for the elastic stresses. Then for the
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differences required in evaluating the elastic stress gradients,

the elastic stress at Gauss points of adjacent elements can be

used. This procedure is shown in Figure 4 for one of the Gauss

points. Of course, two concerns arise. Procedurally, most

finite element routines calculate element quantities such as

velocity gradients in subroutines which dump the values upon

exiting the subroutine, returning only values of global tangent

stiffness components. Therefore, special schemes must be devised

to identify, maintain, and pass current values of elastic stresses,

external to the subject element, to the element for an update of

the elastic stress at its Gauss points. Second, the discontinuity

of stresses between ;elements which gives rise to the practice of

"smoothing" must be recognized. At the early stages of itera-

tion, this might aggravate the numerical stability. For this

study, the first issue was resolved by programming techniques

(principly by creating arrays which were stored in common

memories between subroutines). The second issue was not ad-

dressed.

For the problem of the evaluation of the second derivative

(recall from Section II we are using a "weak" form of the equa-

tions so that only CO continuity is required of u), we now

require C1 continuity of the trial functions and explicitly

evaluate the term just as is done for the first derivative.

To do this, a subroutine was written (ESHAP) which returns
ah vle -x2 2N i , 9?Ni 3

the values ,2 y y at the Gauss points of an element.
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The values -, etc. are then calculated in the exact same
3x

2

manner as done for the first derivatives. For this subroutine

of course, it was also necessary to calculate the determinant

of the Jacobian of the second derivatives. The mathematics

involved in subroutine ESHAP are given in Appendix 2.

Considering for the time being only convergence of the

Richardson/Jacobi iteration scheme, (Newton-Raphson dnd Picard

iteration are briefly treated later). We can apply the Lax/

Richtmyer amplification matrix error method [31] discussed in

[2]. Briefly, we write equation IV.13 in terms of the final

value and errors at each iteration or

(a +e )k+l v( + e + E)-(uV)(a
v + a e + J

(IV. 20)

Subtracting IV.13 from 
IV.20 we get

_k+l = - k  
(IV.21)

or

Ek+l
- = - u.V)<l (IV.22)

The test for convergence then is for the eigen values of the

matrix X(A - u-V) to be <1. Note that the dimensions of this

tridiagonal matrix are 3np where n is the number of Gauss points

per element and p is the number of elements. The complete

matrix is formed by assembling the individual 3x3 matrices

at each Gauss point. We did not conduct any further analysis
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of convergence, but rather have established bounds emperically.

Little emphasis was placed on this issue because it was found

during the course of the study that the outer iteration of

equation IV.12 generally controlled convergence.

Finally at the boundary elements where an adjacent

element may not exist, it is necessary to devise an auxiliary
3,e aae

scheme for the calculation of - and g-- at the Gauss points.

If Oe is known at the element edges (in particular the node

points) the nodes can be used as the forward or backward mesh

points and the relaxation procedure continued. However, there

are some major drawbacks to this. First regardless of the

boundary condition (velocity or traction specified) additional

calculations for velocity gradients and viscous= stress gradients

at the nodes must be accomplished. Additionally, the elastic

stress gradient can not employ central differences at the node,

but must be based on a backward difference. Third, the forma-

tion of the two independent equations to simultaneously solve
9,e aae

and - is quite cumbersome. A different technique was
TX- ay

therefore developed.

A new common array was established (BOSIG) to identify

and pass the elastic stresses at the four corner nodes. At

the first iteration, these stresses (four nodes by three stress

components by the number of elements) are initialized at zero.

The velocity vector u is then calculated in the Picard

iteration. Then during the calculation of element values at

the Gauss points (velocity, velocity gradient, stress gradients,

etc.), the boundary elastic stress at the corner node which
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matches the Gauss point is calculated according to:

N.P. G.P.++_ y G.P.
le 2 e R ITI

G.P. IG.P.

(IV.23)

Where N.P. is the node point and G.P. is the Gauss point.

This value of elastic stress is then used in the central differ-

ence calculation at the Gauss point if the element is on a

boundary. Figure 5 shows the details for the calculation at the

Gauss points for both boundary and interior elements as described

above.

To keep our thoughts clear, it is instructive to pause

and review. The creeping flow finite element equation to be

solved is,:

f f (BT D B + (mTk)Ta m B)dv NTLT edv NT tdA

v v A

The coefficients of u are linear and ae is solved by successive

substitution for each value of u. Notice two things. First,

NTL T =B T so that we could make this substitution. This study,

however, included the terms Vae in the equation and so theseTi
values were used directly with NT in calculating the integral.

Second, a nested iteration on ae is really not necessary.

Rather we could calculate a new u for each update of ae and

combine the two iterations. Figure 6 shows the two different

schemes. While not mathematically demonstrated, it was felt

that such a scheme would further degrade convergence since

35



would undergo much larger variations. This issue should be

considered in much more depth in continuing studies. This

section will be concluded with a discussion of three topics,

two very important, one included only for completeness. These

topics are: convergence of the solutions, simplication due to

ignoring the stress gradient terms of the constitutive equation,

and equations used for independently interpolating the total

deviatoric stresses in a mixed finite element method. We

will discuss these topics in order.

Engelman et. al. (32] consider the problem of convergence

of the general Navier-Stokes equation noting that Picard itera-

tion converges more slowly than Newton-Raphson, but normally

over a larger radius. They then treat the issue of accelerating

convergence by employing guasi-Newton methods emphasizing

Broyden-Fletcher-Goldfarb-Shanno updating. Such acceleration

methods would enlarge the number of elements which can be

economically treated in the solution scheme. Currently, however,

this is not the problem with viscoelastic flow. As we will dis-

cuss in Section VI, the radius of convergence is the major issue,

not the rate of convergence. Our study succeeded in obtaining

solutions for Ws<0.01 which could possibly be considered a trivial

case. However, for the general flow geometries, we treated (in

particular entry flow), the studies cited in the beginning of this

section failed to achieve solutions even at that limit. Con-

vergence therefore is the critical barrier to obtaining more

general viscoelastic solutions. We did not pursue such extensions
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in this study, but it is worthwhile to suggest a possible

approach. Chung's [2] review of standard solution techniques

is directly to this point. The radius of convergence can be

widened by continuation methods. In particular, Chung suggests

a multiple solution technique which combines incremental load-

ing with Newton-Raphson corrections. Future effort in this

field should investigate such an approach. We employed Picard

iteration exclusively. Picard iteration should be tried as the

top level, along with continuation methods. It is noted that

both types of solution are amenable to the computer program

used in this study.

We turn now to the simplications when the stress gradient

terms are neglected. The terms themselves arise in the con-

vection terms of the constitutive equation, i.e., (u4V)a. For

creeping flow similar terms were neglected in the Navier-Stokes

eq-lation and we know that for polymer melts, this is a good

approximation. It is then obvious that we compare approximate

magnitudes of Vu and Va. For viscoelastic flows, we have already

established that a eis on the order of av and the gradients

might be expected to be of equivalent nature. Therefore, we

look at the comparison between the first derivative of u and

the second derivative. It is known that even when u is discon-

tinuous (as in the case of cross-channel flow of a screw extruder

(9], the approximation at small distances from the singularities

of Vu are quite good. This suggests that for creeping flow, a

good approximation may be achieved when (u.V)a is neglected.
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Equation IV.13 then becomes:

ae = vA(&V + _e) (IV.24)

Evaluation of Vae is eliminated and the Picard iteration be-

comes much more straightforward. An optional approach is to

solve oe explicitly as:

X_)e - XA ov  (IV.2s)

or

_e. - AA)- XA a (IV.26)

Where I is the unit matrix 6ij = 'j (ij = 1,2,3)

Equation IV.Y6 allows IV.5 to be written explicitly in terms

of u and the equation is a simple non-linear equation which

can be solved with the numerical techniques discussed throughout

the report. It is noted that although the explicit form makes

the equations more straightforward, it is not expected that

the radius of convergence (which is a function of X) will be

widened much. However, at the early stages of research efforts,

particularly in applying continuation methods, this equation

seems to offer promise.

Finally, the mixed method of solution is briefly discussed

for sake of completeness. Following Kawahara's approach [28],

we set up the simultaneous equations for steady state in indicial

notation:
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p u ui, j + P,i - ij,j =o (IV.27a)

Iij + X(ukoij,k - Ui,kOkj uj,koik) - 1(ui, j + uj i ) = 0

(IV. 27b)

Both IV.27a and IV.27b are non-linear; we write the finite

element equations:
(IV. 28a)

I(TP(V_(n U)T) TN + (T _T T B *T~vif(u)T (mr a)m ) dv  U+ jf *7,dv a-- f
V V

ff*T _A *T DB- 2Nd~ +{/jT~d~~
XV(N a)N - N D B -N Q )dv u+ N a = 0

V

(IV.28b)

Where the asterisk indicates the trial function for the

stress interpolation.

The solution to IV.28 can be seen clearly if we form a typical

equation in matrix form:

T ATT ANTp(V.(Nu) T) TN. F1

+ (m B.) am B. N.B v l-- i - 2 (IV.29)

L--------------------------------...... I,

N. XV(N N

S*TA
-N. DB I N. N. aY

1 = yy

i - -N ETNj _xy

(In equations IV.29, the integrals are implied.)
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In IV.29, the superscript in the column vectors indicate the

node number so that this relation is repeated for each of

the nine nodes. i and j indicate the row and column in the

assembled array (for IV.29 i=j=l). The array is partitioned

accordingly so that the upper left corner is 2 x 2, upper right

corner is 2 x 3, lower left corner is 3 x 2, lower right corner

is 3 x 3. All matrices in IV.29 have been previously defined

with the exception of which is:

2(N X x + 2(1 xy ) )- 0

* A~
*^ a *^ a *^ *^ a
NCyy + Naxy + ay

Ty- xy x -xx ax - xy ay

These equations when fully assembled yield a set of linear

equations of order 5p, where p is the number of nodes. For a

nine node element then the order of equations is 45. The number

of variables for the whole domain then would be 45n-m with n

being the number of elements and m the number of shared nodes.

It can be seen that it does not take many elements to generate

a very large computer region to solve the equations. While the

above analysis was conducted and subroutine ELMT06 written for

the problem solution, no flow cases were run in this study.

Future work may implement subroutine ELMT06.
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V. COMPUTER IMPLEMENTATION

In this section we will discuss the major aspects of the

finite element program, the calculational procedures, and the

input/output.

The source program was a modified version of the Finite

Element Analysis Program (FEAP) written by Prof. R. L. Taylor

at the University of California, Berkeley, and published in

Chapter 24 of [1]. The modifications have been made by

Prof. David Roylance of the Massachusetts Institute of Tech-

nology to accommodate polymer melt flow [9]. These modifica-

tions are largely: (i) addition of a power law flow rule,

(ii) addition of a temperature dependent viscosity, (iii)

alteration of matrix algebra operations, and (iv) addition

of an axisymmetric capability. The rationale for using this

model is given in [9]. The current effort included reviewing

the source program to insure correctness, and modifying it

to include a viscoelastic flow option. Currently the program

is two-dimensional (rectilinear or axisymmetric) and steady

state.

The program establishes a dynamic storage vector at the

outset which is partitioned to store all input data (node co-

ordinates, element node numbers, etc.), global data (stiffnesses,

loads, etc.) and output data (velocities). Other features are

a linear interpolation mesh generation scheme, an active

equation solver and a macro command language which controls

the solution execution. The macro commands and their meaning
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are listed in Table 24.12 of [1].

Upon construction of the architecture of the problem,

calculations required for a specific command (such as forming

the tangent stiffness matrix) are made in a library of element

subroutines. Subroutine PFORM steps through the n elements by

forming element arrays from global data and passing the arrays

to the element routine. Subroutine ELMT05 is a general 2D

penalty method solution of the Navier-Stokes equation written

by Frecaut [16). This is the element subroutine modified for

the viscoelastic flow.

The basic source program flow chart is given in Figure 7.

To modify this program for viscoelastic flow, three basic

changes were made. First was to flag the problem as visco-

elastic and read material data. This was done in subroutine

DFMTRX. The card reading format after input macro command

MATE was changed to the following:

CARD 1 Format (15, 4X, Ii, 17A4)

CARD 2 Format (415, F10.0)

CARD 3 Format (15, 7Dlg.4)

Card one reads the material set number in columns 1-5 (in all

cases only one material set is used and therefore this is 1),

the element type in column 10 (5 for ELMT05) and the problem

description in the remaining columns. Card two reads the flow

type in columns 1-5 (1 = plane flow, 3 = axiqymmetric flow),

a flag (Ni) for thermal coupling in columns 6-10 (0 = isothermal,

1 = thermally coupled), a flag (K2) for viscoelasticity in
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columns 11-15 (1 = simple viscous, 2 = power law viscous,

3 = White-Metzner Viscoelastic, 4 = DeWitt Viscoelastic,

5 = Rivlin Ericksen Viscoelastic), a flag (N3) for the time

domain in columns 16-20 (1 = steady state, 2 = unsteady),

and the power law coefficient (P4) in columns 21-30. P4

must be included and for simple viscous material P4 = 1.0

(which was the case treated exclusively in this study).

Card three reads the Gauss integration order (L) in

columns 1-5 (2 = 2x2), the penalty coefficient (XLAM) in

columns 6-15, the viscosity coefficient (XMU) in columns

16-25, the density (RHO) in columns 26-35, the viscoelastic

shear modulus (G) in columns 36-45, the thermal conductivity

(XK) in columns 46-55, the specific heat (C) in columns

56-65, and the work-to-heat conversion factor (HEAT) in

columns 66-75. The program is written so that when data is

not required for the specific problem (e.g. linear, steady,

isothermal, inelastic flow) those columns may be left blank.

In card three then only columns 1-25 need be included.

The second change was to add algorithms in ELMT05 for

the calculation of the elastic stresses according to equations

IV.13. The last change presented the major difficulty: the

calculation of the elastic stress gradients according to

equations IV.19. As noted in the previous section, no scheme

existed for making calculations with variables from different

elements. In order to solve IV.19, however, this was necessary.

The approach taken was to define common arrays YY(I,J,N), ESIGl(I,J,N)
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ESIG2(I,J,N),ESIG3(I,J,N),ELASl(I,J,N),ELAS2(I,J,N),ELAS3(I,J,N),

and BOSIG(I,J,N). YY is the global coordinate (J=l,2) of the

Gauss points (I=1,4). ESIGI, ESIG2, and ESIG3 are xx' yy

and axy respectively at the Gauss points (I=1,4) at iteration

J=K, K+l. ELASI, ELAS2, and ELAS3 are the gradients (J=l,2)

of ae at the Gauss points (I=1,4). BOSIG is the elastic stress

(J=1,3) at the boundary, at the corner node (1=1,4). In all

the arrays N is the element number. In PFORM, N is passed as

common through ELMLIB and ELMT05 and it is therefore possible

to conduct the calculations between the two subroutines PFORM

and ELMT05. The gradients of the three stress components at

the Gauss points are first solved for all the elements assuming

they are a boundary element on all sides. A searching scheme

is then affected which compares the nodes of all the other

elements. When two elements are found in the correct location,

the elastic stress gradients are replaced at that Gauss point.

If adjacent elements are not found, the element is on a boun-

dary and that Gauss point is left unchanged. During the

Richardson/Jacobi iteration, the elastic stress gradients then

are calculated in PFORM and these values used in ELMT05 to

calculate the updated values of the elastic stress at the

K+l iteration. This iteration is conducted 20 times unless

convergence is achieved beforehand. The program then continues

in a normal manner.

The listings of the major subroutines written to accomplish

the modifications are included in Appendix 3. The subroutines

are in order listed ELMT05, ELMT06, ESHAP, PFORM, CMATRX, and
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FPSIG. ELMT06 is the subroutine written for interpolate total

deviatoric stresses in a mixed method. ESHAP is the calcula-

tion of the second derivatives and FPSIG is a new routine

written to print viscous and elastic stresses at the Gauss

points. CMATRX is the subroutine which forms the Q matrix

in ELMT06.
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VI. CALCULATION RESULTS

Four flow geometries were treated as shown in Figure 8

(along with the boundary conditions): Cross Channel Flow,

Plane Couette Flow, Entry Flow, and Step Flow. Table 1 shows

the computer run matrix. The input data sets for runs 1, 3, 4,

6, 13, and 20 are included as Appendix 4. Results are dis-

cussed below for each of the four problems treated. For all

cases, the viscosity coefficient was taken to be 790 poise.

This was the value selected by Roylance [9] in previous studies.

His reasons were unrelated to the work in this study, but we

chose to use the same value for comparison purposes. With

more reasonable values (10 4), we would only expect to see

higher stresses, but no change in the velocity fields.

