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FORMATION AND DIAGNOSTICS OF A CYLINDRICAL SHELL PLASMA....

Work on the AFOSR contract was begun March, 1977 and continued
through May, 1978. A renewal period began June, 1978. The present
report discusses the activities up to August 1, 1978.

We have developed and operated a flow-through gas injection-ionization
system. Essential features of the apparatus are shown in Figure 1, and an overall
view of the experiment is shown in Figure 2. The basic functional sequence
of the experiment is shown in Figure 2. The basic functional sequence of the
flow-through geometry has three parts: fast gas valve, gas spreader and injec-
tion flow-through nozzles. We are using a pulsed fast gas valve originally
designed by Harshalll and further utilized by Degnan2 to produce a finite
pressure reservoir to drive the flow-through nozzles. The valve plenum can be
operated in the range from 100 to 1000 psi, producing a mass loading from .1 to 1 mg
argon in the electrode gapwith the present nozzle design. Thirty-six nozzles
are arranged symmetrically on a 20 cm radius circle. Gas is distributed evenly
to the nozzles via a secondary plenum volume gas spreader when the primary
valve plenum is opened. During the flow-through conditions, gas is dumped into
the evacuated volume above the diffuser.

The nozzle design was carried out by Bob Golobic.* Figure 3 shows the
nozzle details for the injection nozzle and diffusor nozzle in their orientation
in the apparatus. This geometry is executed in a two inch aluminum plate
which serves the dua) function of injection nozzle system and discharge
electrodes. The nozzle design is such as to establish a flow-through velocity
of the order of Mach 6.

Discharge circuft characteristics are shown in Figure 4. Ionization 1s

*Bob Golobic, Private Communication.
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Figure 2. Gas shell apparatus.
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created and maintained by a 30-60 ufd capacitor bank switched into the load by
an ignitron. Breakdown is to be aided by the presence of trigger needles sus-
pended in the diffusor nozzles to create a uniform distribution of initfal elec-
trons. The cold plasma 1ies between the two nozzles and is on the order of a
3 cm x 2 cm cross section torus of 20 cm radius. Primary circuit inductance
comes from the interconnection cables, but the overall geometry lends itself
easily to application in the parallel plate geometry of the implosion apparatus.
Due to the two part nature of this approach, it is possible to investigate
the performance of the injection system independent of the plasma stage. To

do so, we have used a fast ion gauge diagnostic technique similar to that used

by Degnan.z

In this technique an opened 6 AH6 Pentode is used as an ion

gauge. The collection volume is about 1 cubic centimeter and the gauge has a
time response to a discontinuity of about 30 us. The gauges are first calibrated
in a static pressure condition. A typical calibration curve is shown in Figure 5.
Saturation occurs at 100 to 150 microns, somewhat 1imiting the usefulness of the
gauges in high pressure regions. Because of this saturation level and the size
of the collection volume it {s not possible to map the flow channel with the
existing system. However the gauges are exceedingly useful in establishing

the diffusion of the gas out of the nozzle system. Radial scans were performed
using these gauges. Flgure 6 shows the positioning of the gauges. Data were
taken on the range from R = 0 cm to R = 15.5 cm, and the results were uniform

in this range. R = 15.5 cm corresponds to the {nner radius of an access cutout

in the upper electrode. The gauge was positioned over the jet primarily to

reference the timing of the gas pulse.
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As can be seen from Figure 7, the results of the gauge measurements are
quite promising in terms of sharply defined radial profiles. With the gauge at
R = 23.0 cm and also at R = 15.5 cm, there is no appreciable pressure rise for
at least 500 us after the flow-through is established in the electrode gap.
This allows ample time for the application of the fast implosion pulse before
flash over at the insulator could become a problem due to increased pressure.
At 500 us the pressure in the vicinity of the insulator has risen to only
about 10 microns. The jet 1ies some 5 cm from the insulator. This is a rather
strong indication that the diffusion from the gas stream is minimal. Assuming
a thermal expansion velocity for argon of .03 cm/us, one expects to see a
pressure rise at the insulator some 500-700 us after the gas is introduced in
the jets. This corresponds well with the timing observed.

