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Chapter 1 presents introductory material necessary for an understanding
of the theory, assumptions, equations and numerical methods incorporated
into HEC-l for kinematic wave flood routing. Chapter 2 explains methods
of applying kinematic wave routing techniques using HEC-1. An.example ,
problem is presented to illustrate HEC-l input and output data, and effects
of changes to numerical values of the parameters are discussed. Results of
a "hand" calculation are given in Appendix A to illustrate the basic
sol ution procedure
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FOREWORD

This document discusses the application of the kinematic wave

routing method in HEC-1 for analyzing urban runoff processes. The

physical processes of the urban runoff and streamflow routing are discussed

briefly and related to the kinematic wave capabilities in the HEC-l

Flood Hydrograph Package. Data requirements along with specific methods

of applying kinematic wave routing techniques to runoff problems in

urban hydrology and example applications of the method to analyze

typical problems are discussed.

Chapter 1 of this document presents introductory material necessary

for an understanding of the theory, assumptions, equations and numerical

methods incorporated into HEC-l for kinematic wave flood routing.

Chapter 2 explains methods of applying kinematic wave routing techniques

using HEC-l, The chapters have been prepared so they stand separately

and either one or both may be read. A reader interested only in the

theory, or only in application procedures, can read the chapter desired.

This newly added procedure has had only limited use to date at the

Hydrologic Engineering Center (HEC), although the general method has

been used with success in a number of other hydrologic models.

Readers interested in explanations with greater detail should refer

to the specific references listed at the end of each chapter.

i
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DEFINMTION OF TERMS

I

TER DEFINITION DIMENS IONS
A cross sectional area of flow, Equation (1.7) ft2

Ac  cross sectional area of flow for collectorchannel elements, Equations (1.13), (1.14), ft2(1.24) "ft
SA

m  cross sectional area of flow for main channel ftand stream elements

ABASIN total surface area of the basin; A 2A BASI N  = :A subbasin mi2

Asubbi surface area of a subbasin mi2

A percentage of the subbasin area which would be
pervious

Ai  percentage of the subbasin area which would beimpervious%

c shallow wave celerity, c = / ft/sec(subscript): indicates properties pertaining ftseto the collector channel elements N-D*
D hydraulic depth of channel ft
Oc diameter of circular collector channel ft

Figure 1.7
f infiltration rate, Equations (1.1), (1.11), 2(1. 12) "cfs/ft g

F Froude number = V//'T, Equation (1.6) N-0
g acceleration of gravity, Equations (1.2), (1.4) ft/sec2

F !ainf11 intensity, Equations (1.1), (1.11),
(subscript): indicates spacial location on a N0
finite difference grid, Figure 1.9

N-D - non-dimensional

Vii

L -
....

__ __ _"__..__ _--__.--___ __..___-__-__ _-____ ___..___ __ _m___



TERM DEFINITION DIMENSIONS

j (subscript): Indicates temporal location on N-D
a finite difference grid, Figure 1.9

k dimensionless kinematic flow number, Equation N-D(1 .6).

L channel length, length of overland flow plane, ft
VEquation (1.6)

(subscript: to indicate lateral inflow, N-Dr-. Equations (1.1), (1.2), (1.4)

L length of overland flow element, Figure 1.3 ft
Lc length of collector element, Figures 1.3, 1.4 ft

Lm length of main channel element, Figures 1.3, 1.4 ft

L length of type 1 overland flow element, Figure ft
01 1.4

L length of type 2 overland flow element, Figure ft

02 1.4

m (subscript): indicates properties pertaining N-D
to main channel elements, Figures 1.3, 1.4

m kinematic routing coefficient, Equation (1.3) N-D

m°  kinematic routing coefficient for overland ND
flow elements, Equations (1.10), (1.12)

mc kinematic routing coefficient for collector
channel elements, Equations (1.14), (1.19), N-D
(1.20), (1.21), (1.22), (1.23), (1.24)

n Manning's resistance coefficient, Equation (1.7) sec/ft /3

N effective roughness parameter for overland flow, sec/ftl/3
Equation (1.8), Table 2.1

0 (subscript): indicates properties pertaining N-D
to overland, flow elements

Viii
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p,.

TERN DEFINITION DIMENSIONS

P wetted perimeter ft

q dischar r unit width of channel, Equations cfs/ft(1.1),t

qc discharge per unit width of collector channel, cfs/ft
Figures 1.3, 1.4

q discharge per unit width of overland flow cfs/ft
element, Figures 1.3, 1.4

total lateral inflow per unit length of channel cfs/ft

discharge per unit width of overland flow strip cfs/ft
I from type 1 flow elements, Figure 1.4

discharge per unit width of overland flow strip cfs/ft
02 from type 2 flow elements, Figure 1.4

Q discharge, Equations (1.3), (1.4), (1.7), (1.8) cfs

ROUT total discharge from a subbasin, Figures 1.3, 1.4 cfs

Q, dimensionless discharge, Figure 1.6 N-D

R hydraulic radius - A/P, Equation (1.7) ft
Sf friction slope defined by Manning's equation, N-D

Equation (1.1)

S average bottom slope, Equations (1.2), (1.4),
(1.6), (1.7), Figure 1.3

S average bottom slope for main collector channel
c elements, Equations (1.15), (1.19), Figure 1.3 N-D

S average bottom slope for main channel elements,Figure 1.3

t time, Figures 1.8, 1.9, Equations (1.1), (1.2), s
(1.11), (1.13), (1.29)

t. dimensionless time, Figure 1.6 N-D

At time step used in finite difference equations,
Equations (1.29), (1.31), (1.32), Figures 1.8, sec
1.9
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TERM DEFINITION DIMENSIONS

u x-component of mean velocity, Equations ft/sec
(1.2), (1.4)

v '-component of velocity from lateral inflow into

a channel (assumed negligible), Equation (1.2) ft/sec

V mean cross section velocity = Q/A ft/sec

.4 w bottom width of typical collector or main ft
channel, Figure 1.7

x longitudinal distance, Equations (1.1), (1.2) ft
spacial direction, Figures 1.8, 1.9

Ax spacial stepping distance used in finite
difference equations, Equations (1.25), (1.28), ft
Figures 1.8, 1.9

y mean depth in St. Venant equation, Equations ft
(1.1), (1.2), (1.4)

Yc mean depth of flow in collector channel elements, ft
Equations (1.16), (1.17), Figure 1.7

z side slope for generalized trapezoidal cross
section used for collector or main channel rout- N-D
ing, Equations (1.16), (1.17), (1.18), (1.19),
(1.22), Figure 1.7

kinematic wave routing parameter for a particular
cross sectional shape, slope and roughness, Equa-
tions (1.3), (1.10), (1.14), (1.19), (1.20), (1.21),
(1.22), (1.23)
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CHAPTER 1

AN INTRODUCTION TO KINEMRTIC FLOW APPRDXMIATIONS)5

by Robert C. MacArthur

INTRODUCTION

Rapid urbanization of river basins in and around metropolitan areas

has forced land and water resources planners and hydrologists to

develop a variety of methods for analyzing problems in urban hydrology.

Problems involving both design and management decisions are often so

complex as to require application of mathematical models. The

mathematical models which have been most commonly used rely on basic

unit-graph techniques to model the application and distribution of

precipitation as rainfall or snowmelt, compute rainfall and snowmelt

losses and excesses, and determine subbasin outflow hydrographs.

Although these models which are based on the development of a repre-

sentative unit hydrograph are frequently applied and have been used

successfully, it is difficult to associate physical properties of

the basin to be modeled to the parameters necessary to develop a unit

hydrograph. It becomes even more difficult to define some of the

parameters such as the Clark Tc and R or Snyder Ct and C for basins

which have no recorded data. Because It is most important to develop

the best representation of the actual urban runoff situation when

lHydraulic Engineer, Training and Methods Branch, NEC, Davis, California.

'L



analyzing urban storm water runoff problems, it would be desirable to

relate runoff processes directly to measurable geographic features

of the basin. It would als. be desirable for the modeling technique

to be able to reproduce nonlinear runoff characteristics rather than

being limited to linear responses such as those developed by unit

graph techniques.

The kinematic wave method of routing overland and river flows has

been chosen as an additional routing option for use in the HEC-l Flood

Hydrograph Package for several reasons. Although simple in form,

kinematic wave theory offers the benefits of nonlinear response with-

out needing an unduly complicated or costly solution procedure. In

addition, for the purposes of modeling unsteady overland flow, any

model will require considerable parameter adjustment to account for

the complexities of the basin and the specific flows which occur

within the basin. The kinematic wave method relates basin and flow

characteristics directly to the two routing parameters, a and m.

The parameters a and m are directly related to the shape of the

channel, the boundary roughness and the slope of the channel or

overland flow surface. There also have been several previous studies

which have developed sets of appropriate values for these parameters

for a large range of flow and boundary conditions. Numerical techniques

used to simulate overland and river flows can only approximate the

actual response of real systems because of the complex nature of

natural drainage basins and because simplifications must be made to

the mathematics to make the model efficient and economical to execute.

The kinematic wave approximation has been proven to be an accurate

2
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and efficient method of simulating stormwater runoff from small

basins for both overland flow and stream-channel routing (Overton

and Meadows, 1976).

MODELING UNSTEADY FLOW USING THE KINEMATIC WAVE APPROACH

Kinematics is defined as the study of motion exclusive of the

influences of mass and force, in contrast with dynamics, in which

these influences are included. Flood waves can be identified as

either of two separate kinds of wave phenomena: the dynamic wave

and the kinematic wave. Although both of these kinds of waves are

initially present, certain characteristics of a watershed can make

kinematic waves the dominant characteristic of a flood event.

