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-tool in the analysis of fluid flow problems (1, 2, 3, 4, 5).
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I. INTRODUCTION

The finite element method has become a popular numerical

Particularly in the regime of incompressible flow this method

has become very competitive with the more established finite
difference methods due to its simplicity of implementation

and generality of handling mixed boundary conditions for com~
Plex geometries which favor nonuniform meshes at points of
singularities. Accordingly, the finite element discretization
process is used herein to characterize the flow of a polymeric
melt under various geometric conditions. The particular approach
is the Galerkin weighted residual formation of the non-symmetric
integrai éﬁuations (6,2), with the penalty method used for the
pressure term via an approximation of the incompressible con-
tinuity equation (1,3,7). Steady, two dimensional flow is treated
and viscoelastic fluid effects are modeled by employing an
0Oldroyd codeformational stress derivative in a modified Maxwell

constitutive equation (8).

The motivation for this analysis stems from the development
of low cost, medium performance, plastic gyroscopic instruments
at the Charles Stark Draper Laboratory. With the exception of
the momentum wheel and electromagnetic parts, a complete single
degree of freedom integrating gyroscope has been designed using
glass filled polyphenylene sulfide parts. Performance goals
are in the range of 1 - 10 degrees/hour drift rate. Cost ad-

vantages derive from elimination of precision secondary machining
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of metallic components as well as basic material costs. However,
the need for uniform physical and mechanical properties (e.g.,
dimensional stability, thermal conductivity, mechanical compli-
ance) of the parts to provide the required performance after
possible long-term storage in unair-conditioned warehouses
necessitates the correlation of the final material state to
processing parameters. Such knowledge will permit the rationale
selection of extrusion parameters, post fabrication treatments,
and subsequent analysis of storage and service environmental
effects on instrument performance. Figure 1 shows a picture

of the typical plastic gyroscope under consideration. Figure 2
depicts a typical injection molding process for these gyroscopic

parts.

Roylance (9) has pointed out that the information the
engineer is seeking in a flow analysis is the location of regions
of elevated shear deformation, which can lead to mechanical de-
gradation and higher residual stressés, regions of stagnation
and recirculation, at which overlong material residence and
thermal degradation might occur, and power requirements for the
fabrication process itself. Also of ingerest for the gyroscope

application are the effects of the flow field on the distribution

of the filler fibers which are carried along by the drag of the
fluid. It is possible that the zones of filler depletion or ;
enhancement which are observed in molded parts, can be predicted H

and controlled by evaluation of the calculated velocity field.




In the above regard the numerical analysis of polymer
melts caw be broken down into two general categories. First is
the evaluation of the accuracy of the solution themselves.
Calculations are made and compared to known exact or approximate
analytic solutions. Typical of these are the pipe/channel flow,
drag flow, and die entry flow. By far most of the numerical
studies have been in this category. In the second category is
the application of numerical solutions to real problems. Only
three studies are known to this author which have aimed at apply-
ing numerical results to actual polymer processing. The first
is the work of Bigg (10) who used the Marker and Cell Finite
Difference Scheme to specify preferred operations for the mixing
of polymer solutions in a single screw extruder. The second is
the National Science Foundation/Industry supported work at Cornell
University (10), also using finite difference methods to evaluate
mold f£filling and control the location and orientation of weld
lines. Thirdly is the work of Caswell and Tanner (12) who effec-
tively used the finite element method to redesign wire coating

dies to eliminate recirculation.

The current work falls into the first category described
above, but the intention of applying the numerical model, once
assessed for accuracy and utility, is kept firmly in mind and
discussed throughout this report. To conclude the introduction,
it is also necessary to describe how the current analysis fits
into the completely general solution. In the injection molding
process, the flow is non-steady and non-isothermal (but approxi-

mately adiabatic within the fluid boundaries), with advancing

free surfaces until the mold is completely filled. Upstream of




the flow front the fluid is completely surrounded by either

rigid boundaries or adjacent fluid. For an incompressible

fluid, a complete numerical model must therefore account for
unsteady, non-isothermal, free surface effects. In addition,

the observance of a finite recoverable shear in the rheological
data of polymer melts indicates the neec to include viscoelasatic
effects in the model. For unsteady effects, since the Reynolds
number (Re) of flow is always much less than unity, a good ap-
proximation is achieved by ignoring inertia and employing the
linear "creeping" flow solution. The model that we are eventually
striving for then is an adiabatic, viscoelastic solution with
changing surface boundaries. Time is included only as temperature
is conducted and convected and s the velocity field is perturbed
b§ the changing boundary. The current work investigates the
viscoelastic effects with the simplifying assumptions of two

dimensional, steady state flow.

To this end, this report contains a brief review of the
finite element method, a discussion of the viscoelastic consti-
tutive models used in the finite element equations, the details
of the numerical schemes used in solving the equations, the
computer implementation of the numerical schemes, a discussion
of calculations conducted for four flow geometries to assess

the numerical model, and an evaluation of the application of

the numerical technique to the gyroscope fabrication.




II. THE FINITE ELEMENT METHOD IN FLUID DYNAMICS

This section is not intended to be exhaustive in nature,
but rather to review some of the more important features of
the finite element method employed in this work. References

may be consulted for a more thorough treatment of the methods.

We begin by repeating that the finite element method is
an approximate method of solving the differential equations of
boundary and initial value problems (1,2). Field variables are
solved by dividing the bounded region into subsets (finite
elements) which themselves are governed by the differential
equations. By approximating the distribution of the variables
within each finite element by a trial function, the variables
at any point in the element can be determined by a linear com-
bination of the variable at specified points on the element
edges. These points are called the nodes of the element; the
variables at the nodes being determined by solving linear alge-~
braic equations formed by assembling all of the elements into
a matrix equation of order pqm, where p is the number of elements,
q is the number of nodes per element, and m is the number of
variables per node. The coefficients of the variables in the
simultaneous equations are the integrals of the governing dif-
ferential equation taken over the region of the element which is

bounded by that node.

Mathematically, we write the discretization as:

n

/rdn =z / Fay; = O (1I.1)
i=1

Q




with prescribed boundary conditions. In equation II.1l, F is
the governing differential equation, ? is the entire region
and Yy is the region of the finite element. Where physical
relations apply (such as the virtual work principle in solid
mechanics), the equations can be formed in that basis. This

is the approach used in references 1 and 9.

When the differential equation is self-adjoint (can be
written in the form (py')' + qy + £ = 0) with appropriate
boundary conditions the equations can be formed by an abbreviated
variational principle by merely multiplying the differential
equation by the variation of the independent variables, i.e.

/[(PY')' + gy + f]Gyd‘Yi =48I =0 (II.2)

Yi
where I is the integral of the variational problem formed from
the governing differential equation. Of course, this is merely
stating that the euler equation of the variational principle
is identical to the governing differential equation (see [13]).
When the equations are not self adjoint, or the boundary condi-
tions are unsuitable, an extremum principle can still be found,
unless odd number derivatives are present. In that case, which
is the situation with the complete Navier-Stokes equation with
convection, a true extremum principle does not exist [14].
Formation of the finite element equations by a variatiovnal
principle is the Ritz method. This method is most useful for
the "creeping" flow solution of viscous £fluids where the govern-
ing differential equation is known to be the euler equation of

the proper extremum principle [15].
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In the case of the complete Navier-Stokes equation, the
method of weighted residuals is used wherein the error which
remains after substituting appropriate trial functions into
the governing equation is orthogonally projected to a set of
weighting functions [2]. By setting the inner product of the
error and the weighting function equal to zero, the approximate
differential equation is then satisfied. Zienkiewicz [1] de-
scribes the two most popular methods of selecting the weighting
functions as the Galerkin and Collocation methods. Due to its
generality, the Galerkin method is the most popular for formu-

lating the finite element equations for fluid flow problems.

Selecting this method then the element variables are approximated

by n
a=1 N.C. (11.3)

where a is the field variable in the element, Cj are the values
of the variable at the node points and Nj are the set of trial
(basis) functions which satisfy the element boundary condition.
When equation II.3 is substituted into the functional F of equation

II.1, we obtain in general:

N,
- n n

z F(a)dyi =z edyi # 0 (I1.4)
; i=1 Y i=1"y

i




where € is the residual error of the differential equation.
Now using the Galerkin method of forming the inner product

of the error and the trial functions we obtain:

n m
z f N, F(Z N,C.)dy, = O (k=1,m) (1I.5)
1=1/ kK jap 373774

i

In this manner, we form m times n equations for the determi-

nation of the value of variable a at the points Cj.

In selecting the field variables to be approximated
Frecaut [16] provides an excellent review of the advantages and
disadvantages of the different formulations. The governing '

equations in an eulerian reference frame are continuity

V-u =0 (x1.6)

and momentum

plu,t + (u-Yly= b, - Vp + V.0 (I1.7)

where in rectilinear flow: -
u
u is the velocity vector v

v

_ bx'

b° is the body force vector by

sz




1+ 0122 + 0y

Oyl + 0373 + 0y

(o]

is the deviatoric stress vector

1a
= = T=

0315 + 0322 + O3

p is the constant density

p is the hydrostatic pressure

. . 9. 34 3
V is the gradient operator =i + 5;2 +ag k

and the comma denotes differentiation with respect to time.

If the flow is purely viscous, the deviatoric stresses can be
written as explicit functions of the velocity gradients leaving
only velocity and pressure as independent variables. If both
are approximated by the Galerkin method, the number of unknowns
is relatively high (i.e. components of velocity at each node
plus the pressure). In addition, some of the diagonal terms

of the coefficient matrix become zero which limits the pivoting

techniques generally used for solving the equations.

Two methods have been devised for eliminating the pressure.
For two dimensional flow, the stream function u = ¢,y and v = -¢,x
is used to satisfy continuity and results in the disappearance
of the pressure term when inserted into the momentum egquation.
However, the application to mixed boundary value problems is
difficult, as shown by Tanner [17]. For incompressible problems,
the penalty function formulation has been developed. This method,
reviewed in detail in [7], replaces the incompressible continuity

equation by the approximation




where & is a large positive number whose effect is to "penalize”
the error of not satisfying continuity. In reference [7], it is
shown that this method converges to the exact solution for "creep-
ing" flow and that the selection of o is determined from the
relation:

a = cu (I1.9)

Where ¢ is a constant equal to 107

and y is the dynamic viscosity-.
Furthermore, to avoid the trivial solution of u + 0 as a + =

(see equation II.10) the coefficients determined from evaluation
of the integral must be singular. This is accomplished by employ-
ing reduced integration (quadrature rule of lower order than

the exact for a given element) for the pressure term. The other
terms can then be integrated at the optimum order (selective
reduced integration) or at the lower order (uniform reduced in-~
tegration). While it is more accurate to employ selective
reduced integration (SRI), it is usually more convenient to use
uniform reduced integration (URI) in the computer programs.

Since it‘pas been shown that 8 node quadrilateral elements

exhibit inferior behavior to 9 node elements even for SRI, it

is strongly recommended that when URI is used the 9 node

"Lagrange" isoparametric element be employed [7].

Bercovier [18] has recently conéluded that the reduced
integration approach is only valid for straight-sided elements
(biquadratic) if the governing equation is linear ("creeping"
flow) and valid only for rectangular elements (vice bilinear
quadrilaterals) when the equation is non-linear (with convection).

Since most of our work concerns linear systems, this is not

viewed as a limitation.




For ease of implementation, economy, and accuracy, therefore,
we selected the penalty method with URI, 9 node Lagrange isopara-
metric elements. For comparison, some eight node "serendipity"”
element cases were run and will be discussed in Section VI.

Applying the Galerkin formulation of the finite element
equations we obtain the following for two dimensional, recti-
linear, incompressible, viscous flow:

) i + M %E ; +£=0 (I1.10)

(K + K +

1]

il

Where

is a column vector of the two dimensional velocities

e >

at the node points,

is the matrix of trial (shape) functions,

| - (-4

- T
= Jy B DBAY

= /; o N% (v-(x WD Ty ay
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]
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In the matrix definitions above, we used the further identi-

ties:

1o
]
=
oowNn
onvo
Hoo
-

1
B=LNand m= |1] , where
0

L is the differential operator matrix for two dimensional

flow TQ_ ]
oxX (e}
9
L = (o]
= '5?
a3
3y x |.

Also the second term in the expression for f is the surface
traction on the line element I which results from integrating
the viscous stress term by parts. (Throughout this report a
single underline denotes a vector quantity, and a double under-

line denotes a matrix quantity.)

When the inertial effects are comparable to the viscous
ones, i.e., Reynolds No. greater than one, equations II.1l0 are
non 1inear and must be solved by some iterative scheme. A
discussion of these techniques will be postponed until the non-

linear viscoelastic effects are added in Section IV.

Of course equation II1.10 is the well known "weak" form
of.the Navier-Stokes governing differential equation which has

been derived elsewhere by the virtual work statement [1].

12
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III. VISCOELASTIC CONSTITUTIVE MODELS

The selection of a viscoelastic constitutive model (the
rheological equation of state) for use in the finite element
equations is generally a compromise between the accuracy of the
model and ease of implementation. Because all of the models are
nonlinear consideration must be given to the relative effects
on the numerical convergence of the solutions. In this study,
two general ground rules were used in selecting the appropriate
model. First, for the material under consideration (fiber-filled
polyphenylene sulfide), adequate rheological or viscometric data
do not exist to justify the use of multiple constant models, and
second only a first order effect on the flow field was being
sought. Once success is achieved in modeling viscoelasticity,
rheological data can be obtained and adjustments to the consti-

1 tutive model investigated.

1 As before, only essential elements for understanding the

behavior of the selected viscoelastic model are presented in

this report. For a thorough discussion of the continuum mechanics
N of viscoelastic materials the references can be consulted (19,

20, 21, 22, 23).

For a fluid element, the resistance to deformation when a

Flatias 2

force is applied can be thought of as a combination of viscous

4 and elastic stresses. Modeling these as a dashpot and spring }
respectively as shown in Figure 3, we obtain the well-known

Maxwell Element for fluids. Using the nomenclature of Figure 3,

! 13
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where u is the dynamic viscosity, G is the shear modulus of
elasticity, € is the infinitesimal strain and ¢ is the applied

shear stress we obtain the stress-strain rate relation:

=9 ,09
€ g + m (I1I.1)

Generalizing to a three-dimensional form, we have:

g+ A3 (@= 2ud (III.2)

where g is the Cauchy deviatoric stress tensor

u is the dynamic viscosity

A = u/G is a time constant known as the relaxation time
and 4 is the rate of deformation tensor whose components are

defined as:

1 aui ou,

Equation III.2 is suitable when the rate of deformation

in the flow is infinitesimually small. But for general motion,
in which the rate of deformation is not necessarily small, the
time derivative of the Cauchy stress tensor violates two funda-
mental requirements of any equation of state. These requirements
are that the equation describes material properties independent
of the frame of reference, and that the behavior of any material
element must depend only on its previous deformative history and
not in any way on the state of neijhboring elements, or on rigid
body translation/rotation. These discrepancies are corrected by
substituting for the time derivative of the Cauchy stress either
an Oldroyd derivative [8] (known as a convected or a codeforma-

tional derivative) or a Jaumann derivative [24] (known as a

14
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co~rotational derivative). These modifications will be
discussed shortly. Once the above requirements are satisfied

it only remains to tailor the equation so as to fit experimental
observations. This is done by introducing added parameters
which are multiplied by functions of the invariants of the rate

of strain tensor.

Han [23] presents a survey of the major refinements developed
for the two invariant stress derivatives along with the material
properties they predict. A two constant (A,u) model using an
Oldroyd derivative is known as a White-Metzner model. When the

Jaumann derivative is used, the equation is called a DeWitt model.

" As multiple parameters are added, the general models are known

merely as n-order Oldroyd models. Two other models derived by
means somewhat different from the generalized Maxwell element

are the Spriggs model which builds many Maxwell elements at the
molecular structure level and the Rivlin Erickson fluid which
merely states that the fluid stress is a function of the invariants
of the gradients of displacement, velocity, acceleration, second

acceleration, and so on.

Returning to the invariant stress derivatives, we write them
explicitly for further discussion. For the Oldroyd derivative
in contravariant form (see [22] for a discussion of covariant

and contravariant tensors) we obtain:

S o, . 90, . 30 ou, ou.
ij _ ij if _ i _
ST Tt % %, - %k %, ~ Cik Tlxk (III.4)

Where the range and summation indicial convention is used.
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Similarly the Jaumann derivative is:

D0, . 90, + 00,
STt = Tty gt + Yik ik + Y3k %ik (1I1.5)
k
1 aui Ju,
where wij = > \5% " 5;; are the components of the vorticity
i

tensor. Again, see Han [23] for an excellent discussion of the
: physical significance of the terms on the right-hand side of

equations III.4 and III.S.

- We will also have occasion to discuss further the Rivlin-
Ericksen fluid so we list the general equation for an incom-

pressible fluid:
_ 2 2
g =0y Bgqy + % Biyy ¥O3 Regy +oy Bigy +0g (A A AR

2 2 2 2
tag (A(y)A (o) * A o)A g)) 0y (Alg)A gy + AR ))

2 2 2 2 2
+ag (A(l)A(Z) + A(Z) + A(Z)A(l)) (II1.6)

where the ai are functions of the invariants of A(l) and A(Z)

and
(1)
Aij = 2dij
(1) (1)
(2)  a43 3Aij (1) 9% (1) %
L ot + uk axk + i + Ay

j axi ik 5xj

In passing, it is noted that the preceding discussion of
models has focused on the rate type. If equation III.2 is inte-
grated with respect to time rheological equations of state of
the integral type are obtained. While this type proves useful
for some rheological investigation, it complicates finite element
calculations by requiring a complete time history of the strain

path of all elements.

16




Finally, before we can discuss the relative merits of the
models, we must make some definitions. Steady simple shear
flow, also known as viscometric flow, is defined by the velocity

field

us=yy, v=w=0 (III.7)
where ¥ is a constant shear strain rate and
u is the velocity normal to the y axis of the cartesian

coordinate system.

Substituting equation III.7 into III.3 we find the rate of

deformation tensor to be:

s
L]
<
~
[V
o
(o]

(III.8)

For viscometric flow, viscoelastic fluids are observed to
exhibit three independent material properties, the standard
viscosity, and a first and second normal stress function written
consecutively as:

015 = HONY,011 = Oy = ¥1(NY2, 0y = 033 = V(MY

12 711 22 1 22 33 2

(I1II1.9)

Implicit in equations III.9 is the further observation that
when a fluid behaves viscoelastically, the material parameters
are not constant, but vary with the rate of strain. This non-

newtonian behavior is generally observed to follow a power law

relation, written for the viscosity as:

17
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uly) = -1, (1-n} (II1I1.10)
1 + (K/uo) (v/ 2)

where u,, K, and n are parameters selected emperically. When

the exponent n is less than zero, the viscosity varies inversely
to the shear strain rate and the fluid is termed shear-thinning.
When n is greater than zero the fluid is shear thickening. Most

real fluids are shear thinning. wl and wz on the other hand are '

observed to increase exponentially with shear strain rate. i

Before we continue, recall that equation III.1l0 was written
for simple shear flow. This equation is merely the specializa-

tion of the more commonly written general flow form:

Ho

al = o1 I=n)7/2 (III.11)
1 + (R/ue) (% II,)

H(II

where IId is the second invariant of the rate of strain tensor

IId = dijdij'

(I11.12)
which in two dimensional rectilinear flow can be written explic-
itly as :

I, = 4[(3—:)2 + (%{)2] + 2[‘;—: + g%]z (III.13)

We are now prepared to make a selection of the constitutive

equation to implement in the finite element equations. The

choices have been narrowed to (i) White-Metzner (ii) DeWitt and
(iii) Rivlin-Ericksen as generally representative of the avail-
able models (Pipkin and Tanner [25] present a thorough review

of all the models for viscosmetric flow). Middleman [26] has

18




presented an excellent discussion of the correlation of the
properties predicted by the White-Metzner and DeWitt models

to experimental observations. In simple shear flow, the DeWitt
model is somewhat superior because the second normal stress func-
tion is finite whereas the White-Metzner model predicts that it
vanishes. However, in general flow fields the DeWitt model
varies appreciably from reality while the White-Metzner model
maintains consistency. Since v, is generally small, the fact
that the White-Metzner model predicts a zero value is not con-
sidered a major drawback by Middleman and we agree. Han [23]
suggests that since the Oldroyd derivative takes a different
form if written in terms of covariant or contravaraint basis
vectors that it is inferior to the Jaumann derivative. Since
the work herein is conducted for a rectilinear coordinate
system, it is felt that this is less of a penalty than the

cited deviation of the Jaumann derivative model for general flow
fields. Therefore, the author concurs with Middleman's recom-
mendation that the White-Metzner model is preferred to the

DeWitt model.

Considering the Rivlin-Ericksen fluid, Tanner [17] notes

that for a simple shear flow equation I1I.6 reduces to:

= (1) (1), (1)
T35 = UA{3TT 4 (Vg + WAL T Ay

Clearly equation III.6 is overly complicated for our initial

- (2)
Wy Aig (III.11)
work. But sin.a the simplification to III.ll presumes simple

shear flow, it is disqualified as a candidate for this effort.

