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ABSTRACT

We prove that th? rate of convergence of quasi-Newton methods is the golden

section ratio (1 + )/2.

KEY WORDS

Unconstrained minimization, Convergence rates, Quasi-Newton methods.

Acooession For

14TIS GRA&I
DTIC TAB
Unannmuic e d
Justif)lc,. tio1

By-.

Av ii-i! ity Codes
Avnil aed/or

Dit i & iat

Ul



H1

1.

1. Introduction

Newton's method for the minimization of f: Rn * R requires computation and

inversion of the Hessian matrix at each iteration. Quasi-Newton methods approximate

the Hessian or its inverse by first order (i.e. gradient) information. These methods

extend the classical secant (or False Position) method for n > 1 (see e.g. Luen-

berger [7]). They are known to converge to the solution superlinearly (see Dennis

and More" [3] and the references there). Thus, it is commonly accepted (e.g. [31),

that the price paid for the approximation of the Hessian by gradient information is

a reduction from second order to superlinear convergence.

In [1,2], we developed new tools for the analysis of the rate of convergence of

interpolatory algorithms. We use them in this paper to prove that actually, the rate

of convergence of a class of quasi-Newton methods, without line-search and without

restart, is given by the golden section ratio (1 +45)/2 = 1.618. We note in passing

that no other tools exist enabling one to establish convergence rates between super-

linear and quadratic.

2. Rate of Convergence Analysis

Newton's method consists of the iteration Xk+l'x k - [2 f(xk)]'l.Vf(xk). Here

Vf, V2f are the gradient and Hessian of f respectively and all vectors are column

vectors. Quasi-Newton replace this equation with

(1) -a,
(1)xk+l -Xk akkVf(xk)

where the matrix Mk approximates the inverse of the Hessian, and the step-size

k e R is obtained by an exact or approximate line-search. The matrix Hk is re-

quired to satisfy
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(2) Hk+lyk = sk

where

(3) Yk = Vf(xk+l) "Vf(xk) ' Sk = Xk+l "xk

For a thorough discussion of these methods see Dennis and More [3].

Henceforth, we will assume ok= 1  for all k, i.e., no line search is per-

formed so that the iteration formula becomes

(4) Xk+ = xk -HkVf(xk)

In the one dimensional case (n =1), equation (2) implies

xk "xk-1
H - l

with f = f'(xk) ,  so that (4) is the classical secant or False Position method

(see Luenberger [71). For this reason equation (2) is called the secant equation.

Other names, e.g. quasi-Newton equation, are also in use. This equation plays a

fundamental role in the classical theory of quasi-Newton methods as well as in our

analysis.

The formulas expressing Hk+1  in terms of H k and the data are called up-

dating formulas. Different updating formulas give rise to a variety of quasi-

Newton methods. In addition, there are quasi-Newton methods which replace equations

(2) and (4) with

(5) Xk+l - x.k kl Vf(x k )

(6) Bk+lSk ' Yk

together with an appropriate updating formula for the matrix Bk.
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We recall our basic results on hyperosculatory interpolation algorithms de-

veloped in [1,2]. The interpolation algorithm studied there generates a sequence

(xk] as follows. Let s > 1, m > 0 be fixed integers, and let T: Rn * R de-

pend on r =s(m +1) parameters. Given m +1 approximants x0 ,..., Xm+ 1  to the

solution x of Vf(x) = 0, we use Xki m , ... , Xk. 1 , xk to construct a new approxi-

mant xk+1 . First we interpolate f by T requiring

(7) T()(xk-J) = f()(xk- J ) J=O,...,m ; i=O,...,s-l

Here f(M)=7f, f(2)=v2f etc. The new point Xk+l is determined by

(8) VT(xk+l) = 0

In [1], we proved that the sequence (xk), generated by this algorithm converges

(locally) to the solution with Q- and R-rates of convergence at least p, where
m-1i

p is the unique positive solution of the equation t - (s-l)tm - s tF = 0 (the
J=o

sum is taken as zero if m= 0). For the definitions of the Q- and R-rates of con-

vergence and their properties see [9, 191. The derivation of this result is based

on the analysis in Traub [ll], where a difference relation for the errors 1IXk-XII

is used to compute the rate.