When inertial and pressure forces are important. "dynamic waves"

govern the movement of long waves in shallow water, like a large flood

wave in a wide river (Stoker, 1957). When the inertial and pressure

forces are not important to the movement of the wave, "kinematic

waves" govern the flow. For this latter flow condition, the weight

component (the force in the direction of the channel axis due to the

weight of the fluid flowing downhill in response to the action of

gravity) is approximately balanced by the resistive forces due to

channel bed friction (in most cases this is represented by Manning's

equation). Flows of this nature (kinematic waves) will not be accel-

erating appreciably and the flow will remain approximately uniform

along the channel. No visible surface wave will be noticeable and

the passage of the flood wave, as depicted in Figure 1.1, will be

3it
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seen by an observer on the bank as an apparently unifrom rise and

fall in the water surface elevation over a relatively long period of

time with respect to the size of the specific subbasin being analyzed.

Therefore, kinematic flows are often classified as uniform unsteady4L

flows.

Lighthill and Whitham (1955) found that because dynamic waves

normally have much higher velocities and attenuate more quickly than

kinematic waves, flood flows are generally dominated by kinematic

waves. Even though any surface disturbance will send a "signal"

downstream at the speed of small gravity waves, this "signal" will

be too weak to be deteced at any considerable distance downstream.

Therefore, a main flow change or "signal" is carried as a kinematic

wave at much slower velocities and the speed of flood waves may be

approximated by the speed of kinematic waves. In this context, a

kinematic wave represents the characteristic changes in discharge,

velocity and water surface elevation with time as observed at any

one location on an overland flow plane or along a stream channel.

The speed of small gravity waves occurring in shallow open

channels is often referred to as wave celerity, c, and is equal to

i-U where D is the channel hydraulic depth (Chow, 1959). The ratio

of the fluid speed (the mean cross-sectional velocity) to the celerity

is called the Froude number, IF. Therefore, the Froude number also

represents the ratio of inertial forces to gravity forces.

Flows with Froude numbers greater than one are classified as

supercritical flows (see Chow, 1959), and surface waves are unable

to move in the upstream direction because the flow velocity V = Q/A

!5



is greater than the wave celerity, c = O. Flows with Froude

numbers greater than two tend to be unstable, which may affect the

accuracy and applicability of steady flow assumptions for high

Froude number flows. Lighthill and Whitham (1955), however, found

that the characteristics of kinematic waves dominate over those of

dynamic waves for flows with Froude numbers that are less than or

equal to two (e.g., F < 2). In fact, they found that for F < 1,

dynamic waves decay exponentially with respect to a time constant

they chose to define as V/[gS(l-F/2)], where, S, is the channel or

surface runoff slope. Therefore, one may conclude that kinematic

waves will ultimately dominate the flow characteristics occurring

for overland flows and small watershed channel flows when the flow

Froude number is less than two.

This brief introduction to kinematic wave approximations leads

to the following discussion and definition of uniform unsteady flows.

Review of the Basic Types of Flow

As a brief review, several basic types of open channel flow that

are most commonly experienced will be discussed to remind the reader

of some of the important differences and characteristics of flows

found in practice (portions of this discussion can be found in Thomas,

1975). Figure 1.2, presents several possible types of open channel

flow.

6- -w
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Steady versus Unsteady Flow. If the change in velocity with

respect to time at a given location is zero, the flow is called steady

flow. Otherwise, the flow is classified as unsteady flow. Therefore,

unsteady flows require the consideration of time as an additional

variable.

Uniform versus Varied Flow. If the change in channel flow

velocity, V, with respect to distance along the channel, x, is zero

(i.e., dV/dx = 0) for a given period of time, the flow is called

uniform. Otherwise, the flow is nonuniform and the relationship

between kinetic energy and potential energy will be changing along

the channel. When the flow is uniform, the water surface will be

parallel to the channel bottom, If the flow is not uniform, the channel

slope will be slightly different from the slope of the water surface.

If the rate of change of the water surface slope is not visible

to the eye, the flow may be considered as gradually varied. Rapidly

varied flows demonstrate apparent and rather large water surface slope

changes (such as at a hydraulic jump). Rapidly varied flow requires

special treatment and will not be considered herein.

DEVELOPMENT OF GOVERNING EQUATIONS

Although the basic differential equations capable of describing

one dimensional gradually varied unsteady flow were originally

developed a century ago, they have only been recently applied (within

the last thirty to forty years) to general hydrologic engineering

problems because it was not possible to solve these equations efficiently

8
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without a high speed computer. Keulegan (1944) was probably the first

to apply these techniques to the general problem of overland flow.

The mechanics of unsteady open channel flow may be expressed

mathematically in terms of the equations developed in 1870 by St.

Venant. These equations [Equations (1.1) and (1.2)] are partial

differential equations which may be derived from the basic principles

of conservation of mass and momentum. Various derivations have been

presented and the reader is referred to the following references

for detailed descriptions: Chow (1959), Henderson (1966), Strelkoff

(1969), or Fread (1976).

St. Venant Equations

Continuity 2X + n = qL + (i - f) (channels of unit (1.1)at ax width)

Momentum N + u 2 + g 2x - Sf) - q (1.2)
at a ax 0S L y

where:

g = acceleration of gravity (ft/sec )
y = mean depth (ft)
q = discharge per unit width of channel (cfs/ft)

x = distance measured in downstream flow direction (ft)
t = time (seconds)

u = x - component of mean velocity (ft/sec)

2
i = rainfall intensity (cfs/ft2)

t2
f - infiltration rate (cfs/ft)

so = average bottom slope (ft/ft)

Sf = friction slope defined by the Manning equation

= total lateral inflow per unit length of channel (cfs/ft2)

v = the x-component of velocity for lateral inflow. (This is
assumed to be negligible to the total momentum balance for
channel routing and is therefore zero).

9



The four terms in Equation (1.1) and the five terms in Equation (1.2),

are known successively as:

o rate of rise term

o storage term
Temsinth

o lateral inflow per unit length t inithE
Continuity Equation

o intensity of excess rainfall (1.1)

O acceleration term

O velocity head term

o depth taper term Terms in the
" bed slope minus friction term Momentum Equation

(1.2)

O lateral inflow term

Prior to presenting the details of the kinematic flow method

that have been incorporated into the HEC-l Flood Hydrograph Package,

it is important to discuss the basic assumptions and requirements

associated with the equations used for gradually varied unsteady

flows. If these basic assumptions are not valid for the intended

flow conditions, then alternate methods of simulating the flow should

be sought. (For further definitions of terms, refer to the "Definition

of Terms" on pages vii - x.)

General Assumptions

In the development of the general unsteady flow equations it is

assumed that the flow is one dimensional in the sense that flow

characteristics such as depth and velocity are considered to vary

only in the longitudinal x-direction of the channel. Additional

basic assumptions necessary for the validity of the equations include:

10
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(1) the velocity is constant and the water surface is horizontal
across any section perpendicular to the longitudinal flow
axis;

(2) all flows are gradually varied with hydrostatic pressure
prevailing at all points in the flow such that all vertical
accelerations within the water column can be neglected;

(3) the longitudinal axis of the flow channel can be approximated
by a straight line, therefore, no lateral secondary circulations
occur;

(4) the slope of the channel bottom is small (less than 1:10);

(5) the channel boundaries may be treated as fixed noneroding
and nonaggrading;

(6) resistance to flow may be described by empirical resistance
equations such as the Manning or Chezy Equations;

(7) momentum carried to the fluid from lateral inflows is
negligible; and,

(8) the flow is incompressible and homogeneous in density.

The assumptions found in items 1 through 6 and 8 have been shown

(Strelkoff, 1969 and others) to be valid and applicable for most

open channel flows occurring in natural rivers and streams. The

validity of the restrictions presented in assumption 5 above are not

easily evaluated. Research is currently under way to estimate the

overall affects of this assumption. It has also been found that

overland flows such as those associated with stormwater runoff can

be described by the kinematic wave form of Equations (1.1) and (1.2)

without violation of the eight previous assumptions (Lighthill and

Whitham, 1955; Liggett and Woolhiser, 1967). In most cases assumption

number 7 will be valid. If, however, lateral flows are much more

significant than the main channel flow then these local effects may

require special attention and changes to methods currently used in

the HEC-1 computer program.
' 11
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DISCUSSION OF THE GENERAL CONCEPTS AND STRUCTURE OF THE KINEMATIC WAVE
FLOOD ROUTING TECHNIQUE

A general conceptual description of the methods of modeling

stormwater runoff using kinematic wave simplifications will be presented

here prior to discussing the specific equations and algorithms that

are used. This will help the reader understand how the model "visualizes"

the actual physical characteristics of the basin and responds to rain-

fall and stormwater runoff. Specific mathematical relationships and

numerical solution techniques will be presented in a following section.

Analyses of surface runoff problems are complicated not only by

the nature of specific storm events which occur, but perhaps to a

greater extent, by the nature and complexity of the watershed or urban

area being analyzed. Description of the local physical characteristics,

geometry, and response of the system could become a monumental task if

one were to include every minute detail. The concept incorporated into

the HEC-l Flood Hydrograph Package involves simulating the natural

complexities of a basin with a number of simple elements, such as

overland flow planes, stream segments, and lengths of representative

storm drain or sewer pipe as shown in Figures 1.3 and 1.4. If the

previously listed gradually varied unsteady flow assumptions are not

violated, then combinations of these basic elements have proven to be

quite representative of the actual behavior of most systems. Wooding

(1966) compared measured responses from three natural drainage areas

with calculated results obtained from a model which used a simple

kinematic flow routing procedure similar to that found in HEC-l.