It is interesting to note, however, that of the three models

- B e e

ot



considered, the Rivlin Ericksen fluid alone permits the de-
viatoric stress to be written as an explicit function of the
velocities and nth order derivatives of velocities. The ad-
vantages of this fact will become obvious in the next section
when we discuss the formation and solution of the complete

finite element eacuation.

Let us recapitulate before concludina this section. A
White-Metzner modified Maxwell element was selected for the
rheological eauation of state because of its ability to approxi-
mate real viscoelastic fluid behavior while requiring onlv two
model parameters. In addition, the two parameters u and A are
taken to be functions of the second invariant of the rate of
strain tensor as defined in equation III.1ll.

For plane, steady flow where w = %; = %E

equations of III.2 reduce to four which are written explicitly

= o, the nine

below with the use of equation III.4.
a0 :To) :

XX XX u _ sul) _ au
Txx * A( x YVl - 20, % T Oyx 3;) = Wgx  (IIL.122)

v Ju v
%y 3x - “xy '§>- (ay + 55)
(III.le)

Ju

v
T %x 3x - %yx 3?) =

(gﬂ r)(xn 12¢)

v ) _ v
Tyx H) 2 gy
(II1.124)




These equations are identical to those used by Perera and Strauss
[27] in their finite difference formulation of similar problems
when account is made of the reduction of the four-constant model

they used vice the two parameter model used herein.

The reader is reminded that the stresses in equations III.1l2
are the deviatoric ones and differ from the complete stresses by
the hydrostatic pressure. Since the momentum equation always

expresses these two stresses separately, they are not combined

here either.
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IV. VISCOELASTIC FINITE ELEMENT EQUATIONS

The governing differential equations for an incompressible
viscoelastic fluid are as presented in equations 1I1.6 and II.7.

Continuity and momentum are repeated:
V'u = o0 (IV.la) {
P [g,t + (u- Viu]l =b, - Vp + V.g (IV.1b)

The boundary conditions of course will be for the independent
variables and gradients of these variables. However, for many
flow problems, it is more convenient to specify the tractions :
(stresses) on some boundaries and the independent variables on
others. This is the mixed boundary condition formulation and
is of course mandatory for finite element equations which are
reduced to a set of inhomogeneous linear algebraic equations. ‘
While specification of the variables (u, ¥, p, ¢ depending on 1
the type of equations used) at the boundaries is straight j
forward, the specification of boundary tractions must be con- ?
sistent with the type of problem. For example, Chang [15]

discusses the difference in specifying the surface traction,
for a number of flow cases, between a non-newtonian viscous
fluid and a generally viscoelastic one. Understanding these
differences is particularly important when a specific type of
flow is prescribed (e.g., fully developed entry flow) for an
assessment of the accuracy of the finite element model. We
defer further comment on the boundary conditions until Section VI 1

when specific flow problems are considered. }




Briefly reviewing the past work on finite element modeling
of viscoelastic flow, it is noted that no investigations, known
to the author, have been conducted using the "penalty" method
for incompressible fluid flow. Tanner [17] and Caswell and
Tanner [12] have used the formulation with velocities and pressure
as the independent variables, with a Rivlin-Ericksen fluid for
viscometric flow. Results have been excellent for power law
fluids, but only Poiseuille flow has been considered for the
viscoelastic case. Kawahara and Takeuchi [28] applied a mixed
method where the total deviatoric stress (viscous and elastic)
was independently interpolated along with the velocities and
pressure. The White-Metzner constitutive equation was then
solved simultaneously with the Navier-Stokes equation for in-
compressible fluids. Using six-node triangular elements in
plane flow, this gives rise to eighteen additional unknowns
per element and is felt to have limitations for general problems
because of the computer capacity required for large, complicated
geometric problems. However, they did achieve good results for
expanding and bending flow through channels for relaxation times

up to 0.1 seconds.

In the work most similar to the current effort, Chang et. al.
[15] solved the equations using the White-Metzner model with
velocities and pressure the field variables for the finite ele-
ment equations. In two-dimensional, steady state, convective,
isothermal flow, the slip stick problem was solved for material

cases of Weissenberg numbers up to 0.2.
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The Weissenberg number is a dimensionless ratio of re-
coverable or elastic shear stress to total shear stress in
steady flow. It is written

AU (IV.1)
L

Wsg =
where A is the relaxatiorn time in seconds,
U is a characteristic steady velocity in cm/sec,

and L is a characteristic length in cm.

Han [23] presents rheological data for high and low density
polyethylene at various shear strain rates (U/L) at 200°c.

For high density polyethylene, the Ws varies from 35 at 0.025
cm/cm~sec down to 0.01 at 100 cm/cm-sec. On the other hand,
the Ws for low density polyethylene varies between 5 at the low
strain rate and 0.01 at the high strain rate. We note that this
is essentially the range of interest for practical problems
(0.01<ws<35). A major difficulty in the finite element method
has been obtaining numerical convergence for problems of rela-
tively high Ws as evidenced in the above review. It appears
that Chang's work has provided the highest value. Without dis-
cussion, it is noted that with this convergence problem, the
added numerical problems associated with evaluation of the
pressure term in the tangent stiffness matrix for the penalty
method may suggest some limitations in the future for applica-

tion to viscoelasticity.

Now using the Galerkin formulation with the penalty method,

equations IV.1 become for steady state

( ﬁf o7 Ty + (@" B)Ton” p.)dv] a- fﬂT&TdeO (Iv.2)
v \'4
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Where all terms have been defined in equation II.10, the
body forces are assumed to be zero, and two-dimensional recti-

linear flow is treated so that the plane stress vector g is:

g = °yy (IV.3)

We now split the deviatoric stess into a viscous and elastic
portion

g = g’ + ge (IV.4)

substitute into equation IV.2, and apply Green's divergence

theorem to obtain

[ /@Tn B+ No(viwH s + (m'B) Tam ) av ] u + /gT;Tgedv-/HT_t.dFo
v

A
M (IV.5)

where the viscous stress has been written explicity as
g=DLNu=DBu (IV.6)

and the last term is the traction on the boundary. From equation

I1I.2 we can write

(gy + 0%+ 2 — = ZUE (IV.7)

or since gy =

where € is the 2D rate of deformation vector.
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From equations III.1l2, we see that for steady state equation
IV.8 is of the following functional form

e v (4 r
= gu, % d¥, 0®, ", v, x, ¥ (1IV.9)

— —

Where the prime denotes differentiation with respect to x and y.

But since gy is a unique function of u’ we can further state

e ’
¢® = n(u, v, u, x vy 0% o%). (IV.10)
Equation IV.10 now makes equation IV.5 not only non-linear ;
(even for creeping flow), but inexpressible in an explicit form. 1

The equation must, therefore, be solved simultaneously with

equation IV.5. This is the same point reached by Chang [15]
and Perera [27]. Let us examine the method of solution proposed
in [15]. Although convection was included in that analysis, it

is easier to consider creeping flow (without loss of generality).
The creeping, viscoelastic flow can be written as:

!
u, u, u, s, ge )= £ (IV.11)

]
e >

+ K

where the terms K® are the functional form of the internal elastic

forces. Newton-Raphson iteration can not be employed to solve

IV.1ll because of the implicit dependent variable g?. Instead

the common method is to use successive substitution where an i
initial value of g% is guessed and substituted into equation
IV.10. Assuming u has first been solved for the linear problem,

K® can now be calculated, substituted into equation IV.1ll and

a new value of u found. This new value of u is than used with

the latest value of ¢ to calculate an updated value of g? and

the process is repeated until some convergence criterion is
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satisfied., 1In terms of a solution for u at iteration s+l, we

have:

~ 5 .
K Es+l + Ee = £
S ~ A8 ~118 S"]. ’s-l
e ’
and ¢° = h(gs, u ,u ,x, ¥ 0° ,0° . (Iv.12)

The actual calculation on the computer was performed at the iteration

s N
s+l by subtracting 5e from £ and solving K g§+l. Therefore,

the computer equation is:

~ s A~
EAu=¢£-kK -gu®

~_ s+l _ s . . . co s
where Au = u - u . If the convection non-linearity is in-

cluded the Picard substitution can be nested within a Newton-

Raphson iteration.

If we momentarily disregard the issue of convergence, the
only problem which remains is the calculation of the elastic
stress gradient at the s-1 iteration. Chang [15] is completely
silent on this issue and it is felt that it was ignored. Later
on, we will discuss possible situations where this might be valid.
To aid in the discussion, let us write equation III.12 in vector
form by recognizing °xy = °yx‘ It can be verified that the equa-
tion becomes:

e

o =2[Ag - (u- Vo] (IV.13)
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Where A o 255 =
v su

and 90 14
(u*» V)og=u wtV Iy

For one-dimensional flow equation IV.13 becomes

e e Bo:x
Opx = 30gy = U —33— + b (IV.14)

where a and b are the appropriate functions of u and %%. It is

convenient to use this equation to discuss the methods of solution

for the first order non-linear differential equation.

Equation IV.14 is the identical form of the Picard method
of first order eguations namely [29]: %§ = F(x,y) where o:x cor-
responds to y and a, u, and b are functions only of x. The

equation is integrated yielding
: X

y =y, +f F(x,y)dx
Xo

where y, igs the initial value at xg.

Equation IV.14 would become:

e _ _e 1 ~1148
o%x = Toxg j L [(a )02, + b] dax (IV.15)
(o]
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Assuming the integral could be evaluated numerically

e

Oex could be solved by the same successive substitution scheme

used for the complete finite element equations. An initial

guess is made for a:x in the integrand and the right-hand side

e

is solved for an updated value of O x®

That value is then
substituted into the integrand and the procedure repeated until
convergence is achieved. Let us now write IV.13 in this form.

(aV)g = 5 (6% - 2 0), (IV.16)

and upon integration by taking the dot product of both sides
with dA = dxi + dyj

(u + v)g = 9 -|f i—(ge - A g)..dA (IV.17)

A

While in theory, IV.17 could be solved, it is felt that in a finite

element formulation, it would be impractical to use such a system

that requires an initial value to be calculated at a corner of

each element (go) and separate integration of the spatial derivatives,
i.e.,

A X y A
f %( ge - A E)‘ da f/ %\; ( ge_é g)dx ""/‘ %(ge-é g)dy#./}(ge-é 2) dxdy
Bo X5 ' A

Due to the difficulties encountered, another method was
sought for the solution of IV.13. If the derivative is approxi-
mated by a Taylor series, then a standard finite difference
equation is achieved and usual relaxatica methods can be employed

for the solution. Referring to Figure 4 and using central dif-

ferences we have for the first component of g?




| ol

i, e = ,i,3) 5 0ut3f, 4,5 b3 i,5 e aut)
9 ox A t 5% 2 % + Ox + 2 3y
i, ifsv +3 3ui’j iljoe )
CIL
Coa s oa a2 143 . 21,5 o . . 308
- ul,Jul,J 3"u _ vird ul,] 3%u™’ - uird XX _ vl’j XX l
3%2 9xdy X 1i,5 %Y |4,
(Iv.18)
Where
a| (ci+1,j_°i-1,j)(Xf,j+1_yi,j-1 l:(ci,j+1_°i,j-ll(yi+1,j_yi-1,jl- |
ax o (x1+1,3_x1-1,3) (y1,3+1_yi,j-1 )_(yi+1,j_yf—1,j)(xi,m_xi,j-l) |
1,] ;
and '
3 =(ci'j+1-oi'j'l)j;i+1:j_xi-l.j)-(°i+1,j_oi-l,j)(xi,j+1_xi,j-1) ‘
oy ( i+1,3__3i-1,3\ (i,3+1__1,3-1\_ [ i+1,)__1i-1,3\( Li,3+1__1,3-1\
i,j \* X )(y y ) (Y y )(x X! )

(IV.19)

Equations IV.19 are derived in Appendix I.

A few words about equations IV.18 and IV.1l9 are in order.
While central differences are expected to give higher order
accuracy, Roache [30] notes that the numerical stability is much
poorer than backward (upwind) differencing and for a non-uniform
mesh (special mesh system), it is very likely that the approxi-
mation deteriorates from third order accuracy in the mesh point E
In IV.18, the viscous stress

spacing to first order accuracy.

is expressed in terms of the equivalent rate of strain through
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equation IV.6. Also the expressions for the gradient of viscous
stresses appear to treat the dynamic viscosity as independent of
x and y. This is not the case. Rather it can be seen upon
differentiation of the products 5% (u(x,y) %%) for example, that
for a power law fluid the term %% (%%) is of higher order and,
therefore, is neglected. Finally all terms in IV.19 are elastic
xx stresses. The subscripts and superscripts have been dropped
so as to not severely encumber the equations. Equation IV.18

is a first order derivative counterpart to the steady, convection-
dissipation finite difference equation which gives rise to

classic under and over-relaxation methods. However, we do not

have an equivalent Courant number so we merely employ Richardson/

Jacobi iteration. Calling the left-hand side of IV.1l8 iteration
k+1 and the elastic stress terms on the right-hand side iteration
k (which is known) we sweep through the entire solution domain

in the relaxation process. As in most cases, ge at the first
iteration k=1 is assumed to be zero. The issues which we must
discuss in solving IV.18 by this technique are the selection of
mesh points i,j, evaluation of the second derivative of the
velocity, convefgence of the iteration, and treatment of béundary
elements where boundary conditions must be invoked. We will take

these in the listed order.

Since all the terms involving the field variable u in
equation IV.18 are routinely calculated, in the evaluation of
the integrals of the finite element equations, at the Gauss
points in the Gauss quadrature it is natural to select these

points as the mesh for the elastic stresses. Then for the




differences required in evaluating the elastic stress gradients,
the elastic stress at Gauss points of adjacent elements can be
used. This procedure is shown in Figure 4 for one of the Gauss
points. Of course, two concerns arise. Procedurally, most

finite element routines calculate element gquantities such as
velocity gradients in subroutines which dump the values upon
exiting the subroutine, returning only values of global tangent
stiffness components. Therefore, special schemes must be devised
to identify, maintain, and pass current values of elastic stresses,
external to the subject element, to the element for an update of
the elastic stress at its Gauss points. Second, the discontinuity
of stresses between elements which gives rise to the practice of
"smoothing" must be recognized. At the early stages of itera-
tion, this might aggravate the numerical stability. For this
study, the first issue was resolved by programming techniques
(principly by creating arrays which were stored in common
memories between subroutines). The second issue was not ad-

dressed.

For the problem of the evaluation of the second derivative
(recall from Section II we are using a "weak" form of the equa-
tions so that only Co continuity is required of u), we now
require C, continuity of the trial functions and explicitly
evaluate the term just as is done for the first derivative.

To do this, a subroutine was written (ESHAP) which returns

the values 23-Ni a‘?N:i. 82N at the Gauss points of an element
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2
The values 2—%7 etc. are then calculated in the exact same
)4
manner as done for the first derivatives. For this subroutine

of course, it was also necessary to calculate the determinant
of the Jacobian of the second derivatives. The mathematics

involved in subroutine ESHAP are given in Appendix 2.

Considering for the time being only convergence of the
Richardson/Jacobi iteration scheme, (Newton-Raphson and Picard
iteration are briefly treated later). We can apply the Lax/
Richtmyer amplification matrix error method [31] discussed in
[2]). Briefly, we write equation IV.13 in terms of the final
value and errors at each iteration or

k
(e® + oF1 = [é(g" +0% +e)-(uM (g’ + g% + sil

(IV.20)
Subtracting IV.13 from IV.20 we get
= a@-wmek (IV.21)
or
€k+l
= AA - u-V)<1l (Iv.22)
€

The test for convergence then is fcr the eigen values of the
matrix A(A - u-V) to be <l. Note that the dimensions of this
tridiagonal matrix are 3np where n is the number of Gauss points
per element and p is the number of elements. The complete
matrix is formed by assembling the individual 3x3 matrices

at each Gauss point. We did not conduct any further analysis
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of convergence, but rather have established bounds emperically.
Little emphasis was placed on this issue because it was found
during the course of the study that the outer iteration of

equation IV.12 generally controlled convergence.

Finally at the boundary elements where an adjacent
element may not exist, it is n:sgssaryagg devise an auxiliary
scheme for the calculation of 55— and 5?— at the Gauss points.
If g? is known at the element edges (in particular the node
points) the nodes can be used as the forward or backward mesh
points and the relaxation procedure continued. However, there
are some major drawbacks to this. First regardless of the
boundary condition (velocity or traction specified) additional
calculations for velocity gradients and viscous: stress gradients
at the nodes must be accompiished. Aaditionally, the elastic
stress gradient can not employ central differences at the node,
but must be based on a backward difference. Third, the forma-
tion of the two independent egquations to simultaneously solve

3g® 30®

T and §§~ is quite cumbersome. A different technique was

therefore developed.

A new common array was established (BOSIG) to identify
and pass the elastic stresses at the four corner nodes. At
the first iteration, these stresses (four nodes by three stress
components by the number of elements) are initialized at zero.
The velocity vector i is then calculated in the Picard
iteration. Then during the calculation of element values at

the Gauss points (velocity, velocity gradient, stress gradients,

etc.), the boundary elastic stress at the corner node which




matches the Gauss point is calculated according to:

90 30

.P. .P. —e .P. .P. - .P.

22 - gg + - (xN P. _ xG P ) + yg N.P G.P.)
G.P. |G.P.

(Iv.23)

Where N.P. is the node point and G.P. is the Gauss point.
This value of elastic stress is then used in the central differ-
ence calculation at the Gauss point if the element is on a
boundary. Figure 5 shows the details for the calculation at the
Gauss points for both boundary and interior elements as described

above.

To keep our thoughts clear, it is instructive to pause
and review. The creeping flow finite element equation to be

solved is:

[ f @' p B+ @ n’p) dv] a + f v'L oCav = [ NTtaa
v v A

~

The coefficients of u are linear and o€ is solved by successive
substitution for each value of g.' Notice two things. First,

NTLT = QT so that we could make this substitution. This study,

however, included the terms Vg? in the equation and so these
values were used directly with QT in calculatin§ the integral.
Second, a nested iteration on g? is really not necessary.
Rather we could calculate a new i.for each update of o® and
combine the two iterations. Figure 6 shows the two different
schemes. While not mathematically demonstrated, it was felt

that such a scheme would further degrade convergence since
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u would undergo much larger variations. This issue should be
considered in much more depth in continuing studies. This
section will be concluded with a discussion of three topics,

two very important, one included only for completeness. These
topics are: convergence of the solutions, simplication due to
ignoring the stress gradient terms of the constitutive equation,
and equations used for independently interpolating the total
deviatoric stresses in a mixed finite element method. We

will discuss these topics in order.

Engelman et. al. [32] consider the problem of convergence
of the general Navier-Stokes equation noting that Picard itera-
tion converges more slowly than Newton-~Raphson, but normally
over a larger radius. They then treat the issue of accelerating
convergence by employing guasi-Newéon methods emphasizing
Broyden-Fletcher-Goldfarb-Shanno updating. Such acceleration
methods would enlarge the number.of elements which can be
economically treated in the solution scheme. Currently, however,
this is not the problem with viscoelastic flow. As we will dis-
cuss in Section VI, the radius of convergence is the major issue,
not the rate of convergence. Our study succeeded in obtaining

solutions for Ws<0.0l1 which could possibly be considered a trivial

case. However, for the general flow geometries, we treated (in
particular entry flow), the studies cited in the beginning of this
section failed to achieve solutions even at that limit. Con-~
vergence therefore is the critical barrier to obtaining more

general viscoelastic solutions. We did not pursue such extensions
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in this study, but it is worthwhile to suggest a possible

approach. Chung's [2] review of standard solution techniques
is directly to this point. The radius of convergence can be
widened by continuation methods. In particular, Chung suggests
a multiple solution technique which combines incremental load-
ing with Newton-Raphson corrections. Future effort in this
field should investigate such an approach. We employed Picard
iteration exclusively. Picard iteration should be tried as the
top level, along with continuation methods. It is noted that
both types of solution are amenable to the computer program

used in this study.

We turn now to the simplications when the stress gradient
terms are neglected. The terms themselves arise in the con-
vection terms of the constitutive equation, i.e., (usV)g. For
creeping flow similar terms were neglected in the Navier-Stokes
eqgiation and we know that for polymer melts, this is a good
approximation. It is then obvious that we compare approximate
magnitudes of Vu and Vg. For viscoelastic flows, we have already
established that g? is on the order of gv and the gradients -
might be expected to be of equivalent nature. Therefore, we
look at the comparison between the first derivative of u and
the second derivative. It is known that even when u is discon-
tinuous (as in the case of cross-channel flow of a screw extruder
[9], the approximation at small distances from the singularities
of Vu are quite good. This suggests that for creeping flow, a

good approximation may be achieved when (u:V)o is neglected.
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" Equation IV.1l3 then becomes:

% = 3’ + %) (IV.24)

Evaluation of Vg? is eliminated and the Picard iteration be-
comes much more straightforward. An opticnal approach is to

solve g? explicitly as:

(I - 2)c® = 2a o (IV.25)

or

¢ =g-wliag (IV.26) J

1 i=j

Where 1 is the unit matrix 6ij =[° i3 (i,3 = 1,2,3)

Equation IV.46 allows IV.5 to be written explicitly in terms

of u and the equation is a simple non-linear equation which

can be solved with the numerical techniques discussed throughout
the report. It is noted that although the explicit form makes
the equations more straightforward, it is not expected that

the radius of convergence (which is a function of i) will be
widened much. However, at the early stages of research efforts,
particularly in applying continuation methods, this equation

seems to offer promise.

