

LEVEL



This document has been approved for public release and sale; its distribution is unlimited.



# 81 11 04 079

LEVEL 7

 $\mathcal{C}$ 

Research Report CCS-403 QUASI-NEWTON METHODS CONVERGE AT THE GOLDEN SECTION RATE, by J. /Barzilai (g) the second of the 11 August -1981 / 14 (, 1, **1**981 E

This research was partly supported by Project NR047-021, ONR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas at Austin. Reproduction in whole or in part is permitted for any purpose of the United States Government.

## CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director Business-Economics Building, 203E The University of Texas at Austin Austin, TX 78712 (512) 471-1821

> This days. for public rolenzes could scale, and distribution is unlimited.

401197 J.

Equary root of 5 ABSTRACT

We prove that the rate of convergence of quasi-Newton methods is the golden section ratio  $(1 + \frac{1}{10})/2$ .

KEY WORDS

Unconstrained minimization, Convergence rates, Quasi-Newton methods.

| Accession For      |             |   |  |
|--------------------|-------------|---|--|
| NTIS               | GRA&I       | X |  |
| DTIC !             | <b>F</b> AB |   |  |
| Unannousced        |             |   |  |
| Justification      |             |   |  |
|                    |             |   |  |
| By                 |             |   |  |
| Distribution/      |             |   |  |
| Availa ility Codes |             |   |  |
| Avail and/or       |             |   |  |
| Dist               | Special     |   |  |
|                    |             |   |  |
|                    |             |   |  |
| M                  |             |   |  |
| Land-              | i           |   |  |

## 1. Introduction

Newton's method for the minimization of  $f: \mathbb{R}^n \rightarrow \mathbb{R}$  requires computation and inversion of the Hessian matrix at each iteration. Quasi-Newton methods approximate the Hessian or its inverse by first order (i.e. gradient) information. These methods extend the classical secant (or False Position) method for n > 1 (see e.g. Luenberger [7]). They are known to converge to the solution superlinearly (see Dennis and Moré [3] and the references there). Thus, it is commonly accepted (e.g. [3]), that the price paid for the approximation of the Hessian by gradient information is a reduction from second order to superlinear convergence.

In [1,2], we developed new tools for the analysis of the rate of convergence of interpolatory algorithms. We use them in this paper to prove that actually, the rate of convergence of a class of quasi-Newton methods, without line-search and without restart, is given by the golden section ratio  $(1 + \sqrt{5})/2 \approx 1.618$ . We note in passing that no other tools exist enabling one to establish convergence rates between super-linear and quadratic.

# 2. Rate of Convergence Analysis

Newton's method consists of the iteration  $x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \cdot \nabla f(x_k)$ . Here  $\nabla f$ ,  $\nabla^2 f$  are the gradient and Hessian of f respectively and all vectors are column vectors. Quasi-Newton replace this equation with

(1) 
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{H}_k \nabla f(\mathbf{x}_k) ,$$

where the matrix  $H_k$  approximates the inverse of the Hessian, and the step-size  $\alpha_k \in R$  is obtained by an exact or approximate line-search. The matrix  $H_k$  is required to satisfy

$$H_{k+1}y_k = s_k$$

where

(3) 
$$y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$
,  $s_k = x_{k+1} - x_k$ 

For a thorough discussion of these methods see Dennis and More [3].

Henceforth, we will assume  $\alpha_k = 1$  for all k, i.e., no line search is performed so that the iteration formula becomes

2.

(4) 
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}_k \nabla f(\mathbf{x}_k)$$

In the one dimensional case (n = 1), equation (2) implies

$$H_{k} = \frac{x_{k} - x_{k-1}}{f_{k}' - f_{k-1}'}$$

with  $f'_k = f'(x_k)$ , so that (4) is the classical secant or False Position method (see Luenberger [7]). For this reason equation (2) is called the secant equation. Other names, e.g. quasi-Newton equation, are also in use. This equation plays a fundamental role in the classical theory of quasi-Newton methods as well as in our analysis.

The formulas expressing  $H_{k+1}$  in terms of  $H_k$  and the data are called updating formulas. Different updating formulas give rise to a variety of quasi-Newton methods. In addition, there are quasi-Newton methods which replace equations (2) and (4) with

(5) 
$$x_{k+1} = x_k - B_k^{-1} \nabla f(x_k)$$
,

$$\begin{array}{c} (6) \\ B_{k+1}s_{k} = y_{k} \end{array}$$

together with an appropriate updating formula for the matrix  $B_{\mu}$ .