CROSS CHANNEL FLOW

The solution of creeping flow, circulating in the trans-

verse plane of channel, for a viscous fluid is well known (e.g.

[9]). At steady state, the circulation is uniform with a vortex

center at mid-height, towards the vertical boundary on the right

in Figure 8a. This study looked at the consistency of repro-

ducing this flow with 9 node and 8 node elements and the effects

of a finite fluid elasticity. Secondary eddies and screw power

requirement changes were considered to be demonstrable effects

of elasticity.
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Figure 9 shows the velocity vector flow field for run 1

(linear case). Results are identical to [7], different from [9).

This is due exclusively to the specified boundary condition at

the upper corners of the channel. For our boundary .onditions,

the vortex center is at the mid-width of the channel near the

2/3 height section.

The velocities calculated for the nodes of elements 7, 9,

and 15 by the 18 element 9 node and 18 element 8 node case

are compared in Figure 10. Note that a significant difference

occurs in the direction of the resultant velocities in element 7

and the magnitude in element 15 (a 20% lower horizontal velocity

is predicted in the middle nodes of element 15 by the 8 node

model). When the results of the 72 element, 8 node case are

examined (run 3) the 9 node model is found to be uniformly

closer. The velocity field is, therefore, predicted much better

by the 9 node elements for the same number of elements.

Let us now make a practical application. The power per

unit area required of a single flight screw extruder to create

this circulation is the shear stress in the fluid times UB

(the relative barral velocity). If we approximate this as the

average element shear stress Uxy times the average velocity

in the element, we have the following for element 15:
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9 NODE 18 ELEM 8 NODE 18 ELEM

266
Sxy(dynes/cm2) 0.22 x 106 0.2 x 106

(cm/sec) -50 -52.5

(dyne-cm/cm2-sec) 1.08 x 107  1.05 x 107

We can conclude that the 9 node elements yield more accurate

node velocities, but when average properties are sought, such

as the power or torque required for the screw design, both

models give approximately the same results for equivalent

meshes. This, of course, is expected since the finite element

equations satisfy equilibrium over the entire region. However,

on a local scale (which we are also interested in) the above

justifies our earlier preference for the 9 node elements.

From Hughes data [7], the effects of increasing the

Reynold's number (Re) is to shift the vortex center toward the

right-hand boundary. This was investigated for one case by
3

choosing the density of polyphenelenesulfide (1.6 gm/cm3).

Combining this with the other characteristic numbers of the

cross-channel flow problem, we obtain Re = UL = 0.41.

Including the convection non-linearity for this Re we found no

discernible perturbation to the velocities or stresses, thus

confirming the validity of the "creeping flow" analysis.

For the single viscoelastic case for which the solution

converged (Ws = 0.02) the velocity field again did not vary

appreciably. Figure 9 can, therefore, be considered correct

for this level of elasticity. To look at the stress effects,
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we make the same calculation for the specific power as above

yielding:
NEWTONIAN VISCOELASTIC (Ws=0.02)

a 3y (dynes/cm2  0.22 x 106 0.22 x 106

u (cm/sec) -50 -50

27
w (dyne-cm/cm -sec) 1.08 x 10 1.08 x

Within roundoff error, the two flows are identical (maximum

a deviation was 1%). A second comparison is available inxy

Figure 11 where the pressure is plotted at the mid-height as

a function of the cross-channel (transverse) station. Again

the viscoelastic flow is coincident with the Newtonian case.

Within the range of calculations achieved in this study

therefore (Ws<0.02), there are no effects of viscoelasticity

manifested. We do observe, however, that the stresses calcu-

lated (-l% variation) are consistent with the Ws suggesting

accuracy of the computer model when convergence is achieved.

PLANE COUETTE FLOW

Plane Couette flow was selected for the fundamental

evaluation of the computer model. This is through the relation

presented by Middleman [26):

SR = (VI.l)

where S R is the recoverable (elastic) shear stress:

SRa xx 0Y
R 2axy , (VI.2)
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X is the relaxation modulus and y is the steady, simple

shear flow strain rate. The flow is enforced by specifying a

linear variation of the horizontal velocity between two plates,

one stationary, the other moving at a constant velocity as shown

in Figure 7b.

Run 7 was the Newtonian case to validate the problem. In

this case, axx and ayy should be identically zero and xy

constant throughout the field domain. This was the result of

the calculation.

For the viscoelastic case (Run 10), all the normal stresses

are elastic while from equations IV.13, with v = - = o only

a e is finite. Therefore, we should observe the following:xx

e

SR Xx = Xy- constant (VI.3)
xy

For a unit height between sliding plates we have y = UB SO

that:

a xxe = 2UB a xv (VI.4)

The computer results are for X 0.0002, UB = 100 cm/sec

(Ws = 0.02):

e = 3.16 KPa, 2XU Bayv = 3.16 KPa.
OxxBy

The equation is identically satisfied. This, of course, is

encouraging for future work to increase the radius of convergence

for higher Ws numbers.
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ENTRY FLOW

The entry flow problem for viscoelastic fluids has not

been successfully calculated by finite element methods in

the past, due to severe numerical convergence problems. As a

first step, Run 11 was accomplished for linear flow according

to the boundary conditions specified in Figure 7c. A discus-

sion of these boundary conditions is in order.

Rather than a constant horizontal velocity at the inlet

to the reservoir (upstream channel), a more accurate analysis

would specify fully developed flow. Middleman [26] presents

this for flow between parallel plates (for a Newtonian fluid

as):

B2 = )-2] (VI.5)

where B is the channel height

and L is the channel length

(all other variables retain their earlier definition).

For a White-Metzner fluid, the plane-Poiseville flow

would be solved by adding the elastic stresses to the momentum

equations. Perera [27) did this for a 4 constant Oldroyd fluid

and solved the resulting second-order differential equation for

u(y) by Newton-Cotes integration. With equations of the type
aP

specified in VI.5, we can solve the pressure loss 3- due to

inlet and outlet. In addition White [33] cites the additional

pressure losses due to entrance and exit of the dies. It is

these boundary conditions that would be more realistic in

treating the entry flow problem (velocity according to VI.5
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at one end, AP at the other). With the formulation specified

in this work, it was expected that the flow field would behave

quite differently from the classical converging type. Since

we did not have data on die pressure losses, however, the

initial calculations were made on the basis of the boundary

conditions given.

When fully developed conditions are specified, both upstream

and downstream of the entrance region the flow is known to be

stable up to relatively high Ws numbers. At Ws around one

secondary vortex patterns arise which are generally ascribed

to increasing elastic stresses generated in the shearing/elonga-

tional flow (White [33] implies that elongational flow is im-

portant and we, therefore, conclude that the Rivlin-Ericksen

fluid simplified for viscometric flow is a questionable model).

This flow behavior is documented in Figure 12 which shows

experimental behavior noted by White [33) as a function of Ws

and calculations of Perera (27) for Ws = 0.6.

The calculated velocity field for the boundary condition

specified in Figure 8c is shown in Figure 13. Although the

mesh is very coarse, it appears that the flow is unstable for

these conditions. The viscoelastic calculation (Run 12, Ws =

0.01) exhibited identical behavior. Because of this poorly

behaved flow field, the calculation was repeated using the

fully developed flow boundary conditions. The results are

shown in Figure 14. The specific boundary conditions were

established in the following manner. The excess pressure

losses described by White [33) were ignored (this will affect
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the calculation however). At y - 0 (y measured from the

mid-height of the channel) equation IV.5 is

B2p
8--- (IV.6)

For the two channels, there would be a total pressure loss of

APT = API + AP if the flow was fully developed. Therefore

APT =8U --- + ----- (IV.7)
B1  Bo

For our geometry LI = L° = BI = 1, Bo= , and V = 790 poise.

There are three unknowns in equation IV.7. However, rather

than specifying two of the three, we merely let API = AP0

(which has the same effect) and specified uo . This permits
the calculation of uI and thereby calculation of AP This

APT was established as the inlet traction PI and the outlet

was atmospheric Po = 0. This yields the value of PI = 6.4j.

The pressure is converted to the virtual "work" equivalent

node forces by the relationship

Fc = H PIx 3

- _ H P

x 3 I (IV.8)

where the superscript denotes the element node (c - corner

node, M = mid-side node) and H is half the element height at

the nodes. (See Precault [16] for the details of virtual "work"

equivalence calculat*ons; equation IV.8 are valid for 8 node

and 9 node plane quadrilateral elements). (In the actual

boundary node forces, the corner nodes are loaded with
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c 2
FX - H P, for uniform meshes since the node is shared by

adjacent elements. Only the vertical velocities at the

boundaries (v=o) now must be specified. The mid-height hori-

zontal velocity will not be the value used in the calculation,

but the flow will be fully developed.

Comparing Figures 13 and 14, we see that although the

behavior is somewhat improved by the fully developed flow case,

there is still major error in the flow field and even flow

reversal. This is felt to be attributable entirely to the

coarseness of the mesh, particularly near the entry corner.

A finer mesh case was not constructed to test this hypothesis.

It is recommended that future work include this refinement.

Notice that symmetry was not employed to reduce the

number of elements. This was due to the difficulty of speci-

fying boundary conditions on the plane of symmetry. The first

conditon is v=o, but the other boundary condition is not so

straightforward. We know that D and a- are zero at the mid-
av

height, but in general w is not zero within the reduction

region. This, of course, is a statement that the one dimen-

sional lubrication theory is not valid. Since the pressure

now changes across the channel height the pressure in the x

direction can no longer be specified as a linear function of x.

Therefore, the nodal loading in the x direction is unprescribed

as well as the velocity u. Of course, this could be resolved

by adding the condition of no mass flow across the plane of

symmetry. We chose not to accomplish this at the penalty of

doubling the number of elements.
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If the flow were one dimensional, the pressure would vary

linearly with the length and the velocity would be constant

in each of the two sections (plane Poiseulle flow). Figure 15

shows the deviation from this case.

It was noted in examining the stresses in Runs 11 and 12

that the difference was much larger than expected for the low

Ws. However, a thorough evaluation was not conducted because

it was felt that the differences were an artifact of the

calculations due to the following: (i) the velocity fields

were erratic as previously mentioned due to the coarse grid,

(ii) the boundary conditions of constant inlet velocity gave

rise to poorly behaved pressure variations even for the

Newtonian case, and (iii) the solution convergetce for the

non-linear problem was still poor at 30 iterations. It is

noted in passing, however, that as the solution procedure is

improved, it is exactly these types of variations which are

being sought.

STEP FLOW

This geometry was selected as the beginning step toward

an analysis of flow past an obstruction such as would be the

case if pins were added to the cavity to form holes in the

molded part. With the boundary conditions specified in

Figure 8d, the results were very similar to those discussed

for entry flow. A discussion of the computer calculations

will therefore not be included in this report. It is noted,

however, that there is still negligible differences between

Runs 15 (linear Newtonian) and 16 (convection Newtonian).
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This begins to address the issue of "Stokes paradox" and the

necessity of including convection, even for low Re, for

obstructed flow. The paradox is that in two-dimensional

flow no analytic solution exists for the linear equation

which matches the boundary conditions at the surface of the

obstruction and at large distances away from it [34].

Batchelor [35] shows that when the distance from the obstruc-

tion (or a boundary) is on the order of I/Re (where I is a

characteristic dimension of the obstruction) the convection

stresses (inertia) may become of equal importance to the

viscous stresses. Analytically this correction is known as

o'seen's improvement. Again as the model described in this

report is refined, the adequacy of the "creeping" flow

analysis must be examined in light of this issue.
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VII. MODEL EVALUATION

It is worthwhile to complete a qualitative evaluation

of the computer model before this report is concluded.

Figure 16 presents a diagram of a complete model for a real

injection molding process. The Figure emphasizes those

elements included in this study. Since we achieved numerical

convergence for Ws < 0.01 it must be concluded that a non-

Newtonian power law fluid analysis would be as good an

approximation as the viscoelastic model used herein. If

future work does not improve this convergence region (at

least to Ws > 0.5) the numerical analysis would seem to be

as good without including elastic effects. Also finite

difference methods have succeeded in obtaining solutions up

to Ws = 0.6 [27] and it may therefore be advisable to develop

these techniques for application to the gyroscope manufacturing.

The model is steady state and includes no free surfaces

such as would occur during the mold filling period. Therefore,

it can only be used in regions such as the extruder, nozzle,

sprue, runner and gate. Unless unsteady, free surface terms

are included, this model is not applicable to the mold filling

itself. But the power required to supply a nozzle with a given

rate of flow is certainly within the capability of the model.

Also the state of the bulk material as it passes through the

gate can be determined by use of this model. Any damage due

to high stresses or thermal degradation in these regions can

be analyzed with the model. It is noted that although there
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will be a finite elastic stress which the polymer can sustain

before flowing completely plastic (viscous plus the elastic

limit stress), there is no yield stress built into this model.

Therefore, while the model will predict continually increasing

stresses, judgement must be exercised as to the real elastic

capacity of the fluid.

The current status of the coupled heat transfer capability

of the model is the adiabatic model developed by Roylance [9].

Extension to a complete non-isothermal boundary analysis can

be implemented without too much difficulty.

We have noted that major modifications are necessary to

evaluate the mold filling itself (only pressure and filling

rate can currently be analyzed). Also within the mold, the

cooling stage of the molding process can not be analyzed

because of the absence of a solid thermomechanical viscoelastic

model.

However, if an initial state can be established for the

cooling process such a model could be developed.

The mold filling process itself can take the approach of

a constant flow rate at the gate once free surface effects are

added to the model. This is the approach used in [11]. The

free surface analysis is most clearly discussed in [4] where

the front displacement is calculated over some interval of

time assuming a constant velocity of the boundary elements

node points. The surface traction on the flow front is zero

normal to the surface and the material surface tension tangen-

tial to the surface.
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From Section V, we can discuss the approach to improv-

ing the viscoelastic case. To assess the maximum radius of

convergence of the momentum equation, it is adequate to

neglect u.Va and use equation IV.26. Since Newton-Raphson

iteration generally converges for the Navier-Stokes equations

well above Re = 25, it should be verified that convergence

is achieved with the current numerical approach for Ws = 25.

With this step accomplished, u-Va can be added and the con-

tinuation method used. The effective technique should employ

incremental loading with Newton-Raphson corrections. Let

us discuss this a little further. Since we are using direct

(Picard) iteration on the elastic stress terms, let us rewrite

equation IV.ll as:

Ku = f - Ke  (VII.l)

Since Picard iteration is a single point scheme, (i.e.,

the initial value of K u + Ke- f is always used rather than

updating in the Newton-Raphson scheme, see Figure 17) we can

attempt to increment this point. Therefore, instead of solving

VII.l directly, we solve:

Ku = 9(f - Ke ) (VII.2)

where O<e<l. With the solution to VII.2 converging for

sufficiently small numbers of e we can update the initial se-
A

lection of u by incrementing e. For example, let e = 0.1 then

in the first inurement the first value of u is

0o = K-1
5 K ef

* 59

. .*



We then iterate with K u = el - Ke(us)].

When convergence is achieved then we increment 8 to 2e - 0.2.

Then 0 1  1K -[ 2eF - ho (u s + ' ) ]

Therefore, the initial guess is improved by the correction

Ke (u +). It is noted that this technique is different from

the normal continuation methods where the non-linear equation

is always of the form: K(u)u=f. While no mathematical analy-

sis has been conducted on this proposed technique, it appears

to offer promise.

This deviation in the classical incremental load method

is only necessary when the stress gradient terms are included

in the viscoelastic constitutive model. Therefore, when the

model undergoes its first revision with u.Va neglected we

write 0e explicitly and if convergence fails the classical

incremental load methods described in [1] and (2] should be

employed.
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VIII. CONCLUSIONS

This report has dealt primarily with the additional

mathematics required to incorporate elasticity in the

deviatoric stresses developed in flowing polymer melts.

Implementation of the equations within an existing Finite

Element Computer routine was then shown. From these analy-

ses we can make the following conclusions:

* The direct Picard Iteration Converges within a

radius of Ws<0.01.

e For cross channel flow and entry flow "creeping"

solutions are very accurate for typical polymer extrusion

Reynold's numbers (Re<0.4).

* For the Weissenberg numbers which yielded conver-

gence, no appreciable effects on the flow were noted.

e The programming technique of passing data between

elements by common memory appeared to be effective.

* When convergence was achieved, the calculated values

of elastic stresses were consistent and reasonable.

* The penalty method of incompressible flow appears

to yield good results for viscoelastic fluids.

e The radius of convergence was consistent with previous

finite element calculations.

* The radius of convergence can certainly be improved

by finite difference calculations as evidenced by Perera [27).