Finally, the mixed method of solution is briefly discussed
for sake of completeness. Following Kawahara's approach [28],

we set up the simultaneous equations for steady state in indicial

notation:
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pujyu; y+Pi-gy4=o0 (IV.27a)
‘ﬁj + A(ukcij,k - ui,kokj - uj,koik) - ”(ui,j + uj,i) =0
(IV.27b)

Both IV.27a and IV.27b are nonFlinear; we write the finite

element equations:

(IV.28a)
. [ﬁg’rp(v-(g whHTy + @ By Tam? B)dv] u+ {/ng*Tdv] o=f
v v
%* * ~ A
[ﬁfﬁwgyg-gT2§-§%EMJ5+UEE¥49=0
v v
(IV.28b)

Where the asterisk indicates the trial function for the

stress interpolation.

The solution to IV.28 can be seen clearly if we form a typical

equation in matrix form:

B L]
~ T o g oy Ty T - ~p ] 1
Qip(v (N u)”) gj : u Fl
i
T T T ! T _*T ~1 1
*mBy)emBy | Ny By v F2 | (zv.29)
1
, 1
PN !
................. el N NN S
T * N 1 A l
N;“AV(N 0)N, E O o
{
*T 1 *T * A 1
-N. . . (o]
N;" D By E i Ny vy
T ! ° 1
I TR

(In equations IV.29, the integrals are implied.)
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In IV.29, the superscript in the column vectors indicate the
node number so that this relation is repeated for each of

the nine nodes. i and j indicate the row and column in the
assembled array (for IV.29.i=j=l). The array is partitioned
accordingly so that the upper left corner is 2 x 2, upper right
corner is 2 x 3, lower left corner is 3 x 2, lower right corner
is 3 x 3. All matrices in IV.29 have been previously defined

with the exception of Q which is:

-
(N o J)yg + 2(N ny)w o)
o= 0 280 )+ 20%0, )2
= “yy’'ody = “xy’ 9x
* N a [ ol a * A ‘a_ % A a
k_E vy oy + X Xy 9x No,x3x * & O%y 3y J

These equations when fully assembled yvield a set of linear
equations of order 5P' where p is the number of nodes. For a
nine node element then the order of equations is 45. The number
of variables for the whole domain then would be 45n-m with n
being the number of elements and m the number of shared nodes.
It can be seen that it does not take many elements to generate

a very large computer region to solve the equations. While the
above analysis was conducted and subroutine ELMT@6 written for

the problem solution, no flow cases were run in this study.

Future work may implement subroutine ELMT@6.
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V. COMPUTER IMPLEMENTATION

In this section we will discuss the major aspects of the
finite element program, the calculational procedures, and the

input/output.

The source program was a modified version of the Finite
Element Analysis Program (FEAP) written by Prof. R. L. Taylor
at the University of California, Berkeley, and published in
Chapter 24 of [1]. The modifications have been made by
Prof. David Roylance of the Massachusetts Institute of Tech-
nology to accommodate polymer melt flow [9]. These modifica-
tions are largely: (i) addition of a power law flow rule,
(ii) addition of a temperature dependent viscosity, (iii)
alteration of matrix algebra operations, and (iv) addition
of an axisymmetric capability. The rationale for using this
model is given in [9]. The current effort included reviewing
the source program to insure correctness, and modifying it
to include a viscoelastic flow option. Currently the program
is two~dimensional (rectilinear or axisymmetric) and steady

state.

The program establishes a dynamic storage vector at the

outset which is partitioned to store all input data (node co-

ordinates, element node numbers, etc.), global data (stiffnesses,

loads, etc.) and output data (velocities). Other features are
a linear interpolation mesh generation scheme, an active
equation solver and a macro command language which controls

the solution execution. The macro commands and their meaning
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are listed in Table 24.12 of [1].

) Upon construction of the architecture of the problem,
calculations required for a specific command (such as forming
the tangent stiffness matrix) are made in a library of element
T subroutines. Subroutine PFORM steps through the n elements by
forming element arrays from global data and passing the arrays
to the element routine. Subroutine ELMT@5 is a general 2D
penalty method solution of the Navier-Stokes equation written
by Frecaut [16]. This is the element subroutine modified for

the viscoelastic flow.

The basic source program flow chart is given in Figure 7.
To modify this program for viscoelastic flow, three basic
changes were made. First was to flag the problem as visco-
elastic and read material data. This was done in subroutine
DFMTRX. The card reading format after input macro command
MATE was changed to the following:

CARD 1 Format (I5, 4X, Il, 17A4)

CARD 2 Format (415, F1g.0)

CARD 3 Format (I5, 7Dlg.4)
Card one reads the material set number in columns 1-5 (in all
cases only one material set is used and therefore this is 1),

the element type in column 10 (5 for ELMT@5) and the problem

description in the remaining coiumns. Card two reads the flow
type in columns 1-5 (1 = plane flow, 3 = axisymmetric flow),
a flag (N1) for thermal coupling in columns 6-10 (@ = isothermal,

1 1 = thermally coupled), a flag (K2) for viscoelasticity in
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columns 11-15 (1 = simple viscous, 2 = power law viscous,

3

White-Metzner Viscoelastic, 4 = DeWitt Viscoelastic,

5

Rivlin Ericksen Viscoelastic), a flag (N3) for the time
domain in columns 16-20 (1 = steady state, 2 = unsteady),
and the power law coefficient (P4) in columns 21-30. P4
must be included and for simple viscous material P4 = 1.9

(which was the case treated exclusively in this study).

Card three reads the Gauss integration order (L) in
columns 1-5 (2 = 2x2), the penalty coefficient (XLAM) in
columns 6-15, the viscosity coefficient (XMU) in columns
16-25, the density (RHO) in columns 26-35, the viscoelastic
shear modulus (G) in columns 36-45, the thermal conductivity
(XK) in columns 46-55, the specific heat (C) in columns

f 56-65, and the work-to-heat conversion factor (HEAT) in

columns 66-75. The program is written so that when data is
not required for the specific problem (e.g. linear, steady,
isothermal, inelastic flow) those columns may be left blank.

In card three then only columns 1-25 need be included.

The second change was to add algorithms in ELMT@5 for
the calculation of the elastic stresses according to equations
IV.13. The last change presented the major difficulty: the

calculation of the elastic stress gradients according to

equations IV.19. As noted in the previous section, no scheme
existed for making calculations with variables from different ‘
elements. In order to solve IV.19, however, this was necessary. ;

The approach taken was to define common arrays Yyy(x,J,N), ESIGI1(I,J,N)
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ES1G2(I,J,N) ,ESIG3(I,J,N),ELAS1(I,J,N) ,ELAS2(I,J,N) ,ELAS3(I,J,N),
and BOSIG(I,J,N). YY is the global coordinate (J=l;2) of the
Gauss points (I=1,4). ESIGl, ESIG2, and ESIG3 are O x? °yy
and ny respectively at the Gauss points (I=1,4) at iteration
J=K, K+1. ELAS1l, ELAS2, and ELAS3 are the gradients (J=1,2)

of g? at the Gauss points (I=1,4). BOSIG is the elastic stress
(J=1,3) at the boundary, at the corner node (I=1,4). In all
the arrays N is the element number. 1In PFORM, N is passed as
common through ELMLIB and ELMTﬂS‘and it is therefore possible
to conduct the calculations between the two subroutines PFORM
and ELMT@5. The gradients of the three stress components at
the Gauss points are first solved for all the elements assuming
they are a boundary element on all sides. A searching scheme
is then affected which compares the nodes of all the other
elements. When two elements are found in the correct location,
the elastic stress gradients are replaced at that Gauss point.
If adjacent elements are not found, the element is on a boun-
dary and that Gauss point is left unchanged. During the
Richardson/Jacobi iteration, the elastic stress gradients then
are calculated in PFORM and these values used in ELMT@5 to
calculate the updated values of the elastic stress at the

K+l iteration. This iteration is conducted 20 times unless
convergence is achieved beforehand. The program then continues

in a normal manner.

The listings of the major subroutines written to accomplish
the modifications are included in Appendix 3. The subroutines

are in order listed ELMT@S5, ELMT@6, ESHAP, PFORM, CMATRX, and




Wep . e e

FPSIG. ELMT@P6 is the subroutine written for interpolate total
deviatoric stresses in a mixed method. ESHAP is the calcula-

tion of the second derivatives and FPSIG is a new routine

written to print viscous and elastic stresses at the Gauss
points. CMATRX is the subroutine which forms the Q matrix

in ELMT@6.
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Vi. CALCULATION RESULTS

Four flow geometries were treated as shown in Figure 8
(along with the boundary conditions): Cross Channel Flow,
Plane Couette Flow, Entry Flow, and Step Flow. Table 1 shows
the computer run matrix. The input data sets for runs 1, 3, 4,
6, 13, and 20 are included as Appendix 4. Results are dis-
cussed below for each of the four problems treated. For all
cases, the viscosity coefficient was taken to be 790 poise.
This was the value selected by Roylance [9] in previous studies.
His reasons were unrelated to the work in this study, but we
chose to use the same value for comparison purposes. With
more reasonable values (104), we would only expect t9 see

higher stresses, but no change in the velocity fields.

CROSS CHANNEL FLOW

The solution of creeping flow, circulating in the trans-
verse plane of channel, for a viscous fluid is well known (e.g.
[9]). At steady state, the circulation is uniform with a vortex
center at mid-height, towards the vertical boundary on the right
in Figure 8a. This study looked at the consistency of repro-
ducing this flow with 9 node and 8 node elements and the effects
of a finite fluid elasticity. Secondary eddies and screw power
requirement changes were considered to be demonstrable effects

of elasticity.
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Figure 9 shows the velocity vector flow field for run 1
(linear case). Results are identical to [7], different from [9].
This is due exclusively to the specified boundary condition at
the upper corners of the channel. For our boundary ~onditions,
the vortex center is at the mid-width of the channel near the

2/3 height section.

The velocities calculated for the nodes of elements 7, 9,
and 15 by the 18 element 9 node and 18 element 8 node case
are compared in Figure 10. Note that a significant difference
occurs in the direction of the resultant velocities in element 7
and the magnitude in element 15 (a 20% lower horizontal velocity
is predicted in the middle nodes of element 15 by the 8 node
model). When the results of the 72 element, 8 node case are
examined (run 3) the 9 node model is found to be uniformly
closer. The velocity field is, therefore, predicted much better

by the 9 node elements for the same number of elements.

Let us now make a practical application. The power per
unit area required of a single flight screw extruder to create
this circulation is the shear stress in the fluid times U
(the relative barral velocity). If we approximate this as the
average element shear stress axy times the average velocity

in the element, we have the following for element 15:
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9 NODE 18 ELEM 8 NODE 18 ELEM

Exy(dynes/cmz) 0.22 x 10° 0.2 x 10°
u (cm/sec) -50 -52.5

o 2 7 7
w (dyne-cm/cm”-sec) 1.08 x 10 1.05 x 10

We can conclude that the 9 node elements yield more accurate
node velocities, but when average properties are sought, such
as the power or torque required for the screw design, both
models give approximately the same results for equivalent
meshes. This, of course, is expected since the finite element
equations satisfy equilibrium over the entire region. However,
on a local scale (which we are also interested in) the above

justifies our earlier preference for the 9 node elements.

From Hughes data [7], the effects of increasing the
Reynold's number (Re) is to shift the vortex center toward the
right-hand boundary. This was investigated for one case by
choosing the density of polyphenelenesulfide (1.6 gm/cm3).
Combining this with the other characteristic numbers of the
cross-channel flow problem, we obtain Re = E%L-= 0.41.
Including the convection non-linearity for this Re we found no
discernible perturbation to the velocities or stresses, thus

confirming the validity of the "creeping flow" analysis.

For the single viscoelastic case for which the solution
converged (Ws = 0.02) the velocity field again did not Qary
appreciably. Figure 9 can, therefore, pe considered correct

for this level of elasticity. To look at the stress effects,
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we make the same calculation for the specific power as above

yielding:
NEWTONIAN VISCOELASTIC (Ws=0.02)
- 2 6 6
oxy (dynes/cm™) 0.22 x 10 0.22 x 10 1
u (cm/sec) -50 -50
. 2 7 7
w (dyne-cm/cm“-sec) 1.08 x 10 1.08 x 10

Within roundoff error, the two flows are identical (maximum

oxy deviation was 1%). A second comparison is available in
Figure 11 where the pressure is plotted at the mid-height as
a function of the cross-channel (transverse) station. Again
the viscoelastic flow is coincident with the Newtonian case.
Within the range of calculations achieved in this study

therefore Ws<0.02), there are no effects of viscoelasticity

manifested. We do observe, however, that the stresses calcu-

lated (~1% variation) are consistent with the Ws suggesting

accuracy of the computer model when convergence is achieved.

PLANE COUETTE FLOW

Plane Couette flow was selected for the fundamental
evaluation of the computer model. This is through the relation

presented by Middleman [26]:

Sp = Ay (VI.1)
where SR is the recoverable (elastic) shear stress:
o -0

= XX Yy
SR oxy ’ (V1.2)
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A is the relaxation modulus and ; is the steady, simple
shear flow strain rate. The flow is enforced by specifying a
linear variation of the horizontal velocity between two plates,
one stationary, the other moving at a constant velocity as shown

in Figure 7b.

Run 7 was the Newtonian case to validate the problem. In
this case, O ex and °yy should be identically zero and Oxy
constant throughout the field domain. This was the result of

the calculation.

For the viscoelastic case (Run 10), all the normal stresses
are elastic while from equations IV.13, with v = %; = o only

oxxe is finite. Therefore, we should observe the following:

e
SR = 75;;v AyS constant (VI.3)

For a unit height between sliding plates we have Yy = Up so
that:
e

_ v
Oux = 2AUB ny (VI.4)

The computer results are for A = 0.0002, UB = 100 cm/sec
Ws = 0.02):

e v

Oux = 3.16 KPa, ZAUchy = 3.16 KPa.

The equation is identically satisfied. This, of course, is
encouraging for future work to increase the radius of convergence

for higher Ws numbex"s.
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ENTRY FLOW

The entry flow problem for viscoelastic fluids has not
been successfully calculated by finite element methods in
the past, due to severe numerical convergence problems. As a
first step, Run 11 was accomplished for linear flow according
to the boundary conditions specified in Figure 7c. A discus-

sion of these boundary conditions is in order.

Rather than a constant horizontal velocity at the inlet
to the reservoir (upstream channel), a more accurate analysis
would specify fully developed flow. Middleman [26] presents
this for flow between parallel plates (for a Newtonian fluid

as):

2 32 2
B2 %[, (2
U= auT [1 (Ex) ] (VI.5)

where B is the channel height
and L is the charnel length

(all other variables retain their earlier definition).

For a White-Metzner fluid, the plane-Poiseville flow
would be solved by adding the elastic stresses to the momentum
equations. Perera [27] did this for a 4 constant Oldroyd fluid
and solved the resulting second-order differential equation for
u(y) by Newton-Cotes integration. With equations of the type
specified in V1.5, we can solve the pressure loss %5 due to
inlet and outlet. In addition White [33] cites the additional
pressure losses due to entrance and exit of the dies. It is
these boundary conditions that would be more realistic in

treating the entry flow problem (velocity according to VI.5

51




N v —— = orce 5 s s - - e r————————— .

at one end, & at the other). With the formulation specified
in this work, it was expected that the flow field would behave
quite differently from the classical converging type. Since
we did not have data on die pressure losses, however, the
initial calculations were made on the basis of the boundary

conditions given.

When fully developed conditions are specified, both upstream
and downstream of the entrance region the flow is known to be
stable up to relatively high Ws numbers. At Ws around one
secondary vortex patterns arise which are generally ascribed
to increasing elastic stresses generated in the shearing/elonga-
tional flow (White [33] implies that elongational flow is im-
portant and we, therefore, conclude that the Rivlin-Ericksen
fluid simplified for viscometric flow is a questionable modei).
This flow behavior is documented in Figure 12 which shows
experimental behavior noted by White [33] as a function of Ws

and calculations of Perera [27] for Ws = 0.6.

The calculated velocity field for the boundary condition
specified in Figure 8c is shown in Figure 13. Aalthough the
mesh is very coarse, it appears that the flow is unstable for
these conditions. The viscoelastic calculation (Run 12, Ws =
0.01) exhibited identical behavior. Because of this poorly
behaved flow field, the calculation was repeated using the
fully developed flow boundary conditions. The results are
shown in Figqure 14. The specific boundary conditions were
established in the following manner. The excess pressure

losses described by White [33] were ignored (this will affect
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the calculation however). At y = O (y measured from the

mid-height of the channel) equation IV.S is

BZAP

u = g2f (IV.6)

For the two channels, there would be a total pressure loss of

APT = API + APo if the flow was fully developed. Therefore

1257 + °2° (IV.7)

I By

APT = 8u

L.u L u
B

For our geometry Ly = L, = BI =1, B°= X, and u = 790 poise.

There are three unknowns in equation IV.7. However, rather

than specifying two of the three, we merely let API = APO
(which has the same effect) and specified u,. This permits

the calculation of u, and thereby calculation of APT. This

I

APT was established as the inlet traction PI and the outlet

was atmospheric P, = O. This yields the value of P, = 6.4u.

The pressure is converted to the virtual "work" equivalent

node forces by the relationship

c_1
Fx -3 H PI
4
Fﬁ =3 HP; (IV.8)

where the superscript denotes the element node (¢ - corner

node, M = mid-side node) and H is half the element height at
the nodes. (See Frecault [16] for the details of virtual "work"
equivalence calculat ons; equation IV.8 are valid for 8 node

and 9 node plane quadrilateral elements). (In the actual

boundary node forces, the corner nodes are loaded with
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; = % H PI for uniform meshes since the node is shared by

F
adjacent elements. Only the vertical velocities at the

boundaries (v=0) now must be specified. The mid-height hori-
zontal velocity will not be the value used in the calculation,

but the flow will be fully developed.

Comparing Figures 13 and 14, we see that although the
behavior is somewhat improved by the fully developed flow case,
there is still major error in the flow field and even flow
reversal. This is felt to be attributable entirely to the
coarseness of the mesh, particularly near the entry corner.

A finer mesh case was not constructed to test this hypothesis.

It is recommended that future work include this refinement.

Notice that symmetry was not employed to reduce the
number of elements. This was due to the difficulty of speci-
fying boundary conditions on the plane of symmetry. The first

conditon is v=0, but the other boundary condition is not so

straightforward. We know that %% and %% are zero at the mid-

av
oy
region. This, of course, is a statement that the one dimen-

height, but in general is not zero within the reduction
sional lubrication theory is not valid. Since the pressure

now changes across the channel height the pressure in the x
direction can no longer be specified as a linear function of x.
Therefore, the nodal loading in the x direction is unprescribed
as well as the velocity u. Of course, this could be resolved
by adding the condition of no mass flow across the plane of
symmetry. We chose not to accomplish this at the penalty of

doubling the number of elements.
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If the flow were one dimensional, the pressure would vary

linearly with the length and the velocity would be constant
in each of the two sections (plane Poiseulle flow). Figure 15

shows the deviation from this case.

It was noted in examining thé stresses in Runs 11 and 12
that the difference was much larger than expected for the low
Ws . However, a thorough evaluation was not conducted because
it was felt that the differences were an artifact of the
calculations due to the following: (i) the velocity fields
were erratic as previously mentioned due to the coarse grigd,
(ii) the boundary conditions of constant inlet velocity gave
rise to poorly behaved pressure variations even for the
Newtonian case, and (iii) the solution convergence for the
non-linear problem was still poor at 30 iterations. It is
noted in passing, however, that as the solution procedure is
improved, it is exactly these types of variations which are

being sought.

STEP FLOW

This geometry was selected as the beginning step toward
an analysis of flow past an obstruction such as would be the
case if pins were added to the cavity to form holes in the
molded part. With the boundary conditions specified in
Figure 8d, the results were very similar to those discussed
for entry flow. A discussion of the computer calculations
will therefore not be included in this report. It is noted,
however, that there is still negligible differences between

Runs 15 (linear Newtonian) and 16 (convection Newtonian).
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This begins to address the issue of "Stokes paradox" and the
necessity of including convection, even for low Re, for
obstructed flow. The paradox is that in two-dimensional
flow no analytic solution exists for the linear eqﬁation
which matches the boundary conditions at the surface of the
obstruction and at large distances away from it [34].
Batchelor [35] shows that when the distance from the obstruc-
tion (or a boundary) is on the order of L/Re (where % is a
characteristic dimension of the obstruction) the convection
stresses (inertia) may become of equal importance to the
viscous stresses. Analytically this correction is known as
O'seen's improvement. Again as the model described in this
report is refined, the adequacy of the "creeping" flow

analysis must be examined in light of this issue.
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VII. MODEL EVALUATION

It is worthwhile to complete a qualitative evaluation

of the computer model before this report is concluded.

Figure 16 presents a diagram of a complete model for a real
injection molding process. The Figure emphasizes those

elements included in this study. Since we achieved numerical

convergence for Ws < 0.0l it must be concluded that a non-

Newtonian power law fluid analysis would be as good an
approximation as the viscoelastic model used herein. If
future work does not improve this convergence region (at
least to Ws > 0.5) the numerical analysis would seem to be

as good without including elastic effects. Also finite
difference methods have succeeded in obtaining solutions up
to Ws = 0.6 [27) and it may therefore be advisable to develop

these techniques for application to the gyroscope manufacturing.