We recall our basic results on hyperosculatory interpolation algorithms developed in [1,2]. The interpolation algorithm studied there generates a sequence  $\{x_k\}$  as follows. Let  $s \ge 1$ ,  $m \ge 0$  be fixed integers, and let  $T: \mathbb{R}^n \Rightarrow \mathbb{R}$  depend on r = s(m+1) parameters. Given m+1 approximants  $x_0, \ldots, x_{m+1}$  to the solution  $x^*$  of  $\nabla f(x) = 0$ , we use  $x_{k-m}, \ldots, x_{k-1}, x_k$  to construct a new approximant  $x_{k+1}$ . First we interpolate f by T requiring

(7) 
$$T^{(i)}(x_{k-j}) = f^{(i)}(x_{k-j}) \quad j = 0, ..., m; \quad i = 0, ..., s-1$$
.

Here  $f^{(1)} = \nabla f$ ,  $f^{(2)} = \nabla^2 f$  etc. The new point  $x_{k+1}$  is determined by

$$\nabla T(x_{k+1}) = 0$$

In [1], we proved that the sequence  $\{x_k\}$ , generated by this algorithm converges (locally) to the solution with Q- and R-rates of convergence at least p, where p is the unique positive solution of the equation  $t^{m+1} - (s-1)t^m - s\sum_{j=0}^{m-1} t^j = 0$  (the sum is taken as zero if m = 0). For the definitions of the Q- and R-rates of convergence and their properties see [9, §9]. The derivation of this result is based on the analysis in Traub [11], where a difference relation for the errors  $||x_k^{-x^*}||$ is used to compute the rate.

To show that quasi-Newton methods as defined above can be regarded as interpolatory algorithms, we now characterize them by the requirements

(9) 
$$T(x_k) = f(x_k)$$

(10) 
$$\nabla T(\mathbf{x}_k) = \nabla f(\mathbf{x}_k)$$

(11) 
$$\nabla T(\mathbf{x}_{k-1}) = \nabla f(\mathbf{x}_{k-1}) ,$$

and

$$\nabla T(x_{k+1}) = 0,$$

where T is the quadratic interpolation function

(13) 
$$T(x) = f(x_k) + (x - x_k)^T \nabla f(x_k) + \frac{1}{2} (x - x_k)^T B_k(x - x_k),$$

and where  $B_k$  is a symmetric nonsingular  $n \times n$  matrix, and  $a^T$  stands for the transpose of the vector a.

Indeed, if T is defined by (13), equation (9) holds and

(14) 
$$\nabla T(\mathbf{x}) = \nabla f(\mathbf{x}_k) + B_k(\mathbf{x}-\mathbf{x}_k) ,$$

which implies (10). Using (14) in (12) we have  $\nabla f(x_k) + B_k(x_{k+1} - x_k) = 0$ , which is equivalent to (5). Finally the requirement (11) is equivalent to

$$\nabla f(\mathbf{x}_k) + B_k(\mathbf{x}_{k-1} - \mathbf{x}_k) = \nabla f(\mathbf{x}_{k-1})$$
,

which is the secant equation (6).

So far we have interpreted all quasi-Newton algorithms as interpolatory algorithms. Note that (9)-(11) <u>do not</u> define hyperosculatory interpolation, since we do not require  $T(x_{k-1}) = f(x_{k-1})$ , therefore our results in [1] do not apply directly to the algorithm (9)-(12). For n=1 the algorithm is precisely the secant method which is well known to have convergence order  $(1 + \sqrt{5})/2$ . We will now show that the rate of convergence of a class of quasi-Newton methods is induced by the underlying one-dimensional secant algorithm.

First we note that equation (9) is redundant. Indeed, equations (10)-(13) are sufficient to define the sequence  $\{x_k\}$ , for if T(x) satisfies (9)-(13) and  $T_1(x) = T(x) + a$  with  $a \in R$ , equation (9) may no longer hold for  $T_1(x)$ , but  $\nabla T_1(x) = \nabla T(x)$  will produce the same value for  $x_{k+1}$ .