* Without improvement, the only computer options which

should be used in evaluating polymer fluids are Newtonian and

power law viscous (isothermal and adiabatic).
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e Techniques of improving the viscoelastic model have

been proposed which offer great potential.

* For 24 element problems, the computer cost for runs

requiring 30 iterations was $100.00.
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IX. RECOMMENDATIONS

It is felt that the work performed in this study offers

potential for useful follow-on effort. In particular, there

are three areas of development. First, the analysis of the

complete flow problem is vital. While the gyroscope fabrica-

tion is new, the need for numerical evaluation in the molding

process is not. The work at Cornell [11] demonstrates this

fact. In that effort, the various regions of flow are being

tied together. A similar approach is required for the finite

element modeling. A model which connects the flow within

and out of the extruder, through the various conduits, and

into the mold cavity is an important development which should

be pursued.

Direct extensions of the work addressed in this study

are also important. The approach should be: (i) ignore

stress gradients in the constitutive equation and conduct

direct calculations, (ii) add stress gradients along with

continuation solution methods of non-linear equations. Even

if future work with constitutive models which include stress

gradients are unsuccessful, it is felt that the equation

with some elastic stresses will be a big improvement over

Newtonian or power law fluids.
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Finally as efforts one and two above progress, there is

a need to conduct rheology experiments which will determine

properties of the fiber-filled polymers being used in the

gyroscope fabrication. These data are required to correlate

with the velocities and stresses predicted by finite element

equations.

The three categories are listed below:

e Model complete flow history from extruder to

mold cavity.

e Refine viscoelastic model.

e Conduct rheology experiments of appropriate polymeric

materials.
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Figure 3 Fluid Maxwell Element
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COL.i ICOL. i COL. i+ I COL. i+ 2

ROW ( + 1)

ROW I i -1 j) 0 (0.1)0 +

ROW i- 1 *(i, j -1)

ROW i-2

x

Figure 4 Non-Uniform Molecule Mesh for Solving Stress
Gradients
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BOUNDARY

O NODES
0 GAUSS POINTS

EQUATION IV-18 USED AT G"J
EQUATION IV-23 USED TO CALCULATE aN.P A-e AT
EQUATION IV-19 MODIFIED AT ('jlAS FOLLOWS:

Xijl= X(®, ij+i = Y(Z® 0 i,j+i = 0@

(Note: Superscripts are indexed at each Gauss point so that x(Dis x j+ referred to Gauss point 1

whereas itis x1 ,j+1 referred to Gauss point 4)

Figure 5 Calculation of Elastic Stresses at Gauss Points
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SI A
SOLVE u FOR SOLVE . FOR

CREEPING INELASTIC CREEPING INELASTIC
FLOW FLOW

k+1 SOLVE k+1

SLEoSOLVE ^so

U 
4 

TO 

SOLUTN

•NO ACOMPLETE

SOLOLUTION

. COMPLETE

(a) (b)

Figure 6 Iteration Schemes for the Solution of Creeping,
Viscoelastic Finite Element Equations: (a) Nested
Iteration (b) Combined Iteration
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MAIN i• ESTABLISH BLOCK

FEAP COMMON FOR DYNAMIC
STORAGE VECTOR

STOP 0 CONTROL PROGRAM

PCONTR EXECUTION

PMESH READ INPUT DATA
AND GENERATE MESH

*ESTABLISH PROFIL
PROFIL OF EQUATIONS FOR

SOLUTION

END * STEP THROUGH
PMACR MACRO COMMANDS

.* SOLVE UNSYMMETRIC
EQUATIONS

* FORM ELEMENT ARRAYS
PFORM FROM GLOBAL DATA

PRTDIS *PRINT V LOCITIES

ELMLIB 0 CALL DESIRED ELMT

o FORM TANGENT STIFFNESS
E LMT05 MATRIX/FORM OUT-OF-

BALANCE VECTOR/
CALCULATE AND PRINT
STRESSES

Figure 7 FEAP Flowchart
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y 1; u = -100cm/sv =0

(CORNER B.C.)

x=2;u v = 0

x = 0; U=V 0
(a)

y = 2; u --00cm/ v = 0

x =0; U= -100y, 2=- O10v

(b)

y=1; U =v =0
.= V< 0 2 5  

v1 > y > 0.75 uv 0

x = 2;
x =0; u = 100cm/s, v =0 FULLY DEVELOPED FLOW

v = 0, P+Oxx =0

y = 0.25,0.75 U 0

•/~~~ ~ I; = O- ~ v 1 0(c)

II

x- x 2;

x =0; u = 100cm/s, v = 0 FULLY DEVELOPED FLOW
v = 0, P+uxx = 0

LOWER BOUNDARY; u = v = 0

(d)

Figure 8 Flow Geometries and Boundary Conditions:
(a) Cross Channel Flow (b) Plane Couette Flow
(c) Entry Flow (d) Step Flow
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(b)

SM
(c)

Figure 12 Fully Developed Flow Behavior of Viscoelastic
Fluid Entering and Leaving a Contracting Channel:

(a) Vortex angle 6 (after White [331) (b) B vs Ws
(after White [33]) (c) Finite Difference Calculation

for Ws=0.6 (after Perera [27])
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Figure 17 Solutions to Nonlinear Equations (a) Picard

Iteration (b) Newton-Raphson Iteration
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CONVERGENCE
RUN NO. GEOMETRY TYPE (YES OR NO) COST ($)

1 CROSS CHANNEL LINEAR EM2.00
18-9 NODE ELEM.

2 CROSS CHANNEL LINEAR 2.00
18-8 NODE ELEM.

3 CROSS CHANNEL LINEAR 3.00
72-8 NODE ELEM.

4 CROSS CHANNEL CONVECTION (Re 0.4) YES 3.50
18-9 NODE ELEM.

5 CROSS CHANNEL VISCOELASTIC (WS = 0.1) NO 10.00
18-9 NODE ELEM.

6 CROSS CHANNEL VISCOELASTIC (WS = 0.02) YES 21.35
18-9 NODE ELEM.

7 CROSS CHANNEL VISCOELASTIC (WS = 0.06) NO 32.96
18-9 NODE ELEM.

8 PLANE COUETTE LINEAR 2.00
18-9 NODE ELEM.

9 PLANE COUETTE VISCOELASTIC (WS = 0.06) NO 12.47
18-9 NODE ELEM.

10 PLANE COUETTE VISCOELASTIC (WS = 0.02) YES 23.41
18-9 NODE ELEM.

11 ENTRY LINEAR 2.00
24-9 NODE ELEM.

12 ENTRY VISCOELASTIC (WS = 0.01) TENDING AT 87.77
24-9 NODE ELEM. 30 ITERATIONS

13 ENTRY VISCOELASTIC (WS = 0.001) YES 77.00
24-9 NODE ELEM.

14 ENTRY VISCOELASTIC (WS = 0.03) NO 37.39
24-9 NODE ELEM.

15 STEP LINEAR 2.50
30-9 NODE ELEM.

16 STEP CONVECTION (Re - 0.4) YES 21.46
30-9 NODE ELEM.

17 STEP VISCOELASTIC (WS - 0.01) YES 115.00
30-9 NODE ELEM.

18 STEP VISCOELASTIC (WS = 0.001) YES 79.12
30-9 NODE ELEM.

19 STEP VISCOELASTIC (WS - 0.03) NO 50.71
30-9 NODE ELEM.

Table Computer Run Matrix
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APPENDIX 1

Derivation of Elastic Stress Gradient Expressions

From figure 3 we can write the Taylor series approximations

for Va as:

Forward Difference: ail~ a WiX + Yl Jjxf +

2

1 jijX 2 + 1 32a~i jAy2 +

0i,j+l = i~j + Da~Ax

1 92a iA*2+ 1 32a *2
'T -a .Ax + 75. h +

Backward Difference: a il,) U 3*1I -a 1i Axb - Dal i,jAyb +

~~~~2 _-IAx . -- i,jAy2 +

0i,j-1 = i,j - ac - aIi,j A*

82a~ijA *2 1 *2
*2 1 l~A*

ax2  ay~% i2 jAb

where:

Ax f = xil~ - x 1 ' Ayf = y1+l y1

Ax* = x ~j+l - x , Ay * = y3. ~+1 - y i,j

f Yf

Ax~ = x1 ~ 1  i-l 1  
,yb=YI -i-lui
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and j-i ; y1i,j " j-i
Axb x x Ay -y ,

Subtracting the first and second equations of the

backward differences from the respective forward differences:

a i+l,j - i-l,j = oi i (Axf + Axb) + ( +
2-0i +!i,j(AYf + Ayb ) +

1 a"a (Ax2 - ,xb,) + 1 "._i_ . (Ay2 -X2  f~ b ay 2 f~

Ay2) + ... 0(A 3 )

0i,j+l i,j- i ;(A
- = li,j(Axe + Ax ) + li,j(Ay f + +

1(A -2~~ * *2 1 920
A ,j f Axb ) + - - i,j(AYf

*2
- Ayb ) + ... O(A3 )

Assuming that all differences of the intervals squared

are infinitesimal (zero for the uniform mesh case) and

solving for the gradients we have in matrix form:

r + Axb) (Ayf + ayb] 1 i+lj i-lj1

[(Ax; + Ax, (Ay; + Ayb [a a~'il

We can use Cramer's rule for the solution since the

determinant of the coefficients of the gradients can never

vanish. Therefore:
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- ~ (Ayf + Ayb) - 2~+ " )(Ayf + &yb)

- (Af + &xb) CAyf + Ayb) -(&Xf Xb) (Ayf + Ayb)

=(GiI)+1 - a i'j') (AXf + Axb (a-~~ - ai- j(Ax Ax)

fAx + b) (Ayf + Ayb) - (Axf + Axb) (AYf + Ayb)

When substitutions are made for the A terms we obtain

equations IV.19.
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APPENDIX 2

Calculation of the Global Second Derivatives

A subroutine ESHAP wab written to calculate the global

second derivatives of the velocity vector. For a nine-node

Lagragian isoparametric element the trial functions are:

N, = !(r2 - r)(s 2 - s)

N2 -- 1(r2 + r) (s 2 - s41 2 S

N 3 = I(r2 + r) (2 + s)
41 22

Na =  2 (r r)(s2 + s)

Ns =-.(r 2  1)(S 2 - S)

N6 =-.(r' + r) (S2 - 1)
12

N7 =-T(r - 1)(s 2 + S)

N, =-(r8 - r)(s 2 - 1)

Nq = (r 2 1) (S2 1)

We can form the following table:
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AD-AI06 740 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB ON F/S 20/11
A FINITE ELEMENT MODEL OF A WHITE-METZNER VISCOtLASTIC POLYMER -ETC(U)

FEB 81 B R COLLINS
UNCLASSIFIED AFIT-CI-I-31T L22 fflfflfllfllflfflf
IIIIIIIIIIIIII
IIIIIIIIIIIIII
*III ,



a2  a2  a2

ar 7S2  -rTs

NI (S2 - S) h(r 2 -r) (2r - )(2s - 1)

N2  h(s2 - s) h(r 2 + r) (2r +1) (2s - 1)

N3  '(s 2 + s) W(r2 + r) (2r + 1) (2s + 1)

N* (s 2 + s) h(r 2 - r) (2r - 1)(2s + 1)

Ns s - s2 l-r 2  r(1 -2s)

N - S2  -(r 2 + r) -s(2r + 1)

N7 -(S 2 + s) 1 -r -r(2s + 1)

No 1-s2 r -r 2  s(l- 2r)

N 9  2(S2 - 1) 2(r 2 - 1) 4rs

Writing the expressions for the second derivatives we have:

32 a a4 + 2Y a2 a ax a +~

a-as a x [Xrs y

where r,s are local coordinates and x,y are global coordinates

and the terms in brackets are merely the chain rules for form-

ing the coordinate transformations (e.g., a- = -5 - + Fa)
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a~x
Recognizing that terms such as and 2j are zero, we

can write the transformations in matrix form as:

a2  (ax 2  ay 2aa 2

a 2  ax x(x Bx __

a2 t~a 2 ( x

a2X2

a

* I as Bras
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Where the Jacobian
r

ax ax

has been used. All the terms in this equation are available

at the Gauss points e.g.

a2x 9 Ni

G.P. i=l G.P.

where Xi are the x coordinates of node i.

We can then solve for the global second derivatives according

to:
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B2 ax\ 2 (a -\2 -1x
\x ar) 38r/ I r 1 r

a 2  IX\ 2 2_x_-2  h ( --

2 ax a (x
aT- wr. .sT3

a 2  a2r 42
a - 
2  

- r -l

TS2 -2 as

a2  'x
aE aras frs

A value is therefore returned for each of the nine trial

functions for the three global second derivatives.
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APPENDIX 3

Listing of New Subroutines

1. EL214TO5

2. ELMT06

3. ESHAP

4. PFOIRN

*5. CMATRX

6. FPSIG
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BRC4066 (FOREGROUND): OUTPUT FRO"I TSO XPRINT

AT 18*02:43 ON 1,4/07/80 - 5fC4066.ELlTOS.FORT

SUBROUTINE EUITOIC 0 ,UL # XL . XX . TL , S P NDF.HO"NSToIS)08000010

C 
99900928

~~ ELIITOS

C v.*..**0I~*4..0000000

C A gENERAL PENALTY ELEMENT FOR ICMP-ESSIBLE FLUID PLOW 000W0070

C 
490066

IPLICIT REALWO( A-N*-l 000000"

COMM 10/fLDATA/DH,A9MOTvIELoN1L 
0004

COhI.0N /FVISC/IKZ 00000150

I MMC 
00000165

01h!NSION 0(3O3,UL(NDF.1),XL(NWI.1),1X(13,TLI1), 
00000170

1 S(tST91)vP(13,5NP(3,93,SG(9 .TG(93,RG(
9 )0 0008

2 3IG(,),EPS(6),BSIG(3)PXX(3).(1)0(63)8Th813p33' co0C019c

3 5U(6),XflT5(33,XfTST(3lpPENt3 .3J,0U(3iPDLTEE(3)9 
00000200

4 V(Z) ,DV(2.21 OXN(212) ,AOVEC(292) ,CADVEC(Zv2) 00000210

5 ,AlTER(3v3),ESHP(399),OOV(3,ZJ 
00000215

DATA P1/3.141592653600/ 
00000220

C 
000002i0

if (ISW.EQ.1) So To 1 
00000240

ITYPE z 0(30) 
00000250

L a 0(281 00000260

RHO0 2 0(27) 00000270

XLAII 0(26) 00000,80

XIU *0(25) 
00000igo

XK a 0(24) 
00000300

C a 0(23) 
00000310

Hl a 0(20) 
00000320

HEAT_ 019) 00000330

LLB5 LS(ITYPE) 
00000340

K2 0(18) 00000350

H3 x D(17) 
00000360

W 016) 
00000370

P2 0(15) 
00000380

C 
00000390

C BRANCH TO CORRECT ARRAY PROCESSOR 00000400

60 TO (29Z,3,3*5v3,3)vISN 00000420

-C 
00000430

C 
00000440

C 
00000450

C ISM a I' READ MATERIAL PROPERTIES, DEVELOP 00000460

C OIAGOUAL-STORAGE 0 MATRIX 00000470

C 
00000480

C 
00000490

- 1 CALL DPHTRX(0) 00000500

- LINT 20 
00000510

c 
00000520

RETURN 
00000530

C 
00000540
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2 RETURN 0000SSO
C 00000560
C cc00C570
C 00000500
C ISW a 3: FORM ELEMENT STIFFNESS MATRIX 00000590
C 00000600
C 00000610
C 00000620

3 CONTINUE 00000630
C 00000640
C LOOP OVER GAUSS INTEGRATION POINTS 00000660
C COMPUTE UNSYMI1ETRIC STIFFNESS MATRIX 00000670
C 00000680

IF (L**NDM .NE. LINT) CALL PGAUSS (LgLIWSGTGiNG) 00000681
DO 33 LLm1,LINT 00000690

C 00000700
CALL SHAPE (SG(LL),TG(LL).XL,SHPXSJ,NOMNELIX,.FALSE.) 00000710
NGT=XSJ*WWG(LL) 00000720

C 00000730
C COMPUTE RADIUS FOR AXISYMIETRIC CASE 00000740
C 00000750

IF (ITYPE.NE.3) GO TO 302 00000760
RR:O.00 00000770
00 301 ImINEL 00000780

RR:RR+SHP(3,1)*XL(IZ) 00000790
301 CONTINUE 00000800

WGT:WGT*2.00P*RR 00000810
302 CONTINUE 00000820
C 00000830
C COMPUTE COORDINATES, VELOCITIES AND GRADIENTS FOR CONVECTIVE TERM 00000840
C 00000850

00 32 IZI,NDM 00000860
XX(I):O.DO0 00000870
V( )0.0 00000880

00 31 K=z,NEL 00000890
XX(I):XX(I)+SHP(3,K)*XL(IK) 00000900
V(I):V( I SHP(3,K )*UL(I,K) 00000910

31 CONTINUE 00000920
YY(LL,I,N) = XX(I) 00000925
00 32 J:l,NOM 00000930
OV(Z,J)=O.D0 00000940
00 32 K21,NEL 00000950

32 OV(I,J)=DV(IJ)+SHP(J,K)*UL(I,K) 00000960
C 00000970
C COMPUTE NONLINEAR VISCOSITY CORRECTION 00000980
C 00000990

XNLN:=l.0 00001000
IF (P4.EQ.1.) 60 TO 325 00001010
A1:Z.DOO(DV(1,1JN e,0V(2,2)**23+(DV(1,2)0V(2,1))**2 00001020
IF (ITYPE.NE.3) GO TO 320 00001030
A1=AI+2.00(V(l)/XX(1))**2 00001040

320 XIL!'RzXNLNR/(1.DO.A1*W((1.0-P4)/2.00)) 00001050
325 VISLAM x 0.00 00001070

IF (G.EQ.O.D0) GO TO 9 00001072
VISLAM : XNLNR*XMU/G+VISLAH 00001076

9 IF (IS*.EQ.6.OR.ISW.EQ.4.OR.ISW.EQ.7) GO TO 47 00001090
"C LOOP OVER COLUMNS, FORMING DB, MT*B, AND (DEL.INU)T)ThN 00001100

DO 46 J21,NEL 00001110
C 00001120

CALL BMATRX(B,J,ITYPESHPRR) 00001130
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CALL VtULDF(DsLLBS.NDoIILLB.D8.61 0000114.0
CALL VtfLF(XtT(ITYPE13,8,1LLB,NOM,4,LLBXMTB,1,IER) 00001150
0O 37 IDEX=:11.t1 00001160
DO 37 JOEX=1,NDM 00001170
IF (IDEX.EQ.JOEX) XN(IDEX,JOEX)SHP(39J) 00001180

37 IF (ZOEX.NE.JDEX) XN(IDEXJDEX3:O.00 00001190
CALL VIULPFFDVXNNNfl,NDt1,HDHH,N l,KADVEC.?Ntl,IER) 00001200

JJatJ-13*tzF.1 00001110
C 00001220
C LOOP OVER ROWS, FORMING BTW(OB3.(MT53TUHTh. AND NT(DEL.(PJ)T)T*t4 00001230
C 00001240

DO 45 1u11 N3L 00001250
C 00001260

CALL UtATRXB9IsITYPlvSHPRR) 00001270
CALL VJLFflh9B5LL8.IiHND1~MnLL56,BTDB,3,IER) 00001280
CALL VtIJLFP(XMTIITTPE,1),B.1,LLBNII,*,LLSXIThT,1,1513 00001290
CALL ".tDLF"(XMITBTXIT,1.NMNHl,1,1PEN.3,IER3 00001300
CALL WIJLFH( XNAOVEC .NDt1,NHf,NOM,NDt1,NDotCAVECNMTER 3 00001310

Z~a(-13*F.100001320
C 00001330
C ADD TO ELEMENT STIFFNESS MATRIX S(NST,NST) 0000134.0
C 00001350

CALL tXA0OJS(IJJ),NSTBTDB,3,Nt,ND)M,WGT*XNLNR) 00001360
CALL MXAOS(IIJJI ,HSTPEN,3,NDM,NOM,L:GT*XLAM) 00001370
CALL fXADD(S(IIJJ),HSTCAODVEC,N,"t1.NDM,NODM.W GT*RHOI 00001380

C 00001390
C ADD THERMAL STIFFNESS 00001400
C 00001410

IF (N1.EQ.1) A2zXK*DOT(SHP(1,I),SHP(1,J)NDI) 00001420
If LN1.EQ.1) S(11,NDH,JJNDM):S(11,ND1,JJNt),A2*WGT 00001430

4S CONTIllUE 00001470
46 CONTINUJE 00001480

IF (1511.EQ.3) GO TO 65 000014S5
47 CONTINlUE 00001487

IF (ISW.EQ.4.OR.ISW.EQ.6) 60 TO 60 00001497
C 00001507
C CALCULATE ESIG(LL,2,N): ELASTIC STRESS AT K *1 ITERATION 00001517
c 00001527
C SET UP A MATRIX FOR PLANE FLOW 00001537
C 00001547

AITER(1,1) =OVC1,1)*2.00 000015S7
AITER(2.1) a 0.00 00001567
AITERC3,1) =.DV(2,1) 00001577
AITER(1,2) = 0.00 00001587
AITER(2,2) = OV(2,2)*2.DO 00001597
AITER(3,2) =OV(1,2) 00001607
AITER(1,3) zOV(1*2)*2.DO 00001617
AITER(2,3) zOV(2,1)*2.00 00001627
AITER(3,3) = DV(1,1) + DV(2,2) 00001637

C 00001647
C COMPUTE VISCOUS STRESSES AT GAUSS POINTS: 516 * U 00001657
C 00001667
60 316(1) 2XMU*2.DOWOV(1,1)*XNLNR 00001677

316(t) * XflU2.D0OI#V(292)*iKLNR 00001687
SIG(3) 2 XtIU*(OV(1,2) + DV(2,13))XNLNR 00001697
S16(7) z XLAM*(DV(1,1) + OV(2,2)) 00001707

- IF(ITYPE.NE.3) 60 TO 61 00001717
SIG(4) z SIG(3) 00001727
316(3) 2 (Vt13/XX(1 3)*XMU*XNLNRW2.00 00091737
SIG(7) = SIG(7) 4XLAM(VC1/XX(133 00001742
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61 IP(IS14.EQ.4.CR.ISW.EQ.6J GO TO 62 00001747
C 000017S7
C CALCULATE VISCOUS STRESS GRADIENT (DEL(SIGIA)) 00001767
C 00001777

CALL ESHAP(SG(LL),TG(LLhoXLESHP,NDtl.NELIX) 00001787
C 00001797
C FORMI CONVECTION DERIVATIVE OF STRESS% ONLY 20) FLOW 00001807
C 00002817

00 21 12 00001827
DO 21 J=1,3 00001837

21 OOV(JsI) = 0.00 00001847

00 22 K:1,NEL 00001857
OOV( , 1) a OOV(1,1) + 2.00*XMU*XNLNR*ESHP(1,K)EUL(1,KI 00001867

DDV(1.21 ODV(1,2) + 2.DOVXMUWJXNLNR*ESHP(3,K)*UL(l,K) 00001877
DO21 OV(.1) + Z.D0*XflUfXN4LNR*ESHPt3,K)IiUL(2,X) 00001887

OV(2.2) =DOV(292) + 2.DO*XM.U*XNLNIRIESHP(2,K)*UL(2,K3 00001897
DDV(3,1) = OOV(3,l) + XtIU*XNLHRW(ESHP(1,K)*UL(2.K),ESHP(3,KIUUL( 00C01907
1 1,K)) 00001917
DOV(3,21 = OV(3,2) + XMU*XNLNR*(ESHP(3,K)*UL(2K)ESHP(2,K)*UL( 00001927

1 11K)) 0C1937
22 CONTINUE 00001947
C 00001957
C SOLVE ESIG(LLZN): ONLY 20 FLOW 00001967
C 00001977

ESI61(LL,2,N) =VISLAM*((AITER(1,13*(SIG(1).ESIGI(LL,1,H)). 00001987
1 AITER(1,2)*(SIG(2),ESIGZ(LL,1,H)),AITER(1,3)*(SIG(3)4ESIG3( 00001997
2 LL,1,N))-(V(1)*(ODV(1,1),ELAS1(LL,1,N)+V(23*(OOV(l,2),ELASl( 00002007
3 LL,2,N)l)) 00002017
ESIG2tLL,2,N) =VISLAlWI IAITER(2,1)*(SIG(1),ESIG1( LL.1,N) 1. 00002027
1 AITER(2,2)*(SIG(2).ESIG2(LL,1.Nfl.AITER(2,3)*(SIG(3)4ESIG3( 00002037
2 LL,1,N)))-(V(1)*(ODV(2,1),ELAS2(LL.1,H)),V(2)*(ODV(2.2),ELAS2( 00002047
3 LL,2,N)))) 00002057
ESIG3(LL,2,H) = VISLA!1w(AITER(3,1)v(SIG(1),ESIG1(LL#,,)), 00002067

1 AITER(3,2)*(SIG(2),ESIG2CLL,1,NJJAITER(3.3)*tSXG(3).ES1G3( 00002077
