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INTRODUCT ION

Progress in the area of high energy plasma generation by electromagnetic
implosion has received considerable attention l? the past few years and
is discussed In some detail by Turchi and Baker. 1) scientists at the

Air Force Weapons Laboratory in Albuquerque, New Mexico, have recently
conducted similar experiments in which plasmas of ~ 50 eV, 1012 W and
105 J have been produced using existing pulsed power facilities on
free-standing arc section foils having masses of 100 to 300 ug/cm? and a
diameter of 7 cm{2,3) Theoretical calculations performed predict signi-
ficant improvements in performance (v 100 eV, 1013 W) by decreasing the
mass, increasing the radius, and completely eliminating the seams. Thus
the need for development of methods for fabrication of thin (< 100 ug/Cmi),
seamless cylindrical electrically conductive films has developed.

The primary objective of the study discussed in this report is to develop
methods for fabricating a very thin (< 100 ug/cm?) seamless cylindrical
pyrolytic carbon film using chemical vapor deposition (CVD) technology
and to investigate methods of film removal, shipping and attaching to test
electrodes. The first part of this study has been further categorized
according to CVD parameters and mandrel-substrate requirements.

CVD parameters investigated and found to affect film thickness, carbon
structure, and mechanical properties include: deposition temperature and
time, gas composition and ratios, and flow rates/velocity. The mandrel-
substrate requirements of high melting point (> 1200°C), low coefficient

of thermal expansion (v 10-6 ecm/ecm°C), and nonporous/nonadhering surface
resulted in the selection of fused silica for the mandrel-substrate material.
Specific methods investigated for removing and transferring pyrolytic

carbon films onto cylindrical electrodes consist of: (1) melted beeswax

and other high molecular weight waxes, (2) polymeric resins (PVC, PVA, P8BS,
etc.), (3) naphthalene, and (4) aluminum disks.

Fabrication of thin pyrolytic carbon films by CVD techniques has been
successfully demonstrated. Removal and tranfer of the pyrolytic carbon
films from the mandrel to the electrodes has not yet been effected to the
desired degree. Additional work in this area will be required for complete
success of the endeavor.

THEORY

Chemical Vapor Deposition

Chemical vapor deposition involves the decomposition and condensation of
vapor transported from the source feed onto a hot substrate. The hot sub-
strate is partially responsible for thermally activating the reaction process.
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Carbon was one of the first vapor-deposited materials prepared. 1t has
been produced in larger quantities than any other deposited material, and
the reactions involved have been studied for half a century. Despite

this massive attention, the location and nature of the critical steps of
the deposition reactions are still poorly defined. Many compounds have
been used to deposit carbon, including the simple aliphatics and aromatics,
carbon oxides, and halogenated and oxygenated hydrocarbons. However,
methane is probably the most common source material for carbon deposition.

A recently published model for CVD of carbon(“) from which trends in the

microstructure of the deposit can be inferred, consists of the following
assumptlons:

1. Gas-phase equilibrium exists at or near the deposition temperature.
2. Deposition results primarily from aromatic and acetylenic species.

3. The benzene (CgHg) and acetylene (C2H2) concentration can be used as
measures of the concentrations of the relevant aromatic and acetylenic
species, respectively.

L. Deposition from aromatic species at low deposition rates results in
laminar deposits in which the graphite basal planes have a high degree
of preferred orientation with respect to the substrate.

5. Deposition from aromatic species at high deposition rates results in
sooting conditions and isotropic deposits.

6. Deposition from acetylenic species yields isotropic deposits.

For deposition at one atmosphere, the CoH2/C¢Hg ratio varies from orders

of magnitude below unity to orders of magnitude above it as the temperature
is increased. Thus, at temperatures up to 1500 K (1225°C), benzene is the
predominant carbon-bearing compound formed in the gas phase. This suggests
that under nonsooting conditions, a laminar microstructure can be expected
up to this temperature. However, other factors affecting conditions re-
sponsible for deposition of either laminar or isotropic microstructures
include initial gas composition, gas ratios (dilution effects), and flow
rates (velocity). In general, laminar deposits are expected at low depo-
sition rates, while isotropic deposits are most usually obtained from either
aromatic species at high deposition rates and from acetylenic species.
Therefore, the microstructure of the deposit is dependent upon deposition
temperature, gas composition/ratios, and flow rates.




EXPERIMENTAL

CVD-Substrate Mandrel

Chemical vapor deposition requires the use of a substrate which must be
at an elevated temperature sufficiently high to thermally activate the
. reaction process. In this study methane gas was chosen as the parent
hydrocarbon molecule which requires substrate temperature in excess of
900°C for deposition to occur. With this in mind, the following substrate J

requirements were imposed: ()) softening point > 1200°C, (2) CTE close

to that of carbon (a-b plane ~ 1076 in/in/°C), and (3) nonadhering surface
(extremely smooth and nonporous). After reviewing a list of potential
candidates, the following three materials evolved as potential substrate
materials: molybdenum, graphite, and fused silica. However, the first J
two materials were eliminated due to cost and high adherence (porous

surface). Thus, fused silica, which was found to satisfy all of the imposed
requirements as well as being readily available in a wide range of cylin-
drical sizes, was chosen as the substrate material for this study.