As in [1], we derive the basic difference equation we need by passing a curve in  $\mathbb{R}^n$  through the points  $x_{k-1}, x_k, x_{k+1}, x^*$ , i.e., we determine a function  $\psi: \mathbb{R} \Rightarrow \mathbb{R}^n$  such that

(15) 
$$\begin{cases} \psi(t_{k-j}) = x_{k-j} & j = -1, 0, 1 \\ \psi(t^*) = x^*, \end{cases}$$

where the parameter t is chosen so that

(16) 
$$t_{k-j} = ||x_{k-j} - x^*||$$
,  $t^* = ||x^* - x^*|| = 0$ .

This can evidently be done in infinitely many ways. We will later specify further restrictions on  $\psi$ . Defining  $\overline{\Theta}(t) = T(\psi(t))$ ,  $\overline{\phi}(t) = f(\psi(t))$  and  $\Theta(t) = \overline{\Theta}'(t)$ ,  $\phi(t) = \overline{\phi}'(t)$ , we have from (10)-(12)

(17) 
$$\Theta(t_{k}) = \varphi(t_{k})$$

- (18)  $\Theta(t_{k-1}) = \varphi(t_{k-1})$
- (19)  $\theta(t_{k+1}) = 0$
- (20)  $\varphi(0) = 0$ .

Having reduced the original equations to one-dimensional hyperosculatory interpolation ones, we are now able to derive a difference equation for the sequence  $\{t_{\mu}\}$ .

<u>Theorem 1</u>. If  $\theta, \phi \in C^{(2)}(J)$  where  $J = \{t: |t| \le L\}$  for some L > 0, and if  $t_{k-i} \in J$  j = -1, 0, 1 then equations (17)-(20) imply

(21) 
$$t_{k+1} = A_k t_k t_{k+1}$$

where

A DESCRIPTION OF A DESC

(22) 
$$A_{k} = \frac{\varphi^{(2)}(\xi) - \varphi^{(2)}(\xi)}{2\theta'(\zeta)}$$

and  $\xi$ ,  $\zeta$  are in the interval spanned by  $t_{k-1}$ ,  $t_k$ ,  $t_{k+1}$  and 0.

<u>Proof</u>. By the remainder formula for a general interpolating function (see Ostrowski [10]), (17) and (18) imply

(23) 
$$\varphi(t) - \varphi(t) = \frac{\varphi^{(2)}(\xi(t)) - \varphi^{(2)}(\xi(t))}{2} (t - t_k) (t - t_{k-1})$$

with  $\xi(t)$  in the interval spanned by t,  $t_k$  and  $t_{k-1}$ . By (19) we have  $-\Theta(0) = \Theta(t_{k+1}) - \Theta(0) = t_{k+1} \Theta'(\zeta)$  with  $\zeta$  between  $t_{k+1}$  and 0. Setting t = 0 in (23) and denoting  $\xi = \xi(0)$  we therefore have

$$t_{k+1} \Theta'(\zeta) = \frac{\varphi^{(2)}(\xi) - \Theta^{(2)}(\xi)}{2} t_k t_{k-1},$$

which completes the proof.

Our main result now follows from equation (21).

<u>Theorem 2</u>. Let  $f \in C^{(3)}$  in a neighborhood of the solution  $x^*$ . If  $\nabla^2 f(x^*)$  is positive definite, and if the sequence  $\{B_k\}$  is bounded, then there exists a neighborhood N of  $x^*$ , such that for all  $x_0, x_1 \in N$ , the sequence  $\{x_k\}$  generated by the quasi-Newton algorithm converges to  $x^*$  with Q- and R-rates of convergence at least  $(1 + \sqrt{5})/2$ .

<u>Proof</u>. This is an immediate consequence of the difference equation (21), if the sequence  $\{A_k\}$  is bounded (see e.g. [6] or [11] and [2]).

Under the assumptions of the theorem and by definition of the functions  $\Theta$ ,  $\varphi$ , it is therefore sufficient to show that the curve  $\psi$  can be chosen so that the derivatives of  $\psi$  are bounded at t=0, and  $\varphi'(0) \neq 0$ .

Note that  $\psi$  is used to derive equation (21), but its construction is not a part of the algorithm. Assuming without loss of generality  $\frac{\partial^2 f(x^*)}{\partial x_1^2} \neq 0$ , and since  $\phi'(0) = \dot{\psi}(0)^T {}^2 f(x^*) \dot{\psi}(0)$ , one can satisfy (15) and  $\phi'(0) \neq 0$  by choosing  $\psi_1(t) = \sum_{j=0}^{T} a_{j1} t^j$  (i=1,...,n) with  $a_{11} = 1$ ,  $a_{11} = 0$  i=2,...,n. This completes the proof.