The model is steady state and includes no free surfaces
such as would occur during the mold filling period. Therefore, P
it can only be used in régions such as the extruder, nozzle, .
sprue, runner and gate. Unless unsteady, free surface terms ?
are included, this model is not applicable to the mold filling f‘
itself. But the power required to supply a nozzle with a given

rate of flow is certainly within the capability of the model.

Also the state of the bulk material as it passes through the

gate can be determined by use of this model. Any damage due

to high stresses or thermal degradation in these regions can ]

be analyzed with the model. It is noted that although there
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will be a finite elastic stress which the polymer can sustain
before flowing completely plastic (viscous plus the elastic
limit stress), there is no yield stress built into this model.
Therefore, while the model will predict continually increasing
stresses, judgement must be exercised as to the real elastic

capacity of the fluid.

The current status of the coupled heat transfer capability
of the model is the adiabatic model developed by Roylance [9].
Extension to a complete non-isothermal boundary analysis can

be implemented without too much difficulty.

We have noted that major modifications are necessary to
evaluate the mold filling itself (only pressure and filling
rate can currently be analyzed). Also within the mold, the
cooling stage of the molding process can not be analyzed
because of the absence of a solid thermomechanical viscoelastic

model.

However, if an initial state can be established for the

cooling process such a model could be developed.

The mold filling process itself can take the approach of
a constant flow rate at the gate once free surface effects are
added to the model. This is the approach used in [11]. The
free surface analysis is most clearly discussed in [4] where
the front displacement is calculated over some interval of
time assuming a constant velocity of the boundary elements
node points. The surface traction on the flow front is zero
normal to the surface and the material surface tension tangen-

tial to the surface.
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From Section V, we can discuss the approach to improv-
ing the viscoelastic case. To assess the maximum radius of
convergence of the momentum equation, it is adequate to
neglect u+-Vo and use equation IV.26. Since Newton-Raphson
iteration generally converges for the Navier-Stokes equations
well above Re = 25, it should be verified that convergence
is achieved with the current numerical approach for Ws = 25.
With this step accomplished, u-Vs can be added and the con-
tinuation method used. The effective technique should employ
incremental loading with Newton-Raphson corrections. Let
us discuss this a little further. Since we are using direct
(Picard) iteration on the elastic stress terms, let us rewrite

equation IV.1ll as:

= £ -&° (VII.1)

i
Ie >

Since Picard iteration is a single point scheme, (i.e.,
the initial value of K ﬁ + 5?- f is always used rather than
updating in the Newton-Raphson scheme, see Figure 17) we can
attempt to increment this point. Therefore, instead of solving

Vii.l directly, we solve:

Ku=6(f - k) (VII.2)
where 0<6<l. With the solution to VII.2 converging for
sufficiently small numbers of © we can update the initial se-
lection of ﬁ by incrementing 6. For example, let @ = 0.1 then

in the first increment the first value of u is :
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We then iterate with K gs+1 = of[F - g?(us)].
When convergence is achieved then we increment © to 26 = 0.2.

Then N
uO = §-1(29§ - l(e (u8+l)]

Therefore, the initial guess is improved by the correction
g?(us+l). It is noted that this technique is different from

the normal continuation methods where the non-linear equation
is always of the form: K{u)u=f. While no mathematical analy-
sis has been conducted on this proposed technique, it appears

to offer promise.

This deviation in the classical incremental load method
is only necessary when the stress gradient terms are included
in the viscoelastic constitutive model. Therefore, when the
model undergoes its first revision with u-Vog neglected we
write g? explicitly and if convergence fails the classical
incremental load methods described in [1] and [2] should be

employed.
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VIII. CONCLUSIONS

This report has dealt primarily with the additional

mathematics required to incorporate elasticity in the
deviatoric stresses developed in flowing polymer melts.

Implementation of the equations within an existing Finite

Element Computer routine was then shown. From these analy-~

ses we can make the following conclusions:

® The direct Picard Iteration Converges within a !
radius of Ws<0.01l.

® For cross channel flow and entry flow "creeping"
solutions are very accurate for typical polymer extrusion
Reynold's numbers (Re<(.4).

® For the Weissenberg numbers which yielded conver-
gence, no appreciable effccts on the flow were noted. 1

e The programming technique of passing data between
elements by common memory appeared to be effective.

e When convergence was achieved. the calculated values

~ of elastic stresses were consistent and reasonable.

® The penalty method of incompressible flow appears
to yield good results for viscoelastic fluids.

e The radius of convergence was consistent with previous
finite element calculations.

® The radius of convergence can certainly be improved

by finite difference calculations as evidenced by Perera [27].
e Without improvement, the only computer options which
should be used in evaluating polymer fluids are Newtonian and

power law viscous (isothermal and adiabatic).
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® Techniques of improving the viscoelastic model have
been proposed which offer great potential.
e For 24 element problems, the computer cost for runs

requiring 30 iterations was $100.00.
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IX. RECOMMENDATIONS

It is felt that the work performed in this study offers
potential for useful follow-on effort. 1In particular, there
are three areas of development. First, the analysis of the 3
complete flow problem is vital. While the gyroscope fabrica-
tion is new, the need for numerical evaluation in the molding
process is not. The work at Cornell [11] demonstrates this
fact. In that effort, the various regions of flow are being
tied together. A similar approach is required for the finite
element modeling. A model which connects the flow within
and out of the extruder, through the various conduits, and
into the mold cavity is an important development which should

be pursued.

Direct extensions of the work addressed in this study
are also important. The approach should be: (i) ignore 1
stress gradients in the constitutive equation and conduct
direct calculations, (ii) add stress gradients along with
continuation solution methods of non-linear equations. Even
if future work with constitutive models which include stress
gradients are unsuccessful, it is felt that the equation
with some elastic stresses will be a big improvement over

Newtonian or power law fluids.
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Finally as efforts one and two above progress, there is

Bai

a need to conduct rheology experiments which will determine
properties of the fiber-filled polymers being used in the

gyroscope fabrication. These data are required to correlate
with the velocities and stresses predicted by finite element

equations.
The three categories are listed below:

® Model complete flow history from extruder to
mold cavity.
® Refine viscoelastic model.

& e Conduct rheology experiments of appropriate polymeric

materials.
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Figure 3 Fluid Maxwell Element
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Figure 4 Non-Uniform Molecule Mesh for Solving Stress
Gradients
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O NODES
'® GAUSS POINTS

EQUATION IV-18 USED AT o'
EQUATION 1V-23 USED TO CALCULATE g\ aT @
EQUATION IV-19 MODIFIED AT @ii*1 As FoLLOWS:
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{Note: Superscripts are indexed at each Gauss point so that x©is xi'i"'2 referred to Gauss point 1

whereas it is xiAdt1 referred to Gauss point 4)

Figure 5 Calculation of Elastic Stresses at Gauss Points
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SOLVE g FOR SOLVE § FOR
CREEPING INELASTIC CREEPING INELASTIC
FLOW FLOW

k+1 k+1
—=1  SOLVE ¢* = SOLVE ¢®

1

SOLVE 451

-g’k| < ToL

1 SOLVE §5*1

SOLUTION
COMPLETE

(a) (b)

Figure 6 Iteration Schemes for the Solution of Creeping,
Viscoelastic Finite Element Equations: (a) Nested
Iteration (b) Combined Iteration
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ELMT¢5 MATRIX/FORM OUT-OF -

BALANCE VECTOR/
CALCULATE AND PRINT
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Figure 7 FEAP Flowchart
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Figure 8 Flow Geometries and Boundary Conditions:
(a) Cross Channel Flow (b) Plane Couette Flow
{c) Entry Flow (d) Step Flow
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Figure 10 Velocity Comparisons of 9 and 8 Node Elements:
(a) Element 15 (b) Element 9 (c) Element 7
(Dagshed Arrows are 8 Node Elements)
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Figure 12 Fully Developed Flow Behavior of viscoelastic
Fluid Entering and Leaving a Contracting Channel:

(a) Vortex angle g (after White ([33]) (b) B vs Ws
(after White [33)]) (c¢) Finite Difference Calculation
for Ws=0.6 (after Perera [27])
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Figure 17 Solutions to Nonlinear Equations (a) Picard

Iteration (b) Newton-Raphson Iteration
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CONVERGENCE
RUN NO. GEOMETRY TYPE (YES OR NO) COST (8)
1 CROSS CHANNEL  LINEAR . - 2.00
18-8 NODE ELEM.
2 CROSS CHANNEL  LINEAR - 2.00
18-8 NODE ELEM.
: 3 CROSSCHANNEL  LINEAR - 3.00
72-8 NODE ELEM.
4 CROSS CHANNEL  CONVECTION (Re = 0.4) YES 3.50
18-9 NODE ELEM,
5 CROSS CHANNEL  VISCOELASTIC (WS=0.1) NO 10.00
18-9 NODE ELEM.
] 6 CROSS CHANNEL  VISCOELASTIC (WS = 0.02) YES 21.35
] 18-9 NODE ELEM.
7 CROSS CHANNEL  VISCOELASTIC (WS = 0.06) NO 32.96
18-9 NODE ELEM.
8 PLANE COUETTE' LINEAR - 200
18-9 NODE ELEM.
9 PLANE COUETTE  VISCOELASTIC (WS = 0.06) NO 12.47
18-9 NODE ELEM.
10 PLANE COUETTE  VISCOELASTIC (WS = 0.02) YES 23.41
18-9 NODE ELEM.
1" ENTRY LINEAR - 2.00
24-9 NODE ELEM.
12 ENTRY VISCOELASTIC (WS = 0.01) TENDING AT 87.77
24-9 NODE ELEM. 30 ITERATIONS
13 ENTRY VISCOELASTIC (WS = 0.001) YES -77.00
24-9 NODE ELEM.
14 ENTRY VISCOELASTIC (WS = 0.03) NO 37.39
24-9 NODE ELEM.
N\ 15 STEP LINEAR - 250
30-9 NODE ELEM.
16 STEP CONVECTION (Re = 0.4) YES 21.46
30-9 NODE ELEM.
17 STEP VISCOELASTIC (WS = 0.01) YES 115.00
30-9 NODE ELEM.
18 STEP VISCOELASTIC (WS = 0.001) YES 79.12
30-9 NODE ELEM. ]
19 STEP VISCOELASTIC (WS = 0.03) NO 50.71
30-9 NODE ELEM.

Table Computer Run Matrix




APPENDIX 1

Derivation of Elastic Stress Gradient Expressions

From figure 3 we can write the Taylor series approximations

for Vo as:

Forward Difference: ol+1’3 = gt'd 4

90
xli, 0% +




and
i'j-l i'j-l

* 1.9 w P
bxy = xtrd - x . by = vyt -y

Subtracting the first and second equations of the

backward differences from the respective forward differences:

i+l,j _ ,i-1,j _ a3g 30
o o Hli,j“\xf + 0xy) + W’i,j(Ayf + by,) +

i 1 3% 2 2 1 3% 2
: —_— . (A - A + | . (A -
7 ax2|1'3( Xg = bxp) + 3 ayzll,]( Ye

Ayg) + ... (8%

i, j+1 _ _i,j-1 _ 3¢ * * g * *
o g axli'j(Axf +oaxp) +oaoly j8yg + Byp) +

1 3% *2 *2 1 3% 2
—_— - + — .,
3 axz|1,3(Axf Axy ) + 3 ayzll,j(Ayf

2
- Ay; ) + ... 0(4%)

Assuming that all differences of the intervals squared
are infinitesimal (zero for the uniform mesh case) and
solving for the gradients we have in matrix form:

3 i+l,5 _ _i-1,3
(Axc + Bx,)  (Ay, + oy [32 o oi-1,

* * * NE K i,3+#1 _ _i,j3-1
(Axf + Axb) (Ayf + Ayb) Iy o™’ o !

We can use Cramer's rule for the solution since the
determinant of the coefficients of the gradients can never

vanish. Therefore:




0 (@I ooty (ayD ok ay) - 03 - oIt (ayp 4+ ayy)
% * * * *

(Axf + Axb) (Aye + Byy) - (Axf + Axb) (Ayge + Ayy)
3o (ol'J+l - 01'3_1)(Axf + Axb) - (cl+l’3 - 01-1'3)(Ax; + Ax;)
W T T (k. + bx) (By: + AyY) - (ox” * A

When substitutions are made for the A terms we obtain
equations IV.19.




APPENDIX 2

Ccalculation of the Global Second Derivatives

A subroutine ESHAP was written to calculate the global

second derivatives of the velocity vector.

Lagragian isoparametric element the trial functions are:

N,
N2

N,

Ne

Ny

Ng

Ng

"
ST
—
o

=—-2-(r2
.—.-%-(rz

=—%-(r2

= (r? -1)(s? -1)

- r)(s?
+ r)(s?
+ r) (s?
- r)(s?
- 1) (s?
+ r) (s?
- 1) (s?

- 1) (s?

We can form the following table:
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32 32
s 9rds
X(r?2 - r) (2r - 1) (2s - 1)

N2 | X(s* - s) k(r? + 1) %(2r + 1) (28 - 1)
N: | %(s? + 8) %(r? + r) %(2r + 1) (28 + 1)
Ny | %(s? + 8) %(r? - r) (2r - 1) (28 + 1)
Ns | s - s? 1 -1r? r(l - 2s)
Ne | 1 - s? -(r? + 1) -g(2r + 1)
N; | -(s%2 + s) l-1r -r(2s + 1)
N 1 - s? r - r? s(l - 2r)
No 2(s? - 1) 2(r? - 1) 4rs

Writing the expressions for the second derivatives we have:

902 _ 3 | ax 3 dy 3 32 _ 3 |ax 3 dy 3
3.2 " [’5'5 3 " ar 3y’ %s? T 3s|3s ' Vs 3y ’

32 _ 3 |3x 3 3y 3
s?as-ss[?fa—x"arw]

where r,s are local coordinates and x,y are global coordinates
and the terms in brackets are merely the chain rules for form-

ing the coordinate transformations (e.g., %? = %% %; + %¥ %;)
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can write the transformations in matrix form as:

3

25

(B3 23

t
'—l
:1&;

<

2

2 2
Recognizing that terms such as %E§§ and g;*; are zero, ve




Where the Jacobian

- -
X 9x
r 3Is

[
]

has been used. All the terms in this equation are available

at the Gauss points e.g.

32x -3 %M %
or? i=1 ar? i

G.PQ G.P.

where xi are the x coordinates of node i.

We can then solve for the global second derivatives

to:

according




Linar i aig

=X F¥3
a? = |(2x)?
ay? 08
3?2 X 3x
LFEF?_J 3r s
322
92 -
rg]
32
9ras J

9%x
2

e
wmje
"

3’x

Laras

90

2%

oax 9
25? s

(et 3 22)

-
32

5

2y gt
9s -

2
35

ek L o N

mv a}lv

J

A value is therefore returned for each of the nine trial

functions for the three global second derivatives.




APPENDIX 3

Listing of New Subroutines

1. ELMTES

2. ELMTf6

3. ESHAP !
; 4.  PFORM |

5.  CMATRX

6. FPSIG




BRC4066 (FOREGROUND): OUTFUT FROM TSO XPRINT

-
.
FDIY VPTG P VU

AT 18:02:68 ON 12/07/80 - BRC4066.ELMTOS.FORT
SUBROUTINE ELMTOS( O » UL » XL » IX , TL » 8, P »NOF ,NDM, NST, 151100000010

c 00000020
CMM““MWQMMI! NN Y IHIH %5 #4u30000030
c""....'.'.'.“"'“““. ELMTOS ..“..'.’..‘".."".‘.’.".’."°°°°°°‘°
Cuwst SRR T SHIHE A 16 0 S Mhebd b 00000050
[ 00000060
[ A GENERAL PENALTY ELEMENT FOR INCOMPRESSISLE FLUID FLOM 00000070
c 00000080
IMPLICIT REAL¥B(A-H,0-Z) 60000090
REA{ =8 XHT(Q.O)/0'1.00.zvﬂ.oo.zll.oo.ltio.DOI. 00000100
1 Xhld;oI/t'l.oo.tﬁo.nﬂ.zﬁl.00.6'0.00.3'1.00.3'0.00.3'1.00.3'0.00/ 00000110
INTEGER LB(4)/3,3,4,6/ 90000120
COMMON /CDATA/0,HEAD( !O'OWOWLUWTJ‘E".NEQQI" 00000130
COMMON ZELDATA/DM,N,HA,MOT, JEL NEL 00000140
COMMON /FVISC/KZ 00000150
COMMCN /TAYLR/!S!G!(Q’z.SO).lSIGZt&-!.SO).23163(6.2.50l.YY(Q.:.SO 00000160
1 l,!LASI(O.Z.SO)-ELASZ(‘.Z.SO).!LASS(Q.z.SO).89316(6.3.50) 00000165
DIMENSION DO30),ULINDF,1),XLINDM,1),IX(1),TLIL), 00000170
1 3(N5T31)|P(1)nSNP(3-9’.36(’)175(9).“5(9); 00000180
2 315(7):595(5).83!5(3)|xx(3)-5(18).03(6-3)’BTD3(313)0 0000190
3 BU(G),XHTB(S’vX"TBf(S'lPEN(S»S',UU(’):DLYEE(3’0 60000200
& Vt2) ,DV(2.2) »XN(2+2) »ADVEC(2,2) »CADVEC(2,2) 00000210
s LAITER(3,3),ESHP(3,9),00V(3,2) 00000215
DATA PI/3.1415926536D0/ 00000270
c 00000220
IF (ISW.EQ.1) 60 TO 1 00000240
ITYPE = D(30) 00000250
L = b(28) 00000260
RHO = D(27) 00000270
XLAM = D(26) 00000280
Xy = D(28) 00006250
XK = D(24) 00000300
€ = D23) 00000310
Nl = D(20) . 00000320
K HEAT = D(19) 00000330
g LLB s LB(ITYPE) 00000340
A K2 = D(18) 00000350
s 7 N3 = D(17) 00000360
S 6 = Dt18) 00000370
) P4 = D(15) 00000380
[ 00000390
c BRANCH TO CORRECT ARRAY PROCESSOR 60000400
c 000004190
- 60 TO (1,2,3,3:5,3,3),ISW 00000420
c 00000430
c 00000340
c 00000450 1
c ISH = 1@ READ MATERIAL FROPERTIES, DEVELOP 00000450
K c DIAGONAL-STORAGE O MATRIX 00000470
: c 00000430
' c 00000490
- 1 CALL DFMTRX(D) 00000500
- LINT 2 0 00000510
c 00000520
RETURN 00000530

00000540




2 RETURN 00000550
c 00000560
c €602C570 !
c 00000580
. c ISM 3 3¢  FORM ELEMENT STIFFNESS MATRIX 09000590
c 00000600
c 00900610
c 00000620
3 CONTINUVE 00000630 1
c 00000640
c LOOP OVER GAUSS INTEGRATION POINTS 00000660
c COMPUTE UNSYMMETRIC STIFFNESS MATRIX 000C0670
c 00000680
IF (LWSNDHM .NE. LINT) CALL PGAUSS (L,LINT,SG,TG,NG) 00000681
0O 33 LL=1,LINT 00000690
- c 00000700
CALL SHAPE (SGILL),TG(LL),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.) 00000710
WGTaXSI¥UG(LL) 00000720
c 00000730
c COMPUTE RADIUS FOR AXISYMMETRIC CASE 00000740
c 00000750
IF (ITYPE.NE.3) GO TO 302 00000760
RR=0.00 00000770
3 DO 301 I=1,NEL 00009780
PR=RR+SHP(3,I1)#XL(1,1) 00000720
5 301  CONTINUE 000008¢0
WGTLGT#2.DOXPI*RR 00000810 :
302 CONTINUE 00000820
: c 00000830
c COMPUTE COORDINATES, VELOCITIES AND GRADIENTS FOR CONVECTIVE TERM 00000840
c 00000250
DO 32 I=1,NDM 00000850
XX(I1)=0.00 00000370
V(I)=0.D0 00000880
DO 31 K=1,NEL 00000890
XXCTI=XX( T I+SHP( 3,K IXLIT,K) 00000500
V(1)=V(I34SHP(3,K)*UL(T,K) 00900910
31  CONTINUE 00000920
YY(LL,I,N) = XX(I) 00000925
DO 32 J=1,NOM 00000930
DV(I,J)=0.00 00000940
DO 32 K=1,NEL 00000950
.. 32 DV(I,J)=DVII,J)+SHR(J,KIUL(I,K) 00000560
¢ 00000570
c COMPUTE NONLINEAR VISCOSITY CORRECTION 00000980
c 00000990
\, XNLNR=1.D0 00001000
- IF (P4.EQ.1.) GO TO 325 00001010
ALZZ2 DON(OV(L,1)05%24DV(2,2)1%%2)+(DV(1,2)40V(2,1) )an2 00001020
IF (ITYPE.NE.3) GO TO 320 00001030
AL=A14+2.D0%{V(1)/XX(1) )wx2 00001040
320  XNLMR=XNLNR/(1.D0+A1%#((1.D0-P4)/2.00)) 060001050
325 VISLAM = 0.0D0 00001070
. IF (G.EQ.0.DO) GO TO 9 00001072
VISLAM = XNLMR#XMU/G+VISLAM 00001076
=9 IF (ISW.EQ.6.0R.ISH.EQ.4.OR.ISW.EQ.7) GO TO 47 00001090
-C LOOP OVER COLUMNS, FORMING DB, MT%B, AND (DEL.(NU)T)T*N 00001100 3
DO 46 J=1,NEL 00001110
00001120
CALL BMATRX(B,J,ITYPE,SHP,RR) 00001130
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CALL VMULDF(D,LLB,B,NDN,LLB,DB.6) 00001140