Wooding (1966) concluded that although the geometry of natural catchments

12

' I* , : 4'T2__- ;*---.- .. "-.-- -

L ... . .- _



Rainfall, I

I so

FtowtoCollector 4 #t
Channel 1pf'

Overland Flow Element

Collector Channel Element

Upstream Input (0l) q Flows from Collector Channels

Discharge from
Subbasin (Qout)

Main Channel Element

Figure 1. 3 Elements Used in Kinematic Wove Calculations

13



~ Overland Flow Elements
(Overland Flow Strips)

0~

Foeran fom

itu elements

Qin
SUB BASIN INFLOW

. .. .. 

.... . . . . . . . . .... . ....

........................

Ole collector channels

SUSBASIN OUTFLOW

Figure 1.4. Relationships Between Flow Elements

14

L-



is far more complicated than that of the simple model, the agreement

between computed and actual discharge hydrographs is quite good.

To simulate the response of a complex watershed to precipitation

from storm events a mathematical model made up of combinations of

simple geometric components is constructed. Successful application

of this approach begins with the description of unsteady, uniform

flow over an idealized planar overland flow element of unit breadth

(called an overland flow strip) for a number of given boundary condi-

tions. A boundary condition represents known or assumed flow conditions

that are specified by the user. Then, similar relationships for

routing channel flows resulting from runoff from overland flow elements

are developed. Once these relationships have been developed, combina-

tions of simple elements can be made to describe basin and subbasin

responses to storm events. Figure 1.4 summarizes the relationship

between the three different types of elements.

Notice that overland flows are handled separately from the channel

flow, because overland runoff demonstrates specific shallow flow

properties which lead to a form of the equations of motion which differ

from the form required for collector channel and main channel flows.

These flows are calculated individually and then combined properly

to preserve continuity and accuracy. This computational method has !

been shown to be quite efficient (Harley, et.al., 1972).

Figures 1.3 and 1.4 present a schematic representation of this

approach. The governing equations used for this combined overland

flow and river channel routing procedure are derived from the general

St. Venant equations for unsteady gradually varied open channel flow.

15
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For the overland flow portion of the model, shallow surface water

runoff assumptions are applied to Equations (1.1) amd (1.2), resulting

in a simple kinematic wave form of the equations. Similar simplifica-

tions are found to be valid and useful for the channel routing portions

as well. Attempting the rigorous mathematical description of these

complex phenomena (runoff and channel routing through the natural

topography) would require exceedingly small spatial and temporal

detail and result in a very large system of simultaneous equations.

The kinematic wave form of the St. Venant equations provides a

simplified description of the physical system in terms of surfaces

and channels with homogeneous properties. The important concept

of the overland portion of the model is that water is distributed

over a wide area and at very shallow average depths until it reaches a

well defined collector channel. In urban areas, two general types of

overland flow surface are usually present: pervious and impervious.

The mechanics of flow over both kinds of surfaces are similar; however,

the slopes, Flow lengths, roughnesses, and loss rates will differ. Roof

tops, parking lots, and paved surfaces such as streets, are described as

impervious areas. Lawns, fields, parks, etc., are pervious areas. The

percentages of the total subbasin area that are impervious and pervious

are stipulated by the user. The model develops the runoff flows from

the rainfall intensity and loss rates specified for the pervious and

impervious areas in the basin. After the overland runoff is routed
$

down the length of the overland flow strip it is then distributed

uniformly along the collector system which represents rivulets, channels

16
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gutters, sewers, and storm drains such as shown in Figures 1.3 and

1.5. Once the runoff flows enter the collector system (see Figure

1.5) they move through it picking up additional (uniformly distributed)

lateral inflow from adjacent runoff strips. These collector flows

eventually reach a main channel where they are then routed as open

channel stream flows through the system.

The following few paragraphs will review the basic concepts

associated with the kinematic wave simplification of the momentum

equation and present some criteria developed by Lighthill and Whitham

(1955) that relate to its validity for various flow conditions.

Following sections will then present the details of the three different

segments of flow routing (overland, collector and stream routing) and

how they can be applied to problems in urban hydrology.

The Kinematic Wave Form of the Momentum Equation is a Simple Stage-
Discharge Relationship

Recall that kinematic waves occur when the dynamic terms in the

momentum equations are negligible. This allows one to assume that the

bed slope is approximately equal to the friction slope (So = Sf).

Under these conditions and if there is no appreciable backwater effect, (

the discharge can be described as function of depth of flow only,

for all x and t. 3
Q=aYm  

(1.3)

where, Q is discharge in cfs and a and m are kinematic wave routing

parameters which are directly related to the basin and flow characteristics.

17
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This can be best appreciated using Henderson's (1966) approach of

normalizing the momentum equation with a steady uniform discharge

called Qn" Rearrangement of the normalized form of Equation (1.2)

yields

Q=Qn [1 -!L( + -+- +(1Q Q ax g ax g at gy-- (1.4)

If the sum of the terms to the right of the minus sign if much less

than one (i.e., pressure, inertia and local inflow are relatively

small compared to So ), then unsteady flows are nearly uniform and

may be approximated by a series of normal flows, e.g.,

Q = Qn (1.5)

Normal flows of this nature can be described by a depth-discharge

relationship, such as Equation (1.3) (Overton and Meadows, 1976).

This describes kinematic flow and provides a simple method for calcu-

lating flows from stormwater runoff.

Lighthill and Whitham (1955) showed that for Froude numbers less

and 2, the dynamic component decays exponentially and the kinematic

wave ultimately dominates. As was mentioned in the introduction, this

means that no visible surface wave is observed; only the rise and fall

of the water surface can be seen (Figure 1.1). Woolhiser and Liggett

(1967) studied the characteristics of a rising hydrograph for a large

variety of flow conditions and found that the dynamic component in

Equation (1.4) will be dampened enough to be neglected, provided that

SoL
k = - > 10

(1.6)
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where L is the length of the plane, F is the Froude number F = VIVy,

y is the mean depth, So bed slope, and k is the dimensionless kinematic

flow number. Practical evaluation of k is difficult because it may be .6

hard to estimate L, y or F precisely for natural flow conditions with-

out collecting field measurements. Results from Woolhiser and Liggett's

(1967) study allows Equation (1.2) to be greatly simplified. These

results are sunmnarized in Figure 1.6 [where Q. and t. are dimensionless

discharge Q, = (qLL/Vg) and time t, = (tV/L) respectively]. For a value

of k of 10, an approximate 10% error in the calculated discharge

hydrograph would result by deleting the dynamic terms from the momentum

equation. Notice that as k increases above 10, however, that the

error in discharge decreases rapidly. A "true kinematic" solution

results as k approaches infinity, but for engineering purposes flows

characterized by k > 10 can be approximated reasonably well with the

kinematic wave form of the momentum equation, e.g., Equation (1.3).

Continuing research will attempt to develop practical methods of

evaluating k and, therefore, the applicability of kinematic wave

simplifications from typical basin data and flow conditions.

Derivation of the relationships used for overland flow, collectors

and main channels will be presented next.
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Development of i and m for Various Cross Section Shapes

The following sections will present example derivations of a's and

m's for the different cross sectional shapes considered by the HEC-1

computer model.

Overland Flow Relationship

The Kinematic Wave equation for an overland flow segment on a

wide plane with very shallow flows can be derived from Manning's

equation and Equation (1.3). Consider the flow down an overland flow

strip of unit breadth as shown in Figure (1.3). The steady discharge

from a dnit strip can be described with Manning's relationship.

1.486 R2/ 3 S1/2 Ano 0 (1.7)

where for very shallow flows that are at a depth of y R (the hydraulic

radius) and A are simply (yo * 1)/i and (y. a 1) respectively.

Substitution of these values for R and A into Equation (1.7) and

simplifying yields

Q =1.486 So2 y5/3
N 0 Y(.8)

Notice also that Manning's n has been replaced with an appropriate N

which describes the properties of the runoff surface being modeled.

Values of N are usually greater than Manning's n. Table 1.1 presents I
suggested ranges of values for N for various surface conditions. These

values were obtained from previous field and laboratory investigations

for overland flow.
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Because the discharge represented by Equation (1.8) is per unit

breadth one can substitute the previously defined q for Q (see Equation

(1.2) for units) to obtain discharge in terms of flow per unit breadth.

TABLE 1.1

EFFECTIVE ROUGHNESS PARAMETERS FOR OVERLAND FLOW

Surface N

Dense Growth* 0.4 -0.5

Pasture* 0.3 -0.4

Lawns* 0.2 -0.3

Bluegrass Sod** 0.2 -0.5

Short Grass Prairie** 0.1 -0.2

Sparse Vegetation** 0.05-0.13

Bare Clay-Loam Soil (Eroded)** 0.01-0.03

Concrete/Asphalt - Very Shallow Depths* 0.10-0.15

(depths less than 1/4 inch)

- Small Depths* 0.05-0.10

(depths on the order of 1/4 inch
to several inches)

* from Crawford and Linsley (1966)

** from Woolhiser (1975)
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q C 1.486 S /2) 5/3
NL6 01  ) yo (1.9)

Rewriting Equation (1.3) in terms of discharges per unit width where

the subscripts "o" indicate variables associated with overland flows.

