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ABSTRACT

HUGHES, GEORGE CRI??ENDEN. Convergence Rate Analysis for Iterative
Minimization Schemes with Quadratic Subproblems. (Under the direction
of JOSEPH C. DUNN.)

A large class of descent algorithms is analyzed for the problem
minnf, with Q a convex subset of a Banach space X, and F:X +ﬁRl a
differentiable functional. At each iteration a feasible direction
in - xn is determined, where in is a golution to the subproblem
;ég {(f'(xn), y - xn) + %-(Mﬁ(y - x

of nounegative linear operators with a uniform upper bound, and step

n)’ ) xn)} with {Mh} a sequence
lengths are obtained from Goldstein's rule. If f' is Lipschitz continuous
and ? is bounded, then limit points of sequences generated by this general
scheme are extremals. A "worst case"” convergence rate estimate of

r, = f(xn) - inf f = O(n-l/3) for convex f is shown to improve to O(n'l)
when either the condition numbers of the operators in the sequence {Mn}
are bounded away from zero or O 5_(Mhu, u) < < £"(x)u, wl, Vx € q,

Vu € X, V¥n > O; under these conditions a hierarchy or rate estimates
exists ranging from finite termination of the process to rn = O(n-l)
depending on how fast f grows near a unique minimizer £, i.e., depending
on the value of v in either of the conditions (f£'(g), x - &) > y|k - £["
or f(x) - £(g) > ylx - gllY, ¥x € Q, some y > 0 and v € [1, =). A
similar hierarchy of rate estimates is established for Newton's method
(Mn = f"(xn)) also depending on the growth of the ccnvex functional f
near ¢,

For twice differentiable, possibly nonconvex functionals f local

conditions on the growth of the quadratic epproximation to f at & in

81 1" 268 147




directions leading into Q are given as sufficient to insure linear or
superlinear convergence of the sequence {||xn - £||} when the iterates
pass sufficiently near £ and the operators Mn are either uniformly positive
definite or satisfy certain standard quasi-Newton conditions.

These results have potential applications to problems in optimal

control theory.
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- ABSTRACT

HUGHES, GEORGE CRITTENDEN. Convergence Rate Analysis for Iterative
Minimization Schemes with Quadratic Subproblems. (Under the direction
of JOSEPH C. DUNN,)

A large class of descent algorithms is analyzed for the problem

minnf, with Q@ a convex subset of a Banach space X, and F:X *ﬁRl a

differentiable functional. At each iteration a feasible direction
] in - x is determined, where X is a solution to the subproblem
1
L - - - -
min {(f (xn), y-x)+3 (Mh(y xn), Y - x )} with {M } a sequence

| yen
: of nonnegative linear operators with a uniform upper bound, and step

lengths are obtained from Goldstein's rule. If f' is Lipschitz continuous

and @ is bounded, then limit points of sequences generated by this general

scheme are extremals. A "worst case" convergence rate estimate of
r, = f(xn) - infﬂf = O(n-l/3) for convex f is shown to improve to O(n'l)

when either the condition numbers of the operators in the sequence {Mn}

) are tounded away from zero or O :_(Mnu, u) 5_(f"(x)u, ul, Vx € q,
Yu € X, Vn > 0; under these conditions a hierarchy or rate estimates
i exists ranging from finite termination of the process to r, = O(n-l)

1 depending on how fast f grows near a unique minimizer £, i.e., depending

on the value of v in either of the conditions (£'(£), x ~ &) > y|k - |V

|
E or £(x) - £(&) > y|k - £l¥, Vx € Q, some y > 0 and v € [1, =»). A
? similar hierarchy of rate estimates is established for Newton's method
(Mn = f"(xn)) also depending on the growth of the convex functional f
near §,.
For twice differentiable, possibly nonconvex functionals f local

conditions on the growth of the quadratic approximation to f at £ in




directions leading into Q are given as sufficient to insure linear or
superlinear convergence of the sequence {]lxn - &[]} vhen the iterates

pass sufficiently near £ and the operators Mn are either uniformly positive
definite or satisfy certain standard quasi-Newton conditions.

These results have potential applications to problems in optimal

control theory.
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1. Introduction
Let f be a real functional on a real Banach space X, i.e., £:X +]Rl,
and consider the following constrained optimization problem:
(p) min £(x)
*x€Q
wvhere Q is a closed convex nonempty subset of X. A number of methods for
solving (P) generate sequences of approximations to the solution via the

following general process:

(1.1a) Xoep =% * wn(xn - xn) . w € o, 1],
where
(1.1b) in € arg min Q (v).

yEQ

Qn(y) is a functional which approximates f(y) near the vector X and W
is a steplength parameter. Three examples of methods from this general

class are:
A. The conditional gradient method corresponding to
= . - .
Qn (r (xn)s ¥ xn) ’

here f'(xn)' is the Frechet derivative of f at x,, and brackets, (u, v),
denote the value of an element u € X*, the dual of X, operating on an

element v € X,




B. The "relaxed" form of the method of gradient projection corresponding

to

1
Qn(y) =(f'(xn), y-x)+ Z;Ily - xn”z, a, > a >0 forn > 0.
For this class of methods, X is understood to be a Hilbert space.

C. The relaxed Newton's method corresponding to

-

Qn(y) =(f'(x ),y - x )+ %-(f"(xn)(y -x ),y -x )

When the functionals Qn(y) are properly chosen, the vector in - X
will be a feasible direction, i.e., for sufficiently small w € (0, 1], |
f(xn + m(xn - xn)) < f(xn) for w € (0, w), |
provided x_ is not an extremal (see (2.1)). There are many methods for f
choosing suitable stepsize parameters w, which will insure that
f(xn+l) < f(xn) when x, - % is a feasible direction. Most attempt to
approximate the classical line minimization scheme in which one chooses
tne smallest w, satisfying !
. |
(1.2) min  flx + w(x - x)).
wE[0,1]

For most nonlinear problems, however, (1.2) cannot be solved exactly, and

methods which approximate (1.2) are necessary.

In addition to determining feasible directions, the functionals Qn(y)
must have the property that subproblem (1.1b) is easy to solve relative

to (P). For methods such as the conditional gradient method or the method




of gradient projection on certain simple sets such as those often found in
optimal control theory, (1.1b) is trivial. For more complicated functionals
Qn(y) and constraint sets Q, the utility of such methods becomes question-
able. A number of authors have devised variations of the basic scheme to
make the subproblem (1.1b) more feasible. Ha.n (1] and Garcia Palomares

and Mangasarian [2] minimize
- 1
Qy) =4 x ), y-xd+5M (y-x),y-x)

over an approximation to Q defined by linear inequalities in R". In their
method {Mn} is a sequence of operators which approaches the second derivative
operator of the Lagrangien of f and the constraints defining Q. Bertsekas
[3] uses a hybrid Newton method similar to gradient projection on simple
sets such as orthants and cubes in R". Such modifications can have consid-
erable practical importance in special cases; however, the.convergence
behavior of the basic method (1.1) itself is still only partially understood.
The purpose of this thesis is to establish the convergence properties

of the class of algorithms (1.1) in which Qn(y) is of the form
1
= ! - - - -
(1.3) Qiy) =t (x ), y - x )+ 5 (M (y-x ), ¥y -x)

vhere each M_ is a nonnegative bounded linear operator, i.e., M € BL(X, X*)

and

(1.4) 0 <{Mu, u, Vu € X.




Although many different stepsize rules have been investigated for methods
in this general scheme (GS), the essential differences in the algorithms
lie in the selection of the operator sequence {Mn} and not in the method
of choosing the stepsize. In fact, a number of pepers have compared major
stepsize rules (see, e.g., [4], [5], [6]), and the basic conclusion is
that differences in convergence rates are minimal. In the analysis to
follow, the Goldstein rule described in Chapter 2 will be used since it is
prototypic of the rules for approximating line minimization (1.2). There
are several good reasons for carrying out the analysis in the setting of
a general Banach space; in particular, by retaining the maximum degree of
flexibility at the outset it is possible to obtain sharper bounds on
convergence rates for function space minimization problems later on

(see Remarks 3.2, 4.,2).

The methods in the (GS) have for the most part been analyzed quite
thoroughly for convex differentisble functionals f with "regular" minimizers.
However, when f is non-convex or when singularities exist at the minimizers,
the analysis has been less thorough and in some cases sketchy. Recent
work has focused on understanding the behavior of the algorithms under
these less tractable conditions. The following brief review of the major
results on convergence and rete of convergence of methods embedded in the
(GS) will put into perspective the results of this thesis.

In Chapter 3 it will be shown that when X is a Hilbert space and

M = éL-I, where I is the identity operator, then the (GS) is the same as
n

the method of gradient projection introduced by Goldstein [T7] in which

(1.5) x = PQ(xn - aan(xn)).

n+l

li Yy




I S b

Here P, is the operation of projection onto 2 and Vf(xh) is the Hilbert

Q

space representor of f'(xn) in X. The parameter @, is chosen to insure
convergence with stepsize parameter 0, =1 forn > 0. Levitin and Poljak
[8] first gave rate of convergence results for this method for convex f

using the "threshold” rule

(1.6) 0<e, <a_ < .f

s e, > 0,

L+e,

€

where L is a Lipschitz constant for f', i.e.,

L sup 1R = £1G]]

s A PR
x#y

For functionals satisfying the uniform convexity condition

@ llulf cemou, w < T llalf,  vxen, vuex,

and 0 < g_j_ﬁ-< )
the values = = f(xn) - igf f converge linearly, i.e., r = 0(A") for some
A € [0, 1). 1In the absence of (1.7) the convergence of {rn} for convex
functionals will be at least like O(%). Similar results were obtained
by Demyanov and Rubinov [9] who investigated four variations of relaxed
gradient projection in which the sequence {an} and the sequence of stepsize
parameters {wn} are selected by combinations of threshold rules like (1.6)
and line minimization (1.2). Dunn [10] found that the method (1.5) with
the sequence {an} determined by a Goldstein-like rule converges linearly
if the functional grows near an optimel point, or extremal, & € Q, like

the square of the distance from &, i.e.,




(1.8) £(x) - £(£) > vlx - £]|2, vx € Q, y > 0.

This occurs when (1.7) is satisfied at x = £ or when the structure of the

set near the extremal is such that
(1.9) (£r(g), x- £ >lx-¢l%,  vxea, v>o,

since in the case of convex functionals (1.9) implies (1.8). 1In fact,
Dunn was able to show for a wider class of functionals which are pseudo-
convex in the sense of Mangasarian [11], that a complete hierarchy of

rates can be determined from the condition

(1.10)  f(x) - £(6) > vlx - &l’, vxeaq,ve[1, «),y>o0,

ranging from finite termination of the process (i.e., Xy = § for some
N > 0) when v = 1 to rates approaching the "worst case" rate of 0(%0 as
v assumes larger values.

The conditional gradient method [8], [9], [12] results when the
operators Mh in the (GS) are the zero operator for n > 0. With steplength
rules of the line minimization type, this algorithm was shown in [8] and
[9] to converge at the rate r, = O(%J for convex functionals with Lipschitz
continuous Fréchet derivatives on convex closed bounded sets. In these
investigations, however, it could not be shown that conditions of the
sort (1.7) had any effect on the convergence rate of the conditional
gradient method (c.f. gradient projection method); a linear convergence
rate was established only under certain strong uniform convexity

conditions on the set Q when f'(£) # 0. 1In fact, an example of Canon and
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Cullum [13] shows that even when (1.7) is satisfied a rate of 0(%0 can
not be improved upon without imposing conditions on the set Q. Dunn [4]
proved that uniform convexity of 2 is actually a very strong sufficient
condition for linear convergence of the sequence {rn} and that the weaker
condition (1.9) will suffice. Dunn [14] has also shown that, as in [10],
a hierarchy of convergence rate upper bounds exists for the conditional

gradient method depending on the value of the parameter v in the condition
(1.11) (f'(g), x - £ z_y”x - 5“\), Vxe Q, veE [l, 0), vy > 0.

Conditions of this type are satisfied in various Banach spaces by
"bang-bang" optimal controls (4], [17] (see Remarks 3.2, 4.2).

Mlwright [15] and Barnes [16] both considered variations of the (GS)
in which specific operator sequences {Mn} are used in certain optimal

control settings. Allwright specified operators which have the property
(1.12) 0 <{Mu, u < (f"(x)u, u, Vx€Q,Vu€X,V¥n>0.

