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1. Introduction

Newton's method for the minimization of £: R » R requires computation and
inversion of the Hessian matrix at each iteration. Quasi-Newton methods approximate
the Hessian or its inverse by first order (i.e. gradient) information. These methods
extend the classical secant (or False Position) method for n > 1 (see e.g. Luen-
berger [7]). They are known to converge to the solution superlinearly (see Dennis
and Moré [3]) and the references there). Thus, it is commonly accepted (e.g. {3]),
that the price paid for the approximation of the Hessian by gradient information is
a reduction from second order to superlinear convergence.

In [1,2], we developed new tools for the analysis of the rate of convergence of
interpolatory algorithms. We use them in this paper to prove that actually, the rate
of convergence of a class of quasi-Newton methods, without line-search and without
restart, is given by the golden section ratio (1 +ﬂf;3/2 % 1.618. We note in passing '
that no other tools exist enabling one to establish convergence rates between super-

linear and quadratic. |

2. Rate of Convergence Analysis

Newton's method consists of the iteration xk+1==xk'-[sz(xk)]-l-vf(xk). Here
vt , sz are the gradient and Hessian of f respectively and all vectors are column

vectors. Quasi-Newton replace this equation with

@ Tt = R AHIE)

where the matrix Hk approximates the inverse of the Hessian, and the step-size
o € R 18 obtained by an exact or approximate line-search. The matrix Hk is re-

quired to satisfy




@ MtV = %
wvhere
S Vi T VEOR) tVEGR) gy = X T

For a thorough discussion of these methods see Dennis and Mord [3].

Henceforth, we will assume akf=1 for all k, 1i.e., no line search is per-

formed so that the iteration formula becomes *

) a1 = R T RIERY) -
In the one dimensional case (n=1), equation (2) implies

" -
Hk=f_'T'1-

k k-l

with QLS f'(xk), so that (4) is the classical secant or False Position method
(see Luenberger [7]). For this reason equation (2) is called the secant equation.
Other names, e.g. quasi-Newton equation, are also in use. This equation plays a
fundamental role in the classical theory of quasi-Newton methods as well as in our
analysis.

The formulas expressing Hk+1 in terms of Hk and the data are called up-

dating formulas. Different updating formulas give rise to a variety of quasi-

Newton methods. 1In addi{tion, there are quasi-Newton methods which replace equations

(2) and (4) with

-1
5 %es1 ™ %~ B VEGR)

(6) L

together with an appropriate updating formula for the matrix Bk'




r - h

We recall our basic results on hyperosculatory interpolation algorithms de-
veloped in [1,2]. The interpolation algorithm studied there generates a sequence
[xk} as follows. let s > 1, m> 0 be fixed integers, and let T: R” >R de-

pend on r=s(m+1) parameters. Given m+1 approximants to the

Xgoooes ¥y

*
solution x of Vf(x)=0, we use Xpem ?** 2 Fpal ® X to construct a new approxi-

mant %41 First we interpolate f by T requiring
(1) Y . . 4
) T (xk-j) £ (xk-j) }j=0,...,m; 1=0,...,8-1 .
Here f(l) =Vf§, f(z) =V2f etc. The new point X4 is determined by
®) VT(x, ) = O . !

In {1]), we proved that the sequence {xk], generated by this algorithm converges
(locally) to the solution with Q- and R-rates of convergence at least p, where )
p 1is the unique positive solution of the equation tm+1 - (s-l)t‘n - smf-:.ltj =0 (the

sum is taken as zero if m=0). For the definitions of the Q- and R-fages of con-

vergence and their properties see (9, §9]. The derivation of this result is based o
on the analysis in Traub [11], where a difference relation for the errors ka-x*”
is used to compute the rate.

)
To show that quasi-Newton methods as defined above can be regarded as interpo-

latory algorithms, we now characterize them by the requirements

) T(xq) = £(x)

10) | VT(x) = VE(x)

(11) PT(x, ) = VE(x ) .
and

a2) T(x ) =0,




where T 1is the quadratic interpolation function
T 1 T
13) T(x) = £(x) + (x=x) VE(x ) + F(x=x) "B, (x-x) ,

and where B is a symmetric nonsingular nxn matrix, and a'r stands for the

k
transpose of the vector a.

Indeed, if T is defined by (13), equation (9) holds and
14) VI(x) = VE(x) + B (x-x) ,

which implies (10). Using (14) in (12) we have vf(xk) +Bk(ﬁ<+1-xk) =0, which s

equivalent to (5). Finally the requirement (11) is equivalent to

VE(x ) + B (g %) = VE(x ),

which is the secant equation (6).

So far we have interpreted all quasi-Newton algorithms as interpolatory algo-
rithms. Note that (9)~(11) do not define hyperosculatory interpolation, since we
do not require T(xk-l) = f(xk-l)’ therefore our results in [1] do not apply di-
rectly to the algorithm (9)-(12). For n=1 the algorithm is precisely the secant
method which 1s well known to have convergence order (1 +~/?)/2. We will now show
that the rate of convergence of a class of quasi~-Newton methods is induced by the
underlying one-dimensional secant algorithm.

First we note that equation (9) is redundant. Indeed, equations (10)-(13)
are sufficient to define the sequence [xk], for if T(x) satisfies (9)-(13)
and '!'l(x) =T(x)+a with a e R, equation (9) may no longer hold for ’l‘1 (x), but
v'rl (x) =9T(x) will produce the same value for X4l

As in [1], we derive the basic difference equation we need by passing a curve

n

*
in R~ through the points Kol Xt Mes1 0 X i.e., we determine a function

v: R > R" such that




ﬁ—\—'-——-_r

Sy,

Ve ) =X 3=-1,0,1
*

(s) X
Ve =x

where the parameter t is chosen so that
%* * * *
(16) teey = Ieoy==ll, & =l x=0.