2 LL,1,N)))-(V(1)*(0DV(3,1)4ELAS3(LL,1,N)).V(2)*(DDV(3.Z)4ELAS3( 00002037
3 LL,2,N)))) 00002097

C
C UPDATE BOUNDARY STRESSES BOSIG(NODE,0IRECTION,ELIT. NO.)
C

IF (G.EQ.0.00) GO TO 65
BOSIG(LLP1,N) =ESIG1(LL,2,NI + ELAS1(LL,lvN)*(XL(1,LL)-
1 YY(LL91,N)) + ELAS1(LL,2,N)*(XL(2,LL)-YY(LL,2,N))
BOSIO(LL,2,N) =ESIG2(LL*,) + ELASZ(LL,1,N)*(XL(1,LL)-
I YY(LLPIPH)) +ELAS2(LL,2,N)*e(XL(2,LL)-YY(LL,2,N))
BOSIG(LL,3,N) =ESIG3(LL#,) + ELAS3(LL,1,N)"(XL(1.LL)-
1 YY(LL,1,N)) + ELAS3(LL,2,N)*(XL(2,LLJ-YY(LL,2,N)I
GO TO 85 00002107

C 00002117
C PRINT STRESSES IF ISW=4, OTHERWISE BRANCH TO COMIPUTE 00002127
C UNBALANCED FCRCE VECTOR 00002137
C 00002147
62 IF (ISM.EQ.6) GO TO 66 00002157

XIIAX z DtAX(DABS(XL(1*4R-XL(1.1)IDA8S(XL(1,3J-XL(1,2)) 00002158
1 DABS(XL(2,4)-XL(2,1)).DABS(XL(2,3)-XL(2,2))) 00002159
910(5) = (RHO/(XIU*XNLNR) )*DSORYgV(1)4**2V(2)*2)*X(tAX 00002160

- SIG(61 2 *ISLAM*DSQRT(V(1)**2+V( 2)**2)/XMAX 00002161
- CALL FPSIG(XXESIG1(LL,2,N),ESIG2(LL,2,N),ESIG3(LL,2,N),SIG, 00002167

1 ITYPENDF) 00002177
GO TO 65 00002187

C 0000:197
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C LOOP OVER NODES TO COMIPUTE U!?43ALANCEO FCTCE VECTOR: 00102207
C P =P1 - BT*'SIG - NT*ELASLL,N4)-RH0~t.T(DEL.(t.'UT)TN 003C:217
C 000:27

C C~tIUTE UBALANCED TEMPERATURE VECTOR 0023

66 IF (N1.NE.1) GO TO 76 v,00CZ247
Q z HEAT*(S!G(1)*OV(1,1).SIG(2)*0V(2Z)SIG(3)(DV(1,2)0V(21.))) 00002257
IF (ITYPE.EQ.3) Q 2Q 4 NEAT*(DV(1.2).DV(2,1))*(SIG(4)-SIG(3)) 00002262
00 78 Jz1,2 00002:67
DLTEE(J) =0.00 00002277
00 78 !1l,NEL 00002287

78 DLTEE(J) xDELTEE(J) 4 SI4P(Jtl)*UL(3,i) 00002297
76 00 77 11,sNEL 00002307

II x (1-1)*NF.1 00002317
C 00002318
C CONVECTION TERM SAME FOR 20 AND AXISYMMETRIC FLOW 00002319
C 00002320

P1)zP(!!) - RHO*SHPC3,I)*(Vt1)*DVC1,1),VC23*DVC1,2)2*WGT 00002321
P(11+1) z P(II,1)-RHO*SHPC3,I)*CV(1)*DVC2,1),VC2)*DVC2,Z))*WGT 00002322
IF (ITYPE.EQ.3) GO TO 79 00002324
PCI!) =P(II)-(StiPC1,1)4'SIG()SIGC7)).SHP(2,I)*SIG(3))*WGT 00002327
PC11+1) =PCIl+lJ-(SHPC2,I)*CS!GC2),SIGC7)),SHIPC1,I)*SIG(3))WT 00002337
GO TO 80 00002342

79 PCI!) =P(II)-(SHP(1,I)*(SIGC1),SIG(7)).SHiP(3,1)*SIG(3) 00002343
1 +SH.4-ZI)*SIG(4) )*'4GT 00C02344
P(11+1) =P(II.1)-(SHP(2,I)*fSXGf2),SIGC7)),SP1Ip)SG(4))I4ST 00002345

80 IF (K2.EQ.3.OR.K2.EQ.4) PCI!) =PCIl)-CSHP(3,I)*CELASI(LL,1,N), 00002347
1 ELAS3(LL,Z,N))l*WGT 0C002357
IF (X2.EQ.3.OR.K2.EQ.4) PCII.1) c P(11+1) - CSHP(3,I)*C 00002367
1 ELAS2(LL.2,N).ELAS3(LL,1,N)) )*WGT 00002377
IF (N1.EQ.1) Al =Q*SHP(3.1) 00002387
IF (NI.EQ.1) A2z XK*OOT(SHP(1,IIOLTEE,NOl) 00002397

77 IF (Nl.EQ.1) PCII.HDM) =PCU.+NDM) + A1*WGT - A2*WGT 00002407
65 CONTINUE 00002417
33 CCNTINUE 00002427
5 RETURN 00002442

E 14"J00002447
SUBROUTINE ELMTO6( 0 t UL , XL t IX t TL , S , P ,NDFpNDMNSTISW)00000010

C COO00020

ELT0 ************ ******w**0000000

C 00000055
C AN ELEMENT FOR INTERPOLATING DISPLACEMENT, TEMPERATURE, AND STRESS00000060
C FOR VISCOELASTICITY: 20 FLOW, OLOROYD DERIVATIVE 00000070

X.C 00000080
IMPLICIT REAL*8( A-H ,O-Z) 00000090
REAL*S XMIT(4,6)/8*1.00,2*0.D0,2W1.00,12*0.O0/, 00000100
I XM(6,4J/2*1.00,4V0.O0,2*1.D0,4*0.OO,3*1.D0,3*0.00,3*1.DO,3*0.O/ 00000110
INTEGER LB(4)/3t3t4o6/ 00000120
COr.'0N /CDATA/OHEAO(Z0 3,NUrNP,NUMELNUIMAT,NEN,NEQ,IPR 00000130
COMM~ON /ELDATA/OM,N,MA,MOTPIEL,NEL 00000140
DIMENHSION 0(30),UL(NDF,1hXL(ND,11),IXC1),TL(1), 00000150
1 SCNtST,1),PC1),SHP(3,9),SGC9),TGC9),WGC 9), 00000160
2 SIGC7),EPS(6),BSIGC3),XXC3),BC18),08t6,3),BTDBC3,3), 00000170
3 BU(6),XMTDC3),XMTBT(3),PENC3,3),OUC3),DLTEE(3), 00000180

- 4 V(2),DV(292)PXN(3,S3,ADVECCZ,2),CADVEC(2,2),00V(3,2),CC32), 00000190
- 5 XNTN(3,3).ST(2,3),AOSIGC3,2),CN(3,2)oXNITDBC3,2),XNTCN(32), 00000200

6 XNTSTC2#3)9 CAOSIGC3p2l 00000205

IF (ISW.EQ.l) G0 TO 1 00000220
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ITYPE 0(30) 00000230
L D(28) 00000240
RHO 0(27) 00000250
XLAM 2 0(261 00000260

= 0(26) 00000270
XK 0(24 00000200
C9= 0(23) 00000290
N1 0(0O) 000003C0
HEAT 0(19) 00000310
LLB = L8(ITYPE) 00000320
K2 = 0(18) 00000330
N3 = 0(17) 00000340
G = 0(16) 00000350
P4 = 0(15) 00000360

C 00000370
C BRANCH TO CORRECT ARRAY PROCESSOR 00000380
C 00000390

GO TO (1,2,3,3,S,3),ISW 00000400
C 00000410
C ISW = 1: READ MATERIAL PROPERTIES, DEVELOP 0000020
C DIAGONAL-STORAGE 0 MATRIX 00000'430
C 00000440

1 CALL DFMTRX(D) 00000O50
LINT = 0 00000D460

C 00000470
RETURN 00000480

C 00000490
2 RETURN 00000500

C 00000510
C ISM s 3: FORM ELEMENT STIFFNES MATRIX 00000520
C 00000530

3 CONTINUE 00000540
C 00000550
C LOOP OVER GAUSS INTEGRATION POINTS 00000560
C COMPUTE UNSYMMETRIC STIFFNESS MATRIX 00000570
C 00000580

IF (L**NDM.NE.LINT) CALL PGAUSS (L,LINTSG,TG,WG) 00000590
DO 33 LL = 1,LINT 00000600

C 00000610
CALL SHAPE (S(LL),TG(LL),XLSNPXSJPNMNELIX,.FALSE.) 00000620
WGT = XSJ*WG(LL) 00000630

C 00000640
C COMPUTE COORDINTAESVELOCITIESi STRESSESP AND GRADIENTS 00000650
C 00000660

O0 32 I=l,ND 00000670
XX(I)=0.00 00000680
V(I)=0.00 00000693

00 31 K:1,NEL 00000700
XX(I) XX(I) + SHP(3,K)*XL(I,K) 00000710
V(I) S V(I) + SHP(3,K)*UL(I,K) 00000720

31 CONTI UE 00000730
DO 32 J=t,NDM 00000740
DV(I,J)=O.DO 00000750
00 32 K=I,NEL 00000760

32 OV(I,J) = DV(IJ) + SHP(J,K)*UL(I,K) 00000770
C 00000780

-C COMPUTE NONLINEAR VISCOSITY CORRECTION 00000790
C 00000800

XNLNR 1.00 00000310
IF (P4.EQ.1.) GO TO 325 000000
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Al 2 20*V(.,V22.2,V(,)Dz,)v 00000830

323s VI$LAfl 0.00 00000350
IF (G.EQ.0.00) GO TO 9 0COOOC60
VISLAI = X?ILNP*XIIU/G +VISLAI 00000870

9 00 320 1=1,3 00000880
SIGMI 2 0.00 00000390
00 320 J=1,2 00000900
OOV(I.JJ = 0.00 00000910
00 320 KZ1,NEL 00000920
SIGMI = SI1) + SHP(3,K)*UL(NIOF-3,I,K) 00000930

320 DOV(I.J) = DDV(I,J) + SHP(JK)*UL(NOF-3+1,K) 00000940
IF (ISW.EQ.4.CR.IS4.EQ.6) GO TO 47 00000950

C 00000960
C LOOP OVER COLUKNS FORMI KIT4B,(DEL.(NUJJT*N, BT, 00000970
C DEL(N*SIG1A)'*N Nt 08, AND CN 00000980
C 00000990

00 46 J=1,NEL 00001000
CALL BIIATRX(B,J,ITYPE ,SHP,RR) 00001010
CALL CI'.,TRXtC ,J,SIGS)IP) 00001020
CALL V,'ULFF(Xnrc(ITYPE,I,B,1,LLB*Nov-394,LLB,Xnre,1,rERI 00001030
00 37 IDEXz1.Z 00001040
D0 37 JDEX21,^2 Ocoloso

37 ADVEC(IDEX,JOEX) a OV(IDEXJOEX)*SHP(3,J) 00001060
00 41 IDEX=1.3 00001070
00 41 .DEX=1.3 00001030
IF (IOEX.EQ.JOEX) XN(IDEXPJDEX) SNP(3,J3 00001090

41 IF (IDEX.HE.JOEX) XH(IDEX,jOEXI 0.00 W0001100
ST(l,1) SHP(1,J) 00001110
BT(2,1) 20.00 000011z0
BTC1,2) 2 .00 00001130
ST(292) SNiP(ZJ) 00001140
BT(1,3) a SHP(Z,J) 00001150
BTfZ,3) m SHPC1,J) 00001160
DO 39 IDEX=1,3 00001170
D0 39 JOEX2I.2 00301180
AOSIG(IDEX,JOEX) = SHP(3.J)*DDV(X0EX,JDEX) 00001190

39 CN(IDEX.JDEX) % StHP(3,J)*C(IDEX,JOEX) 00001200
CALL Vt'ULOF(DLLB,StNII.LLS,DBp6) coc012.0
JJ =(J-1),ANoF .1 00001220

C 00001230
C LOOP OVER ROM4S, FORMING (MTBVF*MTB, NT(DEL.(NU)T)T*NNT*BT, 00001240
C MT(OEL(N*SIGMA)*N, NT*H, NT*O8. AND NT*ECN 00001M5
C 00001260

00 45 !:1,NEL 00001270
C 00001Z80

CALL 81ATX(B,IYITYPE,SHPlR) 00001290
- CALL VIULFF(XIT(ITYPE,1),B,1,LLB,NDF-3,4,LLBXITBT,1,IER) 00001300

CALL VNULFNi(XMTBT,XfiTB,1.N0MN0M,1,1,PEN,3,IER) 00001310
00 38 IDEX=1,2 00001320
DO 38 JDEX(:1,Z 00001330

38 CAOVECCIOEX,JOEX) = ADVEC(IDEX,JOEX)*SHP(391) 00001340
00 40 IOEX=1,2 00001350
DO 40 JOEXZI,3 00001360
XRTCHtJOEX,IDEX) =CN(JOEX,IDEX)*SHP(3,I) 00001370

- XtITOB(J0EX,IOEX) =08(JOEX,IOEX)*SHP(3,I) 00001380
- XNT8T(IOEX,JDEX) = BT(IOFX,JDEX)*SX4P(3,I) 00001390

40 CAOSIG(JOEX,IOEX) 2AOSIG(JOEX910EX)*SNP(t391) 00001400
DO 42 IOEX=1,3 00001410
DO 42 JOEX=2,3 00001420
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42 XNTN(I0EX JOEX) * N(IDEXJOE!(I*SHP(3,I) 01001430
Il (1-21)NF .1 000 01440

C *00C1450
C ADO TO ELEMIENT STIFFNESS MATRIX S(NST,NST) 00001460
C 00001470

CALL MXADD(S(11,JJ)NSTPEN3NDI,DII.MSTXLAI) 00001480
CALL IIXADO(S( 11 PJJ) JSTCADVEC.NOH,.MNODNWST*RHO) 00001490
CALL HXADO(S(II,JJNDF-2),NST.XNTBT,2.2,3,MGT) 00001500
CALL MXAOD(S(1100F-2,JJ),ST.CASIG,3,32.GT*VISLAI) 00001510
CALL IXAOOS(11II0F-ZJJ),NSTXNTCN,332.-WGTVISLAI) 00001520
CALL MXA03(S(11,NDF-ZJJ),NSTXNTD,332,-lGTWXNLNR) 00001530
CALL fXAOISEZI~tJF-,JJNOF-2),NST.XNTh,3,3,3,WT3 00001S40

C 00001550
C ADD THERMAL STIFFNESS 00001560
C 00001570

IF(N1.EQ.1) A2 z XKWODT(SHP(19I),SHP(,J)NDI 00001580
IF(N1.EQ.1)3S(11.NOH,JJ.NDM) a S(IINDM,JJ+NDflJA2*WGT 00001590

45 CONJTINUE 00001600
46 CONTINUE 00001610
47 CONTINUE 00001620

IF (IS14.EQ.3) GO TO 65 00001630
C 00001640
C PRINT STRESSES IF ISI44OThERUISE BRANCH TO COMIPUTE 00C016S0
C UNBALANCED FORCE VECTOR 00001660
C 0C001670

IF (13S4.EQ.6) 60 TO 66 00001680
X1IAX = DIAX(A(XL(.4)-XL(1,)),DAS(XL(13)-XL12)), 00001690

1 DAS(XL(24-XL(,1)).DAS(XL(23)-XL(2.2))) 00001700
SlOCS) 2 (RHO/I XU*XNLNR) )*DS T( V( 1)**2+VI 2 )**2)*XAX 00001710
51816) 2VISLAMIVDSQRT(V(1)*W2,V(2)*23/GIAX 00001720
CALL FPSIG(XX,0.DO..00,0.oSIG,rrypEdVFri 00001730
6O TO 65 00001740

C 00001750
C LOOP OVER NODES TO COMPUTE UNBALANCED FORCE VECTORS 00001760
C P1 = P1 - NTBT*SIGIA - RNO*'NT(EL.NHU)TlT*N 00001770
C P2 = P2 - NT(DEL(SI6MA))*V - RT*SIGrIA + NT*0*LOV + NT*NT'V.I*SI6MA00001780

C 00001790
C COMPUTE UNBALANCED TEMPERATURE VECTOR 00001800
66 IF (N1.NE.1) GO TO 76 00001810

Q= HEAT(SIG()*DV(1,),SIG(2)uDV(2.2)I 00001820
DO 7-8 J=1,2 00001830
DLTEE(J) = 0.00 00001840
DO 78 I:1,HEL 00001850

78 DLTEE(J) =DLTEE(J) + SNPJ*I)VUL(3,I) 00001860
76 DO 77 I=1,NEL 00201870

II =I1"~ 4 1 00001880
P(Il) =P(II)-(RHO*(V(1)*DVI1.1).V(2'*DVI1.E)).I0OVt1.13 00001090
I 1 *DV( 3,2)) )*SHP(3tl)*LST - SHPE1,I)*SI6E 7)*WST 00001930
P111.1) = PEII+1)-(RHO*(V(1)*DV(2,1),VIZ)*DVI2.21)(D0VI2.2) 00001910
1 +OOV(3,1)1)SHP(3.11*WGT - SMP!21)*31S47)ol*T 00001920
IF (N1.EQ.1) Al =QwS!IP(391) 00001430
IF ( NI.EQ.1) AZ XK*DOT(SHP(l,l),DLTEE.NII) 00001940
IF (N1.EQ.1) P(II+NDM) = P(II0HDM) + A1'UIST - At*WGT 00001950
P(II.NDPF-2) C P(Il4N3F-2)-(VISLM~W(DDV(1,1)aV(1).DDV(1,ZW*V(2)) 00001960
1 + SIGhl) - 2.D0wXMU*XNLNR*DV(I9I) - 2.CO*VISLAM* 00001970

- 2 (SIG(1)*DV(1,1),SIG(3)*DV(1,2))S4P(3.I)*UIGT 00001980
- P(II.HDF-1) = P(II.NDF-1)-(VISLAtII(DDV(2,1)#Vh1),DDV(2,2)*V(Z)) 00001990

1 4 SIG(2) - 2.D0*Xt*iU*XMLtR*DV(2921 - .DONVISLA1* 00002000
2 (SIG(2)*DV(2,2).SIG( 3)*DVI2,1) ))*SHP(391)*t4GT 00002010
P(II.NDF) 3P(II+NDF) -(VISLAri*(ODVI 3,1)V(1)DVI 3.2)*V(2)) 00002020
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I +SIG(3) - XlU*XNLNR*IOV(1,2),OV(2,1)) -V!SLAI* 00002030
2 (SIG ( 2 *OV(1,2),SIG(3)4DV(1.1).SIG(1)VOV(2,1) 00002040
3 *SIG(3)*DV(2,2) ))*ISP( 3,I)*''GT 0000:050

77 CONTINUJE 00002055
65 CONTINUJE 00002060
33 CONTINUE 00002070
S RETURN~ 00002080

END 00002090
SUBROUTINE ESHAP(5,TTXpESNPNDHNELpIX) 00000010

C 00000015
C*U*W#NUWWW~WU*~ **NW*****W*~*I~*~** 00000020

~~ ESHAP N~w~*s*wwN~~ 00000030
~ 00000040

C 00000050
IMPLICIT REALOS( A-H ,O-Z) 00000080

C SHAPE PtANCION ROUTINE FOR 9 NODE QUADRILATERALS FOR SECOND DER. 00000070
C 00000080

DIMENSION4 ESNP(3,1),X(NOMtI),SHP(3,9),IX(1),816(3,3),XS(2,2), 00000090
1 EBIG(3,3)oEXS(3.2),SX(22)TElP(3I 00000100
DATA S/0.500/,T/1.D0/,R/2.D0/ 00000110

C 00000120
C FORM 9-NODE QUADRILATERAL SHAPE FUtCTIONS FOR SECOND DERIVATIVE 00000130

ESflP(I,1) xS*(TPE4'2-TT) 00000140
ESHP(2,1) = *(SS**2-SS) 00000150
ESHP(3,1) =S**Z*(RI.SS-T)*(RWTT-T) 00000160
ESHP(1,2) =ESHPC1,l) 00000170
ESHP(2*2) 2Sw'SS*w2+SS) 00000180