Although he was able to prove convergence using a stepsize rule similar
to Goldstein's on bounded sets with convex functionals, he established a

linear convergence rate for the sequence {rn} only when {Mn} satisfies
(1.13) u||u“2 _<_(Mnu, ), Yu€ X, V¥n >0, u >0,

which with (1.12) implies (1.7). Barnes also required condition (1.7)
with operators satisfying (1.13) to achieve linear rates for {rn}.
If £ is convex the operator f" is certainly nonnegative on € and

the Newton methods treated by Kantorovich [18], Goldstein [19], and




G s oo od

Levitin and Poljak (8] are formally in the (GS) with M= f“(xn) for

n > 0, Very little has been written about convergence rates for Newton's
method in the absence of the regularity condition (1.7) or when the second
derivative operator is not at least pesitive definite at the extremal.
Levitin and Poljak [8) who first proposed the constrained version of

Newton's method with xn = in’ relied on condition (1.7) to prove super- ]

+1
linear convergence of the sequence ﬂlxn - g|]} to zero. Danilin [20]
gave a proof of convergence of the method for convex functionals on
bounded sets with a stepsize rule4similar to Goldstein's but, once again,
required condition (1.7) for rates. It was stated hy Bulavskii [21] for

finite dimensional spaces thatgcondition (1.7) can be relaxed to a condition

on the growth of the second ‘rder approximation to f at the extremal &,

namely -

a
(1.1b)  (£7(8), x - &) + 2¢£"(E)(x - §), x - £ > olx - ¢|F,

® Vx€ q, vy > 0.

For convex functionals tb.- condition insures superlinear convergence of
the sequence {"xn - E”}. Dunn [22] independently formulated and proved
the same result in general Banach spaces and showed that when (1.1L) holds
with the exponent 2 replaced by 1, then finite termination of the process
occurs.

The results mentioned so far have been restricted to convex or
pseudoconvex functionals. Although a number of articles have given
convergence results for these methods for general non-convex functionals

(e.g. [23], {5], [24]) there are very few convergence rate results. For




projected gradient methods Goldstein [23] proved that positive definiteness
of the second derivative operator at a local minimizer £ is sufficient to
give a linear rate of convergence of the sequence {”xn - E"} if X, * £;
however, for constrained minimization problems, this condition is rather
strong. It was shown by Bertsekas [24] that the second derivative operator
does not even have to be nonnegative at an extremal to achieve linear
convergence in projected gradient schemes., For certain simple sets such

as orthants and cubes inimp, Bertsekas proved that if the first derivative
at an extremal £ is positive in coordinate directions leading into the

set and the second derivative at £ is positive definite in the subspace
parallel to the manifold of active constraints, then iterates generated by
the gradient projection method and passing sufficiently near the extremal
will converge to the extremal at a linear rate. Similar conditions are
given by Han [1] and Garcia Palomares and Mangasarian [2] for their
quasi-Newton methods to achieve linear and superlinear rates of convergence
for sequences coming close enough to extremals. Their methods are modi-
fications of the (GS) as indicated earlier and are in fact included in

the (GS) when @ is defined by linear inequalities in R".

In Chapter 2 of the present thesis it will be shown that no matter
how the sequence {Mn} is chosen, as long as the operators are nonnegativg
and uniformly bounded above, every limit point of the generated sequence
will be an extremal, and if f is convex the rate of convergence of {rn}

-1/3) at least.

will be r = 0(n
A number of results will be established in Chapter 3 for the (GS)

when {Mq} satisfies either condition (1.12) or a condition requiring a
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uniform lower bound on the "condition numbers" of the operators. Note

that in gradient projection methods, the operators j%—l have condition
n
numbers equal to 1. The "worst case" rate of convergence for this subclass

will be 0(%) for the sequence {rn} when f is convex. This extends the
results reported by Demyanov and Rubinov [9], who considered only bounded
sequences {an} for ihe relexed gradient proJectioﬁ method. Their rate of
rn = 0(%0 holds for any sequence {an} which is bounded below and for
stepsizes determined by Goldstein's rule. A hierarchy of convergence rate
upper bounds will be established for this subclass, as was done in [10] for
the gradient projection method and [1L4] for the conditional gradient ‘
method. When w, is bounded away from zero the higher rates of convergence

depend on the growth rate of f near £ (see (1.10)). On the other hand,

if w, can be arbitrarily small, then higher rates will depend on how

1 slowly w, decreases, which, in turn, can be estimated in the presence of

conditions on the structure of the set near the extremal, i.e., condition

(1.11).

As indicated previously, results for Newton's method have been
superlinear rate estimates or better for the sequence ﬂlxn - 6”} under
regularity conditions like (1.7) or (1.14). In Chapter 4 it is shown
that a hierarchy of rates for the sequence {rn} exists here for non-regular

extremals when condition (1.11) holds with v in the range 1 < v < 5,

;- Although somewhat incomplete these results corroborate the belief that
even in nonregular cases, Newton's method outperforms the first order
methods. These ideas are developed further in an example from optimal

control theory.
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In Chapter 5 the results in [1], [2], [23], [24] for non-convex

L aitad

functionals will be extended to the (GS) in Banach spaces. When {Mn}

satisfies (1.13) or when (1.9) is satisfied at £ and the second order

epproximation to f at £ satisfies

(117) Cer(E), x - &) + 2 Ce"E)x - £), x - © > vl - ¢

for x € KQ(E) N Bp(&) for some p > 0, where KQ(E,') is the tangent cone

to @ at £ with vertex at £, i.e., K (£) = {x € X: + t(x - §) € @ for
some t > 0}, and BD(E) is a closed ball of radius p around £, then if the
sequence of iterates comes sufficiently near £, it will converge to £
and £(x ) - £(g) = 0(A") for A € (0, 1). Condition (1.17) need hold only
for x € QN Bp(g) if M is symmetric as well as nonnegative and M

approximates f"(g) in one of the following four ways: either

(1.18) lm, - ")l < e,

for € sufficiently small and n > N > 0, or

H(Mn - (&) x - &)
Mx - ¢l < &

(1.19)
for € sufficiently smell and for x€ Q@ and n > 7 > 0, or

(1.20) ”Mn - ()|~ 0, as n + =

or

H(Mn - "(g))ix - £)|

(1.21) T =& +0, for x € Q as n + »,
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For sequences in which X, comes close enough to £ for n > N, xn
will converge to £ at a linear rate of convergence when either (1.18) or
(1.19) is satisfied by {Mh}, or at a superlinear rate of convergence when
either (1.20) or (1.21) holds. Conditions (1.18) - (1.21) and symmetry
of the operators in {Mn} are typical conditions placed on quasi-Newton
operators in the literature (e.g., [25], [2], [26]).

It will be assumed in what follows that at each step of the (GS) at
least one solution to (1.1b) exists. The existence question for (1.1b)
can and should be separated from the convergence rate analysis (e.g.,
topologies suitable for treating the former may be inappropriate for the
latter). In any case the emphasis here is on convergence and rate of
convergence properties of sequences in the (GS), on the assumption that

such sequences exist.

1
i
1
1
!
!
|
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2. General Convergence Results

A necessary condition for a vector x to minimize a differentiable

functional f on a convex set @ is that x be an extremsal, i.e.,
(2.1) (£'(x), y - x> >0, Vy € Q.

If f is pseudoconvex (and, in particular, convex) then (2.1) is also a
sufficient condition [11]. A differentiable functional f is pseudoconvex
if and only if (£'(x), y - x) > O whenever f(x) > f(y) and x, y € Q.
Most of the results to follow for convex functionals can be extended to
a broad subclass of pseudoconvex functionals discussed in Remark 2.k,
The general scheme outlined below is designed to construct a sequence
{xn} whose limit points are extremals of f on Q.

Let X, be the nEE-approximation to the solution of (P) generated
by the (GS). Recall that in this scheme, the vector in is determined
by

(2.2) x, € arg % M, x , ¥),

where the functional Q(Mn, X, ¥) is defined by

- 1
(2.3) QM x, ¥) =4 le), v - x) + F MY - x), Y - x)

It will alsc be required that the sequence of nonnegative bounded linear

operators {Mn} be uniformly bounded above, i.e,,

(2.4) ”Mn” < K, VYa > 0, and K < =,




1k
The next approximation is then given by

X

+ X -
n+l * mn(xn xn)’

where the stepsize parameter w, is chosen by Goldstein's rule [23] and

is computed at each iteration as follows: Define

£(x) - flx + w(x - x))
o £'(x), x - X

glx, %, w) =

when ¢ £'(x), x - x} # 0, Fix § € (0, %0 and if g(xn, in’ 1) > § then

set w = 1; if not, determine any w € (0, 1) for which

(2.5) § <alx, X,w <1-38

= \J - ¥ = =
and set w = w. If (f (xn), X, x ) =0, set w, = 0.

It will always be true that (f‘(xn), X, - in) > 0, and
(f'(xn), X, - in) = 0 if and only if X, is an extremal (see Remark 2.1
below). Also, g(xn, in’ w) is a continuous function of w on (0, 1] by

the continuity of f, and lim g(xn, in’ w) = 1 since by Teylor's formula

w->0+

£x tolx =x_))-£(x =k £1(x )% -x Y +o(dlx -x I,

and, therefore,

- _ olw)
g(xn, X w) =1- = -

It follows, then, that Goldstein's rule when used in the (GS) is well

defined and will determine w, after a finite number of calculations,

& e
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since if g(x_, :“cn, 1) < & then (2.5) is satisfied for w € [a, b] € (0, 1)

for some a ¥ b. Normally some sort of bisection procedure is used to

locate an element of such an interval.

The following two lemmas are fundemental in what follows:

Lemma 2.1. Suppose that the sequences {rn} C [0, ») end {qn1 C [0, =)

satisfy
(2.6) r <r -qrf Vn >0
‘ 13Th = 4Qfne ’

n+ -

for k a fixed exponent in the range (1, =). If

, 292>0,

then

(2.7) r_ = o(n~t/ (1)),
Proof. See [10], Lemma 4.1 for the proof.

lemma 2.2. Let f be Frechet differentiable. Let M:X + X* be a nonneg-
ative operator and Q a convex subset of a Banach space X. For any x € Q,

let x € Q satisfy

(2.8) x € arg min Q(M, x, y).
=
Let
(2.9) ¢(x) = {z € a £'(x), x = 2) > 0},

. . . . .
it i i il B o i, L G = e e, £ . ik
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Then for any z € &(x)

Cfr(x),x-2)+ !2'-( M(x-x) ,x-x),1f ( M(x-2 ,x~2)=0 f

(2.10) C£1(x),x-%) >

2
1 (£'(x),x-2)",. 1 - -
5 min{¢ £'(x),x-2), (_(_’__M ¥z ’x_z)}+2(M(x-x),x-x),

if (M(x-z),x-2)>0.

Proof. For any z € ¢(x) and any 8 € [0, 1] the convex combination

2y = x + 8(z - x) is also in 9 since 2 is convex. From (2.8) it follows :

that for 8 € [0, 1]

0 <(£'(x), 2y - x> + 2 (Mz, - x), 25 - x) = (£ (x), % - x)

0 0
i -

2(M(i-x),5:-x)

or

i
2

(f'(x),x-i)l(f'(x),x-ze)— (M(ze-x),z - x)

)

l ~ -~
I +§(M(x-x),x-x). i

By the linearity of f' and M one can write

il

4 (2.11) (£r(x), x - x> > &£ (x), x = 2) = 5

(M(z - x), z - x)
l A ~
. +§-(M(x-x),x-x).

The sharpest bound is obtained by maximizing the right side of (2.11) over

6 € (0, 1]. If{M(x - 2z), x - 2) = 0, then letting 6 = 1 yields




(2.12) (£'(x), x = x) > (£'(x), x - 2) + -:2L-(M(;: -X), X - x).
If (M(x - z), x = 2) > 0O, then
1.2
P(e) = & £'(x), x - 2) --2-9<M(x -2z), x - 2)

is a quadratic polynomial with maximum value at

A (£ (x), x = 2)
(2.13) 8 = Thlx < ANEIY > 0.