Ionization is achieved by switching the capacitor bank into the electrode-
nozzle system after the flow-through conditions are established. Breakdown
has been repeatably observed with the bank voltage from 2 kV to 8 kV. Circuit
inductance in this configuration gives a slow 10 us risetime pulse. Typical
voltage and current curves are shown in Figure 8. At an operating point of 5 kV
bank voltage one sees on the order of 30 kA plasma current. As a preliminary
indicator of plasma homogeneity, open shutter photos of the discharge were
taken using a truncated cone mirror, lying on the lower electrodes, positioned
in the cutout of the upper electrode. Figure 9 shows a photo of the discharge,
indicating an acceptable degree of homogeneity. We found that it was very

important to have the trigger system operating to achieve a homogeneous

discharge. With our latest triggering set-up, we could strike a discharge on
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FIG. 7 ION GAUGE DATA
(ALL TRACES 200 MV/p1v)

Figure 7. 1Ion gauge data
(a1l traces 200 mv/div)
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Figure 8. Typical current trace.
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Figure 9. Open shutter photo of discharge.
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at least 34 of the 36 jets. We expect that with proper adjustment of the trigger
electrodes, we would breakdown on all jets as the failures were always on the
same position.

We have also made spectroscopic measurements to determine electron
density and temperature. This data were taken before the latest version of the
trigger system was installed so reproducibility was not as good as our present
apparatus. We were also viewing the edge of a jet rather than the center.

We use a 1 m McPherson monochromater with an RCA 7265 photo-
multipltier tube to obtain intensity vs. time traces for a number of Al and All
lines. Typical data were shown in Figure 10. There was considerable shot-to-
shot variation. We also used a PAR 500 channel optical multichannel analyzer
(OMA) to obtain a spectra on a single shot. Typical gating times for sEectra

were about 5-20 us. Figure 11 shows a typical spectra centered at 4180A
showing Al and AIl lines while in Figure 12 we show the spectra around

HB (4861;). We used a mixture of argon and hydrogen to give the hydrogen spectra
for measuring electron density. The only impurities observed were a few ALIII
lines.

Yo summarize the results of the spectroscopic diagnostics, we found the
following three characteristics:

1) Electron densities were typically 2 x '|0]4 - 1015 cm '3. Electron density
scaled with capacitor voltage but scatter masked any scaling with plenum pres-
sure.

2) Using Saha-Boltzmann equation and the electron density, we found a typi- 1

'; cal electron temperature of about 1.2 eV.
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Figure 10.

Emission of Ar line as function of time.




Y 08Ly 3@ usaxyey eu3dads

*LL danbyi4

oct

veve
° Iv

698I2¢
{IV
N L6102
v
g A G
1sd 0G¢
ms  Tog
ai0b s702
8.-¢-2
582144 10US

1.9002h
gIv

Le8LIb
Iv

v 66'86IY
[ 4 H <
v viosiv
II Iv
60'9G!Y
v

vC8Iv H3IN3D




[ I VY

-

*qudWRUNSEall A3 LSUdp UOAJID|I u} pasn

g

L v g g A OGRS o o

e ——Gy

H Bupmoys ea3dads °Z| d4nbi4

AL

®hisd g

Jy 1sd mmm
s 10¢

s 0661
Kpjap s7ig
2)0b s7ig
8.-6-2
mmv.%.ocm

v 198% 43UIN3D

GRAY

.-

T R A S ——— o

15




We plan to repeat these measurements with the improved trigger system

and a better optical system which views a jet directly. The observed electron
density may increase then, but it is expected that the electron temperature
will remain about 1-2 eV.
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