= A (1.10)

where

=(1.486S1/
= N So

mo = 5/3

So = average slope of overland flow element

Yo= mean depth for overland flow

o= conveyance for particular runoff surface,
slope, and roughness

Because there are two unknowns in Equation (1.10) another relationship

is required for mathematical closure and a complete solution. A form of

the continuity equation [see Equation (1.1)] provides the necessary

second equation to complete the solution.

aYo + qo ( _f
ay0 ~ f)~qat a =  (1.11)

where (i-f) is the rate of excess rainfall (rainfall-infiltration) in

ft/sec, qo is the discharge per unit width in cfs/ft, t is time in

seconds, and y is the mean depth of overland flow in ft. Together

Equations (1.10) and (1.11) form the complete kinematic wave equations

for overland flow.
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If Equation (1.10) is substituted into Equation (1.11) one obtains

ay 0 (m 0-l) ay 0
(too-l) Yoi -f (1.12)

at- + 1moYo ax

which has only one dependent variable so that it can be solved to give

a relationship for yo in terms of x, t, and the excess rainfall intensity

(i-f). Once yo is found, it can be substituted back into Equation (1.10)

to obtain a value for q0 . This procedure provides the necessary infor-

mation to be able to determine the time dependent discharge from the

overland flow elements.

Collector and Main Channel Routing Relationships

For the collector system (which represents rivulets, storm drains,

and sewer pipes) and stream channel segments, simple cross section shapes

have been used to simulate prototype channels. It has been found that

appropriate usage of simple triangular, trapezoidal, and circular channel

shapes can provide an accurate representation of the response of the

prototype.

Flows entering the collectors and the stream channels can consist

of both flows from upstream sections and lateral inflows from adjacent

catchment surfaces. These representative channels are described by

their slope, length, cross sectional dimensions, shape, and Manning's n

value. The standard Manning's n is used here because collector and

stream flows behave more as normal open channel flows. The basic form

of the equations for kinematic wave routing of collector and streamflows

are similar to those developed for shallow overland flow [Equations (1.10)

25
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and (1.11)]. The kinematic wave equations for collector and stream

flow routing are:

a aQc~+ c q (1.13)

mc
c = c~ Ac (1.14)

where

A = cross sectional area of flow in ft2

Qc = discharge in cfs

qo 0 = lateral inflow per unit length in cfs/ft
from Overland Flow Strips

t = time in seconds

x = distance along the stream in feet

ac' mc = kinematic wave parameters for a particular
cross sectional shape, slope and roughness

The reader should note that the subscripted variables used

above are for a typical collector channel and are indicated as such

with the subscript c. Identical relationships would be used for

routing in the main channel but one may wish to identify them separately

with a subscript such as m to indicate main channel (refer to "Definition

of Terms").

Determination of etc and mc for Collectors and Streams

Values of ac and mc will be different for each differently-shaped

cross section and will vary with effective Manning's n and channel slope

as well. The basic channel shapes considered by the HEC-I model are the

26
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trapezoid and circle. Variation of the side slope and bottom width for

the trapezoidal section allows one to develop rectangular and triangular

channel shapes as well. These shapes are presented in Figure 1.7.

As was done for the development of the overland flow parameters a 0

and m, one needs to define the proper values for ac and mc for the

stream and collector system. Rather than derive all the a c and mc

values for each differently shaped section, an easy-to-follow develop-

ment for a simple triangular section will be presented as an example.

The results for the remaining shapes will merely be presented because

their derivations follow the same procedures.

Triangular Sections

Derivation of ac and mc for a triangular channel shape begins

with the description of Rc and Ac in Equation (1.7) for a triangular

shaped cross section. The reader should refer to Figure 1.7 and to

the definition of terms after Equations (1.13) and (1.14).

Rc Ac/P C = (Area of triangular cross section/
Wetted Perimeter) = Hydraulic Radius

where

Pc = 2 ( V' +z 2) " Yc = Wetted Perimeter

2
Ac 1/2 (2yc z) Yc = ZYc = cross sectional area

z = side slope ratio
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Z = 0 "Ye RECTANGULAR

w1

b) Y TRAPEZOIDALyc

WITH
W=o TRIANGULAR

Figure 1.7 Two Basic Channel Shapes and their Variations Used by the HEC-1
Flood Hydrogroph Package for Kinematic Wave Stream Routing
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Now the values of Ac and Rc may be substituted into Equation (1.7).
1Ac 2 /3  1461/2 A 5 /3

1.486 S 1/2 1.486 Sc  AC c

nc -- Ac =  nc (1.15)

Defining D as (1.486 S 1/2/n), and substituting the appropriate value

CCSfor A c and P c into Equation (1.14) and simplifying, gives

z5/3 yclO 1//3 (z4/3 yc8/3

QC (22/ 3 )(1+z 21/3 yc2/3 (2)2/3 (1+z')'7 3  (1.16)

1.486 C z 1/3 (z-yc2)4/31 n (+--z / (z (1.17)

1+z

0.94 S 1/2

or Qc -. n (n1/ z)1/3 Ac4/3

l+z (1.18)

Equation (1.18) may now be written in the form of Equation (1.3)

m
Qc c Ac (1.19)

where 0.94 SC1/2

c - n s 1  z )1/3

and

mc  4/3
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Rectangular Sections

A rectangular shape is obtained by stipulating that z in

Figure 1.7-b is zero. This produces a channel w feet wide with vertical

walls. Man-made channels and rectangular concrete drain sections may be

represented by this shape. Following similar procedures which produced

Equations (1.18) and (1.19), two separate relationships for rectangular

shapes are easily derived. One for a very wide rectangular channel where

w is much greater than the depth yc, and the other for a rectangular

channel that may have comparable depths and breadths, e.g., w % y

For the wide shallow channel case:

mc

Qc = c Ac (1.20)

where 1/2

1.486 Sc w_2/3
c n

and

mc 5/3

For the rectangular channel where w y
mc

Qc = c Ac (1.21)

where

0.72 S
ac n

m 4/3
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Trapezoidal Sections

The trapezoidal section is one of the two basic sections

* considered by the general HEC-l code. Modifications of the trapezoidal

shape produced the rectangular and triangular alternatives defined above.

When describing a trapezoidal section it is important to define the side

slopes z and the channel bottom widths w accurately (see Figure 1.7).

It is not possible to derive a simple relationship for ac and mc from

the geometric properties alone, so it becomes necessary to fit c and mc

to the Manning equation at two or more depths yc and use numerical

techniques of fitting the kinematic equation to these values to obtain

values for a and mc for various flow conditions.

Kinematic wave Q Amc

equation c cc

Manning equation for a trapezoid

1.486 SI/
Qc 1 c (A )5/3[ 2 /2/3

n c w+ZYc (l+z2 ) (1.22)

where Ac  = the area of the effective cross section
at depth y c

Values of mc will vary from 4/3 for a triangular section to 5/3 for

a wide rectangular section.

Circular Sections

Circular sections can be used to model storm or sewer pipes

in urban areas. Resource Analysis, Inc. (1975) derived the following

relationships for ac and mc for typical circular sections such as that
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shown in Figure 1.7-a which apply to pipe sections flowing less than

90% full.

mc
Qc =ac Ac (1.23)

where

0.804 Sc1/2

c n Dc

and

mc = 1.25

and

Dc = the diameter of the circular section in feet

Numerical Solution of the Kinematic Wave Equations

The HEC-I Flood Hydrograph Package solves the kinematic wave

equations using finite difference numerical techniques. Harley, (1975);

Resource Analysis, Inc., (1975); and Bras, (1973) present the details

of these methods which have been perfected after years of development

and testing. As with standard numerical procedures, time is discre*ized

in constant steps of At and distance in steps of Ax. The rainfall excess

(i-f) is assumed constant within each time step At, but does change from

time step to time step, to simulate the variability occurring within a

storm event.

Recall that Equations (1.13) and (1.14) were the kinematic wave

equations for collector and stream flow routing. If Equation (1.14) is

substituted into Equation (1.13), the following relationship which has

Ac as the only dependent variable will be obtained
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Ac  + m (mc-1) Ac  q

t+ ccc x 0qo (1.24)

Numerical solution of Equation (1.24) produces a relationship for Ac

in terms of x, t, and qo. These values of Ac may then be substituted

into Equation (1.14) to solve for %. This simple procedure (described

previously for overland flows) allows the calculation of Qc as a

function of the segment length Lc and time t. Therefore, one can

describe the discharge hydrograph from each of the segments that are

of length Lc. If these discharges, Qc9 represented discharges from

local collector channels, then HEC-l will distribute them uniformly

as lateral inflow into the main channel or stream as shown in Figures

1.3 and 1.4. Calculation of the resulting discharge hydrograph from

the main channel or stream is then calculated in an identical manner

as was just presented. The equations used would be identical to

Equations (1.23) and (1.24) except the subscript c would be replaced

with an m everywhere throughout Equations (1.23) and (1.24). This

provides a simple straight forward procedure for calculating first

the overland flows, then the flows through the collector channel

system and finally the discharges in the main stream.

Detailed development of the specific finite difference equations,

the coding procedures and boundary requirements can be found in the

following references: (Lighthill and Whitham, 1955; Bras, 1973;

Resource Analysis, Inc., 1975; Hydrologic Engineering Center, 1979).

The coding modifications that were made to include the kinematic wave

routing procedure in HEC-l was done by Resource Analysis, Inc., under
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the direction of Dr. B. Harley. The algorithms used are based on

those developed for the MITCAT Catchment Simulation Model (Resource

Analysis, Inc., 1975). The following section presents a brief review

of the numerical methods and procedures utilized by the HEC-l program

to perform kinematic wave routing.