ESHP(392) z S*2*(R*SST)*(R*TT-T) 00000190
ESHP(1.3) =Sv(TT**2,TT) 00000200
ESHP(2,3) =ESHP(2.2) 00000220
ESHF(3,3) =S**2*(R*SS+T)*(R*TT+T) 00000220
ESHII.4) = ESHP(2,3) 00000230
ESHP(2,4) ESHP(2,13 00000240
ESHP(3,4) zS**Z*(R*SS-T)*(R*TT+T) 0C000250
ESHP(1,5) c -R*ESHP(1,2) 00000Z60
ESHP(2.5) = T-SS*s2 00000270
ESHP(3,5) =SS*(T-R*TT) 00000280
ES4P(1,61 T-TT**2 00000290
ESHP(2v63 -R*ESHPC2,2J 00000300
ESHP(3,6) 2-TT*(R*SS.T) 00000310
ESHP(2,7) =-R*ESNP(1,4) 00000320
ESHPCZ.7) =ESHIP(2,5) 00000330
ESHiP(3,7) =-SS*(R*TT+T) 00000340
ESHP(1,8) ESNP(l.6) 000003S0
ESNP(2,8) -R*ESHP(2,I) 00000360
ESHiP(3,8) TTWA(T-R*SS) 00000370
ESHP(1,9) z -Ri*ESHP(1,61

- ESIP(2,91 -R*ESNPE2,5)
ESHP(3,91 RMN2*SS*TT

C 00000380
C CONSTRUCT BIG MATRIX AND ITS INVERSE 00000390
C 00000400

CALL SHAPE(SSTTX,SHP,XSJ,NWMNELIX,.TRUE. 2
DO 130 ZIHON 00000410
00 130 JC1,2 -00000420

- XSII,JI z 0.00 00000430
- DO 130 Kz1,NEL 00000440

130 XS(I,J) XS(IJ) + XIIK)*SHP(JtK) 000104SO
BIG(1,13 z XS(1,1)**2 00000460
B10(2,1) = XS(2,1)**Z 00000470
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S10(3,1) XS(1,1)*XS(2,1) 004S
SIGtl,2) XI,)*200000490
BIG12,2) 2XS(2,2)** coOcCsco
B10(3,21 XS(1,2)*XS(292J 00000510
610(113) 22.00*Xs(1,11*XS(1,I) 00000520
S10(2,3) 2 .00*XS(2,1)*XS(2o2) 00000530
61600) 2XS(1,1)*X3(2,2) 4 XStl*x51291) 00000540

C CALCULATE DETERINANT OF BIG 00000550
CET S 1(,)(I(.)8033-!t,)5023,BG21* 00000560

2-SIG(Zo2)*8Z6(1.3)) 000003"o
C 00000590
C FORM INVERSE 000006CO

ES10(1lll (BIG(2,2)*B10(393)-BIG(32)*51G(2,3)/DET 00000610
EBIG(Z,1) 2-(BIG(1.2)*'5IG(3.3)-8IG(3.2).'BIG(1,3))/VET 00000620
EBIG(3,11 (BiG(1,23N816(2,33-BrG(2,t)5ZG(1,31?/OE? 00000b30
EtIG(I.2) -10 .)0G33-I3,)D62I/CT00000640
EBIG(292) 2(BIG(1,1)*BIG(3,3)-8IG(3,1)*51S(2.3)/DET 00000650
EOmc(3,21 ODII(,)3023-IG21~G13)DT0CO0660
EtIG(1,31 EG21803Z-I(,)I(.)/E 00000670

Et3IG(3*3) 2 BG11*I(.)BGZ14G12)~T00000690
C 00000 700
C FOR" SECOND DERIVATIVE MATRIX 00000710
C 00000720

00 131 1=1,2 00000730
DO 131 J=1,3 00000740
EX(S(.J,I) --0.00 00000750
DO 131 K21,NEL 00000760

131 EXS(J,I) = EXS(JoI) + X(I,KW3ESHP(J#K) 00000770
C FORMI JACOSrAN KATRrX INVERSE 00000780
C 00000790

SX(1,1) 2XS(2.2)/XSJ 00000800
SX(1^2) 2 YS(i.1)/XSJ 00000810
SX(1,2) = -XS(1,2)/XSJ 000008zo
SX((211 = -XS(ZdJI/XSJ 00000830

C 00000840
C FORM GLOBAL SECOND DERIVATIVES 00000850
C 00000860

00 132 I21,NEL 00000870
TEKP(11 = ES(P(,I) 00000880I
TEMP(23 a ESHP(2,11 00000890
TEMP(31 a ESHP(3,I) 00000900
DO 133 Jm1.3 00000910
ESHW(J,I) a0.00 00000920
00 134 K=1.3 00000930
ESHP(Ji) ESHP(JoI) 4 ESIG(JtK)*(TElP(K)- (EXS(Kpl)*ISXtl,1)* 00000940
I 1 gPE1Il).5X(1,2)*SHP(2,1)13-(EXS(K,21I$q5X(t1)*HP(1,l).3X(2,2)* 000009S0
2 SNII))0000960

134 CONTINUE 40000970

133 CONTINUE 000001*80
132 CONTINUE 00000990

RETURN 00001000
E14D 000@1410
SUBROUTINE PFORIII UL #XL,9TL,9 LD ,PsS, It v0,10, 00000010
I X XX , F 9TJIAG p 0vA CNDF* 0000020

- 2 NDMNENlHST.ISWUUUAPLSPLCFPDPL) 00000030
C COMPUTE ELEMENT ARRAYS AND ASSEMBLE GLOBAL ARRAYS 00000040
C 40000050
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C~~**w***N ~PFORM * NNW ~ 7
N**********0000030

C 
00000090IMPLICIT REAL*8( A-N .O-Z) 00000100

LOGICAL AFL,BFLPCFLOFL 00000110
COION /COATA/ 0,HEADOCO,HttPHWtELIIDIIATNE4.tEQ,IPR 00000120
CONMON /ELOATA/ 0?1.NtMAMCTpIELsNEL 00000130
COMM1ON /PRLOO/ PROP 00000140
COM1.0 /FVISC/ KZ 00000145

I CONVOIN /TAYLR/ ESIG(4,2.503.ESIG2t4,2,503,ES1G3(4,2,501, 00000150
1 YY(4,2,503.ELAS1(4,2,50),ELAS2(4,2,503,ELAS3(4,2,S03, 00000160
2 BOSIG(4,2,503

DIMENSION XL(N0M,13,L(NF13P13.(NT,),IE(13,Df30,13,ID(1MF10000170
13,X(NDM,),IX(NEN1,),F(N0F,13,JOIAG(13,B(1)A(3,C()UL(NIWF1D 00000180
2 9TL(1),T(1),U(13,UD(NOF.13 00000190

C 000 00200

IFL(K2.LE.2.OR.K2.EQ.3).OR.(ISW.LE.4).OR.CN0F.GE.4)) 60 TO 102 00000210

C SET ITERATION PARAMETERS FOR FLUID VISCOELASTICITY 00000:30

NSTEP 0 00000250
1l .E.1COO06

C BEGIN VISCOELASTIC ITERATION: LOOP ON ELEMENTS 00000290
C 00000300
5 IEL 20 00000310

* 00 101 N z1,NUtIEL 00000320
C 00000010
'C CALCULATE ELAS WITHIN ELEMENTS USING CENTRAL DIFFERENCES; 00000020
C THESE WILL BE USED FOR BOULD0ARY ELEMENTS 00000030
C OO00O045
C GAUSS POINT 1 00000050
C 00000C60

AA c YY4ZN)-X(2,IXl1,N)) 00000070
89 YY(2,2,N3-X(2olX(IN)) ocooCOoo
cc x YY(2,1,N3-X(1,IX(1,N)3 00000090
DO YY(4,1,N)-X(1.IX(1,N13 00000100
ELAS1(1,1,N) ((ESIG1(2,1,N)-BOSIG(1,1,N33*AA-(ESIG1(4,1,N3 00000110
I -BOSIG(1,1,N) )*BB)/(CC*AA-BB*003 00000120
ELAS1(1,2,N) =((ESIGI(4,1,N3-BOSIG(1,1,N)3*CC-(ESIG1(2,1,N) 00000130
1 -EOSIG( 1,1,N) )*00 3/(CC*AA-88N003 00000140
ELAS2(1,1,N) - ((ESIG2(2,1,N3-BOSIG(1,2,N)*AA-(ESIG2C4*1,N 00000150
1 -BOSIG(l,2,N3 3W6B)/(CC*AA-BB*O00 00000160
ELASZ(1,2,t4)z ((ESIG2(4,1,N)-BOSIG(1,ZN)WCC-(ES162(2,1,N) 00000170

1 -BOSIG(1,2,N) )*0 3/(CCNAA-BBWOO) 00000180
ELAS3(1,1,N) = (EsrG3(2,1,N3-BOSIG(1,3N)WAA-(ESIG3(4,1,NI 00000190

1 -BO3IG(1,3,N))*P.B)/(CC*AA-BOIIDO) 00000200
- LAS3(1,29N) 2 CES341,N)-BOSIG(1,3,N))*CC-(E5163(2,1,N 00000210

1 -BOSIG(1,3,N)wOO)/(CCAA-BB*00) 00000220
C 00000230
C GAUSS POINT 4 00000240
C 00000250

AA 2X(291X(4#N33-YY(1,ZN) 00000260
SBB YY(3.2,N)-X(2,IX(4,N)) 00000270
CC 2 YY(3t1,N)-X(1,IX(4,N)) 00000280
00 = X(1,IX(4*N33-YYC1,1,Nl 00000290

-: ELASI(4p1,N) m ((ESIG1(3,1,N)-UOSIG(4,1,N)3'AA-(SOSIG(4.1,N) 00000300
1 -ESIG1(1,1,N)3WBB,, (CC*AA-B8W003 00000310
ELAS(4,2,Nl (SOSIGC4,1,N3-ESIG1I1,1,N))CC-!SGlt31.t4) 00000320
1 -SOSIG(4,1,N3 3*00 /(CCWAA-B*0D 3 00000330
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ELAS2(4,1,N) ((ESIG2(3,1,N3-BOSIG(4,2.N3)IAA-t50SI6I4,Z,N) 00000340
1 -ESIGZ( 1.1,N3))*r 3/( CC'AA-83.OD I 000003s0
ELA!!^t4,2,N) ((BOSIG(4,2.tI)-ES!GZ(1,1,HIiW)CC-(ESIG(31,t3 00C0060o

1 -EC3IG(492,N) 3D)/CC*AA-B3tOO) 30Co30O
ELAS3(4,1,N) x ((ESIG3(3.1,N3-BOSIG(4,3.N33*AA-(BOSI(4,3N 000003800
1 -ESIG3(1,1,N) )*EB)/(CC*AA-8S3'OO) 00000390
ELAS3(4p2,NI 2 ((BOSIG(4,3,Ni-ES103(1,1,N))*CC-(ESZG3(3,1,N) 00000400
1 -8OSIG(4,3,N3 3*003/(CC*AA-BB*OO) 00000410

C 00000'420
C GAUSS POINT 3 00000430
C 00000440

AA z Xt2ZX(3,N))-YY(2oEN3 00000450
BB z X(2,IX(3,N))-YY(4,Z,N) 00000460
CC c X(1,IX(3.N))-YY(4,1,N) 00000470
00D X(1.IX(3,N))-YY(2,1,N) 00000480
ELASI(3,1.N3 = (BOSIG(3,1,N)-ESIGZ(491,NII*AA-(5OSZG(3,1,NI 00000490
1 -ESIGiC 2,1,N) 3*ES3/(CC*AA-B3NOD 3 00000500
ELASI(3,2,N) z fEBOSIG(3,1,N)-ESIGI(2,1,N))*CC-(BOSIG(3,1,N) 000051

1 -ESIGI(4,1,N) *3) /(CCNAA-BB*0O) 00000520
ELAS2(3,1,N) m C(BOSIG(3,2,N345S162(4,1,N)J*AA-(BSZG(3.2,NI 00000530
1 -ESIG2 2.1.N3 )vrB)(Cc*AA-55*OD3 00000540
ELAS213.2,N) ((EOSIG(3,2,N3-ESIG2(2,1,N))*CC-(BOSIGC32.N 00000550
1 -ESIGZ(4,1,N3 3*0D3/(CC*AA-BD'iDD) 0o000o:-
ELAS3(3,1,NI 2 CCBOSIG(3,3,NI-ES163(491,N33*AA-(BOSIG(393,N) 00000570
1 -ESIG3C 2,1,N3 3)fBB/(CC*AA-B05O0 3 00000530
ELAS3(3,2,N) z EBOSIG(3,3,N3-ESIG3CZ,1,N)3 CC-IBOSIG(3*3N) 00000590
1 -ESIG3(4,1,N) )*OO /(CC*AA-85*00) 00000600

C 00000610
C GAUSS POINT 2 00000620
C 00000630

AA 2YY(3v2,N)-X(Z.IX(2pN)) 00000640
65 = X(2,IXCZ,N))-YY(1,Z,N) 00000650
CC = XC1,IX(2,N33-YY(1,1.N3 00000660
DO0 YY(3,1,N)-XC1,IX(2,N33 000C0670
ELAS1(2,1.NJ (CBOSIG(2,1,NJ-ESIGl(1,1,N))*AA-(ESIGlf3,1,N) 00000680
1 -BOSIGI 2.1,N) 3N5 /(C CAA-BBwOO 3 00000690
ELAS1(2.2vN) ((ESIG1C3,1,N3-BOSIGCZ,1,N3)NCC-(BOSIGC2,1,N 00000700

1 -ESIGIC 1,1,N3 3q003/(CCAA-B!3wOD3 00000710
ELAS2(2,1,N) 2 ((BOSIG(2,2,N)-ESIG2C1,1,N))*AA-(ESIG2C3,1,N3 000007Z0

1 -BOSIG(292,N3 3NBB3/(CC*AA-Bf3*OO) 00000730
ELAS2(2,2*N) 2 (CESIG2C3,1,N3-BOSIG(2,2,N))*CC-(BOSIG(2,2,N) 00000740
I -ESXG2(2,1,N))*0D 3/(CC*AA-B8NDD) 00000750
ELAS3(2.1,M) z E(COS!G(2,3,N3-ESIG3(1,1,H33NAA-(ESIG3C31,NI 00000760
1 -BCSIG(2,3,N3 3W883/(CC*AA-BS*DO) 00000770
ELAS3C2,2,N) z ((ES1G3C3,1,N)-BOSIGC2,3,N33*CC-(BOSI6C2,3NI 00000780

1 -ESIG3C 1,1 ,N) I*DO /C CC*AA-BBVDD 3 00000790
C 00000800

-C REPLACE ELAS FOR INTERIOR ELEMENTS 00000810
C 00000820

00 91 IDEX x 1,NUCIEL 00000330
00 92 JOEX c 1,NUIIEL 00000340

C 00000350
C GAUSS POINT 1 00000360
C 00000370

!F((IXC1,N3.NE.IX(4,IOEX)).OR.CIXCZN3.N!.IX(3,ZDEX)3 360 TO 10 000003800
- IF((IXC1,N3.NE.IX(2,JDEX)).OR.(IX(4,H).NE.IX(3,JDEX)3)GO TO 10 0000390

A A x YY(492,N)-YY(4#2tI0EX) 00000400
B z YYI2#2*N)-yy(29ZJDEX3 00000410
CC =YYC2,1,N3-YY(2l1,JOEX3 00000420
00 Z YYC4,IPN)-YYC4,1*IDEX) 00000430
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1 ESIG(,I0!X))3ESI/(CC1,NA-ESt I219-X)*A-EIO),1 00000440

1 -ESIGI(2,1.oIEX) )'0O)/(CCWAhA-C'DD00000OO470
ELASM1,11 -- ((ESIGI(2,1,N3-ESIG1(2,1,JOEX))*CA-(ESIGI(4,1,N) 00000480

1 -ESIG12,1.JOEX) )w28)/(CC*AA-E2IDD) 00000490
ELAS211#1.N3 - I(!51G2,1,N)-ESIG6241,IOEX))*CC-(ES1GZIZ.1,N) 0000050

1 -ESIG2(411,JOEX) 1w0O)/(CC*AA-E8"OO) 00000410
ELAS3L1,1.HJ % fESIG3(4,1,N)-ESZG3(4,IPJOEX))*AA-(ESIG212,1.N) 00000520

1 -E51G3(4,1,IOEX3 305)/(CC'eAA-!B"'OO) 00000530
ELA33(2,29N) 2 ((ESIG3t4,1,N)-ESIG3(4,1pI0EX))WCC-IES1G3(2,1,N) 00000540
1 -ESIG3t2,1,JOEX3)NOO )/(CC*AA-BBOD) 00000550

C 00000560
C GAUSS POINT 4 00000570
C 00000530
10 IF((IX(1,N3.NE.IXfUIOEX)).OR.(!X('4,N).HE.ZX(3,IDEX)3360 TO 20 00000590

IF((rx(3,NL.NE.IX(2,J0EX)).OR.(IX(4,N).NE.ZX~1,JO2X)))GO TO 20 00000600
AA YY(ls2,JDEX)-YY(1,2,N) 00000610
55 = YY(3,2,NJ-YY(3,Z,IDEXJ 00000620
CC z YY(3,1,N)-YY(3,1,IOEX) 00000630
DO = YY(1~1.JDEX)-YYt1s1*N3 00000640
ELASI(4,1,N3) ( (ESIGI(3,1,N)-ESIG1(3,1,IDEX))*AA-(ESIG1(1,1,JDEX)00000650
1 -ESI1 ( 1.1 N) )*'t /( CCI-AA-Bl' 0O 00000660
ELASI(4,2,N) = ((ESIGIt1,lJD)EX)-ESIG3(1,1,N)3*CC-(ESIG1(3,1,N) 000C0670
1 -ESIG1(3,1,IOEX) )*00)/(CC*AA-88*00I 00000680
ELAS2(4,1,N) (IESIG2(391,N3-ESIG^ (3,1,IOEX))*AA-(ESIG2(1,l.JOEX)00000690
1 -ESIG2(1,1,N3)wB83/(CC*AA-8BBY 00) 000007C0
ELASZ(4,N) a ((ESIG2(1,1.J0EX)-ESIG2(1,1,Nl'*CC-(ESIG(3,1,I 00000710
1 -ESIGZ(3,1,IOEX) OO0)/(CC*AA-D8*00) 00000720
ELAS3(4,1,H) =((ESIG3(3,1,N)-ESIG3(3,1,IOEXr)*AA-(ESIG3(1,1,JOEX)00000730
1 -ESIG3(1,1,N) )*B)/(CC*AA-BB*'0O) 00000740
ELAS3(4,2,N) 2 ((ESIG3(1,1,JOEX)-ESZG3C1,1,N))*CC-(ESIG3(3,1,N) 00000750
1 -ESIG3( 3,1,IOEX) )*DD,/(CC*AA-EB5*00) 00000760

C 00000770
C GAUSS POINT 3 00000730
C 00000790
20 IF((IX(3,N).NE.IX(2,!OEX)).OR.(IX(4 N3.NE.ZX(lolEX)))GO TO 30 00000800

IFU(IX2,N).NE.IX(1,JDEX)).CR.tIX(2oN).NE.IX(4,JDEX)))GO TO 30 00000810
AA 2 YY(2FZ,IOEX)-YY(Z2*N) 00000320
55 = YY(4,2,JDEX)-YY(4,2oN) 00000830
CC = YY(4,1.J0EX)-YY(491,N) 00000840
00 2 YYE2.19IDEX)-YY(Zt1,N) 00000850
ELAS1(391PN) --((ES1G1(4,1,JOEX)-ESZG1(4,1,N))*AA-(ESIG1EZ,lIOEX)00000860
1 -ESIG1(2,1,N))ff88)/(CC*AA-B8*00) .00000870
ELAS1(3,2pN) --(!SIG1(2,1,10!X)-ESI1(2,1,N))*CC-(ESIGI(4,1,JOEX)00000830
1 -ESIGI(4,1,N))*t0O)/(CC*AA-0B*OO) 00000390
ELASZ(3,1,N) -- ((ESIG2(4,1,JO!X)-ES162(4,1,N))*AA-(ESIG2(2,1.IO!X)00C00900
1 -ESIZ(2,1,N3 i*eBI/(CC4IAA-SS*00? 00000910
E1AS2(3,2,N) m((ESIG2C2,IoIEX)-ESIG2(2,1,N3)*CC-(ESXG2(4,1,JDEX)00000920

1 -ESIG2(4,1,NI JNOO /(CC*AA-8B*00) 00000930
ELAS3(39,N) -- ((ESIG3(4,1,JDEX)-ESIG3(4,1,N))*AA-(ES1G3(2,1,olEX)00000940
1 -ESI63(2,1,N) )*BB)/(CC*AA-BB6O00 00000950
ELAS3(3,2,N) -- (ESIG3(2,1,IOEX)-E51G3C2,1,N))*CC-(ESIG3(4,1,JOEX)00000960
1 -ESIG3(4,1,N) )*0D)/(CC*AA-88E00 3 00000970

C 00000980
-C GAUSS POINT 2 00000990
-C 00001000
30 IF((IX(2,N).NE.IX(1,ZDEX)).OR.(IX(3,NI.NE.IX(4,orEXJ3)GO TO 92 00001010

IF((IX(1,N).NE.IX(4,JOEX) ).OR.(IX(2,N).NE.IX(3,JDEX)))GO TO 92 00001020
AA aYY(3,2,14)-YY(3*2,JOEX) 00001030
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es=YY(1,2,IOEX)-YY(1,2,N) 00001040