If § < 1, then from (2.11) with 6 = 8

(f£'(x), x - z)2
AM(x - z), x - 2)

(2.14) (£'(x), x = X) > +%<M(x-5&),x-i).
If & > 1, then it follows from (2.13) that
(£'(x), x - z) > (Mx - z), x - 2},
and setting 6 = 1 in (2.11) yields
(2.15) (f'(x),x-i)l(f'(x),x-z)-%(f'(x),x-z)

+-;‘-(M(x - %), x - x) =%‘-(f’(x), x - 2z) +%(M(x -x), x - x)

The lower bound (2.10) follows from (2.12), (2.14), and (2.15).

Remark 2.1. Lemma 2.2 shows that if at any step of the (GS) it is
determined that (f'(xn), X, - in) = 0 then x_ is an extremal. Suppose
it were not an extremal. Then for some y € Q, (f'(xn), vy - xn> < 0.

But that would mean that y € o(xn) and from Lemms 2.2, that

o
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A

(f'(xn), X, - x) >k (f'(xn), X, ~y) for some k > 0. Therefore,
(f'(xn), x, - in> > 0 and this contradiction shows that

(f'(xn), y - x>0, Vy€ Q, vhenever (f'(xn), x, - in) = 0. Also,
for any x € Q, x € ¢(x), and letting z = x in (2,11) it follows that

(2.16)  (£(x), x-®) 2 Z(Mx-%),x-% 20, Vxeaq
If x 1is an extremal then by (2.1)
(2.17) (f'(xn), X, - xn) > 0.

From (2.16) and (2.17) one can conclude that if x, is an extremal, then
(f'(xn), x, - x) = 0. Note also that if at any step of the process it

is determined that

(2.18) x € arg ;ég Q(Mn’ X y),

then X, is an extremal, since one can choose in =X and that would make
(f'(xn), X, - §n> = 0. If x is an extremal, then (2.18) holds since, if

not, there exists a y € Q such that

0 < Q(Mna xn’ xn) - Q(Mn9 xna y)s

but since Q(Mn, X xn) = 0, it follows from the definition (2.3) of

Q(Mn, X, y) that

1
(fr(x )y y =2 <-FM(y-x),y=-x?20,
which is a contradic*ion (see (2.1)). Summarizing the above remarks,

one has that x_ is an extremal if and only if (f'(xn), X, - ﬁn) =0 if

and only if X satisfies (2.18).




——
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Remark 2.2. Define nf as the set of minimizers of f on Q. If f is

convex, then

(2.19) RS o(x), VYx € Q.

This follows from the fact that for convex f, if £ € Q_,, then -

£
(2.20) (£'(x), x - £} > f(x) - £(€) >0 Vx € Q.

If £ is pseudoconvex, then it follows from the definition of pseudocon-

vexity that

(2.21) Qf C o(x) for x € Q - Q.

For functionals f on convex bounded sets Q the (GS) will produce
sequences whose limit points are extremals; this is shown in the

following theorem.

Theorem 2.1. Let Q@ C X where X is a Banach space and Q is convex and

bounded. Let f be (Fréchet) differentiable and let f' be Lipschitz
continous with Lipschitz constant L, i.e., there exists an L > 0 such
that || £'(x) - £'(y)]| < Lllx ~ ¥|, Vx, y € Q. Then f is bounded below,

{f(xn)} is nonincreasing and converges to some limit ¢ > inf f > -=, and
Q
every limit point of a sequence {xn} generated by the (GS) is an extremal.

If £ is also convex, then the values r = f(xn) - inf f decrease

n
-1/3,

monotonically to zero at least at the rate r, = 0(n , and limit

points are minimizers.
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Proof. Using Taylor's formula and the Lipschitz continuity of f' one

can write
-~ l ~ -
(2.22) f(xn)-f( xn+wn( X, -x ) )=fo( £ (xn+e( x *u ( xn-xn)-xn) ) ""n( x,-x ))as
l -~ ’ ~ J
=wn( bl (xn) X =% )+mn;o( £ X, +0w, ( X ~X ))-£! (xn ) WX =X )ae

A 2L A~ e
iwn( £r{ xn) ,xn--xn)-wn §”xn-xJ| .
From Goldstein's rule (2.5), if w, < 1 then

) | i

’

L s f(xn) - f(xn-i-l

— ' - ~
wlf (xn), x, - %)

and with (2.22) there results

~ 2 4
w X - X b
ey el )

3
4 -

which gives

_ 3 i
28 (f'(xn), x xn>1
J

Lz, - % f :

(2.23) w, > min{l,

Let D = diameter @ = sup [[{x - y[|. Then

X,YENQ
(2.24)  w_ > min{2, -5324 £(x ), x, - %}




Also from Goldstein's rule (2.5) one has

(2.25)  2(x)) - #lx

n+1) > Su f'(xn), X, - x)

n n

¢

~ 26
> 8 minfle'(x ), x -x), =

B " p

and, therefore, f(xn) - f(xn+l) > 0 since (£'(x ),

A (2
(f'(xn), x, - xn) },

X =X )>0 for
n n =

n > 0. It follows easily from the Lipschitz continuity of f' and the

boundedness of  that inf f > -» and so
Q

,1,.1.2( £lx ) - flx ;) =0,

which, in turn, implies that

lim<f'(xn), x - xn> = 0.
n-)O
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Thus, if £ is a limit point and {xn } is a subsequence converging to £,

k
then

o
[}
o

(2.26) lim{(£'(x_ ), x - )
n*f M ™ "

Suppose that £ is not an extremsal, that is, for some z € Q

(£1(£), 2 - E) = -a < 0.

Then by the continuity of f' and the fact that X,

+ £ it follows that

k

lim(f'(x_ ), z - X ) = —a,
n-+o k

and, therefore, there exists an N > O such that for n_ > N

-a
(£r(x ), 2 - x5
k k

k

A g e e ¢ i
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or
(15"(xn ), x. - z)i%> 0.
k 'k
This implies that z € d>(xn ) for n, > N. Therefore, by Lemma 2.2,
k )
assuming (M_ (x. - 2), x. = 2z} > 0, one obtains
e N
(£'(x_)yx. - 202
(2.27) (£'(x_ ), x -in )3_—%min{(f'(xn),xn -z )’(M 7 nk_zr)lkx -z)}
e M, & k "k n' %~ %"
(f'({x_ ), x. - z)2
1 Dy
> 5 min{¢ t"(xn ), x -z 5 }
k k KD
2
1 . a a
>z min{3, } > 0.
2 2 hKDe
If(M (x -12z),x =2z)=0, then
k Oy
N 8
t —
(2.28) (f (xnk), xnk - xnk) >5>0.

But (2.27) and (2.28) contradict (2.26) and it follows that
(r(g), z - &) >0, Vz € Q.

Let f be convex, then since any extremal is a minimizer , one can conclude

that any limit point £ € Q For every n > 0 let z, € Q be such that

.
1 . _1 :
flx ) - £(z ) > 5(f(x ) - 131‘ £)=5r . Thenz € ¢(x_) since by the
convexity of f one can write
1
! - - =
(2.29) Cerlx ), x =20 > flx) -1(z) >5r >0
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Therefore, by Lemma 2.2,

2
L
(r (xn), X, - zn)

Kl)2

(2.30) ¢f£'(x ), x - x ) > }

n n

N~

min{¢ f'(xn), X - zn),

2

1 r r
> 5 min{, ==} > 0,
LKD .
and (2.25) yields
(2.31) f(xn) - inf f - f(xn+l) +inf f
Q Q
r e Sr 2 ér 4
n n n

r
> § min{qh, s, —25, 5=z}
8KD~ 8LD- 321K D

Since lim(f'(xn), X - x ) =0, it follows from (2.30) that r, +0, and

n n
nr«
from (2.31) with rn sufficiently small one has

4
r-qrn, for q > 0,

r <
n+l — ' n

and the rate r, = O(n-l/3) follows from Lemms 2.1.

Remark 2.3, In proving that every limit point is an extremal, the
crucial fact is that
3 [ X =
lim (f (xn), x, - xn) 0.
n->eo

As shown in the theorem, this will be true for any operator sequence

{Mn} in the (GS) provided that Q is bounded. The condition of boundedness

can be removed if it can be established that w, 2w >0, for all n > O,

and inf f > -=, 1In the next chapter it will be shown that the stepsize
Q




2k

parameters are bounded away from zero when the operator sequence {Mn}
satisfies (1.13) and for certain other methods in the (GS). 1In these

cases the theorem is true for Q = X provided inf f > -=,
X

Remark 2.4. It is easy to confirm from the proof of Theorem 2.1 and
Remark 2,2 that the convergence rate of O(n-l/3) f6r convex functionals

can be extended to pseudoconvex functionals which satisfy

(2.32) (£(x), x - € > x(f(x) - £(g)) Vx€Qa-a,VE€Q, x>0

£

In [10], Dunn establishes (2.32) for a large subclass of pseudoconvex

functionals which includes certain concave functionals.
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3. Convergence Rates for Convex Functionals

In the previous chapter it was shown that for any sequence of
nonnegative operstors, bounded uniformly above, the "worst case"
convergence rate of sequences {f(xn) - inf f} generated by the (GS) is
O(n-l/3) for convex f. In [8], [9] and other references, however, a
"worst case" rate of r, = 0(%0 is established for the conditional
gradient method and the gradient projection method. In Theorem 3.1 it
is shown that the rate r, = 0(%& holds for a large class of methods in
the (GS) whose operator sequences satisfy either of the following two

additional conditions:

(3.22)  ufiulf <y, w < Tulf,  veex, o<y <w <o,
forn >0,
with
B
(3.1b) —>a>0, for n > 0,
un
or, if f istwice Fréchet differentiable and
(3.2) 0 <M u, ud < (f"(x)u, ul, Yu€ X, ¥x€ Q for n > 0,

Note that Allwright [15] specifies condition (3.2) in his method.

Also, the conditional gradient method, which uses Mn =0 forn >0, is
admitted by condition (3.2) for convex functionals, since f"(x) is
nonnegative on @ in this case. Methods whose operator sequences satisfy
(3.1) include Barnes' method [16] and the method of gradient projection

in Hilbert space in which
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(3.3) in = Pﬂ(xn - aan(xn)).

The operation of projection of X, - aan(xn) onto @, for e, > 0, is

equivalent to solving §

(3.4) in = arg min {(Vf(xn), yo-x )+ §%—"y - xn|F},
yeQ n

since (3.3) is defined as

A . 2
(3.5) x = arg min |y - (x; -« vf(x )l
yEQ
1
or !
4
!
- 3 2 2 H
(3.6) x. = arg min{2a (Vf(x ), ¥ - x. ) +|ly - x]|° + o« _qve(x )|}, |
n n n n n n n |
yEQ :
i
1
the solution of which satisfies (3.4). The operator M = :%—I in (3.Lk) i
n i
clearly satisfies (3.1) withlgn =u o= éLn The relaxed gradient projection j
n

schemes in Demayasnov and Rubinov [9] specify explicit upper and lower
bounds for the sequence {an}. Condition (3.1) does not need that
restriction, although the requirement (2.2) that {Mn} be bounded above
imposes a lower bound on {an}.

It is interesting to note that the method of gradient projection is
imbedded in a larger family of Hilbert space variable metric gradient
projection methods in which at each step the projection operation and
the determination of the gradient is carried out with a new inner product.
Thus, if Mn is an operator satisfying (3.la) then as an operator in the

(GS) it can be assume that Mn is symmetric, i.e., (Mnx, y) = <Mny, x?,

M +M#*
n
2

Yx, y € X. This is true since (M x, x) = (( ) x, x) where M
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M +M*
operator of Mn on X and -2 5 R is symmetric. Therefore, one can
M + M ¢
consider the sequence {Mn} equivalent in the (GS) to {~= > 2_}. Then,

with Mn symmetric and positive definite a new inner product is defined
by
(x, y)M = (Mnx, y.
n
Although the Fréchet derivative is the same for all of the related norms,
the representation of f' changes with the inner product, since
£ (x)[y] = (ve(x), y) = (MM TIoe(x), y) = (M "lve(x), v
? nn ’ n ’ Mn'

The variable metric version of (3.3) is now

. -1
X, = Py (xn - by Vf(xn))
)

or equivalently

A - - l
X = arg mln{(Vf(xn), yo-x) 4 5 (Mn(y - xn), vy - xn>}-

An example of variable metric projection which is commonly practiced
in computations in R" is the technique of "scaling", in which the operators

Mn are represented by diagonal matrices Dn' In one scheme, for example,
82f
entries on the diagonal are second partial derivatives,-——jg, of the
X,
i

functional f. Although such ad hoc methods can make matters worse,

they can also accelerate convergence, and on simple sets such as orthants

and boxes, the process is no more difficult to carry out than "standard"
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gradient projection. Notice that the condition numberlgg of a diagonal

¥n

matrix is the ratio of smallest to largest diagonal entry; therefore,
if that ratio is bounded away from zero for n > 0, then the scaling
procedure satisfies (3.1).