Finite Difference Solutions of the Kinematic Wave Equations

The movement of a flood wave down a stream or along an overland flow

surface can be followed by monitoring the times and locations where

specific water surface elevations and discharges occur. For example,

if lateral inflow is assumed to be zero for a moment, a flood wave can

be followed in time by noting the times when a flow of a given magnitude,

or a stage of a given magnitude occurs at successive downstream stations

along the channel. Flood routing methods, such as the kinematic wave

method used in HEC-l, depend upon certain numerical techniques to solve

the governing equations which describe the movement, stage and discharge

characteristics of a flood wave as it propagates downstream. Overton

and Meadows (1976) and Mahmood and Yevjevich (1975) present discussions

of several of the different methods currently in use for hydrologic

engineering studies. The numerical method currently employed by the

HEC-l program to solve the governing equations (e.g., Equations (1.10)

and (1.11) or (1.14) and (1.24) is a finite difference method (Hydrologic

Engineering Center, 1979). A finite difference method (FDM) presents a

"polntwise approximation" to the governing partial differential equations.

The FDM uses simple difference equations which replace the partial

differential equations for an array of stationary grid points located
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in the space-time (x-t) plane (see Figure 1.8). The intersections of

the lines in Figure 1.8 define the time and space points at which the
j

discharge and water surface elevation are computed. Lines parallel

i to the x-axis are called time lines, and lines which are parallel to

the t-axis are space lines. The regular pattern formed by the inter-

sections of time and space lines is called the "computational network."

Those points, as noted on the figure, that are marked by solid dots

represent computation points (called nodes). Solutions to the

governing equations via the FDM will be computed at each of these

nodes. Computations advance along the downstream direction for each

time step At until all the flows and stages are calculated along the

entire distance L. Then the computation is advanced ahead in time by

one At and the computations for discharge and water surface elevation

are performed once again.

Also shown on Figure 1.8 are the solution curves (the dashed lines)

that represent solutions obtained from another method called the "method

of characteristics." The method of characteristics is not an available

alternate solution technique in HEC-I. As can be seen in Figure 1.8,

the solution curves (called characteristic curves) do not always inter-

sect at a node where evenly spaced time and space lines intersect.

Because of this, additional interpolation would be required to obtain

solutions at evenly spaced nodes. To avoid this interpolation, the

method of characteristics is not used in HEC-l. It is mentioned here

though, because the characteristic curves represent locations in the

x-t plane where specific flow properties, such as wave celerity c,
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remain constant for each time step At. The importance of this is shown

below when the specific numerical solution methods (the standard form

and conservation form of the governing equations) are explained.

Detailed methods for the approximation of derivates by finite

differences can be found in Carnahan, Luther and Wilkes (1969). By

simply combining the appropriate finite difference approximations for

first- and second-order derivates, complete partial differential

equations, such as Equations (1.14) and (1.24) can be recast in terms

of finite differences instead of partial derivatives. These new

equations are approximations of the original equations but are now in

a form which can be easily handled numerically, especially with the

aid of high-speed computers. As an example of the procedure; the

first-order partial derivative aq/ax is approximated using a backward

finite difference method below:

A z A z Qi, -Qi-1,j

ax Ax Ax (1.25)

The following sections will discuss how similar finite-difference

approximations are applied to solve the governing kinematic wave

equations in space and time.

The governing equations developed in the previous sections consisted

of a pair of equations for each of the different kinds of flow elements;

e.g., Equations (1.10) and (1.12) for overland flow elements, Equations

(1.13) and (1.14) for collector elements, and two additional equations

identical to (1.13) and (1.14) (only with different subscripts) for the

main channel routing elements. Rather than treat each of these three
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pairs of equations separately, the solution details will be developed

for one set only because they are basically all the same. The HEC-I

program handles each of these three different kinds of flow elements

by using the following computational sequence: computations start

with the determination of overland flows which are then input as

uniformly distributed lateral inflows into the collector elements

which, in turn, modify the flows and distribute these collector flows

uniformly and laterally along the main channel. The main channel

routes the final flood wave through the subbasin. A combination of

several subbasins thus allows for the complete description of an

entire basin during a storm event.

Standard Form of the Kinematic Wave Equations

Consider Equation (1.13) which relates flow Qc within a collector

element:to the collector channel cross sectional area Ac and Equation

(1.14) which is the continuity equation:

Ac Qcat + -x = qo (1.13)

mc
Qc ccA c (1.14)

It is assumed that the kinematic wave coefficients cc and mc are

constant for any given system of channel elements. Differentiation

of the flow Equation (1.14) with respect to x and substitution of

this into Equation (1.13) gives:

aA (mc-1) Ac
c+ ~mA cq

at cmcc a= q0  (1.27)

i
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Notice that Equation (1.27) is the same as the previously derived

Equation (1.24). Referring to Figure 1.9, the area Ac is known at

points on the space-time grid for times prior to the current time

(designated by the index J) and at points in space prior to the current

location (indicated by the index i). Therefore the index (ij)

corresponds to the current time and space coordinates. Future times

and space locations that are advanced by one at and Ax are indicated as

j+l and i+l, respectively. Similarly, one previous time and space location

would correspond to a point on the space-time grid indexed by (i-i, j-i).

In this way, each point (node) on the space-time grid can be indicated

by a double subscript of i's and j's. This allows one to rewrite partial

differential equations in terms of finite difference approximations of

known quantities (located at previous times and space points) and unknown

quantities (current time and space points). Therefore, the area Ac at

point B in Figure 1.9 would be designated as Ac, at point C,

A , at point D, A and so forth. With this background,

one can now express the governing equations in terms of finite differences

using the previously defined indexing scheme and solve for the values of

Ac and Qc at the "current puint A" in Figure 1.9.

am A( m-l) A cam [A(m-l)]
Ax

A A (m-l) [A iOjl )  A 0ilj-l)]
= m i,j-l) + A i- j-). ..

2 ' Ax (1.28)
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where the differential of the area A in the x-direction is taken as the

difference between the values known at points C and D in Figure 1.9.

Also, the area term which is raised to the (m-1) power in Equation (1.27)

is considered to be an average area between points C and D in Figure 1.9.

Consider the time derivative term aA/at in Equation (1.27) next.

It is evaluated between points A and 0 (see Figure 1.9), thus;

A . A A ij)-

at At At (1.29)

The lateral inflow term q is handled as an average lateral inflow which

occurs within a time step t and is defined as q here to simplify the

final form of the equation.

q zq(i 'j) I q(i j,-) -

2 =q (1.30)

Combining Equations (1.28), (1.29) and (1.30) produces the complete

finite difference form of the original partial differential Equation

(1.27):

A(i,j) -A A + A(m-)
At 2

[ t 1) 1x . a q (1.31)

Ai j is the only unknown quantity in Equation (1.31) which can,

therefore, be isolated and directly solved for.
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A =- - At A(ijl) + Ailjl] -

A(i j) qAt + A(i jAt) A m 2

[A(ilj-1) - A i-l j-1)] (1.32)

Once Ai j is known, the corresponding flow Qi,j can be computed

from Equation (1.14)

Qi = a(Aij)m (1.14)

Knowing Ai j and the cross sectional properties of the channel at

location i, one can also compute the water surface elevation for that

flow, time and location.

This provides a straight forward method of computing time varying

discharges and water surface elevations along the channel.

Conservation Form of the Equation

The previous "Standard Form" of the equations applies in most

situations where the average wave celerity c is less than the ratio

of the computational space to time step, e.g., c < (Ax/At). When c

is less than Ax/At it is felt that the previous procedure will provide

an accurate approximation for the kinematic wave characteristics of a

flood wave. However, if c is greater than (Ax/At) is is possible for

flood wave characteristics to propagate more rapidly through space and

time than the numerical approximation method can account for them.

(This numerical stability criteria can be associated with the familiar

Courant conditon for stability of explicit finite difference schemes.)

For this reason, an alternate form of the approximate finite difference

equations is needed.
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The "Conservation Form" of the governing equations is therefore,

applied when the average celerity E of the flood wave is greater than

the ratio Ax/At. In this form, the temporal derivatives are evaluated

between points B and C in Figure 1.9 rather than A and D, while the

spacial derivatives are evaluated between points B and A rather than

D and C. In this way rapidly advancing flood wave characteristics,

such as the example characteristic curves indicated in Figure 1.9, can

be more accurately accounted for. HEC-l checks to see if c is less than

Ax/At for each time step. If it is, the Standard Form of the equations

are used; if not, the Conservation Form of the equations are used.

The conservation form of the spacial derivative of discharge will

be evaluated between points B and A in Figure 1.9.

2a z AQ =Q(i,j) " Q(-lj)
ax Ax Ax (1.33)

and the temporal derivative of area will be evaluated between points

B and C

3A z AA A(i-lj) - A(i- (J-3)
71 At t (1. 34)

Substitution of new "Conservation Form derivatives above into the

continuity equation produces

A(i-l~j) (i-l,j) -(i-lj-l) (1.35)
Ax At

Solving for the only unknown, Q isj gives

[AX
= l,j) t q Ax + T- [A(i_1,j) - A(i-lj-l)] (1.36)
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Knowing Qi j allows the area at the point ij to be determined from

the flow equation:

1/m
A ij = (qi,jf) (1.37)

This concludes the introductory development of the general kinematic

flow equations and a brief discussion of their numerical solution

techniques. The following chapter will present additional background

information and the details necessary for the effective application of

these methods to solve problems in urban hydrology.
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CHAPTER 2

APPLICATION OF KINEMATIC WAVE ROUTING TECHNIQUES USING HEC-l

by J. J. DeVries1

INTRODUCTION

Computer program HEC-l contains options for using kinematic wave

theory to compute subbasin outflow hydrographs and to route hydro-

graphs through a stream reach (Hydrologic Engineering Center, 1979).

These options provide an alternative to the unit hydrograph method

for determining direct runoff. They also provide a streamflow routing

technique which can be used in place of the Muskingum, modified Puls,

and other methods available in HEC-l (Hydrologic Engineering Center,

1973). These newly added features have had only limited use to date

at the Hydrologic Engineering Center (HEC), althouqh the general

method has been ,ised with success in a number of other hydrologic

models. As with any type of hydrologic model, however, it is imper-

ative that the modeler check the performance of his modeling effort

against observed data. Use of the model without a procedure for

verifying its ability to correctly simulate the behavoir of a given

basin is strongly discouraged.