In this particular investigation, several 2.5-cm x 10-cm-diameter fused

silica cylindrical mandrels were CVD coated simultaneously by placing

them over a solid graphite cylinder enclosed in a graphite container such

as shown in Figure 1. The carbon layer was deposited onto the inside of

the quartz mandrel. Since the CTE of quartz is slightly lower than that of
carbon, the carbon film will shrink away from the quartz mandrel upon cooling.
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CVD Parameters

The CVD parameters investigated in this study include: initial gas compo- 1
sition, gas ratios, flow rates, and deposition temperature. In the initial
part of this investigation, a highly ordered graphitic type of carbon deposit
was desired due to higher modulus/stiffness which was thought to be necessary
for self-supporting characteristics. Thus, the initial parameters were
chosen to result in a laminar deposit. This was achieved by using a relatively
high deposition temperature (v 1250°C), and decreasing the deposition rate by
p using hydrogen in the initial gas composition. The exact parameters used
in the initial runs together with other data are shown in Table 1. The
initial concept of fabricating a high modulus self-supporting film by slowly
forming a highly ordered laminar carbon deposit was abandoned when experi- 3
mental results revealed the high modulus/brittle carbon film to be fracturing ‘
extensively upon cooling from the deposition temperature. This behavior was
attributed to a combination of the anisotropic nature of the pyrolytic carbon
and the thermal expansion mismatch between the quartz mandrel and the carbon
film. At this time, it became evident that a more turbostratic type of
carbon deposition having isotropic properties was needed. Thus, the depo-
. sition temperature was lowered to < 1100°C and the hydrogen gas was eliminated
from the initial gas composition. These changes together with minor changes
in gas flow rates resulted in a flexible weakly adhered film which was
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capable of withstanding thermally induced stresses without fracturing.
Once these parameters were established, the desired film thickness was
obtained by controlling the deposition time. Scanning electron microscopy
(SEM) micrographs of both types of deposits (laminar and turbostratic)

are shown in Figures 2 and 3.

Film Removal

Fabrication of pyrolytic carbon films, by controlled CVD deposition of

carbon onto the inside surface of a fused silica cylindrical mandrel, was

found to be reproducible. However, removing and transferring of the film

from the quartz mandrel onto cylindrical electrodes has not yet been

entirely successful. Thus, increased effort in this area is indicated.
Specific methods of removing and transferring films which have been investi-
gated to date include: (1) melted wax, (2) polymeric coatings, (3) naphthalene,
and (4) aluminum expansion disks.

Melted Wax. Several attempts at removing the carbon film from the quartz
mandrel were made using melted beeswax, as in Figure 4. In the first few
attempts, the entire coated cylinder was filled with melted wax. Upon
cooling, the wax solidified, shrank, and caused the film, which adhered to

the wax, to detach from the mandrel surface. This method initially appeared
very promising. However, the excessive wax shrinkage could not be controlled
effectively and excessive damage was imparted to the film.

Polymeric Resins. The use of thermoplastics in removing the carbon film
from the quartz mandre) has been investigated and was found to be very
promising. Specific plastics used in this study consisted of: polyviny!
alcohol (PVA)}, polyvinyl chloride (PVC), polyvinylidene chloride (Saran),
and polybutylstyrene (PBS). These materials were used by preparing dilute
solutions with an appropriate solvent (water for PVA). The carbon-coated
mandrels were dipped into the polymeric solution being evaluated, removed,
and allowed to dry by evaporation. The thickness of the polymeric film
formed by this dipping process was controlled by the concentration of the
solution prepared. Once the carbon-coated mandrel was covered with the
polymeric film, the composite film (carbon film plus polymeric film) was
removed from the mandrel by either cutting the edges and working a scalpel
in behind the film or by first exposing the film to -40°C to shrink the
polymeric film and accelerate the removal process as shown in Figure 5.
Each polymeric system evaluated required different handling procedures and
produced different results. This data, which is presented in Table 2, reveals
that PVA and Saran are the most desirable for both removal and transferal.
The PVA system is desirable due to its flexibility, rigidity, and solubility
in water, while the Saran is very thin, flexible, and can be removed from
the coated mandrel by exposing to temperatures < -40°C. The PVC and PBS
systems are both brittle and shrink excessively when exposed to low
temperatures.
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Figure 5.

CARBON FILM REMOVED WITH BEESWAX.
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Naphthalene. The use of naphthalene in removing the carbon film from
the quartz mandrel was chosen for evaluation because of its high vapor
pressure, which makes it easy to eliminate once the separation is
completed. However, several attempts at removing the carbon film from
the mandrel with naphthalene proved unsuccessful because of the lack of
adherence between the naphthalene and carbon film.

Expansion Disks. The use of expansion disks for film removal was also
evaiuated. This technique would eliminate the intermediate transferring

agent such as wax and/or polymeric films. The expansion disk assembly,
which is shown in Figure 6, consists of two 10-cm-diameter aluminum disks
attached to a stainless steel tube passing through thelr center. The
distance between the two disks, which is adjustable, was set at about 2 cm
for this evaluation. The disk assembly is used by slipping the coated
mandrel over the disks, which have been coated with either a contact
cement or silicone adhesive. The coated mandrel is then held in place
while applying heat to the aluminum disks which expand and come in contact
with the carbon flim. Upon cooling, the disks contract to their original
size thus removing the carbon film from the fused silica mandrel, This
method of film removal has not yet been completely successful due to incom-
plete release of the carbon film from the fused silica mandrel.

Other film removal and transferring methods to be investigated include:
the use of cadmium and paralyene. Methods of separating or removing the
polymeric coating from the carbon fiim will also be studied.

CONCLUS 10N

Fabrication of thin pyrolytic carbon seamless cylindrical films by CVD
techniques has been successfully and reproducibly demonstrated. However,
methods of removing and transferring these ultrathin films will require
further development.

Several methods of film removal and transferring have been investigated,
with the polymeric film removal technique exhibiting the best results. The
fabrication process which consists of CVD coating a fused silica mandrel,
removing the carbon film with a polymeric coating and mounting this coated
film onto electrodes, is illustrated in Figure 7.
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Figure 6. ALUMINUM EXPANSION DISKS USED IN REMOVING
THIN CYLINDRICAL CARBON FILMS.
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