CALL VMULFF(XMT(ITYPE,1),8,1,LLB,NDM,4,LLB,XMTB,1,IER) 00001150

BO 37 IDEX=1,hDt 00091160

DO 37 JDEX=1,NDM 00001170

: IF (IDEX.EQ.JDEX) XN(IDEX,JDEX)=SHP(3,J) 00001180
3 37 IF (IDEX.NE.JDEX) XN(IDEX,JDEX)=0.D0 00001150
CALL VMULFF(DV,XN,NDM,NDM,NDM,NDM,NOH, ADVEC ,NDOM, TER) 00001200

JJ3(J=1)%NDF+1 00001210

c 00001220

c LOOP OVER ROWS, FORMING BT#(DB),(MTB)THMTB, AND NT(DEL.(NUIT)THN 00001230

c 00001240

DO 45 I=],NEL 00001250

c 00001260

CALL BMATRX(B,I,ITYPE,SHP,RR) 00001270

N ) CALL VMULFM(B,DB,LLB,NDM,NONM,LLD,6,BTDB,3,IER) 000012890
1 , CALL VMULFF(XMT{ITYPE,1),8,1,LLB,NOM,4,LLE,XMTBT,],IER) 00001290
, CALL VAULFM(XMTBT ,XMTB,1,NDM,NDM,1,1,PEN, 3, IER) 00001300

I CALL VMULFM(XN,ADVEC,NDM,NDM, NDM,NDM,NOM,CADVEC ,NDM, TER ) 00001310

' II=(I-1)%NOF+1 00001320

c 00001330

c ADD TO ELEMENT STIFFNESS MATRIX S(NST,NST) 00001340

c 00001350

CALL MXADDSS(IX,JJ),NST,BTDB,3,NOH,NDM,KGT*XNLNR) 000013560

CALL MXADD(S(IX,JJ),NST,FEN,3,HDM,NOM,LGT*XLAM) 00001370

CALL HXADD(S(II,JJ},NST,CADVEC,NOM,NDM,NOM,HGT*RHO) 00091380

3 c 00001390
1 c ADD THERMAL STIFFMNESS 00001400
c 00001410

2 IF (N1.EQ.1) A2=XK*DOT(SHP(1,1),SHP(1,J),NDM) 00001420
- IF (N1.EQ.1) SUII+NDM,JJ+NDM)=SCII+NDM,JJ+NDM)+A2%NGT 00001430
45 CONTINUE 00001470

46 CONTINUE 000014890

IF (ISU.EQ.3) GO TO 65 00001485

47 CONTINUE 00001487

IF (ISH.EQ.4.O0R.ISW.EQ.6) GO TO 60 00001497

c 00001507

c CALCULATE ESIG(LL,2,N): ELASTIC STRESS AT K + 1 ITERATION 00001517

c 00001527

c SET UP A MATRIX FOR PLANE FLOW 00001537

c 00001547

. AITER(1,1) = DV(1,1)%2.D0 00001557

N AITER(2,1) = 0.D0 00001567

. AITER(3,1}) = DV(2,1) 00001577

N AITER(1,2) = 0.00 00001587
- AITER(2,2} = DV(2,2)%2.D00 00001597
AITER(3,2) = OV(1,2)} 00001607

AITER(1,3) = DV(1,2)%2.D0 00001617

— AITER(2,3) = DV(2,1)%2.D0 00001627

AITER(3,3) = DV(1,1) + DV(2,2) 00001637

c 00001647

c CCMPUTE VISCCUS STRESSES AT GaUSS POINTS: SIG = D¥BU 00001657

c 00001667

: 60 SIG(1) = XMUN2.D0¥DV(1,1)%XNLNR 00001677
- SIG(2) = XMU®2.D0*DV(2,2)#XKLNR 00001687
SIG(3) = XMUX(DV(1,2) + DV(2,1) }#XNLNR 00001697

—-— SIG(7) = XLAM®(DV(1,1) ¢+ DV(2,2)}) 00001707

- IF(ITYPE.NE.3) 60 TO 61 00001717

8$16(4) = SIG(3) 00001727

SIG(3) = (V{1)/%X(1) 1%XMUXNLNR®2.D0 00001737

SIG(7) = SIG(7) + XLAMM(V(1)/XX(1}) 00001742
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33
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: 61  IF(ISW.EQ.4.CR.ISW.EQ.6) GO TO 62 00001747 j
2 c 00001757 :
c CALCULATE VISCOUS STRESS GRADIENT (DEL(SIGMA)) 00001767
c 00001777
CALL ESHAP{SG(LL),TG(LL),XL,ESHP,NOM,NEL,IX) 00001787
t 00001797
c FORM CONVECTION DERIVATIVE OF STRESS: ONLY 20 FLOW 00001807 |
i c 00001817 !
00 21 I=1,2 00001827
Do 21 J=1,3 00001837 i
21  DOVtJ,I) = 0.00 00001847 )
00 22 K=1,NEL 00001857 i
DOV(1,1) = DOV(1,1) + 2.DO*XMUMXNLNR*ESHP(1,K }#UL(1,K) 00001857 ;
DOV(1,2) = BDV(1,2) ¢ 2.DO¥XMUMXNLNR®ESHP(3,K)%UL(1,K) 00001877 i
) DDV(2,1) = DDV(2,1) + 2.D0¥XMU¥XNLNRNESHP(3,K)*UL{2,K) 00001287 J
CDV(2.2) = DDV(2,2) + 2.DO*XHMUXNLNR¥ESHR(2,K)*UL(2,K) 00001897
BDV(3,1) = DOV(3,1) + XMUMXNLNR*{ESHP(1,K)%UL(2,K)+ESHP(3,KIUL(  00C01507
1 1,K1) 00001917
DOV(3,2) = DOV(3,2) + XMUSXNLNR*(ESHP(3,K)¥UL(2,K }+ESHP(2,K)¥UL( 00001927 i
1 1,K)) 0001937 4
22 CONTINUE 00001947
c 00001657
c SOLVE ESIG(LL,2,N): ONLY 2D FLOW 00001967
¢ 99001977
ESIGL(LL,2,N) = VISLAM((AITER(L,1)%(SIG(11+ESIGI(LL,1,N))+ 00001987
1 ATITER(1,2)%(SIG(2)+ESIG2(LL,1,N))+ATTER(1,3)%(SIG(3)+ESIG3( 00001997
2 LL,1,N)))=(V(1)%(COV(1,1)4ELASL(LL,1,N) 14V(2)1%(DOV(1,2)4ELASLL 00002007
3 LL,2,N)I )} 00002017
ESIG2(LL,2,N} = VISLAM#{ (ATITER(2,1)%#{SIG(1)+ESIGLILL,1,N))+ 00002027
1 AITER(2,2)%(SIG(2)+ESIG2(LL,1,N))+AITER(2,3)%(SIG(31+ESIG3( 00002037
2 LL,1,N)))=(VI1)%(DDV(2,1)+ELAS2(LL,1,N))+V(2)%(DDV(2,2)4ELAS2( 00002047
3 LL,2,N)))) 00002057
ESIG3(LL,2,N) = VISLAMX((AITER(3,1)%(SIG(1)+ESIG1(LL,1,N)}+ 00002067
1 AITER(3,2)%(SIGC2)+ESIG2(LLs1,N) +AITERL 3,3 )#(SIG( 3)+ESIG3( 00002077
2 LLy1,N)))=(V(13%(DOV(3,1 }4ELASI(LL,1,N))+V(2)%(DDV(3,2)4ELASI( 00002087
3 LL,2,000)) 00002097
c
c UPDATE BOUNDARY STRESSES BOSIG(NODE,DIRECTION,ELMT. NO.)
c
IF (G.EQ.0.D0) GO TO 65
BOSIG(LL,L,N) = ESIGL(LL,2,N) ¢ ELASL(LL,1,N)*{XL(1,LL}-
1 YY(LL,1,N)) & ELASL(LL,2,N)*(XL(2,LL)~YY(LL,2,N))
BOSIG(LL,2,N) = ESIG2(LL,2,N) ¢ ELAS2(LL,1,N)%¥(XL(1,LL)-
1 YY(LL,1,N)) + ELAS2(LL,2,NI*(XL(2,LL)~YY(LL,2,N})
BOSIG(LL,3,N) = ESIG3(LL,2,N) + ELAS3(LL,1,NI%(XL(1,LL)~-
1 YY(LL,1,N)) & ELAS3(LL,2,N)%(XL(2,LL)~YY(LL,2,N)}
G0 TO 65 00002107
- 00002117
c PRINT STRESSES IF ISW=4, OTHERWISE BRANCH TO COMPUTE 00002127
c UNBALANCED FCRCE VECTOR 00002137 1
c 00002147
62  IF (ISW.EQ.6) GO TO 66 00002157
XMAX = DMAXY(DABS(XL(L,4)-XL(1,1)),0A8S(XL(1,3)-XL(1,2)} 00002158
L 1 DABS(XL(2,4)~XL(2,1)),DABS(XL(2,3)-XL(2,2))) 00002159
; SIG(5) = (RHO/{XMURXNLNR ) )¥DSQRY(V(1)#%2+V(2 )u%2 IXMAX 00002160
l - SIG(6) = . ISLAMMDSQRTIV(1)##2+V(2)#%2)/XMAX 00002161
; - CALL FPSIGIXX,ESIGL(LL,2,N),ESIG2(LL,2,N},ESIGI(LL,2,N),SIG, 00002167
5 1 ITYPE,NDF) 00002177
- 50 TO 65 00002187
t c 00002197




c LCOP OVER NODES TO COMFUTE UNSBALANCED FCRCE VECTOR: 00902207

[ P = Pl - BT*SI6 - NT#ELAS(LL,2,H)-RROKT(DEL.(RKUITITN 03302217
c 0gooz22

c COMFUTE UNBALANCED TEMPERATURE VECTOR 00002237

66 IF (N1.NE.1) GO TO 76 v0022247

Q = HEAT*(SIG(1)*DV(1,1)+SIG(2)1%DV(2,2)+SIGI3)I¥(DV(1,2)+DV(2,1))) 00002257

IF (ITYPE.EQ.3) Q = Q + HEATH(DV(1,2)¢DV(2,1))%(S1G(4)-SIG(3)) 00002762

00 78 J=1,2 00002267

DLTEE(J) = 0.D0 00002277

DO 78 I=1,NEL 00002237

78 DLTEE(J) sDELTEE(J) + SHP(J,II¥UL(3,I) 00002297

76 00 77 I=1,NEL 00002307

II = (I-1)%NOF+¢l 08002317

[+ 00002318

c CONVECTION TERM SAME FOR 2D AND AXISYMMETRIC FLOW 00002319

c 00002320

P{II) = P(II) ~ RHOXSHP(3,I)%(V(1)¥DVI1,1)+V(2)%DV(1,2))%KGT 00002321

P(II+1) = P(IXI+1)-RHOXSHP(3,I)%*(V(1)%DV(2,1)+V(2)%DV(2,2) )%UGT 00002322

IF (XITYPE.EQ.3) GO TO 79 00002324

P(II} = P(II)=-(SHP(1,I)*(SIG(1)+SIGI7))I+SHP(2,I)%SIG(3))I%WGT 00092327

PCIX+1) = POII+Y1)-(SHP(2,I)%({SIG(2)+SIG(7))+SHP(1,X)%SIG(3)I*K5T 00002337

GO TO 80 00002342

79 P(II) = P(II)-(SHP(1,I)%{SIG(1)+SIG(7))+SHP(3,])%S1IG(3) 00C02343

1 +SHP(2,X)5SIG(4) )*IGT 00C02344

P(IXI+1) = P{II+1)-(SHP(2,I)%{SIG(2)+SIGI7))+SHP(1,Y)%SIGI4))IHNGT 00002345

-1) IF (K2.EQ.3.0R.K2.EQ.4) P(II}) = P(II)-(SHP(3,I)%(ELASI(LL,1,N)+ 00002347

1 ELAS3(LL,2,N)))I*IGT 0C002357

IF (K2.EQ.3.0R.K2.EQ.4) P(IXI+1) = P(II+1) - (SHP(3,I)%( 00002367

1 ELAS2(LL,2,NJ+ELAS3(LL,1,N)))*UGT 00002377

IF (N1.EQ.1) Al = QxSHP(3,I) 00002387

IF (N1.€Q.1) A2 = XK%DOT(SHP(1,I),0LTEE,NOM) 00002397

77 IF (N1.EQ.1) PC(II#NDM) = PCII+NDM) ¢ AL¥UGT - A2¥WGT 00002407

65 CONTINUE 00002417

33 CCNTINUE 00002427

5 RETURN 60002442

END 00002447

SUBROUTINE ELMTO6( D , UL » XL , IX » TL , S , P ,NDF,NDM,NST,ISW)00000010

c €0000020

C 338 36 3636 36 3636 36 36 36 36 3636 36 36 96 36-36.36 3636 36 3634 3¢ 36383363696 36 98 36 36 36 34 3636 36 46 36 36 9696 26 3 630 36 2 2 % %0000 0030

(C 963636 96 36 3636 3 36 36 36 36 36 36 3636 36 36 3636 36 3 36 36 3 3¢ ELMTO06 363636 36 38 3636 3630 6 36 36 336 16.36 36 36 36 36 36 36 % 34 % % % % 0 0 000040

105 3636 36 36 36 36-36-36-36 336 36 26 36 36 36 36 6 36 3636 96 3 3638 36963026 36 36 336 I IE I I NI I NN MK AN XX XG 0000050

C . 00000055
c AN ELEMENT FOR INTERPOLATING DISPLACEMENT, TEMPERATURE, AND STRESS00000040

c FOR VISCOELASTICITY: 2D FLOW, OLDROYD DERIVATIVE 00000070

c 20000080

IMPLICIT REAL#8(A~-H,0-2) 00000050

REAL*8 XMT(4,6)/8%1.D0,2%0.D0,2%1.00,12%0.00/, 00000100

- 1 XM(6,43/2%1.00,4%0.00,2%1.00,4%0.00,3%1.00,3%0.D0,3%1.00,3%0.00/ 00000110
INTEGER LB(4)/3,3,%,6/ 000900120

COMMON /CDATA/0,HEAD(20) ,NUMNP,NUMEL , NUMMAT , NEN, NEQ, IPR 00C00130

COMMON /ELDATA/DMsN,MA,MOT,IELNEL 00000140

DIMENSION D(303,UL(NDF,1),XL(NOM,1),IX(1),TL(1), 00000150

1 S{MHST,1),P(1),SHP(3,9),56(9),TG(9),KE(9), 06000160

K SIG(7),EPS(6),BSIG(3),XX(3),B(18),0B(6,3),BTDB(3,3), 00000170

3 BU(6),XMTEB(3),XMTBT(3),PEN(3,3),DU(3),DLTEE(3), 00000180

- [ V(2),0v(2,2),XN(3,5),ADVEC(2,2),CADVEC(2,2),00V(3,2),C(3,2), 00000150

- 5 XNTN(3,3),BT(2,3),ADSIG(3,2),CN(3,2),XNTOB(3,2),XNTCN(3,2), 00000200

6 XNTBT(2,3), CADSIG(3,2) 00000205

00200210

IF (ISX.€£Q.1) GO TO 1 00000220
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o000 000 O O o0 000

s Ne Nyl

31

-C

ITYPE = D(30)

L =Dy
RHO = D(27)
XLAM = D(26)
XMU = D(26)
XK = D(24}
9= D(23)

Nl = D(29)
HEAT = D(19)
LLB = LBUITYPE)
K2 = D(18)
N3 = D(17)

G = D(1l6)

P4 = D(15)

BRANCH TO CORRECT ARRAY PROCESSCR
GO 10 (1,2,3,3,5,3),ISW

ISW = 1: READ MATERIAL PROPERTIES, DEVELOP
DIAGONAL-STCRAGE D MATRIX

CALL DFMTRX(D)
LINT = 0

RETURN

RETURN

ISH = 3: FORM ELEMENT STIFFNES MATRIX
CONTINUE

LOOP OVER GAUSS INTEGRATION POINTS
COMPUTE UNSYMMETRIC STIFFNESS MATRIX

IF (L¥*NDM.NE.LINT) CALL PGAUSS (L,LINT,SG,TG,KG)
DO 33 LL = 1,LINT

CALL SHAPE (SG(LL),TG(LL),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)

WGT = XSJ*NG(LL)

COMPUTE COORDINTAES,VELOCITIES,; STRESSES, AND GRADIENTS

D0 32 I=1,NDM
XX(1)=0.00
V{I1=0.00
DO 31 K=1,NEL
XX(I) = XX(I) + SHP(3,K)%XL(I,K)
V(I) = V(I) + SHP(3,K}*UL(I,K)
CONTINUE
DO 32 J=1,NDM
ovV(I,J)=0.00
DO 32 K=I,NEL
DV(I,J) = DV(IWJ) + SHP(J,K)*UL(I,K)

COMPUTE NONLINEAR VISCOSITY CORRECTION

XNLNR = 1.00
If (P4.EQ.1.) GO TO 325
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00000230
000C0240
0000250
00000260
0000027

00000280
00000290
000003C0
00000310
00000320
00000330
00000340
00000350
00000350
00000370
00000380
00000390
00000400
00000412
00000420
02000430
00000440
00020459
00000460
00000470
00000480
00000490
00000500
00000510
00000520
008000530
00000540
00000550
00000550
00060570
00000580
00009550
00000600
00000610
000080620
00000530
00000640
0020650
00000660
000005670
00C00480
000005992
000007C9O
00002710
000600720
000007320
00000740
00000750
008000760
00000770
00000780
00000790
00000500
02000510
060902820




-

o000

37

41

(2] o000

38

40

i

Al = 2.D0%(DVIL1,1)%%Z4DVI2,2)%%2)4(DV(1,2)4DV(2,1))%¥%2
XNLNR = XMLHR/(1.0C+A1«%((1.00~P4)/2.00))
VISLAM = 0.D0

IF (G.EQ.0.DD) GO YO 9

VISLAM = XNLNP*XMU/G ¢ VISLAM

Do 320 I=1,3

SIG(I) = 0.DO

DO 320 J=1,2

0ov(I»J) = 0.00

DO 320 K=1,NEL

SIG(I) = SIG(X} + SHP(3,K)I®ULINDF~3+1,K)
DOVII»J) = DOVII,J) ¢ SHP(J,K)I¥ULINDF-3+1,K)
IF (ISW.EQ.4.0R.ISW.EQ.6) GO TO 47

LOOP OVER COLUMNS FORMIN MT¥8,(DEL.(NUIT)T#N, BT,
DELIN*SIGMA)%N, N, DB, AND CN

00 46 J=1,NEL

CALL BHMATRX(B,J,ITYPE,SHP,RR)

CALL CMATRX(C,J,S1G,SHP)

CALL VMULFF(XMT(ITYPE,1),8,1,LLB,NDF-3,4,LLB8,XMTB,1,IER)
DO 37 IDEX=1,2

DO 37 JoEX=1,2
ADVEC(IDEX,JDEX) = DV(IDEX,JIDEX)*#SHP(3,J)
DO 41 IDEX=1,3

DO 41 JDEX=1,3

IF (IDEX.EQ.JDEX) XNCIDEX,JOEX) = SHP(3,J)
IF (IDEX.NE.JDEX) XN(IDEX,JDEX) = 0.00

BT(1,1) = SHP(},J)
BT(2,1) = 0.00
BT(1,2) = 0.00
BT(2,2) = SHP(2,))
BT(1,3) = SHP(2,4)
BT(2,3) = SHP(1,J)

D3 39 IDEX=1,3

D0 39 JDEX=l1,2

ADSIGUIDEX,JDEX) = SHP(3,J)*DDV(IDEX, JDEX)
CRUIDEX,JDEX) = SHP(3,J3%C(IDEX,JDEX)
CALL VHULDF(D,LLB,B,NDM,LLB,DB,6)

JJ = (J-1)I%NDF +1

LOOP OVER ROWS, FCRMING (MYBIT*MTB, NT(DEL.(NUIT)TH*N,NT*BT,
NT(DEL(N®SIGMA)¥N, NT*M, NT*DB, AND NT*CN

DO 45 I=1,NEL

CALL BMATRX(B,I,ITYPE,SHP,RR)

CALL VMULFF(XMT(ITYPE,1),B,1,LLB,NDF-3,4,LLB,XMTBT,1,2ER)
CALL VMULFHM(XHTBT,XMTS,1,NOM,NOM,1,1,PEN,3,1ER)
DO 38 IDEX=1,2

DO 33 JOEX=1,2

CADVEC(IDEX,JDEX) = ADVEC(IDEX,JDEX)*SHP(3,1)
D0 40 IDEX=1,2

DO 40 JDEX=1,3

XNTCN( JDEX, IDEX) = CN(JDEX,IDEX)%SHP(3,1)
XNTDB(JDEX,IDEX) = DB(JDEX,IDEX)%SHP(3,I)
XNTBT(IDEX,JOEX) = BT(IDEX,JDEX)*SHP(3,I)
CADSIGUJDEX,IDEX) = ADSIG(JDEX,IDEX)*SHP(3,1)
DO 42 IDEX=1,3