1Hydraulic Engineer, Training & Methods Branch, HEC, Davis, California.
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The purpose of this chapter is to describe how the kinematic wave

method in HEC-1 may be applied. A discussion of kinematic wave theory

as it relates to this program is given in Chapter 1 of this document.

The papers by Lighthill and Whitham (1955), Harley, et.al. (1972),

and Woolhiser (1975) are recommended for general background on the

kinematic wave method.

One of the attractive features of the kinematic wave approach to

rainfall-runoff modeling is that the various physical processes of

the movement of water over the basin surface, with the attendant

infiltration, flow into stream channels, and flow through the channel

network are considered. Parameters, such as roughness, slope, catchment

lengths and areas, and stream channel dimensions are used to define the

processes.

The various features of the irregular surface geometry of the

basin are generally approximated by either of two types of basic

elements: (1) an overland flow element, and (2) a stream or channel

flow element. In the modeling process described here, one or two over-

land flow elements (designated as overland flow strips) are combined

with one or two channel flow elements to represent a subbasin. An
t

entire basin is modeled by linking the various subbasins together.

Because the descriptions of the various elements comprising the

model are directly related to physical parameters, the model can be

easily modified, and changes which represent changes in land use in

the basin can be made using parameters which describe these new uses.

This makes kinematic-wave-type models very useful for urban studies
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because the effects of increasing urbanization can be accounted for

by changing the parameters describing the basin.

The various topics which are covered in this chapter include

basin modeling procedures, a description of the elements used in

kinematic wave calculations, and procedures for selecting the para-

meters. An example problem is presented to illustrate HEC-1 input

and ouput data, and effects of changes to numerical values of the

parameters are discussed. Results of a "hand" calculation are given

in Appendix A to illustrate the basic solution procedure.

BASIN MODELING

The modeling process starts with a description of the topologic

structure of the basin: drainage basin boundaries, stream and drain-

age channels, and the logical relationships between the drainage

areas and the channels. The definition of the drainage boundary will

depend on the objective of the study being conducted, as well as the

topological character of the basin. Studies dealing with urban hydrology

usually require delineation of subbasins that are smaller than 2 mi2

2
in extent (about 5 km ). Studies dealing with the effects of channel

modifications may permit use of large areas; however, as the area is

increased the assumptions required to apply the kinematic wave method

become more tenuous. In general, subbasin areas should be limited to

a maximum of four to five square miles.

A typical urban drainage system is shown in Figure 2.1. Rain falls

on two general types of surfaces: (1) those that are.essentially imper-

vious, such as roofs, driveways, parking lots and other paved areas;
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and (2) pervious areas, most of which are covered with vegetation and

have numerous small depressions which produce local storage of rainfall.

It is assumed in the model that water Initially travels over these

surfaces as sheet flow; however, in a relatively short distance the

water begins to collect in small streams or rivulets and the process of

stream or channel flow begins. For impervious areas, the distance to

the first channel (say a gutter) is typically thirty to one hundred

feet, while for pervious surfaces the longest distance a drop of water

must travel to reach a channel is on the order of one hundred to several

hundred feet.

Water collected by the street gutters, travels no more than a few

hundred feet until it enters catch basins which are connected to sewers.

These sewers are typically 1.5 to 2 feet in diameter for the local

drains. The local drains are connected in turn to larger and larger

drains which feed the main storm drain. In many areas the main storm

drains are open channels or streams. In major urban areas the main

storm drains are often large closed-conduit sections, but these storm

drains are usually designed to flow only partially full, and therefore,

the kinematic wave routing approach (which assumes open channel flow)

is appropriate.

There are certain weaknesses inherent in the kinematic wave routing

approach which should be kept in mind by the modeler. These include the

following: (1) in kinematic wave routing, the theory does not provide

for attenuation of the flood wave. As a consequence, peak flows may be

over estimated. (2) Surcharging of storm drains frequently occurs durinq

major storm events; no explicit provision for surcharging is provided
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by the method, however. (3) Also, ponding and local storage of water

during major events is not accounted for. This might include overbank

storage, ponding in the streets, etc., which occur during the large
*

storms which are of primary interest and may not occur to as great a

degree in the events available for calibration and verification of the

model. The modeler, therefore, should analyze the program results to

see if this is happening.

ELEMENTS USED IN KINEMATIC WAVE CALCULATIONS

The runoff process described above is idealized in HEC-1 through

the use of the following flow elements: (1) one or two typical overland

flow elements, (2) a typical collector channel element, and (3) a main

channel element. These generally provide the necessary detail for modeling

the runoff process in urban basins. Schematic drawings of these elements

are shown in Figure 2.2. Figure 2.3 illustrates the realtionships of the

various types of elements to each other. The elements are specified to

represent typical features of the basin, and thus the parameters chosen

for the individual elements should be representative of the entire sub-

basin. The runoff simulation process is automatically expanded from the

typical elements to the whole subbasin by the program. Because land use

and development practices are usually very similar within a selected hydrologic

unit, assigning a single value to a given parameter usually gives good

results.

Overland Flow Elements

The basic overland flow element is simply a sloping rectangular

plane surface upon which the rain falls. In the computer program it

is treated as a strip of unit width (one foot or one meter wide). Some
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Figure 2.2 Elements Used in Kinematic Wave Calculations
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of the rainfall is lost by infiltration; the remainder runs off the

lower edge of the plane into a channel. Infiltration losses may vary

with time or be constant, and a different loss rate can be specified

for each flow strip. The fraction of the element that is impervious

can also be specified.

The basic kinematic-wave-analysis concept used in HEC-l allows the

use of either one or two overland flow surfaces, each discharging into

a collector channel. For example, one element could represent all areas

that are essentially impervious, with short lengths of flow (L ) to the

point where the flow becomes channel flow. Thus the element would re-

present driveways, roofs, street surfaces, etc.

The other overland flow element could then represent areas that

are pervious and have higher resistance to flow, such as lawns, fields,

and wooded areas. In general, the catchment flow lengths and roughness

coefficients will be much greater for these areas. Again, the value of

Lo to be used is the representative maximum distance for water to travel

as overland flow for this type of land surface.

ihe user of this method should think of the overland flow strips as

representing typical flow surfaces rather than actual planar surfaces,

except when very small areas (such as one city lot) are being considered.

It is only at these very small scales that the mean surface slope and

actual area and length come close to fitting the basic theoretical

concept.
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The following data are needed as input to HEC-1 to describe each

overland flow strip:

a. Lo  - typical overland flow length

b. S - representative slope

V c. N - roughness coefficient (see Table 2.1)

d. Aol,Ao - the percentages of the subbasin area which the
2 overland flow surface represents (two possible

types for each subbasin)

e. Infiltration and loss rate parameters

Ways to determine these parameters are discussed in the following section.

It is suggested that the data first be tabulated on a form for the

entire basin and then entered on the coding sheet used for computer

program data preparation. A typical data tabulation sheet is given

in Appendix B.

Selection of Overland Flow Parameters

The area is the simplest quantity to specify; the area of each .

element is given as a percentage of the total area of the subbasin.

If a single element is used, one hundred percent is specified. If

two elemerts are used, the sum of the percentages should be one hundred

percent.

The slope is a value which is representative of the slope of the

path that the water takes on Its way to the collector channel. It may

differ from the mean topographic slope for the catchment, and it is

usually strongly related to the type of land use or development. For

an urban setting, a single slope-value could be used for all areas of
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similar building practice, even though the mean ground slopes vary

significantly.

As discussed in Chapter 1, the kinematic wave equations for the

wide flow planes of the overland flow elements are based on Manning's

equation for flow in a wide channel:
m
o

qo= oYo 2.1 (See Eq 1.11)

where:

qo = flow per unit width

y = flow depth

ao = kinematic wave parameter

mo = kinematic wave parameter

For this situation:

mo = 5/3

1.49 1/2

where:

s o  = slope

N = surface roughness coefficient similar to Manning's 'n' for
channel flow.

Because the nature of sheet flow with very small depths over rouQh

surfaces differs markedly from streamflow, these roughness coefficients

have much different values than the Manning's 'n' values used in stream-

flow computations. Values of N found to be appropriate are given in

Table 2.1.
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TABLE 2.1

Catchment Roughness Parameters for Overland Flow

Surface N

Dense Growth* 0.4 - 0.5

Pasture* 0.3 - 0.4

Lawns* 0.2 - 0.3

Bluegrass Sod** 0.2 - 0.5

Short Grass Prairie** 0.1 - 0.2

Sparse Vegetation** 0.05 - 0.13

Bare Clay-Loam Soil (Eroded)** 0.01 - 0.03

Concrete/Asphalt - Very Shallow Depths* 0.10 - 0.15
(depths less than 1/4 in)

- Small Depths* 0.05 - 0.10
(depths on the order of 1/4 in
to several inches)

* from Crawford and Linsley (1966)
**from Woolhiser (1975)

A critical parameter in the overland flow element description is

the flow length Lo . A proper specification of Lo is vital, since it

is the most important parameter in determining the response character-
istics of the overland flow elements. The overland flow length can be

looked on as the maximum length of the path taken by a representative

water drop to reach a channel where it first moves as streamflow. It

is thus the distance for overland flow to reach a tributary or local

channel, such as a street gutter.
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Fortunately, in many natural basins and urban catchments, close

examination of the full drainage system reveals that the small-scale

drainage patterns are quite similar throughout the entire basin. The

value of L0 appropriate for such a situation will not vary greatly

over the basin. The actual values of L which give the correct run-

off response for the basin must be verified through comparison of

model output with measured data, however.