The "unrelaxed" gradient projection methods considered b& Levitin
and Poljak (8] and Dunn [10] in which w =1 for n > O can be considered
as part of the (GS) provided § is sufficiently small. In both cases
the methods used to select the sequence {an} are such that at each step
Goldstein's rule will select w, = 1 if 6§ is small enough. For example,

Levitin and Poljek require that a be chosen from the interval

] for e > 0. From the definition of g(x_, in, w) in

2
[e1s T3 c, 1? &2

Goldstein's rule (2.3) and from (2.17) one obtains

1) >1 -

(3.7) g(xn, X

n’

when xn is not an extremal. Also, in minimizes the functional

Q(:%-I, X <) over 2, and is therefore an extremel of Q(éL-I, X .)
n n

satisfying (2.1). In this case (2.1) reduces to

1 " ~
(VQ(;;I,xn, xn),z-xn>_>_o, Vz € Q,
or
l A -~
(3.8) <Vf(xn) + ;;(xn - xn), z-x)2>0, Vz € Q.
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By letting z = x in (3.8) one can write

» ST 2
(3.9) (Vf(xn), x, - xn) _>_;;Hxn - xn" .
If @ < I +2€2 , then (3.7) and (3.9) give

La
n

g(xn, X, 1) > 1 - <

L
2l-1= €, : .
, PO |
L »
Thus, Goldstein's rule yields 0 =1ifd <1 - T e - Once again the

2

lower bound 0 < g, < o gives the uniform upper bound required by the

1
(Gs).

The following theorem gives a "worst case" convergence rate
estimate for methods in the (GS) when either (3.1) or (3.2) is satisfied.

As noted above, a large number of well known methods are included in

this subclass of the (GS).

Theorem 3.1. Let @ € X where X is a Banach space and Q is convex and
bounded with diam Q@ = D. Let f be convex and differentiable with f'
Lipschitz continuous on Q, and let L be a Lipschitz constant for f'.

Then inf f > -» and if the (GS) operator sequence {Mn} satisfies either
Q

condition (3.1) or (3.2) then the value r, = f(xn) - inf f will decrease

Q

monotonically to zero and r = O(%).

Proof. As in Theorem 2.1, lines (2.2L4) and (2.25) one has

28 £ (x ), x - x_)

n n -
K f'(xn), x - xn)

(3.10) f(x ) - £(x__,.) > 6 min{1, -
. ol Lllx, - % IF
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Also, inf f > -» follows easily from the Lipschitz continuity of f£' and
Q
the boundedness of Q. Therefore, for every n > 0 let z be such that

£(x)) - £(z) l% (£(x ) - inf f) = % r-

Y]

Then, as in Theorem 2.1, since

f is convex one can write

(3.11) (f'(xn), x, - zn> > f(xn) - f(zn) 1%1‘ >0,

n

and z € ¢(x ) for a1l n > 0. If (3.1) holds for {M }, and if x_is

not an extremal, then Lemma 2.2 gives

(3.12) (£r(x), x_ - &) > Slmin{£'(x ), x - 2)

9 - - ¥
(Mn(x’:1 zn), X zn)

+ (Mn(xn - ;cn), x, - ;cn)].

With (3.11), (3.12) becomes

(3.13) (£'°(x ), x - X >3%[min{-_£ - :

A 1 . .n n
(3.1’43) (f'(xn)’ xn - %02 min{ 2 WM (x -z )9 X, = 2 >}
n'n n n n

and

A 1 " “
(3.1L4b) (f"(xn),xn-x)ZE(Mn(x,x),x - X ).
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Therefore, using appropriate combinations of (3.1ka) and (3.14b) one has

: ~ 2
(f'(xn), x, - xn)

(3.15) —
Lik, - %]l
y . 2 2 - PS
; 1. r T (Mn(xn - xn), x, - xn) .
> § min{ R |2 s - |2 : 1
Lufjx - X, | bnflx, - x| M (x, =2z), x -2)
r @ r 2u
1
iR-I:min{ . ~ S — = }
lIx, - % IF " Wl - 2, IF
ar 2
n 2
> = c,r , c, > 0.
16LD2 1n 1
Line (3.1ka) can be written as
2
(3.16) CEr(x ), x_ - %) >3 min{rn 2}
. Py - __ Ty TxJ
n n n 2 2’ m)z

and then (3.16), (3.15), and (3.10) yield

'n rn2 2
(3.17) flx) - £(x ,,) 2 6 min{5, ;q)?’ 26e,r 1.

If (3.2) holds, then

r
(3.18) Cer(x ), x, - X)) 25

This is true since with Taylor's formula and (3.2) one obtains for any

yE€Q
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fly) = f(xn) + f'(xn), y-x)

1
+ I < f"(xn + 0(y - xn))(y - xn), y - xn)(l - 8)de
Q

v

1
£lx) + (£ (x )y ¥y = x>+ SAM (y - x ), ¥y.- x)

f(xn) + Q(Mn, X y)

|v

£(x,) + QM x,, &)

With y = zn, it follows that

r
'Q(Mn9 xn, in) ke f(xn) - f(zn) i?n'

or

r
' ) -2 - % £y >R
(t (xn)’ X - xn) T2 (Mh(xn xn)’ X - xn) 2%

and since M is a nonnegative operator, (3.18) results. Combining (3.18)
with (3.10) one has

) rn § r 2
(3.19) £(x) - £x ;) 2 6 min{z, —5 "n }

2LD2

By Theorem 2.1, {rn} decreases monotonically to zero, and with (3.17)

and (3.19), for r  sufficiently small, it follows that

2
£(xy) - £lx ) 2 Seyr s for sore c, > 0.
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Therefore,

Sc 2
Th = €%, »

r <
n+l —

and Lemma 2.1 gives the rate estimate r = 0(%0.

QED

Remark 3.1. The proof of inequality (3.18) in the theorem is due to
Allwright [15].

Dunn [10] has shown that sharper convergence rate upper bounds can
be determined for the gradient projection method (1.5) in the presence
of conditions on the growth rate of the functional f near an extremal
£, i.e., condition (1.10). Condition (1.11), which expresses structural
properties of the set O near £, implies condition (1.10), since when f

is convex,
(3.20) (£r(€), x - &) < £f(x) - £(g)

is true for any minimizer £. For the conditional gradient method Dunn
(4], [14] requires the condition (1.11) to establish higher rates of
convergence.

In Theorem 3.2 it is shown that whenever it can be established that
the stepsizes are bounded awsy from zero, the growth ratg of the func-
tional f near £, i.e., condition (1.10), is enough to gi;e a hierarchy
of linear and sublinear convergence rate estimates for the sequence {rn}.
When f' is Lipschitz continuous, condition (1.13) which requires that
operators in the sequence {Mn} be uniformly positive definite, is

sufficient to prove that w > w > 0 since line (2.23) and Lemma 2.2 yield




26(f'(xn), X, - X )

w_ > min{1, =}
n Lllx, - % If
&M (x -x ), x =-Xx)
> min{1, n'n n'® "n n },
tlx, - & IF

and with condition (1.13) it follows that
w_ > min{l 6—”-}>o
n — > L '

Condition (1.13) is not required by Dunn [10] for the gradient
projection method (1.5); however, the condition w, = 1 is inherent in
the method, and upper bounds for the sequence {an} in the gradient
projection schemes in [8] and [9] are equivalent to condition (1.13).

When f is convex, condition (1.10) implies that £ is a unique

minimizer. It is possible, however, that the set Q. consists of more

f

than one vector, in which case a more appropriate condition is

(3.21a)  f£(x) - inf £ > ya(x)", ¥x € 0,
Q

where

(3.21b)  d(x) = inf ||x - ¥
yea,

Note that conditions (1.10), (1.11), and (3.21) require that Q, be

nonempty.

f be convex and differentiable with f' Lipschitz continucus on Q, and

let L be g Lipschitz constant for f'. Let the (GS) be such that

34

Theorem 3.2. Let Q@ € X where X is a Banach space and  is convex. Let
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(3.22) w >w>0, Vn > 0,

and let condition (3.21) hold with v € (2, =),
If v = 2 then {rn} converges linearly, i.e., r = 0(A") for some

A€ (0, 1). Ifv>2, then

(3.23) r, = o(n~/(v-2)y,

Proof. From Goldstein's rule, (2.5), and (3.22) there results

- ' - s
(3.24) f(xn) f(xn-f-l) > 8w lf (xn), x, - %)
N - ~
> Sk £ (x ), x - x ).
As stated in Remark 2.2, for convex f and any y € Q,, one has ?
(f'(xn), x - y) > r. 2 2.

Therefore, by Lemma 2.2 and for any y € Qf, it follows that if X #y

frn, if(Mn(xn-y),xn-y)=0
(3.25) (f'(xn), x - xn) > 5
1 Lmin{r n }
9 )
2 n (Mn(xn-y), xn-y)

if(Mn(xn -¥), x, - y)>o0

2
r

1 . n
= min{r_, .
2 Pl - ol

|v
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Let {y } € @, be such that for n > 0

4
x, - vl < 28(0) = 2 tat flx_- vl
yeQ,
Then for v = 2, condition (3.21) yields

2

T
(3.26) 2

rn2
Klix, - yn[f "'hxd(xn)2

z-TJXI-{-I.H’

and for v > 2, since rn2/v > ya/vd(xn)z it follows that
2
r 2/v
(3.27) L Loy (2R
Klx, - v, IF

Combining (3.24k) - (3.26) one has with v = 2

f‘(xn) - f(xn+l) > Gwrn min{1, t}(ﬁ} =qr , vith q € (0, 1).
Therefore,
roy < (1 -ar)

which implies

r, = 0((1 - @)") = o(x™).

If v > 2, then (3.2%), (3.25) and (3.27) yield

N L (22/9)

LK "n }

) .
flx ) - flx ) 2 (-:})mln{rn,
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which, for r, sufficiently small, implies
2/v
(2-2/v) _ Sw
rn+l i-rn - qrn , where q = ——%E—— .

The rate (2.23) follows from Lemma 2.2.

As with condition (1.10), condition (1.11) implies that the
minimizer £ is unique; however, an extension to a condition like (3.21)
is not possible here.

The following lemma, which is a modification of Lemma 2.5 in [22],

will be needed in the next two theorems.

Lemma 3.1. Let © € X where X is a Banach space and @ is convex. Let f
be differentiable, f' Lipschitz continuous, and let L be a Lipschitz
constant for f'. Let condition (1.11) hold at & with v € [1, =), If

{x } is generated by the (GS), then
" v-1 L +K
(3.28) ||xn - gl < (-—Y—")“xn - &ll for n > 0,
where K is the uniform bound on the norms of the operators M (see (2.4)).