To show that quasi-Newton methods as defined above can be regarded as interpo-

latory algorithm, we now characterize them by the requirements

(9) T(xk) - f(xk)

(10) VT(xk) - Vf(x k )

(11) VT(xk. I ) - Vf(xk. I ) ,

and

(12) VT(x.k+ 1) - 0
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where T is the quadratic interpolation function

(13) T(x) = f(xk) + (X-xk))TVf(xk) + T(XX)Bk(XxK)

and where Bk is a symmetric nonsingular n xn matrix, and aT  stands for the

transpose of the vector a.

Indeed, if T is defined by (13), equation (9) holds and

(14) VT(x) = Vf(xk) + Bk(x - xk) ,

which implies (10). Using (14) in (12) we have Vf(x k ) +Bk(xk+l-Xk.)=0, which is

equivalent to (5). Finally the requirement (11) is equivalent to

Vf(xk) + Bk(x.kl-x k ) = Vf(x. 1 )

which is the secant equation (6).

So far we have interpreted all quasi-Newton algorithms as interpolatory algo-

rithms. Note that (9)-(11) do not define hyperosculatory interpolation, since we

do not require T(Xk. 1 ) = f(xk.1),  therefore our results in [11 do not apply di-

rectly to the algorithm (9)-(12). For n= 1 the algorithm is precisely the secant

method which is well known to have convergence order (1 +4 4-)/2. We will now show

that the rate of convergence of a class of quasi-Newton methods is induced by the

underlying one-dimensional secant algorithm.

First we note that equation (9) is redundant. Indeed, equations (10)-(13)

are sufficient to define the sequence (xk) ,  for if T(x) satisfies (9)-(13)

and T (x)- T(x)+a with a e R, equation (9) may no longer hold for Tl (x), but

YTI(x) -VT(x) will produce the same value for xk+.

As in [1, we derive the basic difference equation we need by passing a curve

in Rn  through the points xk. xk , k+ , , i.e., we determine a function

: R such that
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(15) *(tkj) = * x kj j i-1,0,1

(1{ 1V(t x

where the parameter t is chosen so that

(16) tk-j = I*xk-j-x* t x, = = 0

This can evidently be done in infinitely many ways. We will later specify further

restrictions on *. Defining Q(t)= T(*(t)), p(t)= f(*(t)) and Q(t)= @'(t),

9(t) =p' (t), we have from (10)-(12)

(17) @(tk) = 9(tk)

(18) et. =

(19) Q(tk+l) = 0

(20) p(0) = 0

Having reduced the original equations to one-dimensional hyperosculatory interpolation

ones, we are now able to derive a difference equation for the sequence (tK.

Theorem 1. If 0,(p e C(2)(J) where J= (t: Itl < L) for some L > 0, and if

tkj 6 J Ji=-1,0,1 then equations (17)-(20) imply

(21) tk+l - Ak tk tkl 1

where
(2)2))9()

(22) Ak 20'(t)

and , are in the interval spanned by tk-l' tk' tk+l and 0.

Proof. By the remainder formula for a general interpolating function (see

Ostrowski (10]), (17) and (18) imply
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(23) c(t) - Q(t) = 2 (tt tk-)

with (t) in the interval spanned by t, t k  and tk- 1 • By (19) we have

-0(0)= (tk+l) -0(0)= tk+lg'(C) with between tk+l and 0. Setting t= 0

in (23) and denoting E = (0) we therefore have

t (C) (2) () (2) Q)

k+l 2 tk tk-1

which completes the proof.

Our main result now follows from equation (21).