Collector Channel

The collector channel element is used to model the flow in its

path from the point where it first becomes channel flow to the point

where it enters the main channel. The inflow to the collector channel

is taken as a uniformly distributed flow along the entire length of

the channel. This correctly represents the situation where overland

flow runs directly into the gutter, and also provides a reasonable

approximation of the flow inputs into the storm drain system from

individual catch basins and tributary collector pipes which are

distributed along the collector channel.

The kinematic wave equations (developed in Chapter 1) are the

continuity equation for unsteady channel flow with lateral inflow, and

Manning's equation.

The continuity equation is:

a-Ac = qo (2.2) (See Eq 1.14)

where, Qc is the channel flow in cfs, Ac is the flow cross sectional

area in ft2, q0 is lateral inflow in cfs/ft to the channel, x is distance
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along the channel in ft, and t is time in seconds. Manning's equation

is written in the form:

m
qc OcAcc (2.3)

where the kinematic wave routing coefficients a and m are a function

of the channel geometry. The general expression for a is:

. KS1 /2
S ( 2.4)

where K is a constant that depends on the channel geometry, Sc is the

channel slope, and n is Manning's roughness coefficient. A change in

either n or Sc will change the value of ac used in the calculations.

It should be noted that the model is more sensitive to changes in n

than to Sc because ac depends on the first power of n while it is

proportional to the square root of Sc -

The value of the exponent mc for trapezoidal channels ranges from

4/3 when the trapezoid has a base width of zero (triangular shape) to

5/3 for a very wide rectangular shape. For a channel with a circular

cross section, mc is taken as 1.25. (See Chapter 1 for the derivation

of these parameters.)

The following data are needed as input to describe the collector

channel system (refer to Figure 1.7):

I. The surface area drained by a single representative collectorchannel (e.g., gutter plus storm drain), Ac -

2. The collector channel length (total length of gutter plus
length of storm drain), Lc .

3. The channel shape (either a circular section or some variant
of a trapezoid).
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4. The pipe diameter or the trapezoid bottom width and side
slope, if appropriate.

5. The channel slope, Sc and

6. Manning's 'n'.

Selection of Collector Channel Parameters

The characteristics of the collector channel components can be

determined by looking at a drainage map for the basin and selecting

a typical collector system for each subbasin. This single typical

collector channel is used to represent all the collector channels in

the subbasin.

1. The area associated with the collector system can be determined
from the map. This is an area in square miles (sq. km.) rather
than the percentage of the subbasin area. It does not have to
be an integer multiple of the subbasin area.

2. The collector channel length is taken as the longest flow path
from the upstream end of the collector system to its outlet at
the main channel. This length should include the distance the
water will travel as gutter flow.

3. The channel shape and size will usually change along the length
of the channel; however, a single shape must be chosen to re-
present the channel along its entire length. This is not as
great a problem as might appear at first. As shown in Figure
2.4, a triangle with side slope of one to one matches reasonably
well the area-discharge relationships for circular conduits for
a given slope and roughness. The triangular shape is the one
used by the computer if the shape is not specified in the input
data. The selection of channel shape is discussed in more
detail in the section on the main channel, below.

4. If the representation is by a circular or trapezoidal shape,
the channel dimensions chosen should represent the most commonly
used size of channel in the system.

5. The channel slope can be estimated from a topographic map by
taking the difference in elevation between the upstream and
downstream ends and dividing by the length. If drop structures
are used in the storm drains, the slopes should be adjusted
accordingly.
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6. A Manning's 'n' which best represents the roughness of the
major portion of the channel should be used. Tables of 'n'
for various types of channels, stch as concrete pipe, lined
or unlined open channels, etc., are available in hydraulic
handbooks and other sources.

Main Channel

The main channel can carry both inflows from upstream subbasins

as well as flows supplied by the collector channels within the subbasin.

The inflow from the collector channel is taken to be uniformly distrib-

buted along the length of the main channel. This is assumed to reasonably

approximate the actual situation where the flow enters the channel from

the various collectors at a number of discrete points at various spac-

ings. In Equation 2.2, the lateral inflow, qc9 is determined by scaling

up the collector channel flow to match the total subbasin areas and then

dividing the flow by the total main channel length. For example, suppose

that the subbasin area is 1.0 square mile, while the collector channel

area is 0.30 square mile and the length of the main channel is 2,000

feet. If the collector channel flow is designated as Qc' the inflow

per foot of main channel is

qc = (1"0/0"30)(Qc/20°°) cfs/ft

The channel routing element can also be used independently for

routing a hydrograph through a channel reach. If desired the subbasin

flow can be computed separately and combined with routed flow at the

subbasin outlet. Any of the routing methods available in HEC-1 can be

used for channel routing (Muskingum, modified Puls, Tatum, etc.) if

desired.
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The channel routing procedure requires the following data:

1. Channel or stream length, Lm

2. Slope, Sm

3. Manning's 'n'

4. Area of subbasin, Asubbasin

5. Channel shape (trapezoidal or circular)

6. Channel dimensions (e.g., width, w, or diameter, D , if
required, and side slopes, z)

7. The upstream hydrograph to be routed through the reach
if desired.

Selection of Main Channel Parameters

Most of the channel data can be obtained from physically measurable

parameters for the channel and subbasin, with exception of Manning's 'n.

The following procedure can be used to determine these data:

1. The channel length can be scaled from a drainage map of the
basin.

2. The mean channel slope can be obtained from field measurements
or estimated using topographic maps.

3. Selection of Manning's 'n' should be based on the average
channel conditions.

4. The subbasin area can be measured from topographic maps.

5. The selecting of channel cross section is discussed in the
following section.

6. The channel dimensions follow from the preceding item.
I

7. An upstream hydrograph will not be routed through the channel
reach unless the user specifically requests the program to do
SO.

6
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Selection of Channel Cross Section
I

The channel cross section for either the main channel or the col-

lector channel can be defined as one of two simple shapes to permit

modeling a variety of natural channels. The kinematic wave model is

not especially sensitive to channel cross-sectional shape in the simula-

tion of discharge, and therefore, it is not necessary to use complex channel

shapes. The shapes which can be used in HEC-1 are trapezoidal and

circular. Most main channels can be best simulated by a triangular

shape. This can be done by specifying the base width for the trapezoid

as zero, or for a collector channel, by using the default values. When

the channel is small, flood flows generally require overbank areas to

carry the flows, and a triangular shape usually represents this situa-

tion quite well. As seen by a plot of area versus flow, Figure 2.4,

a triangle can be used to approximate circular sections as well as

street gutters.

In the downstream reaches of the basin, the trapezoidal section is

usually the most appropriate for open channels. The shape should pro-

vide the best fit to the channel shape for the given flood flow, however.

For example, in some situations a trapezoid might be the best fit for low

flows, while a triangle might be more appropriate for high flows. An

illustration of this is shown in Figure 2.5.

The circular section allows modeling of storm sewers. The flow

behavior of the conduit is simulated properly up to the poinL where the

conduit is approximately ninety percent full. The program does not
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a) Channel Cross Section

b) Representation by a Trapezoid

c) Representation by a Triangle

Figure 2.5 Fitting Channel Cross Sectional Shape
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handle the effects of pressure flow, and for flows greater than about

ninety percent of pipe capacity, the program assumes that the capacity

of the element increases as required and has no upper limit. In many

cases this approach is an adequate representation of what is happening

in nature, because water that does not enter the storm drains flows

over the surface or along a roadway until it finds another location

to enter the drainage system.

AN EXAMPLE APPLICATION OF KINEMATIC WAVE METHODS

The small partially-urban basin shown in Figure 2.6 is to be modeled

using kinematic wave runoff and routing options of HEC-l. The hydrologic

characteristics of this basin (obtained by previous calibration) are

as follows:

Subbasin 1. The upper of the two subareas making up the basin

is presently not urbanized and is primarily rolling pasture land with

few trees. The typical distance L0 for flow to travel to tributary

stream channels is 500 feet. The overland flow roughness coefficient

N is 0.4. The representative ground slope S is 0.04. The amount of

impervious area is assumed to be negligible. The subbasin area Ao1

is 1.5 square miles.

The collector or tributary channels have a typical slope Sc of

0.025, and an 'n' value of 0.10, with a typical channel length, Lc,

of 1,500 feet. The most representative section is a triangle. The

area, Ac, contributing to a typical collectur stream is 0.4 square

mile.
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A = 1.5 sq. mi.

A -,. SBAI1.2 sq. mi.

SUBBASIN I

BASIN OUTFLOW

4

Figure 2.6 Basin for Example Problem
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The main channel is approximately triangular in cross section with

side slopes z of 1 in 4. The mean channel slope Sm is 0.01 and
S

Manning's n' is 0.05. Its length, Lm, is 3,500 feet.

Subbasin 2. The lower subbasin is completely urbanized, and twenty

percent of the subbasin surfaces are impervious. In this subbasin

the impervious runoff areas have the following characteristics:

L = 50 feet, S.l = 0.06, N = 0.15. The pervious areas can be

represented by the following parameters: L2 = 130 feet, S = 0.01,

N = 0.3. The subbasin area, AO2, is 1.2 square miles. The total

basin area is 2.7 square miles.

The collector channel system involves three hundred feet of gutter

plus an additional 1,800 feet of pipe storm drain ranging up to four

feet in diameter. A triangular section is used to represent the

various channel components (the program default value with one to one

side slopes). The average slope, Sr, is 0.008, and the Manning's 'n'

which accounts for friction and other channel head losses is 0.020.