CC = YY (1,1,IOEX)-YY(I,1,N) 00001030
DO0 YY(3,1,N)-YYt3,1,JDEX) 00001060
ELASI(2,1.N3 a ((ESIG1(1,1,IOEX3-ES!G1(l,1,N)I'AA-(EIG1(3,1,N3 00001070

1 -ESIGlE 3,1,JOEX) )e1B)/(CC*AA-eB*0O3 00001080
ELAS1(Z22N) ((ESIC.(3,1N3-ESIGI(3s1.J0EX)CC-(ESIG1C1,1,!0EX)00001090

1 -ESIG1( 1,1 ,N) )*0O)/( CC'*AA-B8B00 3 00001100
ELAS2(Z.1*N) ((ESIG2(1,1,IDEX)-ESIG2(1,1,N))*AA-(ES!G2(3,1,N3 00001110

1 -ESIC-2(3.lJOEX) 3*BB)/(CCwAA-0'B*OD) 00001120
ELASZ229N3 ((ES1GZ(3,1,N)-ESIG2(3,lJDEX3))CC-(ES1G2(lo,,3EX)00001130

1 -ESIG2(1,1,N3))W0O)/(CC*AA-B0'*ODI 00001140
ELAS3(Z,1,N) z (ESIG3(1,1,IOEX)-ESIG3(1,1,NI)*AA-(E5163(3,1.N) 00001150

1 -ESIG3( 3,1.JOEXI))*BB3/CC*AA-B8*0O) 00001160
ELAS3(2,2,N) =((ESIG3(3,1,N)-ESIG,3(3,1PJDEX))*CC-(ESG3(,1,ZDEX)00001170

1 -ES1G3(1,1,N) )*O0)/(CC*AA-55*00) 00001180
92 CONTINUE 00001260
91 CONTINUE 00001270
C SET UP LOCAL ARRAYS FOR CALCULATING ESIG(LL92,N) 00001280

00 55 I:1,NEt4 00001290
11 = IXLI,N) 00001300
IF (II.NE.0) GO TO 55 00001310
TLI) = 0. 00001320
0O 53 J=1,NO?1 00C01330

53 XL(J,I) = 0. 00001340
00 54 J21,NOII 00001350
UL(J,I) = 0. 00001360
UL(JI.NEN) = 0. 00001370

54 LO(JI3 0 00001330
GO TO 58 00001390

55 110 = II*MOF-NOF 00001400
NEL C 1 00001410
TLI) x T(II) 00001420
00 56 J=1,NDII 00001430

56 XL(J,4) = X(J.11) 00001440
00 57 J=1,?NOF 00001450
K a IASC!(J,II)) 00001460
UL(J.1) F(J,II)*PROP 00001470
UL(J,I+NENI x UD(J,II) 00001480
IF (K.GT.0) UL(J,I) = MC) 00001490
IF (OFL) K = rID + J 00001500

57 LO(J,Z) a K 00001510
58 CONTINUE 00001520
C FORM1 ELEMENT ARRAY 00001530

MA = IX(NEN1,N) 00001540
NIF (ZECCIA).NE.IEL) HCT = 0 00001550

IEL = IE(IIA) 00001560
CALL ELMIB(0(1,11A),ULXLIX(1,N),TLSPNDFHDINST,7) 00001570

101 CCN'TIN'UE 00001580
YM-AX =1AX(ABS(ESIG1(1,Z,1)-ESIG1(1,1,13),0A8S(ESIG2(1,Z,1) 00001590

1 -ESIGZ(1,1,1)),OABS(ESIG3(1,2,1)-ESIG3(1.1,1))) 00001600
00 93 I:1,NUIEL 00001610
00 93 J=1,4 00001620
XtIAX :OMAX1(DASS(ESIG1(Jt,,!3ESIGItJ.1,I),ABStESI62(J,2,I) 00001630
1 -ESIG2(J,1,!)),OABS(ESIG3(J,2d1)-ES103(J,1,Z))) 00001631

93 If CXIAX.GT.YMAX) YIIAX=XMAX 00001632
- IF'fYtiAX.Lf.TlDL1) GO TO 102 00001633
- NST!P z NSTEP + 1 00001634

00 90 K1,tNIIEL
00 90 J=1#4
ESIG1(J,1,K) ESIGI(J,2,K)
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ES!G0J1,K) ESIGZIJ,2,K)
90 ESIG3(J,l.Kl ESIG3(J.2,K)

IF INSTEP.GE.10) GO TO 102 00001635
IF (NSTEP.EQ.1.OR.N.STEP.EQ.3.OR.NSTEP.EQ.5. 00001636
1 OR.NSTEP.EQ.9) GO TO 94 00001637
Go TO 5 00001638

94 WRITE (6,1000) O,HEA09TItIE,NSTEP 00001639
WRITE (6,1010) 00001640
00 95 l:1,WrtEL 00001641

95 WITE (691020) 1,((YY(J,1,1),YY(J,2,I),ESIG1(J,2,I) 00001642
1 ,E5IG2(J,2,1).ESIG3(J.2,I)),JI'1,4) 00001643
GO TO 5 00001644

C LOOP ON ELEMIENTS: ELASTIC ITERATION COMPLETE 00001649
102 CONTINUE 000016S0

IlL z 0 00001660
00 110 N 21,NUIEL 00001670

C SET UP LOCAL ARRAYS 00001680
DO 108 I l,HEN 00001690
11I= X(I.N) 00001700
IF (II.NE.0) 6O TO 105 00001710
TL(I) =0. 00001720
DO 103 J=1,NOI 00001730

103 XL(J,I) 0. 00001740
00 104 J =1,NVF 00001750
UL(J,I) =0. 00001760
UL(J,I+NEN) 0. 00001770

104 LO(J,I.) = 0 00001780
GO TO 108 00001790

105 110 II*HOF -NOF 00001600
NIL zI 00001810
TL(I) =T(II) 00001811
00 106 J=2,NDHt 00001812

106 XLIJ91) X(J,11) 00001813
DO 107 J=1,NOF 00001814
K mIABS(ID(J,11)) 00001815
UL(J,I) 2F(J,II)*PROP 00001816
UL(J,I+NEN) =UO(J,II) 00001017
IF (K.GT.0) UL(J,I) =U(K) 00001818
IF (DPI) K = ID + J 00001819

107 LD(J,I) =K 00001820
108 CONTINUE 00001821
C FORMI ELERMENT ARRAY 00001822

MIA zIX(N!N1,N) 00001823
IF(IE(tIA).NE.IEL) tICT 0 00001824
IEL zIEttIA) 00001825
CALL ELtILIS(O( 1,tiA) ULXL,IX( 1,N) ,TLSPNOFNDI1,NST,ISW) 00001826

C ADO TO TOTAL ARRAY 00001827
- IF(AFL.OR.BFL.CR.CFL) CALL ADOSTF(AB,CSPJDIAS,LONSTNEL*NDF, 00001028

1 AFL,8FL,CFL) 00001829
110 CONTINUE 00001830
1000 FORM'AT(Als20A4,//5X,'ELASTIC FLUID STRESSES AT GAUSS POINTS', 00001831

L 1 SX, TIIE ,G13.5,//1X, VISCOELASTIC ITERATION NUtIBER:' ,I4//) 00001832
F . 1010 FORt)AT(IX, ELMT' ,11X, '-CCORD' ,6X, 2-COORO' .20Xs 00001833

1 *ETAU-XX' ,7X, ETAU-YY ,7X, ETAU-XY'//) 00001834
1020 FC'4ttAT(IS,/4(IOX,2G13.4,13X,3Gl3.4/)//) 00001835

RETURN 00001849r - Ell 00001850
SUBROUTINE CIIATRXtCvJ ,SIGSNP) 00000010

C 00000020
W*NN*~WW***W*WN*W**W*W* 0000030
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... CIATRX ..... .........N 00000040
*W*C*** 00000050

C 00000060IMPLICIT REALVSIA-",O-Z) 0000070
DIMENSION C(13,SIG(7)tSHP(3,9) 0000080

C 
0000090CALL PZERO(Co6l 00 000

C 0:000110
C ONLY 20 FLOW TREATED HERE 00000120

C CUl) z2.0(SIG(lW*SHP(1,J),SIG(3)*SHP(2,J)) 00000::140:

C ' = 0.00 00000150
C(3) 2SIG(2)*S14P(2pJ)4SIG(3)*SHP(IPJ) 0 0006
C(41 0.00 000170
C(S) =2.0*(SIG(2)*SHP(2oJ),SIG(3)*SHP(lJ)) 00000180
C(6) SIG(13*SHP(1,JSIG(3)*SIP(2,J)l 00 000190
RETURN 00000200
ENDO 

0 0000210
SUBROUTINE FPSIG (XX.ESIG1,ESIG2,ESIG3,SIG,ITYPE,NOF) 00000010

C 00000020
C~* W* ~ *~ FPSIG * * V * * * 00000030

*NW* **** *~*~ 00000040
C 00000050

IMPLICIT REAL*S( A-N ,O-Z) 00000060
DIMENSION XX(1) ,SIG( 1) 00000070
COM;ON /C0ATA/ O,HEAO( 20),NUMNP,NUIEL,NUtiAT,NEN,NEQIPR 00000080
COMW-ON /ELDATA/ Dtl,NMAiMOTIELNEL 00000090
COMMON /TOATA/ TIIE9OT,C1,C2,C3tC4,CS 00000100
COMMlON /FVISC/ K2 00000110

C 00000120
GO TO (51,52,53,54), ITYPE 00 000130

C 00000140
C PLANE FLOW 00000150
C 00000160
51 MOTmMOT-1 00000170

IF (KZ.LE.2) GO TO 509 00000240
A =SIGt1) + ESIGI 00000250
B SIG(2) + ESIG2 00000260
C =SIG(3) + ESIG3 00000270

509 IF (rOT.GT.0) GO TO 510 00000180
IF (NOF.LT.4) WRITE (6,5000) ONEADTIME 00000190

5000 FORMAT (AI920A4,//5XP*FLUID VISCOUS STRESSES AT GAUSS.POINTS:', 00000200
1 SXTINE'PG13.5, 00000210
2 //lX,'ELIT tATL',6X,'l-COORO',6X,'2-COORO',SXv 00000220
3 'FRESSURE',7X,'TAU-XX',7X,'TAU-YY',7X,'TAU-XY'/) 00000230
IF (NDF.LT.4.ANO.K2.GE.3) WRITE (695010) 00000280

5010 FORMAT (//5X, 'TOTAL VISCOUS AND ELASTIC STRESSES ATGAUSS POINTS: 00000290
I,/) 00000300
IF (KOF.GE.4) WRITE (6,5020) O,I4EAO,TIIE 00000301

5020 FORMAT (A1,20M4,//5XP'TOTAL VISCOUS AND ELASTIC STRESSES AT 00000302
1 GAUSS POINTS:',SX,'TIME',G13.5, 00000305
2 //1X,'ELIT IATL',6X,'1-COORD',6X,'2-COORD',SX, 00000306
3 *PRESSURE',7X,'TAU-XX',7X,'TAU-YY',7X,'TAU-XY'/) 00000307
IF (NOF.GE.4) GO TO 509 00000308
IF (K2.GE.3) MOT:19 00000310
IF (K2.GE.3) GO TO S0S 00000320

- MOT z S 00000330
508 CONTINUE 00000350
510 IF (NOF.LT.4) WRITE (6,5001)N,?1A.XX(),X(X(2),SIG(7),(SIG(I),1=1,3)00000360

IF (NOF.GE.4) WRITE (6,5009)N,MA,XX(1),XXC(2) 00000363
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5009 FOPt1AT (215,2G13.4) 00000366
IF (KZ.GE.3) IVRITE (6,5011) SIG(5)qS!G(6),AvBC 00000370

5001 FC!,.AT (^,15,6G13.4) 00000330
5011 FCR!IAT (1X,'RE a',Gl3.4,OUS ,tG13.4913X93G13.4) 00000390

RETURN 00000400
C 00000410
52 RETURN 00000420
C 00000430
C AXSY1METRIC FLOM 00000440
C 00000450
53 IOT=MOT-1 00000460

IF (tIOT.GT.0) 60 TO 530 00000470
WRITE (6,5002) OtHEA0,Tlt! 00000480

5002 FORMAT (A1,20A4*//5Xo.FLUID STRESSES AT GAUSS POINTS:%s 00000490
1 SX*TfIE,6G13.5, 00000500
2 //1Xt*ELMT H4ATLt6X,1l-COORD*,6X2-COOR',5X, 00000510
3 'PRESSUE,97X,'TAU-RR,97X,'TAU-ZZ',7X,'TAU-TTp7X.'TAU-RZ'/) 00000520
11OT a 50 00000530

C 000005.40
530 WRITE (6,5003) NIAXX(1),XX(2),SIG(7),(SZG(I),12'1,4) 00000550
5003 FORMAT 1215,7623.4) 00000560

RETURN 00000570
C 00000580
54 RETURN 00000590

END 00000600
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APPENDIX 4

Input Data Set Listings

1. Run 1 - Linear Cross Channel Flow

18-9 Node Elements

2. Run 3 - Linear Cross Channel Flow

72-8 Node Elements

3. Run 4 - Convection (Re = 0.4) Cross Channel Flow

18-9 Node Elements

4. Run 6 - Viscoelastic (Ws = 0.02) Cross Channel Flow

18-9 Node Elements

5. Run 13 - Viscoelastic (Ws = 0.001) Entry Flow

24-9 Node Elements

6. Run 20 - Linear Entry Flow Fully Developed Boundary

Conditions 24-9 Node Elements

(Note: Run 20 is not listed in Table 1)

109

* Z-



UI

BRC4066 (FOREGROUND): OUTPUT FROM TSO XPRINT Input Dataset Run No.

AT 13:42:06 ON 12/05/00 - !RC4066.TEST.OATA

FEAP CROSS-CHAHNEL FLOW - NEWTONIAN (TEST 7) 00000010
91 18 . 2 2 9 0 00000020

COOR 00000030
1 7 000 000 00000040

85 0 200 000 00000050
2 7 000.166666700 00000060
86 0 200.166666700 00000070
3 7 000.333333300 00000080
87 0 200.333333300 00000090
4 7 000 .SDO 00000100

88 0 200 .300 00000110
5 7 000.666666700 00000120
89 0 200.666666700 00000130
6 7 000.833333300 00000140

90 0 200.833333300 00000150
7 7 000 100 00000160

91 0 200 100 00000170
00000180

ELEM 00000190
1 1 1 1S 17 3 8 16 10 2 9 14 000002C0
7 1 3 17 19 5 10 18 12 4 11 14 00000210
13 1 5 19 21 7 12 20 14 6 13 14 00000220

0.0000230
MATE 00000240

1 S NINE-NODE LAGRAGZAN PENALTY ELEMENT 00000250
1 0 2 1 1.0 00000260
2 .1000+009 .7900.003 .0000 00000270

00000275
BOUN 00000Z80

1 7 -1 -1 000009085 0 1 1 00000300

2 1 -1 -1 00000310
6 0 1 1 00000320

86 1 -1 -1 00000330
91 0 1 1 00000340
7 7 -1 -1 00000350
89 0 1 1 00000360

00000370
FORC 00000380

7 7 -102 000 00000390
91 0 -102 000 00000300

00000480
END 00000490

_MACR 00000500
UTAN 000050
FORM 00000510
SOLV 00000520
OISP 00000530
STRE 0000050REAC 00000550
REAC 00000560
ETOP 00000570

-STOP 00000580
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Input Dataset Run No. 3
BRC4066 (FCtGqOUKO): OUTPUT FROM TSO XPRINT

AT 13:42:48 ON 12/05/80 - BRC4066.TESTZ.DATA

FEAP CROSS-CHANNEL FLOW--LINEAR NEWTONIAN//72 ELEMENTS 00000010
253 72 1 2 2 8 0 00000020

COO.7 00000030
1 1 000 000 00000040

13 0 000 100 00000050
14 1.08333300 000 00000060
20 0.083333300 100 00000070
21 1.166666700 000 00000080
33 0.166666700 100 00000090
34 1 .2500 000 00000100
40 0 .25DO 100 00000110
41 1.333333300 000 00000120
53 0.333333300 100 00000130
54 1.416666700 000 00000140
60 0.4166667D0 100 00000150
61 1 .500 OD 00000160
73 0 .500 100 00000170
74 1.583333300 000 00000180
80 0.5333333C0 100 000C0190
81 1.666666700 000 00000100
93 0.666666700 100 00000210

94 1 .7500 OD 00000220
100 0 .7500 100 00000230
101 1.833333300 000 00000240
113 0.833333300 100 00000:50
114 1.916666700 000 00000260
120 0.916666700 ID0 00000270
121 1 100 O0 00000280
133 0 100 100 00000290
134 11.08333300 000 00000300
140 01.05333300 100 00000310
141 11.16666700 000 00000320
153 01.16666720 100 00000330
154 1 1.2500 000 00000340
160 0 1.2500 100 00000350
161 11.333333'0 OD 00000360
173 01.33333300 100 00000370
174 11.41666/00 000 00000380
180 01.41666700 100 00000390
181 1 1.500 OD 00000400
193 0 1.500 100 00000410
194 11.58333300 OD 00000420
200 01.583333!00 100 00000430
201 11.66666700 000 00000440
213 01.66666700 100 00000450
214 1 1.7500 00 00000460
220 0 1.7500 100 00000470
221 11.83333300 00 00000480
233 01.83333300 100 00000490
234 11.91666700 000 00000500
240 01.91666700 100 00000510
241 1 200 000 00000520
253 0 2D0 100 00000530

00000540
ELEM 00000550

1 1 1 21 23 3 14 22 15 2 20 00000560

'!
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13 1 3 23 2S 5 15 24 16 4 20 00000570
25 1 5 25 27 7 16 26 17 6 20 00000580
37 1 7 27 29 9 17 28 18 8 20 00000590
49 1 9 29 31 11 16 30 19 10 20 00000600
61 1 11 31 33 13 19 32 20 12 20 00000610

00000620
MATE 00000630

1 5 EIGHT-NODE SERENDIPITY PENALTY ELEMENT 00000640
1 0 1 1 1.0 00000650
2 .1000.009 .7900+003 .0000 00000660

00000670
so0" 00000680

1 1 -1 -1 00000690