This can evidently be done in infinitely many ways. We will later specify further
restrictions on V. Defining 6(!:) =T (t)), a(t) =f(¥(t)) and O(t)=0" (t),

o(t) =¢'(t), we have from (10)-(12)

an o(t,) = o(t)
(18) ot 1) = ot )
(19) O(tk+1) =0

(20) 9(0) = 0 .

Having reduced the original equations to one-dimensional hyperosculatory interpolation

ones, we are now able to derive a difference equation for the sequence {tk}.

Theorem 1. If 0,9 ¢ C(z)(J) vhere J=(t: |t| < L} for some L > 0, and if

tk-j €eJ 3=-1,0,1 then equations (17)=(20) imply

2L St = A S Bkel
where
2@ (9-0® ()
and £, are in the interval spanned by teay? tk s tk ) and O.

Proof. By the remainder formula for a general interpolating function (see

Ostrowski [10]), (17) and (18) imply




@) 4 cery-6?) (¢ (e !
@3) @(t) -0y = L—CL8 CO (e e ) (eme, )

with ¢(t) 1in the interval spanned by ¢t, t‘.k and tk-l . By (19) we have

-0(0) = O(tk+1) -08(0) = tk+1°' (¢) with ¢ between tk+1 and 0. Setting t=0 {

in (23) and denoting ¢ =£(0) we therefore have <
2) 2)
] _ 9 (§)-0 (_E.)
Een® ©) = 2 % -1

which completes the proof.

Our main result now follows from equation (21).

.

3)

*
Theorem 2. Let f e C in a neighborhood of the solution x . If V2f(x*) is

positive definite, and if the sequence [Bk] is bounded, then there exists a
*
neighborhood N of x , such that for all Xps %)
*
erated by the quasi-Newton algorithm converges to x with Q- and R-rates of con-

€ N, the sequence {x ] gen-
*

vergence at least (1 ++5)/2.

Proof. This is an immediate consequence of the difference equation (21), if the
sequence (Ak] is bounded (see e.g. [6] or [11] and [2]).

Under the assumptions of the theorem and by definition of the functions 0, ¢, ‘
it 1s therefore sufficient to show that the curve V¥ can be chosen so that the |

derivatives of V¥ are bounded at t=0, and ¢'(0)#0.

-

Note that V¥ is used to derive equation (21), but its construction is not a

2 %
part of the algorithm. Assuming without lose of gemerality Q_ﬂ’zi.l,( 0, sand since
ox
1
¢ (0) =¥(0)T 2£(x")¥(0), onme can satisfy (15) and ¢'(0)#0 by choosing

r

Wi(t)' T a ed (¢=1,...,n) with a
g=0 3

the proof.

=1, =0 1=2,...,n. This completes

%4

11




Theorem 2 holds for all quasi-Newton methods. We now turn our attention to
the so-called Broyden's class of quasi-Newton methods, which are defined by the

updating formula

4
k k Hkykkak

LW W oy

skyk kakyk

(24) < with Yo 8

" defined by (3),

o I
T T
8% Yk

L Y T (y:Hkyk)

and o € [0o,1].

Evidently boundedness of Bk and Hk==B;1 is equivalent.

3)

*
Theorem 3. Llet f e C in a neighborhood of the solution i*, and let sz(x )

* :

he positive definite. If X X are close enough to x , if HO is symmetric '
*
and positive definite, and if the matrices Hk are updated by (24), then X > X

with Q~ and R~rates of convergence at least (1<+~f§3/z.

= Y o =
Proof. By the mean value theorem we have yk--Aksk vhere Ak-V f(x) and x on
the segment line connecting X and X Fletcher [4] proved that the eigenvalues ’
AkaAk are bounded. Since we assumed that sz is continuous and positive
definite at i*, the eigenvalues of Hk are bounded and the result follows from

Theorem 2.
S

a

3. Concluding Remarks

Under traditional assumptions, we have proved that quasi-Newton methods inherit

their rate of convergence from the underlying secant method (cf. Luenberger'[6, §7.2].




Thus, the assumption in Theorem 8.9 of [3] that equation (8.21) of that paper holds,
is not made here. Similarly, no assumption has been made on the linear independence
of the directions {sk} (cf. More and Trangenstein [8]).

We have not broadened our analysis to quasi-Newton methods beyond those be-
longing to Broyden's class of updates (and their inverse updated in the sense of [3]),

in order not to obscure the main points in our analysis. The well known Davidon-

Fletcher-Powell and Broyden-Fletcher Goldfarb-Shamno algorithms fall in this category.

While the latter algorithm is the best available at present, our amalysis in [1]
suggests that faster algorithms can be designed utilizing gradient information only.

Our results extend with the obvious modifications for the problem of solving
F(x)=0, F: R® > R" discussed in the first part of [3]. They also extend to the
infinite dimensional case if the coefficients Ak in the basic difference equation
(21) are bounded.

From our point of view, the rate of convergence of quasi=-Newton methods has
nothing to do with their so-called quadratic termination property. It is a conse-
quence of the data used in the interpolatory equations (7) (see [1,2]). Therefore,
the Huang class of updates [5] is too wide in the sense that it contains updates
which do not satisfy the secant equation. Note also that Theorem 8.10 of [3] is
not interesting in the sense that 1.6" > 2 for all n> 1,

Finally, note that the common observation that Newton's method is self
corrective in the sense that X1 depends explicitly on X only, while quasi-
Newton methods carry along bad effects from previous iterations, is not justified.
The fact that quasi-Newton methods are two-point interpolatory algorithms, is

exactly their advantage over Newton's method (see [10, §6.4], [1] and [2]).
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