6.

Theorem 2 holds for all quasi-Newton methods. We now turn our attention to the so-called Broyden's class of quasi-Newton methods, which are defined by the updating formula

(24) 
$$\begin{cases} H_{k+1} = H_{k} + \frac{s_{k}s_{k}^{T}}{s_{k}y_{k}} - \frac{H_{k}y_{k}y_{k}^{T}H_{k}}{y_{k}H_{k}y_{k}} + \alpha_{k}v_{k}v_{k}^{T}, \\ \text{with } y_{k}, s_{k} \text{ defined by (3),} \\ v_{k} = \left(y_{k}^{T}H_{k}y_{k}\right)^{\frac{1}{2}} \left[\frac{s_{k}}{s_{k}y_{k}} - \frac{H_{k}y_{k}}{y_{k}H_{k}y_{k}}\right] \end{cases}$$

and  $\alpha_k \in [0,1]$ .

Evidently boundedness of  $B_k$  and  $H_k = B_k^{-1}$  is equivalent.

<u>Theorem 3</u>. Let  $f \in C^{(3)}$  in a neighborhood of the solution  $x^*$ , and let  $\bigtriangledown^2 f(x^*)$  be positive definite. If  $x_0, x_n$  are close enough to  $x^*$ , if  $H_0$  is symmetric and positive definite, and if the matrices  $H_k$  are updated by (24), then  $x_k \neq x^*$  with Q- and R-rates of convergence at least  $(1 + \sqrt{5})/2$ .

<u>Proof.</u> By the mean value theorem we have  $y_k = A_k s_k$  where  $A_k = \nabla^2 f(\overline{x})$  and  $\overline{x}$  on the segment line connecting  $x_k$  and  $x_{k+1}$ . Fletcher [4] proved that the eigenvalues of  $A_k^{\frac{1}{2}}H_k A_k^{\frac{1}{2}}$  are bounded. Since we assumed that  $\nabla^2 f$  is continuous and positive definite at  $\overline{x}^*$ , the eigenvalues of  $H_k$  are bounded and the result follows from Theorem 2.

### 3. Concluding Remarks

Under traditional assumptions, we have proved that quasi-Newton methods inherit their rate of convergence from the underlying secant method (cf. Luenberger [6, §7.2].

Thus, the assumption in Theorem 8.9 of [3] that equation (8.21) of that paper holds, is not made here. Similarly, no assumption has been made on the linear independence of the directions  $\{s_k\}$  (cf. More and Trangenstein [8]).

We have not broadened our analysis to quasi-Newton methods beyond those belonging to Broyden's class of updates (and their inverse updated in the sense of [3]), in order not to obscure the main points in our analysis. The well known Davidon-Fletcher-Powell and Broyden-Fletcher Goldfarb-Shanno algorithms fall in this category. While the latter algorithm is the best available at present, our analysis in [1] suggests that faster algorithms can be designed utilizing gradient information only.

Our results extend with the obvious modifications for the problem of solving F(x) = 0,  $F: \mathbb{R}^n \to \mathbb{R}^n$  discussed in the first part of [3]. They also extend to the infinite dimensional case if the coefficients  $A_k$  in the basic difference equation (21) are bounded.

From our point of view, the rate of convergence of quasi-Newton methods has nothing to do with their so-called quadratic termination property. It is a consequence of the <u>data</u> used in the interpolatory equations (7) (see [1,2]). Therefore, the Huang class of updates [5] is too wide in the sense that it contains updates which do not satisfy the secant equation. Note also that Theorem 8.10 of [3] is not interesting in the sense that  $1.6^{n} > 2$  for all n > 1.

Finally, note that the common observation that Newton's method is self corrective in the sense that  $x_{k+1}$  depends explicitly on  $x_k$  only, while quasi-Newton methods carry along bad effects from previous iterations, is not justified. The fact that quasi-Newton methods are two-point interpolatory algorithms, is exactly their advantage over Newton's method (see [10, §6.4], [1] and [2]).