The area, A, contributing to the collector channel system is 0.35

square mile.

The parameters describing this basin are given in Table 2.2. Also,

a listing of the program input for modeling this basin is provided in

Table 2.3, and hydrographs from the run output are shown in Figure 2.7.

As an example of the way the program can be used to evaluate the

effects of future urbanization, the following changes were made to

the parameters describing Subbasin 1. Two overland flow strips were

used instead of one; an impervious overland flow element with L = 50

01
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feet, N 0.3, and representing twenty percent of the subbasin area;

and a pervious element with the representative flow lengths reduced

to four hundred feet and with the other parameters as before. The

results from this run are plotted in Figure 2.8. The peak flow at

the basin outlet increased from 3,514 cfs for the initial basin

condition to 4,275 cfs after the urbanization changes. The peak flow

occurred five minutes earlier in the fully urbanized basin.

PARAMETER SENSITIVITY

Additional runs were made with changes to some of the parameters

describing the above basin to give an indication of the sensitivity

of the modeling process to changes of various magnitudes. The per-

tinent features of the runs (in which the overland flow length and

overland flow roughness parameters were adjusted) are given in Table

2.4. Only Subbasin 2 was modeled in these runs, and therefore the

tabulated peak flows are lower than those given above for the full

basin.

As shown in Table 2.4, increasing the overland flow length reduces

the computed peak flow, and the peak occurs later. Using short

lengths has the opposite effect. These results are shown in graphical

form in Figure 2.9.

The effect of changes to the surface roughness parameter is

illustrated in the second part of Table 2.4 and in Figure 2.9. Low

values of N produce high computed flows with short times to the flow

peak, while high N values retard the flow and give lower peak values.
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TABLE 2.4

Sensitivity to Changes in Parameters1-i

a. Effect of Overland Flow Length

Case L202 Qpeak Time of Peak

ft. cfs min

Al 90 2,749 30

A2 135 2,558 30

A3 150 2,413 30

A4 180 2,163 30

A5 225 2,007 35

A6 270 1,782 35

b. Effect of Surface Roughness

Case N2014-/ N202§/ Percent Qpeak Time of Peak
of

Original
N Values cfs min

BI 0.15 0.20 50 2,734 30

B2 0.22 0.30 75 2,551 30

B3 0.30 0.40 100 2,163 30

B4 0.45 0.60 150 1,793 35

B5 0.60 0.80 200 1,499 35

-/With the exception of the changes listed here, all parameters
describing Subbasin 2 are as given in Table 2.2.

2-/L202 is overland flow strip number 2 for subbasin 2.

-/This is the computed peak flow from Subbasin 2 only.
-/N201 Is roughness coefficient for overland flow strip number 1

for subbasin 2.

5YN202 is roughness coefficient for overland flow strip number 2

for subbasin 2.
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Another kinematic wave routing parameter which can be adjusted

is the slope. However, both the slope, So, and the roughness, N, are

combined in the parameter ao' and either may be adjusted to produce

the desired effect. However, as indicated by Equation 2.4, o is a
1/2

function of So  ; therefore, changing So has less relative effect

than changing the roughness. For example, to produce the same change

in a as caused by reducing N by a factor of two, the slope, So,

would have to be four times as large.

The effect of changes to the channel routing parameters is

illustrated here by showing the influence of the channel roughness

on the hydrograph from Subbasin 2 alone (Subbasin 1 flow is not con-

sidered). The outflow hydrographs for two different 'n' values are

shown in Figure 2.10, and data for other 'n' values are given in a

table in Figure 2.10. In this case, changes to the channel roughness

have a smaller effect on the hydrograph than changes to the overland

flow parameters.

SUMMARY AND CONCLUSIONS

The material presented in this paper provides the user of computer

program HEC-l with background information for modeling hydrologic

basins using kinematic wave routing. The example problem gives an

illustration of the use of the method and shows how it can be applied

to studies of the effects of urbanization on hydrologic basins. Some

guidance on selection of parameters is provided, along with a brief

sensitivity analysis to show effects of varying the parameters.
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It is important for the user of this method to verify his model

using measured rainfall-runoff events to allow the assessment of the

perfomance of the model with the selected parameters. Without such

a check the inexperienced modeler should interpret his results with

a great deal of caution. However, kinematic wave models have been

used successfully in urban hydrology in a large number of applications,

and when the models are properly formulated, good simulations result.
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APPENDIX A

EXAMPLE OF KINEMATIC WAVE ROUTING BY HAND CALCULATIONS

To illustrate how the kinematic wave calculations are carried

out in HEC-l, the following simple example is presented. In it, the

results of hand calculations are given, along with the equations used.

A computer run was also made using the same data and the computer

results were compared with the hand calculations.

The data for the problem are given in Table A.l. The overland

flow element is taken as a single rectangular plane with a trapezoidal

channel running along its lower edge. The time increment used in this

simulation is five minutes. Rainfall is assumed to occur at the rate

of one inch per hour in the first five minutes, at two inches per hour

in the next five minutes, and at one inch per hour the next five

minute period. No rain occurs after fifteen minutes.

The equations used for kinematic wave routing are presented in

Chapter 1. Two different forms are used: (1) the "Standard Form"

for situations when the average way' celerity 6 is less than the

ratio of the distance increment to the time increment Ax/At; and

(2) the "Conservation Form" for cases where E is greater than Ax/At.

The value of E is based on an average representative flow area for

the entire channel reach, A, and is computed from the equation

Z am (A)m -1 (A.1)

where Is the representative wave speed for the reach.

A-l
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TABLE A.1

DATA FOR EXAMPLE

Overland Flow Element

, Dimensions: 50 ft x 4,000 ft

Overland Flow Length = 50 ft

Slope = 0.06 ft/ft

Roughness Coefficient - 0.3

Loss Rate = 0 (Entirely impervious)

Channel Element

Length = 4,000 ft

Slope = 0.003 ft/ft

Roughness ('n') = 0.025

Shape: Trapezoidal

Bottom Width = 2 ft

Side Slope: 2 to 1

Time Increment = 5 min

A-2
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Standard Form of Kinematic Wave Equations (c less than Ax/At)

The subscripts I and j associated with a given variable

designate distance and time respectively. For example, if A1,j

is the numerical value of A at time t and location i, then at time

t + At and the same location, the variable is designated as AI . J+l*

The location Ax downstream is designated by the subscript +1. The

reader should refer to Figures 1 .8 and 1.9 in Chapter 1, where

details of finite difference approximations were developed. (The

equation below, was developed in Chapter 1.)

The area at succeeding points along the channel in the downstream

direction is computed from the equation

(1.32)

Af, = qAt + A(1,jI) - A A(tj 1 ) + A(t'I1 i,!) ]m-1 [A(,, jl) - A(i1 , j-l)

and the flow is computed from

0ij "(A j)m (1.14)

where the symbols are as defined above. For overland flow computations,

q is the effective rainfall (rainfall minus infiltration losses) per
I.

square foot of surface. For channel flow calcuatlons q is the lateral

inflow per foot of channel.

Conservation Form of the Equations (g greater than Ax/At)

The equations used in this case are

QJ = Q(i-,. j) + q x + A [A(i_. j) -A(I.I ' i-I)] (1.36)

A-3

41_



and

Aj CQ1,/ }] (1.37)

Resul ts

The results of the computations are given in Table A.2 for the
overland flow process and Table A.3 for the channel flow. The results

of the hand computations agreed with the computer results to within

the limits of precision of the hand calculations.
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TABLE A.2

OVERLAND FLOW CALCULATIONS

RAINFALL FORM OF FLOW TO CHANNEL
j t q EQUATIONS* A1, A2,j Q2 ,J

min cfsfft2  ft2  ft2  cfs/ft

0 0 0 0 0
0.000 0231 S

1 5 0.00694 0.00694 0.000 308
0.000 0463 C

2 10 0.0154 0.0188 0.001 61
0.000 0231 C

3 15 0.0101 0.0186 0.001 59
0.0 C

4 20 0.0 0.0127 0.000 844
0.0 S

5 25 0.0 0.00207 0.000 041
0.0 S

6 30 0.0 0.00155 0.000 025
0.0 S

7 35 0.0 0.00123 0.000 017

Ax = 25 ft Lo  = 50 ft

At = 5 mn = 300 sec No. Ax = 2

= 1.22 Total Area = 80,000 ft 2

mo  = 1.667

*S designates Standard Form of Equations were used

C designates Conservation Form of Equations were. used
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TABLE A.3

CHANNEL FLOW COMPUTATIONS

CHANNEL OUTFLOW
FOR14 OF

t q* EQUATION" A1 1 *** A2 0 ,J Q20

min cfs/ft ft 2  ft 2  cfs

0 0 0 0 0 0

1 5 0.000 308 C 0.050 0.092 0.057

2 10 0.001 61 C 0.161 0.566 0.658

3 15 0.001 59 C 0.167 0.973 1.369

4 20 0.000 844 C 0.105 1.063 1.542

5 25 0.000 041 C 0.011 0.862 1.162

6 30 0.000 025 C 0.008 0.658 0.808

7 35 0.000 017 C 0.006 0.485 0.534

ax = 80 ft Lm =1,600 ft

At = 5 min 300 sec No. Ax - 20

= 1.42

% = 1.35

* Corresponds to "Flow to Channel" in Table A.1

S Standard Form of Equation used

C - Conservation Form of Equation used
* j A1 i s 80 ft from upstream end of channel

A-6
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APPENDIX B

SAMPLE DA4TA TABULATION FORM

Table B-1 can be reproduced and used for tabulating
data describing the basin. The data can then be
entered on a coding sheet for making an HEC-l computer
run. B-i __
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