D0 42 JDEX=1,3

00000830
05¢00840
2300350
0C000240
002c0870
00000880
000003%0
00000500
00000910
00000920
00000930
00000940
00000550
0000960
00000970
00000980
00000990
00001000
00001010
00001020
00001030
00901040
0C091050
00001060
00001070
00001030
000601099
%0001100
00001110
00001120
00001130
00001140
000011590
03001160
00001170
002011890
00091190
00001260
0gco1210
00001220
00001230
00001240
00901250
00001260
00001270
00001280
00001250
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
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42 XNTNCIDEX,JDEX) = YNCIDEX,JOEX)#SHP(S,I) 090081430
II = (I-1}%N0F ¢ ) 00001440
c 000C1450
c ADD YO ELEMENT STIFFNESS MATRIX S(NST,NST) 00001460
c 00001470
CALL MXADO(S(II,JJ),NST,PEN,3,NDM,NDM,UGT*XLAN) 00001480
CALL MXADD(S(II,JJ),NST,CADVEC,NOM,1OM,NDI,RGT*RHO) 00001490
CALL MXADD(S(II,JJI+NDF~-2),NST.XNTBT,2,2+3,HGT) 00001500
CALL MXACD(S(II+NDF-2,JJ),NST,CADSIG,3,3,2,NGTH#VISLAM) 00001510
CALL MXADD(S(II+NDF-~2,JJ),NST,XNTCN,3,3,2,-KGTHVISLAN) 03001520
CALL MXADD(S(II+NDF=-2,JJ),NST,XNTDB,3,3,2,-NGTHXNLNR) 00001530
CALL MXADD(S{II+NDF-2,JJ+NDF-2),NST,XNTN,3,3,3,K5T) 00001540
c 00001550
Cc ADD THERMAL STIFFNESS 00001540
c 0C201570
IF(N1.EQ.1) A2 = XK¥DOT(SHP{1,I),SHP(1,J),NDM) 00001580
IF(N1.EQ.1) S(II+NDM),JJ+NDM) = S(II+NDM,JJ+NDM)eA2HRGT 00001550
45 CONTINUE 00001600
46 CONTINUE 00001610
47 CCNTINUE 00901620
IF (ISH.EQ.3) GO TO 65 00001630
[ 00001640
c PRINT STRESSES IF ISW=4,0THERWISE ERANCH TO COMPUTE 00C01659
c UNSALANCED FORCE VECTCR 3001660
c 0C001670 h
IF (ISU.EQ.6) 60 TO 66 00001680 !
XMAX = DMAX1(DABS(XL(1,6)-XL(1,1)),DABS(XL(1,3)=-XL{1,2)), 00001690 '
1 DABS(XL(2,4)~XL(2,1)),DABS(XL(2,3)-XL(2,2))) 00001700 .
SIG(S5) = (RHO/(XMUSXNLNR ) )#DSTRT(V(1)%%2eVI2)%82 ) %XMAX 00001710
SIGI6) = VISLAMYDSGRT(V(])#u24v(2)%n2)/XMAX 00001720 i
CALL FPSIG(XX,0.00,0.00,0.00,S1G,ITYPE,.NOF) 00001730 !
GO TO 65 03001740 ;
c 00001750 ;
c LOOP OVER NODES TO COMPUTE UNBALANCED FORCE VECTORS 00001750 i
c Pl = P1 - NTBT*SIGMA - RHONT(DEL.(NUIT)IT*N 00001770 ]
[ P2 = P2 - NT(DEL(SIGMA))I#V « NT#SIGHA ¢ NT#DWL#V + NTNTWV,I¥SIGMA00001780 i
c 00001790 :
[ COMPUTE UNBALANCED TEMPERATURE VECTOR 00001800 }
66 IF (N1.NE.1) GO TO 76 00001810 !
Q = HEAT#(SIG(1)¥DV(1,1)+8IG(2)%DV(2,2)) 00001820 1
» DO 78 J=1,2 00001630 :
DLTEE(J) = 0.D0 00001840 H
0O 78 I=1,NEL 000018590 :
3 78 DLTEE(J) = DLTEE(J) + SHP(J,I)»ULLS,]) 00001860
3 N 76 DO 77 I=1,NEL 00201870
IT = (I-1"#NJF + 1 00001880
P(II) = PIII)-C(RHO¥(V(1}¥DV(1.1)sV(2)%DV(1,2))e(00V(1,1) 00001£50 1
—-— +00V(3,2) ) )1%SHP(3,I)%KST -~ SHP(1,118SIG( 7)5HGT 00001520
P(II+1) = PUII+1)-(RHO*(V(1)%DV(2,1)eV{2)%0VI(2,2))¢(D0V(2,2) 00001910
1 +0DV(3,1)))I%SHP( 3,2 )#UGT - SHP!2,I)%S16( 7)+KST 00001920
IF (N1.EQ.1) Al = Q®EHP(3,I) 00001530
. IF (N1.EQ.1) A2 = XK¥DOT(SHP(1,1),DLTEE,.NOM) 00001940
IF (N1.EQ.1) P(II+NDM} = P(IX+MNDM) ¢ AIWUST - A¥KGT 00001950
P(II+NDF-2) = P(II4NDF-2)-(VISLAM¥(DOV(1,1)#V(1)+DDV(1,2)%V(2)) 00001960
1 + SIG(1) - 2.DINXMUNXNLNR¥OV(1,1) - 2.COVISLAM® 00001970
; 2 (SIG(1)I*DV(1,1)+SIG(3)I%DV(1,2) ) )%SHP(3,1)%GT 00001980
- P(II+NDF-1) = P(II+NDF-1)-(VISLAM®(DOV(2,1)#V(1)+DDV(2,2)%V(2)) 00001990
1 4+ SIG(2) = 2.DO#XHMUNXNLER¥DOV(2,2) - .DO%VISLAM® 00002000 :
2 (SIG(2)%DV(2,2)+SIG(3)1%DV(2,1)) )#SHP(3,1)¥GT 00002010 i
PCII+NDF) = P(II+NDF) ~ (VISLAM*(DDV(3,1)%*V{1)+DDV(3,2)#V(2)) 00002020 !
¥
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77 CONTINUE

65 CONTINUE

33 CONTINUE

5 RETURN
END

+SIG(3) - XMUNXNLNR¥(DV(1,2)¢DV(2,1)) ~VISLAM™
(SIG(2)¥DV(1,2)+SIG(3)%DV(1,1)+8IG(1)¥DV(2,1)
+SIGI3IIN0V(2,2) ) JSHP( 3,1 15UGT

SUBROUTINE ESHAP(SS,TT,X,ESHP,NOM,NEL,IX)

c

CIII I IE 06 38 00 903636 20 38 30 36 3%

FE0HI036- 0000 D66 06 0600 00 36 06 06 0000 0006 00006 06-00 36 36 6

CANIEI630-30 3606 36 266 06 36 36 0030 36 96 36 96 3¢ 34 3 ESHAP FEIE 0006 0606 36 5 DE 06 309006 D006 30 06 096 06 36 160 36 06 1694 06

(003636 30 3600 363036 35 36 36 30 3630 38 3696 96 96 36 3¢ 3¢

c

SEDEIEIE 36 FEIEI608 FHIEIEIE D6 30 006 6-0EUE 0 36 DIEIE A6 36 98

IMPLICIT REAL%8(A-H,0-Z)
[ SHAPE FUNCION ROUTINE FOR 9 NODE QUADRILATERALS FOR SECOND DER.

c

DIMENSION ESHP(3,1),X(NOM,1),SHP(3,9),IX(1),BIG(3,3),X8(2,2),
1 EBIG(3,3),EXS(3,2),5X(2,2),TEMP(3)
DATA S/0.5D00/,T/1.D0/,R/72.D0/

[ FORM 9-NODE

QUADRILATERAL SHAPE FUNCTIONS FOR SECOND DERIVATIVE

ESHP(1,1) = S¥(TT#»2-TT)
ESHP(2,1) = SH{S5%%2-S5)
ESHP(3,1) = S#a2%(A¥SS-TIN(R¥TT-T)
ESHP(1,2) = ESHP(1,1)
ESHP(2,2) = S#rSS¥#248S)
ESHP(3,2) = S«#2%(R¥SS+T I(R¥TT-T)
ESHP(1,3) = S*(TT#X2+7T7)
ESHP(2,3) = ESHP(2,2)
ESHP(3,3) = Swa2%(RHSS+TIN(R¥TT4T)
ESMHPL1,4) = ESHP(1,3)
ESHP(2,4) = ESHP(2,1)
ESHP(3,4) = Sxu2%(RHSS-TIH(RTT4+T)
ESHP(1,5) = -R¥ESHR(1,2)
ESHP(2,5) = T-$5%%2
ESHP(3,5) = SSX(T-R*TT)
ESHP(1,6) = T-TT#x2
ESHP(2,6) = -R¥ESHP(2,2)
ESHP(3,6) = -TTH(R¥SS+T)
ESHPI1,7) = -R¥ESHF(1,4)
. ESHPt2,7) = ESHP(2,5)
ESHP(3,7) = ~5S*(R¥TT4+T)
ESHP(1,8) = ESHP(1,6)
ESHP(2,8) = -R¥ESHP(2,1)
A ESHP(3,8) = TT#(T-R¥SS)
ESHP(1,9) = -R¥ESHP(1,6)
- ESHP(2,9) = ~R¥ESHP(2,5)
ESHP(3,9) = R¥#25SSHTT
c
c CONSTRUCT BIG MATRIX AND ITS INVERSE
c
. CALL SHAPE(SS,TT,X,SHP,XSJ,NOM,NEL,IX,.TRUE.)

2 D0 130 I=1,NOM
00 130 J=1,2
Xs(I,J) = 0.00
DO 130 K=1,NEL
130 XS(I,J) = XS(I,J) + X(I,K)*SHP(J,K)
1 BIG(1,1) = XS(1,1)un2
BIG(2,1) = XS(2,13%x2

00002030
00002040
00002050
00002055
00002060
00002070
00002080
00002090
00000010
00000015
00000020
00000030
00000040
00000050
00000060
08000070
00000080
00000090
00000100
00000110
00000120
00000139
05000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00003240
0000250
00600260
00000270
00000260
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370

00000380
00009390
00000400

00000410
_ 00000420
00000430
00000440
0000450
00000460
00000470
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BIG(3,1) = XS(1,1)#X5(2,1) 00030430
BIG(1,2) = XS(1,2)%%2 00000490
BIG(2,2) = XS(2,2)%%2 009G6C5C0
BIG(3,2) = XS(1,21#X§(2,2) 00000510
BIG(1,3) = 2.00%XS(1,1)%XS(1,2) 00009520
BIG(2,3) = 2.00¥XS(2,1)%XS(2,2) 00000530
BIG(3,3) = XS(1,1)¥XS5(2,2) 4 ASt1,2)uXS(2,1) 00000540
c CALCULATE DETERMINANT OF BIG 00000550
DET = BIG(1,1)%(BIG(2,2)*BIG(3,3)-BIG(3,2)#BI612,3))-BIG(2,]1)n 00000560
1 (BIG(1,2)%BYG(3,3)-BIGI1.3)4BIG(3,2))+BIG(3,1)%(BIG(1,2)#816G(2,3)00000570
2 -BIG(2,2)%B1I6(1,3)) 00000580
c 00000590
c FORM INVERS! 000006C0
EBIG(1,1} = (BIG(2,2)#B16G(3,3)-B1IG(3,2)%BIG(2,3))/DET 00000610
EBIG(2,1) = -(BIG(1,2)*BIG(3,3)-BIG(3,2)¥BIG(1,3))/DET 00000620
EBIG(3,1) = (BIG(1,2)*BIG(2+3)-BIG(2,21*BIG(1,3))/DET 00000630
EBIG(1,2) = -(BIG(2,1)%BIG(3,3)-BIG(3,1)%016(2,3))/CET 00000640
EBIG(2,2) = (BIG(1,1)#B1G(3,3)-BIG(3,1)BIG(2,3))/DET 00000650
EBIG(3,2) = -(BIG(1,1)%B1G(2,3)-BIR(2,1)4%316(1,3))/DET 00000660
EBIG(1,3) = (BIG(2,1)%B1G(3,2)-BIG(3,1)#%BIG12,2))/DET 00000670
EBIG(2,3) = -(BIG(1,1}#BIG(3,27-BIG(3,1)%816(2,2))/DETY 00000680
EBIG(3,3) = (BIG(1,1)#B1IG(2,2)-BIG(2,1)%BIG(1,2))/DEY 00900550
c 00000700
c FCRM SECOND DERIVATIVE MATRIX 00000710
c 00600720
00 131 I=1,2 00000730
00 131 J=1,3 00000740
EXS(J,I) =0.D0 00030750
80 131 X=1,MEL 00000760
131 EXS(J,I) = EXS(JHrI) & XCI,KI*ESHP(J.K) 00000770
[ FORM JACOCSIAN MATRIX INVERSE 00000750
C 00000790
SX(1,1) = XS$(2,2)/X38) 00000800
SX(2,2) = XS(1,1)/%8) 00000810
S$X(1,2) = ~XS(1,2)/%XSJ 00000820
$X(2,1) = -XS(2,11/XS4 00000830
c 00000840
[ FCRM GLOBAL SECOND DERIVATIVES 00000850
[ 00000860
DO 132 I=1,NEL 00000870
TEHP(L) = ESHP(L,I) 00000580
TEMR(2) = ESHP(2,I) 00000850
TEMP(3) = ESHR(3,I) 00000900
Do 133 J=1,3 00000510
ESHP(J,I) = 0.00 00000920
00 134 K=1,3 00000930
ESHR(J,I) = ESHP(J,I) ¢ EBIG(J,KI¥(TEMP(K)~ (EXSIK,1)I#(SX(1,1)% 00000540
3 - 1 SHP(1,1)#SX(1,2)%SHP(2,X)13-(EXS(K,2}%(SX(2,1)1%SHP(1,1)+8X(2,2)% 00000550
2 SHR(2,I1)) Q0000540
134  CONTINUE 00000970
= 133 CONTINUE 00000°89
, 132 CONTINUE 00000990
RETURN 00001000
END 50001040
3 SUBROUTINE PFORM{ UL » XL , TL , LD, P, S, IE , D, ID, 000060010
: — 1 X IXyF o T, JDIAG » B » A » C ,NDF, 90000020
- 2  NDM,NEN1,NST,ISW.U,UD,AFL,BFL,CFL,DFL) 00000030
c COMPUTE ELEMENT ARRAYS AND ASSEMBLE GLOBAL ARRAYS 00000040
c 00000050
C 33330 360020 00 30U A 360030 36 696 3606 36 96 3¢ 3¢ T A0 36 306 IIE 3606 M I AEIE I A LI MM MM N NN Q0000060
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00000 WAoot

(0363036000 164006036 43600 0696 9630 36 6 96 36 26 6 PFORM 1363636 36 3096.36 0000600 90 06 50 0600 0 00 00 00 2606 26 06 NN H0300C0 70

(3695 36 0036 3638 36 36 36 3636 3% 269 36 336 34 36 36 26 36

¢

a0 o

ao0o0

IMPLICIT REAL#8(A-M,0-2)

LOGICAL AFL,BFL,CFL,DFL

COIWIOM /CDATAZ Q,HEAD(20),NUMNP,NUMEL, NURMMAT ,NEN,NEQ, IPR
COVMON /ELDATA/ DM,N,MA,MCT,IEL,NEL

COMMCN /FRLOD/ PROP

CCIMNON /FVISC/ K2

COrdiON /TAYLR/ ESIG1(4,2,50).,E5162(4,2,50),E3163(4,2,50),
1 YY(4,2,50),ELAS1(4,2,50),ELAS2(4,2,50),ELAS3(4,2,50),
2 BOS1G(4,2,50)

606 8000606 3834 30 200 e 0 20300009606 0 R N MR W HSO000)C D0

00000030
000001090
00000110
00000120
00000130
00000140
00000145
00000150
00000160

DIMENSICN XL(NDM,1),LD(NDF,1),P(1),S(NST,1),1E(1),D(30,1),ID(NDF,100000170

1), X(NDM, 1), IX(NENL»1),F(NOF,1),JDTAG(1),B(1),A(1),C(1),ULINOF,1)

2 HTLE1),T(1)5U(1),UD(NDF,1)
IF((K2.LE.2.0R.K2.EQ.51.0R.(ISU.LE.4).OR.(NDF.GE.4)) GO TO 102
SET ITERATION PARAMETERS FOR FLUID VISCOELASTICITY

NSTEP = 0
TOL1l = 1.E+1

BEGIN VISCOELASTIC ITERATION: LOOP ON ELEMENTS

IEL = 0
0O 101 N = 1,NUMEL

CALCULATE ELAS WITHIN ELEMENTS USING CENTRAL DIFFERENCES;
THESE WILL BE USED FOR BOUNDARY ELEMENTS

GAUSS POINT 1

AA = YY(4,2,N)-X(2,IX(1,N))
BB = YY(2,2,N)-X(2,IX(1,N))
CC = YY(2,1,N)-X(1,IX(1,N)})
DD = YY(4,1,N)-X(1,IX(1,N))

ELAS2(1,1,N) = ((ESIG1(2,1,N)-BOSIG(1,1,N))*AA-(ESIGL(4,1,N}
1 -BOSIG(1,1,N))#*BB)/(CC*AA-BB*DD)

ELAS1(1,2,N) = ((ESIGL(4,1,N)-BOSIG(1,1,N))%CC-(ESIGL{2,1,N}
1 -EOSIG(1,1,N))*DD)/(CC*AA-BB*DD)

ELAS2(1,1,N) = ((ESIG2(2,1,N)-BOSIGI(1,+2,N) I*AA-(ESIG2(4>51,N)
1 -BOSIG(1,2,N})*EB)/(CC*AA-BB*DD)

ELAS2(1,2,N) = ((ESIG2(4,1,N)-BOSIG(1,2,N))%CC-(ESIG2(2,1,N)
1 -80SIG(1,2,N))%C01/(CCxAA-BB*DD)

ELAS3(1,1,N) = ((ESIG3(2,1,N)-BOSIG(1,3,N)I*AA-(ESIG3(4>1,N)
1 -BOSIG(1,3,N))*EB}/(CC*AA-BB¥CD)

ELAS3(1,2,N) = {{ESIG3(4,1,N)-BOSIG(1,3,N))I*CC-{ESIE3(2,51,N)
1 -BOSIG(1,3,N))*DD)/(CCHAA~BB*DD)

GAUSS POINT ¢

AA = X(2,IX(4,N))-YY(1,2,N)
BB = YY(3,2,N)-X(2,IX(4,N))
CC = YY(3,1,N)-X(1,IX(4,N))
DD = X(1,IX(4.N})-YY(1,1,N}

ELAS1(4,1,N) = ((ESIG1(3,1,N)-BOSIG(4,1,N))*AA-(BOSIG(4,1,N)
1 -ESIG1(1,1,N))%EB,, (CCHAA-BB*DD)
ELAS1(4,2,N) = ((BISIG(4,1,N)-ESIGL(],1,N))I*CC-(ESIGL(3,1,N)
1 -BOSIG(4,1,N))%0D)/(CCHAA-EB*DD)
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ELASZ(4,1,N) = ((ESIG2(3,1,N)-BOSIG(4,2,N)I#AA-(BOSIG(4,2,N)
1 -ESIG2(1,1,N))*E3)/(CC*AA-BBDD)
ELASZ(4,2,N) = ((BOSIG(4,2,H)-ESIG2(1,1,0))I%CC-(ESIG2(3,1,H)
1 -EC3I6(4,2,N))*0D)/(CCHAA-BD*DD)
ELAS3(4,1,N) = ((ESIG3(3,1,N)-BOSIG(4,3,N)I*AA-(BOSIG(4,3,N)
1 -ESIG3I(1,1,N))%EB)/(CCHAA-BS*DD)
ELAS3(4,2,N) = ((BOSIG(4,3,N)-ESIG3(1,1,N)INCC-(ESIG3(3,1,N}
1 -BOSIG(4,3,N))%DD)/(CCHAA-BBSDD)

GAUSS POINT 3

AR = X(2,IX(3,N))-YY(2,2,N)

BB = X(2,IX(3,N))-YY{(4,2,N)

CC = X{1,IX(3,N))=YY(4,1,N)

D0 = X{1,IX(3,N)}=YY(2,1,N)

ELAS1(3,1,N) = ((BOSIG(3,1,N}-ESIGL(4,1,N))*AA-(BOSIG(3,1,N)
1 -ESIG1(2,1,N))¥ES)/(CCHAA-BR*DD)

ELAS1(3,2,N) = ((BOSIG(3,1,N)-ESIG1(2,1,N))I*CC~(BOSIG(3,1,N)
1 -ESIG1(4,1.N))*DD}I/(CCHAA-BB*DD)

ELAS2(3,1,N) = ((BOSIG(3,2,N1-ESIG2(4,1,N))*AA-(BOSIG(3,2,N)
1 -ESIG2(2,1,N)}*E8)/(CCRAA-BRXDD)

ELASC(3,2,N) = ((BROSIG(3,2,N)-ESIG2(24+1,N))*CC~-(BOSIG(3,2,N)
1 -ESIG2(4%,1,N)1%00)/(CC*¥AA-EB+DD)