#### REFERENCES

- J. Barzilai, <u>Unconstrained minimization by interpolation: Rates of Convergence</u>, Research Report 389, Center for Cybernetic Studies, The University of Texas at Austin, 1980.
- [2] J. Barzilai and A. Ben-Tal, <u>Nonpolynomial and inverse interpolation for line</u> <u>search: synthesis and convergence rates</u>, Research Report 385, Center for Cybernetic Studies, The University of Texas at Austin, 1980.
- [3] J.E. Dennis and J.J. Moré, <u>Quasi-Newton methods</u>, motivation and theory, SIAM Review, 19(1977), pp. 46-89.
- [4] R. Fletcher, <u>A new approach to variable metric algorithms</u>, Comput. J., 13(1970), pp. 317-322.
- [5] H.Y. Huang, <u>Unified approach to quadratically convergent algorithms for function</u> minimization, J. Optimization Theory Appl., 5(1970), pp. 405-423.
- [6] E. Isaacson and H.B. Keller, <u>Analysis of Numerical Methods</u>, Wiley, New York, 1966.
- [7] D.G. Luenberger, <u>Introduction to Linear and Nonlinear Programming</u>, Addison-Wesley, Reading, Mass., 1973.
- [8] J.J. More and J.A. Trangenstein, <u>On the global convergence of Broyden's method</u>, Math. Comp., 30(1976), pp. 523-540.
- [9] J.M. Ortega and W.C. Rheinboldt, <u>Iterative Solution of Nonlinear Equations in</u> <u>Several Variables</u>, Academic Press, New York, 1970.
- [10] A.M. Ostrowski, <u>Solution of Equations and Systems of Equations</u>, 2nd ed., Academic Press, New York, 1966.
- [11] J.F. Traub, <u>Iterative Methods for the Solution of Equations</u>, Prentice-Hall, Englewood Cliffs, N.J., 1964.

| Unclassified                                                    |                                       |                                                     |
|-----------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|
| SECURITY CLASSIFICATION OF THIS PAGE When Date                  | Entered)                              |                                                     |
| REPORT DOCUMENTATION                                            |                                       | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM         |
| CCS 403                                                         |                                       | 3 RECIPIENT'S CATALOG NUMBER                        |
| GGS 403<br>4 TITLE (and Subrillo)                               | 14D-A10668                            |                                                     |
|                                                                 |                                       | S TYPE OF REPORT & PERIOD COVERED                   |
| Quasi-Newton Methods Converge at<br>Section Rate                | the Golden                            |                                                     |
| Section Rate                                                    |                                       | S PERFORMING ORG REPORT NUMBER                      |
| 7. AUTHOR(a)                                                    |                                       | S. CONTRACT OR GRANT NUMBER()                       |
| T. Downstand                                                    |                                       |                                                     |
| J. Barzilai                                                     |                                       | N00014-75-C-0569 🗸                                  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                     | · · · · · · · · · · · · · · · · · · · | 10. PROGRAM ELEMENT, PROJECT, TASK                  |
| Center for Cybernetic Studies, UI                               | Austin                                | AREA & WORK UNIT NUMBERS                            |
| Austin, TX 78712                                                |                                       |                                                     |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                         |                                       | 12. REPORT DATE                                     |
| Office of Naval Research (Code 43                               | August 1981                           |                                                     |
| Washington, DC                                                  | 13. NUMBER OF PAGES                   |                                                     |
| 14. MONITORING AGENCY NAME & ADDRESS(II dillaran                | t from Controlling Office)            | 11<br>15. SECURITY CLASS. (of this report)          |
|                                                                 |                                       | Unclassified                                        |
|                                                                 |                                       | 15. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE        |
|                                                                 |                                       | SCHEDULE                                            |
| This document has been approved f<br>distribution is unlimited. | or public releas                      | e and sale; its                                     |
| 17. DISTRIBUTION STATEMENT (of the obstract entered             | in Block 20, il different tree        | n Report)                                           |
| 10. SUPPLEMENTARY NOTES                                         |                                       |                                                     |
| 19. KEY WORDS (Continue on reverse side if necessary an         | d identify by block number)           |                                                     |
| Unconstrained minimization, Conve                               | ergence rates, Qu                     | asi-Newton methods                                  |
|                                                                 | •                                     |                                                     |
| 0. ABSTRACT (Continue on reverse side if necessary and          | f identify by block munber)           |                                                     |
| We prove that the rate of conv                                  | vergence of quasi                     | -Newton methods is the                              |
| golden section ratio $(1 + \sqrt{5})$                           | /2.                                   |                                                     |
| D FORM 1473 EDITION OF I NOV 65 IS OBSOL                        |                                       |                                                     |
| S/N 0102-014-6601 (                                             | Uncla                                 | ssified<br>SIFICATION OF THIS PAGE (Then Date Enter |

and a set of the set of