C(3)2f*

Theorem 2. Let f e in a neighborhood o the solution x If V f(x) is

positive definite, and if the sequence (B k  is bounded, then there exists a

neighborhood N of x , such that for all x., xI s N, the sequence (x k ) gen-

erated by the quasi-Newton algorithm converges to x with Q- and R-rates of con-

vergence at least (1 +, /2.

Proof. This is an inmediate consequence of the difference equation (21), if the

sequence (Ak] is bounded (see e.g. [6] or [11] and [2]).

Under the assumptions of the theorem and by definition of the functions 0, (p,

it is therefore sufficient to show that the curve * can be chosen so that the

derivatives of * are bounded at t= 0, and (P'(O)o O.

Note that *r is used to derive equation (21), but its construction is not a

part of the algorithm. Assuming without lose of generality 62 x*)40 ansic
6x 2

9'0= ( 0 2x O), one can satisfy (15) and ('(0)0 0 by choosing
r

i(t)= Ea tJ (i-l,...,n) with a 1, a 0 i=2,...,n. This completes

the proof.

3
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Theorem 2 holds for all quasi-Newton methods. We now turn our attention to

the so-called Broyden's class of quasi-Newton methods, which are defined by the

updating formula

T T

+kak YkYXk + a vTk+l = k _ + -- - T H kvkvk'
SkYk  Yk k

(24) with Yk' 'k defined by (3),

= kkY]Vk " / k y k  Yk'kYk

and cLk e [0,1].

Evidently boundedness of Bk and U--Bk is equivalent.

Theorem 3. Let f e C"3 ) in a neighborhood of the solution x , and let V 2f(x)

be nositive definite. If x0 , n are close enough to x , if H is symmetric

and positive definite, and if the matrices H k are updated by (24), then Xk * x

with Q- and R-rates of convergence at least (1 45)/2.

2-
Proof. By the mean value theorem we have yk= AkSk where Ak=V f(x) and x on

the segment line connecting xk and xk+l . Fletcher [4] proved that the eigenvalues

k 2
of NAH.k are bounded. Since we assumed that V f is continuous and positive

definite at x , the eigenvalues of H k are bounded and the result follows from

Theorem 2.

3. Concluding Remarks

Under traditional assumptions, we have proved that quasi-Newton methods inherit

their rate of convergence from the underlying secant method (cf. Luenberger'[6, 17.2].
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Thus, the assumption in Theorem 8.9 of [3] that equation (8.21) of that paper holds,

is not made here. Similarly, no assumption has been made on the linear independence

of the directions (sk) (cf. More and Trangenstein [8]).

We have not broadened our analysis to quasi-Newton methods beyond those be-

longing to Broyden's class of updates (and their inverse updated in the sense of [3]),

in order not to obscure the main points in our analysis. The well known Davidon-

Fletcher-Powell and Broyden-Fletcher Goldfarb-Shanno algorithms fall in this category.

While the latter algorithm is the best available at present, our analysis in [1]

suggests that faster algorithms can be designed utilizing gradient information only.

Our results extend with the obvious modifications for the problem of solving

F(x)= O, F: Rn + discussed in the first part of [3]. They also extend to the

infin.te dimensional case if the coefficients Ak in the basic difference equation

(21) are bounded.

From our point of view, the rate of convergence of quasi-Newton methods has

nothing to do with their so-called quadratic termination property. It is a conse-

quence of the data used in the interpolatory equations (7) (see [1,2]). Therefore,

the Huang class of updates [5) is too wide in the sense that it contains updates

which do not satisfy the secant equation. Note also that Theorem 8.10 of [3] is

not interesting in the sense that 1.6n > 2 for all n > 1.

Finally, note that the common observation that Newton's method is self

corrective in the sense that xk+1 depends explicitly on xk only, while quasi-

Newton methods carry along bad effects from previous iterations, is not justified.

The fact that quasi-Newton methods are two-point interpolatory algorithms, is

exactly their advantage over Newton's method (see [10, J6.4], [1] and [2]).
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