ELAS3(3,1,N) = ((BOSIG(3,3,N)-ESIG3(4,1,N))*AA~(BOSIGL3,3,N)
1 -ESIG3(2,1,N))%BBI/(CCHAA-BB¥DD)

ELAS3(3,2,N) = ((BOSIG(3,3,N)-ESIG3(2,1,N))*CC~(BOSIG(3,3,N)
1 ~ESIG3(4,1,N))*DD)/(CC*AA-BB*DD)

GAUSS POINT 2

AR = YY(3,2,N)=-X(2,IX(2,N))}
BB = X(2,IXt(2,N))-YY(1,2,N)
CC = X(1,IX(2,N))-YY(1,1,N)

0D = YY(3,1,N)-X(1,IX(2,N))

ELAS1(2,1.N) = ((BOSIG(2,1,N)-ESIG1(2,1,N))*AA~(ESIG1(3,1,N)
1 ~BOSIG(2,1,N))¥EB)/(CC*AA-BB*DD)

ELAS1(2,2,N) = ((ESIG1(3,1,N)-BOSIG(2,1,N))%CC~(BOSIG(2,1,N)
1 ~ESIG1(1,1,N))*DD)/(CC*AA-B3*DD)

ELAS2(2,1,N) = ((BOSIG(2,2,N)-ESIG2(1,1,N))*AA-(ESIG2(3,1,N)
1 ~BOSIG(2,2,N))*BB)/(CC*AA-EB%0D)

ELAS2(2,2,N) = ((ESIG2(3,1,N)-BOSIG(2,2,N))*CC~-(BOSIG(2,2,N)
1 -ESIG2(1,1,M))*DD)/(CCHAA-BBEDD)

ELAS3(2,1,N) = ((BOSIG(2,3,N)-ESIG3(1,1,N))*AA-(ESIGI(3,1,N)
1 ~BOSIG(2,3,N})*EB)/(CC*AA-BB*DD)

ELAS3(2,2,N) = ((ESIG3(3,1,N)-BOSIG(2,3,N))*CC-(BOSIG(2,3,N)
1 -ESIG3(1,1,N))%DD)/(CCHAA-BB*DD)

REPLACE ELAS FOR INTERIOR ELEMENTS

DO 91 IDEX = 1,NUMEL
DO 92 JDEX = 1,NUMEL

GAUSS POINT 1

IFCCIX(1,N).NE.IX(4,IDEX)).OR. ¢ IX(2,N) NE IX(3,IDEX)))GO TO 10
IFCOIX(1,N).NE.IX(2,JDEX)).OR.(IX(4,N).NE.IX(3,JDEX)))GO TO 10

AA = YY(4,2,N)-YY(4,2,I0EX)
BB = YY(2,2,N)~YY(2,2,JDEX}
CC = YY(2,1,N)-YY(2,1,JDEX)
0D 2 YY(4,1,N)~YY(4,1,IDEX)
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00000790
00000600
00000810
03000820
00000330
00000340
00000350
00002360
00000370
00000380
00000390
00000400
00009410
00000420
00000430




S ———

=000

nOoOoOoO

ELAS1(1,1,N) = ((ESIGL(2,1,N)-ESIGL(2,1,J0EX))NAA-(ESIGL(4,1,N) 00000440

1 -ESIG1(4,1,IDEX)INSB)I/(CCHAA-ES-0D) 00000450
ELAS1(Y,2,H) = ((ESIGL(4,1,N)-ESIGL(4,1,IDEX))INCC-(ESIGL(2,1,N)  COCIC4H40
1 -ESIGL(2,1.J0EX)I*DD)I/(CCHAA-ES~DD) 0090C470
ELAS2(1,1.M) = ((ESIGR2(2,1,N)-ESIG2(2,1,JDEX))I%AA-(ESIG2(4,1,N) 00000480
1 -ESIG2(4»1,IDEX))*ES)/(CCHAA-EDNDD) 00000450
ELAS2(1,2,N) = ((ESIG2(4,1,N)-ESIG2(4,]1,IDEX))%CC-(ESIG2(2,1,N) 00000500
1 -ESIG2(2,1,JUEX) I%CD )/ (CCHAA-EB*DD) 00000510
ELAS3(1,1,N) = ((ESIG3(2,1,N)-ESIG3(2,),JDEX))*AA-(ESIG3(4,1,N) 00000520
1 -ESIG3(4,1,IDEX))=BB)/(CCHAA-BB¥DOD) 00000530
ELAS3(1,2,N) = ((ESIG3(4,1,N)-ESIG3(4,]1,IDEX))%CC-(ESIG3(2,1,N) 00000540
1 -ESIG3(2,1,JDEX))I%DD)/(CCHAA-BBADD) 00000550

00000560
GAUSS POINT 4 00000570

00000530

IF(C(IX(1,N).NE. IX(2,IDEX)).OR.(IX(4,N).NE.IX(3,IDEX)))G0 TO 20 00000590
IFCCIX(3,N) . NE, IX(2,JDEX)}.OR. (IX(4,N).NE.IX{1,JDEX)))GO TO 20 00000600

AA = YY(1:2,JOEX)-YY(1,2,N) 00000510

88 = YY(3,2,N)-YY(3,2,IDEX) 00000620

CC = YY(3,1,N)-YY(3,1,I0EX) 00000630

0D = Y¥(1,1,JBEX3-YY(1,1,N) 00000640

ELAS1(4,1,M) = ((ESIGL(3,1,N)-ESIG1(3,1,IDEX))*AA-(ESIGL(1,1,JDEX)00000650

1 -ESI51(1,1,N)})%E8)/(CC*AA-BRXCD) 00000660
ELAS1(4,2,N) = ((ESIG1(1,1,JDEX)-ESIGR(1,1,N))*CC-(ESIGL(3,1,N} 000C3670

1 -ESIG1(3,1,IDEX))I*DD)/(CCHAA-EB*DD) 00000660
ELAS2(4,1,N) = ((ESIG2(3,1,N)-ESIGC(3,1,IDEX))I%AA-(ESIG2(1,1,JDEX)00000690

1 -ESIG2(1,1,N})*B8)/(CC*AA-BB+*DD) 000607C0
ELASZ(4,2,N) = ((ESIG2(1,1,J0EX)-ESIG2(1,1,N))I%CC-(ESIG2(3,1,!13 00000710

1 -E51G2(3,1,IDEX) )*0D)/(CC¥AA-BB*DD) 00000720
ELAS3(4,1,N) = ((ESIG3(3,1,N)-ESIG3(3,1,IDEXT)*AA-(ESIG3(1,1,JDEX)00000730

1 -ESIG3(1,1,N))*BB)/(CCHAA-EB¥DO) 00000740
ELAS3(4,2,N) = ((ESIG3(1,1,J0EX)-ESIG3(1,1,N))I%CC-(ESIG3(3,1,N) 00000750

1 -ESIG3(3,1,IDEX))*DD)/(CCHAA-ES*DD) 00000760
00000770

GAUSS POINT 3 00000730

00000790

IFCCIX(3,N).NE.IX(2,IDEX)).OR.(IX(4,N).NE.IX(1,IDEX)))GO YO 30 00006800
IFCEIXI2,N}.NE . IX(1,JDEX)).CR.(IX(2,N).NE.IX(4,JDEX))IGO TO 30 ©€0000810

AA = YY(2,2,IDEX)-YY(2,2,:N) 00000320
BB = YY(4,2,JDEX)-YY(4,2,N) 00000830
CC = YY(4,1,J0EX)-YY(4,1,N) 00000340
DD = YYE2,1,IDEX)-YY(2,1,N) 00000850
ELAS1(3,1,N) = ((ESIS1(4,1,JDEX)-ESIGL(44),N)I%AA-(ESIGL(2,]1,IDEX)00000850
1 -E51G1(2,1,N})#BB}/{CCHAA-BO*DD) - 00000870
ELAS1(3,2,N) = ((ESIG1(2,1,IDEX)-ESIG1(2,1,N))%CC~(ESIG1(4,1,JDEX)00000850
1 -ESIG1(4,1,N})*DD}/(CCHAA-EB*DD) 00000390
ELAS2(3,1,N) = ((ESIG2(4,1,JDEX)-ESIG2(4,1,N))I*AA-(ESIG2(2,1,IDEX)00C00900
1 -ESIG2(2,1,N))¥*BB)/(CCH¥AA-BE*0D) 00000910
ELAS2(3,2,N) = ((ESIG2(2,1,IDEX)-ESIG2(2,1,N))*CC-(ESIG2(4,1,JDEX)00000920
1 -ESIG2(4,1,N)I%00)/(CC*AA-EB*DC) 00000530
ELAS3(3,1,N) = ((ESIG3(4,1,JDEX)-ESIG3(4,1,N))*AA-(ESIG3(2,1,IDEX)00000540
1 -ESIG3(2,1,N))¥EB)/(CCHAA-BBX0T) £0000%50
ELAS3(3,2,N) = ((ESIG3(2,1,IDEX)-ESIG3(2,1,N)I%CC-(ESIG3(4,),JIDEX)00000560
1 -ESIG3(4»1,N))%0D)/(CCHAA-BB*DD) 000003970

00000980
GAUSS POINT 2 00000990

00001000

IFUCIX(2,N).NE.IX(1,XDEX)I.OR.(IX(3,N).NE.IX(4,IDEX))IGO TO 92 00001010
TFCCIXCLoN) . NE.IX(4,JDEX)).OR. (IX(2,N).NE.IX(3,JDEX)))IGO TO 92 00001020
AA = YY(3,2,N)-Y¥(3,2,JOEX) 00001030
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3
B8 = YY(1,2,IDEX)-YY(1,2,N) 00001040
CC = YY(1,1,IDEX)-YY(1,1,N) 00001050
. DD = YY(3,1,N)-YY(3,1, 0EX) 00001C60
3 ELAS1(2,1,N) = ((ESIGl(1l,1,IDEX)-ESIG1(1,1,N)I%AA-(ESIG1(3,1,N) 00001070
1 -ESIG1(3,1,J0EX)})*BB)/(CCHAA-EB*DD) 03001080
ELAS1(2,2,N) = ((ESIGL(3,1,N)-ESIG1(3,1,JDEX))*CC~(ESIG1(1,1,IDEX)00001090
1 -ESIG1(1,1,N))*DD)/(CC*AA-EBXCD) 00001100
ELAS2(2,1,N) = ((ESIG2(1,1,IDEX)-ESIG2(1,1,N))InAA-(ESIG2(3,1,N) 00001110
1 -ESIG2(3,1,J0EX)}%BB)/(CCHAA-EB¥DD) 00001120
ELAS2(2,2,N) = ((ESIG2(3,1,N)-ESIG2(3,1,JDEX))ICC~(ESIG2(1,1,IDEX)00001130
1 -ESIG2(1,1,N))*D0)/(CCHAA-BB*DD) . 00001140
ELAS3(2,1,N) = ((ESIG3(1,1,IDEX)-ESIG3(1,1,N))*AA-{ESIG3(3,1,N) 00001150
1 -ESIG3(3,1,JDEX))*EB)/(CC*AA-EB%0D) 00001160
ELAS3(2,2,N) = ((ESIG3(3,1,N)-ESIG3(3,1,JDEX))*CC-{ESIG3(1,1,IDEX}00001170
1 -ESIG3(1,1,N))%DD)/(CC*AA-BEB*DD) 00001180
92 CONTINUE 00001260
91 CONTINUE 00001270
c SET UP LOCAL ARRAYS FOR CALCULATING ESIG(LL,2,N) 00001280
DO 58 I=1,NEN 00001290
IT = IX(I,N) 002013c0
IF (II.KE.0) GO TO 55 00001310
TL(I) = 0. 00001320
B3 53 J=1,NDNM 00CO01330
53 XL(J,I) = 0. 00001340
DO 54 J=1,NDM 00001350
uLJ,I) = 0. 00001350
UL(J,I+NEN) = 0. 00001370
54 Lo(J,I) = 0 00€01330
G0 TO 58 000013%9
55 IID = II*NOF-NOF 00001400
NEL = I 00001410
TLI} = T(II) 00001420
DO 56 J=1,NDM 00001430
56 XL(J,I) = X(J,II) 00001440
00 57 J=1,NDF 00001459
K = JABS(ID(J,II)) 00001460
UL(J,I) = F(J,IX)*FROP 00001470
UL(J,I+NEN) = UD(J,II) 00001480
IF (K.GT.0) UL(J,I) = U(X) 00001450
IF (DFL) K = IID + J 00001500
57 LDtJ, Iy = K 00001510
58 CONTINUE 00001520
c FORM ELEMENT ARRAY 00001530
MA = IX(NEN1,N) 00001540
IF (IE(HMA).NE.IEL) MCT = 0 00001550
IEL = IE(MA) 00001560
CALL ELMLIB(D(1,MA),UL,XL,IX(1,N},TL,S,P,NDF,NDM,NST,7) 00001570
-101  CCNTIKUE 00001580
YMAX =DMAX1(DABS{ESIG1(1,2,1)-ESIG1(1,1,1)),DABS(ESIG2(1,2,1) 00001590
1 -ESIG2(1,1,1)),DABS(ESIG3(1,2,1)-ESIG3(1,1,1))) 00001600
D0 93 I=1,NUMEL 00001610
D0 93 J=1,4 00001620
XHMAX =DMAX1(DABS(ESIG1(J,2,1)-ESIG1(J,1,I)),DABS(ESIG2(J,2,1) 000601630
1 -ESIG2(J,1,1)),DABS(ESIG3(J,2,I)-ESI6G3(J,51,1))) 00001631
93 IF (XMAX.GT.YMAX) YMAX=XMAX 00001632
- IF (YMAX.LE.TOL1) GO TO 102 00001633
- NSTEP = NSTEP + 1 00001634
00 90 K=1,NUMEL
00 50 J=1,4

ESIG1(J,1,K) = ESIGl(J,2,K)
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ESIG2(J,1,K) = ESIG2(J,2,K)
S0 ESIG3(J,1,K} = ESIG3(J,2,K)
- IF (NSTEP.GE.10) GO TO 102 00001635
3 IF (NSTEP.EQ.1.0R.NSTEP.EQ.3.0R.NSTEP.EQ.5. 00001636
: 1 OR.NSTEP.EQ.9) GO TO 9& 00001637
G0 T0 5 00001638
3 9  WRITE (6,1000) O,HEAD,TIME,NSTEP 00001639
' WRITE (6,1010) v 00001640
DO 95 I=1,NUMEL 00001641
95  WRITE (6,1020) I,((YY(J,1,1),YY(J,2,1),ESIGL(J,2,1) 00001642
1 ,ESIG2(J,2,1),ESIG3(J,2,1)),41,6) 00001643
G0 T0 5 00001644 P
c LOOP ON ELEMENTS: ELASTIC ITERATION COMPLETE 00001649 i
102  CONTINUE 00001650 y
IEL = 0 00001650 O
DO 110 N = 1,NUMEL 00001670 i
¢ SET UP LOCAL ARRAYS 00001680 §
00 108 I = 1,NEN 00001690 .
3 II = IX(I,N) 00001700
IF (IX.NE.O) GO TO 105 00001710
TL(I) = ©. 00001720
DO 103 J=1,NOM 60001730 ;
103 XL(J,I) = 0. 00001740
] DO 104 J = 1,NOF 00001750
! uLJ,I) = 0. 00001760
UL(J, I+NEN) = 0, 00001770
106  LD(J,7) =0 00001780
GO TO 108 00001790 !
105 IID = II*NDF - NDF . 00001800
NEL = I 00001810
TL(I) = T(ID) 00001811
DO 106 J=1,NDM 00001812
106 XtJ,I) = X(J,II) 00001813
DO 107 J=1,NOF 00001814
K = IASS(ID(J,II)) 00002815
UL(J,I) = F(J,LI)*PROP 00001816 i
UL{J,I+NEN) = UD{J,II) 00001817
IF (K.GT.0) UL(J,I) = UIK) 00001318
IF (DFL) K = 11D + J 00001819
107 WD(J,I) = K 00001820
108  CONTINUE 000015821
c FORM ELEMENT ARRAY 00001822
MA = IX(NEN1,N) 00001823
IF(IE(MA).NE.IEL) MCT = O 00001824
IEL = IE(MA) 00001825
CALL ELMLIB(D(1,MA),UL,XL,IX(1,N),TL,S,P,NOF,NDM,NST,1SN) 00001826
c ADD TO TOTAL ARRAY 00001827
- IF(AFL.OR.BFL.OR.CFL) CALL ADDSTF(A,B,C,S,P,JDIAG,LD,NST,NEL¥NDF, 00001325 }
1 AFL.BFL,CFL) 00001829
110  CONTINUE 60001839
1000 FORMAT(AL,20A4,//5X, 'ELASTIC FLUID STRESSES AT GAUSS FOINTS', 00001831
1 5X,'TIME',613.5,//1X, 'VISCOELASTIC ITERATION NUMBER:',14//) 00003832
1010 FORMAT(1X, "ELMT’,11X, '1-CCORD"’,6X, '2-COORD ' 20X, 00001333
1 *ETAU-XX',7X, 'ETAU=YY',7X, 'ETAU-XY'//) €0001834
1020 FCRMAT(I5,/4(10X,2613.4,13X,3613.64/1//) 00001835
- RETURN 00001849
- END 00001850
SUBROUTINE CMATRX(C,J,S1G,SHP) 00000010
¢ 00000020
‘ (R 222222222222 22222222223 U663 9636 95 26 D666 36 95 36 36 36 36 36 36 3636 36 3695 20 36 206 36 0 00000030
:
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1 U6 36 3663630 36 36 36.00 36 3600 30 36066 96300006 3¢ CHMATRX 6066 36 3636 365 363636 36 36 36 136 36.36 96 96 06 24 264696 04 3¢ 28 00000040
230006 36 06K 606 00 30 b 0 0606 16 36 0006 3644 B 3606000 0600606 000 SN NN 00000050
: c 00000060
2 IMPLICIT REAL*8(A-H,0-Z) 5 00000070
DIMENSION C(1),81G(7),SHP(3,9) 00000080
4 c 000000950
CALL PZERO(C,6) 00000100
[ 00000110
[ ONLY 20 FLOW TREATED HERE . 00000120
c 00000130
C{1) = 2.DO%(SIG(1)*SHP(1,J)+SIG(3)I%SHP(2,J)) 00000140
C(2) = 0.00 00000150
C(3) = SIG(2)%SHP(2,J)+SIG(3)I%SHP(1,J) 00000160
. C(4) = 0.00 00000170
C(5) = 2.D0%(SIG(2)%SHP(2,J)+SIG(3)I%SHP(1,J)) 00000180
C(6) = SIG(1)%SHP(1,J+SIG(3)%¥SHP(2,J)) 00000190
RETURN 00000200
END 00000210
SUBROUTINE FPSIG (XX,ESIGl,ESIG2,ESIG3,S1G,ITYPE,NDF) 00000010
c 00090020
036 96963636 36 36.36-00-36-06 0696 363636 36 6 96 36 34 36-96 96 FPSIG 263630 36 96 96 36 36 936 36 363606 16 6.6 96 96 36 0696966 1646 000600030
(3696969636 6365636 36 36-96 36 36 96 96 33636 36 96 6 3¢ 696636 3696 56 136 3 36 33016 366366 9636 3 696 36 ¢ 00000040
c 060000050
IMPLICIT REAL*8(A-H,0-2) 00000060
DIMENSION %X(1),8IG(1) 000850070
COMMON /CDATA/ O,HEAD(20),NUMNP,NUMEL ,NUMMAT ,NEN,NEQ, IPR 00000080
COMIION /ELDATA/ DM,N,MA,MOT,IEL,NEL 00000060
CCHMMON /TDATA/ TIME,DT,Cl1,C2,C3,C4,CS . 00000100
. COMMON /FVISC/ K2 00000110
c 00000120
GO TO (51,52,53,54), ITYPE 00000130
[+ 00000140
c PLANE FLOW 00000150
[ 00000160
51 MOT=MOT-1 00000170
IF (K2.LE.2) GO TO 509 00000240
A = S16(1) + ESIGI 00000250
B = SIG(2) ¢+ ESIG2 00000260
€ = SIG(3) + ESIG3 00000270
509 IF (MOT.GT.0) GO TO 510 00000180
IF (NDF.LT.4) WRITE (6,5000) O,HEAD,TIME 00000150
- 5000 FORMAT (Al,20A4,//5X, ‘FLUID VISCOUS STRESSES AT GAUSS POINTS:', 00000200
1 B5X,'TIME’,G13.5, 00000210
2 /71X, 'ELMT MATL',6X,'1-COORD',6X,*'2~CCORD',5X, 00000220
N 3 'FRESSURE ", 7X, *TAU-XX"', 7X, ' TAU=YY ', 7X, ' TAU-XY'/) 00000230
: IF (NDF.LT.4.AND.K2.GE.3) WRITE (6,5010) 00000280
5010 FORMAT (//5X,'TOTAL VISCOUS AMD ELASTIC STRESSES ATGAUSS POINTS: 00060260
- 1'7) 0C000300
IF (NDF.GE.4) WRITE (6,5020) O,HEAD,TIME 00000301
5020 FORMAT (Al,20A%4,//5X,'TOTAL VISCOUS AND ELASTIC STRESSES AT 00000302
1 GAUSS POINTS:',5X,'TIME',G13.5, 00800305
2  //1X,'ELMT MATL',6X,'1-COCRD',6X, '2-CCORD",5X%, 00000306
° 3 'PRESSURE ' » 7X» ' TAU-XX"', 7X, 'TAU=-YY ', 7X, ' TAU-XY'/) 00000307
IF (NDF.GE.4) GO TO 509 00000308
IF (X2.GE.3) MOT=19 00000310
- IF (K2.GE.3) GO TO 508 00000320
- MOT = 50 00000330
508 CONTINUE 00000350
510 IF (NDF.LT.4) WRITE (6,5001)N,MA,XX(1),XX(2},SIG(7),(SI6(),I=1,3)00000360
IF (NDF.GE.4) WRITE (6,5009)N,MA,XX(1),XX(2) 00000363
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5002