Proof, From (2.2) one has for n > 0

0<QM,x, &) -aM,x,x)

or

(3.29) 0 < (£ (x), £ - x )+ (M (x

-£), X, - &) -(f'(xn), in - x)

n

1 R .
- §<Mn(xn - xn), X, - x )




From the positivity and the linearity of the operators Mn’ there results

1 1 - .
(3.30) E‘Mn("n -E)y x, -~ &) - -2-(Mn(xn - %)y x -x)
=1 - g -1 2 -
-—2(Mu(xn £), X, £) Z(Mn(xn-xn)'xn E)
l ~
- §<Mn(xn - xn), £ - xn)
=l(M(i -8), x -§)+l(M(x -£), x -8
2 "n''n > "n 2 n'n ' “n
i -8, % -8
2 n'n ' n :

Furthermore, (3.29), (3.30) and the Lipschitz continuity of f' yield

- l ~ ~ ~
(3.51) §<Mn(xn -£&)y x -8} i(f'(xn), £ -x)
1 - 1 "
+ E(Mn(xn -£), X, =€)+ §<Mn(xn -£), x, - £)
or
l ~ A ~
(3.32) (M (% -&), % =& +(£'(8), xy - &

<(ere) - £ (x ), & - &) + Kix - &lll1%, -
<@+ olx - sl - el
Finally, by the positivity of Mn and condition (1.11) one has

W%, - €l < @+ ©llx, - ellllE, - &ll -

it il

QED
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When {wn} can decrease to zero, condition (1.11) is used with
Lemna 3.1 to estimate its rate of decrease, as shown in the following

two theorems:

Theorem 3.3. Let Q@ C X where X is a Banach space and Q is convex and
bounded. Let f be convex and differentiable with £' Lipschitz continuous
on @, and let L be a Lipschitz constant for f'. Let the (GS) operator
sequence {Mn} satisfy either condition (3.1) or (3.2), and let condition
(1.11) hold at £ with v € [2, ®). If v =2, then r_ = O(A") for some
A€ (0, 1), and if v > 2, then

-v(v=1)
(3.33) r = 0(n v(v-10-27

Proof. As in the proof of Theorem 3.1, line (3.10) one can write

A2
26<f'(xn), X, - xn)

(3.34) f(xn) - f(xn+l) > 8 min(<f'(xn),xn -x),

LHxn - xn|F
Clearly, (3.11) is satisfied with z = £, and vhen (3.2) holds, (3.18)

and (3.34) yield

(3.35)  f(x ) - flx_,.) > Smin(r_,

+1

From (3.1ka) and (3.15) in Theorem 3.1, where (3.1) holds one has

(3.36) f(xn) - f(xn+l)

r 2 Sr 2 Sar 2
n n n

“xllx, - £IF bellx - P - elf

>

}.

rojor

min{i r
2°n




When f is convex, (1.11) implies (1.10), and as in Theorem 3.2, it

follows for v > 2

2
T 2/\:r (2-2/v)

(3.37) —2 >y
lx, - €lf "

Using Lemma 3.1 with the triangle inequality one can write

llx, = %Ml < W, =gl + e - %,

1/(v-1)
L+ K Ix, - EIII/(\"I)

Y

<llx, - ell+ ¢

T S L B S
Therefore,
(3.38) W, o
' x, - % F T pv-2)/ (1) (%5)1““'“)2“% _ /(D)
> 3rn2.2/(\)(\:-1))
where
c, = 62/(\)(\)-1)) and D = diam Q.
37 /D) (E-__}E)l/(v-ﬂ)2
Since

(2-%):(2 )) for v > 2,

(v -1




L1
it follows that

(3.39) rna'al\’ > p 2-2/9(v-1)

n

for r sufficiently small. By Theorem 2.1, r_ » O and, therefore, (3.35)

and (3.36) can be written as

<r -ar (2-2/v(v-1))’

r >
n+l — 'n n 0,

for r, sufficiently small. The result (3.33) follows from Lemma 2.1 with

v >2, and vhen v = 2, r = o(A") for some A € (0, 1).

Up to this point the emphasis has been placed on determining

convergence rates for the sequence {rn} = {f(xn) - inf f}. It is possible.
Q
that the sequence of iterates {xn} has no limit points, and a rate on the

sequence {rn} is the best one can do. Also, in most applications approxi-
mating the minimum value of the functional f is the primary objective.
Note that conditions (1.10) and (1.11) give convergence rates for the

sequence {|jx_ - £||} when a rate for {r_} is known. Ifr_ > ylx - ¢ Y
n n n—
-k/\))

for v >2, then if r_ = 0(n~¥), 1t follows thatl]xn - || = o(n
Similarly, if v = 2, then linear convergence of {rn} implies linear i

}. 3

convergence for {|[x - &|
In the following lemma, it is shown that condition (1.10) for
v € {1, 2) implies that condition (1.11) holds at £. (This is also

shown in [10] and [4].) In Theorem 3.4 this fact is used to show super-

linear convergence or finite termination for the sequence {||x - &}

for any operator sequence {M } in the (Gs). |
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Lemma 3.2. Let Q@ C X where X is a Banach space and £ is convex and
bounded. Let f be differentiable with f' Lipschitz continuous on Q and

for some £ C Q let f satisfy

(3.k0) £(x) - £2(6) > flx - €|, vxeaqa, andve 1, 2).
Then
(3.b41) (£'(g), x - &Y > ylk - ¢l’s vx€ q, and some 7 > 0.

Proof. By Taylor's formula and the Lipschitz continuity of f (see line

(2.22)),
(3.42) £(x) - £(g) <(£'(£), x - £) + Rlk - €]F, vxe€gQ, R <=,

and with (3.40) one has

(£1(e), x - & > vyl - [’ - Rlk - £|P
= (v - Rl - €[FV) |k - £l
Therefore,

(3.43) (er(e), x - > Ik -¢l’s  wvxean B (£),

1/(2-v). Let

where Bp(g) is a closed ball of radius p = (é%ﬁ

p<D=suplly - g]j]<=, and 1let v = %(Eﬁv_l. By the convexity of Q
yeQ P

it follows that for every x € Q

BO(E) there exists a number r € (p, D]

and a vector y € Q with ||y - £|] = p such that x - ¢ = E{y - £). Therefore,

(3.43) yields for v € [1, 2)




9
L3
,~ (£1(8), x - &) = (£'(5), Ay - €D
' r v
> Elly - &l
? rp’ | r
= L2 1%y - oI
2pr
v=1
_>_va_1 ”x - 5”\)
2D
- \Y
=ylix - ¢lf°.
Since %-> ; the lemma is proved for all x € Q.
QED
Theorem 3.4, Let R C X where X is a Banach space and Q is convex and
bounded. Let f be convex and differentiable with f' Lipschitz continuous
and let L be a Lipschitz constant for f'. If for § € Qf,

(3.k4) £(x) - £(8) > v]k - €|, for some v € [1, 2),

and if {x } is a sequence generated by the (GS), then {lhh - E[|} converges

to zero superlinearly, i.e., either x, = ¢ for some n > 0 or

%041 = Ell
A lim = o,
B e

If v =1 in (3.44), then Xy = & for some N < =,

Proof. By Theorem 2.1, r -~ 0 and, therefore, x, * & follows from (3.43),

Line (2.23) gives




3 }
1]
L"xn Inl

(3.46) w, > min{l,

and, as in line (3.1ka) with z, = £, one can write

2
r
n

- 1l
(3.47) (£'(x,), x - x ) > ymin{r , —————5l},
n n n n a("xn - E”2

Therefore, (3.46) and (3.47) give

ér ér 2
n

(3.48) w, > min{l,

By Lemma 3.2 and (3.43) one obtains
(er(g), x -2 > ylk - l’,  vxea,v>o0,

and Lemma 3.1 yields

(3.49) ||:'En - E”v-l < (£'+5) ||xn -], for n > 0.

Y

Therefore, for v € (1, 2)

n
- 4 PY }
aflx, - % IF uxllx -z Pk - &lf

LU




L5
Ix, - %1l < (b, - dl +1lx, - &lD
1/(v-1) 1
< llxy - gl e EEET e gt/ ) -
Y
1/(v-1)
R T e PR
3 .
1/(v=1)
< (1 + (L ':' K) D(2-\))/(\)—1))llxn - E”
Y
= ollx, - €l
The lower bound (3.48) now becomes
2
Grn Grn
w_ > min{l }
- * 2 2° 2 b
" 2Le, “lpe, - £]f° bike Tk - £l
and with (3.L4L) there results
2
. 3y Sy
w_ > min{l 1.
— 14 -y ? 2 (2-
7 2Le |k, - gl hike) “ b - £|P v)
l% Since”xv1 - ¢ll + 0, it follows that w =1 for n > N, for some N, > 0.

Thus, for n > N, (3.49) yields

1/v=-1

- _ﬂxn - E-ﬂii ( ; ) len - EI

|(2-v)/(v—l)

3 which implies (3.45), When v = 1, the finite termination of the process

follows directly from (3.49), since
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L6
vk, - ell < (@ + Kk, - ellllx, - €l
is true for n > 0, and if ||x - ell < rir%}g;y then||xn - ]| = o.
QED

Remark 3.2, Dunn [4]}, [17] has shown that conditioms (1.11l) and (1.10)

can be established for certain extremals found in problems from optimal
control theory. Let U be a nonempty convex set inimm, and let the

constraint set Q be the set of functions
Q = {measurable u(-:):[{0, 1] -+ U}.

Here f, the functional to be minimized, is defined and differentiable on
a neighborhood of 2 in one of the spaces Lp([o, 1],IBm) and problem (P)
becomes

min  f(u(-)) .
u( - )eq

Condition (1.11) at an extremsl function £(+) becomes

v

(3.50)  C£7(&(+)), ul+) = £(2)) 2 vl - g,

where, in this case,

1
CEHEC)), ule) = £(-)) J )+ (ult) - g(t))at

0]
with y(*) the (unique) representor of the Frechet derivative of £'(&(+))

in the conjugate space %[0, 1), B®) with q =p/(p - 1) and

1 1/p
hat) - 501 = (jo llule) - £(t) [Pas)HP .
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In {17} it is shown that if U is a bounded polyhedron in R® and if (),
is a certain type of "bang-bang" extremal, then values for v can be
calculated directly from such factors as the number p and the growth
properties of a scalar "switching function" s(t) on [0, 1] determined
by y(t) and Q. For example, if f is convex, U is [-1, 1] C]Rl; and y(t)

is continuous, nondecreasing, and has an isolated zero at t = l-, then

2
1
-1, t € [0, 5
(3.51) g(t) € ¢ [-1,1], ¢ =%
+1, t € (%3 1],

and v in (3.50) has the value 2 and 4 in Ll and L2 respectively. Thus
by Theorem 3.2 the gradient projection method, which is limited to the
Hilbert space L2, would generate a sequence of iterates whose convergence
rate estimate is f(un(')) - f(g(*)) = 0(35); a simple example with
minimizer (3.51) shows that this estimatg cannot be improved. On the
other hand, the conditional gradient method makes sense in Ll, and for

v = 2 this method converges linearly according to Theorem 3.3. Note that
the Ll analog of ¥Filber* s:a2cs -radiznt pr-’..cnion in which Mn = éL-I in
the (GS) is a method in which Qn(y) = <f'(xn), y-x )+ E%—lly - xnlﬁ

is minimized at each step. This method is not formally in zhe (GS);
however, Lemma 2.2 and Theorems 2.1, 3.1, and 3.2 could be modified to

give the same results for this method with 0 < a le <b <=, Vn > 0,




and in the example (3.51) above the convergence rate in Ll would be at

least linear. Its feasibility in Ll, however, is questionable.

Remark 3.3. The results of this chapter are readily extended to pseudo-

convex functionals satisfying (2.32) in Remark 2.4, when Q, is nonempty.

FCE
™ il raal e y Q e oy as
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L, Newton's Method

When f is convex, f" is nonnegative and symmetric (see, e.g., [22]),
and Newton's method, in which M = f"(xn), is in the (GS). The "worst
case" convergence rate of r = O(n'l/3) given by Theorem 2.1 when
Jl£"(x)]] < K, Vx € Q, seems far too conservative, since in the regular
cases for which convergence rate estimates exist, the rates for Newton's
method are clearly superior to those of such first order schemes as the
gradient projection method and the conditional gradient method. On the
other hand, f"(xn) need not satisfy either condition (3.1) or (3.2), and
so Theorem 3.1, which gives the rate O(%), does not necessarily apply
to Newton's method. The fact that M, = f"(xn) in Newton's method,
however, can be employed to strengthen a number of the fundamental
inequalities usea in previous theorems, and convergence rate estimates
for Newton's method will be shown to be better than those of the first
order methods in a number of less than regular cases.

The following two lemmas improve inequalities (2.23) and (3.28)
when f" is Lipschitz continuous on Q, i.e., when there exists an L > 0

such that [[f"(x) - f"(y)[[ < Llk - v|l, Vx, y€a.

Lemma 4L.1. Let @ C X be convex, where X is a Banach space. Let f be
convex and twice differentisble, f" Lipschitz continuous on Q with L a
Lipschitz constant for f" on Q, and let f" satisfy |[f"(x)|| < K < =

Vx € 9. If {x }isa sequence generated by the (GS) with M= f"(xn)

then for any y belonging to the set Q(xn) in (2.9),
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N+

(f'(xn),xn-y)2
§ min{{ £'(x_),x_-y) s
n'*n"v"? f"(xn) (xn-y),xn-y)

Llix -x I

(4.1) w_> | min{s,

if (f"(xn)(xn-y),xn-y) >0

L

26( £ (xn) ,xn-y))2

min{G, ( 3

Lf|xg-% |

if <f"(xn)(xn-y),xn-y> =0,

Proof. If w, > 1 and X, is not an extremal, then Goldstein's rule and

Taylor's formula yield

flx ) - £lx + wn(in - xn))

(4.2) 1-62>
! N
wlf (xn), x, - x)
2
w, X X
] S - — " - -
) wn(f (xn), X, - xn) 5 (f (cn)(xn xn), X, xn)
= n H
wn(f'(xn), X - xn>
where
g, =%, * en(xn + wn(xn - xn) - xn)

X - €
X, * enwn(xn xn) for some 8 (o, 1].