13 0 1 1 00000700
14 20 -1 -1 00000710
234 0 1 1 000007Z0

21 20 -1 -1 00000730
2zi1 0 1 1 00000740
241 1 -1 -1 00000750
253 0 1 1 00000760
20 20 -1 -1 00C00770
2 0 0 1 1 00000780
33 20 -1 -1 00000790
233 0 1 1 00000800

00000810
FCqC 00000820

20 i0 -102 000 00000830
240 0 -102 000 00000840
13 20 -102 00 00000850

253 0 -102 000 00000860
00000870

E1D 00000880
MACR 00C00090
TANG 000009C0
FC;H? 00000910
SOLV 00000920
ISP 00000930

STRE 00000940
END 00000950
STOP 00000960

11
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Input Dataset Run No. 4
BPC4C66 (FCREG;OU, ): OUTPUT FROM TSO XPRItT

AT 16:22:13 ON 12/05/80 - 5RC4066.TEST.DATA

FEAP CROSS-CHANNEL FLOW - NEWJTONZAN WITH CONVECTION 00000010
91 18 1 2 2 9 0 00000020

COR 00000030
1 7 000 oo 00000040
65 0 too COO 00000050
2 7 000.166666700 00000060

86 0 200.166666700 00000070
3 7 000.333333330 00000080
87 0 2D0.333333300 00000090
4 7 000 .500 00000100
8 0 200 .500 00000110
S 7 000.666666700 00000120
89 0 200.666666700 00000130
6 7 000.833333300 00000140

c0 0 200.833333300 00000150
7 7 ODO 100 00000160

91 0 t00 100 00000170
00000180

ELEHt 00000190
S 1 115 17 3 8 16 10 2 9 14 0 c000200
7 1 3 17 19 5 10 18 12 4 11 14 00000210

13 1 5 19 21 7 12 20 14 6 13 14 00000220
00000230

MATE 00000240
1 5 NINE-NODE LAGRAGIAN PENALTY ELEMENT 00000250
1 0 1 1 1.0 00000260
2 .1000+009 .7900+003 1.6000 00004270

00000275
BOUN4 00000230

1 ? -1 -1 00000290
65 0 1 1 00000300
2 1 -1 -1 00000310
6 0 1 1 00000320
86 1 -1 -1 00000330
91 0 1 1 00000340
7 7 -1 -1 00000350

89 0 1 1 00000360
00000370

FONC 00000380
7 7 -102 oo 00000390

91 0 -102 000 00000400
00000480

END) 00000490
_MACR 000cOSO0
OT 1. 00000505
LOOP 3 00000520
UTAH 00000530
FORM 00000540
SOLV 00000550
OISP 1 00000560
STRE 1 00000565
TIME 00000567

.:NtXT 00000570
DISP 00000580
STRE 00000590
REAC 00000595
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END
STOP 00000600

00000610
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Input Dataset Run No. 6
BRC4066 (FCOEGROUN ): OUTPUT FROM 750 XPRINT

AT 13:50:54 ON 12/07/80 - EPC4066.TEST.OATA

FEAP SQUARE CAVITY- OLOROYD VISCOELASTIC (RHO:O, P4z1. WSZ.011 00000010

91 18 1 2 2 9 0 00000020

COON 00000030

1 7 o0o ODO 00000040

85 0 200 000 000000SO

2 7 000.166666700 00000060

86 0 200.166666790 00000070

3 7 000.3333333DO 00000080

87 0 200.3333333D0 00000090

4 7 000 .SOO 00000100

88 0 200 .500 00000110

S 7 000.66666670 00000120

89 0 200.666666700 00000130

6 7 0D0.833333300 00000140

90 0 200.833333300 000001SO

7 7 000 100 00000160

91 0 200 100 00000170
00000180

ELEM 00000190

1 1 1 15 17 3 8 16 10 2 9 14 00000200

7 1 3 17 19 5 10 18 12 4 11 14 00000210

13 1 5 19 21 7 12 20 14 6 13 14 0000220
00000230

MATE 00000240

1 5 NINE-NODE LAGRAGIAN PEHALTY ELEMENT 00000250

1 0 3 1 1.0 00000260

2 .1000.009 .79004003 .3950+007 00000270
00000275

BOUN 
00000280

1 7 -1 -1 00000290

85 0 1 1 00000300

2 1 -1 -1 00000310

6 0 1 1 00000320

86 1 -1 -1 00000330

91 0 1 1 00000330

7 7 -1 -1 00000350

89 0 1 1 00000360
00000370

FORC 
00000380

7 7 -102 000 00000390

91 0 -102 000 0000040000000485

END 
00000490

EANR 00000500
" OT 1. 00000510

LOOP 20 00000520

UTAN 
00000530

FORH 00000540

SOLV 00000550

OISP 5 00000558

STRE 5 00000566
T!ME 00000575

,TIME 000005Sa

.NEXT 00000585

DISP 00000588

STRE 00000s91

REAC 0009
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END 00000600
STOP 00000610
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Input Dataset Run No. 13
ORC4066 PFOEORqOJNO): OUTPUT FROM TSO XPRINT

AT 15%38:57 ON 12/07/00 - ERC4066.TEST3.0ATA

FEAP E4TRY FLOW - OLOROYD VXSCOEILASTZC (RHOa@, P41, 1SzO.0005) 00000010
121 94 1 2 2 9 0 60000024

COOR 00000630
1 1 000 000 00000040
9 0 000 100 00000050

10 1 .12500 000 00000600
10 0 .12500 100 00000070
19 1 .2so0 *DO 0000006
27 0 .2SOO 100 00000090
20 1 .37500 000 00004100
36 0 .37500 100 00000216
37 1 .0 000 00000120
45 0 .500 100 00000130
46 1 .62500 000 000001*0
54 0 .6250 100 000001$0
55 1 .7500 100 00000160
63 0 .7500 100 00000170
64 1 .87500 oo 00000180
72 0 .87500 10 00000190
73 1 100 000 00000:00
81 0 100 100 00000210
82 5 1.12500 .2500 00000220
117 0 200 .2500 00000230
83 5 1.12500 .37S0 00000240

118 0 zo .37500 00000250
84 5 1.12500 .500- 00000260
119 0 200 .500 00000270
85 5 2.1230 .62500 00000260
120 0 200 .62500 00000290
86 S 1.12500 .7500 00000300
121 0 DO .7500 00000310

00000320
ELEM 00000330

1 1 1 19 i 3 10 20 12 2 11 18 000003*0
S 1 3 21 23 S 12 22 14 4 13 18 00000350
9 1 5 23 25 7 14 t4 16 6 1s 10 00000360
13 1 7 25 27 9 16 26 10 0 17 18 00000370
17 1 75S 8709 77 82 6 4 76 83 0 00000380
18 1 87 97 99 69 92 90 94 80 93 10 00000390
21 1 77 89 91 79 84 90 86 78 S 0 00000400
22 1 89 99 101 91 94 100 96 90 95 10 00000410

00000420
HATE 00000430

1 5 NINE-NODE LAGRANGE PENALTY ELEMENT 00000440
1 0 3 1 1.0 00000*S0
2 .1000#009 .79004003 .0000 .7950+008 00000460

00000470
BM 00000480

1 9 -1 -1 00000490

73 0 1 1 00000500
2 1 -1 -1 00000S10
a 0 1 1 00000S20

- 9 9 -1 -1 00000530
81 0 1 1 00000S40
74 0 1 1 00000550
75 0 1 1 OO0006
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79 0 1 1 00000570

80 0 1 1 00000580

82 5 -1 -1 00000590

117 0 1 1 00000600

86 S -1 -1 00000610

121 0 1 1 00000620

118 0 0 1 00000630

119 0 0 1 00000640

120 0 0 1 00000660
00000670

FC C 000006802 1 102 00 00000670

8 0 102 000 00000690000080

EIO 00000710
ENCR 00000720

OT 1. 00000730

LOOP 30 000007S0

UTAH 00000750
F0M 00000760

SOLV 00000770

OrSP 5 00000780

STPE 5 00000790

TIME 00C00800
NEXT 00000810

OISP 00000820

STRE 00000830

REAC 00000840
REND 00000850
EISID 00000860
STOP

liI
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8RC4066 tFOREGROUN0): OUTPUT FROM TSO XFRINT Input Dataset Run No. 20
AT 18:59:50 ON 12/18/00 - BRC4066.TEST3.OATA

FEAP ENTRY FLOW - OLDROYD VIVOELASTIC (RHO=O, P4=1, &ISzO.0005) 00000010
121 24 1 2 2 9 0 00000020COOR 

000000301 1 000 000 00000040
9 0 000 100 0000003010 2 .12500 oo 0000006018 0 .12500 100 00000070

19 1 .2S04 000 0000008027 0 .2500 100 0000009028 1 .37500 000 0000010036 0 .37500 100 00000310
37 1 .sDo ODO 0000012045 0 .500 100 00000130
46 1 .62500 000 0000014054 0 .62500 100 00000150
35 1 .7500 000 0000016063 0 .7SO 100 00000170
64 1 .87500 000 00000180
72 0 .87500 100 0000019073 1 100 000 0000020081 0 100 100 00000210
82 5 1.12500 .2500 00000220117 0 Zo .2500 00000230
83 S 1.12500 .37500 00000240118 0 200 .37500 00000250
84 5 1.12500 .500 00000260
119 0 ZOO .500 00000270
85 5 1.12500 .62500 00000280120 0 v00 .62500 0000029086 5 1.12500 .7500 00000300

121 0 200 .7500 00000310

ELE"f 0000032000000330
1 1 1 19 21 3 10 20 12 2 11 18 00000340
5 1 3 21 23 S 12 22 14 4 13 18 000003309 1 5 23 25 7 14 24 16 6 15 18 0000036013 1 7 25 27 9 16 26 18 8 17 18 00000370
17 1 75 87 89 77 82 88 84 76 83 0 0000038018 1 87 97 99 89 92 98 94 88 93 10 00000390
21 1 77 89 91 7984 90 86 7885 0 00000400
22 1 89 99 101 91 94 100 96 90 95 10 00000410

MHATE 0000042000000430
1 5 NINE-NODE LAGRANGE PENALTY ELEMENT 00000440
1 0 1 1 1.0 000004502 .1000+009 .79004003 .0000 .7950+008 00000460

BOtH 000004701 9 -
000004801 9 -1 -1 0000049073 0 2 1 0000050075 0 1 1 00000503

- 79 0 1 1 00000306- 2 1 0 -1 000005102 0 0 1 00000520
9 9 -1 -1 00000530

81 0 1 1 00000540
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74 0 1 1 00000550
70 0 1 1 00000500
80 0 1 1 000059082 5 -1 -1 00000590
117 0 1 1 00000610
86 S -1 -1 00000620

121 0 1 1 00000630
118 0 0 1 00000640
119 0 0 00000650
120 0 0 1 00000660

00000670
2 a 4.202 000 00000680

2.102 00000681
4 0 4.202 00000682

5 0 2.102 00000684
0 4.202 00000685

7 0 2.102 00000690
S 0 4.202 000 00000700

00000710
END 00000720
MACR 00000750
UTAH 000C0760
FOR" 00000770
SOLV 00000780
OisP 00000790
STRE 00000840
REAC 00000850
END 00000060
STOP
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APPENDIX 5

Brief Review of Gyroscope Theory

This Appendix is presented for the benefit ot the materials

engineer who may not be familiar with the theory of gyroscopic

behavior. The discussion is taken entirely from Wrigley et. al.

[36]. Figure 18 shows a cutaway of the single degree of freedom

gyroscope used in this study. The normal assumptions for the

description of a gyro element performance are:

1. The rotor spins about an axis of symmetry.

2. The rotor spins at constant speed.

3. Spin angular momentum is much greater than non-spin

angular momentum.

4. Center of mass of the rotor and gyro element coincide,

and 5. The rotor bearing structure is rigid.

For a platform stabilized single degree of freedom gyro,

these assumptions lead to the performance equation:

I A" +c + k H + U(MOA)

dt2 +gdt g S1 IA (cmd SRA H ]
Igg ME-dwoA

For integrating gyros, a restraining torsional spring is

eliminated, hence k = 0 and the performance equation becomes:g

Td 2 e d!e .HF 4W-Ut( MOA)] - wO
g +H7 d g IA cmd O SRA H -i g t

or d e) g
+ - + Hs dt)
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Therefore:

g HE + 9 IA cmd - SRA H / g - O

Where

e - Output axis rotation

WIA -Input axis angular rate

W Commanded output axis angular rate

S Spin reference axis angular rate

Hs  Rotor angular momentum

T 9 I/c E time constant

I -gyro output axis effective moment of inertia

cg float damping coefficient

U(MOA) Uncertain torque aboat output axis

Assuming & T << &WIA cmd, the eguation becomes

T !L' + ( = g U MOA)

This equation shows that the gyro drift uncertainty is a first

order response to the time integral of the uncertainty torques

about the output axis.

Alternately expressing the equation in terms of drift rate:

dwOA U(14 OA)
Tg -- t-+ wOA - c--9

Hence, any source of uncertain torque of the torque sunning

member about the output axis is a contributor to the possible

inaccuracy of the gyro element.
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The most common sources of these uncertainties are

gimbal friction and mass unbalance.

These are factors very sensitive to the material state

and processing variables. It is for this reaso. that a

rational method of selecting injection molding parameters is

required. A brief example of this is presented.

Prior to introduction into service, the molded gyro is

balanced. Remaining unbalance can be nullified by compensa-

tion in the feedback loop of the control system. However,

from the drift rate equation we can see that for a step

acceleration the steady state (t ®) drift rate, due to

torque uncertainties caused by variations to the balance, is:

WOAI VeagT

s.S. Cg

Where p is the mass density, V is the effective volume

of unbalance, e is the amount of mass eccentricity, and a is

the step acceleration in g's.

Taking typical values:

C 20588 dyne-sec

T= 0.0017 secg

WOAI = 1/hr = 4.8 x 10-6 rad/sec
8.3.

p = 1.6 gm/cm (Polypheneline Sulfide)
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We obtain:

a cm

For an acceleration of lOgs then we get:

Ve - 0.00363 cm4

which defines the bounds of mass unbalance which can be tolerated,

for the specified performance, due to long term materials be-

havior (creep relaxation, non-uniform thermal strain, etc.).
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