530
5003

54

1
2 //71%,'ELMT MATL',6X,'1-COORD',6X, *2-COORD" ,5X,
3 'PRESSURE',7X, ‘TAU-RR'»7X, 'TAU=ZZ', 7X, 'TAU=TT* , 7X» ' TAU-RZ' /)

FORMAT (215,2613.4)

IF (K2.GE.3) WRITE (6,5011) SIG(5),SIG(6),A,8,C
FCRUAT (215,6613.4)

FCRMAT (1X,'RE = *,613.4,'WS = *,613.4,13X,3G613.4)
RETURN

RETURN

AXISYMMETRIC FLOW

MOT=HOT-1

IF (MOT.GT.0) 60 TO 530

WRITE (6,5002) O,HEAD,TIME

FORMAT (Al,20A%4,//5X,'FLUID STRESSES AT GAUSS POINTS:',
5X, 'TIME',613.5,

MOT = 50

KRITE (6,5003) N,MA,XX(1),XX(2),51G(7),(SIG(I),I=1,4)

FORMAT (215,7613.4)

RETURN

RETURN
END
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00000366
00202370
00000330
00000390
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00600430
00000490
00080500
00000510
00000520
00000530
00000550
03000550
00000560
00000570
00000550
00000590
00000600
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APPENDIX 4

Input Data Set Listings

Run 1 - Linear Cross Channel Flow

18-9 Node Elements

Run 3 - Linear Cross Channel Flow

72-8 Node Elements

Run 4 - Convection (Re = 0.4) Cross Channel Flow
18-9 Node Elements

Run 6 - Visgcoelastic (Ws = 0.02) Cross Channel Flow
18-9 Node Elements

Run 13 - Viscoelastic (Ws = 0.001) Entry Flow

24-9 Node Elements

Run 20 - Linear Entry Flow Fully Developed Boundary
Conditions 24-9 Node Elements

(Note: Run 20 is not listed in Table 1)
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BRC4066

(FOREGROUND ) :

OUTFUT FROM TSO XPRINT

AT 13:42:06 ON 12/05/60 - BRC4066.TEST.DATA

FEAP CROSS-CHANNEL FLOW = NEWTONIAN (TEST 7)
0

NINE-NODE LAGRAGIAN PENALTY ELEMENT

91 18 i1 2 2 9
COOR
17 000 000
85 0 200 000
2 7 000.166666700
86 0 2D0.166666700
3 7 0D0.333333300
87 o 200.333333300
6« 7 000 .500
88 o 200 .500
s 7 0D0.6666667D0
89 o 2D0.666666700
6 7 000.833333300
50 o0 200.233333300
7 7 000 100
91 o 200 100
ELEM
1 1 1 15 17 3
7 1 3 17 19 s
13 1 5 19 21 7
MATE
1 s
1 0 2 1 1.0
2 .10004009 .7900+003
BOUN
1 7 -1 -2
85 © 1 1
2 1 -1 -1
6 0 1 1
8 1 -1 -1
99 o 1 1
? 7 -1 -1
8 o0 1 1
FORC
7 7 -102 000
91 o0 -102 000
END
MACR
““utan
FCRM
SOLV
0IsP
STRE
REAC
END

- STOP

8 16
10 18
12 20

.0000

10
12
14

2
4
6

9
11
13

14
14
14

Input Dataset Run No.

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000089
00000050
00000100
00000110
60000120
00000130
00000140
000001590
00000160
00000170
00000180
000C0150
000002C0
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000275
00000280
00000290
00000300
00000310
00000320
00008330
00000340
00000350
00000360
08000370
00300330
00000390
00000400
000004380
00000450
00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580




2t
Input Dataset Run No. 3
BRC4066 (FCREGROUND): OUTFUT FROM TSO XPRINT
! AT 13:42:48 ON 12/05/80 ~ BRC4066.TEST2.DATA
FEAP CROSS-CHANNEL FLOW--LINEAR NEWTONIAN//72 ELEMENTS 00000010 ;
23 72 1 2 2 8 0 00000020 :
cooR 00000030 !
11 000 0Do 00000040 |
13 0 000 100 00000050 :
; 14 1.083333100 ono 00000060 {
20  0.083333300 100 00000070 ;
21 1.1666667D0 oDo 00000080 ¢
3 33 0.1666667D0 100 00000090 [
: 3 1 .2500 ono 00000100 i
. 60 0 .2500 100 00000110 I
i 41 1,333333200 000 00000120 yl
53 0,333333300 100 00000130 i
54 1.4166667D0 0Do 00000140 :
s 60  0.4166567D0 100 00000150
81 1 .500 000 00000160
730 .500 100 00009170
& 7¢  1.583333300 009 00000180
80  0.583333200 109 029£9150
81  1.6566%66700 000 00000200
93 0.6666657D0 100 00000210
9 1 .75D0 oD0 00000220 j
1000 0 .7500 100 00066230
101 1.833333300 000 800002490 .
113 0.833333300 100 00000250 3
116 1.916666700 ono 00000260
120 0.9166667D0 100 00000270
120 1 1D0 t00 00000280
133 0 100 100 00200250
13%  11.08333300 Do 00000300
140 01.033333D0 100 00000310
161 11.16656700 ¢Do 00000320 .
153 01.16656700 109 00000330 :
15 1 1.2500 00 00000340 :
160 0 1.2500 100 00000350 ;
161 11.33333100 0D0 00000350 : ﬂ
173 01.33333300 100 00000370
174 11.41666700 :1] 00000380 1
180  01.41665700 100 00000350
181 1 1.500 oD 00000400
193 0 1.500 100 00050410
154  11.58333300 D0 00000420
200  01.53333700 100 00000430
- 201 11.666667D0 009 00000460 ;
213 01.66666700 ioe 00000450
214 1 1.75D0 €00 00000460
220 0 1.75D0 100 00000470
221 11.833333D0 oDo 00000450
233 01.83333300 100 00000450
236  11.91666700 0D0 00000500
240  01.91666700 100 00000510
- 291 1 200 000 00000520
- 253 0 200 100 00000530
00000540
ELEM 00000550
1 1 1 21 23 3 16 22 18 2 20 00000550
b |
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3
v
3

13 1 3 23 28 5 15 26 16 4 20 00000570

25 1 5 25 27 7 16 26 17 6 20 00000580

37 1 7 27 29 9 17 8 18 8 20 00000550

49 1 9 29 3 11 18 36 19 10 20 00000600

61 1 11 31 33 13 19 32 20 12 20 00000610

00000620

MATE 00000630

1 §  EIGHT-NCDE SERENDIPITY PENALTY ELEMENT 00000640

1 1 1 1.0 00000650

2 .1000+009 .7900+003 .0000 00000660

00000670

BOUN 00000680

1 1 -1 -1 00000690

13 o 1 1 00000700

14 20 -1 -1 00000710

234 0 1 1 00000720

21 20 -1 -1 000060730

221 o 1 1 00000740

241 1 -1 -1 00000750
253 0 1 1 00000760 i
2 20 -1 -1 00£00770 ;

240 0 1 1 00000780

33 20 -1 -1 00000750

233 0 1 1 0000300

00000810

FCRC 00000820

20 20 -102 000 00000830

1 240 ° -102 000 00000840
13 20 -102 000 00000850 ;
253 0 =102 000 00000860 i3

00000870

END 00000830

MACR 00000350
TAHG 000005C0 ;
FCRN 00000910 i

SOLY 00000920

DISP 00000930

STRE 00000540

END 000060550

sToP 00000560

1 .
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Input Dataset Run No. 4

BRC4C66 (FCREGROUND): CUTPUT FRCHM TSO XPRIMT
AT 16:22:13 ON 12/05/80 - BRC4066.TEST.DATA
FEAP CROSS-CHANNEL FLOW - NEWTONIAN WITH CONVECTION 00000010
91 18 1 2 2 L 0 90000020
-COCR 00000030
1 7 (1.]] 000 00¢00040
8s ] 200 coo 00000050
2 k4 000.1666667D0 00000060
es [} 200.165666700 060000070
3 3 7 0D0.333333300 00000080
- 87 0 200.333333300 00000090
4 7 000 .500 00000100
- &8 0 200 .5D0 00000110
1 s 7 000.6666667D0 06900120
89 0 2D00.6666667D0 00009130
6 7 000.833333300 00000140
<g 0 200.8333333D0 00000150
7 ? 000 100 06000160
91 0 200 100 60000170
00000180
ELEM 00000190
1 1 1 1 15 17 3 8 1 10 2 9 14 ©°000200
? 1 3 17 19 5 10 118 12 4 11 16 £3000210
13 1 5 19 21 7 12 20 14 6 13 14 00000220
1 00000230
: MATE 00000240
1 S  NINE-NODE LAGRAGIAN PENALYY ELEMENT 09000250
1 0 b 1 1.0 00000260
2 .1000+4009 .7900+003 1.6000 00000270
00090275
BOUN . 00000250
1 ? -1 -1 00000290
85 % 1 1 00300300
2 1 -1 -1 00000310
6 Q 1 1 00000320
86 1 -1 -1 00000330
9 ) 1 1 00000340
7 7 -1 -1 00000350
89 s 1 1 00000350
00000370
FORC ; 00000330
7 7 -102 oo 00000350
9 0 ~102 000 00900400
00000430
END 00003490
<JMACR 0000500
or 1. 00000505
Loo? 3 00000520
UTAN o 00020530
FORM 000005%0
Y 00000550
pISe 1 00000560
] STRE 1 00000555
y L TINE 00000567
«NEXT 00000570
1 pISP 00000580
STRE 00000590
- REAC 00000595
&
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STOP
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00000600
00000610




. Input Dataset Run No. 6
BRC4066 (FCREGROUND): OUTPUT FROM TSO XPRINTY
AT 13:50:54 ON 12/07/60 - ERC4066.TEST.DATA
' FEAP SGUARE CAVITY- OLDROYD VISCOELASTIC (RNO=0, P4=1, WS=.01) 00000010
r’ 91 18 1 2 2 9 (] 00000020
coer 00000030
1 7 000 0D0 00000040 /
85 0 200 oDo 00000050 .
! 2 7 000.166666700 00000060
86 0 200.1666667D0 00000070
3 7 000.333333300 00000080
87 O 200.333333300 00000090
o 7 000 .5D0 00000100
88 0 200 .500 00000110
s 7 0D0.666666700 00000120
89 O 2D0.6666667D0 00000130
6 7 000.833333300 00000140
90 0 200.833333300 00000150
7 7 000 100 00000160
CY 200 100 00500170
) 00000180
ELEM 00000190
1 1 1 15 17 3 8 16 10 2 9 16 00000200
7 1 3 17 19 5 10 118 122 4 11 14 00000210
13 1 5 19 21 7 12 20 & 6 13 14 00000220
00000230 :
MATE 00000240 :
1 5  NINE-NODE LAGRAGIAN PEMALTY ELEMENT 00000250
1 0 3 1 1.0 00000260
2 .10004009 .79004003 .39504007 00000270
00000275 1
BOUN 00000280 i
T 7?7 -1 -1 00000290
85 ] 1 1 00000300
2 1 -1 -1 . 00000310
6 o 1 1 00000320 )
86 1 -1 -1 00000330 ]
| £3 0 1 1 00000330 1
: 7 7 -1 -1 00000350
89 O 1 1 00000360 ‘
00000370 i
00000380 !
000 00000390 !
0D0 00000400 {
00000485 :
00000490 :
00000500 :
00000510
00000520 4
00000530 ;
00000540 !
00000550 f
00000558 ]
00000566 ;
00000575 .
00000585 i
00000588
00000591
00000595
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]
END 00000600
sToP 00000610
3
—
-
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) Input Dataset Run No. 13
BRCA06S (FOREGROUND): OUTPUT FROM TSO XPRINT

AT 15:38:57 ON 12/07/80 ~ BRC4066.TESTI.DATA

FEAP ENTRY FLOW ~ OLDROYD VISCOELASTIC (RHO=0, Pexl, NSz0.0005) 00000010
120 26 12 2 2 » 0 00000020
COOR 00000030
1 b 000 ono 00000040
® 0 000 100 00000050
10 .12500 000 00000064
8 o .12800 100 00000070
19 1 .2500 0Do 00000060
27 o .2500 100 00000090
28 1 .375D0 000 00000100
36 0 .37500 100 00000110
37 1 .5D0 000 €0000120
45 0 .500 100 00000130
a8 1 .625D0 000 000901490
56 0 .62500 100 00000150
55 1 .75D0 0D 00000160
63 0 .7500 100 00000170
66 1 .875D0 000 40200180
7 ° .87590 100 00009150
73 1 100 e00 00000200
81 ° 100 100 00000210
82 5 1.125D0 .2500 00000220
nr o 200 .2500 00000230
83 5 1.12500 37500 00000240
118 0 200 .375D0 00000250
. 8 5 1.12500 500" . 00000260
119 o 200 .500 00000270
8 5 1.125D0 .62500 40000280
120 ¢ 200 .625D0 00000290
866 5 1.12500 .7500 00000300
121 0 200 .7500 00000310
00200320
ELEN 00000330
1 1 1 19 21 3 10 20 12 2 11 18 00000340
s 1 3 21 23 5 12 22 14 4 13 18 00000350 1
9 1 % 23 2B 7 14 24 1 & 15 18 00000350
13 1 7 25 27 9 16 26 18 &8 17 18 00000370
17 1 75 87 8 77 82 88 8 76 83 O 00000380
18 1 87 97 99 83 92 68 % 88 93 10 00000390
21 1 77 89 91 79 8 90 8 78 85 0 00000400
22 1 89 99 101 91 9 100 9% 90 95 10 00000410
00000420
MATE 00000430
e 1 5  NINE-NODE LAGRANGE PENALTY ELEMENT 00000440
1 0 3 1 1.0 00000450
2 .10004009 .7900+4003 .0000 .7950+008 00000460
00000470
BOUN 00000480
1 9 a3 -1 00000490
73 0 1 1 00000500
2 1 -1 -1 00000510
- s o 1 1 00000520
1 - 9 ¢ -1 -1 00000530
81 (] 1 1 00000540
; 7% 0 1 1 00000550
7 6 1 1 00000560
o
; !
F |




79
80
82
117
86
121
118
119
120

FORC

END
MACR
oY
LOOP
UTAN
FOmM
soLv
ISP
STRE
TIME
NEXT
DIsP
STRE
REAC
END
STOP

cooowouwnoo

[- N

»
OOt 0
'

1 pe 0t Bt 1 B Bt

>
o
[

102

00200570
00000530
00000590
00000600
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000690
000006700
00000710
00000720
00000730
00000740
00000750
00000760
00000770
00000780
00000790
00C00800
00000310
00000820
000003830
00000840
00000850
00000860




BRC4066

AT 18:59:50 ON 12/18/80 - BRC4066.TEST3.DATA

FEAP ENTRY FLOW - OLDROYD VIS"OELASTIC (RHO=0, P4=1, WS20.0005)
24

121
COOR

1

9
10
18
19
27
28
36
37
45
46
54
55
63
64
72
73
sl
82
117
a3
118
84
119
85
120
&6
121

ELEM
1
5
9
13
17
18
21
22

MATE

N o

CUOVOVOVNOVOHOMHMOMOONOMOMOMO M

bl b bt b et et Pt i

1)
0

oOWVWOoOrMOOO YV

{ FOREGROUND ) ¢

l 2

000

0o
.12500
.12500
.2500
.2500
.37500
.37500
.500
.500
62500
.62500
7500
.7500
.87500
.87500
100

100
1.12500
<po
1.12500
<no
1.12500
Do
1.12500
Do
1.12500
200

1 19
3 a
5 23
7 25
% 87
87 97
77 89

4 9

000
100
000
100
000
100
(11
100
ono
100
000
100
000
100
000
100
000
100
.2500
.2500
.37500
.37500
.500
.500
-62500
.62500
.7500
. 7500

21
23
25
27
89 77

NN

99 89 .

A 79

89 99 101 91

¢

10
12
14
16
82
92
84
%

20
22
24
26
88
98
90

100

12
14
16
18
84
9%
86
96

OUTFUT FROM TSO XFRINT

2
4
[]
8
76
88
78
90

NINE-NODE LAGRANGE PENALTY ELEMENT

1 1

OO e

.10004009 .7900+003

.0000 .7950+008

119

11

1%
17
83
93
8s
95

S

18
18

18
10
10

Input Dataset Run No.

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00€00200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000230
00000250
00000300
00000310
00000320
00000330
00000340
00000350
000003560
00000370
00000380
00000350
00000%00
00000410
00000420
00800430
00000440
00000450
00000460
00000470
00000480
00000490
00000500
00000503
00000506
00000510
00000520
000600530
00000540

[ S Y




s

7%
80
82
17
86
121
118
19
120

FORCT

NV PUN

MACR
UTAN
FORM
SoLv
DIsSP
STRE
REAC
END

sTOP

CX-X-X- A RN K-N-4

OO O e
[
o 30 00 10 o B Bt 0 B

120

00000550
00000580
00000590
00900¢00
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000681
00000682
00000683
00000684
00000685
00000690
00000700
00000710
00000720
00000750
0000760
00000770
00000780
00000790
00000840
00000850
00000560




APPENDIX 5

Brief Review of Gyroscope Theory

This Appendix is presented for the benefit ot the materials
engineer who may not be familiar with the theory of gyroscopic
behavior. The discussion is taken entirely from Wrigley et. al.
[36]. Figure 18 shows a cutaway of the single degree of freedom
gyroscope used in this study. The normal assumptions for the

description of a gyro element performance are:

1. The rotor spins about an axis of symmetry.

2. The rotor spins at constant speed.

3. Spin angular momentum is much greater than non-spin
angular momentum.

4. Center of mass of the rotor and gyro element coincide,

and 5. The rotor bearing structure is rigid.

For a platform stabilized single degree of freedom gyro,

these assumptions lead to the performance equation: H
: UM
- d?e de - _ ( OA )
. Ig E:; + cg atc + kge = Hs[wIA Wemd emSRA + Hs
o1 dwoA I
g dt

For integrating gyros, a restraining torsional spring is

eliminated, hence kg = 0 and the performance equation becomes:

H M dw
ae . de _ ”( OA) _ oA
Tgacz taE "¢ [“’m Womda = %¥gpa * H, Tg —at

PU— - S e e s r———— it - m e+ e e e e e e e -




Cinann e 20

it o

L

Therefore:

H u(M
ae s - ( OA)
Tggq t o= cgf(“’IA Wema = Owgpa * Ts')dt Tg Yoa
Where
6 = Output axis rotation
Wrp = Input axis angular rate
Yomd = Commanded output axis angular rate
Wopa = Spin reference axis angular rate
Hs = Rotor angular momentum
T = I 2 time ¢ ant
g g/cg onst
Ig £ gyro output axis effective moment of inertia
cg z float damping coefficient
U(MOA;)E Uncertain torque aboat output axis

Assuming 6 & Tg <<1 & Wip = Womg’ the eguation becomes

de _1

This equation shows that the gyro drift uncertainty is a first
order response to the time integral of the uncertainty torques

about the output axis.

Alternately expressing the equation in terms of drift rate:

d u(M
Tg'ggté*'“’m"(?oé)

Hence, any source of uncertain torque of the torque summing
member about the output axis is a contributor to the possible

inaccuracy of the gyro element.
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The most common sources of these uncertainties are

gimbal friction and mass unbalance.

These are factors very sensitive to the material state
and processing variables. It is for this reaso. that a
rational method of selecting injection molding parameters is

required. A brief example of this is presented.

Prior to introduction into service, the molded gyro is
balanced. Remaining unbalance can be nullified by compensa-
tion in the feedback loop of the control system. However,
from the drift rate equation we can see that for a step
acceleration the steady state (t - «) drift rate, due to

torque uncertainties caused by variations to the balance, is:

Veagt
Yoa = .Lc_i
S.S. g

Where p is the mass density, V is the effective volume
of unbalance, e is the amount of mass eccentricity, and a is

the step acceleration in g's.

Taking typical values:

_ dyne-sec
cg = 20588 SYTEsses
T_ = 0.0017 sec
g e
o _ -6
w =1/hr = 4.8 x 10 rad/sec
OAlg. g
p =1.6 gm/cm3 (Polypheneline Sulfide)




We obtain:

ve = 0:0363 pd

For an acceleration of 10gs then we get:

Ve = 0.00363 cm?

.
3
]
]
)

which defines the bounds of mass unbalance which can be tolerated,
i, for the specified performance, due to long term materials be-

havior (creep relaxation, non-uniform thermal strain, etc.).

o T T TS mRen s o=
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