=
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It follows from the Lipschitz continuity of f" that
wn - -
-2—(1‘"(xn)(xn - xn), x, - x)
(%.3) 1-6>1- - x
=~ (f'(x ), x_ - %)
n n n
W, :
n " - oM - v _
2 Cex) = (g Mx = x )y x = x )
] - A
<fonT, X, - %)
" - - 3
1 (f (xn)(xn - xn), X, - xn) + Lmnen“xn xnll
-— n . -~ L]
Xf (xn), x, - xn)

and one obtains

24 f'(xn), x, - xn)

(4.k) w2

n— a
(f"'(xn)(xr1 -Xx ), x

Let y € Q(xn) and assume (f‘"(xn)(xn -7, x - y) > 0. Then Lemma 2.2

and (4.4) yield

(f'(xn),xn-y)2
X =y
n Y’ CE(x ) (x_y),x_y)

§ min{¢ f'(xn), } o+ & f"(xn)(xn-xn),xn-xn)

(b.5) w >

! - - = 113
G ) (= ) ox =% ) + Lmnen“xn-xn”

I
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Suppose w < 6. Then from (4.5) one has
(4.6) §e"(x Mx -%),x -%x)+w Lk -x|P
e n’'n n’* “n n n n n

~ - 2 =B
2o fMx )e - %), x - x )+ w0 Lo, Ik, - x|l

2
(f'(xn), X, - y)

28 min {¢£'(x))s x; - ¥), Tl ) x, - ¥), x, - 37 }

1" z ol
+ 8¢ (xn)(xn - x,), x - xn>

or

C£(x), x - p)F

6 min{C £'(x ), x_ ~ y), = }
n n f (xn)(xn ~¥), x, - y)

(4.7) w? >
§ tix, - % IP

If (f"(xn)(xn -y)s X, - y? = 0, then using Lemma 2.2 and the above

argument one obtains

28 ' (x ), x - ¥
(5.8) w?> non

]

A3
Ulx, - x|l
and the result (4,1) follows from (4.7) and (L4.8).
QED

Lemma L.2. Let @ C X be convex, where X is a Banach space. Let f be
convex and twice differentiable, f'" Lipschitz continuous on Q with L a
Lipschitz constant for f" on Q, and let f" satisfy ||f"(x)|| < K < =,

¥x € Q. Let ¢ be the unique minimizer of f in Q and sugpose (1.11) holds,

i.e.,
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(£'(g), x-8)>yllx-¢|’, vxegq,vel(l, =).

If {xn} is a sequence generated by the (GS) with M= f"(xn) then
- V-1 L

(4.9) %, - el < =, - gIP.
Proof. From (3.31) in Lemma (3.1) one has with M = f"(xn)

L e )3 : :
(4.10) 5 (f'(xn)(xn - &), x, - ) +(f£'(g), x - E)

~

<Ce(E) - £ (x ), X - B) +3((x )(x - E), k-8

l " kol
+5(f (xn)(xn -£), x, -E).

Since the second derivative operator is symmetric and nonnegative, one

obtains with the Mean Value Theorem
(k.11) Cer(e), x -8 < (e"(g )(E - x ), x - &)
" >
+Oe"(x )x, - €), & - ©),

where ¢ = x_ + en(s - xn) for some 6 € [0, 1]. From (1.11) and the

Lipschitz continuity of f" there results
vl - €l < the, - 2 llIx, - ellll%, + el

<ulk, - &lf 1%, - &l .

QED
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Using the results of Lemma 4.1 in the proof of Theorem 2.1 one can
easily obtain a new "worst case" rate of convergence of r, = O(n-l/e)
for Newton's method when f is convex. Lemma 4.2 can be used to prove
that a hierarchy of convergence rate estimates exists as in Theorem 3.3
when condition (1.11) holds at a minimizer; however, the estimates would
still be worse than those in Theorem 3.3. The following assumption on
the functional f near a minimizer £ will give a hierarchy of convergence
rate estimates superior to those in Theorem 3.3, and Lemma L4.3 will

prove that the assumption is actually true for a large class of convex

functionals.

Assumption (A). If f is convex and £ is a minimizer of f on Q then for

some p > 0, some ¢ > 0 and all x € Q@ N Bp(E)
Cer(x), x - 892 > c(£(x) ~ £(E) N £"(x)(x - €), x - E).

Although (A) is not true for all convex functionals, as an example of
Dunn {1k4] in the Hilbert space %, shows, it is conjectured that (4) is
true whenever condition (1.10) holds at a unique minimizer of f in Q,
i.e., when the functional near the extremal grows like ||x - £ for

some v € [1, »). The following lemma supports this conjecture.

Lemma 4.3. Let @ C X be convex where X is a Banach space. Let f be

(5)

convex, five times differentiable with f Lipschitz continuous on Q

(5)

with 1, a Lipschitz constant for f on 2, and suppose for some § € Q

£(x) - £6) > vl - €I,  vxea.

Then f satisfies assumption (A) at &.

54
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Proof. The proof can be found after the proof of Theorem 4.1.

Remark UL.l1. Similar proofs can be given for (i)-differentiable convex
functionals with Lipschitz continuous iLrl derivatives when

£(x) - £(€) > yvlk - €|} for i = 3, &, 5.

Theorem 4.1. Let @ C X be convex and bounded where X is a Banach space.
Let f be convex and at least twice differentiable with f" Lipschitz
continuous on Q with L a Lipschitz constant for f" on Q, and let f"
satisfy |[f"(x)|] < K <=, Vx € Q. Furthermore, suppose that assumption
(A) holds at a unique minimizer £€ Q, Finally, let {x,} be a sequence

generated by the (GS) with M o= f"(xn). Then:

(i) If (1.10) holds for some v € [2, »), the values r = £f(x) - £(&)

satisfy r = 0(35) (at least).
n

(1i)  If (1.11) holds for v€(3, =), then r_= o(n~2v(v-1)/(v(v-1)-6)y
(11i) If (1.11) holds for v=3, then r_= 0(A") for some A € (0, 1).
(iv)  If (1.11) holds forv € [1, 3), then the sequence {||x - &lf}
converges superlinearly, i.e., either X, = £ beyond some N, or else
= _,, - €ll
lim o+l =0

x -t

n->» n

Proof. In all cases rn + 0 by Theorem 2,1, and since condition (1.10)
or (1.11) is satisfied here, it follows thatHxn - &|| > 0. It can be

assumed, therefore, that for some ¢ > 0 the inequality
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(b.12) Cer(x ), x - 7 > er (£"(x )(x - £), x - E

is true uniformly in n > 0.

(i) From Lemma 2.2, Goldstein's rule (2.5), (4.12) and the convexity

of f one has forn > 0

(4.13) flx) - £lx ) 2 6w (£ (x )y x -~ %)

where ¢ -l-min{l, cl.

2 Swpeyr, 17532

Condition (14.12) and Lemma 4.1 with y = £, Vn > 0, now yield

(4.1k) w, > min{s, (

—-—-—5-" i, where D = diam Q.

For n sufficiently large, (4.13) and (4.1b4) give

3/2
Tnel =% = P

with

2 ,\1/2 3/2
q = (—.——) (Gc ) .
> 1

This implies r, = O(-l-é-), by Lemma 2,1.
n
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(ii) By using (1.11) with v € (3, =) in Lemma 4.2 one obtains

(k.15) Ilin - &l j,($91/(v-lh|xn - EIF/(v-l) for n > 0.

Therefore, by the triangle inequality one obtains, as in Theorem 3.3,

r r

(4.16) = i ~— 3
lx, - & IP = dix, - &ll + 1%, - €D

r

n
(”xn - g” + (_Yli)l/(\)-lT”xn - E”2/(\3-].))3

|v

r

n
(D(v-3)/(v-l) + (%Jl/(v-lj)%lxn _ E|F/(v-l N

|v

provided x # £. Also, since f is convex, (1.11) implies (1.10) and one

can write

n

(5.17) r > rnl-6/(v(v-l))Y6/(v(v-l))”xn _ Elf/(v-l{

The inequalities (4.16), (4.17), and (4,14) now give

r

(4.18) w > min{s, c, n(v(v-l)-6)/(2v(v-l))}’

where

o5e V6/(v(v—l))

e, = ( L

)1/2
2 L(D(v—B)/v-l) . (%017(v-i))3

> 0.
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Finally, (4.18) and (4.13) yield for n sufficiently large

Foel S Tp = qrnl+(“(“'1)-6)/(2v(v-1))

with
qQ= Gcacl.

The desired result now follows from Lemma 2.1.

(1ii) From (k.13) it is easy to see that if w > w >0, Vn >0, then

r = 0(A®) with A = mex{0, 1 - Sciw}. When (1.11) holds with v = 3, it

follows from Lemma 4.2 that

A L,1/2
(b19)  lx, - gl = (D7l - el

and using the triangle inequality one finds that
~ 13 A L\1/2 3
(4.20) Mz, - %P < Uy - el + Nz, - €D < @« G230, - el

Since r 26e0(g), x - §) Z.Ylhh - 5“3, (4.20) and (L.14) combine to

yield

Y e,
3)1/2)3
Y

w 2 min{s, ( =w > 0.

L(1 + (
(iv) VWhen (1.11) holds with v € (1, 3), then Lemma 4.2 states that if

X # £, then

lfx, - &l
(L.21) n :.(%)1/(v-1)"xn _ E”(B-v)/(v-l)'

- &

n




It will now be shown that w =1 (and consequently .

= xn) for n

1
sufficiently large; this result, together with (4.21) implies that X

converges superlinearly to £.

Goldstein's rule selects w, = 1lif g(xn, in’ 1) > & for the given

s € (0, %J. From the definition of g(x, X, w) and Taylor's formula one
has

f(xn) - f(f:n)

(4.22) glx , X, 1) = -
(f'(x ), x - x )
n n n

" $ pd >
(f (xn + en(xn - x.n))(xn - xn), x - xn)

T

=] -
) N
(f (xn), x, - xn)

for some 8 € o, 1],

provided x # £. Since f" is Lipschitz continuous, it follows that

1" 2 ol
(f (xn)(xn - xn), x, - x )

(4.23) g(xn, X 1) > 1 -

2 (f'(xn), x, - xn)

s 13
Uix, - i

fl _ ~
2¢(f (xn), X, xn)

For any operator M and each fixed x € Q, Q(M, x, *) is a functional on
Q and if x minimizes Q(M, x, ) on Q then X is an extremal of Q(M, x, ).

If M is symmetric, then (2.1) yields

C(£'(x) + M)(x - x), z - x>0, Yz € Q.




In particular, for z = x this gives

(4.24) (£'(x), x = x) > (M(x - x), x - X).

Since f"(xn) is symmetric and nonnegative one can use (4.24) in (4.23)

to get

tlx, - % P

» 1) >

=

(k.25) glx , x -
n® “n R
<f'(xn), x, - xn>

From Lemma 4.2 with assumption (A) one has
' - X - v = l 3 !
(4.26) (f (xn), x xn) > eqr, :_clylhn g|l", where e =3 min{l, c}. <

Furthermore, Lemma 4.2 and the triangle inequality yield

(2n)  llx, = % IP < x, - ell + 1%, - &b

(%)l/(v-l)“xn _ F,IIZ/("'I))3 ‘

< ix, - el +

_g_)l/(v-l)D(3-v)/(v—l))3”xn _ 5“3_

s+

Together, (4.27), (L4.26), and (4.25) give f

L(1 + (E)l/(V—l)D(3-\))(V-l))3

Y 3=-v
- = Ix, - £,

ST

glx_, in, 1) >

and since”xn - &|]| + 0 one can conclude that for any fixed § € (O, %0,

there is a sufficiently large N(§) such that
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g(xn, ;‘n’ 1) > 6 for n > N(§).

If (1.11) holds with v = 1 then x =g for n > N for some N < = by

Theorem 3.4,
QED

Proof of Lemma L4.3. Let fs’p(e;) = {x € BD(E): (f"(x)(x - €), x = E) > 0O},

Then since (£'(x), x - &) > £(x) - f£(§) when f is convex, it is sufficient

to show that

- <f'(x)4 X - E) -y
(4.28) Tl x= D >e¢>0 VvxeqanNn Bp(g)

for some p > 0O

One can expand f(x) - £(g), (£'(x), x ~ &) and ( f"(x)(x-£&), x - &) with
(5)

Taylor's formula and use the Lipschitz continuity of f to obtain

(4.29) £(x) - £(g) = (£'(E), x - &) 5

v 3 Lo o™t x- 0 e, ),

H e~

n=2

(L.30) (£'(x), x = &) =(£'(8), x - &)

>

1 (n) n-1
£253W<; (E)(x = €)', x - € + r(&, x),

+
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2
(130 (k- 0, x- 0 = [ aom- o -0

n=2
+ r3(59 x),

vhere £5)(g) 1s the kR qifferential of f at £ (for a discussion of
higher order derivatives and Taylor's formula in Benach spaces, see, e.g.,

Vainberg [27]), The terms rl(g, x), r2(£, x) and r3(5, x) satisfy

.32) |ry(8 0 = & e+ o - e - DN - 0 x - 0

<z llx - elf,
(%.33)  |ryle, 0] <gprlix - elf,
L
(5.38)  rge, x)] <57 lx - elf.

Each x € Q can be expressed as x = § + tu where 1 is a unit vector and t
is a scalar parameter. Therefore,(X - £) = tu and instead of (L4.30), for

example, one can write
(L.35) (f'(x), x ~ &) =t (£(g), D

5 n
t (n), yan=1 = L .6
R = AL EMOLRI S v

which is valid for all pairings (t, u) satisfying £ + tU € Q. Using

1

= (f(n)(g)ﬁn-l, u, forn=1, ..., 5, one obtains

the notation an(ﬁ) =

from (1.11), (4.35) and the convexity of f on Q
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(5.36) vt < £(x) - £(£) <(£'(x), x - &)

5
- n L 6
nzl nan(u)t *yrt -

IA

Consequently, for £ + tu € Q and for t sufficiently small, say t < t, one

has

>
(4.37) } na_(w)t" > %ts.
n=1 *° -

Also, in the simplified notation, (4.31) and (4.34) become

2 ~x.n . L 6
(L4.38) CE"(x)(x - €)y x = &) < ] nln - a (0t + F¢°,
n=2 *
and for x € ¢ N §£(€), (4.28) has the lower bound
5
Y nan(ﬁ)tn - -{{'#' £©
(4.39) BULE 416 IPE 8 3 , 871 : > 0
' (f"(x)(x - €), x-8) = 5 . L -
} n(n-1l)a_(u)t  + <+t
n=2 n 31

in view of (4.36) and (4.37). Furthermore, using (4.37) one obtains for

(g)

XEQN B€
L .6 L 6
t = t
5 W < 3! < ec.t, with ¢ =L—_,
o ~ n - 5 ~ n - l l 3Y
L na (d)t ) na ({)t
n=1 n=1
and (4,39) then gives
l-c.t
(h.ho) (f'(xLLx - E) > l .

(" (x)(x - €), x = £ A(t, u) + et




where

5
{ nn - 1) ()¢7
(4.51) Alt, o) = B8

5
) nan(ﬁ)tn
n=1

If it can be shown that A(t, u) < ¢, for some constent ¢, < = and for

all (t, 1) pairs satisfying £ + t0 € @ N Eﬁ(s), then (4.28) will follow

from (4.40) since

1l -c.t
(4.42) (2 (x), x - &) > e >0

("(x)(x - £), x - E) 3-c2 + et =

for t sufficiently small. Note that since £ is an extremal, al(ﬁ) > 03

therefore, one can write

b)
ba) (W)t + } n(n - l)an(ﬁ)tn
(5.43)  A(t, @) < s
na (a)t"
nZl °n

A

6a,(@)t2 + 6ay(@)t3 + Lay (8¢

S
) nan(ﬁ)tn
n=1

It it can be established that

(.bh)  6ay(8)6° + 6ay()63 + bay (@) > eyt

for some cq > 0, and for (t, u) satisfying £ + tU € 0 N E%(g) with

t <, then (4.43), (k.kk), and (k.37) would yield
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2c3 -

A(t, Q) < b + - for (t, U) satisfying £ + ti € @ N BE(E).
To show that (L4L.44) is true note that convexity of f implies that

0 <(fM"(x)(x - &), x = &)

5
< § aln-Da @+ LS
n=2 )

- 1 .(5)
Also,lias(u)ll:_grflf (£){] < =. Therefore,
(b.bs)  2a,(R)67 + 6a (@) + 128 (@)t

3_-(§?|lf(5)(6)” + %? t)t5 :_-c5t5, for some cg > 0,
for t sufficiently small, say t € (0, t). Writing (L.45) as
(5.46)  6a,(@) + 18a,(@)t + 36a, (@)t° > -3¢ t>

: 2 3 A - 57 ° ,
and making the change of variables t = 3+ yields
) A oD -csr3
(4.47) 6a2(u) + 6a3(u)r + La) (0)1° > =
which is valid for t € (0, 3t). This proves that (k.4L) is true at
c.
least for t € (0, £) with ¢, = =% and (4.28) follows for p = min(t, t, —l—).
3 9 201
QED

Remark 4.2, For certain extremals encountered in optimal control theory
the exponent v in (1,11) can be calculsted; this was discussed in

Remark 3.2. Let U € R™ be th= unit ball, and as in Remark 3.2, let the

constraint set Q be the set of functions
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(GS)), linear convergence is not guaranteed by Theorem 3.3, and computer

66
Q = {measurable u(-):(0, 1] + U} C Ll([o, 1], BY).

If £(t) is piecewise continuous with range on the boundary of U, and if
an associated switching function grows fast enough near its zeros, then
it can be shown (Dunn [1L4]) that (1.11) (or (3.50)) holds for any v in

the range 2 < v < ». For the conditional gradient method (Mh = 0 in the

simulations suggest sublinear convergence for a simple example with such
a minimizer. On the other hand, Theorem 4.1 and Lemma 4.3 prove superlinear
convergence for Newton's method in this setting when f satisfies the

hypotheses of Lemma 4.3 (see Remark 4.1 also).
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5. Convergence Rates for Nonconvex Functionals

In Theorem 2.1 it was shown that limit points of a sequence X,
generated by the (GS) are extremals. This is true for differentiable,
possibly nonconvex functionals f with Lipschitz continuous derivatives
f'. However, convergence rate theorems, presented in this thesis so
far, have been limited to convex functionals; the proofs of these theorems

have depended heavily on the convexity property
(5.1) (£f'(x), x - y) > £f(x) - £(y), vx, y € Q,

although it was indicated in Remarks 2.4 and 3.3 that such theorems could
be extended to a subclass of functionals which satisfy the weaker pseudo-

convexity condition

(5.2) (£'(x), x - £ > (£(x) - £(€)), for some x > 0,

where § € Qf. In particular, linear convergence occurs for certain
methods in the (GS) when (5.1) or (5.2) holds with (1.10) or (1.11) for
v = 2, It will be shown in this chapter that conditiomns (5.2) and (1.10)

with v = 2 hold near an extremal of a (possibly nonconvex) functional f

if, for some p > O, f satisfies

(5.3) a(f"(g), £, x) > vk - EH2 vx € K (£) N Bp(s).

Here KQ(E) is the tangent cone to Q at £ with vertex at £ (see Chapter 1).
If the operator sequence in the (GS) satisfies (1.13) or if the structure

of the set Q near £ is such that (1.11) holds with v = 2, i.e.,

el e i e il P i il iiiates ki s
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(5.k) (£'(€), x - £ > ylk - £ff,  Vx€ q, and some 7 > 0,

then Theorem 5.1 shows that if {xn} passes sufficiently near £, it will
converge to £ at a linear rate. When {Mn} satisfies certain "quasi-Newtcen"
conditions, (5.3) need hold only for x € 9 N BO(E) for some p > 0 to

insure linear or superlinear convergence rates; this will be established

in Theorem 5.2.

Lemma 5.1. Let S € X be convex where X is a Banach space. Let f be
twice differentiable with f" continuous at £ and let f satisfy (5.3) at

£ for x € N Bp(s) and some p > O. Then for some Py > 0

(5.5) £ - £6) 2 Ellx-elf  vxesns (g)
1
Proof. Using Taylor's formula for x € SN BQ(E) at £ one has ’
£(x) - £(8) = (£1(8), x - &) + TC£"(D)(x - ), x - &)

QE"(e), &, %) + F(£"(2) - £°(6))(x - £), x - £

|v

(v - 21£"C2) = ()il - P

for £ between x and £. By the continuity of f" there exists a pl such
that for [|x - &]| < pl,||f"(c) - "(&)|l < v; (5.5) now follows for
xE€ESNB (g).
°1
QED

Remark 5.1. The proof of Lemma 5.1 is essentially the same as the proof

of Lemma 2.4 in [22].
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Lemma 5.2. Let Q C X be convex where X is a Banach space. Let f be

twice differentiable and let f" be Lipschitz continuous for

x € KQ(E) N Bp(s) for some p > 0. Let f satisfy (5.3) for

¥ x € Ky(£) N B_(£). Then for some p, > O and k > 0

e

(5.6)  (£1(x), x - © 2 k(£(x) - £(8)), for x € Ky(8) N B (&)
2

Proof. Since KQ(E) is convex it follows from Lemma 5.1 that

f(x) - £(g) > 0 for x € KQ(E) N Bp (£) for some py < p. It must be

1

shown, therefore, that for some Py < Pys and some k > O, and for x # £

(f'(x)s X - 5) N
(5-7) f(X) - f(E) _>_k for x € KQ(E) Bp2(5)‘
From Taylor's formula and the Lipschitz continuity of f", one can write
for x # £ and x € K (g) " B_ (&)

Q Py
f(x) - £(&)
AR L GRA
] l "
C£1(8), x = §) + 3CEENx - &), x = &) + cfflx - gf
= AE(E), g, x) !

21+ ¢flx - gl
where

c. =
1’ 2

4
L.
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Similarly, one obtains

(£'(x), x - &)

(5.9} AP E )

C£(8), x - £ +CE"(E)(x - €), x - &) - oyflx - €I

z QUEET, £, x) :
l 114
{ SCE"(E)(x - £)y x - &)
21+ QUE(E), E, X) - cplke - Ell.

Let x = £ + tu for u a unit vector in Kg(i), and let R(t, ) be defined

for t € (0, p] by

= eXe(e)h,

€ e(g), @) + 5 EXE"(E)E, @)

(5.10) R(t, &)

Whenever ( £"(£)u, u’ > 0, then R(t, u) > 0 and (5.9) yields

(f'(x), X - E,'>

(5.11) NG GAE)]

11-c2t.

On the other hand for any u for which ( £"(£)u, 1) < 0, it must be shown
that |R(t, u)| < c t for some cy < =. If this is so, then from (5.9) one

has

(r'(x), x - &)

(5.12) m_{l - |R(t, w)] - et 21 - (c3 + c2)t,

and for + sufficiently small (5.7) will follow from (5.8), (5.11), and

(5.12). For u € KQ(E) and for t € [0, p], (5.3) gives

£ (g), 1) + %-tz(f"(s)ﬁ, u) 3_yt2.
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In particular, for t = p and ¢ £"(£)u, u) < 0, one has
C£1(€), @ > (v - FCE"(E)E, @)p > 0
in which case, one can write for t € {0, p]
W (g), B + 26X e"(0), D
> tye - 3 tlo - X £(E)E, D 2 tlyo).

Consequently, for t € (0, p] and ¢ £"(&)u, u) < 0, (5.10) yields

oL R e ()E, ] ")) L
IR(ta u)l hY 2typ bl 2y0 t = c3t.

QED

Roughly speaking, Lemmas 5.1 and 5.2 show that the functicnal f is

"locally pseudoconvex with respect to £" when condition (5.3) holds.

Theorem 5.1. Let @ C X be convex where X is a Banach space. Let f be
twice differentiable with f" Lipschitz continuous for x € KQ(E) n Bp(E).
Let f satisfy (5.3) for x € K,(g) N B (£). Let either (1.13) ve satisfied
by the operator sequence {Mn}, or the structure of the set near £ be such
that (5.4) holds. If {xn}, a sequence generated by the (GS), comes
sufficiently near ¢, then x > £ and r_ = f(xn) - f(g) = o(A"), for some

» € To, 1).
Proof. By Lemmas 5.1 and 5.2 and condition (5.3) there is a oY such that
(5.13)  (£'(x), x - & 2 k(£(x) - £(8)) » LLx - glf

for x€ QNB (&) CK () NB (&).
ey & Py
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Furthermore if L, is a Lipschitz constant for f', and if {Mn} satisfies

(1.13), then (3.32) in Lemma 3.1 becomes

(5.14) ulI:ﬂcl,1 - &;H2 + (£ (), ;‘n - g

e ]

[

(L, + O, - elllix, - €ll, ¥ 2o,

where K is a uniform bound on ||Mn||. On the other hand, if (5.4) holds

then (3.32) becomes

59 B0, 5 -0 18, - o
hl (Ll + K)”xn - &l ”in - £l Va > 0.

Since f(x) - £(£) > 0 in a small neighborhood around £, it follows that

£ is an extremal, i.e., (£'(£), x - £) > 0, Vx € Q, hence (5.1k4) yields
(5.16) %, - &l < el - &ll Vn > 0end ¢ = 2(L, + K)/u

Similarly the nonnegativity of M in (5.15) gives (5.16) with
- p
c = (Ll + K)/y. In either case, when 0 < ||xn - g < Py = -Fl- , then

x €anB (£). Let A={xe€qanB (£):8(x) - £(£) <L p%}. Then
n G2y G2 2 "2
(5.13) implies that AC Q@ N Bp (£). Since f is continuous there is a

2
p3 > 0, such that if x€ g n 13p (g£) then x € A. It follows then that i~

3
x, €90 Bp (g) for some N > O, then x, €an Bp (g) for n > N. This is

3 2
true because ;(N eEaqn Bpl(z), and since Xye1 is a convex combination of
- " .
Xy and Xg, then x . € Q Bpl(E). But from Theorem 2.1 line (2.25) and
s
Lemma 5.1, £(g) < f(xm_l) < f(x.N) and, therefore, x, - € ACQ sz(g).
By an induction argument X, €EqQn Bp (g) for n > N. Also, since
2
k .

(f'(xn), x, - &) i'EY'Hxn - 5”2 for n > N it follows that ¢ € ¢(xn), and

Lemma 2.2 and (5,13) yield
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(f'(xn), x, - &)

if (Mn(xn - ), x, -E)=0

(5.17) ' (x )y x - x> 2 5

(f'(xn), x, - £) .

Kllx, - &If

1l
Emin{( f'(xn), x, - g'>,

79

if (M (x - &), x -8 >0
> % minf(£(x) - £(£)), Eslx)) - 2(6)))

> ¢ (£(x ) - £(g))

vhere c) = %min{l, g—g{-} > 0. From (5.16), (5.17), (2.23) and the

triangle inequality one now has

26ch(f(xn) - (&)

Lllx, - % IF

(5.18) w > min{l,

se kvl - £If }
L1+ )Pk - glf

> min{1, =w >0,

where L, is a Lipschitz constant for £'. Finally, (2.25) gives

£x ) = £(6) = £x ) + £(8) 2 duey(£(x,) - £(8))

or equivalently

ro1 & (1= Suey)r,




Th

E and r = o((1 - Gmch)n) = 0(A®). The linear convergence of {rn}, together
with (5.13) implies that {||xn - E|[} converges to zero at a linear rate.

QED

The hypotheses of Theorem 5.1 can be weakened somewhat when the
operators M are so called "quasi-Newton" operators. If the ﬂh's are
symmetric and approach the second derivative operator f£"(g) in the sense
of (1.18) - (1.21) then (5.3) need hold only for x € @ N B () and £"
need only be continuous at £ to establish linear and superlinear rates

of convergence near £,

Theorem 5.2. Let Q@ C X be convex where X is a Banach space. Let f be
twice differentiable with f" continuous. Let f satisfy (5.3) for

x€an Bp(g) for some p > 0 and § C Q. Let {M } be a sequence of 1

symmetric operators in the (GS), i.e.,
(Mnx, y) = (Mny, x), Vx, y€ X, n>0.

Then:

(i) If (1.18) or (1.19) holds with e sufficiently small and n > N,
and if {xn} is a sequence generated by the (GS), there exists a py > 0
such that if x € QN B (§) for some n_ > N, then {len - E|} converges

o 1
to zero at a linear rate, i.e., for some X € (0, 1)

“xn+l - £l < )\Hxn - E,‘”, for n z_no.
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(ii) If either (1.20) or (1.21) holds then {||xn - E||} converges
superlinearly, i.e., either X, = £ eventually, or

lx,, - €l

lim x - = 0.
n-=o n

Proof of (i). It will first be shown that if x is sufficiently close

to g with n_ > N, then ||5En - gl < c||xn - &|| for some ¢ € (0, 1), and,
o o

by induction, that [|x - &|| <cl|x, - || for n > n_. Then it will be

established that w > w > 0 for n > n_ and that this implies that

“xn+1 - gllf_klkn - &|| for some A € (0, 1) and for n > n, . To show that

Hih - &l g_cHxn - || for some ¢ € (0, 1) and n >n, let i; satisfy for

any n > 0

(5.19) 0<QlM, x, &) -aM,x,x).

Then inequality (3.1) in Lemma 3.1 holds with in replaced by Eg, and with

the symmetry of Mn one can write

S (X -€), % -8 +(£(e), X -8

<4rr(g) - £r(x), X - ) + (M (x - £), x - &)

With the Mean Value Theorem, this implies

F0 - N - 8), X, - &+ ale(e), & X))

<0 - g Nix - &), x - &

for g, =x +0 (£ - x,)s 6, € (o, 1].
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Consequently, for ;; €EQnN Bp(E), condition (5.3) and the triangle

inequality yield for ;; #E,

II(Mn - f"(E))(;n - &)l

W=, - &lf

(5.20) (y - —
lIx, - &ll

- (e (x, - &)l _
< (— - +|leme) - £z ) Dllx, - llilx, - &ll
llx, - &ll

or
(5.21) (v - M, - (DI, - &If

< (= el + ee) - ez ) ilx, - &l lix, - &l

Suppose (1.19) holds. Then since f" is continuous, there is a p, € (0, o)
such that if E; eEan Bp(g) and X eEqan Bp (g) for n > N, then (5.20)

1
and (1.19) with ¢ sufficiently small imply

(5.22)  |I%, - &ll < ellx, - &ll,
where

e +[| (&) - (g )|

c = a— ) < 1.

Let x, €0 Bp (¢) for some n_ > N. Suppose that ||x - £|| > p, and

(o}

o 1 o
(% -
let x, =g+ p ——— . Since Q(Mn s X s *) is convex and x_
o x. - &l o o o
n
)
minimizes Q(Mn s X *) on Q, one has
o )
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n n n

(5.23) oM, x ,x )M ,x o, x ) calM o, x » ).
(o] o o [e] (o] [0} o (o]

Therefore, ;n satisfies (5.19), and since “;n - &ll = o, (5.22) holds.
o o
But (5.22) gives [|x - Efl _<_c||xn - |l < p, < o, and this contradiction
o o
proves that ”;‘n - gll < p. From (5.23), (5.19), and (5.22) there results

Nx - ¢l < c“xl’1 - &ff, for some ¢ € (0, 1).

It follows by induction that for n > n , x, € 2N B/ (£) ana
1

(5.24)  [lx, - &l <ellx, - £ll.

If (1.18) holds then (5.24) follows by the same argument. To prove that
{”xn - ¢|} converges at a linear rate it suffices to show that W, 2w > 0

since, one can then write for n > n_, X 7k,

”xn-i-l - £ Hxn + wn(;cn -E+ - xn) - £
(5.25) TEn | = ”xn £l

(1 - wllx, - €l + o[k, - €l

X =€l

<

_<_(l-wn) +uwc

1l- wn(l- c)

[

1-w(l-c)<l,

e
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To prove that w > w > 1 observe that for x €EQn Bp(&)

(5-26) ‘Q(Mna xno in) > ‘Q(Mns xn’ E)

Q(f"(E), Es xn) - Q(f"(g): Es xn) - Q(Mn’ xn’ £)

> vl - 6lF - (Cer(e) - £r(x)), x - ©)

+

1,pm 1
5 (r (g)(xn - &), x - £) + Q(Mn(xn -£), x, - £)).
The Mean Value Theorem, the triangle inequality, and (5.26) give for X # £

. 1 - "
(5.27) (f'(xn), x, - x ) - -2--(Mn(xn - xn), X, = %)

> vk, - EH2 +Ce"(g ) (xy - &), %, - £)

Lg sy _ 1 _
-2<f'(€)(xn-£),xn-<.>-2(Mn(xn-£),xn £)

| v

[v - Slien(z) - ()]

(£"(g ) = £"(&))(x = &)] + ][] (£"(E) = M )x_ - &)
1 n n n
i M=, - & )l - F

1
S| (g) - M ) (x - &)l
(Y - ”f"(Cn) - f"(E)” - 2 Hx I-l ﬁ”n )”xn - 5”2,
n

|v

where cn =x_ + 6

ot 0 (8 -x),0 €0, 1],

or

(5.28) (erx )y x, - £n>

2 (v = llene,) - e - 3 llete) - w (Dl - elf.
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Suppose (1.19) holds with e small enough. Once again, since f" is

continuous, there is a p, € (o, pl) such that if X eEqgn Bp (g) for
2

n > N then (5.27) yields

v

(5.29) (£'(x)s x, - in> 7||xn - g||2, for y > O.

From (2.23), (5.22), (5.29) and the triangle inequality one has, for

x, #£ andn>n >N,

(5.20) w > min{l, —}
0y

26y - &|F

- 2
L=, = &ll + 1%, - €l

> min{1l,

28y

—2 - 4o,
L(1 + ¢)?

> min{l,

Finally, if x, €00 13p (g) for some n_ > N, then from (5.25) and (5.22)
o] 2

it follows that {erl - £||} converges to zero at a linear rate. The same

result can be established when (1.18) holds using (5.28) and the same

argument.

Proof of (ii). Condition (1.20) implies condition (1.18); therefore,

the results of (i), (1.20), (5.21) and the continuity of f" yield

{5.31) H;(n - el < )‘onn - &ll, vhere X = 0.
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Also, (5.31) follows from the results of (i), (1.21), (5.20) and the
continuity of f". One need only show that after a finite number of
iterations w, = 1 for the remaining iterations. Fix & € (0, -1*). Then
from (4.22) one has, for X, not an extremal,

L

3 (f"(‘n)(in -

*n

(5.32) g(xn, in’ 1) =1-

' -A
(r (xn), X, =X

(Mn(xn - xn), x, - xn>
)

> 1 =
' - X
2(f'(xn),xn X

(e (e,) - w) (&, - =), - x|

2(f'(xn), x, - xn)

From the trisngle inequality, (5.32) and (4.24k), which is wvalid for

symmetric operators Mn’ there results

letey) - e @1%, - %I

(5.33) G(x ’ X ’ 1) li
n n 2 2(f'(xn)’ xn = in)
| (£"(e) - M) (x - €] .
g I, - el - &1
Z(f'(xn). xn - £n>
F
. e (&) - w)(x, - o)l
- Ix, = €llllx, - x|l
: 1%, - &ll % v

E(f’(xn), X, = xn)




81

Also, (5.22), (5.29) and the triangle inequality yield for x, € 2 NB_ (£),
‘ 2

2
(5.38)  glx, %, 1) 25- -(l;—c-)llr"(cn) - () |
Y

_@re) I (£"(&) - M )(x, - &)l

2y Ix, - &ll.

c(l + c)||(f"(€) - Mn)(in - ol

2y lx, - &l
or
R 1 (1+ c)2
(5-35) E(xn, xn’ 1) :E" _;.,——”f"(cn) - f"(E)"
Y

~dlre) jence) <
2y

- Ei&;%%lilllf"(s) - MnlL
2y

Finally, the continuity of f" and (1.20) in (5.35) or (1.21) in (5.3L)

give g(xn, in’ 1) > 8 for n 3_Nl(6) with Hl(s) < ®,

Remark 5.2. The proof of Theorem 5.2 is a modification of the proofs

in [22] for Newton's method.
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